xref: /openbmc/linux/mm/memory.c (revision d5a05299306227d73b0febba9cecedf88931c507)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 #include <linux/net_mm.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90 
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94 
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98 
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
127  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
128  * and ZONE_HIGHMEM.
129  */
130 void *high_memory;
131 EXPORT_SYMBOL(high_memory);
132 
133 /*
134  * Randomize the address space (stacks, mmaps, brk, etc.).
135  *
136  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137  *   as ancient (libc5 based) binaries can segfault. )
138  */
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
141 					1;
142 #else
143 					2;
144 #endif
145 
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 	/*
150 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 	 * some architectures, even if it's performed in hardware. By
152 	 * default, "false" means prefaulted entries will be 'young'.
153 	 */
154 	return false;
155 }
156 #endif
157 
158 static int __init disable_randmaps(char *s)
159 {
160 	randomize_va_space = 0;
161 	return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164 
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167 
168 unsigned long highest_memmap_pfn __read_mostly;
169 
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
173 static int __init init_zero_pfn(void)
174 {
175 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 	return 0;
177 }
178 early_initcall(init_zero_pfn);
179 
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 	trace_rss_stat(mm, member);
183 }
184 
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 			   unsigned long addr)
191 {
192 	pgtable_t token = pmd_pgtable(*pmd);
193 	pmd_clear(pmd);
194 	pte_free_tlb(tlb, token, addr);
195 	mm_dec_nr_ptes(tlb->mm);
196 }
197 
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 				unsigned long addr, unsigned long end,
200 				unsigned long floor, unsigned long ceiling)
201 {
202 	pmd_t *pmd;
203 	unsigned long next;
204 	unsigned long start;
205 
206 	start = addr;
207 	pmd = pmd_offset(pud, addr);
208 	do {
209 		next = pmd_addr_end(addr, end);
210 		if (pmd_none_or_clear_bad(pmd))
211 			continue;
212 		free_pte_range(tlb, pmd, addr);
213 	} while (pmd++, addr = next, addr != end);
214 
215 	start &= PUD_MASK;
216 	if (start < floor)
217 		return;
218 	if (ceiling) {
219 		ceiling &= PUD_MASK;
220 		if (!ceiling)
221 			return;
222 	}
223 	if (end - 1 > ceiling - 1)
224 		return;
225 
226 	pmd = pmd_offset(pud, start);
227 	pud_clear(pud);
228 	pmd_free_tlb(tlb, pmd, start);
229 	mm_dec_nr_pmds(tlb->mm);
230 }
231 
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 				unsigned long addr, unsigned long end,
234 				unsigned long floor, unsigned long ceiling)
235 {
236 	pud_t *pud;
237 	unsigned long next;
238 	unsigned long start;
239 
240 	start = addr;
241 	pud = pud_offset(p4d, addr);
242 	do {
243 		next = pud_addr_end(addr, end);
244 		if (pud_none_or_clear_bad(pud))
245 			continue;
246 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 	} while (pud++, addr = next, addr != end);
248 
249 	start &= P4D_MASK;
250 	if (start < floor)
251 		return;
252 	if (ceiling) {
253 		ceiling &= P4D_MASK;
254 		if (!ceiling)
255 			return;
256 	}
257 	if (end - 1 > ceiling - 1)
258 		return;
259 
260 	pud = pud_offset(p4d, start);
261 	p4d_clear(p4d);
262 	pud_free_tlb(tlb, pud, start);
263 	mm_dec_nr_puds(tlb->mm);
264 }
265 
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				unsigned long addr, unsigned long end,
268 				unsigned long floor, unsigned long ceiling)
269 {
270 	p4d_t *p4d;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	p4d = p4d_offset(pgd, addr);
276 	do {
277 		next = p4d_addr_end(addr, end);
278 		if (p4d_none_or_clear_bad(p4d))
279 			continue;
280 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 	} while (p4d++, addr = next, addr != end);
282 
283 	start &= PGDIR_MASK;
284 	if (start < floor)
285 		return;
286 	if (ceiling) {
287 		ceiling &= PGDIR_MASK;
288 		if (!ceiling)
289 			return;
290 	}
291 	if (end - 1 > ceiling - 1)
292 		return;
293 
294 	p4d = p4d_offset(pgd, start);
295 	pgd_clear(pgd);
296 	p4d_free_tlb(tlb, p4d, start);
297 }
298 
299 /*
300  * This function frees user-level page tables of a process.
301  */
302 void free_pgd_range(struct mmu_gather *tlb,
303 			unsigned long addr, unsigned long end,
304 			unsigned long floor, unsigned long ceiling)
305 {
306 	pgd_t *pgd;
307 	unsigned long next;
308 
309 	/*
310 	 * The next few lines have given us lots of grief...
311 	 *
312 	 * Why are we testing PMD* at this top level?  Because often
313 	 * there will be no work to do at all, and we'd prefer not to
314 	 * go all the way down to the bottom just to discover that.
315 	 *
316 	 * Why all these "- 1"s?  Because 0 represents both the bottom
317 	 * of the address space and the top of it (using -1 for the
318 	 * top wouldn't help much: the masks would do the wrong thing).
319 	 * The rule is that addr 0 and floor 0 refer to the bottom of
320 	 * the address space, but end 0 and ceiling 0 refer to the top
321 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 	 * that end 0 case should be mythical).
323 	 *
324 	 * Wherever addr is brought up or ceiling brought down, we must
325 	 * be careful to reject "the opposite 0" before it confuses the
326 	 * subsequent tests.  But what about where end is brought down
327 	 * by PMD_SIZE below? no, end can't go down to 0 there.
328 	 *
329 	 * Whereas we round start (addr) and ceiling down, by different
330 	 * masks at different levels, in order to test whether a table
331 	 * now has no other vmas using it, so can be freed, we don't
332 	 * bother to round floor or end up - the tests don't need that.
333 	 */
334 
335 	addr &= PMD_MASK;
336 	if (addr < floor) {
337 		addr += PMD_SIZE;
338 		if (!addr)
339 			return;
340 	}
341 	if (ceiling) {
342 		ceiling &= PMD_MASK;
343 		if (!ceiling)
344 			return;
345 	}
346 	if (end - 1 > ceiling - 1)
347 		end -= PMD_SIZE;
348 	if (addr > end - 1)
349 		return;
350 	/*
351 	 * We add page table cache pages with PAGE_SIZE,
352 	 * (see pte_free_tlb()), flush the tlb if we need
353 	 */
354 	tlb_change_page_size(tlb, PAGE_SIZE);
355 	pgd = pgd_offset(tlb->mm, addr);
356 	do {
357 		next = pgd_addr_end(addr, end);
358 		if (pgd_none_or_clear_bad(pgd))
359 			continue;
360 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 	} while (pgd++, addr = next, addr != end);
362 }
363 
364 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
365 		   struct vm_area_struct *vma, unsigned long floor,
366 		   unsigned long ceiling, bool mm_wr_locked)
367 {
368 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
369 
370 	do {
371 		unsigned long addr = vma->vm_start;
372 		struct vm_area_struct *next;
373 
374 		/*
375 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376 		 * be 0.  This will underflow and is okay.
377 		 */
378 		next = mas_find(&mas, ceiling - 1);
379 
380 		/*
381 		 * Hide vma from rmap and truncate_pagecache before freeing
382 		 * pgtables
383 		 */
384 		if (mm_wr_locked)
385 			vma_start_write(vma);
386 		unlink_anon_vmas(vma);
387 		unlink_file_vma(vma);
388 
389 		if (is_vm_hugetlb_page(vma)) {
390 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 				floor, next ? next->vm_start : ceiling);
392 		} else {
393 			/*
394 			 * Optimization: gather nearby vmas into one call down
395 			 */
396 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
397 			       && !is_vm_hugetlb_page(next)) {
398 				vma = next;
399 				next = mas_find(&mas, ceiling - 1);
400 				if (mm_wr_locked)
401 					vma_start_write(vma);
402 				unlink_anon_vmas(vma);
403 				unlink_file_vma(vma);
404 			}
405 			free_pgd_range(tlb, addr, vma->vm_end,
406 				floor, next ? next->vm_start : ceiling);
407 		}
408 		vma = next;
409 	} while (vma);
410 }
411 
412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
413 {
414 	spinlock_t *ptl = pmd_lock(mm, pmd);
415 
416 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
417 		mm_inc_nr_ptes(mm);
418 		/*
419 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
420 		 * visible before the pte is made visible to other CPUs by being
421 		 * put into page tables.
422 		 *
423 		 * The other side of the story is the pointer chasing in the page
424 		 * table walking code (when walking the page table without locking;
425 		 * ie. most of the time). Fortunately, these data accesses consist
426 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
427 		 * being the notable exception) will already guarantee loads are
428 		 * seen in-order. See the alpha page table accessors for the
429 		 * smp_rmb() barriers in page table walking code.
430 		 */
431 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432 		pmd_populate(mm, pmd, *pte);
433 		*pte = NULL;
434 	}
435 	spin_unlock(ptl);
436 }
437 
438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
439 {
440 	pgtable_t new = pte_alloc_one(mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	pmd_install(mm, pmd, &new);
445 	if (new)
446 		pte_free(mm, new);
447 	return 0;
448 }
449 
450 int __pte_alloc_kernel(pmd_t *pmd)
451 {
452 	pte_t *new = pte_alloc_one_kernel(&init_mm);
453 	if (!new)
454 		return -ENOMEM;
455 
456 	spin_lock(&init_mm.page_table_lock);
457 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
458 		smp_wmb(); /* See comment in pmd_install() */
459 		pmd_populate_kernel(&init_mm, pmd, new);
460 		new = NULL;
461 	}
462 	spin_unlock(&init_mm.page_table_lock);
463 	if (new)
464 		pte_free_kernel(&init_mm, new);
465 	return 0;
466 }
467 
468 static inline void init_rss_vec(int *rss)
469 {
470 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471 }
472 
473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474 {
475 	int i;
476 
477 	if (current->mm == mm)
478 		sync_mm_rss(mm);
479 	for (i = 0; i < NR_MM_COUNTERS; i++)
480 		if (rss[i])
481 			add_mm_counter(mm, i, rss[i]);
482 }
483 
484 /*
485  * This function is called to print an error when a bad pte
486  * is found. For example, we might have a PFN-mapped pte in
487  * a region that doesn't allow it.
488  *
489  * The calling function must still handle the error.
490  */
491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492 			  pte_t pte, struct page *page)
493 {
494 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
495 	p4d_t *p4d = p4d_offset(pgd, addr);
496 	pud_t *pud = pud_offset(p4d, addr);
497 	pmd_t *pmd = pmd_offset(pud, addr);
498 	struct address_space *mapping;
499 	pgoff_t index;
500 	static unsigned long resume;
501 	static unsigned long nr_shown;
502 	static unsigned long nr_unshown;
503 
504 	/*
505 	 * Allow a burst of 60 reports, then keep quiet for that minute;
506 	 * or allow a steady drip of one report per second.
507 	 */
508 	if (nr_shown == 60) {
509 		if (time_before(jiffies, resume)) {
510 			nr_unshown++;
511 			return;
512 		}
513 		if (nr_unshown) {
514 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
515 				 nr_unshown);
516 			nr_unshown = 0;
517 		}
518 		nr_shown = 0;
519 	}
520 	if (nr_shown++ == 0)
521 		resume = jiffies + 60 * HZ;
522 
523 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524 	index = linear_page_index(vma, addr);
525 
526 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
527 		 current->comm,
528 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
529 	if (page)
530 		dump_page(page, "bad pte");
531 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
532 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
533 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
534 		 vma->vm_file,
535 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
536 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
537 		 mapping ? mapping->a_ops->read_folio : NULL);
538 	dump_stack();
539 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
540 }
541 
542 /*
543  * vm_normal_page -- This function gets the "struct page" associated with a pte.
544  *
545  * "Special" mappings do not wish to be associated with a "struct page" (either
546  * it doesn't exist, or it exists but they don't want to touch it). In this
547  * case, NULL is returned here. "Normal" mappings do have a struct page.
548  *
549  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550  * pte bit, in which case this function is trivial. Secondly, an architecture
551  * may not have a spare pte bit, which requires a more complicated scheme,
552  * described below.
553  *
554  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555  * special mapping (even if there are underlying and valid "struct pages").
556  * COWed pages of a VM_PFNMAP are always normal.
557  *
558  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561  * mapping will always honor the rule
562  *
563  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564  *
565  * And for normal mappings this is false.
566  *
567  * This restricts such mappings to be a linear translation from virtual address
568  * to pfn. To get around this restriction, we allow arbitrary mappings so long
569  * as the vma is not a COW mapping; in that case, we know that all ptes are
570  * special (because none can have been COWed).
571  *
572  *
573  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
574  *
575  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576  * page" backing, however the difference is that _all_ pages with a struct
577  * page (that is, those where pfn_valid is true) are refcounted and considered
578  * normal pages by the VM. The disadvantage is that pages are refcounted
579  * (which can be slower and simply not an option for some PFNMAP users). The
580  * advantage is that we don't have to follow the strict linearity rule of
581  * PFNMAP mappings in order to support COWable mappings.
582  *
583  */
584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
585 			    pte_t pte)
586 {
587 	unsigned long pfn = pte_pfn(pte);
588 
589 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
590 		if (likely(!pte_special(pte)))
591 			goto check_pfn;
592 		if (vma->vm_ops && vma->vm_ops->find_special_page)
593 			return vma->vm_ops->find_special_page(vma, addr);
594 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
595 			return NULL;
596 		if (is_zero_pfn(pfn))
597 			return NULL;
598 		if (pte_devmap(pte))
599 		/*
600 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601 		 * and will have refcounts incremented on their struct pages
602 		 * when they are inserted into PTEs, thus they are safe to
603 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
605 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606 		 */
607 			return NULL;
608 
609 		print_bad_pte(vma, addr, pte, NULL);
610 		return NULL;
611 	}
612 
613 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 
615 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 		if (vma->vm_flags & VM_MIXEDMAP) {
617 			if (!pfn_valid(pfn))
618 				return NULL;
619 			goto out;
620 		} else {
621 			unsigned long off;
622 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 			if (pfn == vma->vm_pgoff + off)
624 				return NULL;
625 			if (!is_cow_mapping(vma->vm_flags))
626 				return NULL;
627 		}
628 	}
629 
630 	if (is_zero_pfn(pfn))
631 		return NULL;
632 
633 check_pfn:
634 	if (unlikely(pfn > highest_memmap_pfn)) {
635 		print_bad_pte(vma, addr, pte, NULL);
636 		return NULL;
637 	}
638 
639 	/*
640 	 * NOTE! We still have PageReserved() pages in the page tables.
641 	 * eg. VDSO mappings can cause them to exist.
642 	 */
643 out:
644 	return pfn_to_page(pfn);
645 }
646 
647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
648 			    pte_t pte)
649 {
650 	struct page *page = vm_normal_page(vma, addr, pte);
651 
652 	if (page)
653 		return page_folio(page);
654 	return NULL;
655 }
656 
657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
659 				pmd_t pmd)
660 {
661 	unsigned long pfn = pmd_pfn(pmd);
662 
663 	/*
664 	 * There is no pmd_special() but there may be special pmds, e.g.
665 	 * in a direct-access (dax) mapping, so let's just replicate the
666 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
667 	 */
668 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669 		if (vma->vm_flags & VM_MIXEDMAP) {
670 			if (!pfn_valid(pfn))
671 				return NULL;
672 			goto out;
673 		} else {
674 			unsigned long off;
675 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
676 			if (pfn == vma->vm_pgoff + off)
677 				return NULL;
678 			if (!is_cow_mapping(vma->vm_flags))
679 				return NULL;
680 		}
681 	}
682 
683 	if (pmd_devmap(pmd))
684 		return NULL;
685 	if (is_huge_zero_pmd(pmd))
686 		return NULL;
687 	if (unlikely(pfn > highest_memmap_pfn))
688 		return NULL;
689 
690 	/*
691 	 * NOTE! We still have PageReserved() pages in the page tables.
692 	 * eg. VDSO mappings can cause them to exist.
693 	 */
694 out:
695 	return pfn_to_page(pfn);
696 }
697 #endif
698 
699 static void restore_exclusive_pte(struct vm_area_struct *vma,
700 				  struct page *page, unsigned long address,
701 				  pte_t *ptep)
702 {
703 	pte_t pte;
704 	swp_entry_t entry;
705 
706 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
707 	if (pte_swp_soft_dirty(*ptep))
708 		pte = pte_mksoft_dirty(pte);
709 
710 	entry = pte_to_swp_entry(*ptep);
711 	if (pte_swp_uffd_wp(*ptep))
712 		pte = pte_mkuffd_wp(pte);
713 	else if (is_writable_device_exclusive_entry(entry))
714 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
715 
716 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
717 
718 	/*
719 	 * No need to take a page reference as one was already
720 	 * created when the swap entry was made.
721 	 */
722 	if (PageAnon(page))
723 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
724 	else
725 		/*
726 		 * Currently device exclusive access only supports anonymous
727 		 * memory so the entry shouldn't point to a filebacked page.
728 		 */
729 		WARN_ON_ONCE(1);
730 
731 	set_pte_at(vma->vm_mm, address, ptep, pte);
732 
733 	/*
734 	 * No need to invalidate - it was non-present before. However
735 	 * secondary CPUs may have mappings that need invalidating.
736 	 */
737 	update_mmu_cache(vma, address, ptep);
738 }
739 
740 /*
741  * Tries to restore an exclusive pte if the page lock can be acquired without
742  * sleeping.
743  */
744 static int
745 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
746 			unsigned long addr)
747 {
748 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
749 	struct page *page = pfn_swap_entry_to_page(entry);
750 
751 	if (trylock_page(page)) {
752 		restore_exclusive_pte(vma, page, addr, src_pte);
753 		unlock_page(page);
754 		return 0;
755 	}
756 
757 	return -EBUSY;
758 }
759 
760 /*
761  * copy one vm_area from one task to the other. Assumes the page tables
762  * already present in the new task to be cleared in the whole range
763  * covered by this vma.
764  */
765 
766 static unsigned long
767 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
768 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
769 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
770 {
771 	unsigned long vm_flags = dst_vma->vm_flags;
772 	pte_t pte = *src_pte;
773 	struct page *page;
774 	swp_entry_t entry = pte_to_swp_entry(pte);
775 
776 	if (likely(!non_swap_entry(entry))) {
777 		if (swap_duplicate(entry) < 0)
778 			return -EIO;
779 
780 		/* make sure dst_mm is on swapoff's mmlist. */
781 		if (unlikely(list_empty(&dst_mm->mmlist))) {
782 			spin_lock(&mmlist_lock);
783 			if (list_empty(&dst_mm->mmlist))
784 				list_add(&dst_mm->mmlist,
785 						&src_mm->mmlist);
786 			spin_unlock(&mmlist_lock);
787 		}
788 		/* Mark the swap entry as shared. */
789 		if (pte_swp_exclusive(*src_pte)) {
790 			pte = pte_swp_clear_exclusive(*src_pte);
791 			set_pte_at(src_mm, addr, src_pte, pte);
792 		}
793 		rss[MM_SWAPENTS]++;
794 	} else if (is_migration_entry(entry)) {
795 		page = pfn_swap_entry_to_page(entry);
796 
797 		rss[mm_counter(page)]++;
798 
799 		if (!is_readable_migration_entry(entry) &&
800 				is_cow_mapping(vm_flags)) {
801 			/*
802 			 * COW mappings require pages in both parent and child
803 			 * to be set to read. A previously exclusive entry is
804 			 * now shared.
805 			 */
806 			entry = make_readable_migration_entry(
807 							swp_offset(entry));
808 			pte = swp_entry_to_pte(entry);
809 			if (pte_swp_soft_dirty(*src_pte))
810 				pte = pte_swp_mksoft_dirty(pte);
811 			if (pte_swp_uffd_wp(*src_pte))
812 				pte = pte_swp_mkuffd_wp(pte);
813 			set_pte_at(src_mm, addr, src_pte, pte);
814 		}
815 	} else if (is_device_private_entry(entry)) {
816 		page = pfn_swap_entry_to_page(entry);
817 
818 		/*
819 		 * Update rss count even for unaddressable pages, as
820 		 * they should treated just like normal pages in this
821 		 * respect.
822 		 *
823 		 * We will likely want to have some new rss counters
824 		 * for unaddressable pages, at some point. But for now
825 		 * keep things as they are.
826 		 */
827 		get_page(page);
828 		rss[mm_counter(page)]++;
829 		/* Cannot fail as these pages cannot get pinned. */
830 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
831 
832 		/*
833 		 * We do not preserve soft-dirty information, because so
834 		 * far, checkpoint/restore is the only feature that
835 		 * requires that. And checkpoint/restore does not work
836 		 * when a device driver is involved (you cannot easily
837 		 * save and restore device driver state).
838 		 */
839 		if (is_writable_device_private_entry(entry) &&
840 		    is_cow_mapping(vm_flags)) {
841 			entry = make_readable_device_private_entry(
842 							swp_offset(entry));
843 			pte = swp_entry_to_pte(entry);
844 			if (pte_swp_uffd_wp(*src_pte))
845 				pte = pte_swp_mkuffd_wp(pte);
846 			set_pte_at(src_mm, addr, src_pte, pte);
847 		}
848 	} else if (is_device_exclusive_entry(entry)) {
849 		/*
850 		 * Make device exclusive entries present by restoring the
851 		 * original entry then copying as for a present pte. Device
852 		 * exclusive entries currently only support private writable
853 		 * (ie. COW) mappings.
854 		 */
855 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857 			return -EBUSY;
858 		return -ENOENT;
859 	} else if (is_pte_marker_entry(entry)) {
860 		if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
861 			set_pte_at(dst_mm, addr, dst_pte, pte);
862 		return 0;
863 	}
864 	if (!userfaultfd_wp(dst_vma))
865 		pte = pte_swp_clear_uffd_wp(pte);
866 	set_pte_at(dst_mm, addr, dst_pte, pte);
867 	return 0;
868 }
869 
870 /*
871  * Copy a present and normal page.
872  *
873  * NOTE! The usual case is that this isn't required;
874  * instead, the caller can just increase the page refcount
875  * and re-use the pte the traditional way.
876  *
877  * And if we need a pre-allocated page but don't yet have
878  * one, return a negative error to let the preallocation
879  * code know so that it can do so outside the page table
880  * lock.
881  */
882 static inline int
883 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
884 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
885 		  struct folio **prealloc, struct page *page)
886 {
887 	struct folio *new_folio;
888 	pte_t pte;
889 
890 	new_folio = *prealloc;
891 	if (!new_folio)
892 		return -EAGAIN;
893 
894 	/*
895 	 * We have a prealloc page, all good!  Take it
896 	 * over and copy the page & arm it.
897 	 */
898 	*prealloc = NULL;
899 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
900 	__folio_mark_uptodate(new_folio);
901 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
902 	folio_add_lru_vma(new_folio, dst_vma);
903 	rss[MM_ANONPAGES]++;
904 
905 	/* All done, just insert the new page copy in the child */
906 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
907 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
908 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
909 		/* Uffd-wp needs to be delivered to dest pte as well */
910 		pte = pte_mkuffd_wp(pte);
911 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
912 	return 0;
913 }
914 
915 /*
916  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
917  * is required to copy this pte.
918  */
919 static inline int
920 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
921 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
922 		 struct folio **prealloc)
923 {
924 	struct mm_struct *src_mm = src_vma->vm_mm;
925 	unsigned long vm_flags = src_vma->vm_flags;
926 	pte_t pte = *src_pte;
927 	struct page *page;
928 	struct folio *folio;
929 
930 	page = vm_normal_page(src_vma, addr, pte);
931 	if (page)
932 		folio = page_folio(page);
933 	if (page && folio_test_anon(folio)) {
934 		/*
935 		 * If this page may have been pinned by the parent process,
936 		 * copy the page immediately for the child so that we'll always
937 		 * guarantee the pinned page won't be randomly replaced in the
938 		 * future.
939 		 */
940 		folio_get(folio);
941 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
942 			/* Page may be pinned, we have to copy. */
943 			folio_put(folio);
944 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
945 						 addr, rss, prealloc, page);
946 		}
947 		rss[MM_ANONPAGES]++;
948 	} else if (page) {
949 		folio_get(folio);
950 		page_dup_file_rmap(page, false);
951 		rss[mm_counter_file(page)]++;
952 	}
953 
954 	/*
955 	 * If it's a COW mapping, write protect it both
956 	 * in the parent and the child
957 	 */
958 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
959 		ptep_set_wrprotect(src_mm, addr, src_pte);
960 		pte = pte_wrprotect(pte);
961 	}
962 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
963 
964 	/*
965 	 * If it's a shared mapping, mark it clean in
966 	 * the child
967 	 */
968 	if (vm_flags & VM_SHARED)
969 		pte = pte_mkclean(pte);
970 	pte = pte_mkold(pte);
971 
972 	if (!userfaultfd_wp(dst_vma))
973 		pte = pte_clear_uffd_wp(pte);
974 
975 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
976 	return 0;
977 }
978 
979 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
980 		struct vm_area_struct *vma, unsigned long addr)
981 {
982 	struct folio *new_folio;
983 
984 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
985 	if (!new_folio)
986 		return NULL;
987 
988 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
989 		folio_put(new_folio);
990 		return NULL;
991 	}
992 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
993 
994 	return new_folio;
995 }
996 
997 static int
998 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
999 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1000 	       unsigned long end)
1001 {
1002 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1003 	struct mm_struct *src_mm = src_vma->vm_mm;
1004 	pte_t *orig_src_pte, *orig_dst_pte;
1005 	pte_t *src_pte, *dst_pte;
1006 	spinlock_t *src_ptl, *dst_ptl;
1007 	int progress, ret = 0;
1008 	int rss[NR_MM_COUNTERS];
1009 	swp_entry_t entry = (swp_entry_t){0};
1010 	struct folio *prealloc = NULL;
1011 
1012 again:
1013 	progress = 0;
1014 	init_rss_vec(rss);
1015 
1016 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1017 	if (!dst_pte) {
1018 		ret = -ENOMEM;
1019 		goto out;
1020 	}
1021 	src_pte = pte_offset_map(src_pmd, addr);
1022 	src_ptl = pte_lockptr(src_mm, src_pmd);
1023 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1024 	orig_src_pte = src_pte;
1025 	orig_dst_pte = dst_pte;
1026 	arch_enter_lazy_mmu_mode();
1027 
1028 	do {
1029 		/*
1030 		 * We are holding two locks at this point - either of them
1031 		 * could generate latencies in another task on another CPU.
1032 		 */
1033 		if (progress >= 32) {
1034 			progress = 0;
1035 			if (need_resched() ||
1036 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1037 				break;
1038 		}
1039 		if (pte_none(*src_pte)) {
1040 			progress++;
1041 			continue;
1042 		}
1043 		if (unlikely(!pte_present(*src_pte))) {
1044 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1045 						  dst_pte, src_pte,
1046 						  dst_vma, src_vma,
1047 						  addr, rss);
1048 			if (ret == -EIO) {
1049 				entry = pte_to_swp_entry(*src_pte);
1050 				break;
1051 			} else if (ret == -EBUSY) {
1052 				break;
1053 			} else if (!ret) {
1054 				progress += 8;
1055 				continue;
1056 			}
1057 
1058 			/*
1059 			 * Device exclusive entry restored, continue by copying
1060 			 * the now present pte.
1061 			 */
1062 			WARN_ON_ONCE(ret != -ENOENT);
1063 		}
1064 		/* copy_present_pte() will clear `*prealloc' if consumed */
1065 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1066 				       addr, rss, &prealloc);
1067 		/*
1068 		 * If we need a pre-allocated page for this pte, drop the
1069 		 * locks, allocate, and try again.
1070 		 */
1071 		if (unlikely(ret == -EAGAIN))
1072 			break;
1073 		if (unlikely(prealloc)) {
1074 			/*
1075 			 * pre-alloc page cannot be reused by next time so as
1076 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1077 			 * will allocate page according to address).  This
1078 			 * could only happen if one pinned pte changed.
1079 			 */
1080 			folio_put(prealloc);
1081 			prealloc = NULL;
1082 		}
1083 		progress += 8;
1084 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1085 
1086 	arch_leave_lazy_mmu_mode();
1087 	spin_unlock(src_ptl);
1088 	pte_unmap(orig_src_pte);
1089 	add_mm_rss_vec(dst_mm, rss);
1090 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1091 	cond_resched();
1092 
1093 	if (ret == -EIO) {
1094 		VM_WARN_ON_ONCE(!entry.val);
1095 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1096 			ret = -ENOMEM;
1097 			goto out;
1098 		}
1099 		entry.val = 0;
1100 	} else if (ret == -EBUSY) {
1101 		goto out;
1102 	} else if (ret ==  -EAGAIN) {
1103 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1104 		if (!prealloc)
1105 			return -ENOMEM;
1106 	} else if (ret) {
1107 		VM_WARN_ON_ONCE(1);
1108 	}
1109 
1110 	/* We've captured and resolved the error. Reset, try again. */
1111 	ret = 0;
1112 
1113 	if (addr != end)
1114 		goto again;
1115 out:
1116 	if (unlikely(prealloc))
1117 		folio_put(prealloc);
1118 	return ret;
1119 }
1120 
1121 static inline int
1122 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1123 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1124 	       unsigned long end)
1125 {
1126 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1127 	struct mm_struct *src_mm = src_vma->vm_mm;
1128 	pmd_t *src_pmd, *dst_pmd;
1129 	unsigned long next;
1130 
1131 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1132 	if (!dst_pmd)
1133 		return -ENOMEM;
1134 	src_pmd = pmd_offset(src_pud, addr);
1135 	do {
1136 		next = pmd_addr_end(addr, end);
1137 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1138 			|| pmd_devmap(*src_pmd)) {
1139 			int err;
1140 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1141 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1142 					    addr, dst_vma, src_vma);
1143 			if (err == -ENOMEM)
1144 				return -ENOMEM;
1145 			if (!err)
1146 				continue;
1147 			/* fall through */
1148 		}
1149 		if (pmd_none_or_clear_bad(src_pmd))
1150 			continue;
1151 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1152 				   addr, next))
1153 			return -ENOMEM;
1154 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1155 	return 0;
1156 }
1157 
1158 static inline int
1159 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1160 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1161 	       unsigned long end)
1162 {
1163 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1164 	struct mm_struct *src_mm = src_vma->vm_mm;
1165 	pud_t *src_pud, *dst_pud;
1166 	unsigned long next;
1167 
1168 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1169 	if (!dst_pud)
1170 		return -ENOMEM;
1171 	src_pud = pud_offset(src_p4d, addr);
1172 	do {
1173 		next = pud_addr_end(addr, end);
1174 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1175 			int err;
1176 
1177 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1178 			err = copy_huge_pud(dst_mm, src_mm,
1179 					    dst_pud, src_pud, addr, src_vma);
1180 			if (err == -ENOMEM)
1181 				return -ENOMEM;
1182 			if (!err)
1183 				continue;
1184 			/* fall through */
1185 		}
1186 		if (pud_none_or_clear_bad(src_pud))
1187 			continue;
1188 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1189 				   addr, next))
1190 			return -ENOMEM;
1191 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1192 	return 0;
1193 }
1194 
1195 static inline int
1196 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1197 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1198 	       unsigned long end)
1199 {
1200 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1201 	p4d_t *src_p4d, *dst_p4d;
1202 	unsigned long next;
1203 
1204 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1205 	if (!dst_p4d)
1206 		return -ENOMEM;
1207 	src_p4d = p4d_offset(src_pgd, addr);
1208 	do {
1209 		next = p4d_addr_end(addr, end);
1210 		if (p4d_none_or_clear_bad(src_p4d))
1211 			continue;
1212 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1213 				   addr, next))
1214 			return -ENOMEM;
1215 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1216 	return 0;
1217 }
1218 
1219 /*
1220  * Return true if the vma needs to copy the pgtable during this fork().  Return
1221  * false when we can speed up fork() by allowing lazy page faults later until
1222  * when the child accesses the memory range.
1223  */
1224 static bool
1225 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1226 {
1227 	/*
1228 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1229 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1230 	 * contains uffd-wp protection information, that's something we can't
1231 	 * retrieve from page cache, and skip copying will lose those info.
1232 	 */
1233 	if (userfaultfd_wp(dst_vma))
1234 		return true;
1235 
1236 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1237 		return true;
1238 
1239 	if (src_vma->anon_vma)
1240 		return true;
1241 
1242 	/*
1243 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1244 	 * becomes much lighter when there are big shared or private readonly
1245 	 * mappings. The tradeoff is that copy_page_range is more efficient
1246 	 * than faulting.
1247 	 */
1248 	return false;
1249 }
1250 
1251 int
1252 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1253 {
1254 	pgd_t *src_pgd, *dst_pgd;
1255 	unsigned long next;
1256 	unsigned long addr = src_vma->vm_start;
1257 	unsigned long end = src_vma->vm_end;
1258 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1259 	struct mm_struct *src_mm = src_vma->vm_mm;
1260 	struct mmu_notifier_range range;
1261 	bool is_cow;
1262 	int ret;
1263 
1264 	if (!vma_needs_copy(dst_vma, src_vma))
1265 		return 0;
1266 
1267 	if (is_vm_hugetlb_page(src_vma))
1268 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1269 
1270 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1271 		/*
1272 		 * We do not free on error cases below as remove_vma
1273 		 * gets called on error from higher level routine
1274 		 */
1275 		ret = track_pfn_copy(src_vma);
1276 		if (ret)
1277 			return ret;
1278 	}
1279 
1280 	/*
1281 	 * We need to invalidate the secondary MMU mappings only when
1282 	 * there could be a permission downgrade on the ptes of the
1283 	 * parent mm. And a permission downgrade will only happen if
1284 	 * is_cow_mapping() returns true.
1285 	 */
1286 	is_cow = is_cow_mapping(src_vma->vm_flags);
1287 
1288 	if (is_cow) {
1289 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1290 					0, src_mm, addr, end);
1291 		mmu_notifier_invalidate_range_start(&range);
1292 		/*
1293 		 * Disabling preemption is not needed for the write side, as
1294 		 * the read side doesn't spin, but goes to the mmap_lock.
1295 		 *
1296 		 * Use the raw variant of the seqcount_t write API to avoid
1297 		 * lockdep complaining about preemptibility.
1298 		 */
1299 		mmap_assert_write_locked(src_mm);
1300 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1301 	}
1302 
1303 	ret = 0;
1304 	dst_pgd = pgd_offset(dst_mm, addr);
1305 	src_pgd = pgd_offset(src_mm, addr);
1306 	do {
1307 		next = pgd_addr_end(addr, end);
1308 		if (pgd_none_or_clear_bad(src_pgd))
1309 			continue;
1310 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1311 					    addr, next))) {
1312 			untrack_pfn_clear(dst_vma);
1313 			ret = -ENOMEM;
1314 			break;
1315 		}
1316 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1317 
1318 	if (is_cow) {
1319 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1320 		mmu_notifier_invalidate_range_end(&range);
1321 	}
1322 	return ret;
1323 }
1324 
1325 /* Whether we should zap all COWed (private) pages too */
1326 static inline bool should_zap_cows(struct zap_details *details)
1327 {
1328 	/* By default, zap all pages */
1329 	if (!details)
1330 		return true;
1331 
1332 	/* Or, we zap COWed pages only if the caller wants to */
1333 	return details->even_cows;
1334 }
1335 
1336 /* Decides whether we should zap this page with the page pointer specified */
1337 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1338 {
1339 	/* If we can make a decision without *page.. */
1340 	if (should_zap_cows(details))
1341 		return true;
1342 
1343 	/* E.g. the caller passes NULL for the case of a zero page */
1344 	if (!page)
1345 		return true;
1346 
1347 	/* Otherwise we should only zap non-anon pages */
1348 	return !PageAnon(page);
1349 }
1350 
1351 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1352 {
1353 	if (!details)
1354 		return false;
1355 
1356 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1357 }
1358 
1359 /*
1360  * This function makes sure that we'll replace the none pte with an uffd-wp
1361  * swap special pte marker when necessary. Must be with the pgtable lock held.
1362  */
1363 static inline void
1364 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1365 			      unsigned long addr, pte_t *pte,
1366 			      struct zap_details *details, pte_t pteval)
1367 {
1368 	/* Zap on anonymous always means dropping everything */
1369 	if (vma_is_anonymous(vma))
1370 		return;
1371 
1372 	if (zap_drop_file_uffd_wp(details))
1373 		return;
1374 
1375 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1376 }
1377 
1378 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1379 				struct vm_area_struct *vma, pmd_t *pmd,
1380 				unsigned long addr, unsigned long end,
1381 				struct zap_details *details)
1382 {
1383 	struct mm_struct *mm = tlb->mm;
1384 	int force_flush = 0;
1385 	int rss[NR_MM_COUNTERS];
1386 	spinlock_t *ptl;
1387 	pte_t *start_pte;
1388 	pte_t *pte;
1389 	swp_entry_t entry;
1390 
1391 	tlb_change_page_size(tlb, PAGE_SIZE);
1392 again:
1393 	init_rss_vec(rss);
1394 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1395 	pte = start_pte;
1396 	flush_tlb_batched_pending(mm);
1397 	arch_enter_lazy_mmu_mode();
1398 	do {
1399 		pte_t ptent = *pte;
1400 		struct page *page;
1401 
1402 		if (pte_none(ptent))
1403 			continue;
1404 
1405 		if (need_resched())
1406 			break;
1407 
1408 		if (pte_present(ptent)) {
1409 			unsigned int delay_rmap;
1410 
1411 			page = vm_normal_page(vma, addr, ptent);
1412 			if (unlikely(!should_zap_page(details, page)))
1413 				continue;
1414 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1415 							tlb->fullmm);
1416 			tlb_remove_tlb_entry(tlb, pte, addr);
1417 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1418 						      ptent);
1419 			if (unlikely(!page))
1420 				continue;
1421 
1422 			delay_rmap = 0;
1423 			if (!PageAnon(page)) {
1424 				if (pte_dirty(ptent)) {
1425 					set_page_dirty(page);
1426 					if (tlb_delay_rmap(tlb)) {
1427 						delay_rmap = 1;
1428 						force_flush = 1;
1429 					}
1430 				}
1431 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1432 					mark_page_accessed(page);
1433 			}
1434 			rss[mm_counter(page)]--;
1435 			if (!delay_rmap) {
1436 				page_remove_rmap(page, vma, false);
1437 				if (unlikely(page_mapcount(page) < 0))
1438 					print_bad_pte(vma, addr, ptent, page);
1439 			}
1440 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1441 				force_flush = 1;
1442 				addr += PAGE_SIZE;
1443 				break;
1444 			}
1445 			continue;
1446 		}
1447 
1448 		entry = pte_to_swp_entry(ptent);
1449 		if (is_device_private_entry(entry) ||
1450 		    is_device_exclusive_entry(entry)) {
1451 			page = pfn_swap_entry_to_page(entry);
1452 			if (unlikely(!should_zap_page(details, page)))
1453 				continue;
1454 			/*
1455 			 * Both device private/exclusive mappings should only
1456 			 * work with anonymous page so far, so we don't need to
1457 			 * consider uffd-wp bit when zap. For more information,
1458 			 * see zap_install_uffd_wp_if_needed().
1459 			 */
1460 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1461 			rss[mm_counter(page)]--;
1462 			if (is_device_private_entry(entry))
1463 				page_remove_rmap(page, vma, false);
1464 			put_page(page);
1465 		} else if (!non_swap_entry(entry)) {
1466 			/* Genuine swap entry, hence a private anon page */
1467 			if (!should_zap_cows(details))
1468 				continue;
1469 			rss[MM_SWAPENTS]--;
1470 			if (unlikely(!free_swap_and_cache(entry)))
1471 				print_bad_pte(vma, addr, ptent, NULL);
1472 		} else if (is_migration_entry(entry)) {
1473 			page = pfn_swap_entry_to_page(entry);
1474 			if (!should_zap_page(details, page))
1475 				continue;
1476 			rss[mm_counter(page)]--;
1477 		} else if (pte_marker_entry_uffd_wp(entry)) {
1478 			/*
1479 			 * For anon: always drop the marker; for file: only
1480 			 * drop the marker if explicitly requested.
1481 			 */
1482 			if (!vma_is_anonymous(vma) &&
1483 			    !zap_drop_file_uffd_wp(details))
1484 				continue;
1485 		} else if (is_hwpoison_entry(entry) ||
1486 			   is_swapin_error_entry(entry)) {
1487 			if (!should_zap_cows(details))
1488 				continue;
1489 		} else {
1490 			/* We should have covered all the swap entry types */
1491 			WARN_ON_ONCE(1);
1492 		}
1493 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1494 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1495 	} while (pte++, addr += PAGE_SIZE, addr != end);
1496 
1497 	add_mm_rss_vec(mm, rss);
1498 	arch_leave_lazy_mmu_mode();
1499 
1500 	/* Do the actual TLB flush before dropping ptl */
1501 	if (force_flush) {
1502 		tlb_flush_mmu_tlbonly(tlb);
1503 		tlb_flush_rmaps(tlb, vma);
1504 	}
1505 	pte_unmap_unlock(start_pte, ptl);
1506 
1507 	/*
1508 	 * If we forced a TLB flush (either due to running out of
1509 	 * batch buffers or because we needed to flush dirty TLB
1510 	 * entries before releasing the ptl), free the batched
1511 	 * memory too. Restart if we didn't do everything.
1512 	 */
1513 	if (force_flush) {
1514 		force_flush = 0;
1515 		tlb_flush_mmu(tlb);
1516 	}
1517 
1518 	if (addr != end) {
1519 		cond_resched();
1520 		goto again;
1521 	}
1522 
1523 	return addr;
1524 }
1525 
1526 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1527 				struct vm_area_struct *vma, pud_t *pud,
1528 				unsigned long addr, unsigned long end,
1529 				struct zap_details *details)
1530 {
1531 	pmd_t *pmd;
1532 	unsigned long next;
1533 
1534 	pmd = pmd_offset(pud, addr);
1535 	do {
1536 		next = pmd_addr_end(addr, end);
1537 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1538 			if (next - addr != HPAGE_PMD_SIZE)
1539 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1540 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1541 				goto next;
1542 			/* fall through */
1543 		} else if (details && details->single_folio &&
1544 			   folio_test_pmd_mappable(details->single_folio) &&
1545 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1546 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1547 			/*
1548 			 * Take and drop THP pmd lock so that we cannot return
1549 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1550 			 * but not yet decremented compound_mapcount().
1551 			 */
1552 			spin_unlock(ptl);
1553 		}
1554 
1555 		/*
1556 		 * Here there can be other concurrent MADV_DONTNEED or
1557 		 * trans huge page faults running, and if the pmd is
1558 		 * none or trans huge it can change under us. This is
1559 		 * because MADV_DONTNEED holds the mmap_lock in read
1560 		 * mode.
1561 		 */
1562 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1563 			goto next;
1564 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1565 next:
1566 		cond_resched();
1567 	} while (pmd++, addr = next, addr != end);
1568 
1569 	return addr;
1570 }
1571 
1572 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1573 				struct vm_area_struct *vma, p4d_t *p4d,
1574 				unsigned long addr, unsigned long end,
1575 				struct zap_details *details)
1576 {
1577 	pud_t *pud;
1578 	unsigned long next;
1579 
1580 	pud = pud_offset(p4d, addr);
1581 	do {
1582 		next = pud_addr_end(addr, end);
1583 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1584 			if (next - addr != HPAGE_PUD_SIZE) {
1585 				mmap_assert_locked(tlb->mm);
1586 				split_huge_pud(vma, pud, addr);
1587 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1588 				goto next;
1589 			/* fall through */
1590 		}
1591 		if (pud_none_or_clear_bad(pud))
1592 			continue;
1593 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1594 next:
1595 		cond_resched();
1596 	} while (pud++, addr = next, addr != end);
1597 
1598 	return addr;
1599 }
1600 
1601 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1602 				struct vm_area_struct *vma, pgd_t *pgd,
1603 				unsigned long addr, unsigned long end,
1604 				struct zap_details *details)
1605 {
1606 	p4d_t *p4d;
1607 	unsigned long next;
1608 
1609 	p4d = p4d_offset(pgd, addr);
1610 	do {
1611 		next = p4d_addr_end(addr, end);
1612 		if (p4d_none_or_clear_bad(p4d))
1613 			continue;
1614 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1615 	} while (p4d++, addr = next, addr != end);
1616 
1617 	return addr;
1618 }
1619 
1620 void unmap_page_range(struct mmu_gather *tlb,
1621 			     struct vm_area_struct *vma,
1622 			     unsigned long addr, unsigned long end,
1623 			     struct zap_details *details)
1624 {
1625 	pgd_t *pgd;
1626 	unsigned long next;
1627 
1628 	BUG_ON(addr >= end);
1629 	tlb_start_vma(tlb, vma);
1630 	pgd = pgd_offset(vma->vm_mm, addr);
1631 	do {
1632 		next = pgd_addr_end(addr, end);
1633 		if (pgd_none_or_clear_bad(pgd))
1634 			continue;
1635 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1636 	} while (pgd++, addr = next, addr != end);
1637 	tlb_end_vma(tlb, vma);
1638 }
1639 
1640 
1641 static void unmap_single_vma(struct mmu_gather *tlb,
1642 		struct vm_area_struct *vma, unsigned long start_addr,
1643 		unsigned long end_addr,
1644 		struct zap_details *details, bool mm_wr_locked)
1645 {
1646 	unsigned long start = max(vma->vm_start, start_addr);
1647 	unsigned long end;
1648 
1649 	if (start >= vma->vm_end)
1650 		return;
1651 	end = min(vma->vm_end, end_addr);
1652 	if (end <= vma->vm_start)
1653 		return;
1654 
1655 	if (vma->vm_file)
1656 		uprobe_munmap(vma, start, end);
1657 
1658 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1659 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1660 
1661 	if (start != end) {
1662 		if (unlikely(is_vm_hugetlb_page(vma))) {
1663 			/*
1664 			 * It is undesirable to test vma->vm_file as it
1665 			 * should be non-null for valid hugetlb area.
1666 			 * However, vm_file will be NULL in the error
1667 			 * cleanup path of mmap_region. When
1668 			 * hugetlbfs ->mmap method fails,
1669 			 * mmap_region() nullifies vma->vm_file
1670 			 * before calling this function to clean up.
1671 			 * Since no pte has actually been setup, it is
1672 			 * safe to do nothing in this case.
1673 			 */
1674 			if (vma->vm_file) {
1675 				zap_flags_t zap_flags = details ?
1676 				    details->zap_flags : 0;
1677 				__unmap_hugepage_range_final(tlb, vma, start, end,
1678 							     NULL, zap_flags);
1679 			}
1680 		} else
1681 			unmap_page_range(tlb, vma, start, end, details);
1682 	}
1683 }
1684 
1685 /**
1686  * unmap_vmas - unmap a range of memory covered by a list of vma's
1687  * @tlb: address of the caller's struct mmu_gather
1688  * @mt: the maple tree
1689  * @vma: the starting vma
1690  * @start_addr: virtual address at which to start unmapping
1691  * @end_addr: virtual address at which to end unmapping
1692  *
1693  * Unmap all pages in the vma list.
1694  *
1695  * Only addresses between `start' and `end' will be unmapped.
1696  *
1697  * The VMA list must be sorted in ascending virtual address order.
1698  *
1699  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1700  * range after unmap_vmas() returns.  So the only responsibility here is to
1701  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1702  * drops the lock and schedules.
1703  */
1704 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1705 		struct vm_area_struct *vma, unsigned long start_addr,
1706 		unsigned long end_addr, bool mm_wr_locked)
1707 {
1708 	struct mmu_notifier_range range;
1709 	struct zap_details details = {
1710 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1711 		/* Careful - we need to zap private pages too! */
1712 		.even_cows = true,
1713 	};
1714 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1715 
1716 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1717 				start_addr, end_addr);
1718 	mmu_notifier_invalidate_range_start(&range);
1719 	do {
1720 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1721 				 mm_wr_locked);
1722 	} while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1723 	mmu_notifier_invalidate_range_end(&range);
1724 }
1725 
1726 /**
1727  * zap_page_range_single - remove user pages in a given range
1728  * @vma: vm_area_struct holding the applicable pages
1729  * @address: starting address of pages to zap
1730  * @size: number of bytes to zap
1731  * @details: details of shared cache invalidation
1732  *
1733  * The range must fit into one VMA.
1734  */
1735 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1736 		unsigned long size, struct zap_details *details)
1737 {
1738 	const unsigned long end = address + size;
1739 	struct mmu_notifier_range range;
1740 	struct mmu_gather tlb;
1741 
1742 	lru_add_drain();
1743 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1744 				address, end);
1745 	if (is_vm_hugetlb_page(vma))
1746 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1747 						     &range.end);
1748 	tlb_gather_mmu(&tlb, vma->vm_mm);
1749 	update_hiwater_rss(vma->vm_mm);
1750 	mmu_notifier_invalidate_range_start(&range);
1751 	/*
1752 	 * unmap 'address-end' not 'range.start-range.end' as range
1753 	 * could have been expanded for hugetlb pmd sharing.
1754 	 */
1755 	unmap_single_vma(&tlb, vma, address, end, details, false);
1756 	mmu_notifier_invalidate_range_end(&range);
1757 	tlb_finish_mmu(&tlb);
1758 }
1759 
1760 /**
1761  * zap_vma_ptes - remove ptes mapping the vma
1762  * @vma: vm_area_struct holding ptes to be zapped
1763  * @address: starting address of pages to zap
1764  * @size: number of bytes to zap
1765  *
1766  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1767  *
1768  * The entire address range must be fully contained within the vma.
1769  *
1770  */
1771 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1772 		unsigned long size)
1773 {
1774 	if (!range_in_vma(vma, address, address + size) ||
1775 	    		!(vma->vm_flags & VM_PFNMAP))
1776 		return;
1777 
1778 	zap_page_range_single(vma, address, size, NULL);
1779 }
1780 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1781 
1782 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1783 {
1784 	pgd_t *pgd;
1785 	p4d_t *p4d;
1786 	pud_t *pud;
1787 	pmd_t *pmd;
1788 
1789 	pgd = pgd_offset(mm, addr);
1790 	p4d = p4d_alloc(mm, pgd, addr);
1791 	if (!p4d)
1792 		return NULL;
1793 	pud = pud_alloc(mm, p4d, addr);
1794 	if (!pud)
1795 		return NULL;
1796 	pmd = pmd_alloc(mm, pud, addr);
1797 	if (!pmd)
1798 		return NULL;
1799 
1800 	VM_BUG_ON(pmd_trans_huge(*pmd));
1801 	return pmd;
1802 }
1803 
1804 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1805 			spinlock_t **ptl)
1806 {
1807 	pmd_t *pmd = walk_to_pmd(mm, addr);
1808 
1809 	if (!pmd)
1810 		return NULL;
1811 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1812 }
1813 
1814 static int validate_page_before_insert(struct page *page)
1815 {
1816 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1817 		return -EINVAL;
1818 	flush_dcache_page(page);
1819 	return 0;
1820 }
1821 
1822 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1823 			unsigned long addr, struct page *page, pgprot_t prot)
1824 {
1825 	if (!pte_none(*pte))
1826 		return -EBUSY;
1827 	/* Ok, finally just insert the thing.. */
1828 	get_page(page);
1829 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1830 	page_add_file_rmap(page, vma, false);
1831 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1832 	return 0;
1833 }
1834 
1835 /*
1836  * This is the old fallback for page remapping.
1837  *
1838  * For historical reasons, it only allows reserved pages. Only
1839  * old drivers should use this, and they needed to mark their
1840  * pages reserved for the old functions anyway.
1841  */
1842 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1843 			struct page *page, pgprot_t prot)
1844 {
1845 	int retval;
1846 	pte_t *pte;
1847 	spinlock_t *ptl;
1848 
1849 	retval = validate_page_before_insert(page);
1850 	if (retval)
1851 		goto out;
1852 	retval = -ENOMEM;
1853 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1854 	if (!pte)
1855 		goto out;
1856 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1857 	pte_unmap_unlock(pte, ptl);
1858 out:
1859 	return retval;
1860 }
1861 
1862 #ifdef pte_index
1863 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1864 			unsigned long addr, struct page *page, pgprot_t prot)
1865 {
1866 	int err;
1867 
1868 	if (!page_count(page))
1869 		return -EINVAL;
1870 	err = validate_page_before_insert(page);
1871 	if (err)
1872 		return err;
1873 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1874 }
1875 
1876 /* insert_pages() amortizes the cost of spinlock operations
1877  * when inserting pages in a loop. Arch *must* define pte_index.
1878  */
1879 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1880 			struct page **pages, unsigned long *num, pgprot_t prot)
1881 {
1882 	pmd_t *pmd = NULL;
1883 	pte_t *start_pte, *pte;
1884 	spinlock_t *pte_lock;
1885 	struct mm_struct *const mm = vma->vm_mm;
1886 	unsigned long curr_page_idx = 0;
1887 	unsigned long remaining_pages_total = *num;
1888 	unsigned long pages_to_write_in_pmd;
1889 	int ret;
1890 more:
1891 	ret = -EFAULT;
1892 	pmd = walk_to_pmd(mm, addr);
1893 	if (!pmd)
1894 		goto out;
1895 
1896 	pages_to_write_in_pmd = min_t(unsigned long,
1897 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1898 
1899 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1900 	ret = -ENOMEM;
1901 	if (pte_alloc(mm, pmd))
1902 		goto out;
1903 
1904 	while (pages_to_write_in_pmd) {
1905 		int pte_idx = 0;
1906 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1907 
1908 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1909 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1910 			int err = insert_page_in_batch_locked(vma, pte,
1911 				addr, pages[curr_page_idx], prot);
1912 			if (unlikely(err)) {
1913 				pte_unmap_unlock(start_pte, pte_lock);
1914 				ret = err;
1915 				remaining_pages_total -= pte_idx;
1916 				goto out;
1917 			}
1918 			addr += PAGE_SIZE;
1919 			++curr_page_idx;
1920 		}
1921 		pte_unmap_unlock(start_pte, pte_lock);
1922 		pages_to_write_in_pmd -= batch_size;
1923 		remaining_pages_total -= batch_size;
1924 	}
1925 	if (remaining_pages_total)
1926 		goto more;
1927 	ret = 0;
1928 out:
1929 	*num = remaining_pages_total;
1930 	return ret;
1931 }
1932 #endif  /* ifdef pte_index */
1933 
1934 /**
1935  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1936  * @vma: user vma to map to
1937  * @addr: target start user address of these pages
1938  * @pages: source kernel pages
1939  * @num: in: number of pages to map. out: number of pages that were *not*
1940  * mapped. (0 means all pages were successfully mapped).
1941  *
1942  * Preferred over vm_insert_page() when inserting multiple pages.
1943  *
1944  * In case of error, we may have mapped a subset of the provided
1945  * pages. It is the caller's responsibility to account for this case.
1946  *
1947  * The same restrictions apply as in vm_insert_page().
1948  */
1949 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1950 			struct page **pages, unsigned long *num)
1951 {
1952 #ifdef pte_index
1953 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1954 
1955 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1956 		return -EFAULT;
1957 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1958 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1959 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1960 		vm_flags_set(vma, VM_MIXEDMAP);
1961 	}
1962 	/* Defer page refcount checking till we're about to map that page. */
1963 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1964 #else
1965 	unsigned long idx = 0, pgcount = *num;
1966 	int err = -EINVAL;
1967 
1968 	for (; idx < pgcount; ++idx) {
1969 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1970 		if (err)
1971 			break;
1972 	}
1973 	*num = pgcount - idx;
1974 	return err;
1975 #endif  /* ifdef pte_index */
1976 }
1977 EXPORT_SYMBOL(vm_insert_pages);
1978 
1979 /**
1980  * vm_insert_page - insert single page into user vma
1981  * @vma: user vma to map to
1982  * @addr: target user address of this page
1983  * @page: source kernel page
1984  *
1985  * This allows drivers to insert individual pages they've allocated
1986  * into a user vma.
1987  *
1988  * The page has to be a nice clean _individual_ kernel allocation.
1989  * If you allocate a compound page, you need to have marked it as
1990  * such (__GFP_COMP), or manually just split the page up yourself
1991  * (see split_page()).
1992  *
1993  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1994  * took an arbitrary page protection parameter. This doesn't allow
1995  * that. Your vma protection will have to be set up correctly, which
1996  * means that if you want a shared writable mapping, you'd better
1997  * ask for a shared writable mapping!
1998  *
1999  * The page does not need to be reserved.
2000  *
2001  * Usually this function is called from f_op->mmap() handler
2002  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2003  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2004  * function from other places, for example from page-fault handler.
2005  *
2006  * Return: %0 on success, negative error code otherwise.
2007  */
2008 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2009 			struct page *page)
2010 {
2011 	if (addr < vma->vm_start || addr >= vma->vm_end)
2012 		return -EFAULT;
2013 	if (!page_count(page))
2014 		return -EINVAL;
2015 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2016 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2017 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2018 		vm_flags_set(vma, VM_MIXEDMAP);
2019 	}
2020 	return insert_page(vma, addr, page, vma->vm_page_prot);
2021 }
2022 EXPORT_SYMBOL(vm_insert_page);
2023 
2024 /*
2025  * __vm_map_pages - maps range of kernel pages into user vma
2026  * @vma: user vma to map to
2027  * @pages: pointer to array of source kernel pages
2028  * @num: number of pages in page array
2029  * @offset: user's requested vm_pgoff
2030  *
2031  * This allows drivers to map range of kernel pages into a user vma.
2032  *
2033  * Return: 0 on success and error code otherwise.
2034  */
2035 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2036 				unsigned long num, unsigned long offset)
2037 {
2038 	unsigned long count = vma_pages(vma);
2039 	unsigned long uaddr = vma->vm_start;
2040 	int ret, i;
2041 
2042 	/* Fail if the user requested offset is beyond the end of the object */
2043 	if (offset >= num)
2044 		return -ENXIO;
2045 
2046 	/* Fail if the user requested size exceeds available object size */
2047 	if (count > num - offset)
2048 		return -ENXIO;
2049 
2050 	for (i = 0; i < count; i++) {
2051 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2052 		if (ret < 0)
2053 			return ret;
2054 		uaddr += PAGE_SIZE;
2055 	}
2056 
2057 	return 0;
2058 }
2059 
2060 /**
2061  * vm_map_pages - maps range of kernel pages starts with non zero offset
2062  * @vma: user vma to map to
2063  * @pages: pointer to array of source kernel pages
2064  * @num: number of pages in page array
2065  *
2066  * Maps an object consisting of @num pages, catering for the user's
2067  * requested vm_pgoff
2068  *
2069  * If we fail to insert any page into the vma, the function will return
2070  * immediately leaving any previously inserted pages present.  Callers
2071  * from the mmap handler may immediately return the error as their caller
2072  * will destroy the vma, removing any successfully inserted pages. Other
2073  * callers should make their own arrangements for calling unmap_region().
2074  *
2075  * Context: Process context. Called by mmap handlers.
2076  * Return: 0 on success and error code otherwise.
2077  */
2078 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2079 				unsigned long num)
2080 {
2081 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2082 }
2083 EXPORT_SYMBOL(vm_map_pages);
2084 
2085 /**
2086  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2087  * @vma: user vma to map to
2088  * @pages: pointer to array of source kernel pages
2089  * @num: number of pages in page array
2090  *
2091  * Similar to vm_map_pages(), except that it explicitly sets the offset
2092  * to 0. This function is intended for the drivers that did not consider
2093  * vm_pgoff.
2094  *
2095  * Context: Process context. Called by mmap handlers.
2096  * Return: 0 on success and error code otherwise.
2097  */
2098 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2099 				unsigned long num)
2100 {
2101 	return __vm_map_pages(vma, pages, num, 0);
2102 }
2103 EXPORT_SYMBOL(vm_map_pages_zero);
2104 
2105 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2106 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2107 {
2108 	struct mm_struct *mm = vma->vm_mm;
2109 	pte_t *pte, entry;
2110 	spinlock_t *ptl;
2111 
2112 	pte = get_locked_pte(mm, addr, &ptl);
2113 	if (!pte)
2114 		return VM_FAULT_OOM;
2115 	if (!pte_none(*pte)) {
2116 		if (mkwrite) {
2117 			/*
2118 			 * For read faults on private mappings the PFN passed
2119 			 * in may not match the PFN we have mapped if the
2120 			 * mapped PFN is a writeable COW page.  In the mkwrite
2121 			 * case we are creating a writable PTE for a shared
2122 			 * mapping and we expect the PFNs to match. If they
2123 			 * don't match, we are likely racing with block
2124 			 * allocation and mapping invalidation so just skip the
2125 			 * update.
2126 			 */
2127 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2128 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2129 				goto out_unlock;
2130 			}
2131 			entry = pte_mkyoung(*pte);
2132 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2133 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2134 				update_mmu_cache(vma, addr, pte);
2135 		}
2136 		goto out_unlock;
2137 	}
2138 
2139 	/* Ok, finally just insert the thing.. */
2140 	if (pfn_t_devmap(pfn))
2141 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2142 	else
2143 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2144 
2145 	if (mkwrite) {
2146 		entry = pte_mkyoung(entry);
2147 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2148 	}
2149 
2150 	set_pte_at(mm, addr, pte, entry);
2151 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2152 
2153 out_unlock:
2154 	pte_unmap_unlock(pte, ptl);
2155 	return VM_FAULT_NOPAGE;
2156 }
2157 
2158 /**
2159  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2160  * @vma: user vma to map to
2161  * @addr: target user address of this page
2162  * @pfn: source kernel pfn
2163  * @pgprot: pgprot flags for the inserted page
2164  *
2165  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2166  * to override pgprot on a per-page basis.
2167  *
2168  * This only makes sense for IO mappings, and it makes no sense for
2169  * COW mappings.  In general, using multiple vmas is preferable;
2170  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2171  * impractical.
2172  *
2173  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2174  * caching- and encryption bits different than those of @vma->vm_page_prot,
2175  * because the caching- or encryption mode may not be known at mmap() time.
2176  *
2177  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2178  * to set caching and encryption bits for those vmas (except for COW pages).
2179  * This is ensured by core vm only modifying these page table entries using
2180  * functions that don't touch caching- or encryption bits, using pte_modify()
2181  * if needed. (See for example mprotect()).
2182  *
2183  * Also when new page-table entries are created, this is only done using the
2184  * fault() callback, and never using the value of vma->vm_page_prot,
2185  * except for page-table entries that point to anonymous pages as the result
2186  * of COW.
2187  *
2188  * Context: Process context.  May allocate using %GFP_KERNEL.
2189  * Return: vm_fault_t value.
2190  */
2191 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2192 			unsigned long pfn, pgprot_t pgprot)
2193 {
2194 	/*
2195 	 * Technically, architectures with pte_special can avoid all these
2196 	 * restrictions (same for remap_pfn_range).  However we would like
2197 	 * consistency in testing and feature parity among all, so we should
2198 	 * try to keep these invariants in place for everybody.
2199 	 */
2200 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2201 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2202 						(VM_PFNMAP|VM_MIXEDMAP));
2203 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2204 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2205 
2206 	if (addr < vma->vm_start || addr >= vma->vm_end)
2207 		return VM_FAULT_SIGBUS;
2208 
2209 	if (!pfn_modify_allowed(pfn, pgprot))
2210 		return VM_FAULT_SIGBUS;
2211 
2212 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2213 
2214 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2215 			false);
2216 }
2217 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2218 
2219 /**
2220  * vmf_insert_pfn - insert single pfn into user vma
2221  * @vma: user vma to map to
2222  * @addr: target user address of this page
2223  * @pfn: source kernel pfn
2224  *
2225  * Similar to vm_insert_page, this allows drivers to insert individual pages
2226  * they've allocated into a user vma. Same comments apply.
2227  *
2228  * This function should only be called from a vm_ops->fault handler, and
2229  * in that case the handler should return the result of this function.
2230  *
2231  * vma cannot be a COW mapping.
2232  *
2233  * As this is called only for pages that do not currently exist, we
2234  * do not need to flush old virtual caches or the TLB.
2235  *
2236  * Context: Process context.  May allocate using %GFP_KERNEL.
2237  * Return: vm_fault_t value.
2238  */
2239 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2240 			unsigned long pfn)
2241 {
2242 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2243 }
2244 EXPORT_SYMBOL(vmf_insert_pfn);
2245 
2246 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2247 {
2248 	/* these checks mirror the abort conditions in vm_normal_page */
2249 	if (vma->vm_flags & VM_MIXEDMAP)
2250 		return true;
2251 	if (pfn_t_devmap(pfn))
2252 		return true;
2253 	if (pfn_t_special(pfn))
2254 		return true;
2255 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2256 		return true;
2257 	return false;
2258 }
2259 
2260 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2261 		unsigned long addr, pfn_t pfn, bool mkwrite)
2262 {
2263 	pgprot_t pgprot = vma->vm_page_prot;
2264 	int err;
2265 
2266 	BUG_ON(!vm_mixed_ok(vma, pfn));
2267 
2268 	if (addr < vma->vm_start || addr >= vma->vm_end)
2269 		return VM_FAULT_SIGBUS;
2270 
2271 	track_pfn_insert(vma, &pgprot, pfn);
2272 
2273 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2274 		return VM_FAULT_SIGBUS;
2275 
2276 	/*
2277 	 * If we don't have pte special, then we have to use the pfn_valid()
2278 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2279 	 * refcount the page if pfn_valid is true (hence insert_page rather
2280 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2281 	 * without pte special, it would there be refcounted as a normal page.
2282 	 */
2283 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2284 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2285 		struct page *page;
2286 
2287 		/*
2288 		 * At this point we are committed to insert_page()
2289 		 * regardless of whether the caller specified flags that
2290 		 * result in pfn_t_has_page() == false.
2291 		 */
2292 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2293 		err = insert_page(vma, addr, page, pgprot);
2294 	} else {
2295 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2296 	}
2297 
2298 	if (err == -ENOMEM)
2299 		return VM_FAULT_OOM;
2300 	if (err < 0 && err != -EBUSY)
2301 		return VM_FAULT_SIGBUS;
2302 
2303 	return VM_FAULT_NOPAGE;
2304 }
2305 
2306 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2307 		pfn_t pfn)
2308 {
2309 	return __vm_insert_mixed(vma, addr, pfn, false);
2310 }
2311 EXPORT_SYMBOL(vmf_insert_mixed);
2312 
2313 /*
2314  *  If the insertion of PTE failed because someone else already added a
2315  *  different entry in the mean time, we treat that as success as we assume
2316  *  the same entry was actually inserted.
2317  */
2318 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2319 		unsigned long addr, pfn_t pfn)
2320 {
2321 	return __vm_insert_mixed(vma, addr, pfn, true);
2322 }
2323 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2324 
2325 /*
2326  * maps a range of physical memory into the requested pages. the old
2327  * mappings are removed. any references to nonexistent pages results
2328  * in null mappings (currently treated as "copy-on-access")
2329  */
2330 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2331 			unsigned long addr, unsigned long end,
2332 			unsigned long pfn, pgprot_t prot)
2333 {
2334 	pte_t *pte, *mapped_pte;
2335 	spinlock_t *ptl;
2336 	int err = 0;
2337 
2338 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2339 	if (!pte)
2340 		return -ENOMEM;
2341 	arch_enter_lazy_mmu_mode();
2342 	do {
2343 		BUG_ON(!pte_none(*pte));
2344 		if (!pfn_modify_allowed(pfn, prot)) {
2345 			err = -EACCES;
2346 			break;
2347 		}
2348 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2349 		pfn++;
2350 	} while (pte++, addr += PAGE_SIZE, addr != end);
2351 	arch_leave_lazy_mmu_mode();
2352 	pte_unmap_unlock(mapped_pte, ptl);
2353 	return err;
2354 }
2355 
2356 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2357 			unsigned long addr, unsigned long end,
2358 			unsigned long pfn, pgprot_t prot)
2359 {
2360 	pmd_t *pmd;
2361 	unsigned long next;
2362 	int err;
2363 
2364 	pfn -= addr >> PAGE_SHIFT;
2365 	pmd = pmd_alloc(mm, pud, addr);
2366 	if (!pmd)
2367 		return -ENOMEM;
2368 	VM_BUG_ON(pmd_trans_huge(*pmd));
2369 	do {
2370 		next = pmd_addr_end(addr, end);
2371 		err = remap_pte_range(mm, pmd, addr, next,
2372 				pfn + (addr >> PAGE_SHIFT), prot);
2373 		if (err)
2374 			return err;
2375 	} while (pmd++, addr = next, addr != end);
2376 	return 0;
2377 }
2378 
2379 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2380 			unsigned long addr, unsigned long end,
2381 			unsigned long pfn, pgprot_t prot)
2382 {
2383 	pud_t *pud;
2384 	unsigned long next;
2385 	int err;
2386 
2387 	pfn -= addr >> PAGE_SHIFT;
2388 	pud = pud_alloc(mm, p4d, addr);
2389 	if (!pud)
2390 		return -ENOMEM;
2391 	do {
2392 		next = pud_addr_end(addr, end);
2393 		err = remap_pmd_range(mm, pud, addr, next,
2394 				pfn + (addr >> PAGE_SHIFT), prot);
2395 		if (err)
2396 			return err;
2397 	} while (pud++, addr = next, addr != end);
2398 	return 0;
2399 }
2400 
2401 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2402 			unsigned long addr, unsigned long end,
2403 			unsigned long pfn, pgprot_t prot)
2404 {
2405 	p4d_t *p4d;
2406 	unsigned long next;
2407 	int err;
2408 
2409 	pfn -= addr >> PAGE_SHIFT;
2410 	p4d = p4d_alloc(mm, pgd, addr);
2411 	if (!p4d)
2412 		return -ENOMEM;
2413 	do {
2414 		next = p4d_addr_end(addr, end);
2415 		err = remap_pud_range(mm, p4d, addr, next,
2416 				pfn + (addr >> PAGE_SHIFT), prot);
2417 		if (err)
2418 			return err;
2419 	} while (p4d++, addr = next, addr != end);
2420 	return 0;
2421 }
2422 
2423 /*
2424  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2425  * must have pre-validated the caching bits of the pgprot_t.
2426  */
2427 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2428 		unsigned long pfn, unsigned long size, pgprot_t prot)
2429 {
2430 	pgd_t *pgd;
2431 	unsigned long next;
2432 	unsigned long end = addr + PAGE_ALIGN(size);
2433 	struct mm_struct *mm = vma->vm_mm;
2434 	int err;
2435 
2436 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2437 		return -EINVAL;
2438 
2439 	/*
2440 	 * Physically remapped pages are special. Tell the
2441 	 * rest of the world about it:
2442 	 *   VM_IO tells people not to look at these pages
2443 	 *	(accesses can have side effects).
2444 	 *   VM_PFNMAP tells the core MM that the base pages are just
2445 	 *	raw PFN mappings, and do not have a "struct page" associated
2446 	 *	with them.
2447 	 *   VM_DONTEXPAND
2448 	 *      Disable vma merging and expanding with mremap().
2449 	 *   VM_DONTDUMP
2450 	 *      Omit vma from core dump, even when VM_IO turned off.
2451 	 *
2452 	 * There's a horrible special case to handle copy-on-write
2453 	 * behaviour that some programs depend on. We mark the "original"
2454 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2455 	 * See vm_normal_page() for details.
2456 	 */
2457 	if (is_cow_mapping(vma->vm_flags)) {
2458 		if (addr != vma->vm_start || end != vma->vm_end)
2459 			return -EINVAL;
2460 		vma->vm_pgoff = pfn;
2461 	}
2462 
2463 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2464 
2465 	BUG_ON(addr >= end);
2466 	pfn -= addr >> PAGE_SHIFT;
2467 	pgd = pgd_offset(mm, addr);
2468 	flush_cache_range(vma, addr, end);
2469 	do {
2470 		next = pgd_addr_end(addr, end);
2471 		err = remap_p4d_range(mm, pgd, addr, next,
2472 				pfn + (addr >> PAGE_SHIFT), prot);
2473 		if (err)
2474 			return err;
2475 	} while (pgd++, addr = next, addr != end);
2476 
2477 	return 0;
2478 }
2479 
2480 /**
2481  * remap_pfn_range - remap kernel memory to userspace
2482  * @vma: user vma to map to
2483  * @addr: target page aligned user address to start at
2484  * @pfn: page frame number of kernel physical memory address
2485  * @size: size of mapping area
2486  * @prot: page protection flags for this mapping
2487  *
2488  * Note: this is only safe if the mm semaphore is held when called.
2489  *
2490  * Return: %0 on success, negative error code otherwise.
2491  */
2492 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2493 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2494 {
2495 	int err;
2496 
2497 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2498 	if (err)
2499 		return -EINVAL;
2500 
2501 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2502 	if (err)
2503 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2504 	return err;
2505 }
2506 EXPORT_SYMBOL(remap_pfn_range);
2507 
2508 /**
2509  * vm_iomap_memory - remap memory to userspace
2510  * @vma: user vma to map to
2511  * @start: start of the physical memory to be mapped
2512  * @len: size of area
2513  *
2514  * This is a simplified io_remap_pfn_range() for common driver use. The
2515  * driver just needs to give us the physical memory range to be mapped,
2516  * we'll figure out the rest from the vma information.
2517  *
2518  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2519  * whatever write-combining details or similar.
2520  *
2521  * Return: %0 on success, negative error code otherwise.
2522  */
2523 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2524 {
2525 	unsigned long vm_len, pfn, pages;
2526 
2527 	/* Check that the physical memory area passed in looks valid */
2528 	if (start + len < start)
2529 		return -EINVAL;
2530 	/*
2531 	 * You *really* shouldn't map things that aren't page-aligned,
2532 	 * but we've historically allowed it because IO memory might
2533 	 * just have smaller alignment.
2534 	 */
2535 	len += start & ~PAGE_MASK;
2536 	pfn = start >> PAGE_SHIFT;
2537 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2538 	if (pfn + pages < pfn)
2539 		return -EINVAL;
2540 
2541 	/* We start the mapping 'vm_pgoff' pages into the area */
2542 	if (vma->vm_pgoff > pages)
2543 		return -EINVAL;
2544 	pfn += vma->vm_pgoff;
2545 	pages -= vma->vm_pgoff;
2546 
2547 	/* Can we fit all of the mapping? */
2548 	vm_len = vma->vm_end - vma->vm_start;
2549 	if (vm_len >> PAGE_SHIFT > pages)
2550 		return -EINVAL;
2551 
2552 	/* Ok, let it rip */
2553 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2554 }
2555 EXPORT_SYMBOL(vm_iomap_memory);
2556 
2557 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2558 				     unsigned long addr, unsigned long end,
2559 				     pte_fn_t fn, void *data, bool create,
2560 				     pgtbl_mod_mask *mask)
2561 {
2562 	pte_t *pte, *mapped_pte;
2563 	int err = 0;
2564 	spinlock_t *ptl;
2565 
2566 	if (create) {
2567 		mapped_pte = pte = (mm == &init_mm) ?
2568 			pte_alloc_kernel_track(pmd, addr, mask) :
2569 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2570 		if (!pte)
2571 			return -ENOMEM;
2572 	} else {
2573 		mapped_pte = pte = (mm == &init_mm) ?
2574 			pte_offset_kernel(pmd, addr) :
2575 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2576 	}
2577 
2578 	BUG_ON(pmd_huge(*pmd));
2579 
2580 	arch_enter_lazy_mmu_mode();
2581 
2582 	if (fn) {
2583 		do {
2584 			if (create || !pte_none(*pte)) {
2585 				err = fn(pte++, addr, data);
2586 				if (err)
2587 					break;
2588 			}
2589 		} while (addr += PAGE_SIZE, addr != end);
2590 	}
2591 	*mask |= PGTBL_PTE_MODIFIED;
2592 
2593 	arch_leave_lazy_mmu_mode();
2594 
2595 	if (mm != &init_mm)
2596 		pte_unmap_unlock(mapped_pte, ptl);
2597 	return err;
2598 }
2599 
2600 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2601 				     unsigned long addr, unsigned long end,
2602 				     pte_fn_t fn, void *data, bool create,
2603 				     pgtbl_mod_mask *mask)
2604 {
2605 	pmd_t *pmd;
2606 	unsigned long next;
2607 	int err = 0;
2608 
2609 	BUG_ON(pud_huge(*pud));
2610 
2611 	if (create) {
2612 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2613 		if (!pmd)
2614 			return -ENOMEM;
2615 	} else {
2616 		pmd = pmd_offset(pud, addr);
2617 	}
2618 	do {
2619 		next = pmd_addr_end(addr, end);
2620 		if (pmd_none(*pmd) && !create)
2621 			continue;
2622 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2623 			return -EINVAL;
2624 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2625 			if (!create)
2626 				continue;
2627 			pmd_clear_bad(pmd);
2628 		}
2629 		err = apply_to_pte_range(mm, pmd, addr, next,
2630 					 fn, data, create, mask);
2631 		if (err)
2632 			break;
2633 	} while (pmd++, addr = next, addr != end);
2634 
2635 	return err;
2636 }
2637 
2638 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2639 				     unsigned long addr, unsigned long end,
2640 				     pte_fn_t fn, void *data, bool create,
2641 				     pgtbl_mod_mask *mask)
2642 {
2643 	pud_t *pud;
2644 	unsigned long next;
2645 	int err = 0;
2646 
2647 	if (create) {
2648 		pud = pud_alloc_track(mm, p4d, addr, mask);
2649 		if (!pud)
2650 			return -ENOMEM;
2651 	} else {
2652 		pud = pud_offset(p4d, addr);
2653 	}
2654 	do {
2655 		next = pud_addr_end(addr, end);
2656 		if (pud_none(*pud) && !create)
2657 			continue;
2658 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2659 			return -EINVAL;
2660 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2661 			if (!create)
2662 				continue;
2663 			pud_clear_bad(pud);
2664 		}
2665 		err = apply_to_pmd_range(mm, pud, addr, next,
2666 					 fn, data, create, mask);
2667 		if (err)
2668 			break;
2669 	} while (pud++, addr = next, addr != end);
2670 
2671 	return err;
2672 }
2673 
2674 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2675 				     unsigned long addr, unsigned long end,
2676 				     pte_fn_t fn, void *data, bool create,
2677 				     pgtbl_mod_mask *mask)
2678 {
2679 	p4d_t *p4d;
2680 	unsigned long next;
2681 	int err = 0;
2682 
2683 	if (create) {
2684 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2685 		if (!p4d)
2686 			return -ENOMEM;
2687 	} else {
2688 		p4d = p4d_offset(pgd, addr);
2689 	}
2690 	do {
2691 		next = p4d_addr_end(addr, end);
2692 		if (p4d_none(*p4d) && !create)
2693 			continue;
2694 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2695 			return -EINVAL;
2696 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2697 			if (!create)
2698 				continue;
2699 			p4d_clear_bad(p4d);
2700 		}
2701 		err = apply_to_pud_range(mm, p4d, addr, next,
2702 					 fn, data, create, mask);
2703 		if (err)
2704 			break;
2705 	} while (p4d++, addr = next, addr != end);
2706 
2707 	return err;
2708 }
2709 
2710 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2711 				 unsigned long size, pte_fn_t fn,
2712 				 void *data, bool create)
2713 {
2714 	pgd_t *pgd;
2715 	unsigned long start = addr, next;
2716 	unsigned long end = addr + size;
2717 	pgtbl_mod_mask mask = 0;
2718 	int err = 0;
2719 
2720 	if (WARN_ON(addr >= end))
2721 		return -EINVAL;
2722 
2723 	pgd = pgd_offset(mm, addr);
2724 	do {
2725 		next = pgd_addr_end(addr, end);
2726 		if (pgd_none(*pgd) && !create)
2727 			continue;
2728 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2729 			return -EINVAL;
2730 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2731 			if (!create)
2732 				continue;
2733 			pgd_clear_bad(pgd);
2734 		}
2735 		err = apply_to_p4d_range(mm, pgd, addr, next,
2736 					 fn, data, create, &mask);
2737 		if (err)
2738 			break;
2739 	} while (pgd++, addr = next, addr != end);
2740 
2741 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2742 		arch_sync_kernel_mappings(start, start + size);
2743 
2744 	return err;
2745 }
2746 
2747 /*
2748  * Scan a region of virtual memory, filling in page tables as necessary
2749  * and calling a provided function on each leaf page table.
2750  */
2751 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2752 			unsigned long size, pte_fn_t fn, void *data)
2753 {
2754 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2755 }
2756 EXPORT_SYMBOL_GPL(apply_to_page_range);
2757 
2758 /*
2759  * Scan a region of virtual memory, calling a provided function on
2760  * each leaf page table where it exists.
2761  *
2762  * Unlike apply_to_page_range, this does _not_ fill in page tables
2763  * where they are absent.
2764  */
2765 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2766 				 unsigned long size, pte_fn_t fn, void *data)
2767 {
2768 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2769 }
2770 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2771 
2772 /*
2773  * handle_pte_fault chooses page fault handler according to an entry which was
2774  * read non-atomically.  Before making any commitment, on those architectures
2775  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2776  * parts, do_swap_page must check under lock before unmapping the pte and
2777  * proceeding (but do_wp_page is only called after already making such a check;
2778  * and do_anonymous_page can safely check later on).
2779  */
2780 static inline int pte_unmap_same(struct vm_fault *vmf)
2781 {
2782 	int same = 1;
2783 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2784 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2785 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2786 		spin_lock(ptl);
2787 		same = pte_same(*vmf->pte, vmf->orig_pte);
2788 		spin_unlock(ptl);
2789 	}
2790 #endif
2791 	pte_unmap(vmf->pte);
2792 	vmf->pte = NULL;
2793 	return same;
2794 }
2795 
2796 /*
2797  * Return:
2798  *	0:		copied succeeded
2799  *	-EHWPOISON:	copy failed due to hwpoison in source page
2800  *	-EAGAIN:	copied failed (some other reason)
2801  */
2802 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2803 				      struct vm_fault *vmf)
2804 {
2805 	int ret;
2806 	void *kaddr;
2807 	void __user *uaddr;
2808 	bool locked = false;
2809 	struct vm_area_struct *vma = vmf->vma;
2810 	struct mm_struct *mm = vma->vm_mm;
2811 	unsigned long addr = vmf->address;
2812 
2813 	if (likely(src)) {
2814 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2815 			memory_failure_queue(page_to_pfn(src), 0);
2816 			return -EHWPOISON;
2817 		}
2818 		return 0;
2819 	}
2820 
2821 	/*
2822 	 * If the source page was a PFN mapping, we don't have
2823 	 * a "struct page" for it. We do a best-effort copy by
2824 	 * just copying from the original user address. If that
2825 	 * fails, we just zero-fill it. Live with it.
2826 	 */
2827 	kaddr = kmap_atomic(dst);
2828 	uaddr = (void __user *)(addr & PAGE_MASK);
2829 
2830 	/*
2831 	 * On architectures with software "accessed" bits, we would
2832 	 * take a double page fault, so mark it accessed here.
2833 	 */
2834 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2835 		pte_t entry;
2836 
2837 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2838 		locked = true;
2839 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2840 			/*
2841 			 * Other thread has already handled the fault
2842 			 * and update local tlb only
2843 			 */
2844 			update_mmu_tlb(vma, addr, vmf->pte);
2845 			ret = -EAGAIN;
2846 			goto pte_unlock;
2847 		}
2848 
2849 		entry = pte_mkyoung(vmf->orig_pte);
2850 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2851 			update_mmu_cache(vma, addr, vmf->pte);
2852 	}
2853 
2854 	/*
2855 	 * This really shouldn't fail, because the page is there
2856 	 * in the page tables. But it might just be unreadable,
2857 	 * in which case we just give up and fill the result with
2858 	 * zeroes.
2859 	 */
2860 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2861 		if (locked)
2862 			goto warn;
2863 
2864 		/* Re-validate under PTL if the page is still mapped */
2865 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2866 		locked = true;
2867 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2868 			/* The PTE changed under us, update local tlb */
2869 			update_mmu_tlb(vma, addr, vmf->pte);
2870 			ret = -EAGAIN;
2871 			goto pte_unlock;
2872 		}
2873 
2874 		/*
2875 		 * The same page can be mapped back since last copy attempt.
2876 		 * Try to copy again under PTL.
2877 		 */
2878 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2879 			/*
2880 			 * Give a warn in case there can be some obscure
2881 			 * use-case
2882 			 */
2883 warn:
2884 			WARN_ON_ONCE(1);
2885 			clear_page(kaddr);
2886 		}
2887 	}
2888 
2889 	ret = 0;
2890 
2891 pte_unlock:
2892 	if (locked)
2893 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2894 	kunmap_atomic(kaddr);
2895 	flush_dcache_page(dst);
2896 
2897 	return ret;
2898 }
2899 
2900 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2901 {
2902 	struct file *vm_file = vma->vm_file;
2903 
2904 	if (vm_file)
2905 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2906 
2907 	/*
2908 	 * Special mappings (e.g. VDSO) do not have any file so fake
2909 	 * a default GFP_KERNEL for them.
2910 	 */
2911 	return GFP_KERNEL;
2912 }
2913 
2914 /*
2915  * Notify the address space that the page is about to become writable so that
2916  * it can prohibit this or wait for the page to get into an appropriate state.
2917  *
2918  * We do this without the lock held, so that it can sleep if it needs to.
2919  */
2920 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2921 {
2922 	vm_fault_t ret;
2923 	struct page *page = vmf->page;
2924 	unsigned int old_flags = vmf->flags;
2925 
2926 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2927 
2928 	if (vmf->vma->vm_file &&
2929 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2930 		return VM_FAULT_SIGBUS;
2931 
2932 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2933 	/* Restore original flags so that caller is not surprised */
2934 	vmf->flags = old_flags;
2935 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2936 		return ret;
2937 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2938 		lock_page(page);
2939 		if (!page->mapping) {
2940 			unlock_page(page);
2941 			return 0; /* retry */
2942 		}
2943 		ret |= VM_FAULT_LOCKED;
2944 	} else
2945 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2946 	return ret;
2947 }
2948 
2949 /*
2950  * Handle dirtying of a page in shared file mapping on a write fault.
2951  *
2952  * The function expects the page to be locked and unlocks it.
2953  */
2954 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2955 {
2956 	struct vm_area_struct *vma = vmf->vma;
2957 	struct address_space *mapping;
2958 	struct page *page = vmf->page;
2959 	bool dirtied;
2960 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2961 
2962 	dirtied = set_page_dirty(page);
2963 	VM_BUG_ON_PAGE(PageAnon(page), page);
2964 	/*
2965 	 * Take a local copy of the address_space - page.mapping may be zeroed
2966 	 * by truncate after unlock_page().   The address_space itself remains
2967 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2968 	 * release semantics to prevent the compiler from undoing this copying.
2969 	 */
2970 	mapping = page_rmapping(page);
2971 	unlock_page(page);
2972 
2973 	if (!page_mkwrite)
2974 		file_update_time(vma->vm_file);
2975 
2976 	/*
2977 	 * Throttle page dirtying rate down to writeback speed.
2978 	 *
2979 	 * mapping may be NULL here because some device drivers do not
2980 	 * set page.mapping but still dirty their pages
2981 	 *
2982 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2983 	 * is pinning the mapping, as per above.
2984 	 */
2985 	if ((dirtied || page_mkwrite) && mapping) {
2986 		struct file *fpin;
2987 
2988 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2989 		balance_dirty_pages_ratelimited(mapping);
2990 		if (fpin) {
2991 			fput(fpin);
2992 			return VM_FAULT_COMPLETED;
2993 		}
2994 	}
2995 
2996 	return 0;
2997 }
2998 
2999 /*
3000  * Handle write page faults for pages that can be reused in the current vma
3001  *
3002  * This can happen either due to the mapping being with the VM_SHARED flag,
3003  * or due to us being the last reference standing to the page. In either
3004  * case, all we need to do here is to mark the page as writable and update
3005  * any related book-keeping.
3006  */
3007 static inline void wp_page_reuse(struct vm_fault *vmf)
3008 	__releases(vmf->ptl)
3009 {
3010 	struct vm_area_struct *vma = vmf->vma;
3011 	struct page *page = vmf->page;
3012 	pte_t entry;
3013 
3014 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3015 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3016 
3017 	/*
3018 	 * Clear the pages cpupid information as the existing
3019 	 * information potentially belongs to a now completely
3020 	 * unrelated process.
3021 	 */
3022 	if (page)
3023 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3024 
3025 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3026 	entry = pte_mkyoung(vmf->orig_pte);
3027 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3028 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3029 		update_mmu_cache(vma, vmf->address, vmf->pte);
3030 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3031 	count_vm_event(PGREUSE);
3032 }
3033 
3034 /*
3035  * Handle the case of a page which we actually need to copy to a new page,
3036  * either due to COW or unsharing.
3037  *
3038  * Called with mmap_lock locked and the old page referenced, but
3039  * without the ptl held.
3040  *
3041  * High level logic flow:
3042  *
3043  * - Allocate a page, copy the content of the old page to the new one.
3044  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3045  * - Take the PTL. If the pte changed, bail out and release the allocated page
3046  * - If the pte is still the way we remember it, update the page table and all
3047  *   relevant references. This includes dropping the reference the page-table
3048  *   held to the old page, as well as updating the rmap.
3049  * - In any case, unlock the PTL and drop the reference we took to the old page.
3050  */
3051 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3052 {
3053 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3054 	struct vm_area_struct *vma = vmf->vma;
3055 	struct mm_struct *mm = vma->vm_mm;
3056 	struct folio *old_folio = NULL;
3057 	struct folio *new_folio = NULL;
3058 	pte_t entry;
3059 	int page_copied = 0;
3060 	struct mmu_notifier_range range;
3061 	int ret;
3062 
3063 	delayacct_wpcopy_start();
3064 
3065 	if (vmf->page)
3066 		old_folio = page_folio(vmf->page);
3067 	if (unlikely(anon_vma_prepare(vma)))
3068 		goto oom;
3069 
3070 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3071 		new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3072 		if (!new_folio)
3073 			goto oom;
3074 	} else {
3075 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3076 				vmf->address, false);
3077 		if (!new_folio)
3078 			goto oom;
3079 
3080 		ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3081 		if (ret) {
3082 			/*
3083 			 * COW failed, if the fault was solved by other,
3084 			 * it's fine. If not, userspace would re-fault on
3085 			 * the same address and we will handle the fault
3086 			 * from the second attempt.
3087 			 * The -EHWPOISON case will not be retried.
3088 			 */
3089 			folio_put(new_folio);
3090 			if (old_folio)
3091 				folio_put(old_folio);
3092 
3093 			delayacct_wpcopy_end();
3094 			return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3095 		}
3096 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3097 	}
3098 
3099 	if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3100 		goto oom_free_new;
3101 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
3102 
3103 	__folio_mark_uptodate(new_folio);
3104 
3105 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3106 				vmf->address & PAGE_MASK,
3107 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3108 	mmu_notifier_invalidate_range_start(&range);
3109 
3110 	/*
3111 	 * Re-check the pte - we dropped the lock
3112 	 */
3113 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3114 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3115 		if (old_folio) {
3116 			if (!folio_test_anon(old_folio)) {
3117 				dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3118 				inc_mm_counter(mm, MM_ANONPAGES);
3119 			}
3120 		} else {
3121 			inc_mm_counter(mm, MM_ANONPAGES);
3122 		}
3123 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3124 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3125 		entry = pte_sw_mkyoung(entry);
3126 		if (unlikely(unshare)) {
3127 			if (pte_soft_dirty(vmf->orig_pte))
3128 				entry = pte_mksoft_dirty(entry);
3129 			if (pte_uffd_wp(vmf->orig_pte))
3130 				entry = pte_mkuffd_wp(entry);
3131 		} else {
3132 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3133 		}
3134 
3135 		/*
3136 		 * Clear the pte entry and flush it first, before updating the
3137 		 * pte with the new entry, to keep TLBs on different CPUs in
3138 		 * sync. This code used to set the new PTE then flush TLBs, but
3139 		 * that left a window where the new PTE could be loaded into
3140 		 * some TLBs while the old PTE remains in others.
3141 		 */
3142 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3143 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3144 		folio_add_lru_vma(new_folio, vma);
3145 		/*
3146 		 * We call the notify macro here because, when using secondary
3147 		 * mmu page tables (such as kvm shadow page tables), we want the
3148 		 * new page to be mapped directly into the secondary page table.
3149 		 */
3150 		BUG_ON(unshare && pte_write(entry));
3151 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3152 		update_mmu_cache(vma, vmf->address, vmf->pte);
3153 		if (old_folio) {
3154 			/*
3155 			 * Only after switching the pte to the new page may
3156 			 * we remove the mapcount here. Otherwise another
3157 			 * process may come and find the rmap count decremented
3158 			 * before the pte is switched to the new page, and
3159 			 * "reuse" the old page writing into it while our pte
3160 			 * here still points into it and can be read by other
3161 			 * threads.
3162 			 *
3163 			 * The critical issue is to order this
3164 			 * page_remove_rmap with the ptp_clear_flush above.
3165 			 * Those stores are ordered by (if nothing else,)
3166 			 * the barrier present in the atomic_add_negative
3167 			 * in page_remove_rmap.
3168 			 *
3169 			 * Then the TLB flush in ptep_clear_flush ensures that
3170 			 * no process can access the old page before the
3171 			 * decremented mapcount is visible. And the old page
3172 			 * cannot be reused until after the decremented
3173 			 * mapcount is visible. So transitively, TLBs to
3174 			 * old page will be flushed before it can be reused.
3175 			 */
3176 			page_remove_rmap(vmf->page, vma, false);
3177 		}
3178 
3179 		/* Free the old page.. */
3180 		new_folio = old_folio;
3181 		page_copied = 1;
3182 	} else {
3183 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3184 	}
3185 
3186 	if (new_folio)
3187 		folio_put(new_folio);
3188 
3189 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3190 	/*
3191 	 * No need to double call mmu_notifier->invalidate_range() callback as
3192 	 * the above ptep_clear_flush_notify() did already call it.
3193 	 */
3194 	mmu_notifier_invalidate_range_only_end(&range);
3195 	if (old_folio) {
3196 		if (page_copied)
3197 			free_swap_cache(&old_folio->page);
3198 		folio_put(old_folio);
3199 	}
3200 
3201 	delayacct_wpcopy_end();
3202 	return 0;
3203 oom_free_new:
3204 	folio_put(new_folio);
3205 oom:
3206 	if (old_folio)
3207 		folio_put(old_folio);
3208 
3209 	delayacct_wpcopy_end();
3210 	return VM_FAULT_OOM;
3211 }
3212 
3213 /**
3214  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3215  *			  writeable once the page is prepared
3216  *
3217  * @vmf: structure describing the fault
3218  *
3219  * This function handles all that is needed to finish a write page fault in a
3220  * shared mapping due to PTE being read-only once the mapped page is prepared.
3221  * It handles locking of PTE and modifying it.
3222  *
3223  * The function expects the page to be locked or other protection against
3224  * concurrent faults / writeback (such as DAX radix tree locks).
3225  *
3226  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3227  * we acquired PTE lock.
3228  */
3229 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3230 {
3231 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3232 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3233 				       &vmf->ptl);
3234 	/*
3235 	 * We might have raced with another page fault while we released the
3236 	 * pte_offset_map_lock.
3237 	 */
3238 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3239 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3240 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3241 		return VM_FAULT_NOPAGE;
3242 	}
3243 	wp_page_reuse(vmf);
3244 	return 0;
3245 }
3246 
3247 /*
3248  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3249  * mapping
3250  */
3251 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3252 {
3253 	struct vm_area_struct *vma = vmf->vma;
3254 
3255 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3256 		vm_fault_t ret;
3257 
3258 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3259 		vmf->flags |= FAULT_FLAG_MKWRITE;
3260 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3261 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3262 			return ret;
3263 		return finish_mkwrite_fault(vmf);
3264 	}
3265 	wp_page_reuse(vmf);
3266 	return 0;
3267 }
3268 
3269 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3270 	__releases(vmf->ptl)
3271 {
3272 	struct vm_area_struct *vma = vmf->vma;
3273 	vm_fault_t ret = 0;
3274 
3275 	get_page(vmf->page);
3276 
3277 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3278 		vm_fault_t tmp;
3279 
3280 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3281 		tmp = do_page_mkwrite(vmf);
3282 		if (unlikely(!tmp || (tmp &
3283 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3284 			put_page(vmf->page);
3285 			return tmp;
3286 		}
3287 		tmp = finish_mkwrite_fault(vmf);
3288 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3289 			unlock_page(vmf->page);
3290 			put_page(vmf->page);
3291 			return tmp;
3292 		}
3293 	} else {
3294 		wp_page_reuse(vmf);
3295 		lock_page(vmf->page);
3296 	}
3297 	ret |= fault_dirty_shared_page(vmf);
3298 	put_page(vmf->page);
3299 
3300 	return ret;
3301 }
3302 
3303 /*
3304  * This routine handles present pages, when
3305  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3306  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3307  *   (FAULT_FLAG_UNSHARE)
3308  *
3309  * It is done by copying the page to a new address and decrementing the
3310  * shared-page counter for the old page.
3311  *
3312  * Note that this routine assumes that the protection checks have been
3313  * done by the caller (the low-level page fault routine in most cases).
3314  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3315  * done any necessary COW.
3316  *
3317  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3318  * though the page will change only once the write actually happens. This
3319  * avoids a few races, and potentially makes it more efficient.
3320  *
3321  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3322  * but allow concurrent faults), with pte both mapped and locked.
3323  * We return with mmap_lock still held, but pte unmapped and unlocked.
3324  */
3325 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3326 	__releases(vmf->ptl)
3327 {
3328 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3329 	struct vm_area_struct *vma = vmf->vma;
3330 	struct folio *folio = NULL;
3331 
3332 	if (likely(!unshare)) {
3333 		if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3334 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3335 			return handle_userfault(vmf, VM_UFFD_WP);
3336 		}
3337 
3338 		/*
3339 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3340 		 * is flushed in this case before copying.
3341 		 */
3342 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3343 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3344 			flush_tlb_page(vmf->vma, vmf->address);
3345 	}
3346 
3347 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3348 
3349 	/*
3350 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3351 	 * FAULT_FLAG_WRITE set at this point.
3352 	 */
3353 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3354 		/*
3355 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3356 		 * VM_PFNMAP VMA.
3357 		 *
3358 		 * We should not cow pages in a shared writeable mapping.
3359 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3360 		 */
3361 		if (!vmf->page)
3362 			return wp_pfn_shared(vmf);
3363 		return wp_page_shared(vmf);
3364 	}
3365 
3366 	if (vmf->page)
3367 		folio = page_folio(vmf->page);
3368 
3369 	/*
3370 	 * Private mapping: create an exclusive anonymous page copy if reuse
3371 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3372 	 */
3373 	if (folio && folio_test_anon(folio)) {
3374 		/*
3375 		 * If the page is exclusive to this process we must reuse the
3376 		 * page without further checks.
3377 		 */
3378 		if (PageAnonExclusive(vmf->page))
3379 			goto reuse;
3380 
3381 		/*
3382 		 * We have to verify under folio lock: these early checks are
3383 		 * just an optimization to avoid locking the folio and freeing
3384 		 * the swapcache if there is little hope that we can reuse.
3385 		 *
3386 		 * KSM doesn't necessarily raise the folio refcount.
3387 		 */
3388 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3389 			goto copy;
3390 		if (!folio_test_lru(folio))
3391 			/*
3392 			 * Note: We cannot easily detect+handle references from
3393 			 * remote LRU pagevecs or references to LRU folios.
3394 			 */
3395 			lru_add_drain();
3396 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3397 			goto copy;
3398 		if (!folio_trylock(folio))
3399 			goto copy;
3400 		if (folio_test_swapcache(folio))
3401 			folio_free_swap(folio);
3402 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3403 			folio_unlock(folio);
3404 			goto copy;
3405 		}
3406 		/*
3407 		 * Ok, we've got the only folio reference from our mapping
3408 		 * and the folio is locked, it's dark out, and we're wearing
3409 		 * sunglasses. Hit it.
3410 		 */
3411 		page_move_anon_rmap(vmf->page, vma);
3412 		folio_unlock(folio);
3413 reuse:
3414 		if (unlikely(unshare)) {
3415 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3416 			return 0;
3417 		}
3418 		wp_page_reuse(vmf);
3419 		return 0;
3420 	}
3421 copy:
3422 	/*
3423 	 * Ok, we need to copy. Oh, well..
3424 	 */
3425 	if (folio)
3426 		folio_get(folio);
3427 
3428 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3429 #ifdef CONFIG_KSM
3430 	if (folio && folio_test_ksm(folio))
3431 		count_vm_event(COW_KSM);
3432 #endif
3433 	return wp_page_copy(vmf);
3434 }
3435 
3436 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3437 		unsigned long start_addr, unsigned long end_addr,
3438 		struct zap_details *details)
3439 {
3440 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3441 }
3442 
3443 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3444 					    pgoff_t first_index,
3445 					    pgoff_t last_index,
3446 					    struct zap_details *details)
3447 {
3448 	struct vm_area_struct *vma;
3449 	pgoff_t vba, vea, zba, zea;
3450 
3451 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3452 		vba = vma->vm_pgoff;
3453 		vea = vba + vma_pages(vma) - 1;
3454 		zba = max(first_index, vba);
3455 		zea = min(last_index, vea);
3456 
3457 		unmap_mapping_range_vma(vma,
3458 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3459 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3460 				details);
3461 	}
3462 }
3463 
3464 /**
3465  * unmap_mapping_folio() - Unmap single folio from processes.
3466  * @folio: The locked folio to be unmapped.
3467  *
3468  * Unmap this folio from any userspace process which still has it mmaped.
3469  * Typically, for efficiency, the range of nearby pages has already been
3470  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3471  * truncation or invalidation holds the lock on a folio, it may find that
3472  * the page has been remapped again: and then uses unmap_mapping_folio()
3473  * to unmap it finally.
3474  */
3475 void unmap_mapping_folio(struct folio *folio)
3476 {
3477 	struct address_space *mapping = folio->mapping;
3478 	struct zap_details details = { };
3479 	pgoff_t	first_index;
3480 	pgoff_t	last_index;
3481 
3482 	VM_BUG_ON(!folio_test_locked(folio));
3483 
3484 	first_index = folio->index;
3485 	last_index = folio->index + folio_nr_pages(folio) - 1;
3486 
3487 	details.even_cows = false;
3488 	details.single_folio = folio;
3489 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3490 
3491 	i_mmap_lock_read(mapping);
3492 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3493 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3494 					 last_index, &details);
3495 	i_mmap_unlock_read(mapping);
3496 }
3497 
3498 /**
3499  * unmap_mapping_pages() - Unmap pages from processes.
3500  * @mapping: The address space containing pages to be unmapped.
3501  * @start: Index of first page to be unmapped.
3502  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3503  * @even_cows: Whether to unmap even private COWed pages.
3504  *
3505  * Unmap the pages in this address space from any userspace process which
3506  * has them mmaped.  Generally, you want to remove COWed pages as well when
3507  * a file is being truncated, but not when invalidating pages from the page
3508  * cache.
3509  */
3510 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3511 		pgoff_t nr, bool even_cows)
3512 {
3513 	struct zap_details details = { };
3514 	pgoff_t	first_index = start;
3515 	pgoff_t	last_index = start + nr - 1;
3516 
3517 	details.even_cows = even_cows;
3518 	if (last_index < first_index)
3519 		last_index = ULONG_MAX;
3520 
3521 	i_mmap_lock_read(mapping);
3522 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3523 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3524 					 last_index, &details);
3525 	i_mmap_unlock_read(mapping);
3526 }
3527 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3528 
3529 /**
3530  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3531  * address_space corresponding to the specified byte range in the underlying
3532  * file.
3533  *
3534  * @mapping: the address space containing mmaps to be unmapped.
3535  * @holebegin: byte in first page to unmap, relative to the start of
3536  * the underlying file.  This will be rounded down to a PAGE_SIZE
3537  * boundary.  Note that this is different from truncate_pagecache(), which
3538  * must keep the partial page.  In contrast, we must get rid of
3539  * partial pages.
3540  * @holelen: size of prospective hole in bytes.  This will be rounded
3541  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3542  * end of the file.
3543  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3544  * but 0 when invalidating pagecache, don't throw away private data.
3545  */
3546 void unmap_mapping_range(struct address_space *mapping,
3547 		loff_t const holebegin, loff_t const holelen, int even_cows)
3548 {
3549 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3550 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3551 
3552 	/* Check for overflow. */
3553 	if (sizeof(holelen) > sizeof(hlen)) {
3554 		long long holeend =
3555 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3556 		if (holeend & ~(long long)ULONG_MAX)
3557 			hlen = ULONG_MAX - hba + 1;
3558 	}
3559 
3560 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3561 }
3562 EXPORT_SYMBOL(unmap_mapping_range);
3563 
3564 /*
3565  * Restore a potential device exclusive pte to a working pte entry
3566  */
3567 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3568 {
3569 	struct folio *folio = page_folio(vmf->page);
3570 	struct vm_area_struct *vma = vmf->vma;
3571 	struct mmu_notifier_range range;
3572 
3573 	/*
3574 	 * We need a reference to lock the folio because we don't hold
3575 	 * the PTL so a racing thread can remove the device-exclusive
3576 	 * entry and unmap it. If the folio is free the entry must
3577 	 * have been removed already. If it happens to have already
3578 	 * been re-allocated after being freed all we do is lock and
3579 	 * unlock it.
3580 	 */
3581 	if (!folio_try_get(folio))
3582 		return 0;
3583 
3584 	if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3585 		folio_put(folio);
3586 		return VM_FAULT_RETRY;
3587 	}
3588 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3589 				vma->vm_mm, vmf->address & PAGE_MASK,
3590 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3591 	mmu_notifier_invalidate_range_start(&range);
3592 
3593 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3594 				&vmf->ptl);
3595 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3596 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3597 
3598 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3599 	folio_unlock(folio);
3600 	folio_put(folio);
3601 
3602 	mmu_notifier_invalidate_range_end(&range);
3603 	return 0;
3604 }
3605 
3606 static inline bool should_try_to_free_swap(struct folio *folio,
3607 					   struct vm_area_struct *vma,
3608 					   unsigned int fault_flags)
3609 {
3610 	if (!folio_test_swapcache(folio))
3611 		return false;
3612 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3613 	    folio_test_mlocked(folio))
3614 		return true;
3615 	/*
3616 	 * If we want to map a page that's in the swapcache writable, we
3617 	 * have to detect via the refcount if we're really the exclusive
3618 	 * user. Try freeing the swapcache to get rid of the swapcache
3619 	 * reference only in case it's likely that we'll be the exlusive user.
3620 	 */
3621 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3622 		folio_ref_count(folio) == 2;
3623 }
3624 
3625 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3626 {
3627 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3628 				       vmf->address, &vmf->ptl);
3629 	/*
3630 	 * Be careful so that we will only recover a special uffd-wp pte into a
3631 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3632 	 *
3633 	 * This should also cover the case where e.g. the pte changed
3634 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3635 	 * So is_pte_marker() check is not enough to safely drop the pte.
3636 	 */
3637 	if (pte_same(vmf->orig_pte, *vmf->pte))
3638 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3639 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3640 	return 0;
3641 }
3642 
3643 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3644 {
3645 	if (vma_is_anonymous(vmf->vma))
3646 		return do_anonymous_page(vmf);
3647 	else
3648 		return do_fault(vmf);
3649 }
3650 
3651 /*
3652  * This is actually a page-missing access, but with uffd-wp special pte
3653  * installed.  It means this pte was wr-protected before being unmapped.
3654  */
3655 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3656 {
3657 	/*
3658 	 * Just in case there're leftover special ptes even after the region
3659 	 * got unregistered - we can simply clear them.
3660 	 */
3661 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3662 		return pte_marker_clear(vmf);
3663 
3664 	return do_pte_missing(vmf);
3665 }
3666 
3667 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3668 {
3669 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3670 	unsigned long marker = pte_marker_get(entry);
3671 
3672 	/*
3673 	 * PTE markers should never be empty.  If anything weird happened,
3674 	 * the best thing to do is to kill the process along with its mm.
3675 	 */
3676 	if (WARN_ON_ONCE(!marker))
3677 		return VM_FAULT_SIGBUS;
3678 
3679 	/* Higher priority than uffd-wp when data corrupted */
3680 	if (marker & PTE_MARKER_SWAPIN_ERROR)
3681 		return VM_FAULT_SIGBUS;
3682 
3683 	if (pte_marker_entry_uffd_wp(entry))
3684 		return pte_marker_handle_uffd_wp(vmf);
3685 
3686 	/* This is an unknown pte marker */
3687 	return VM_FAULT_SIGBUS;
3688 }
3689 
3690 /*
3691  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3692  * but allow concurrent faults), and pte mapped but not yet locked.
3693  * We return with pte unmapped and unlocked.
3694  *
3695  * We return with the mmap_lock locked or unlocked in the same cases
3696  * as does filemap_fault().
3697  */
3698 vm_fault_t do_swap_page(struct vm_fault *vmf)
3699 {
3700 	struct vm_area_struct *vma = vmf->vma;
3701 	struct folio *swapcache, *folio = NULL;
3702 	struct page *page;
3703 	struct swap_info_struct *si = NULL;
3704 	rmap_t rmap_flags = RMAP_NONE;
3705 	bool exclusive = false;
3706 	swp_entry_t entry;
3707 	pte_t pte;
3708 	int locked;
3709 	vm_fault_t ret = 0;
3710 	void *shadow = NULL;
3711 
3712 	if (!pte_unmap_same(vmf))
3713 		goto out;
3714 
3715 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3716 		ret = VM_FAULT_RETRY;
3717 		goto out;
3718 	}
3719 
3720 	entry = pte_to_swp_entry(vmf->orig_pte);
3721 	if (unlikely(non_swap_entry(entry))) {
3722 		if (is_migration_entry(entry)) {
3723 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3724 					     vmf->address);
3725 		} else if (is_device_exclusive_entry(entry)) {
3726 			vmf->page = pfn_swap_entry_to_page(entry);
3727 			ret = remove_device_exclusive_entry(vmf);
3728 		} else if (is_device_private_entry(entry)) {
3729 			vmf->page = pfn_swap_entry_to_page(entry);
3730 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3731 					vmf->address, &vmf->ptl);
3732 			if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3733 				spin_unlock(vmf->ptl);
3734 				goto out;
3735 			}
3736 
3737 			/*
3738 			 * Get a page reference while we know the page can't be
3739 			 * freed.
3740 			 */
3741 			get_page(vmf->page);
3742 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3743 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3744 			put_page(vmf->page);
3745 		} else if (is_hwpoison_entry(entry)) {
3746 			ret = VM_FAULT_HWPOISON;
3747 		} else if (is_pte_marker_entry(entry)) {
3748 			ret = handle_pte_marker(vmf);
3749 		} else {
3750 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3751 			ret = VM_FAULT_SIGBUS;
3752 		}
3753 		goto out;
3754 	}
3755 
3756 	/* Prevent swapoff from happening to us. */
3757 	si = get_swap_device(entry);
3758 	if (unlikely(!si))
3759 		goto out;
3760 
3761 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3762 	if (folio)
3763 		page = folio_file_page(folio, swp_offset(entry));
3764 	swapcache = folio;
3765 
3766 	if (!folio) {
3767 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3768 		    __swap_count(entry) == 1) {
3769 			/* skip swapcache */
3770 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3771 						vma, vmf->address, false);
3772 			page = &folio->page;
3773 			if (folio) {
3774 				__folio_set_locked(folio);
3775 				__folio_set_swapbacked(folio);
3776 
3777 				if (mem_cgroup_swapin_charge_folio(folio,
3778 							vma->vm_mm, GFP_KERNEL,
3779 							entry)) {
3780 					ret = VM_FAULT_OOM;
3781 					goto out_page;
3782 				}
3783 				mem_cgroup_swapin_uncharge_swap(entry);
3784 
3785 				shadow = get_shadow_from_swap_cache(entry);
3786 				if (shadow)
3787 					workingset_refault(folio, shadow);
3788 
3789 				folio_add_lru(folio);
3790 
3791 				/* To provide entry to swap_readpage() */
3792 				folio_set_swap_entry(folio, entry);
3793 				swap_readpage(page, true, NULL);
3794 				folio->private = NULL;
3795 			}
3796 		} else {
3797 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3798 						vmf);
3799 			if (page)
3800 				folio = page_folio(page);
3801 			swapcache = folio;
3802 		}
3803 
3804 		if (!folio) {
3805 			/*
3806 			 * Back out if somebody else faulted in this pte
3807 			 * while we released the pte lock.
3808 			 */
3809 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3810 					vmf->address, &vmf->ptl);
3811 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3812 				ret = VM_FAULT_OOM;
3813 			goto unlock;
3814 		}
3815 
3816 		/* Had to read the page from swap area: Major fault */
3817 		ret = VM_FAULT_MAJOR;
3818 		count_vm_event(PGMAJFAULT);
3819 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3820 	} else if (PageHWPoison(page)) {
3821 		/*
3822 		 * hwpoisoned dirty swapcache pages are kept for killing
3823 		 * owner processes (which may be unknown at hwpoison time)
3824 		 */
3825 		ret = VM_FAULT_HWPOISON;
3826 		goto out_release;
3827 	}
3828 
3829 	locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3830 
3831 	if (!locked) {
3832 		ret |= VM_FAULT_RETRY;
3833 		goto out_release;
3834 	}
3835 
3836 	if (swapcache) {
3837 		/*
3838 		 * Make sure folio_free_swap() or swapoff did not release the
3839 		 * swapcache from under us.  The page pin, and pte_same test
3840 		 * below, are not enough to exclude that.  Even if it is still
3841 		 * swapcache, we need to check that the page's swap has not
3842 		 * changed.
3843 		 */
3844 		if (unlikely(!folio_test_swapcache(folio) ||
3845 			     page_private(page) != entry.val))
3846 			goto out_page;
3847 
3848 		/*
3849 		 * KSM sometimes has to copy on read faults, for example, if
3850 		 * page->index of !PageKSM() pages would be nonlinear inside the
3851 		 * anon VMA -- PageKSM() is lost on actual swapout.
3852 		 */
3853 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3854 		if (unlikely(!page)) {
3855 			ret = VM_FAULT_OOM;
3856 			goto out_page;
3857 		} else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3858 			ret = VM_FAULT_HWPOISON;
3859 			goto out_page;
3860 		}
3861 		folio = page_folio(page);
3862 
3863 		/*
3864 		 * If we want to map a page that's in the swapcache writable, we
3865 		 * have to detect via the refcount if we're really the exclusive
3866 		 * owner. Try removing the extra reference from the local LRU
3867 		 * pagevecs if required.
3868 		 */
3869 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3870 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3871 			lru_add_drain();
3872 	}
3873 
3874 	folio_throttle_swaprate(folio, GFP_KERNEL);
3875 
3876 	/*
3877 	 * Back out if somebody else already faulted in this pte.
3878 	 */
3879 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3880 			&vmf->ptl);
3881 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3882 		goto out_nomap;
3883 
3884 	if (unlikely(!folio_test_uptodate(folio))) {
3885 		ret = VM_FAULT_SIGBUS;
3886 		goto out_nomap;
3887 	}
3888 
3889 	/*
3890 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3891 	 * must never point at an anonymous page in the swapcache that is
3892 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3893 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3894 	 * check after taking the PT lock and making sure that nobody
3895 	 * concurrently faulted in this page and set PG_anon_exclusive.
3896 	 */
3897 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3898 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3899 
3900 	/*
3901 	 * Check under PT lock (to protect against concurrent fork() sharing
3902 	 * the swap entry concurrently) for certainly exclusive pages.
3903 	 */
3904 	if (!folio_test_ksm(folio)) {
3905 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3906 		if (folio != swapcache) {
3907 			/*
3908 			 * We have a fresh page that is not exposed to the
3909 			 * swapcache -> certainly exclusive.
3910 			 */
3911 			exclusive = true;
3912 		} else if (exclusive && folio_test_writeback(folio) &&
3913 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3914 			/*
3915 			 * This is tricky: not all swap backends support
3916 			 * concurrent page modifications while under writeback.
3917 			 *
3918 			 * So if we stumble over such a page in the swapcache
3919 			 * we must not set the page exclusive, otherwise we can
3920 			 * map it writable without further checks and modify it
3921 			 * while still under writeback.
3922 			 *
3923 			 * For these problematic swap backends, simply drop the
3924 			 * exclusive marker: this is perfectly fine as we start
3925 			 * writeback only if we fully unmapped the page and
3926 			 * there are no unexpected references on the page after
3927 			 * unmapping succeeded. After fully unmapped, no
3928 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3929 			 * appear, so dropping the exclusive marker and mapping
3930 			 * it only R/O is fine.
3931 			 */
3932 			exclusive = false;
3933 		}
3934 	}
3935 
3936 	/*
3937 	 * Remove the swap entry and conditionally try to free up the swapcache.
3938 	 * We're already holding a reference on the page but haven't mapped it
3939 	 * yet.
3940 	 */
3941 	swap_free(entry);
3942 	if (should_try_to_free_swap(folio, vma, vmf->flags))
3943 		folio_free_swap(folio);
3944 
3945 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3946 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3947 	pte = mk_pte(page, vma->vm_page_prot);
3948 
3949 	/*
3950 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3951 	 * certainly not shared either because we just allocated them without
3952 	 * exposing them to the swapcache or because the swap entry indicates
3953 	 * exclusivity.
3954 	 */
3955 	if (!folio_test_ksm(folio) &&
3956 	    (exclusive || folio_ref_count(folio) == 1)) {
3957 		if (vmf->flags & FAULT_FLAG_WRITE) {
3958 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3959 			vmf->flags &= ~FAULT_FLAG_WRITE;
3960 		}
3961 		rmap_flags |= RMAP_EXCLUSIVE;
3962 	}
3963 	flush_icache_page(vma, page);
3964 	if (pte_swp_soft_dirty(vmf->orig_pte))
3965 		pte = pte_mksoft_dirty(pte);
3966 	if (pte_swp_uffd_wp(vmf->orig_pte))
3967 		pte = pte_mkuffd_wp(pte);
3968 	vmf->orig_pte = pte;
3969 
3970 	/* ksm created a completely new copy */
3971 	if (unlikely(folio != swapcache && swapcache)) {
3972 		page_add_new_anon_rmap(page, vma, vmf->address);
3973 		folio_add_lru_vma(folio, vma);
3974 	} else {
3975 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3976 	}
3977 
3978 	VM_BUG_ON(!folio_test_anon(folio) ||
3979 			(pte_write(pte) && !PageAnonExclusive(page)));
3980 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3981 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3982 
3983 	folio_unlock(folio);
3984 	if (folio != swapcache && swapcache) {
3985 		/*
3986 		 * Hold the lock to avoid the swap entry to be reused
3987 		 * until we take the PT lock for the pte_same() check
3988 		 * (to avoid false positives from pte_same). For
3989 		 * further safety release the lock after the swap_free
3990 		 * so that the swap count won't change under a
3991 		 * parallel locked swapcache.
3992 		 */
3993 		folio_unlock(swapcache);
3994 		folio_put(swapcache);
3995 	}
3996 
3997 	if (vmf->flags & FAULT_FLAG_WRITE) {
3998 		ret |= do_wp_page(vmf);
3999 		if (ret & VM_FAULT_ERROR)
4000 			ret &= VM_FAULT_ERROR;
4001 		goto out;
4002 	}
4003 
4004 	/* No need to invalidate - it was non-present before */
4005 	update_mmu_cache(vma, vmf->address, vmf->pte);
4006 unlock:
4007 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4008 out:
4009 	if (si)
4010 		put_swap_device(si);
4011 	return ret;
4012 out_nomap:
4013 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4014 out_page:
4015 	folio_unlock(folio);
4016 out_release:
4017 	folio_put(folio);
4018 	if (folio != swapcache && swapcache) {
4019 		folio_unlock(swapcache);
4020 		folio_put(swapcache);
4021 	}
4022 	if (si)
4023 		put_swap_device(si);
4024 	return ret;
4025 }
4026 
4027 /*
4028  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4029  * but allow concurrent faults), and pte mapped but not yet locked.
4030  * We return with mmap_lock still held, but pte unmapped and unlocked.
4031  */
4032 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4033 {
4034 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4035 	struct vm_area_struct *vma = vmf->vma;
4036 	struct folio *folio;
4037 	vm_fault_t ret = 0;
4038 	pte_t entry;
4039 
4040 	/* File mapping without ->vm_ops ? */
4041 	if (vma->vm_flags & VM_SHARED)
4042 		return VM_FAULT_SIGBUS;
4043 
4044 	/*
4045 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
4046 	 * pte_offset_map() on pmds where a huge pmd might be created
4047 	 * from a different thread.
4048 	 *
4049 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4050 	 * parallel threads are excluded by other means.
4051 	 *
4052 	 * Here we only have mmap_read_lock(mm).
4053 	 */
4054 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4055 		return VM_FAULT_OOM;
4056 
4057 	/* See comment in handle_pte_fault() */
4058 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
4059 		return 0;
4060 
4061 	/* Use the zero-page for reads */
4062 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4063 			!mm_forbids_zeropage(vma->vm_mm)) {
4064 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4065 						vma->vm_page_prot));
4066 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4067 				vmf->address, &vmf->ptl);
4068 		if (vmf_pte_changed(vmf)) {
4069 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4070 			goto unlock;
4071 		}
4072 		ret = check_stable_address_space(vma->vm_mm);
4073 		if (ret)
4074 			goto unlock;
4075 		/* Deliver the page fault to userland, check inside PT lock */
4076 		if (userfaultfd_missing(vma)) {
4077 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4078 			return handle_userfault(vmf, VM_UFFD_MISSING);
4079 		}
4080 		goto setpte;
4081 	}
4082 
4083 	/* Allocate our own private page. */
4084 	if (unlikely(anon_vma_prepare(vma)))
4085 		goto oom;
4086 	folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4087 	if (!folio)
4088 		goto oom;
4089 
4090 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4091 		goto oom_free_page;
4092 	folio_throttle_swaprate(folio, GFP_KERNEL);
4093 
4094 	/*
4095 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4096 	 * preceding stores to the page contents become visible before
4097 	 * the set_pte_at() write.
4098 	 */
4099 	__folio_mark_uptodate(folio);
4100 
4101 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4102 	entry = pte_sw_mkyoung(entry);
4103 	if (vma->vm_flags & VM_WRITE)
4104 		entry = pte_mkwrite(pte_mkdirty(entry));
4105 
4106 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4107 			&vmf->ptl);
4108 	if (vmf_pte_changed(vmf)) {
4109 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4110 		goto release;
4111 	}
4112 
4113 	ret = check_stable_address_space(vma->vm_mm);
4114 	if (ret)
4115 		goto release;
4116 
4117 	/* Deliver the page fault to userland, check inside PT lock */
4118 	if (userfaultfd_missing(vma)) {
4119 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4120 		folio_put(folio);
4121 		return handle_userfault(vmf, VM_UFFD_MISSING);
4122 	}
4123 
4124 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4125 	folio_add_new_anon_rmap(folio, vma, vmf->address);
4126 	folio_add_lru_vma(folio, vma);
4127 setpte:
4128 	if (uffd_wp)
4129 		entry = pte_mkuffd_wp(entry);
4130 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4131 
4132 	/* No need to invalidate - it was non-present before */
4133 	update_mmu_cache(vma, vmf->address, vmf->pte);
4134 unlock:
4135 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4136 	return ret;
4137 release:
4138 	folio_put(folio);
4139 	goto unlock;
4140 oom_free_page:
4141 	folio_put(folio);
4142 oom:
4143 	return VM_FAULT_OOM;
4144 }
4145 
4146 /*
4147  * The mmap_lock must have been held on entry, and may have been
4148  * released depending on flags and vma->vm_ops->fault() return value.
4149  * See filemap_fault() and __lock_page_retry().
4150  */
4151 static vm_fault_t __do_fault(struct vm_fault *vmf)
4152 {
4153 	struct vm_area_struct *vma = vmf->vma;
4154 	vm_fault_t ret;
4155 
4156 	/*
4157 	 * Preallocate pte before we take page_lock because this might lead to
4158 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4159 	 *				lock_page(A)
4160 	 *				SetPageWriteback(A)
4161 	 *				unlock_page(A)
4162 	 * lock_page(B)
4163 	 *				lock_page(B)
4164 	 * pte_alloc_one
4165 	 *   shrink_page_list
4166 	 *     wait_on_page_writeback(A)
4167 	 *				SetPageWriteback(B)
4168 	 *				unlock_page(B)
4169 	 *				# flush A, B to clear the writeback
4170 	 */
4171 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4172 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4173 		if (!vmf->prealloc_pte)
4174 			return VM_FAULT_OOM;
4175 	}
4176 
4177 	ret = vma->vm_ops->fault(vmf);
4178 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4179 			    VM_FAULT_DONE_COW)))
4180 		return ret;
4181 
4182 	if (unlikely(PageHWPoison(vmf->page))) {
4183 		struct page *page = vmf->page;
4184 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4185 		if (ret & VM_FAULT_LOCKED) {
4186 			if (page_mapped(page))
4187 				unmap_mapping_pages(page_mapping(page),
4188 						    page->index, 1, false);
4189 			/* Retry if a clean page was removed from the cache. */
4190 			if (invalidate_inode_page(page))
4191 				poisonret = VM_FAULT_NOPAGE;
4192 			unlock_page(page);
4193 		}
4194 		put_page(page);
4195 		vmf->page = NULL;
4196 		return poisonret;
4197 	}
4198 
4199 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4200 		lock_page(vmf->page);
4201 	else
4202 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4203 
4204 	return ret;
4205 }
4206 
4207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4208 static void deposit_prealloc_pte(struct vm_fault *vmf)
4209 {
4210 	struct vm_area_struct *vma = vmf->vma;
4211 
4212 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4213 	/*
4214 	 * We are going to consume the prealloc table,
4215 	 * count that as nr_ptes.
4216 	 */
4217 	mm_inc_nr_ptes(vma->vm_mm);
4218 	vmf->prealloc_pte = NULL;
4219 }
4220 
4221 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4222 {
4223 	struct vm_area_struct *vma = vmf->vma;
4224 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4225 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4226 	pmd_t entry;
4227 	int i;
4228 	vm_fault_t ret = VM_FAULT_FALLBACK;
4229 
4230 	if (!transhuge_vma_suitable(vma, haddr))
4231 		return ret;
4232 
4233 	page = compound_head(page);
4234 	if (compound_order(page) != HPAGE_PMD_ORDER)
4235 		return ret;
4236 
4237 	/*
4238 	 * Just backoff if any subpage of a THP is corrupted otherwise
4239 	 * the corrupted page may mapped by PMD silently to escape the
4240 	 * check.  This kind of THP just can be PTE mapped.  Access to
4241 	 * the corrupted subpage should trigger SIGBUS as expected.
4242 	 */
4243 	if (unlikely(PageHasHWPoisoned(page)))
4244 		return ret;
4245 
4246 	/*
4247 	 * Archs like ppc64 need additional space to store information
4248 	 * related to pte entry. Use the preallocated table for that.
4249 	 */
4250 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4251 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4252 		if (!vmf->prealloc_pte)
4253 			return VM_FAULT_OOM;
4254 	}
4255 
4256 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4257 	if (unlikely(!pmd_none(*vmf->pmd)))
4258 		goto out;
4259 
4260 	for (i = 0; i < HPAGE_PMD_NR; i++)
4261 		flush_icache_page(vma, page + i);
4262 
4263 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4264 	if (write)
4265 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4266 
4267 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4268 	page_add_file_rmap(page, vma, true);
4269 
4270 	/*
4271 	 * deposit and withdraw with pmd lock held
4272 	 */
4273 	if (arch_needs_pgtable_deposit())
4274 		deposit_prealloc_pte(vmf);
4275 
4276 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4277 
4278 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4279 
4280 	/* fault is handled */
4281 	ret = 0;
4282 	count_vm_event(THP_FILE_MAPPED);
4283 out:
4284 	spin_unlock(vmf->ptl);
4285 	return ret;
4286 }
4287 #else
4288 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4289 {
4290 	return VM_FAULT_FALLBACK;
4291 }
4292 #endif
4293 
4294 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4295 {
4296 	struct vm_area_struct *vma = vmf->vma;
4297 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4298 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4299 	bool prefault = vmf->address != addr;
4300 	pte_t entry;
4301 
4302 	flush_icache_page(vma, page);
4303 	entry = mk_pte(page, vma->vm_page_prot);
4304 
4305 	if (prefault && arch_wants_old_prefaulted_pte())
4306 		entry = pte_mkold(entry);
4307 	else
4308 		entry = pte_sw_mkyoung(entry);
4309 
4310 	if (write)
4311 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4312 	if (unlikely(uffd_wp))
4313 		entry = pte_mkuffd_wp(entry);
4314 	/* copy-on-write page */
4315 	if (write && !(vma->vm_flags & VM_SHARED)) {
4316 		inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4317 		page_add_new_anon_rmap(page, vma, addr);
4318 		lru_cache_add_inactive_or_unevictable(page, vma);
4319 	} else {
4320 		inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4321 		page_add_file_rmap(page, vma, false);
4322 	}
4323 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4324 }
4325 
4326 static bool vmf_pte_changed(struct vm_fault *vmf)
4327 {
4328 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4329 		return !pte_same(*vmf->pte, vmf->orig_pte);
4330 
4331 	return !pte_none(*vmf->pte);
4332 }
4333 
4334 /**
4335  * finish_fault - finish page fault once we have prepared the page to fault
4336  *
4337  * @vmf: structure describing the fault
4338  *
4339  * This function handles all that is needed to finish a page fault once the
4340  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4341  * given page, adds reverse page mapping, handles memcg charges and LRU
4342  * addition.
4343  *
4344  * The function expects the page to be locked and on success it consumes a
4345  * reference of a page being mapped (for the PTE which maps it).
4346  *
4347  * Return: %0 on success, %VM_FAULT_ code in case of error.
4348  */
4349 vm_fault_t finish_fault(struct vm_fault *vmf)
4350 {
4351 	struct vm_area_struct *vma = vmf->vma;
4352 	struct page *page;
4353 	vm_fault_t ret;
4354 
4355 	/* Did we COW the page? */
4356 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4357 		page = vmf->cow_page;
4358 	else
4359 		page = vmf->page;
4360 
4361 	/*
4362 	 * check even for read faults because we might have lost our CoWed
4363 	 * page
4364 	 */
4365 	if (!(vma->vm_flags & VM_SHARED)) {
4366 		ret = check_stable_address_space(vma->vm_mm);
4367 		if (ret)
4368 			return ret;
4369 	}
4370 
4371 	if (pmd_none(*vmf->pmd)) {
4372 		if (PageTransCompound(page)) {
4373 			ret = do_set_pmd(vmf, page);
4374 			if (ret != VM_FAULT_FALLBACK)
4375 				return ret;
4376 		}
4377 
4378 		if (vmf->prealloc_pte)
4379 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4380 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4381 			return VM_FAULT_OOM;
4382 	}
4383 
4384 	/*
4385 	 * See comment in handle_pte_fault() for how this scenario happens, we
4386 	 * need to return NOPAGE so that we drop this page.
4387 	 */
4388 	if (pmd_devmap_trans_unstable(vmf->pmd))
4389 		return VM_FAULT_NOPAGE;
4390 
4391 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4392 				      vmf->address, &vmf->ptl);
4393 
4394 	/* Re-check under ptl */
4395 	if (likely(!vmf_pte_changed(vmf))) {
4396 		do_set_pte(vmf, page, vmf->address);
4397 
4398 		/* no need to invalidate: a not-present page won't be cached */
4399 		update_mmu_cache(vma, vmf->address, vmf->pte);
4400 
4401 		ret = 0;
4402 	} else {
4403 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4404 		ret = VM_FAULT_NOPAGE;
4405 	}
4406 
4407 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4408 	return ret;
4409 }
4410 
4411 static unsigned long fault_around_pages __read_mostly =
4412 	65536 >> PAGE_SHIFT;
4413 
4414 #ifdef CONFIG_DEBUG_FS
4415 static int fault_around_bytes_get(void *data, u64 *val)
4416 {
4417 	*val = fault_around_pages << PAGE_SHIFT;
4418 	return 0;
4419 }
4420 
4421 /*
4422  * fault_around_bytes must be rounded down to the nearest page order as it's
4423  * what do_fault_around() expects to see.
4424  */
4425 static int fault_around_bytes_set(void *data, u64 val)
4426 {
4427 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4428 		return -EINVAL;
4429 
4430 	/*
4431 	 * The minimum value is 1 page, however this results in no fault-around
4432 	 * at all. See should_fault_around().
4433 	 */
4434 	fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4435 
4436 	return 0;
4437 }
4438 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4439 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4440 
4441 static int __init fault_around_debugfs(void)
4442 {
4443 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4444 				   &fault_around_bytes_fops);
4445 	return 0;
4446 }
4447 late_initcall(fault_around_debugfs);
4448 #endif
4449 
4450 /*
4451  * do_fault_around() tries to map few pages around the fault address. The hope
4452  * is that the pages will be needed soon and this will lower the number of
4453  * faults to handle.
4454  *
4455  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4456  * not ready to be mapped: not up-to-date, locked, etc.
4457  *
4458  * This function doesn't cross VMA or page table boundaries, in order to call
4459  * map_pages() and acquire a PTE lock only once.
4460  *
4461  * fault_around_pages defines how many pages we'll try to map.
4462  * do_fault_around() expects it to be set to a power of two less than or equal
4463  * to PTRS_PER_PTE.
4464  *
4465  * The virtual address of the area that we map is naturally aligned to
4466  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4467  * (and therefore to page order).  This way it's easier to guarantee
4468  * that we don't cross page table boundaries.
4469  */
4470 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4471 {
4472 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4473 	pgoff_t pte_off = pte_index(vmf->address);
4474 	/* The page offset of vmf->address within the VMA. */
4475 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4476 	pgoff_t from_pte, to_pte;
4477 	vm_fault_t ret;
4478 
4479 	/* The PTE offset of the start address, clamped to the VMA. */
4480 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4481 		       pte_off - min(pte_off, vma_off));
4482 
4483 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4484 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4485 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4486 
4487 	if (pmd_none(*vmf->pmd)) {
4488 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4489 		if (!vmf->prealloc_pte)
4490 			return VM_FAULT_OOM;
4491 	}
4492 
4493 	rcu_read_lock();
4494 	ret = vmf->vma->vm_ops->map_pages(vmf,
4495 			vmf->pgoff + from_pte - pte_off,
4496 			vmf->pgoff + to_pte - pte_off);
4497 	rcu_read_unlock();
4498 
4499 	return ret;
4500 }
4501 
4502 /* Return true if we should do read fault-around, false otherwise */
4503 static inline bool should_fault_around(struct vm_fault *vmf)
4504 {
4505 	/* No ->map_pages?  No way to fault around... */
4506 	if (!vmf->vma->vm_ops->map_pages)
4507 		return false;
4508 
4509 	if (uffd_disable_fault_around(vmf->vma))
4510 		return false;
4511 
4512 	/* A single page implies no faulting 'around' at all. */
4513 	return fault_around_pages > 1;
4514 }
4515 
4516 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4517 {
4518 	vm_fault_t ret = 0;
4519 
4520 	/*
4521 	 * Let's call ->map_pages() first and use ->fault() as fallback
4522 	 * if page by the offset is not ready to be mapped (cold cache or
4523 	 * something).
4524 	 */
4525 	if (should_fault_around(vmf)) {
4526 		ret = do_fault_around(vmf);
4527 		if (ret)
4528 			return ret;
4529 	}
4530 
4531 	ret = __do_fault(vmf);
4532 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4533 		return ret;
4534 
4535 	ret |= finish_fault(vmf);
4536 	unlock_page(vmf->page);
4537 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4538 		put_page(vmf->page);
4539 	return ret;
4540 }
4541 
4542 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4543 {
4544 	struct vm_area_struct *vma = vmf->vma;
4545 	vm_fault_t ret;
4546 
4547 	if (unlikely(anon_vma_prepare(vma)))
4548 		return VM_FAULT_OOM;
4549 
4550 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4551 	if (!vmf->cow_page)
4552 		return VM_FAULT_OOM;
4553 
4554 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4555 				GFP_KERNEL)) {
4556 		put_page(vmf->cow_page);
4557 		return VM_FAULT_OOM;
4558 	}
4559 	folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4560 
4561 	ret = __do_fault(vmf);
4562 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4563 		goto uncharge_out;
4564 	if (ret & VM_FAULT_DONE_COW)
4565 		return ret;
4566 
4567 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4568 	__SetPageUptodate(vmf->cow_page);
4569 
4570 	ret |= finish_fault(vmf);
4571 	unlock_page(vmf->page);
4572 	put_page(vmf->page);
4573 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4574 		goto uncharge_out;
4575 	return ret;
4576 uncharge_out:
4577 	put_page(vmf->cow_page);
4578 	return ret;
4579 }
4580 
4581 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4582 {
4583 	struct vm_area_struct *vma = vmf->vma;
4584 	vm_fault_t ret, tmp;
4585 
4586 	ret = __do_fault(vmf);
4587 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4588 		return ret;
4589 
4590 	/*
4591 	 * Check if the backing address space wants to know that the page is
4592 	 * about to become writable
4593 	 */
4594 	if (vma->vm_ops->page_mkwrite) {
4595 		unlock_page(vmf->page);
4596 		tmp = do_page_mkwrite(vmf);
4597 		if (unlikely(!tmp ||
4598 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4599 			put_page(vmf->page);
4600 			return tmp;
4601 		}
4602 	}
4603 
4604 	ret |= finish_fault(vmf);
4605 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4606 					VM_FAULT_RETRY))) {
4607 		unlock_page(vmf->page);
4608 		put_page(vmf->page);
4609 		return ret;
4610 	}
4611 
4612 	ret |= fault_dirty_shared_page(vmf);
4613 	return ret;
4614 }
4615 
4616 /*
4617  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4618  * but allow concurrent faults).
4619  * The mmap_lock may have been released depending on flags and our
4620  * return value.  See filemap_fault() and __folio_lock_or_retry().
4621  * If mmap_lock is released, vma may become invalid (for example
4622  * by other thread calling munmap()).
4623  */
4624 static vm_fault_t do_fault(struct vm_fault *vmf)
4625 {
4626 	struct vm_area_struct *vma = vmf->vma;
4627 	struct mm_struct *vm_mm = vma->vm_mm;
4628 	vm_fault_t ret;
4629 
4630 	/*
4631 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4632 	 */
4633 	if (!vma->vm_ops->fault) {
4634 		/*
4635 		 * If we find a migration pmd entry or a none pmd entry, which
4636 		 * should never happen, return SIGBUS
4637 		 */
4638 		if (unlikely(!pmd_present(*vmf->pmd)))
4639 			ret = VM_FAULT_SIGBUS;
4640 		else {
4641 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4642 						       vmf->pmd,
4643 						       vmf->address,
4644 						       &vmf->ptl);
4645 			/*
4646 			 * Make sure this is not a temporary clearing of pte
4647 			 * by holding ptl and checking again. A R/M/W update
4648 			 * of pte involves: take ptl, clearing the pte so that
4649 			 * we don't have concurrent modification by hardware
4650 			 * followed by an update.
4651 			 */
4652 			if (unlikely(pte_none(*vmf->pte)))
4653 				ret = VM_FAULT_SIGBUS;
4654 			else
4655 				ret = VM_FAULT_NOPAGE;
4656 
4657 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4658 		}
4659 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4660 		ret = do_read_fault(vmf);
4661 	else if (!(vma->vm_flags & VM_SHARED))
4662 		ret = do_cow_fault(vmf);
4663 	else
4664 		ret = do_shared_fault(vmf);
4665 
4666 	/* preallocated pagetable is unused: free it */
4667 	if (vmf->prealloc_pte) {
4668 		pte_free(vm_mm, vmf->prealloc_pte);
4669 		vmf->prealloc_pte = NULL;
4670 	}
4671 	return ret;
4672 }
4673 
4674 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4675 		      unsigned long addr, int page_nid, int *flags)
4676 {
4677 	get_page(page);
4678 
4679 	/* Record the current PID acceesing VMA */
4680 	vma_set_access_pid_bit(vma);
4681 
4682 	count_vm_numa_event(NUMA_HINT_FAULTS);
4683 	if (page_nid == numa_node_id()) {
4684 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4685 		*flags |= TNF_FAULT_LOCAL;
4686 	}
4687 
4688 	return mpol_misplaced(page, vma, addr);
4689 }
4690 
4691 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4692 {
4693 	struct vm_area_struct *vma = vmf->vma;
4694 	struct page *page = NULL;
4695 	int page_nid = NUMA_NO_NODE;
4696 	bool writable = false;
4697 	int last_cpupid;
4698 	int target_nid;
4699 	pte_t pte, old_pte;
4700 	int flags = 0;
4701 
4702 	/*
4703 	 * The "pte" at this point cannot be used safely without
4704 	 * validation through pte_unmap_same(). It's of NUMA type but
4705 	 * the pfn may be screwed if the read is non atomic.
4706 	 */
4707 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4708 	spin_lock(vmf->ptl);
4709 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4710 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4711 		goto out;
4712 	}
4713 
4714 	/* Get the normal PTE  */
4715 	old_pte = ptep_get(vmf->pte);
4716 	pte = pte_modify(old_pte, vma->vm_page_prot);
4717 
4718 	/*
4719 	 * Detect now whether the PTE could be writable; this information
4720 	 * is only valid while holding the PT lock.
4721 	 */
4722 	writable = pte_write(pte);
4723 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4724 	    can_change_pte_writable(vma, vmf->address, pte))
4725 		writable = true;
4726 
4727 	page = vm_normal_page(vma, vmf->address, pte);
4728 	if (!page || is_zone_device_page(page))
4729 		goto out_map;
4730 
4731 	/* TODO: handle PTE-mapped THP */
4732 	if (PageCompound(page))
4733 		goto out_map;
4734 
4735 	/*
4736 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4737 	 * much anyway since they can be in shared cache state. This misses
4738 	 * the case where a mapping is writable but the process never writes
4739 	 * to it but pte_write gets cleared during protection updates and
4740 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4741 	 * background writeback, dirty balancing and application behaviour.
4742 	 */
4743 	if (!writable)
4744 		flags |= TNF_NO_GROUP;
4745 
4746 	/*
4747 	 * Flag if the page is shared between multiple address spaces. This
4748 	 * is later used when determining whether to group tasks together
4749 	 */
4750 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4751 		flags |= TNF_SHARED;
4752 
4753 	page_nid = page_to_nid(page);
4754 	/*
4755 	 * For memory tiering mode, cpupid of slow memory page is used
4756 	 * to record page access time.  So use default value.
4757 	 */
4758 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4759 	    !node_is_toptier(page_nid))
4760 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4761 	else
4762 		last_cpupid = page_cpupid_last(page);
4763 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4764 			&flags);
4765 	if (target_nid == NUMA_NO_NODE) {
4766 		put_page(page);
4767 		goto out_map;
4768 	}
4769 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4770 	writable = false;
4771 
4772 	/* Migrate to the requested node */
4773 	if (migrate_misplaced_page(page, vma, target_nid)) {
4774 		page_nid = target_nid;
4775 		flags |= TNF_MIGRATED;
4776 	} else {
4777 		flags |= TNF_MIGRATE_FAIL;
4778 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4779 		spin_lock(vmf->ptl);
4780 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4781 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4782 			goto out;
4783 		}
4784 		goto out_map;
4785 	}
4786 
4787 out:
4788 	if (page_nid != NUMA_NO_NODE)
4789 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4790 	return 0;
4791 out_map:
4792 	/*
4793 	 * Make it present again, depending on how arch implements
4794 	 * non-accessible ptes, some can allow access by kernel mode.
4795 	 */
4796 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4797 	pte = pte_modify(old_pte, vma->vm_page_prot);
4798 	pte = pte_mkyoung(pte);
4799 	if (writable)
4800 		pte = pte_mkwrite(pte);
4801 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4802 	update_mmu_cache(vma, vmf->address, vmf->pte);
4803 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4804 	goto out;
4805 }
4806 
4807 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4808 {
4809 	if (vma_is_anonymous(vmf->vma))
4810 		return do_huge_pmd_anonymous_page(vmf);
4811 	if (vmf->vma->vm_ops->huge_fault)
4812 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4813 	return VM_FAULT_FALLBACK;
4814 }
4815 
4816 /* `inline' is required to avoid gcc 4.1.2 build error */
4817 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4818 {
4819 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4820 	vm_fault_t ret;
4821 
4822 	if (vma_is_anonymous(vmf->vma)) {
4823 		if (likely(!unshare) &&
4824 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4825 			return handle_userfault(vmf, VM_UFFD_WP);
4826 		return do_huge_pmd_wp_page(vmf);
4827 	}
4828 
4829 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4830 		if (vmf->vma->vm_ops->huge_fault) {
4831 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4832 			if (!(ret & VM_FAULT_FALLBACK))
4833 				return ret;
4834 		}
4835 	}
4836 
4837 	/* COW or write-notify handled on pte level: split pmd. */
4838 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4839 
4840 	return VM_FAULT_FALLBACK;
4841 }
4842 
4843 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4844 {
4845 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4846 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4847 	/* No support for anonymous transparent PUD pages yet */
4848 	if (vma_is_anonymous(vmf->vma))
4849 		return VM_FAULT_FALLBACK;
4850 	if (vmf->vma->vm_ops->huge_fault)
4851 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4852 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4853 	return VM_FAULT_FALLBACK;
4854 }
4855 
4856 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4857 {
4858 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4859 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4860 	vm_fault_t ret;
4861 
4862 	/* No support for anonymous transparent PUD pages yet */
4863 	if (vma_is_anonymous(vmf->vma))
4864 		goto split;
4865 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4866 		if (vmf->vma->vm_ops->huge_fault) {
4867 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4868 			if (!(ret & VM_FAULT_FALLBACK))
4869 				return ret;
4870 		}
4871 	}
4872 split:
4873 	/* COW or write-notify not handled on PUD level: split pud.*/
4874 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4875 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4876 	return VM_FAULT_FALLBACK;
4877 }
4878 
4879 /*
4880  * These routines also need to handle stuff like marking pages dirty
4881  * and/or accessed for architectures that don't do it in hardware (most
4882  * RISC architectures).  The early dirtying is also good on the i386.
4883  *
4884  * There is also a hook called "update_mmu_cache()" that architectures
4885  * with external mmu caches can use to update those (ie the Sparc or
4886  * PowerPC hashed page tables that act as extended TLBs).
4887  *
4888  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4889  * concurrent faults).
4890  *
4891  * The mmap_lock may have been released depending on flags and our return value.
4892  * See filemap_fault() and __folio_lock_or_retry().
4893  */
4894 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4895 {
4896 	pte_t entry;
4897 
4898 	if (unlikely(pmd_none(*vmf->pmd))) {
4899 		/*
4900 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4901 		 * want to allocate huge page, and if we expose page table
4902 		 * for an instant, it will be difficult to retract from
4903 		 * concurrent faults and from rmap lookups.
4904 		 */
4905 		vmf->pte = NULL;
4906 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4907 	} else {
4908 		/*
4909 		 * If a huge pmd materialized under us just retry later.  Use
4910 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4911 		 * of pmd_trans_huge() to ensure the pmd didn't become
4912 		 * pmd_trans_huge under us and then back to pmd_none, as a
4913 		 * result of MADV_DONTNEED running immediately after a huge pmd
4914 		 * fault in a different thread of this mm, in turn leading to a
4915 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4916 		 * that it is a regular pmd that we can walk with
4917 		 * pte_offset_map() and we can do that through an atomic read
4918 		 * in C, which is what pmd_trans_unstable() provides.
4919 		 */
4920 		if (pmd_devmap_trans_unstable(vmf->pmd))
4921 			return 0;
4922 		/*
4923 		 * A regular pmd is established and it can't morph into a huge
4924 		 * pmd from under us anymore at this point because we hold the
4925 		 * mmap_lock read mode and khugepaged takes it in write mode.
4926 		 * So now it's safe to run pte_offset_map().
4927 		 */
4928 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4929 		vmf->orig_pte = *vmf->pte;
4930 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4931 
4932 		/*
4933 		 * some architectures can have larger ptes than wordsize,
4934 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4935 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4936 		 * accesses.  The code below just needs a consistent view
4937 		 * for the ifs and we later double check anyway with the
4938 		 * ptl lock held. So here a barrier will do.
4939 		 */
4940 		barrier();
4941 		if (pte_none(vmf->orig_pte)) {
4942 			pte_unmap(vmf->pte);
4943 			vmf->pte = NULL;
4944 		}
4945 	}
4946 
4947 	if (!vmf->pte)
4948 		return do_pte_missing(vmf);
4949 
4950 	if (!pte_present(vmf->orig_pte))
4951 		return do_swap_page(vmf);
4952 
4953 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4954 		return do_numa_page(vmf);
4955 
4956 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4957 	spin_lock(vmf->ptl);
4958 	entry = vmf->orig_pte;
4959 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4960 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4961 		goto unlock;
4962 	}
4963 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4964 		if (!pte_write(entry))
4965 			return do_wp_page(vmf);
4966 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4967 			entry = pte_mkdirty(entry);
4968 	}
4969 	entry = pte_mkyoung(entry);
4970 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4971 				vmf->flags & FAULT_FLAG_WRITE)) {
4972 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4973 	} else {
4974 		/* Skip spurious TLB flush for retried page fault */
4975 		if (vmf->flags & FAULT_FLAG_TRIED)
4976 			goto unlock;
4977 		/*
4978 		 * This is needed only for protection faults but the arch code
4979 		 * is not yet telling us if this is a protection fault or not.
4980 		 * This still avoids useless tlb flushes for .text page faults
4981 		 * with threads.
4982 		 */
4983 		if (vmf->flags & FAULT_FLAG_WRITE)
4984 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4985 						     vmf->pte);
4986 	}
4987 unlock:
4988 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4989 	return 0;
4990 }
4991 
4992 /*
4993  * By the time we get here, we already hold the mm semaphore
4994  *
4995  * The mmap_lock may have been released depending on flags and our
4996  * return value.  See filemap_fault() and __folio_lock_or_retry().
4997  */
4998 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4999 		unsigned long address, unsigned int flags)
5000 {
5001 	struct vm_fault vmf = {
5002 		.vma = vma,
5003 		.address = address & PAGE_MASK,
5004 		.real_address = address,
5005 		.flags = flags,
5006 		.pgoff = linear_page_index(vma, address),
5007 		.gfp_mask = __get_fault_gfp_mask(vma),
5008 	};
5009 	struct mm_struct *mm = vma->vm_mm;
5010 	unsigned long vm_flags = vma->vm_flags;
5011 	pgd_t *pgd;
5012 	p4d_t *p4d;
5013 	vm_fault_t ret;
5014 
5015 	pgd = pgd_offset(mm, address);
5016 	p4d = p4d_alloc(mm, pgd, address);
5017 	if (!p4d)
5018 		return VM_FAULT_OOM;
5019 
5020 	vmf.pud = pud_alloc(mm, p4d, address);
5021 	if (!vmf.pud)
5022 		return VM_FAULT_OOM;
5023 retry_pud:
5024 	if (pud_none(*vmf.pud) &&
5025 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5026 		ret = create_huge_pud(&vmf);
5027 		if (!(ret & VM_FAULT_FALLBACK))
5028 			return ret;
5029 	} else {
5030 		pud_t orig_pud = *vmf.pud;
5031 
5032 		barrier();
5033 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5034 
5035 			/*
5036 			 * TODO once we support anonymous PUDs: NUMA case and
5037 			 * FAULT_FLAG_UNSHARE handling.
5038 			 */
5039 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5040 				ret = wp_huge_pud(&vmf, orig_pud);
5041 				if (!(ret & VM_FAULT_FALLBACK))
5042 					return ret;
5043 			} else {
5044 				huge_pud_set_accessed(&vmf, orig_pud);
5045 				return 0;
5046 			}
5047 		}
5048 	}
5049 
5050 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5051 	if (!vmf.pmd)
5052 		return VM_FAULT_OOM;
5053 
5054 	/* Huge pud page fault raced with pmd_alloc? */
5055 	if (pud_trans_unstable(vmf.pud))
5056 		goto retry_pud;
5057 
5058 	if (pmd_none(*vmf.pmd) &&
5059 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5060 		ret = create_huge_pmd(&vmf);
5061 		if (!(ret & VM_FAULT_FALLBACK))
5062 			return ret;
5063 	} else {
5064 		vmf.orig_pmd = *vmf.pmd;
5065 
5066 		barrier();
5067 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5068 			VM_BUG_ON(thp_migration_supported() &&
5069 					  !is_pmd_migration_entry(vmf.orig_pmd));
5070 			if (is_pmd_migration_entry(vmf.orig_pmd))
5071 				pmd_migration_entry_wait(mm, vmf.pmd);
5072 			return 0;
5073 		}
5074 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5075 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5076 				return do_huge_pmd_numa_page(&vmf);
5077 
5078 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5079 			    !pmd_write(vmf.orig_pmd)) {
5080 				ret = wp_huge_pmd(&vmf);
5081 				if (!(ret & VM_FAULT_FALLBACK))
5082 					return ret;
5083 			} else {
5084 				huge_pmd_set_accessed(&vmf);
5085 				return 0;
5086 			}
5087 		}
5088 	}
5089 
5090 	return handle_pte_fault(&vmf);
5091 }
5092 
5093 /**
5094  * mm_account_fault - Do page fault accounting
5095  *
5096  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5097  *        of perf event counters, but we'll still do the per-task accounting to
5098  *        the task who triggered this page fault.
5099  * @address: the faulted address.
5100  * @flags: the fault flags.
5101  * @ret: the fault retcode.
5102  *
5103  * This will take care of most of the page fault accounting.  Meanwhile, it
5104  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5105  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5106  * still be in per-arch page fault handlers at the entry of page fault.
5107  */
5108 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5109 				    unsigned long address, unsigned int flags,
5110 				    vm_fault_t ret)
5111 {
5112 	bool major;
5113 
5114 	/* Incomplete faults will be accounted upon completion. */
5115 	if (ret & VM_FAULT_RETRY)
5116 		return;
5117 
5118 	/*
5119 	 * To preserve the behavior of older kernels, PGFAULT counters record
5120 	 * both successful and failed faults, as opposed to perf counters,
5121 	 * which ignore failed cases.
5122 	 */
5123 	count_vm_event(PGFAULT);
5124 	count_memcg_event_mm(mm, PGFAULT);
5125 
5126 	/*
5127 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5128 	 * valid).  That includes arch_vma_access_permitted() failing before
5129 	 * reaching here. So this is not a "this many hardware page faults"
5130 	 * counter.  We should use the hw profiling for that.
5131 	 */
5132 	if (ret & VM_FAULT_ERROR)
5133 		return;
5134 
5135 	/*
5136 	 * We define the fault as a major fault when the final successful fault
5137 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5138 	 * handle it immediately previously).
5139 	 */
5140 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5141 
5142 	if (major)
5143 		current->maj_flt++;
5144 	else
5145 		current->min_flt++;
5146 
5147 	/*
5148 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5149 	 * accounting for the per thread fault counters who triggered the
5150 	 * fault, and we skip the perf event updates.
5151 	 */
5152 	if (!regs)
5153 		return;
5154 
5155 	if (major)
5156 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5157 	else
5158 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5159 }
5160 
5161 #ifdef CONFIG_LRU_GEN
5162 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5163 {
5164 	/* the LRU algorithm only applies to accesses with recency */
5165 	current->in_lru_fault = vma_has_recency(vma);
5166 }
5167 
5168 static void lru_gen_exit_fault(void)
5169 {
5170 	current->in_lru_fault = false;
5171 }
5172 #else
5173 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5174 {
5175 }
5176 
5177 static void lru_gen_exit_fault(void)
5178 {
5179 }
5180 #endif /* CONFIG_LRU_GEN */
5181 
5182 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5183 				       unsigned int *flags)
5184 {
5185 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5186 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5187 			return VM_FAULT_SIGSEGV;
5188 		/*
5189 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5190 		 * just treat it like an ordinary read-fault otherwise.
5191 		 */
5192 		if (!is_cow_mapping(vma->vm_flags))
5193 			*flags &= ~FAULT_FLAG_UNSHARE;
5194 	} else if (*flags & FAULT_FLAG_WRITE) {
5195 		/* Write faults on read-only mappings are impossible ... */
5196 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5197 			return VM_FAULT_SIGSEGV;
5198 		/* ... and FOLL_FORCE only applies to COW mappings. */
5199 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5200 				 !is_cow_mapping(vma->vm_flags)))
5201 			return VM_FAULT_SIGSEGV;
5202 	}
5203 	return 0;
5204 }
5205 
5206 /*
5207  * By the time we get here, we already hold the mm semaphore
5208  *
5209  * The mmap_lock may have been released depending on flags and our
5210  * return value.  See filemap_fault() and __folio_lock_or_retry().
5211  */
5212 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5213 			   unsigned int flags, struct pt_regs *regs)
5214 {
5215 	/* If the fault handler drops the mmap_lock, vma may be freed */
5216 	struct mm_struct *mm = vma->vm_mm;
5217 	vm_fault_t ret;
5218 
5219 	__set_current_state(TASK_RUNNING);
5220 
5221 	ret = sanitize_fault_flags(vma, &flags);
5222 	if (ret)
5223 		goto out;
5224 
5225 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5226 					    flags & FAULT_FLAG_INSTRUCTION,
5227 					    flags & FAULT_FLAG_REMOTE)) {
5228 		ret = VM_FAULT_SIGSEGV;
5229 		goto out;
5230 	}
5231 
5232 	/*
5233 	 * Enable the memcg OOM handling for faults triggered in user
5234 	 * space.  Kernel faults are handled more gracefully.
5235 	 */
5236 	if (flags & FAULT_FLAG_USER)
5237 		mem_cgroup_enter_user_fault();
5238 
5239 	lru_gen_enter_fault(vma);
5240 
5241 	if (unlikely(is_vm_hugetlb_page(vma)))
5242 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5243 	else
5244 		ret = __handle_mm_fault(vma, address, flags);
5245 
5246 	lru_gen_exit_fault();
5247 
5248 	if (flags & FAULT_FLAG_USER) {
5249 		mem_cgroup_exit_user_fault();
5250 		/*
5251 		 * The task may have entered a memcg OOM situation but
5252 		 * if the allocation error was handled gracefully (no
5253 		 * VM_FAULT_OOM), there is no need to kill anything.
5254 		 * Just clean up the OOM state peacefully.
5255 		 */
5256 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5257 			mem_cgroup_oom_synchronize(false);
5258 	}
5259 out:
5260 	mm_account_fault(mm, regs, address, flags, ret);
5261 
5262 	return ret;
5263 }
5264 EXPORT_SYMBOL_GPL(handle_mm_fault);
5265 
5266 #ifdef CONFIG_PER_VMA_LOCK
5267 /*
5268  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5269  * stable and not isolated. If the VMA is not found or is being modified the
5270  * function returns NULL.
5271  */
5272 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5273 					  unsigned long address)
5274 {
5275 	MA_STATE(mas, &mm->mm_mt, address, address);
5276 	struct vm_area_struct *vma;
5277 
5278 	rcu_read_lock();
5279 retry:
5280 	vma = mas_walk(&mas);
5281 	if (!vma)
5282 		goto inval;
5283 
5284 	/* Only anonymous and tcp vmas are supported for now */
5285 	if (!vma_is_anonymous(vma) && !vma_is_tcp(vma))
5286 		goto inval;
5287 
5288 	/* find_mergeable_anon_vma uses adjacent vmas which are not locked */
5289 	if (!vma->anon_vma && !vma_is_tcp(vma))
5290 		goto inval;
5291 
5292 	if (!vma_start_read(vma))
5293 		goto inval;
5294 
5295 	/*
5296 	 * Due to the possibility of userfault handler dropping mmap_lock, avoid
5297 	 * it for now and fall back to page fault handling under mmap_lock.
5298 	 */
5299 	if (userfaultfd_armed(vma)) {
5300 		vma_end_read(vma);
5301 		goto inval;
5302 	}
5303 
5304 	/* Check since vm_start/vm_end might change before we lock the VMA */
5305 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
5306 		vma_end_read(vma);
5307 		goto inval;
5308 	}
5309 
5310 	/* Check if the VMA got isolated after we found it */
5311 	if (vma->detached) {
5312 		vma_end_read(vma);
5313 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5314 		/* The area was replaced with another one */
5315 		goto retry;
5316 	}
5317 
5318 	rcu_read_unlock();
5319 	return vma;
5320 inval:
5321 	rcu_read_unlock();
5322 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5323 	return NULL;
5324 }
5325 #endif /* CONFIG_PER_VMA_LOCK */
5326 
5327 #ifndef __PAGETABLE_P4D_FOLDED
5328 /*
5329  * Allocate p4d page table.
5330  * We've already handled the fast-path in-line.
5331  */
5332 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5333 {
5334 	p4d_t *new = p4d_alloc_one(mm, address);
5335 	if (!new)
5336 		return -ENOMEM;
5337 
5338 	spin_lock(&mm->page_table_lock);
5339 	if (pgd_present(*pgd)) {	/* Another has populated it */
5340 		p4d_free(mm, new);
5341 	} else {
5342 		smp_wmb(); /* See comment in pmd_install() */
5343 		pgd_populate(mm, pgd, new);
5344 	}
5345 	spin_unlock(&mm->page_table_lock);
5346 	return 0;
5347 }
5348 #endif /* __PAGETABLE_P4D_FOLDED */
5349 
5350 #ifndef __PAGETABLE_PUD_FOLDED
5351 /*
5352  * Allocate page upper directory.
5353  * We've already handled the fast-path in-line.
5354  */
5355 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5356 {
5357 	pud_t *new = pud_alloc_one(mm, address);
5358 	if (!new)
5359 		return -ENOMEM;
5360 
5361 	spin_lock(&mm->page_table_lock);
5362 	if (!p4d_present(*p4d)) {
5363 		mm_inc_nr_puds(mm);
5364 		smp_wmb(); /* See comment in pmd_install() */
5365 		p4d_populate(mm, p4d, new);
5366 	} else	/* Another has populated it */
5367 		pud_free(mm, new);
5368 	spin_unlock(&mm->page_table_lock);
5369 	return 0;
5370 }
5371 #endif /* __PAGETABLE_PUD_FOLDED */
5372 
5373 #ifndef __PAGETABLE_PMD_FOLDED
5374 /*
5375  * Allocate page middle directory.
5376  * We've already handled the fast-path in-line.
5377  */
5378 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5379 {
5380 	spinlock_t *ptl;
5381 	pmd_t *new = pmd_alloc_one(mm, address);
5382 	if (!new)
5383 		return -ENOMEM;
5384 
5385 	ptl = pud_lock(mm, pud);
5386 	if (!pud_present(*pud)) {
5387 		mm_inc_nr_pmds(mm);
5388 		smp_wmb(); /* See comment in pmd_install() */
5389 		pud_populate(mm, pud, new);
5390 	} else {	/* Another has populated it */
5391 		pmd_free(mm, new);
5392 	}
5393 	spin_unlock(ptl);
5394 	return 0;
5395 }
5396 #endif /* __PAGETABLE_PMD_FOLDED */
5397 
5398 /**
5399  * follow_pte - look up PTE at a user virtual address
5400  * @mm: the mm_struct of the target address space
5401  * @address: user virtual address
5402  * @ptepp: location to store found PTE
5403  * @ptlp: location to store the lock for the PTE
5404  *
5405  * On a successful return, the pointer to the PTE is stored in @ptepp;
5406  * the corresponding lock is taken and its location is stored in @ptlp.
5407  * The contents of the PTE are only stable until @ptlp is released;
5408  * any further use, if any, must be protected against invalidation
5409  * with MMU notifiers.
5410  *
5411  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5412  * should be taken for read.
5413  *
5414  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5415  * it is not a good general-purpose API.
5416  *
5417  * Return: zero on success, -ve otherwise.
5418  */
5419 int follow_pte(struct mm_struct *mm, unsigned long address,
5420 	       pte_t **ptepp, spinlock_t **ptlp)
5421 {
5422 	pgd_t *pgd;
5423 	p4d_t *p4d;
5424 	pud_t *pud;
5425 	pmd_t *pmd;
5426 	pte_t *ptep;
5427 
5428 	pgd = pgd_offset(mm, address);
5429 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5430 		goto out;
5431 
5432 	p4d = p4d_offset(pgd, address);
5433 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5434 		goto out;
5435 
5436 	pud = pud_offset(p4d, address);
5437 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5438 		goto out;
5439 
5440 	pmd = pmd_offset(pud, address);
5441 	VM_BUG_ON(pmd_trans_huge(*pmd));
5442 
5443 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5444 		goto out;
5445 
5446 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5447 	if (!pte_present(*ptep))
5448 		goto unlock;
5449 	*ptepp = ptep;
5450 	return 0;
5451 unlock:
5452 	pte_unmap_unlock(ptep, *ptlp);
5453 out:
5454 	return -EINVAL;
5455 }
5456 EXPORT_SYMBOL_GPL(follow_pte);
5457 
5458 /**
5459  * follow_pfn - look up PFN at a user virtual address
5460  * @vma: memory mapping
5461  * @address: user virtual address
5462  * @pfn: location to store found PFN
5463  *
5464  * Only IO mappings and raw PFN mappings are allowed.
5465  *
5466  * This function does not allow the caller to read the permissions
5467  * of the PTE.  Do not use it.
5468  *
5469  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5470  */
5471 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5472 	unsigned long *pfn)
5473 {
5474 	int ret = -EINVAL;
5475 	spinlock_t *ptl;
5476 	pte_t *ptep;
5477 
5478 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5479 		return ret;
5480 
5481 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5482 	if (ret)
5483 		return ret;
5484 	*pfn = pte_pfn(*ptep);
5485 	pte_unmap_unlock(ptep, ptl);
5486 	return 0;
5487 }
5488 EXPORT_SYMBOL(follow_pfn);
5489 
5490 #ifdef CONFIG_HAVE_IOREMAP_PROT
5491 int follow_phys(struct vm_area_struct *vma,
5492 		unsigned long address, unsigned int flags,
5493 		unsigned long *prot, resource_size_t *phys)
5494 {
5495 	int ret = -EINVAL;
5496 	pte_t *ptep, pte;
5497 	spinlock_t *ptl;
5498 
5499 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5500 		goto out;
5501 
5502 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5503 		goto out;
5504 	pte = *ptep;
5505 
5506 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5507 		goto unlock;
5508 
5509 	*prot = pgprot_val(pte_pgprot(pte));
5510 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5511 
5512 	ret = 0;
5513 unlock:
5514 	pte_unmap_unlock(ptep, ptl);
5515 out:
5516 	return ret;
5517 }
5518 
5519 /**
5520  * generic_access_phys - generic implementation for iomem mmap access
5521  * @vma: the vma to access
5522  * @addr: userspace address, not relative offset within @vma
5523  * @buf: buffer to read/write
5524  * @len: length of transfer
5525  * @write: set to FOLL_WRITE when writing, otherwise reading
5526  *
5527  * This is a generic implementation for &vm_operations_struct.access for an
5528  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5529  * not page based.
5530  */
5531 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5532 			void *buf, int len, int write)
5533 {
5534 	resource_size_t phys_addr;
5535 	unsigned long prot = 0;
5536 	void __iomem *maddr;
5537 	pte_t *ptep, pte;
5538 	spinlock_t *ptl;
5539 	int offset = offset_in_page(addr);
5540 	int ret = -EINVAL;
5541 
5542 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5543 		return -EINVAL;
5544 
5545 retry:
5546 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5547 		return -EINVAL;
5548 	pte = *ptep;
5549 	pte_unmap_unlock(ptep, ptl);
5550 
5551 	prot = pgprot_val(pte_pgprot(pte));
5552 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5553 
5554 	if ((write & FOLL_WRITE) && !pte_write(pte))
5555 		return -EINVAL;
5556 
5557 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5558 	if (!maddr)
5559 		return -ENOMEM;
5560 
5561 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5562 		goto out_unmap;
5563 
5564 	if (!pte_same(pte, *ptep)) {
5565 		pte_unmap_unlock(ptep, ptl);
5566 		iounmap(maddr);
5567 
5568 		goto retry;
5569 	}
5570 
5571 	if (write)
5572 		memcpy_toio(maddr + offset, buf, len);
5573 	else
5574 		memcpy_fromio(buf, maddr + offset, len);
5575 	ret = len;
5576 	pte_unmap_unlock(ptep, ptl);
5577 out_unmap:
5578 	iounmap(maddr);
5579 
5580 	return ret;
5581 }
5582 EXPORT_SYMBOL_GPL(generic_access_phys);
5583 #endif
5584 
5585 /*
5586  * Access another process' address space as given in mm.
5587  */
5588 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5589 		       int len, unsigned int gup_flags)
5590 {
5591 	struct vm_area_struct *vma;
5592 	void *old_buf = buf;
5593 	int write = gup_flags & FOLL_WRITE;
5594 
5595 	if (mmap_read_lock_killable(mm))
5596 		return 0;
5597 
5598 	/* ignore errors, just check how much was successfully transferred */
5599 	while (len) {
5600 		int bytes, ret, offset;
5601 		void *maddr;
5602 		struct page *page = NULL;
5603 
5604 		ret = get_user_pages_remote(mm, addr, 1,
5605 				gup_flags, &page, &vma, NULL);
5606 		if (ret <= 0) {
5607 #ifndef CONFIG_HAVE_IOREMAP_PROT
5608 			break;
5609 #else
5610 			/*
5611 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5612 			 * we can access using slightly different code.
5613 			 */
5614 			vma = vma_lookup(mm, addr);
5615 			if (!vma)
5616 				break;
5617 			if (vma->vm_ops && vma->vm_ops->access)
5618 				ret = vma->vm_ops->access(vma, addr, buf,
5619 							  len, write);
5620 			if (ret <= 0)
5621 				break;
5622 			bytes = ret;
5623 #endif
5624 		} else {
5625 			bytes = len;
5626 			offset = addr & (PAGE_SIZE-1);
5627 			if (bytes > PAGE_SIZE-offset)
5628 				bytes = PAGE_SIZE-offset;
5629 
5630 			maddr = kmap(page);
5631 			if (write) {
5632 				copy_to_user_page(vma, page, addr,
5633 						  maddr + offset, buf, bytes);
5634 				set_page_dirty_lock(page);
5635 			} else {
5636 				copy_from_user_page(vma, page, addr,
5637 						    buf, maddr + offset, bytes);
5638 			}
5639 			kunmap(page);
5640 			put_page(page);
5641 		}
5642 		len -= bytes;
5643 		buf += bytes;
5644 		addr += bytes;
5645 	}
5646 	mmap_read_unlock(mm);
5647 
5648 	return buf - old_buf;
5649 }
5650 
5651 /**
5652  * access_remote_vm - access another process' address space
5653  * @mm:		the mm_struct of the target address space
5654  * @addr:	start address to access
5655  * @buf:	source or destination buffer
5656  * @len:	number of bytes to transfer
5657  * @gup_flags:	flags modifying lookup behaviour
5658  *
5659  * The caller must hold a reference on @mm.
5660  *
5661  * Return: number of bytes copied from source to destination.
5662  */
5663 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5664 		void *buf, int len, unsigned int gup_flags)
5665 {
5666 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5667 }
5668 
5669 /*
5670  * Access another process' address space.
5671  * Source/target buffer must be kernel space,
5672  * Do not walk the page table directly, use get_user_pages
5673  */
5674 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5675 		void *buf, int len, unsigned int gup_flags)
5676 {
5677 	struct mm_struct *mm;
5678 	int ret;
5679 
5680 	mm = get_task_mm(tsk);
5681 	if (!mm)
5682 		return 0;
5683 
5684 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5685 
5686 	mmput(mm);
5687 
5688 	return ret;
5689 }
5690 EXPORT_SYMBOL_GPL(access_process_vm);
5691 
5692 /*
5693  * Print the name of a VMA.
5694  */
5695 void print_vma_addr(char *prefix, unsigned long ip)
5696 {
5697 	struct mm_struct *mm = current->mm;
5698 	struct vm_area_struct *vma;
5699 
5700 	/*
5701 	 * we might be running from an atomic context so we cannot sleep
5702 	 */
5703 	if (!mmap_read_trylock(mm))
5704 		return;
5705 
5706 	vma = find_vma(mm, ip);
5707 	if (vma && vma->vm_file) {
5708 		struct file *f = vma->vm_file;
5709 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5710 		if (buf) {
5711 			char *p;
5712 
5713 			p = file_path(f, buf, PAGE_SIZE);
5714 			if (IS_ERR(p))
5715 				p = "?";
5716 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5717 					vma->vm_start,
5718 					vma->vm_end - vma->vm_start);
5719 			free_page((unsigned long)buf);
5720 		}
5721 	}
5722 	mmap_read_unlock(mm);
5723 }
5724 
5725 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5726 void __might_fault(const char *file, int line)
5727 {
5728 	if (pagefault_disabled())
5729 		return;
5730 	__might_sleep(file, line);
5731 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5732 	if (current->mm)
5733 		might_lock_read(&current->mm->mmap_lock);
5734 #endif
5735 }
5736 EXPORT_SYMBOL(__might_fault);
5737 #endif
5738 
5739 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5740 /*
5741  * Process all subpages of the specified huge page with the specified
5742  * operation.  The target subpage will be processed last to keep its
5743  * cache lines hot.
5744  */
5745 static inline int process_huge_page(
5746 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5747 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
5748 	void *arg)
5749 {
5750 	int i, n, base, l, ret;
5751 	unsigned long addr = addr_hint &
5752 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5753 
5754 	/* Process target subpage last to keep its cache lines hot */
5755 	might_sleep();
5756 	n = (addr_hint - addr) / PAGE_SIZE;
5757 	if (2 * n <= pages_per_huge_page) {
5758 		/* If target subpage in first half of huge page */
5759 		base = 0;
5760 		l = n;
5761 		/* Process subpages at the end of huge page */
5762 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5763 			cond_resched();
5764 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5765 			if (ret)
5766 				return ret;
5767 		}
5768 	} else {
5769 		/* If target subpage in second half of huge page */
5770 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5771 		l = pages_per_huge_page - n;
5772 		/* Process subpages at the begin of huge page */
5773 		for (i = 0; i < base; i++) {
5774 			cond_resched();
5775 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5776 			if (ret)
5777 				return ret;
5778 		}
5779 	}
5780 	/*
5781 	 * Process remaining subpages in left-right-left-right pattern
5782 	 * towards the target subpage
5783 	 */
5784 	for (i = 0; i < l; i++) {
5785 		int left_idx = base + i;
5786 		int right_idx = base + 2 * l - 1 - i;
5787 
5788 		cond_resched();
5789 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5790 		if (ret)
5791 			return ret;
5792 		cond_resched();
5793 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5794 		if (ret)
5795 			return ret;
5796 	}
5797 	return 0;
5798 }
5799 
5800 static void clear_gigantic_page(struct page *page,
5801 				unsigned long addr,
5802 				unsigned int pages_per_huge_page)
5803 {
5804 	int i;
5805 	struct page *p;
5806 
5807 	might_sleep();
5808 	for (i = 0; i < pages_per_huge_page; i++) {
5809 		p = nth_page(page, i);
5810 		cond_resched();
5811 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5812 	}
5813 }
5814 
5815 static int clear_subpage(unsigned long addr, int idx, void *arg)
5816 {
5817 	struct page *page = arg;
5818 
5819 	clear_user_highpage(page + idx, addr);
5820 	return 0;
5821 }
5822 
5823 void clear_huge_page(struct page *page,
5824 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5825 {
5826 	unsigned long addr = addr_hint &
5827 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5828 
5829 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5830 		clear_gigantic_page(page, addr, pages_per_huge_page);
5831 		return;
5832 	}
5833 
5834 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5835 }
5836 
5837 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
5838 				     unsigned long addr,
5839 				     struct vm_area_struct *vma,
5840 				     unsigned int pages_per_huge_page)
5841 {
5842 	int i;
5843 	struct page *dst_page;
5844 	struct page *src_page;
5845 
5846 	for (i = 0; i < pages_per_huge_page; i++) {
5847 		dst_page = folio_page(dst, i);
5848 		src_page = folio_page(src, i);
5849 
5850 		cond_resched();
5851 		if (copy_mc_user_highpage(dst_page, src_page,
5852 					  addr + i*PAGE_SIZE, vma)) {
5853 			memory_failure_queue(page_to_pfn(src_page), 0);
5854 			return -EHWPOISON;
5855 		}
5856 	}
5857 	return 0;
5858 }
5859 
5860 struct copy_subpage_arg {
5861 	struct page *dst;
5862 	struct page *src;
5863 	struct vm_area_struct *vma;
5864 };
5865 
5866 static int copy_subpage(unsigned long addr, int idx, void *arg)
5867 {
5868 	struct copy_subpage_arg *copy_arg = arg;
5869 
5870 	if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5871 				  addr, copy_arg->vma)) {
5872 		memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
5873 		return -EHWPOISON;
5874 	}
5875 	return 0;
5876 }
5877 
5878 int copy_user_large_folio(struct folio *dst, struct folio *src,
5879 			  unsigned long addr_hint, struct vm_area_struct *vma)
5880 {
5881 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
5882 	unsigned long addr = addr_hint &
5883 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5884 	struct copy_subpage_arg arg = {
5885 		.dst = &dst->page,
5886 		.src = &src->page,
5887 		.vma = vma,
5888 	};
5889 
5890 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
5891 		return copy_user_gigantic_page(dst, src, addr, vma,
5892 					       pages_per_huge_page);
5893 
5894 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5895 }
5896 
5897 long copy_folio_from_user(struct folio *dst_folio,
5898 			   const void __user *usr_src,
5899 			   bool allow_pagefault)
5900 {
5901 	void *kaddr;
5902 	unsigned long i, rc = 0;
5903 	unsigned int nr_pages = folio_nr_pages(dst_folio);
5904 	unsigned long ret_val = nr_pages * PAGE_SIZE;
5905 	struct page *subpage;
5906 
5907 	for (i = 0; i < nr_pages; i++) {
5908 		subpage = folio_page(dst_folio, i);
5909 		kaddr = kmap_local_page(subpage);
5910 		if (!allow_pagefault)
5911 			pagefault_disable();
5912 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
5913 		if (!allow_pagefault)
5914 			pagefault_enable();
5915 		kunmap_local(kaddr);
5916 
5917 		ret_val -= (PAGE_SIZE - rc);
5918 		if (rc)
5919 			break;
5920 
5921 		flush_dcache_page(subpage);
5922 
5923 		cond_resched();
5924 	}
5925 	return ret_val;
5926 }
5927 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5928 
5929 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5930 
5931 static struct kmem_cache *page_ptl_cachep;
5932 
5933 void __init ptlock_cache_init(void)
5934 {
5935 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5936 			SLAB_PANIC, NULL);
5937 }
5938 
5939 bool ptlock_alloc(struct page *page)
5940 {
5941 	spinlock_t *ptl;
5942 
5943 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5944 	if (!ptl)
5945 		return false;
5946 	page->ptl = ptl;
5947 	return true;
5948 }
5949 
5950 void ptlock_free(struct page *page)
5951 {
5952 	kmem_cache_free(page_ptl_cachep, page->ptl);
5953 }
5954 #endif
5955