xref: /openbmc/linux/mm/memory.c (revision d670b479)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67 
68 #include "internal.h"
69 
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74 
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78 
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88 
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91 
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 					1;
101 #else
102 					2;
103 #endif
104 
105 static int __init disable_randmaps(char *s)
106 {
107 	randomize_va_space = 0;
108 	return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111 
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114 
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 	return 0;
122 }
123 core_initcall(init_zero_pfn);
124 
125 
126 #if defined(SPLIT_RSS_COUNTING)
127 
128 void sync_mm_rss(struct mm_struct *mm)
129 {
130 	int i;
131 
132 	for (i = 0; i < NR_MM_COUNTERS; i++) {
133 		if (current->rss_stat.count[i]) {
134 			add_mm_counter(mm, i, current->rss_stat.count[i]);
135 			current->rss_stat.count[i] = 0;
136 		}
137 	}
138 	current->rss_stat.events = 0;
139 }
140 
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 	struct task_struct *task = current;
144 
145 	if (likely(task->mm == mm))
146 		task->rss_stat.count[member] += val;
147 	else
148 		add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152 
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH	(64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 	if (unlikely(task != current))
158 		return;
159 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 		sync_mm_rss(task->mm);
161 }
162 #else /* SPLIT_RSS_COUNTING */
163 
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166 
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 }
170 
171 #endif /* SPLIT_RSS_COUNTING */
172 
173 #ifdef HAVE_GENERIC_MMU_GATHER
174 
175 static int tlb_next_batch(struct mmu_gather *tlb)
176 {
177 	struct mmu_gather_batch *batch;
178 
179 	batch = tlb->active;
180 	if (batch->next) {
181 		tlb->active = batch->next;
182 		return 1;
183 	}
184 
185 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186 	if (!batch)
187 		return 0;
188 
189 	batch->next = NULL;
190 	batch->nr   = 0;
191 	batch->max  = MAX_GATHER_BATCH;
192 
193 	tlb->active->next = batch;
194 	tlb->active = batch;
195 
196 	return 1;
197 }
198 
199 /* tlb_gather_mmu
200  *	Called to initialize an (on-stack) mmu_gather structure for page-table
201  *	tear-down from @mm. The @fullmm argument is used when @mm is without
202  *	users and we're going to destroy the full address space (exit/execve).
203  */
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205 {
206 	tlb->mm = mm;
207 
208 	tlb->fullmm     = fullmm;
209 	tlb->need_flush = 0;
210 	tlb->fast_mode  = (num_possible_cpus() == 1);
211 	tlb->local.next = NULL;
212 	tlb->local.nr   = 0;
213 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
214 	tlb->active     = &tlb->local;
215 
216 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
217 	tlb->batch = NULL;
218 #endif
219 }
220 
221 void tlb_flush_mmu(struct mmu_gather *tlb)
222 {
223 	struct mmu_gather_batch *batch;
224 
225 	if (!tlb->need_flush)
226 		return;
227 	tlb->need_flush = 0;
228 	tlb_flush(tlb);
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 	tlb_table_flush(tlb);
231 #endif
232 
233 	if (tlb_fast_mode(tlb))
234 		return;
235 
236 	for (batch = &tlb->local; batch; batch = batch->next) {
237 		free_pages_and_swap_cache(batch->pages, batch->nr);
238 		batch->nr = 0;
239 	}
240 	tlb->active = &tlb->local;
241 }
242 
243 /* tlb_finish_mmu
244  *	Called at the end of the shootdown operation to free up any resources
245  *	that were required.
246  */
247 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
248 {
249 	struct mmu_gather_batch *batch, *next;
250 
251 	tlb_flush_mmu(tlb);
252 
253 	/* keep the page table cache within bounds */
254 	check_pgt_cache();
255 
256 	for (batch = tlb->local.next; batch; batch = next) {
257 		next = batch->next;
258 		free_pages((unsigned long)batch, 0);
259 	}
260 	tlb->local.next = NULL;
261 }
262 
263 /* __tlb_remove_page
264  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
265  *	handling the additional races in SMP caused by other CPUs caching valid
266  *	mappings in their TLBs. Returns the number of free page slots left.
267  *	When out of page slots we must call tlb_flush_mmu().
268  */
269 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
270 {
271 	struct mmu_gather_batch *batch;
272 
273 	VM_BUG_ON(!tlb->need_flush);
274 
275 	if (tlb_fast_mode(tlb)) {
276 		free_page_and_swap_cache(page);
277 		return 1; /* avoid calling tlb_flush_mmu() */
278 	}
279 
280 	batch = tlb->active;
281 	batch->pages[batch->nr++] = page;
282 	if (batch->nr == batch->max) {
283 		if (!tlb_next_batch(tlb))
284 			return 0;
285 		batch = tlb->active;
286 	}
287 	VM_BUG_ON(batch->nr > batch->max);
288 
289 	return batch->max - batch->nr;
290 }
291 
292 #endif /* HAVE_GENERIC_MMU_GATHER */
293 
294 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
295 
296 /*
297  * See the comment near struct mmu_table_batch.
298  */
299 
300 static void tlb_remove_table_smp_sync(void *arg)
301 {
302 	/* Simply deliver the interrupt */
303 }
304 
305 static void tlb_remove_table_one(void *table)
306 {
307 	/*
308 	 * This isn't an RCU grace period and hence the page-tables cannot be
309 	 * assumed to be actually RCU-freed.
310 	 *
311 	 * It is however sufficient for software page-table walkers that rely on
312 	 * IRQ disabling. See the comment near struct mmu_table_batch.
313 	 */
314 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
315 	__tlb_remove_table(table);
316 }
317 
318 static void tlb_remove_table_rcu(struct rcu_head *head)
319 {
320 	struct mmu_table_batch *batch;
321 	int i;
322 
323 	batch = container_of(head, struct mmu_table_batch, rcu);
324 
325 	for (i = 0; i < batch->nr; i++)
326 		__tlb_remove_table(batch->tables[i]);
327 
328 	free_page((unsigned long)batch);
329 }
330 
331 void tlb_table_flush(struct mmu_gather *tlb)
332 {
333 	struct mmu_table_batch **batch = &tlb->batch;
334 
335 	if (*batch) {
336 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
337 		*batch = NULL;
338 	}
339 }
340 
341 void tlb_remove_table(struct mmu_gather *tlb, void *table)
342 {
343 	struct mmu_table_batch **batch = &tlb->batch;
344 
345 	tlb->need_flush = 1;
346 
347 	/*
348 	 * When there's less then two users of this mm there cannot be a
349 	 * concurrent page-table walk.
350 	 */
351 	if (atomic_read(&tlb->mm->mm_users) < 2) {
352 		__tlb_remove_table(table);
353 		return;
354 	}
355 
356 	if (*batch == NULL) {
357 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
358 		if (*batch == NULL) {
359 			tlb_remove_table_one(table);
360 			return;
361 		}
362 		(*batch)->nr = 0;
363 	}
364 	(*batch)->tables[(*batch)->nr++] = table;
365 	if ((*batch)->nr == MAX_TABLE_BATCH)
366 		tlb_table_flush(tlb);
367 }
368 
369 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
370 
371 /*
372  * If a p?d_bad entry is found while walking page tables, report
373  * the error, before resetting entry to p?d_none.  Usually (but
374  * very seldom) called out from the p?d_none_or_clear_bad macros.
375  */
376 
377 void pgd_clear_bad(pgd_t *pgd)
378 {
379 	pgd_ERROR(*pgd);
380 	pgd_clear(pgd);
381 }
382 
383 void pud_clear_bad(pud_t *pud)
384 {
385 	pud_ERROR(*pud);
386 	pud_clear(pud);
387 }
388 
389 void pmd_clear_bad(pmd_t *pmd)
390 {
391 	pmd_ERROR(*pmd);
392 	pmd_clear(pmd);
393 }
394 
395 /*
396  * Note: this doesn't free the actual pages themselves. That
397  * has been handled earlier when unmapping all the memory regions.
398  */
399 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
400 			   unsigned long addr)
401 {
402 	pgtable_t token = pmd_pgtable(*pmd);
403 	pmd_clear(pmd);
404 	pte_free_tlb(tlb, token, addr);
405 	tlb->mm->nr_ptes--;
406 }
407 
408 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
409 				unsigned long addr, unsigned long end,
410 				unsigned long floor, unsigned long ceiling)
411 {
412 	pmd_t *pmd;
413 	unsigned long next;
414 	unsigned long start;
415 
416 	start = addr;
417 	pmd = pmd_offset(pud, addr);
418 	do {
419 		next = pmd_addr_end(addr, end);
420 		if (pmd_none_or_clear_bad(pmd))
421 			continue;
422 		free_pte_range(tlb, pmd, addr);
423 	} while (pmd++, addr = next, addr != end);
424 
425 	start &= PUD_MASK;
426 	if (start < floor)
427 		return;
428 	if (ceiling) {
429 		ceiling &= PUD_MASK;
430 		if (!ceiling)
431 			return;
432 	}
433 	if (end - 1 > ceiling - 1)
434 		return;
435 
436 	pmd = pmd_offset(pud, start);
437 	pud_clear(pud);
438 	pmd_free_tlb(tlb, pmd, start);
439 }
440 
441 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
442 				unsigned long addr, unsigned long end,
443 				unsigned long floor, unsigned long ceiling)
444 {
445 	pud_t *pud;
446 	unsigned long next;
447 	unsigned long start;
448 
449 	start = addr;
450 	pud = pud_offset(pgd, addr);
451 	do {
452 		next = pud_addr_end(addr, end);
453 		if (pud_none_or_clear_bad(pud))
454 			continue;
455 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
456 	} while (pud++, addr = next, addr != end);
457 
458 	start &= PGDIR_MASK;
459 	if (start < floor)
460 		return;
461 	if (ceiling) {
462 		ceiling &= PGDIR_MASK;
463 		if (!ceiling)
464 			return;
465 	}
466 	if (end - 1 > ceiling - 1)
467 		return;
468 
469 	pud = pud_offset(pgd, start);
470 	pgd_clear(pgd);
471 	pud_free_tlb(tlb, pud, start);
472 }
473 
474 /*
475  * This function frees user-level page tables of a process.
476  *
477  * Must be called with pagetable lock held.
478  */
479 void free_pgd_range(struct mmu_gather *tlb,
480 			unsigned long addr, unsigned long end,
481 			unsigned long floor, unsigned long ceiling)
482 {
483 	pgd_t *pgd;
484 	unsigned long next;
485 
486 	/*
487 	 * The next few lines have given us lots of grief...
488 	 *
489 	 * Why are we testing PMD* at this top level?  Because often
490 	 * there will be no work to do at all, and we'd prefer not to
491 	 * go all the way down to the bottom just to discover that.
492 	 *
493 	 * Why all these "- 1"s?  Because 0 represents both the bottom
494 	 * of the address space and the top of it (using -1 for the
495 	 * top wouldn't help much: the masks would do the wrong thing).
496 	 * The rule is that addr 0 and floor 0 refer to the bottom of
497 	 * the address space, but end 0 and ceiling 0 refer to the top
498 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
499 	 * that end 0 case should be mythical).
500 	 *
501 	 * Wherever addr is brought up or ceiling brought down, we must
502 	 * be careful to reject "the opposite 0" before it confuses the
503 	 * subsequent tests.  But what about where end is brought down
504 	 * by PMD_SIZE below? no, end can't go down to 0 there.
505 	 *
506 	 * Whereas we round start (addr) and ceiling down, by different
507 	 * masks at different levels, in order to test whether a table
508 	 * now has no other vmas using it, so can be freed, we don't
509 	 * bother to round floor or end up - the tests don't need that.
510 	 */
511 
512 	addr &= PMD_MASK;
513 	if (addr < floor) {
514 		addr += PMD_SIZE;
515 		if (!addr)
516 			return;
517 	}
518 	if (ceiling) {
519 		ceiling &= PMD_MASK;
520 		if (!ceiling)
521 			return;
522 	}
523 	if (end - 1 > ceiling - 1)
524 		end -= PMD_SIZE;
525 	if (addr > end - 1)
526 		return;
527 
528 	pgd = pgd_offset(tlb->mm, addr);
529 	do {
530 		next = pgd_addr_end(addr, end);
531 		if (pgd_none_or_clear_bad(pgd))
532 			continue;
533 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
534 	} while (pgd++, addr = next, addr != end);
535 }
536 
537 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
538 		unsigned long floor, unsigned long ceiling)
539 {
540 	while (vma) {
541 		struct vm_area_struct *next = vma->vm_next;
542 		unsigned long addr = vma->vm_start;
543 
544 		/*
545 		 * Hide vma from rmap and truncate_pagecache before freeing
546 		 * pgtables
547 		 */
548 		unlink_anon_vmas(vma);
549 		unlink_file_vma(vma);
550 
551 		if (is_vm_hugetlb_page(vma)) {
552 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
553 				floor, next? next->vm_start: ceiling);
554 		} else {
555 			/*
556 			 * Optimization: gather nearby vmas into one call down
557 			 */
558 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
559 			       && !is_vm_hugetlb_page(next)) {
560 				vma = next;
561 				next = vma->vm_next;
562 				unlink_anon_vmas(vma);
563 				unlink_file_vma(vma);
564 			}
565 			free_pgd_range(tlb, addr, vma->vm_end,
566 				floor, next? next->vm_start: ceiling);
567 		}
568 		vma = next;
569 	}
570 }
571 
572 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
573 		pmd_t *pmd, unsigned long address)
574 {
575 	pgtable_t new = pte_alloc_one(mm, address);
576 	int wait_split_huge_page;
577 	if (!new)
578 		return -ENOMEM;
579 
580 	/*
581 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
582 	 * visible before the pte is made visible to other CPUs by being
583 	 * put into page tables.
584 	 *
585 	 * The other side of the story is the pointer chasing in the page
586 	 * table walking code (when walking the page table without locking;
587 	 * ie. most of the time). Fortunately, these data accesses consist
588 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
589 	 * being the notable exception) will already guarantee loads are
590 	 * seen in-order. See the alpha page table accessors for the
591 	 * smp_read_barrier_depends() barriers in page table walking code.
592 	 */
593 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
594 
595 	spin_lock(&mm->page_table_lock);
596 	wait_split_huge_page = 0;
597 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
598 		mm->nr_ptes++;
599 		pmd_populate(mm, pmd, new);
600 		new = NULL;
601 	} else if (unlikely(pmd_trans_splitting(*pmd)))
602 		wait_split_huge_page = 1;
603 	spin_unlock(&mm->page_table_lock);
604 	if (new)
605 		pte_free(mm, new);
606 	if (wait_split_huge_page)
607 		wait_split_huge_page(vma->anon_vma, pmd);
608 	return 0;
609 }
610 
611 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
612 {
613 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
614 	if (!new)
615 		return -ENOMEM;
616 
617 	smp_wmb(); /* See comment in __pte_alloc */
618 
619 	spin_lock(&init_mm.page_table_lock);
620 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
621 		pmd_populate_kernel(&init_mm, pmd, new);
622 		new = NULL;
623 	} else
624 		VM_BUG_ON(pmd_trans_splitting(*pmd));
625 	spin_unlock(&init_mm.page_table_lock);
626 	if (new)
627 		pte_free_kernel(&init_mm, new);
628 	return 0;
629 }
630 
631 static inline void init_rss_vec(int *rss)
632 {
633 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
634 }
635 
636 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
637 {
638 	int i;
639 
640 	if (current->mm == mm)
641 		sync_mm_rss(mm);
642 	for (i = 0; i < NR_MM_COUNTERS; i++)
643 		if (rss[i])
644 			add_mm_counter(mm, i, rss[i]);
645 }
646 
647 /*
648  * This function is called to print an error when a bad pte
649  * is found. For example, we might have a PFN-mapped pte in
650  * a region that doesn't allow it.
651  *
652  * The calling function must still handle the error.
653  */
654 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
655 			  pte_t pte, struct page *page)
656 {
657 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
658 	pud_t *pud = pud_offset(pgd, addr);
659 	pmd_t *pmd = pmd_offset(pud, addr);
660 	struct address_space *mapping;
661 	pgoff_t index;
662 	static unsigned long resume;
663 	static unsigned long nr_shown;
664 	static unsigned long nr_unshown;
665 
666 	/*
667 	 * Allow a burst of 60 reports, then keep quiet for that minute;
668 	 * or allow a steady drip of one report per second.
669 	 */
670 	if (nr_shown == 60) {
671 		if (time_before(jiffies, resume)) {
672 			nr_unshown++;
673 			return;
674 		}
675 		if (nr_unshown) {
676 			printk(KERN_ALERT
677 				"BUG: Bad page map: %lu messages suppressed\n",
678 				nr_unshown);
679 			nr_unshown = 0;
680 		}
681 		nr_shown = 0;
682 	}
683 	if (nr_shown++ == 0)
684 		resume = jiffies + 60 * HZ;
685 
686 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
687 	index = linear_page_index(vma, addr);
688 
689 	printk(KERN_ALERT
690 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
691 		current->comm,
692 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
693 	if (page)
694 		dump_page(page);
695 	printk(KERN_ALERT
696 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
697 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
698 	/*
699 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
700 	 */
701 	if (vma->vm_ops)
702 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
703 				(unsigned long)vma->vm_ops->fault);
704 	if (vma->vm_file && vma->vm_file->f_op)
705 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
706 				(unsigned long)vma->vm_file->f_op->mmap);
707 	dump_stack();
708 	add_taint(TAINT_BAD_PAGE);
709 }
710 
711 static inline int is_cow_mapping(vm_flags_t flags)
712 {
713 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
714 }
715 
716 #ifndef is_zero_pfn
717 static inline int is_zero_pfn(unsigned long pfn)
718 {
719 	return pfn == zero_pfn;
720 }
721 #endif
722 
723 #ifndef my_zero_pfn
724 static inline unsigned long my_zero_pfn(unsigned long addr)
725 {
726 	return zero_pfn;
727 }
728 #endif
729 
730 /*
731  * vm_normal_page -- This function gets the "struct page" associated with a pte.
732  *
733  * "Special" mappings do not wish to be associated with a "struct page" (either
734  * it doesn't exist, or it exists but they don't want to touch it). In this
735  * case, NULL is returned here. "Normal" mappings do have a struct page.
736  *
737  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
738  * pte bit, in which case this function is trivial. Secondly, an architecture
739  * may not have a spare pte bit, which requires a more complicated scheme,
740  * described below.
741  *
742  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
743  * special mapping (even if there are underlying and valid "struct pages").
744  * COWed pages of a VM_PFNMAP are always normal.
745  *
746  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
747  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
748  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
749  * mapping will always honor the rule
750  *
751  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
752  *
753  * And for normal mappings this is false.
754  *
755  * This restricts such mappings to be a linear translation from virtual address
756  * to pfn. To get around this restriction, we allow arbitrary mappings so long
757  * as the vma is not a COW mapping; in that case, we know that all ptes are
758  * special (because none can have been COWed).
759  *
760  *
761  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
762  *
763  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
764  * page" backing, however the difference is that _all_ pages with a struct
765  * page (that is, those where pfn_valid is true) are refcounted and considered
766  * normal pages by the VM. The disadvantage is that pages are refcounted
767  * (which can be slower and simply not an option for some PFNMAP users). The
768  * advantage is that we don't have to follow the strict linearity rule of
769  * PFNMAP mappings in order to support COWable mappings.
770  *
771  */
772 #ifdef __HAVE_ARCH_PTE_SPECIAL
773 # define HAVE_PTE_SPECIAL 1
774 #else
775 # define HAVE_PTE_SPECIAL 0
776 #endif
777 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
778 				pte_t pte)
779 {
780 	unsigned long pfn = pte_pfn(pte);
781 
782 	if (HAVE_PTE_SPECIAL) {
783 		if (likely(!pte_special(pte)))
784 			goto check_pfn;
785 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
786 			return NULL;
787 		if (!is_zero_pfn(pfn))
788 			print_bad_pte(vma, addr, pte, NULL);
789 		return NULL;
790 	}
791 
792 	/* !HAVE_PTE_SPECIAL case follows: */
793 
794 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
795 		if (vma->vm_flags & VM_MIXEDMAP) {
796 			if (!pfn_valid(pfn))
797 				return NULL;
798 			goto out;
799 		} else {
800 			unsigned long off;
801 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
802 			if (pfn == vma->vm_pgoff + off)
803 				return NULL;
804 			if (!is_cow_mapping(vma->vm_flags))
805 				return NULL;
806 		}
807 	}
808 
809 	if (is_zero_pfn(pfn))
810 		return NULL;
811 check_pfn:
812 	if (unlikely(pfn > highest_memmap_pfn)) {
813 		print_bad_pte(vma, addr, pte, NULL);
814 		return NULL;
815 	}
816 
817 	/*
818 	 * NOTE! We still have PageReserved() pages in the page tables.
819 	 * eg. VDSO mappings can cause them to exist.
820 	 */
821 out:
822 	return pfn_to_page(pfn);
823 }
824 
825 /*
826  * copy one vm_area from one task to the other. Assumes the page tables
827  * already present in the new task to be cleared in the whole range
828  * covered by this vma.
829  */
830 
831 static inline unsigned long
832 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
833 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
834 		unsigned long addr, int *rss)
835 {
836 	unsigned long vm_flags = vma->vm_flags;
837 	pte_t pte = *src_pte;
838 	struct page *page;
839 
840 	/* pte contains position in swap or file, so copy. */
841 	if (unlikely(!pte_present(pte))) {
842 		if (!pte_file(pte)) {
843 			swp_entry_t entry = pte_to_swp_entry(pte);
844 
845 			if (swap_duplicate(entry) < 0)
846 				return entry.val;
847 
848 			/* make sure dst_mm is on swapoff's mmlist. */
849 			if (unlikely(list_empty(&dst_mm->mmlist))) {
850 				spin_lock(&mmlist_lock);
851 				if (list_empty(&dst_mm->mmlist))
852 					list_add(&dst_mm->mmlist,
853 						 &src_mm->mmlist);
854 				spin_unlock(&mmlist_lock);
855 			}
856 			if (likely(!non_swap_entry(entry)))
857 				rss[MM_SWAPENTS]++;
858 			else if (is_migration_entry(entry)) {
859 				page = migration_entry_to_page(entry);
860 
861 				if (PageAnon(page))
862 					rss[MM_ANONPAGES]++;
863 				else
864 					rss[MM_FILEPAGES]++;
865 
866 				if (is_write_migration_entry(entry) &&
867 				    is_cow_mapping(vm_flags)) {
868 					/*
869 					 * COW mappings require pages in both
870 					 * parent and child to be set to read.
871 					 */
872 					make_migration_entry_read(&entry);
873 					pte = swp_entry_to_pte(entry);
874 					set_pte_at(src_mm, addr, src_pte, pte);
875 				}
876 			}
877 		}
878 		goto out_set_pte;
879 	}
880 
881 	/*
882 	 * If it's a COW mapping, write protect it both
883 	 * in the parent and the child
884 	 */
885 	if (is_cow_mapping(vm_flags)) {
886 		ptep_set_wrprotect(src_mm, addr, src_pte);
887 		pte = pte_wrprotect(pte);
888 	}
889 
890 	/*
891 	 * If it's a shared mapping, mark it clean in
892 	 * the child
893 	 */
894 	if (vm_flags & VM_SHARED)
895 		pte = pte_mkclean(pte);
896 	pte = pte_mkold(pte);
897 
898 	page = vm_normal_page(vma, addr, pte);
899 	if (page) {
900 		get_page(page);
901 		page_dup_rmap(page);
902 		if (PageAnon(page))
903 			rss[MM_ANONPAGES]++;
904 		else
905 			rss[MM_FILEPAGES]++;
906 	}
907 
908 out_set_pte:
909 	set_pte_at(dst_mm, addr, dst_pte, pte);
910 	return 0;
911 }
912 
913 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
914 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
915 		   unsigned long addr, unsigned long end)
916 {
917 	pte_t *orig_src_pte, *orig_dst_pte;
918 	pte_t *src_pte, *dst_pte;
919 	spinlock_t *src_ptl, *dst_ptl;
920 	int progress = 0;
921 	int rss[NR_MM_COUNTERS];
922 	swp_entry_t entry = (swp_entry_t){0};
923 
924 again:
925 	init_rss_vec(rss);
926 
927 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
928 	if (!dst_pte)
929 		return -ENOMEM;
930 	src_pte = pte_offset_map(src_pmd, addr);
931 	src_ptl = pte_lockptr(src_mm, src_pmd);
932 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
933 	orig_src_pte = src_pte;
934 	orig_dst_pte = dst_pte;
935 	arch_enter_lazy_mmu_mode();
936 
937 	do {
938 		/*
939 		 * We are holding two locks at this point - either of them
940 		 * could generate latencies in another task on another CPU.
941 		 */
942 		if (progress >= 32) {
943 			progress = 0;
944 			if (need_resched() ||
945 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
946 				break;
947 		}
948 		if (pte_none(*src_pte)) {
949 			progress++;
950 			continue;
951 		}
952 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
953 							vma, addr, rss);
954 		if (entry.val)
955 			break;
956 		progress += 8;
957 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
958 
959 	arch_leave_lazy_mmu_mode();
960 	spin_unlock(src_ptl);
961 	pte_unmap(orig_src_pte);
962 	add_mm_rss_vec(dst_mm, rss);
963 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
964 	cond_resched();
965 
966 	if (entry.val) {
967 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
968 			return -ENOMEM;
969 		progress = 0;
970 	}
971 	if (addr != end)
972 		goto again;
973 	return 0;
974 }
975 
976 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
977 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
978 		unsigned long addr, unsigned long end)
979 {
980 	pmd_t *src_pmd, *dst_pmd;
981 	unsigned long next;
982 
983 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
984 	if (!dst_pmd)
985 		return -ENOMEM;
986 	src_pmd = pmd_offset(src_pud, addr);
987 	do {
988 		next = pmd_addr_end(addr, end);
989 		if (pmd_trans_huge(*src_pmd)) {
990 			int err;
991 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
992 			err = copy_huge_pmd(dst_mm, src_mm,
993 					    dst_pmd, src_pmd, addr, vma);
994 			if (err == -ENOMEM)
995 				return -ENOMEM;
996 			if (!err)
997 				continue;
998 			/* fall through */
999 		}
1000 		if (pmd_none_or_clear_bad(src_pmd))
1001 			continue;
1002 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1003 						vma, addr, next))
1004 			return -ENOMEM;
1005 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1006 	return 0;
1007 }
1008 
1009 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1010 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1011 		unsigned long addr, unsigned long end)
1012 {
1013 	pud_t *src_pud, *dst_pud;
1014 	unsigned long next;
1015 
1016 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1017 	if (!dst_pud)
1018 		return -ENOMEM;
1019 	src_pud = pud_offset(src_pgd, addr);
1020 	do {
1021 		next = pud_addr_end(addr, end);
1022 		if (pud_none_or_clear_bad(src_pud))
1023 			continue;
1024 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1025 						vma, addr, next))
1026 			return -ENOMEM;
1027 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1028 	return 0;
1029 }
1030 
1031 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1032 		struct vm_area_struct *vma)
1033 {
1034 	pgd_t *src_pgd, *dst_pgd;
1035 	unsigned long next;
1036 	unsigned long addr = vma->vm_start;
1037 	unsigned long end = vma->vm_end;
1038 	int ret;
1039 
1040 	/*
1041 	 * Don't copy ptes where a page fault will fill them correctly.
1042 	 * Fork becomes much lighter when there are big shared or private
1043 	 * readonly mappings. The tradeoff is that copy_page_range is more
1044 	 * efficient than faulting.
1045 	 */
1046 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1047 		if (!vma->anon_vma)
1048 			return 0;
1049 	}
1050 
1051 	if (is_vm_hugetlb_page(vma))
1052 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1053 
1054 	if (unlikely(is_pfn_mapping(vma))) {
1055 		/*
1056 		 * We do not free on error cases below as remove_vma
1057 		 * gets called on error from higher level routine
1058 		 */
1059 		ret = track_pfn_vma_copy(vma);
1060 		if (ret)
1061 			return ret;
1062 	}
1063 
1064 	/*
1065 	 * We need to invalidate the secondary MMU mappings only when
1066 	 * there could be a permission downgrade on the ptes of the
1067 	 * parent mm. And a permission downgrade will only happen if
1068 	 * is_cow_mapping() returns true.
1069 	 */
1070 	if (is_cow_mapping(vma->vm_flags))
1071 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
1072 
1073 	ret = 0;
1074 	dst_pgd = pgd_offset(dst_mm, addr);
1075 	src_pgd = pgd_offset(src_mm, addr);
1076 	do {
1077 		next = pgd_addr_end(addr, end);
1078 		if (pgd_none_or_clear_bad(src_pgd))
1079 			continue;
1080 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081 					    vma, addr, next))) {
1082 			ret = -ENOMEM;
1083 			break;
1084 		}
1085 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1086 
1087 	if (is_cow_mapping(vma->vm_flags))
1088 		mmu_notifier_invalidate_range_end(src_mm,
1089 						  vma->vm_start, end);
1090 	return ret;
1091 }
1092 
1093 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1094 				struct vm_area_struct *vma, pmd_t *pmd,
1095 				unsigned long addr, unsigned long end,
1096 				struct zap_details *details)
1097 {
1098 	struct mm_struct *mm = tlb->mm;
1099 	int force_flush = 0;
1100 	int rss[NR_MM_COUNTERS];
1101 	spinlock_t *ptl;
1102 	pte_t *start_pte;
1103 	pte_t *pte;
1104 
1105 again:
1106 	init_rss_vec(rss);
1107 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1108 	pte = start_pte;
1109 	arch_enter_lazy_mmu_mode();
1110 	do {
1111 		pte_t ptent = *pte;
1112 		if (pte_none(ptent)) {
1113 			continue;
1114 		}
1115 
1116 		if (pte_present(ptent)) {
1117 			struct page *page;
1118 
1119 			page = vm_normal_page(vma, addr, ptent);
1120 			if (unlikely(details) && page) {
1121 				/*
1122 				 * unmap_shared_mapping_pages() wants to
1123 				 * invalidate cache without truncating:
1124 				 * unmap shared but keep private pages.
1125 				 */
1126 				if (details->check_mapping &&
1127 				    details->check_mapping != page->mapping)
1128 					continue;
1129 				/*
1130 				 * Each page->index must be checked when
1131 				 * invalidating or truncating nonlinear.
1132 				 */
1133 				if (details->nonlinear_vma &&
1134 				    (page->index < details->first_index ||
1135 				     page->index > details->last_index))
1136 					continue;
1137 			}
1138 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1139 							tlb->fullmm);
1140 			tlb_remove_tlb_entry(tlb, pte, addr);
1141 			if (unlikely(!page))
1142 				continue;
1143 			if (unlikely(details) && details->nonlinear_vma
1144 			    && linear_page_index(details->nonlinear_vma,
1145 						addr) != page->index)
1146 				set_pte_at(mm, addr, pte,
1147 					   pgoff_to_pte(page->index));
1148 			if (PageAnon(page))
1149 				rss[MM_ANONPAGES]--;
1150 			else {
1151 				if (pte_dirty(ptent))
1152 					set_page_dirty(page);
1153 				if (pte_young(ptent) &&
1154 				    likely(!VM_SequentialReadHint(vma)))
1155 					mark_page_accessed(page);
1156 				rss[MM_FILEPAGES]--;
1157 			}
1158 			page_remove_rmap(page);
1159 			if (unlikely(page_mapcount(page) < 0))
1160 				print_bad_pte(vma, addr, ptent, page);
1161 			force_flush = !__tlb_remove_page(tlb, page);
1162 			if (force_flush)
1163 				break;
1164 			continue;
1165 		}
1166 		/*
1167 		 * If details->check_mapping, we leave swap entries;
1168 		 * if details->nonlinear_vma, we leave file entries.
1169 		 */
1170 		if (unlikely(details))
1171 			continue;
1172 		if (pte_file(ptent)) {
1173 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1174 				print_bad_pte(vma, addr, ptent, NULL);
1175 		} else {
1176 			swp_entry_t entry = pte_to_swp_entry(ptent);
1177 
1178 			if (!non_swap_entry(entry))
1179 				rss[MM_SWAPENTS]--;
1180 			else if (is_migration_entry(entry)) {
1181 				struct page *page;
1182 
1183 				page = migration_entry_to_page(entry);
1184 
1185 				if (PageAnon(page))
1186 					rss[MM_ANONPAGES]--;
1187 				else
1188 					rss[MM_FILEPAGES]--;
1189 			}
1190 			if (unlikely(!free_swap_and_cache(entry)))
1191 				print_bad_pte(vma, addr, ptent, NULL);
1192 		}
1193 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1194 	} while (pte++, addr += PAGE_SIZE, addr != end);
1195 
1196 	add_mm_rss_vec(mm, rss);
1197 	arch_leave_lazy_mmu_mode();
1198 	pte_unmap_unlock(start_pte, ptl);
1199 
1200 	/*
1201 	 * mmu_gather ran out of room to batch pages, we break out of
1202 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1203 	 * and page-free while holding it.
1204 	 */
1205 	if (force_flush) {
1206 		force_flush = 0;
1207 		tlb_flush_mmu(tlb);
1208 		if (addr != end)
1209 			goto again;
1210 	}
1211 
1212 	return addr;
1213 }
1214 
1215 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1216 				struct vm_area_struct *vma, pud_t *pud,
1217 				unsigned long addr, unsigned long end,
1218 				struct zap_details *details)
1219 {
1220 	pmd_t *pmd;
1221 	unsigned long next;
1222 
1223 	pmd = pmd_offset(pud, addr);
1224 	do {
1225 		next = pmd_addr_end(addr, end);
1226 		if (pmd_trans_huge(*pmd)) {
1227 			if (next - addr != HPAGE_PMD_SIZE) {
1228 				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1229 				split_huge_page_pmd(vma->vm_mm, pmd);
1230 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1231 				goto next;
1232 			/* fall through */
1233 		}
1234 		/*
1235 		 * Here there can be other concurrent MADV_DONTNEED or
1236 		 * trans huge page faults running, and if the pmd is
1237 		 * none or trans huge it can change under us. This is
1238 		 * because MADV_DONTNEED holds the mmap_sem in read
1239 		 * mode.
1240 		 */
1241 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1242 			goto next;
1243 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1244 next:
1245 		cond_resched();
1246 	} while (pmd++, addr = next, addr != end);
1247 
1248 	return addr;
1249 }
1250 
1251 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1252 				struct vm_area_struct *vma, pgd_t *pgd,
1253 				unsigned long addr, unsigned long end,
1254 				struct zap_details *details)
1255 {
1256 	pud_t *pud;
1257 	unsigned long next;
1258 
1259 	pud = pud_offset(pgd, addr);
1260 	do {
1261 		next = pud_addr_end(addr, end);
1262 		if (pud_none_or_clear_bad(pud))
1263 			continue;
1264 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1265 	} while (pud++, addr = next, addr != end);
1266 
1267 	return addr;
1268 }
1269 
1270 static void unmap_page_range(struct mmu_gather *tlb,
1271 			     struct vm_area_struct *vma,
1272 			     unsigned long addr, unsigned long end,
1273 			     struct zap_details *details)
1274 {
1275 	pgd_t *pgd;
1276 	unsigned long next;
1277 
1278 	if (details && !details->check_mapping && !details->nonlinear_vma)
1279 		details = NULL;
1280 
1281 	BUG_ON(addr >= end);
1282 	mem_cgroup_uncharge_start();
1283 	tlb_start_vma(tlb, vma);
1284 	pgd = pgd_offset(vma->vm_mm, addr);
1285 	do {
1286 		next = pgd_addr_end(addr, end);
1287 		if (pgd_none_or_clear_bad(pgd))
1288 			continue;
1289 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1290 	} while (pgd++, addr = next, addr != end);
1291 	tlb_end_vma(tlb, vma);
1292 	mem_cgroup_uncharge_end();
1293 }
1294 
1295 
1296 static void unmap_single_vma(struct mmu_gather *tlb,
1297 		struct vm_area_struct *vma, unsigned long start_addr,
1298 		unsigned long end_addr,
1299 		struct zap_details *details)
1300 {
1301 	unsigned long start = max(vma->vm_start, start_addr);
1302 	unsigned long end;
1303 
1304 	if (start >= vma->vm_end)
1305 		return;
1306 	end = min(vma->vm_end, end_addr);
1307 	if (end <= vma->vm_start)
1308 		return;
1309 
1310 	if (vma->vm_file)
1311 		uprobe_munmap(vma, start, end);
1312 
1313 	if (unlikely(is_pfn_mapping(vma)))
1314 		untrack_pfn_vma(vma, 0, 0);
1315 
1316 	if (start != end) {
1317 		if (unlikely(is_vm_hugetlb_page(vma))) {
1318 			/*
1319 			 * It is undesirable to test vma->vm_file as it
1320 			 * should be non-null for valid hugetlb area.
1321 			 * However, vm_file will be NULL in the error
1322 			 * cleanup path of do_mmap_pgoff. When
1323 			 * hugetlbfs ->mmap method fails,
1324 			 * do_mmap_pgoff() nullifies vma->vm_file
1325 			 * before calling this function to clean up.
1326 			 * Since no pte has actually been setup, it is
1327 			 * safe to do nothing in this case.
1328 			 */
1329 			if (vma->vm_file)
1330 				unmap_hugepage_range(vma, start, end, NULL);
1331 		} else
1332 			unmap_page_range(tlb, vma, start, end, details);
1333 	}
1334 }
1335 
1336 /**
1337  * unmap_vmas - unmap a range of memory covered by a list of vma's
1338  * @tlb: address of the caller's struct mmu_gather
1339  * @vma: the starting vma
1340  * @start_addr: virtual address at which to start unmapping
1341  * @end_addr: virtual address at which to end unmapping
1342  *
1343  * Unmap all pages in the vma list.
1344  *
1345  * Only addresses between `start' and `end' will be unmapped.
1346  *
1347  * The VMA list must be sorted in ascending virtual address order.
1348  *
1349  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1350  * range after unmap_vmas() returns.  So the only responsibility here is to
1351  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1352  * drops the lock and schedules.
1353  */
1354 void unmap_vmas(struct mmu_gather *tlb,
1355 		struct vm_area_struct *vma, unsigned long start_addr,
1356 		unsigned long end_addr)
1357 {
1358 	struct mm_struct *mm = vma->vm_mm;
1359 
1360 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1361 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1362 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1363 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1364 }
1365 
1366 /**
1367  * zap_page_range - remove user pages in a given range
1368  * @vma: vm_area_struct holding the applicable pages
1369  * @address: starting address of pages to zap
1370  * @size: number of bytes to zap
1371  * @details: details of nonlinear truncation or shared cache invalidation
1372  *
1373  * Caller must protect the VMA list
1374  */
1375 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1376 		unsigned long size, struct zap_details *details)
1377 {
1378 	struct mm_struct *mm = vma->vm_mm;
1379 	struct mmu_gather tlb;
1380 	unsigned long end = start + size;
1381 
1382 	lru_add_drain();
1383 	tlb_gather_mmu(&tlb, mm, 0);
1384 	update_hiwater_rss(mm);
1385 	mmu_notifier_invalidate_range_start(mm, start, end);
1386 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1387 		unmap_single_vma(&tlb, vma, start, end, details);
1388 	mmu_notifier_invalidate_range_end(mm, start, end);
1389 	tlb_finish_mmu(&tlb, start, end);
1390 }
1391 
1392 /**
1393  * zap_page_range_single - remove user pages in a given range
1394  * @vma: vm_area_struct holding the applicable pages
1395  * @address: starting address of pages to zap
1396  * @size: number of bytes to zap
1397  * @details: details of nonlinear truncation or shared cache invalidation
1398  *
1399  * The range must fit into one VMA.
1400  */
1401 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1402 		unsigned long size, struct zap_details *details)
1403 {
1404 	struct mm_struct *mm = vma->vm_mm;
1405 	struct mmu_gather tlb;
1406 	unsigned long end = address + size;
1407 
1408 	lru_add_drain();
1409 	tlb_gather_mmu(&tlb, mm, 0);
1410 	update_hiwater_rss(mm);
1411 	mmu_notifier_invalidate_range_start(mm, address, end);
1412 	unmap_single_vma(&tlb, vma, address, end, details);
1413 	mmu_notifier_invalidate_range_end(mm, address, end);
1414 	tlb_finish_mmu(&tlb, address, end);
1415 }
1416 
1417 /**
1418  * zap_vma_ptes - remove ptes mapping the vma
1419  * @vma: vm_area_struct holding ptes to be zapped
1420  * @address: starting address of pages to zap
1421  * @size: number of bytes to zap
1422  *
1423  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1424  *
1425  * The entire address range must be fully contained within the vma.
1426  *
1427  * Returns 0 if successful.
1428  */
1429 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1430 		unsigned long size)
1431 {
1432 	if (address < vma->vm_start || address + size > vma->vm_end ||
1433 	    		!(vma->vm_flags & VM_PFNMAP))
1434 		return -1;
1435 	zap_page_range_single(vma, address, size, NULL);
1436 	return 0;
1437 }
1438 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1439 
1440 /**
1441  * follow_page - look up a page descriptor from a user-virtual address
1442  * @vma: vm_area_struct mapping @address
1443  * @address: virtual address to look up
1444  * @flags: flags modifying lookup behaviour
1445  *
1446  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1447  *
1448  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1449  * an error pointer if there is a mapping to something not represented
1450  * by a page descriptor (see also vm_normal_page()).
1451  */
1452 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1453 			unsigned int flags)
1454 {
1455 	pgd_t *pgd;
1456 	pud_t *pud;
1457 	pmd_t *pmd;
1458 	pte_t *ptep, pte;
1459 	spinlock_t *ptl;
1460 	struct page *page;
1461 	struct mm_struct *mm = vma->vm_mm;
1462 
1463 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1464 	if (!IS_ERR(page)) {
1465 		BUG_ON(flags & FOLL_GET);
1466 		goto out;
1467 	}
1468 
1469 	page = NULL;
1470 	pgd = pgd_offset(mm, address);
1471 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1472 		goto no_page_table;
1473 
1474 	pud = pud_offset(pgd, address);
1475 	if (pud_none(*pud))
1476 		goto no_page_table;
1477 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1478 		BUG_ON(flags & FOLL_GET);
1479 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1480 		goto out;
1481 	}
1482 	if (unlikely(pud_bad(*pud)))
1483 		goto no_page_table;
1484 
1485 	pmd = pmd_offset(pud, address);
1486 	if (pmd_none(*pmd))
1487 		goto no_page_table;
1488 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1489 		BUG_ON(flags & FOLL_GET);
1490 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1491 		goto out;
1492 	}
1493 	if (pmd_trans_huge(*pmd)) {
1494 		if (flags & FOLL_SPLIT) {
1495 			split_huge_page_pmd(mm, pmd);
1496 			goto split_fallthrough;
1497 		}
1498 		spin_lock(&mm->page_table_lock);
1499 		if (likely(pmd_trans_huge(*pmd))) {
1500 			if (unlikely(pmd_trans_splitting(*pmd))) {
1501 				spin_unlock(&mm->page_table_lock);
1502 				wait_split_huge_page(vma->anon_vma, pmd);
1503 			} else {
1504 				page = follow_trans_huge_pmd(mm, address,
1505 							     pmd, flags);
1506 				spin_unlock(&mm->page_table_lock);
1507 				goto out;
1508 			}
1509 		} else
1510 			spin_unlock(&mm->page_table_lock);
1511 		/* fall through */
1512 	}
1513 split_fallthrough:
1514 	if (unlikely(pmd_bad(*pmd)))
1515 		goto no_page_table;
1516 
1517 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1518 
1519 	pte = *ptep;
1520 	if (!pte_present(pte))
1521 		goto no_page;
1522 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1523 		goto unlock;
1524 
1525 	page = vm_normal_page(vma, address, pte);
1526 	if (unlikely(!page)) {
1527 		if ((flags & FOLL_DUMP) ||
1528 		    !is_zero_pfn(pte_pfn(pte)))
1529 			goto bad_page;
1530 		page = pte_page(pte);
1531 	}
1532 
1533 	if (flags & FOLL_GET)
1534 		get_page_foll(page);
1535 	if (flags & FOLL_TOUCH) {
1536 		if ((flags & FOLL_WRITE) &&
1537 		    !pte_dirty(pte) && !PageDirty(page))
1538 			set_page_dirty(page);
1539 		/*
1540 		 * pte_mkyoung() would be more correct here, but atomic care
1541 		 * is needed to avoid losing the dirty bit: it is easier to use
1542 		 * mark_page_accessed().
1543 		 */
1544 		mark_page_accessed(page);
1545 	}
1546 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1547 		/*
1548 		 * The preliminary mapping check is mainly to avoid the
1549 		 * pointless overhead of lock_page on the ZERO_PAGE
1550 		 * which might bounce very badly if there is contention.
1551 		 *
1552 		 * If the page is already locked, we don't need to
1553 		 * handle it now - vmscan will handle it later if and
1554 		 * when it attempts to reclaim the page.
1555 		 */
1556 		if (page->mapping && trylock_page(page)) {
1557 			lru_add_drain();  /* push cached pages to LRU */
1558 			/*
1559 			 * Because we lock page here and migration is
1560 			 * blocked by the pte's page reference, we need
1561 			 * only check for file-cache page truncation.
1562 			 */
1563 			if (page->mapping)
1564 				mlock_vma_page(page);
1565 			unlock_page(page);
1566 		}
1567 	}
1568 unlock:
1569 	pte_unmap_unlock(ptep, ptl);
1570 out:
1571 	return page;
1572 
1573 bad_page:
1574 	pte_unmap_unlock(ptep, ptl);
1575 	return ERR_PTR(-EFAULT);
1576 
1577 no_page:
1578 	pte_unmap_unlock(ptep, ptl);
1579 	if (!pte_none(pte))
1580 		return page;
1581 
1582 no_page_table:
1583 	/*
1584 	 * When core dumping an enormous anonymous area that nobody
1585 	 * has touched so far, we don't want to allocate unnecessary pages or
1586 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1587 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1588 	 * But we can only make this optimization where a hole would surely
1589 	 * be zero-filled if handle_mm_fault() actually did handle it.
1590 	 */
1591 	if ((flags & FOLL_DUMP) &&
1592 	    (!vma->vm_ops || !vma->vm_ops->fault))
1593 		return ERR_PTR(-EFAULT);
1594 	return page;
1595 }
1596 
1597 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1598 {
1599 	return stack_guard_page_start(vma, addr) ||
1600 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1601 }
1602 
1603 /**
1604  * __get_user_pages() - pin user pages in memory
1605  * @tsk:	task_struct of target task
1606  * @mm:		mm_struct of target mm
1607  * @start:	starting user address
1608  * @nr_pages:	number of pages from start to pin
1609  * @gup_flags:	flags modifying pin behaviour
1610  * @pages:	array that receives pointers to the pages pinned.
1611  *		Should be at least nr_pages long. Or NULL, if caller
1612  *		only intends to ensure the pages are faulted in.
1613  * @vmas:	array of pointers to vmas corresponding to each page.
1614  *		Or NULL if the caller does not require them.
1615  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1616  *
1617  * Returns number of pages pinned. This may be fewer than the number
1618  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1619  * were pinned, returns -errno. Each page returned must be released
1620  * with a put_page() call when it is finished with. vmas will only
1621  * remain valid while mmap_sem is held.
1622  *
1623  * Must be called with mmap_sem held for read or write.
1624  *
1625  * __get_user_pages walks a process's page tables and takes a reference to
1626  * each struct page that each user address corresponds to at a given
1627  * instant. That is, it takes the page that would be accessed if a user
1628  * thread accesses the given user virtual address at that instant.
1629  *
1630  * This does not guarantee that the page exists in the user mappings when
1631  * __get_user_pages returns, and there may even be a completely different
1632  * page there in some cases (eg. if mmapped pagecache has been invalidated
1633  * and subsequently re faulted). However it does guarantee that the page
1634  * won't be freed completely. And mostly callers simply care that the page
1635  * contains data that was valid *at some point in time*. Typically, an IO
1636  * or similar operation cannot guarantee anything stronger anyway because
1637  * locks can't be held over the syscall boundary.
1638  *
1639  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1640  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1641  * appropriate) must be called after the page is finished with, and
1642  * before put_page is called.
1643  *
1644  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1645  * or mmap_sem contention, and if waiting is needed to pin all pages,
1646  * *@nonblocking will be set to 0.
1647  *
1648  * In most cases, get_user_pages or get_user_pages_fast should be used
1649  * instead of __get_user_pages. __get_user_pages should be used only if
1650  * you need some special @gup_flags.
1651  */
1652 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1653 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1654 		     struct page **pages, struct vm_area_struct **vmas,
1655 		     int *nonblocking)
1656 {
1657 	int i;
1658 	unsigned long vm_flags;
1659 
1660 	if (nr_pages <= 0)
1661 		return 0;
1662 
1663 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1664 
1665 	/*
1666 	 * Require read or write permissions.
1667 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1668 	 */
1669 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1670 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1671 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1672 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1673 	i = 0;
1674 
1675 	do {
1676 		struct vm_area_struct *vma;
1677 
1678 		vma = find_extend_vma(mm, start);
1679 		if (!vma && in_gate_area(mm, start)) {
1680 			unsigned long pg = start & PAGE_MASK;
1681 			pgd_t *pgd;
1682 			pud_t *pud;
1683 			pmd_t *pmd;
1684 			pte_t *pte;
1685 
1686 			/* user gate pages are read-only */
1687 			if (gup_flags & FOLL_WRITE)
1688 				return i ? : -EFAULT;
1689 			if (pg > TASK_SIZE)
1690 				pgd = pgd_offset_k(pg);
1691 			else
1692 				pgd = pgd_offset_gate(mm, pg);
1693 			BUG_ON(pgd_none(*pgd));
1694 			pud = pud_offset(pgd, pg);
1695 			BUG_ON(pud_none(*pud));
1696 			pmd = pmd_offset(pud, pg);
1697 			if (pmd_none(*pmd))
1698 				return i ? : -EFAULT;
1699 			VM_BUG_ON(pmd_trans_huge(*pmd));
1700 			pte = pte_offset_map(pmd, pg);
1701 			if (pte_none(*pte)) {
1702 				pte_unmap(pte);
1703 				return i ? : -EFAULT;
1704 			}
1705 			vma = get_gate_vma(mm);
1706 			if (pages) {
1707 				struct page *page;
1708 
1709 				page = vm_normal_page(vma, start, *pte);
1710 				if (!page) {
1711 					if (!(gup_flags & FOLL_DUMP) &&
1712 					     is_zero_pfn(pte_pfn(*pte)))
1713 						page = pte_page(*pte);
1714 					else {
1715 						pte_unmap(pte);
1716 						return i ? : -EFAULT;
1717 					}
1718 				}
1719 				pages[i] = page;
1720 				get_page(page);
1721 			}
1722 			pte_unmap(pte);
1723 			goto next_page;
1724 		}
1725 
1726 		if (!vma ||
1727 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1728 		    !(vm_flags & vma->vm_flags))
1729 			return i ? : -EFAULT;
1730 
1731 		if (is_vm_hugetlb_page(vma)) {
1732 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1733 					&start, &nr_pages, i, gup_flags);
1734 			continue;
1735 		}
1736 
1737 		do {
1738 			struct page *page;
1739 			unsigned int foll_flags = gup_flags;
1740 
1741 			/*
1742 			 * If we have a pending SIGKILL, don't keep faulting
1743 			 * pages and potentially allocating memory.
1744 			 */
1745 			if (unlikely(fatal_signal_pending(current)))
1746 				return i ? i : -ERESTARTSYS;
1747 
1748 			cond_resched();
1749 			while (!(page = follow_page(vma, start, foll_flags))) {
1750 				int ret;
1751 				unsigned int fault_flags = 0;
1752 
1753 				/* For mlock, just skip the stack guard page. */
1754 				if (foll_flags & FOLL_MLOCK) {
1755 					if (stack_guard_page(vma, start))
1756 						goto next_page;
1757 				}
1758 				if (foll_flags & FOLL_WRITE)
1759 					fault_flags |= FAULT_FLAG_WRITE;
1760 				if (nonblocking)
1761 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1762 				if (foll_flags & FOLL_NOWAIT)
1763 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1764 
1765 				ret = handle_mm_fault(mm, vma, start,
1766 							fault_flags);
1767 
1768 				if (ret & VM_FAULT_ERROR) {
1769 					if (ret & VM_FAULT_OOM)
1770 						return i ? i : -ENOMEM;
1771 					if (ret & (VM_FAULT_HWPOISON |
1772 						   VM_FAULT_HWPOISON_LARGE)) {
1773 						if (i)
1774 							return i;
1775 						else if (gup_flags & FOLL_HWPOISON)
1776 							return -EHWPOISON;
1777 						else
1778 							return -EFAULT;
1779 					}
1780 					if (ret & VM_FAULT_SIGBUS)
1781 						return i ? i : -EFAULT;
1782 					BUG();
1783 				}
1784 
1785 				if (tsk) {
1786 					if (ret & VM_FAULT_MAJOR)
1787 						tsk->maj_flt++;
1788 					else
1789 						tsk->min_flt++;
1790 				}
1791 
1792 				if (ret & VM_FAULT_RETRY) {
1793 					if (nonblocking)
1794 						*nonblocking = 0;
1795 					return i;
1796 				}
1797 
1798 				/*
1799 				 * The VM_FAULT_WRITE bit tells us that
1800 				 * do_wp_page has broken COW when necessary,
1801 				 * even if maybe_mkwrite decided not to set
1802 				 * pte_write. We can thus safely do subsequent
1803 				 * page lookups as if they were reads. But only
1804 				 * do so when looping for pte_write is futile:
1805 				 * in some cases userspace may also be wanting
1806 				 * to write to the gotten user page, which a
1807 				 * read fault here might prevent (a readonly
1808 				 * page might get reCOWed by userspace write).
1809 				 */
1810 				if ((ret & VM_FAULT_WRITE) &&
1811 				    !(vma->vm_flags & VM_WRITE))
1812 					foll_flags &= ~FOLL_WRITE;
1813 
1814 				cond_resched();
1815 			}
1816 			if (IS_ERR(page))
1817 				return i ? i : PTR_ERR(page);
1818 			if (pages) {
1819 				pages[i] = page;
1820 
1821 				flush_anon_page(vma, page, start);
1822 				flush_dcache_page(page);
1823 			}
1824 next_page:
1825 			if (vmas)
1826 				vmas[i] = vma;
1827 			i++;
1828 			start += PAGE_SIZE;
1829 			nr_pages--;
1830 		} while (nr_pages && start < vma->vm_end);
1831 	} while (nr_pages);
1832 	return i;
1833 }
1834 EXPORT_SYMBOL(__get_user_pages);
1835 
1836 /*
1837  * fixup_user_fault() - manually resolve a user page fault
1838  * @tsk:	the task_struct to use for page fault accounting, or
1839  *		NULL if faults are not to be recorded.
1840  * @mm:		mm_struct of target mm
1841  * @address:	user address
1842  * @fault_flags:flags to pass down to handle_mm_fault()
1843  *
1844  * This is meant to be called in the specific scenario where for locking reasons
1845  * we try to access user memory in atomic context (within a pagefault_disable()
1846  * section), this returns -EFAULT, and we want to resolve the user fault before
1847  * trying again.
1848  *
1849  * Typically this is meant to be used by the futex code.
1850  *
1851  * The main difference with get_user_pages() is that this function will
1852  * unconditionally call handle_mm_fault() which will in turn perform all the
1853  * necessary SW fixup of the dirty and young bits in the PTE, while
1854  * handle_mm_fault() only guarantees to update these in the struct page.
1855  *
1856  * This is important for some architectures where those bits also gate the
1857  * access permission to the page because they are maintained in software.  On
1858  * such architectures, gup() will not be enough to make a subsequent access
1859  * succeed.
1860  *
1861  * This should be called with the mm_sem held for read.
1862  */
1863 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1864 		     unsigned long address, unsigned int fault_flags)
1865 {
1866 	struct vm_area_struct *vma;
1867 	int ret;
1868 
1869 	vma = find_extend_vma(mm, address);
1870 	if (!vma || address < vma->vm_start)
1871 		return -EFAULT;
1872 
1873 	ret = handle_mm_fault(mm, vma, address, fault_flags);
1874 	if (ret & VM_FAULT_ERROR) {
1875 		if (ret & VM_FAULT_OOM)
1876 			return -ENOMEM;
1877 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1878 			return -EHWPOISON;
1879 		if (ret & VM_FAULT_SIGBUS)
1880 			return -EFAULT;
1881 		BUG();
1882 	}
1883 	if (tsk) {
1884 		if (ret & VM_FAULT_MAJOR)
1885 			tsk->maj_flt++;
1886 		else
1887 			tsk->min_flt++;
1888 	}
1889 	return 0;
1890 }
1891 
1892 /*
1893  * get_user_pages() - pin user pages in memory
1894  * @tsk:	the task_struct to use for page fault accounting, or
1895  *		NULL if faults are not to be recorded.
1896  * @mm:		mm_struct of target mm
1897  * @start:	starting user address
1898  * @nr_pages:	number of pages from start to pin
1899  * @write:	whether pages will be written to by the caller
1900  * @force:	whether to force write access even if user mapping is
1901  *		readonly. This will result in the page being COWed even
1902  *		in MAP_SHARED mappings. You do not want this.
1903  * @pages:	array that receives pointers to the pages pinned.
1904  *		Should be at least nr_pages long. Or NULL, if caller
1905  *		only intends to ensure the pages are faulted in.
1906  * @vmas:	array of pointers to vmas corresponding to each page.
1907  *		Or NULL if the caller does not require them.
1908  *
1909  * Returns number of pages pinned. This may be fewer than the number
1910  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1911  * were pinned, returns -errno. Each page returned must be released
1912  * with a put_page() call when it is finished with. vmas will only
1913  * remain valid while mmap_sem is held.
1914  *
1915  * Must be called with mmap_sem held for read or write.
1916  *
1917  * get_user_pages walks a process's page tables and takes a reference to
1918  * each struct page that each user address corresponds to at a given
1919  * instant. That is, it takes the page that would be accessed if a user
1920  * thread accesses the given user virtual address at that instant.
1921  *
1922  * This does not guarantee that the page exists in the user mappings when
1923  * get_user_pages returns, and there may even be a completely different
1924  * page there in some cases (eg. if mmapped pagecache has been invalidated
1925  * and subsequently re faulted). However it does guarantee that the page
1926  * won't be freed completely. And mostly callers simply care that the page
1927  * contains data that was valid *at some point in time*. Typically, an IO
1928  * or similar operation cannot guarantee anything stronger anyway because
1929  * locks can't be held over the syscall boundary.
1930  *
1931  * If write=0, the page must not be written to. If the page is written to,
1932  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1933  * after the page is finished with, and before put_page is called.
1934  *
1935  * get_user_pages is typically used for fewer-copy IO operations, to get a
1936  * handle on the memory by some means other than accesses via the user virtual
1937  * addresses. The pages may be submitted for DMA to devices or accessed via
1938  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1939  * use the correct cache flushing APIs.
1940  *
1941  * See also get_user_pages_fast, for performance critical applications.
1942  */
1943 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1944 		unsigned long start, int nr_pages, int write, int force,
1945 		struct page **pages, struct vm_area_struct **vmas)
1946 {
1947 	int flags = FOLL_TOUCH;
1948 
1949 	if (pages)
1950 		flags |= FOLL_GET;
1951 	if (write)
1952 		flags |= FOLL_WRITE;
1953 	if (force)
1954 		flags |= FOLL_FORCE;
1955 
1956 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1957 				NULL);
1958 }
1959 EXPORT_SYMBOL(get_user_pages);
1960 
1961 /**
1962  * get_dump_page() - pin user page in memory while writing it to core dump
1963  * @addr: user address
1964  *
1965  * Returns struct page pointer of user page pinned for dump,
1966  * to be freed afterwards by page_cache_release() or put_page().
1967  *
1968  * Returns NULL on any kind of failure - a hole must then be inserted into
1969  * the corefile, to preserve alignment with its headers; and also returns
1970  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1971  * allowing a hole to be left in the corefile to save diskspace.
1972  *
1973  * Called without mmap_sem, but after all other threads have been killed.
1974  */
1975 #ifdef CONFIG_ELF_CORE
1976 struct page *get_dump_page(unsigned long addr)
1977 {
1978 	struct vm_area_struct *vma;
1979 	struct page *page;
1980 
1981 	if (__get_user_pages(current, current->mm, addr, 1,
1982 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1983 			     NULL) < 1)
1984 		return NULL;
1985 	flush_cache_page(vma, addr, page_to_pfn(page));
1986 	return page;
1987 }
1988 #endif /* CONFIG_ELF_CORE */
1989 
1990 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1991 			spinlock_t **ptl)
1992 {
1993 	pgd_t * pgd = pgd_offset(mm, addr);
1994 	pud_t * pud = pud_alloc(mm, pgd, addr);
1995 	if (pud) {
1996 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1997 		if (pmd) {
1998 			VM_BUG_ON(pmd_trans_huge(*pmd));
1999 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2000 		}
2001 	}
2002 	return NULL;
2003 }
2004 
2005 /*
2006  * This is the old fallback for page remapping.
2007  *
2008  * For historical reasons, it only allows reserved pages. Only
2009  * old drivers should use this, and they needed to mark their
2010  * pages reserved for the old functions anyway.
2011  */
2012 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2013 			struct page *page, pgprot_t prot)
2014 {
2015 	struct mm_struct *mm = vma->vm_mm;
2016 	int retval;
2017 	pte_t *pte;
2018 	spinlock_t *ptl;
2019 
2020 	retval = -EINVAL;
2021 	if (PageAnon(page))
2022 		goto out;
2023 	retval = -ENOMEM;
2024 	flush_dcache_page(page);
2025 	pte = get_locked_pte(mm, addr, &ptl);
2026 	if (!pte)
2027 		goto out;
2028 	retval = -EBUSY;
2029 	if (!pte_none(*pte))
2030 		goto out_unlock;
2031 
2032 	/* Ok, finally just insert the thing.. */
2033 	get_page(page);
2034 	inc_mm_counter_fast(mm, MM_FILEPAGES);
2035 	page_add_file_rmap(page);
2036 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2037 
2038 	retval = 0;
2039 	pte_unmap_unlock(pte, ptl);
2040 	return retval;
2041 out_unlock:
2042 	pte_unmap_unlock(pte, ptl);
2043 out:
2044 	return retval;
2045 }
2046 
2047 /**
2048  * vm_insert_page - insert single page into user vma
2049  * @vma: user vma to map to
2050  * @addr: target user address of this page
2051  * @page: source kernel page
2052  *
2053  * This allows drivers to insert individual pages they've allocated
2054  * into a user vma.
2055  *
2056  * The page has to be a nice clean _individual_ kernel allocation.
2057  * If you allocate a compound page, you need to have marked it as
2058  * such (__GFP_COMP), or manually just split the page up yourself
2059  * (see split_page()).
2060  *
2061  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2062  * took an arbitrary page protection parameter. This doesn't allow
2063  * that. Your vma protection will have to be set up correctly, which
2064  * means that if you want a shared writable mapping, you'd better
2065  * ask for a shared writable mapping!
2066  *
2067  * The page does not need to be reserved.
2068  */
2069 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2070 			struct page *page)
2071 {
2072 	if (addr < vma->vm_start || addr >= vma->vm_end)
2073 		return -EFAULT;
2074 	if (!page_count(page))
2075 		return -EINVAL;
2076 	vma->vm_flags |= VM_INSERTPAGE;
2077 	return insert_page(vma, addr, page, vma->vm_page_prot);
2078 }
2079 EXPORT_SYMBOL(vm_insert_page);
2080 
2081 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2082 			unsigned long pfn, pgprot_t prot)
2083 {
2084 	struct mm_struct *mm = vma->vm_mm;
2085 	int retval;
2086 	pte_t *pte, entry;
2087 	spinlock_t *ptl;
2088 
2089 	retval = -ENOMEM;
2090 	pte = get_locked_pte(mm, addr, &ptl);
2091 	if (!pte)
2092 		goto out;
2093 	retval = -EBUSY;
2094 	if (!pte_none(*pte))
2095 		goto out_unlock;
2096 
2097 	/* Ok, finally just insert the thing.. */
2098 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2099 	set_pte_at(mm, addr, pte, entry);
2100 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2101 
2102 	retval = 0;
2103 out_unlock:
2104 	pte_unmap_unlock(pte, ptl);
2105 out:
2106 	return retval;
2107 }
2108 
2109 /**
2110  * vm_insert_pfn - insert single pfn into user vma
2111  * @vma: user vma to map to
2112  * @addr: target user address of this page
2113  * @pfn: source kernel pfn
2114  *
2115  * Similar to vm_inert_page, this allows drivers to insert individual pages
2116  * they've allocated into a user vma. Same comments apply.
2117  *
2118  * This function should only be called from a vm_ops->fault handler, and
2119  * in that case the handler should return NULL.
2120  *
2121  * vma cannot be a COW mapping.
2122  *
2123  * As this is called only for pages that do not currently exist, we
2124  * do not need to flush old virtual caches or the TLB.
2125  */
2126 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2127 			unsigned long pfn)
2128 {
2129 	int ret;
2130 	pgprot_t pgprot = vma->vm_page_prot;
2131 	/*
2132 	 * Technically, architectures with pte_special can avoid all these
2133 	 * restrictions (same for remap_pfn_range).  However we would like
2134 	 * consistency in testing and feature parity among all, so we should
2135 	 * try to keep these invariants in place for everybody.
2136 	 */
2137 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2138 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2139 						(VM_PFNMAP|VM_MIXEDMAP));
2140 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2141 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2142 
2143 	if (addr < vma->vm_start || addr >= vma->vm_end)
2144 		return -EFAULT;
2145 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2146 		return -EINVAL;
2147 
2148 	ret = insert_pfn(vma, addr, pfn, pgprot);
2149 
2150 	if (ret)
2151 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2152 
2153 	return ret;
2154 }
2155 EXPORT_SYMBOL(vm_insert_pfn);
2156 
2157 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2158 			unsigned long pfn)
2159 {
2160 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2161 
2162 	if (addr < vma->vm_start || addr >= vma->vm_end)
2163 		return -EFAULT;
2164 
2165 	/*
2166 	 * If we don't have pte special, then we have to use the pfn_valid()
2167 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2168 	 * refcount the page if pfn_valid is true (hence insert_page rather
2169 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2170 	 * without pte special, it would there be refcounted as a normal page.
2171 	 */
2172 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2173 		struct page *page;
2174 
2175 		page = pfn_to_page(pfn);
2176 		return insert_page(vma, addr, page, vma->vm_page_prot);
2177 	}
2178 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2179 }
2180 EXPORT_SYMBOL(vm_insert_mixed);
2181 
2182 /*
2183  * maps a range of physical memory into the requested pages. the old
2184  * mappings are removed. any references to nonexistent pages results
2185  * in null mappings (currently treated as "copy-on-access")
2186  */
2187 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2188 			unsigned long addr, unsigned long end,
2189 			unsigned long pfn, pgprot_t prot)
2190 {
2191 	pte_t *pte;
2192 	spinlock_t *ptl;
2193 
2194 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2195 	if (!pte)
2196 		return -ENOMEM;
2197 	arch_enter_lazy_mmu_mode();
2198 	do {
2199 		BUG_ON(!pte_none(*pte));
2200 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2201 		pfn++;
2202 	} while (pte++, addr += PAGE_SIZE, addr != end);
2203 	arch_leave_lazy_mmu_mode();
2204 	pte_unmap_unlock(pte - 1, ptl);
2205 	return 0;
2206 }
2207 
2208 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2209 			unsigned long addr, unsigned long end,
2210 			unsigned long pfn, pgprot_t prot)
2211 {
2212 	pmd_t *pmd;
2213 	unsigned long next;
2214 
2215 	pfn -= addr >> PAGE_SHIFT;
2216 	pmd = pmd_alloc(mm, pud, addr);
2217 	if (!pmd)
2218 		return -ENOMEM;
2219 	VM_BUG_ON(pmd_trans_huge(*pmd));
2220 	do {
2221 		next = pmd_addr_end(addr, end);
2222 		if (remap_pte_range(mm, pmd, addr, next,
2223 				pfn + (addr >> PAGE_SHIFT), prot))
2224 			return -ENOMEM;
2225 	} while (pmd++, addr = next, addr != end);
2226 	return 0;
2227 }
2228 
2229 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2230 			unsigned long addr, unsigned long end,
2231 			unsigned long pfn, pgprot_t prot)
2232 {
2233 	pud_t *pud;
2234 	unsigned long next;
2235 
2236 	pfn -= addr >> PAGE_SHIFT;
2237 	pud = pud_alloc(mm, pgd, addr);
2238 	if (!pud)
2239 		return -ENOMEM;
2240 	do {
2241 		next = pud_addr_end(addr, end);
2242 		if (remap_pmd_range(mm, pud, addr, next,
2243 				pfn + (addr >> PAGE_SHIFT), prot))
2244 			return -ENOMEM;
2245 	} while (pud++, addr = next, addr != end);
2246 	return 0;
2247 }
2248 
2249 /**
2250  * remap_pfn_range - remap kernel memory to userspace
2251  * @vma: user vma to map to
2252  * @addr: target user address to start at
2253  * @pfn: physical address of kernel memory
2254  * @size: size of map area
2255  * @prot: page protection flags for this mapping
2256  *
2257  *  Note: this is only safe if the mm semaphore is held when called.
2258  */
2259 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2260 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2261 {
2262 	pgd_t *pgd;
2263 	unsigned long next;
2264 	unsigned long end = addr + PAGE_ALIGN(size);
2265 	struct mm_struct *mm = vma->vm_mm;
2266 	int err;
2267 
2268 	/*
2269 	 * Physically remapped pages are special. Tell the
2270 	 * rest of the world about it:
2271 	 *   VM_IO tells people not to look at these pages
2272 	 *	(accesses can have side effects).
2273 	 *   VM_RESERVED is specified all over the place, because
2274 	 *	in 2.4 it kept swapout's vma scan off this vma; but
2275 	 *	in 2.6 the LRU scan won't even find its pages, so this
2276 	 *	flag means no more than count its pages in reserved_vm,
2277 	 * 	and omit it from core dump, even when VM_IO turned off.
2278 	 *   VM_PFNMAP tells the core MM that the base pages are just
2279 	 *	raw PFN mappings, and do not have a "struct page" associated
2280 	 *	with them.
2281 	 *
2282 	 * There's a horrible special case to handle copy-on-write
2283 	 * behaviour that some programs depend on. We mark the "original"
2284 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2285 	 */
2286 	if (addr == vma->vm_start && end == vma->vm_end) {
2287 		vma->vm_pgoff = pfn;
2288 		vma->vm_flags |= VM_PFN_AT_MMAP;
2289 	} else if (is_cow_mapping(vma->vm_flags))
2290 		return -EINVAL;
2291 
2292 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2293 
2294 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2295 	if (err) {
2296 		/*
2297 		 * To indicate that track_pfn related cleanup is not
2298 		 * needed from higher level routine calling unmap_vmas
2299 		 */
2300 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2301 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
2302 		return -EINVAL;
2303 	}
2304 
2305 	BUG_ON(addr >= end);
2306 	pfn -= addr >> PAGE_SHIFT;
2307 	pgd = pgd_offset(mm, addr);
2308 	flush_cache_range(vma, addr, end);
2309 	do {
2310 		next = pgd_addr_end(addr, end);
2311 		err = remap_pud_range(mm, pgd, addr, next,
2312 				pfn + (addr >> PAGE_SHIFT), prot);
2313 		if (err)
2314 			break;
2315 	} while (pgd++, addr = next, addr != end);
2316 
2317 	if (err)
2318 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2319 
2320 	return err;
2321 }
2322 EXPORT_SYMBOL(remap_pfn_range);
2323 
2324 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2325 				     unsigned long addr, unsigned long end,
2326 				     pte_fn_t fn, void *data)
2327 {
2328 	pte_t *pte;
2329 	int err;
2330 	pgtable_t token;
2331 	spinlock_t *uninitialized_var(ptl);
2332 
2333 	pte = (mm == &init_mm) ?
2334 		pte_alloc_kernel(pmd, addr) :
2335 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2336 	if (!pte)
2337 		return -ENOMEM;
2338 
2339 	BUG_ON(pmd_huge(*pmd));
2340 
2341 	arch_enter_lazy_mmu_mode();
2342 
2343 	token = pmd_pgtable(*pmd);
2344 
2345 	do {
2346 		err = fn(pte++, token, addr, data);
2347 		if (err)
2348 			break;
2349 	} while (addr += PAGE_SIZE, addr != end);
2350 
2351 	arch_leave_lazy_mmu_mode();
2352 
2353 	if (mm != &init_mm)
2354 		pte_unmap_unlock(pte-1, ptl);
2355 	return err;
2356 }
2357 
2358 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2359 				     unsigned long addr, unsigned long end,
2360 				     pte_fn_t fn, void *data)
2361 {
2362 	pmd_t *pmd;
2363 	unsigned long next;
2364 	int err;
2365 
2366 	BUG_ON(pud_huge(*pud));
2367 
2368 	pmd = pmd_alloc(mm, pud, addr);
2369 	if (!pmd)
2370 		return -ENOMEM;
2371 	do {
2372 		next = pmd_addr_end(addr, end);
2373 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2374 		if (err)
2375 			break;
2376 	} while (pmd++, addr = next, addr != end);
2377 	return err;
2378 }
2379 
2380 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2381 				     unsigned long addr, unsigned long end,
2382 				     pte_fn_t fn, void *data)
2383 {
2384 	pud_t *pud;
2385 	unsigned long next;
2386 	int err;
2387 
2388 	pud = pud_alloc(mm, pgd, addr);
2389 	if (!pud)
2390 		return -ENOMEM;
2391 	do {
2392 		next = pud_addr_end(addr, end);
2393 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2394 		if (err)
2395 			break;
2396 	} while (pud++, addr = next, addr != end);
2397 	return err;
2398 }
2399 
2400 /*
2401  * Scan a region of virtual memory, filling in page tables as necessary
2402  * and calling a provided function on each leaf page table.
2403  */
2404 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2405 			unsigned long size, pte_fn_t fn, void *data)
2406 {
2407 	pgd_t *pgd;
2408 	unsigned long next;
2409 	unsigned long end = addr + size;
2410 	int err;
2411 
2412 	BUG_ON(addr >= end);
2413 	pgd = pgd_offset(mm, addr);
2414 	do {
2415 		next = pgd_addr_end(addr, end);
2416 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2417 		if (err)
2418 			break;
2419 	} while (pgd++, addr = next, addr != end);
2420 
2421 	return err;
2422 }
2423 EXPORT_SYMBOL_GPL(apply_to_page_range);
2424 
2425 /*
2426  * handle_pte_fault chooses page fault handler according to an entry
2427  * which was read non-atomically.  Before making any commitment, on
2428  * those architectures or configurations (e.g. i386 with PAE) which
2429  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2430  * must check under lock before unmapping the pte and proceeding
2431  * (but do_wp_page is only called after already making such a check;
2432  * and do_anonymous_page can safely check later on).
2433  */
2434 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2435 				pte_t *page_table, pte_t orig_pte)
2436 {
2437 	int same = 1;
2438 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2439 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2440 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2441 		spin_lock(ptl);
2442 		same = pte_same(*page_table, orig_pte);
2443 		spin_unlock(ptl);
2444 	}
2445 #endif
2446 	pte_unmap(page_table);
2447 	return same;
2448 }
2449 
2450 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2451 {
2452 	/*
2453 	 * If the source page was a PFN mapping, we don't have
2454 	 * a "struct page" for it. We do a best-effort copy by
2455 	 * just copying from the original user address. If that
2456 	 * fails, we just zero-fill it. Live with it.
2457 	 */
2458 	if (unlikely(!src)) {
2459 		void *kaddr = kmap_atomic(dst);
2460 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2461 
2462 		/*
2463 		 * This really shouldn't fail, because the page is there
2464 		 * in the page tables. But it might just be unreadable,
2465 		 * in which case we just give up and fill the result with
2466 		 * zeroes.
2467 		 */
2468 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2469 			clear_page(kaddr);
2470 		kunmap_atomic(kaddr);
2471 		flush_dcache_page(dst);
2472 	} else
2473 		copy_user_highpage(dst, src, va, vma);
2474 }
2475 
2476 /*
2477  * This routine handles present pages, when users try to write
2478  * to a shared page. It is done by copying the page to a new address
2479  * and decrementing the shared-page counter for the old page.
2480  *
2481  * Note that this routine assumes that the protection checks have been
2482  * done by the caller (the low-level page fault routine in most cases).
2483  * Thus we can safely just mark it writable once we've done any necessary
2484  * COW.
2485  *
2486  * We also mark the page dirty at this point even though the page will
2487  * change only once the write actually happens. This avoids a few races,
2488  * and potentially makes it more efficient.
2489  *
2490  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2491  * but allow concurrent faults), with pte both mapped and locked.
2492  * We return with mmap_sem still held, but pte unmapped and unlocked.
2493  */
2494 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2495 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2496 		spinlock_t *ptl, pte_t orig_pte)
2497 	__releases(ptl)
2498 {
2499 	struct page *old_page, *new_page;
2500 	pte_t entry;
2501 	int ret = 0;
2502 	int page_mkwrite = 0;
2503 	struct page *dirty_page = NULL;
2504 
2505 	old_page = vm_normal_page(vma, address, orig_pte);
2506 	if (!old_page) {
2507 		/*
2508 		 * VM_MIXEDMAP !pfn_valid() case
2509 		 *
2510 		 * We should not cow pages in a shared writeable mapping.
2511 		 * Just mark the pages writable as we can't do any dirty
2512 		 * accounting on raw pfn maps.
2513 		 */
2514 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2515 				     (VM_WRITE|VM_SHARED))
2516 			goto reuse;
2517 		goto gotten;
2518 	}
2519 
2520 	/*
2521 	 * Take out anonymous pages first, anonymous shared vmas are
2522 	 * not dirty accountable.
2523 	 */
2524 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2525 		if (!trylock_page(old_page)) {
2526 			page_cache_get(old_page);
2527 			pte_unmap_unlock(page_table, ptl);
2528 			lock_page(old_page);
2529 			page_table = pte_offset_map_lock(mm, pmd, address,
2530 							 &ptl);
2531 			if (!pte_same(*page_table, orig_pte)) {
2532 				unlock_page(old_page);
2533 				goto unlock;
2534 			}
2535 			page_cache_release(old_page);
2536 		}
2537 		if (reuse_swap_page(old_page)) {
2538 			/*
2539 			 * The page is all ours.  Move it to our anon_vma so
2540 			 * the rmap code will not search our parent or siblings.
2541 			 * Protected against the rmap code by the page lock.
2542 			 */
2543 			page_move_anon_rmap(old_page, vma, address);
2544 			unlock_page(old_page);
2545 			goto reuse;
2546 		}
2547 		unlock_page(old_page);
2548 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2549 					(VM_WRITE|VM_SHARED))) {
2550 		/*
2551 		 * Only catch write-faults on shared writable pages,
2552 		 * read-only shared pages can get COWed by
2553 		 * get_user_pages(.write=1, .force=1).
2554 		 */
2555 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2556 			struct vm_fault vmf;
2557 			int tmp;
2558 
2559 			vmf.virtual_address = (void __user *)(address &
2560 								PAGE_MASK);
2561 			vmf.pgoff = old_page->index;
2562 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2563 			vmf.page = old_page;
2564 
2565 			/*
2566 			 * Notify the address space that the page is about to
2567 			 * become writable so that it can prohibit this or wait
2568 			 * for the page to get into an appropriate state.
2569 			 *
2570 			 * We do this without the lock held, so that it can
2571 			 * sleep if it needs to.
2572 			 */
2573 			page_cache_get(old_page);
2574 			pte_unmap_unlock(page_table, ptl);
2575 
2576 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2577 			if (unlikely(tmp &
2578 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2579 				ret = tmp;
2580 				goto unwritable_page;
2581 			}
2582 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2583 				lock_page(old_page);
2584 				if (!old_page->mapping) {
2585 					ret = 0; /* retry the fault */
2586 					unlock_page(old_page);
2587 					goto unwritable_page;
2588 				}
2589 			} else
2590 				VM_BUG_ON(!PageLocked(old_page));
2591 
2592 			/*
2593 			 * Since we dropped the lock we need to revalidate
2594 			 * the PTE as someone else may have changed it.  If
2595 			 * they did, we just return, as we can count on the
2596 			 * MMU to tell us if they didn't also make it writable.
2597 			 */
2598 			page_table = pte_offset_map_lock(mm, pmd, address,
2599 							 &ptl);
2600 			if (!pte_same(*page_table, orig_pte)) {
2601 				unlock_page(old_page);
2602 				goto unlock;
2603 			}
2604 
2605 			page_mkwrite = 1;
2606 		}
2607 		dirty_page = old_page;
2608 		get_page(dirty_page);
2609 
2610 reuse:
2611 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2612 		entry = pte_mkyoung(orig_pte);
2613 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2614 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2615 			update_mmu_cache(vma, address, page_table);
2616 		pte_unmap_unlock(page_table, ptl);
2617 		ret |= VM_FAULT_WRITE;
2618 
2619 		if (!dirty_page)
2620 			return ret;
2621 
2622 		/*
2623 		 * Yes, Virginia, this is actually required to prevent a race
2624 		 * with clear_page_dirty_for_io() from clearing the page dirty
2625 		 * bit after it clear all dirty ptes, but before a racing
2626 		 * do_wp_page installs a dirty pte.
2627 		 *
2628 		 * __do_fault is protected similarly.
2629 		 */
2630 		if (!page_mkwrite) {
2631 			wait_on_page_locked(dirty_page);
2632 			set_page_dirty_balance(dirty_page, page_mkwrite);
2633 		}
2634 		put_page(dirty_page);
2635 		if (page_mkwrite) {
2636 			struct address_space *mapping = dirty_page->mapping;
2637 
2638 			set_page_dirty(dirty_page);
2639 			unlock_page(dirty_page);
2640 			page_cache_release(dirty_page);
2641 			if (mapping)	{
2642 				/*
2643 				 * Some device drivers do not set page.mapping
2644 				 * but still dirty their pages
2645 				 */
2646 				balance_dirty_pages_ratelimited(mapping);
2647 			}
2648 		}
2649 
2650 		/* file_update_time outside page_lock */
2651 		if (vma->vm_file)
2652 			file_update_time(vma->vm_file);
2653 
2654 		return ret;
2655 	}
2656 
2657 	/*
2658 	 * Ok, we need to copy. Oh, well..
2659 	 */
2660 	page_cache_get(old_page);
2661 gotten:
2662 	pte_unmap_unlock(page_table, ptl);
2663 
2664 	if (unlikely(anon_vma_prepare(vma)))
2665 		goto oom;
2666 
2667 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2668 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2669 		if (!new_page)
2670 			goto oom;
2671 	} else {
2672 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2673 		if (!new_page)
2674 			goto oom;
2675 		cow_user_page(new_page, old_page, address, vma);
2676 	}
2677 	__SetPageUptodate(new_page);
2678 
2679 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2680 		goto oom_free_new;
2681 
2682 	/*
2683 	 * Re-check the pte - we dropped the lock
2684 	 */
2685 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2686 	if (likely(pte_same(*page_table, orig_pte))) {
2687 		if (old_page) {
2688 			if (!PageAnon(old_page)) {
2689 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2690 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2691 			}
2692 		} else
2693 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2694 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2695 		entry = mk_pte(new_page, vma->vm_page_prot);
2696 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2697 		/*
2698 		 * Clear the pte entry and flush it first, before updating the
2699 		 * pte with the new entry. This will avoid a race condition
2700 		 * seen in the presence of one thread doing SMC and another
2701 		 * thread doing COW.
2702 		 */
2703 		ptep_clear_flush(vma, address, page_table);
2704 		page_add_new_anon_rmap(new_page, vma, address);
2705 		/*
2706 		 * We call the notify macro here because, when using secondary
2707 		 * mmu page tables (such as kvm shadow page tables), we want the
2708 		 * new page to be mapped directly into the secondary page table.
2709 		 */
2710 		set_pte_at_notify(mm, address, page_table, entry);
2711 		update_mmu_cache(vma, address, page_table);
2712 		if (old_page) {
2713 			/*
2714 			 * Only after switching the pte to the new page may
2715 			 * we remove the mapcount here. Otherwise another
2716 			 * process may come and find the rmap count decremented
2717 			 * before the pte is switched to the new page, and
2718 			 * "reuse" the old page writing into it while our pte
2719 			 * here still points into it and can be read by other
2720 			 * threads.
2721 			 *
2722 			 * The critical issue is to order this
2723 			 * page_remove_rmap with the ptp_clear_flush above.
2724 			 * Those stores are ordered by (if nothing else,)
2725 			 * the barrier present in the atomic_add_negative
2726 			 * in page_remove_rmap.
2727 			 *
2728 			 * Then the TLB flush in ptep_clear_flush ensures that
2729 			 * no process can access the old page before the
2730 			 * decremented mapcount is visible. And the old page
2731 			 * cannot be reused until after the decremented
2732 			 * mapcount is visible. So transitively, TLBs to
2733 			 * old page will be flushed before it can be reused.
2734 			 */
2735 			page_remove_rmap(old_page);
2736 		}
2737 
2738 		/* Free the old page.. */
2739 		new_page = old_page;
2740 		ret |= VM_FAULT_WRITE;
2741 	} else
2742 		mem_cgroup_uncharge_page(new_page);
2743 
2744 	if (new_page)
2745 		page_cache_release(new_page);
2746 unlock:
2747 	pte_unmap_unlock(page_table, ptl);
2748 	if (old_page) {
2749 		/*
2750 		 * Don't let another task, with possibly unlocked vma,
2751 		 * keep the mlocked page.
2752 		 */
2753 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2754 			lock_page(old_page);	/* LRU manipulation */
2755 			munlock_vma_page(old_page);
2756 			unlock_page(old_page);
2757 		}
2758 		page_cache_release(old_page);
2759 	}
2760 	return ret;
2761 oom_free_new:
2762 	page_cache_release(new_page);
2763 oom:
2764 	if (old_page) {
2765 		if (page_mkwrite) {
2766 			unlock_page(old_page);
2767 			page_cache_release(old_page);
2768 		}
2769 		page_cache_release(old_page);
2770 	}
2771 	return VM_FAULT_OOM;
2772 
2773 unwritable_page:
2774 	page_cache_release(old_page);
2775 	return ret;
2776 }
2777 
2778 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2779 		unsigned long start_addr, unsigned long end_addr,
2780 		struct zap_details *details)
2781 {
2782 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2783 }
2784 
2785 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2786 					    struct zap_details *details)
2787 {
2788 	struct vm_area_struct *vma;
2789 	struct prio_tree_iter iter;
2790 	pgoff_t vba, vea, zba, zea;
2791 
2792 	vma_prio_tree_foreach(vma, &iter, root,
2793 			details->first_index, details->last_index) {
2794 
2795 		vba = vma->vm_pgoff;
2796 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2797 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2798 		zba = details->first_index;
2799 		if (zba < vba)
2800 			zba = vba;
2801 		zea = details->last_index;
2802 		if (zea > vea)
2803 			zea = vea;
2804 
2805 		unmap_mapping_range_vma(vma,
2806 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2807 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2808 				details);
2809 	}
2810 }
2811 
2812 static inline void unmap_mapping_range_list(struct list_head *head,
2813 					    struct zap_details *details)
2814 {
2815 	struct vm_area_struct *vma;
2816 
2817 	/*
2818 	 * In nonlinear VMAs there is no correspondence between virtual address
2819 	 * offset and file offset.  So we must perform an exhaustive search
2820 	 * across *all* the pages in each nonlinear VMA, not just the pages
2821 	 * whose virtual address lies outside the file truncation point.
2822 	 */
2823 	list_for_each_entry(vma, head, shared.vm_set.list) {
2824 		details->nonlinear_vma = vma;
2825 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2826 	}
2827 }
2828 
2829 /**
2830  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2831  * @mapping: the address space containing mmaps to be unmapped.
2832  * @holebegin: byte in first page to unmap, relative to the start of
2833  * the underlying file.  This will be rounded down to a PAGE_SIZE
2834  * boundary.  Note that this is different from truncate_pagecache(), which
2835  * must keep the partial page.  In contrast, we must get rid of
2836  * partial pages.
2837  * @holelen: size of prospective hole in bytes.  This will be rounded
2838  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2839  * end of the file.
2840  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2841  * but 0 when invalidating pagecache, don't throw away private data.
2842  */
2843 void unmap_mapping_range(struct address_space *mapping,
2844 		loff_t const holebegin, loff_t const holelen, int even_cows)
2845 {
2846 	struct zap_details details;
2847 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2848 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2849 
2850 	/* Check for overflow. */
2851 	if (sizeof(holelen) > sizeof(hlen)) {
2852 		long long holeend =
2853 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2854 		if (holeend & ~(long long)ULONG_MAX)
2855 			hlen = ULONG_MAX - hba + 1;
2856 	}
2857 
2858 	details.check_mapping = even_cows? NULL: mapping;
2859 	details.nonlinear_vma = NULL;
2860 	details.first_index = hba;
2861 	details.last_index = hba + hlen - 1;
2862 	if (details.last_index < details.first_index)
2863 		details.last_index = ULONG_MAX;
2864 
2865 
2866 	mutex_lock(&mapping->i_mmap_mutex);
2867 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2868 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2869 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2870 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2871 	mutex_unlock(&mapping->i_mmap_mutex);
2872 }
2873 EXPORT_SYMBOL(unmap_mapping_range);
2874 
2875 /*
2876  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2877  * but allow concurrent faults), and pte mapped but not yet locked.
2878  * We return with mmap_sem still held, but pte unmapped and unlocked.
2879  */
2880 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2881 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2882 		unsigned int flags, pte_t orig_pte)
2883 {
2884 	spinlock_t *ptl;
2885 	struct page *page, *swapcache = NULL;
2886 	swp_entry_t entry;
2887 	pte_t pte;
2888 	int locked;
2889 	struct mem_cgroup *ptr;
2890 	int exclusive = 0;
2891 	int ret = 0;
2892 
2893 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2894 		goto out;
2895 
2896 	entry = pte_to_swp_entry(orig_pte);
2897 	if (unlikely(non_swap_entry(entry))) {
2898 		if (is_migration_entry(entry)) {
2899 			migration_entry_wait(mm, pmd, address);
2900 		} else if (is_hwpoison_entry(entry)) {
2901 			ret = VM_FAULT_HWPOISON;
2902 		} else {
2903 			print_bad_pte(vma, address, orig_pte, NULL);
2904 			ret = VM_FAULT_SIGBUS;
2905 		}
2906 		goto out;
2907 	}
2908 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2909 	page = lookup_swap_cache(entry);
2910 	if (!page) {
2911 		page = swapin_readahead(entry,
2912 					GFP_HIGHUSER_MOVABLE, vma, address);
2913 		if (!page) {
2914 			/*
2915 			 * Back out if somebody else faulted in this pte
2916 			 * while we released the pte lock.
2917 			 */
2918 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2919 			if (likely(pte_same(*page_table, orig_pte)))
2920 				ret = VM_FAULT_OOM;
2921 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2922 			goto unlock;
2923 		}
2924 
2925 		/* Had to read the page from swap area: Major fault */
2926 		ret = VM_FAULT_MAJOR;
2927 		count_vm_event(PGMAJFAULT);
2928 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2929 	} else if (PageHWPoison(page)) {
2930 		/*
2931 		 * hwpoisoned dirty swapcache pages are kept for killing
2932 		 * owner processes (which may be unknown at hwpoison time)
2933 		 */
2934 		ret = VM_FAULT_HWPOISON;
2935 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2936 		goto out_release;
2937 	}
2938 
2939 	locked = lock_page_or_retry(page, mm, flags);
2940 
2941 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2942 	if (!locked) {
2943 		ret |= VM_FAULT_RETRY;
2944 		goto out_release;
2945 	}
2946 
2947 	/*
2948 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2949 	 * release the swapcache from under us.  The page pin, and pte_same
2950 	 * test below, are not enough to exclude that.  Even if it is still
2951 	 * swapcache, we need to check that the page's swap has not changed.
2952 	 */
2953 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2954 		goto out_page;
2955 
2956 	if (ksm_might_need_to_copy(page, vma, address)) {
2957 		swapcache = page;
2958 		page = ksm_does_need_to_copy(page, vma, address);
2959 
2960 		if (unlikely(!page)) {
2961 			ret = VM_FAULT_OOM;
2962 			page = swapcache;
2963 			swapcache = NULL;
2964 			goto out_page;
2965 		}
2966 	}
2967 
2968 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2969 		ret = VM_FAULT_OOM;
2970 		goto out_page;
2971 	}
2972 
2973 	/*
2974 	 * Back out if somebody else already faulted in this pte.
2975 	 */
2976 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2977 	if (unlikely(!pte_same(*page_table, orig_pte)))
2978 		goto out_nomap;
2979 
2980 	if (unlikely(!PageUptodate(page))) {
2981 		ret = VM_FAULT_SIGBUS;
2982 		goto out_nomap;
2983 	}
2984 
2985 	/*
2986 	 * The page isn't present yet, go ahead with the fault.
2987 	 *
2988 	 * Be careful about the sequence of operations here.
2989 	 * To get its accounting right, reuse_swap_page() must be called
2990 	 * while the page is counted on swap but not yet in mapcount i.e.
2991 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2992 	 * must be called after the swap_free(), or it will never succeed.
2993 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2994 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2995 	 * in page->private. In this case, a record in swap_cgroup  is silently
2996 	 * discarded at swap_free().
2997 	 */
2998 
2999 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3000 	dec_mm_counter_fast(mm, MM_SWAPENTS);
3001 	pte = mk_pte(page, vma->vm_page_prot);
3002 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3003 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3004 		flags &= ~FAULT_FLAG_WRITE;
3005 		ret |= VM_FAULT_WRITE;
3006 		exclusive = 1;
3007 	}
3008 	flush_icache_page(vma, page);
3009 	set_pte_at(mm, address, page_table, pte);
3010 	do_page_add_anon_rmap(page, vma, address, exclusive);
3011 	/* It's better to call commit-charge after rmap is established */
3012 	mem_cgroup_commit_charge_swapin(page, ptr);
3013 
3014 	swap_free(entry);
3015 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3016 		try_to_free_swap(page);
3017 	unlock_page(page);
3018 	if (swapcache) {
3019 		/*
3020 		 * Hold the lock to avoid the swap entry to be reused
3021 		 * until we take the PT lock for the pte_same() check
3022 		 * (to avoid false positives from pte_same). For
3023 		 * further safety release the lock after the swap_free
3024 		 * so that the swap count won't change under a
3025 		 * parallel locked swapcache.
3026 		 */
3027 		unlock_page(swapcache);
3028 		page_cache_release(swapcache);
3029 	}
3030 
3031 	if (flags & FAULT_FLAG_WRITE) {
3032 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3033 		if (ret & VM_FAULT_ERROR)
3034 			ret &= VM_FAULT_ERROR;
3035 		goto out;
3036 	}
3037 
3038 	/* No need to invalidate - it was non-present before */
3039 	update_mmu_cache(vma, address, page_table);
3040 unlock:
3041 	pte_unmap_unlock(page_table, ptl);
3042 out:
3043 	return ret;
3044 out_nomap:
3045 	mem_cgroup_cancel_charge_swapin(ptr);
3046 	pte_unmap_unlock(page_table, ptl);
3047 out_page:
3048 	unlock_page(page);
3049 out_release:
3050 	page_cache_release(page);
3051 	if (swapcache) {
3052 		unlock_page(swapcache);
3053 		page_cache_release(swapcache);
3054 	}
3055 	return ret;
3056 }
3057 
3058 /*
3059  * This is like a special single-page "expand_{down|up}wards()",
3060  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3061  * doesn't hit another vma.
3062  */
3063 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3064 {
3065 	address &= PAGE_MASK;
3066 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3067 		struct vm_area_struct *prev = vma->vm_prev;
3068 
3069 		/*
3070 		 * Is there a mapping abutting this one below?
3071 		 *
3072 		 * That's only ok if it's the same stack mapping
3073 		 * that has gotten split..
3074 		 */
3075 		if (prev && prev->vm_end == address)
3076 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3077 
3078 		expand_downwards(vma, address - PAGE_SIZE);
3079 	}
3080 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3081 		struct vm_area_struct *next = vma->vm_next;
3082 
3083 		/* As VM_GROWSDOWN but s/below/above/ */
3084 		if (next && next->vm_start == address + PAGE_SIZE)
3085 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3086 
3087 		expand_upwards(vma, address + PAGE_SIZE);
3088 	}
3089 	return 0;
3090 }
3091 
3092 /*
3093  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3094  * but allow concurrent faults), and pte mapped but not yet locked.
3095  * We return with mmap_sem still held, but pte unmapped and unlocked.
3096  */
3097 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3098 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3099 		unsigned int flags)
3100 {
3101 	struct page *page;
3102 	spinlock_t *ptl;
3103 	pte_t entry;
3104 
3105 	pte_unmap(page_table);
3106 
3107 	/* Check if we need to add a guard page to the stack */
3108 	if (check_stack_guard_page(vma, address) < 0)
3109 		return VM_FAULT_SIGBUS;
3110 
3111 	/* Use the zero-page for reads */
3112 	if (!(flags & FAULT_FLAG_WRITE)) {
3113 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3114 						vma->vm_page_prot));
3115 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3116 		if (!pte_none(*page_table))
3117 			goto unlock;
3118 		goto setpte;
3119 	}
3120 
3121 	/* Allocate our own private page. */
3122 	if (unlikely(anon_vma_prepare(vma)))
3123 		goto oom;
3124 	page = alloc_zeroed_user_highpage_movable(vma, address);
3125 	if (!page)
3126 		goto oom;
3127 	__SetPageUptodate(page);
3128 
3129 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3130 		goto oom_free_page;
3131 
3132 	entry = mk_pte(page, vma->vm_page_prot);
3133 	if (vma->vm_flags & VM_WRITE)
3134 		entry = pte_mkwrite(pte_mkdirty(entry));
3135 
3136 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3137 	if (!pte_none(*page_table))
3138 		goto release;
3139 
3140 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3141 	page_add_new_anon_rmap(page, vma, address);
3142 setpte:
3143 	set_pte_at(mm, address, page_table, entry);
3144 
3145 	/* No need to invalidate - it was non-present before */
3146 	update_mmu_cache(vma, address, page_table);
3147 unlock:
3148 	pte_unmap_unlock(page_table, ptl);
3149 	return 0;
3150 release:
3151 	mem_cgroup_uncharge_page(page);
3152 	page_cache_release(page);
3153 	goto unlock;
3154 oom_free_page:
3155 	page_cache_release(page);
3156 oom:
3157 	return VM_FAULT_OOM;
3158 }
3159 
3160 /*
3161  * __do_fault() tries to create a new page mapping. It aggressively
3162  * tries to share with existing pages, but makes a separate copy if
3163  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3164  * the next page fault.
3165  *
3166  * As this is called only for pages that do not currently exist, we
3167  * do not need to flush old virtual caches or the TLB.
3168  *
3169  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3170  * but allow concurrent faults), and pte neither mapped nor locked.
3171  * We return with mmap_sem still held, but pte unmapped and unlocked.
3172  */
3173 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3174 		unsigned long address, pmd_t *pmd,
3175 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3176 {
3177 	pte_t *page_table;
3178 	spinlock_t *ptl;
3179 	struct page *page;
3180 	struct page *cow_page;
3181 	pte_t entry;
3182 	int anon = 0;
3183 	struct page *dirty_page = NULL;
3184 	struct vm_fault vmf;
3185 	int ret;
3186 	int page_mkwrite = 0;
3187 
3188 	/*
3189 	 * If we do COW later, allocate page befor taking lock_page()
3190 	 * on the file cache page. This will reduce lock holding time.
3191 	 */
3192 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3193 
3194 		if (unlikely(anon_vma_prepare(vma)))
3195 			return VM_FAULT_OOM;
3196 
3197 		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3198 		if (!cow_page)
3199 			return VM_FAULT_OOM;
3200 
3201 		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3202 			page_cache_release(cow_page);
3203 			return VM_FAULT_OOM;
3204 		}
3205 	} else
3206 		cow_page = NULL;
3207 
3208 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3209 	vmf.pgoff = pgoff;
3210 	vmf.flags = flags;
3211 	vmf.page = NULL;
3212 
3213 	ret = vma->vm_ops->fault(vma, &vmf);
3214 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3215 			    VM_FAULT_RETRY)))
3216 		goto uncharge_out;
3217 
3218 	if (unlikely(PageHWPoison(vmf.page))) {
3219 		if (ret & VM_FAULT_LOCKED)
3220 			unlock_page(vmf.page);
3221 		ret = VM_FAULT_HWPOISON;
3222 		goto uncharge_out;
3223 	}
3224 
3225 	/*
3226 	 * For consistency in subsequent calls, make the faulted page always
3227 	 * locked.
3228 	 */
3229 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3230 		lock_page(vmf.page);
3231 	else
3232 		VM_BUG_ON(!PageLocked(vmf.page));
3233 
3234 	/*
3235 	 * Should we do an early C-O-W break?
3236 	 */
3237 	page = vmf.page;
3238 	if (flags & FAULT_FLAG_WRITE) {
3239 		if (!(vma->vm_flags & VM_SHARED)) {
3240 			page = cow_page;
3241 			anon = 1;
3242 			copy_user_highpage(page, vmf.page, address, vma);
3243 			__SetPageUptodate(page);
3244 		} else {
3245 			/*
3246 			 * If the page will be shareable, see if the backing
3247 			 * address space wants to know that the page is about
3248 			 * to become writable
3249 			 */
3250 			if (vma->vm_ops->page_mkwrite) {
3251 				int tmp;
3252 
3253 				unlock_page(page);
3254 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3255 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3256 				if (unlikely(tmp &
3257 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3258 					ret = tmp;
3259 					goto unwritable_page;
3260 				}
3261 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3262 					lock_page(page);
3263 					if (!page->mapping) {
3264 						ret = 0; /* retry the fault */
3265 						unlock_page(page);
3266 						goto unwritable_page;
3267 					}
3268 				} else
3269 					VM_BUG_ON(!PageLocked(page));
3270 				page_mkwrite = 1;
3271 			}
3272 		}
3273 
3274 	}
3275 
3276 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3277 
3278 	/*
3279 	 * This silly early PAGE_DIRTY setting removes a race
3280 	 * due to the bad i386 page protection. But it's valid
3281 	 * for other architectures too.
3282 	 *
3283 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3284 	 * an exclusive copy of the page, or this is a shared mapping,
3285 	 * so we can make it writable and dirty to avoid having to
3286 	 * handle that later.
3287 	 */
3288 	/* Only go through if we didn't race with anybody else... */
3289 	if (likely(pte_same(*page_table, orig_pte))) {
3290 		flush_icache_page(vma, page);
3291 		entry = mk_pte(page, vma->vm_page_prot);
3292 		if (flags & FAULT_FLAG_WRITE)
3293 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3294 		if (anon) {
3295 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3296 			page_add_new_anon_rmap(page, vma, address);
3297 		} else {
3298 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3299 			page_add_file_rmap(page);
3300 			if (flags & FAULT_FLAG_WRITE) {
3301 				dirty_page = page;
3302 				get_page(dirty_page);
3303 			}
3304 		}
3305 		set_pte_at(mm, address, page_table, entry);
3306 
3307 		/* no need to invalidate: a not-present page won't be cached */
3308 		update_mmu_cache(vma, address, page_table);
3309 	} else {
3310 		if (cow_page)
3311 			mem_cgroup_uncharge_page(cow_page);
3312 		if (anon)
3313 			page_cache_release(page);
3314 		else
3315 			anon = 1; /* no anon but release faulted_page */
3316 	}
3317 
3318 	pte_unmap_unlock(page_table, ptl);
3319 
3320 	if (dirty_page) {
3321 		struct address_space *mapping = page->mapping;
3322 
3323 		if (set_page_dirty(dirty_page))
3324 			page_mkwrite = 1;
3325 		unlock_page(dirty_page);
3326 		put_page(dirty_page);
3327 		if (page_mkwrite && mapping) {
3328 			/*
3329 			 * Some device drivers do not set page.mapping but still
3330 			 * dirty their pages
3331 			 */
3332 			balance_dirty_pages_ratelimited(mapping);
3333 		}
3334 
3335 		/* file_update_time outside page_lock */
3336 		if (vma->vm_file)
3337 			file_update_time(vma->vm_file);
3338 	} else {
3339 		unlock_page(vmf.page);
3340 		if (anon)
3341 			page_cache_release(vmf.page);
3342 	}
3343 
3344 	return ret;
3345 
3346 unwritable_page:
3347 	page_cache_release(page);
3348 	return ret;
3349 uncharge_out:
3350 	/* fs's fault handler get error */
3351 	if (cow_page) {
3352 		mem_cgroup_uncharge_page(cow_page);
3353 		page_cache_release(cow_page);
3354 	}
3355 	return ret;
3356 }
3357 
3358 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3359 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3360 		unsigned int flags, pte_t orig_pte)
3361 {
3362 	pgoff_t pgoff = (((address & PAGE_MASK)
3363 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3364 
3365 	pte_unmap(page_table);
3366 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3367 }
3368 
3369 /*
3370  * Fault of a previously existing named mapping. Repopulate the pte
3371  * from the encoded file_pte if possible. This enables swappable
3372  * nonlinear vmas.
3373  *
3374  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3375  * but allow concurrent faults), and pte mapped but not yet locked.
3376  * We return with mmap_sem still held, but pte unmapped and unlocked.
3377  */
3378 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3379 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3380 		unsigned int flags, pte_t orig_pte)
3381 {
3382 	pgoff_t pgoff;
3383 
3384 	flags |= FAULT_FLAG_NONLINEAR;
3385 
3386 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3387 		return 0;
3388 
3389 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3390 		/*
3391 		 * Page table corrupted: show pte and kill process.
3392 		 */
3393 		print_bad_pte(vma, address, orig_pte, NULL);
3394 		return VM_FAULT_SIGBUS;
3395 	}
3396 
3397 	pgoff = pte_to_pgoff(orig_pte);
3398 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3399 }
3400 
3401 /*
3402  * These routines also need to handle stuff like marking pages dirty
3403  * and/or accessed for architectures that don't do it in hardware (most
3404  * RISC architectures).  The early dirtying is also good on the i386.
3405  *
3406  * There is also a hook called "update_mmu_cache()" that architectures
3407  * with external mmu caches can use to update those (ie the Sparc or
3408  * PowerPC hashed page tables that act as extended TLBs).
3409  *
3410  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3411  * but allow concurrent faults), and pte mapped but not yet locked.
3412  * We return with mmap_sem still held, but pte unmapped and unlocked.
3413  */
3414 int handle_pte_fault(struct mm_struct *mm,
3415 		     struct vm_area_struct *vma, unsigned long address,
3416 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3417 {
3418 	pte_t entry;
3419 	spinlock_t *ptl;
3420 
3421 	entry = *pte;
3422 	if (!pte_present(entry)) {
3423 		if (pte_none(entry)) {
3424 			if (vma->vm_ops) {
3425 				if (likely(vma->vm_ops->fault))
3426 					return do_linear_fault(mm, vma, address,
3427 						pte, pmd, flags, entry);
3428 			}
3429 			return do_anonymous_page(mm, vma, address,
3430 						 pte, pmd, flags);
3431 		}
3432 		if (pte_file(entry))
3433 			return do_nonlinear_fault(mm, vma, address,
3434 					pte, pmd, flags, entry);
3435 		return do_swap_page(mm, vma, address,
3436 					pte, pmd, flags, entry);
3437 	}
3438 
3439 	ptl = pte_lockptr(mm, pmd);
3440 	spin_lock(ptl);
3441 	if (unlikely(!pte_same(*pte, entry)))
3442 		goto unlock;
3443 	if (flags & FAULT_FLAG_WRITE) {
3444 		if (!pte_write(entry))
3445 			return do_wp_page(mm, vma, address,
3446 					pte, pmd, ptl, entry);
3447 		entry = pte_mkdirty(entry);
3448 	}
3449 	entry = pte_mkyoung(entry);
3450 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3451 		update_mmu_cache(vma, address, pte);
3452 	} else {
3453 		/*
3454 		 * This is needed only for protection faults but the arch code
3455 		 * is not yet telling us if this is a protection fault or not.
3456 		 * This still avoids useless tlb flushes for .text page faults
3457 		 * with threads.
3458 		 */
3459 		if (flags & FAULT_FLAG_WRITE)
3460 			flush_tlb_fix_spurious_fault(vma, address);
3461 	}
3462 unlock:
3463 	pte_unmap_unlock(pte, ptl);
3464 	return 0;
3465 }
3466 
3467 /*
3468  * By the time we get here, we already hold the mm semaphore
3469  */
3470 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3471 		unsigned long address, unsigned int flags)
3472 {
3473 	pgd_t *pgd;
3474 	pud_t *pud;
3475 	pmd_t *pmd;
3476 	pte_t *pte;
3477 
3478 	__set_current_state(TASK_RUNNING);
3479 
3480 	count_vm_event(PGFAULT);
3481 	mem_cgroup_count_vm_event(mm, PGFAULT);
3482 
3483 	/* do counter updates before entering really critical section. */
3484 	check_sync_rss_stat(current);
3485 
3486 	if (unlikely(is_vm_hugetlb_page(vma)))
3487 		return hugetlb_fault(mm, vma, address, flags);
3488 
3489 retry:
3490 	pgd = pgd_offset(mm, address);
3491 	pud = pud_alloc(mm, pgd, address);
3492 	if (!pud)
3493 		return VM_FAULT_OOM;
3494 	pmd = pmd_alloc(mm, pud, address);
3495 	if (!pmd)
3496 		return VM_FAULT_OOM;
3497 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3498 		if (!vma->vm_ops)
3499 			return do_huge_pmd_anonymous_page(mm, vma, address,
3500 							  pmd, flags);
3501 	} else {
3502 		pmd_t orig_pmd = *pmd;
3503 		int ret;
3504 
3505 		barrier();
3506 		if (pmd_trans_huge(orig_pmd)) {
3507 			if (flags & FAULT_FLAG_WRITE &&
3508 			    !pmd_write(orig_pmd) &&
3509 			    !pmd_trans_splitting(orig_pmd)) {
3510 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3511 							  orig_pmd);
3512 				/*
3513 				 * If COW results in an oom, the huge pmd will
3514 				 * have been split, so retry the fault on the
3515 				 * pte for a smaller charge.
3516 				 */
3517 				if (unlikely(ret & VM_FAULT_OOM))
3518 					goto retry;
3519 				return ret;
3520 			}
3521 			return 0;
3522 		}
3523 	}
3524 
3525 	/*
3526 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3527 	 * run pte_offset_map on the pmd, if an huge pmd could
3528 	 * materialize from under us from a different thread.
3529 	 */
3530 	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3531 		return VM_FAULT_OOM;
3532 	/* if an huge pmd materialized from under us just retry later */
3533 	if (unlikely(pmd_trans_huge(*pmd)))
3534 		return 0;
3535 	/*
3536 	 * A regular pmd is established and it can't morph into a huge pmd
3537 	 * from under us anymore at this point because we hold the mmap_sem
3538 	 * read mode and khugepaged takes it in write mode. So now it's
3539 	 * safe to run pte_offset_map().
3540 	 */
3541 	pte = pte_offset_map(pmd, address);
3542 
3543 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3544 }
3545 
3546 #ifndef __PAGETABLE_PUD_FOLDED
3547 /*
3548  * Allocate page upper directory.
3549  * We've already handled the fast-path in-line.
3550  */
3551 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3552 {
3553 	pud_t *new = pud_alloc_one(mm, address);
3554 	if (!new)
3555 		return -ENOMEM;
3556 
3557 	smp_wmb(); /* See comment in __pte_alloc */
3558 
3559 	spin_lock(&mm->page_table_lock);
3560 	if (pgd_present(*pgd))		/* Another has populated it */
3561 		pud_free(mm, new);
3562 	else
3563 		pgd_populate(mm, pgd, new);
3564 	spin_unlock(&mm->page_table_lock);
3565 	return 0;
3566 }
3567 #endif /* __PAGETABLE_PUD_FOLDED */
3568 
3569 #ifndef __PAGETABLE_PMD_FOLDED
3570 /*
3571  * Allocate page middle directory.
3572  * We've already handled the fast-path in-line.
3573  */
3574 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3575 {
3576 	pmd_t *new = pmd_alloc_one(mm, address);
3577 	if (!new)
3578 		return -ENOMEM;
3579 
3580 	smp_wmb(); /* See comment in __pte_alloc */
3581 
3582 	spin_lock(&mm->page_table_lock);
3583 #ifndef __ARCH_HAS_4LEVEL_HACK
3584 	if (pud_present(*pud))		/* Another has populated it */
3585 		pmd_free(mm, new);
3586 	else
3587 		pud_populate(mm, pud, new);
3588 #else
3589 	if (pgd_present(*pud))		/* Another has populated it */
3590 		pmd_free(mm, new);
3591 	else
3592 		pgd_populate(mm, pud, new);
3593 #endif /* __ARCH_HAS_4LEVEL_HACK */
3594 	spin_unlock(&mm->page_table_lock);
3595 	return 0;
3596 }
3597 #endif /* __PAGETABLE_PMD_FOLDED */
3598 
3599 int make_pages_present(unsigned long addr, unsigned long end)
3600 {
3601 	int ret, len, write;
3602 	struct vm_area_struct * vma;
3603 
3604 	vma = find_vma(current->mm, addr);
3605 	if (!vma)
3606 		return -ENOMEM;
3607 	/*
3608 	 * We want to touch writable mappings with a write fault in order
3609 	 * to break COW, except for shared mappings because these don't COW
3610 	 * and we would not want to dirty them for nothing.
3611 	 */
3612 	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3613 	BUG_ON(addr >= end);
3614 	BUG_ON(end > vma->vm_end);
3615 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3616 	ret = get_user_pages(current, current->mm, addr,
3617 			len, write, 0, NULL, NULL);
3618 	if (ret < 0)
3619 		return ret;
3620 	return ret == len ? 0 : -EFAULT;
3621 }
3622 
3623 #if !defined(__HAVE_ARCH_GATE_AREA)
3624 
3625 #if defined(AT_SYSINFO_EHDR)
3626 static struct vm_area_struct gate_vma;
3627 
3628 static int __init gate_vma_init(void)
3629 {
3630 	gate_vma.vm_mm = NULL;
3631 	gate_vma.vm_start = FIXADDR_USER_START;
3632 	gate_vma.vm_end = FIXADDR_USER_END;
3633 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3634 	gate_vma.vm_page_prot = __P101;
3635 
3636 	return 0;
3637 }
3638 __initcall(gate_vma_init);
3639 #endif
3640 
3641 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3642 {
3643 #ifdef AT_SYSINFO_EHDR
3644 	return &gate_vma;
3645 #else
3646 	return NULL;
3647 #endif
3648 }
3649 
3650 int in_gate_area_no_mm(unsigned long addr)
3651 {
3652 #ifdef AT_SYSINFO_EHDR
3653 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3654 		return 1;
3655 #endif
3656 	return 0;
3657 }
3658 
3659 #endif	/* __HAVE_ARCH_GATE_AREA */
3660 
3661 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3662 		pte_t **ptepp, spinlock_t **ptlp)
3663 {
3664 	pgd_t *pgd;
3665 	pud_t *pud;
3666 	pmd_t *pmd;
3667 	pte_t *ptep;
3668 
3669 	pgd = pgd_offset(mm, address);
3670 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3671 		goto out;
3672 
3673 	pud = pud_offset(pgd, address);
3674 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3675 		goto out;
3676 
3677 	pmd = pmd_offset(pud, address);
3678 	VM_BUG_ON(pmd_trans_huge(*pmd));
3679 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3680 		goto out;
3681 
3682 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3683 	if (pmd_huge(*pmd))
3684 		goto out;
3685 
3686 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3687 	if (!ptep)
3688 		goto out;
3689 	if (!pte_present(*ptep))
3690 		goto unlock;
3691 	*ptepp = ptep;
3692 	return 0;
3693 unlock:
3694 	pte_unmap_unlock(ptep, *ptlp);
3695 out:
3696 	return -EINVAL;
3697 }
3698 
3699 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3700 			     pte_t **ptepp, spinlock_t **ptlp)
3701 {
3702 	int res;
3703 
3704 	/* (void) is needed to make gcc happy */
3705 	(void) __cond_lock(*ptlp,
3706 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3707 	return res;
3708 }
3709 
3710 /**
3711  * follow_pfn - look up PFN at a user virtual address
3712  * @vma: memory mapping
3713  * @address: user virtual address
3714  * @pfn: location to store found PFN
3715  *
3716  * Only IO mappings and raw PFN mappings are allowed.
3717  *
3718  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3719  */
3720 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3721 	unsigned long *pfn)
3722 {
3723 	int ret = -EINVAL;
3724 	spinlock_t *ptl;
3725 	pte_t *ptep;
3726 
3727 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3728 		return ret;
3729 
3730 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3731 	if (ret)
3732 		return ret;
3733 	*pfn = pte_pfn(*ptep);
3734 	pte_unmap_unlock(ptep, ptl);
3735 	return 0;
3736 }
3737 EXPORT_SYMBOL(follow_pfn);
3738 
3739 #ifdef CONFIG_HAVE_IOREMAP_PROT
3740 int follow_phys(struct vm_area_struct *vma,
3741 		unsigned long address, unsigned int flags,
3742 		unsigned long *prot, resource_size_t *phys)
3743 {
3744 	int ret = -EINVAL;
3745 	pte_t *ptep, pte;
3746 	spinlock_t *ptl;
3747 
3748 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3749 		goto out;
3750 
3751 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3752 		goto out;
3753 	pte = *ptep;
3754 
3755 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3756 		goto unlock;
3757 
3758 	*prot = pgprot_val(pte_pgprot(pte));
3759 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3760 
3761 	ret = 0;
3762 unlock:
3763 	pte_unmap_unlock(ptep, ptl);
3764 out:
3765 	return ret;
3766 }
3767 
3768 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3769 			void *buf, int len, int write)
3770 {
3771 	resource_size_t phys_addr;
3772 	unsigned long prot = 0;
3773 	void __iomem *maddr;
3774 	int offset = addr & (PAGE_SIZE-1);
3775 
3776 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3777 		return -EINVAL;
3778 
3779 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3780 	if (write)
3781 		memcpy_toio(maddr + offset, buf, len);
3782 	else
3783 		memcpy_fromio(buf, maddr + offset, len);
3784 	iounmap(maddr);
3785 
3786 	return len;
3787 }
3788 #endif
3789 
3790 /*
3791  * Access another process' address space as given in mm.  If non-NULL, use the
3792  * given task for page fault accounting.
3793  */
3794 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3795 		unsigned long addr, void *buf, int len, int write)
3796 {
3797 	struct vm_area_struct *vma;
3798 	void *old_buf = buf;
3799 
3800 	down_read(&mm->mmap_sem);
3801 	/* ignore errors, just check how much was successfully transferred */
3802 	while (len) {
3803 		int bytes, ret, offset;
3804 		void *maddr;
3805 		struct page *page = NULL;
3806 
3807 		ret = get_user_pages(tsk, mm, addr, 1,
3808 				write, 1, &page, &vma);
3809 		if (ret <= 0) {
3810 			/*
3811 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3812 			 * we can access using slightly different code.
3813 			 */
3814 #ifdef CONFIG_HAVE_IOREMAP_PROT
3815 			vma = find_vma(mm, addr);
3816 			if (!vma || vma->vm_start > addr)
3817 				break;
3818 			if (vma->vm_ops && vma->vm_ops->access)
3819 				ret = vma->vm_ops->access(vma, addr, buf,
3820 							  len, write);
3821 			if (ret <= 0)
3822 #endif
3823 				break;
3824 			bytes = ret;
3825 		} else {
3826 			bytes = len;
3827 			offset = addr & (PAGE_SIZE-1);
3828 			if (bytes > PAGE_SIZE-offset)
3829 				bytes = PAGE_SIZE-offset;
3830 
3831 			maddr = kmap(page);
3832 			if (write) {
3833 				copy_to_user_page(vma, page, addr,
3834 						  maddr + offset, buf, bytes);
3835 				set_page_dirty_lock(page);
3836 			} else {
3837 				copy_from_user_page(vma, page, addr,
3838 						    buf, maddr + offset, bytes);
3839 			}
3840 			kunmap(page);
3841 			page_cache_release(page);
3842 		}
3843 		len -= bytes;
3844 		buf += bytes;
3845 		addr += bytes;
3846 	}
3847 	up_read(&mm->mmap_sem);
3848 
3849 	return buf - old_buf;
3850 }
3851 
3852 /**
3853  * access_remote_vm - access another process' address space
3854  * @mm:		the mm_struct of the target address space
3855  * @addr:	start address to access
3856  * @buf:	source or destination buffer
3857  * @len:	number of bytes to transfer
3858  * @write:	whether the access is a write
3859  *
3860  * The caller must hold a reference on @mm.
3861  */
3862 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3863 		void *buf, int len, int write)
3864 {
3865 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3866 }
3867 
3868 /*
3869  * Access another process' address space.
3870  * Source/target buffer must be kernel space,
3871  * Do not walk the page table directly, use get_user_pages
3872  */
3873 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3874 		void *buf, int len, int write)
3875 {
3876 	struct mm_struct *mm;
3877 	int ret;
3878 
3879 	mm = get_task_mm(tsk);
3880 	if (!mm)
3881 		return 0;
3882 
3883 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3884 	mmput(mm);
3885 
3886 	return ret;
3887 }
3888 
3889 /*
3890  * Print the name of a VMA.
3891  */
3892 void print_vma_addr(char *prefix, unsigned long ip)
3893 {
3894 	struct mm_struct *mm = current->mm;
3895 	struct vm_area_struct *vma;
3896 
3897 	/*
3898 	 * Do not print if we are in atomic
3899 	 * contexts (in exception stacks, etc.):
3900 	 */
3901 	if (preempt_count())
3902 		return;
3903 
3904 	down_read(&mm->mmap_sem);
3905 	vma = find_vma(mm, ip);
3906 	if (vma && vma->vm_file) {
3907 		struct file *f = vma->vm_file;
3908 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3909 		if (buf) {
3910 			char *p, *s;
3911 
3912 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3913 			if (IS_ERR(p))
3914 				p = "?";
3915 			s = strrchr(p, '/');
3916 			if (s)
3917 				p = s+1;
3918 			printk("%s%s[%lx+%lx]", prefix, p,
3919 					vma->vm_start,
3920 					vma->vm_end - vma->vm_start);
3921 			free_page((unsigned long)buf);
3922 		}
3923 	}
3924 	up_read(&current->mm->mmap_sem);
3925 }
3926 
3927 #ifdef CONFIG_PROVE_LOCKING
3928 void might_fault(void)
3929 {
3930 	/*
3931 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3932 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3933 	 * get paged out, therefore we'll never actually fault, and the
3934 	 * below annotations will generate false positives.
3935 	 */
3936 	if (segment_eq(get_fs(), KERNEL_DS))
3937 		return;
3938 
3939 	might_sleep();
3940 	/*
3941 	 * it would be nicer only to annotate paths which are not under
3942 	 * pagefault_disable, however that requires a larger audit and
3943 	 * providing helpers like get_user_atomic.
3944 	 */
3945 	if (!in_atomic() && current->mm)
3946 		might_lock_read(&current->mm->mmap_sem);
3947 }
3948 EXPORT_SYMBOL(might_fault);
3949 #endif
3950 
3951 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3952 static void clear_gigantic_page(struct page *page,
3953 				unsigned long addr,
3954 				unsigned int pages_per_huge_page)
3955 {
3956 	int i;
3957 	struct page *p = page;
3958 
3959 	might_sleep();
3960 	for (i = 0; i < pages_per_huge_page;
3961 	     i++, p = mem_map_next(p, page, i)) {
3962 		cond_resched();
3963 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3964 	}
3965 }
3966 void clear_huge_page(struct page *page,
3967 		     unsigned long addr, unsigned int pages_per_huge_page)
3968 {
3969 	int i;
3970 
3971 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3972 		clear_gigantic_page(page, addr, pages_per_huge_page);
3973 		return;
3974 	}
3975 
3976 	might_sleep();
3977 	for (i = 0; i < pages_per_huge_page; i++) {
3978 		cond_resched();
3979 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3980 	}
3981 }
3982 
3983 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3984 				    unsigned long addr,
3985 				    struct vm_area_struct *vma,
3986 				    unsigned int pages_per_huge_page)
3987 {
3988 	int i;
3989 	struct page *dst_base = dst;
3990 	struct page *src_base = src;
3991 
3992 	for (i = 0; i < pages_per_huge_page; ) {
3993 		cond_resched();
3994 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3995 
3996 		i++;
3997 		dst = mem_map_next(dst, dst_base, i);
3998 		src = mem_map_next(src, src_base, i);
3999 	}
4000 }
4001 
4002 void copy_user_huge_page(struct page *dst, struct page *src,
4003 			 unsigned long addr, struct vm_area_struct *vma,
4004 			 unsigned int pages_per_huge_page)
4005 {
4006 	int i;
4007 
4008 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4009 		copy_user_gigantic_page(dst, src, addr, vma,
4010 					pages_per_huge_page);
4011 		return;
4012 	}
4013 
4014 	might_sleep();
4015 	for (i = 0; i < pages_per_huge_page; i++) {
4016 		cond_resched();
4017 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4018 	}
4019 }
4020 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4021