1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 #include <linux/net_mm.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 90 91 #include "pgalloc-track.h" 92 #include "internal.h" 93 #include "swap.h" 94 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 97 #endif 98 99 #ifndef CONFIG_NUMA 100 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 102 103 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 105 #endif 106 107 static vm_fault_t do_fault(struct vm_fault *vmf); 108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 109 static bool vmf_pte_changed(struct vm_fault *vmf); 110 111 /* 112 * Return true if the original pte was a uffd-wp pte marker (so the pte was 113 * wr-protected). 114 */ 115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 116 { 117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 118 return false; 119 120 return pte_marker_uffd_wp(vmf->orig_pte); 121 } 122 123 /* 124 * A number of key systems in x86 including ioremap() rely on the assumption 125 * that high_memory defines the upper bound on direct map memory, then end 126 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 127 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 128 * and ZONE_HIGHMEM. 129 */ 130 void *high_memory; 131 EXPORT_SYMBOL(high_memory); 132 133 /* 134 * Randomize the address space (stacks, mmaps, brk, etc.). 135 * 136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 137 * as ancient (libc5 based) binaries can segfault. ) 138 */ 139 int randomize_va_space __read_mostly = 140 #ifdef CONFIG_COMPAT_BRK 141 1; 142 #else 143 2; 144 #endif 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_pte(void) 148 { 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly; 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, int member) 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 */ 302 void free_pgd_range(struct mmu_gather *tlb, 303 unsigned long addr, unsigned long end, 304 unsigned long floor, unsigned long ceiling) 305 { 306 pgd_t *pgd; 307 unsigned long next; 308 309 /* 310 * The next few lines have given us lots of grief... 311 * 312 * Why are we testing PMD* at this top level? Because often 313 * there will be no work to do at all, and we'd prefer not to 314 * go all the way down to the bottom just to discover that. 315 * 316 * Why all these "- 1"s? Because 0 represents both the bottom 317 * of the address space and the top of it (using -1 for the 318 * top wouldn't help much: the masks would do the wrong thing). 319 * The rule is that addr 0 and floor 0 refer to the bottom of 320 * the address space, but end 0 and ceiling 0 refer to the top 321 * Comparisons need to use "end - 1" and "ceiling - 1" (though 322 * that end 0 case should be mythical). 323 * 324 * Wherever addr is brought up or ceiling brought down, we must 325 * be careful to reject "the opposite 0" before it confuses the 326 * subsequent tests. But what about where end is brought down 327 * by PMD_SIZE below? no, end can't go down to 0 there. 328 * 329 * Whereas we round start (addr) and ceiling down, by different 330 * masks at different levels, in order to test whether a table 331 * now has no other vmas using it, so can be freed, we don't 332 * bother to round floor or end up - the tests don't need that. 333 */ 334 335 addr &= PMD_MASK; 336 if (addr < floor) { 337 addr += PMD_SIZE; 338 if (!addr) 339 return; 340 } 341 if (ceiling) { 342 ceiling &= PMD_MASK; 343 if (!ceiling) 344 return; 345 } 346 if (end - 1 > ceiling - 1) 347 end -= PMD_SIZE; 348 if (addr > end - 1) 349 return; 350 /* 351 * We add page table cache pages with PAGE_SIZE, 352 * (see pte_free_tlb()), flush the tlb if we need 353 */ 354 tlb_change_page_size(tlb, PAGE_SIZE); 355 pgd = pgd_offset(tlb->mm, addr); 356 do { 357 next = pgd_addr_end(addr, end); 358 if (pgd_none_or_clear_bad(pgd)) 359 continue; 360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 361 } while (pgd++, addr = next, addr != end); 362 } 363 364 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, 365 struct vm_area_struct *vma, unsigned long floor, 366 unsigned long ceiling, bool mm_wr_locked) 367 { 368 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 369 370 do { 371 unsigned long addr = vma->vm_start; 372 struct vm_area_struct *next; 373 374 /* 375 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 376 * be 0. This will underflow and is okay. 377 */ 378 next = mas_find(&mas, ceiling - 1); 379 380 /* 381 * Hide vma from rmap and truncate_pagecache before freeing 382 * pgtables 383 */ 384 if (mm_wr_locked) 385 vma_start_write(vma); 386 unlink_anon_vmas(vma); 387 unlink_file_vma(vma); 388 389 if (is_vm_hugetlb_page(vma)) { 390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 391 floor, next ? next->vm_start : ceiling); 392 } else { 393 /* 394 * Optimization: gather nearby vmas into one call down 395 */ 396 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 397 && !is_vm_hugetlb_page(next)) { 398 vma = next; 399 next = mas_find(&mas, ceiling - 1); 400 if (mm_wr_locked) 401 vma_start_write(vma); 402 unlink_anon_vmas(vma); 403 unlink_file_vma(vma); 404 } 405 free_pgd_range(tlb, addr, vma->vm_end, 406 floor, next ? next->vm_start : ceiling); 407 } 408 vma = next; 409 } while (vma); 410 } 411 412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 413 { 414 spinlock_t *ptl = pmd_lock(mm, pmd); 415 416 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 417 mm_inc_nr_ptes(mm); 418 /* 419 * Ensure all pte setup (eg. pte page lock and page clearing) are 420 * visible before the pte is made visible to other CPUs by being 421 * put into page tables. 422 * 423 * The other side of the story is the pointer chasing in the page 424 * table walking code (when walking the page table without locking; 425 * ie. most of the time). Fortunately, these data accesses consist 426 * of a chain of data-dependent loads, meaning most CPUs (alpha 427 * being the notable exception) will already guarantee loads are 428 * seen in-order. See the alpha page table accessors for the 429 * smp_rmb() barriers in page table walking code. 430 */ 431 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 432 pmd_populate(mm, pmd, *pte); 433 *pte = NULL; 434 } 435 spin_unlock(ptl); 436 } 437 438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 439 { 440 pgtable_t new = pte_alloc_one(mm); 441 if (!new) 442 return -ENOMEM; 443 444 pmd_install(mm, pmd, &new); 445 if (new) 446 pte_free(mm, new); 447 return 0; 448 } 449 450 int __pte_alloc_kernel(pmd_t *pmd) 451 { 452 pte_t *new = pte_alloc_one_kernel(&init_mm); 453 if (!new) 454 return -ENOMEM; 455 456 spin_lock(&init_mm.page_table_lock); 457 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 458 smp_wmb(); /* See comment in pmd_install() */ 459 pmd_populate_kernel(&init_mm, pmd, new); 460 new = NULL; 461 } 462 spin_unlock(&init_mm.page_table_lock); 463 if (new) 464 pte_free_kernel(&init_mm, new); 465 return 0; 466 } 467 468 static inline void init_rss_vec(int *rss) 469 { 470 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 471 } 472 473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 474 { 475 int i; 476 477 if (current->mm == mm) 478 sync_mm_rss(mm); 479 for (i = 0; i < NR_MM_COUNTERS; i++) 480 if (rss[i]) 481 add_mm_counter(mm, i, rss[i]); 482 } 483 484 /* 485 * This function is called to print an error when a bad pte 486 * is found. For example, we might have a PFN-mapped pte in 487 * a region that doesn't allow it. 488 * 489 * The calling function must still handle the error. 490 */ 491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 492 pte_t pte, struct page *page) 493 { 494 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 495 p4d_t *p4d = p4d_offset(pgd, addr); 496 pud_t *pud = pud_offset(p4d, addr); 497 pmd_t *pmd = pmd_offset(pud, addr); 498 struct address_space *mapping; 499 pgoff_t index; 500 static unsigned long resume; 501 static unsigned long nr_shown; 502 static unsigned long nr_unshown; 503 504 /* 505 * Allow a burst of 60 reports, then keep quiet for that minute; 506 * or allow a steady drip of one report per second. 507 */ 508 if (nr_shown == 60) { 509 if (time_before(jiffies, resume)) { 510 nr_unshown++; 511 return; 512 } 513 if (nr_unshown) { 514 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 515 nr_unshown); 516 nr_unshown = 0; 517 } 518 nr_shown = 0; 519 } 520 if (nr_shown++ == 0) 521 resume = jiffies + 60 * HZ; 522 523 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 524 index = linear_page_index(vma, addr); 525 526 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 527 current->comm, 528 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 529 if (page) 530 dump_page(page, "bad pte"); 531 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 532 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 533 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 534 vma->vm_file, 535 vma->vm_ops ? vma->vm_ops->fault : NULL, 536 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 537 mapping ? mapping->a_ops->read_folio : NULL); 538 dump_stack(); 539 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 540 } 541 542 /* 543 * vm_normal_page -- This function gets the "struct page" associated with a pte. 544 * 545 * "Special" mappings do not wish to be associated with a "struct page" (either 546 * it doesn't exist, or it exists but they don't want to touch it). In this 547 * case, NULL is returned here. "Normal" mappings do have a struct page. 548 * 549 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 550 * pte bit, in which case this function is trivial. Secondly, an architecture 551 * may not have a spare pte bit, which requires a more complicated scheme, 552 * described below. 553 * 554 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 555 * special mapping (even if there are underlying and valid "struct pages"). 556 * COWed pages of a VM_PFNMAP are always normal. 557 * 558 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 559 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 560 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 561 * mapping will always honor the rule 562 * 563 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 564 * 565 * And for normal mappings this is false. 566 * 567 * This restricts such mappings to be a linear translation from virtual address 568 * to pfn. To get around this restriction, we allow arbitrary mappings so long 569 * as the vma is not a COW mapping; in that case, we know that all ptes are 570 * special (because none can have been COWed). 571 * 572 * 573 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 574 * 575 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 576 * page" backing, however the difference is that _all_ pages with a struct 577 * page (that is, those where pfn_valid is true) are refcounted and considered 578 * normal pages by the VM. The disadvantage is that pages are refcounted 579 * (which can be slower and simply not an option for some PFNMAP users). The 580 * advantage is that we don't have to follow the strict linearity rule of 581 * PFNMAP mappings in order to support COWable mappings. 582 * 583 */ 584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 585 pte_t pte) 586 { 587 unsigned long pfn = pte_pfn(pte); 588 589 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 590 if (likely(!pte_special(pte))) 591 goto check_pfn; 592 if (vma->vm_ops && vma->vm_ops->find_special_page) 593 return vma->vm_ops->find_special_page(vma, addr); 594 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 595 return NULL; 596 if (is_zero_pfn(pfn)) 597 return NULL; 598 if (pte_devmap(pte)) 599 /* 600 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 601 * and will have refcounts incremented on their struct pages 602 * when they are inserted into PTEs, thus they are safe to 603 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 604 * do not have refcounts. Example of legacy ZONE_DEVICE is 605 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 606 */ 607 return NULL; 608 609 print_bad_pte(vma, addr, pte, NULL); 610 return NULL; 611 } 612 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 614 615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 616 if (vma->vm_flags & VM_MIXEDMAP) { 617 if (!pfn_valid(pfn)) 618 return NULL; 619 goto out; 620 } else { 621 unsigned long off; 622 off = (addr - vma->vm_start) >> PAGE_SHIFT; 623 if (pfn == vma->vm_pgoff + off) 624 return NULL; 625 if (!is_cow_mapping(vma->vm_flags)) 626 return NULL; 627 } 628 } 629 630 if (is_zero_pfn(pfn)) 631 return NULL; 632 633 check_pfn: 634 if (unlikely(pfn > highest_memmap_pfn)) { 635 print_bad_pte(vma, addr, pte, NULL); 636 return NULL; 637 } 638 639 /* 640 * NOTE! We still have PageReserved() pages in the page tables. 641 * eg. VDSO mappings can cause them to exist. 642 */ 643 out: 644 return pfn_to_page(pfn); 645 } 646 647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 648 pte_t pte) 649 { 650 struct page *page = vm_normal_page(vma, addr, pte); 651 652 if (page) 653 return page_folio(page); 654 return NULL; 655 } 656 657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 659 pmd_t pmd) 660 { 661 unsigned long pfn = pmd_pfn(pmd); 662 663 /* 664 * There is no pmd_special() but there may be special pmds, e.g. 665 * in a direct-access (dax) mapping, so let's just replicate the 666 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 667 */ 668 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 669 if (vma->vm_flags & VM_MIXEDMAP) { 670 if (!pfn_valid(pfn)) 671 return NULL; 672 goto out; 673 } else { 674 unsigned long off; 675 off = (addr - vma->vm_start) >> PAGE_SHIFT; 676 if (pfn == vma->vm_pgoff + off) 677 return NULL; 678 if (!is_cow_mapping(vma->vm_flags)) 679 return NULL; 680 } 681 } 682 683 if (pmd_devmap(pmd)) 684 return NULL; 685 if (is_huge_zero_pmd(pmd)) 686 return NULL; 687 if (unlikely(pfn > highest_memmap_pfn)) 688 return NULL; 689 690 /* 691 * NOTE! We still have PageReserved() pages in the page tables. 692 * eg. VDSO mappings can cause them to exist. 693 */ 694 out: 695 return pfn_to_page(pfn); 696 } 697 #endif 698 699 static void restore_exclusive_pte(struct vm_area_struct *vma, 700 struct page *page, unsigned long address, 701 pte_t *ptep) 702 { 703 pte_t pte; 704 swp_entry_t entry; 705 706 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 707 if (pte_swp_soft_dirty(*ptep)) 708 pte = pte_mksoft_dirty(pte); 709 710 entry = pte_to_swp_entry(*ptep); 711 if (pte_swp_uffd_wp(*ptep)) 712 pte = pte_mkuffd_wp(pte); 713 else if (is_writable_device_exclusive_entry(entry)) 714 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 715 716 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 717 718 /* 719 * No need to take a page reference as one was already 720 * created when the swap entry was made. 721 */ 722 if (PageAnon(page)) 723 page_add_anon_rmap(page, vma, address, RMAP_NONE); 724 else 725 /* 726 * Currently device exclusive access only supports anonymous 727 * memory so the entry shouldn't point to a filebacked page. 728 */ 729 WARN_ON_ONCE(1); 730 731 set_pte_at(vma->vm_mm, address, ptep, pte); 732 733 /* 734 * No need to invalidate - it was non-present before. However 735 * secondary CPUs may have mappings that need invalidating. 736 */ 737 update_mmu_cache(vma, address, ptep); 738 } 739 740 /* 741 * Tries to restore an exclusive pte if the page lock can be acquired without 742 * sleeping. 743 */ 744 static int 745 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 746 unsigned long addr) 747 { 748 swp_entry_t entry = pte_to_swp_entry(*src_pte); 749 struct page *page = pfn_swap_entry_to_page(entry); 750 751 if (trylock_page(page)) { 752 restore_exclusive_pte(vma, page, addr, src_pte); 753 unlock_page(page); 754 return 0; 755 } 756 757 return -EBUSY; 758 } 759 760 /* 761 * copy one vm_area from one task to the other. Assumes the page tables 762 * already present in the new task to be cleared in the whole range 763 * covered by this vma. 764 */ 765 766 static unsigned long 767 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 768 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 769 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 770 { 771 unsigned long vm_flags = dst_vma->vm_flags; 772 pte_t pte = *src_pte; 773 struct page *page; 774 swp_entry_t entry = pte_to_swp_entry(pte); 775 776 if (likely(!non_swap_entry(entry))) { 777 if (swap_duplicate(entry) < 0) 778 return -EIO; 779 780 /* make sure dst_mm is on swapoff's mmlist. */ 781 if (unlikely(list_empty(&dst_mm->mmlist))) { 782 spin_lock(&mmlist_lock); 783 if (list_empty(&dst_mm->mmlist)) 784 list_add(&dst_mm->mmlist, 785 &src_mm->mmlist); 786 spin_unlock(&mmlist_lock); 787 } 788 /* Mark the swap entry as shared. */ 789 if (pte_swp_exclusive(*src_pte)) { 790 pte = pte_swp_clear_exclusive(*src_pte); 791 set_pte_at(src_mm, addr, src_pte, pte); 792 } 793 rss[MM_SWAPENTS]++; 794 } else if (is_migration_entry(entry)) { 795 page = pfn_swap_entry_to_page(entry); 796 797 rss[mm_counter(page)]++; 798 799 if (!is_readable_migration_entry(entry) && 800 is_cow_mapping(vm_flags)) { 801 /* 802 * COW mappings require pages in both parent and child 803 * to be set to read. A previously exclusive entry is 804 * now shared. 805 */ 806 entry = make_readable_migration_entry( 807 swp_offset(entry)); 808 pte = swp_entry_to_pte(entry); 809 if (pte_swp_soft_dirty(*src_pte)) 810 pte = pte_swp_mksoft_dirty(pte); 811 if (pte_swp_uffd_wp(*src_pte)) 812 pte = pte_swp_mkuffd_wp(pte); 813 set_pte_at(src_mm, addr, src_pte, pte); 814 } 815 } else if (is_device_private_entry(entry)) { 816 page = pfn_swap_entry_to_page(entry); 817 818 /* 819 * Update rss count even for unaddressable pages, as 820 * they should treated just like normal pages in this 821 * respect. 822 * 823 * We will likely want to have some new rss counters 824 * for unaddressable pages, at some point. But for now 825 * keep things as they are. 826 */ 827 get_page(page); 828 rss[mm_counter(page)]++; 829 /* Cannot fail as these pages cannot get pinned. */ 830 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 831 832 /* 833 * We do not preserve soft-dirty information, because so 834 * far, checkpoint/restore is the only feature that 835 * requires that. And checkpoint/restore does not work 836 * when a device driver is involved (you cannot easily 837 * save and restore device driver state). 838 */ 839 if (is_writable_device_private_entry(entry) && 840 is_cow_mapping(vm_flags)) { 841 entry = make_readable_device_private_entry( 842 swp_offset(entry)); 843 pte = swp_entry_to_pte(entry); 844 if (pte_swp_uffd_wp(*src_pte)) 845 pte = pte_swp_mkuffd_wp(pte); 846 set_pte_at(src_mm, addr, src_pte, pte); 847 } 848 } else if (is_device_exclusive_entry(entry)) { 849 /* 850 * Make device exclusive entries present by restoring the 851 * original entry then copying as for a present pte. Device 852 * exclusive entries currently only support private writable 853 * (ie. COW) mappings. 854 */ 855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 856 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 857 return -EBUSY; 858 return -ENOENT; 859 } else if (is_pte_marker_entry(entry)) { 860 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma)) 861 set_pte_at(dst_mm, addr, dst_pte, pte); 862 return 0; 863 } 864 if (!userfaultfd_wp(dst_vma)) 865 pte = pte_swp_clear_uffd_wp(pte); 866 set_pte_at(dst_mm, addr, dst_pte, pte); 867 return 0; 868 } 869 870 /* 871 * Copy a present and normal page. 872 * 873 * NOTE! The usual case is that this isn't required; 874 * instead, the caller can just increase the page refcount 875 * and re-use the pte the traditional way. 876 * 877 * And if we need a pre-allocated page but don't yet have 878 * one, return a negative error to let the preallocation 879 * code know so that it can do so outside the page table 880 * lock. 881 */ 882 static inline int 883 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 884 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 885 struct folio **prealloc, struct page *page) 886 { 887 struct folio *new_folio; 888 pte_t pte; 889 890 new_folio = *prealloc; 891 if (!new_folio) 892 return -EAGAIN; 893 894 /* 895 * We have a prealloc page, all good! Take it 896 * over and copy the page & arm it. 897 */ 898 *prealloc = NULL; 899 copy_user_highpage(&new_folio->page, page, addr, src_vma); 900 __folio_mark_uptodate(new_folio); 901 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 902 folio_add_lru_vma(new_folio, dst_vma); 903 rss[MM_ANONPAGES]++; 904 905 /* All done, just insert the new page copy in the child */ 906 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 907 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 908 if (userfaultfd_pte_wp(dst_vma, *src_pte)) 909 /* Uffd-wp needs to be delivered to dest pte as well */ 910 pte = pte_mkuffd_wp(pte); 911 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 912 return 0; 913 } 914 915 /* 916 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 917 * is required to copy this pte. 918 */ 919 static inline int 920 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 921 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 922 struct folio **prealloc) 923 { 924 struct mm_struct *src_mm = src_vma->vm_mm; 925 unsigned long vm_flags = src_vma->vm_flags; 926 pte_t pte = *src_pte; 927 struct page *page; 928 struct folio *folio; 929 930 page = vm_normal_page(src_vma, addr, pte); 931 if (page) 932 folio = page_folio(page); 933 if (page && folio_test_anon(folio)) { 934 /* 935 * If this page may have been pinned by the parent process, 936 * copy the page immediately for the child so that we'll always 937 * guarantee the pinned page won't be randomly replaced in the 938 * future. 939 */ 940 folio_get(folio); 941 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 942 /* Page may be pinned, we have to copy. */ 943 folio_put(folio); 944 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 945 addr, rss, prealloc, page); 946 } 947 rss[MM_ANONPAGES]++; 948 } else if (page) { 949 folio_get(folio); 950 page_dup_file_rmap(page, false); 951 rss[mm_counter_file(page)]++; 952 } 953 954 /* 955 * If it's a COW mapping, write protect it both 956 * in the parent and the child 957 */ 958 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 959 ptep_set_wrprotect(src_mm, addr, src_pte); 960 pte = pte_wrprotect(pte); 961 } 962 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); 963 964 /* 965 * If it's a shared mapping, mark it clean in 966 * the child 967 */ 968 if (vm_flags & VM_SHARED) 969 pte = pte_mkclean(pte); 970 pte = pte_mkold(pte); 971 972 if (!userfaultfd_wp(dst_vma)) 973 pte = pte_clear_uffd_wp(pte); 974 975 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 976 return 0; 977 } 978 979 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, 980 struct vm_area_struct *vma, unsigned long addr) 981 { 982 struct folio *new_folio; 983 984 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 985 if (!new_folio) 986 return NULL; 987 988 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 989 folio_put(new_folio); 990 return NULL; 991 } 992 folio_throttle_swaprate(new_folio, GFP_KERNEL); 993 994 return new_folio; 995 } 996 997 static int 998 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 999 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1000 unsigned long end) 1001 { 1002 struct mm_struct *dst_mm = dst_vma->vm_mm; 1003 struct mm_struct *src_mm = src_vma->vm_mm; 1004 pte_t *orig_src_pte, *orig_dst_pte; 1005 pte_t *src_pte, *dst_pte; 1006 spinlock_t *src_ptl, *dst_ptl; 1007 int progress, ret = 0; 1008 int rss[NR_MM_COUNTERS]; 1009 swp_entry_t entry = (swp_entry_t){0}; 1010 struct folio *prealloc = NULL; 1011 1012 again: 1013 progress = 0; 1014 init_rss_vec(rss); 1015 1016 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1017 if (!dst_pte) { 1018 ret = -ENOMEM; 1019 goto out; 1020 } 1021 src_pte = pte_offset_map(src_pmd, addr); 1022 src_ptl = pte_lockptr(src_mm, src_pmd); 1023 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1024 orig_src_pte = src_pte; 1025 orig_dst_pte = dst_pte; 1026 arch_enter_lazy_mmu_mode(); 1027 1028 do { 1029 /* 1030 * We are holding two locks at this point - either of them 1031 * could generate latencies in another task on another CPU. 1032 */ 1033 if (progress >= 32) { 1034 progress = 0; 1035 if (need_resched() || 1036 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1037 break; 1038 } 1039 if (pte_none(*src_pte)) { 1040 progress++; 1041 continue; 1042 } 1043 if (unlikely(!pte_present(*src_pte))) { 1044 ret = copy_nonpresent_pte(dst_mm, src_mm, 1045 dst_pte, src_pte, 1046 dst_vma, src_vma, 1047 addr, rss); 1048 if (ret == -EIO) { 1049 entry = pte_to_swp_entry(*src_pte); 1050 break; 1051 } else if (ret == -EBUSY) { 1052 break; 1053 } else if (!ret) { 1054 progress += 8; 1055 continue; 1056 } 1057 1058 /* 1059 * Device exclusive entry restored, continue by copying 1060 * the now present pte. 1061 */ 1062 WARN_ON_ONCE(ret != -ENOENT); 1063 } 1064 /* copy_present_pte() will clear `*prealloc' if consumed */ 1065 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1066 addr, rss, &prealloc); 1067 /* 1068 * If we need a pre-allocated page for this pte, drop the 1069 * locks, allocate, and try again. 1070 */ 1071 if (unlikely(ret == -EAGAIN)) 1072 break; 1073 if (unlikely(prealloc)) { 1074 /* 1075 * pre-alloc page cannot be reused by next time so as 1076 * to strictly follow mempolicy (e.g., alloc_page_vma() 1077 * will allocate page according to address). This 1078 * could only happen if one pinned pte changed. 1079 */ 1080 folio_put(prealloc); 1081 prealloc = NULL; 1082 } 1083 progress += 8; 1084 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1085 1086 arch_leave_lazy_mmu_mode(); 1087 spin_unlock(src_ptl); 1088 pte_unmap(orig_src_pte); 1089 add_mm_rss_vec(dst_mm, rss); 1090 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1091 cond_resched(); 1092 1093 if (ret == -EIO) { 1094 VM_WARN_ON_ONCE(!entry.val); 1095 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1096 ret = -ENOMEM; 1097 goto out; 1098 } 1099 entry.val = 0; 1100 } else if (ret == -EBUSY) { 1101 goto out; 1102 } else if (ret == -EAGAIN) { 1103 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1104 if (!prealloc) 1105 return -ENOMEM; 1106 } else if (ret) { 1107 VM_WARN_ON_ONCE(1); 1108 } 1109 1110 /* We've captured and resolved the error. Reset, try again. */ 1111 ret = 0; 1112 1113 if (addr != end) 1114 goto again; 1115 out: 1116 if (unlikely(prealloc)) 1117 folio_put(prealloc); 1118 return ret; 1119 } 1120 1121 static inline int 1122 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1123 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1124 unsigned long end) 1125 { 1126 struct mm_struct *dst_mm = dst_vma->vm_mm; 1127 struct mm_struct *src_mm = src_vma->vm_mm; 1128 pmd_t *src_pmd, *dst_pmd; 1129 unsigned long next; 1130 1131 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1132 if (!dst_pmd) 1133 return -ENOMEM; 1134 src_pmd = pmd_offset(src_pud, addr); 1135 do { 1136 next = pmd_addr_end(addr, end); 1137 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1138 || pmd_devmap(*src_pmd)) { 1139 int err; 1140 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1141 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1142 addr, dst_vma, src_vma); 1143 if (err == -ENOMEM) 1144 return -ENOMEM; 1145 if (!err) 1146 continue; 1147 /* fall through */ 1148 } 1149 if (pmd_none_or_clear_bad(src_pmd)) 1150 continue; 1151 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1152 addr, next)) 1153 return -ENOMEM; 1154 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1155 return 0; 1156 } 1157 1158 static inline int 1159 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1160 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1161 unsigned long end) 1162 { 1163 struct mm_struct *dst_mm = dst_vma->vm_mm; 1164 struct mm_struct *src_mm = src_vma->vm_mm; 1165 pud_t *src_pud, *dst_pud; 1166 unsigned long next; 1167 1168 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1169 if (!dst_pud) 1170 return -ENOMEM; 1171 src_pud = pud_offset(src_p4d, addr); 1172 do { 1173 next = pud_addr_end(addr, end); 1174 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1175 int err; 1176 1177 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1178 err = copy_huge_pud(dst_mm, src_mm, 1179 dst_pud, src_pud, addr, src_vma); 1180 if (err == -ENOMEM) 1181 return -ENOMEM; 1182 if (!err) 1183 continue; 1184 /* fall through */ 1185 } 1186 if (pud_none_or_clear_bad(src_pud)) 1187 continue; 1188 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1189 addr, next)) 1190 return -ENOMEM; 1191 } while (dst_pud++, src_pud++, addr = next, addr != end); 1192 return 0; 1193 } 1194 1195 static inline int 1196 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1197 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1198 unsigned long end) 1199 { 1200 struct mm_struct *dst_mm = dst_vma->vm_mm; 1201 p4d_t *src_p4d, *dst_p4d; 1202 unsigned long next; 1203 1204 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1205 if (!dst_p4d) 1206 return -ENOMEM; 1207 src_p4d = p4d_offset(src_pgd, addr); 1208 do { 1209 next = p4d_addr_end(addr, end); 1210 if (p4d_none_or_clear_bad(src_p4d)) 1211 continue; 1212 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1213 addr, next)) 1214 return -ENOMEM; 1215 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1216 return 0; 1217 } 1218 1219 /* 1220 * Return true if the vma needs to copy the pgtable during this fork(). Return 1221 * false when we can speed up fork() by allowing lazy page faults later until 1222 * when the child accesses the memory range. 1223 */ 1224 static bool 1225 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1226 { 1227 /* 1228 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1229 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1230 * contains uffd-wp protection information, that's something we can't 1231 * retrieve from page cache, and skip copying will lose those info. 1232 */ 1233 if (userfaultfd_wp(dst_vma)) 1234 return true; 1235 1236 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1237 return true; 1238 1239 if (src_vma->anon_vma) 1240 return true; 1241 1242 /* 1243 * Don't copy ptes where a page fault will fill them correctly. Fork 1244 * becomes much lighter when there are big shared or private readonly 1245 * mappings. The tradeoff is that copy_page_range is more efficient 1246 * than faulting. 1247 */ 1248 return false; 1249 } 1250 1251 int 1252 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1253 { 1254 pgd_t *src_pgd, *dst_pgd; 1255 unsigned long next; 1256 unsigned long addr = src_vma->vm_start; 1257 unsigned long end = src_vma->vm_end; 1258 struct mm_struct *dst_mm = dst_vma->vm_mm; 1259 struct mm_struct *src_mm = src_vma->vm_mm; 1260 struct mmu_notifier_range range; 1261 bool is_cow; 1262 int ret; 1263 1264 if (!vma_needs_copy(dst_vma, src_vma)) 1265 return 0; 1266 1267 if (is_vm_hugetlb_page(src_vma)) 1268 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1269 1270 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1271 /* 1272 * We do not free on error cases below as remove_vma 1273 * gets called on error from higher level routine 1274 */ 1275 ret = track_pfn_copy(src_vma); 1276 if (ret) 1277 return ret; 1278 } 1279 1280 /* 1281 * We need to invalidate the secondary MMU mappings only when 1282 * there could be a permission downgrade on the ptes of the 1283 * parent mm. And a permission downgrade will only happen if 1284 * is_cow_mapping() returns true. 1285 */ 1286 is_cow = is_cow_mapping(src_vma->vm_flags); 1287 1288 if (is_cow) { 1289 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1290 0, src_mm, addr, end); 1291 mmu_notifier_invalidate_range_start(&range); 1292 /* 1293 * Disabling preemption is not needed for the write side, as 1294 * the read side doesn't spin, but goes to the mmap_lock. 1295 * 1296 * Use the raw variant of the seqcount_t write API to avoid 1297 * lockdep complaining about preemptibility. 1298 */ 1299 mmap_assert_write_locked(src_mm); 1300 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1301 } 1302 1303 ret = 0; 1304 dst_pgd = pgd_offset(dst_mm, addr); 1305 src_pgd = pgd_offset(src_mm, addr); 1306 do { 1307 next = pgd_addr_end(addr, end); 1308 if (pgd_none_or_clear_bad(src_pgd)) 1309 continue; 1310 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1311 addr, next))) { 1312 untrack_pfn_clear(dst_vma); 1313 ret = -ENOMEM; 1314 break; 1315 } 1316 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1317 1318 if (is_cow) { 1319 raw_write_seqcount_end(&src_mm->write_protect_seq); 1320 mmu_notifier_invalidate_range_end(&range); 1321 } 1322 return ret; 1323 } 1324 1325 /* Whether we should zap all COWed (private) pages too */ 1326 static inline bool should_zap_cows(struct zap_details *details) 1327 { 1328 /* By default, zap all pages */ 1329 if (!details) 1330 return true; 1331 1332 /* Or, we zap COWed pages only if the caller wants to */ 1333 return details->even_cows; 1334 } 1335 1336 /* Decides whether we should zap this page with the page pointer specified */ 1337 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1338 { 1339 /* If we can make a decision without *page.. */ 1340 if (should_zap_cows(details)) 1341 return true; 1342 1343 /* E.g. the caller passes NULL for the case of a zero page */ 1344 if (!page) 1345 return true; 1346 1347 /* Otherwise we should only zap non-anon pages */ 1348 return !PageAnon(page); 1349 } 1350 1351 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1352 { 1353 if (!details) 1354 return false; 1355 1356 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1357 } 1358 1359 /* 1360 * This function makes sure that we'll replace the none pte with an uffd-wp 1361 * swap special pte marker when necessary. Must be with the pgtable lock held. 1362 */ 1363 static inline void 1364 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1365 unsigned long addr, pte_t *pte, 1366 struct zap_details *details, pte_t pteval) 1367 { 1368 /* Zap on anonymous always means dropping everything */ 1369 if (vma_is_anonymous(vma)) 1370 return; 1371 1372 if (zap_drop_file_uffd_wp(details)) 1373 return; 1374 1375 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1376 } 1377 1378 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1379 struct vm_area_struct *vma, pmd_t *pmd, 1380 unsigned long addr, unsigned long end, 1381 struct zap_details *details) 1382 { 1383 struct mm_struct *mm = tlb->mm; 1384 int force_flush = 0; 1385 int rss[NR_MM_COUNTERS]; 1386 spinlock_t *ptl; 1387 pte_t *start_pte; 1388 pte_t *pte; 1389 swp_entry_t entry; 1390 1391 tlb_change_page_size(tlb, PAGE_SIZE); 1392 again: 1393 init_rss_vec(rss); 1394 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1395 pte = start_pte; 1396 flush_tlb_batched_pending(mm); 1397 arch_enter_lazy_mmu_mode(); 1398 do { 1399 pte_t ptent = *pte; 1400 struct page *page; 1401 1402 if (pte_none(ptent)) 1403 continue; 1404 1405 if (need_resched()) 1406 break; 1407 1408 if (pte_present(ptent)) { 1409 unsigned int delay_rmap; 1410 1411 page = vm_normal_page(vma, addr, ptent); 1412 if (unlikely(!should_zap_page(details, page))) 1413 continue; 1414 ptent = ptep_get_and_clear_full(mm, addr, pte, 1415 tlb->fullmm); 1416 tlb_remove_tlb_entry(tlb, pte, addr); 1417 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1418 ptent); 1419 if (unlikely(!page)) 1420 continue; 1421 1422 delay_rmap = 0; 1423 if (!PageAnon(page)) { 1424 if (pte_dirty(ptent)) { 1425 set_page_dirty(page); 1426 if (tlb_delay_rmap(tlb)) { 1427 delay_rmap = 1; 1428 force_flush = 1; 1429 } 1430 } 1431 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1432 mark_page_accessed(page); 1433 } 1434 rss[mm_counter(page)]--; 1435 if (!delay_rmap) { 1436 page_remove_rmap(page, vma, false); 1437 if (unlikely(page_mapcount(page) < 0)) 1438 print_bad_pte(vma, addr, ptent, page); 1439 } 1440 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1441 force_flush = 1; 1442 addr += PAGE_SIZE; 1443 break; 1444 } 1445 continue; 1446 } 1447 1448 entry = pte_to_swp_entry(ptent); 1449 if (is_device_private_entry(entry) || 1450 is_device_exclusive_entry(entry)) { 1451 page = pfn_swap_entry_to_page(entry); 1452 if (unlikely(!should_zap_page(details, page))) 1453 continue; 1454 /* 1455 * Both device private/exclusive mappings should only 1456 * work with anonymous page so far, so we don't need to 1457 * consider uffd-wp bit when zap. For more information, 1458 * see zap_install_uffd_wp_if_needed(). 1459 */ 1460 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1461 rss[mm_counter(page)]--; 1462 if (is_device_private_entry(entry)) 1463 page_remove_rmap(page, vma, false); 1464 put_page(page); 1465 } else if (!non_swap_entry(entry)) { 1466 /* Genuine swap entry, hence a private anon page */ 1467 if (!should_zap_cows(details)) 1468 continue; 1469 rss[MM_SWAPENTS]--; 1470 if (unlikely(!free_swap_and_cache(entry))) 1471 print_bad_pte(vma, addr, ptent, NULL); 1472 } else if (is_migration_entry(entry)) { 1473 page = pfn_swap_entry_to_page(entry); 1474 if (!should_zap_page(details, page)) 1475 continue; 1476 rss[mm_counter(page)]--; 1477 } else if (pte_marker_entry_uffd_wp(entry)) { 1478 /* 1479 * For anon: always drop the marker; for file: only 1480 * drop the marker if explicitly requested. 1481 */ 1482 if (!vma_is_anonymous(vma) && 1483 !zap_drop_file_uffd_wp(details)) 1484 continue; 1485 } else if (is_hwpoison_entry(entry) || 1486 is_swapin_error_entry(entry)) { 1487 if (!should_zap_cows(details)) 1488 continue; 1489 } else { 1490 /* We should have covered all the swap entry types */ 1491 WARN_ON_ONCE(1); 1492 } 1493 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1494 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1495 } while (pte++, addr += PAGE_SIZE, addr != end); 1496 1497 add_mm_rss_vec(mm, rss); 1498 arch_leave_lazy_mmu_mode(); 1499 1500 /* Do the actual TLB flush before dropping ptl */ 1501 if (force_flush) { 1502 tlb_flush_mmu_tlbonly(tlb); 1503 tlb_flush_rmaps(tlb, vma); 1504 } 1505 pte_unmap_unlock(start_pte, ptl); 1506 1507 /* 1508 * If we forced a TLB flush (either due to running out of 1509 * batch buffers or because we needed to flush dirty TLB 1510 * entries before releasing the ptl), free the batched 1511 * memory too. Restart if we didn't do everything. 1512 */ 1513 if (force_flush) { 1514 force_flush = 0; 1515 tlb_flush_mmu(tlb); 1516 } 1517 1518 if (addr != end) { 1519 cond_resched(); 1520 goto again; 1521 } 1522 1523 return addr; 1524 } 1525 1526 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1527 struct vm_area_struct *vma, pud_t *pud, 1528 unsigned long addr, unsigned long end, 1529 struct zap_details *details) 1530 { 1531 pmd_t *pmd; 1532 unsigned long next; 1533 1534 pmd = pmd_offset(pud, addr); 1535 do { 1536 next = pmd_addr_end(addr, end); 1537 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1538 if (next - addr != HPAGE_PMD_SIZE) 1539 __split_huge_pmd(vma, pmd, addr, false, NULL); 1540 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1541 goto next; 1542 /* fall through */ 1543 } else if (details && details->single_folio && 1544 folio_test_pmd_mappable(details->single_folio) && 1545 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1546 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1547 /* 1548 * Take and drop THP pmd lock so that we cannot return 1549 * prematurely, while zap_huge_pmd() has cleared *pmd, 1550 * but not yet decremented compound_mapcount(). 1551 */ 1552 spin_unlock(ptl); 1553 } 1554 1555 /* 1556 * Here there can be other concurrent MADV_DONTNEED or 1557 * trans huge page faults running, and if the pmd is 1558 * none or trans huge it can change under us. This is 1559 * because MADV_DONTNEED holds the mmap_lock in read 1560 * mode. 1561 */ 1562 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1563 goto next; 1564 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1565 next: 1566 cond_resched(); 1567 } while (pmd++, addr = next, addr != end); 1568 1569 return addr; 1570 } 1571 1572 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1573 struct vm_area_struct *vma, p4d_t *p4d, 1574 unsigned long addr, unsigned long end, 1575 struct zap_details *details) 1576 { 1577 pud_t *pud; 1578 unsigned long next; 1579 1580 pud = pud_offset(p4d, addr); 1581 do { 1582 next = pud_addr_end(addr, end); 1583 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1584 if (next - addr != HPAGE_PUD_SIZE) { 1585 mmap_assert_locked(tlb->mm); 1586 split_huge_pud(vma, pud, addr); 1587 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1588 goto next; 1589 /* fall through */ 1590 } 1591 if (pud_none_or_clear_bad(pud)) 1592 continue; 1593 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1594 next: 1595 cond_resched(); 1596 } while (pud++, addr = next, addr != end); 1597 1598 return addr; 1599 } 1600 1601 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1602 struct vm_area_struct *vma, pgd_t *pgd, 1603 unsigned long addr, unsigned long end, 1604 struct zap_details *details) 1605 { 1606 p4d_t *p4d; 1607 unsigned long next; 1608 1609 p4d = p4d_offset(pgd, addr); 1610 do { 1611 next = p4d_addr_end(addr, end); 1612 if (p4d_none_or_clear_bad(p4d)) 1613 continue; 1614 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1615 } while (p4d++, addr = next, addr != end); 1616 1617 return addr; 1618 } 1619 1620 void unmap_page_range(struct mmu_gather *tlb, 1621 struct vm_area_struct *vma, 1622 unsigned long addr, unsigned long end, 1623 struct zap_details *details) 1624 { 1625 pgd_t *pgd; 1626 unsigned long next; 1627 1628 BUG_ON(addr >= end); 1629 tlb_start_vma(tlb, vma); 1630 pgd = pgd_offset(vma->vm_mm, addr); 1631 do { 1632 next = pgd_addr_end(addr, end); 1633 if (pgd_none_or_clear_bad(pgd)) 1634 continue; 1635 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1636 } while (pgd++, addr = next, addr != end); 1637 tlb_end_vma(tlb, vma); 1638 } 1639 1640 1641 static void unmap_single_vma(struct mmu_gather *tlb, 1642 struct vm_area_struct *vma, unsigned long start_addr, 1643 unsigned long end_addr, 1644 struct zap_details *details, bool mm_wr_locked) 1645 { 1646 unsigned long start = max(vma->vm_start, start_addr); 1647 unsigned long end; 1648 1649 if (start >= vma->vm_end) 1650 return; 1651 end = min(vma->vm_end, end_addr); 1652 if (end <= vma->vm_start) 1653 return; 1654 1655 if (vma->vm_file) 1656 uprobe_munmap(vma, start, end); 1657 1658 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1659 untrack_pfn(vma, 0, 0, mm_wr_locked); 1660 1661 if (start != end) { 1662 if (unlikely(is_vm_hugetlb_page(vma))) { 1663 /* 1664 * It is undesirable to test vma->vm_file as it 1665 * should be non-null for valid hugetlb area. 1666 * However, vm_file will be NULL in the error 1667 * cleanup path of mmap_region. When 1668 * hugetlbfs ->mmap method fails, 1669 * mmap_region() nullifies vma->vm_file 1670 * before calling this function to clean up. 1671 * Since no pte has actually been setup, it is 1672 * safe to do nothing in this case. 1673 */ 1674 if (vma->vm_file) { 1675 zap_flags_t zap_flags = details ? 1676 details->zap_flags : 0; 1677 __unmap_hugepage_range_final(tlb, vma, start, end, 1678 NULL, zap_flags); 1679 } 1680 } else 1681 unmap_page_range(tlb, vma, start, end, details); 1682 } 1683 } 1684 1685 /** 1686 * unmap_vmas - unmap a range of memory covered by a list of vma's 1687 * @tlb: address of the caller's struct mmu_gather 1688 * @mt: the maple tree 1689 * @vma: the starting vma 1690 * @start_addr: virtual address at which to start unmapping 1691 * @end_addr: virtual address at which to end unmapping 1692 * 1693 * Unmap all pages in the vma list. 1694 * 1695 * Only addresses between `start' and `end' will be unmapped. 1696 * 1697 * The VMA list must be sorted in ascending virtual address order. 1698 * 1699 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1700 * range after unmap_vmas() returns. So the only responsibility here is to 1701 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1702 * drops the lock and schedules. 1703 */ 1704 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 1705 struct vm_area_struct *vma, unsigned long start_addr, 1706 unsigned long end_addr, bool mm_wr_locked) 1707 { 1708 struct mmu_notifier_range range; 1709 struct zap_details details = { 1710 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1711 /* Careful - we need to zap private pages too! */ 1712 .even_cows = true, 1713 }; 1714 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 1715 1716 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1717 start_addr, end_addr); 1718 mmu_notifier_invalidate_range_start(&range); 1719 do { 1720 unmap_single_vma(tlb, vma, start_addr, end_addr, &details, 1721 mm_wr_locked); 1722 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL); 1723 mmu_notifier_invalidate_range_end(&range); 1724 } 1725 1726 /** 1727 * zap_page_range_single - remove user pages in a given range 1728 * @vma: vm_area_struct holding the applicable pages 1729 * @address: starting address of pages to zap 1730 * @size: number of bytes to zap 1731 * @details: details of shared cache invalidation 1732 * 1733 * The range must fit into one VMA. 1734 */ 1735 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1736 unsigned long size, struct zap_details *details) 1737 { 1738 const unsigned long end = address + size; 1739 struct mmu_notifier_range range; 1740 struct mmu_gather tlb; 1741 1742 lru_add_drain(); 1743 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1744 address, end); 1745 if (is_vm_hugetlb_page(vma)) 1746 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1747 &range.end); 1748 tlb_gather_mmu(&tlb, vma->vm_mm); 1749 update_hiwater_rss(vma->vm_mm); 1750 mmu_notifier_invalidate_range_start(&range); 1751 /* 1752 * unmap 'address-end' not 'range.start-range.end' as range 1753 * could have been expanded for hugetlb pmd sharing. 1754 */ 1755 unmap_single_vma(&tlb, vma, address, end, details, false); 1756 mmu_notifier_invalidate_range_end(&range); 1757 tlb_finish_mmu(&tlb); 1758 } 1759 1760 /** 1761 * zap_vma_ptes - remove ptes mapping the vma 1762 * @vma: vm_area_struct holding ptes to be zapped 1763 * @address: starting address of pages to zap 1764 * @size: number of bytes to zap 1765 * 1766 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1767 * 1768 * The entire address range must be fully contained within the vma. 1769 * 1770 */ 1771 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1772 unsigned long size) 1773 { 1774 if (!range_in_vma(vma, address, address + size) || 1775 !(vma->vm_flags & VM_PFNMAP)) 1776 return; 1777 1778 zap_page_range_single(vma, address, size, NULL); 1779 } 1780 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1781 1782 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1783 { 1784 pgd_t *pgd; 1785 p4d_t *p4d; 1786 pud_t *pud; 1787 pmd_t *pmd; 1788 1789 pgd = pgd_offset(mm, addr); 1790 p4d = p4d_alloc(mm, pgd, addr); 1791 if (!p4d) 1792 return NULL; 1793 pud = pud_alloc(mm, p4d, addr); 1794 if (!pud) 1795 return NULL; 1796 pmd = pmd_alloc(mm, pud, addr); 1797 if (!pmd) 1798 return NULL; 1799 1800 VM_BUG_ON(pmd_trans_huge(*pmd)); 1801 return pmd; 1802 } 1803 1804 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1805 spinlock_t **ptl) 1806 { 1807 pmd_t *pmd = walk_to_pmd(mm, addr); 1808 1809 if (!pmd) 1810 return NULL; 1811 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1812 } 1813 1814 static int validate_page_before_insert(struct page *page) 1815 { 1816 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1817 return -EINVAL; 1818 flush_dcache_page(page); 1819 return 0; 1820 } 1821 1822 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1823 unsigned long addr, struct page *page, pgprot_t prot) 1824 { 1825 if (!pte_none(*pte)) 1826 return -EBUSY; 1827 /* Ok, finally just insert the thing.. */ 1828 get_page(page); 1829 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1830 page_add_file_rmap(page, vma, false); 1831 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1832 return 0; 1833 } 1834 1835 /* 1836 * This is the old fallback for page remapping. 1837 * 1838 * For historical reasons, it only allows reserved pages. Only 1839 * old drivers should use this, and they needed to mark their 1840 * pages reserved for the old functions anyway. 1841 */ 1842 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1843 struct page *page, pgprot_t prot) 1844 { 1845 int retval; 1846 pte_t *pte; 1847 spinlock_t *ptl; 1848 1849 retval = validate_page_before_insert(page); 1850 if (retval) 1851 goto out; 1852 retval = -ENOMEM; 1853 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1854 if (!pte) 1855 goto out; 1856 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1857 pte_unmap_unlock(pte, ptl); 1858 out: 1859 return retval; 1860 } 1861 1862 #ifdef pte_index 1863 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1864 unsigned long addr, struct page *page, pgprot_t prot) 1865 { 1866 int err; 1867 1868 if (!page_count(page)) 1869 return -EINVAL; 1870 err = validate_page_before_insert(page); 1871 if (err) 1872 return err; 1873 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1874 } 1875 1876 /* insert_pages() amortizes the cost of spinlock operations 1877 * when inserting pages in a loop. Arch *must* define pte_index. 1878 */ 1879 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1880 struct page **pages, unsigned long *num, pgprot_t prot) 1881 { 1882 pmd_t *pmd = NULL; 1883 pte_t *start_pte, *pte; 1884 spinlock_t *pte_lock; 1885 struct mm_struct *const mm = vma->vm_mm; 1886 unsigned long curr_page_idx = 0; 1887 unsigned long remaining_pages_total = *num; 1888 unsigned long pages_to_write_in_pmd; 1889 int ret; 1890 more: 1891 ret = -EFAULT; 1892 pmd = walk_to_pmd(mm, addr); 1893 if (!pmd) 1894 goto out; 1895 1896 pages_to_write_in_pmd = min_t(unsigned long, 1897 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1898 1899 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1900 ret = -ENOMEM; 1901 if (pte_alloc(mm, pmd)) 1902 goto out; 1903 1904 while (pages_to_write_in_pmd) { 1905 int pte_idx = 0; 1906 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1907 1908 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1909 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1910 int err = insert_page_in_batch_locked(vma, pte, 1911 addr, pages[curr_page_idx], prot); 1912 if (unlikely(err)) { 1913 pte_unmap_unlock(start_pte, pte_lock); 1914 ret = err; 1915 remaining_pages_total -= pte_idx; 1916 goto out; 1917 } 1918 addr += PAGE_SIZE; 1919 ++curr_page_idx; 1920 } 1921 pte_unmap_unlock(start_pte, pte_lock); 1922 pages_to_write_in_pmd -= batch_size; 1923 remaining_pages_total -= batch_size; 1924 } 1925 if (remaining_pages_total) 1926 goto more; 1927 ret = 0; 1928 out: 1929 *num = remaining_pages_total; 1930 return ret; 1931 } 1932 #endif /* ifdef pte_index */ 1933 1934 /** 1935 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1936 * @vma: user vma to map to 1937 * @addr: target start user address of these pages 1938 * @pages: source kernel pages 1939 * @num: in: number of pages to map. out: number of pages that were *not* 1940 * mapped. (0 means all pages were successfully mapped). 1941 * 1942 * Preferred over vm_insert_page() when inserting multiple pages. 1943 * 1944 * In case of error, we may have mapped a subset of the provided 1945 * pages. It is the caller's responsibility to account for this case. 1946 * 1947 * The same restrictions apply as in vm_insert_page(). 1948 */ 1949 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1950 struct page **pages, unsigned long *num) 1951 { 1952 #ifdef pte_index 1953 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1954 1955 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1956 return -EFAULT; 1957 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1958 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1959 BUG_ON(vma->vm_flags & VM_PFNMAP); 1960 vm_flags_set(vma, VM_MIXEDMAP); 1961 } 1962 /* Defer page refcount checking till we're about to map that page. */ 1963 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1964 #else 1965 unsigned long idx = 0, pgcount = *num; 1966 int err = -EINVAL; 1967 1968 for (; idx < pgcount; ++idx) { 1969 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1970 if (err) 1971 break; 1972 } 1973 *num = pgcount - idx; 1974 return err; 1975 #endif /* ifdef pte_index */ 1976 } 1977 EXPORT_SYMBOL(vm_insert_pages); 1978 1979 /** 1980 * vm_insert_page - insert single page into user vma 1981 * @vma: user vma to map to 1982 * @addr: target user address of this page 1983 * @page: source kernel page 1984 * 1985 * This allows drivers to insert individual pages they've allocated 1986 * into a user vma. 1987 * 1988 * The page has to be a nice clean _individual_ kernel allocation. 1989 * If you allocate a compound page, you need to have marked it as 1990 * such (__GFP_COMP), or manually just split the page up yourself 1991 * (see split_page()). 1992 * 1993 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1994 * took an arbitrary page protection parameter. This doesn't allow 1995 * that. Your vma protection will have to be set up correctly, which 1996 * means that if you want a shared writable mapping, you'd better 1997 * ask for a shared writable mapping! 1998 * 1999 * The page does not need to be reserved. 2000 * 2001 * Usually this function is called from f_op->mmap() handler 2002 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2003 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2004 * function from other places, for example from page-fault handler. 2005 * 2006 * Return: %0 on success, negative error code otherwise. 2007 */ 2008 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2009 struct page *page) 2010 { 2011 if (addr < vma->vm_start || addr >= vma->vm_end) 2012 return -EFAULT; 2013 if (!page_count(page)) 2014 return -EINVAL; 2015 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2016 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2017 BUG_ON(vma->vm_flags & VM_PFNMAP); 2018 vm_flags_set(vma, VM_MIXEDMAP); 2019 } 2020 return insert_page(vma, addr, page, vma->vm_page_prot); 2021 } 2022 EXPORT_SYMBOL(vm_insert_page); 2023 2024 /* 2025 * __vm_map_pages - maps range of kernel pages into user vma 2026 * @vma: user vma to map to 2027 * @pages: pointer to array of source kernel pages 2028 * @num: number of pages in page array 2029 * @offset: user's requested vm_pgoff 2030 * 2031 * This allows drivers to map range of kernel pages into a user vma. 2032 * 2033 * Return: 0 on success and error code otherwise. 2034 */ 2035 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2036 unsigned long num, unsigned long offset) 2037 { 2038 unsigned long count = vma_pages(vma); 2039 unsigned long uaddr = vma->vm_start; 2040 int ret, i; 2041 2042 /* Fail if the user requested offset is beyond the end of the object */ 2043 if (offset >= num) 2044 return -ENXIO; 2045 2046 /* Fail if the user requested size exceeds available object size */ 2047 if (count > num - offset) 2048 return -ENXIO; 2049 2050 for (i = 0; i < count; i++) { 2051 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2052 if (ret < 0) 2053 return ret; 2054 uaddr += PAGE_SIZE; 2055 } 2056 2057 return 0; 2058 } 2059 2060 /** 2061 * vm_map_pages - maps range of kernel pages starts with non zero offset 2062 * @vma: user vma to map to 2063 * @pages: pointer to array of source kernel pages 2064 * @num: number of pages in page array 2065 * 2066 * Maps an object consisting of @num pages, catering for the user's 2067 * requested vm_pgoff 2068 * 2069 * If we fail to insert any page into the vma, the function will return 2070 * immediately leaving any previously inserted pages present. Callers 2071 * from the mmap handler may immediately return the error as their caller 2072 * will destroy the vma, removing any successfully inserted pages. Other 2073 * callers should make their own arrangements for calling unmap_region(). 2074 * 2075 * Context: Process context. Called by mmap handlers. 2076 * Return: 0 on success and error code otherwise. 2077 */ 2078 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2079 unsigned long num) 2080 { 2081 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2082 } 2083 EXPORT_SYMBOL(vm_map_pages); 2084 2085 /** 2086 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2087 * @vma: user vma to map to 2088 * @pages: pointer to array of source kernel pages 2089 * @num: number of pages in page array 2090 * 2091 * Similar to vm_map_pages(), except that it explicitly sets the offset 2092 * to 0. This function is intended for the drivers that did not consider 2093 * vm_pgoff. 2094 * 2095 * Context: Process context. Called by mmap handlers. 2096 * Return: 0 on success and error code otherwise. 2097 */ 2098 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2099 unsigned long num) 2100 { 2101 return __vm_map_pages(vma, pages, num, 0); 2102 } 2103 EXPORT_SYMBOL(vm_map_pages_zero); 2104 2105 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2106 pfn_t pfn, pgprot_t prot, bool mkwrite) 2107 { 2108 struct mm_struct *mm = vma->vm_mm; 2109 pte_t *pte, entry; 2110 spinlock_t *ptl; 2111 2112 pte = get_locked_pte(mm, addr, &ptl); 2113 if (!pte) 2114 return VM_FAULT_OOM; 2115 if (!pte_none(*pte)) { 2116 if (mkwrite) { 2117 /* 2118 * For read faults on private mappings the PFN passed 2119 * in may not match the PFN we have mapped if the 2120 * mapped PFN is a writeable COW page. In the mkwrite 2121 * case we are creating a writable PTE for a shared 2122 * mapping and we expect the PFNs to match. If they 2123 * don't match, we are likely racing with block 2124 * allocation and mapping invalidation so just skip the 2125 * update. 2126 */ 2127 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 2128 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 2129 goto out_unlock; 2130 } 2131 entry = pte_mkyoung(*pte); 2132 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2133 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2134 update_mmu_cache(vma, addr, pte); 2135 } 2136 goto out_unlock; 2137 } 2138 2139 /* Ok, finally just insert the thing.. */ 2140 if (pfn_t_devmap(pfn)) 2141 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2142 else 2143 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2144 2145 if (mkwrite) { 2146 entry = pte_mkyoung(entry); 2147 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2148 } 2149 2150 set_pte_at(mm, addr, pte, entry); 2151 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2152 2153 out_unlock: 2154 pte_unmap_unlock(pte, ptl); 2155 return VM_FAULT_NOPAGE; 2156 } 2157 2158 /** 2159 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2160 * @vma: user vma to map to 2161 * @addr: target user address of this page 2162 * @pfn: source kernel pfn 2163 * @pgprot: pgprot flags for the inserted page 2164 * 2165 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2166 * to override pgprot on a per-page basis. 2167 * 2168 * This only makes sense for IO mappings, and it makes no sense for 2169 * COW mappings. In general, using multiple vmas is preferable; 2170 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2171 * impractical. 2172 * 2173 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2174 * caching- and encryption bits different than those of @vma->vm_page_prot, 2175 * because the caching- or encryption mode may not be known at mmap() time. 2176 * 2177 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2178 * to set caching and encryption bits for those vmas (except for COW pages). 2179 * This is ensured by core vm only modifying these page table entries using 2180 * functions that don't touch caching- or encryption bits, using pte_modify() 2181 * if needed. (See for example mprotect()). 2182 * 2183 * Also when new page-table entries are created, this is only done using the 2184 * fault() callback, and never using the value of vma->vm_page_prot, 2185 * except for page-table entries that point to anonymous pages as the result 2186 * of COW. 2187 * 2188 * Context: Process context. May allocate using %GFP_KERNEL. 2189 * Return: vm_fault_t value. 2190 */ 2191 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2192 unsigned long pfn, pgprot_t pgprot) 2193 { 2194 /* 2195 * Technically, architectures with pte_special can avoid all these 2196 * restrictions (same for remap_pfn_range). However we would like 2197 * consistency in testing and feature parity among all, so we should 2198 * try to keep these invariants in place for everybody. 2199 */ 2200 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2201 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2202 (VM_PFNMAP|VM_MIXEDMAP)); 2203 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2204 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2205 2206 if (addr < vma->vm_start || addr >= vma->vm_end) 2207 return VM_FAULT_SIGBUS; 2208 2209 if (!pfn_modify_allowed(pfn, pgprot)) 2210 return VM_FAULT_SIGBUS; 2211 2212 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2213 2214 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2215 false); 2216 } 2217 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2218 2219 /** 2220 * vmf_insert_pfn - insert single pfn into user vma 2221 * @vma: user vma to map to 2222 * @addr: target user address of this page 2223 * @pfn: source kernel pfn 2224 * 2225 * Similar to vm_insert_page, this allows drivers to insert individual pages 2226 * they've allocated into a user vma. Same comments apply. 2227 * 2228 * This function should only be called from a vm_ops->fault handler, and 2229 * in that case the handler should return the result of this function. 2230 * 2231 * vma cannot be a COW mapping. 2232 * 2233 * As this is called only for pages that do not currently exist, we 2234 * do not need to flush old virtual caches or the TLB. 2235 * 2236 * Context: Process context. May allocate using %GFP_KERNEL. 2237 * Return: vm_fault_t value. 2238 */ 2239 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2240 unsigned long pfn) 2241 { 2242 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2243 } 2244 EXPORT_SYMBOL(vmf_insert_pfn); 2245 2246 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2247 { 2248 /* these checks mirror the abort conditions in vm_normal_page */ 2249 if (vma->vm_flags & VM_MIXEDMAP) 2250 return true; 2251 if (pfn_t_devmap(pfn)) 2252 return true; 2253 if (pfn_t_special(pfn)) 2254 return true; 2255 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2256 return true; 2257 return false; 2258 } 2259 2260 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2261 unsigned long addr, pfn_t pfn, bool mkwrite) 2262 { 2263 pgprot_t pgprot = vma->vm_page_prot; 2264 int err; 2265 2266 BUG_ON(!vm_mixed_ok(vma, pfn)); 2267 2268 if (addr < vma->vm_start || addr >= vma->vm_end) 2269 return VM_FAULT_SIGBUS; 2270 2271 track_pfn_insert(vma, &pgprot, pfn); 2272 2273 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2274 return VM_FAULT_SIGBUS; 2275 2276 /* 2277 * If we don't have pte special, then we have to use the pfn_valid() 2278 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2279 * refcount the page if pfn_valid is true (hence insert_page rather 2280 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2281 * without pte special, it would there be refcounted as a normal page. 2282 */ 2283 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2284 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2285 struct page *page; 2286 2287 /* 2288 * At this point we are committed to insert_page() 2289 * regardless of whether the caller specified flags that 2290 * result in pfn_t_has_page() == false. 2291 */ 2292 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2293 err = insert_page(vma, addr, page, pgprot); 2294 } else { 2295 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2296 } 2297 2298 if (err == -ENOMEM) 2299 return VM_FAULT_OOM; 2300 if (err < 0 && err != -EBUSY) 2301 return VM_FAULT_SIGBUS; 2302 2303 return VM_FAULT_NOPAGE; 2304 } 2305 2306 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2307 pfn_t pfn) 2308 { 2309 return __vm_insert_mixed(vma, addr, pfn, false); 2310 } 2311 EXPORT_SYMBOL(vmf_insert_mixed); 2312 2313 /* 2314 * If the insertion of PTE failed because someone else already added a 2315 * different entry in the mean time, we treat that as success as we assume 2316 * the same entry was actually inserted. 2317 */ 2318 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2319 unsigned long addr, pfn_t pfn) 2320 { 2321 return __vm_insert_mixed(vma, addr, pfn, true); 2322 } 2323 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2324 2325 /* 2326 * maps a range of physical memory into the requested pages. the old 2327 * mappings are removed. any references to nonexistent pages results 2328 * in null mappings (currently treated as "copy-on-access") 2329 */ 2330 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2331 unsigned long addr, unsigned long end, 2332 unsigned long pfn, pgprot_t prot) 2333 { 2334 pte_t *pte, *mapped_pte; 2335 spinlock_t *ptl; 2336 int err = 0; 2337 2338 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2339 if (!pte) 2340 return -ENOMEM; 2341 arch_enter_lazy_mmu_mode(); 2342 do { 2343 BUG_ON(!pte_none(*pte)); 2344 if (!pfn_modify_allowed(pfn, prot)) { 2345 err = -EACCES; 2346 break; 2347 } 2348 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2349 pfn++; 2350 } while (pte++, addr += PAGE_SIZE, addr != end); 2351 arch_leave_lazy_mmu_mode(); 2352 pte_unmap_unlock(mapped_pte, ptl); 2353 return err; 2354 } 2355 2356 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2357 unsigned long addr, unsigned long end, 2358 unsigned long pfn, pgprot_t prot) 2359 { 2360 pmd_t *pmd; 2361 unsigned long next; 2362 int err; 2363 2364 pfn -= addr >> PAGE_SHIFT; 2365 pmd = pmd_alloc(mm, pud, addr); 2366 if (!pmd) 2367 return -ENOMEM; 2368 VM_BUG_ON(pmd_trans_huge(*pmd)); 2369 do { 2370 next = pmd_addr_end(addr, end); 2371 err = remap_pte_range(mm, pmd, addr, next, 2372 pfn + (addr >> PAGE_SHIFT), prot); 2373 if (err) 2374 return err; 2375 } while (pmd++, addr = next, addr != end); 2376 return 0; 2377 } 2378 2379 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2380 unsigned long addr, unsigned long end, 2381 unsigned long pfn, pgprot_t prot) 2382 { 2383 pud_t *pud; 2384 unsigned long next; 2385 int err; 2386 2387 pfn -= addr >> PAGE_SHIFT; 2388 pud = pud_alloc(mm, p4d, addr); 2389 if (!pud) 2390 return -ENOMEM; 2391 do { 2392 next = pud_addr_end(addr, end); 2393 err = remap_pmd_range(mm, pud, addr, next, 2394 pfn + (addr >> PAGE_SHIFT), prot); 2395 if (err) 2396 return err; 2397 } while (pud++, addr = next, addr != end); 2398 return 0; 2399 } 2400 2401 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2402 unsigned long addr, unsigned long end, 2403 unsigned long pfn, pgprot_t prot) 2404 { 2405 p4d_t *p4d; 2406 unsigned long next; 2407 int err; 2408 2409 pfn -= addr >> PAGE_SHIFT; 2410 p4d = p4d_alloc(mm, pgd, addr); 2411 if (!p4d) 2412 return -ENOMEM; 2413 do { 2414 next = p4d_addr_end(addr, end); 2415 err = remap_pud_range(mm, p4d, addr, next, 2416 pfn + (addr >> PAGE_SHIFT), prot); 2417 if (err) 2418 return err; 2419 } while (p4d++, addr = next, addr != end); 2420 return 0; 2421 } 2422 2423 /* 2424 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2425 * must have pre-validated the caching bits of the pgprot_t. 2426 */ 2427 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2428 unsigned long pfn, unsigned long size, pgprot_t prot) 2429 { 2430 pgd_t *pgd; 2431 unsigned long next; 2432 unsigned long end = addr + PAGE_ALIGN(size); 2433 struct mm_struct *mm = vma->vm_mm; 2434 int err; 2435 2436 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2437 return -EINVAL; 2438 2439 /* 2440 * Physically remapped pages are special. Tell the 2441 * rest of the world about it: 2442 * VM_IO tells people not to look at these pages 2443 * (accesses can have side effects). 2444 * VM_PFNMAP tells the core MM that the base pages are just 2445 * raw PFN mappings, and do not have a "struct page" associated 2446 * with them. 2447 * VM_DONTEXPAND 2448 * Disable vma merging and expanding with mremap(). 2449 * VM_DONTDUMP 2450 * Omit vma from core dump, even when VM_IO turned off. 2451 * 2452 * There's a horrible special case to handle copy-on-write 2453 * behaviour that some programs depend on. We mark the "original" 2454 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2455 * See vm_normal_page() for details. 2456 */ 2457 if (is_cow_mapping(vma->vm_flags)) { 2458 if (addr != vma->vm_start || end != vma->vm_end) 2459 return -EINVAL; 2460 vma->vm_pgoff = pfn; 2461 } 2462 2463 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2464 2465 BUG_ON(addr >= end); 2466 pfn -= addr >> PAGE_SHIFT; 2467 pgd = pgd_offset(mm, addr); 2468 flush_cache_range(vma, addr, end); 2469 do { 2470 next = pgd_addr_end(addr, end); 2471 err = remap_p4d_range(mm, pgd, addr, next, 2472 pfn + (addr >> PAGE_SHIFT), prot); 2473 if (err) 2474 return err; 2475 } while (pgd++, addr = next, addr != end); 2476 2477 return 0; 2478 } 2479 2480 /** 2481 * remap_pfn_range - remap kernel memory to userspace 2482 * @vma: user vma to map to 2483 * @addr: target page aligned user address to start at 2484 * @pfn: page frame number of kernel physical memory address 2485 * @size: size of mapping area 2486 * @prot: page protection flags for this mapping 2487 * 2488 * Note: this is only safe if the mm semaphore is held when called. 2489 * 2490 * Return: %0 on success, negative error code otherwise. 2491 */ 2492 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2493 unsigned long pfn, unsigned long size, pgprot_t prot) 2494 { 2495 int err; 2496 2497 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2498 if (err) 2499 return -EINVAL; 2500 2501 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2502 if (err) 2503 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2504 return err; 2505 } 2506 EXPORT_SYMBOL(remap_pfn_range); 2507 2508 /** 2509 * vm_iomap_memory - remap memory to userspace 2510 * @vma: user vma to map to 2511 * @start: start of the physical memory to be mapped 2512 * @len: size of area 2513 * 2514 * This is a simplified io_remap_pfn_range() for common driver use. The 2515 * driver just needs to give us the physical memory range to be mapped, 2516 * we'll figure out the rest from the vma information. 2517 * 2518 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2519 * whatever write-combining details or similar. 2520 * 2521 * Return: %0 on success, negative error code otherwise. 2522 */ 2523 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2524 { 2525 unsigned long vm_len, pfn, pages; 2526 2527 /* Check that the physical memory area passed in looks valid */ 2528 if (start + len < start) 2529 return -EINVAL; 2530 /* 2531 * You *really* shouldn't map things that aren't page-aligned, 2532 * but we've historically allowed it because IO memory might 2533 * just have smaller alignment. 2534 */ 2535 len += start & ~PAGE_MASK; 2536 pfn = start >> PAGE_SHIFT; 2537 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2538 if (pfn + pages < pfn) 2539 return -EINVAL; 2540 2541 /* We start the mapping 'vm_pgoff' pages into the area */ 2542 if (vma->vm_pgoff > pages) 2543 return -EINVAL; 2544 pfn += vma->vm_pgoff; 2545 pages -= vma->vm_pgoff; 2546 2547 /* Can we fit all of the mapping? */ 2548 vm_len = vma->vm_end - vma->vm_start; 2549 if (vm_len >> PAGE_SHIFT > pages) 2550 return -EINVAL; 2551 2552 /* Ok, let it rip */ 2553 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2554 } 2555 EXPORT_SYMBOL(vm_iomap_memory); 2556 2557 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2558 unsigned long addr, unsigned long end, 2559 pte_fn_t fn, void *data, bool create, 2560 pgtbl_mod_mask *mask) 2561 { 2562 pte_t *pte, *mapped_pte; 2563 int err = 0; 2564 spinlock_t *ptl; 2565 2566 if (create) { 2567 mapped_pte = pte = (mm == &init_mm) ? 2568 pte_alloc_kernel_track(pmd, addr, mask) : 2569 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2570 if (!pte) 2571 return -ENOMEM; 2572 } else { 2573 mapped_pte = pte = (mm == &init_mm) ? 2574 pte_offset_kernel(pmd, addr) : 2575 pte_offset_map_lock(mm, pmd, addr, &ptl); 2576 } 2577 2578 BUG_ON(pmd_huge(*pmd)); 2579 2580 arch_enter_lazy_mmu_mode(); 2581 2582 if (fn) { 2583 do { 2584 if (create || !pte_none(*pte)) { 2585 err = fn(pte++, addr, data); 2586 if (err) 2587 break; 2588 } 2589 } while (addr += PAGE_SIZE, addr != end); 2590 } 2591 *mask |= PGTBL_PTE_MODIFIED; 2592 2593 arch_leave_lazy_mmu_mode(); 2594 2595 if (mm != &init_mm) 2596 pte_unmap_unlock(mapped_pte, ptl); 2597 return err; 2598 } 2599 2600 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2601 unsigned long addr, unsigned long end, 2602 pte_fn_t fn, void *data, bool create, 2603 pgtbl_mod_mask *mask) 2604 { 2605 pmd_t *pmd; 2606 unsigned long next; 2607 int err = 0; 2608 2609 BUG_ON(pud_huge(*pud)); 2610 2611 if (create) { 2612 pmd = pmd_alloc_track(mm, pud, addr, mask); 2613 if (!pmd) 2614 return -ENOMEM; 2615 } else { 2616 pmd = pmd_offset(pud, addr); 2617 } 2618 do { 2619 next = pmd_addr_end(addr, end); 2620 if (pmd_none(*pmd) && !create) 2621 continue; 2622 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2623 return -EINVAL; 2624 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2625 if (!create) 2626 continue; 2627 pmd_clear_bad(pmd); 2628 } 2629 err = apply_to_pte_range(mm, pmd, addr, next, 2630 fn, data, create, mask); 2631 if (err) 2632 break; 2633 } while (pmd++, addr = next, addr != end); 2634 2635 return err; 2636 } 2637 2638 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2639 unsigned long addr, unsigned long end, 2640 pte_fn_t fn, void *data, bool create, 2641 pgtbl_mod_mask *mask) 2642 { 2643 pud_t *pud; 2644 unsigned long next; 2645 int err = 0; 2646 2647 if (create) { 2648 pud = pud_alloc_track(mm, p4d, addr, mask); 2649 if (!pud) 2650 return -ENOMEM; 2651 } else { 2652 pud = pud_offset(p4d, addr); 2653 } 2654 do { 2655 next = pud_addr_end(addr, end); 2656 if (pud_none(*pud) && !create) 2657 continue; 2658 if (WARN_ON_ONCE(pud_leaf(*pud))) 2659 return -EINVAL; 2660 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2661 if (!create) 2662 continue; 2663 pud_clear_bad(pud); 2664 } 2665 err = apply_to_pmd_range(mm, pud, addr, next, 2666 fn, data, create, mask); 2667 if (err) 2668 break; 2669 } while (pud++, addr = next, addr != end); 2670 2671 return err; 2672 } 2673 2674 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2675 unsigned long addr, unsigned long end, 2676 pte_fn_t fn, void *data, bool create, 2677 pgtbl_mod_mask *mask) 2678 { 2679 p4d_t *p4d; 2680 unsigned long next; 2681 int err = 0; 2682 2683 if (create) { 2684 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2685 if (!p4d) 2686 return -ENOMEM; 2687 } else { 2688 p4d = p4d_offset(pgd, addr); 2689 } 2690 do { 2691 next = p4d_addr_end(addr, end); 2692 if (p4d_none(*p4d) && !create) 2693 continue; 2694 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2695 return -EINVAL; 2696 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2697 if (!create) 2698 continue; 2699 p4d_clear_bad(p4d); 2700 } 2701 err = apply_to_pud_range(mm, p4d, addr, next, 2702 fn, data, create, mask); 2703 if (err) 2704 break; 2705 } while (p4d++, addr = next, addr != end); 2706 2707 return err; 2708 } 2709 2710 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2711 unsigned long size, pte_fn_t fn, 2712 void *data, bool create) 2713 { 2714 pgd_t *pgd; 2715 unsigned long start = addr, next; 2716 unsigned long end = addr + size; 2717 pgtbl_mod_mask mask = 0; 2718 int err = 0; 2719 2720 if (WARN_ON(addr >= end)) 2721 return -EINVAL; 2722 2723 pgd = pgd_offset(mm, addr); 2724 do { 2725 next = pgd_addr_end(addr, end); 2726 if (pgd_none(*pgd) && !create) 2727 continue; 2728 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2729 return -EINVAL; 2730 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2731 if (!create) 2732 continue; 2733 pgd_clear_bad(pgd); 2734 } 2735 err = apply_to_p4d_range(mm, pgd, addr, next, 2736 fn, data, create, &mask); 2737 if (err) 2738 break; 2739 } while (pgd++, addr = next, addr != end); 2740 2741 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2742 arch_sync_kernel_mappings(start, start + size); 2743 2744 return err; 2745 } 2746 2747 /* 2748 * Scan a region of virtual memory, filling in page tables as necessary 2749 * and calling a provided function on each leaf page table. 2750 */ 2751 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2752 unsigned long size, pte_fn_t fn, void *data) 2753 { 2754 return __apply_to_page_range(mm, addr, size, fn, data, true); 2755 } 2756 EXPORT_SYMBOL_GPL(apply_to_page_range); 2757 2758 /* 2759 * Scan a region of virtual memory, calling a provided function on 2760 * each leaf page table where it exists. 2761 * 2762 * Unlike apply_to_page_range, this does _not_ fill in page tables 2763 * where they are absent. 2764 */ 2765 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2766 unsigned long size, pte_fn_t fn, void *data) 2767 { 2768 return __apply_to_page_range(mm, addr, size, fn, data, false); 2769 } 2770 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2771 2772 /* 2773 * handle_pte_fault chooses page fault handler according to an entry which was 2774 * read non-atomically. Before making any commitment, on those architectures 2775 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2776 * parts, do_swap_page must check under lock before unmapping the pte and 2777 * proceeding (but do_wp_page is only called after already making such a check; 2778 * and do_anonymous_page can safely check later on). 2779 */ 2780 static inline int pte_unmap_same(struct vm_fault *vmf) 2781 { 2782 int same = 1; 2783 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2784 if (sizeof(pte_t) > sizeof(unsigned long)) { 2785 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 2786 spin_lock(ptl); 2787 same = pte_same(*vmf->pte, vmf->orig_pte); 2788 spin_unlock(ptl); 2789 } 2790 #endif 2791 pte_unmap(vmf->pte); 2792 vmf->pte = NULL; 2793 return same; 2794 } 2795 2796 /* 2797 * Return: 2798 * 0: copied succeeded 2799 * -EHWPOISON: copy failed due to hwpoison in source page 2800 * -EAGAIN: copied failed (some other reason) 2801 */ 2802 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2803 struct vm_fault *vmf) 2804 { 2805 int ret; 2806 void *kaddr; 2807 void __user *uaddr; 2808 bool locked = false; 2809 struct vm_area_struct *vma = vmf->vma; 2810 struct mm_struct *mm = vma->vm_mm; 2811 unsigned long addr = vmf->address; 2812 2813 if (likely(src)) { 2814 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2815 memory_failure_queue(page_to_pfn(src), 0); 2816 return -EHWPOISON; 2817 } 2818 return 0; 2819 } 2820 2821 /* 2822 * If the source page was a PFN mapping, we don't have 2823 * a "struct page" for it. We do a best-effort copy by 2824 * just copying from the original user address. If that 2825 * fails, we just zero-fill it. Live with it. 2826 */ 2827 kaddr = kmap_atomic(dst); 2828 uaddr = (void __user *)(addr & PAGE_MASK); 2829 2830 /* 2831 * On architectures with software "accessed" bits, we would 2832 * take a double page fault, so mark it accessed here. 2833 */ 2834 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2835 pte_t entry; 2836 2837 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2838 locked = true; 2839 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2840 /* 2841 * Other thread has already handled the fault 2842 * and update local tlb only 2843 */ 2844 update_mmu_tlb(vma, addr, vmf->pte); 2845 ret = -EAGAIN; 2846 goto pte_unlock; 2847 } 2848 2849 entry = pte_mkyoung(vmf->orig_pte); 2850 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2851 update_mmu_cache(vma, addr, vmf->pte); 2852 } 2853 2854 /* 2855 * This really shouldn't fail, because the page is there 2856 * in the page tables. But it might just be unreadable, 2857 * in which case we just give up and fill the result with 2858 * zeroes. 2859 */ 2860 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2861 if (locked) 2862 goto warn; 2863 2864 /* Re-validate under PTL if the page is still mapped */ 2865 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2866 locked = true; 2867 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2868 /* The PTE changed under us, update local tlb */ 2869 update_mmu_tlb(vma, addr, vmf->pte); 2870 ret = -EAGAIN; 2871 goto pte_unlock; 2872 } 2873 2874 /* 2875 * The same page can be mapped back since last copy attempt. 2876 * Try to copy again under PTL. 2877 */ 2878 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2879 /* 2880 * Give a warn in case there can be some obscure 2881 * use-case 2882 */ 2883 warn: 2884 WARN_ON_ONCE(1); 2885 clear_page(kaddr); 2886 } 2887 } 2888 2889 ret = 0; 2890 2891 pte_unlock: 2892 if (locked) 2893 pte_unmap_unlock(vmf->pte, vmf->ptl); 2894 kunmap_atomic(kaddr); 2895 flush_dcache_page(dst); 2896 2897 return ret; 2898 } 2899 2900 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2901 { 2902 struct file *vm_file = vma->vm_file; 2903 2904 if (vm_file) 2905 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2906 2907 /* 2908 * Special mappings (e.g. VDSO) do not have any file so fake 2909 * a default GFP_KERNEL for them. 2910 */ 2911 return GFP_KERNEL; 2912 } 2913 2914 /* 2915 * Notify the address space that the page is about to become writable so that 2916 * it can prohibit this or wait for the page to get into an appropriate state. 2917 * 2918 * We do this without the lock held, so that it can sleep if it needs to. 2919 */ 2920 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2921 { 2922 vm_fault_t ret; 2923 struct page *page = vmf->page; 2924 unsigned int old_flags = vmf->flags; 2925 2926 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2927 2928 if (vmf->vma->vm_file && 2929 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2930 return VM_FAULT_SIGBUS; 2931 2932 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2933 /* Restore original flags so that caller is not surprised */ 2934 vmf->flags = old_flags; 2935 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2936 return ret; 2937 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2938 lock_page(page); 2939 if (!page->mapping) { 2940 unlock_page(page); 2941 return 0; /* retry */ 2942 } 2943 ret |= VM_FAULT_LOCKED; 2944 } else 2945 VM_BUG_ON_PAGE(!PageLocked(page), page); 2946 return ret; 2947 } 2948 2949 /* 2950 * Handle dirtying of a page in shared file mapping on a write fault. 2951 * 2952 * The function expects the page to be locked and unlocks it. 2953 */ 2954 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2955 { 2956 struct vm_area_struct *vma = vmf->vma; 2957 struct address_space *mapping; 2958 struct page *page = vmf->page; 2959 bool dirtied; 2960 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2961 2962 dirtied = set_page_dirty(page); 2963 VM_BUG_ON_PAGE(PageAnon(page), page); 2964 /* 2965 * Take a local copy of the address_space - page.mapping may be zeroed 2966 * by truncate after unlock_page(). The address_space itself remains 2967 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2968 * release semantics to prevent the compiler from undoing this copying. 2969 */ 2970 mapping = page_rmapping(page); 2971 unlock_page(page); 2972 2973 if (!page_mkwrite) 2974 file_update_time(vma->vm_file); 2975 2976 /* 2977 * Throttle page dirtying rate down to writeback speed. 2978 * 2979 * mapping may be NULL here because some device drivers do not 2980 * set page.mapping but still dirty their pages 2981 * 2982 * Drop the mmap_lock before waiting on IO, if we can. The file 2983 * is pinning the mapping, as per above. 2984 */ 2985 if ((dirtied || page_mkwrite) && mapping) { 2986 struct file *fpin; 2987 2988 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2989 balance_dirty_pages_ratelimited(mapping); 2990 if (fpin) { 2991 fput(fpin); 2992 return VM_FAULT_COMPLETED; 2993 } 2994 } 2995 2996 return 0; 2997 } 2998 2999 /* 3000 * Handle write page faults for pages that can be reused in the current vma 3001 * 3002 * This can happen either due to the mapping being with the VM_SHARED flag, 3003 * or due to us being the last reference standing to the page. In either 3004 * case, all we need to do here is to mark the page as writable and update 3005 * any related book-keeping. 3006 */ 3007 static inline void wp_page_reuse(struct vm_fault *vmf) 3008 __releases(vmf->ptl) 3009 { 3010 struct vm_area_struct *vma = vmf->vma; 3011 struct page *page = vmf->page; 3012 pte_t entry; 3013 3014 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3015 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3016 3017 /* 3018 * Clear the pages cpupid information as the existing 3019 * information potentially belongs to a now completely 3020 * unrelated process. 3021 */ 3022 if (page) 3023 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3024 3025 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3026 entry = pte_mkyoung(vmf->orig_pte); 3027 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3028 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3029 update_mmu_cache(vma, vmf->address, vmf->pte); 3030 pte_unmap_unlock(vmf->pte, vmf->ptl); 3031 count_vm_event(PGREUSE); 3032 } 3033 3034 /* 3035 * Handle the case of a page which we actually need to copy to a new page, 3036 * either due to COW or unsharing. 3037 * 3038 * Called with mmap_lock locked and the old page referenced, but 3039 * without the ptl held. 3040 * 3041 * High level logic flow: 3042 * 3043 * - Allocate a page, copy the content of the old page to the new one. 3044 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3045 * - Take the PTL. If the pte changed, bail out and release the allocated page 3046 * - If the pte is still the way we remember it, update the page table and all 3047 * relevant references. This includes dropping the reference the page-table 3048 * held to the old page, as well as updating the rmap. 3049 * - In any case, unlock the PTL and drop the reference we took to the old page. 3050 */ 3051 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3052 { 3053 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3054 struct vm_area_struct *vma = vmf->vma; 3055 struct mm_struct *mm = vma->vm_mm; 3056 struct folio *old_folio = NULL; 3057 struct folio *new_folio = NULL; 3058 pte_t entry; 3059 int page_copied = 0; 3060 struct mmu_notifier_range range; 3061 int ret; 3062 3063 delayacct_wpcopy_start(); 3064 3065 if (vmf->page) 3066 old_folio = page_folio(vmf->page); 3067 if (unlikely(anon_vma_prepare(vma))) 3068 goto oom; 3069 3070 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3071 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 3072 if (!new_folio) 3073 goto oom; 3074 } else { 3075 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 3076 vmf->address, false); 3077 if (!new_folio) 3078 goto oom; 3079 3080 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3081 if (ret) { 3082 /* 3083 * COW failed, if the fault was solved by other, 3084 * it's fine. If not, userspace would re-fault on 3085 * the same address and we will handle the fault 3086 * from the second attempt. 3087 * The -EHWPOISON case will not be retried. 3088 */ 3089 folio_put(new_folio); 3090 if (old_folio) 3091 folio_put(old_folio); 3092 3093 delayacct_wpcopy_end(); 3094 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3095 } 3096 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3097 } 3098 3099 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) 3100 goto oom_free_new; 3101 folio_throttle_swaprate(new_folio, GFP_KERNEL); 3102 3103 __folio_mark_uptodate(new_folio); 3104 3105 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3106 vmf->address & PAGE_MASK, 3107 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3108 mmu_notifier_invalidate_range_start(&range); 3109 3110 /* 3111 * Re-check the pte - we dropped the lock 3112 */ 3113 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3114 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3115 if (old_folio) { 3116 if (!folio_test_anon(old_folio)) { 3117 dec_mm_counter(mm, mm_counter_file(&old_folio->page)); 3118 inc_mm_counter(mm, MM_ANONPAGES); 3119 } 3120 } else { 3121 inc_mm_counter(mm, MM_ANONPAGES); 3122 } 3123 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3124 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3125 entry = pte_sw_mkyoung(entry); 3126 if (unlikely(unshare)) { 3127 if (pte_soft_dirty(vmf->orig_pte)) 3128 entry = pte_mksoft_dirty(entry); 3129 if (pte_uffd_wp(vmf->orig_pte)) 3130 entry = pte_mkuffd_wp(entry); 3131 } else { 3132 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3133 } 3134 3135 /* 3136 * Clear the pte entry and flush it first, before updating the 3137 * pte with the new entry, to keep TLBs on different CPUs in 3138 * sync. This code used to set the new PTE then flush TLBs, but 3139 * that left a window where the new PTE could be loaded into 3140 * some TLBs while the old PTE remains in others. 3141 */ 3142 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3143 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3144 folio_add_lru_vma(new_folio, vma); 3145 /* 3146 * We call the notify macro here because, when using secondary 3147 * mmu page tables (such as kvm shadow page tables), we want the 3148 * new page to be mapped directly into the secondary page table. 3149 */ 3150 BUG_ON(unshare && pte_write(entry)); 3151 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3152 update_mmu_cache(vma, vmf->address, vmf->pte); 3153 if (old_folio) { 3154 /* 3155 * Only after switching the pte to the new page may 3156 * we remove the mapcount here. Otherwise another 3157 * process may come and find the rmap count decremented 3158 * before the pte is switched to the new page, and 3159 * "reuse" the old page writing into it while our pte 3160 * here still points into it and can be read by other 3161 * threads. 3162 * 3163 * The critical issue is to order this 3164 * page_remove_rmap with the ptp_clear_flush above. 3165 * Those stores are ordered by (if nothing else,) 3166 * the barrier present in the atomic_add_negative 3167 * in page_remove_rmap. 3168 * 3169 * Then the TLB flush in ptep_clear_flush ensures that 3170 * no process can access the old page before the 3171 * decremented mapcount is visible. And the old page 3172 * cannot be reused until after the decremented 3173 * mapcount is visible. So transitively, TLBs to 3174 * old page will be flushed before it can be reused. 3175 */ 3176 page_remove_rmap(vmf->page, vma, false); 3177 } 3178 3179 /* Free the old page.. */ 3180 new_folio = old_folio; 3181 page_copied = 1; 3182 } else { 3183 update_mmu_tlb(vma, vmf->address, vmf->pte); 3184 } 3185 3186 if (new_folio) 3187 folio_put(new_folio); 3188 3189 pte_unmap_unlock(vmf->pte, vmf->ptl); 3190 /* 3191 * No need to double call mmu_notifier->invalidate_range() callback as 3192 * the above ptep_clear_flush_notify() did already call it. 3193 */ 3194 mmu_notifier_invalidate_range_only_end(&range); 3195 if (old_folio) { 3196 if (page_copied) 3197 free_swap_cache(&old_folio->page); 3198 folio_put(old_folio); 3199 } 3200 3201 delayacct_wpcopy_end(); 3202 return 0; 3203 oom_free_new: 3204 folio_put(new_folio); 3205 oom: 3206 if (old_folio) 3207 folio_put(old_folio); 3208 3209 delayacct_wpcopy_end(); 3210 return VM_FAULT_OOM; 3211 } 3212 3213 /** 3214 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3215 * writeable once the page is prepared 3216 * 3217 * @vmf: structure describing the fault 3218 * 3219 * This function handles all that is needed to finish a write page fault in a 3220 * shared mapping due to PTE being read-only once the mapped page is prepared. 3221 * It handles locking of PTE and modifying it. 3222 * 3223 * The function expects the page to be locked or other protection against 3224 * concurrent faults / writeback (such as DAX radix tree locks). 3225 * 3226 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3227 * we acquired PTE lock. 3228 */ 3229 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3230 { 3231 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3232 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3233 &vmf->ptl); 3234 /* 3235 * We might have raced with another page fault while we released the 3236 * pte_offset_map_lock. 3237 */ 3238 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3239 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3240 pte_unmap_unlock(vmf->pte, vmf->ptl); 3241 return VM_FAULT_NOPAGE; 3242 } 3243 wp_page_reuse(vmf); 3244 return 0; 3245 } 3246 3247 /* 3248 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3249 * mapping 3250 */ 3251 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3252 { 3253 struct vm_area_struct *vma = vmf->vma; 3254 3255 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3256 vm_fault_t ret; 3257 3258 pte_unmap_unlock(vmf->pte, vmf->ptl); 3259 vmf->flags |= FAULT_FLAG_MKWRITE; 3260 ret = vma->vm_ops->pfn_mkwrite(vmf); 3261 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3262 return ret; 3263 return finish_mkwrite_fault(vmf); 3264 } 3265 wp_page_reuse(vmf); 3266 return 0; 3267 } 3268 3269 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3270 __releases(vmf->ptl) 3271 { 3272 struct vm_area_struct *vma = vmf->vma; 3273 vm_fault_t ret = 0; 3274 3275 get_page(vmf->page); 3276 3277 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3278 vm_fault_t tmp; 3279 3280 pte_unmap_unlock(vmf->pte, vmf->ptl); 3281 tmp = do_page_mkwrite(vmf); 3282 if (unlikely(!tmp || (tmp & 3283 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3284 put_page(vmf->page); 3285 return tmp; 3286 } 3287 tmp = finish_mkwrite_fault(vmf); 3288 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3289 unlock_page(vmf->page); 3290 put_page(vmf->page); 3291 return tmp; 3292 } 3293 } else { 3294 wp_page_reuse(vmf); 3295 lock_page(vmf->page); 3296 } 3297 ret |= fault_dirty_shared_page(vmf); 3298 put_page(vmf->page); 3299 3300 return ret; 3301 } 3302 3303 /* 3304 * This routine handles present pages, when 3305 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3306 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3307 * (FAULT_FLAG_UNSHARE) 3308 * 3309 * It is done by copying the page to a new address and decrementing the 3310 * shared-page counter for the old page. 3311 * 3312 * Note that this routine assumes that the protection checks have been 3313 * done by the caller (the low-level page fault routine in most cases). 3314 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3315 * done any necessary COW. 3316 * 3317 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3318 * though the page will change only once the write actually happens. This 3319 * avoids a few races, and potentially makes it more efficient. 3320 * 3321 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3322 * but allow concurrent faults), with pte both mapped and locked. 3323 * We return with mmap_lock still held, but pte unmapped and unlocked. 3324 */ 3325 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3326 __releases(vmf->ptl) 3327 { 3328 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3329 struct vm_area_struct *vma = vmf->vma; 3330 struct folio *folio = NULL; 3331 3332 if (likely(!unshare)) { 3333 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3334 pte_unmap_unlock(vmf->pte, vmf->ptl); 3335 return handle_userfault(vmf, VM_UFFD_WP); 3336 } 3337 3338 /* 3339 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3340 * is flushed in this case before copying. 3341 */ 3342 if (unlikely(userfaultfd_wp(vmf->vma) && 3343 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3344 flush_tlb_page(vmf->vma, vmf->address); 3345 } 3346 3347 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3348 3349 /* 3350 * Shared mapping: we are guaranteed to have VM_WRITE and 3351 * FAULT_FLAG_WRITE set at this point. 3352 */ 3353 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3354 /* 3355 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3356 * VM_PFNMAP VMA. 3357 * 3358 * We should not cow pages in a shared writeable mapping. 3359 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3360 */ 3361 if (!vmf->page) 3362 return wp_pfn_shared(vmf); 3363 return wp_page_shared(vmf); 3364 } 3365 3366 if (vmf->page) 3367 folio = page_folio(vmf->page); 3368 3369 /* 3370 * Private mapping: create an exclusive anonymous page copy if reuse 3371 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3372 */ 3373 if (folio && folio_test_anon(folio)) { 3374 /* 3375 * If the page is exclusive to this process we must reuse the 3376 * page without further checks. 3377 */ 3378 if (PageAnonExclusive(vmf->page)) 3379 goto reuse; 3380 3381 /* 3382 * We have to verify under folio lock: these early checks are 3383 * just an optimization to avoid locking the folio and freeing 3384 * the swapcache if there is little hope that we can reuse. 3385 * 3386 * KSM doesn't necessarily raise the folio refcount. 3387 */ 3388 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3389 goto copy; 3390 if (!folio_test_lru(folio)) 3391 /* 3392 * Note: We cannot easily detect+handle references from 3393 * remote LRU pagevecs or references to LRU folios. 3394 */ 3395 lru_add_drain(); 3396 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3397 goto copy; 3398 if (!folio_trylock(folio)) 3399 goto copy; 3400 if (folio_test_swapcache(folio)) 3401 folio_free_swap(folio); 3402 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3403 folio_unlock(folio); 3404 goto copy; 3405 } 3406 /* 3407 * Ok, we've got the only folio reference from our mapping 3408 * and the folio is locked, it's dark out, and we're wearing 3409 * sunglasses. Hit it. 3410 */ 3411 page_move_anon_rmap(vmf->page, vma); 3412 folio_unlock(folio); 3413 reuse: 3414 if (unlikely(unshare)) { 3415 pte_unmap_unlock(vmf->pte, vmf->ptl); 3416 return 0; 3417 } 3418 wp_page_reuse(vmf); 3419 return 0; 3420 } 3421 copy: 3422 /* 3423 * Ok, we need to copy. Oh, well.. 3424 */ 3425 if (folio) 3426 folio_get(folio); 3427 3428 pte_unmap_unlock(vmf->pte, vmf->ptl); 3429 #ifdef CONFIG_KSM 3430 if (folio && folio_test_ksm(folio)) 3431 count_vm_event(COW_KSM); 3432 #endif 3433 return wp_page_copy(vmf); 3434 } 3435 3436 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3437 unsigned long start_addr, unsigned long end_addr, 3438 struct zap_details *details) 3439 { 3440 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3441 } 3442 3443 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3444 pgoff_t first_index, 3445 pgoff_t last_index, 3446 struct zap_details *details) 3447 { 3448 struct vm_area_struct *vma; 3449 pgoff_t vba, vea, zba, zea; 3450 3451 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3452 vba = vma->vm_pgoff; 3453 vea = vba + vma_pages(vma) - 1; 3454 zba = max(first_index, vba); 3455 zea = min(last_index, vea); 3456 3457 unmap_mapping_range_vma(vma, 3458 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3459 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3460 details); 3461 } 3462 } 3463 3464 /** 3465 * unmap_mapping_folio() - Unmap single folio from processes. 3466 * @folio: The locked folio to be unmapped. 3467 * 3468 * Unmap this folio from any userspace process which still has it mmaped. 3469 * Typically, for efficiency, the range of nearby pages has already been 3470 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3471 * truncation or invalidation holds the lock on a folio, it may find that 3472 * the page has been remapped again: and then uses unmap_mapping_folio() 3473 * to unmap it finally. 3474 */ 3475 void unmap_mapping_folio(struct folio *folio) 3476 { 3477 struct address_space *mapping = folio->mapping; 3478 struct zap_details details = { }; 3479 pgoff_t first_index; 3480 pgoff_t last_index; 3481 3482 VM_BUG_ON(!folio_test_locked(folio)); 3483 3484 first_index = folio->index; 3485 last_index = folio->index + folio_nr_pages(folio) - 1; 3486 3487 details.even_cows = false; 3488 details.single_folio = folio; 3489 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3490 3491 i_mmap_lock_read(mapping); 3492 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3493 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3494 last_index, &details); 3495 i_mmap_unlock_read(mapping); 3496 } 3497 3498 /** 3499 * unmap_mapping_pages() - Unmap pages from processes. 3500 * @mapping: The address space containing pages to be unmapped. 3501 * @start: Index of first page to be unmapped. 3502 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3503 * @even_cows: Whether to unmap even private COWed pages. 3504 * 3505 * Unmap the pages in this address space from any userspace process which 3506 * has them mmaped. Generally, you want to remove COWed pages as well when 3507 * a file is being truncated, but not when invalidating pages from the page 3508 * cache. 3509 */ 3510 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3511 pgoff_t nr, bool even_cows) 3512 { 3513 struct zap_details details = { }; 3514 pgoff_t first_index = start; 3515 pgoff_t last_index = start + nr - 1; 3516 3517 details.even_cows = even_cows; 3518 if (last_index < first_index) 3519 last_index = ULONG_MAX; 3520 3521 i_mmap_lock_read(mapping); 3522 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3523 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3524 last_index, &details); 3525 i_mmap_unlock_read(mapping); 3526 } 3527 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3528 3529 /** 3530 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3531 * address_space corresponding to the specified byte range in the underlying 3532 * file. 3533 * 3534 * @mapping: the address space containing mmaps to be unmapped. 3535 * @holebegin: byte in first page to unmap, relative to the start of 3536 * the underlying file. This will be rounded down to a PAGE_SIZE 3537 * boundary. Note that this is different from truncate_pagecache(), which 3538 * must keep the partial page. In contrast, we must get rid of 3539 * partial pages. 3540 * @holelen: size of prospective hole in bytes. This will be rounded 3541 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3542 * end of the file. 3543 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3544 * but 0 when invalidating pagecache, don't throw away private data. 3545 */ 3546 void unmap_mapping_range(struct address_space *mapping, 3547 loff_t const holebegin, loff_t const holelen, int even_cows) 3548 { 3549 pgoff_t hba = holebegin >> PAGE_SHIFT; 3550 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3551 3552 /* Check for overflow. */ 3553 if (sizeof(holelen) > sizeof(hlen)) { 3554 long long holeend = 3555 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3556 if (holeend & ~(long long)ULONG_MAX) 3557 hlen = ULONG_MAX - hba + 1; 3558 } 3559 3560 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3561 } 3562 EXPORT_SYMBOL(unmap_mapping_range); 3563 3564 /* 3565 * Restore a potential device exclusive pte to a working pte entry 3566 */ 3567 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3568 { 3569 struct folio *folio = page_folio(vmf->page); 3570 struct vm_area_struct *vma = vmf->vma; 3571 struct mmu_notifier_range range; 3572 3573 /* 3574 * We need a reference to lock the folio because we don't hold 3575 * the PTL so a racing thread can remove the device-exclusive 3576 * entry and unmap it. If the folio is free the entry must 3577 * have been removed already. If it happens to have already 3578 * been re-allocated after being freed all we do is lock and 3579 * unlock it. 3580 */ 3581 if (!folio_try_get(folio)) 3582 return 0; 3583 3584 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) { 3585 folio_put(folio); 3586 return VM_FAULT_RETRY; 3587 } 3588 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3589 vma->vm_mm, vmf->address & PAGE_MASK, 3590 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3591 mmu_notifier_invalidate_range_start(&range); 3592 3593 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3594 &vmf->ptl); 3595 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3596 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3597 3598 pte_unmap_unlock(vmf->pte, vmf->ptl); 3599 folio_unlock(folio); 3600 folio_put(folio); 3601 3602 mmu_notifier_invalidate_range_end(&range); 3603 return 0; 3604 } 3605 3606 static inline bool should_try_to_free_swap(struct folio *folio, 3607 struct vm_area_struct *vma, 3608 unsigned int fault_flags) 3609 { 3610 if (!folio_test_swapcache(folio)) 3611 return false; 3612 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3613 folio_test_mlocked(folio)) 3614 return true; 3615 /* 3616 * If we want to map a page that's in the swapcache writable, we 3617 * have to detect via the refcount if we're really the exclusive 3618 * user. Try freeing the swapcache to get rid of the swapcache 3619 * reference only in case it's likely that we'll be the exlusive user. 3620 */ 3621 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3622 folio_ref_count(folio) == 2; 3623 } 3624 3625 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3626 { 3627 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3628 vmf->address, &vmf->ptl); 3629 /* 3630 * Be careful so that we will only recover a special uffd-wp pte into a 3631 * none pte. Otherwise it means the pte could have changed, so retry. 3632 * 3633 * This should also cover the case where e.g. the pte changed 3634 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR. 3635 * So is_pte_marker() check is not enough to safely drop the pte. 3636 */ 3637 if (pte_same(vmf->orig_pte, *vmf->pte)) 3638 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3639 pte_unmap_unlock(vmf->pte, vmf->ptl); 3640 return 0; 3641 } 3642 3643 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3644 { 3645 if (vma_is_anonymous(vmf->vma)) 3646 return do_anonymous_page(vmf); 3647 else 3648 return do_fault(vmf); 3649 } 3650 3651 /* 3652 * This is actually a page-missing access, but with uffd-wp special pte 3653 * installed. It means this pte was wr-protected before being unmapped. 3654 */ 3655 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3656 { 3657 /* 3658 * Just in case there're leftover special ptes even after the region 3659 * got unregistered - we can simply clear them. 3660 */ 3661 if (unlikely(!userfaultfd_wp(vmf->vma))) 3662 return pte_marker_clear(vmf); 3663 3664 return do_pte_missing(vmf); 3665 } 3666 3667 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3668 { 3669 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3670 unsigned long marker = pte_marker_get(entry); 3671 3672 /* 3673 * PTE markers should never be empty. If anything weird happened, 3674 * the best thing to do is to kill the process along with its mm. 3675 */ 3676 if (WARN_ON_ONCE(!marker)) 3677 return VM_FAULT_SIGBUS; 3678 3679 /* Higher priority than uffd-wp when data corrupted */ 3680 if (marker & PTE_MARKER_SWAPIN_ERROR) 3681 return VM_FAULT_SIGBUS; 3682 3683 if (pte_marker_entry_uffd_wp(entry)) 3684 return pte_marker_handle_uffd_wp(vmf); 3685 3686 /* This is an unknown pte marker */ 3687 return VM_FAULT_SIGBUS; 3688 } 3689 3690 /* 3691 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3692 * but allow concurrent faults), and pte mapped but not yet locked. 3693 * We return with pte unmapped and unlocked. 3694 * 3695 * We return with the mmap_lock locked or unlocked in the same cases 3696 * as does filemap_fault(). 3697 */ 3698 vm_fault_t do_swap_page(struct vm_fault *vmf) 3699 { 3700 struct vm_area_struct *vma = vmf->vma; 3701 struct folio *swapcache, *folio = NULL; 3702 struct page *page; 3703 struct swap_info_struct *si = NULL; 3704 rmap_t rmap_flags = RMAP_NONE; 3705 bool exclusive = false; 3706 swp_entry_t entry; 3707 pte_t pte; 3708 int locked; 3709 vm_fault_t ret = 0; 3710 void *shadow = NULL; 3711 3712 if (!pte_unmap_same(vmf)) 3713 goto out; 3714 3715 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3716 ret = VM_FAULT_RETRY; 3717 goto out; 3718 } 3719 3720 entry = pte_to_swp_entry(vmf->orig_pte); 3721 if (unlikely(non_swap_entry(entry))) { 3722 if (is_migration_entry(entry)) { 3723 migration_entry_wait(vma->vm_mm, vmf->pmd, 3724 vmf->address); 3725 } else if (is_device_exclusive_entry(entry)) { 3726 vmf->page = pfn_swap_entry_to_page(entry); 3727 ret = remove_device_exclusive_entry(vmf); 3728 } else if (is_device_private_entry(entry)) { 3729 vmf->page = pfn_swap_entry_to_page(entry); 3730 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3731 vmf->address, &vmf->ptl); 3732 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3733 spin_unlock(vmf->ptl); 3734 goto out; 3735 } 3736 3737 /* 3738 * Get a page reference while we know the page can't be 3739 * freed. 3740 */ 3741 get_page(vmf->page); 3742 pte_unmap_unlock(vmf->pte, vmf->ptl); 3743 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3744 put_page(vmf->page); 3745 } else if (is_hwpoison_entry(entry)) { 3746 ret = VM_FAULT_HWPOISON; 3747 } else if (is_pte_marker_entry(entry)) { 3748 ret = handle_pte_marker(vmf); 3749 } else { 3750 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3751 ret = VM_FAULT_SIGBUS; 3752 } 3753 goto out; 3754 } 3755 3756 /* Prevent swapoff from happening to us. */ 3757 si = get_swap_device(entry); 3758 if (unlikely(!si)) 3759 goto out; 3760 3761 folio = swap_cache_get_folio(entry, vma, vmf->address); 3762 if (folio) 3763 page = folio_file_page(folio, swp_offset(entry)); 3764 swapcache = folio; 3765 3766 if (!folio) { 3767 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3768 __swap_count(entry) == 1) { 3769 /* skip swapcache */ 3770 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3771 vma, vmf->address, false); 3772 page = &folio->page; 3773 if (folio) { 3774 __folio_set_locked(folio); 3775 __folio_set_swapbacked(folio); 3776 3777 if (mem_cgroup_swapin_charge_folio(folio, 3778 vma->vm_mm, GFP_KERNEL, 3779 entry)) { 3780 ret = VM_FAULT_OOM; 3781 goto out_page; 3782 } 3783 mem_cgroup_swapin_uncharge_swap(entry); 3784 3785 shadow = get_shadow_from_swap_cache(entry); 3786 if (shadow) 3787 workingset_refault(folio, shadow); 3788 3789 folio_add_lru(folio); 3790 3791 /* To provide entry to swap_readpage() */ 3792 folio_set_swap_entry(folio, entry); 3793 swap_readpage(page, true, NULL); 3794 folio->private = NULL; 3795 } 3796 } else { 3797 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3798 vmf); 3799 if (page) 3800 folio = page_folio(page); 3801 swapcache = folio; 3802 } 3803 3804 if (!folio) { 3805 /* 3806 * Back out if somebody else faulted in this pte 3807 * while we released the pte lock. 3808 */ 3809 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3810 vmf->address, &vmf->ptl); 3811 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3812 ret = VM_FAULT_OOM; 3813 goto unlock; 3814 } 3815 3816 /* Had to read the page from swap area: Major fault */ 3817 ret = VM_FAULT_MAJOR; 3818 count_vm_event(PGMAJFAULT); 3819 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3820 } else if (PageHWPoison(page)) { 3821 /* 3822 * hwpoisoned dirty swapcache pages are kept for killing 3823 * owner processes (which may be unknown at hwpoison time) 3824 */ 3825 ret = VM_FAULT_HWPOISON; 3826 goto out_release; 3827 } 3828 3829 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags); 3830 3831 if (!locked) { 3832 ret |= VM_FAULT_RETRY; 3833 goto out_release; 3834 } 3835 3836 if (swapcache) { 3837 /* 3838 * Make sure folio_free_swap() or swapoff did not release the 3839 * swapcache from under us. The page pin, and pte_same test 3840 * below, are not enough to exclude that. Even if it is still 3841 * swapcache, we need to check that the page's swap has not 3842 * changed. 3843 */ 3844 if (unlikely(!folio_test_swapcache(folio) || 3845 page_private(page) != entry.val)) 3846 goto out_page; 3847 3848 /* 3849 * KSM sometimes has to copy on read faults, for example, if 3850 * page->index of !PageKSM() pages would be nonlinear inside the 3851 * anon VMA -- PageKSM() is lost on actual swapout. 3852 */ 3853 page = ksm_might_need_to_copy(page, vma, vmf->address); 3854 if (unlikely(!page)) { 3855 ret = VM_FAULT_OOM; 3856 goto out_page; 3857 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { 3858 ret = VM_FAULT_HWPOISON; 3859 goto out_page; 3860 } 3861 folio = page_folio(page); 3862 3863 /* 3864 * If we want to map a page that's in the swapcache writable, we 3865 * have to detect via the refcount if we're really the exclusive 3866 * owner. Try removing the extra reference from the local LRU 3867 * pagevecs if required. 3868 */ 3869 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3870 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3871 lru_add_drain(); 3872 } 3873 3874 folio_throttle_swaprate(folio, GFP_KERNEL); 3875 3876 /* 3877 * Back out if somebody else already faulted in this pte. 3878 */ 3879 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3880 &vmf->ptl); 3881 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3882 goto out_nomap; 3883 3884 if (unlikely(!folio_test_uptodate(folio))) { 3885 ret = VM_FAULT_SIGBUS; 3886 goto out_nomap; 3887 } 3888 3889 /* 3890 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3891 * must never point at an anonymous page in the swapcache that is 3892 * PG_anon_exclusive. Sanity check that this holds and especially, that 3893 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3894 * check after taking the PT lock and making sure that nobody 3895 * concurrently faulted in this page and set PG_anon_exclusive. 3896 */ 3897 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3898 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3899 3900 /* 3901 * Check under PT lock (to protect against concurrent fork() sharing 3902 * the swap entry concurrently) for certainly exclusive pages. 3903 */ 3904 if (!folio_test_ksm(folio)) { 3905 exclusive = pte_swp_exclusive(vmf->orig_pte); 3906 if (folio != swapcache) { 3907 /* 3908 * We have a fresh page that is not exposed to the 3909 * swapcache -> certainly exclusive. 3910 */ 3911 exclusive = true; 3912 } else if (exclusive && folio_test_writeback(folio) && 3913 data_race(si->flags & SWP_STABLE_WRITES)) { 3914 /* 3915 * This is tricky: not all swap backends support 3916 * concurrent page modifications while under writeback. 3917 * 3918 * So if we stumble over such a page in the swapcache 3919 * we must not set the page exclusive, otherwise we can 3920 * map it writable without further checks and modify it 3921 * while still under writeback. 3922 * 3923 * For these problematic swap backends, simply drop the 3924 * exclusive marker: this is perfectly fine as we start 3925 * writeback only if we fully unmapped the page and 3926 * there are no unexpected references on the page after 3927 * unmapping succeeded. After fully unmapped, no 3928 * further GUP references (FOLL_GET and FOLL_PIN) can 3929 * appear, so dropping the exclusive marker and mapping 3930 * it only R/O is fine. 3931 */ 3932 exclusive = false; 3933 } 3934 } 3935 3936 /* 3937 * Remove the swap entry and conditionally try to free up the swapcache. 3938 * We're already holding a reference on the page but haven't mapped it 3939 * yet. 3940 */ 3941 swap_free(entry); 3942 if (should_try_to_free_swap(folio, vma, vmf->flags)) 3943 folio_free_swap(folio); 3944 3945 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 3946 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 3947 pte = mk_pte(page, vma->vm_page_prot); 3948 3949 /* 3950 * Same logic as in do_wp_page(); however, optimize for pages that are 3951 * certainly not shared either because we just allocated them without 3952 * exposing them to the swapcache or because the swap entry indicates 3953 * exclusivity. 3954 */ 3955 if (!folio_test_ksm(folio) && 3956 (exclusive || folio_ref_count(folio) == 1)) { 3957 if (vmf->flags & FAULT_FLAG_WRITE) { 3958 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3959 vmf->flags &= ~FAULT_FLAG_WRITE; 3960 } 3961 rmap_flags |= RMAP_EXCLUSIVE; 3962 } 3963 flush_icache_page(vma, page); 3964 if (pte_swp_soft_dirty(vmf->orig_pte)) 3965 pte = pte_mksoft_dirty(pte); 3966 if (pte_swp_uffd_wp(vmf->orig_pte)) 3967 pte = pte_mkuffd_wp(pte); 3968 vmf->orig_pte = pte; 3969 3970 /* ksm created a completely new copy */ 3971 if (unlikely(folio != swapcache && swapcache)) { 3972 page_add_new_anon_rmap(page, vma, vmf->address); 3973 folio_add_lru_vma(folio, vma); 3974 } else { 3975 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 3976 } 3977 3978 VM_BUG_ON(!folio_test_anon(folio) || 3979 (pte_write(pte) && !PageAnonExclusive(page))); 3980 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3981 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3982 3983 folio_unlock(folio); 3984 if (folio != swapcache && swapcache) { 3985 /* 3986 * Hold the lock to avoid the swap entry to be reused 3987 * until we take the PT lock for the pte_same() check 3988 * (to avoid false positives from pte_same). For 3989 * further safety release the lock after the swap_free 3990 * so that the swap count won't change under a 3991 * parallel locked swapcache. 3992 */ 3993 folio_unlock(swapcache); 3994 folio_put(swapcache); 3995 } 3996 3997 if (vmf->flags & FAULT_FLAG_WRITE) { 3998 ret |= do_wp_page(vmf); 3999 if (ret & VM_FAULT_ERROR) 4000 ret &= VM_FAULT_ERROR; 4001 goto out; 4002 } 4003 4004 /* No need to invalidate - it was non-present before */ 4005 update_mmu_cache(vma, vmf->address, vmf->pte); 4006 unlock: 4007 pte_unmap_unlock(vmf->pte, vmf->ptl); 4008 out: 4009 if (si) 4010 put_swap_device(si); 4011 return ret; 4012 out_nomap: 4013 pte_unmap_unlock(vmf->pte, vmf->ptl); 4014 out_page: 4015 folio_unlock(folio); 4016 out_release: 4017 folio_put(folio); 4018 if (folio != swapcache && swapcache) { 4019 folio_unlock(swapcache); 4020 folio_put(swapcache); 4021 } 4022 if (si) 4023 put_swap_device(si); 4024 return ret; 4025 } 4026 4027 /* 4028 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4029 * but allow concurrent faults), and pte mapped but not yet locked. 4030 * We return with mmap_lock still held, but pte unmapped and unlocked. 4031 */ 4032 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4033 { 4034 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4035 struct vm_area_struct *vma = vmf->vma; 4036 struct folio *folio; 4037 vm_fault_t ret = 0; 4038 pte_t entry; 4039 4040 /* File mapping without ->vm_ops ? */ 4041 if (vma->vm_flags & VM_SHARED) 4042 return VM_FAULT_SIGBUS; 4043 4044 /* 4045 * Use pte_alloc() instead of pte_alloc_map(). We can't run 4046 * pte_offset_map() on pmds where a huge pmd might be created 4047 * from a different thread. 4048 * 4049 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 4050 * parallel threads are excluded by other means. 4051 * 4052 * Here we only have mmap_read_lock(mm). 4053 */ 4054 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4055 return VM_FAULT_OOM; 4056 4057 /* See comment in handle_pte_fault() */ 4058 if (unlikely(pmd_trans_unstable(vmf->pmd))) 4059 return 0; 4060 4061 /* Use the zero-page for reads */ 4062 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4063 !mm_forbids_zeropage(vma->vm_mm)) { 4064 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4065 vma->vm_page_prot)); 4066 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4067 vmf->address, &vmf->ptl); 4068 if (vmf_pte_changed(vmf)) { 4069 update_mmu_tlb(vma, vmf->address, vmf->pte); 4070 goto unlock; 4071 } 4072 ret = check_stable_address_space(vma->vm_mm); 4073 if (ret) 4074 goto unlock; 4075 /* Deliver the page fault to userland, check inside PT lock */ 4076 if (userfaultfd_missing(vma)) { 4077 pte_unmap_unlock(vmf->pte, vmf->ptl); 4078 return handle_userfault(vmf, VM_UFFD_MISSING); 4079 } 4080 goto setpte; 4081 } 4082 4083 /* Allocate our own private page. */ 4084 if (unlikely(anon_vma_prepare(vma))) 4085 goto oom; 4086 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 4087 if (!folio) 4088 goto oom; 4089 4090 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 4091 goto oom_free_page; 4092 folio_throttle_swaprate(folio, GFP_KERNEL); 4093 4094 /* 4095 * The memory barrier inside __folio_mark_uptodate makes sure that 4096 * preceding stores to the page contents become visible before 4097 * the set_pte_at() write. 4098 */ 4099 __folio_mark_uptodate(folio); 4100 4101 entry = mk_pte(&folio->page, vma->vm_page_prot); 4102 entry = pte_sw_mkyoung(entry); 4103 if (vma->vm_flags & VM_WRITE) 4104 entry = pte_mkwrite(pte_mkdirty(entry)); 4105 4106 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4107 &vmf->ptl); 4108 if (vmf_pte_changed(vmf)) { 4109 update_mmu_tlb(vma, vmf->address, vmf->pte); 4110 goto release; 4111 } 4112 4113 ret = check_stable_address_space(vma->vm_mm); 4114 if (ret) 4115 goto release; 4116 4117 /* Deliver the page fault to userland, check inside PT lock */ 4118 if (userfaultfd_missing(vma)) { 4119 pte_unmap_unlock(vmf->pte, vmf->ptl); 4120 folio_put(folio); 4121 return handle_userfault(vmf, VM_UFFD_MISSING); 4122 } 4123 4124 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4125 folio_add_new_anon_rmap(folio, vma, vmf->address); 4126 folio_add_lru_vma(folio, vma); 4127 setpte: 4128 if (uffd_wp) 4129 entry = pte_mkuffd_wp(entry); 4130 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4131 4132 /* No need to invalidate - it was non-present before */ 4133 update_mmu_cache(vma, vmf->address, vmf->pte); 4134 unlock: 4135 pte_unmap_unlock(vmf->pte, vmf->ptl); 4136 return ret; 4137 release: 4138 folio_put(folio); 4139 goto unlock; 4140 oom_free_page: 4141 folio_put(folio); 4142 oom: 4143 return VM_FAULT_OOM; 4144 } 4145 4146 /* 4147 * The mmap_lock must have been held on entry, and may have been 4148 * released depending on flags and vma->vm_ops->fault() return value. 4149 * See filemap_fault() and __lock_page_retry(). 4150 */ 4151 static vm_fault_t __do_fault(struct vm_fault *vmf) 4152 { 4153 struct vm_area_struct *vma = vmf->vma; 4154 vm_fault_t ret; 4155 4156 /* 4157 * Preallocate pte before we take page_lock because this might lead to 4158 * deadlocks for memcg reclaim which waits for pages under writeback: 4159 * lock_page(A) 4160 * SetPageWriteback(A) 4161 * unlock_page(A) 4162 * lock_page(B) 4163 * lock_page(B) 4164 * pte_alloc_one 4165 * shrink_page_list 4166 * wait_on_page_writeback(A) 4167 * SetPageWriteback(B) 4168 * unlock_page(B) 4169 * # flush A, B to clear the writeback 4170 */ 4171 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4172 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4173 if (!vmf->prealloc_pte) 4174 return VM_FAULT_OOM; 4175 } 4176 4177 ret = vma->vm_ops->fault(vmf); 4178 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4179 VM_FAULT_DONE_COW))) 4180 return ret; 4181 4182 if (unlikely(PageHWPoison(vmf->page))) { 4183 struct page *page = vmf->page; 4184 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4185 if (ret & VM_FAULT_LOCKED) { 4186 if (page_mapped(page)) 4187 unmap_mapping_pages(page_mapping(page), 4188 page->index, 1, false); 4189 /* Retry if a clean page was removed from the cache. */ 4190 if (invalidate_inode_page(page)) 4191 poisonret = VM_FAULT_NOPAGE; 4192 unlock_page(page); 4193 } 4194 put_page(page); 4195 vmf->page = NULL; 4196 return poisonret; 4197 } 4198 4199 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4200 lock_page(vmf->page); 4201 else 4202 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4203 4204 return ret; 4205 } 4206 4207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4208 static void deposit_prealloc_pte(struct vm_fault *vmf) 4209 { 4210 struct vm_area_struct *vma = vmf->vma; 4211 4212 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4213 /* 4214 * We are going to consume the prealloc table, 4215 * count that as nr_ptes. 4216 */ 4217 mm_inc_nr_ptes(vma->vm_mm); 4218 vmf->prealloc_pte = NULL; 4219 } 4220 4221 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4222 { 4223 struct vm_area_struct *vma = vmf->vma; 4224 bool write = vmf->flags & FAULT_FLAG_WRITE; 4225 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4226 pmd_t entry; 4227 int i; 4228 vm_fault_t ret = VM_FAULT_FALLBACK; 4229 4230 if (!transhuge_vma_suitable(vma, haddr)) 4231 return ret; 4232 4233 page = compound_head(page); 4234 if (compound_order(page) != HPAGE_PMD_ORDER) 4235 return ret; 4236 4237 /* 4238 * Just backoff if any subpage of a THP is corrupted otherwise 4239 * the corrupted page may mapped by PMD silently to escape the 4240 * check. This kind of THP just can be PTE mapped. Access to 4241 * the corrupted subpage should trigger SIGBUS as expected. 4242 */ 4243 if (unlikely(PageHasHWPoisoned(page))) 4244 return ret; 4245 4246 /* 4247 * Archs like ppc64 need additional space to store information 4248 * related to pte entry. Use the preallocated table for that. 4249 */ 4250 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4251 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4252 if (!vmf->prealloc_pte) 4253 return VM_FAULT_OOM; 4254 } 4255 4256 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4257 if (unlikely(!pmd_none(*vmf->pmd))) 4258 goto out; 4259 4260 for (i = 0; i < HPAGE_PMD_NR; i++) 4261 flush_icache_page(vma, page + i); 4262 4263 entry = mk_huge_pmd(page, vma->vm_page_prot); 4264 if (write) 4265 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4266 4267 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4268 page_add_file_rmap(page, vma, true); 4269 4270 /* 4271 * deposit and withdraw with pmd lock held 4272 */ 4273 if (arch_needs_pgtable_deposit()) 4274 deposit_prealloc_pte(vmf); 4275 4276 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4277 4278 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4279 4280 /* fault is handled */ 4281 ret = 0; 4282 count_vm_event(THP_FILE_MAPPED); 4283 out: 4284 spin_unlock(vmf->ptl); 4285 return ret; 4286 } 4287 #else 4288 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4289 { 4290 return VM_FAULT_FALLBACK; 4291 } 4292 #endif 4293 4294 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 4295 { 4296 struct vm_area_struct *vma = vmf->vma; 4297 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4298 bool write = vmf->flags & FAULT_FLAG_WRITE; 4299 bool prefault = vmf->address != addr; 4300 pte_t entry; 4301 4302 flush_icache_page(vma, page); 4303 entry = mk_pte(page, vma->vm_page_prot); 4304 4305 if (prefault && arch_wants_old_prefaulted_pte()) 4306 entry = pte_mkold(entry); 4307 else 4308 entry = pte_sw_mkyoung(entry); 4309 4310 if (write) 4311 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4312 if (unlikely(uffd_wp)) 4313 entry = pte_mkuffd_wp(entry); 4314 /* copy-on-write page */ 4315 if (write && !(vma->vm_flags & VM_SHARED)) { 4316 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4317 page_add_new_anon_rmap(page, vma, addr); 4318 lru_cache_add_inactive_or_unevictable(page, vma); 4319 } else { 4320 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 4321 page_add_file_rmap(page, vma, false); 4322 } 4323 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 4324 } 4325 4326 static bool vmf_pte_changed(struct vm_fault *vmf) 4327 { 4328 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4329 return !pte_same(*vmf->pte, vmf->orig_pte); 4330 4331 return !pte_none(*vmf->pte); 4332 } 4333 4334 /** 4335 * finish_fault - finish page fault once we have prepared the page to fault 4336 * 4337 * @vmf: structure describing the fault 4338 * 4339 * This function handles all that is needed to finish a page fault once the 4340 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4341 * given page, adds reverse page mapping, handles memcg charges and LRU 4342 * addition. 4343 * 4344 * The function expects the page to be locked and on success it consumes a 4345 * reference of a page being mapped (for the PTE which maps it). 4346 * 4347 * Return: %0 on success, %VM_FAULT_ code in case of error. 4348 */ 4349 vm_fault_t finish_fault(struct vm_fault *vmf) 4350 { 4351 struct vm_area_struct *vma = vmf->vma; 4352 struct page *page; 4353 vm_fault_t ret; 4354 4355 /* Did we COW the page? */ 4356 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4357 page = vmf->cow_page; 4358 else 4359 page = vmf->page; 4360 4361 /* 4362 * check even for read faults because we might have lost our CoWed 4363 * page 4364 */ 4365 if (!(vma->vm_flags & VM_SHARED)) { 4366 ret = check_stable_address_space(vma->vm_mm); 4367 if (ret) 4368 return ret; 4369 } 4370 4371 if (pmd_none(*vmf->pmd)) { 4372 if (PageTransCompound(page)) { 4373 ret = do_set_pmd(vmf, page); 4374 if (ret != VM_FAULT_FALLBACK) 4375 return ret; 4376 } 4377 4378 if (vmf->prealloc_pte) 4379 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4380 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4381 return VM_FAULT_OOM; 4382 } 4383 4384 /* 4385 * See comment in handle_pte_fault() for how this scenario happens, we 4386 * need to return NOPAGE so that we drop this page. 4387 */ 4388 if (pmd_devmap_trans_unstable(vmf->pmd)) 4389 return VM_FAULT_NOPAGE; 4390 4391 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4392 vmf->address, &vmf->ptl); 4393 4394 /* Re-check under ptl */ 4395 if (likely(!vmf_pte_changed(vmf))) { 4396 do_set_pte(vmf, page, vmf->address); 4397 4398 /* no need to invalidate: a not-present page won't be cached */ 4399 update_mmu_cache(vma, vmf->address, vmf->pte); 4400 4401 ret = 0; 4402 } else { 4403 update_mmu_tlb(vma, vmf->address, vmf->pte); 4404 ret = VM_FAULT_NOPAGE; 4405 } 4406 4407 pte_unmap_unlock(vmf->pte, vmf->ptl); 4408 return ret; 4409 } 4410 4411 static unsigned long fault_around_pages __read_mostly = 4412 65536 >> PAGE_SHIFT; 4413 4414 #ifdef CONFIG_DEBUG_FS 4415 static int fault_around_bytes_get(void *data, u64 *val) 4416 { 4417 *val = fault_around_pages << PAGE_SHIFT; 4418 return 0; 4419 } 4420 4421 /* 4422 * fault_around_bytes must be rounded down to the nearest page order as it's 4423 * what do_fault_around() expects to see. 4424 */ 4425 static int fault_around_bytes_set(void *data, u64 val) 4426 { 4427 if (val / PAGE_SIZE > PTRS_PER_PTE) 4428 return -EINVAL; 4429 4430 /* 4431 * The minimum value is 1 page, however this results in no fault-around 4432 * at all. See should_fault_around(). 4433 */ 4434 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL); 4435 4436 return 0; 4437 } 4438 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4439 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4440 4441 static int __init fault_around_debugfs(void) 4442 { 4443 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4444 &fault_around_bytes_fops); 4445 return 0; 4446 } 4447 late_initcall(fault_around_debugfs); 4448 #endif 4449 4450 /* 4451 * do_fault_around() tries to map few pages around the fault address. The hope 4452 * is that the pages will be needed soon and this will lower the number of 4453 * faults to handle. 4454 * 4455 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4456 * not ready to be mapped: not up-to-date, locked, etc. 4457 * 4458 * This function doesn't cross VMA or page table boundaries, in order to call 4459 * map_pages() and acquire a PTE lock only once. 4460 * 4461 * fault_around_pages defines how many pages we'll try to map. 4462 * do_fault_around() expects it to be set to a power of two less than or equal 4463 * to PTRS_PER_PTE. 4464 * 4465 * The virtual address of the area that we map is naturally aligned to 4466 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4467 * (and therefore to page order). This way it's easier to guarantee 4468 * that we don't cross page table boundaries. 4469 */ 4470 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4471 { 4472 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4473 pgoff_t pte_off = pte_index(vmf->address); 4474 /* The page offset of vmf->address within the VMA. */ 4475 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4476 pgoff_t from_pte, to_pte; 4477 vm_fault_t ret; 4478 4479 /* The PTE offset of the start address, clamped to the VMA. */ 4480 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4481 pte_off - min(pte_off, vma_off)); 4482 4483 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4484 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4485 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4486 4487 if (pmd_none(*vmf->pmd)) { 4488 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4489 if (!vmf->prealloc_pte) 4490 return VM_FAULT_OOM; 4491 } 4492 4493 rcu_read_lock(); 4494 ret = vmf->vma->vm_ops->map_pages(vmf, 4495 vmf->pgoff + from_pte - pte_off, 4496 vmf->pgoff + to_pte - pte_off); 4497 rcu_read_unlock(); 4498 4499 return ret; 4500 } 4501 4502 /* Return true if we should do read fault-around, false otherwise */ 4503 static inline bool should_fault_around(struct vm_fault *vmf) 4504 { 4505 /* No ->map_pages? No way to fault around... */ 4506 if (!vmf->vma->vm_ops->map_pages) 4507 return false; 4508 4509 if (uffd_disable_fault_around(vmf->vma)) 4510 return false; 4511 4512 /* A single page implies no faulting 'around' at all. */ 4513 return fault_around_pages > 1; 4514 } 4515 4516 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4517 { 4518 vm_fault_t ret = 0; 4519 4520 /* 4521 * Let's call ->map_pages() first and use ->fault() as fallback 4522 * if page by the offset is not ready to be mapped (cold cache or 4523 * something). 4524 */ 4525 if (should_fault_around(vmf)) { 4526 ret = do_fault_around(vmf); 4527 if (ret) 4528 return ret; 4529 } 4530 4531 ret = __do_fault(vmf); 4532 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4533 return ret; 4534 4535 ret |= finish_fault(vmf); 4536 unlock_page(vmf->page); 4537 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4538 put_page(vmf->page); 4539 return ret; 4540 } 4541 4542 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4543 { 4544 struct vm_area_struct *vma = vmf->vma; 4545 vm_fault_t ret; 4546 4547 if (unlikely(anon_vma_prepare(vma))) 4548 return VM_FAULT_OOM; 4549 4550 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4551 if (!vmf->cow_page) 4552 return VM_FAULT_OOM; 4553 4554 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4555 GFP_KERNEL)) { 4556 put_page(vmf->cow_page); 4557 return VM_FAULT_OOM; 4558 } 4559 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL); 4560 4561 ret = __do_fault(vmf); 4562 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4563 goto uncharge_out; 4564 if (ret & VM_FAULT_DONE_COW) 4565 return ret; 4566 4567 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4568 __SetPageUptodate(vmf->cow_page); 4569 4570 ret |= finish_fault(vmf); 4571 unlock_page(vmf->page); 4572 put_page(vmf->page); 4573 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4574 goto uncharge_out; 4575 return ret; 4576 uncharge_out: 4577 put_page(vmf->cow_page); 4578 return ret; 4579 } 4580 4581 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4582 { 4583 struct vm_area_struct *vma = vmf->vma; 4584 vm_fault_t ret, tmp; 4585 4586 ret = __do_fault(vmf); 4587 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4588 return ret; 4589 4590 /* 4591 * Check if the backing address space wants to know that the page is 4592 * about to become writable 4593 */ 4594 if (vma->vm_ops->page_mkwrite) { 4595 unlock_page(vmf->page); 4596 tmp = do_page_mkwrite(vmf); 4597 if (unlikely(!tmp || 4598 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4599 put_page(vmf->page); 4600 return tmp; 4601 } 4602 } 4603 4604 ret |= finish_fault(vmf); 4605 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4606 VM_FAULT_RETRY))) { 4607 unlock_page(vmf->page); 4608 put_page(vmf->page); 4609 return ret; 4610 } 4611 4612 ret |= fault_dirty_shared_page(vmf); 4613 return ret; 4614 } 4615 4616 /* 4617 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4618 * but allow concurrent faults). 4619 * The mmap_lock may have been released depending on flags and our 4620 * return value. See filemap_fault() and __folio_lock_or_retry(). 4621 * If mmap_lock is released, vma may become invalid (for example 4622 * by other thread calling munmap()). 4623 */ 4624 static vm_fault_t do_fault(struct vm_fault *vmf) 4625 { 4626 struct vm_area_struct *vma = vmf->vma; 4627 struct mm_struct *vm_mm = vma->vm_mm; 4628 vm_fault_t ret; 4629 4630 /* 4631 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4632 */ 4633 if (!vma->vm_ops->fault) { 4634 /* 4635 * If we find a migration pmd entry or a none pmd entry, which 4636 * should never happen, return SIGBUS 4637 */ 4638 if (unlikely(!pmd_present(*vmf->pmd))) 4639 ret = VM_FAULT_SIGBUS; 4640 else { 4641 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4642 vmf->pmd, 4643 vmf->address, 4644 &vmf->ptl); 4645 /* 4646 * Make sure this is not a temporary clearing of pte 4647 * by holding ptl and checking again. A R/M/W update 4648 * of pte involves: take ptl, clearing the pte so that 4649 * we don't have concurrent modification by hardware 4650 * followed by an update. 4651 */ 4652 if (unlikely(pte_none(*vmf->pte))) 4653 ret = VM_FAULT_SIGBUS; 4654 else 4655 ret = VM_FAULT_NOPAGE; 4656 4657 pte_unmap_unlock(vmf->pte, vmf->ptl); 4658 } 4659 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4660 ret = do_read_fault(vmf); 4661 else if (!(vma->vm_flags & VM_SHARED)) 4662 ret = do_cow_fault(vmf); 4663 else 4664 ret = do_shared_fault(vmf); 4665 4666 /* preallocated pagetable is unused: free it */ 4667 if (vmf->prealloc_pte) { 4668 pte_free(vm_mm, vmf->prealloc_pte); 4669 vmf->prealloc_pte = NULL; 4670 } 4671 return ret; 4672 } 4673 4674 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4675 unsigned long addr, int page_nid, int *flags) 4676 { 4677 get_page(page); 4678 4679 /* Record the current PID acceesing VMA */ 4680 vma_set_access_pid_bit(vma); 4681 4682 count_vm_numa_event(NUMA_HINT_FAULTS); 4683 if (page_nid == numa_node_id()) { 4684 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4685 *flags |= TNF_FAULT_LOCAL; 4686 } 4687 4688 return mpol_misplaced(page, vma, addr); 4689 } 4690 4691 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4692 { 4693 struct vm_area_struct *vma = vmf->vma; 4694 struct page *page = NULL; 4695 int page_nid = NUMA_NO_NODE; 4696 bool writable = false; 4697 int last_cpupid; 4698 int target_nid; 4699 pte_t pte, old_pte; 4700 int flags = 0; 4701 4702 /* 4703 * The "pte" at this point cannot be used safely without 4704 * validation through pte_unmap_same(). It's of NUMA type but 4705 * the pfn may be screwed if the read is non atomic. 4706 */ 4707 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4708 spin_lock(vmf->ptl); 4709 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4710 pte_unmap_unlock(vmf->pte, vmf->ptl); 4711 goto out; 4712 } 4713 4714 /* Get the normal PTE */ 4715 old_pte = ptep_get(vmf->pte); 4716 pte = pte_modify(old_pte, vma->vm_page_prot); 4717 4718 /* 4719 * Detect now whether the PTE could be writable; this information 4720 * is only valid while holding the PT lock. 4721 */ 4722 writable = pte_write(pte); 4723 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4724 can_change_pte_writable(vma, vmf->address, pte)) 4725 writable = true; 4726 4727 page = vm_normal_page(vma, vmf->address, pte); 4728 if (!page || is_zone_device_page(page)) 4729 goto out_map; 4730 4731 /* TODO: handle PTE-mapped THP */ 4732 if (PageCompound(page)) 4733 goto out_map; 4734 4735 /* 4736 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4737 * much anyway since they can be in shared cache state. This misses 4738 * the case where a mapping is writable but the process never writes 4739 * to it but pte_write gets cleared during protection updates and 4740 * pte_dirty has unpredictable behaviour between PTE scan updates, 4741 * background writeback, dirty balancing and application behaviour. 4742 */ 4743 if (!writable) 4744 flags |= TNF_NO_GROUP; 4745 4746 /* 4747 * Flag if the page is shared between multiple address spaces. This 4748 * is later used when determining whether to group tasks together 4749 */ 4750 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4751 flags |= TNF_SHARED; 4752 4753 page_nid = page_to_nid(page); 4754 /* 4755 * For memory tiering mode, cpupid of slow memory page is used 4756 * to record page access time. So use default value. 4757 */ 4758 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4759 !node_is_toptier(page_nid)) 4760 last_cpupid = (-1 & LAST_CPUPID_MASK); 4761 else 4762 last_cpupid = page_cpupid_last(page); 4763 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4764 &flags); 4765 if (target_nid == NUMA_NO_NODE) { 4766 put_page(page); 4767 goto out_map; 4768 } 4769 pte_unmap_unlock(vmf->pte, vmf->ptl); 4770 writable = false; 4771 4772 /* Migrate to the requested node */ 4773 if (migrate_misplaced_page(page, vma, target_nid)) { 4774 page_nid = target_nid; 4775 flags |= TNF_MIGRATED; 4776 } else { 4777 flags |= TNF_MIGRATE_FAIL; 4778 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4779 spin_lock(vmf->ptl); 4780 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4781 pte_unmap_unlock(vmf->pte, vmf->ptl); 4782 goto out; 4783 } 4784 goto out_map; 4785 } 4786 4787 out: 4788 if (page_nid != NUMA_NO_NODE) 4789 task_numa_fault(last_cpupid, page_nid, 1, flags); 4790 return 0; 4791 out_map: 4792 /* 4793 * Make it present again, depending on how arch implements 4794 * non-accessible ptes, some can allow access by kernel mode. 4795 */ 4796 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4797 pte = pte_modify(old_pte, vma->vm_page_prot); 4798 pte = pte_mkyoung(pte); 4799 if (writable) 4800 pte = pte_mkwrite(pte); 4801 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4802 update_mmu_cache(vma, vmf->address, vmf->pte); 4803 pte_unmap_unlock(vmf->pte, vmf->ptl); 4804 goto out; 4805 } 4806 4807 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4808 { 4809 if (vma_is_anonymous(vmf->vma)) 4810 return do_huge_pmd_anonymous_page(vmf); 4811 if (vmf->vma->vm_ops->huge_fault) 4812 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4813 return VM_FAULT_FALLBACK; 4814 } 4815 4816 /* `inline' is required to avoid gcc 4.1.2 build error */ 4817 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4818 { 4819 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4820 vm_fault_t ret; 4821 4822 if (vma_is_anonymous(vmf->vma)) { 4823 if (likely(!unshare) && 4824 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4825 return handle_userfault(vmf, VM_UFFD_WP); 4826 return do_huge_pmd_wp_page(vmf); 4827 } 4828 4829 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4830 if (vmf->vma->vm_ops->huge_fault) { 4831 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4832 if (!(ret & VM_FAULT_FALLBACK)) 4833 return ret; 4834 } 4835 } 4836 4837 /* COW or write-notify handled on pte level: split pmd. */ 4838 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4839 4840 return VM_FAULT_FALLBACK; 4841 } 4842 4843 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4844 { 4845 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4846 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4847 /* No support for anonymous transparent PUD pages yet */ 4848 if (vma_is_anonymous(vmf->vma)) 4849 return VM_FAULT_FALLBACK; 4850 if (vmf->vma->vm_ops->huge_fault) 4851 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4852 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4853 return VM_FAULT_FALLBACK; 4854 } 4855 4856 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4857 { 4858 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4859 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4860 vm_fault_t ret; 4861 4862 /* No support for anonymous transparent PUD pages yet */ 4863 if (vma_is_anonymous(vmf->vma)) 4864 goto split; 4865 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4866 if (vmf->vma->vm_ops->huge_fault) { 4867 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4868 if (!(ret & VM_FAULT_FALLBACK)) 4869 return ret; 4870 } 4871 } 4872 split: 4873 /* COW or write-notify not handled on PUD level: split pud.*/ 4874 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4875 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4876 return VM_FAULT_FALLBACK; 4877 } 4878 4879 /* 4880 * These routines also need to handle stuff like marking pages dirty 4881 * and/or accessed for architectures that don't do it in hardware (most 4882 * RISC architectures). The early dirtying is also good on the i386. 4883 * 4884 * There is also a hook called "update_mmu_cache()" that architectures 4885 * with external mmu caches can use to update those (ie the Sparc or 4886 * PowerPC hashed page tables that act as extended TLBs). 4887 * 4888 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4889 * concurrent faults). 4890 * 4891 * The mmap_lock may have been released depending on flags and our return value. 4892 * See filemap_fault() and __folio_lock_or_retry(). 4893 */ 4894 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4895 { 4896 pte_t entry; 4897 4898 if (unlikely(pmd_none(*vmf->pmd))) { 4899 /* 4900 * Leave __pte_alloc() until later: because vm_ops->fault may 4901 * want to allocate huge page, and if we expose page table 4902 * for an instant, it will be difficult to retract from 4903 * concurrent faults and from rmap lookups. 4904 */ 4905 vmf->pte = NULL; 4906 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4907 } else { 4908 /* 4909 * If a huge pmd materialized under us just retry later. Use 4910 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead 4911 * of pmd_trans_huge() to ensure the pmd didn't become 4912 * pmd_trans_huge under us and then back to pmd_none, as a 4913 * result of MADV_DONTNEED running immediately after a huge pmd 4914 * fault in a different thread of this mm, in turn leading to a 4915 * misleading pmd_trans_huge() retval. All we have to ensure is 4916 * that it is a regular pmd that we can walk with 4917 * pte_offset_map() and we can do that through an atomic read 4918 * in C, which is what pmd_trans_unstable() provides. 4919 */ 4920 if (pmd_devmap_trans_unstable(vmf->pmd)) 4921 return 0; 4922 /* 4923 * A regular pmd is established and it can't morph into a huge 4924 * pmd from under us anymore at this point because we hold the 4925 * mmap_lock read mode and khugepaged takes it in write mode. 4926 * So now it's safe to run pte_offset_map(). 4927 */ 4928 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4929 vmf->orig_pte = *vmf->pte; 4930 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4931 4932 /* 4933 * some architectures can have larger ptes than wordsize, 4934 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4935 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4936 * accesses. The code below just needs a consistent view 4937 * for the ifs and we later double check anyway with the 4938 * ptl lock held. So here a barrier will do. 4939 */ 4940 barrier(); 4941 if (pte_none(vmf->orig_pte)) { 4942 pte_unmap(vmf->pte); 4943 vmf->pte = NULL; 4944 } 4945 } 4946 4947 if (!vmf->pte) 4948 return do_pte_missing(vmf); 4949 4950 if (!pte_present(vmf->orig_pte)) 4951 return do_swap_page(vmf); 4952 4953 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4954 return do_numa_page(vmf); 4955 4956 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4957 spin_lock(vmf->ptl); 4958 entry = vmf->orig_pte; 4959 if (unlikely(!pte_same(*vmf->pte, entry))) { 4960 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4961 goto unlock; 4962 } 4963 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4964 if (!pte_write(entry)) 4965 return do_wp_page(vmf); 4966 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4967 entry = pte_mkdirty(entry); 4968 } 4969 entry = pte_mkyoung(entry); 4970 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4971 vmf->flags & FAULT_FLAG_WRITE)) { 4972 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4973 } else { 4974 /* Skip spurious TLB flush for retried page fault */ 4975 if (vmf->flags & FAULT_FLAG_TRIED) 4976 goto unlock; 4977 /* 4978 * This is needed only for protection faults but the arch code 4979 * is not yet telling us if this is a protection fault or not. 4980 * This still avoids useless tlb flushes for .text page faults 4981 * with threads. 4982 */ 4983 if (vmf->flags & FAULT_FLAG_WRITE) 4984 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 4985 vmf->pte); 4986 } 4987 unlock: 4988 pte_unmap_unlock(vmf->pte, vmf->ptl); 4989 return 0; 4990 } 4991 4992 /* 4993 * By the time we get here, we already hold the mm semaphore 4994 * 4995 * The mmap_lock may have been released depending on flags and our 4996 * return value. See filemap_fault() and __folio_lock_or_retry(). 4997 */ 4998 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4999 unsigned long address, unsigned int flags) 5000 { 5001 struct vm_fault vmf = { 5002 .vma = vma, 5003 .address = address & PAGE_MASK, 5004 .real_address = address, 5005 .flags = flags, 5006 .pgoff = linear_page_index(vma, address), 5007 .gfp_mask = __get_fault_gfp_mask(vma), 5008 }; 5009 struct mm_struct *mm = vma->vm_mm; 5010 unsigned long vm_flags = vma->vm_flags; 5011 pgd_t *pgd; 5012 p4d_t *p4d; 5013 vm_fault_t ret; 5014 5015 pgd = pgd_offset(mm, address); 5016 p4d = p4d_alloc(mm, pgd, address); 5017 if (!p4d) 5018 return VM_FAULT_OOM; 5019 5020 vmf.pud = pud_alloc(mm, p4d, address); 5021 if (!vmf.pud) 5022 return VM_FAULT_OOM; 5023 retry_pud: 5024 if (pud_none(*vmf.pud) && 5025 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5026 ret = create_huge_pud(&vmf); 5027 if (!(ret & VM_FAULT_FALLBACK)) 5028 return ret; 5029 } else { 5030 pud_t orig_pud = *vmf.pud; 5031 5032 barrier(); 5033 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5034 5035 /* 5036 * TODO once we support anonymous PUDs: NUMA case and 5037 * FAULT_FLAG_UNSHARE handling. 5038 */ 5039 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5040 ret = wp_huge_pud(&vmf, orig_pud); 5041 if (!(ret & VM_FAULT_FALLBACK)) 5042 return ret; 5043 } else { 5044 huge_pud_set_accessed(&vmf, orig_pud); 5045 return 0; 5046 } 5047 } 5048 } 5049 5050 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5051 if (!vmf.pmd) 5052 return VM_FAULT_OOM; 5053 5054 /* Huge pud page fault raced with pmd_alloc? */ 5055 if (pud_trans_unstable(vmf.pud)) 5056 goto retry_pud; 5057 5058 if (pmd_none(*vmf.pmd) && 5059 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5060 ret = create_huge_pmd(&vmf); 5061 if (!(ret & VM_FAULT_FALLBACK)) 5062 return ret; 5063 } else { 5064 vmf.orig_pmd = *vmf.pmd; 5065 5066 barrier(); 5067 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5068 VM_BUG_ON(thp_migration_supported() && 5069 !is_pmd_migration_entry(vmf.orig_pmd)); 5070 if (is_pmd_migration_entry(vmf.orig_pmd)) 5071 pmd_migration_entry_wait(mm, vmf.pmd); 5072 return 0; 5073 } 5074 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5075 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5076 return do_huge_pmd_numa_page(&vmf); 5077 5078 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5079 !pmd_write(vmf.orig_pmd)) { 5080 ret = wp_huge_pmd(&vmf); 5081 if (!(ret & VM_FAULT_FALLBACK)) 5082 return ret; 5083 } else { 5084 huge_pmd_set_accessed(&vmf); 5085 return 0; 5086 } 5087 } 5088 } 5089 5090 return handle_pte_fault(&vmf); 5091 } 5092 5093 /** 5094 * mm_account_fault - Do page fault accounting 5095 * 5096 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5097 * of perf event counters, but we'll still do the per-task accounting to 5098 * the task who triggered this page fault. 5099 * @address: the faulted address. 5100 * @flags: the fault flags. 5101 * @ret: the fault retcode. 5102 * 5103 * This will take care of most of the page fault accounting. Meanwhile, it 5104 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5105 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5106 * still be in per-arch page fault handlers at the entry of page fault. 5107 */ 5108 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5109 unsigned long address, unsigned int flags, 5110 vm_fault_t ret) 5111 { 5112 bool major; 5113 5114 /* Incomplete faults will be accounted upon completion. */ 5115 if (ret & VM_FAULT_RETRY) 5116 return; 5117 5118 /* 5119 * To preserve the behavior of older kernels, PGFAULT counters record 5120 * both successful and failed faults, as opposed to perf counters, 5121 * which ignore failed cases. 5122 */ 5123 count_vm_event(PGFAULT); 5124 count_memcg_event_mm(mm, PGFAULT); 5125 5126 /* 5127 * Do not account for unsuccessful faults (e.g. when the address wasn't 5128 * valid). That includes arch_vma_access_permitted() failing before 5129 * reaching here. So this is not a "this many hardware page faults" 5130 * counter. We should use the hw profiling for that. 5131 */ 5132 if (ret & VM_FAULT_ERROR) 5133 return; 5134 5135 /* 5136 * We define the fault as a major fault when the final successful fault 5137 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5138 * handle it immediately previously). 5139 */ 5140 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5141 5142 if (major) 5143 current->maj_flt++; 5144 else 5145 current->min_flt++; 5146 5147 /* 5148 * If the fault is done for GUP, regs will be NULL. We only do the 5149 * accounting for the per thread fault counters who triggered the 5150 * fault, and we skip the perf event updates. 5151 */ 5152 if (!regs) 5153 return; 5154 5155 if (major) 5156 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5157 else 5158 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5159 } 5160 5161 #ifdef CONFIG_LRU_GEN 5162 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5163 { 5164 /* the LRU algorithm only applies to accesses with recency */ 5165 current->in_lru_fault = vma_has_recency(vma); 5166 } 5167 5168 static void lru_gen_exit_fault(void) 5169 { 5170 current->in_lru_fault = false; 5171 } 5172 #else 5173 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5174 { 5175 } 5176 5177 static void lru_gen_exit_fault(void) 5178 { 5179 } 5180 #endif /* CONFIG_LRU_GEN */ 5181 5182 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5183 unsigned int *flags) 5184 { 5185 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5186 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5187 return VM_FAULT_SIGSEGV; 5188 /* 5189 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5190 * just treat it like an ordinary read-fault otherwise. 5191 */ 5192 if (!is_cow_mapping(vma->vm_flags)) 5193 *flags &= ~FAULT_FLAG_UNSHARE; 5194 } else if (*flags & FAULT_FLAG_WRITE) { 5195 /* Write faults on read-only mappings are impossible ... */ 5196 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5197 return VM_FAULT_SIGSEGV; 5198 /* ... and FOLL_FORCE only applies to COW mappings. */ 5199 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5200 !is_cow_mapping(vma->vm_flags))) 5201 return VM_FAULT_SIGSEGV; 5202 } 5203 return 0; 5204 } 5205 5206 /* 5207 * By the time we get here, we already hold the mm semaphore 5208 * 5209 * The mmap_lock may have been released depending on flags and our 5210 * return value. See filemap_fault() and __folio_lock_or_retry(). 5211 */ 5212 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5213 unsigned int flags, struct pt_regs *regs) 5214 { 5215 /* If the fault handler drops the mmap_lock, vma may be freed */ 5216 struct mm_struct *mm = vma->vm_mm; 5217 vm_fault_t ret; 5218 5219 __set_current_state(TASK_RUNNING); 5220 5221 ret = sanitize_fault_flags(vma, &flags); 5222 if (ret) 5223 goto out; 5224 5225 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5226 flags & FAULT_FLAG_INSTRUCTION, 5227 flags & FAULT_FLAG_REMOTE)) { 5228 ret = VM_FAULT_SIGSEGV; 5229 goto out; 5230 } 5231 5232 /* 5233 * Enable the memcg OOM handling for faults triggered in user 5234 * space. Kernel faults are handled more gracefully. 5235 */ 5236 if (flags & FAULT_FLAG_USER) 5237 mem_cgroup_enter_user_fault(); 5238 5239 lru_gen_enter_fault(vma); 5240 5241 if (unlikely(is_vm_hugetlb_page(vma))) 5242 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5243 else 5244 ret = __handle_mm_fault(vma, address, flags); 5245 5246 lru_gen_exit_fault(); 5247 5248 if (flags & FAULT_FLAG_USER) { 5249 mem_cgroup_exit_user_fault(); 5250 /* 5251 * The task may have entered a memcg OOM situation but 5252 * if the allocation error was handled gracefully (no 5253 * VM_FAULT_OOM), there is no need to kill anything. 5254 * Just clean up the OOM state peacefully. 5255 */ 5256 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5257 mem_cgroup_oom_synchronize(false); 5258 } 5259 out: 5260 mm_account_fault(mm, regs, address, flags, ret); 5261 5262 return ret; 5263 } 5264 EXPORT_SYMBOL_GPL(handle_mm_fault); 5265 5266 #ifdef CONFIG_PER_VMA_LOCK 5267 /* 5268 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5269 * stable and not isolated. If the VMA is not found or is being modified the 5270 * function returns NULL. 5271 */ 5272 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5273 unsigned long address) 5274 { 5275 MA_STATE(mas, &mm->mm_mt, address, address); 5276 struct vm_area_struct *vma; 5277 5278 rcu_read_lock(); 5279 retry: 5280 vma = mas_walk(&mas); 5281 if (!vma) 5282 goto inval; 5283 5284 /* Only anonymous and tcp vmas are supported for now */ 5285 if (!vma_is_anonymous(vma) && !vma_is_tcp(vma)) 5286 goto inval; 5287 5288 /* find_mergeable_anon_vma uses adjacent vmas which are not locked */ 5289 if (!vma->anon_vma && !vma_is_tcp(vma)) 5290 goto inval; 5291 5292 if (!vma_start_read(vma)) 5293 goto inval; 5294 5295 /* 5296 * Due to the possibility of userfault handler dropping mmap_lock, avoid 5297 * it for now and fall back to page fault handling under mmap_lock. 5298 */ 5299 if (userfaultfd_armed(vma)) { 5300 vma_end_read(vma); 5301 goto inval; 5302 } 5303 5304 /* Check since vm_start/vm_end might change before we lock the VMA */ 5305 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 5306 vma_end_read(vma); 5307 goto inval; 5308 } 5309 5310 /* Check if the VMA got isolated after we found it */ 5311 if (vma->detached) { 5312 vma_end_read(vma); 5313 count_vm_vma_lock_event(VMA_LOCK_MISS); 5314 /* The area was replaced with another one */ 5315 goto retry; 5316 } 5317 5318 rcu_read_unlock(); 5319 return vma; 5320 inval: 5321 rcu_read_unlock(); 5322 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5323 return NULL; 5324 } 5325 #endif /* CONFIG_PER_VMA_LOCK */ 5326 5327 #ifndef __PAGETABLE_P4D_FOLDED 5328 /* 5329 * Allocate p4d page table. 5330 * We've already handled the fast-path in-line. 5331 */ 5332 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5333 { 5334 p4d_t *new = p4d_alloc_one(mm, address); 5335 if (!new) 5336 return -ENOMEM; 5337 5338 spin_lock(&mm->page_table_lock); 5339 if (pgd_present(*pgd)) { /* Another has populated it */ 5340 p4d_free(mm, new); 5341 } else { 5342 smp_wmb(); /* See comment in pmd_install() */ 5343 pgd_populate(mm, pgd, new); 5344 } 5345 spin_unlock(&mm->page_table_lock); 5346 return 0; 5347 } 5348 #endif /* __PAGETABLE_P4D_FOLDED */ 5349 5350 #ifndef __PAGETABLE_PUD_FOLDED 5351 /* 5352 * Allocate page upper directory. 5353 * We've already handled the fast-path in-line. 5354 */ 5355 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5356 { 5357 pud_t *new = pud_alloc_one(mm, address); 5358 if (!new) 5359 return -ENOMEM; 5360 5361 spin_lock(&mm->page_table_lock); 5362 if (!p4d_present(*p4d)) { 5363 mm_inc_nr_puds(mm); 5364 smp_wmb(); /* See comment in pmd_install() */ 5365 p4d_populate(mm, p4d, new); 5366 } else /* Another has populated it */ 5367 pud_free(mm, new); 5368 spin_unlock(&mm->page_table_lock); 5369 return 0; 5370 } 5371 #endif /* __PAGETABLE_PUD_FOLDED */ 5372 5373 #ifndef __PAGETABLE_PMD_FOLDED 5374 /* 5375 * Allocate page middle directory. 5376 * We've already handled the fast-path in-line. 5377 */ 5378 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5379 { 5380 spinlock_t *ptl; 5381 pmd_t *new = pmd_alloc_one(mm, address); 5382 if (!new) 5383 return -ENOMEM; 5384 5385 ptl = pud_lock(mm, pud); 5386 if (!pud_present(*pud)) { 5387 mm_inc_nr_pmds(mm); 5388 smp_wmb(); /* See comment in pmd_install() */ 5389 pud_populate(mm, pud, new); 5390 } else { /* Another has populated it */ 5391 pmd_free(mm, new); 5392 } 5393 spin_unlock(ptl); 5394 return 0; 5395 } 5396 #endif /* __PAGETABLE_PMD_FOLDED */ 5397 5398 /** 5399 * follow_pte - look up PTE at a user virtual address 5400 * @mm: the mm_struct of the target address space 5401 * @address: user virtual address 5402 * @ptepp: location to store found PTE 5403 * @ptlp: location to store the lock for the PTE 5404 * 5405 * On a successful return, the pointer to the PTE is stored in @ptepp; 5406 * the corresponding lock is taken and its location is stored in @ptlp. 5407 * The contents of the PTE are only stable until @ptlp is released; 5408 * any further use, if any, must be protected against invalidation 5409 * with MMU notifiers. 5410 * 5411 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5412 * should be taken for read. 5413 * 5414 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5415 * it is not a good general-purpose API. 5416 * 5417 * Return: zero on success, -ve otherwise. 5418 */ 5419 int follow_pte(struct mm_struct *mm, unsigned long address, 5420 pte_t **ptepp, spinlock_t **ptlp) 5421 { 5422 pgd_t *pgd; 5423 p4d_t *p4d; 5424 pud_t *pud; 5425 pmd_t *pmd; 5426 pte_t *ptep; 5427 5428 pgd = pgd_offset(mm, address); 5429 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5430 goto out; 5431 5432 p4d = p4d_offset(pgd, address); 5433 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5434 goto out; 5435 5436 pud = pud_offset(p4d, address); 5437 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5438 goto out; 5439 5440 pmd = pmd_offset(pud, address); 5441 VM_BUG_ON(pmd_trans_huge(*pmd)); 5442 5443 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 5444 goto out; 5445 5446 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5447 if (!pte_present(*ptep)) 5448 goto unlock; 5449 *ptepp = ptep; 5450 return 0; 5451 unlock: 5452 pte_unmap_unlock(ptep, *ptlp); 5453 out: 5454 return -EINVAL; 5455 } 5456 EXPORT_SYMBOL_GPL(follow_pte); 5457 5458 /** 5459 * follow_pfn - look up PFN at a user virtual address 5460 * @vma: memory mapping 5461 * @address: user virtual address 5462 * @pfn: location to store found PFN 5463 * 5464 * Only IO mappings and raw PFN mappings are allowed. 5465 * 5466 * This function does not allow the caller to read the permissions 5467 * of the PTE. Do not use it. 5468 * 5469 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5470 */ 5471 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5472 unsigned long *pfn) 5473 { 5474 int ret = -EINVAL; 5475 spinlock_t *ptl; 5476 pte_t *ptep; 5477 5478 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5479 return ret; 5480 5481 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5482 if (ret) 5483 return ret; 5484 *pfn = pte_pfn(*ptep); 5485 pte_unmap_unlock(ptep, ptl); 5486 return 0; 5487 } 5488 EXPORT_SYMBOL(follow_pfn); 5489 5490 #ifdef CONFIG_HAVE_IOREMAP_PROT 5491 int follow_phys(struct vm_area_struct *vma, 5492 unsigned long address, unsigned int flags, 5493 unsigned long *prot, resource_size_t *phys) 5494 { 5495 int ret = -EINVAL; 5496 pte_t *ptep, pte; 5497 spinlock_t *ptl; 5498 5499 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5500 goto out; 5501 5502 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5503 goto out; 5504 pte = *ptep; 5505 5506 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5507 goto unlock; 5508 5509 *prot = pgprot_val(pte_pgprot(pte)); 5510 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5511 5512 ret = 0; 5513 unlock: 5514 pte_unmap_unlock(ptep, ptl); 5515 out: 5516 return ret; 5517 } 5518 5519 /** 5520 * generic_access_phys - generic implementation for iomem mmap access 5521 * @vma: the vma to access 5522 * @addr: userspace address, not relative offset within @vma 5523 * @buf: buffer to read/write 5524 * @len: length of transfer 5525 * @write: set to FOLL_WRITE when writing, otherwise reading 5526 * 5527 * This is a generic implementation for &vm_operations_struct.access for an 5528 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5529 * not page based. 5530 */ 5531 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5532 void *buf, int len, int write) 5533 { 5534 resource_size_t phys_addr; 5535 unsigned long prot = 0; 5536 void __iomem *maddr; 5537 pte_t *ptep, pte; 5538 spinlock_t *ptl; 5539 int offset = offset_in_page(addr); 5540 int ret = -EINVAL; 5541 5542 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5543 return -EINVAL; 5544 5545 retry: 5546 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5547 return -EINVAL; 5548 pte = *ptep; 5549 pte_unmap_unlock(ptep, ptl); 5550 5551 prot = pgprot_val(pte_pgprot(pte)); 5552 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5553 5554 if ((write & FOLL_WRITE) && !pte_write(pte)) 5555 return -EINVAL; 5556 5557 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5558 if (!maddr) 5559 return -ENOMEM; 5560 5561 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5562 goto out_unmap; 5563 5564 if (!pte_same(pte, *ptep)) { 5565 pte_unmap_unlock(ptep, ptl); 5566 iounmap(maddr); 5567 5568 goto retry; 5569 } 5570 5571 if (write) 5572 memcpy_toio(maddr + offset, buf, len); 5573 else 5574 memcpy_fromio(buf, maddr + offset, len); 5575 ret = len; 5576 pte_unmap_unlock(ptep, ptl); 5577 out_unmap: 5578 iounmap(maddr); 5579 5580 return ret; 5581 } 5582 EXPORT_SYMBOL_GPL(generic_access_phys); 5583 #endif 5584 5585 /* 5586 * Access another process' address space as given in mm. 5587 */ 5588 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5589 int len, unsigned int gup_flags) 5590 { 5591 struct vm_area_struct *vma; 5592 void *old_buf = buf; 5593 int write = gup_flags & FOLL_WRITE; 5594 5595 if (mmap_read_lock_killable(mm)) 5596 return 0; 5597 5598 /* ignore errors, just check how much was successfully transferred */ 5599 while (len) { 5600 int bytes, ret, offset; 5601 void *maddr; 5602 struct page *page = NULL; 5603 5604 ret = get_user_pages_remote(mm, addr, 1, 5605 gup_flags, &page, &vma, NULL); 5606 if (ret <= 0) { 5607 #ifndef CONFIG_HAVE_IOREMAP_PROT 5608 break; 5609 #else 5610 /* 5611 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5612 * we can access using slightly different code. 5613 */ 5614 vma = vma_lookup(mm, addr); 5615 if (!vma) 5616 break; 5617 if (vma->vm_ops && vma->vm_ops->access) 5618 ret = vma->vm_ops->access(vma, addr, buf, 5619 len, write); 5620 if (ret <= 0) 5621 break; 5622 bytes = ret; 5623 #endif 5624 } else { 5625 bytes = len; 5626 offset = addr & (PAGE_SIZE-1); 5627 if (bytes > PAGE_SIZE-offset) 5628 bytes = PAGE_SIZE-offset; 5629 5630 maddr = kmap(page); 5631 if (write) { 5632 copy_to_user_page(vma, page, addr, 5633 maddr + offset, buf, bytes); 5634 set_page_dirty_lock(page); 5635 } else { 5636 copy_from_user_page(vma, page, addr, 5637 buf, maddr + offset, bytes); 5638 } 5639 kunmap(page); 5640 put_page(page); 5641 } 5642 len -= bytes; 5643 buf += bytes; 5644 addr += bytes; 5645 } 5646 mmap_read_unlock(mm); 5647 5648 return buf - old_buf; 5649 } 5650 5651 /** 5652 * access_remote_vm - access another process' address space 5653 * @mm: the mm_struct of the target address space 5654 * @addr: start address to access 5655 * @buf: source or destination buffer 5656 * @len: number of bytes to transfer 5657 * @gup_flags: flags modifying lookup behaviour 5658 * 5659 * The caller must hold a reference on @mm. 5660 * 5661 * Return: number of bytes copied from source to destination. 5662 */ 5663 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5664 void *buf, int len, unsigned int gup_flags) 5665 { 5666 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5667 } 5668 5669 /* 5670 * Access another process' address space. 5671 * Source/target buffer must be kernel space, 5672 * Do not walk the page table directly, use get_user_pages 5673 */ 5674 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5675 void *buf, int len, unsigned int gup_flags) 5676 { 5677 struct mm_struct *mm; 5678 int ret; 5679 5680 mm = get_task_mm(tsk); 5681 if (!mm) 5682 return 0; 5683 5684 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5685 5686 mmput(mm); 5687 5688 return ret; 5689 } 5690 EXPORT_SYMBOL_GPL(access_process_vm); 5691 5692 /* 5693 * Print the name of a VMA. 5694 */ 5695 void print_vma_addr(char *prefix, unsigned long ip) 5696 { 5697 struct mm_struct *mm = current->mm; 5698 struct vm_area_struct *vma; 5699 5700 /* 5701 * we might be running from an atomic context so we cannot sleep 5702 */ 5703 if (!mmap_read_trylock(mm)) 5704 return; 5705 5706 vma = find_vma(mm, ip); 5707 if (vma && vma->vm_file) { 5708 struct file *f = vma->vm_file; 5709 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5710 if (buf) { 5711 char *p; 5712 5713 p = file_path(f, buf, PAGE_SIZE); 5714 if (IS_ERR(p)) 5715 p = "?"; 5716 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5717 vma->vm_start, 5718 vma->vm_end - vma->vm_start); 5719 free_page((unsigned long)buf); 5720 } 5721 } 5722 mmap_read_unlock(mm); 5723 } 5724 5725 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5726 void __might_fault(const char *file, int line) 5727 { 5728 if (pagefault_disabled()) 5729 return; 5730 __might_sleep(file, line); 5731 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5732 if (current->mm) 5733 might_lock_read(¤t->mm->mmap_lock); 5734 #endif 5735 } 5736 EXPORT_SYMBOL(__might_fault); 5737 #endif 5738 5739 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5740 /* 5741 * Process all subpages of the specified huge page with the specified 5742 * operation. The target subpage will be processed last to keep its 5743 * cache lines hot. 5744 */ 5745 static inline int process_huge_page( 5746 unsigned long addr_hint, unsigned int pages_per_huge_page, 5747 int (*process_subpage)(unsigned long addr, int idx, void *arg), 5748 void *arg) 5749 { 5750 int i, n, base, l, ret; 5751 unsigned long addr = addr_hint & 5752 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5753 5754 /* Process target subpage last to keep its cache lines hot */ 5755 might_sleep(); 5756 n = (addr_hint - addr) / PAGE_SIZE; 5757 if (2 * n <= pages_per_huge_page) { 5758 /* If target subpage in first half of huge page */ 5759 base = 0; 5760 l = n; 5761 /* Process subpages at the end of huge page */ 5762 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5763 cond_resched(); 5764 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5765 if (ret) 5766 return ret; 5767 } 5768 } else { 5769 /* If target subpage in second half of huge page */ 5770 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5771 l = pages_per_huge_page - n; 5772 /* Process subpages at the begin of huge page */ 5773 for (i = 0; i < base; i++) { 5774 cond_resched(); 5775 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5776 if (ret) 5777 return ret; 5778 } 5779 } 5780 /* 5781 * Process remaining subpages in left-right-left-right pattern 5782 * towards the target subpage 5783 */ 5784 for (i = 0; i < l; i++) { 5785 int left_idx = base + i; 5786 int right_idx = base + 2 * l - 1 - i; 5787 5788 cond_resched(); 5789 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5790 if (ret) 5791 return ret; 5792 cond_resched(); 5793 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5794 if (ret) 5795 return ret; 5796 } 5797 return 0; 5798 } 5799 5800 static void clear_gigantic_page(struct page *page, 5801 unsigned long addr, 5802 unsigned int pages_per_huge_page) 5803 { 5804 int i; 5805 struct page *p; 5806 5807 might_sleep(); 5808 for (i = 0; i < pages_per_huge_page; i++) { 5809 p = nth_page(page, i); 5810 cond_resched(); 5811 clear_user_highpage(p, addr + i * PAGE_SIZE); 5812 } 5813 } 5814 5815 static int clear_subpage(unsigned long addr, int idx, void *arg) 5816 { 5817 struct page *page = arg; 5818 5819 clear_user_highpage(page + idx, addr); 5820 return 0; 5821 } 5822 5823 void clear_huge_page(struct page *page, 5824 unsigned long addr_hint, unsigned int pages_per_huge_page) 5825 { 5826 unsigned long addr = addr_hint & 5827 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5828 5829 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5830 clear_gigantic_page(page, addr, pages_per_huge_page); 5831 return; 5832 } 5833 5834 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5835 } 5836 5837 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 5838 unsigned long addr, 5839 struct vm_area_struct *vma, 5840 unsigned int pages_per_huge_page) 5841 { 5842 int i; 5843 struct page *dst_page; 5844 struct page *src_page; 5845 5846 for (i = 0; i < pages_per_huge_page; i++) { 5847 dst_page = folio_page(dst, i); 5848 src_page = folio_page(src, i); 5849 5850 cond_resched(); 5851 if (copy_mc_user_highpage(dst_page, src_page, 5852 addr + i*PAGE_SIZE, vma)) { 5853 memory_failure_queue(page_to_pfn(src_page), 0); 5854 return -EHWPOISON; 5855 } 5856 } 5857 return 0; 5858 } 5859 5860 struct copy_subpage_arg { 5861 struct page *dst; 5862 struct page *src; 5863 struct vm_area_struct *vma; 5864 }; 5865 5866 static int copy_subpage(unsigned long addr, int idx, void *arg) 5867 { 5868 struct copy_subpage_arg *copy_arg = arg; 5869 5870 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5871 addr, copy_arg->vma)) { 5872 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0); 5873 return -EHWPOISON; 5874 } 5875 return 0; 5876 } 5877 5878 int copy_user_large_folio(struct folio *dst, struct folio *src, 5879 unsigned long addr_hint, struct vm_area_struct *vma) 5880 { 5881 unsigned int pages_per_huge_page = folio_nr_pages(dst); 5882 unsigned long addr = addr_hint & 5883 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5884 struct copy_subpage_arg arg = { 5885 .dst = &dst->page, 5886 .src = &src->page, 5887 .vma = vma, 5888 }; 5889 5890 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 5891 return copy_user_gigantic_page(dst, src, addr, vma, 5892 pages_per_huge_page); 5893 5894 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5895 } 5896 5897 long copy_folio_from_user(struct folio *dst_folio, 5898 const void __user *usr_src, 5899 bool allow_pagefault) 5900 { 5901 void *kaddr; 5902 unsigned long i, rc = 0; 5903 unsigned int nr_pages = folio_nr_pages(dst_folio); 5904 unsigned long ret_val = nr_pages * PAGE_SIZE; 5905 struct page *subpage; 5906 5907 for (i = 0; i < nr_pages; i++) { 5908 subpage = folio_page(dst_folio, i); 5909 kaddr = kmap_local_page(subpage); 5910 if (!allow_pagefault) 5911 pagefault_disable(); 5912 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 5913 if (!allow_pagefault) 5914 pagefault_enable(); 5915 kunmap_local(kaddr); 5916 5917 ret_val -= (PAGE_SIZE - rc); 5918 if (rc) 5919 break; 5920 5921 flush_dcache_page(subpage); 5922 5923 cond_resched(); 5924 } 5925 return ret_val; 5926 } 5927 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5928 5929 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5930 5931 static struct kmem_cache *page_ptl_cachep; 5932 5933 void __init ptlock_cache_init(void) 5934 { 5935 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5936 SLAB_PANIC, NULL); 5937 } 5938 5939 bool ptlock_alloc(struct page *page) 5940 { 5941 spinlock_t *ptl; 5942 5943 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5944 if (!ptl) 5945 return false; 5946 page->ptl = ptl; 5947 return true; 5948 } 5949 5950 void ptlock_free(struct page *page) 5951 { 5952 kmem_cache_free(page_ptl_cachep, page->ptl); 5953 } 5954 #endif 5955