xref: /openbmc/linux/mm/memory.c (revision d623f60d)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80 
81 #include "internal.h"
82 
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86 
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91 
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95 
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105 
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114 					1;
115 #else
116 					2;
117 #endif
118 
119 static int __init disable_randmaps(char *s)
120 {
121 	randomize_va_space = 0;
122 	return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125 
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128 
129 unsigned long highest_memmap_pfn __read_mostly;
130 
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 	return 0;
138 }
139 core_initcall(init_zero_pfn);
140 
141 
142 #if defined(SPLIT_RSS_COUNTING)
143 
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146 	int i;
147 
148 	for (i = 0; i < NR_MM_COUNTERS; i++) {
149 		if (current->rss_stat.count[i]) {
150 			add_mm_counter(mm, i, current->rss_stat.count[i]);
151 			current->rss_stat.count[i] = 0;
152 		}
153 	}
154 	current->rss_stat.events = 0;
155 }
156 
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159 	struct task_struct *task = current;
160 
161 	if (likely(task->mm == mm))
162 		task->rss_stat.count[member] += val;
163 	else
164 		add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168 
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH	(64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 	if (unlikely(task != current))
174 		return;
175 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 		sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179 
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182 
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186 
187 #endif /* SPLIT_RSS_COUNTING */
188 
189 #ifdef HAVE_GENERIC_MMU_GATHER
190 
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193 	struct mmu_gather_batch *batch;
194 
195 	batch = tlb->active;
196 	if (batch->next) {
197 		tlb->active = batch->next;
198 		return true;
199 	}
200 
201 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 		return false;
203 
204 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 	if (!batch)
206 		return false;
207 
208 	tlb->batch_count++;
209 	batch->next = NULL;
210 	batch->nr   = 0;
211 	batch->max  = MAX_GATHER_BATCH;
212 
213 	tlb->active->next = batch;
214 	tlb->active = batch;
215 
216 	return true;
217 }
218 
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 				unsigned long start, unsigned long end)
221 {
222 	tlb->mm = mm;
223 
224 	/* Is it from 0 to ~0? */
225 	tlb->fullmm     = !(start | (end+1));
226 	tlb->need_flush_all = 0;
227 	tlb->local.next = NULL;
228 	tlb->local.nr   = 0;
229 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230 	tlb->active     = &tlb->local;
231 	tlb->batch_count = 0;
232 
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 	tlb->batch = NULL;
235 #endif
236 	tlb->page_size = 0;
237 
238 	__tlb_reset_range(tlb);
239 }
240 
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243 	if (!tlb->end)
244 		return;
245 
246 	tlb_flush(tlb);
247 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 	tlb_table_flush(tlb);
250 #endif
251 	__tlb_reset_range(tlb);
252 }
253 
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256 	struct mmu_gather_batch *batch;
257 
258 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 		free_pages_and_swap_cache(batch->pages, batch->nr);
260 		batch->nr = 0;
261 	}
262 	tlb->active = &tlb->local;
263 }
264 
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267 	tlb_flush_mmu_tlbonly(tlb);
268 	tlb_flush_mmu_free(tlb);
269 }
270 
271 /* tlb_finish_mmu
272  *	Called at the end of the shootdown operation to free up any resources
273  *	that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276 		unsigned long start, unsigned long end, bool force)
277 {
278 	struct mmu_gather_batch *batch, *next;
279 
280 	if (force)
281 		__tlb_adjust_range(tlb, start, end - start);
282 
283 	tlb_flush_mmu(tlb);
284 
285 	/* keep the page table cache within bounds */
286 	check_pgt_cache();
287 
288 	for (batch = tlb->local.next; batch; batch = next) {
289 		next = batch->next;
290 		free_pages((unsigned long)batch, 0);
291 	}
292 	tlb->local.next = NULL;
293 }
294 
295 /* __tlb_remove_page
296  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *	handling the additional races in SMP caused by other CPUs caching valid
298  *	mappings in their TLBs. Returns the number of free page slots left.
299  *	When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304 	struct mmu_gather_batch *batch;
305 
306 	VM_BUG_ON(!tlb->end);
307 	VM_WARN_ON(tlb->page_size != page_size);
308 
309 	batch = tlb->active;
310 	/*
311 	 * Add the page and check if we are full. If so
312 	 * force a flush.
313 	 */
314 	batch->pages[batch->nr++] = page;
315 	if (batch->nr == batch->max) {
316 		if (!tlb_next_batch(tlb))
317 			return true;
318 		batch = tlb->active;
319 	}
320 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321 
322 	return false;
323 }
324 
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326 
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328 
329 /*
330  * See the comment near struct mmu_table_batch.
331  */
332 
333 static void tlb_remove_table_smp_sync(void *arg)
334 {
335 	/* Simply deliver the interrupt */
336 }
337 
338 static void tlb_remove_table_one(void *table)
339 {
340 	/*
341 	 * This isn't an RCU grace period and hence the page-tables cannot be
342 	 * assumed to be actually RCU-freed.
343 	 *
344 	 * It is however sufficient for software page-table walkers that rely on
345 	 * IRQ disabling. See the comment near struct mmu_table_batch.
346 	 */
347 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 	__tlb_remove_table(table);
349 }
350 
351 static void tlb_remove_table_rcu(struct rcu_head *head)
352 {
353 	struct mmu_table_batch *batch;
354 	int i;
355 
356 	batch = container_of(head, struct mmu_table_batch, rcu);
357 
358 	for (i = 0; i < batch->nr; i++)
359 		__tlb_remove_table(batch->tables[i]);
360 
361 	free_page((unsigned long)batch);
362 }
363 
364 void tlb_table_flush(struct mmu_gather *tlb)
365 {
366 	struct mmu_table_batch **batch = &tlb->batch;
367 
368 	if (*batch) {
369 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 		*batch = NULL;
371 	}
372 }
373 
374 void tlb_remove_table(struct mmu_gather *tlb, void *table)
375 {
376 	struct mmu_table_batch **batch = &tlb->batch;
377 
378 	/*
379 	 * When there's less then two users of this mm there cannot be a
380 	 * concurrent page-table walk.
381 	 */
382 	if (atomic_read(&tlb->mm->mm_users) < 2) {
383 		__tlb_remove_table(table);
384 		return;
385 	}
386 
387 	if (*batch == NULL) {
388 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 		if (*batch == NULL) {
390 			tlb_remove_table_one(table);
391 			return;
392 		}
393 		(*batch)->nr = 0;
394 	}
395 	(*batch)->tables[(*batch)->nr++] = table;
396 	if ((*batch)->nr == MAX_TABLE_BATCH)
397 		tlb_table_flush(tlb);
398 }
399 
400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
401 
402 /**
403  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
404  * @tlb: the mmu_gather structure to initialize
405  * @mm: the mm_struct of the target address space
406  * @start: start of the region that will be removed from the page-table
407  * @end: end of the region that will be removed from the page-table
408  *
409  * Called to initialize an (on-stack) mmu_gather structure for page-table
410  * tear-down from @mm. The @start and @end are set to 0 and -1
411  * respectively when @mm is without users and we're going to destroy
412  * the full address space (exit/execve).
413  */
414 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
415 			unsigned long start, unsigned long end)
416 {
417 	arch_tlb_gather_mmu(tlb, mm, start, end);
418 	inc_tlb_flush_pending(tlb->mm);
419 }
420 
421 void tlb_finish_mmu(struct mmu_gather *tlb,
422 		unsigned long start, unsigned long end)
423 {
424 	/*
425 	 * If there are parallel threads are doing PTE changes on same range
426 	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
427 	 * flush by batching, a thread has stable TLB entry can fail to flush
428 	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
429 	 * forcefully if we detect parallel PTE batching threads.
430 	 */
431 	bool force = mm_tlb_flush_nested(tlb->mm);
432 
433 	arch_tlb_finish_mmu(tlb, start, end, force);
434 	dec_tlb_flush_pending(tlb->mm);
435 }
436 
437 /*
438  * Note: this doesn't free the actual pages themselves. That
439  * has been handled earlier when unmapping all the memory regions.
440  */
441 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
442 			   unsigned long addr)
443 {
444 	pgtable_t token = pmd_pgtable(*pmd);
445 	pmd_clear(pmd);
446 	pte_free_tlb(tlb, token, addr);
447 	mm_dec_nr_ptes(tlb->mm);
448 }
449 
450 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
451 				unsigned long addr, unsigned long end,
452 				unsigned long floor, unsigned long ceiling)
453 {
454 	pmd_t *pmd;
455 	unsigned long next;
456 	unsigned long start;
457 
458 	start = addr;
459 	pmd = pmd_offset(pud, addr);
460 	do {
461 		next = pmd_addr_end(addr, end);
462 		if (pmd_none_or_clear_bad(pmd))
463 			continue;
464 		free_pte_range(tlb, pmd, addr);
465 	} while (pmd++, addr = next, addr != end);
466 
467 	start &= PUD_MASK;
468 	if (start < floor)
469 		return;
470 	if (ceiling) {
471 		ceiling &= PUD_MASK;
472 		if (!ceiling)
473 			return;
474 	}
475 	if (end - 1 > ceiling - 1)
476 		return;
477 
478 	pmd = pmd_offset(pud, start);
479 	pud_clear(pud);
480 	pmd_free_tlb(tlb, pmd, start);
481 	mm_dec_nr_pmds(tlb->mm);
482 }
483 
484 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
485 				unsigned long addr, unsigned long end,
486 				unsigned long floor, unsigned long ceiling)
487 {
488 	pud_t *pud;
489 	unsigned long next;
490 	unsigned long start;
491 
492 	start = addr;
493 	pud = pud_offset(p4d, addr);
494 	do {
495 		next = pud_addr_end(addr, end);
496 		if (pud_none_or_clear_bad(pud))
497 			continue;
498 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
499 	} while (pud++, addr = next, addr != end);
500 
501 	start &= P4D_MASK;
502 	if (start < floor)
503 		return;
504 	if (ceiling) {
505 		ceiling &= P4D_MASK;
506 		if (!ceiling)
507 			return;
508 	}
509 	if (end - 1 > ceiling - 1)
510 		return;
511 
512 	pud = pud_offset(p4d, start);
513 	p4d_clear(p4d);
514 	pud_free_tlb(tlb, pud, start);
515 	mm_dec_nr_puds(tlb->mm);
516 }
517 
518 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
519 				unsigned long addr, unsigned long end,
520 				unsigned long floor, unsigned long ceiling)
521 {
522 	p4d_t *p4d;
523 	unsigned long next;
524 	unsigned long start;
525 
526 	start = addr;
527 	p4d = p4d_offset(pgd, addr);
528 	do {
529 		next = p4d_addr_end(addr, end);
530 		if (p4d_none_or_clear_bad(p4d))
531 			continue;
532 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
533 	} while (p4d++, addr = next, addr != end);
534 
535 	start &= PGDIR_MASK;
536 	if (start < floor)
537 		return;
538 	if (ceiling) {
539 		ceiling &= PGDIR_MASK;
540 		if (!ceiling)
541 			return;
542 	}
543 	if (end - 1 > ceiling - 1)
544 		return;
545 
546 	p4d = p4d_offset(pgd, start);
547 	pgd_clear(pgd);
548 	p4d_free_tlb(tlb, p4d, start);
549 }
550 
551 /*
552  * This function frees user-level page tables of a process.
553  */
554 void free_pgd_range(struct mmu_gather *tlb,
555 			unsigned long addr, unsigned long end,
556 			unsigned long floor, unsigned long ceiling)
557 {
558 	pgd_t *pgd;
559 	unsigned long next;
560 
561 	/*
562 	 * The next few lines have given us lots of grief...
563 	 *
564 	 * Why are we testing PMD* at this top level?  Because often
565 	 * there will be no work to do at all, and we'd prefer not to
566 	 * go all the way down to the bottom just to discover that.
567 	 *
568 	 * Why all these "- 1"s?  Because 0 represents both the bottom
569 	 * of the address space and the top of it (using -1 for the
570 	 * top wouldn't help much: the masks would do the wrong thing).
571 	 * The rule is that addr 0 and floor 0 refer to the bottom of
572 	 * the address space, but end 0 and ceiling 0 refer to the top
573 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
574 	 * that end 0 case should be mythical).
575 	 *
576 	 * Wherever addr is brought up or ceiling brought down, we must
577 	 * be careful to reject "the opposite 0" before it confuses the
578 	 * subsequent tests.  But what about where end is brought down
579 	 * by PMD_SIZE below? no, end can't go down to 0 there.
580 	 *
581 	 * Whereas we round start (addr) and ceiling down, by different
582 	 * masks at different levels, in order to test whether a table
583 	 * now has no other vmas using it, so can be freed, we don't
584 	 * bother to round floor or end up - the tests don't need that.
585 	 */
586 
587 	addr &= PMD_MASK;
588 	if (addr < floor) {
589 		addr += PMD_SIZE;
590 		if (!addr)
591 			return;
592 	}
593 	if (ceiling) {
594 		ceiling &= PMD_MASK;
595 		if (!ceiling)
596 			return;
597 	}
598 	if (end - 1 > ceiling - 1)
599 		end -= PMD_SIZE;
600 	if (addr > end - 1)
601 		return;
602 	/*
603 	 * We add page table cache pages with PAGE_SIZE,
604 	 * (see pte_free_tlb()), flush the tlb if we need
605 	 */
606 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
607 	pgd = pgd_offset(tlb->mm, addr);
608 	do {
609 		next = pgd_addr_end(addr, end);
610 		if (pgd_none_or_clear_bad(pgd))
611 			continue;
612 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
613 	} while (pgd++, addr = next, addr != end);
614 }
615 
616 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
617 		unsigned long floor, unsigned long ceiling)
618 {
619 	while (vma) {
620 		struct vm_area_struct *next = vma->vm_next;
621 		unsigned long addr = vma->vm_start;
622 
623 		/*
624 		 * Hide vma from rmap and truncate_pagecache before freeing
625 		 * pgtables
626 		 */
627 		unlink_anon_vmas(vma);
628 		unlink_file_vma(vma);
629 
630 		if (is_vm_hugetlb_page(vma)) {
631 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
632 				floor, next ? next->vm_start : ceiling);
633 		} else {
634 			/*
635 			 * Optimization: gather nearby vmas into one call down
636 			 */
637 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
638 			       && !is_vm_hugetlb_page(next)) {
639 				vma = next;
640 				next = vma->vm_next;
641 				unlink_anon_vmas(vma);
642 				unlink_file_vma(vma);
643 			}
644 			free_pgd_range(tlb, addr, vma->vm_end,
645 				floor, next ? next->vm_start : ceiling);
646 		}
647 		vma = next;
648 	}
649 }
650 
651 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
652 {
653 	spinlock_t *ptl;
654 	pgtable_t new = pte_alloc_one(mm, address);
655 	if (!new)
656 		return -ENOMEM;
657 
658 	/*
659 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
660 	 * visible before the pte is made visible to other CPUs by being
661 	 * put into page tables.
662 	 *
663 	 * The other side of the story is the pointer chasing in the page
664 	 * table walking code (when walking the page table without locking;
665 	 * ie. most of the time). Fortunately, these data accesses consist
666 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
667 	 * being the notable exception) will already guarantee loads are
668 	 * seen in-order. See the alpha page table accessors for the
669 	 * smp_read_barrier_depends() barriers in page table walking code.
670 	 */
671 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
672 
673 	ptl = pmd_lock(mm, pmd);
674 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
675 		mm_inc_nr_ptes(mm);
676 		pmd_populate(mm, pmd, new);
677 		new = NULL;
678 	}
679 	spin_unlock(ptl);
680 	if (new)
681 		pte_free(mm, new);
682 	return 0;
683 }
684 
685 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
686 {
687 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
688 	if (!new)
689 		return -ENOMEM;
690 
691 	smp_wmb(); /* See comment in __pte_alloc */
692 
693 	spin_lock(&init_mm.page_table_lock);
694 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
695 		pmd_populate_kernel(&init_mm, pmd, new);
696 		new = NULL;
697 	}
698 	spin_unlock(&init_mm.page_table_lock);
699 	if (new)
700 		pte_free_kernel(&init_mm, new);
701 	return 0;
702 }
703 
704 static inline void init_rss_vec(int *rss)
705 {
706 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
707 }
708 
709 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
710 {
711 	int i;
712 
713 	if (current->mm == mm)
714 		sync_mm_rss(mm);
715 	for (i = 0; i < NR_MM_COUNTERS; i++)
716 		if (rss[i])
717 			add_mm_counter(mm, i, rss[i]);
718 }
719 
720 /*
721  * This function is called to print an error when a bad pte
722  * is found. For example, we might have a PFN-mapped pte in
723  * a region that doesn't allow it.
724  *
725  * The calling function must still handle the error.
726  */
727 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
728 			  pte_t pte, struct page *page)
729 {
730 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
731 	p4d_t *p4d = p4d_offset(pgd, addr);
732 	pud_t *pud = pud_offset(p4d, addr);
733 	pmd_t *pmd = pmd_offset(pud, addr);
734 	struct address_space *mapping;
735 	pgoff_t index;
736 	static unsigned long resume;
737 	static unsigned long nr_shown;
738 	static unsigned long nr_unshown;
739 
740 	/*
741 	 * Allow a burst of 60 reports, then keep quiet for that minute;
742 	 * or allow a steady drip of one report per second.
743 	 */
744 	if (nr_shown == 60) {
745 		if (time_before(jiffies, resume)) {
746 			nr_unshown++;
747 			return;
748 		}
749 		if (nr_unshown) {
750 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
751 				 nr_unshown);
752 			nr_unshown = 0;
753 		}
754 		nr_shown = 0;
755 	}
756 	if (nr_shown++ == 0)
757 		resume = jiffies + 60 * HZ;
758 
759 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
760 	index = linear_page_index(vma, addr);
761 
762 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
763 		 current->comm,
764 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
765 	if (page)
766 		dump_page(page, "bad pte");
767 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
768 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
769 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
770 		 vma->vm_file,
771 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
772 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
773 		 mapping ? mapping->a_ops->readpage : NULL);
774 	dump_stack();
775 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
776 }
777 
778 /*
779  * vm_normal_page -- This function gets the "struct page" associated with a pte.
780  *
781  * "Special" mappings do not wish to be associated with a "struct page" (either
782  * it doesn't exist, or it exists but they don't want to touch it). In this
783  * case, NULL is returned here. "Normal" mappings do have a struct page.
784  *
785  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
786  * pte bit, in which case this function is trivial. Secondly, an architecture
787  * may not have a spare pte bit, which requires a more complicated scheme,
788  * described below.
789  *
790  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
791  * special mapping (even if there are underlying and valid "struct pages").
792  * COWed pages of a VM_PFNMAP are always normal.
793  *
794  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
795  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
796  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
797  * mapping will always honor the rule
798  *
799  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
800  *
801  * And for normal mappings this is false.
802  *
803  * This restricts such mappings to be a linear translation from virtual address
804  * to pfn. To get around this restriction, we allow arbitrary mappings so long
805  * as the vma is not a COW mapping; in that case, we know that all ptes are
806  * special (because none can have been COWed).
807  *
808  *
809  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
810  *
811  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
812  * page" backing, however the difference is that _all_ pages with a struct
813  * page (that is, those where pfn_valid is true) are refcounted and considered
814  * normal pages by the VM. The disadvantage is that pages are refcounted
815  * (which can be slower and simply not an option for some PFNMAP users). The
816  * advantage is that we don't have to follow the strict linearity rule of
817  * PFNMAP mappings in order to support COWable mappings.
818  *
819  */
820 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
821 			     pte_t pte, bool with_public_device)
822 {
823 	unsigned long pfn = pte_pfn(pte);
824 
825 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
826 		if (likely(!pte_special(pte)))
827 			goto check_pfn;
828 		if (vma->vm_ops && vma->vm_ops->find_special_page)
829 			return vma->vm_ops->find_special_page(vma, addr);
830 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
831 			return NULL;
832 		if (is_zero_pfn(pfn))
833 			return NULL;
834 
835 		/*
836 		 * Device public pages are special pages (they are ZONE_DEVICE
837 		 * pages but different from persistent memory). They behave
838 		 * allmost like normal pages. The difference is that they are
839 		 * not on the lru and thus should never be involve with any-
840 		 * thing that involve lru manipulation (mlock, numa balancing,
841 		 * ...).
842 		 *
843 		 * This is why we still want to return NULL for such page from
844 		 * vm_normal_page() so that we do not have to special case all
845 		 * call site of vm_normal_page().
846 		 */
847 		if (likely(pfn <= highest_memmap_pfn)) {
848 			struct page *page = pfn_to_page(pfn);
849 
850 			if (is_device_public_page(page)) {
851 				if (with_public_device)
852 					return page;
853 				return NULL;
854 			}
855 		}
856 		print_bad_pte(vma, addr, pte, NULL);
857 		return NULL;
858 	}
859 
860 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
861 
862 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
863 		if (vma->vm_flags & VM_MIXEDMAP) {
864 			if (!pfn_valid(pfn))
865 				return NULL;
866 			goto out;
867 		} else {
868 			unsigned long off;
869 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
870 			if (pfn == vma->vm_pgoff + off)
871 				return NULL;
872 			if (!is_cow_mapping(vma->vm_flags))
873 				return NULL;
874 		}
875 	}
876 
877 	if (is_zero_pfn(pfn))
878 		return NULL;
879 
880 check_pfn:
881 	if (unlikely(pfn > highest_memmap_pfn)) {
882 		print_bad_pte(vma, addr, pte, NULL);
883 		return NULL;
884 	}
885 
886 	/*
887 	 * NOTE! We still have PageReserved() pages in the page tables.
888 	 * eg. VDSO mappings can cause them to exist.
889 	 */
890 out:
891 	return pfn_to_page(pfn);
892 }
893 
894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
895 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
896 				pmd_t pmd)
897 {
898 	unsigned long pfn = pmd_pfn(pmd);
899 
900 	/*
901 	 * There is no pmd_special() but there may be special pmds, e.g.
902 	 * in a direct-access (dax) mapping, so let's just replicate the
903 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
904 	 */
905 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
906 		if (vma->vm_flags & VM_MIXEDMAP) {
907 			if (!pfn_valid(pfn))
908 				return NULL;
909 			goto out;
910 		} else {
911 			unsigned long off;
912 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
913 			if (pfn == vma->vm_pgoff + off)
914 				return NULL;
915 			if (!is_cow_mapping(vma->vm_flags))
916 				return NULL;
917 		}
918 	}
919 
920 	if (is_zero_pfn(pfn))
921 		return NULL;
922 	if (unlikely(pfn > highest_memmap_pfn))
923 		return NULL;
924 
925 	/*
926 	 * NOTE! We still have PageReserved() pages in the page tables.
927 	 * eg. VDSO mappings can cause them to exist.
928 	 */
929 out:
930 	return pfn_to_page(pfn);
931 }
932 #endif
933 
934 /*
935  * copy one vm_area from one task to the other. Assumes the page tables
936  * already present in the new task to be cleared in the whole range
937  * covered by this vma.
938  */
939 
940 static inline unsigned long
941 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
942 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
943 		unsigned long addr, int *rss)
944 {
945 	unsigned long vm_flags = vma->vm_flags;
946 	pte_t pte = *src_pte;
947 	struct page *page;
948 
949 	/* pte contains position in swap or file, so copy. */
950 	if (unlikely(!pte_present(pte))) {
951 		swp_entry_t entry = pte_to_swp_entry(pte);
952 
953 		if (likely(!non_swap_entry(entry))) {
954 			if (swap_duplicate(entry) < 0)
955 				return entry.val;
956 
957 			/* make sure dst_mm is on swapoff's mmlist. */
958 			if (unlikely(list_empty(&dst_mm->mmlist))) {
959 				spin_lock(&mmlist_lock);
960 				if (list_empty(&dst_mm->mmlist))
961 					list_add(&dst_mm->mmlist,
962 							&src_mm->mmlist);
963 				spin_unlock(&mmlist_lock);
964 			}
965 			rss[MM_SWAPENTS]++;
966 		} else if (is_migration_entry(entry)) {
967 			page = migration_entry_to_page(entry);
968 
969 			rss[mm_counter(page)]++;
970 
971 			if (is_write_migration_entry(entry) &&
972 					is_cow_mapping(vm_flags)) {
973 				/*
974 				 * COW mappings require pages in both
975 				 * parent and child to be set to read.
976 				 */
977 				make_migration_entry_read(&entry);
978 				pte = swp_entry_to_pte(entry);
979 				if (pte_swp_soft_dirty(*src_pte))
980 					pte = pte_swp_mksoft_dirty(pte);
981 				set_pte_at(src_mm, addr, src_pte, pte);
982 			}
983 		} else if (is_device_private_entry(entry)) {
984 			page = device_private_entry_to_page(entry);
985 
986 			/*
987 			 * Update rss count even for unaddressable pages, as
988 			 * they should treated just like normal pages in this
989 			 * respect.
990 			 *
991 			 * We will likely want to have some new rss counters
992 			 * for unaddressable pages, at some point. But for now
993 			 * keep things as they are.
994 			 */
995 			get_page(page);
996 			rss[mm_counter(page)]++;
997 			page_dup_rmap(page, false);
998 
999 			/*
1000 			 * We do not preserve soft-dirty information, because so
1001 			 * far, checkpoint/restore is the only feature that
1002 			 * requires that. And checkpoint/restore does not work
1003 			 * when a device driver is involved (you cannot easily
1004 			 * save and restore device driver state).
1005 			 */
1006 			if (is_write_device_private_entry(entry) &&
1007 			    is_cow_mapping(vm_flags)) {
1008 				make_device_private_entry_read(&entry);
1009 				pte = swp_entry_to_pte(entry);
1010 				set_pte_at(src_mm, addr, src_pte, pte);
1011 			}
1012 		}
1013 		goto out_set_pte;
1014 	}
1015 
1016 	/*
1017 	 * If it's a COW mapping, write protect it both
1018 	 * in the parent and the child
1019 	 */
1020 	if (is_cow_mapping(vm_flags)) {
1021 		ptep_set_wrprotect(src_mm, addr, src_pte);
1022 		pte = pte_wrprotect(pte);
1023 	}
1024 
1025 	/*
1026 	 * If it's a shared mapping, mark it clean in
1027 	 * the child
1028 	 */
1029 	if (vm_flags & VM_SHARED)
1030 		pte = pte_mkclean(pte);
1031 	pte = pte_mkold(pte);
1032 
1033 	page = vm_normal_page(vma, addr, pte);
1034 	if (page) {
1035 		get_page(page);
1036 		page_dup_rmap(page, false);
1037 		rss[mm_counter(page)]++;
1038 	} else if (pte_devmap(pte)) {
1039 		page = pte_page(pte);
1040 
1041 		/*
1042 		 * Cache coherent device memory behave like regular page and
1043 		 * not like persistent memory page. For more informations see
1044 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1045 		 */
1046 		if (is_device_public_page(page)) {
1047 			get_page(page);
1048 			page_dup_rmap(page, false);
1049 			rss[mm_counter(page)]++;
1050 		}
1051 	}
1052 
1053 out_set_pte:
1054 	set_pte_at(dst_mm, addr, dst_pte, pte);
1055 	return 0;
1056 }
1057 
1058 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1059 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1060 		   unsigned long addr, unsigned long end)
1061 {
1062 	pte_t *orig_src_pte, *orig_dst_pte;
1063 	pte_t *src_pte, *dst_pte;
1064 	spinlock_t *src_ptl, *dst_ptl;
1065 	int progress = 0;
1066 	int rss[NR_MM_COUNTERS];
1067 	swp_entry_t entry = (swp_entry_t){0};
1068 
1069 again:
1070 	init_rss_vec(rss);
1071 
1072 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1073 	if (!dst_pte)
1074 		return -ENOMEM;
1075 	src_pte = pte_offset_map(src_pmd, addr);
1076 	src_ptl = pte_lockptr(src_mm, src_pmd);
1077 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1078 	orig_src_pte = src_pte;
1079 	orig_dst_pte = dst_pte;
1080 	arch_enter_lazy_mmu_mode();
1081 
1082 	do {
1083 		/*
1084 		 * We are holding two locks at this point - either of them
1085 		 * could generate latencies in another task on another CPU.
1086 		 */
1087 		if (progress >= 32) {
1088 			progress = 0;
1089 			if (need_resched() ||
1090 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1091 				break;
1092 		}
1093 		if (pte_none(*src_pte)) {
1094 			progress++;
1095 			continue;
1096 		}
1097 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1098 							vma, addr, rss);
1099 		if (entry.val)
1100 			break;
1101 		progress += 8;
1102 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1103 
1104 	arch_leave_lazy_mmu_mode();
1105 	spin_unlock(src_ptl);
1106 	pte_unmap(orig_src_pte);
1107 	add_mm_rss_vec(dst_mm, rss);
1108 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1109 	cond_resched();
1110 
1111 	if (entry.val) {
1112 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1113 			return -ENOMEM;
1114 		progress = 0;
1115 	}
1116 	if (addr != end)
1117 		goto again;
1118 	return 0;
1119 }
1120 
1121 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1122 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1123 		unsigned long addr, unsigned long end)
1124 {
1125 	pmd_t *src_pmd, *dst_pmd;
1126 	unsigned long next;
1127 
1128 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1129 	if (!dst_pmd)
1130 		return -ENOMEM;
1131 	src_pmd = pmd_offset(src_pud, addr);
1132 	do {
1133 		next = pmd_addr_end(addr, end);
1134 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1135 			|| pmd_devmap(*src_pmd)) {
1136 			int err;
1137 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1138 			err = copy_huge_pmd(dst_mm, src_mm,
1139 					    dst_pmd, src_pmd, addr, vma);
1140 			if (err == -ENOMEM)
1141 				return -ENOMEM;
1142 			if (!err)
1143 				continue;
1144 			/* fall through */
1145 		}
1146 		if (pmd_none_or_clear_bad(src_pmd))
1147 			continue;
1148 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1149 						vma, addr, next))
1150 			return -ENOMEM;
1151 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1152 	return 0;
1153 }
1154 
1155 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1156 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1157 		unsigned long addr, unsigned long end)
1158 {
1159 	pud_t *src_pud, *dst_pud;
1160 	unsigned long next;
1161 
1162 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1163 	if (!dst_pud)
1164 		return -ENOMEM;
1165 	src_pud = pud_offset(src_p4d, addr);
1166 	do {
1167 		next = pud_addr_end(addr, end);
1168 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1169 			int err;
1170 
1171 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1172 			err = copy_huge_pud(dst_mm, src_mm,
1173 					    dst_pud, src_pud, addr, vma);
1174 			if (err == -ENOMEM)
1175 				return -ENOMEM;
1176 			if (!err)
1177 				continue;
1178 			/* fall through */
1179 		}
1180 		if (pud_none_or_clear_bad(src_pud))
1181 			continue;
1182 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1183 						vma, addr, next))
1184 			return -ENOMEM;
1185 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1186 	return 0;
1187 }
1188 
1189 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1190 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1191 		unsigned long addr, unsigned long end)
1192 {
1193 	p4d_t *src_p4d, *dst_p4d;
1194 	unsigned long next;
1195 
1196 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1197 	if (!dst_p4d)
1198 		return -ENOMEM;
1199 	src_p4d = p4d_offset(src_pgd, addr);
1200 	do {
1201 		next = p4d_addr_end(addr, end);
1202 		if (p4d_none_or_clear_bad(src_p4d))
1203 			continue;
1204 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1205 						vma, addr, next))
1206 			return -ENOMEM;
1207 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1208 	return 0;
1209 }
1210 
1211 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1212 		struct vm_area_struct *vma)
1213 {
1214 	pgd_t *src_pgd, *dst_pgd;
1215 	unsigned long next;
1216 	unsigned long addr = vma->vm_start;
1217 	unsigned long end = vma->vm_end;
1218 	unsigned long mmun_start;	/* For mmu_notifiers */
1219 	unsigned long mmun_end;		/* For mmu_notifiers */
1220 	bool is_cow;
1221 	int ret;
1222 
1223 	/*
1224 	 * Don't copy ptes where a page fault will fill them correctly.
1225 	 * Fork becomes much lighter when there are big shared or private
1226 	 * readonly mappings. The tradeoff is that copy_page_range is more
1227 	 * efficient than faulting.
1228 	 */
1229 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1230 			!vma->anon_vma)
1231 		return 0;
1232 
1233 	if (is_vm_hugetlb_page(vma))
1234 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1235 
1236 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1237 		/*
1238 		 * We do not free on error cases below as remove_vma
1239 		 * gets called on error from higher level routine
1240 		 */
1241 		ret = track_pfn_copy(vma);
1242 		if (ret)
1243 			return ret;
1244 	}
1245 
1246 	/*
1247 	 * We need to invalidate the secondary MMU mappings only when
1248 	 * there could be a permission downgrade on the ptes of the
1249 	 * parent mm. And a permission downgrade will only happen if
1250 	 * is_cow_mapping() returns true.
1251 	 */
1252 	is_cow = is_cow_mapping(vma->vm_flags);
1253 	mmun_start = addr;
1254 	mmun_end   = end;
1255 	if (is_cow)
1256 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1257 						    mmun_end);
1258 
1259 	ret = 0;
1260 	dst_pgd = pgd_offset(dst_mm, addr);
1261 	src_pgd = pgd_offset(src_mm, addr);
1262 	do {
1263 		next = pgd_addr_end(addr, end);
1264 		if (pgd_none_or_clear_bad(src_pgd))
1265 			continue;
1266 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1267 					    vma, addr, next))) {
1268 			ret = -ENOMEM;
1269 			break;
1270 		}
1271 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1272 
1273 	if (is_cow)
1274 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1275 	return ret;
1276 }
1277 
1278 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1279 				struct vm_area_struct *vma, pmd_t *pmd,
1280 				unsigned long addr, unsigned long end,
1281 				struct zap_details *details)
1282 {
1283 	struct mm_struct *mm = tlb->mm;
1284 	int force_flush = 0;
1285 	int rss[NR_MM_COUNTERS];
1286 	spinlock_t *ptl;
1287 	pte_t *start_pte;
1288 	pte_t *pte;
1289 	swp_entry_t entry;
1290 
1291 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1292 again:
1293 	init_rss_vec(rss);
1294 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1295 	pte = start_pte;
1296 	flush_tlb_batched_pending(mm);
1297 	arch_enter_lazy_mmu_mode();
1298 	do {
1299 		pte_t ptent = *pte;
1300 		if (pte_none(ptent))
1301 			continue;
1302 
1303 		if (pte_present(ptent)) {
1304 			struct page *page;
1305 
1306 			page = _vm_normal_page(vma, addr, ptent, true);
1307 			if (unlikely(details) && page) {
1308 				/*
1309 				 * unmap_shared_mapping_pages() wants to
1310 				 * invalidate cache without truncating:
1311 				 * unmap shared but keep private pages.
1312 				 */
1313 				if (details->check_mapping &&
1314 				    details->check_mapping != page_rmapping(page))
1315 					continue;
1316 			}
1317 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1318 							tlb->fullmm);
1319 			tlb_remove_tlb_entry(tlb, pte, addr);
1320 			if (unlikely(!page))
1321 				continue;
1322 
1323 			if (!PageAnon(page)) {
1324 				if (pte_dirty(ptent)) {
1325 					force_flush = 1;
1326 					set_page_dirty(page);
1327 				}
1328 				if (pte_young(ptent) &&
1329 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1330 					mark_page_accessed(page);
1331 			}
1332 			rss[mm_counter(page)]--;
1333 			page_remove_rmap(page, false);
1334 			if (unlikely(page_mapcount(page) < 0))
1335 				print_bad_pte(vma, addr, ptent, page);
1336 			if (unlikely(__tlb_remove_page(tlb, page))) {
1337 				force_flush = 1;
1338 				addr += PAGE_SIZE;
1339 				break;
1340 			}
1341 			continue;
1342 		}
1343 
1344 		entry = pte_to_swp_entry(ptent);
1345 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1346 			struct page *page = device_private_entry_to_page(entry);
1347 
1348 			if (unlikely(details && details->check_mapping)) {
1349 				/*
1350 				 * unmap_shared_mapping_pages() wants to
1351 				 * invalidate cache without truncating:
1352 				 * unmap shared but keep private pages.
1353 				 */
1354 				if (details->check_mapping !=
1355 				    page_rmapping(page))
1356 					continue;
1357 			}
1358 
1359 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1360 			rss[mm_counter(page)]--;
1361 			page_remove_rmap(page, false);
1362 			put_page(page);
1363 			continue;
1364 		}
1365 
1366 		/* If details->check_mapping, we leave swap entries. */
1367 		if (unlikely(details))
1368 			continue;
1369 
1370 		entry = pte_to_swp_entry(ptent);
1371 		if (!non_swap_entry(entry))
1372 			rss[MM_SWAPENTS]--;
1373 		else if (is_migration_entry(entry)) {
1374 			struct page *page;
1375 
1376 			page = migration_entry_to_page(entry);
1377 			rss[mm_counter(page)]--;
1378 		}
1379 		if (unlikely(!free_swap_and_cache(entry)))
1380 			print_bad_pte(vma, addr, ptent, NULL);
1381 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1382 	} while (pte++, addr += PAGE_SIZE, addr != end);
1383 
1384 	add_mm_rss_vec(mm, rss);
1385 	arch_leave_lazy_mmu_mode();
1386 
1387 	/* Do the actual TLB flush before dropping ptl */
1388 	if (force_flush)
1389 		tlb_flush_mmu_tlbonly(tlb);
1390 	pte_unmap_unlock(start_pte, ptl);
1391 
1392 	/*
1393 	 * If we forced a TLB flush (either due to running out of
1394 	 * batch buffers or because we needed to flush dirty TLB
1395 	 * entries before releasing the ptl), free the batched
1396 	 * memory too. Restart if we didn't do everything.
1397 	 */
1398 	if (force_flush) {
1399 		force_flush = 0;
1400 		tlb_flush_mmu_free(tlb);
1401 		if (addr != end)
1402 			goto again;
1403 	}
1404 
1405 	return addr;
1406 }
1407 
1408 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1409 				struct vm_area_struct *vma, pud_t *pud,
1410 				unsigned long addr, unsigned long end,
1411 				struct zap_details *details)
1412 {
1413 	pmd_t *pmd;
1414 	unsigned long next;
1415 
1416 	pmd = pmd_offset(pud, addr);
1417 	do {
1418 		next = pmd_addr_end(addr, end);
1419 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1420 			if (next - addr != HPAGE_PMD_SIZE) {
1421 				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1422 				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1423 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1424 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1425 				goto next;
1426 			/* fall through */
1427 		}
1428 		/*
1429 		 * Here there can be other concurrent MADV_DONTNEED or
1430 		 * trans huge page faults running, and if the pmd is
1431 		 * none or trans huge it can change under us. This is
1432 		 * because MADV_DONTNEED holds the mmap_sem in read
1433 		 * mode.
1434 		 */
1435 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1436 			goto next;
1437 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1438 next:
1439 		cond_resched();
1440 	} while (pmd++, addr = next, addr != end);
1441 
1442 	return addr;
1443 }
1444 
1445 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1446 				struct vm_area_struct *vma, p4d_t *p4d,
1447 				unsigned long addr, unsigned long end,
1448 				struct zap_details *details)
1449 {
1450 	pud_t *pud;
1451 	unsigned long next;
1452 
1453 	pud = pud_offset(p4d, addr);
1454 	do {
1455 		next = pud_addr_end(addr, end);
1456 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1457 			if (next - addr != HPAGE_PUD_SIZE) {
1458 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1459 				split_huge_pud(vma, pud, addr);
1460 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1461 				goto next;
1462 			/* fall through */
1463 		}
1464 		if (pud_none_or_clear_bad(pud))
1465 			continue;
1466 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1467 next:
1468 		cond_resched();
1469 	} while (pud++, addr = next, addr != end);
1470 
1471 	return addr;
1472 }
1473 
1474 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1475 				struct vm_area_struct *vma, pgd_t *pgd,
1476 				unsigned long addr, unsigned long end,
1477 				struct zap_details *details)
1478 {
1479 	p4d_t *p4d;
1480 	unsigned long next;
1481 
1482 	p4d = p4d_offset(pgd, addr);
1483 	do {
1484 		next = p4d_addr_end(addr, end);
1485 		if (p4d_none_or_clear_bad(p4d))
1486 			continue;
1487 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1488 	} while (p4d++, addr = next, addr != end);
1489 
1490 	return addr;
1491 }
1492 
1493 void unmap_page_range(struct mmu_gather *tlb,
1494 			     struct vm_area_struct *vma,
1495 			     unsigned long addr, unsigned long end,
1496 			     struct zap_details *details)
1497 {
1498 	pgd_t *pgd;
1499 	unsigned long next;
1500 
1501 	BUG_ON(addr >= end);
1502 	tlb_start_vma(tlb, vma);
1503 	pgd = pgd_offset(vma->vm_mm, addr);
1504 	do {
1505 		next = pgd_addr_end(addr, end);
1506 		if (pgd_none_or_clear_bad(pgd))
1507 			continue;
1508 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1509 	} while (pgd++, addr = next, addr != end);
1510 	tlb_end_vma(tlb, vma);
1511 }
1512 
1513 
1514 static void unmap_single_vma(struct mmu_gather *tlb,
1515 		struct vm_area_struct *vma, unsigned long start_addr,
1516 		unsigned long end_addr,
1517 		struct zap_details *details)
1518 {
1519 	unsigned long start = max(vma->vm_start, start_addr);
1520 	unsigned long end;
1521 
1522 	if (start >= vma->vm_end)
1523 		return;
1524 	end = min(vma->vm_end, end_addr);
1525 	if (end <= vma->vm_start)
1526 		return;
1527 
1528 	if (vma->vm_file)
1529 		uprobe_munmap(vma, start, end);
1530 
1531 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1532 		untrack_pfn(vma, 0, 0);
1533 
1534 	if (start != end) {
1535 		if (unlikely(is_vm_hugetlb_page(vma))) {
1536 			/*
1537 			 * It is undesirable to test vma->vm_file as it
1538 			 * should be non-null for valid hugetlb area.
1539 			 * However, vm_file will be NULL in the error
1540 			 * cleanup path of mmap_region. When
1541 			 * hugetlbfs ->mmap method fails,
1542 			 * mmap_region() nullifies vma->vm_file
1543 			 * before calling this function to clean up.
1544 			 * Since no pte has actually been setup, it is
1545 			 * safe to do nothing in this case.
1546 			 */
1547 			if (vma->vm_file) {
1548 				i_mmap_lock_write(vma->vm_file->f_mapping);
1549 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1550 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1551 			}
1552 		} else
1553 			unmap_page_range(tlb, vma, start, end, details);
1554 	}
1555 }
1556 
1557 /**
1558  * unmap_vmas - unmap a range of memory covered by a list of vma's
1559  * @tlb: address of the caller's struct mmu_gather
1560  * @vma: the starting vma
1561  * @start_addr: virtual address at which to start unmapping
1562  * @end_addr: virtual address at which to end unmapping
1563  *
1564  * Unmap all pages in the vma list.
1565  *
1566  * Only addresses between `start' and `end' will be unmapped.
1567  *
1568  * The VMA list must be sorted in ascending virtual address order.
1569  *
1570  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1571  * range after unmap_vmas() returns.  So the only responsibility here is to
1572  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1573  * drops the lock and schedules.
1574  */
1575 void unmap_vmas(struct mmu_gather *tlb,
1576 		struct vm_area_struct *vma, unsigned long start_addr,
1577 		unsigned long end_addr)
1578 {
1579 	struct mm_struct *mm = vma->vm_mm;
1580 
1581 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1582 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1583 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1584 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1585 }
1586 
1587 /**
1588  * zap_page_range - remove user pages in a given range
1589  * @vma: vm_area_struct holding the applicable pages
1590  * @start: starting address of pages to zap
1591  * @size: number of bytes to zap
1592  *
1593  * Caller must protect the VMA list
1594  */
1595 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1596 		unsigned long size)
1597 {
1598 	struct mm_struct *mm = vma->vm_mm;
1599 	struct mmu_gather tlb;
1600 	unsigned long end = start + size;
1601 
1602 	lru_add_drain();
1603 	tlb_gather_mmu(&tlb, mm, start, end);
1604 	update_hiwater_rss(mm);
1605 	mmu_notifier_invalidate_range_start(mm, start, end);
1606 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1607 		unmap_single_vma(&tlb, vma, start, end, NULL);
1608 
1609 		/*
1610 		 * zap_page_range does not specify whether mmap_sem should be
1611 		 * held for read or write. That allows parallel zap_page_range
1612 		 * operations to unmap a PTE and defer a flush meaning that
1613 		 * this call observes pte_none and fails to flush the TLB.
1614 		 * Rather than adding a complex API, ensure that no stale
1615 		 * TLB entries exist when this call returns.
1616 		 */
1617 		flush_tlb_range(vma, start, end);
1618 	}
1619 
1620 	mmu_notifier_invalidate_range_end(mm, start, end);
1621 	tlb_finish_mmu(&tlb, start, end);
1622 }
1623 
1624 /**
1625  * zap_page_range_single - remove user pages in a given range
1626  * @vma: vm_area_struct holding the applicable pages
1627  * @address: starting address of pages to zap
1628  * @size: number of bytes to zap
1629  * @details: details of shared cache invalidation
1630  *
1631  * The range must fit into one VMA.
1632  */
1633 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1634 		unsigned long size, struct zap_details *details)
1635 {
1636 	struct mm_struct *mm = vma->vm_mm;
1637 	struct mmu_gather tlb;
1638 	unsigned long end = address + size;
1639 
1640 	lru_add_drain();
1641 	tlb_gather_mmu(&tlb, mm, address, end);
1642 	update_hiwater_rss(mm);
1643 	mmu_notifier_invalidate_range_start(mm, address, end);
1644 	unmap_single_vma(&tlb, vma, address, end, details);
1645 	mmu_notifier_invalidate_range_end(mm, address, end);
1646 	tlb_finish_mmu(&tlb, address, end);
1647 }
1648 
1649 /**
1650  * zap_vma_ptes - remove ptes mapping the vma
1651  * @vma: vm_area_struct holding ptes to be zapped
1652  * @address: starting address of pages to zap
1653  * @size: number of bytes to zap
1654  *
1655  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1656  *
1657  * The entire address range must be fully contained within the vma.
1658  *
1659  */
1660 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1661 		unsigned long size)
1662 {
1663 	if (address < vma->vm_start || address + size > vma->vm_end ||
1664 	    		!(vma->vm_flags & VM_PFNMAP))
1665 		return;
1666 
1667 	zap_page_range_single(vma, address, size, NULL);
1668 }
1669 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1670 
1671 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1672 			spinlock_t **ptl)
1673 {
1674 	pgd_t *pgd;
1675 	p4d_t *p4d;
1676 	pud_t *pud;
1677 	pmd_t *pmd;
1678 
1679 	pgd = pgd_offset(mm, addr);
1680 	p4d = p4d_alloc(mm, pgd, addr);
1681 	if (!p4d)
1682 		return NULL;
1683 	pud = pud_alloc(mm, p4d, addr);
1684 	if (!pud)
1685 		return NULL;
1686 	pmd = pmd_alloc(mm, pud, addr);
1687 	if (!pmd)
1688 		return NULL;
1689 
1690 	VM_BUG_ON(pmd_trans_huge(*pmd));
1691 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1692 }
1693 
1694 /*
1695  * This is the old fallback for page remapping.
1696  *
1697  * For historical reasons, it only allows reserved pages. Only
1698  * old drivers should use this, and they needed to mark their
1699  * pages reserved for the old functions anyway.
1700  */
1701 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1702 			struct page *page, pgprot_t prot)
1703 {
1704 	struct mm_struct *mm = vma->vm_mm;
1705 	int retval;
1706 	pte_t *pte;
1707 	spinlock_t *ptl;
1708 
1709 	retval = -EINVAL;
1710 	if (PageAnon(page))
1711 		goto out;
1712 	retval = -ENOMEM;
1713 	flush_dcache_page(page);
1714 	pte = get_locked_pte(mm, addr, &ptl);
1715 	if (!pte)
1716 		goto out;
1717 	retval = -EBUSY;
1718 	if (!pte_none(*pte))
1719 		goto out_unlock;
1720 
1721 	/* Ok, finally just insert the thing.. */
1722 	get_page(page);
1723 	inc_mm_counter_fast(mm, mm_counter_file(page));
1724 	page_add_file_rmap(page, false);
1725 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1726 
1727 	retval = 0;
1728 	pte_unmap_unlock(pte, ptl);
1729 	return retval;
1730 out_unlock:
1731 	pte_unmap_unlock(pte, ptl);
1732 out:
1733 	return retval;
1734 }
1735 
1736 /**
1737  * vm_insert_page - insert single page into user vma
1738  * @vma: user vma to map to
1739  * @addr: target user address of this page
1740  * @page: source kernel page
1741  *
1742  * This allows drivers to insert individual pages they've allocated
1743  * into a user vma.
1744  *
1745  * The page has to be a nice clean _individual_ kernel allocation.
1746  * If you allocate a compound page, you need to have marked it as
1747  * such (__GFP_COMP), or manually just split the page up yourself
1748  * (see split_page()).
1749  *
1750  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1751  * took an arbitrary page protection parameter. This doesn't allow
1752  * that. Your vma protection will have to be set up correctly, which
1753  * means that if you want a shared writable mapping, you'd better
1754  * ask for a shared writable mapping!
1755  *
1756  * The page does not need to be reserved.
1757  *
1758  * Usually this function is called from f_op->mmap() handler
1759  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1760  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1761  * function from other places, for example from page-fault handler.
1762  */
1763 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1764 			struct page *page)
1765 {
1766 	if (addr < vma->vm_start || addr >= vma->vm_end)
1767 		return -EFAULT;
1768 	if (!page_count(page))
1769 		return -EINVAL;
1770 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1771 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1772 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1773 		vma->vm_flags |= VM_MIXEDMAP;
1774 	}
1775 	return insert_page(vma, addr, page, vma->vm_page_prot);
1776 }
1777 EXPORT_SYMBOL(vm_insert_page);
1778 
1779 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1780 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1781 {
1782 	struct mm_struct *mm = vma->vm_mm;
1783 	int retval;
1784 	pte_t *pte, entry;
1785 	spinlock_t *ptl;
1786 
1787 	retval = -ENOMEM;
1788 	pte = get_locked_pte(mm, addr, &ptl);
1789 	if (!pte)
1790 		goto out;
1791 	retval = -EBUSY;
1792 	if (!pte_none(*pte)) {
1793 		if (mkwrite) {
1794 			/*
1795 			 * For read faults on private mappings the PFN passed
1796 			 * in may not match the PFN we have mapped if the
1797 			 * mapped PFN is a writeable COW page.  In the mkwrite
1798 			 * case we are creating a writable PTE for a shared
1799 			 * mapping and we expect the PFNs to match.
1800 			 */
1801 			if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1802 				goto out_unlock;
1803 			entry = *pte;
1804 			goto out_mkwrite;
1805 		} else
1806 			goto out_unlock;
1807 	}
1808 
1809 	/* Ok, finally just insert the thing.. */
1810 	if (pfn_t_devmap(pfn))
1811 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1812 	else
1813 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1814 
1815 out_mkwrite:
1816 	if (mkwrite) {
1817 		entry = pte_mkyoung(entry);
1818 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1819 	}
1820 
1821 	set_pte_at(mm, addr, pte, entry);
1822 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1823 
1824 	retval = 0;
1825 out_unlock:
1826 	pte_unmap_unlock(pte, ptl);
1827 out:
1828 	return retval;
1829 }
1830 
1831 /**
1832  * vm_insert_pfn - insert single pfn into user vma
1833  * @vma: user vma to map to
1834  * @addr: target user address of this page
1835  * @pfn: source kernel pfn
1836  *
1837  * Similar to vm_insert_page, this allows drivers to insert individual pages
1838  * they've allocated into a user vma. Same comments apply.
1839  *
1840  * This function should only be called from a vm_ops->fault handler, and
1841  * in that case the handler should return NULL.
1842  *
1843  * vma cannot be a COW mapping.
1844  *
1845  * As this is called only for pages that do not currently exist, we
1846  * do not need to flush old virtual caches or the TLB.
1847  */
1848 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1849 			unsigned long pfn)
1850 {
1851 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1852 }
1853 EXPORT_SYMBOL(vm_insert_pfn);
1854 
1855 /**
1856  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1857  * @vma: user vma to map to
1858  * @addr: target user address of this page
1859  * @pfn: source kernel pfn
1860  * @pgprot: pgprot flags for the inserted page
1861  *
1862  * This is exactly like vm_insert_pfn, except that it allows drivers to
1863  * to override pgprot on a per-page basis.
1864  *
1865  * This only makes sense for IO mappings, and it makes no sense for
1866  * cow mappings.  In general, using multiple vmas is preferable;
1867  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1868  * impractical.
1869  */
1870 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1871 			unsigned long pfn, pgprot_t pgprot)
1872 {
1873 	int ret;
1874 	/*
1875 	 * Technically, architectures with pte_special can avoid all these
1876 	 * restrictions (same for remap_pfn_range).  However we would like
1877 	 * consistency in testing and feature parity among all, so we should
1878 	 * try to keep these invariants in place for everybody.
1879 	 */
1880 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1881 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1882 						(VM_PFNMAP|VM_MIXEDMAP));
1883 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1884 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1885 
1886 	if (addr < vma->vm_start || addr >= vma->vm_end)
1887 		return -EFAULT;
1888 
1889 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1890 
1891 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1892 			false);
1893 
1894 	return ret;
1895 }
1896 EXPORT_SYMBOL(vm_insert_pfn_prot);
1897 
1898 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1899 {
1900 	/* these checks mirror the abort conditions in vm_normal_page */
1901 	if (vma->vm_flags & VM_MIXEDMAP)
1902 		return true;
1903 	if (pfn_t_devmap(pfn))
1904 		return true;
1905 	if (pfn_t_special(pfn))
1906 		return true;
1907 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1908 		return true;
1909 	return false;
1910 }
1911 
1912 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1913 			pfn_t pfn, bool mkwrite)
1914 {
1915 	pgprot_t pgprot = vma->vm_page_prot;
1916 
1917 	BUG_ON(!vm_mixed_ok(vma, pfn));
1918 
1919 	if (addr < vma->vm_start || addr >= vma->vm_end)
1920 		return -EFAULT;
1921 
1922 	track_pfn_insert(vma, &pgprot, pfn);
1923 
1924 	/*
1925 	 * If we don't have pte special, then we have to use the pfn_valid()
1926 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1927 	 * refcount the page if pfn_valid is true (hence insert_page rather
1928 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1929 	 * without pte special, it would there be refcounted as a normal page.
1930 	 */
1931 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1932 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1933 		struct page *page;
1934 
1935 		/*
1936 		 * At this point we are committed to insert_page()
1937 		 * regardless of whether the caller specified flags that
1938 		 * result in pfn_t_has_page() == false.
1939 		 */
1940 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1941 		return insert_page(vma, addr, page, pgprot);
1942 	}
1943 	return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1944 }
1945 
1946 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1947 			pfn_t pfn)
1948 {
1949 	return __vm_insert_mixed(vma, addr, pfn, false);
1950 
1951 }
1952 EXPORT_SYMBOL(vm_insert_mixed);
1953 
1954 /*
1955  *  If the insertion of PTE failed because someone else already added a
1956  *  different entry in the mean time, we treat that as success as we assume
1957  *  the same entry was actually inserted.
1958  */
1959 
1960 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1961 		unsigned long addr, pfn_t pfn)
1962 {
1963 	int err;
1964 
1965 	err =  __vm_insert_mixed(vma, addr, pfn, true);
1966 	if (err == -ENOMEM)
1967 		return VM_FAULT_OOM;
1968 	if (err < 0 && err != -EBUSY)
1969 		return VM_FAULT_SIGBUS;
1970 	return VM_FAULT_NOPAGE;
1971 }
1972 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1973 
1974 /*
1975  * maps a range of physical memory into the requested pages. the old
1976  * mappings are removed. any references to nonexistent pages results
1977  * in null mappings (currently treated as "copy-on-access")
1978  */
1979 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1980 			unsigned long addr, unsigned long end,
1981 			unsigned long pfn, pgprot_t prot)
1982 {
1983 	pte_t *pte;
1984 	spinlock_t *ptl;
1985 
1986 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1987 	if (!pte)
1988 		return -ENOMEM;
1989 	arch_enter_lazy_mmu_mode();
1990 	do {
1991 		BUG_ON(!pte_none(*pte));
1992 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1993 		pfn++;
1994 	} while (pte++, addr += PAGE_SIZE, addr != end);
1995 	arch_leave_lazy_mmu_mode();
1996 	pte_unmap_unlock(pte - 1, ptl);
1997 	return 0;
1998 }
1999 
2000 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2001 			unsigned long addr, unsigned long end,
2002 			unsigned long pfn, pgprot_t prot)
2003 {
2004 	pmd_t *pmd;
2005 	unsigned long next;
2006 
2007 	pfn -= addr >> PAGE_SHIFT;
2008 	pmd = pmd_alloc(mm, pud, addr);
2009 	if (!pmd)
2010 		return -ENOMEM;
2011 	VM_BUG_ON(pmd_trans_huge(*pmd));
2012 	do {
2013 		next = pmd_addr_end(addr, end);
2014 		if (remap_pte_range(mm, pmd, addr, next,
2015 				pfn + (addr >> PAGE_SHIFT), prot))
2016 			return -ENOMEM;
2017 	} while (pmd++, addr = next, addr != end);
2018 	return 0;
2019 }
2020 
2021 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2022 			unsigned long addr, unsigned long end,
2023 			unsigned long pfn, pgprot_t prot)
2024 {
2025 	pud_t *pud;
2026 	unsigned long next;
2027 
2028 	pfn -= addr >> PAGE_SHIFT;
2029 	pud = pud_alloc(mm, p4d, addr);
2030 	if (!pud)
2031 		return -ENOMEM;
2032 	do {
2033 		next = pud_addr_end(addr, end);
2034 		if (remap_pmd_range(mm, pud, addr, next,
2035 				pfn + (addr >> PAGE_SHIFT), prot))
2036 			return -ENOMEM;
2037 	} while (pud++, addr = next, addr != end);
2038 	return 0;
2039 }
2040 
2041 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2042 			unsigned long addr, unsigned long end,
2043 			unsigned long pfn, pgprot_t prot)
2044 {
2045 	p4d_t *p4d;
2046 	unsigned long next;
2047 
2048 	pfn -= addr >> PAGE_SHIFT;
2049 	p4d = p4d_alloc(mm, pgd, addr);
2050 	if (!p4d)
2051 		return -ENOMEM;
2052 	do {
2053 		next = p4d_addr_end(addr, end);
2054 		if (remap_pud_range(mm, p4d, addr, next,
2055 				pfn + (addr >> PAGE_SHIFT), prot))
2056 			return -ENOMEM;
2057 	} while (p4d++, addr = next, addr != end);
2058 	return 0;
2059 }
2060 
2061 /**
2062  * remap_pfn_range - remap kernel memory to userspace
2063  * @vma: user vma to map to
2064  * @addr: target user address to start at
2065  * @pfn: physical address of kernel memory
2066  * @size: size of map area
2067  * @prot: page protection flags for this mapping
2068  *
2069  *  Note: this is only safe if the mm semaphore is held when called.
2070  */
2071 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2072 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2073 {
2074 	pgd_t *pgd;
2075 	unsigned long next;
2076 	unsigned long end = addr + PAGE_ALIGN(size);
2077 	struct mm_struct *mm = vma->vm_mm;
2078 	unsigned long remap_pfn = pfn;
2079 	int err;
2080 
2081 	/*
2082 	 * Physically remapped pages are special. Tell the
2083 	 * rest of the world about it:
2084 	 *   VM_IO tells people not to look at these pages
2085 	 *	(accesses can have side effects).
2086 	 *   VM_PFNMAP tells the core MM that the base pages are just
2087 	 *	raw PFN mappings, and do not have a "struct page" associated
2088 	 *	with them.
2089 	 *   VM_DONTEXPAND
2090 	 *      Disable vma merging and expanding with mremap().
2091 	 *   VM_DONTDUMP
2092 	 *      Omit vma from core dump, even when VM_IO turned off.
2093 	 *
2094 	 * There's a horrible special case to handle copy-on-write
2095 	 * behaviour that some programs depend on. We mark the "original"
2096 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2097 	 * See vm_normal_page() for details.
2098 	 */
2099 	if (is_cow_mapping(vma->vm_flags)) {
2100 		if (addr != vma->vm_start || end != vma->vm_end)
2101 			return -EINVAL;
2102 		vma->vm_pgoff = pfn;
2103 	}
2104 
2105 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2106 	if (err)
2107 		return -EINVAL;
2108 
2109 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2110 
2111 	BUG_ON(addr >= end);
2112 	pfn -= addr >> PAGE_SHIFT;
2113 	pgd = pgd_offset(mm, addr);
2114 	flush_cache_range(vma, addr, end);
2115 	do {
2116 		next = pgd_addr_end(addr, end);
2117 		err = remap_p4d_range(mm, pgd, addr, next,
2118 				pfn + (addr >> PAGE_SHIFT), prot);
2119 		if (err)
2120 			break;
2121 	} while (pgd++, addr = next, addr != end);
2122 
2123 	if (err)
2124 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2125 
2126 	return err;
2127 }
2128 EXPORT_SYMBOL(remap_pfn_range);
2129 
2130 /**
2131  * vm_iomap_memory - remap memory to userspace
2132  * @vma: user vma to map to
2133  * @start: start of area
2134  * @len: size of area
2135  *
2136  * This is a simplified io_remap_pfn_range() for common driver use. The
2137  * driver just needs to give us the physical memory range to be mapped,
2138  * we'll figure out the rest from the vma information.
2139  *
2140  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2141  * whatever write-combining details or similar.
2142  */
2143 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2144 {
2145 	unsigned long vm_len, pfn, pages;
2146 
2147 	/* Check that the physical memory area passed in looks valid */
2148 	if (start + len < start)
2149 		return -EINVAL;
2150 	/*
2151 	 * You *really* shouldn't map things that aren't page-aligned,
2152 	 * but we've historically allowed it because IO memory might
2153 	 * just have smaller alignment.
2154 	 */
2155 	len += start & ~PAGE_MASK;
2156 	pfn = start >> PAGE_SHIFT;
2157 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2158 	if (pfn + pages < pfn)
2159 		return -EINVAL;
2160 
2161 	/* We start the mapping 'vm_pgoff' pages into the area */
2162 	if (vma->vm_pgoff > pages)
2163 		return -EINVAL;
2164 	pfn += vma->vm_pgoff;
2165 	pages -= vma->vm_pgoff;
2166 
2167 	/* Can we fit all of the mapping? */
2168 	vm_len = vma->vm_end - vma->vm_start;
2169 	if (vm_len >> PAGE_SHIFT > pages)
2170 		return -EINVAL;
2171 
2172 	/* Ok, let it rip */
2173 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2174 }
2175 EXPORT_SYMBOL(vm_iomap_memory);
2176 
2177 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2178 				     unsigned long addr, unsigned long end,
2179 				     pte_fn_t fn, void *data)
2180 {
2181 	pte_t *pte;
2182 	int err;
2183 	pgtable_t token;
2184 	spinlock_t *uninitialized_var(ptl);
2185 
2186 	pte = (mm == &init_mm) ?
2187 		pte_alloc_kernel(pmd, addr) :
2188 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2189 	if (!pte)
2190 		return -ENOMEM;
2191 
2192 	BUG_ON(pmd_huge(*pmd));
2193 
2194 	arch_enter_lazy_mmu_mode();
2195 
2196 	token = pmd_pgtable(*pmd);
2197 
2198 	do {
2199 		err = fn(pte++, token, addr, data);
2200 		if (err)
2201 			break;
2202 	} while (addr += PAGE_SIZE, addr != end);
2203 
2204 	arch_leave_lazy_mmu_mode();
2205 
2206 	if (mm != &init_mm)
2207 		pte_unmap_unlock(pte-1, ptl);
2208 	return err;
2209 }
2210 
2211 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2212 				     unsigned long addr, unsigned long end,
2213 				     pte_fn_t fn, void *data)
2214 {
2215 	pmd_t *pmd;
2216 	unsigned long next;
2217 	int err;
2218 
2219 	BUG_ON(pud_huge(*pud));
2220 
2221 	pmd = pmd_alloc(mm, pud, addr);
2222 	if (!pmd)
2223 		return -ENOMEM;
2224 	do {
2225 		next = pmd_addr_end(addr, end);
2226 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2227 		if (err)
2228 			break;
2229 	} while (pmd++, addr = next, addr != end);
2230 	return err;
2231 }
2232 
2233 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2234 				     unsigned long addr, unsigned long end,
2235 				     pte_fn_t fn, void *data)
2236 {
2237 	pud_t *pud;
2238 	unsigned long next;
2239 	int err;
2240 
2241 	pud = pud_alloc(mm, p4d, addr);
2242 	if (!pud)
2243 		return -ENOMEM;
2244 	do {
2245 		next = pud_addr_end(addr, end);
2246 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2247 		if (err)
2248 			break;
2249 	} while (pud++, addr = next, addr != end);
2250 	return err;
2251 }
2252 
2253 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2254 				     unsigned long addr, unsigned long end,
2255 				     pte_fn_t fn, void *data)
2256 {
2257 	p4d_t *p4d;
2258 	unsigned long next;
2259 	int err;
2260 
2261 	p4d = p4d_alloc(mm, pgd, addr);
2262 	if (!p4d)
2263 		return -ENOMEM;
2264 	do {
2265 		next = p4d_addr_end(addr, end);
2266 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2267 		if (err)
2268 			break;
2269 	} while (p4d++, addr = next, addr != end);
2270 	return err;
2271 }
2272 
2273 /*
2274  * Scan a region of virtual memory, filling in page tables as necessary
2275  * and calling a provided function on each leaf page table.
2276  */
2277 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2278 			unsigned long size, pte_fn_t fn, void *data)
2279 {
2280 	pgd_t *pgd;
2281 	unsigned long next;
2282 	unsigned long end = addr + size;
2283 	int err;
2284 
2285 	if (WARN_ON(addr >= end))
2286 		return -EINVAL;
2287 
2288 	pgd = pgd_offset(mm, addr);
2289 	do {
2290 		next = pgd_addr_end(addr, end);
2291 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2292 		if (err)
2293 			break;
2294 	} while (pgd++, addr = next, addr != end);
2295 
2296 	return err;
2297 }
2298 EXPORT_SYMBOL_GPL(apply_to_page_range);
2299 
2300 /*
2301  * handle_pte_fault chooses page fault handler according to an entry which was
2302  * read non-atomically.  Before making any commitment, on those architectures
2303  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2304  * parts, do_swap_page must check under lock before unmapping the pte and
2305  * proceeding (but do_wp_page is only called after already making such a check;
2306  * and do_anonymous_page can safely check later on).
2307  */
2308 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2309 				pte_t *page_table, pte_t orig_pte)
2310 {
2311 	int same = 1;
2312 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2313 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2314 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2315 		spin_lock(ptl);
2316 		same = pte_same(*page_table, orig_pte);
2317 		spin_unlock(ptl);
2318 	}
2319 #endif
2320 	pte_unmap(page_table);
2321 	return same;
2322 }
2323 
2324 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2325 {
2326 	debug_dma_assert_idle(src);
2327 
2328 	/*
2329 	 * If the source page was a PFN mapping, we don't have
2330 	 * a "struct page" for it. We do a best-effort copy by
2331 	 * just copying from the original user address. If that
2332 	 * fails, we just zero-fill it. Live with it.
2333 	 */
2334 	if (unlikely(!src)) {
2335 		void *kaddr = kmap_atomic(dst);
2336 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2337 
2338 		/*
2339 		 * This really shouldn't fail, because the page is there
2340 		 * in the page tables. But it might just be unreadable,
2341 		 * in which case we just give up and fill the result with
2342 		 * zeroes.
2343 		 */
2344 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2345 			clear_page(kaddr);
2346 		kunmap_atomic(kaddr);
2347 		flush_dcache_page(dst);
2348 	} else
2349 		copy_user_highpage(dst, src, va, vma);
2350 }
2351 
2352 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2353 {
2354 	struct file *vm_file = vma->vm_file;
2355 
2356 	if (vm_file)
2357 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2358 
2359 	/*
2360 	 * Special mappings (e.g. VDSO) do not have any file so fake
2361 	 * a default GFP_KERNEL for them.
2362 	 */
2363 	return GFP_KERNEL;
2364 }
2365 
2366 /*
2367  * Notify the address space that the page is about to become writable so that
2368  * it can prohibit this or wait for the page to get into an appropriate state.
2369  *
2370  * We do this without the lock held, so that it can sleep if it needs to.
2371  */
2372 static int do_page_mkwrite(struct vm_fault *vmf)
2373 {
2374 	int ret;
2375 	struct page *page = vmf->page;
2376 	unsigned int old_flags = vmf->flags;
2377 
2378 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2379 
2380 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2381 	/* Restore original flags so that caller is not surprised */
2382 	vmf->flags = old_flags;
2383 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2384 		return ret;
2385 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2386 		lock_page(page);
2387 		if (!page->mapping) {
2388 			unlock_page(page);
2389 			return 0; /* retry */
2390 		}
2391 		ret |= VM_FAULT_LOCKED;
2392 	} else
2393 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2394 	return ret;
2395 }
2396 
2397 /*
2398  * Handle dirtying of a page in shared file mapping on a write fault.
2399  *
2400  * The function expects the page to be locked and unlocks it.
2401  */
2402 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2403 				    struct page *page)
2404 {
2405 	struct address_space *mapping;
2406 	bool dirtied;
2407 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2408 
2409 	dirtied = set_page_dirty(page);
2410 	VM_BUG_ON_PAGE(PageAnon(page), page);
2411 	/*
2412 	 * Take a local copy of the address_space - page.mapping may be zeroed
2413 	 * by truncate after unlock_page().   The address_space itself remains
2414 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2415 	 * release semantics to prevent the compiler from undoing this copying.
2416 	 */
2417 	mapping = page_rmapping(page);
2418 	unlock_page(page);
2419 
2420 	if ((dirtied || page_mkwrite) && mapping) {
2421 		/*
2422 		 * Some device drivers do not set page.mapping
2423 		 * but still dirty their pages
2424 		 */
2425 		balance_dirty_pages_ratelimited(mapping);
2426 	}
2427 
2428 	if (!page_mkwrite)
2429 		file_update_time(vma->vm_file);
2430 }
2431 
2432 /*
2433  * Handle write page faults for pages that can be reused in the current vma
2434  *
2435  * This can happen either due to the mapping being with the VM_SHARED flag,
2436  * or due to us being the last reference standing to the page. In either
2437  * case, all we need to do here is to mark the page as writable and update
2438  * any related book-keeping.
2439  */
2440 static inline void wp_page_reuse(struct vm_fault *vmf)
2441 	__releases(vmf->ptl)
2442 {
2443 	struct vm_area_struct *vma = vmf->vma;
2444 	struct page *page = vmf->page;
2445 	pte_t entry;
2446 	/*
2447 	 * Clear the pages cpupid information as the existing
2448 	 * information potentially belongs to a now completely
2449 	 * unrelated process.
2450 	 */
2451 	if (page)
2452 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2453 
2454 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2455 	entry = pte_mkyoung(vmf->orig_pte);
2456 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2457 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2458 		update_mmu_cache(vma, vmf->address, vmf->pte);
2459 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2460 }
2461 
2462 /*
2463  * Handle the case of a page which we actually need to copy to a new page.
2464  *
2465  * Called with mmap_sem locked and the old page referenced, but
2466  * without the ptl held.
2467  *
2468  * High level logic flow:
2469  *
2470  * - Allocate a page, copy the content of the old page to the new one.
2471  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2472  * - Take the PTL. If the pte changed, bail out and release the allocated page
2473  * - If the pte is still the way we remember it, update the page table and all
2474  *   relevant references. This includes dropping the reference the page-table
2475  *   held to the old page, as well as updating the rmap.
2476  * - In any case, unlock the PTL and drop the reference we took to the old page.
2477  */
2478 static int wp_page_copy(struct vm_fault *vmf)
2479 {
2480 	struct vm_area_struct *vma = vmf->vma;
2481 	struct mm_struct *mm = vma->vm_mm;
2482 	struct page *old_page = vmf->page;
2483 	struct page *new_page = NULL;
2484 	pte_t entry;
2485 	int page_copied = 0;
2486 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2487 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2488 	struct mem_cgroup *memcg;
2489 
2490 	if (unlikely(anon_vma_prepare(vma)))
2491 		goto oom;
2492 
2493 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2494 		new_page = alloc_zeroed_user_highpage_movable(vma,
2495 							      vmf->address);
2496 		if (!new_page)
2497 			goto oom;
2498 	} else {
2499 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2500 				vmf->address);
2501 		if (!new_page)
2502 			goto oom;
2503 		cow_user_page(new_page, old_page, vmf->address, vma);
2504 	}
2505 
2506 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2507 		goto oom_free_new;
2508 
2509 	__SetPageUptodate(new_page);
2510 
2511 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2512 
2513 	/*
2514 	 * Re-check the pte - we dropped the lock
2515 	 */
2516 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2517 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2518 		if (old_page) {
2519 			if (!PageAnon(old_page)) {
2520 				dec_mm_counter_fast(mm,
2521 						mm_counter_file(old_page));
2522 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2523 			}
2524 		} else {
2525 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2526 		}
2527 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2528 		entry = mk_pte(new_page, vma->vm_page_prot);
2529 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2530 		/*
2531 		 * Clear the pte entry and flush it first, before updating the
2532 		 * pte with the new entry. This will avoid a race condition
2533 		 * seen in the presence of one thread doing SMC and another
2534 		 * thread doing COW.
2535 		 */
2536 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2537 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2538 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2539 		lru_cache_add_active_or_unevictable(new_page, vma);
2540 		/*
2541 		 * We call the notify macro here because, when using secondary
2542 		 * mmu page tables (such as kvm shadow page tables), we want the
2543 		 * new page to be mapped directly into the secondary page table.
2544 		 */
2545 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2546 		update_mmu_cache(vma, vmf->address, vmf->pte);
2547 		if (old_page) {
2548 			/*
2549 			 * Only after switching the pte to the new page may
2550 			 * we remove the mapcount here. Otherwise another
2551 			 * process may come and find the rmap count decremented
2552 			 * before the pte is switched to the new page, and
2553 			 * "reuse" the old page writing into it while our pte
2554 			 * here still points into it and can be read by other
2555 			 * threads.
2556 			 *
2557 			 * The critical issue is to order this
2558 			 * page_remove_rmap with the ptp_clear_flush above.
2559 			 * Those stores are ordered by (if nothing else,)
2560 			 * the barrier present in the atomic_add_negative
2561 			 * in page_remove_rmap.
2562 			 *
2563 			 * Then the TLB flush in ptep_clear_flush ensures that
2564 			 * no process can access the old page before the
2565 			 * decremented mapcount is visible. And the old page
2566 			 * cannot be reused until after the decremented
2567 			 * mapcount is visible. So transitively, TLBs to
2568 			 * old page will be flushed before it can be reused.
2569 			 */
2570 			page_remove_rmap(old_page, false);
2571 		}
2572 
2573 		/* Free the old page.. */
2574 		new_page = old_page;
2575 		page_copied = 1;
2576 	} else {
2577 		mem_cgroup_cancel_charge(new_page, memcg, false);
2578 	}
2579 
2580 	if (new_page)
2581 		put_page(new_page);
2582 
2583 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2584 	/*
2585 	 * No need to double call mmu_notifier->invalidate_range() callback as
2586 	 * the above ptep_clear_flush_notify() did already call it.
2587 	 */
2588 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2589 	if (old_page) {
2590 		/*
2591 		 * Don't let another task, with possibly unlocked vma,
2592 		 * keep the mlocked page.
2593 		 */
2594 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2595 			lock_page(old_page);	/* LRU manipulation */
2596 			if (PageMlocked(old_page))
2597 				munlock_vma_page(old_page);
2598 			unlock_page(old_page);
2599 		}
2600 		put_page(old_page);
2601 	}
2602 	return page_copied ? VM_FAULT_WRITE : 0;
2603 oom_free_new:
2604 	put_page(new_page);
2605 oom:
2606 	if (old_page)
2607 		put_page(old_page);
2608 	return VM_FAULT_OOM;
2609 }
2610 
2611 /**
2612  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2613  *			  writeable once the page is prepared
2614  *
2615  * @vmf: structure describing the fault
2616  *
2617  * This function handles all that is needed to finish a write page fault in a
2618  * shared mapping due to PTE being read-only once the mapped page is prepared.
2619  * It handles locking of PTE and modifying it. The function returns
2620  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2621  * lock.
2622  *
2623  * The function expects the page to be locked or other protection against
2624  * concurrent faults / writeback (such as DAX radix tree locks).
2625  */
2626 int finish_mkwrite_fault(struct vm_fault *vmf)
2627 {
2628 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2629 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2630 				       &vmf->ptl);
2631 	/*
2632 	 * We might have raced with another page fault while we released the
2633 	 * pte_offset_map_lock.
2634 	 */
2635 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2636 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2637 		return VM_FAULT_NOPAGE;
2638 	}
2639 	wp_page_reuse(vmf);
2640 	return 0;
2641 }
2642 
2643 /*
2644  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2645  * mapping
2646  */
2647 static int wp_pfn_shared(struct vm_fault *vmf)
2648 {
2649 	struct vm_area_struct *vma = vmf->vma;
2650 
2651 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2652 		int ret;
2653 
2654 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2655 		vmf->flags |= FAULT_FLAG_MKWRITE;
2656 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2657 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2658 			return ret;
2659 		return finish_mkwrite_fault(vmf);
2660 	}
2661 	wp_page_reuse(vmf);
2662 	return VM_FAULT_WRITE;
2663 }
2664 
2665 static int wp_page_shared(struct vm_fault *vmf)
2666 	__releases(vmf->ptl)
2667 {
2668 	struct vm_area_struct *vma = vmf->vma;
2669 
2670 	get_page(vmf->page);
2671 
2672 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2673 		int tmp;
2674 
2675 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2676 		tmp = do_page_mkwrite(vmf);
2677 		if (unlikely(!tmp || (tmp &
2678 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2679 			put_page(vmf->page);
2680 			return tmp;
2681 		}
2682 		tmp = finish_mkwrite_fault(vmf);
2683 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2684 			unlock_page(vmf->page);
2685 			put_page(vmf->page);
2686 			return tmp;
2687 		}
2688 	} else {
2689 		wp_page_reuse(vmf);
2690 		lock_page(vmf->page);
2691 	}
2692 	fault_dirty_shared_page(vma, vmf->page);
2693 	put_page(vmf->page);
2694 
2695 	return VM_FAULT_WRITE;
2696 }
2697 
2698 /*
2699  * This routine handles present pages, when users try to write
2700  * to a shared page. It is done by copying the page to a new address
2701  * and decrementing the shared-page counter for the old page.
2702  *
2703  * Note that this routine assumes that the protection checks have been
2704  * done by the caller (the low-level page fault routine in most cases).
2705  * Thus we can safely just mark it writable once we've done any necessary
2706  * COW.
2707  *
2708  * We also mark the page dirty at this point even though the page will
2709  * change only once the write actually happens. This avoids a few races,
2710  * and potentially makes it more efficient.
2711  *
2712  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2713  * but allow concurrent faults), with pte both mapped and locked.
2714  * We return with mmap_sem still held, but pte unmapped and unlocked.
2715  */
2716 static int do_wp_page(struct vm_fault *vmf)
2717 	__releases(vmf->ptl)
2718 {
2719 	struct vm_area_struct *vma = vmf->vma;
2720 
2721 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2722 	if (!vmf->page) {
2723 		/*
2724 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2725 		 * VM_PFNMAP VMA.
2726 		 *
2727 		 * We should not cow pages in a shared writeable mapping.
2728 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2729 		 */
2730 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2731 				     (VM_WRITE|VM_SHARED))
2732 			return wp_pfn_shared(vmf);
2733 
2734 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2735 		return wp_page_copy(vmf);
2736 	}
2737 
2738 	/*
2739 	 * Take out anonymous pages first, anonymous shared vmas are
2740 	 * not dirty accountable.
2741 	 */
2742 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2743 		int total_map_swapcount;
2744 		if (!trylock_page(vmf->page)) {
2745 			get_page(vmf->page);
2746 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2747 			lock_page(vmf->page);
2748 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2749 					vmf->address, &vmf->ptl);
2750 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2751 				unlock_page(vmf->page);
2752 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2753 				put_page(vmf->page);
2754 				return 0;
2755 			}
2756 			put_page(vmf->page);
2757 		}
2758 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2759 			if (total_map_swapcount == 1) {
2760 				/*
2761 				 * The page is all ours. Move it to
2762 				 * our anon_vma so the rmap code will
2763 				 * not search our parent or siblings.
2764 				 * Protected against the rmap code by
2765 				 * the page lock.
2766 				 */
2767 				page_move_anon_rmap(vmf->page, vma);
2768 			}
2769 			unlock_page(vmf->page);
2770 			wp_page_reuse(vmf);
2771 			return VM_FAULT_WRITE;
2772 		}
2773 		unlock_page(vmf->page);
2774 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2775 					(VM_WRITE|VM_SHARED))) {
2776 		return wp_page_shared(vmf);
2777 	}
2778 
2779 	/*
2780 	 * Ok, we need to copy. Oh, well..
2781 	 */
2782 	get_page(vmf->page);
2783 
2784 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2785 	return wp_page_copy(vmf);
2786 }
2787 
2788 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2789 		unsigned long start_addr, unsigned long end_addr,
2790 		struct zap_details *details)
2791 {
2792 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2793 }
2794 
2795 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2796 					    struct zap_details *details)
2797 {
2798 	struct vm_area_struct *vma;
2799 	pgoff_t vba, vea, zba, zea;
2800 
2801 	vma_interval_tree_foreach(vma, root,
2802 			details->first_index, details->last_index) {
2803 
2804 		vba = vma->vm_pgoff;
2805 		vea = vba + vma_pages(vma) - 1;
2806 		zba = details->first_index;
2807 		if (zba < vba)
2808 			zba = vba;
2809 		zea = details->last_index;
2810 		if (zea > vea)
2811 			zea = vea;
2812 
2813 		unmap_mapping_range_vma(vma,
2814 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2815 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2816 				details);
2817 	}
2818 }
2819 
2820 /**
2821  * unmap_mapping_pages() - Unmap pages from processes.
2822  * @mapping: The address space containing pages to be unmapped.
2823  * @start: Index of first page to be unmapped.
2824  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2825  * @even_cows: Whether to unmap even private COWed pages.
2826  *
2827  * Unmap the pages in this address space from any userspace process which
2828  * has them mmaped.  Generally, you want to remove COWed pages as well when
2829  * a file is being truncated, but not when invalidating pages from the page
2830  * cache.
2831  */
2832 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2833 		pgoff_t nr, bool even_cows)
2834 {
2835 	struct zap_details details = { };
2836 
2837 	details.check_mapping = even_cows ? NULL : mapping;
2838 	details.first_index = start;
2839 	details.last_index = start + nr - 1;
2840 	if (details.last_index < details.first_index)
2841 		details.last_index = ULONG_MAX;
2842 
2843 	i_mmap_lock_write(mapping);
2844 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2845 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2846 	i_mmap_unlock_write(mapping);
2847 }
2848 
2849 /**
2850  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2851  * address_space corresponding to the specified byte range in the underlying
2852  * file.
2853  *
2854  * @mapping: the address space containing mmaps to be unmapped.
2855  * @holebegin: byte in first page to unmap, relative to the start of
2856  * the underlying file.  This will be rounded down to a PAGE_SIZE
2857  * boundary.  Note that this is different from truncate_pagecache(), which
2858  * must keep the partial page.  In contrast, we must get rid of
2859  * partial pages.
2860  * @holelen: size of prospective hole in bytes.  This will be rounded
2861  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2862  * end of the file.
2863  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2864  * but 0 when invalidating pagecache, don't throw away private data.
2865  */
2866 void unmap_mapping_range(struct address_space *mapping,
2867 		loff_t const holebegin, loff_t const holelen, int even_cows)
2868 {
2869 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2870 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2871 
2872 	/* Check for overflow. */
2873 	if (sizeof(holelen) > sizeof(hlen)) {
2874 		long long holeend =
2875 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2876 		if (holeend & ~(long long)ULONG_MAX)
2877 			hlen = ULONG_MAX - hba + 1;
2878 	}
2879 
2880 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2881 }
2882 EXPORT_SYMBOL(unmap_mapping_range);
2883 
2884 /*
2885  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2886  * but allow concurrent faults), and pte mapped but not yet locked.
2887  * We return with pte unmapped and unlocked.
2888  *
2889  * We return with the mmap_sem locked or unlocked in the same cases
2890  * as does filemap_fault().
2891  */
2892 int do_swap_page(struct vm_fault *vmf)
2893 {
2894 	struct vm_area_struct *vma = vmf->vma;
2895 	struct page *page = NULL, *swapcache;
2896 	struct mem_cgroup *memcg;
2897 	swp_entry_t entry;
2898 	pte_t pte;
2899 	int locked;
2900 	int exclusive = 0;
2901 	int ret = 0;
2902 
2903 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2904 		goto out;
2905 
2906 	entry = pte_to_swp_entry(vmf->orig_pte);
2907 	if (unlikely(non_swap_entry(entry))) {
2908 		if (is_migration_entry(entry)) {
2909 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2910 					     vmf->address);
2911 		} else if (is_device_private_entry(entry)) {
2912 			/*
2913 			 * For un-addressable device memory we call the pgmap
2914 			 * fault handler callback. The callback must migrate
2915 			 * the page back to some CPU accessible page.
2916 			 */
2917 			ret = device_private_entry_fault(vma, vmf->address, entry,
2918 						 vmf->flags, vmf->pmd);
2919 		} else if (is_hwpoison_entry(entry)) {
2920 			ret = VM_FAULT_HWPOISON;
2921 		} else {
2922 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2923 			ret = VM_FAULT_SIGBUS;
2924 		}
2925 		goto out;
2926 	}
2927 
2928 
2929 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2930 	page = lookup_swap_cache(entry, vma, vmf->address);
2931 	swapcache = page;
2932 
2933 	if (!page) {
2934 		struct swap_info_struct *si = swp_swap_info(entry);
2935 
2936 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2937 				__swap_count(si, entry) == 1) {
2938 			/* skip swapcache */
2939 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2940 							vmf->address);
2941 			if (page) {
2942 				__SetPageLocked(page);
2943 				__SetPageSwapBacked(page);
2944 				set_page_private(page, entry.val);
2945 				lru_cache_add_anon(page);
2946 				swap_readpage(page, true);
2947 			}
2948 		} else {
2949 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2950 						vmf);
2951 			swapcache = page;
2952 		}
2953 
2954 		if (!page) {
2955 			/*
2956 			 * Back out if somebody else faulted in this pte
2957 			 * while we released the pte lock.
2958 			 */
2959 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2960 					vmf->address, &vmf->ptl);
2961 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2962 				ret = VM_FAULT_OOM;
2963 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2964 			goto unlock;
2965 		}
2966 
2967 		/* Had to read the page from swap area: Major fault */
2968 		ret = VM_FAULT_MAJOR;
2969 		count_vm_event(PGMAJFAULT);
2970 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2971 	} else if (PageHWPoison(page)) {
2972 		/*
2973 		 * hwpoisoned dirty swapcache pages are kept for killing
2974 		 * owner processes (which may be unknown at hwpoison time)
2975 		 */
2976 		ret = VM_FAULT_HWPOISON;
2977 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2978 		goto out_release;
2979 	}
2980 
2981 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2982 
2983 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2984 	if (!locked) {
2985 		ret |= VM_FAULT_RETRY;
2986 		goto out_release;
2987 	}
2988 
2989 	/*
2990 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2991 	 * release the swapcache from under us.  The page pin, and pte_same
2992 	 * test below, are not enough to exclude that.  Even if it is still
2993 	 * swapcache, we need to check that the page's swap has not changed.
2994 	 */
2995 	if (unlikely((!PageSwapCache(page) ||
2996 			page_private(page) != entry.val)) && swapcache)
2997 		goto out_page;
2998 
2999 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3000 	if (unlikely(!page)) {
3001 		ret = VM_FAULT_OOM;
3002 		page = swapcache;
3003 		goto out_page;
3004 	}
3005 
3006 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3007 				&memcg, false)) {
3008 		ret = VM_FAULT_OOM;
3009 		goto out_page;
3010 	}
3011 
3012 	/*
3013 	 * Back out if somebody else already faulted in this pte.
3014 	 */
3015 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3016 			&vmf->ptl);
3017 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3018 		goto out_nomap;
3019 
3020 	if (unlikely(!PageUptodate(page))) {
3021 		ret = VM_FAULT_SIGBUS;
3022 		goto out_nomap;
3023 	}
3024 
3025 	/*
3026 	 * The page isn't present yet, go ahead with the fault.
3027 	 *
3028 	 * Be careful about the sequence of operations here.
3029 	 * To get its accounting right, reuse_swap_page() must be called
3030 	 * while the page is counted on swap but not yet in mapcount i.e.
3031 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3032 	 * must be called after the swap_free(), or it will never succeed.
3033 	 */
3034 
3035 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3036 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3037 	pte = mk_pte(page, vma->vm_page_prot);
3038 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3039 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3040 		vmf->flags &= ~FAULT_FLAG_WRITE;
3041 		ret |= VM_FAULT_WRITE;
3042 		exclusive = RMAP_EXCLUSIVE;
3043 	}
3044 	flush_icache_page(vma, page);
3045 	if (pte_swp_soft_dirty(vmf->orig_pte))
3046 		pte = pte_mksoft_dirty(pte);
3047 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3048 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3049 	vmf->orig_pte = pte;
3050 
3051 	/* ksm created a completely new copy */
3052 	if (unlikely(page != swapcache && swapcache)) {
3053 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3054 		mem_cgroup_commit_charge(page, memcg, false, false);
3055 		lru_cache_add_active_or_unevictable(page, vma);
3056 	} else {
3057 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3058 		mem_cgroup_commit_charge(page, memcg, true, false);
3059 		activate_page(page);
3060 	}
3061 
3062 	swap_free(entry);
3063 	if (mem_cgroup_swap_full(page) ||
3064 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3065 		try_to_free_swap(page);
3066 	unlock_page(page);
3067 	if (page != swapcache && swapcache) {
3068 		/*
3069 		 * Hold the lock to avoid the swap entry to be reused
3070 		 * until we take the PT lock for the pte_same() check
3071 		 * (to avoid false positives from pte_same). For
3072 		 * further safety release the lock after the swap_free
3073 		 * so that the swap count won't change under a
3074 		 * parallel locked swapcache.
3075 		 */
3076 		unlock_page(swapcache);
3077 		put_page(swapcache);
3078 	}
3079 
3080 	if (vmf->flags & FAULT_FLAG_WRITE) {
3081 		ret |= do_wp_page(vmf);
3082 		if (ret & VM_FAULT_ERROR)
3083 			ret &= VM_FAULT_ERROR;
3084 		goto out;
3085 	}
3086 
3087 	/* No need to invalidate - it was non-present before */
3088 	update_mmu_cache(vma, vmf->address, vmf->pte);
3089 unlock:
3090 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3091 out:
3092 	return ret;
3093 out_nomap:
3094 	mem_cgroup_cancel_charge(page, memcg, false);
3095 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3096 out_page:
3097 	unlock_page(page);
3098 out_release:
3099 	put_page(page);
3100 	if (page != swapcache && swapcache) {
3101 		unlock_page(swapcache);
3102 		put_page(swapcache);
3103 	}
3104 	return ret;
3105 }
3106 
3107 /*
3108  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3109  * but allow concurrent faults), and pte mapped but not yet locked.
3110  * We return with mmap_sem still held, but pte unmapped and unlocked.
3111  */
3112 static int do_anonymous_page(struct vm_fault *vmf)
3113 {
3114 	struct vm_area_struct *vma = vmf->vma;
3115 	struct mem_cgroup *memcg;
3116 	struct page *page;
3117 	int ret = 0;
3118 	pte_t entry;
3119 
3120 	/* File mapping without ->vm_ops ? */
3121 	if (vma->vm_flags & VM_SHARED)
3122 		return VM_FAULT_SIGBUS;
3123 
3124 	/*
3125 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3126 	 * pte_offset_map() on pmds where a huge pmd might be created
3127 	 * from a different thread.
3128 	 *
3129 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3130 	 * parallel threads are excluded by other means.
3131 	 *
3132 	 * Here we only have down_read(mmap_sem).
3133 	 */
3134 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3135 		return VM_FAULT_OOM;
3136 
3137 	/* See the comment in pte_alloc_one_map() */
3138 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3139 		return 0;
3140 
3141 	/* Use the zero-page for reads */
3142 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3143 			!mm_forbids_zeropage(vma->vm_mm)) {
3144 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3145 						vma->vm_page_prot));
3146 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3147 				vmf->address, &vmf->ptl);
3148 		if (!pte_none(*vmf->pte))
3149 			goto unlock;
3150 		ret = check_stable_address_space(vma->vm_mm);
3151 		if (ret)
3152 			goto unlock;
3153 		/* Deliver the page fault to userland, check inside PT lock */
3154 		if (userfaultfd_missing(vma)) {
3155 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3156 			return handle_userfault(vmf, VM_UFFD_MISSING);
3157 		}
3158 		goto setpte;
3159 	}
3160 
3161 	/* Allocate our own private page. */
3162 	if (unlikely(anon_vma_prepare(vma)))
3163 		goto oom;
3164 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3165 	if (!page)
3166 		goto oom;
3167 
3168 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3169 		goto oom_free_page;
3170 
3171 	/*
3172 	 * The memory barrier inside __SetPageUptodate makes sure that
3173 	 * preceeding stores to the page contents become visible before
3174 	 * the set_pte_at() write.
3175 	 */
3176 	__SetPageUptodate(page);
3177 
3178 	entry = mk_pte(page, vma->vm_page_prot);
3179 	if (vma->vm_flags & VM_WRITE)
3180 		entry = pte_mkwrite(pte_mkdirty(entry));
3181 
3182 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3183 			&vmf->ptl);
3184 	if (!pte_none(*vmf->pte))
3185 		goto release;
3186 
3187 	ret = check_stable_address_space(vma->vm_mm);
3188 	if (ret)
3189 		goto release;
3190 
3191 	/* Deliver the page fault to userland, check inside PT lock */
3192 	if (userfaultfd_missing(vma)) {
3193 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3194 		mem_cgroup_cancel_charge(page, memcg, false);
3195 		put_page(page);
3196 		return handle_userfault(vmf, VM_UFFD_MISSING);
3197 	}
3198 
3199 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3200 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3201 	mem_cgroup_commit_charge(page, memcg, false, false);
3202 	lru_cache_add_active_or_unevictable(page, vma);
3203 setpte:
3204 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3205 
3206 	/* No need to invalidate - it was non-present before */
3207 	update_mmu_cache(vma, vmf->address, vmf->pte);
3208 unlock:
3209 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3210 	return ret;
3211 release:
3212 	mem_cgroup_cancel_charge(page, memcg, false);
3213 	put_page(page);
3214 	goto unlock;
3215 oom_free_page:
3216 	put_page(page);
3217 oom:
3218 	return VM_FAULT_OOM;
3219 }
3220 
3221 /*
3222  * The mmap_sem must have been held on entry, and may have been
3223  * released depending on flags and vma->vm_ops->fault() return value.
3224  * See filemap_fault() and __lock_page_retry().
3225  */
3226 static int __do_fault(struct vm_fault *vmf)
3227 {
3228 	struct vm_area_struct *vma = vmf->vma;
3229 	int ret;
3230 
3231 	ret = vma->vm_ops->fault(vmf);
3232 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3233 			    VM_FAULT_DONE_COW)))
3234 		return ret;
3235 
3236 	if (unlikely(PageHWPoison(vmf->page))) {
3237 		if (ret & VM_FAULT_LOCKED)
3238 			unlock_page(vmf->page);
3239 		put_page(vmf->page);
3240 		vmf->page = NULL;
3241 		return VM_FAULT_HWPOISON;
3242 	}
3243 
3244 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3245 		lock_page(vmf->page);
3246 	else
3247 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3248 
3249 	return ret;
3250 }
3251 
3252 /*
3253  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3254  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3255  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3256  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3257  */
3258 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3259 {
3260 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3261 }
3262 
3263 static int pte_alloc_one_map(struct vm_fault *vmf)
3264 {
3265 	struct vm_area_struct *vma = vmf->vma;
3266 
3267 	if (!pmd_none(*vmf->pmd))
3268 		goto map_pte;
3269 	if (vmf->prealloc_pte) {
3270 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3271 		if (unlikely(!pmd_none(*vmf->pmd))) {
3272 			spin_unlock(vmf->ptl);
3273 			goto map_pte;
3274 		}
3275 
3276 		mm_inc_nr_ptes(vma->vm_mm);
3277 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3278 		spin_unlock(vmf->ptl);
3279 		vmf->prealloc_pte = NULL;
3280 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3281 		return VM_FAULT_OOM;
3282 	}
3283 map_pte:
3284 	/*
3285 	 * If a huge pmd materialized under us just retry later.  Use
3286 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3287 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3288 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3289 	 * running immediately after a huge pmd fault in a different thread of
3290 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3291 	 * All we have to ensure is that it is a regular pmd that we can walk
3292 	 * with pte_offset_map() and we can do that through an atomic read in
3293 	 * C, which is what pmd_trans_unstable() provides.
3294 	 */
3295 	if (pmd_devmap_trans_unstable(vmf->pmd))
3296 		return VM_FAULT_NOPAGE;
3297 
3298 	/*
3299 	 * At this point we know that our vmf->pmd points to a page of ptes
3300 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3301 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3302 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3303 	 * be valid and we will re-check to make sure the vmf->pte isn't
3304 	 * pte_none() under vmf->ptl protection when we return to
3305 	 * alloc_set_pte().
3306 	 */
3307 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3308 			&vmf->ptl);
3309 	return 0;
3310 }
3311 
3312 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3313 
3314 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3315 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3316 		unsigned long haddr)
3317 {
3318 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3319 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3320 		return false;
3321 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3322 		return false;
3323 	return true;
3324 }
3325 
3326 static void deposit_prealloc_pte(struct vm_fault *vmf)
3327 {
3328 	struct vm_area_struct *vma = vmf->vma;
3329 
3330 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3331 	/*
3332 	 * We are going to consume the prealloc table,
3333 	 * count that as nr_ptes.
3334 	 */
3335 	mm_inc_nr_ptes(vma->vm_mm);
3336 	vmf->prealloc_pte = NULL;
3337 }
3338 
3339 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3340 {
3341 	struct vm_area_struct *vma = vmf->vma;
3342 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3343 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3344 	pmd_t entry;
3345 	int i, ret;
3346 
3347 	if (!transhuge_vma_suitable(vma, haddr))
3348 		return VM_FAULT_FALLBACK;
3349 
3350 	ret = VM_FAULT_FALLBACK;
3351 	page = compound_head(page);
3352 
3353 	/*
3354 	 * Archs like ppc64 need additonal space to store information
3355 	 * related to pte entry. Use the preallocated table for that.
3356 	 */
3357 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3358 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3359 		if (!vmf->prealloc_pte)
3360 			return VM_FAULT_OOM;
3361 		smp_wmb(); /* See comment in __pte_alloc() */
3362 	}
3363 
3364 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3365 	if (unlikely(!pmd_none(*vmf->pmd)))
3366 		goto out;
3367 
3368 	for (i = 0; i < HPAGE_PMD_NR; i++)
3369 		flush_icache_page(vma, page + i);
3370 
3371 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3372 	if (write)
3373 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3374 
3375 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3376 	page_add_file_rmap(page, true);
3377 	/*
3378 	 * deposit and withdraw with pmd lock held
3379 	 */
3380 	if (arch_needs_pgtable_deposit())
3381 		deposit_prealloc_pte(vmf);
3382 
3383 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3384 
3385 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3386 
3387 	/* fault is handled */
3388 	ret = 0;
3389 	count_vm_event(THP_FILE_MAPPED);
3390 out:
3391 	spin_unlock(vmf->ptl);
3392 	return ret;
3393 }
3394 #else
3395 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3396 {
3397 	BUILD_BUG();
3398 	return 0;
3399 }
3400 #endif
3401 
3402 /**
3403  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3404  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3405  *
3406  * @vmf: fault environment
3407  * @memcg: memcg to charge page (only for private mappings)
3408  * @page: page to map
3409  *
3410  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3411  * return.
3412  *
3413  * Target users are page handler itself and implementations of
3414  * vm_ops->map_pages.
3415  */
3416 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3417 		struct page *page)
3418 {
3419 	struct vm_area_struct *vma = vmf->vma;
3420 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3421 	pte_t entry;
3422 	int ret;
3423 
3424 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3425 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3426 		/* THP on COW? */
3427 		VM_BUG_ON_PAGE(memcg, page);
3428 
3429 		ret = do_set_pmd(vmf, page);
3430 		if (ret != VM_FAULT_FALLBACK)
3431 			return ret;
3432 	}
3433 
3434 	if (!vmf->pte) {
3435 		ret = pte_alloc_one_map(vmf);
3436 		if (ret)
3437 			return ret;
3438 	}
3439 
3440 	/* Re-check under ptl */
3441 	if (unlikely(!pte_none(*vmf->pte)))
3442 		return VM_FAULT_NOPAGE;
3443 
3444 	flush_icache_page(vma, page);
3445 	entry = mk_pte(page, vma->vm_page_prot);
3446 	if (write)
3447 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3448 	/* copy-on-write page */
3449 	if (write && !(vma->vm_flags & VM_SHARED)) {
3450 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3451 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3452 		mem_cgroup_commit_charge(page, memcg, false, false);
3453 		lru_cache_add_active_or_unevictable(page, vma);
3454 	} else {
3455 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3456 		page_add_file_rmap(page, false);
3457 	}
3458 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3459 
3460 	/* no need to invalidate: a not-present page won't be cached */
3461 	update_mmu_cache(vma, vmf->address, vmf->pte);
3462 
3463 	return 0;
3464 }
3465 
3466 
3467 /**
3468  * finish_fault - finish page fault once we have prepared the page to fault
3469  *
3470  * @vmf: structure describing the fault
3471  *
3472  * This function handles all that is needed to finish a page fault once the
3473  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3474  * given page, adds reverse page mapping, handles memcg charges and LRU
3475  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3476  * error.
3477  *
3478  * The function expects the page to be locked and on success it consumes a
3479  * reference of a page being mapped (for the PTE which maps it).
3480  */
3481 int finish_fault(struct vm_fault *vmf)
3482 {
3483 	struct page *page;
3484 	int ret = 0;
3485 
3486 	/* Did we COW the page? */
3487 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3488 	    !(vmf->vma->vm_flags & VM_SHARED))
3489 		page = vmf->cow_page;
3490 	else
3491 		page = vmf->page;
3492 
3493 	/*
3494 	 * check even for read faults because we might have lost our CoWed
3495 	 * page
3496 	 */
3497 	if (!(vmf->vma->vm_flags & VM_SHARED))
3498 		ret = check_stable_address_space(vmf->vma->vm_mm);
3499 	if (!ret)
3500 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3501 	if (vmf->pte)
3502 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3503 	return ret;
3504 }
3505 
3506 static unsigned long fault_around_bytes __read_mostly =
3507 	rounddown_pow_of_two(65536);
3508 
3509 #ifdef CONFIG_DEBUG_FS
3510 static int fault_around_bytes_get(void *data, u64 *val)
3511 {
3512 	*val = fault_around_bytes;
3513 	return 0;
3514 }
3515 
3516 /*
3517  * fault_around_bytes must be rounded down to the nearest page order as it's
3518  * what do_fault_around() expects to see.
3519  */
3520 static int fault_around_bytes_set(void *data, u64 val)
3521 {
3522 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3523 		return -EINVAL;
3524 	if (val > PAGE_SIZE)
3525 		fault_around_bytes = rounddown_pow_of_two(val);
3526 	else
3527 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3528 	return 0;
3529 }
3530 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3531 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3532 
3533 static int __init fault_around_debugfs(void)
3534 {
3535 	void *ret;
3536 
3537 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3538 			&fault_around_bytes_fops);
3539 	if (!ret)
3540 		pr_warn("Failed to create fault_around_bytes in debugfs");
3541 	return 0;
3542 }
3543 late_initcall(fault_around_debugfs);
3544 #endif
3545 
3546 /*
3547  * do_fault_around() tries to map few pages around the fault address. The hope
3548  * is that the pages will be needed soon and this will lower the number of
3549  * faults to handle.
3550  *
3551  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3552  * not ready to be mapped: not up-to-date, locked, etc.
3553  *
3554  * This function is called with the page table lock taken. In the split ptlock
3555  * case the page table lock only protects only those entries which belong to
3556  * the page table corresponding to the fault address.
3557  *
3558  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3559  * only once.
3560  *
3561  * fault_around_bytes defines how many bytes we'll try to map.
3562  * do_fault_around() expects it to be set to a power of two less than or equal
3563  * to PTRS_PER_PTE.
3564  *
3565  * The virtual address of the area that we map is naturally aligned to
3566  * fault_around_bytes rounded down to the machine page size
3567  * (and therefore to page order).  This way it's easier to guarantee
3568  * that we don't cross page table boundaries.
3569  */
3570 static int do_fault_around(struct vm_fault *vmf)
3571 {
3572 	unsigned long address = vmf->address, nr_pages, mask;
3573 	pgoff_t start_pgoff = vmf->pgoff;
3574 	pgoff_t end_pgoff;
3575 	int off, ret = 0;
3576 
3577 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3578 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3579 
3580 	vmf->address = max(address & mask, vmf->vma->vm_start);
3581 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3582 	start_pgoff -= off;
3583 
3584 	/*
3585 	 *  end_pgoff is either the end of the page table, the end of
3586 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3587 	 */
3588 	end_pgoff = start_pgoff -
3589 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3590 		PTRS_PER_PTE - 1;
3591 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3592 			start_pgoff + nr_pages - 1);
3593 
3594 	if (pmd_none(*vmf->pmd)) {
3595 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3596 						  vmf->address);
3597 		if (!vmf->prealloc_pte)
3598 			goto out;
3599 		smp_wmb(); /* See comment in __pte_alloc() */
3600 	}
3601 
3602 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3603 
3604 	/* Huge page is mapped? Page fault is solved */
3605 	if (pmd_trans_huge(*vmf->pmd)) {
3606 		ret = VM_FAULT_NOPAGE;
3607 		goto out;
3608 	}
3609 
3610 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3611 	if (!vmf->pte)
3612 		goto out;
3613 
3614 	/* check if the page fault is solved */
3615 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3616 	if (!pte_none(*vmf->pte))
3617 		ret = VM_FAULT_NOPAGE;
3618 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3619 out:
3620 	vmf->address = address;
3621 	vmf->pte = NULL;
3622 	return ret;
3623 }
3624 
3625 static int do_read_fault(struct vm_fault *vmf)
3626 {
3627 	struct vm_area_struct *vma = vmf->vma;
3628 	int ret = 0;
3629 
3630 	/*
3631 	 * Let's call ->map_pages() first and use ->fault() as fallback
3632 	 * if page by the offset is not ready to be mapped (cold cache or
3633 	 * something).
3634 	 */
3635 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3636 		ret = do_fault_around(vmf);
3637 		if (ret)
3638 			return ret;
3639 	}
3640 
3641 	ret = __do_fault(vmf);
3642 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3643 		return ret;
3644 
3645 	ret |= finish_fault(vmf);
3646 	unlock_page(vmf->page);
3647 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3648 		put_page(vmf->page);
3649 	return ret;
3650 }
3651 
3652 static int do_cow_fault(struct vm_fault *vmf)
3653 {
3654 	struct vm_area_struct *vma = vmf->vma;
3655 	int ret;
3656 
3657 	if (unlikely(anon_vma_prepare(vma)))
3658 		return VM_FAULT_OOM;
3659 
3660 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3661 	if (!vmf->cow_page)
3662 		return VM_FAULT_OOM;
3663 
3664 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3665 				&vmf->memcg, false)) {
3666 		put_page(vmf->cow_page);
3667 		return VM_FAULT_OOM;
3668 	}
3669 
3670 	ret = __do_fault(vmf);
3671 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3672 		goto uncharge_out;
3673 	if (ret & VM_FAULT_DONE_COW)
3674 		return ret;
3675 
3676 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3677 	__SetPageUptodate(vmf->cow_page);
3678 
3679 	ret |= finish_fault(vmf);
3680 	unlock_page(vmf->page);
3681 	put_page(vmf->page);
3682 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3683 		goto uncharge_out;
3684 	return ret;
3685 uncharge_out:
3686 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3687 	put_page(vmf->cow_page);
3688 	return ret;
3689 }
3690 
3691 static int do_shared_fault(struct vm_fault *vmf)
3692 {
3693 	struct vm_area_struct *vma = vmf->vma;
3694 	int ret, tmp;
3695 
3696 	ret = __do_fault(vmf);
3697 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3698 		return ret;
3699 
3700 	/*
3701 	 * Check if the backing address space wants to know that the page is
3702 	 * about to become writable
3703 	 */
3704 	if (vma->vm_ops->page_mkwrite) {
3705 		unlock_page(vmf->page);
3706 		tmp = do_page_mkwrite(vmf);
3707 		if (unlikely(!tmp ||
3708 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3709 			put_page(vmf->page);
3710 			return tmp;
3711 		}
3712 	}
3713 
3714 	ret |= finish_fault(vmf);
3715 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3716 					VM_FAULT_RETRY))) {
3717 		unlock_page(vmf->page);
3718 		put_page(vmf->page);
3719 		return ret;
3720 	}
3721 
3722 	fault_dirty_shared_page(vma, vmf->page);
3723 	return ret;
3724 }
3725 
3726 /*
3727  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3728  * but allow concurrent faults).
3729  * The mmap_sem may have been released depending on flags and our
3730  * return value.  See filemap_fault() and __lock_page_or_retry().
3731  */
3732 static int do_fault(struct vm_fault *vmf)
3733 {
3734 	struct vm_area_struct *vma = vmf->vma;
3735 	int ret;
3736 
3737 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3738 	if (!vma->vm_ops->fault)
3739 		ret = VM_FAULT_SIGBUS;
3740 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3741 		ret = do_read_fault(vmf);
3742 	else if (!(vma->vm_flags & VM_SHARED))
3743 		ret = do_cow_fault(vmf);
3744 	else
3745 		ret = do_shared_fault(vmf);
3746 
3747 	/* preallocated pagetable is unused: free it */
3748 	if (vmf->prealloc_pte) {
3749 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3750 		vmf->prealloc_pte = NULL;
3751 	}
3752 	return ret;
3753 }
3754 
3755 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3756 				unsigned long addr, int page_nid,
3757 				int *flags)
3758 {
3759 	get_page(page);
3760 
3761 	count_vm_numa_event(NUMA_HINT_FAULTS);
3762 	if (page_nid == numa_node_id()) {
3763 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3764 		*flags |= TNF_FAULT_LOCAL;
3765 	}
3766 
3767 	return mpol_misplaced(page, vma, addr);
3768 }
3769 
3770 static int do_numa_page(struct vm_fault *vmf)
3771 {
3772 	struct vm_area_struct *vma = vmf->vma;
3773 	struct page *page = NULL;
3774 	int page_nid = -1;
3775 	int last_cpupid;
3776 	int target_nid;
3777 	bool migrated = false;
3778 	pte_t pte;
3779 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3780 	int flags = 0;
3781 
3782 	/*
3783 	 * The "pte" at this point cannot be used safely without
3784 	 * validation through pte_unmap_same(). It's of NUMA type but
3785 	 * the pfn may be screwed if the read is non atomic.
3786 	 */
3787 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3788 	spin_lock(vmf->ptl);
3789 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3790 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3791 		goto out;
3792 	}
3793 
3794 	/*
3795 	 * Make it present again, Depending on how arch implementes non
3796 	 * accessible ptes, some can allow access by kernel mode.
3797 	 */
3798 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3799 	pte = pte_modify(pte, vma->vm_page_prot);
3800 	pte = pte_mkyoung(pte);
3801 	if (was_writable)
3802 		pte = pte_mkwrite(pte);
3803 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3804 	update_mmu_cache(vma, vmf->address, vmf->pte);
3805 
3806 	page = vm_normal_page(vma, vmf->address, pte);
3807 	if (!page) {
3808 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3809 		return 0;
3810 	}
3811 
3812 	/* TODO: handle PTE-mapped THP */
3813 	if (PageCompound(page)) {
3814 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3815 		return 0;
3816 	}
3817 
3818 	/*
3819 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3820 	 * much anyway since they can be in shared cache state. This misses
3821 	 * the case where a mapping is writable but the process never writes
3822 	 * to it but pte_write gets cleared during protection updates and
3823 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3824 	 * background writeback, dirty balancing and application behaviour.
3825 	 */
3826 	if (!pte_write(pte))
3827 		flags |= TNF_NO_GROUP;
3828 
3829 	/*
3830 	 * Flag if the page is shared between multiple address spaces. This
3831 	 * is later used when determining whether to group tasks together
3832 	 */
3833 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3834 		flags |= TNF_SHARED;
3835 
3836 	last_cpupid = page_cpupid_last(page);
3837 	page_nid = page_to_nid(page);
3838 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3839 			&flags);
3840 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3841 	if (target_nid == -1) {
3842 		put_page(page);
3843 		goto out;
3844 	}
3845 
3846 	/* Migrate to the requested node */
3847 	migrated = migrate_misplaced_page(page, vma, target_nid);
3848 	if (migrated) {
3849 		page_nid = target_nid;
3850 		flags |= TNF_MIGRATED;
3851 	} else
3852 		flags |= TNF_MIGRATE_FAIL;
3853 
3854 out:
3855 	if (page_nid != -1)
3856 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3857 	return 0;
3858 }
3859 
3860 static inline int create_huge_pmd(struct vm_fault *vmf)
3861 {
3862 	if (vma_is_anonymous(vmf->vma))
3863 		return do_huge_pmd_anonymous_page(vmf);
3864 	if (vmf->vma->vm_ops->huge_fault)
3865 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3866 	return VM_FAULT_FALLBACK;
3867 }
3868 
3869 /* `inline' is required to avoid gcc 4.1.2 build error */
3870 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3871 {
3872 	if (vma_is_anonymous(vmf->vma))
3873 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3874 	if (vmf->vma->vm_ops->huge_fault)
3875 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3876 
3877 	/* COW handled on pte level: split pmd */
3878 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3879 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3880 
3881 	return VM_FAULT_FALLBACK;
3882 }
3883 
3884 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3885 {
3886 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3887 }
3888 
3889 static int create_huge_pud(struct vm_fault *vmf)
3890 {
3891 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3892 	/* No support for anonymous transparent PUD pages yet */
3893 	if (vma_is_anonymous(vmf->vma))
3894 		return VM_FAULT_FALLBACK;
3895 	if (vmf->vma->vm_ops->huge_fault)
3896 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3897 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3898 	return VM_FAULT_FALLBACK;
3899 }
3900 
3901 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3902 {
3903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3904 	/* No support for anonymous transparent PUD pages yet */
3905 	if (vma_is_anonymous(vmf->vma))
3906 		return VM_FAULT_FALLBACK;
3907 	if (vmf->vma->vm_ops->huge_fault)
3908 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3909 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3910 	return VM_FAULT_FALLBACK;
3911 }
3912 
3913 /*
3914  * These routines also need to handle stuff like marking pages dirty
3915  * and/or accessed for architectures that don't do it in hardware (most
3916  * RISC architectures).  The early dirtying is also good on the i386.
3917  *
3918  * There is also a hook called "update_mmu_cache()" that architectures
3919  * with external mmu caches can use to update those (ie the Sparc or
3920  * PowerPC hashed page tables that act as extended TLBs).
3921  *
3922  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3923  * concurrent faults).
3924  *
3925  * The mmap_sem may have been released depending on flags and our return value.
3926  * See filemap_fault() and __lock_page_or_retry().
3927  */
3928 static int handle_pte_fault(struct vm_fault *vmf)
3929 {
3930 	pte_t entry;
3931 
3932 	if (unlikely(pmd_none(*vmf->pmd))) {
3933 		/*
3934 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3935 		 * want to allocate huge page, and if we expose page table
3936 		 * for an instant, it will be difficult to retract from
3937 		 * concurrent faults and from rmap lookups.
3938 		 */
3939 		vmf->pte = NULL;
3940 	} else {
3941 		/* See comment in pte_alloc_one_map() */
3942 		if (pmd_devmap_trans_unstable(vmf->pmd))
3943 			return 0;
3944 		/*
3945 		 * A regular pmd is established and it can't morph into a huge
3946 		 * pmd from under us anymore at this point because we hold the
3947 		 * mmap_sem read mode and khugepaged takes it in write mode.
3948 		 * So now it's safe to run pte_offset_map().
3949 		 */
3950 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3951 		vmf->orig_pte = *vmf->pte;
3952 
3953 		/*
3954 		 * some architectures can have larger ptes than wordsize,
3955 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3956 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3957 		 * accesses.  The code below just needs a consistent view
3958 		 * for the ifs and we later double check anyway with the
3959 		 * ptl lock held. So here a barrier will do.
3960 		 */
3961 		barrier();
3962 		if (pte_none(vmf->orig_pte)) {
3963 			pte_unmap(vmf->pte);
3964 			vmf->pte = NULL;
3965 		}
3966 	}
3967 
3968 	if (!vmf->pte) {
3969 		if (vma_is_anonymous(vmf->vma))
3970 			return do_anonymous_page(vmf);
3971 		else
3972 			return do_fault(vmf);
3973 	}
3974 
3975 	if (!pte_present(vmf->orig_pte))
3976 		return do_swap_page(vmf);
3977 
3978 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3979 		return do_numa_page(vmf);
3980 
3981 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3982 	spin_lock(vmf->ptl);
3983 	entry = vmf->orig_pte;
3984 	if (unlikely(!pte_same(*vmf->pte, entry)))
3985 		goto unlock;
3986 	if (vmf->flags & FAULT_FLAG_WRITE) {
3987 		if (!pte_write(entry))
3988 			return do_wp_page(vmf);
3989 		entry = pte_mkdirty(entry);
3990 	}
3991 	entry = pte_mkyoung(entry);
3992 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3993 				vmf->flags & FAULT_FLAG_WRITE)) {
3994 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3995 	} else {
3996 		/*
3997 		 * This is needed only for protection faults but the arch code
3998 		 * is not yet telling us if this is a protection fault or not.
3999 		 * This still avoids useless tlb flushes for .text page faults
4000 		 * with threads.
4001 		 */
4002 		if (vmf->flags & FAULT_FLAG_WRITE)
4003 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4004 	}
4005 unlock:
4006 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4007 	return 0;
4008 }
4009 
4010 /*
4011  * By the time we get here, we already hold the mm semaphore
4012  *
4013  * The mmap_sem may have been released depending on flags and our
4014  * return value.  See filemap_fault() and __lock_page_or_retry().
4015  */
4016 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4017 		unsigned int flags)
4018 {
4019 	struct vm_fault vmf = {
4020 		.vma = vma,
4021 		.address = address & PAGE_MASK,
4022 		.flags = flags,
4023 		.pgoff = linear_page_index(vma, address),
4024 		.gfp_mask = __get_fault_gfp_mask(vma),
4025 	};
4026 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4027 	struct mm_struct *mm = vma->vm_mm;
4028 	pgd_t *pgd;
4029 	p4d_t *p4d;
4030 	int ret;
4031 
4032 	pgd = pgd_offset(mm, address);
4033 	p4d = p4d_alloc(mm, pgd, address);
4034 	if (!p4d)
4035 		return VM_FAULT_OOM;
4036 
4037 	vmf.pud = pud_alloc(mm, p4d, address);
4038 	if (!vmf.pud)
4039 		return VM_FAULT_OOM;
4040 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4041 		ret = create_huge_pud(&vmf);
4042 		if (!(ret & VM_FAULT_FALLBACK))
4043 			return ret;
4044 	} else {
4045 		pud_t orig_pud = *vmf.pud;
4046 
4047 		barrier();
4048 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4049 
4050 			/* NUMA case for anonymous PUDs would go here */
4051 
4052 			if (dirty && !pud_write(orig_pud)) {
4053 				ret = wp_huge_pud(&vmf, orig_pud);
4054 				if (!(ret & VM_FAULT_FALLBACK))
4055 					return ret;
4056 			} else {
4057 				huge_pud_set_accessed(&vmf, orig_pud);
4058 				return 0;
4059 			}
4060 		}
4061 	}
4062 
4063 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4064 	if (!vmf.pmd)
4065 		return VM_FAULT_OOM;
4066 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4067 		ret = create_huge_pmd(&vmf);
4068 		if (!(ret & VM_FAULT_FALLBACK))
4069 			return ret;
4070 	} else {
4071 		pmd_t orig_pmd = *vmf.pmd;
4072 
4073 		barrier();
4074 		if (unlikely(is_swap_pmd(orig_pmd))) {
4075 			VM_BUG_ON(thp_migration_supported() &&
4076 					  !is_pmd_migration_entry(orig_pmd));
4077 			if (is_pmd_migration_entry(orig_pmd))
4078 				pmd_migration_entry_wait(mm, vmf.pmd);
4079 			return 0;
4080 		}
4081 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4082 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4083 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4084 
4085 			if (dirty && !pmd_write(orig_pmd)) {
4086 				ret = wp_huge_pmd(&vmf, orig_pmd);
4087 				if (!(ret & VM_FAULT_FALLBACK))
4088 					return ret;
4089 			} else {
4090 				huge_pmd_set_accessed(&vmf, orig_pmd);
4091 				return 0;
4092 			}
4093 		}
4094 	}
4095 
4096 	return handle_pte_fault(&vmf);
4097 }
4098 
4099 /*
4100  * By the time we get here, we already hold the mm semaphore
4101  *
4102  * The mmap_sem may have been released depending on flags and our
4103  * return value.  See filemap_fault() and __lock_page_or_retry().
4104  */
4105 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4106 		unsigned int flags)
4107 {
4108 	int ret;
4109 
4110 	__set_current_state(TASK_RUNNING);
4111 
4112 	count_vm_event(PGFAULT);
4113 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4114 
4115 	/* do counter updates before entering really critical section. */
4116 	check_sync_rss_stat(current);
4117 
4118 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4119 					    flags & FAULT_FLAG_INSTRUCTION,
4120 					    flags & FAULT_FLAG_REMOTE))
4121 		return VM_FAULT_SIGSEGV;
4122 
4123 	/*
4124 	 * Enable the memcg OOM handling for faults triggered in user
4125 	 * space.  Kernel faults are handled more gracefully.
4126 	 */
4127 	if (flags & FAULT_FLAG_USER)
4128 		mem_cgroup_oom_enable();
4129 
4130 	if (unlikely(is_vm_hugetlb_page(vma)))
4131 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4132 	else
4133 		ret = __handle_mm_fault(vma, address, flags);
4134 
4135 	if (flags & FAULT_FLAG_USER) {
4136 		mem_cgroup_oom_disable();
4137 		/*
4138 		 * The task may have entered a memcg OOM situation but
4139 		 * if the allocation error was handled gracefully (no
4140 		 * VM_FAULT_OOM), there is no need to kill anything.
4141 		 * Just clean up the OOM state peacefully.
4142 		 */
4143 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4144 			mem_cgroup_oom_synchronize(false);
4145 	}
4146 
4147 	return ret;
4148 }
4149 EXPORT_SYMBOL_GPL(handle_mm_fault);
4150 
4151 #ifndef __PAGETABLE_P4D_FOLDED
4152 /*
4153  * Allocate p4d page table.
4154  * We've already handled the fast-path in-line.
4155  */
4156 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4157 {
4158 	p4d_t *new = p4d_alloc_one(mm, address);
4159 	if (!new)
4160 		return -ENOMEM;
4161 
4162 	smp_wmb(); /* See comment in __pte_alloc */
4163 
4164 	spin_lock(&mm->page_table_lock);
4165 	if (pgd_present(*pgd))		/* Another has populated it */
4166 		p4d_free(mm, new);
4167 	else
4168 		pgd_populate(mm, pgd, new);
4169 	spin_unlock(&mm->page_table_lock);
4170 	return 0;
4171 }
4172 #endif /* __PAGETABLE_P4D_FOLDED */
4173 
4174 #ifndef __PAGETABLE_PUD_FOLDED
4175 /*
4176  * Allocate page upper directory.
4177  * We've already handled the fast-path in-line.
4178  */
4179 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4180 {
4181 	pud_t *new = pud_alloc_one(mm, address);
4182 	if (!new)
4183 		return -ENOMEM;
4184 
4185 	smp_wmb(); /* See comment in __pte_alloc */
4186 
4187 	spin_lock(&mm->page_table_lock);
4188 #ifndef __ARCH_HAS_5LEVEL_HACK
4189 	if (!p4d_present(*p4d)) {
4190 		mm_inc_nr_puds(mm);
4191 		p4d_populate(mm, p4d, new);
4192 	} else	/* Another has populated it */
4193 		pud_free(mm, new);
4194 #else
4195 	if (!pgd_present(*p4d)) {
4196 		mm_inc_nr_puds(mm);
4197 		pgd_populate(mm, p4d, new);
4198 	} else	/* Another has populated it */
4199 		pud_free(mm, new);
4200 #endif /* __ARCH_HAS_5LEVEL_HACK */
4201 	spin_unlock(&mm->page_table_lock);
4202 	return 0;
4203 }
4204 #endif /* __PAGETABLE_PUD_FOLDED */
4205 
4206 #ifndef __PAGETABLE_PMD_FOLDED
4207 /*
4208  * Allocate page middle directory.
4209  * We've already handled the fast-path in-line.
4210  */
4211 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4212 {
4213 	spinlock_t *ptl;
4214 	pmd_t *new = pmd_alloc_one(mm, address);
4215 	if (!new)
4216 		return -ENOMEM;
4217 
4218 	smp_wmb(); /* See comment in __pte_alloc */
4219 
4220 	ptl = pud_lock(mm, pud);
4221 #ifndef __ARCH_HAS_4LEVEL_HACK
4222 	if (!pud_present(*pud)) {
4223 		mm_inc_nr_pmds(mm);
4224 		pud_populate(mm, pud, new);
4225 	} else	/* Another has populated it */
4226 		pmd_free(mm, new);
4227 #else
4228 	if (!pgd_present(*pud)) {
4229 		mm_inc_nr_pmds(mm);
4230 		pgd_populate(mm, pud, new);
4231 	} else /* Another has populated it */
4232 		pmd_free(mm, new);
4233 #endif /* __ARCH_HAS_4LEVEL_HACK */
4234 	spin_unlock(ptl);
4235 	return 0;
4236 }
4237 #endif /* __PAGETABLE_PMD_FOLDED */
4238 
4239 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4240 			    unsigned long *start, unsigned long *end,
4241 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4242 {
4243 	pgd_t *pgd;
4244 	p4d_t *p4d;
4245 	pud_t *pud;
4246 	pmd_t *pmd;
4247 	pte_t *ptep;
4248 
4249 	pgd = pgd_offset(mm, address);
4250 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4251 		goto out;
4252 
4253 	p4d = p4d_offset(pgd, address);
4254 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4255 		goto out;
4256 
4257 	pud = pud_offset(p4d, address);
4258 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4259 		goto out;
4260 
4261 	pmd = pmd_offset(pud, address);
4262 	VM_BUG_ON(pmd_trans_huge(*pmd));
4263 
4264 	if (pmd_huge(*pmd)) {
4265 		if (!pmdpp)
4266 			goto out;
4267 
4268 		if (start && end) {
4269 			*start = address & PMD_MASK;
4270 			*end = *start + PMD_SIZE;
4271 			mmu_notifier_invalidate_range_start(mm, *start, *end);
4272 		}
4273 		*ptlp = pmd_lock(mm, pmd);
4274 		if (pmd_huge(*pmd)) {
4275 			*pmdpp = pmd;
4276 			return 0;
4277 		}
4278 		spin_unlock(*ptlp);
4279 		if (start && end)
4280 			mmu_notifier_invalidate_range_end(mm, *start, *end);
4281 	}
4282 
4283 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4284 		goto out;
4285 
4286 	if (start && end) {
4287 		*start = address & PAGE_MASK;
4288 		*end = *start + PAGE_SIZE;
4289 		mmu_notifier_invalidate_range_start(mm, *start, *end);
4290 	}
4291 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4292 	if (!pte_present(*ptep))
4293 		goto unlock;
4294 	*ptepp = ptep;
4295 	return 0;
4296 unlock:
4297 	pte_unmap_unlock(ptep, *ptlp);
4298 	if (start && end)
4299 		mmu_notifier_invalidate_range_end(mm, *start, *end);
4300 out:
4301 	return -EINVAL;
4302 }
4303 
4304 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4305 			     pte_t **ptepp, spinlock_t **ptlp)
4306 {
4307 	int res;
4308 
4309 	/* (void) is needed to make gcc happy */
4310 	(void) __cond_lock(*ptlp,
4311 			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4312 						    ptepp, NULL, ptlp)));
4313 	return res;
4314 }
4315 
4316 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4317 			     unsigned long *start, unsigned long *end,
4318 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4319 {
4320 	int res;
4321 
4322 	/* (void) is needed to make gcc happy */
4323 	(void) __cond_lock(*ptlp,
4324 			   !(res = __follow_pte_pmd(mm, address, start, end,
4325 						    ptepp, pmdpp, ptlp)));
4326 	return res;
4327 }
4328 EXPORT_SYMBOL(follow_pte_pmd);
4329 
4330 /**
4331  * follow_pfn - look up PFN at a user virtual address
4332  * @vma: memory mapping
4333  * @address: user virtual address
4334  * @pfn: location to store found PFN
4335  *
4336  * Only IO mappings and raw PFN mappings are allowed.
4337  *
4338  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4339  */
4340 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4341 	unsigned long *pfn)
4342 {
4343 	int ret = -EINVAL;
4344 	spinlock_t *ptl;
4345 	pte_t *ptep;
4346 
4347 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4348 		return ret;
4349 
4350 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4351 	if (ret)
4352 		return ret;
4353 	*pfn = pte_pfn(*ptep);
4354 	pte_unmap_unlock(ptep, ptl);
4355 	return 0;
4356 }
4357 EXPORT_SYMBOL(follow_pfn);
4358 
4359 #ifdef CONFIG_HAVE_IOREMAP_PROT
4360 int follow_phys(struct vm_area_struct *vma,
4361 		unsigned long address, unsigned int flags,
4362 		unsigned long *prot, resource_size_t *phys)
4363 {
4364 	int ret = -EINVAL;
4365 	pte_t *ptep, pte;
4366 	spinlock_t *ptl;
4367 
4368 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4369 		goto out;
4370 
4371 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4372 		goto out;
4373 	pte = *ptep;
4374 
4375 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4376 		goto unlock;
4377 
4378 	*prot = pgprot_val(pte_pgprot(pte));
4379 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4380 
4381 	ret = 0;
4382 unlock:
4383 	pte_unmap_unlock(ptep, ptl);
4384 out:
4385 	return ret;
4386 }
4387 
4388 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4389 			void *buf, int len, int write)
4390 {
4391 	resource_size_t phys_addr;
4392 	unsigned long prot = 0;
4393 	void __iomem *maddr;
4394 	int offset = addr & (PAGE_SIZE-1);
4395 
4396 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4397 		return -EINVAL;
4398 
4399 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4400 	if (write)
4401 		memcpy_toio(maddr + offset, buf, len);
4402 	else
4403 		memcpy_fromio(buf, maddr + offset, len);
4404 	iounmap(maddr);
4405 
4406 	return len;
4407 }
4408 EXPORT_SYMBOL_GPL(generic_access_phys);
4409 #endif
4410 
4411 /*
4412  * Access another process' address space as given in mm.  If non-NULL, use the
4413  * given task for page fault accounting.
4414  */
4415 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4416 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4417 {
4418 	struct vm_area_struct *vma;
4419 	void *old_buf = buf;
4420 	int write = gup_flags & FOLL_WRITE;
4421 
4422 	down_read(&mm->mmap_sem);
4423 	/* ignore errors, just check how much was successfully transferred */
4424 	while (len) {
4425 		int bytes, ret, offset;
4426 		void *maddr;
4427 		struct page *page = NULL;
4428 
4429 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4430 				gup_flags, &page, &vma, NULL);
4431 		if (ret <= 0) {
4432 #ifndef CONFIG_HAVE_IOREMAP_PROT
4433 			break;
4434 #else
4435 			/*
4436 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4437 			 * we can access using slightly different code.
4438 			 */
4439 			vma = find_vma(mm, addr);
4440 			if (!vma || vma->vm_start > addr)
4441 				break;
4442 			if (vma->vm_ops && vma->vm_ops->access)
4443 				ret = vma->vm_ops->access(vma, addr, buf,
4444 							  len, write);
4445 			if (ret <= 0)
4446 				break;
4447 			bytes = ret;
4448 #endif
4449 		} else {
4450 			bytes = len;
4451 			offset = addr & (PAGE_SIZE-1);
4452 			if (bytes > PAGE_SIZE-offset)
4453 				bytes = PAGE_SIZE-offset;
4454 
4455 			maddr = kmap(page);
4456 			if (write) {
4457 				copy_to_user_page(vma, page, addr,
4458 						  maddr + offset, buf, bytes);
4459 				set_page_dirty_lock(page);
4460 			} else {
4461 				copy_from_user_page(vma, page, addr,
4462 						    buf, maddr + offset, bytes);
4463 			}
4464 			kunmap(page);
4465 			put_page(page);
4466 		}
4467 		len -= bytes;
4468 		buf += bytes;
4469 		addr += bytes;
4470 	}
4471 	up_read(&mm->mmap_sem);
4472 
4473 	return buf - old_buf;
4474 }
4475 
4476 /**
4477  * access_remote_vm - access another process' address space
4478  * @mm:		the mm_struct of the target address space
4479  * @addr:	start address to access
4480  * @buf:	source or destination buffer
4481  * @len:	number of bytes to transfer
4482  * @gup_flags:	flags modifying lookup behaviour
4483  *
4484  * The caller must hold a reference on @mm.
4485  */
4486 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4487 		void *buf, int len, unsigned int gup_flags)
4488 {
4489 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4490 }
4491 
4492 /*
4493  * Access another process' address space.
4494  * Source/target buffer must be kernel space,
4495  * Do not walk the page table directly, use get_user_pages
4496  */
4497 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4498 		void *buf, int len, unsigned int gup_flags)
4499 {
4500 	struct mm_struct *mm;
4501 	int ret;
4502 
4503 	mm = get_task_mm(tsk);
4504 	if (!mm)
4505 		return 0;
4506 
4507 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4508 
4509 	mmput(mm);
4510 
4511 	return ret;
4512 }
4513 EXPORT_SYMBOL_GPL(access_process_vm);
4514 
4515 /*
4516  * Print the name of a VMA.
4517  */
4518 void print_vma_addr(char *prefix, unsigned long ip)
4519 {
4520 	struct mm_struct *mm = current->mm;
4521 	struct vm_area_struct *vma;
4522 
4523 	/*
4524 	 * we might be running from an atomic context so we cannot sleep
4525 	 */
4526 	if (!down_read_trylock(&mm->mmap_sem))
4527 		return;
4528 
4529 	vma = find_vma(mm, ip);
4530 	if (vma && vma->vm_file) {
4531 		struct file *f = vma->vm_file;
4532 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4533 		if (buf) {
4534 			char *p;
4535 
4536 			p = file_path(f, buf, PAGE_SIZE);
4537 			if (IS_ERR(p))
4538 				p = "?";
4539 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4540 					vma->vm_start,
4541 					vma->vm_end - vma->vm_start);
4542 			free_page((unsigned long)buf);
4543 		}
4544 	}
4545 	up_read(&mm->mmap_sem);
4546 }
4547 
4548 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4549 void __might_fault(const char *file, int line)
4550 {
4551 	/*
4552 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4553 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4554 	 * get paged out, therefore we'll never actually fault, and the
4555 	 * below annotations will generate false positives.
4556 	 */
4557 	if (uaccess_kernel())
4558 		return;
4559 	if (pagefault_disabled())
4560 		return;
4561 	__might_sleep(file, line, 0);
4562 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4563 	if (current->mm)
4564 		might_lock_read(&current->mm->mmap_sem);
4565 #endif
4566 }
4567 EXPORT_SYMBOL(__might_fault);
4568 #endif
4569 
4570 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4571 static void clear_gigantic_page(struct page *page,
4572 				unsigned long addr,
4573 				unsigned int pages_per_huge_page)
4574 {
4575 	int i;
4576 	struct page *p = page;
4577 
4578 	might_sleep();
4579 	for (i = 0; i < pages_per_huge_page;
4580 	     i++, p = mem_map_next(p, page, i)) {
4581 		cond_resched();
4582 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4583 	}
4584 }
4585 void clear_huge_page(struct page *page,
4586 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4587 {
4588 	int i, n, base, l;
4589 	unsigned long addr = addr_hint &
4590 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4591 
4592 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4593 		clear_gigantic_page(page, addr, pages_per_huge_page);
4594 		return;
4595 	}
4596 
4597 	/* Clear sub-page to access last to keep its cache lines hot */
4598 	might_sleep();
4599 	n = (addr_hint - addr) / PAGE_SIZE;
4600 	if (2 * n <= pages_per_huge_page) {
4601 		/* If sub-page to access in first half of huge page */
4602 		base = 0;
4603 		l = n;
4604 		/* Clear sub-pages at the end of huge page */
4605 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4606 			cond_resched();
4607 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4608 		}
4609 	} else {
4610 		/* If sub-page to access in second half of huge page */
4611 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4612 		l = pages_per_huge_page - n;
4613 		/* Clear sub-pages at the begin of huge page */
4614 		for (i = 0; i < base; i++) {
4615 			cond_resched();
4616 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4617 		}
4618 	}
4619 	/*
4620 	 * Clear remaining sub-pages in left-right-left-right pattern
4621 	 * towards the sub-page to access
4622 	 */
4623 	for (i = 0; i < l; i++) {
4624 		int left_idx = base + i;
4625 		int right_idx = base + 2 * l - 1 - i;
4626 
4627 		cond_resched();
4628 		clear_user_highpage(page + left_idx,
4629 				    addr + left_idx * PAGE_SIZE);
4630 		cond_resched();
4631 		clear_user_highpage(page + right_idx,
4632 				    addr + right_idx * PAGE_SIZE);
4633 	}
4634 }
4635 
4636 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4637 				    unsigned long addr,
4638 				    struct vm_area_struct *vma,
4639 				    unsigned int pages_per_huge_page)
4640 {
4641 	int i;
4642 	struct page *dst_base = dst;
4643 	struct page *src_base = src;
4644 
4645 	for (i = 0; i < pages_per_huge_page; ) {
4646 		cond_resched();
4647 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4648 
4649 		i++;
4650 		dst = mem_map_next(dst, dst_base, i);
4651 		src = mem_map_next(src, src_base, i);
4652 	}
4653 }
4654 
4655 void copy_user_huge_page(struct page *dst, struct page *src,
4656 			 unsigned long addr, struct vm_area_struct *vma,
4657 			 unsigned int pages_per_huge_page)
4658 {
4659 	int i;
4660 
4661 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4662 		copy_user_gigantic_page(dst, src, addr, vma,
4663 					pages_per_huge_page);
4664 		return;
4665 	}
4666 
4667 	might_sleep();
4668 	for (i = 0; i < pages_per_huge_page; i++) {
4669 		cond_resched();
4670 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4671 	}
4672 }
4673 
4674 long copy_huge_page_from_user(struct page *dst_page,
4675 				const void __user *usr_src,
4676 				unsigned int pages_per_huge_page,
4677 				bool allow_pagefault)
4678 {
4679 	void *src = (void *)usr_src;
4680 	void *page_kaddr;
4681 	unsigned long i, rc = 0;
4682 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4683 
4684 	for (i = 0; i < pages_per_huge_page; i++) {
4685 		if (allow_pagefault)
4686 			page_kaddr = kmap(dst_page + i);
4687 		else
4688 			page_kaddr = kmap_atomic(dst_page + i);
4689 		rc = copy_from_user(page_kaddr,
4690 				(const void __user *)(src + i * PAGE_SIZE),
4691 				PAGE_SIZE);
4692 		if (allow_pagefault)
4693 			kunmap(dst_page + i);
4694 		else
4695 			kunmap_atomic(page_kaddr);
4696 
4697 		ret_val -= (PAGE_SIZE - rc);
4698 		if (rc)
4699 			break;
4700 
4701 		cond_resched();
4702 	}
4703 	return ret_val;
4704 }
4705 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4706 
4707 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4708 
4709 static struct kmem_cache *page_ptl_cachep;
4710 
4711 void __init ptlock_cache_init(void)
4712 {
4713 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4714 			SLAB_PANIC, NULL);
4715 }
4716 
4717 bool ptlock_alloc(struct page *page)
4718 {
4719 	spinlock_t *ptl;
4720 
4721 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4722 	if (!ptl)
4723 		return false;
4724 	page->ptl = ptl;
4725 	return true;
4726 }
4727 
4728 void ptlock_free(struct page *page)
4729 {
4730 	kmem_cache_free(page_ptl_cachep, page->ptl);
4731 }
4732 #endif
4733