xref: /openbmc/linux/mm/memory.c (revision d8bcaabe)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81 
82 #include "internal.h"
83 
84 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87 
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92 
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96 
97 /*
98  * A number of key systems in x86 including ioremap() rely on the assumption
99  * that high_memory defines the upper bound on direct map memory, then end
100  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
101  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102  * and ZONE_HIGHMEM.
103  */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106 
107 /*
108  * Randomize the address space (stacks, mmaps, brk, etc.).
109  *
110  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111  *   as ancient (libc5 based) binaries can segfault. )
112  */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115 					1;
116 #else
117 					2;
118 #endif
119 
120 static int __init disable_randmaps(char *s)
121 {
122 	randomize_va_space = 0;
123 	return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126 
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129 
130 unsigned long highest_memmap_pfn __read_mostly;
131 
132 /*
133  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134  */
135 static int __init init_zero_pfn(void)
136 {
137 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 	return 0;
139 }
140 core_initcall(init_zero_pfn);
141 
142 
143 #if defined(SPLIT_RSS_COUNTING)
144 
145 void sync_mm_rss(struct mm_struct *mm)
146 {
147 	int i;
148 
149 	for (i = 0; i < NR_MM_COUNTERS; i++) {
150 		if (current->rss_stat.count[i]) {
151 			add_mm_counter(mm, i, current->rss_stat.count[i]);
152 			current->rss_stat.count[i] = 0;
153 		}
154 	}
155 	current->rss_stat.events = 0;
156 }
157 
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160 	struct task_struct *task = current;
161 
162 	if (likely(task->mm == mm))
163 		task->rss_stat.count[member] += val;
164 	else
165 		add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169 
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH	(64)
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 	if (unlikely(task != current))
175 		return;
176 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 		sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180 
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183 
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187 
188 #endif /* SPLIT_RSS_COUNTING */
189 
190 #ifdef HAVE_GENERIC_MMU_GATHER
191 
192 static bool tlb_next_batch(struct mmu_gather *tlb)
193 {
194 	struct mmu_gather_batch *batch;
195 
196 	batch = tlb->active;
197 	if (batch->next) {
198 		tlb->active = batch->next;
199 		return true;
200 	}
201 
202 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
203 		return false;
204 
205 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
206 	if (!batch)
207 		return false;
208 
209 	tlb->batch_count++;
210 	batch->next = NULL;
211 	batch->nr   = 0;
212 	batch->max  = MAX_GATHER_BATCH;
213 
214 	tlb->active->next = batch;
215 	tlb->active = batch;
216 
217 	return true;
218 }
219 
220 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
221 				unsigned long start, unsigned long end)
222 {
223 	tlb->mm = mm;
224 
225 	/* Is it from 0 to ~0? */
226 	tlb->fullmm     = !(start | (end+1));
227 	tlb->need_flush_all = 0;
228 	tlb->local.next = NULL;
229 	tlb->local.nr   = 0;
230 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
231 	tlb->active     = &tlb->local;
232 	tlb->batch_count = 0;
233 
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 	tlb->batch = NULL;
236 #endif
237 	tlb->page_size = 0;
238 
239 	__tlb_reset_range(tlb);
240 }
241 
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 {
244 	if (!tlb->end)
245 		return;
246 
247 	tlb_flush(tlb);
248 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
250 	tlb_table_flush(tlb);
251 #endif
252 	__tlb_reset_range(tlb);
253 }
254 
255 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
256 {
257 	struct mmu_gather_batch *batch;
258 
259 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260 		free_pages_and_swap_cache(batch->pages, batch->nr);
261 		batch->nr = 0;
262 	}
263 	tlb->active = &tlb->local;
264 }
265 
266 void tlb_flush_mmu(struct mmu_gather *tlb)
267 {
268 	tlb_flush_mmu_tlbonly(tlb);
269 	tlb_flush_mmu_free(tlb);
270 }
271 
272 /* tlb_finish_mmu
273  *	Called at the end of the shootdown operation to free up any resources
274  *	that were required.
275  */
276 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
277 		unsigned long start, unsigned long end, bool force)
278 {
279 	struct mmu_gather_batch *batch, *next;
280 
281 	if (force)
282 		__tlb_adjust_range(tlb, start, end - start);
283 
284 	tlb_flush_mmu(tlb);
285 
286 	/* keep the page table cache within bounds */
287 	check_pgt_cache();
288 
289 	for (batch = tlb->local.next; batch; batch = next) {
290 		next = batch->next;
291 		free_pages((unsigned long)batch, 0);
292 	}
293 	tlb->local.next = NULL;
294 }
295 
296 /* __tlb_remove_page
297  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298  *	handling the additional races in SMP caused by other CPUs caching valid
299  *	mappings in their TLBs. Returns the number of free page slots left.
300  *	When out of page slots we must call tlb_flush_mmu().
301  *returns true if the caller should flush.
302  */
303 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
304 {
305 	struct mmu_gather_batch *batch;
306 
307 	VM_BUG_ON(!tlb->end);
308 	VM_WARN_ON(tlb->page_size != page_size);
309 
310 	batch = tlb->active;
311 	/*
312 	 * Add the page and check if we are full. If so
313 	 * force a flush.
314 	 */
315 	batch->pages[batch->nr++] = page;
316 	if (batch->nr == batch->max) {
317 		if (!tlb_next_batch(tlb))
318 			return true;
319 		batch = tlb->active;
320 	}
321 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
322 
323 	return false;
324 }
325 
326 #endif /* HAVE_GENERIC_MMU_GATHER */
327 
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
329 
330 /*
331  * See the comment near struct mmu_table_batch.
332  */
333 
334 static void tlb_remove_table_smp_sync(void *arg)
335 {
336 	/* Simply deliver the interrupt */
337 }
338 
339 static void tlb_remove_table_one(void *table)
340 {
341 	/*
342 	 * This isn't an RCU grace period and hence the page-tables cannot be
343 	 * assumed to be actually RCU-freed.
344 	 *
345 	 * It is however sufficient for software page-table walkers that rely on
346 	 * IRQ disabling. See the comment near struct mmu_table_batch.
347 	 */
348 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
349 	__tlb_remove_table(table);
350 }
351 
352 static void tlb_remove_table_rcu(struct rcu_head *head)
353 {
354 	struct mmu_table_batch *batch;
355 	int i;
356 
357 	batch = container_of(head, struct mmu_table_batch, rcu);
358 
359 	for (i = 0; i < batch->nr; i++)
360 		__tlb_remove_table(batch->tables[i]);
361 
362 	free_page((unsigned long)batch);
363 }
364 
365 void tlb_table_flush(struct mmu_gather *tlb)
366 {
367 	struct mmu_table_batch **batch = &tlb->batch;
368 
369 	if (*batch) {
370 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
371 		*batch = NULL;
372 	}
373 }
374 
375 void tlb_remove_table(struct mmu_gather *tlb, void *table)
376 {
377 	struct mmu_table_batch **batch = &tlb->batch;
378 
379 	/*
380 	 * When there's less then two users of this mm there cannot be a
381 	 * concurrent page-table walk.
382 	 */
383 	if (atomic_read(&tlb->mm->mm_users) < 2) {
384 		__tlb_remove_table(table);
385 		return;
386 	}
387 
388 	if (*batch == NULL) {
389 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
390 		if (*batch == NULL) {
391 			tlb_remove_table_one(table);
392 			return;
393 		}
394 		(*batch)->nr = 0;
395 	}
396 	(*batch)->tables[(*batch)->nr++] = table;
397 	if ((*batch)->nr == MAX_TABLE_BATCH)
398 		tlb_table_flush(tlb);
399 }
400 
401 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
402 
403 /* tlb_gather_mmu
404  *	Called to initialize an (on-stack) mmu_gather structure for page-table
405  *	tear-down from @mm. The @fullmm argument is used when @mm is without
406  *	users and we're going to destroy the full address space (exit/execve).
407  */
408 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
409 			unsigned long start, unsigned long end)
410 {
411 	arch_tlb_gather_mmu(tlb, mm, start, end);
412 	inc_tlb_flush_pending(tlb->mm);
413 }
414 
415 void tlb_finish_mmu(struct mmu_gather *tlb,
416 		unsigned long start, unsigned long end)
417 {
418 	/*
419 	 * If there are parallel threads are doing PTE changes on same range
420 	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
421 	 * flush by batching, a thread has stable TLB entry can fail to flush
422 	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
423 	 * forcefully if we detect parallel PTE batching threads.
424 	 */
425 	bool force = mm_tlb_flush_nested(tlb->mm);
426 
427 	arch_tlb_finish_mmu(tlb, start, end, force);
428 	dec_tlb_flush_pending(tlb->mm);
429 }
430 
431 /*
432  * Note: this doesn't free the actual pages themselves. That
433  * has been handled earlier when unmapping all the memory regions.
434  */
435 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
436 			   unsigned long addr)
437 {
438 	pgtable_t token = pmd_pgtable(*pmd);
439 	pmd_clear(pmd);
440 	pte_free_tlb(tlb, token, addr);
441 	atomic_long_dec(&tlb->mm->nr_ptes);
442 }
443 
444 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
445 				unsigned long addr, unsigned long end,
446 				unsigned long floor, unsigned long ceiling)
447 {
448 	pmd_t *pmd;
449 	unsigned long next;
450 	unsigned long start;
451 
452 	start = addr;
453 	pmd = pmd_offset(pud, addr);
454 	do {
455 		next = pmd_addr_end(addr, end);
456 		if (pmd_none_or_clear_bad(pmd))
457 			continue;
458 		free_pte_range(tlb, pmd, addr);
459 	} while (pmd++, addr = next, addr != end);
460 
461 	start &= PUD_MASK;
462 	if (start < floor)
463 		return;
464 	if (ceiling) {
465 		ceiling &= PUD_MASK;
466 		if (!ceiling)
467 			return;
468 	}
469 	if (end - 1 > ceiling - 1)
470 		return;
471 
472 	pmd = pmd_offset(pud, start);
473 	pud_clear(pud);
474 	pmd_free_tlb(tlb, pmd, start);
475 	mm_dec_nr_pmds(tlb->mm);
476 }
477 
478 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
479 				unsigned long addr, unsigned long end,
480 				unsigned long floor, unsigned long ceiling)
481 {
482 	pud_t *pud;
483 	unsigned long next;
484 	unsigned long start;
485 
486 	start = addr;
487 	pud = pud_offset(p4d, addr);
488 	do {
489 		next = pud_addr_end(addr, end);
490 		if (pud_none_or_clear_bad(pud))
491 			continue;
492 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
493 	} while (pud++, addr = next, addr != end);
494 
495 	start &= P4D_MASK;
496 	if (start < floor)
497 		return;
498 	if (ceiling) {
499 		ceiling &= P4D_MASK;
500 		if (!ceiling)
501 			return;
502 	}
503 	if (end - 1 > ceiling - 1)
504 		return;
505 
506 	pud = pud_offset(p4d, start);
507 	p4d_clear(p4d);
508 	pud_free_tlb(tlb, pud, start);
509 }
510 
511 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
512 				unsigned long addr, unsigned long end,
513 				unsigned long floor, unsigned long ceiling)
514 {
515 	p4d_t *p4d;
516 	unsigned long next;
517 	unsigned long start;
518 
519 	start = addr;
520 	p4d = p4d_offset(pgd, addr);
521 	do {
522 		next = p4d_addr_end(addr, end);
523 		if (p4d_none_or_clear_bad(p4d))
524 			continue;
525 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
526 	} while (p4d++, addr = next, addr != end);
527 
528 	start &= PGDIR_MASK;
529 	if (start < floor)
530 		return;
531 	if (ceiling) {
532 		ceiling &= PGDIR_MASK;
533 		if (!ceiling)
534 			return;
535 	}
536 	if (end - 1 > ceiling - 1)
537 		return;
538 
539 	p4d = p4d_offset(pgd, start);
540 	pgd_clear(pgd);
541 	p4d_free_tlb(tlb, p4d, start);
542 }
543 
544 /*
545  * This function frees user-level page tables of a process.
546  */
547 void free_pgd_range(struct mmu_gather *tlb,
548 			unsigned long addr, unsigned long end,
549 			unsigned long floor, unsigned long ceiling)
550 {
551 	pgd_t *pgd;
552 	unsigned long next;
553 
554 	/*
555 	 * The next few lines have given us lots of grief...
556 	 *
557 	 * Why are we testing PMD* at this top level?  Because often
558 	 * there will be no work to do at all, and we'd prefer not to
559 	 * go all the way down to the bottom just to discover that.
560 	 *
561 	 * Why all these "- 1"s?  Because 0 represents both the bottom
562 	 * of the address space and the top of it (using -1 for the
563 	 * top wouldn't help much: the masks would do the wrong thing).
564 	 * The rule is that addr 0 and floor 0 refer to the bottom of
565 	 * the address space, but end 0 and ceiling 0 refer to the top
566 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
567 	 * that end 0 case should be mythical).
568 	 *
569 	 * Wherever addr is brought up or ceiling brought down, we must
570 	 * be careful to reject "the opposite 0" before it confuses the
571 	 * subsequent tests.  But what about where end is brought down
572 	 * by PMD_SIZE below? no, end can't go down to 0 there.
573 	 *
574 	 * Whereas we round start (addr) and ceiling down, by different
575 	 * masks at different levels, in order to test whether a table
576 	 * now has no other vmas using it, so can be freed, we don't
577 	 * bother to round floor or end up - the tests don't need that.
578 	 */
579 
580 	addr &= PMD_MASK;
581 	if (addr < floor) {
582 		addr += PMD_SIZE;
583 		if (!addr)
584 			return;
585 	}
586 	if (ceiling) {
587 		ceiling &= PMD_MASK;
588 		if (!ceiling)
589 			return;
590 	}
591 	if (end - 1 > ceiling - 1)
592 		end -= PMD_SIZE;
593 	if (addr > end - 1)
594 		return;
595 	/*
596 	 * We add page table cache pages with PAGE_SIZE,
597 	 * (see pte_free_tlb()), flush the tlb if we need
598 	 */
599 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
600 	pgd = pgd_offset(tlb->mm, addr);
601 	do {
602 		next = pgd_addr_end(addr, end);
603 		if (pgd_none_or_clear_bad(pgd))
604 			continue;
605 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
606 	} while (pgd++, addr = next, addr != end);
607 }
608 
609 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
610 		unsigned long floor, unsigned long ceiling)
611 {
612 	while (vma) {
613 		struct vm_area_struct *next = vma->vm_next;
614 		unsigned long addr = vma->vm_start;
615 
616 		/*
617 		 * Hide vma from rmap and truncate_pagecache before freeing
618 		 * pgtables
619 		 */
620 		unlink_anon_vmas(vma);
621 		unlink_file_vma(vma);
622 
623 		if (is_vm_hugetlb_page(vma)) {
624 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
625 				floor, next ? next->vm_start : ceiling);
626 		} else {
627 			/*
628 			 * Optimization: gather nearby vmas into one call down
629 			 */
630 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
631 			       && !is_vm_hugetlb_page(next)) {
632 				vma = next;
633 				next = vma->vm_next;
634 				unlink_anon_vmas(vma);
635 				unlink_file_vma(vma);
636 			}
637 			free_pgd_range(tlb, addr, vma->vm_end,
638 				floor, next ? next->vm_start : ceiling);
639 		}
640 		vma = next;
641 	}
642 }
643 
644 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
645 {
646 	spinlock_t *ptl;
647 	pgtable_t new = pte_alloc_one(mm, address);
648 	if (!new)
649 		return -ENOMEM;
650 
651 	/*
652 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
653 	 * visible before the pte is made visible to other CPUs by being
654 	 * put into page tables.
655 	 *
656 	 * The other side of the story is the pointer chasing in the page
657 	 * table walking code (when walking the page table without locking;
658 	 * ie. most of the time). Fortunately, these data accesses consist
659 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
660 	 * being the notable exception) will already guarantee loads are
661 	 * seen in-order. See the alpha page table accessors for the
662 	 * smp_read_barrier_depends() barriers in page table walking code.
663 	 */
664 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
665 
666 	ptl = pmd_lock(mm, pmd);
667 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
668 		atomic_long_inc(&mm->nr_ptes);
669 		pmd_populate(mm, pmd, new);
670 		new = NULL;
671 	}
672 	spin_unlock(ptl);
673 	if (new)
674 		pte_free(mm, new);
675 	return 0;
676 }
677 
678 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
679 {
680 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
681 	if (!new)
682 		return -ENOMEM;
683 
684 	smp_wmb(); /* See comment in __pte_alloc */
685 
686 	spin_lock(&init_mm.page_table_lock);
687 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
688 		pmd_populate_kernel(&init_mm, pmd, new);
689 		new = NULL;
690 	}
691 	spin_unlock(&init_mm.page_table_lock);
692 	if (new)
693 		pte_free_kernel(&init_mm, new);
694 	return 0;
695 }
696 
697 static inline void init_rss_vec(int *rss)
698 {
699 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
700 }
701 
702 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
703 {
704 	int i;
705 
706 	if (current->mm == mm)
707 		sync_mm_rss(mm);
708 	for (i = 0; i < NR_MM_COUNTERS; i++)
709 		if (rss[i])
710 			add_mm_counter(mm, i, rss[i]);
711 }
712 
713 /*
714  * This function is called to print an error when a bad pte
715  * is found. For example, we might have a PFN-mapped pte in
716  * a region that doesn't allow it.
717  *
718  * The calling function must still handle the error.
719  */
720 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
721 			  pte_t pte, struct page *page)
722 {
723 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
724 	p4d_t *p4d = p4d_offset(pgd, addr);
725 	pud_t *pud = pud_offset(p4d, addr);
726 	pmd_t *pmd = pmd_offset(pud, addr);
727 	struct address_space *mapping;
728 	pgoff_t index;
729 	static unsigned long resume;
730 	static unsigned long nr_shown;
731 	static unsigned long nr_unshown;
732 
733 	/*
734 	 * Allow a burst of 60 reports, then keep quiet for that minute;
735 	 * or allow a steady drip of one report per second.
736 	 */
737 	if (nr_shown == 60) {
738 		if (time_before(jiffies, resume)) {
739 			nr_unshown++;
740 			return;
741 		}
742 		if (nr_unshown) {
743 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
744 				 nr_unshown);
745 			nr_unshown = 0;
746 		}
747 		nr_shown = 0;
748 	}
749 	if (nr_shown++ == 0)
750 		resume = jiffies + 60 * HZ;
751 
752 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
753 	index = linear_page_index(vma, addr);
754 
755 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
756 		 current->comm,
757 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
758 	if (page)
759 		dump_page(page, "bad pte");
760 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
761 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
762 	/*
763 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
764 	 */
765 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
766 		 vma->vm_file,
767 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
768 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
769 		 mapping ? mapping->a_ops->readpage : NULL);
770 	dump_stack();
771 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
772 }
773 
774 /*
775  * vm_normal_page -- This function gets the "struct page" associated with a pte.
776  *
777  * "Special" mappings do not wish to be associated with a "struct page" (either
778  * it doesn't exist, or it exists but they don't want to touch it). In this
779  * case, NULL is returned here. "Normal" mappings do have a struct page.
780  *
781  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
782  * pte bit, in which case this function is trivial. Secondly, an architecture
783  * may not have a spare pte bit, which requires a more complicated scheme,
784  * described below.
785  *
786  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
787  * special mapping (even if there are underlying and valid "struct pages").
788  * COWed pages of a VM_PFNMAP are always normal.
789  *
790  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
791  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
792  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
793  * mapping will always honor the rule
794  *
795  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
796  *
797  * And for normal mappings this is false.
798  *
799  * This restricts such mappings to be a linear translation from virtual address
800  * to pfn. To get around this restriction, we allow arbitrary mappings so long
801  * as the vma is not a COW mapping; in that case, we know that all ptes are
802  * special (because none can have been COWed).
803  *
804  *
805  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
806  *
807  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
808  * page" backing, however the difference is that _all_ pages with a struct
809  * page (that is, those where pfn_valid is true) are refcounted and considered
810  * normal pages by the VM. The disadvantage is that pages are refcounted
811  * (which can be slower and simply not an option for some PFNMAP users). The
812  * advantage is that we don't have to follow the strict linearity rule of
813  * PFNMAP mappings in order to support COWable mappings.
814  *
815  */
816 #ifdef __HAVE_ARCH_PTE_SPECIAL
817 # define HAVE_PTE_SPECIAL 1
818 #else
819 # define HAVE_PTE_SPECIAL 0
820 #endif
821 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
822 			     pte_t pte, bool with_public_device)
823 {
824 	unsigned long pfn = pte_pfn(pte);
825 
826 	if (HAVE_PTE_SPECIAL) {
827 		if (likely(!pte_special(pte)))
828 			goto check_pfn;
829 		if (vma->vm_ops && vma->vm_ops->find_special_page)
830 			return vma->vm_ops->find_special_page(vma, addr);
831 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
832 			return NULL;
833 		if (is_zero_pfn(pfn))
834 			return NULL;
835 
836 		/*
837 		 * Device public pages are special pages (they are ZONE_DEVICE
838 		 * pages but different from persistent memory). They behave
839 		 * allmost like normal pages. The difference is that they are
840 		 * not on the lru and thus should never be involve with any-
841 		 * thing that involve lru manipulation (mlock, numa balancing,
842 		 * ...).
843 		 *
844 		 * This is why we still want to return NULL for such page from
845 		 * vm_normal_page() so that we do not have to special case all
846 		 * call site of vm_normal_page().
847 		 */
848 		if (likely(pfn <= highest_memmap_pfn)) {
849 			struct page *page = pfn_to_page(pfn);
850 
851 			if (is_device_public_page(page)) {
852 				if (with_public_device)
853 					return page;
854 				return NULL;
855 			}
856 		}
857 		print_bad_pte(vma, addr, pte, NULL);
858 		return NULL;
859 	}
860 
861 	/* !HAVE_PTE_SPECIAL case follows: */
862 
863 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
864 		if (vma->vm_flags & VM_MIXEDMAP) {
865 			if (!pfn_valid(pfn))
866 				return NULL;
867 			goto out;
868 		} else {
869 			unsigned long off;
870 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
871 			if (pfn == vma->vm_pgoff + off)
872 				return NULL;
873 			if (!is_cow_mapping(vma->vm_flags))
874 				return NULL;
875 		}
876 	}
877 
878 	if (is_zero_pfn(pfn))
879 		return NULL;
880 check_pfn:
881 	if (unlikely(pfn > highest_memmap_pfn)) {
882 		print_bad_pte(vma, addr, pte, NULL);
883 		return NULL;
884 	}
885 
886 	/*
887 	 * NOTE! We still have PageReserved() pages in the page tables.
888 	 * eg. VDSO mappings can cause them to exist.
889 	 */
890 out:
891 	return pfn_to_page(pfn);
892 }
893 
894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
895 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
896 				pmd_t pmd)
897 {
898 	unsigned long pfn = pmd_pfn(pmd);
899 
900 	/*
901 	 * There is no pmd_special() but there may be special pmds, e.g.
902 	 * in a direct-access (dax) mapping, so let's just replicate the
903 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
904 	 */
905 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
906 		if (vma->vm_flags & VM_MIXEDMAP) {
907 			if (!pfn_valid(pfn))
908 				return NULL;
909 			goto out;
910 		} else {
911 			unsigned long off;
912 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
913 			if (pfn == vma->vm_pgoff + off)
914 				return NULL;
915 			if (!is_cow_mapping(vma->vm_flags))
916 				return NULL;
917 		}
918 	}
919 
920 	if (is_zero_pfn(pfn))
921 		return NULL;
922 	if (unlikely(pfn > highest_memmap_pfn))
923 		return NULL;
924 
925 	/*
926 	 * NOTE! We still have PageReserved() pages in the page tables.
927 	 * eg. VDSO mappings can cause them to exist.
928 	 */
929 out:
930 	return pfn_to_page(pfn);
931 }
932 #endif
933 
934 /*
935  * copy one vm_area from one task to the other. Assumes the page tables
936  * already present in the new task to be cleared in the whole range
937  * covered by this vma.
938  */
939 
940 static inline unsigned long
941 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
942 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
943 		unsigned long addr, int *rss)
944 {
945 	unsigned long vm_flags = vma->vm_flags;
946 	pte_t pte = *src_pte;
947 	struct page *page;
948 
949 	/* pte contains position in swap or file, so copy. */
950 	if (unlikely(!pte_present(pte))) {
951 		swp_entry_t entry = pte_to_swp_entry(pte);
952 
953 		if (likely(!non_swap_entry(entry))) {
954 			if (swap_duplicate(entry) < 0)
955 				return entry.val;
956 
957 			/* make sure dst_mm is on swapoff's mmlist. */
958 			if (unlikely(list_empty(&dst_mm->mmlist))) {
959 				spin_lock(&mmlist_lock);
960 				if (list_empty(&dst_mm->mmlist))
961 					list_add(&dst_mm->mmlist,
962 							&src_mm->mmlist);
963 				spin_unlock(&mmlist_lock);
964 			}
965 			rss[MM_SWAPENTS]++;
966 		} else if (is_migration_entry(entry)) {
967 			page = migration_entry_to_page(entry);
968 
969 			rss[mm_counter(page)]++;
970 
971 			if (is_write_migration_entry(entry) &&
972 					is_cow_mapping(vm_flags)) {
973 				/*
974 				 * COW mappings require pages in both
975 				 * parent and child to be set to read.
976 				 */
977 				make_migration_entry_read(&entry);
978 				pte = swp_entry_to_pte(entry);
979 				if (pte_swp_soft_dirty(*src_pte))
980 					pte = pte_swp_mksoft_dirty(pte);
981 				set_pte_at(src_mm, addr, src_pte, pte);
982 			}
983 		} else if (is_device_private_entry(entry)) {
984 			page = device_private_entry_to_page(entry);
985 
986 			/*
987 			 * Update rss count even for unaddressable pages, as
988 			 * they should treated just like normal pages in this
989 			 * respect.
990 			 *
991 			 * We will likely want to have some new rss counters
992 			 * for unaddressable pages, at some point. But for now
993 			 * keep things as they are.
994 			 */
995 			get_page(page);
996 			rss[mm_counter(page)]++;
997 			page_dup_rmap(page, false);
998 
999 			/*
1000 			 * We do not preserve soft-dirty information, because so
1001 			 * far, checkpoint/restore is the only feature that
1002 			 * requires that. And checkpoint/restore does not work
1003 			 * when a device driver is involved (you cannot easily
1004 			 * save and restore device driver state).
1005 			 */
1006 			if (is_write_device_private_entry(entry) &&
1007 			    is_cow_mapping(vm_flags)) {
1008 				make_device_private_entry_read(&entry);
1009 				pte = swp_entry_to_pte(entry);
1010 				set_pte_at(src_mm, addr, src_pte, pte);
1011 			}
1012 		}
1013 		goto out_set_pte;
1014 	}
1015 
1016 	/*
1017 	 * If it's a COW mapping, write protect it both
1018 	 * in the parent and the child
1019 	 */
1020 	if (is_cow_mapping(vm_flags)) {
1021 		ptep_set_wrprotect(src_mm, addr, src_pte);
1022 		pte = pte_wrprotect(pte);
1023 	}
1024 
1025 	/*
1026 	 * If it's a shared mapping, mark it clean in
1027 	 * the child
1028 	 */
1029 	if (vm_flags & VM_SHARED)
1030 		pte = pte_mkclean(pte);
1031 	pte = pte_mkold(pte);
1032 
1033 	page = vm_normal_page(vma, addr, pte);
1034 	if (page) {
1035 		get_page(page);
1036 		page_dup_rmap(page, false);
1037 		rss[mm_counter(page)]++;
1038 	} else if (pte_devmap(pte)) {
1039 		page = pte_page(pte);
1040 
1041 		/*
1042 		 * Cache coherent device memory behave like regular page and
1043 		 * not like persistent memory page. For more informations see
1044 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1045 		 */
1046 		if (is_device_public_page(page)) {
1047 			get_page(page);
1048 			page_dup_rmap(page, false);
1049 			rss[mm_counter(page)]++;
1050 		}
1051 	}
1052 
1053 out_set_pte:
1054 	set_pte_at(dst_mm, addr, dst_pte, pte);
1055 	return 0;
1056 }
1057 
1058 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1059 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1060 		   unsigned long addr, unsigned long end)
1061 {
1062 	pte_t *orig_src_pte, *orig_dst_pte;
1063 	pte_t *src_pte, *dst_pte;
1064 	spinlock_t *src_ptl, *dst_ptl;
1065 	int progress = 0;
1066 	int rss[NR_MM_COUNTERS];
1067 	swp_entry_t entry = (swp_entry_t){0};
1068 
1069 again:
1070 	init_rss_vec(rss);
1071 
1072 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1073 	if (!dst_pte)
1074 		return -ENOMEM;
1075 	src_pte = pte_offset_map(src_pmd, addr);
1076 	src_ptl = pte_lockptr(src_mm, src_pmd);
1077 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1078 	orig_src_pte = src_pte;
1079 	orig_dst_pte = dst_pte;
1080 	arch_enter_lazy_mmu_mode();
1081 
1082 	do {
1083 		/*
1084 		 * We are holding two locks at this point - either of them
1085 		 * could generate latencies in another task on another CPU.
1086 		 */
1087 		if (progress >= 32) {
1088 			progress = 0;
1089 			if (need_resched() ||
1090 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1091 				break;
1092 		}
1093 		if (pte_none(*src_pte)) {
1094 			progress++;
1095 			continue;
1096 		}
1097 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1098 							vma, addr, rss);
1099 		if (entry.val)
1100 			break;
1101 		progress += 8;
1102 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1103 
1104 	arch_leave_lazy_mmu_mode();
1105 	spin_unlock(src_ptl);
1106 	pte_unmap(orig_src_pte);
1107 	add_mm_rss_vec(dst_mm, rss);
1108 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1109 	cond_resched();
1110 
1111 	if (entry.val) {
1112 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1113 			return -ENOMEM;
1114 		progress = 0;
1115 	}
1116 	if (addr != end)
1117 		goto again;
1118 	return 0;
1119 }
1120 
1121 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1122 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1123 		unsigned long addr, unsigned long end)
1124 {
1125 	pmd_t *src_pmd, *dst_pmd;
1126 	unsigned long next;
1127 
1128 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1129 	if (!dst_pmd)
1130 		return -ENOMEM;
1131 	src_pmd = pmd_offset(src_pud, addr);
1132 	do {
1133 		next = pmd_addr_end(addr, end);
1134 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1135 			|| pmd_devmap(*src_pmd)) {
1136 			int err;
1137 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1138 			err = copy_huge_pmd(dst_mm, src_mm,
1139 					    dst_pmd, src_pmd, addr, vma);
1140 			if (err == -ENOMEM)
1141 				return -ENOMEM;
1142 			if (!err)
1143 				continue;
1144 			/* fall through */
1145 		}
1146 		if (pmd_none_or_clear_bad(src_pmd))
1147 			continue;
1148 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1149 						vma, addr, next))
1150 			return -ENOMEM;
1151 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1152 	return 0;
1153 }
1154 
1155 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1156 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1157 		unsigned long addr, unsigned long end)
1158 {
1159 	pud_t *src_pud, *dst_pud;
1160 	unsigned long next;
1161 
1162 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1163 	if (!dst_pud)
1164 		return -ENOMEM;
1165 	src_pud = pud_offset(src_p4d, addr);
1166 	do {
1167 		next = pud_addr_end(addr, end);
1168 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1169 			int err;
1170 
1171 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1172 			err = copy_huge_pud(dst_mm, src_mm,
1173 					    dst_pud, src_pud, addr, vma);
1174 			if (err == -ENOMEM)
1175 				return -ENOMEM;
1176 			if (!err)
1177 				continue;
1178 			/* fall through */
1179 		}
1180 		if (pud_none_or_clear_bad(src_pud))
1181 			continue;
1182 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1183 						vma, addr, next))
1184 			return -ENOMEM;
1185 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1186 	return 0;
1187 }
1188 
1189 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1190 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1191 		unsigned long addr, unsigned long end)
1192 {
1193 	p4d_t *src_p4d, *dst_p4d;
1194 	unsigned long next;
1195 
1196 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1197 	if (!dst_p4d)
1198 		return -ENOMEM;
1199 	src_p4d = p4d_offset(src_pgd, addr);
1200 	do {
1201 		next = p4d_addr_end(addr, end);
1202 		if (p4d_none_or_clear_bad(src_p4d))
1203 			continue;
1204 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1205 						vma, addr, next))
1206 			return -ENOMEM;
1207 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1208 	return 0;
1209 }
1210 
1211 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1212 		struct vm_area_struct *vma)
1213 {
1214 	pgd_t *src_pgd, *dst_pgd;
1215 	unsigned long next;
1216 	unsigned long addr = vma->vm_start;
1217 	unsigned long end = vma->vm_end;
1218 	unsigned long mmun_start;	/* For mmu_notifiers */
1219 	unsigned long mmun_end;		/* For mmu_notifiers */
1220 	bool is_cow;
1221 	int ret;
1222 
1223 	/*
1224 	 * Don't copy ptes where a page fault will fill them correctly.
1225 	 * Fork becomes much lighter when there are big shared or private
1226 	 * readonly mappings. The tradeoff is that copy_page_range is more
1227 	 * efficient than faulting.
1228 	 */
1229 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1230 			!vma->anon_vma)
1231 		return 0;
1232 
1233 	if (is_vm_hugetlb_page(vma))
1234 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1235 
1236 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1237 		/*
1238 		 * We do not free on error cases below as remove_vma
1239 		 * gets called on error from higher level routine
1240 		 */
1241 		ret = track_pfn_copy(vma);
1242 		if (ret)
1243 			return ret;
1244 	}
1245 
1246 	/*
1247 	 * We need to invalidate the secondary MMU mappings only when
1248 	 * there could be a permission downgrade on the ptes of the
1249 	 * parent mm. And a permission downgrade will only happen if
1250 	 * is_cow_mapping() returns true.
1251 	 */
1252 	is_cow = is_cow_mapping(vma->vm_flags);
1253 	mmun_start = addr;
1254 	mmun_end   = end;
1255 	if (is_cow)
1256 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1257 						    mmun_end);
1258 
1259 	ret = 0;
1260 	dst_pgd = pgd_offset(dst_mm, addr);
1261 	src_pgd = pgd_offset(src_mm, addr);
1262 	do {
1263 		next = pgd_addr_end(addr, end);
1264 		if (pgd_none_or_clear_bad(src_pgd))
1265 			continue;
1266 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1267 					    vma, addr, next))) {
1268 			ret = -ENOMEM;
1269 			break;
1270 		}
1271 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1272 
1273 	if (is_cow)
1274 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1275 	return ret;
1276 }
1277 
1278 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1279 				struct vm_area_struct *vma, pmd_t *pmd,
1280 				unsigned long addr, unsigned long end,
1281 				struct zap_details *details)
1282 {
1283 	struct mm_struct *mm = tlb->mm;
1284 	int force_flush = 0;
1285 	int rss[NR_MM_COUNTERS];
1286 	spinlock_t *ptl;
1287 	pte_t *start_pte;
1288 	pte_t *pte;
1289 	swp_entry_t entry;
1290 
1291 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1292 again:
1293 	init_rss_vec(rss);
1294 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1295 	pte = start_pte;
1296 	flush_tlb_batched_pending(mm);
1297 	arch_enter_lazy_mmu_mode();
1298 	do {
1299 		pte_t ptent = *pte;
1300 		if (pte_none(ptent))
1301 			continue;
1302 
1303 		if (pte_present(ptent)) {
1304 			struct page *page;
1305 
1306 			page = _vm_normal_page(vma, addr, ptent, true);
1307 			if (unlikely(details) && page) {
1308 				/*
1309 				 * unmap_shared_mapping_pages() wants to
1310 				 * invalidate cache without truncating:
1311 				 * unmap shared but keep private pages.
1312 				 */
1313 				if (details->check_mapping &&
1314 				    details->check_mapping != page_rmapping(page))
1315 					continue;
1316 			}
1317 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1318 							tlb->fullmm);
1319 			tlb_remove_tlb_entry(tlb, pte, addr);
1320 			if (unlikely(!page))
1321 				continue;
1322 
1323 			if (!PageAnon(page)) {
1324 				if (pte_dirty(ptent)) {
1325 					force_flush = 1;
1326 					set_page_dirty(page);
1327 				}
1328 				if (pte_young(ptent) &&
1329 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1330 					mark_page_accessed(page);
1331 			}
1332 			rss[mm_counter(page)]--;
1333 			page_remove_rmap(page, false);
1334 			if (unlikely(page_mapcount(page) < 0))
1335 				print_bad_pte(vma, addr, ptent, page);
1336 			if (unlikely(__tlb_remove_page(tlb, page))) {
1337 				force_flush = 1;
1338 				addr += PAGE_SIZE;
1339 				break;
1340 			}
1341 			continue;
1342 		}
1343 
1344 		entry = pte_to_swp_entry(ptent);
1345 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1346 			struct page *page = device_private_entry_to_page(entry);
1347 
1348 			if (unlikely(details && details->check_mapping)) {
1349 				/*
1350 				 * unmap_shared_mapping_pages() wants to
1351 				 * invalidate cache without truncating:
1352 				 * unmap shared but keep private pages.
1353 				 */
1354 				if (details->check_mapping !=
1355 				    page_rmapping(page))
1356 					continue;
1357 			}
1358 
1359 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1360 			rss[mm_counter(page)]--;
1361 			page_remove_rmap(page, false);
1362 			put_page(page);
1363 			continue;
1364 		}
1365 
1366 		/* If details->check_mapping, we leave swap entries. */
1367 		if (unlikely(details))
1368 			continue;
1369 
1370 		entry = pte_to_swp_entry(ptent);
1371 		if (!non_swap_entry(entry))
1372 			rss[MM_SWAPENTS]--;
1373 		else if (is_migration_entry(entry)) {
1374 			struct page *page;
1375 
1376 			page = migration_entry_to_page(entry);
1377 			rss[mm_counter(page)]--;
1378 		}
1379 		if (unlikely(!free_swap_and_cache(entry)))
1380 			print_bad_pte(vma, addr, ptent, NULL);
1381 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1382 	} while (pte++, addr += PAGE_SIZE, addr != end);
1383 
1384 	add_mm_rss_vec(mm, rss);
1385 	arch_leave_lazy_mmu_mode();
1386 
1387 	/* Do the actual TLB flush before dropping ptl */
1388 	if (force_flush)
1389 		tlb_flush_mmu_tlbonly(tlb);
1390 	pte_unmap_unlock(start_pte, ptl);
1391 
1392 	/*
1393 	 * If we forced a TLB flush (either due to running out of
1394 	 * batch buffers or because we needed to flush dirty TLB
1395 	 * entries before releasing the ptl), free the batched
1396 	 * memory too. Restart if we didn't do everything.
1397 	 */
1398 	if (force_flush) {
1399 		force_flush = 0;
1400 		tlb_flush_mmu_free(tlb);
1401 		if (addr != end)
1402 			goto again;
1403 	}
1404 
1405 	return addr;
1406 }
1407 
1408 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1409 				struct vm_area_struct *vma, pud_t *pud,
1410 				unsigned long addr, unsigned long end,
1411 				struct zap_details *details)
1412 {
1413 	pmd_t *pmd;
1414 	unsigned long next;
1415 
1416 	pmd = pmd_offset(pud, addr);
1417 	do {
1418 		next = pmd_addr_end(addr, end);
1419 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1420 			if (next - addr != HPAGE_PMD_SIZE) {
1421 				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1422 				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1423 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1424 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1425 				goto next;
1426 			/* fall through */
1427 		}
1428 		/*
1429 		 * Here there can be other concurrent MADV_DONTNEED or
1430 		 * trans huge page faults running, and if the pmd is
1431 		 * none or trans huge it can change under us. This is
1432 		 * because MADV_DONTNEED holds the mmap_sem in read
1433 		 * mode.
1434 		 */
1435 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1436 			goto next;
1437 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1438 next:
1439 		cond_resched();
1440 	} while (pmd++, addr = next, addr != end);
1441 
1442 	return addr;
1443 }
1444 
1445 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1446 				struct vm_area_struct *vma, p4d_t *p4d,
1447 				unsigned long addr, unsigned long end,
1448 				struct zap_details *details)
1449 {
1450 	pud_t *pud;
1451 	unsigned long next;
1452 
1453 	pud = pud_offset(p4d, addr);
1454 	do {
1455 		next = pud_addr_end(addr, end);
1456 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1457 			if (next - addr != HPAGE_PUD_SIZE) {
1458 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1459 				split_huge_pud(vma, pud, addr);
1460 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1461 				goto next;
1462 			/* fall through */
1463 		}
1464 		if (pud_none_or_clear_bad(pud))
1465 			continue;
1466 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1467 next:
1468 		cond_resched();
1469 	} while (pud++, addr = next, addr != end);
1470 
1471 	return addr;
1472 }
1473 
1474 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1475 				struct vm_area_struct *vma, pgd_t *pgd,
1476 				unsigned long addr, unsigned long end,
1477 				struct zap_details *details)
1478 {
1479 	p4d_t *p4d;
1480 	unsigned long next;
1481 
1482 	p4d = p4d_offset(pgd, addr);
1483 	do {
1484 		next = p4d_addr_end(addr, end);
1485 		if (p4d_none_or_clear_bad(p4d))
1486 			continue;
1487 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1488 	} while (p4d++, addr = next, addr != end);
1489 
1490 	return addr;
1491 }
1492 
1493 void unmap_page_range(struct mmu_gather *tlb,
1494 			     struct vm_area_struct *vma,
1495 			     unsigned long addr, unsigned long end,
1496 			     struct zap_details *details)
1497 {
1498 	pgd_t *pgd;
1499 	unsigned long next;
1500 
1501 	BUG_ON(addr >= end);
1502 	tlb_start_vma(tlb, vma);
1503 	pgd = pgd_offset(vma->vm_mm, addr);
1504 	do {
1505 		next = pgd_addr_end(addr, end);
1506 		if (pgd_none_or_clear_bad(pgd))
1507 			continue;
1508 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1509 	} while (pgd++, addr = next, addr != end);
1510 	tlb_end_vma(tlb, vma);
1511 }
1512 
1513 
1514 static void unmap_single_vma(struct mmu_gather *tlb,
1515 		struct vm_area_struct *vma, unsigned long start_addr,
1516 		unsigned long end_addr,
1517 		struct zap_details *details)
1518 {
1519 	unsigned long start = max(vma->vm_start, start_addr);
1520 	unsigned long end;
1521 
1522 	if (start >= vma->vm_end)
1523 		return;
1524 	end = min(vma->vm_end, end_addr);
1525 	if (end <= vma->vm_start)
1526 		return;
1527 
1528 	if (vma->vm_file)
1529 		uprobe_munmap(vma, start, end);
1530 
1531 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1532 		untrack_pfn(vma, 0, 0);
1533 
1534 	if (start != end) {
1535 		if (unlikely(is_vm_hugetlb_page(vma))) {
1536 			/*
1537 			 * It is undesirable to test vma->vm_file as it
1538 			 * should be non-null for valid hugetlb area.
1539 			 * However, vm_file will be NULL in the error
1540 			 * cleanup path of mmap_region. When
1541 			 * hugetlbfs ->mmap method fails,
1542 			 * mmap_region() nullifies vma->vm_file
1543 			 * before calling this function to clean up.
1544 			 * Since no pte has actually been setup, it is
1545 			 * safe to do nothing in this case.
1546 			 */
1547 			if (vma->vm_file) {
1548 				i_mmap_lock_write(vma->vm_file->f_mapping);
1549 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1550 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1551 			}
1552 		} else
1553 			unmap_page_range(tlb, vma, start, end, details);
1554 	}
1555 }
1556 
1557 /**
1558  * unmap_vmas - unmap a range of memory covered by a list of vma's
1559  * @tlb: address of the caller's struct mmu_gather
1560  * @vma: the starting vma
1561  * @start_addr: virtual address at which to start unmapping
1562  * @end_addr: virtual address at which to end unmapping
1563  *
1564  * Unmap all pages in the vma list.
1565  *
1566  * Only addresses between `start' and `end' will be unmapped.
1567  *
1568  * The VMA list must be sorted in ascending virtual address order.
1569  *
1570  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1571  * range after unmap_vmas() returns.  So the only responsibility here is to
1572  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1573  * drops the lock and schedules.
1574  */
1575 void unmap_vmas(struct mmu_gather *tlb,
1576 		struct vm_area_struct *vma, unsigned long start_addr,
1577 		unsigned long end_addr)
1578 {
1579 	struct mm_struct *mm = vma->vm_mm;
1580 
1581 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1582 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1583 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1584 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1585 }
1586 
1587 /**
1588  * zap_page_range - remove user pages in a given range
1589  * @vma: vm_area_struct holding the applicable pages
1590  * @start: starting address of pages to zap
1591  * @size: number of bytes to zap
1592  *
1593  * Caller must protect the VMA list
1594  */
1595 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1596 		unsigned long size)
1597 {
1598 	struct mm_struct *mm = vma->vm_mm;
1599 	struct mmu_gather tlb;
1600 	unsigned long end = start + size;
1601 
1602 	lru_add_drain();
1603 	tlb_gather_mmu(&tlb, mm, start, end);
1604 	update_hiwater_rss(mm);
1605 	mmu_notifier_invalidate_range_start(mm, start, end);
1606 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1607 		unmap_single_vma(&tlb, vma, start, end, NULL);
1608 
1609 		/*
1610 		 * zap_page_range does not specify whether mmap_sem should be
1611 		 * held for read or write. That allows parallel zap_page_range
1612 		 * operations to unmap a PTE and defer a flush meaning that
1613 		 * this call observes pte_none and fails to flush the TLB.
1614 		 * Rather than adding a complex API, ensure that no stale
1615 		 * TLB entries exist when this call returns.
1616 		 */
1617 		flush_tlb_range(vma, start, end);
1618 	}
1619 
1620 	mmu_notifier_invalidate_range_end(mm, start, end);
1621 	tlb_finish_mmu(&tlb, start, end);
1622 }
1623 
1624 /**
1625  * zap_page_range_single - remove user pages in a given range
1626  * @vma: vm_area_struct holding the applicable pages
1627  * @address: starting address of pages to zap
1628  * @size: number of bytes to zap
1629  * @details: details of shared cache invalidation
1630  *
1631  * The range must fit into one VMA.
1632  */
1633 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1634 		unsigned long size, struct zap_details *details)
1635 {
1636 	struct mm_struct *mm = vma->vm_mm;
1637 	struct mmu_gather tlb;
1638 	unsigned long end = address + size;
1639 
1640 	lru_add_drain();
1641 	tlb_gather_mmu(&tlb, mm, address, end);
1642 	update_hiwater_rss(mm);
1643 	mmu_notifier_invalidate_range_start(mm, address, end);
1644 	unmap_single_vma(&tlb, vma, address, end, details);
1645 	mmu_notifier_invalidate_range_end(mm, address, end);
1646 	tlb_finish_mmu(&tlb, address, end);
1647 }
1648 
1649 /**
1650  * zap_vma_ptes - remove ptes mapping the vma
1651  * @vma: vm_area_struct holding ptes to be zapped
1652  * @address: starting address of pages to zap
1653  * @size: number of bytes to zap
1654  *
1655  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1656  *
1657  * The entire address range must be fully contained within the vma.
1658  *
1659  * Returns 0 if successful.
1660  */
1661 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1662 		unsigned long size)
1663 {
1664 	if (address < vma->vm_start || address + size > vma->vm_end ||
1665 	    		!(vma->vm_flags & VM_PFNMAP))
1666 		return -1;
1667 	zap_page_range_single(vma, address, size, NULL);
1668 	return 0;
1669 }
1670 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1671 
1672 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1673 			spinlock_t **ptl)
1674 {
1675 	pgd_t *pgd;
1676 	p4d_t *p4d;
1677 	pud_t *pud;
1678 	pmd_t *pmd;
1679 
1680 	pgd = pgd_offset(mm, addr);
1681 	p4d = p4d_alloc(mm, pgd, addr);
1682 	if (!p4d)
1683 		return NULL;
1684 	pud = pud_alloc(mm, p4d, addr);
1685 	if (!pud)
1686 		return NULL;
1687 	pmd = pmd_alloc(mm, pud, addr);
1688 	if (!pmd)
1689 		return NULL;
1690 
1691 	VM_BUG_ON(pmd_trans_huge(*pmd));
1692 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1693 }
1694 
1695 /*
1696  * This is the old fallback for page remapping.
1697  *
1698  * For historical reasons, it only allows reserved pages. Only
1699  * old drivers should use this, and they needed to mark their
1700  * pages reserved for the old functions anyway.
1701  */
1702 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1703 			struct page *page, pgprot_t prot)
1704 {
1705 	struct mm_struct *mm = vma->vm_mm;
1706 	int retval;
1707 	pte_t *pte;
1708 	spinlock_t *ptl;
1709 
1710 	retval = -EINVAL;
1711 	if (PageAnon(page))
1712 		goto out;
1713 	retval = -ENOMEM;
1714 	flush_dcache_page(page);
1715 	pte = get_locked_pte(mm, addr, &ptl);
1716 	if (!pte)
1717 		goto out;
1718 	retval = -EBUSY;
1719 	if (!pte_none(*pte))
1720 		goto out_unlock;
1721 
1722 	/* Ok, finally just insert the thing.. */
1723 	get_page(page);
1724 	inc_mm_counter_fast(mm, mm_counter_file(page));
1725 	page_add_file_rmap(page, false);
1726 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1727 
1728 	retval = 0;
1729 	pte_unmap_unlock(pte, ptl);
1730 	return retval;
1731 out_unlock:
1732 	pte_unmap_unlock(pte, ptl);
1733 out:
1734 	return retval;
1735 }
1736 
1737 /**
1738  * vm_insert_page - insert single page into user vma
1739  * @vma: user vma to map to
1740  * @addr: target user address of this page
1741  * @page: source kernel page
1742  *
1743  * This allows drivers to insert individual pages they've allocated
1744  * into a user vma.
1745  *
1746  * The page has to be a nice clean _individual_ kernel allocation.
1747  * If you allocate a compound page, you need to have marked it as
1748  * such (__GFP_COMP), or manually just split the page up yourself
1749  * (see split_page()).
1750  *
1751  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1752  * took an arbitrary page protection parameter. This doesn't allow
1753  * that. Your vma protection will have to be set up correctly, which
1754  * means that if you want a shared writable mapping, you'd better
1755  * ask for a shared writable mapping!
1756  *
1757  * The page does not need to be reserved.
1758  *
1759  * Usually this function is called from f_op->mmap() handler
1760  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1761  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1762  * function from other places, for example from page-fault handler.
1763  */
1764 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1765 			struct page *page)
1766 {
1767 	if (addr < vma->vm_start || addr >= vma->vm_end)
1768 		return -EFAULT;
1769 	if (!page_count(page))
1770 		return -EINVAL;
1771 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1772 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1773 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1774 		vma->vm_flags |= VM_MIXEDMAP;
1775 	}
1776 	return insert_page(vma, addr, page, vma->vm_page_prot);
1777 }
1778 EXPORT_SYMBOL(vm_insert_page);
1779 
1780 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1781 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1782 {
1783 	struct mm_struct *mm = vma->vm_mm;
1784 	int retval;
1785 	pte_t *pte, entry;
1786 	spinlock_t *ptl;
1787 
1788 	retval = -ENOMEM;
1789 	pte = get_locked_pte(mm, addr, &ptl);
1790 	if (!pte)
1791 		goto out;
1792 	retval = -EBUSY;
1793 	if (!pte_none(*pte)) {
1794 		if (mkwrite) {
1795 			/*
1796 			 * For read faults on private mappings the PFN passed
1797 			 * in may not match the PFN we have mapped if the
1798 			 * mapped PFN is a writeable COW page.  In the mkwrite
1799 			 * case we are creating a writable PTE for a shared
1800 			 * mapping and we expect the PFNs to match.
1801 			 */
1802 			if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1803 				goto out_unlock;
1804 			entry = *pte;
1805 			goto out_mkwrite;
1806 		} else
1807 			goto out_unlock;
1808 	}
1809 
1810 	/* Ok, finally just insert the thing.. */
1811 	if (pfn_t_devmap(pfn))
1812 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1813 	else
1814 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1815 
1816 out_mkwrite:
1817 	if (mkwrite) {
1818 		entry = pte_mkyoung(entry);
1819 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1820 	}
1821 
1822 	set_pte_at(mm, addr, pte, entry);
1823 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1824 
1825 	retval = 0;
1826 out_unlock:
1827 	pte_unmap_unlock(pte, ptl);
1828 out:
1829 	return retval;
1830 }
1831 
1832 /**
1833  * vm_insert_pfn - insert single pfn into user vma
1834  * @vma: user vma to map to
1835  * @addr: target user address of this page
1836  * @pfn: source kernel pfn
1837  *
1838  * Similar to vm_insert_page, this allows drivers to insert individual pages
1839  * they've allocated into a user vma. Same comments apply.
1840  *
1841  * This function should only be called from a vm_ops->fault handler, and
1842  * in that case the handler should return NULL.
1843  *
1844  * vma cannot be a COW mapping.
1845  *
1846  * As this is called only for pages that do not currently exist, we
1847  * do not need to flush old virtual caches or the TLB.
1848  */
1849 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1850 			unsigned long pfn)
1851 {
1852 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1853 }
1854 EXPORT_SYMBOL(vm_insert_pfn);
1855 
1856 /**
1857  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1858  * @vma: user vma to map to
1859  * @addr: target user address of this page
1860  * @pfn: source kernel pfn
1861  * @pgprot: pgprot flags for the inserted page
1862  *
1863  * This is exactly like vm_insert_pfn, except that it allows drivers to
1864  * to override pgprot on a per-page basis.
1865  *
1866  * This only makes sense for IO mappings, and it makes no sense for
1867  * cow mappings.  In general, using multiple vmas is preferable;
1868  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1869  * impractical.
1870  */
1871 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1872 			unsigned long pfn, pgprot_t pgprot)
1873 {
1874 	int ret;
1875 	/*
1876 	 * Technically, architectures with pte_special can avoid all these
1877 	 * restrictions (same for remap_pfn_range).  However we would like
1878 	 * consistency in testing and feature parity among all, so we should
1879 	 * try to keep these invariants in place for everybody.
1880 	 */
1881 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1882 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1883 						(VM_PFNMAP|VM_MIXEDMAP));
1884 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1885 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1886 
1887 	if (addr < vma->vm_start || addr >= vma->vm_end)
1888 		return -EFAULT;
1889 
1890 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1891 
1892 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1893 			false);
1894 
1895 	return ret;
1896 }
1897 EXPORT_SYMBOL(vm_insert_pfn_prot);
1898 
1899 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1900 			pfn_t pfn, bool mkwrite)
1901 {
1902 	pgprot_t pgprot = vma->vm_page_prot;
1903 
1904 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1905 
1906 	if (addr < vma->vm_start || addr >= vma->vm_end)
1907 		return -EFAULT;
1908 
1909 	track_pfn_insert(vma, &pgprot, pfn);
1910 
1911 	/*
1912 	 * If we don't have pte special, then we have to use the pfn_valid()
1913 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1914 	 * refcount the page if pfn_valid is true (hence insert_page rather
1915 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1916 	 * without pte special, it would there be refcounted as a normal page.
1917 	 */
1918 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1919 		struct page *page;
1920 
1921 		/*
1922 		 * At this point we are committed to insert_page()
1923 		 * regardless of whether the caller specified flags that
1924 		 * result in pfn_t_has_page() == false.
1925 		 */
1926 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1927 		return insert_page(vma, addr, page, pgprot);
1928 	}
1929 	return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1930 }
1931 
1932 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1933 			pfn_t pfn)
1934 {
1935 	return __vm_insert_mixed(vma, addr, pfn, false);
1936 
1937 }
1938 EXPORT_SYMBOL(vm_insert_mixed);
1939 
1940 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1941 			pfn_t pfn)
1942 {
1943 	return __vm_insert_mixed(vma, addr, pfn, true);
1944 }
1945 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1946 
1947 /*
1948  * maps a range of physical memory into the requested pages. the old
1949  * mappings are removed. any references to nonexistent pages results
1950  * in null mappings (currently treated as "copy-on-access")
1951  */
1952 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1953 			unsigned long addr, unsigned long end,
1954 			unsigned long pfn, pgprot_t prot)
1955 {
1956 	pte_t *pte;
1957 	spinlock_t *ptl;
1958 
1959 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1960 	if (!pte)
1961 		return -ENOMEM;
1962 	arch_enter_lazy_mmu_mode();
1963 	do {
1964 		BUG_ON(!pte_none(*pte));
1965 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1966 		pfn++;
1967 	} while (pte++, addr += PAGE_SIZE, addr != end);
1968 	arch_leave_lazy_mmu_mode();
1969 	pte_unmap_unlock(pte - 1, ptl);
1970 	return 0;
1971 }
1972 
1973 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1974 			unsigned long addr, unsigned long end,
1975 			unsigned long pfn, pgprot_t prot)
1976 {
1977 	pmd_t *pmd;
1978 	unsigned long next;
1979 
1980 	pfn -= addr >> PAGE_SHIFT;
1981 	pmd = pmd_alloc(mm, pud, addr);
1982 	if (!pmd)
1983 		return -ENOMEM;
1984 	VM_BUG_ON(pmd_trans_huge(*pmd));
1985 	do {
1986 		next = pmd_addr_end(addr, end);
1987 		if (remap_pte_range(mm, pmd, addr, next,
1988 				pfn + (addr >> PAGE_SHIFT), prot))
1989 			return -ENOMEM;
1990 	} while (pmd++, addr = next, addr != end);
1991 	return 0;
1992 }
1993 
1994 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1995 			unsigned long addr, unsigned long end,
1996 			unsigned long pfn, pgprot_t prot)
1997 {
1998 	pud_t *pud;
1999 	unsigned long next;
2000 
2001 	pfn -= addr >> PAGE_SHIFT;
2002 	pud = pud_alloc(mm, p4d, addr);
2003 	if (!pud)
2004 		return -ENOMEM;
2005 	do {
2006 		next = pud_addr_end(addr, end);
2007 		if (remap_pmd_range(mm, pud, addr, next,
2008 				pfn + (addr >> PAGE_SHIFT), prot))
2009 			return -ENOMEM;
2010 	} while (pud++, addr = next, addr != end);
2011 	return 0;
2012 }
2013 
2014 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2015 			unsigned long addr, unsigned long end,
2016 			unsigned long pfn, pgprot_t prot)
2017 {
2018 	p4d_t *p4d;
2019 	unsigned long next;
2020 
2021 	pfn -= addr >> PAGE_SHIFT;
2022 	p4d = p4d_alloc(mm, pgd, addr);
2023 	if (!p4d)
2024 		return -ENOMEM;
2025 	do {
2026 		next = p4d_addr_end(addr, end);
2027 		if (remap_pud_range(mm, p4d, addr, next,
2028 				pfn + (addr >> PAGE_SHIFT), prot))
2029 			return -ENOMEM;
2030 	} while (p4d++, addr = next, addr != end);
2031 	return 0;
2032 }
2033 
2034 /**
2035  * remap_pfn_range - remap kernel memory to userspace
2036  * @vma: user vma to map to
2037  * @addr: target user address to start at
2038  * @pfn: physical address of kernel memory
2039  * @size: size of map area
2040  * @prot: page protection flags for this mapping
2041  *
2042  *  Note: this is only safe if the mm semaphore is held when called.
2043  */
2044 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2045 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2046 {
2047 	pgd_t *pgd;
2048 	unsigned long next;
2049 	unsigned long end = addr + PAGE_ALIGN(size);
2050 	struct mm_struct *mm = vma->vm_mm;
2051 	unsigned long remap_pfn = pfn;
2052 	int err;
2053 
2054 	/*
2055 	 * Physically remapped pages are special. Tell the
2056 	 * rest of the world about it:
2057 	 *   VM_IO tells people not to look at these pages
2058 	 *	(accesses can have side effects).
2059 	 *   VM_PFNMAP tells the core MM that the base pages are just
2060 	 *	raw PFN mappings, and do not have a "struct page" associated
2061 	 *	with them.
2062 	 *   VM_DONTEXPAND
2063 	 *      Disable vma merging and expanding with mremap().
2064 	 *   VM_DONTDUMP
2065 	 *      Omit vma from core dump, even when VM_IO turned off.
2066 	 *
2067 	 * There's a horrible special case to handle copy-on-write
2068 	 * behaviour that some programs depend on. We mark the "original"
2069 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2070 	 * See vm_normal_page() for details.
2071 	 */
2072 	if (is_cow_mapping(vma->vm_flags)) {
2073 		if (addr != vma->vm_start || end != vma->vm_end)
2074 			return -EINVAL;
2075 		vma->vm_pgoff = pfn;
2076 	}
2077 
2078 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2079 	if (err)
2080 		return -EINVAL;
2081 
2082 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2083 
2084 	BUG_ON(addr >= end);
2085 	pfn -= addr >> PAGE_SHIFT;
2086 	pgd = pgd_offset(mm, addr);
2087 	flush_cache_range(vma, addr, end);
2088 	do {
2089 		next = pgd_addr_end(addr, end);
2090 		err = remap_p4d_range(mm, pgd, addr, next,
2091 				pfn + (addr >> PAGE_SHIFT), prot);
2092 		if (err)
2093 			break;
2094 	} while (pgd++, addr = next, addr != end);
2095 
2096 	if (err)
2097 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2098 
2099 	return err;
2100 }
2101 EXPORT_SYMBOL(remap_pfn_range);
2102 
2103 /**
2104  * vm_iomap_memory - remap memory to userspace
2105  * @vma: user vma to map to
2106  * @start: start of area
2107  * @len: size of area
2108  *
2109  * This is a simplified io_remap_pfn_range() for common driver use. The
2110  * driver just needs to give us the physical memory range to be mapped,
2111  * we'll figure out the rest from the vma information.
2112  *
2113  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2114  * whatever write-combining details or similar.
2115  */
2116 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2117 {
2118 	unsigned long vm_len, pfn, pages;
2119 
2120 	/* Check that the physical memory area passed in looks valid */
2121 	if (start + len < start)
2122 		return -EINVAL;
2123 	/*
2124 	 * You *really* shouldn't map things that aren't page-aligned,
2125 	 * but we've historically allowed it because IO memory might
2126 	 * just have smaller alignment.
2127 	 */
2128 	len += start & ~PAGE_MASK;
2129 	pfn = start >> PAGE_SHIFT;
2130 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2131 	if (pfn + pages < pfn)
2132 		return -EINVAL;
2133 
2134 	/* We start the mapping 'vm_pgoff' pages into the area */
2135 	if (vma->vm_pgoff > pages)
2136 		return -EINVAL;
2137 	pfn += vma->vm_pgoff;
2138 	pages -= vma->vm_pgoff;
2139 
2140 	/* Can we fit all of the mapping? */
2141 	vm_len = vma->vm_end - vma->vm_start;
2142 	if (vm_len >> PAGE_SHIFT > pages)
2143 		return -EINVAL;
2144 
2145 	/* Ok, let it rip */
2146 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2147 }
2148 EXPORT_SYMBOL(vm_iomap_memory);
2149 
2150 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2151 				     unsigned long addr, unsigned long end,
2152 				     pte_fn_t fn, void *data)
2153 {
2154 	pte_t *pte;
2155 	int err;
2156 	pgtable_t token;
2157 	spinlock_t *uninitialized_var(ptl);
2158 
2159 	pte = (mm == &init_mm) ?
2160 		pte_alloc_kernel(pmd, addr) :
2161 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2162 	if (!pte)
2163 		return -ENOMEM;
2164 
2165 	BUG_ON(pmd_huge(*pmd));
2166 
2167 	arch_enter_lazy_mmu_mode();
2168 
2169 	token = pmd_pgtable(*pmd);
2170 
2171 	do {
2172 		err = fn(pte++, token, addr, data);
2173 		if (err)
2174 			break;
2175 	} while (addr += PAGE_SIZE, addr != end);
2176 
2177 	arch_leave_lazy_mmu_mode();
2178 
2179 	if (mm != &init_mm)
2180 		pte_unmap_unlock(pte-1, ptl);
2181 	return err;
2182 }
2183 
2184 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2185 				     unsigned long addr, unsigned long end,
2186 				     pte_fn_t fn, void *data)
2187 {
2188 	pmd_t *pmd;
2189 	unsigned long next;
2190 	int err;
2191 
2192 	BUG_ON(pud_huge(*pud));
2193 
2194 	pmd = pmd_alloc(mm, pud, addr);
2195 	if (!pmd)
2196 		return -ENOMEM;
2197 	do {
2198 		next = pmd_addr_end(addr, end);
2199 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2200 		if (err)
2201 			break;
2202 	} while (pmd++, addr = next, addr != end);
2203 	return err;
2204 }
2205 
2206 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2207 				     unsigned long addr, unsigned long end,
2208 				     pte_fn_t fn, void *data)
2209 {
2210 	pud_t *pud;
2211 	unsigned long next;
2212 	int err;
2213 
2214 	pud = pud_alloc(mm, p4d, addr);
2215 	if (!pud)
2216 		return -ENOMEM;
2217 	do {
2218 		next = pud_addr_end(addr, end);
2219 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2220 		if (err)
2221 			break;
2222 	} while (pud++, addr = next, addr != end);
2223 	return err;
2224 }
2225 
2226 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2227 				     unsigned long addr, unsigned long end,
2228 				     pte_fn_t fn, void *data)
2229 {
2230 	p4d_t *p4d;
2231 	unsigned long next;
2232 	int err;
2233 
2234 	p4d = p4d_alloc(mm, pgd, addr);
2235 	if (!p4d)
2236 		return -ENOMEM;
2237 	do {
2238 		next = p4d_addr_end(addr, end);
2239 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2240 		if (err)
2241 			break;
2242 	} while (p4d++, addr = next, addr != end);
2243 	return err;
2244 }
2245 
2246 /*
2247  * Scan a region of virtual memory, filling in page tables as necessary
2248  * and calling a provided function on each leaf page table.
2249  */
2250 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2251 			unsigned long size, pte_fn_t fn, void *data)
2252 {
2253 	pgd_t *pgd;
2254 	unsigned long next;
2255 	unsigned long end = addr + size;
2256 	int err;
2257 
2258 	if (WARN_ON(addr >= end))
2259 		return -EINVAL;
2260 
2261 	pgd = pgd_offset(mm, addr);
2262 	do {
2263 		next = pgd_addr_end(addr, end);
2264 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2265 		if (err)
2266 			break;
2267 	} while (pgd++, addr = next, addr != end);
2268 
2269 	return err;
2270 }
2271 EXPORT_SYMBOL_GPL(apply_to_page_range);
2272 
2273 /*
2274  * handle_pte_fault chooses page fault handler according to an entry which was
2275  * read non-atomically.  Before making any commitment, on those architectures
2276  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2277  * parts, do_swap_page must check under lock before unmapping the pte and
2278  * proceeding (but do_wp_page is only called after already making such a check;
2279  * and do_anonymous_page can safely check later on).
2280  */
2281 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2282 				pte_t *page_table, pte_t orig_pte)
2283 {
2284 	int same = 1;
2285 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2286 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2287 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2288 		spin_lock(ptl);
2289 		same = pte_same(*page_table, orig_pte);
2290 		spin_unlock(ptl);
2291 	}
2292 #endif
2293 	pte_unmap(page_table);
2294 	return same;
2295 }
2296 
2297 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2298 {
2299 	debug_dma_assert_idle(src);
2300 
2301 	/*
2302 	 * If the source page was a PFN mapping, we don't have
2303 	 * a "struct page" for it. We do a best-effort copy by
2304 	 * just copying from the original user address. If that
2305 	 * fails, we just zero-fill it. Live with it.
2306 	 */
2307 	if (unlikely(!src)) {
2308 		void *kaddr = kmap_atomic(dst);
2309 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2310 
2311 		/*
2312 		 * This really shouldn't fail, because the page is there
2313 		 * in the page tables. But it might just be unreadable,
2314 		 * in which case we just give up and fill the result with
2315 		 * zeroes.
2316 		 */
2317 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2318 			clear_page(kaddr);
2319 		kunmap_atomic(kaddr);
2320 		flush_dcache_page(dst);
2321 	} else
2322 		copy_user_highpage(dst, src, va, vma);
2323 }
2324 
2325 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2326 {
2327 	struct file *vm_file = vma->vm_file;
2328 
2329 	if (vm_file)
2330 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2331 
2332 	/*
2333 	 * Special mappings (e.g. VDSO) do not have any file so fake
2334 	 * a default GFP_KERNEL for them.
2335 	 */
2336 	return GFP_KERNEL;
2337 }
2338 
2339 /*
2340  * Notify the address space that the page is about to become writable so that
2341  * it can prohibit this or wait for the page to get into an appropriate state.
2342  *
2343  * We do this without the lock held, so that it can sleep if it needs to.
2344  */
2345 static int do_page_mkwrite(struct vm_fault *vmf)
2346 {
2347 	int ret;
2348 	struct page *page = vmf->page;
2349 	unsigned int old_flags = vmf->flags;
2350 
2351 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2352 
2353 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2354 	/* Restore original flags so that caller is not surprised */
2355 	vmf->flags = old_flags;
2356 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2357 		return ret;
2358 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2359 		lock_page(page);
2360 		if (!page->mapping) {
2361 			unlock_page(page);
2362 			return 0; /* retry */
2363 		}
2364 		ret |= VM_FAULT_LOCKED;
2365 	} else
2366 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2367 	return ret;
2368 }
2369 
2370 /*
2371  * Handle dirtying of a page in shared file mapping on a write fault.
2372  *
2373  * The function expects the page to be locked and unlocks it.
2374  */
2375 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2376 				    struct page *page)
2377 {
2378 	struct address_space *mapping;
2379 	bool dirtied;
2380 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2381 
2382 	dirtied = set_page_dirty(page);
2383 	VM_BUG_ON_PAGE(PageAnon(page), page);
2384 	/*
2385 	 * Take a local copy of the address_space - page.mapping may be zeroed
2386 	 * by truncate after unlock_page().   The address_space itself remains
2387 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2388 	 * release semantics to prevent the compiler from undoing this copying.
2389 	 */
2390 	mapping = page_rmapping(page);
2391 	unlock_page(page);
2392 
2393 	if ((dirtied || page_mkwrite) && mapping) {
2394 		/*
2395 		 * Some device drivers do not set page.mapping
2396 		 * but still dirty their pages
2397 		 */
2398 		balance_dirty_pages_ratelimited(mapping);
2399 	}
2400 
2401 	if (!page_mkwrite)
2402 		file_update_time(vma->vm_file);
2403 }
2404 
2405 /*
2406  * Handle write page faults for pages that can be reused in the current vma
2407  *
2408  * This can happen either due to the mapping being with the VM_SHARED flag,
2409  * or due to us being the last reference standing to the page. In either
2410  * case, all we need to do here is to mark the page as writable and update
2411  * any related book-keeping.
2412  */
2413 static inline void wp_page_reuse(struct vm_fault *vmf)
2414 	__releases(vmf->ptl)
2415 {
2416 	struct vm_area_struct *vma = vmf->vma;
2417 	struct page *page = vmf->page;
2418 	pte_t entry;
2419 	/*
2420 	 * Clear the pages cpupid information as the existing
2421 	 * information potentially belongs to a now completely
2422 	 * unrelated process.
2423 	 */
2424 	if (page)
2425 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2426 
2427 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2428 	entry = pte_mkyoung(vmf->orig_pte);
2429 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2430 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2431 		update_mmu_cache(vma, vmf->address, vmf->pte);
2432 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2433 }
2434 
2435 /*
2436  * Handle the case of a page which we actually need to copy to a new page.
2437  *
2438  * Called with mmap_sem locked and the old page referenced, but
2439  * without the ptl held.
2440  *
2441  * High level logic flow:
2442  *
2443  * - Allocate a page, copy the content of the old page to the new one.
2444  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2445  * - Take the PTL. If the pte changed, bail out and release the allocated page
2446  * - If the pte is still the way we remember it, update the page table and all
2447  *   relevant references. This includes dropping the reference the page-table
2448  *   held to the old page, as well as updating the rmap.
2449  * - In any case, unlock the PTL and drop the reference we took to the old page.
2450  */
2451 static int wp_page_copy(struct vm_fault *vmf)
2452 {
2453 	struct vm_area_struct *vma = vmf->vma;
2454 	struct mm_struct *mm = vma->vm_mm;
2455 	struct page *old_page = vmf->page;
2456 	struct page *new_page = NULL;
2457 	pte_t entry;
2458 	int page_copied = 0;
2459 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2460 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2461 	struct mem_cgroup *memcg;
2462 
2463 	if (unlikely(anon_vma_prepare(vma)))
2464 		goto oom;
2465 
2466 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2467 		new_page = alloc_zeroed_user_highpage_movable(vma,
2468 							      vmf->address);
2469 		if (!new_page)
2470 			goto oom;
2471 	} else {
2472 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2473 				vmf->address);
2474 		if (!new_page)
2475 			goto oom;
2476 		cow_user_page(new_page, old_page, vmf->address, vma);
2477 	}
2478 
2479 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2480 		goto oom_free_new;
2481 
2482 	__SetPageUptodate(new_page);
2483 
2484 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2485 
2486 	/*
2487 	 * Re-check the pte - we dropped the lock
2488 	 */
2489 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2490 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2491 		if (old_page) {
2492 			if (!PageAnon(old_page)) {
2493 				dec_mm_counter_fast(mm,
2494 						mm_counter_file(old_page));
2495 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2496 			}
2497 		} else {
2498 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2499 		}
2500 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2501 		entry = mk_pte(new_page, vma->vm_page_prot);
2502 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2503 		/*
2504 		 * Clear the pte entry and flush it first, before updating the
2505 		 * pte with the new entry. This will avoid a race condition
2506 		 * seen in the presence of one thread doing SMC and another
2507 		 * thread doing COW.
2508 		 */
2509 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2510 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2511 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2512 		lru_cache_add_active_or_unevictable(new_page, vma);
2513 		/*
2514 		 * We call the notify macro here because, when using secondary
2515 		 * mmu page tables (such as kvm shadow page tables), we want the
2516 		 * new page to be mapped directly into the secondary page table.
2517 		 */
2518 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2519 		update_mmu_cache(vma, vmf->address, vmf->pte);
2520 		if (old_page) {
2521 			/*
2522 			 * Only after switching the pte to the new page may
2523 			 * we remove the mapcount here. Otherwise another
2524 			 * process may come and find the rmap count decremented
2525 			 * before the pte is switched to the new page, and
2526 			 * "reuse" the old page writing into it while our pte
2527 			 * here still points into it and can be read by other
2528 			 * threads.
2529 			 *
2530 			 * The critical issue is to order this
2531 			 * page_remove_rmap with the ptp_clear_flush above.
2532 			 * Those stores are ordered by (if nothing else,)
2533 			 * the barrier present in the atomic_add_negative
2534 			 * in page_remove_rmap.
2535 			 *
2536 			 * Then the TLB flush in ptep_clear_flush ensures that
2537 			 * no process can access the old page before the
2538 			 * decremented mapcount is visible. And the old page
2539 			 * cannot be reused until after the decremented
2540 			 * mapcount is visible. So transitively, TLBs to
2541 			 * old page will be flushed before it can be reused.
2542 			 */
2543 			page_remove_rmap(old_page, false);
2544 		}
2545 
2546 		/* Free the old page.. */
2547 		new_page = old_page;
2548 		page_copied = 1;
2549 	} else {
2550 		mem_cgroup_cancel_charge(new_page, memcg, false);
2551 	}
2552 
2553 	if (new_page)
2554 		put_page(new_page);
2555 
2556 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2557 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2558 	if (old_page) {
2559 		/*
2560 		 * Don't let another task, with possibly unlocked vma,
2561 		 * keep the mlocked page.
2562 		 */
2563 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2564 			lock_page(old_page);	/* LRU manipulation */
2565 			if (PageMlocked(old_page))
2566 				munlock_vma_page(old_page);
2567 			unlock_page(old_page);
2568 		}
2569 		put_page(old_page);
2570 	}
2571 	return page_copied ? VM_FAULT_WRITE : 0;
2572 oom_free_new:
2573 	put_page(new_page);
2574 oom:
2575 	if (old_page)
2576 		put_page(old_page);
2577 	return VM_FAULT_OOM;
2578 }
2579 
2580 /**
2581  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2582  *			  writeable once the page is prepared
2583  *
2584  * @vmf: structure describing the fault
2585  *
2586  * This function handles all that is needed to finish a write page fault in a
2587  * shared mapping due to PTE being read-only once the mapped page is prepared.
2588  * It handles locking of PTE and modifying it. The function returns
2589  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2590  * lock.
2591  *
2592  * The function expects the page to be locked or other protection against
2593  * concurrent faults / writeback (such as DAX radix tree locks).
2594  */
2595 int finish_mkwrite_fault(struct vm_fault *vmf)
2596 {
2597 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2598 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2599 				       &vmf->ptl);
2600 	/*
2601 	 * We might have raced with another page fault while we released the
2602 	 * pte_offset_map_lock.
2603 	 */
2604 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2605 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2606 		return VM_FAULT_NOPAGE;
2607 	}
2608 	wp_page_reuse(vmf);
2609 	return 0;
2610 }
2611 
2612 /*
2613  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2614  * mapping
2615  */
2616 static int wp_pfn_shared(struct vm_fault *vmf)
2617 {
2618 	struct vm_area_struct *vma = vmf->vma;
2619 
2620 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2621 		int ret;
2622 
2623 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2624 		vmf->flags |= FAULT_FLAG_MKWRITE;
2625 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2626 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2627 			return ret;
2628 		return finish_mkwrite_fault(vmf);
2629 	}
2630 	wp_page_reuse(vmf);
2631 	return VM_FAULT_WRITE;
2632 }
2633 
2634 static int wp_page_shared(struct vm_fault *vmf)
2635 	__releases(vmf->ptl)
2636 {
2637 	struct vm_area_struct *vma = vmf->vma;
2638 
2639 	get_page(vmf->page);
2640 
2641 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2642 		int tmp;
2643 
2644 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2645 		tmp = do_page_mkwrite(vmf);
2646 		if (unlikely(!tmp || (tmp &
2647 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2648 			put_page(vmf->page);
2649 			return tmp;
2650 		}
2651 		tmp = finish_mkwrite_fault(vmf);
2652 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2653 			unlock_page(vmf->page);
2654 			put_page(vmf->page);
2655 			return tmp;
2656 		}
2657 	} else {
2658 		wp_page_reuse(vmf);
2659 		lock_page(vmf->page);
2660 	}
2661 	fault_dirty_shared_page(vma, vmf->page);
2662 	put_page(vmf->page);
2663 
2664 	return VM_FAULT_WRITE;
2665 }
2666 
2667 /*
2668  * This routine handles present pages, when users try to write
2669  * to a shared page. It is done by copying the page to a new address
2670  * and decrementing the shared-page counter for the old page.
2671  *
2672  * Note that this routine assumes that the protection checks have been
2673  * done by the caller (the low-level page fault routine in most cases).
2674  * Thus we can safely just mark it writable once we've done any necessary
2675  * COW.
2676  *
2677  * We also mark the page dirty at this point even though the page will
2678  * change only once the write actually happens. This avoids a few races,
2679  * and potentially makes it more efficient.
2680  *
2681  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2682  * but allow concurrent faults), with pte both mapped and locked.
2683  * We return with mmap_sem still held, but pte unmapped and unlocked.
2684  */
2685 static int do_wp_page(struct vm_fault *vmf)
2686 	__releases(vmf->ptl)
2687 {
2688 	struct vm_area_struct *vma = vmf->vma;
2689 
2690 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2691 	if (!vmf->page) {
2692 		/*
2693 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2694 		 * VM_PFNMAP VMA.
2695 		 *
2696 		 * We should not cow pages in a shared writeable mapping.
2697 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2698 		 */
2699 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2700 				     (VM_WRITE|VM_SHARED))
2701 			return wp_pfn_shared(vmf);
2702 
2703 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2704 		return wp_page_copy(vmf);
2705 	}
2706 
2707 	/*
2708 	 * Take out anonymous pages first, anonymous shared vmas are
2709 	 * not dirty accountable.
2710 	 */
2711 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2712 		int total_map_swapcount;
2713 		if (!trylock_page(vmf->page)) {
2714 			get_page(vmf->page);
2715 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2716 			lock_page(vmf->page);
2717 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2718 					vmf->address, &vmf->ptl);
2719 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2720 				unlock_page(vmf->page);
2721 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2722 				put_page(vmf->page);
2723 				return 0;
2724 			}
2725 			put_page(vmf->page);
2726 		}
2727 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2728 			if (total_map_swapcount == 1) {
2729 				/*
2730 				 * The page is all ours. Move it to
2731 				 * our anon_vma so the rmap code will
2732 				 * not search our parent or siblings.
2733 				 * Protected against the rmap code by
2734 				 * the page lock.
2735 				 */
2736 				page_move_anon_rmap(vmf->page, vma);
2737 			}
2738 			unlock_page(vmf->page);
2739 			wp_page_reuse(vmf);
2740 			return VM_FAULT_WRITE;
2741 		}
2742 		unlock_page(vmf->page);
2743 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2744 					(VM_WRITE|VM_SHARED))) {
2745 		return wp_page_shared(vmf);
2746 	}
2747 
2748 	/*
2749 	 * Ok, we need to copy. Oh, well..
2750 	 */
2751 	get_page(vmf->page);
2752 
2753 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2754 	return wp_page_copy(vmf);
2755 }
2756 
2757 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2758 		unsigned long start_addr, unsigned long end_addr,
2759 		struct zap_details *details)
2760 {
2761 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2762 }
2763 
2764 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2765 					    struct zap_details *details)
2766 {
2767 	struct vm_area_struct *vma;
2768 	pgoff_t vba, vea, zba, zea;
2769 
2770 	vma_interval_tree_foreach(vma, root,
2771 			details->first_index, details->last_index) {
2772 
2773 		vba = vma->vm_pgoff;
2774 		vea = vba + vma_pages(vma) - 1;
2775 		zba = details->first_index;
2776 		if (zba < vba)
2777 			zba = vba;
2778 		zea = details->last_index;
2779 		if (zea > vea)
2780 			zea = vea;
2781 
2782 		unmap_mapping_range_vma(vma,
2783 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2784 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2785 				details);
2786 	}
2787 }
2788 
2789 /**
2790  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2791  * address_space corresponding to the specified page range in the underlying
2792  * file.
2793  *
2794  * @mapping: the address space containing mmaps to be unmapped.
2795  * @holebegin: byte in first page to unmap, relative to the start of
2796  * the underlying file.  This will be rounded down to a PAGE_SIZE
2797  * boundary.  Note that this is different from truncate_pagecache(), which
2798  * must keep the partial page.  In contrast, we must get rid of
2799  * partial pages.
2800  * @holelen: size of prospective hole in bytes.  This will be rounded
2801  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2802  * end of the file.
2803  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2804  * but 0 when invalidating pagecache, don't throw away private data.
2805  */
2806 void unmap_mapping_range(struct address_space *mapping,
2807 		loff_t const holebegin, loff_t const holelen, int even_cows)
2808 {
2809 	struct zap_details details = { };
2810 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2811 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2812 
2813 	/* Check for overflow. */
2814 	if (sizeof(holelen) > sizeof(hlen)) {
2815 		long long holeend =
2816 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2817 		if (holeend & ~(long long)ULONG_MAX)
2818 			hlen = ULONG_MAX - hba + 1;
2819 	}
2820 
2821 	details.check_mapping = even_cows ? NULL : mapping;
2822 	details.first_index = hba;
2823 	details.last_index = hba + hlen - 1;
2824 	if (details.last_index < details.first_index)
2825 		details.last_index = ULONG_MAX;
2826 
2827 	i_mmap_lock_write(mapping);
2828 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2829 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2830 	i_mmap_unlock_write(mapping);
2831 }
2832 EXPORT_SYMBOL(unmap_mapping_range);
2833 
2834 /*
2835  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2836  * but allow concurrent faults), and pte mapped but not yet locked.
2837  * We return with pte unmapped and unlocked.
2838  *
2839  * We return with the mmap_sem locked or unlocked in the same cases
2840  * as does filemap_fault().
2841  */
2842 int do_swap_page(struct vm_fault *vmf)
2843 {
2844 	struct vm_area_struct *vma = vmf->vma;
2845 	struct page *page = NULL, *swapcache;
2846 	struct mem_cgroup *memcg;
2847 	struct vma_swap_readahead swap_ra;
2848 	swp_entry_t entry;
2849 	pte_t pte;
2850 	int locked;
2851 	int exclusive = 0;
2852 	int ret = 0;
2853 	bool vma_readahead = swap_use_vma_readahead();
2854 
2855 	if (vma_readahead)
2856 		page = swap_readahead_detect(vmf, &swap_ra);
2857 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2858 		if (page)
2859 			put_page(page);
2860 		goto out;
2861 	}
2862 
2863 	entry = pte_to_swp_entry(vmf->orig_pte);
2864 	if (unlikely(non_swap_entry(entry))) {
2865 		if (is_migration_entry(entry)) {
2866 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2867 					     vmf->address);
2868 		} else if (is_device_private_entry(entry)) {
2869 			/*
2870 			 * For un-addressable device memory we call the pgmap
2871 			 * fault handler callback. The callback must migrate
2872 			 * the page back to some CPU accessible page.
2873 			 */
2874 			ret = device_private_entry_fault(vma, vmf->address, entry,
2875 						 vmf->flags, vmf->pmd);
2876 		} else if (is_hwpoison_entry(entry)) {
2877 			ret = VM_FAULT_HWPOISON;
2878 		} else {
2879 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2880 			ret = VM_FAULT_SIGBUS;
2881 		}
2882 		goto out;
2883 	}
2884 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2885 	if (!page)
2886 		page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2887 					 vmf->address);
2888 	if (!page) {
2889 		if (vma_readahead)
2890 			page = do_swap_page_readahead(entry,
2891 				GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2892 		else
2893 			page = swapin_readahead(entry,
2894 				GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2895 		if (!page) {
2896 			/*
2897 			 * Back out if somebody else faulted in this pte
2898 			 * while we released the pte lock.
2899 			 */
2900 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2901 					vmf->address, &vmf->ptl);
2902 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2903 				ret = VM_FAULT_OOM;
2904 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2905 			goto unlock;
2906 		}
2907 
2908 		/* Had to read the page from swap area: Major fault */
2909 		ret = VM_FAULT_MAJOR;
2910 		count_vm_event(PGMAJFAULT);
2911 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2912 	} else if (PageHWPoison(page)) {
2913 		/*
2914 		 * hwpoisoned dirty swapcache pages are kept for killing
2915 		 * owner processes (which may be unknown at hwpoison time)
2916 		 */
2917 		ret = VM_FAULT_HWPOISON;
2918 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2919 		swapcache = page;
2920 		goto out_release;
2921 	}
2922 
2923 	swapcache = page;
2924 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2925 
2926 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2927 	if (!locked) {
2928 		ret |= VM_FAULT_RETRY;
2929 		goto out_release;
2930 	}
2931 
2932 	/*
2933 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2934 	 * release the swapcache from under us.  The page pin, and pte_same
2935 	 * test below, are not enough to exclude that.  Even if it is still
2936 	 * swapcache, we need to check that the page's swap has not changed.
2937 	 */
2938 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2939 		goto out_page;
2940 
2941 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2942 	if (unlikely(!page)) {
2943 		ret = VM_FAULT_OOM;
2944 		page = swapcache;
2945 		goto out_page;
2946 	}
2947 
2948 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2949 				&memcg, false)) {
2950 		ret = VM_FAULT_OOM;
2951 		goto out_page;
2952 	}
2953 
2954 	/*
2955 	 * Back out if somebody else already faulted in this pte.
2956 	 */
2957 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2958 			&vmf->ptl);
2959 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2960 		goto out_nomap;
2961 
2962 	if (unlikely(!PageUptodate(page))) {
2963 		ret = VM_FAULT_SIGBUS;
2964 		goto out_nomap;
2965 	}
2966 
2967 	/*
2968 	 * The page isn't present yet, go ahead with the fault.
2969 	 *
2970 	 * Be careful about the sequence of operations here.
2971 	 * To get its accounting right, reuse_swap_page() must be called
2972 	 * while the page is counted on swap but not yet in mapcount i.e.
2973 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2974 	 * must be called after the swap_free(), or it will never succeed.
2975 	 */
2976 
2977 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2978 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2979 	pte = mk_pte(page, vma->vm_page_prot);
2980 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2981 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2982 		vmf->flags &= ~FAULT_FLAG_WRITE;
2983 		ret |= VM_FAULT_WRITE;
2984 		exclusive = RMAP_EXCLUSIVE;
2985 	}
2986 	flush_icache_page(vma, page);
2987 	if (pte_swp_soft_dirty(vmf->orig_pte))
2988 		pte = pte_mksoft_dirty(pte);
2989 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2990 	vmf->orig_pte = pte;
2991 	if (page == swapcache) {
2992 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2993 		mem_cgroup_commit_charge(page, memcg, true, false);
2994 		activate_page(page);
2995 	} else { /* ksm created a completely new copy */
2996 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2997 		mem_cgroup_commit_charge(page, memcg, false, false);
2998 		lru_cache_add_active_or_unevictable(page, vma);
2999 	}
3000 
3001 	swap_free(entry);
3002 	if (mem_cgroup_swap_full(page) ||
3003 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3004 		try_to_free_swap(page);
3005 	unlock_page(page);
3006 	if (page != swapcache) {
3007 		/*
3008 		 * Hold the lock to avoid the swap entry to be reused
3009 		 * until we take the PT lock for the pte_same() check
3010 		 * (to avoid false positives from pte_same). For
3011 		 * further safety release the lock after the swap_free
3012 		 * so that the swap count won't change under a
3013 		 * parallel locked swapcache.
3014 		 */
3015 		unlock_page(swapcache);
3016 		put_page(swapcache);
3017 	}
3018 
3019 	if (vmf->flags & FAULT_FLAG_WRITE) {
3020 		ret |= do_wp_page(vmf);
3021 		if (ret & VM_FAULT_ERROR)
3022 			ret &= VM_FAULT_ERROR;
3023 		goto out;
3024 	}
3025 
3026 	/* No need to invalidate - it was non-present before */
3027 	update_mmu_cache(vma, vmf->address, vmf->pte);
3028 unlock:
3029 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3030 out:
3031 	return ret;
3032 out_nomap:
3033 	mem_cgroup_cancel_charge(page, memcg, false);
3034 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3035 out_page:
3036 	unlock_page(page);
3037 out_release:
3038 	put_page(page);
3039 	if (page != swapcache) {
3040 		unlock_page(swapcache);
3041 		put_page(swapcache);
3042 	}
3043 	return ret;
3044 }
3045 
3046 /*
3047  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3048  * but allow concurrent faults), and pte mapped but not yet locked.
3049  * We return with mmap_sem still held, but pte unmapped and unlocked.
3050  */
3051 static int do_anonymous_page(struct vm_fault *vmf)
3052 {
3053 	struct vm_area_struct *vma = vmf->vma;
3054 	struct mem_cgroup *memcg;
3055 	struct page *page;
3056 	int ret = 0;
3057 	pte_t entry;
3058 
3059 	/* File mapping without ->vm_ops ? */
3060 	if (vma->vm_flags & VM_SHARED)
3061 		return VM_FAULT_SIGBUS;
3062 
3063 	/*
3064 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3065 	 * pte_offset_map() on pmds where a huge pmd might be created
3066 	 * from a different thread.
3067 	 *
3068 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3069 	 * parallel threads are excluded by other means.
3070 	 *
3071 	 * Here we only have down_read(mmap_sem).
3072 	 */
3073 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3074 		return VM_FAULT_OOM;
3075 
3076 	/* See the comment in pte_alloc_one_map() */
3077 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3078 		return 0;
3079 
3080 	/* Use the zero-page for reads */
3081 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3082 			!mm_forbids_zeropage(vma->vm_mm)) {
3083 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3084 						vma->vm_page_prot));
3085 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3086 				vmf->address, &vmf->ptl);
3087 		if (!pte_none(*vmf->pte))
3088 			goto unlock;
3089 		ret = check_stable_address_space(vma->vm_mm);
3090 		if (ret)
3091 			goto unlock;
3092 		/* Deliver the page fault to userland, check inside PT lock */
3093 		if (userfaultfd_missing(vma)) {
3094 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3095 			return handle_userfault(vmf, VM_UFFD_MISSING);
3096 		}
3097 		goto setpte;
3098 	}
3099 
3100 	/* Allocate our own private page. */
3101 	if (unlikely(anon_vma_prepare(vma)))
3102 		goto oom;
3103 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3104 	if (!page)
3105 		goto oom;
3106 
3107 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3108 		goto oom_free_page;
3109 
3110 	/*
3111 	 * The memory barrier inside __SetPageUptodate makes sure that
3112 	 * preceeding stores to the page contents become visible before
3113 	 * the set_pte_at() write.
3114 	 */
3115 	__SetPageUptodate(page);
3116 
3117 	entry = mk_pte(page, vma->vm_page_prot);
3118 	if (vma->vm_flags & VM_WRITE)
3119 		entry = pte_mkwrite(pte_mkdirty(entry));
3120 
3121 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3122 			&vmf->ptl);
3123 	if (!pte_none(*vmf->pte))
3124 		goto release;
3125 
3126 	ret = check_stable_address_space(vma->vm_mm);
3127 	if (ret)
3128 		goto release;
3129 
3130 	/* Deliver the page fault to userland, check inside PT lock */
3131 	if (userfaultfd_missing(vma)) {
3132 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3133 		mem_cgroup_cancel_charge(page, memcg, false);
3134 		put_page(page);
3135 		return handle_userfault(vmf, VM_UFFD_MISSING);
3136 	}
3137 
3138 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3139 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3140 	mem_cgroup_commit_charge(page, memcg, false, false);
3141 	lru_cache_add_active_or_unevictable(page, vma);
3142 setpte:
3143 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3144 
3145 	/* No need to invalidate - it was non-present before */
3146 	update_mmu_cache(vma, vmf->address, vmf->pte);
3147 unlock:
3148 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3149 	return ret;
3150 release:
3151 	mem_cgroup_cancel_charge(page, memcg, false);
3152 	put_page(page);
3153 	goto unlock;
3154 oom_free_page:
3155 	put_page(page);
3156 oom:
3157 	return VM_FAULT_OOM;
3158 }
3159 
3160 /*
3161  * The mmap_sem must have been held on entry, and may have been
3162  * released depending on flags and vma->vm_ops->fault() return value.
3163  * See filemap_fault() and __lock_page_retry().
3164  */
3165 static int __do_fault(struct vm_fault *vmf)
3166 {
3167 	struct vm_area_struct *vma = vmf->vma;
3168 	int ret;
3169 
3170 	ret = vma->vm_ops->fault(vmf);
3171 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3172 			    VM_FAULT_DONE_COW)))
3173 		return ret;
3174 
3175 	if (unlikely(PageHWPoison(vmf->page))) {
3176 		if (ret & VM_FAULT_LOCKED)
3177 			unlock_page(vmf->page);
3178 		put_page(vmf->page);
3179 		vmf->page = NULL;
3180 		return VM_FAULT_HWPOISON;
3181 	}
3182 
3183 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3184 		lock_page(vmf->page);
3185 	else
3186 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3187 
3188 	return ret;
3189 }
3190 
3191 /*
3192  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3193  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3194  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3195  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3196  */
3197 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3198 {
3199 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3200 }
3201 
3202 static int pte_alloc_one_map(struct vm_fault *vmf)
3203 {
3204 	struct vm_area_struct *vma = vmf->vma;
3205 
3206 	if (!pmd_none(*vmf->pmd))
3207 		goto map_pte;
3208 	if (vmf->prealloc_pte) {
3209 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3210 		if (unlikely(!pmd_none(*vmf->pmd))) {
3211 			spin_unlock(vmf->ptl);
3212 			goto map_pte;
3213 		}
3214 
3215 		atomic_long_inc(&vma->vm_mm->nr_ptes);
3216 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3217 		spin_unlock(vmf->ptl);
3218 		vmf->prealloc_pte = NULL;
3219 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3220 		return VM_FAULT_OOM;
3221 	}
3222 map_pte:
3223 	/*
3224 	 * If a huge pmd materialized under us just retry later.  Use
3225 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3226 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3227 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3228 	 * running immediately after a huge pmd fault in a different thread of
3229 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3230 	 * All we have to ensure is that it is a regular pmd that we can walk
3231 	 * with pte_offset_map() and we can do that through an atomic read in
3232 	 * C, which is what pmd_trans_unstable() provides.
3233 	 */
3234 	if (pmd_devmap_trans_unstable(vmf->pmd))
3235 		return VM_FAULT_NOPAGE;
3236 
3237 	/*
3238 	 * At this point we know that our vmf->pmd points to a page of ptes
3239 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3240 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3241 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3242 	 * be valid and we will re-check to make sure the vmf->pte isn't
3243 	 * pte_none() under vmf->ptl protection when we return to
3244 	 * alloc_set_pte().
3245 	 */
3246 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3247 			&vmf->ptl);
3248 	return 0;
3249 }
3250 
3251 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3252 
3253 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3254 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3255 		unsigned long haddr)
3256 {
3257 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3258 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3259 		return false;
3260 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3261 		return false;
3262 	return true;
3263 }
3264 
3265 static void deposit_prealloc_pte(struct vm_fault *vmf)
3266 {
3267 	struct vm_area_struct *vma = vmf->vma;
3268 
3269 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3270 	/*
3271 	 * We are going to consume the prealloc table,
3272 	 * count that as nr_ptes.
3273 	 */
3274 	atomic_long_inc(&vma->vm_mm->nr_ptes);
3275 	vmf->prealloc_pte = NULL;
3276 }
3277 
3278 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3279 {
3280 	struct vm_area_struct *vma = vmf->vma;
3281 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3282 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3283 	pmd_t entry;
3284 	int i, ret;
3285 
3286 	if (!transhuge_vma_suitable(vma, haddr))
3287 		return VM_FAULT_FALLBACK;
3288 
3289 	ret = VM_FAULT_FALLBACK;
3290 	page = compound_head(page);
3291 
3292 	/*
3293 	 * Archs like ppc64 need additonal space to store information
3294 	 * related to pte entry. Use the preallocated table for that.
3295 	 */
3296 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3297 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3298 		if (!vmf->prealloc_pte)
3299 			return VM_FAULT_OOM;
3300 		smp_wmb(); /* See comment in __pte_alloc() */
3301 	}
3302 
3303 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3304 	if (unlikely(!pmd_none(*vmf->pmd)))
3305 		goto out;
3306 
3307 	for (i = 0; i < HPAGE_PMD_NR; i++)
3308 		flush_icache_page(vma, page + i);
3309 
3310 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3311 	if (write)
3312 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3313 
3314 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3315 	page_add_file_rmap(page, true);
3316 	/*
3317 	 * deposit and withdraw with pmd lock held
3318 	 */
3319 	if (arch_needs_pgtable_deposit())
3320 		deposit_prealloc_pte(vmf);
3321 
3322 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3323 
3324 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3325 
3326 	/* fault is handled */
3327 	ret = 0;
3328 	count_vm_event(THP_FILE_MAPPED);
3329 out:
3330 	spin_unlock(vmf->ptl);
3331 	return ret;
3332 }
3333 #else
3334 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3335 {
3336 	BUILD_BUG();
3337 	return 0;
3338 }
3339 #endif
3340 
3341 /**
3342  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3343  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3344  *
3345  * @vmf: fault environment
3346  * @memcg: memcg to charge page (only for private mappings)
3347  * @page: page to map
3348  *
3349  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3350  * return.
3351  *
3352  * Target users are page handler itself and implementations of
3353  * vm_ops->map_pages.
3354  */
3355 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3356 		struct page *page)
3357 {
3358 	struct vm_area_struct *vma = vmf->vma;
3359 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3360 	pte_t entry;
3361 	int ret;
3362 
3363 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3364 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3365 		/* THP on COW? */
3366 		VM_BUG_ON_PAGE(memcg, page);
3367 
3368 		ret = do_set_pmd(vmf, page);
3369 		if (ret != VM_FAULT_FALLBACK)
3370 			return ret;
3371 	}
3372 
3373 	if (!vmf->pte) {
3374 		ret = pte_alloc_one_map(vmf);
3375 		if (ret)
3376 			return ret;
3377 	}
3378 
3379 	/* Re-check under ptl */
3380 	if (unlikely(!pte_none(*vmf->pte)))
3381 		return VM_FAULT_NOPAGE;
3382 
3383 	flush_icache_page(vma, page);
3384 	entry = mk_pte(page, vma->vm_page_prot);
3385 	if (write)
3386 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3387 	/* copy-on-write page */
3388 	if (write && !(vma->vm_flags & VM_SHARED)) {
3389 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3390 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3391 		mem_cgroup_commit_charge(page, memcg, false, false);
3392 		lru_cache_add_active_or_unevictable(page, vma);
3393 	} else {
3394 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3395 		page_add_file_rmap(page, false);
3396 	}
3397 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3398 
3399 	/* no need to invalidate: a not-present page won't be cached */
3400 	update_mmu_cache(vma, vmf->address, vmf->pte);
3401 
3402 	return 0;
3403 }
3404 
3405 
3406 /**
3407  * finish_fault - finish page fault once we have prepared the page to fault
3408  *
3409  * @vmf: structure describing the fault
3410  *
3411  * This function handles all that is needed to finish a page fault once the
3412  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3413  * given page, adds reverse page mapping, handles memcg charges and LRU
3414  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3415  * error.
3416  *
3417  * The function expects the page to be locked and on success it consumes a
3418  * reference of a page being mapped (for the PTE which maps it).
3419  */
3420 int finish_fault(struct vm_fault *vmf)
3421 {
3422 	struct page *page;
3423 	int ret = 0;
3424 
3425 	/* Did we COW the page? */
3426 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3427 	    !(vmf->vma->vm_flags & VM_SHARED))
3428 		page = vmf->cow_page;
3429 	else
3430 		page = vmf->page;
3431 
3432 	/*
3433 	 * check even for read faults because we might have lost our CoWed
3434 	 * page
3435 	 */
3436 	if (!(vmf->vma->vm_flags & VM_SHARED))
3437 		ret = check_stable_address_space(vmf->vma->vm_mm);
3438 	if (!ret)
3439 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3440 	if (vmf->pte)
3441 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3442 	return ret;
3443 }
3444 
3445 static unsigned long fault_around_bytes __read_mostly =
3446 	rounddown_pow_of_two(65536);
3447 
3448 #ifdef CONFIG_DEBUG_FS
3449 static int fault_around_bytes_get(void *data, u64 *val)
3450 {
3451 	*val = fault_around_bytes;
3452 	return 0;
3453 }
3454 
3455 /*
3456  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3457  * rounded down to nearest page order. It's what do_fault_around() expects to
3458  * see.
3459  */
3460 static int fault_around_bytes_set(void *data, u64 val)
3461 {
3462 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3463 		return -EINVAL;
3464 	if (val > PAGE_SIZE)
3465 		fault_around_bytes = rounddown_pow_of_two(val);
3466 	else
3467 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3468 	return 0;
3469 }
3470 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3471 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3472 
3473 static int __init fault_around_debugfs(void)
3474 {
3475 	void *ret;
3476 
3477 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3478 			&fault_around_bytes_fops);
3479 	if (!ret)
3480 		pr_warn("Failed to create fault_around_bytes in debugfs");
3481 	return 0;
3482 }
3483 late_initcall(fault_around_debugfs);
3484 #endif
3485 
3486 /*
3487  * do_fault_around() tries to map few pages around the fault address. The hope
3488  * is that the pages will be needed soon and this will lower the number of
3489  * faults to handle.
3490  *
3491  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3492  * not ready to be mapped: not up-to-date, locked, etc.
3493  *
3494  * This function is called with the page table lock taken. In the split ptlock
3495  * case the page table lock only protects only those entries which belong to
3496  * the page table corresponding to the fault address.
3497  *
3498  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3499  * only once.
3500  *
3501  * fault_around_pages() defines how many pages we'll try to map.
3502  * do_fault_around() expects it to return a power of two less than or equal to
3503  * PTRS_PER_PTE.
3504  *
3505  * The virtual address of the area that we map is naturally aligned to the
3506  * fault_around_pages() value (and therefore to page order).  This way it's
3507  * easier to guarantee that we don't cross page table boundaries.
3508  */
3509 static int do_fault_around(struct vm_fault *vmf)
3510 {
3511 	unsigned long address = vmf->address, nr_pages, mask;
3512 	pgoff_t start_pgoff = vmf->pgoff;
3513 	pgoff_t end_pgoff;
3514 	int off, ret = 0;
3515 
3516 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3517 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3518 
3519 	vmf->address = max(address & mask, vmf->vma->vm_start);
3520 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3521 	start_pgoff -= off;
3522 
3523 	/*
3524 	 *  end_pgoff is either end of page table or end of vma
3525 	 *  or fault_around_pages() from start_pgoff, depending what is nearest.
3526 	 */
3527 	end_pgoff = start_pgoff -
3528 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3529 		PTRS_PER_PTE - 1;
3530 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3531 			start_pgoff + nr_pages - 1);
3532 
3533 	if (pmd_none(*vmf->pmd)) {
3534 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3535 						  vmf->address);
3536 		if (!vmf->prealloc_pte)
3537 			goto out;
3538 		smp_wmb(); /* See comment in __pte_alloc() */
3539 	}
3540 
3541 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3542 
3543 	/* Huge page is mapped? Page fault is solved */
3544 	if (pmd_trans_huge(*vmf->pmd)) {
3545 		ret = VM_FAULT_NOPAGE;
3546 		goto out;
3547 	}
3548 
3549 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3550 	if (!vmf->pte)
3551 		goto out;
3552 
3553 	/* check if the page fault is solved */
3554 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3555 	if (!pte_none(*vmf->pte))
3556 		ret = VM_FAULT_NOPAGE;
3557 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3558 out:
3559 	vmf->address = address;
3560 	vmf->pte = NULL;
3561 	return ret;
3562 }
3563 
3564 static int do_read_fault(struct vm_fault *vmf)
3565 {
3566 	struct vm_area_struct *vma = vmf->vma;
3567 	int ret = 0;
3568 
3569 	/*
3570 	 * Let's call ->map_pages() first and use ->fault() as fallback
3571 	 * if page by the offset is not ready to be mapped (cold cache or
3572 	 * something).
3573 	 */
3574 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3575 		ret = do_fault_around(vmf);
3576 		if (ret)
3577 			return ret;
3578 	}
3579 
3580 	ret = __do_fault(vmf);
3581 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3582 		return ret;
3583 
3584 	ret |= finish_fault(vmf);
3585 	unlock_page(vmf->page);
3586 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3587 		put_page(vmf->page);
3588 	return ret;
3589 }
3590 
3591 static int do_cow_fault(struct vm_fault *vmf)
3592 {
3593 	struct vm_area_struct *vma = vmf->vma;
3594 	int ret;
3595 
3596 	if (unlikely(anon_vma_prepare(vma)))
3597 		return VM_FAULT_OOM;
3598 
3599 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3600 	if (!vmf->cow_page)
3601 		return VM_FAULT_OOM;
3602 
3603 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3604 				&vmf->memcg, false)) {
3605 		put_page(vmf->cow_page);
3606 		return VM_FAULT_OOM;
3607 	}
3608 
3609 	ret = __do_fault(vmf);
3610 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3611 		goto uncharge_out;
3612 	if (ret & VM_FAULT_DONE_COW)
3613 		return ret;
3614 
3615 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3616 	__SetPageUptodate(vmf->cow_page);
3617 
3618 	ret |= finish_fault(vmf);
3619 	unlock_page(vmf->page);
3620 	put_page(vmf->page);
3621 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3622 		goto uncharge_out;
3623 	return ret;
3624 uncharge_out:
3625 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3626 	put_page(vmf->cow_page);
3627 	return ret;
3628 }
3629 
3630 static int do_shared_fault(struct vm_fault *vmf)
3631 {
3632 	struct vm_area_struct *vma = vmf->vma;
3633 	int ret, tmp;
3634 
3635 	ret = __do_fault(vmf);
3636 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3637 		return ret;
3638 
3639 	/*
3640 	 * Check if the backing address space wants to know that the page is
3641 	 * about to become writable
3642 	 */
3643 	if (vma->vm_ops->page_mkwrite) {
3644 		unlock_page(vmf->page);
3645 		tmp = do_page_mkwrite(vmf);
3646 		if (unlikely(!tmp ||
3647 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3648 			put_page(vmf->page);
3649 			return tmp;
3650 		}
3651 	}
3652 
3653 	ret |= finish_fault(vmf);
3654 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3655 					VM_FAULT_RETRY))) {
3656 		unlock_page(vmf->page);
3657 		put_page(vmf->page);
3658 		return ret;
3659 	}
3660 
3661 	fault_dirty_shared_page(vma, vmf->page);
3662 	return ret;
3663 }
3664 
3665 /*
3666  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3667  * but allow concurrent faults).
3668  * The mmap_sem may have been released depending on flags and our
3669  * return value.  See filemap_fault() and __lock_page_or_retry().
3670  */
3671 static int do_fault(struct vm_fault *vmf)
3672 {
3673 	struct vm_area_struct *vma = vmf->vma;
3674 	int ret;
3675 
3676 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3677 	if (!vma->vm_ops->fault)
3678 		ret = VM_FAULT_SIGBUS;
3679 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3680 		ret = do_read_fault(vmf);
3681 	else if (!(vma->vm_flags & VM_SHARED))
3682 		ret = do_cow_fault(vmf);
3683 	else
3684 		ret = do_shared_fault(vmf);
3685 
3686 	/* preallocated pagetable is unused: free it */
3687 	if (vmf->prealloc_pte) {
3688 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3689 		vmf->prealloc_pte = NULL;
3690 	}
3691 	return ret;
3692 }
3693 
3694 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3695 				unsigned long addr, int page_nid,
3696 				int *flags)
3697 {
3698 	get_page(page);
3699 
3700 	count_vm_numa_event(NUMA_HINT_FAULTS);
3701 	if (page_nid == numa_node_id()) {
3702 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3703 		*flags |= TNF_FAULT_LOCAL;
3704 	}
3705 
3706 	return mpol_misplaced(page, vma, addr);
3707 }
3708 
3709 static int do_numa_page(struct vm_fault *vmf)
3710 {
3711 	struct vm_area_struct *vma = vmf->vma;
3712 	struct page *page = NULL;
3713 	int page_nid = -1;
3714 	int last_cpupid;
3715 	int target_nid;
3716 	bool migrated = false;
3717 	pte_t pte;
3718 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3719 	int flags = 0;
3720 
3721 	/*
3722 	 * The "pte" at this point cannot be used safely without
3723 	 * validation through pte_unmap_same(). It's of NUMA type but
3724 	 * the pfn may be screwed if the read is non atomic.
3725 	 */
3726 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3727 	spin_lock(vmf->ptl);
3728 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3729 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3730 		goto out;
3731 	}
3732 
3733 	/*
3734 	 * Make it present again, Depending on how arch implementes non
3735 	 * accessible ptes, some can allow access by kernel mode.
3736 	 */
3737 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3738 	pte = pte_modify(pte, vma->vm_page_prot);
3739 	pte = pte_mkyoung(pte);
3740 	if (was_writable)
3741 		pte = pte_mkwrite(pte);
3742 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3743 	update_mmu_cache(vma, vmf->address, vmf->pte);
3744 
3745 	page = vm_normal_page(vma, vmf->address, pte);
3746 	if (!page) {
3747 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3748 		return 0;
3749 	}
3750 
3751 	/* TODO: handle PTE-mapped THP */
3752 	if (PageCompound(page)) {
3753 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3754 		return 0;
3755 	}
3756 
3757 	/*
3758 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3759 	 * much anyway since they can be in shared cache state. This misses
3760 	 * the case where a mapping is writable but the process never writes
3761 	 * to it but pte_write gets cleared during protection updates and
3762 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3763 	 * background writeback, dirty balancing and application behaviour.
3764 	 */
3765 	if (!pte_write(pte))
3766 		flags |= TNF_NO_GROUP;
3767 
3768 	/*
3769 	 * Flag if the page is shared between multiple address spaces. This
3770 	 * is later used when determining whether to group tasks together
3771 	 */
3772 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3773 		flags |= TNF_SHARED;
3774 
3775 	last_cpupid = page_cpupid_last(page);
3776 	page_nid = page_to_nid(page);
3777 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3778 			&flags);
3779 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3780 	if (target_nid == -1) {
3781 		put_page(page);
3782 		goto out;
3783 	}
3784 
3785 	/* Migrate to the requested node */
3786 	migrated = migrate_misplaced_page(page, vma, target_nid);
3787 	if (migrated) {
3788 		page_nid = target_nid;
3789 		flags |= TNF_MIGRATED;
3790 	} else
3791 		flags |= TNF_MIGRATE_FAIL;
3792 
3793 out:
3794 	if (page_nid != -1)
3795 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3796 	return 0;
3797 }
3798 
3799 static inline int create_huge_pmd(struct vm_fault *vmf)
3800 {
3801 	if (vma_is_anonymous(vmf->vma))
3802 		return do_huge_pmd_anonymous_page(vmf);
3803 	if (vmf->vma->vm_ops->huge_fault)
3804 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3805 	return VM_FAULT_FALLBACK;
3806 }
3807 
3808 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3809 {
3810 	if (vma_is_anonymous(vmf->vma))
3811 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3812 	if (vmf->vma->vm_ops->huge_fault)
3813 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3814 
3815 	/* COW handled on pte level: split pmd */
3816 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3817 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3818 
3819 	return VM_FAULT_FALLBACK;
3820 }
3821 
3822 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3823 {
3824 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3825 }
3826 
3827 static int create_huge_pud(struct vm_fault *vmf)
3828 {
3829 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3830 	/* No support for anonymous transparent PUD pages yet */
3831 	if (vma_is_anonymous(vmf->vma))
3832 		return VM_FAULT_FALLBACK;
3833 	if (vmf->vma->vm_ops->huge_fault)
3834 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3835 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3836 	return VM_FAULT_FALLBACK;
3837 }
3838 
3839 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3840 {
3841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3842 	/* No support for anonymous transparent PUD pages yet */
3843 	if (vma_is_anonymous(vmf->vma))
3844 		return VM_FAULT_FALLBACK;
3845 	if (vmf->vma->vm_ops->huge_fault)
3846 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3847 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3848 	return VM_FAULT_FALLBACK;
3849 }
3850 
3851 /*
3852  * These routines also need to handle stuff like marking pages dirty
3853  * and/or accessed for architectures that don't do it in hardware (most
3854  * RISC architectures).  The early dirtying is also good on the i386.
3855  *
3856  * There is also a hook called "update_mmu_cache()" that architectures
3857  * with external mmu caches can use to update those (ie the Sparc or
3858  * PowerPC hashed page tables that act as extended TLBs).
3859  *
3860  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3861  * concurrent faults).
3862  *
3863  * The mmap_sem may have been released depending on flags and our return value.
3864  * See filemap_fault() and __lock_page_or_retry().
3865  */
3866 static int handle_pte_fault(struct vm_fault *vmf)
3867 {
3868 	pte_t entry;
3869 
3870 	if (unlikely(pmd_none(*vmf->pmd))) {
3871 		/*
3872 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3873 		 * want to allocate huge page, and if we expose page table
3874 		 * for an instant, it will be difficult to retract from
3875 		 * concurrent faults and from rmap lookups.
3876 		 */
3877 		vmf->pte = NULL;
3878 	} else {
3879 		/* See comment in pte_alloc_one_map() */
3880 		if (pmd_devmap_trans_unstable(vmf->pmd))
3881 			return 0;
3882 		/*
3883 		 * A regular pmd is established and it can't morph into a huge
3884 		 * pmd from under us anymore at this point because we hold the
3885 		 * mmap_sem read mode and khugepaged takes it in write mode.
3886 		 * So now it's safe to run pte_offset_map().
3887 		 */
3888 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3889 		vmf->orig_pte = *vmf->pte;
3890 
3891 		/*
3892 		 * some architectures can have larger ptes than wordsize,
3893 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3894 		 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3895 		 * atomic accesses.  The code below just needs a consistent
3896 		 * view for the ifs and we later double check anyway with the
3897 		 * ptl lock held. So here a barrier will do.
3898 		 */
3899 		barrier();
3900 		if (pte_none(vmf->orig_pte)) {
3901 			pte_unmap(vmf->pte);
3902 			vmf->pte = NULL;
3903 		}
3904 	}
3905 
3906 	if (!vmf->pte) {
3907 		if (vma_is_anonymous(vmf->vma))
3908 			return do_anonymous_page(vmf);
3909 		else
3910 			return do_fault(vmf);
3911 	}
3912 
3913 	if (!pte_present(vmf->orig_pte))
3914 		return do_swap_page(vmf);
3915 
3916 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3917 		return do_numa_page(vmf);
3918 
3919 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3920 	spin_lock(vmf->ptl);
3921 	entry = vmf->orig_pte;
3922 	if (unlikely(!pte_same(*vmf->pte, entry)))
3923 		goto unlock;
3924 	if (vmf->flags & FAULT_FLAG_WRITE) {
3925 		if (!pte_write(entry))
3926 			return do_wp_page(vmf);
3927 		entry = pte_mkdirty(entry);
3928 	}
3929 	entry = pte_mkyoung(entry);
3930 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3931 				vmf->flags & FAULT_FLAG_WRITE)) {
3932 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3933 	} else {
3934 		/*
3935 		 * This is needed only for protection faults but the arch code
3936 		 * is not yet telling us if this is a protection fault or not.
3937 		 * This still avoids useless tlb flushes for .text page faults
3938 		 * with threads.
3939 		 */
3940 		if (vmf->flags & FAULT_FLAG_WRITE)
3941 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3942 	}
3943 unlock:
3944 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3945 	return 0;
3946 }
3947 
3948 /*
3949  * By the time we get here, we already hold the mm semaphore
3950  *
3951  * The mmap_sem may have been released depending on flags and our
3952  * return value.  See filemap_fault() and __lock_page_or_retry().
3953  */
3954 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3955 		unsigned int flags)
3956 {
3957 	struct vm_fault vmf = {
3958 		.vma = vma,
3959 		.address = address & PAGE_MASK,
3960 		.flags = flags,
3961 		.pgoff = linear_page_index(vma, address),
3962 		.gfp_mask = __get_fault_gfp_mask(vma),
3963 	};
3964 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
3965 	struct mm_struct *mm = vma->vm_mm;
3966 	pgd_t *pgd;
3967 	p4d_t *p4d;
3968 	int ret;
3969 
3970 	pgd = pgd_offset(mm, address);
3971 	p4d = p4d_alloc(mm, pgd, address);
3972 	if (!p4d)
3973 		return VM_FAULT_OOM;
3974 
3975 	vmf.pud = pud_alloc(mm, p4d, address);
3976 	if (!vmf.pud)
3977 		return VM_FAULT_OOM;
3978 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3979 		ret = create_huge_pud(&vmf);
3980 		if (!(ret & VM_FAULT_FALLBACK))
3981 			return ret;
3982 	} else {
3983 		pud_t orig_pud = *vmf.pud;
3984 
3985 		barrier();
3986 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3987 
3988 			/* NUMA case for anonymous PUDs would go here */
3989 
3990 			if (dirty && !pud_write(orig_pud)) {
3991 				ret = wp_huge_pud(&vmf, orig_pud);
3992 				if (!(ret & VM_FAULT_FALLBACK))
3993 					return ret;
3994 			} else {
3995 				huge_pud_set_accessed(&vmf, orig_pud);
3996 				return 0;
3997 			}
3998 		}
3999 	}
4000 
4001 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4002 	if (!vmf.pmd)
4003 		return VM_FAULT_OOM;
4004 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4005 		ret = create_huge_pmd(&vmf);
4006 		if (!(ret & VM_FAULT_FALLBACK))
4007 			return ret;
4008 	} else {
4009 		pmd_t orig_pmd = *vmf.pmd;
4010 
4011 		barrier();
4012 		if (unlikely(is_swap_pmd(orig_pmd))) {
4013 			VM_BUG_ON(thp_migration_supported() &&
4014 					  !is_pmd_migration_entry(orig_pmd));
4015 			if (is_pmd_migration_entry(orig_pmd))
4016 				pmd_migration_entry_wait(mm, vmf.pmd);
4017 			return 0;
4018 		}
4019 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4020 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4021 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4022 
4023 			if (dirty && !pmd_write(orig_pmd)) {
4024 				ret = wp_huge_pmd(&vmf, orig_pmd);
4025 				if (!(ret & VM_FAULT_FALLBACK))
4026 					return ret;
4027 			} else {
4028 				huge_pmd_set_accessed(&vmf, orig_pmd);
4029 				return 0;
4030 			}
4031 		}
4032 	}
4033 
4034 	return handle_pte_fault(&vmf);
4035 }
4036 
4037 /*
4038  * By the time we get here, we already hold the mm semaphore
4039  *
4040  * The mmap_sem may have been released depending on flags and our
4041  * return value.  See filemap_fault() and __lock_page_or_retry().
4042  */
4043 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4044 		unsigned int flags)
4045 {
4046 	int ret;
4047 
4048 	__set_current_state(TASK_RUNNING);
4049 
4050 	count_vm_event(PGFAULT);
4051 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4052 
4053 	/* do counter updates before entering really critical section. */
4054 	check_sync_rss_stat(current);
4055 
4056 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4057 					    flags & FAULT_FLAG_INSTRUCTION,
4058 					    flags & FAULT_FLAG_REMOTE))
4059 		return VM_FAULT_SIGSEGV;
4060 
4061 	/*
4062 	 * Enable the memcg OOM handling for faults triggered in user
4063 	 * space.  Kernel faults are handled more gracefully.
4064 	 */
4065 	if (flags & FAULT_FLAG_USER)
4066 		mem_cgroup_oom_enable();
4067 
4068 	if (unlikely(is_vm_hugetlb_page(vma)))
4069 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4070 	else
4071 		ret = __handle_mm_fault(vma, address, flags);
4072 
4073 	if (flags & FAULT_FLAG_USER) {
4074 		mem_cgroup_oom_disable();
4075 		/*
4076 		 * The task may have entered a memcg OOM situation but
4077 		 * if the allocation error was handled gracefully (no
4078 		 * VM_FAULT_OOM), there is no need to kill anything.
4079 		 * Just clean up the OOM state peacefully.
4080 		 */
4081 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4082 			mem_cgroup_oom_synchronize(false);
4083 	}
4084 
4085 	return ret;
4086 }
4087 EXPORT_SYMBOL_GPL(handle_mm_fault);
4088 
4089 #ifndef __PAGETABLE_P4D_FOLDED
4090 /*
4091  * Allocate p4d page table.
4092  * We've already handled the fast-path in-line.
4093  */
4094 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4095 {
4096 	p4d_t *new = p4d_alloc_one(mm, address);
4097 	if (!new)
4098 		return -ENOMEM;
4099 
4100 	smp_wmb(); /* See comment in __pte_alloc */
4101 
4102 	spin_lock(&mm->page_table_lock);
4103 	if (pgd_present(*pgd))		/* Another has populated it */
4104 		p4d_free(mm, new);
4105 	else
4106 		pgd_populate(mm, pgd, new);
4107 	spin_unlock(&mm->page_table_lock);
4108 	return 0;
4109 }
4110 #endif /* __PAGETABLE_P4D_FOLDED */
4111 
4112 #ifndef __PAGETABLE_PUD_FOLDED
4113 /*
4114  * Allocate page upper directory.
4115  * We've already handled the fast-path in-line.
4116  */
4117 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4118 {
4119 	pud_t *new = pud_alloc_one(mm, address);
4120 	if (!new)
4121 		return -ENOMEM;
4122 
4123 	smp_wmb(); /* See comment in __pte_alloc */
4124 
4125 	spin_lock(&mm->page_table_lock);
4126 #ifndef __ARCH_HAS_5LEVEL_HACK
4127 	if (p4d_present(*p4d))		/* Another has populated it */
4128 		pud_free(mm, new);
4129 	else
4130 		p4d_populate(mm, p4d, new);
4131 #else
4132 	if (pgd_present(*p4d))		/* Another has populated it */
4133 		pud_free(mm, new);
4134 	else
4135 		pgd_populate(mm, p4d, new);
4136 #endif /* __ARCH_HAS_5LEVEL_HACK */
4137 	spin_unlock(&mm->page_table_lock);
4138 	return 0;
4139 }
4140 #endif /* __PAGETABLE_PUD_FOLDED */
4141 
4142 #ifndef __PAGETABLE_PMD_FOLDED
4143 /*
4144  * Allocate page middle directory.
4145  * We've already handled the fast-path in-line.
4146  */
4147 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4148 {
4149 	spinlock_t *ptl;
4150 	pmd_t *new = pmd_alloc_one(mm, address);
4151 	if (!new)
4152 		return -ENOMEM;
4153 
4154 	smp_wmb(); /* See comment in __pte_alloc */
4155 
4156 	ptl = pud_lock(mm, pud);
4157 #ifndef __ARCH_HAS_4LEVEL_HACK
4158 	if (!pud_present(*pud)) {
4159 		mm_inc_nr_pmds(mm);
4160 		pud_populate(mm, pud, new);
4161 	} else	/* Another has populated it */
4162 		pmd_free(mm, new);
4163 #else
4164 	if (!pgd_present(*pud)) {
4165 		mm_inc_nr_pmds(mm);
4166 		pgd_populate(mm, pud, new);
4167 	} else /* Another has populated it */
4168 		pmd_free(mm, new);
4169 #endif /* __ARCH_HAS_4LEVEL_HACK */
4170 	spin_unlock(ptl);
4171 	return 0;
4172 }
4173 #endif /* __PAGETABLE_PMD_FOLDED */
4174 
4175 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4176 			    unsigned long *start, unsigned long *end,
4177 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4178 {
4179 	pgd_t *pgd;
4180 	p4d_t *p4d;
4181 	pud_t *pud;
4182 	pmd_t *pmd;
4183 	pte_t *ptep;
4184 
4185 	pgd = pgd_offset(mm, address);
4186 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4187 		goto out;
4188 
4189 	p4d = p4d_offset(pgd, address);
4190 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4191 		goto out;
4192 
4193 	pud = pud_offset(p4d, address);
4194 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4195 		goto out;
4196 
4197 	pmd = pmd_offset(pud, address);
4198 	VM_BUG_ON(pmd_trans_huge(*pmd));
4199 
4200 	if (pmd_huge(*pmd)) {
4201 		if (!pmdpp)
4202 			goto out;
4203 
4204 		if (start && end) {
4205 			*start = address & PMD_MASK;
4206 			*end = *start + PMD_SIZE;
4207 			mmu_notifier_invalidate_range_start(mm, *start, *end);
4208 		}
4209 		*ptlp = pmd_lock(mm, pmd);
4210 		if (pmd_huge(*pmd)) {
4211 			*pmdpp = pmd;
4212 			return 0;
4213 		}
4214 		spin_unlock(*ptlp);
4215 		if (start && end)
4216 			mmu_notifier_invalidate_range_end(mm, *start, *end);
4217 	}
4218 
4219 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4220 		goto out;
4221 
4222 	if (start && end) {
4223 		*start = address & PAGE_MASK;
4224 		*end = *start + PAGE_SIZE;
4225 		mmu_notifier_invalidate_range_start(mm, *start, *end);
4226 	}
4227 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4228 	if (!pte_present(*ptep))
4229 		goto unlock;
4230 	*ptepp = ptep;
4231 	return 0;
4232 unlock:
4233 	pte_unmap_unlock(ptep, *ptlp);
4234 	if (start && end)
4235 		mmu_notifier_invalidate_range_end(mm, *start, *end);
4236 out:
4237 	return -EINVAL;
4238 }
4239 
4240 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4241 			     pte_t **ptepp, spinlock_t **ptlp)
4242 {
4243 	int res;
4244 
4245 	/* (void) is needed to make gcc happy */
4246 	(void) __cond_lock(*ptlp,
4247 			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4248 						    ptepp, NULL, ptlp)));
4249 	return res;
4250 }
4251 
4252 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4253 			     unsigned long *start, unsigned long *end,
4254 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4255 {
4256 	int res;
4257 
4258 	/* (void) is needed to make gcc happy */
4259 	(void) __cond_lock(*ptlp,
4260 			   !(res = __follow_pte_pmd(mm, address, start, end,
4261 						    ptepp, pmdpp, ptlp)));
4262 	return res;
4263 }
4264 EXPORT_SYMBOL(follow_pte_pmd);
4265 
4266 /**
4267  * follow_pfn - look up PFN at a user virtual address
4268  * @vma: memory mapping
4269  * @address: user virtual address
4270  * @pfn: location to store found PFN
4271  *
4272  * Only IO mappings and raw PFN mappings are allowed.
4273  *
4274  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4275  */
4276 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4277 	unsigned long *pfn)
4278 {
4279 	int ret = -EINVAL;
4280 	spinlock_t *ptl;
4281 	pte_t *ptep;
4282 
4283 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4284 		return ret;
4285 
4286 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4287 	if (ret)
4288 		return ret;
4289 	*pfn = pte_pfn(*ptep);
4290 	pte_unmap_unlock(ptep, ptl);
4291 	return 0;
4292 }
4293 EXPORT_SYMBOL(follow_pfn);
4294 
4295 #ifdef CONFIG_HAVE_IOREMAP_PROT
4296 int follow_phys(struct vm_area_struct *vma,
4297 		unsigned long address, unsigned int flags,
4298 		unsigned long *prot, resource_size_t *phys)
4299 {
4300 	int ret = -EINVAL;
4301 	pte_t *ptep, pte;
4302 	spinlock_t *ptl;
4303 
4304 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4305 		goto out;
4306 
4307 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4308 		goto out;
4309 	pte = *ptep;
4310 
4311 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4312 		goto unlock;
4313 
4314 	*prot = pgprot_val(pte_pgprot(pte));
4315 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4316 
4317 	ret = 0;
4318 unlock:
4319 	pte_unmap_unlock(ptep, ptl);
4320 out:
4321 	return ret;
4322 }
4323 
4324 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4325 			void *buf, int len, int write)
4326 {
4327 	resource_size_t phys_addr;
4328 	unsigned long prot = 0;
4329 	void __iomem *maddr;
4330 	int offset = addr & (PAGE_SIZE-1);
4331 
4332 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4333 		return -EINVAL;
4334 
4335 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4336 	if (write)
4337 		memcpy_toio(maddr + offset, buf, len);
4338 	else
4339 		memcpy_fromio(buf, maddr + offset, len);
4340 	iounmap(maddr);
4341 
4342 	return len;
4343 }
4344 EXPORT_SYMBOL_GPL(generic_access_phys);
4345 #endif
4346 
4347 /*
4348  * Access another process' address space as given in mm.  If non-NULL, use the
4349  * given task for page fault accounting.
4350  */
4351 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4352 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4353 {
4354 	struct vm_area_struct *vma;
4355 	void *old_buf = buf;
4356 	int write = gup_flags & FOLL_WRITE;
4357 
4358 	down_read(&mm->mmap_sem);
4359 	/* ignore errors, just check how much was successfully transferred */
4360 	while (len) {
4361 		int bytes, ret, offset;
4362 		void *maddr;
4363 		struct page *page = NULL;
4364 
4365 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4366 				gup_flags, &page, &vma, NULL);
4367 		if (ret <= 0) {
4368 #ifndef CONFIG_HAVE_IOREMAP_PROT
4369 			break;
4370 #else
4371 			/*
4372 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4373 			 * we can access using slightly different code.
4374 			 */
4375 			vma = find_vma(mm, addr);
4376 			if (!vma || vma->vm_start > addr)
4377 				break;
4378 			if (vma->vm_ops && vma->vm_ops->access)
4379 				ret = vma->vm_ops->access(vma, addr, buf,
4380 							  len, write);
4381 			if (ret <= 0)
4382 				break;
4383 			bytes = ret;
4384 #endif
4385 		} else {
4386 			bytes = len;
4387 			offset = addr & (PAGE_SIZE-1);
4388 			if (bytes > PAGE_SIZE-offset)
4389 				bytes = PAGE_SIZE-offset;
4390 
4391 			maddr = kmap(page);
4392 			if (write) {
4393 				copy_to_user_page(vma, page, addr,
4394 						  maddr + offset, buf, bytes);
4395 				set_page_dirty_lock(page);
4396 			} else {
4397 				copy_from_user_page(vma, page, addr,
4398 						    buf, maddr + offset, bytes);
4399 			}
4400 			kunmap(page);
4401 			put_page(page);
4402 		}
4403 		len -= bytes;
4404 		buf += bytes;
4405 		addr += bytes;
4406 	}
4407 	up_read(&mm->mmap_sem);
4408 
4409 	return buf - old_buf;
4410 }
4411 
4412 /**
4413  * access_remote_vm - access another process' address space
4414  * @mm:		the mm_struct of the target address space
4415  * @addr:	start address to access
4416  * @buf:	source or destination buffer
4417  * @len:	number of bytes to transfer
4418  * @gup_flags:	flags modifying lookup behaviour
4419  *
4420  * The caller must hold a reference on @mm.
4421  */
4422 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4423 		void *buf, int len, unsigned int gup_flags)
4424 {
4425 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4426 }
4427 
4428 /*
4429  * Access another process' address space.
4430  * Source/target buffer must be kernel space,
4431  * Do not walk the page table directly, use get_user_pages
4432  */
4433 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4434 		void *buf, int len, unsigned int gup_flags)
4435 {
4436 	struct mm_struct *mm;
4437 	int ret;
4438 
4439 	mm = get_task_mm(tsk);
4440 	if (!mm)
4441 		return 0;
4442 
4443 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4444 
4445 	mmput(mm);
4446 
4447 	return ret;
4448 }
4449 EXPORT_SYMBOL_GPL(access_process_vm);
4450 
4451 /*
4452  * Print the name of a VMA.
4453  */
4454 void print_vma_addr(char *prefix, unsigned long ip)
4455 {
4456 	struct mm_struct *mm = current->mm;
4457 	struct vm_area_struct *vma;
4458 
4459 	/*
4460 	 * Do not print if we are in atomic
4461 	 * contexts (in exception stacks, etc.):
4462 	 */
4463 	if (preempt_count())
4464 		return;
4465 
4466 	down_read(&mm->mmap_sem);
4467 	vma = find_vma(mm, ip);
4468 	if (vma && vma->vm_file) {
4469 		struct file *f = vma->vm_file;
4470 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4471 		if (buf) {
4472 			char *p;
4473 
4474 			p = file_path(f, buf, PAGE_SIZE);
4475 			if (IS_ERR(p))
4476 				p = "?";
4477 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4478 					vma->vm_start,
4479 					vma->vm_end - vma->vm_start);
4480 			free_page((unsigned long)buf);
4481 		}
4482 	}
4483 	up_read(&mm->mmap_sem);
4484 }
4485 
4486 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4487 void __might_fault(const char *file, int line)
4488 {
4489 	/*
4490 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4491 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4492 	 * get paged out, therefore we'll never actually fault, and the
4493 	 * below annotations will generate false positives.
4494 	 */
4495 	if (uaccess_kernel())
4496 		return;
4497 	if (pagefault_disabled())
4498 		return;
4499 	__might_sleep(file, line, 0);
4500 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4501 	if (current->mm)
4502 		might_lock_read(&current->mm->mmap_sem);
4503 #endif
4504 }
4505 EXPORT_SYMBOL(__might_fault);
4506 #endif
4507 
4508 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4509 static void clear_gigantic_page(struct page *page,
4510 				unsigned long addr,
4511 				unsigned int pages_per_huge_page)
4512 {
4513 	int i;
4514 	struct page *p = page;
4515 
4516 	might_sleep();
4517 	for (i = 0; i < pages_per_huge_page;
4518 	     i++, p = mem_map_next(p, page, i)) {
4519 		cond_resched();
4520 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4521 	}
4522 }
4523 void clear_huge_page(struct page *page,
4524 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4525 {
4526 	int i, n, base, l;
4527 	unsigned long addr = addr_hint &
4528 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4529 
4530 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4531 		clear_gigantic_page(page, addr, pages_per_huge_page);
4532 		return;
4533 	}
4534 
4535 	/* Clear sub-page to access last to keep its cache lines hot */
4536 	might_sleep();
4537 	n = (addr_hint - addr) / PAGE_SIZE;
4538 	if (2 * n <= pages_per_huge_page) {
4539 		/* If sub-page to access in first half of huge page */
4540 		base = 0;
4541 		l = n;
4542 		/* Clear sub-pages at the end of huge page */
4543 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4544 			cond_resched();
4545 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4546 		}
4547 	} else {
4548 		/* If sub-page to access in second half of huge page */
4549 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4550 		l = pages_per_huge_page - n;
4551 		/* Clear sub-pages at the begin of huge page */
4552 		for (i = 0; i < base; i++) {
4553 			cond_resched();
4554 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4555 		}
4556 	}
4557 	/*
4558 	 * Clear remaining sub-pages in left-right-left-right pattern
4559 	 * towards the sub-page to access
4560 	 */
4561 	for (i = 0; i < l; i++) {
4562 		int left_idx = base + i;
4563 		int right_idx = base + 2 * l - 1 - i;
4564 
4565 		cond_resched();
4566 		clear_user_highpage(page + left_idx,
4567 				    addr + left_idx * PAGE_SIZE);
4568 		cond_resched();
4569 		clear_user_highpage(page + right_idx,
4570 				    addr + right_idx * PAGE_SIZE);
4571 	}
4572 }
4573 
4574 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4575 				    unsigned long addr,
4576 				    struct vm_area_struct *vma,
4577 				    unsigned int pages_per_huge_page)
4578 {
4579 	int i;
4580 	struct page *dst_base = dst;
4581 	struct page *src_base = src;
4582 
4583 	for (i = 0; i < pages_per_huge_page; ) {
4584 		cond_resched();
4585 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4586 
4587 		i++;
4588 		dst = mem_map_next(dst, dst_base, i);
4589 		src = mem_map_next(src, src_base, i);
4590 	}
4591 }
4592 
4593 void copy_user_huge_page(struct page *dst, struct page *src,
4594 			 unsigned long addr, struct vm_area_struct *vma,
4595 			 unsigned int pages_per_huge_page)
4596 {
4597 	int i;
4598 
4599 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4600 		copy_user_gigantic_page(dst, src, addr, vma,
4601 					pages_per_huge_page);
4602 		return;
4603 	}
4604 
4605 	might_sleep();
4606 	for (i = 0; i < pages_per_huge_page; i++) {
4607 		cond_resched();
4608 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4609 	}
4610 }
4611 
4612 long copy_huge_page_from_user(struct page *dst_page,
4613 				const void __user *usr_src,
4614 				unsigned int pages_per_huge_page,
4615 				bool allow_pagefault)
4616 {
4617 	void *src = (void *)usr_src;
4618 	void *page_kaddr;
4619 	unsigned long i, rc = 0;
4620 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4621 
4622 	for (i = 0; i < pages_per_huge_page; i++) {
4623 		if (allow_pagefault)
4624 			page_kaddr = kmap(dst_page + i);
4625 		else
4626 			page_kaddr = kmap_atomic(dst_page + i);
4627 		rc = copy_from_user(page_kaddr,
4628 				(const void __user *)(src + i * PAGE_SIZE),
4629 				PAGE_SIZE);
4630 		if (allow_pagefault)
4631 			kunmap(dst_page + i);
4632 		else
4633 			kunmap_atomic(page_kaddr);
4634 
4635 		ret_val -= (PAGE_SIZE - rc);
4636 		if (rc)
4637 			break;
4638 
4639 		cond_resched();
4640 	}
4641 	return ret_val;
4642 }
4643 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4644 
4645 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4646 
4647 static struct kmem_cache *page_ptl_cachep;
4648 
4649 void __init ptlock_cache_init(void)
4650 {
4651 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4652 			SLAB_PANIC, NULL);
4653 }
4654 
4655 bool ptlock_alloc(struct page *page)
4656 {
4657 	spinlock_t *ptl;
4658 
4659 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4660 	if (!ptl)
4661 		return false;
4662 	page->ptl = ptl;
4663 	return true;
4664 }
4665 
4666 void ptlock_free(struct page *page)
4667 {
4668 	kmem_cache_free(page_ptl_cachep, page->ptl);
4669 }
4670 #endif
4671