xref: /openbmc/linux/mm/memory.c (revision d4a96be65423296e42091b0b79973b8d446e7798)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76 
77 #include <trace/events/kmem.h>
78 
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85 
86 #include "pgalloc-track.h"
87 #include "internal.h"
88 
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92 
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97 
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101 
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111 
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120 					1;
121 #else
122 					2;
123 #endif
124 
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128 	/*
129 	 * Those arches which don't have hw access flag feature need to
130 	 * implement their own helper. By default, "true" means pagefault
131 	 * will be hit on old pte.
132 	 */
133 	return true;
134 }
135 #endif
136 
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
139 {
140 	/*
141 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 	 * some architectures, even if it's performed in hardware. By
143 	 * default, "false" means prefaulted entries will be 'young'.
144 	 */
145 	return false;
146 }
147 #endif
148 
149 static int __init disable_randmaps(char *s)
150 {
151 	randomize_va_space = 0;
152 	return 1;
153 }
154 __setup("norandmaps", disable_randmaps);
155 
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
158 
159 unsigned long highest_memmap_pfn __read_mostly;
160 
161 /*
162  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163  */
164 static int __init init_zero_pfn(void)
165 {
166 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 	return 0;
168 }
169 core_initcall(init_zero_pfn);
170 
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 {
173 	trace_rss_stat(mm, member, count);
174 }
175 
176 #if defined(SPLIT_RSS_COUNTING)
177 
178 void sync_mm_rss(struct mm_struct *mm)
179 {
180 	int i;
181 
182 	for (i = 0; i < NR_MM_COUNTERS; i++) {
183 		if (current->rss_stat.count[i]) {
184 			add_mm_counter(mm, i, current->rss_stat.count[i]);
185 			current->rss_stat.count[i] = 0;
186 		}
187 	}
188 	current->rss_stat.events = 0;
189 }
190 
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 {
193 	struct task_struct *task = current;
194 
195 	if (likely(task->mm == mm))
196 		task->rss_stat.count[member] += val;
197 	else
198 		add_mm_counter(mm, member, val);
199 }
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202 
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH	(64)
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 	if (unlikely(task != current))
208 		return;
209 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210 		sync_mm_rss(task->mm);
211 }
212 #else /* SPLIT_RSS_COUNTING */
213 
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216 
217 static void check_sync_rss_stat(struct task_struct *task)
218 {
219 }
220 
221 #endif /* SPLIT_RSS_COUNTING */
222 
223 /*
224  * Note: this doesn't free the actual pages themselves. That
225  * has been handled earlier when unmapping all the memory regions.
226  */
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 			   unsigned long addr)
229 {
230 	pgtable_t token = pmd_pgtable(*pmd);
231 	pmd_clear(pmd);
232 	pte_free_tlb(tlb, token, addr);
233 	mm_dec_nr_ptes(tlb->mm);
234 }
235 
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 				unsigned long addr, unsigned long end,
238 				unsigned long floor, unsigned long ceiling)
239 {
240 	pmd_t *pmd;
241 	unsigned long next;
242 	unsigned long start;
243 
244 	start = addr;
245 	pmd = pmd_offset(pud, addr);
246 	do {
247 		next = pmd_addr_end(addr, end);
248 		if (pmd_none_or_clear_bad(pmd))
249 			continue;
250 		free_pte_range(tlb, pmd, addr);
251 	} while (pmd++, addr = next, addr != end);
252 
253 	start &= PUD_MASK;
254 	if (start < floor)
255 		return;
256 	if (ceiling) {
257 		ceiling &= PUD_MASK;
258 		if (!ceiling)
259 			return;
260 	}
261 	if (end - 1 > ceiling - 1)
262 		return;
263 
264 	pmd = pmd_offset(pud, start);
265 	pud_clear(pud);
266 	pmd_free_tlb(tlb, pmd, start);
267 	mm_dec_nr_pmds(tlb->mm);
268 }
269 
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271 				unsigned long addr, unsigned long end,
272 				unsigned long floor, unsigned long ceiling)
273 {
274 	pud_t *pud;
275 	unsigned long next;
276 	unsigned long start;
277 
278 	start = addr;
279 	pud = pud_offset(p4d, addr);
280 	do {
281 		next = pud_addr_end(addr, end);
282 		if (pud_none_or_clear_bad(pud))
283 			continue;
284 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285 	} while (pud++, addr = next, addr != end);
286 
287 	start &= P4D_MASK;
288 	if (start < floor)
289 		return;
290 	if (ceiling) {
291 		ceiling &= P4D_MASK;
292 		if (!ceiling)
293 			return;
294 	}
295 	if (end - 1 > ceiling - 1)
296 		return;
297 
298 	pud = pud_offset(p4d, start);
299 	p4d_clear(p4d);
300 	pud_free_tlb(tlb, pud, start);
301 	mm_dec_nr_puds(tlb->mm);
302 }
303 
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 				unsigned long addr, unsigned long end,
306 				unsigned long floor, unsigned long ceiling)
307 {
308 	p4d_t *p4d;
309 	unsigned long next;
310 	unsigned long start;
311 
312 	start = addr;
313 	p4d = p4d_offset(pgd, addr);
314 	do {
315 		next = p4d_addr_end(addr, end);
316 		if (p4d_none_or_clear_bad(p4d))
317 			continue;
318 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 	} while (p4d++, addr = next, addr != end);
320 
321 	start &= PGDIR_MASK;
322 	if (start < floor)
323 		return;
324 	if (ceiling) {
325 		ceiling &= PGDIR_MASK;
326 		if (!ceiling)
327 			return;
328 	}
329 	if (end - 1 > ceiling - 1)
330 		return;
331 
332 	p4d = p4d_offset(pgd, start);
333 	pgd_clear(pgd);
334 	p4d_free_tlb(tlb, p4d, start);
335 }
336 
337 /*
338  * This function frees user-level page tables of a process.
339  */
340 void free_pgd_range(struct mmu_gather *tlb,
341 			unsigned long addr, unsigned long end,
342 			unsigned long floor, unsigned long ceiling)
343 {
344 	pgd_t *pgd;
345 	unsigned long next;
346 
347 	/*
348 	 * The next few lines have given us lots of grief...
349 	 *
350 	 * Why are we testing PMD* at this top level?  Because often
351 	 * there will be no work to do at all, and we'd prefer not to
352 	 * go all the way down to the bottom just to discover that.
353 	 *
354 	 * Why all these "- 1"s?  Because 0 represents both the bottom
355 	 * of the address space and the top of it (using -1 for the
356 	 * top wouldn't help much: the masks would do the wrong thing).
357 	 * The rule is that addr 0 and floor 0 refer to the bottom of
358 	 * the address space, but end 0 and ceiling 0 refer to the top
359 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 	 * that end 0 case should be mythical).
361 	 *
362 	 * Wherever addr is brought up or ceiling brought down, we must
363 	 * be careful to reject "the opposite 0" before it confuses the
364 	 * subsequent tests.  But what about where end is brought down
365 	 * by PMD_SIZE below? no, end can't go down to 0 there.
366 	 *
367 	 * Whereas we round start (addr) and ceiling down, by different
368 	 * masks at different levels, in order to test whether a table
369 	 * now has no other vmas using it, so can be freed, we don't
370 	 * bother to round floor or end up - the tests don't need that.
371 	 */
372 
373 	addr &= PMD_MASK;
374 	if (addr < floor) {
375 		addr += PMD_SIZE;
376 		if (!addr)
377 			return;
378 	}
379 	if (ceiling) {
380 		ceiling &= PMD_MASK;
381 		if (!ceiling)
382 			return;
383 	}
384 	if (end - 1 > ceiling - 1)
385 		end -= PMD_SIZE;
386 	if (addr > end - 1)
387 		return;
388 	/*
389 	 * We add page table cache pages with PAGE_SIZE,
390 	 * (see pte_free_tlb()), flush the tlb if we need
391 	 */
392 	tlb_change_page_size(tlb, PAGE_SIZE);
393 	pgd = pgd_offset(tlb->mm, addr);
394 	do {
395 		next = pgd_addr_end(addr, end);
396 		if (pgd_none_or_clear_bad(pgd))
397 			continue;
398 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399 	} while (pgd++, addr = next, addr != end);
400 }
401 
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403 		unsigned long floor, unsigned long ceiling)
404 {
405 	while (vma) {
406 		struct vm_area_struct *next = vma->vm_next;
407 		unsigned long addr = vma->vm_start;
408 
409 		/*
410 		 * Hide vma from rmap and truncate_pagecache before freeing
411 		 * pgtables
412 		 */
413 		unlink_anon_vmas(vma);
414 		unlink_file_vma(vma);
415 
416 		if (is_vm_hugetlb_page(vma)) {
417 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418 				floor, next ? next->vm_start : ceiling);
419 		} else {
420 			/*
421 			 * Optimization: gather nearby vmas into one call down
422 			 */
423 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424 			       && !is_vm_hugetlb_page(next)) {
425 				vma = next;
426 				next = vma->vm_next;
427 				unlink_anon_vmas(vma);
428 				unlink_file_vma(vma);
429 			}
430 			free_pgd_range(tlb, addr, vma->vm_end,
431 				floor, next ? next->vm_start : ceiling);
432 		}
433 		vma = next;
434 	}
435 }
436 
437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 {
439 	spinlock_t *ptl;
440 	pgtable_t new = pte_alloc_one(mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	/*
445 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
446 	 * visible before the pte is made visible to other CPUs by being
447 	 * put into page tables.
448 	 *
449 	 * The other side of the story is the pointer chasing in the page
450 	 * table walking code (when walking the page table without locking;
451 	 * ie. most of the time). Fortunately, these data accesses consist
452 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
453 	 * being the notable exception) will already guarantee loads are
454 	 * seen in-order. See the alpha page table accessors for the
455 	 * smp_rmb() barriers in page table walking code.
456 	 */
457 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
458 
459 	ptl = pmd_lock(mm, pmd);
460 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
461 		mm_inc_nr_ptes(mm);
462 		pmd_populate(mm, pmd, new);
463 		new = NULL;
464 	}
465 	spin_unlock(ptl);
466 	if (new)
467 		pte_free(mm, new);
468 	return 0;
469 }
470 
471 int __pte_alloc_kernel(pmd_t *pmd)
472 {
473 	pte_t *new = pte_alloc_one_kernel(&init_mm);
474 	if (!new)
475 		return -ENOMEM;
476 
477 	smp_wmb(); /* See comment in __pte_alloc */
478 
479 	spin_lock(&init_mm.page_table_lock);
480 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
481 		pmd_populate_kernel(&init_mm, pmd, new);
482 		new = NULL;
483 	}
484 	spin_unlock(&init_mm.page_table_lock);
485 	if (new)
486 		pte_free_kernel(&init_mm, new);
487 	return 0;
488 }
489 
490 static inline void init_rss_vec(int *rss)
491 {
492 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
493 }
494 
495 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
496 {
497 	int i;
498 
499 	if (current->mm == mm)
500 		sync_mm_rss(mm);
501 	for (i = 0; i < NR_MM_COUNTERS; i++)
502 		if (rss[i])
503 			add_mm_counter(mm, i, rss[i]);
504 }
505 
506 /*
507  * This function is called to print an error when a bad pte
508  * is found. For example, we might have a PFN-mapped pte in
509  * a region that doesn't allow it.
510  *
511  * The calling function must still handle the error.
512  */
513 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
514 			  pte_t pte, struct page *page)
515 {
516 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
517 	p4d_t *p4d = p4d_offset(pgd, addr);
518 	pud_t *pud = pud_offset(p4d, addr);
519 	pmd_t *pmd = pmd_offset(pud, addr);
520 	struct address_space *mapping;
521 	pgoff_t index;
522 	static unsigned long resume;
523 	static unsigned long nr_shown;
524 	static unsigned long nr_unshown;
525 
526 	/*
527 	 * Allow a burst of 60 reports, then keep quiet for that minute;
528 	 * or allow a steady drip of one report per second.
529 	 */
530 	if (nr_shown == 60) {
531 		if (time_before(jiffies, resume)) {
532 			nr_unshown++;
533 			return;
534 		}
535 		if (nr_unshown) {
536 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
537 				 nr_unshown);
538 			nr_unshown = 0;
539 		}
540 		nr_shown = 0;
541 	}
542 	if (nr_shown++ == 0)
543 		resume = jiffies + 60 * HZ;
544 
545 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
546 	index = linear_page_index(vma, addr);
547 
548 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
549 		 current->comm,
550 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
551 	if (page)
552 		dump_page(page, "bad pte");
553 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
554 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
555 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
556 		 vma->vm_file,
557 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
558 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
559 		 mapping ? mapping->a_ops->readpage : NULL);
560 	dump_stack();
561 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
562 }
563 
564 /*
565  * vm_normal_page -- This function gets the "struct page" associated with a pte.
566  *
567  * "Special" mappings do not wish to be associated with a "struct page" (either
568  * it doesn't exist, or it exists but they don't want to touch it). In this
569  * case, NULL is returned here. "Normal" mappings do have a struct page.
570  *
571  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
572  * pte bit, in which case this function is trivial. Secondly, an architecture
573  * may not have a spare pte bit, which requires a more complicated scheme,
574  * described below.
575  *
576  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
577  * special mapping (even if there are underlying and valid "struct pages").
578  * COWed pages of a VM_PFNMAP are always normal.
579  *
580  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
581  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
582  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
583  * mapping will always honor the rule
584  *
585  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
586  *
587  * And for normal mappings this is false.
588  *
589  * This restricts such mappings to be a linear translation from virtual address
590  * to pfn. To get around this restriction, we allow arbitrary mappings so long
591  * as the vma is not a COW mapping; in that case, we know that all ptes are
592  * special (because none can have been COWed).
593  *
594  *
595  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
596  *
597  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
598  * page" backing, however the difference is that _all_ pages with a struct
599  * page (that is, those where pfn_valid is true) are refcounted and considered
600  * normal pages by the VM. The disadvantage is that pages are refcounted
601  * (which can be slower and simply not an option for some PFNMAP users). The
602  * advantage is that we don't have to follow the strict linearity rule of
603  * PFNMAP mappings in order to support COWable mappings.
604  *
605  */
606 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
607 			    pte_t pte)
608 {
609 	unsigned long pfn = pte_pfn(pte);
610 
611 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
612 		if (likely(!pte_special(pte)))
613 			goto check_pfn;
614 		if (vma->vm_ops && vma->vm_ops->find_special_page)
615 			return vma->vm_ops->find_special_page(vma, addr);
616 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
617 			return NULL;
618 		if (is_zero_pfn(pfn))
619 			return NULL;
620 		if (pte_devmap(pte))
621 			return NULL;
622 
623 		print_bad_pte(vma, addr, pte, NULL);
624 		return NULL;
625 	}
626 
627 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
628 
629 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
630 		if (vma->vm_flags & VM_MIXEDMAP) {
631 			if (!pfn_valid(pfn))
632 				return NULL;
633 			goto out;
634 		} else {
635 			unsigned long off;
636 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
637 			if (pfn == vma->vm_pgoff + off)
638 				return NULL;
639 			if (!is_cow_mapping(vma->vm_flags))
640 				return NULL;
641 		}
642 	}
643 
644 	if (is_zero_pfn(pfn))
645 		return NULL;
646 
647 check_pfn:
648 	if (unlikely(pfn > highest_memmap_pfn)) {
649 		print_bad_pte(vma, addr, pte, NULL);
650 		return NULL;
651 	}
652 
653 	/*
654 	 * NOTE! We still have PageReserved() pages in the page tables.
655 	 * eg. VDSO mappings can cause them to exist.
656 	 */
657 out:
658 	return pfn_to_page(pfn);
659 }
660 
661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
662 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
663 				pmd_t pmd)
664 {
665 	unsigned long pfn = pmd_pfn(pmd);
666 
667 	/*
668 	 * There is no pmd_special() but there may be special pmds, e.g.
669 	 * in a direct-access (dax) mapping, so let's just replicate the
670 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
671 	 */
672 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
673 		if (vma->vm_flags & VM_MIXEDMAP) {
674 			if (!pfn_valid(pfn))
675 				return NULL;
676 			goto out;
677 		} else {
678 			unsigned long off;
679 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
680 			if (pfn == vma->vm_pgoff + off)
681 				return NULL;
682 			if (!is_cow_mapping(vma->vm_flags))
683 				return NULL;
684 		}
685 	}
686 
687 	if (pmd_devmap(pmd))
688 		return NULL;
689 	if (is_huge_zero_pmd(pmd))
690 		return NULL;
691 	if (unlikely(pfn > highest_memmap_pfn))
692 		return NULL;
693 
694 	/*
695 	 * NOTE! We still have PageReserved() pages in the page tables.
696 	 * eg. VDSO mappings can cause them to exist.
697 	 */
698 out:
699 	return pfn_to_page(pfn);
700 }
701 #endif
702 
703 /*
704  * copy one vm_area from one task to the other. Assumes the page tables
705  * already present in the new task to be cleared in the whole range
706  * covered by this vma.
707  */
708 
709 static unsigned long
710 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
711 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
712 		unsigned long addr, int *rss)
713 {
714 	unsigned long vm_flags = vma->vm_flags;
715 	pte_t pte = *src_pte;
716 	struct page *page;
717 	swp_entry_t entry = pte_to_swp_entry(pte);
718 
719 	if (likely(!non_swap_entry(entry))) {
720 		if (swap_duplicate(entry) < 0)
721 			return entry.val;
722 
723 		/* make sure dst_mm is on swapoff's mmlist. */
724 		if (unlikely(list_empty(&dst_mm->mmlist))) {
725 			spin_lock(&mmlist_lock);
726 			if (list_empty(&dst_mm->mmlist))
727 				list_add(&dst_mm->mmlist,
728 						&src_mm->mmlist);
729 			spin_unlock(&mmlist_lock);
730 		}
731 		rss[MM_SWAPENTS]++;
732 	} else if (is_migration_entry(entry)) {
733 		page = migration_entry_to_page(entry);
734 
735 		rss[mm_counter(page)]++;
736 
737 		if (is_write_migration_entry(entry) &&
738 				is_cow_mapping(vm_flags)) {
739 			/*
740 			 * COW mappings require pages in both
741 			 * parent and child to be set to read.
742 			 */
743 			make_migration_entry_read(&entry);
744 			pte = swp_entry_to_pte(entry);
745 			if (pte_swp_soft_dirty(*src_pte))
746 				pte = pte_swp_mksoft_dirty(pte);
747 			if (pte_swp_uffd_wp(*src_pte))
748 				pte = pte_swp_mkuffd_wp(pte);
749 			set_pte_at(src_mm, addr, src_pte, pte);
750 		}
751 	} else if (is_device_private_entry(entry)) {
752 		page = device_private_entry_to_page(entry);
753 
754 		/*
755 		 * Update rss count even for unaddressable pages, as
756 		 * they should treated just like normal pages in this
757 		 * respect.
758 		 *
759 		 * We will likely want to have some new rss counters
760 		 * for unaddressable pages, at some point. But for now
761 		 * keep things as they are.
762 		 */
763 		get_page(page);
764 		rss[mm_counter(page)]++;
765 		page_dup_rmap(page, false);
766 
767 		/*
768 		 * We do not preserve soft-dirty information, because so
769 		 * far, checkpoint/restore is the only feature that
770 		 * requires that. And checkpoint/restore does not work
771 		 * when a device driver is involved (you cannot easily
772 		 * save and restore device driver state).
773 		 */
774 		if (is_write_device_private_entry(entry) &&
775 		    is_cow_mapping(vm_flags)) {
776 			make_device_private_entry_read(&entry);
777 			pte = swp_entry_to_pte(entry);
778 			if (pte_swp_uffd_wp(*src_pte))
779 				pte = pte_swp_mkuffd_wp(pte);
780 			set_pte_at(src_mm, addr, src_pte, pte);
781 		}
782 	}
783 	set_pte_at(dst_mm, addr, dst_pte, pte);
784 	return 0;
785 }
786 
787 /*
788  * Copy a present and normal page if necessary.
789  *
790  * NOTE! The usual case is that this doesn't need to do
791  * anything, and can just return a positive value. That
792  * will let the caller know that it can just increase
793  * the page refcount and re-use the pte the traditional
794  * way.
795  *
796  * But _if_ we need to copy it because it needs to be
797  * pinned in the parent (and the child should get its own
798  * copy rather than just a reference to the same page),
799  * we'll do that here and return zero to let the caller
800  * know we're done.
801  *
802  * And if we need a pre-allocated page but don't yet have
803  * one, return a negative error to let the preallocation
804  * code know so that it can do so outside the page table
805  * lock.
806  */
807 static inline int
808 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
809 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
810 		  struct page **prealloc, pte_t pte, struct page *page)
811 {
812 	struct mm_struct *src_mm = src_vma->vm_mm;
813 	struct page *new_page;
814 
815 	if (!is_cow_mapping(src_vma->vm_flags))
816 		return 1;
817 
818 	/*
819 	 * What we want to do is to check whether this page may
820 	 * have been pinned by the parent process.  If so,
821 	 * instead of wrprotect the pte on both sides, we copy
822 	 * the page immediately so that we'll always guarantee
823 	 * the pinned page won't be randomly replaced in the
824 	 * future.
825 	 *
826 	 * The page pinning checks are just "has this mm ever
827 	 * seen pinning", along with the (inexact) check of
828 	 * the page count. That might give false positives for
829 	 * for pinning, but it will work correctly.
830 	 */
831 	if (likely(!atomic_read(&src_mm->has_pinned)))
832 		return 1;
833 	if (likely(!page_maybe_dma_pinned(page)))
834 		return 1;
835 
836 	new_page = *prealloc;
837 	if (!new_page)
838 		return -EAGAIN;
839 
840 	/*
841 	 * We have a prealloc page, all good!  Take it
842 	 * over and copy the page & arm it.
843 	 */
844 	*prealloc = NULL;
845 	copy_user_highpage(new_page, page, addr, src_vma);
846 	__SetPageUptodate(new_page);
847 	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
848 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
849 	rss[mm_counter(new_page)]++;
850 
851 	/* All done, just insert the new page copy in the child */
852 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
853 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
854 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
855 	return 0;
856 }
857 
858 /*
859  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
860  * is required to copy this pte.
861  */
862 static inline int
863 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
864 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
865 		 struct page **prealloc)
866 {
867 	struct mm_struct *src_mm = src_vma->vm_mm;
868 	unsigned long vm_flags = src_vma->vm_flags;
869 	pte_t pte = *src_pte;
870 	struct page *page;
871 
872 	page = vm_normal_page(src_vma, addr, pte);
873 	if (page) {
874 		int retval;
875 
876 		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
877 					   addr, rss, prealloc, pte, page);
878 		if (retval <= 0)
879 			return retval;
880 
881 		get_page(page);
882 		page_dup_rmap(page, false);
883 		rss[mm_counter(page)]++;
884 	}
885 
886 	/*
887 	 * If it's a COW mapping, write protect it both
888 	 * in the parent and the child
889 	 */
890 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
891 		ptep_set_wrprotect(src_mm, addr, src_pte);
892 		pte = pte_wrprotect(pte);
893 	}
894 
895 	/*
896 	 * If it's a shared mapping, mark it clean in
897 	 * the child
898 	 */
899 	if (vm_flags & VM_SHARED)
900 		pte = pte_mkclean(pte);
901 	pte = pte_mkold(pte);
902 
903 	/*
904 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
905 	 * does not have the VM_UFFD_WP, which means that the uffd
906 	 * fork event is not enabled.
907 	 */
908 	if (!(vm_flags & VM_UFFD_WP))
909 		pte = pte_clear_uffd_wp(pte);
910 
911 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
912 	return 0;
913 }
914 
915 static inline struct page *
916 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
917 		   unsigned long addr)
918 {
919 	struct page *new_page;
920 
921 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
922 	if (!new_page)
923 		return NULL;
924 
925 	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
926 		put_page(new_page);
927 		return NULL;
928 	}
929 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
930 
931 	return new_page;
932 }
933 
934 static int
935 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
936 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
937 	       unsigned long end)
938 {
939 	struct mm_struct *dst_mm = dst_vma->vm_mm;
940 	struct mm_struct *src_mm = src_vma->vm_mm;
941 	pte_t *orig_src_pte, *orig_dst_pte;
942 	pte_t *src_pte, *dst_pte;
943 	spinlock_t *src_ptl, *dst_ptl;
944 	int progress, ret = 0;
945 	int rss[NR_MM_COUNTERS];
946 	swp_entry_t entry = (swp_entry_t){0};
947 	struct page *prealloc = NULL;
948 
949 again:
950 	progress = 0;
951 	init_rss_vec(rss);
952 
953 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
954 	if (!dst_pte) {
955 		ret = -ENOMEM;
956 		goto out;
957 	}
958 	src_pte = pte_offset_map(src_pmd, addr);
959 	src_ptl = pte_lockptr(src_mm, src_pmd);
960 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
961 	orig_src_pte = src_pte;
962 	orig_dst_pte = dst_pte;
963 	arch_enter_lazy_mmu_mode();
964 
965 	do {
966 		/*
967 		 * We are holding two locks at this point - either of them
968 		 * could generate latencies in another task on another CPU.
969 		 */
970 		if (progress >= 32) {
971 			progress = 0;
972 			if (need_resched() ||
973 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
974 				break;
975 		}
976 		if (pte_none(*src_pte)) {
977 			progress++;
978 			continue;
979 		}
980 		if (unlikely(!pte_present(*src_pte))) {
981 			entry.val = copy_nonpresent_pte(dst_mm, src_mm,
982 							dst_pte, src_pte,
983 							src_vma, addr, rss);
984 			if (entry.val)
985 				break;
986 			progress += 8;
987 			continue;
988 		}
989 		/* copy_present_pte() will clear `*prealloc' if consumed */
990 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
991 				       addr, rss, &prealloc);
992 		/*
993 		 * If we need a pre-allocated page for this pte, drop the
994 		 * locks, allocate, and try again.
995 		 */
996 		if (unlikely(ret == -EAGAIN))
997 			break;
998 		if (unlikely(prealloc)) {
999 			/*
1000 			 * pre-alloc page cannot be reused by next time so as
1001 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1002 			 * will allocate page according to address).  This
1003 			 * could only happen if one pinned pte changed.
1004 			 */
1005 			put_page(prealloc);
1006 			prealloc = NULL;
1007 		}
1008 		progress += 8;
1009 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1010 
1011 	arch_leave_lazy_mmu_mode();
1012 	spin_unlock(src_ptl);
1013 	pte_unmap(orig_src_pte);
1014 	add_mm_rss_vec(dst_mm, rss);
1015 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1016 	cond_resched();
1017 
1018 	if (entry.val) {
1019 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1020 			ret = -ENOMEM;
1021 			goto out;
1022 		}
1023 		entry.val = 0;
1024 	} else if (ret) {
1025 		WARN_ON_ONCE(ret != -EAGAIN);
1026 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1027 		if (!prealloc)
1028 			return -ENOMEM;
1029 		/* We've captured and resolved the error. Reset, try again. */
1030 		ret = 0;
1031 	}
1032 	if (addr != end)
1033 		goto again;
1034 out:
1035 	if (unlikely(prealloc))
1036 		put_page(prealloc);
1037 	return ret;
1038 }
1039 
1040 static inline int
1041 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1042 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1043 	       unsigned long end)
1044 {
1045 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1046 	struct mm_struct *src_mm = src_vma->vm_mm;
1047 	pmd_t *src_pmd, *dst_pmd;
1048 	unsigned long next;
1049 
1050 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1051 	if (!dst_pmd)
1052 		return -ENOMEM;
1053 	src_pmd = pmd_offset(src_pud, addr);
1054 	do {
1055 		next = pmd_addr_end(addr, end);
1056 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1057 			|| pmd_devmap(*src_pmd)) {
1058 			int err;
1059 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1060 			err = copy_huge_pmd(dst_mm, src_mm,
1061 					    dst_pmd, src_pmd, addr, src_vma);
1062 			if (err == -ENOMEM)
1063 				return -ENOMEM;
1064 			if (!err)
1065 				continue;
1066 			/* fall through */
1067 		}
1068 		if (pmd_none_or_clear_bad(src_pmd))
1069 			continue;
1070 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1071 				   addr, next))
1072 			return -ENOMEM;
1073 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1074 	return 0;
1075 }
1076 
1077 static inline int
1078 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1079 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1080 	       unsigned long end)
1081 {
1082 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1083 	struct mm_struct *src_mm = src_vma->vm_mm;
1084 	pud_t *src_pud, *dst_pud;
1085 	unsigned long next;
1086 
1087 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1088 	if (!dst_pud)
1089 		return -ENOMEM;
1090 	src_pud = pud_offset(src_p4d, addr);
1091 	do {
1092 		next = pud_addr_end(addr, end);
1093 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1094 			int err;
1095 
1096 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1097 			err = copy_huge_pud(dst_mm, src_mm,
1098 					    dst_pud, src_pud, addr, src_vma);
1099 			if (err == -ENOMEM)
1100 				return -ENOMEM;
1101 			if (!err)
1102 				continue;
1103 			/* fall through */
1104 		}
1105 		if (pud_none_or_clear_bad(src_pud))
1106 			continue;
1107 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1108 				   addr, next))
1109 			return -ENOMEM;
1110 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1111 	return 0;
1112 }
1113 
1114 static inline int
1115 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1116 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1117 	       unsigned long end)
1118 {
1119 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1120 	p4d_t *src_p4d, *dst_p4d;
1121 	unsigned long next;
1122 
1123 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1124 	if (!dst_p4d)
1125 		return -ENOMEM;
1126 	src_p4d = p4d_offset(src_pgd, addr);
1127 	do {
1128 		next = p4d_addr_end(addr, end);
1129 		if (p4d_none_or_clear_bad(src_p4d))
1130 			continue;
1131 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1132 				   addr, next))
1133 			return -ENOMEM;
1134 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1135 	return 0;
1136 }
1137 
1138 int
1139 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1140 {
1141 	pgd_t *src_pgd, *dst_pgd;
1142 	unsigned long next;
1143 	unsigned long addr = src_vma->vm_start;
1144 	unsigned long end = src_vma->vm_end;
1145 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1146 	struct mm_struct *src_mm = src_vma->vm_mm;
1147 	struct mmu_notifier_range range;
1148 	bool is_cow;
1149 	int ret;
1150 
1151 	/*
1152 	 * Don't copy ptes where a page fault will fill them correctly.
1153 	 * Fork becomes much lighter when there are big shared or private
1154 	 * readonly mappings. The tradeoff is that copy_page_range is more
1155 	 * efficient than faulting.
1156 	 */
1157 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1158 	    !src_vma->anon_vma)
1159 		return 0;
1160 
1161 	if (is_vm_hugetlb_page(src_vma))
1162 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1163 
1164 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1165 		/*
1166 		 * We do not free on error cases below as remove_vma
1167 		 * gets called on error from higher level routine
1168 		 */
1169 		ret = track_pfn_copy(src_vma);
1170 		if (ret)
1171 			return ret;
1172 	}
1173 
1174 	/*
1175 	 * We need to invalidate the secondary MMU mappings only when
1176 	 * there could be a permission downgrade on the ptes of the
1177 	 * parent mm. And a permission downgrade will only happen if
1178 	 * is_cow_mapping() returns true.
1179 	 */
1180 	is_cow = is_cow_mapping(src_vma->vm_flags);
1181 
1182 	if (is_cow) {
1183 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1184 					0, src_vma, src_mm, addr, end);
1185 		mmu_notifier_invalidate_range_start(&range);
1186 		/*
1187 		 * Disabling preemption is not needed for the write side, as
1188 		 * the read side doesn't spin, but goes to the mmap_lock.
1189 		 *
1190 		 * Use the raw variant of the seqcount_t write API to avoid
1191 		 * lockdep complaining about preemptibility.
1192 		 */
1193 		mmap_assert_write_locked(src_mm);
1194 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1195 	}
1196 
1197 	ret = 0;
1198 	dst_pgd = pgd_offset(dst_mm, addr);
1199 	src_pgd = pgd_offset(src_mm, addr);
1200 	do {
1201 		next = pgd_addr_end(addr, end);
1202 		if (pgd_none_or_clear_bad(src_pgd))
1203 			continue;
1204 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1205 					    addr, next))) {
1206 			ret = -ENOMEM;
1207 			break;
1208 		}
1209 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1210 
1211 	if (is_cow) {
1212 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1213 		mmu_notifier_invalidate_range_end(&range);
1214 	}
1215 	return ret;
1216 }
1217 
1218 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1219 				struct vm_area_struct *vma, pmd_t *pmd,
1220 				unsigned long addr, unsigned long end,
1221 				struct zap_details *details)
1222 {
1223 	struct mm_struct *mm = tlb->mm;
1224 	int force_flush = 0;
1225 	int rss[NR_MM_COUNTERS];
1226 	spinlock_t *ptl;
1227 	pte_t *start_pte;
1228 	pte_t *pte;
1229 	swp_entry_t entry;
1230 
1231 	tlb_change_page_size(tlb, PAGE_SIZE);
1232 again:
1233 	init_rss_vec(rss);
1234 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1235 	pte = start_pte;
1236 	flush_tlb_batched_pending(mm);
1237 	arch_enter_lazy_mmu_mode();
1238 	do {
1239 		pte_t ptent = *pte;
1240 		if (pte_none(ptent))
1241 			continue;
1242 
1243 		if (need_resched())
1244 			break;
1245 
1246 		if (pte_present(ptent)) {
1247 			struct page *page;
1248 
1249 			page = vm_normal_page(vma, addr, ptent);
1250 			if (unlikely(details) && page) {
1251 				/*
1252 				 * unmap_shared_mapping_pages() wants to
1253 				 * invalidate cache without truncating:
1254 				 * unmap shared but keep private pages.
1255 				 */
1256 				if (details->check_mapping &&
1257 				    details->check_mapping != page_rmapping(page))
1258 					continue;
1259 			}
1260 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1261 							tlb->fullmm);
1262 			tlb_remove_tlb_entry(tlb, pte, addr);
1263 			if (unlikely(!page))
1264 				continue;
1265 
1266 			if (!PageAnon(page)) {
1267 				if (pte_dirty(ptent)) {
1268 					force_flush = 1;
1269 					set_page_dirty(page);
1270 				}
1271 				if (pte_young(ptent) &&
1272 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1273 					mark_page_accessed(page);
1274 			}
1275 			rss[mm_counter(page)]--;
1276 			page_remove_rmap(page, false);
1277 			if (unlikely(page_mapcount(page) < 0))
1278 				print_bad_pte(vma, addr, ptent, page);
1279 			if (unlikely(__tlb_remove_page(tlb, page))) {
1280 				force_flush = 1;
1281 				addr += PAGE_SIZE;
1282 				break;
1283 			}
1284 			continue;
1285 		}
1286 
1287 		entry = pte_to_swp_entry(ptent);
1288 		if (is_device_private_entry(entry)) {
1289 			struct page *page = device_private_entry_to_page(entry);
1290 
1291 			if (unlikely(details && details->check_mapping)) {
1292 				/*
1293 				 * unmap_shared_mapping_pages() wants to
1294 				 * invalidate cache without truncating:
1295 				 * unmap shared but keep private pages.
1296 				 */
1297 				if (details->check_mapping !=
1298 				    page_rmapping(page))
1299 					continue;
1300 			}
1301 
1302 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1303 			rss[mm_counter(page)]--;
1304 			page_remove_rmap(page, false);
1305 			put_page(page);
1306 			continue;
1307 		}
1308 
1309 		/* If details->check_mapping, we leave swap entries. */
1310 		if (unlikely(details))
1311 			continue;
1312 
1313 		if (!non_swap_entry(entry))
1314 			rss[MM_SWAPENTS]--;
1315 		else if (is_migration_entry(entry)) {
1316 			struct page *page;
1317 
1318 			page = migration_entry_to_page(entry);
1319 			rss[mm_counter(page)]--;
1320 		}
1321 		if (unlikely(!free_swap_and_cache(entry)))
1322 			print_bad_pte(vma, addr, ptent, NULL);
1323 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1324 	} while (pte++, addr += PAGE_SIZE, addr != end);
1325 
1326 	add_mm_rss_vec(mm, rss);
1327 	arch_leave_lazy_mmu_mode();
1328 
1329 	/* Do the actual TLB flush before dropping ptl */
1330 	if (force_flush)
1331 		tlb_flush_mmu_tlbonly(tlb);
1332 	pte_unmap_unlock(start_pte, ptl);
1333 
1334 	/*
1335 	 * If we forced a TLB flush (either due to running out of
1336 	 * batch buffers or because we needed to flush dirty TLB
1337 	 * entries before releasing the ptl), free the batched
1338 	 * memory too. Restart if we didn't do everything.
1339 	 */
1340 	if (force_flush) {
1341 		force_flush = 0;
1342 		tlb_flush_mmu(tlb);
1343 	}
1344 
1345 	if (addr != end) {
1346 		cond_resched();
1347 		goto again;
1348 	}
1349 
1350 	return addr;
1351 }
1352 
1353 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1354 				struct vm_area_struct *vma, pud_t *pud,
1355 				unsigned long addr, unsigned long end,
1356 				struct zap_details *details)
1357 {
1358 	pmd_t *pmd;
1359 	unsigned long next;
1360 
1361 	pmd = pmd_offset(pud, addr);
1362 	do {
1363 		next = pmd_addr_end(addr, end);
1364 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1365 			if (next - addr != HPAGE_PMD_SIZE)
1366 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1367 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1368 				goto next;
1369 			/* fall through */
1370 		}
1371 		/*
1372 		 * Here there can be other concurrent MADV_DONTNEED or
1373 		 * trans huge page faults running, and if the pmd is
1374 		 * none or trans huge it can change under us. This is
1375 		 * because MADV_DONTNEED holds the mmap_lock in read
1376 		 * mode.
1377 		 */
1378 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1379 			goto next;
1380 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1381 next:
1382 		cond_resched();
1383 	} while (pmd++, addr = next, addr != end);
1384 
1385 	return addr;
1386 }
1387 
1388 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1389 				struct vm_area_struct *vma, p4d_t *p4d,
1390 				unsigned long addr, unsigned long end,
1391 				struct zap_details *details)
1392 {
1393 	pud_t *pud;
1394 	unsigned long next;
1395 
1396 	pud = pud_offset(p4d, addr);
1397 	do {
1398 		next = pud_addr_end(addr, end);
1399 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1400 			if (next - addr != HPAGE_PUD_SIZE) {
1401 				mmap_assert_locked(tlb->mm);
1402 				split_huge_pud(vma, pud, addr);
1403 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1404 				goto next;
1405 			/* fall through */
1406 		}
1407 		if (pud_none_or_clear_bad(pud))
1408 			continue;
1409 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1410 next:
1411 		cond_resched();
1412 	} while (pud++, addr = next, addr != end);
1413 
1414 	return addr;
1415 }
1416 
1417 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1418 				struct vm_area_struct *vma, pgd_t *pgd,
1419 				unsigned long addr, unsigned long end,
1420 				struct zap_details *details)
1421 {
1422 	p4d_t *p4d;
1423 	unsigned long next;
1424 
1425 	p4d = p4d_offset(pgd, addr);
1426 	do {
1427 		next = p4d_addr_end(addr, end);
1428 		if (p4d_none_or_clear_bad(p4d))
1429 			continue;
1430 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1431 	} while (p4d++, addr = next, addr != end);
1432 
1433 	return addr;
1434 }
1435 
1436 void unmap_page_range(struct mmu_gather *tlb,
1437 			     struct vm_area_struct *vma,
1438 			     unsigned long addr, unsigned long end,
1439 			     struct zap_details *details)
1440 {
1441 	pgd_t *pgd;
1442 	unsigned long next;
1443 
1444 	BUG_ON(addr >= end);
1445 	tlb_start_vma(tlb, vma);
1446 	pgd = pgd_offset(vma->vm_mm, addr);
1447 	do {
1448 		next = pgd_addr_end(addr, end);
1449 		if (pgd_none_or_clear_bad(pgd))
1450 			continue;
1451 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1452 	} while (pgd++, addr = next, addr != end);
1453 	tlb_end_vma(tlb, vma);
1454 }
1455 
1456 
1457 static void unmap_single_vma(struct mmu_gather *tlb,
1458 		struct vm_area_struct *vma, unsigned long start_addr,
1459 		unsigned long end_addr,
1460 		struct zap_details *details)
1461 {
1462 	unsigned long start = max(vma->vm_start, start_addr);
1463 	unsigned long end;
1464 
1465 	if (start >= vma->vm_end)
1466 		return;
1467 	end = min(vma->vm_end, end_addr);
1468 	if (end <= vma->vm_start)
1469 		return;
1470 
1471 	if (vma->vm_file)
1472 		uprobe_munmap(vma, start, end);
1473 
1474 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1475 		untrack_pfn(vma, 0, 0);
1476 
1477 	if (start != end) {
1478 		if (unlikely(is_vm_hugetlb_page(vma))) {
1479 			/*
1480 			 * It is undesirable to test vma->vm_file as it
1481 			 * should be non-null for valid hugetlb area.
1482 			 * However, vm_file will be NULL in the error
1483 			 * cleanup path of mmap_region. When
1484 			 * hugetlbfs ->mmap method fails,
1485 			 * mmap_region() nullifies vma->vm_file
1486 			 * before calling this function to clean up.
1487 			 * Since no pte has actually been setup, it is
1488 			 * safe to do nothing in this case.
1489 			 */
1490 			if (vma->vm_file) {
1491 				i_mmap_lock_write(vma->vm_file->f_mapping);
1492 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1493 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1494 			}
1495 		} else
1496 			unmap_page_range(tlb, vma, start, end, details);
1497 	}
1498 }
1499 
1500 /**
1501  * unmap_vmas - unmap a range of memory covered by a list of vma's
1502  * @tlb: address of the caller's struct mmu_gather
1503  * @vma: the starting vma
1504  * @start_addr: virtual address at which to start unmapping
1505  * @end_addr: virtual address at which to end unmapping
1506  *
1507  * Unmap all pages in the vma list.
1508  *
1509  * Only addresses between `start' and `end' will be unmapped.
1510  *
1511  * The VMA list must be sorted in ascending virtual address order.
1512  *
1513  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1514  * range after unmap_vmas() returns.  So the only responsibility here is to
1515  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1516  * drops the lock and schedules.
1517  */
1518 void unmap_vmas(struct mmu_gather *tlb,
1519 		struct vm_area_struct *vma, unsigned long start_addr,
1520 		unsigned long end_addr)
1521 {
1522 	struct mmu_notifier_range range;
1523 
1524 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1525 				start_addr, end_addr);
1526 	mmu_notifier_invalidate_range_start(&range);
1527 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1528 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1529 	mmu_notifier_invalidate_range_end(&range);
1530 }
1531 
1532 /**
1533  * zap_page_range - remove user pages in a given range
1534  * @vma: vm_area_struct holding the applicable pages
1535  * @start: starting address of pages to zap
1536  * @size: number of bytes to zap
1537  *
1538  * Caller must protect the VMA list
1539  */
1540 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1541 		unsigned long size)
1542 {
1543 	struct mmu_notifier_range range;
1544 	struct mmu_gather tlb;
1545 
1546 	lru_add_drain();
1547 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1548 				start, start + size);
1549 	tlb_gather_mmu(&tlb, vma->vm_mm);
1550 	update_hiwater_rss(vma->vm_mm);
1551 	mmu_notifier_invalidate_range_start(&range);
1552 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1553 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1554 	mmu_notifier_invalidate_range_end(&range);
1555 	tlb_finish_mmu(&tlb);
1556 }
1557 
1558 /**
1559  * zap_page_range_single - remove user pages in a given range
1560  * @vma: vm_area_struct holding the applicable pages
1561  * @address: starting address of pages to zap
1562  * @size: number of bytes to zap
1563  * @details: details of shared cache invalidation
1564  *
1565  * The range must fit into one VMA.
1566  */
1567 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1568 		unsigned long size, struct zap_details *details)
1569 {
1570 	struct mmu_notifier_range range;
1571 	struct mmu_gather tlb;
1572 
1573 	lru_add_drain();
1574 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1575 				address, address + size);
1576 	tlb_gather_mmu(&tlb, vma->vm_mm);
1577 	update_hiwater_rss(vma->vm_mm);
1578 	mmu_notifier_invalidate_range_start(&range);
1579 	unmap_single_vma(&tlb, vma, address, range.end, details);
1580 	mmu_notifier_invalidate_range_end(&range);
1581 	tlb_finish_mmu(&tlb);
1582 }
1583 
1584 /**
1585  * zap_vma_ptes - remove ptes mapping the vma
1586  * @vma: vm_area_struct holding ptes to be zapped
1587  * @address: starting address of pages to zap
1588  * @size: number of bytes to zap
1589  *
1590  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1591  *
1592  * The entire address range must be fully contained within the vma.
1593  *
1594  */
1595 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1596 		unsigned long size)
1597 {
1598 	if (address < vma->vm_start || address + size > vma->vm_end ||
1599 	    		!(vma->vm_flags & VM_PFNMAP))
1600 		return;
1601 
1602 	zap_page_range_single(vma, address, size, NULL);
1603 }
1604 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1605 
1606 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1607 {
1608 	pgd_t *pgd;
1609 	p4d_t *p4d;
1610 	pud_t *pud;
1611 	pmd_t *pmd;
1612 
1613 	pgd = pgd_offset(mm, addr);
1614 	p4d = p4d_alloc(mm, pgd, addr);
1615 	if (!p4d)
1616 		return NULL;
1617 	pud = pud_alloc(mm, p4d, addr);
1618 	if (!pud)
1619 		return NULL;
1620 	pmd = pmd_alloc(mm, pud, addr);
1621 	if (!pmd)
1622 		return NULL;
1623 
1624 	VM_BUG_ON(pmd_trans_huge(*pmd));
1625 	return pmd;
1626 }
1627 
1628 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1629 			spinlock_t **ptl)
1630 {
1631 	pmd_t *pmd = walk_to_pmd(mm, addr);
1632 
1633 	if (!pmd)
1634 		return NULL;
1635 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1636 }
1637 
1638 static int validate_page_before_insert(struct page *page)
1639 {
1640 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1641 		return -EINVAL;
1642 	flush_dcache_page(page);
1643 	return 0;
1644 }
1645 
1646 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1647 			unsigned long addr, struct page *page, pgprot_t prot)
1648 {
1649 	if (!pte_none(*pte))
1650 		return -EBUSY;
1651 	/* Ok, finally just insert the thing.. */
1652 	get_page(page);
1653 	inc_mm_counter_fast(mm, mm_counter_file(page));
1654 	page_add_file_rmap(page, false);
1655 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1656 	return 0;
1657 }
1658 
1659 /*
1660  * This is the old fallback for page remapping.
1661  *
1662  * For historical reasons, it only allows reserved pages. Only
1663  * old drivers should use this, and they needed to mark their
1664  * pages reserved for the old functions anyway.
1665  */
1666 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1667 			struct page *page, pgprot_t prot)
1668 {
1669 	struct mm_struct *mm = vma->vm_mm;
1670 	int retval;
1671 	pte_t *pte;
1672 	spinlock_t *ptl;
1673 
1674 	retval = validate_page_before_insert(page);
1675 	if (retval)
1676 		goto out;
1677 	retval = -ENOMEM;
1678 	pte = get_locked_pte(mm, addr, &ptl);
1679 	if (!pte)
1680 		goto out;
1681 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1682 	pte_unmap_unlock(pte, ptl);
1683 out:
1684 	return retval;
1685 }
1686 
1687 #ifdef pte_index
1688 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1689 			unsigned long addr, struct page *page, pgprot_t prot)
1690 {
1691 	int err;
1692 
1693 	if (!page_count(page))
1694 		return -EINVAL;
1695 	err = validate_page_before_insert(page);
1696 	if (err)
1697 		return err;
1698 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1699 }
1700 
1701 /* insert_pages() amortizes the cost of spinlock operations
1702  * when inserting pages in a loop. Arch *must* define pte_index.
1703  */
1704 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1705 			struct page **pages, unsigned long *num, pgprot_t prot)
1706 {
1707 	pmd_t *pmd = NULL;
1708 	pte_t *start_pte, *pte;
1709 	spinlock_t *pte_lock;
1710 	struct mm_struct *const mm = vma->vm_mm;
1711 	unsigned long curr_page_idx = 0;
1712 	unsigned long remaining_pages_total = *num;
1713 	unsigned long pages_to_write_in_pmd;
1714 	int ret;
1715 more:
1716 	ret = -EFAULT;
1717 	pmd = walk_to_pmd(mm, addr);
1718 	if (!pmd)
1719 		goto out;
1720 
1721 	pages_to_write_in_pmd = min_t(unsigned long,
1722 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1723 
1724 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1725 	ret = -ENOMEM;
1726 	if (pte_alloc(mm, pmd))
1727 		goto out;
1728 
1729 	while (pages_to_write_in_pmd) {
1730 		int pte_idx = 0;
1731 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1732 
1733 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1734 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1735 			int err = insert_page_in_batch_locked(mm, pte,
1736 				addr, pages[curr_page_idx], prot);
1737 			if (unlikely(err)) {
1738 				pte_unmap_unlock(start_pte, pte_lock);
1739 				ret = err;
1740 				remaining_pages_total -= pte_idx;
1741 				goto out;
1742 			}
1743 			addr += PAGE_SIZE;
1744 			++curr_page_idx;
1745 		}
1746 		pte_unmap_unlock(start_pte, pte_lock);
1747 		pages_to_write_in_pmd -= batch_size;
1748 		remaining_pages_total -= batch_size;
1749 	}
1750 	if (remaining_pages_total)
1751 		goto more;
1752 	ret = 0;
1753 out:
1754 	*num = remaining_pages_total;
1755 	return ret;
1756 }
1757 #endif  /* ifdef pte_index */
1758 
1759 /**
1760  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1761  * @vma: user vma to map to
1762  * @addr: target start user address of these pages
1763  * @pages: source kernel pages
1764  * @num: in: number of pages to map. out: number of pages that were *not*
1765  * mapped. (0 means all pages were successfully mapped).
1766  *
1767  * Preferred over vm_insert_page() when inserting multiple pages.
1768  *
1769  * In case of error, we may have mapped a subset of the provided
1770  * pages. It is the caller's responsibility to account for this case.
1771  *
1772  * The same restrictions apply as in vm_insert_page().
1773  */
1774 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1775 			struct page **pages, unsigned long *num)
1776 {
1777 #ifdef pte_index
1778 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1779 
1780 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1781 		return -EFAULT;
1782 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1783 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1784 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1785 		vma->vm_flags |= VM_MIXEDMAP;
1786 	}
1787 	/* Defer page refcount checking till we're about to map that page. */
1788 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1789 #else
1790 	unsigned long idx = 0, pgcount = *num;
1791 	int err = -EINVAL;
1792 
1793 	for (; idx < pgcount; ++idx) {
1794 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1795 		if (err)
1796 			break;
1797 	}
1798 	*num = pgcount - idx;
1799 	return err;
1800 #endif  /* ifdef pte_index */
1801 }
1802 EXPORT_SYMBOL(vm_insert_pages);
1803 
1804 /**
1805  * vm_insert_page - insert single page into user vma
1806  * @vma: user vma to map to
1807  * @addr: target user address of this page
1808  * @page: source kernel page
1809  *
1810  * This allows drivers to insert individual pages they've allocated
1811  * into a user vma.
1812  *
1813  * The page has to be a nice clean _individual_ kernel allocation.
1814  * If you allocate a compound page, you need to have marked it as
1815  * such (__GFP_COMP), or manually just split the page up yourself
1816  * (see split_page()).
1817  *
1818  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1819  * took an arbitrary page protection parameter. This doesn't allow
1820  * that. Your vma protection will have to be set up correctly, which
1821  * means that if you want a shared writable mapping, you'd better
1822  * ask for a shared writable mapping!
1823  *
1824  * The page does not need to be reserved.
1825  *
1826  * Usually this function is called from f_op->mmap() handler
1827  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1828  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1829  * function from other places, for example from page-fault handler.
1830  *
1831  * Return: %0 on success, negative error code otherwise.
1832  */
1833 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1834 			struct page *page)
1835 {
1836 	if (addr < vma->vm_start || addr >= vma->vm_end)
1837 		return -EFAULT;
1838 	if (!page_count(page))
1839 		return -EINVAL;
1840 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1841 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1842 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1843 		vma->vm_flags |= VM_MIXEDMAP;
1844 	}
1845 	return insert_page(vma, addr, page, vma->vm_page_prot);
1846 }
1847 EXPORT_SYMBOL(vm_insert_page);
1848 
1849 /*
1850  * __vm_map_pages - maps range of kernel pages into user vma
1851  * @vma: user vma to map to
1852  * @pages: pointer to array of source kernel pages
1853  * @num: number of pages in page array
1854  * @offset: user's requested vm_pgoff
1855  *
1856  * This allows drivers to map range of kernel pages into a user vma.
1857  *
1858  * Return: 0 on success and error code otherwise.
1859  */
1860 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1861 				unsigned long num, unsigned long offset)
1862 {
1863 	unsigned long count = vma_pages(vma);
1864 	unsigned long uaddr = vma->vm_start;
1865 	int ret, i;
1866 
1867 	/* Fail if the user requested offset is beyond the end of the object */
1868 	if (offset >= num)
1869 		return -ENXIO;
1870 
1871 	/* Fail if the user requested size exceeds available object size */
1872 	if (count > num - offset)
1873 		return -ENXIO;
1874 
1875 	for (i = 0; i < count; i++) {
1876 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1877 		if (ret < 0)
1878 			return ret;
1879 		uaddr += PAGE_SIZE;
1880 	}
1881 
1882 	return 0;
1883 }
1884 
1885 /**
1886  * vm_map_pages - maps range of kernel pages starts with non zero offset
1887  * @vma: user vma to map to
1888  * @pages: pointer to array of source kernel pages
1889  * @num: number of pages in page array
1890  *
1891  * Maps an object consisting of @num pages, catering for the user's
1892  * requested vm_pgoff
1893  *
1894  * If we fail to insert any page into the vma, the function will return
1895  * immediately leaving any previously inserted pages present.  Callers
1896  * from the mmap handler may immediately return the error as their caller
1897  * will destroy the vma, removing any successfully inserted pages. Other
1898  * callers should make their own arrangements for calling unmap_region().
1899  *
1900  * Context: Process context. Called by mmap handlers.
1901  * Return: 0 on success and error code otherwise.
1902  */
1903 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1904 				unsigned long num)
1905 {
1906 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1907 }
1908 EXPORT_SYMBOL(vm_map_pages);
1909 
1910 /**
1911  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1912  * @vma: user vma to map to
1913  * @pages: pointer to array of source kernel pages
1914  * @num: number of pages in page array
1915  *
1916  * Similar to vm_map_pages(), except that it explicitly sets the offset
1917  * to 0. This function is intended for the drivers that did not consider
1918  * vm_pgoff.
1919  *
1920  * Context: Process context. Called by mmap handlers.
1921  * Return: 0 on success and error code otherwise.
1922  */
1923 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1924 				unsigned long num)
1925 {
1926 	return __vm_map_pages(vma, pages, num, 0);
1927 }
1928 EXPORT_SYMBOL(vm_map_pages_zero);
1929 
1930 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1931 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1932 {
1933 	struct mm_struct *mm = vma->vm_mm;
1934 	pte_t *pte, entry;
1935 	spinlock_t *ptl;
1936 
1937 	pte = get_locked_pte(mm, addr, &ptl);
1938 	if (!pte)
1939 		return VM_FAULT_OOM;
1940 	if (!pte_none(*pte)) {
1941 		if (mkwrite) {
1942 			/*
1943 			 * For read faults on private mappings the PFN passed
1944 			 * in may not match the PFN we have mapped if the
1945 			 * mapped PFN is a writeable COW page.  In the mkwrite
1946 			 * case we are creating a writable PTE for a shared
1947 			 * mapping and we expect the PFNs to match. If they
1948 			 * don't match, we are likely racing with block
1949 			 * allocation and mapping invalidation so just skip the
1950 			 * update.
1951 			 */
1952 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1953 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1954 				goto out_unlock;
1955 			}
1956 			entry = pte_mkyoung(*pte);
1957 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1958 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1959 				update_mmu_cache(vma, addr, pte);
1960 		}
1961 		goto out_unlock;
1962 	}
1963 
1964 	/* Ok, finally just insert the thing.. */
1965 	if (pfn_t_devmap(pfn))
1966 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1967 	else
1968 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1969 
1970 	if (mkwrite) {
1971 		entry = pte_mkyoung(entry);
1972 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1973 	}
1974 
1975 	set_pte_at(mm, addr, pte, entry);
1976 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1977 
1978 out_unlock:
1979 	pte_unmap_unlock(pte, ptl);
1980 	return VM_FAULT_NOPAGE;
1981 }
1982 
1983 /**
1984  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1985  * @vma: user vma to map to
1986  * @addr: target user address of this page
1987  * @pfn: source kernel pfn
1988  * @pgprot: pgprot flags for the inserted page
1989  *
1990  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1991  * to override pgprot on a per-page basis.
1992  *
1993  * This only makes sense for IO mappings, and it makes no sense for
1994  * COW mappings.  In general, using multiple vmas is preferable;
1995  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1996  * impractical.
1997  *
1998  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1999  * a value of @pgprot different from that of @vma->vm_page_prot.
2000  *
2001  * Context: Process context.  May allocate using %GFP_KERNEL.
2002  * Return: vm_fault_t value.
2003  */
2004 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2005 			unsigned long pfn, pgprot_t pgprot)
2006 {
2007 	/*
2008 	 * Technically, architectures with pte_special can avoid all these
2009 	 * restrictions (same for remap_pfn_range).  However we would like
2010 	 * consistency in testing and feature parity among all, so we should
2011 	 * try to keep these invariants in place for everybody.
2012 	 */
2013 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2014 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2015 						(VM_PFNMAP|VM_MIXEDMAP));
2016 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2017 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2018 
2019 	if (addr < vma->vm_start || addr >= vma->vm_end)
2020 		return VM_FAULT_SIGBUS;
2021 
2022 	if (!pfn_modify_allowed(pfn, pgprot))
2023 		return VM_FAULT_SIGBUS;
2024 
2025 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2026 
2027 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2028 			false);
2029 }
2030 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2031 
2032 /**
2033  * vmf_insert_pfn - insert single pfn into user vma
2034  * @vma: user vma to map to
2035  * @addr: target user address of this page
2036  * @pfn: source kernel pfn
2037  *
2038  * Similar to vm_insert_page, this allows drivers to insert individual pages
2039  * they've allocated into a user vma. Same comments apply.
2040  *
2041  * This function should only be called from a vm_ops->fault handler, and
2042  * in that case the handler should return the result of this function.
2043  *
2044  * vma cannot be a COW mapping.
2045  *
2046  * As this is called only for pages that do not currently exist, we
2047  * do not need to flush old virtual caches or the TLB.
2048  *
2049  * Context: Process context.  May allocate using %GFP_KERNEL.
2050  * Return: vm_fault_t value.
2051  */
2052 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2053 			unsigned long pfn)
2054 {
2055 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2056 }
2057 EXPORT_SYMBOL(vmf_insert_pfn);
2058 
2059 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2060 {
2061 	/* these checks mirror the abort conditions in vm_normal_page */
2062 	if (vma->vm_flags & VM_MIXEDMAP)
2063 		return true;
2064 	if (pfn_t_devmap(pfn))
2065 		return true;
2066 	if (pfn_t_special(pfn))
2067 		return true;
2068 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2069 		return true;
2070 	return false;
2071 }
2072 
2073 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2074 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2075 		bool mkwrite)
2076 {
2077 	int err;
2078 
2079 	BUG_ON(!vm_mixed_ok(vma, pfn));
2080 
2081 	if (addr < vma->vm_start || addr >= vma->vm_end)
2082 		return VM_FAULT_SIGBUS;
2083 
2084 	track_pfn_insert(vma, &pgprot, pfn);
2085 
2086 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2087 		return VM_FAULT_SIGBUS;
2088 
2089 	/*
2090 	 * If we don't have pte special, then we have to use the pfn_valid()
2091 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2092 	 * refcount the page if pfn_valid is true (hence insert_page rather
2093 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2094 	 * without pte special, it would there be refcounted as a normal page.
2095 	 */
2096 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2097 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2098 		struct page *page;
2099 
2100 		/*
2101 		 * At this point we are committed to insert_page()
2102 		 * regardless of whether the caller specified flags that
2103 		 * result in pfn_t_has_page() == false.
2104 		 */
2105 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2106 		err = insert_page(vma, addr, page, pgprot);
2107 	} else {
2108 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2109 	}
2110 
2111 	if (err == -ENOMEM)
2112 		return VM_FAULT_OOM;
2113 	if (err < 0 && err != -EBUSY)
2114 		return VM_FAULT_SIGBUS;
2115 
2116 	return VM_FAULT_NOPAGE;
2117 }
2118 
2119 /**
2120  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2121  * @vma: user vma to map to
2122  * @addr: target user address of this page
2123  * @pfn: source kernel pfn
2124  * @pgprot: pgprot flags for the inserted page
2125  *
2126  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2127  * to override pgprot on a per-page basis.
2128  *
2129  * Typically this function should be used by drivers to set caching- and
2130  * encryption bits different than those of @vma->vm_page_prot, because
2131  * the caching- or encryption mode may not be known at mmap() time.
2132  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2133  * to set caching and encryption bits for those vmas (except for COW pages).
2134  * This is ensured by core vm only modifying these page table entries using
2135  * functions that don't touch caching- or encryption bits, using pte_modify()
2136  * if needed. (See for example mprotect()).
2137  * Also when new page-table entries are created, this is only done using the
2138  * fault() callback, and never using the value of vma->vm_page_prot,
2139  * except for page-table entries that point to anonymous pages as the result
2140  * of COW.
2141  *
2142  * Context: Process context.  May allocate using %GFP_KERNEL.
2143  * Return: vm_fault_t value.
2144  */
2145 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2146 				 pfn_t pfn, pgprot_t pgprot)
2147 {
2148 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2149 }
2150 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2151 
2152 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2153 		pfn_t pfn)
2154 {
2155 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2156 }
2157 EXPORT_SYMBOL(vmf_insert_mixed);
2158 
2159 /*
2160  *  If the insertion of PTE failed because someone else already added a
2161  *  different entry in the mean time, we treat that as success as we assume
2162  *  the same entry was actually inserted.
2163  */
2164 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2165 		unsigned long addr, pfn_t pfn)
2166 {
2167 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2168 }
2169 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2170 
2171 /*
2172  * maps a range of physical memory into the requested pages. the old
2173  * mappings are removed. any references to nonexistent pages results
2174  * in null mappings (currently treated as "copy-on-access")
2175  */
2176 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2177 			unsigned long addr, unsigned long end,
2178 			unsigned long pfn, pgprot_t prot)
2179 {
2180 	pte_t *pte, *mapped_pte;
2181 	spinlock_t *ptl;
2182 	int err = 0;
2183 
2184 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2185 	if (!pte)
2186 		return -ENOMEM;
2187 	arch_enter_lazy_mmu_mode();
2188 	do {
2189 		BUG_ON(!pte_none(*pte));
2190 		if (!pfn_modify_allowed(pfn, prot)) {
2191 			err = -EACCES;
2192 			break;
2193 		}
2194 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2195 		pfn++;
2196 	} while (pte++, addr += PAGE_SIZE, addr != end);
2197 	arch_leave_lazy_mmu_mode();
2198 	pte_unmap_unlock(mapped_pte, ptl);
2199 	return err;
2200 }
2201 
2202 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2203 			unsigned long addr, unsigned long end,
2204 			unsigned long pfn, pgprot_t prot)
2205 {
2206 	pmd_t *pmd;
2207 	unsigned long next;
2208 	int err;
2209 
2210 	pfn -= addr >> PAGE_SHIFT;
2211 	pmd = pmd_alloc(mm, pud, addr);
2212 	if (!pmd)
2213 		return -ENOMEM;
2214 	VM_BUG_ON(pmd_trans_huge(*pmd));
2215 	do {
2216 		next = pmd_addr_end(addr, end);
2217 		err = remap_pte_range(mm, pmd, addr, next,
2218 				pfn + (addr >> PAGE_SHIFT), prot);
2219 		if (err)
2220 			return err;
2221 	} while (pmd++, addr = next, addr != end);
2222 	return 0;
2223 }
2224 
2225 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2226 			unsigned long addr, unsigned long end,
2227 			unsigned long pfn, pgprot_t prot)
2228 {
2229 	pud_t *pud;
2230 	unsigned long next;
2231 	int err;
2232 
2233 	pfn -= addr >> PAGE_SHIFT;
2234 	pud = pud_alloc(mm, p4d, addr);
2235 	if (!pud)
2236 		return -ENOMEM;
2237 	do {
2238 		next = pud_addr_end(addr, end);
2239 		err = remap_pmd_range(mm, pud, addr, next,
2240 				pfn + (addr >> PAGE_SHIFT), prot);
2241 		if (err)
2242 			return err;
2243 	} while (pud++, addr = next, addr != end);
2244 	return 0;
2245 }
2246 
2247 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2248 			unsigned long addr, unsigned long end,
2249 			unsigned long pfn, pgprot_t prot)
2250 {
2251 	p4d_t *p4d;
2252 	unsigned long next;
2253 	int err;
2254 
2255 	pfn -= addr >> PAGE_SHIFT;
2256 	p4d = p4d_alloc(mm, pgd, addr);
2257 	if (!p4d)
2258 		return -ENOMEM;
2259 	do {
2260 		next = p4d_addr_end(addr, end);
2261 		err = remap_pud_range(mm, p4d, addr, next,
2262 				pfn + (addr >> PAGE_SHIFT), prot);
2263 		if (err)
2264 			return err;
2265 	} while (p4d++, addr = next, addr != end);
2266 	return 0;
2267 }
2268 
2269 /**
2270  * remap_pfn_range - remap kernel memory to userspace
2271  * @vma: user vma to map to
2272  * @addr: target page aligned user address to start at
2273  * @pfn: page frame number of kernel physical memory address
2274  * @size: size of mapping area
2275  * @prot: page protection flags for this mapping
2276  *
2277  * Note: this is only safe if the mm semaphore is held when called.
2278  *
2279  * Return: %0 on success, negative error code otherwise.
2280  */
2281 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2282 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2283 {
2284 	pgd_t *pgd;
2285 	unsigned long next;
2286 	unsigned long end = addr + PAGE_ALIGN(size);
2287 	struct mm_struct *mm = vma->vm_mm;
2288 	unsigned long remap_pfn = pfn;
2289 	int err;
2290 
2291 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2292 		return -EINVAL;
2293 
2294 	/*
2295 	 * Physically remapped pages are special. Tell the
2296 	 * rest of the world about it:
2297 	 *   VM_IO tells people not to look at these pages
2298 	 *	(accesses can have side effects).
2299 	 *   VM_PFNMAP tells the core MM that the base pages are just
2300 	 *	raw PFN mappings, and do not have a "struct page" associated
2301 	 *	with them.
2302 	 *   VM_DONTEXPAND
2303 	 *      Disable vma merging and expanding with mremap().
2304 	 *   VM_DONTDUMP
2305 	 *      Omit vma from core dump, even when VM_IO turned off.
2306 	 *
2307 	 * There's a horrible special case to handle copy-on-write
2308 	 * behaviour that some programs depend on. We mark the "original"
2309 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2310 	 * See vm_normal_page() for details.
2311 	 */
2312 	if (is_cow_mapping(vma->vm_flags)) {
2313 		if (addr != vma->vm_start || end != vma->vm_end)
2314 			return -EINVAL;
2315 		vma->vm_pgoff = pfn;
2316 	}
2317 
2318 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2319 	if (err)
2320 		return -EINVAL;
2321 
2322 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2323 
2324 	BUG_ON(addr >= end);
2325 	pfn -= addr >> PAGE_SHIFT;
2326 	pgd = pgd_offset(mm, addr);
2327 	flush_cache_range(vma, addr, end);
2328 	do {
2329 		next = pgd_addr_end(addr, end);
2330 		err = remap_p4d_range(mm, pgd, addr, next,
2331 				pfn + (addr >> PAGE_SHIFT), prot);
2332 		if (err)
2333 			break;
2334 	} while (pgd++, addr = next, addr != end);
2335 
2336 	if (err)
2337 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2338 
2339 	return err;
2340 }
2341 EXPORT_SYMBOL(remap_pfn_range);
2342 
2343 /**
2344  * vm_iomap_memory - remap memory to userspace
2345  * @vma: user vma to map to
2346  * @start: start of the physical memory to be mapped
2347  * @len: size of area
2348  *
2349  * This is a simplified io_remap_pfn_range() for common driver use. The
2350  * driver just needs to give us the physical memory range to be mapped,
2351  * we'll figure out the rest from the vma information.
2352  *
2353  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2354  * whatever write-combining details or similar.
2355  *
2356  * Return: %0 on success, negative error code otherwise.
2357  */
2358 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2359 {
2360 	unsigned long vm_len, pfn, pages;
2361 
2362 	/* Check that the physical memory area passed in looks valid */
2363 	if (start + len < start)
2364 		return -EINVAL;
2365 	/*
2366 	 * You *really* shouldn't map things that aren't page-aligned,
2367 	 * but we've historically allowed it because IO memory might
2368 	 * just have smaller alignment.
2369 	 */
2370 	len += start & ~PAGE_MASK;
2371 	pfn = start >> PAGE_SHIFT;
2372 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2373 	if (pfn + pages < pfn)
2374 		return -EINVAL;
2375 
2376 	/* We start the mapping 'vm_pgoff' pages into the area */
2377 	if (vma->vm_pgoff > pages)
2378 		return -EINVAL;
2379 	pfn += vma->vm_pgoff;
2380 	pages -= vma->vm_pgoff;
2381 
2382 	/* Can we fit all of the mapping? */
2383 	vm_len = vma->vm_end - vma->vm_start;
2384 	if (vm_len >> PAGE_SHIFT > pages)
2385 		return -EINVAL;
2386 
2387 	/* Ok, let it rip */
2388 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2389 }
2390 EXPORT_SYMBOL(vm_iomap_memory);
2391 
2392 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2393 				     unsigned long addr, unsigned long end,
2394 				     pte_fn_t fn, void *data, bool create,
2395 				     pgtbl_mod_mask *mask)
2396 {
2397 	pte_t *pte, *mapped_pte;
2398 	int err = 0;
2399 	spinlock_t *ptl;
2400 
2401 	if (create) {
2402 		mapped_pte = pte = (mm == &init_mm) ?
2403 			pte_alloc_kernel_track(pmd, addr, mask) :
2404 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2405 		if (!pte)
2406 			return -ENOMEM;
2407 	} else {
2408 		mapped_pte = pte = (mm == &init_mm) ?
2409 			pte_offset_kernel(pmd, addr) :
2410 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2411 	}
2412 
2413 	BUG_ON(pmd_huge(*pmd));
2414 
2415 	arch_enter_lazy_mmu_mode();
2416 
2417 	if (fn) {
2418 		do {
2419 			if (create || !pte_none(*pte)) {
2420 				err = fn(pte++, addr, data);
2421 				if (err)
2422 					break;
2423 			}
2424 		} while (addr += PAGE_SIZE, addr != end);
2425 	}
2426 	*mask |= PGTBL_PTE_MODIFIED;
2427 
2428 	arch_leave_lazy_mmu_mode();
2429 
2430 	if (mm != &init_mm)
2431 		pte_unmap_unlock(mapped_pte, ptl);
2432 	return err;
2433 }
2434 
2435 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2436 				     unsigned long addr, unsigned long end,
2437 				     pte_fn_t fn, void *data, bool create,
2438 				     pgtbl_mod_mask *mask)
2439 {
2440 	pmd_t *pmd;
2441 	unsigned long next;
2442 	int err = 0;
2443 
2444 	BUG_ON(pud_huge(*pud));
2445 
2446 	if (create) {
2447 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2448 		if (!pmd)
2449 			return -ENOMEM;
2450 	} else {
2451 		pmd = pmd_offset(pud, addr);
2452 	}
2453 	do {
2454 		next = pmd_addr_end(addr, end);
2455 		if (create || !pmd_none_or_clear_bad(pmd)) {
2456 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2457 						 create, mask);
2458 			if (err)
2459 				break;
2460 		}
2461 	} while (pmd++, addr = next, addr != end);
2462 	return err;
2463 }
2464 
2465 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2466 				     unsigned long addr, unsigned long end,
2467 				     pte_fn_t fn, void *data, bool create,
2468 				     pgtbl_mod_mask *mask)
2469 {
2470 	pud_t *pud;
2471 	unsigned long next;
2472 	int err = 0;
2473 
2474 	if (create) {
2475 		pud = pud_alloc_track(mm, p4d, addr, mask);
2476 		if (!pud)
2477 			return -ENOMEM;
2478 	} else {
2479 		pud = pud_offset(p4d, addr);
2480 	}
2481 	do {
2482 		next = pud_addr_end(addr, end);
2483 		if (create || !pud_none_or_clear_bad(pud)) {
2484 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2485 						 create, mask);
2486 			if (err)
2487 				break;
2488 		}
2489 	} while (pud++, addr = next, addr != end);
2490 	return err;
2491 }
2492 
2493 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2494 				     unsigned long addr, unsigned long end,
2495 				     pte_fn_t fn, void *data, bool create,
2496 				     pgtbl_mod_mask *mask)
2497 {
2498 	p4d_t *p4d;
2499 	unsigned long next;
2500 	int err = 0;
2501 
2502 	if (create) {
2503 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2504 		if (!p4d)
2505 			return -ENOMEM;
2506 	} else {
2507 		p4d = p4d_offset(pgd, addr);
2508 	}
2509 	do {
2510 		next = p4d_addr_end(addr, end);
2511 		if (create || !p4d_none_or_clear_bad(p4d)) {
2512 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2513 						 create, mask);
2514 			if (err)
2515 				break;
2516 		}
2517 	} while (p4d++, addr = next, addr != end);
2518 	return err;
2519 }
2520 
2521 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2522 				 unsigned long size, pte_fn_t fn,
2523 				 void *data, bool create)
2524 {
2525 	pgd_t *pgd;
2526 	unsigned long start = addr, next;
2527 	unsigned long end = addr + size;
2528 	pgtbl_mod_mask mask = 0;
2529 	int err = 0;
2530 
2531 	if (WARN_ON(addr >= end))
2532 		return -EINVAL;
2533 
2534 	pgd = pgd_offset(mm, addr);
2535 	do {
2536 		next = pgd_addr_end(addr, end);
2537 		if (!create && pgd_none_or_clear_bad(pgd))
2538 			continue;
2539 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2540 		if (err)
2541 			break;
2542 	} while (pgd++, addr = next, addr != end);
2543 
2544 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2545 		arch_sync_kernel_mappings(start, start + size);
2546 
2547 	return err;
2548 }
2549 
2550 /*
2551  * Scan a region of virtual memory, filling in page tables as necessary
2552  * and calling a provided function on each leaf page table.
2553  */
2554 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2555 			unsigned long size, pte_fn_t fn, void *data)
2556 {
2557 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2558 }
2559 EXPORT_SYMBOL_GPL(apply_to_page_range);
2560 
2561 /*
2562  * Scan a region of virtual memory, calling a provided function on
2563  * each leaf page table where it exists.
2564  *
2565  * Unlike apply_to_page_range, this does _not_ fill in page tables
2566  * where they are absent.
2567  */
2568 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2569 				 unsigned long size, pte_fn_t fn, void *data)
2570 {
2571 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2572 }
2573 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2574 
2575 /*
2576  * handle_pte_fault chooses page fault handler according to an entry which was
2577  * read non-atomically.  Before making any commitment, on those architectures
2578  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2579  * parts, do_swap_page must check under lock before unmapping the pte and
2580  * proceeding (but do_wp_page is only called after already making such a check;
2581  * and do_anonymous_page can safely check later on).
2582  */
2583 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2584 				pte_t *page_table, pte_t orig_pte)
2585 {
2586 	int same = 1;
2587 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2588 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2589 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2590 		spin_lock(ptl);
2591 		same = pte_same(*page_table, orig_pte);
2592 		spin_unlock(ptl);
2593 	}
2594 #endif
2595 	pte_unmap(page_table);
2596 	return same;
2597 }
2598 
2599 static inline bool cow_user_page(struct page *dst, struct page *src,
2600 				 struct vm_fault *vmf)
2601 {
2602 	bool ret;
2603 	void *kaddr;
2604 	void __user *uaddr;
2605 	bool locked = false;
2606 	struct vm_area_struct *vma = vmf->vma;
2607 	struct mm_struct *mm = vma->vm_mm;
2608 	unsigned long addr = vmf->address;
2609 
2610 	if (likely(src)) {
2611 		copy_user_highpage(dst, src, addr, vma);
2612 		return true;
2613 	}
2614 
2615 	/*
2616 	 * If the source page was a PFN mapping, we don't have
2617 	 * a "struct page" for it. We do a best-effort copy by
2618 	 * just copying from the original user address. If that
2619 	 * fails, we just zero-fill it. Live with it.
2620 	 */
2621 	kaddr = kmap_atomic(dst);
2622 	uaddr = (void __user *)(addr & PAGE_MASK);
2623 
2624 	/*
2625 	 * On architectures with software "accessed" bits, we would
2626 	 * take a double page fault, so mark it accessed here.
2627 	 */
2628 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2629 		pte_t entry;
2630 
2631 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2632 		locked = true;
2633 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2634 			/*
2635 			 * Other thread has already handled the fault
2636 			 * and update local tlb only
2637 			 */
2638 			update_mmu_tlb(vma, addr, vmf->pte);
2639 			ret = false;
2640 			goto pte_unlock;
2641 		}
2642 
2643 		entry = pte_mkyoung(vmf->orig_pte);
2644 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2645 			update_mmu_cache(vma, addr, vmf->pte);
2646 	}
2647 
2648 	/*
2649 	 * This really shouldn't fail, because the page is there
2650 	 * in the page tables. But it might just be unreadable,
2651 	 * in which case we just give up and fill the result with
2652 	 * zeroes.
2653 	 */
2654 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2655 		if (locked)
2656 			goto warn;
2657 
2658 		/* Re-validate under PTL if the page is still mapped */
2659 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2660 		locked = true;
2661 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2662 			/* The PTE changed under us, update local tlb */
2663 			update_mmu_tlb(vma, addr, vmf->pte);
2664 			ret = false;
2665 			goto pte_unlock;
2666 		}
2667 
2668 		/*
2669 		 * The same page can be mapped back since last copy attempt.
2670 		 * Try to copy again under PTL.
2671 		 */
2672 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2673 			/*
2674 			 * Give a warn in case there can be some obscure
2675 			 * use-case
2676 			 */
2677 warn:
2678 			WARN_ON_ONCE(1);
2679 			clear_page(kaddr);
2680 		}
2681 	}
2682 
2683 	ret = true;
2684 
2685 pte_unlock:
2686 	if (locked)
2687 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2688 	kunmap_atomic(kaddr);
2689 	flush_dcache_page(dst);
2690 
2691 	return ret;
2692 }
2693 
2694 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2695 {
2696 	struct file *vm_file = vma->vm_file;
2697 
2698 	if (vm_file)
2699 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2700 
2701 	/*
2702 	 * Special mappings (e.g. VDSO) do not have any file so fake
2703 	 * a default GFP_KERNEL for them.
2704 	 */
2705 	return GFP_KERNEL;
2706 }
2707 
2708 /*
2709  * Notify the address space that the page is about to become writable so that
2710  * it can prohibit this or wait for the page to get into an appropriate state.
2711  *
2712  * We do this without the lock held, so that it can sleep if it needs to.
2713  */
2714 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2715 {
2716 	vm_fault_t ret;
2717 	struct page *page = vmf->page;
2718 	unsigned int old_flags = vmf->flags;
2719 
2720 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2721 
2722 	if (vmf->vma->vm_file &&
2723 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2724 		return VM_FAULT_SIGBUS;
2725 
2726 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2727 	/* Restore original flags so that caller is not surprised */
2728 	vmf->flags = old_flags;
2729 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2730 		return ret;
2731 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2732 		lock_page(page);
2733 		if (!page->mapping) {
2734 			unlock_page(page);
2735 			return 0; /* retry */
2736 		}
2737 		ret |= VM_FAULT_LOCKED;
2738 	} else
2739 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2740 	return ret;
2741 }
2742 
2743 /*
2744  * Handle dirtying of a page in shared file mapping on a write fault.
2745  *
2746  * The function expects the page to be locked and unlocks it.
2747  */
2748 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2749 {
2750 	struct vm_area_struct *vma = vmf->vma;
2751 	struct address_space *mapping;
2752 	struct page *page = vmf->page;
2753 	bool dirtied;
2754 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2755 
2756 	dirtied = set_page_dirty(page);
2757 	VM_BUG_ON_PAGE(PageAnon(page), page);
2758 	/*
2759 	 * Take a local copy of the address_space - page.mapping may be zeroed
2760 	 * by truncate after unlock_page().   The address_space itself remains
2761 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2762 	 * release semantics to prevent the compiler from undoing this copying.
2763 	 */
2764 	mapping = page_rmapping(page);
2765 	unlock_page(page);
2766 
2767 	if (!page_mkwrite)
2768 		file_update_time(vma->vm_file);
2769 
2770 	/*
2771 	 * Throttle page dirtying rate down to writeback speed.
2772 	 *
2773 	 * mapping may be NULL here because some device drivers do not
2774 	 * set page.mapping but still dirty their pages
2775 	 *
2776 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2777 	 * is pinning the mapping, as per above.
2778 	 */
2779 	if ((dirtied || page_mkwrite) && mapping) {
2780 		struct file *fpin;
2781 
2782 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2783 		balance_dirty_pages_ratelimited(mapping);
2784 		if (fpin) {
2785 			fput(fpin);
2786 			return VM_FAULT_RETRY;
2787 		}
2788 	}
2789 
2790 	return 0;
2791 }
2792 
2793 /*
2794  * Handle write page faults for pages that can be reused in the current vma
2795  *
2796  * This can happen either due to the mapping being with the VM_SHARED flag,
2797  * or due to us being the last reference standing to the page. In either
2798  * case, all we need to do here is to mark the page as writable and update
2799  * any related book-keeping.
2800  */
2801 static inline void wp_page_reuse(struct vm_fault *vmf)
2802 	__releases(vmf->ptl)
2803 {
2804 	struct vm_area_struct *vma = vmf->vma;
2805 	struct page *page = vmf->page;
2806 	pte_t entry;
2807 	/*
2808 	 * Clear the pages cpupid information as the existing
2809 	 * information potentially belongs to a now completely
2810 	 * unrelated process.
2811 	 */
2812 	if (page)
2813 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2814 
2815 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2816 	entry = pte_mkyoung(vmf->orig_pte);
2817 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2818 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2819 		update_mmu_cache(vma, vmf->address, vmf->pte);
2820 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2821 	count_vm_event(PGREUSE);
2822 }
2823 
2824 /*
2825  * Handle the case of a page which we actually need to copy to a new page.
2826  *
2827  * Called with mmap_lock locked and the old page referenced, but
2828  * without the ptl held.
2829  *
2830  * High level logic flow:
2831  *
2832  * - Allocate a page, copy the content of the old page to the new one.
2833  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2834  * - Take the PTL. If the pte changed, bail out and release the allocated page
2835  * - If the pte is still the way we remember it, update the page table and all
2836  *   relevant references. This includes dropping the reference the page-table
2837  *   held to the old page, as well as updating the rmap.
2838  * - In any case, unlock the PTL and drop the reference we took to the old page.
2839  */
2840 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2841 {
2842 	struct vm_area_struct *vma = vmf->vma;
2843 	struct mm_struct *mm = vma->vm_mm;
2844 	struct page *old_page = vmf->page;
2845 	struct page *new_page = NULL;
2846 	pte_t entry;
2847 	int page_copied = 0;
2848 	struct mmu_notifier_range range;
2849 
2850 	if (unlikely(anon_vma_prepare(vma)))
2851 		goto oom;
2852 
2853 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2854 		new_page = alloc_zeroed_user_highpage_movable(vma,
2855 							      vmf->address);
2856 		if (!new_page)
2857 			goto oom;
2858 	} else {
2859 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2860 				vmf->address);
2861 		if (!new_page)
2862 			goto oom;
2863 
2864 		if (!cow_user_page(new_page, old_page, vmf)) {
2865 			/*
2866 			 * COW failed, if the fault was solved by other,
2867 			 * it's fine. If not, userspace would re-fault on
2868 			 * the same address and we will handle the fault
2869 			 * from the second attempt.
2870 			 */
2871 			put_page(new_page);
2872 			if (old_page)
2873 				put_page(old_page);
2874 			return 0;
2875 		}
2876 	}
2877 
2878 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2879 		goto oom_free_new;
2880 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2881 
2882 	__SetPageUptodate(new_page);
2883 
2884 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2885 				vmf->address & PAGE_MASK,
2886 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2887 	mmu_notifier_invalidate_range_start(&range);
2888 
2889 	/*
2890 	 * Re-check the pte - we dropped the lock
2891 	 */
2892 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2893 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2894 		if (old_page) {
2895 			if (!PageAnon(old_page)) {
2896 				dec_mm_counter_fast(mm,
2897 						mm_counter_file(old_page));
2898 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2899 			}
2900 		} else {
2901 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2902 		}
2903 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2904 		entry = mk_pte(new_page, vma->vm_page_prot);
2905 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2906 
2907 		/*
2908 		 * Clear the pte entry and flush it first, before updating the
2909 		 * pte with the new entry, to keep TLBs on different CPUs in
2910 		 * sync. This code used to set the new PTE then flush TLBs, but
2911 		 * that left a window where the new PTE could be loaded into
2912 		 * some TLBs while the old PTE remains in others.
2913 		 */
2914 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2915 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2916 		lru_cache_add_inactive_or_unevictable(new_page, vma);
2917 		/*
2918 		 * We call the notify macro here because, when using secondary
2919 		 * mmu page tables (such as kvm shadow page tables), we want the
2920 		 * new page to be mapped directly into the secondary page table.
2921 		 */
2922 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2923 		update_mmu_cache(vma, vmf->address, vmf->pte);
2924 		if (old_page) {
2925 			/*
2926 			 * Only after switching the pte to the new page may
2927 			 * we remove the mapcount here. Otherwise another
2928 			 * process may come and find the rmap count decremented
2929 			 * before the pte is switched to the new page, and
2930 			 * "reuse" the old page writing into it while our pte
2931 			 * here still points into it and can be read by other
2932 			 * threads.
2933 			 *
2934 			 * The critical issue is to order this
2935 			 * page_remove_rmap with the ptp_clear_flush above.
2936 			 * Those stores are ordered by (if nothing else,)
2937 			 * the barrier present in the atomic_add_negative
2938 			 * in page_remove_rmap.
2939 			 *
2940 			 * Then the TLB flush in ptep_clear_flush ensures that
2941 			 * no process can access the old page before the
2942 			 * decremented mapcount is visible. And the old page
2943 			 * cannot be reused until after the decremented
2944 			 * mapcount is visible. So transitively, TLBs to
2945 			 * old page will be flushed before it can be reused.
2946 			 */
2947 			page_remove_rmap(old_page, false);
2948 		}
2949 
2950 		/* Free the old page.. */
2951 		new_page = old_page;
2952 		page_copied = 1;
2953 	} else {
2954 		update_mmu_tlb(vma, vmf->address, vmf->pte);
2955 	}
2956 
2957 	if (new_page)
2958 		put_page(new_page);
2959 
2960 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2961 	/*
2962 	 * No need to double call mmu_notifier->invalidate_range() callback as
2963 	 * the above ptep_clear_flush_notify() did already call it.
2964 	 */
2965 	mmu_notifier_invalidate_range_only_end(&range);
2966 	if (old_page) {
2967 		/*
2968 		 * Don't let another task, with possibly unlocked vma,
2969 		 * keep the mlocked page.
2970 		 */
2971 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2972 			lock_page(old_page);	/* LRU manipulation */
2973 			if (PageMlocked(old_page))
2974 				munlock_vma_page(old_page);
2975 			unlock_page(old_page);
2976 		}
2977 		put_page(old_page);
2978 	}
2979 	return page_copied ? VM_FAULT_WRITE : 0;
2980 oom_free_new:
2981 	put_page(new_page);
2982 oom:
2983 	if (old_page)
2984 		put_page(old_page);
2985 	return VM_FAULT_OOM;
2986 }
2987 
2988 /**
2989  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2990  *			  writeable once the page is prepared
2991  *
2992  * @vmf: structure describing the fault
2993  *
2994  * This function handles all that is needed to finish a write page fault in a
2995  * shared mapping due to PTE being read-only once the mapped page is prepared.
2996  * It handles locking of PTE and modifying it.
2997  *
2998  * The function expects the page to be locked or other protection against
2999  * concurrent faults / writeback (such as DAX radix tree locks).
3000  *
3001  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3002  * we acquired PTE lock.
3003  */
3004 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3005 {
3006 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3007 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3008 				       &vmf->ptl);
3009 	/*
3010 	 * We might have raced with another page fault while we released the
3011 	 * pte_offset_map_lock.
3012 	 */
3013 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3014 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3015 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3016 		return VM_FAULT_NOPAGE;
3017 	}
3018 	wp_page_reuse(vmf);
3019 	return 0;
3020 }
3021 
3022 /*
3023  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3024  * mapping
3025  */
3026 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3027 {
3028 	struct vm_area_struct *vma = vmf->vma;
3029 
3030 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3031 		vm_fault_t ret;
3032 
3033 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3034 		vmf->flags |= FAULT_FLAG_MKWRITE;
3035 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3036 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3037 			return ret;
3038 		return finish_mkwrite_fault(vmf);
3039 	}
3040 	wp_page_reuse(vmf);
3041 	return VM_FAULT_WRITE;
3042 }
3043 
3044 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3045 	__releases(vmf->ptl)
3046 {
3047 	struct vm_area_struct *vma = vmf->vma;
3048 	vm_fault_t ret = VM_FAULT_WRITE;
3049 
3050 	get_page(vmf->page);
3051 
3052 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3053 		vm_fault_t tmp;
3054 
3055 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3056 		tmp = do_page_mkwrite(vmf);
3057 		if (unlikely(!tmp || (tmp &
3058 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3059 			put_page(vmf->page);
3060 			return tmp;
3061 		}
3062 		tmp = finish_mkwrite_fault(vmf);
3063 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3064 			unlock_page(vmf->page);
3065 			put_page(vmf->page);
3066 			return tmp;
3067 		}
3068 	} else {
3069 		wp_page_reuse(vmf);
3070 		lock_page(vmf->page);
3071 	}
3072 	ret |= fault_dirty_shared_page(vmf);
3073 	put_page(vmf->page);
3074 
3075 	return ret;
3076 }
3077 
3078 /*
3079  * This routine handles present pages, when users try to write
3080  * to a shared page. It is done by copying the page to a new address
3081  * and decrementing the shared-page counter for the old page.
3082  *
3083  * Note that this routine assumes that the protection checks have been
3084  * done by the caller (the low-level page fault routine in most cases).
3085  * Thus we can safely just mark it writable once we've done any necessary
3086  * COW.
3087  *
3088  * We also mark the page dirty at this point even though the page will
3089  * change only once the write actually happens. This avoids a few races,
3090  * and potentially makes it more efficient.
3091  *
3092  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3093  * but allow concurrent faults), with pte both mapped and locked.
3094  * We return with mmap_lock still held, but pte unmapped and unlocked.
3095  */
3096 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3097 	__releases(vmf->ptl)
3098 {
3099 	struct vm_area_struct *vma = vmf->vma;
3100 
3101 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3102 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3103 		return handle_userfault(vmf, VM_UFFD_WP);
3104 	}
3105 
3106 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3107 	if (!vmf->page) {
3108 		/*
3109 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3110 		 * VM_PFNMAP VMA.
3111 		 *
3112 		 * We should not cow pages in a shared writeable mapping.
3113 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3114 		 */
3115 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3116 				     (VM_WRITE|VM_SHARED))
3117 			return wp_pfn_shared(vmf);
3118 
3119 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3120 		return wp_page_copy(vmf);
3121 	}
3122 
3123 	/*
3124 	 * Take out anonymous pages first, anonymous shared vmas are
3125 	 * not dirty accountable.
3126 	 */
3127 	if (PageAnon(vmf->page)) {
3128 		struct page *page = vmf->page;
3129 
3130 		/* PageKsm() doesn't necessarily raise the page refcount */
3131 		if (PageKsm(page) || page_count(page) != 1)
3132 			goto copy;
3133 		if (!trylock_page(page))
3134 			goto copy;
3135 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3136 			unlock_page(page);
3137 			goto copy;
3138 		}
3139 		/*
3140 		 * Ok, we've got the only map reference, and the only
3141 		 * page count reference, and the page is locked,
3142 		 * it's dark out, and we're wearing sunglasses. Hit it.
3143 		 */
3144 		unlock_page(page);
3145 		wp_page_reuse(vmf);
3146 		return VM_FAULT_WRITE;
3147 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3148 					(VM_WRITE|VM_SHARED))) {
3149 		return wp_page_shared(vmf);
3150 	}
3151 copy:
3152 	/*
3153 	 * Ok, we need to copy. Oh, well..
3154 	 */
3155 	get_page(vmf->page);
3156 
3157 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3158 	return wp_page_copy(vmf);
3159 }
3160 
3161 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3162 		unsigned long start_addr, unsigned long end_addr,
3163 		struct zap_details *details)
3164 {
3165 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3166 }
3167 
3168 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3169 					    struct zap_details *details)
3170 {
3171 	struct vm_area_struct *vma;
3172 	pgoff_t vba, vea, zba, zea;
3173 
3174 	vma_interval_tree_foreach(vma, root,
3175 			details->first_index, details->last_index) {
3176 
3177 		vba = vma->vm_pgoff;
3178 		vea = vba + vma_pages(vma) - 1;
3179 		zba = details->first_index;
3180 		if (zba < vba)
3181 			zba = vba;
3182 		zea = details->last_index;
3183 		if (zea > vea)
3184 			zea = vea;
3185 
3186 		unmap_mapping_range_vma(vma,
3187 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3188 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3189 				details);
3190 	}
3191 }
3192 
3193 /**
3194  * unmap_mapping_pages() - Unmap pages from processes.
3195  * @mapping: The address space containing pages to be unmapped.
3196  * @start: Index of first page to be unmapped.
3197  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3198  * @even_cows: Whether to unmap even private COWed pages.
3199  *
3200  * Unmap the pages in this address space from any userspace process which
3201  * has them mmaped.  Generally, you want to remove COWed pages as well when
3202  * a file is being truncated, but not when invalidating pages from the page
3203  * cache.
3204  */
3205 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3206 		pgoff_t nr, bool even_cows)
3207 {
3208 	struct zap_details details = { };
3209 
3210 	details.check_mapping = even_cows ? NULL : mapping;
3211 	details.first_index = start;
3212 	details.last_index = start + nr - 1;
3213 	if (details.last_index < details.first_index)
3214 		details.last_index = ULONG_MAX;
3215 
3216 	i_mmap_lock_write(mapping);
3217 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3218 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3219 	i_mmap_unlock_write(mapping);
3220 }
3221 
3222 /**
3223  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3224  * address_space corresponding to the specified byte range in the underlying
3225  * file.
3226  *
3227  * @mapping: the address space containing mmaps to be unmapped.
3228  * @holebegin: byte in first page to unmap, relative to the start of
3229  * the underlying file.  This will be rounded down to a PAGE_SIZE
3230  * boundary.  Note that this is different from truncate_pagecache(), which
3231  * must keep the partial page.  In contrast, we must get rid of
3232  * partial pages.
3233  * @holelen: size of prospective hole in bytes.  This will be rounded
3234  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3235  * end of the file.
3236  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3237  * but 0 when invalidating pagecache, don't throw away private data.
3238  */
3239 void unmap_mapping_range(struct address_space *mapping,
3240 		loff_t const holebegin, loff_t const holelen, int even_cows)
3241 {
3242 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3243 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3244 
3245 	/* Check for overflow. */
3246 	if (sizeof(holelen) > sizeof(hlen)) {
3247 		long long holeend =
3248 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3249 		if (holeend & ~(long long)ULONG_MAX)
3250 			hlen = ULONG_MAX - hba + 1;
3251 	}
3252 
3253 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3254 }
3255 EXPORT_SYMBOL(unmap_mapping_range);
3256 
3257 /*
3258  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3259  * but allow concurrent faults), and pte mapped but not yet locked.
3260  * We return with pte unmapped and unlocked.
3261  *
3262  * We return with the mmap_lock locked or unlocked in the same cases
3263  * as does filemap_fault().
3264  */
3265 vm_fault_t do_swap_page(struct vm_fault *vmf)
3266 {
3267 	struct vm_area_struct *vma = vmf->vma;
3268 	struct page *page = NULL, *swapcache;
3269 	swp_entry_t entry;
3270 	pte_t pte;
3271 	int locked;
3272 	int exclusive = 0;
3273 	vm_fault_t ret = 0;
3274 	void *shadow = NULL;
3275 
3276 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3277 		goto out;
3278 
3279 	entry = pte_to_swp_entry(vmf->orig_pte);
3280 	if (unlikely(non_swap_entry(entry))) {
3281 		if (is_migration_entry(entry)) {
3282 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3283 					     vmf->address);
3284 		} else if (is_device_private_entry(entry)) {
3285 			vmf->page = device_private_entry_to_page(entry);
3286 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3287 		} else if (is_hwpoison_entry(entry)) {
3288 			ret = VM_FAULT_HWPOISON;
3289 		} else {
3290 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3291 			ret = VM_FAULT_SIGBUS;
3292 		}
3293 		goto out;
3294 	}
3295 
3296 
3297 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3298 	page = lookup_swap_cache(entry, vma, vmf->address);
3299 	swapcache = page;
3300 
3301 	if (!page) {
3302 		struct swap_info_struct *si = swp_swap_info(entry);
3303 
3304 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3305 		    __swap_count(entry) == 1) {
3306 			/* skip swapcache */
3307 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3308 							vmf->address);
3309 			if (page) {
3310 				int err;
3311 
3312 				__SetPageLocked(page);
3313 				__SetPageSwapBacked(page);
3314 				set_page_private(page, entry.val);
3315 
3316 				/* Tell memcg to use swap ownership records */
3317 				SetPageSwapCache(page);
3318 				err = mem_cgroup_charge(page, vma->vm_mm,
3319 							GFP_KERNEL);
3320 				ClearPageSwapCache(page);
3321 				if (err) {
3322 					ret = VM_FAULT_OOM;
3323 					goto out_page;
3324 				}
3325 
3326 				shadow = get_shadow_from_swap_cache(entry);
3327 				if (shadow)
3328 					workingset_refault(page, shadow);
3329 
3330 				lru_cache_add(page);
3331 				swap_readpage(page, true);
3332 			}
3333 		} else {
3334 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3335 						vmf);
3336 			swapcache = page;
3337 		}
3338 
3339 		if (!page) {
3340 			/*
3341 			 * Back out if somebody else faulted in this pte
3342 			 * while we released the pte lock.
3343 			 */
3344 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3345 					vmf->address, &vmf->ptl);
3346 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3347 				ret = VM_FAULT_OOM;
3348 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3349 			goto unlock;
3350 		}
3351 
3352 		/* Had to read the page from swap area: Major fault */
3353 		ret = VM_FAULT_MAJOR;
3354 		count_vm_event(PGMAJFAULT);
3355 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3356 	} else if (PageHWPoison(page)) {
3357 		/*
3358 		 * hwpoisoned dirty swapcache pages are kept for killing
3359 		 * owner processes (which may be unknown at hwpoison time)
3360 		 */
3361 		ret = VM_FAULT_HWPOISON;
3362 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3363 		goto out_release;
3364 	}
3365 
3366 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3367 
3368 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3369 	if (!locked) {
3370 		ret |= VM_FAULT_RETRY;
3371 		goto out_release;
3372 	}
3373 
3374 	/*
3375 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3376 	 * release the swapcache from under us.  The page pin, and pte_same
3377 	 * test below, are not enough to exclude that.  Even if it is still
3378 	 * swapcache, we need to check that the page's swap has not changed.
3379 	 */
3380 	if (unlikely((!PageSwapCache(page) ||
3381 			page_private(page) != entry.val)) && swapcache)
3382 		goto out_page;
3383 
3384 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3385 	if (unlikely(!page)) {
3386 		ret = VM_FAULT_OOM;
3387 		page = swapcache;
3388 		goto out_page;
3389 	}
3390 
3391 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3392 
3393 	/*
3394 	 * Back out if somebody else already faulted in this pte.
3395 	 */
3396 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3397 			&vmf->ptl);
3398 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3399 		goto out_nomap;
3400 
3401 	if (unlikely(!PageUptodate(page))) {
3402 		ret = VM_FAULT_SIGBUS;
3403 		goto out_nomap;
3404 	}
3405 
3406 	/*
3407 	 * The page isn't present yet, go ahead with the fault.
3408 	 *
3409 	 * Be careful about the sequence of operations here.
3410 	 * To get its accounting right, reuse_swap_page() must be called
3411 	 * while the page is counted on swap but not yet in mapcount i.e.
3412 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3413 	 * must be called after the swap_free(), or it will never succeed.
3414 	 */
3415 
3416 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3417 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3418 	pte = mk_pte(page, vma->vm_page_prot);
3419 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3420 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3421 		vmf->flags &= ~FAULT_FLAG_WRITE;
3422 		ret |= VM_FAULT_WRITE;
3423 		exclusive = RMAP_EXCLUSIVE;
3424 	}
3425 	flush_icache_page(vma, page);
3426 	if (pte_swp_soft_dirty(vmf->orig_pte))
3427 		pte = pte_mksoft_dirty(pte);
3428 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3429 		pte = pte_mkuffd_wp(pte);
3430 		pte = pte_wrprotect(pte);
3431 	}
3432 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3433 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3434 	vmf->orig_pte = pte;
3435 
3436 	/* ksm created a completely new copy */
3437 	if (unlikely(page != swapcache && swapcache)) {
3438 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3439 		lru_cache_add_inactive_or_unevictable(page, vma);
3440 	} else {
3441 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3442 	}
3443 
3444 	swap_free(entry);
3445 	if (mem_cgroup_swap_full(page) ||
3446 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3447 		try_to_free_swap(page);
3448 	unlock_page(page);
3449 	if (page != swapcache && swapcache) {
3450 		/*
3451 		 * Hold the lock to avoid the swap entry to be reused
3452 		 * until we take the PT lock for the pte_same() check
3453 		 * (to avoid false positives from pte_same). For
3454 		 * further safety release the lock after the swap_free
3455 		 * so that the swap count won't change under a
3456 		 * parallel locked swapcache.
3457 		 */
3458 		unlock_page(swapcache);
3459 		put_page(swapcache);
3460 	}
3461 
3462 	if (vmf->flags & FAULT_FLAG_WRITE) {
3463 		ret |= do_wp_page(vmf);
3464 		if (ret & VM_FAULT_ERROR)
3465 			ret &= VM_FAULT_ERROR;
3466 		goto out;
3467 	}
3468 
3469 	/* No need to invalidate - it was non-present before */
3470 	update_mmu_cache(vma, vmf->address, vmf->pte);
3471 unlock:
3472 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3473 out:
3474 	return ret;
3475 out_nomap:
3476 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3477 out_page:
3478 	unlock_page(page);
3479 out_release:
3480 	put_page(page);
3481 	if (page != swapcache && swapcache) {
3482 		unlock_page(swapcache);
3483 		put_page(swapcache);
3484 	}
3485 	return ret;
3486 }
3487 
3488 /*
3489  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3490  * but allow concurrent faults), and pte mapped but not yet locked.
3491  * We return with mmap_lock still held, but pte unmapped and unlocked.
3492  */
3493 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3494 {
3495 	struct vm_area_struct *vma = vmf->vma;
3496 	struct page *page;
3497 	vm_fault_t ret = 0;
3498 	pte_t entry;
3499 
3500 	/* File mapping without ->vm_ops ? */
3501 	if (vma->vm_flags & VM_SHARED)
3502 		return VM_FAULT_SIGBUS;
3503 
3504 	/*
3505 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3506 	 * pte_offset_map() on pmds where a huge pmd might be created
3507 	 * from a different thread.
3508 	 *
3509 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3510 	 * parallel threads are excluded by other means.
3511 	 *
3512 	 * Here we only have mmap_read_lock(mm).
3513 	 */
3514 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3515 		return VM_FAULT_OOM;
3516 
3517 	/* See comment in handle_pte_fault() */
3518 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3519 		return 0;
3520 
3521 	/* Use the zero-page for reads */
3522 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3523 			!mm_forbids_zeropage(vma->vm_mm)) {
3524 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3525 						vma->vm_page_prot));
3526 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3527 				vmf->address, &vmf->ptl);
3528 		if (!pte_none(*vmf->pte)) {
3529 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3530 			goto unlock;
3531 		}
3532 		ret = check_stable_address_space(vma->vm_mm);
3533 		if (ret)
3534 			goto unlock;
3535 		/* Deliver the page fault to userland, check inside PT lock */
3536 		if (userfaultfd_missing(vma)) {
3537 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3538 			return handle_userfault(vmf, VM_UFFD_MISSING);
3539 		}
3540 		goto setpte;
3541 	}
3542 
3543 	/* Allocate our own private page. */
3544 	if (unlikely(anon_vma_prepare(vma)))
3545 		goto oom;
3546 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3547 	if (!page)
3548 		goto oom;
3549 
3550 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3551 		goto oom_free_page;
3552 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3553 
3554 	/*
3555 	 * The memory barrier inside __SetPageUptodate makes sure that
3556 	 * preceding stores to the page contents become visible before
3557 	 * the set_pte_at() write.
3558 	 */
3559 	__SetPageUptodate(page);
3560 
3561 	entry = mk_pte(page, vma->vm_page_prot);
3562 	if (vma->vm_flags & VM_WRITE)
3563 		entry = pte_mkwrite(pte_mkdirty(entry));
3564 
3565 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3566 			&vmf->ptl);
3567 	if (!pte_none(*vmf->pte)) {
3568 		update_mmu_cache(vma, vmf->address, vmf->pte);
3569 		goto release;
3570 	}
3571 
3572 	ret = check_stable_address_space(vma->vm_mm);
3573 	if (ret)
3574 		goto release;
3575 
3576 	/* Deliver the page fault to userland, check inside PT lock */
3577 	if (userfaultfd_missing(vma)) {
3578 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3579 		put_page(page);
3580 		return handle_userfault(vmf, VM_UFFD_MISSING);
3581 	}
3582 
3583 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3584 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3585 	lru_cache_add_inactive_or_unevictable(page, vma);
3586 setpte:
3587 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3588 
3589 	/* No need to invalidate - it was non-present before */
3590 	update_mmu_cache(vma, vmf->address, vmf->pte);
3591 unlock:
3592 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3593 	return ret;
3594 release:
3595 	put_page(page);
3596 	goto unlock;
3597 oom_free_page:
3598 	put_page(page);
3599 oom:
3600 	return VM_FAULT_OOM;
3601 }
3602 
3603 /*
3604  * The mmap_lock must have been held on entry, and may have been
3605  * released depending on flags and vma->vm_ops->fault() return value.
3606  * See filemap_fault() and __lock_page_retry().
3607  */
3608 static vm_fault_t __do_fault(struct vm_fault *vmf)
3609 {
3610 	struct vm_area_struct *vma = vmf->vma;
3611 	vm_fault_t ret;
3612 
3613 	/*
3614 	 * Preallocate pte before we take page_lock because this might lead to
3615 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3616 	 *				lock_page(A)
3617 	 *				SetPageWriteback(A)
3618 	 *				unlock_page(A)
3619 	 * lock_page(B)
3620 	 *				lock_page(B)
3621 	 * pte_alloc_one
3622 	 *   shrink_page_list
3623 	 *     wait_on_page_writeback(A)
3624 	 *				SetPageWriteback(B)
3625 	 *				unlock_page(B)
3626 	 *				# flush A, B to clear the writeback
3627 	 */
3628 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3629 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3630 		if (!vmf->prealloc_pte)
3631 			return VM_FAULT_OOM;
3632 		smp_wmb(); /* See comment in __pte_alloc() */
3633 	}
3634 
3635 	ret = vma->vm_ops->fault(vmf);
3636 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3637 			    VM_FAULT_DONE_COW)))
3638 		return ret;
3639 
3640 	if (unlikely(PageHWPoison(vmf->page))) {
3641 		if (ret & VM_FAULT_LOCKED)
3642 			unlock_page(vmf->page);
3643 		put_page(vmf->page);
3644 		vmf->page = NULL;
3645 		return VM_FAULT_HWPOISON;
3646 	}
3647 
3648 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3649 		lock_page(vmf->page);
3650 	else
3651 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3652 
3653 	return ret;
3654 }
3655 
3656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3657 static void deposit_prealloc_pte(struct vm_fault *vmf)
3658 {
3659 	struct vm_area_struct *vma = vmf->vma;
3660 
3661 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3662 	/*
3663 	 * We are going to consume the prealloc table,
3664 	 * count that as nr_ptes.
3665 	 */
3666 	mm_inc_nr_ptes(vma->vm_mm);
3667 	vmf->prealloc_pte = NULL;
3668 }
3669 
3670 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3671 {
3672 	struct vm_area_struct *vma = vmf->vma;
3673 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3674 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3675 	pmd_t entry;
3676 	int i;
3677 	vm_fault_t ret = VM_FAULT_FALLBACK;
3678 
3679 	if (!transhuge_vma_suitable(vma, haddr))
3680 		return ret;
3681 
3682 	page = compound_head(page);
3683 	if (compound_order(page) != HPAGE_PMD_ORDER)
3684 		return ret;
3685 
3686 	/*
3687 	 * Archs like ppc64 need additonal space to store information
3688 	 * related to pte entry. Use the preallocated table for that.
3689 	 */
3690 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3691 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3692 		if (!vmf->prealloc_pte)
3693 			return VM_FAULT_OOM;
3694 		smp_wmb(); /* See comment in __pte_alloc() */
3695 	}
3696 
3697 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3698 	if (unlikely(!pmd_none(*vmf->pmd)))
3699 		goto out;
3700 
3701 	for (i = 0; i < HPAGE_PMD_NR; i++)
3702 		flush_icache_page(vma, page + i);
3703 
3704 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3705 	if (write)
3706 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3707 
3708 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3709 	page_add_file_rmap(page, true);
3710 	/*
3711 	 * deposit and withdraw with pmd lock held
3712 	 */
3713 	if (arch_needs_pgtable_deposit())
3714 		deposit_prealloc_pte(vmf);
3715 
3716 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3717 
3718 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3719 
3720 	/* fault is handled */
3721 	ret = 0;
3722 	count_vm_event(THP_FILE_MAPPED);
3723 out:
3724 	spin_unlock(vmf->ptl);
3725 	return ret;
3726 }
3727 #else
3728 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3729 {
3730 	return VM_FAULT_FALLBACK;
3731 }
3732 #endif
3733 
3734 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3735 {
3736 	struct vm_area_struct *vma = vmf->vma;
3737 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3738 	bool prefault = vmf->address != addr;
3739 	pte_t entry;
3740 
3741 	flush_icache_page(vma, page);
3742 	entry = mk_pte(page, vma->vm_page_prot);
3743 
3744 	if (prefault && arch_wants_old_prefaulted_pte())
3745 		entry = pte_mkold(entry);
3746 
3747 	if (write)
3748 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3749 	/* copy-on-write page */
3750 	if (write && !(vma->vm_flags & VM_SHARED)) {
3751 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3752 		page_add_new_anon_rmap(page, vma, addr, false);
3753 		lru_cache_add_inactive_or_unevictable(page, vma);
3754 	} else {
3755 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3756 		page_add_file_rmap(page, false);
3757 	}
3758 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3759 }
3760 
3761 /**
3762  * finish_fault - finish page fault once we have prepared the page to fault
3763  *
3764  * @vmf: structure describing the fault
3765  *
3766  * This function handles all that is needed to finish a page fault once the
3767  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3768  * given page, adds reverse page mapping, handles memcg charges and LRU
3769  * addition.
3770  *
3771  * The function expects the page to be locked and on success it consumes a
3772  * reference of a page being mapped (for the PTE which maps it).
3773  *
3774  * Return: %0 on success, %VM_FAULT_ code in case of error.
3775  */
3776 vm_fault_t finish_fault(struct vm_fault *vmf)
3777 {
3778 	struct vm_area_struct *vma = vmf->vma;
3779 	struct page *page;
3780 	vm_fault_t ret;
3781 
3782 	/* Did we COW the page? */
3783 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3784 		page = vmf->cow_page;
3785 	else
3786 		page = vmf->page;
3787 
3788 	/*
3789 	 * check even for read faults because we might have lost our CoWed
3790 	 * page
3791 	 */
3792 	if (!(vma->vm_flags & VM_SHARED)) {
3793 		ret = check_stable_address_space(vma->vm_mm);
3794 		if (ret)
3795 			return ret;
3796 	}
3797 
3798 	if (pmd_none(*vmf->pmd)) {
3799 		if (PageTransCompound(page)) {
3800 			ret = do_set_pmd(vmf, page);
3801 			if (ret != VM_FAULT_FALLBACK)
3802 				return ret;
3803 		}
3804 
3805 		if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3806 			return VM_FAULT_OOM;
3807 	}
3808 
3809 	/* See comment in handle_pte_fault() */
3810 	if (pmd_devmap_trans_unstable(vmf->pmd))
3811 		return 0;
3812 
3813 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3814 				      vmf->address, &vmf->ptl);
3815 	ret = 0;
3816 	/* Re-check under ptl */
3817 	if (likely(pte_none(*vmf->pte)))
3818 		do_set_pte(vmf, page, vmf->address);
3819 	else
3820 		ret = VM_FAULT_NOPAGE;
3821 
3822 	update_mmu_tlb(vma, vmf->address, vmf->pte);
3823 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3824 	return ret;
3825 }
3826 
3827 static unsigned long fault_around_bytes __read_mostly =
3828 	rounddown_pow_of_two(65536);
3829 
3830 #ifdef CONFIG_DEBUG_FS
3831 static int fault_around_bytes_get(void *data, u64 *val)
3832 {
3833 	*val = fault_around_bytes;
3834 	return 0;
3835 }
3836 
3837 /*
3838  * fault_around_bytes must be rounded down to the nearest page order as it's
3839  * what do_fault_around() expects to see.
3840  */
3841 static int fault_around_bytes_set(void *data, u64 val)
3842 {
3843 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3844 		return -EINVAL;
3845 	if (val > PAGE_SIZE)
3846 		fault_around_bytes = rounddown_pow_of_two(val);
3847 	else
3848 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3849 	return 0;
3850 }
3851 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3852 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3853 
3854 static int __init fault_around_debugfs(void)
3855 {
3856 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3857 				   &fault_around_bytes_fops);
3858 	return 0;
3859 }
3860 late_initcall(fault_around_debugfs);
3861 #endif
3862 
3863 /*
3864  * do_fault_around() tries to map few pages around the fault address. The hope
3865  * is that the pages will be needed soon and this will lower the number of
3866  * faults to handle.
3867  *
3868  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3869  * not ready to be mapped: not up-to-date, locked, etc.
3870  *
3871  * This function is called with the page table lock taken. In the split ptlock
3872  * case the page table lock only protects only those entries which belong to
3873  * the page table corresponding to the fault address.
3874  *
3875  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3876  * only once.
3877  *
3878  * fault_around_bytes defines how many bytes we'll try to map.
3879  * do_fault_around() expects it to be set to a power of two less than or equal
3880  * to PTRS_PER_PTE.
3881  *
3882  * The virtual address of the area that we map is naturally aligned to
3883  * fault_around_bytes rounded down to the machine page size
3884  * (and therefore to page order).  This way it's easier to guarantee
3885  * that we don't cross page table boundaries.
3886  */
3887 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3888 {
3889 	unsigned long address = vmf->address, nr_pages, mask;
3890 	pgoff_t start_pgoff = vmf->pgoff;
3891 	pgoff_t end_pgoff;
3892 	int off;
3893 
3894 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3895 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3896 
3897 	address = max(address & mask, vmf->vma->vm_start);
3898 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3899 	start_pgoff -= off;
3900 
3901 	/*
3902 	 *  end_pgoff is either the end of the page table, the end of
3903 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3904 	 */
3905 	end_pgoff = start_pgoff -
3906 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3907 		PTRS_PER_PTE - 1;
3908 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3909 			start_pgoff + nr_pages - 1);
3910 
3911 	if (pmd_none(*vmf->pmd)) {
3912 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3913 		if (!vmf->prealloc_pte)
3914 			return VM_FAULT_OOM;
3915 		smp_wmb(); /* See comment in __pte_alloc() */
3916 	}
3917 
3918 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3919 }
3920 
3921 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3922 {
3923 	struct vm_area_struct *vma = vmf->vma;
3924 	vm_fault_t ret = 0;
3925 
3926 	/*
3927 	 * Let's call ->map_pages() first and use ->fault() as fallback
3928 	 * if page by the offset is not ready to be mapped (cold cache or
3929 	 * something).
3930 	 */
3931 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3932 		ret = do_fault_around(vmf);
3933 		if (ret)
3934 			return ret;
3935 	}
3936 
3937 	ret = __do_fault(vmf);
3938 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3939 		return ret;
3940 
3941 	ret |= finish_fault(vmf);
3942 	unlock_page(vmf->page);
3943 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3944 		put_page(vmf->page);
3945 	return ret;
3946 }
3947 
3948 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3949 {
3950 	struct vm_area_struct *vma = vmf->vma;
3951 	vm_fault_t ret;
3952 
3953 	if (unlikely(anon_vma_prepare(vma)))
3954 		return VM_FAULT_OOM;
3955 
3956 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3957 	if (!vmf->cow_page)
3958 		return VM_FAULT_OOM;
3959 
3960 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3961 		put_page(vmf->cow_page);
3962 		return VM_FAULT_OOM;
3963 	}
3964 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3965 
3966 	ret = __do_fault(vmf);
3967 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3968 		goto uncharge_out;
3969 	if (ret & VM_FAULT_DONE_COW)
3970 		return ret;
3971 
3972 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3973 	__SetPageUptodate(vmf->cow_page);
3974 
3975 	ret |= finish_fault(vmf);
3976 	unlock_page(vmf->page);
3977 	put_page(vmf->page);
3978 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3979 		goto uncharge_out;
3980 	return ret;
3981 uncharge_out:
3982 	put_page(vmf->cow_page);
3983 	return ret;
3984 }
3985 
3986 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3987 {
3988 	struct vm_area_struct *vma = vmf->vma;
3989 	vm_fault_t ret, tmp;
3990 
3991 	ret = __do_fault(vmf);
3992 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3993 		return ret;
3994 
3995 	/*
3996 	 * Check if the backing address space wants to know that the page is
3997 	 * about to become writable
3998 	 */
3999 	if (vma->vm_ops->page_mkwrite) {
4000 		unlock_page(vmf->page);
4001 		tmp = do_page_mkwrite(vmf);
4002 		if (unlikely(!tmp ||
4003 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4004 			put_page(vmf->page);
4005 			return tmp;
4006 		}
4007 	}
4008 
4009 	ret |= finish_fault(vmf);
4010 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4011 					VM_FAULT_RETRY))) {
4012 		unlock_page(vmf->page);
4013 		put_page(vmf->page);
4014 		return ret;
4015 	}
4016 
4017 	ret |= fault_dirty_shared_page(vmf);
4018 	return ret;
4019 }
4020 
4021 /*
4022  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4023  * but allow concurrent faults).
4024  * The mmap_lock may have been released depending on flags and our
4025  * return value.  See filemap_fault() and __lock_page_or_retry().
4026  * If mmap_lock is released, vma may become invalid (for example
4027  * by other thread calling munmap()).
4028  */
4029 static vm_fault_t do_fault(struct vm_fault *vmf)
4030 {
4031 	struct vm_area_struct *vma = vmf->vma;
4032 	struct mm_struct *vm_mm = vma->vm_mm;
4033 	vm_fault_t ret;
4034 
4035 	/*
4036 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4037 	 */
4038 	if (!vma->vm_ops->fault) {
4039 		/*
4040 		 * If we find a migration pmd entry or a none pmd entry, which
4041 		 * should never happen, return SIGBUS
4042 		 */
4043 		if (unlikely(!pmd_present(*vmf->pmd)))
4044 			ret = VM_FAULT_SIGBUS;
4045 		else {
4046 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4047 						       vmf->pmd,
4048 						       vmf->address,
4049 						       &vmf->ptl);
4050 			/*
4051 			 * Make sure this is not a temporary clearing of pte
4052 			 * by holding ptl and checking again. A R/M/W update
4053 			 * of pte involves: take ptl, clearing the pte so that
4054 			 * we don't have concurrent modification by hardware
4055 			 * followed by an update.
4056 			 */
4057 			if (unlikely(pte_none(*vmf->pte)))
4058 				ret = VM_FAULT_SIGBUS;
4059 			else
4060 				ret = VM_FAULT_NOPAGE;
4061 
4062 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4063 		}
4064 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4065 		ret = do_read_fault(vmf);
4066 	else if (!(vma->vm_flags & VM_SHARED))
4067 		ret = do_cow_fault(vmf);
4068 	else
4069 		ret = do_shared_fault(vmf);
4070 
4071 	/* preallocated pagetable is unused: free it */
4072 	if (vmf->prealloc_pte) {
4073 		pte_free(vm_mm, vmf->prealloc_pte);
4074 		vmf->prealloc_pte = NULL;
4075 	}
4076 	return ret;
4077 }
4078 
4079 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4080 				unsigned long addr, int page_nid,
4081 				int *flags)
4082 {
4083 	get_page(page);
4084 
4085 	count_vm_numa_event(NUMA_HINT_FAULTS);
4086 	if (page_nid == numa_node_id()) {
4087 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4088 		*flags |= TNF_FAULT_LOCAL;
4089 	}
4090 
4091 	return mpol_misplaced(page, vma, addr);
4092 }
4093 
4094 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4095 {
4096 	struct vm_area_struct *vma = vmf->vma;
4097 	struct page *page = NULL;
4098 	int page_nid = NUMA_NO_NODE;
4099 	int last_cpupid;
4100 	int target_nid;
4101 	bool migrated = false;
4102 	pte_t pte, old_pte;
4103 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4104 	int flags = 0;
4105 
4106 	/*
4107 	 * The "pte" at this point cannot be used safely without
4108 	 * validation through pte_unmap_same(). It's of NUMA type but
4109 	 * the pfn may be screwed if the read is non atomic.
4110 	 */
4111 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4112 	spin_lock(vmf->ptl);
4113 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4114 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4115 		goto out;
4116 	}
4117 
4118 	/*
4119 	 * Make it present again, Depending on how arch implementes non
4120 	 * accessible ptes, some can allow access by kernel mode.
4121 	 */
4122 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4123 	pte = pte_modify(old_pte, vma->vm_page_prot);
4124 	pte = pte_mkyoung(pte);
4125 	if (was_writable)
4126 		pte = pte_mkwrite(pte);
4127 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4128 	update_mmu_cache(vma, vmf->address, vmf->pte);
4129 
4130 	page = vm_normal_page(vma, vmf->address, pte);
4131 	if (!page) {
4132 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4133 		return 0;
4134 	}
4135 
4136 	/* TODO: handle PTE-mapped THP */
4137 	if (PageCompound(page)) {
4138 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4139 		return 0;
4140 	}
4141 
4142 	/*
4143 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4144 	 * much anyway since they can be in shared cache state. This misses
4145 	 * the case where a mapping is writable but the process never writes
4146 	 * to it but pte_write gets cleared during protection updates and
4147 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4148 	 * background writeback, dirty balancing and application behaviour.
4149 	 */
4150 	if (!pte_write(pte))
4151 		flags |= TNF_NO_GROUP;
4152 
4153 	/*
4154 	 * Flag if the page is shared between multiple address spaces. This
4155 	 * is later used when determining whether to group tasks together
4156 	 */
4157 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4158 		flags |= TNF_SHARED;
4159 
4160 	last_cpupid = page_cpupid_last(page);
4161 	page_nid = page_to_nid(page);
4162 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4163 			&flags);
4164 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4165 	if (target_nid == NUMA_NO_NODE) {
4166 		put_page(page);
4167 		goto out;
4168 	}
4169 
4170 	/* Migrate to the requested node */
4171 	migrated = migrate_misplaced_page(page, vma, target_nid);
4172 	if (migrated) {
4173 		page_nid = target_nid;
4174 		flags |= TNF_MIGRATED;
4175 	} else
4176 		flags |= TNF_MIGRATE_FAIL;
4177 
4178 out:
4179 	if (page_nid != NUMA_NO_NODE)
4180 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4181 	return 0;
4182 }
4183 
4184 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4185 {
4186 	if (vma_is_anonymous(vmf->vma))
4187 		return do_huge_pmd_anonymous_page(vmf);
4188 	if (vmf->vma->vm_ops->huge_fault)
4189 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4190 	return VM_FAULT_FALLBACK;
4191 }
4192 
4193 /* `inline' is required to avoid gcc 4.1.2 build error */
4194 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4195 {
4196 	if (vma_is_anonymous(vmf->vma)) {
4197 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4198 			return handle_userfault(vmf, VM_UFFD_WP);
4199 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4200 	}
4201 	if (vmf->vma->vm_ops->huge_fault) {
4202 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4203 
4204 		if (!(ret & VM_FAULT_FALLBACK))
4205 			return ret;
4206 	}
4207 
4208 	/* COW or write-notify handled on pte level: split pmd. */
4209 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4210 
4211 	return VM_FAULT_FALLBACK;
4212 }
4213 
4214 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4215 {
4216 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4217 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4218 	/* No support for anonymous transparent PUD pages yet */
4219 	if (vma_is_anonymous(vmf->vma))
4220 		goto split;
4221 	if (vmf->vma->vm_ops->huge_fault) {
4222 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4223 
4224 		if (!(ret & VM_FAULT_FALLBACK))
4225 			return ret;
4226 	}
4227 split:
4228 	/* COW or write-notify not handled on PUD level: split pud.*/
4229 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4230 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4231 	return VM_FAULT_FALLBACK;
4232 }
4233 
4234 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4235 {
4236 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4237 	/* No support for anonymous transparent PUD pages yet */
4238 	if (vma_is_anonymous(vmf->vma))
4239 		return VM_FAULT_FALLBACK;
4240 	if (vmf->vma->vm_ops->huge_fault)
4241 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4242 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4243 	return VM_FAULT_FALLBACK;
4244 }
4245 
4246 /*
4247  * These routines also need to handle stuff like marking pages dirty
4248  * and/or accessed for architectures that don't do it in hardware (most
4249  * RISC architectures).  The early dirtying is also good on the i386.
4250  *
4251  * There is also a hook called "update_mmu_cache()" that architectures
4252  * with external mmu caches can use to update those (ie the Sparc or
4253  * PowerPC hashed page tables that act as extended TLBs).
4254  *
4255  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4256  * concurrent faults).
4257  *
4258  * The mmap_lock may have been released depending on flags and our return value.
4259  * See filemap_fault() and __lock_page_or_retry().
4260  */
4261 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4262 {
4263 	pte_t entry;
4264 
4265 	if (unlikely(pmd_none(*vmf->pmd))) {
4266 		/*
4267 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4268 		 * want to allocate huge page, and if we expose page table
4269 		 * for an instant, it will be difficult to retract from
4270 		 * concurrent faults and from rmap lookups.
4271 		 */
4272 		vmf->pte = NULL;
4273 	} else {
4274 		/*
4275 		 * If a huge pmd materialized under us just retry later.  Use
4276 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4277 		 * of pmd_trans_huge() to ensure the pmd didn't become
4278 		 * pmd_trans_huge under us and then back to pmd_none, as a
4279 		 * result of MADV_DONTNEED running immediately after a huge pmd
4280 		 * fault in a different thread of this mm, in turn leading to a
4281 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4282 		 * that it is a regular pmd that we can walk with
4283 		 * pte_offset_map() and we can do that through an atomic read
4284 		 * in C, which is what pmd_trans_unstable() provides.
4285 		 */
4286 		if (pmd_devmap_trans_unstable(vmf->pmd))
4287 			return 0;
4288 		/*
4289 		 * A regular pmd is established and it can't morph into a huge
4290 		 * pmd from under us anymore at this point because we hold the
4291 		 * mmap_lock read mode and khugepaged takes it in write mode.
4292 		 * So now it's safe to run pte_offset_map().
4293 		 */
4294 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4295 		vmf->orig_pte = *vmf->pte;
4296 
4297 		/*
4298 		 * some architectures can have larger ptes than wordsize,
4299 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4300 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4301 		 * accesses.  The code below just needs a consistent view
4302 		 * for the ifs and we later double check anyway with the
4303 		 * ptl lock held. So here a barrier will do.
4304 		 */
4305 		barrier();
4306 		if (pte_none(vmf->orig_pte)) {
4307 			pte_unmap(vmf->pte);
4308 			vmf->pte = NULL;
4309 		}
4310 	}
4311 
4312 	if (!vmf->pte) {
4313 		if (vma_is_anonymous(vmf->vma))
4314 			return do_anonymous_page(vmf);
4315 		else
4316 			return do_fault(vmf);
4317 	}
4318 
4319 	if (!pte_present(vmf->orig_pte))
4320 		return do_swap_page(vmf);
4321 
4322 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4323 		return do_numa_page(vmf);
4324 
4325 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4326 	spin_lock(vmf->ptl);
4327 	entry = vmf->orig_pte;
4328 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4329 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4330 		goto unlock;
4331 	}
4332 	if (vmf->flags & FAULT_FLAG_WRITE) {
4333 		if (!pte_write(entry))
4334 			return do_wp_page(vmf);
4335 		entry = pte_mkdirty(entry);
4336 	}
4337 	entry = pte_mkyoung(entry);
4338 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4339 				vmf->flags & FAULT_FLAG_WRITE)) {
4340 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4341 	} else {
4342 		/* Skip spurious TLB flush for retried page fault */
4343 		if (vmf->flags & FAULT_FLAG_TRIED)
4344 			goto unlock;
4345 		/*
4346 		 * This is needed only for protection faults but the arch code
4347 		 * is not yet telling us if this is a protection fault or not.
4348 		 * This still avoids useless tlb flushes for .text page faults
4349 		 * with threads.
4350 		 */
4351 		if (vmf->flags & FAULT_FLAG_WRITE)
4352 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4353 	}
4354 unlock:
4355 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4356 	return 0;
4357 }
4358 
4359 /*
4360  * By the time we get here, we already hold the mm semaphore
4361  *
4362  * The mmap_lock may have been released depending on flags and our
4363  * return value.  See filemap_fault() and __lock_page_or_retry().
4364  */
4365 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4366 		unsigned long address, unsigned int flags)
4367 {
4368 	struct vm_fault vmf = {
4369 		.vma = vma,
4370 		.address = address & PAGE_MASK,
4371 		.flags = flags,
4372 		.pgoff = linear_page_index(vma, address),
4373 		.gfp_mask = __get_fault_gfp_mask(vma),
4374 	};
4375 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4376 	struct mm_struct *mm = vma->vm_mm;
4377 	pgd_t *pgd;
4378 	p4d_t *p4d;
4379 	vm_fault_t ret;
4380 
4381 	pgd = pgd_offset(mm, address);
4382 	p4d = p4d_alloc(mm, pgd, address);
4383 	if (!p4d)
4384 		return VM_FAULT_OOM;
4385 
4386 	vmf.pud = pud_alloc(mm, p4d, address);
4387 	if (!vmf.pud)
4388 		return VM_FAULT_OOM;
4389 retry_pud:
4390 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4391 		ret = create_huge_pud(&vmf);
4392 		if (!(ret & VM_FAULT_FALLBACK))
4393 			return ret;
4394 	} else {
4395 		pud_t orig_pud = *vmf.pud;
4396 
4397 		barrier();
4398 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4399 
4400 			/* NUMA case for anonymous PUDs would go here */
4401 
4402 			if (dirty && !pud_write(orig_pud)) {
4403 				ret = wp_huge_pud(&vmf, orig_pud);
4404 				if (!(ret & VM_FAULT_FALLBACK))
4405 					return ret;
4406 			} else {
4407 				huge_pud_set_accessed(&vmf, orig_pud);
4408 				return 0;
4409 			}
4410 		}
4411 	}
4412 
4413 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4414 	if (!vmf.pmd)
4415 		return VM_FAULT_OOM;
4416 
4417 	/* Huge pud page fault raced with pmd_alloc? */
4418 	if (pud_trans_unstable(vmf.pud))
4419 		goto retry_pud;
4420 
4421 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4422 		ret = create_huge_pmd(&vmf);
4423 		if (!(ret & VM_FAULT_FALLBACK))
4424 			return ret;
4425 	} else {
4426 		pmd_t orig_pmd = *vmf.pmd;
4427 
4428 		barrier();
4429 		if (unlikely(is_swap_pmd(orig_pmd))) {
4430 			VM_BUG_ON(thp_migration_supported() &&
4431 					  !is_pmd_migration_entry(orig_pmd));
4432 			if (is_pmd_migration_entry(orig_pmd))
4433 				pmd_migration_entry_wait(mm, vmf.pmd);
4434 			return 0;
4435 		}
4436 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4437 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4438 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4439 
4440 			if (dirty && !pmd_write(orig_pmd)) {
4441 				ret = wp_huge_pmd(&vmf, orig_pmd);
4442 				if (!(ret & VM_FAULT_FALLBACK))
4443 					return ret;
4444 			} else {
4445 				huge_pmd_set_accessed(&vmf, orig_pmd);
4446 				return 0;
4447 			}
4448 		}
4449 	}
4450 
4451 	return handle_pte_fault(&vmf);
4452 }
4453 
4454 /**
4455  * mm_account_fault - Do page fault accountings
4456  *
4457  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4458  *        of perf event counters, but we'll still do the per-task accounting to
4459  *        the task who triggered this page fault.
4460  * @address: the faulted address.
4461  * @flags: the fault flags.
4462  * @ret: the fault retcode.
4463  *
4464  * This will take care of most of the page fault accountings.  Meanwhile, it
4465  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4466  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4467  * still be in per-arch page fault handlers at the entry of page fault.
4468  */
4469 static inline void mm_account_fault(struct pt_regs *regs,
4470 				    unsigned long address, unsigned int flags,
4471 				    vm_fault_t ret)
4472 {
4473 	bool major;
4474 
4475 	/*
4476 	 * We don't do accounting for some specific faults:
4477 	 *
4478 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4479 	 *   includes arch_vma_access_permitted() failing before reaching here.
4480 	 *   So this is not a "this many hardware page faults" counter.  We
4481 	 *   should use the hw profiling for that.
4482 	 *
4483 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4484 	 *   once they're completed.
4485 	 */
4486 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4487 		return;
4488 
4489 	/*
4490 	 * We define the fault as a major fault when the final successful fault
4491 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4492 	 * handle it immediately previously).
4493 	 */
4494 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4495 
4496 	if (major)
4497 		current->maj_flt++;
4498 	else
4499 		current->min_flt++;
4500 
4501 	/*
4502 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4503 	 * accounting for the per thread fault counters who triggered the
4504 	 * fault, and we skip the perf event updates.
4505 	 */
4506 	if (!regs)
4507 		return;
4508 
4509 	if (major)
4510 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4511 	else
4512 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4513 }
4514 
4515 /*
4516  * By the time we get here, we already hold the mm semaphore
4517  *
4518  * The mmap_lock may have been released depending on flags and our
4519  * return value.  See filemap_fault() and __lock_page_or_retry().
4520  */
4521 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4522 			   unsigned int flags, struct pt_regs *regs)
4523 {
4524 	vm_fault_t ret;
4525 
4526 	__set_current_state(TASK_RUNNING);
4527 
4528 	count_vm_event(PGFAULT);
4529 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4530 
4531 	/* do counter updates before entering really critical section. */
4532 	check_sync_rss_stat(current);
4533 
4534 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4535 					    flags & FAULT_FLAG_INSTRUCTION,
4536 					    flags & FAULT_FLAG_REMOTE))
4537 		return VM_FAULT_SIGSEGV;
4538 
4539 	/*
4540 	 * Enable the memcg OOM handling for faults triggered in user
4541 	 * space.  Kernel faults are handled more gracefully.
4542 	 */
4543 	if (flags & FAULT_FLAG_USER)
4544 		mem_cgroup_enter_user_fault();
4545 
4546 	if (unlikely(is_vm_hugetlb_page(vma)))
4547 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4548 	else
4549 		ret = __handle_mm_fault(vma, address, flags);
4550 
4551 	if (flags & FAULT_FLAG_USER) {
4552 		mem_cgroup_exit_user_fault();
4553 		/*
4554 		 * The task may have entered a memcg OOM situation but
4555 		 * if the allocation error was handled gracefully (no
4556 		 * VM_FAULT_OOM), there is no need to kill anything.
4557 		 * Just clean up the OOM state peacefully.
4558 		 */
4559 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4560 			mem_cgroup_oom_synchronize(false);
4561 	}
4562 
4563 	mm_account_fault(regs, address, flags, ret);
4564 
4565 	return ret;
4566 }
4567 EXPORT_SYMBOL_GPL(handle_mm_fault);
4568 
4569 #ifndef __PAGETABLE_P4D_FOLDED
4570 /*
4571  * Allocate p4d page table.
4572  * We've already handled the fast-path in-line.
4573  */
4574 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4575 {
4576 	p4d_t *new = p4d_alloc_one(mm, address);
4577 	if (!new)
4578 		return -ENOMEM;
4579 
4580 	smp_wmb(); /* See comment in __pte_alloc */
4581 
4582 	spin_lock(&mm->page_table_lock);
4583 	if (pgd_present(*pgd))		/* Another has populated it */
4584 		p4d_free(mm, new);
4585 	else
4586 		pgd_populate(mm, pgd, new);
4587 	spin_unlock(&mm->page_table_lock);
4588 	return 0;
4589 }
4590 #endif /* __PAGETABLE_P4D_FOLDED */
4591 
4592 #ifndef __PAGETABLE_PUD_FOLDED
4593 /*
4594  * Allocate page upper directory.
4595  * We've already handled the fast-path in-line.
4596  */
4597 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4598 {
4599 	pud_t *new = pud_alloc_one(mm, address);
4600 	if (!new)
4601 		return -ENOMEM;
4602 
4603 	smp_wmb(); /* See comment in __pte_alloc */
4604 
4605 	spin_lock(&mm->page_table_lock);
4606 	if (!p4d_present(*p4d)) {
4607 		mm_inc_nr_puds(mm);
4608 		p4d_populate(mm, p4d, new);
4609 	} else	/* Another has populated it */
4610 		pud_free(mm, new);
4611 	spin_unlock(&mm->page_table_lock);
4612 	return 0;
4613 }
4614 #endif /* __PAGETABLE_PUD_FOLDED */
4615 
4616 #ifndef __PAGETABLE_PMD_FOLDED
4617 /*
4618  * Allocate page middle directory.
4619  * We've already handled the fast-path in-line.
4620  */
4621 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4622 {
4623 	spinlock_t *ptl;
4624 	pmd_t *new = pmd_alloc_one(mm, address);
4625 	if (!new)
4626 		return -ENOMEM;
4627 
4628 	smp_wmb(); /* See comment in __pte_alloc */
4629 
4630 	ptl = pud_lock(mm, pud);
4631 	if (!pud_present(*pud)) {
4632 		mm_inc_nr_pmds(mm);
4633 		pud_populate(mm, pud, new);
4634 	} else	/* Another has populated it */
4635 		pmd_free(mm, new);
4636 	spin_unlock(ptl);
4637 	return 0;
4638 }
4639 #endif /* __PAGETABLE_PMD_FOLDED */
4640 
4641 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4642 			  struct mmu_notifier_range *range, pte_t **ptepp,
4643 			  pmd_t **pmdpp, spinlock_t **ptlp)
4644 {
4645 	pgd_t *pgd;
4646 	p4d_t *p4d;
4647 	pud_t *pud;
4648 	pmd_t *pmd;
4649 	pte_t *ptep;
4650 
4651 	pgd = pgd_offset(mm, address);
4652 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4653 		goto out;
4654 
4655 	p4d = p4d_offset(pgd, address);
4656 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4657 		goto out;
4658 
4659 	pud = pud_offset(p4d, address);
4660 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4661 		goto out;
4662 
4663 	pmd = pmd_offset(pud, address);
4664 	VM_BUG_ON(pmd_trans_huge(*pmd));
4665 
4666 	if (pmd_huge(*pmd)) {
4667 		if (!pmdpp)
4668 			goto out;
4669 
4670 		if (range) {
4671 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4672 						NULL, mm, address & PMD_MASK,
4673 						(address & PMD_MASK) + PMD_SIZE);
4674 			mmu_notifier_invalidate_range_start(range);
4675 		}
4676 		*ptlp = pmd_lock(mm, pmd);
4677 		if (pmd_huge(*pmd)) {
4678 			*pmdpp = pmd;
4679 			return 0;
4680 		}
4681 		spin_unlock(*ptlp);
4682 		if (range)
4683 			mmu_notifier_invalidate_range_end(range);
4684 	}
4685 
4686 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4687 		goto out;
4688 
4689 	if (range) {
4690 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4691 					address & PAGE_MASK,
4692 					(address & PAGE_MASK) + PAGE_SIZE);
4693 		mmu_notifier_invalidate_range_start(range);
4694 	}
4695 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4696 	if (!pte_present(*ptep))
4697 		goto unlock;
4698 	*ptepp = ptep;
4699 	return 0;
4700 unlock:
4701 	pte_unmap_unlock(ptep, *ptlp);
4702 	if (range)
4703 		mmu_notifier_invalidate_range_end(range);
4704 out:
4705 	return -EINVAL;
4706 }
4707 
4708 /**
4709  * follow_pte - look up PTE at a user virtual address
4710  * @mm: the mm_struct of the target address space
4711  * @address: user virtual address
4712  * @ptepp: location to store found PTE
4713  * @ptlp: location to store the lock for the PTE
4714  *
4715  * On a successful return, the pointer to the PTE is stored in @ptepp;
4716  * the corresponding lock is taken and its location is stored in @ptlp.
4717  * The contents of the PTE are only stable until @ptlp is released;
4718  * any further use, if any, must be protected against invalidation
4719  * with MMU notifiers.
4720  *
4721  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4722  * should be taken for read.
4723  *
4724  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4725  * it is not a good general-purpose API.
4726  *
4727  * Return: zero on success, -ve otherwise.
4728  */
4729 int follow_pte(struct mm_struct *mm, unsigned long address,
4730 	       pte_t **ptepp, spinlock_t **ptlp)
4731 {
4732 	return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4733 }
4734 EXPORT_SYMBOL_GPL(follow_pte);
4735 
4736 /**
4737  * follow_pfn - look up PFN at a user virtual address
4738  * @vma: memory mapping
4739  * @address: user virtual address
4740  * @pfn: location to store found PFN
4741  *
4742  * Only IO mappings and raw PFN mappings are allowed.
4743  *
4744  * This function does not allow the caller to read the permissions
4745  * of the PTE.  Do not use it.
4746  *
4747  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4748  */
4749 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4750 	unsigned long *pfn)
4751 {
4752 	int ret = -EINVAL;
4753 	spinlock_t *ptl;
4754 	pte_t *ptep;
4755 
4756 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4757 		return ret;
4758 
4759 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4760 	if (ret)
4761 		return ret;
4762 	*pfn = pte_pfn(*ptep);
4763 	pte_unmap_unlock(ptep, ptl);
4764 	return 0;
4765 }
4766 EXPORT_SYMBOL(follow_pfn);
4767 
4768 #ifdef CONFIG_HAVE_IOREMAP_PROT
4769 int follow_phys(struct vm_area_struct *vma,
4770 		unsigned long address, unsigned int flags,
4771 		unsigned long *prot, resource_size_t *phys)
4772 {
4773 	int ret = -EINVAL;
4774 	pte_t *ptep, pte;
4775 	spinlock_t *ptl;
4776 
4777 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4778 		goto out;
4779 
4780 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4781 		goto out;
4782 	pte = *ptep;
4783 
4784 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4785 		goto unlock;
4786 
4787 	*prot = pgprot_val(pte_pgprot(pte));
4788 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4789 
4790 	ret = 0;
4791 unlock:
4792 	pte_unmap_unlock(ptep, ptl);
4793 out:
4794 	return ret;
4795 }
4796 
4797 /**
4798  * generic_access_phys - generic implementation for iomem mmap access
4799  * @vma: the vma to access
4800  * @addr: userspace addres, not relative offset within @vma
4801  * @buf: buffer to read/write
4802  * @len: length of transfer
4803  * @write: set to FOLL_WRITE when writing, otherwise reading
4804  *
4805  * This is a generic implementation for &vm_operations_struct.access for an
4806  * iomem mapping. This callback is used by access_process_vm() when the @vma is
4807  * not page based.
4808  */
4809 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4810 			void *buf, int len, int write)
4811 {
4812 	resource_size_t phys_addr;
4813 	unsigned long prot = 0;
4814 	void __iomem *maddr;
4815 	pte_t *ptep, pte;
4816 	spinlock_t *ptl;
4817 	int offset = offset_in_page(addr);
4818 	int ret = -EINVAL;
4819 
4820 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4821 		return -EINVAL;
4822 
4823 retry:
4824 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4825 		return -EINVAL;
4826 	pte = *ptep;
4827 	pte_unmap_unlock(ptep, ptl);
4828 
4829 	prot = pgprot_val(pte_pgprot(pte));
4830 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4831 
4832 	if ((write & FOLL_WRITE) && !pte_write(pte))
4833 		return -EINVAL;
4834 
4835 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4836 	if (!maddr)
4837 		return -ENOMEM;
4838 
4839 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4840 		goto out_unmap;
4841 
4842 	if (!pte_same(pte, *ptep)) {
4843 		pte_unmap_unlock(ptep, ptl);
4844 		iounmap(maddr);
4845 
4846 		goto retry;
4847 	}
4848 
4849 	if (write)
4850 		memcpy_toio(maddr + offset, buf, len);
4851 	else
4852 		memcpy_fromio(buf, maddr + offset, len);
4853 	ret = len;
4854 	pte_unmap_unlock(ptep, ptl);
4855 out_unmap:
4856 	iounmap(maddr);
4857 
4858 	return ret;
4859 }
4860 EXPORT_SYMBOL_GPL(generic_access_phys);
4861 #endif
4862 
4863 /*
4864  * Access another process' address space as given in mm.
4865  */
4866 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4867 		       int len, unsigned int gup_flags)
4868 {
4869 	struct vm_area_struct *vma;
4870 	void *old_buf = buf;
4871 	int write = gup_flags & FOLL_WRITE;
4872 
4873 	if (mmap_read_lock_killable(mm))
4874 		return 0;
4875 
4876 	/* ignore errors, just check how much was successfully transferred */
4877 	while (len) {
4878 		int bytes, ret, offset;
4879 		void *maddr;
4880 		struct page *page = NULL;
4881 
4882 		ret = get_user_pages_remote(mm, addr, 1,
4883 				gup_flags, &page, &vma, NULL);
4884 		if (ret <= 0) {
4885 #ifndef CONFIG_HAVE_IOREMAP_PROT
4886 			break;
4887 #else
4888 			/*
4889 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4890 			 * we can access using slightly different code.
4891 			 */
4892 			vma = find_vma(mm, addr);
4893 			if (!vma || vma->vm_start > addr)
4894 				break;
4895 			if (vma->vm_ops && vma->vm_ops->access)
4896 				ret = vma->vm_ops->access(vma, addr, buf,
4897 							  len, write);
4898 			if (ret <= 0)
4899 				break;
4900 			bytes = ret;
4901 #endif
4902 		} else {
4903 			bytes = len;
4904 			offset = addr & (PAGE_SIZE-1);
4905 			if (bytes > PAGE_SIZE-offset)
4906 				bytes = PAGE_SIZE-offset;
4907 
4908 			maddr = kmap(page);
4909 			if (write) {
4910 				copy_to_user_page(vma, page, addr,
4911 						  maddr + offset, buf, bytes);
4912 				set_page_dirty_lock(page);
4913 			} else {
4914 				copy_from_user_page(vma, page, addr,
4915 						    buf, maddr + offset, bytes);
4916 			}
4917 			kunmap(page);
4918 			put_page(page);
4919 		}
4920 		len -= bytes;
4921 		buf += bytes;
4922 		addr += bytes;
4923 	}
4924 	mmap_read_unlock(mm);
4925 
4926 	return buf - old_buf;
4927 }
4928 
4929 /**
4930  * access_remote_vm - access another process' address space
4931  * @mm:		the mm_struct of the target address space
4932  * @addr:	start address to access
4933  * @buf:	source or destination buffer
4934  * @len:	number of bytes to transfer
4935  * @gup_flags:	flags modifying lookup behaviour
4936  *
4937  * The caller must hold a reference on @mm.
4938  *
4939  * Return: number of bytes copied from source to destination.
4940  */
4941 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4942 		void *buf, int len, unsigned int gup_flags)
4943 {
4944 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
4945 }
4946 
4947 /*
4948  * Access another process' address space.
4949  * Source/target buffer must be kernel space,
4950  * Do not walk the page table directly, use get_user_pages
4951  */
4952 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4953 		void *buf, int len, unsigned int gup_flags)
4954 {
4955 	struct mm_struct *mm;
4956 	int ret;
4957 
4958 	mm = get_task_mm(tsk);
4959 	if (!mm)
4960 		return 0;
4961 
4962 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
4963 
4964 	mmput(mm);
4965 
4966 	return ret;
4967 }
4968 EXPORT_SYMBOL_GPL(access_process_vm);
4969 
4970 /*
4971  * Print the name of a VMA.
4972  */
4973 void print_vma_addr(char *prefix, unsigned long ip)
4974 {
4975 	struct mm_struct *mm = current->mm;
4976 	struct vm_area_struct *vma;
4977 
4978 	/*
4979 	 * we might be running from an atomic context so we cannot sleep
4980 	 */
4981 	if (!mmap_read_trylock(mm))
4982 		return;
4983 
4984 	vma = find_vma(mm, ip);
4985 	if (vma && vma->vm_file) {
4986 		struct file *f = vma->vm_file;
4987 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4988 		if (buf) {
4989 			char *p;
4990 
4991 			p = file_path(f, buf, PAGE_SIZE);
4992 			if (IS_ERR(p))
4993 				p = "?";
4994 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4995 					vma->vm_start,
4996 					vma->vm_end - vma->vm_start);
4997 			free_page((unsigned long)buf);
4998 		}
4999 	}
5000 	mmap_read_unlock(mm);
5001 }
5002 
5003 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5004 void __might_fault(const char *file, int line)
5005 {
5006 	/*
5007 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5008 	 * holding the mmap_lock, this is safe because kernel memory doesn't
5009 	 * get paged out, therefore we'll never actually fault, and the
5010 	 * below annotations will generate false positives.
5011 	 */
5012 	if (uaccess_kernel())
5013 		return;
5014 	if (pagefault_disabled())
5015 		return;
5016 	__might_sleep(file, line, 0);
5017 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5018 	if (current->mm)
5019 		might_lock_read(&current->mm->mmap_lock);
5020 #endif
5021 }
5022 EXPORT_SYMBOL(__might_fault);
5023 #endif
5024 
5025 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5026 /*
5027  * Process all subpages of the specified huge page with the specified
5028  * operation.  The target subpage will be processed last to keep its
5029  * cache lines hot.
5030  */
5031 static inline void process_huge_page(
5032 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5033 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5034 	void *arg)
5035 {
5036 	int i, n, base, l;
5037 	unsigned long addr = addr_hint &
5038 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5039 
5040 	/* Process target subpage last to keep its cache lines hot */
5041 	might_sleep();
5042 	n = (addr_hint - addr) / PAGE_SIZE;
5043 	if (2 * n <= pages_per_huge_page) {
5044 		/* If target subpage in first half of huge page */
5045 		base = 0;
5046 		l = n;
5047 		/* Process subpages at the end of huge page */
5048 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5049 			cond_resched();
5050 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5051 		}
5052 	} else {
5053 		/* If target subpage in second half of huge page */
5054 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5055 		l = pages_per_huge_page - n;
5056 		/* Process subpages at the begin of huge page */
5057 		for (i = 0; i < base; i++) {
5058 			cond_resched();
5059 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5060 		}
5061 	}
5062 	/*
5063 	 * Process remaining subpages in left-right-left-right pattern
5064 	 * towards the target subpage
5065 	 */
5066 	for (i = 0; i < l; i++) {
5067 		int left_idx = base + i;
5068 		int right_idx = base + 2 * l - 1 - i;
5069 
5070 		cond_resched();
5071 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5072 		cond_resched();
5073 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5074 	}
5075 }
5076 
5077 static void clear_gigantic_page(struct page *page,
5078 				unsigned long addr,
5079 				unsigned int pages_per_huge_page)
5080 {
5081 	int i;
5082 	struct page *p = page;
5083 
5084 	might_sleep();
5085 	for (i = 0; i < pages_per_huge_page;
5086 	     i++, p = mem_map_next(p, page, i)) {
5087 		cond_resched();
5088 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5089 	}
5090 }
5091 
5092 static void clear_subpage(unsigned long addr, int idx, void *arg)
5093 {
5094 	struct page *page = arg;
5095 
5096 	clear_user_highpage(page + idx, addr);
5097 }
5098 
5099 void clear_huge_page(struct page *page,
5100 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5101 {
5102 	unsigned long addr = addr_hint &
5103 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5104 
5105 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5106 		clear_gigantic_page(page, addr, pages_per_huge_page);
5107 		return;
5108 	}
5109 
5110 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5111 }
5112 
5113 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5114 				    unsigned long addr,
5115 				    struct vm_area_struct *vma,
5116 				    unsigned int pages_per_huge_page)
5117 {
5118 	int i;
5119 	struct page *dst_base = dst;
5120 	struct page *src_base = src;
5121 
5122 	for (i = 0; i < pages_per_huge_page; ) {
5123 		cond_resched();
5124 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5125 
5126 		i++;
5127 		dst = mem_map_next(dst, dst_base, i);
5128 		src = mem_map_next(src, src_base, i);
5129 	}
5130 }
5131 
5132 struct copy_subpage_arg {
5133 	struct page *dst;
5134 	struct page *src;
5135 	struct vm_area_struct *vma;
5136 };
5137 
5138 static void copy_subpage(unsigned long addr, int idx, void *arg)
5139 {
5140 	struct copy_subpage_arg *copy_arg = arg;
5141 
5142 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5143 			   addr, copy_arg->vma);
5144 }
5145 
5146 void copy_user_huge_page(struct page *dst, struct page *src,
5147 			 unsigned long addr_hint, struct vm_area_struct *vma,
5148 			 unsigned int pages_per_huge_page)
5149 {
5150 	unsigned long addr = addr_hint &
5151 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5152 	struct copy_subpage_arg arg = {
5153 		.dst = dst,
5154 		.src = src,
5155 		.vma = vma,
5156 	};
5157 
5158 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5159 		copy_user_gigantic_page(dst, src, addr, vma,
5160 					pages_per_huge_page);
5161 		return;
5162 	}
5163 
5164 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5165 }
5166 
5167 long copy_huge_page_from_user(struct page *dst_page,
5168 				const void __user *usr_src,
5169 				unsigned int pages_per_huge_page,
5170 				bool allow_pagefault)
5171 {
5172 	void *src = (void *)usr_src;
5173 	void *page_kaddr;
5174 	unsigned long i, rc = 0;
5175 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5176 	struct page *subpage = dst_page;
5177 
5178 	for (i = 0; i < pages_per_huge_page;
5179 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5180 		if (allow_pagefault)
5181 			page_kaddr = kmap(subpage);
5182 		else
5183 			page_kaddr = kmap_atomic(subpage);
5184 		rc = copy_from_user(page_kaddr,
5185 				(const void __user *)(src + i * PAGE_SIZE),
5186 				PAGE_SIZE);
5187 		if (allow_pagefault)
5188 			kunmap(subpage);
5189 		else
5190 			kunmap_atomic(page_kaddr);
5191 
5192 		ret_val -= (PAGE_SIZE - rc);
5193 		if (rc)
5194 			break;
5195 
5196 		cond_resched();
5197 	}
5198 	return ret_val;
5199 }
5200 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5201 
5202 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5203 
5204 static struct kmem_cache *page_ptl_cachep;
5205 
5206 void __init ptlock_cache_init(void)
5207 {
5208 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5209 			SLAB_PANIC, NULL);
5210 }
5211 
5212 bool ptlock_alloc(struct page *page)
5213 {
5214 	spinlock_t *ptl;
5215 
5216 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5217 	if (!ptl)
5218 		return false;
5219 	page->ptl = ptl;
5220 	return true;
5221 }
5222 
5223 void ptlock_free(struct page *page)
5224 {
5225 	kmem_cache_free(page_ptl_cachep, page->ptl);
5226 }
5227 #endif
5228