1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 #include <linux/net_mm.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 90 91 #include "pgalloc-track.h" 92 #include "internal.h" 93 #include "swap.h" 94 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 97 #endif 98 99 #ifndef CONFIG_NUMA 100 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 102 103 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 105 #endif 106 107 static vm_fault_t do_fault(struct vm_fault *vmf); 108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 109 static bool vmf_pte_changed(struct vm_fault *vmf); 110 111 /* 112 * Return true if the original pte was a uffd-wp pte marker (so the pte was 113 * wr-protected). 114 */ 115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 116 { 117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 118 return false; 119 120 return pte_marker_uffd_wp(vmf->orig_pte); 121 } 122 123 /* 124 * A number of key systems in x86 including ioremap() rely on the assumption 125 * that high_memory defines the upper bound on direct map memory, then end 126 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 127 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 128 * and ZONE_HIGHMEM. 129 */ 130 void *high_memory; 131 EXPORT_SYMBOL(high_memory); 132 133 /* 134 * Randomize the address space (stacks, mmaps, brk, etc.). 135 * 136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 137 * as ancient (libc5 based) binaries can segfault. ) 138 */ 139 int randomize_va_space __read_mostly = 140 #ifdef CONFIG_COMPAT_BRK 141 1; 142 #else 143 2; 144 #endif 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_pte(void) 148 { 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly; 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, int member) 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 */ 302 void free_pgd_range(struct mmu_gather *tlb, 303 unsigned long addr, unsigned long end, 304 unsigned long floor, unsigned long ceiling) 305 { 306 pgd_t *pgd; 307 unsigned long next; 308 309 /* 310 * The next few lines have given us lots of grief... 311 * 312 * Why are we testing PMD* at this top level? Because often 313 * there will be no work to do at all, and we'd prefer not to 314 * go all the way down to the bottom just to discover that. 315 * 316 * Why all these "- 1"s? Because 0 represents both the bottom 317 * of the address space and the top of it (using -1 for the 318 * top wouldn't help much: the masks would do the wrong thing). 319 * The rule is that addr 0 and floor 0 refer to the bottom of 320 * the address space, but end 0 and ceiling 0 refer to the top 321 * Comparisons need to use "end - 1" and "ceiling - 1" (though 322 * that end 0 case should be mythical). 323 * 324 * Wherever addr is brought up or ceiling brought down, we must 325 * be careful to reject "the opposite 0" before it confuses the 326 * subsequent tests. But what about where end is brought down 327 * by PMD_SIZE below? no, end can't go down to 0 there. 328 * 329 * Whereas we round start (addr) and ceiling down, by different 330 * masks at different levels, in order to test whether a table 331 * now has no other vmas using it, so can be freed, we don't 332 * bother to round floor or end up - the tests don't need that. 333 */ 334 335 addr &= PMD_MASK; 336 if (addr < floor) { 337 addr += PMD_SIZE; 338 if (!addr) 339 return; 340 } 341 if (ceiling) { 342 ceiling &= PMD_MASK; 343 if (!ceiling) 344 return; 345 } 346 if (end - 1 > ceiling - 1) 347 end -= PMD_SIZE; 348 if (addr > end - 1) 349 return; 350 /* 351 * We add page table cache pages with PAGE_SIZE, 352 * (see pte_free_tlb()), flush the tlb if we need 353 */ 354 tlb_change_page_size(tlb, PAGE_SIZE); 355 pgd = pgd_offset(tlb->mm, addr); 356 do { 357 next = pgd_addr_end(addr, end); 358 if (pgd_none_or_clear_bad(pgd)) 359 continue; 360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 361 } while (pgd++, addr = next, addr != end); 362 } 363 364 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, 365 struct vm_area_struct *vma, unsigned long floor, 366 unsigned long ceiling, bool mm_wr_locked) 367 { 368 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 369 370 do { 371 unsigned long addr = vma->vm_start; 372 struct vm_area_struct *next; 373 374 /* 375 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 376 * be 0. This will underflow and is okay. 377 */ 378 next = mas_find(&mas, ceiling - 1); 379 380 /* 381 * Hide vma from rmap and truncate_pagecache before freeing 382 * pgtables 383 */ 384 if (mm_wr_locked) 385 vma_start_write(vma); 386 unlink_anon_vmas(vma); 387 unlink_file_vma(vma); 388 389 if (is_vm_hugetlb_page(vma)) { 390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 391 floor, next ? next->vm_start : ceiling); 392 } else { 393 /* 394 * Optimization: gather nearby vmas into one call down 395 */ 396 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 397 && !is_vm_hugetlb_page(next)) { 398 vma = next; 399 next = mas_find(&mas, ceiling - 1); 400 if (mm_wr_locked) 401 vma_start_write(vma); 402 unlink_anon_vmas(vma); 403 unlink_file_vma(vma); 404 } 405 free_pgd_range(tlb, addr, vma->vm_end, 406 floor, next ? next->vm_start : ceiling); 407 } 408 vma = next; 409 } while (vma); 410 } 411 412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 413 { 414 spinlock_t *ptl = pmd_lock(mm, pmd); 415 416 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 417 mm_inc_nr_ptes(mm); 418 /* 419 * Ensure all pte setup (eg. pte page lock and page clearing) are 420 * visible before the pte is made visible to other CPUs by being 421 * put into page tables. 422 * 423 * The other side of the story is the pointer chasing in the page 424 * table walking code (when walking the page table without locking; 425 * ie. most of the time). Fortunately, these data accesses consist 426 * of a chain of data-dependent loads, meaning most CPUs (alpha 427 * being the notable exception) will already guarantee loads are 428 * seen in-order. See the alpha page table accessors for the 429 * smp_rmb() barriers in page table walking code. 430 */ 431 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 432 pmd_populate(mm, pmd, *pte); 433 *pte = NULL; 434 } 435 spin_unlock(ptl); 436 } 437 438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 439 { 440 pgtable_t new = pte_alloc_one(mm); 441 if (!new) 442 return -ENOMEM; 443 444 pmd_install(mm, pmd, &new); 445 if (new) 446 pte_free(mm, new); 447 return 0; 448 } 449 450 int __pte_alloc_kernel(pmd_t *pmd) 451 { 452 pte_t *new = pte_alloc_one_kernel(&init_mm); 453 if (!new) 454 return -ENOMEM; 455 456 spin_lock(&init_mm.page_table_lock); 457 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 458 smp_wmb(); /* See comment in pmd_install() */ 459 pmd_populate_kernel(&init_mm, pmd, new); 460 new = NULL; 461 } 462 spin_unlock(&init_mm.page_table_lock); 463 if (new) 464 pte_free_kernel(&init_mm, new); 465 return 0; 466 } 467 468 static inline void init_rss_vec(int *rss) 469 { 470 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 471 } 472 473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 474 { 475 int i; 476 477 if (current->mm == mm) 478 sync_mm_rss(mm); 479 for (i = 0; i < NR_MM_COUNTERS; i++) 480 if (rss[i]) 481 add_mm_counter(mm, i, rss[i]); 482 } 483 484 /* 485 * This function is called to print an error when a bad pte 486 * is found. For example, we might have a PFN-mapped pte in 487 * a region that doesn't allow it. 488 * 489 * The calling function must still handle the error. 490 */ 491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 492 pte_t pte, struct page *page) 493 { 494 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 495 p4d_t *p4d = p4d_offset(pgd, addr); 496 pud_t *pud = pud_offset(p4d, addr); 497 pmd_t *pmd = pmd_offset(pud, addr); 498 struct address_space *mapping; 499 pgoff_t index; 500 static unsigned long resume; 501 static unsigned long nr_shown; 502 static unsigned long nr_unshown; 503 504 /* 505 * Allow a burst of 60 reports, then keep quiet for that minute; 506 * or allow a steady drip of one report per second. 507 */ 508 if (nr_shown == 60) { 509 if (time_before(jiffies, resume)) { 510 nr_unshown++; 511 return; 512 } 513 if (nr_unshown) { 514 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 515 nr_unshown); 516 nr_unshown = 0; 517 } 518 nr_shown = 0; 519 } 520 if (nr_shown++ == 0) 521 resume = jiffies + 60 * HZ; 522 523 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 524 index = linear_page_index(vma, addr); 525 526 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 527 current->comm, 528 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 529 if (page) 530 dump_page(page, "bad pte"); 531 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 532 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 533 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 534 vma->vm_file, 535 vma->vm_ops ? vma->vm_ops->fault : NULL, 536 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 537 mapping ? mapping->a_ops->read_folio : NULL); 538 dump_stack(); 539 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 540 } 541 542 /* 543 * vm_normal_page -- This function gets the "struct page" associated with a pte. 544 * 545 * "Special" mappings do not wish to be associated with a "struct page" (either 546 * it doesn't exist, or it exists but they don't want to touch it). In this 547 * case, NULL is returned here. "Normal" mappings do have a struct page. 548 * 549 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 550 * pte bit, in which case this function is trivial. Secondly, an architecture 551 * may not have a spare pte bit, which requires a more complicated scheme, 552 * described below. 553 * 554 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 555 * special mapping (even if there are underlying and valid "struct pages"). 556 * COWed pages of a VM_PFNMAP are always normal. 557 * 558 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 559 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 560 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 561 * mapping will always honor the rule 562 * 563 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 564 * 565 * And for normal mappings this is false. 566 * 567 * This restricts such mappings to be a linear translation from virtual address 568 * to pfn. To get around this restriction, we allow arbitrary mappings so long 569 * as the vma is not a COW mapping; in that case, we know that all ptes are 570 * special (because none can have been COWed). 571 * 572 * 573 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 574 * 575 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 576 * page" backing, however the difference is that _all_ pages with a struct 577 * page (that is, those where pfn_valid is true) are refcounted and considered 578 * normal pages by the VM. The disadvantage is that pages are refcounted 579 * (which can be slower and simply not an option for some PFNMAP users). The 580 * advantage is that we don't have to follow the strict linearity rule of 581 * PFNMAP mappings in order to support COWable mappings. 582 * 583 */ 584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 585 pte_t pte) 586 { 587 unsigned long pfn = pte_pfn(pte); 588 589 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 590 if (likely(!pte_special(pte))) 591 goto check_pfn; 592 if (vma->vm_ops && vma->vm_ops->find_special_page) 593 return vma->vm_ops->find_special_page(vma, addr); 594 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 595 return NULL; 596 if (is_zero_pfn(pfn)) 597 return NULL; 598 if (pte_devmap(pte)) 599 /* 600 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 601 * and will have refcounts incremented on their struct pages 602 * when they are inserted into PTEs, thus they are safe to 603 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 604 * do not have refcounts. Example of legacy ZONE_DEVICE is 605 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 606 */ 607 return NULL; 608 609 print_bad_pte(vma, addr, pte, NULL); 610 return NULL; 611 } 612 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 614 615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 616 if (vma->vm_flags & VM_MIXEDMAP) { 617 if (!pfn_valid(pfn)) 618 return NULL; 619 goto out; 620 } else { 621 unsigned long off; 622 off = (addr - vma->vm_start) >> PAGE_SHIFT; 623 if (pfn == vma->vm_pgoff + off) 624 return NULL; 625 if (!is_cow_mapping(vma->vm_flags)) 626 return NULL; 627 } 628 } 629 630 if (is_zero_pfn(pfn)) 631 return NULL; 632 633 check_pfn: 634 if (unlikely(pfn > highest_memmap_pfn)) { 635 print_bad_pte(vma, addr, pte, NULL); 636 return NULL; 637 } 638 639 /* 640 * NOTE! We still have PageReserved() pages in the page tables. 641 * eg. VDSO mappings can cause them to exist. 642 */ 643 out: 644 return pfn_to_page(pfn); 645 } 646 647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 648 pte_t pte) 649 { 650 struct page *page = vm_normal_page(vma, addr, pte); 651 652 if (page) 653 return page_folio(page); 654 return NULL; 655 } 656 657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 659 pmd_t pmd) 660 { 661 unsigned long pfn = pmd_pfn(pmd); 662 663 /* 664 * There is no pmd_special() but there may be special pmds, e.g. 665 * in a direct-access (dax) mapping, so let's just replicate the 666 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 667 */ 668 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 669 if (vma->vm_flags & VM_MIXEDMAP) { 670 if (!pfn_valid(pfn)) 671 return NULL; 672 goto out; 673 } else { 674 unsigned long off; 675 off = (addr - vma->vm_start) >> PAGE_SHIFT; 676 if (pfn == vma->vm_pgoff + off) 677 return NULL; 678 if (!is_cow_mapping(vma->vm_flags)) 679 return NULL; 680 } 681 } 682 683 if (pmd_devmap(pmd)) 684 return NULL; 685 if (is_huge_zero_pmd(pmd)) 686 return NULL; 687 if (unlikely(pfn > highest_memmap_pfn)) 688 return NULL; 689 690 /* 691 * NOTE! We still have PageReserved() pages in the page tables. 692 * eg. VDSO mappings can cause them to exist. 693 */ 694 out: 695 return pfn_to_page(pfn); 696 } 697 #endif 698 699 static void restore_exclusive_pte(struct vm_area_struct *vma, 700 struct page *page, unsigned long address, 701 pte_t *ptep) 702 { 703 pte_t orig_pte; 704 pte_t pte; 705 swp_entry_t entry; 706 707 orig_pte = ptep_get(ptep); 708 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 709 if (pte_swp_soft_dirty(orig_pte)) 710 pte = pte_mksoft_dirty(pte); 711 712 entry = pte_to_swp_entry(orig_pte); 713 if (pte_swp_uffd_wp(orig_pte)) 714 pte = pte_mkuffd_wp(pte); 715 else if (is_writable_device_exclusive_entry(entry)) 716 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 717 718 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 719 720 /* 721 * No need to take a page reference as one was already 722 * created when the swap entry was made. 723 */ 724 if (PageAnon(page)) 725 page_add_anon_rmap(page, vma, address, RMAP_NONE); 726 else 727 /* 728 * Currently device exclusive access only supports anonymous 729 * memory so the entry shouldn't point to a filebacked page. 730 */ 731 WARN_ON_ONCE(1); 732 733 set_pte_at(vma->vm_mm, address, ptep, pte); 734 735 /* 736 * No need to invalidate - it was non-present before. However 737 * secondary CPUs may have mappings that need invalidating. 738 */ 739 update_mmu_cache(vma, address, ptep); 740 } 741 742 /* 743 * Tries to restore an exclusive pte if the page lock can be acquired without 744 * sleeping. 745 */ 746 static int 747 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 748 unsigned long addr) 749 { 750 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 751 struct page *page = pfn_swap_entry_to_page(entry); 752 753 if (trylock_page(page)) { 754 restore_exclusive_pte(vma, page, addr, src_pte); 755 unlock_page(page); 756 return 0; 757 } 758 759 return -EBUSY; 760 } 761 762 /* 763 * copy one vm_area from one task to the other. Assumes the page tables 764 * already present in the new task to be cleared in the whole range 765 * covered by this vma. 766 */ 767 768 static unsigned long 769 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 770 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 771 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 772 { 773 unsigned long vm_flags = dst_vma->vm_flags; 774 pte_t orig_pte = ptep_get(src_pte); 775 pte_t pte = orig_pte; 776 struct page *page; 777 swp_entry_t entry = pte_to_swp_entry(orig_pte); 778 779 if (likely(!non_swap_entry(entry))) { 780 if (swap_duplicate(entry) < 0) 781 return -EIO; 782 783 /* make sure dst_mm is on swapoff's mmlist. */ 784 if (unlikely(list_empty(&dst_mm->mmlist))) { 785 spin_lock(&mmlist_lock); 786 if (list_empty(&dst_mm->mmlist)) 787 list_add(&dst_mm->mmlist, 788 &src_mm->mmlist); 789 spin_unlock(&mmlist_lock); 790 } 791 /* Mark the swap entry as shared. */ 792 if (pte_swp_exclusive(orig_pte)) { 793 pte = pte_swp_clear_exclusive(orig_pte); 794 set_pte_at(src_mm, addr, src_pte, pte); 795 } 796 rss[MM_SWAPENTS]++; 797 } else if (is_migration_entry(entry)) { 798 page = pfn_swap_entry_to_page(entry); 799 800 rss[mm_counter(page)]++; 801 802 if (!is_readable_migration_entry(entry) && 803 is_cow_mapping(vm_flags)) { 804 /* 805 * COW mappings require pages in both parent and child 806 * to be set to read. A previously exclusive entry is 807 * now shared. 808 */ 809 entry = make_readable_migration_entry( 810 swp_offset(entry)); 811 pte = swp_entry_to_pte(entry); 812 if (pte_swp_soft_dirty(orig_pte)) 813 pte = pte_swp_mksoft_dirty(pte); 814 if (pte_swp_uffd_wp(orig_pte)) 815 pte = pte_swp_mkuffd_wp(pte); 816 set_pte_at(src_mm, addr, src_pte, pte); 817 } 818 } else if (is_device_private_entry(entry)) { 819 page = pfn_swap_entry_to_page(entry); 820 821 /* 822 * Update rss count even for unaddressable pages, as 823 * they should treated just like normal pages in this 824 * respect. 825 * 826 * We will likely want to have some new rss counters 827 * for unaddressable pages, at some point. But for now 828 * keep things as they are. 829 */ 830 get_page(page); 831 rss[mm_counter(page)]++; 832 /* Cannot fail as these pages cannot get pinned. */ 833 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 834 835 /* 836 * We do not preserve soft-dirty information, because so 837 * far, checkpoint/restore is the only feature that 838 * requires that. And checkpoint/restore does not work 839 * when a device driver is involved (you cannot easily 840 * save and restore device driver state). 841 */ 842 if (is_writable_device_private_entry(entry) && 843 is_cow_mapping(vm_flags)) { 844 entry = make_readable_device_private_entry( 845 swp_offset(entry)); 846 pte = swp_entry_to_pte(entry); 847 if (pte_swp_uffd_wp(orig_pte)) 848 pte = pte_swp_mkuffd_wp(pte); 849 set_pte_at(src_mm, addr, src_pte, pte); 850 } 851 } else if (is_device_exclusive_entry(entry)) { 852 /* 853 * Make device exclusive entries present by restoring the 854 * original entry then copying as for a present pte. Device 855 * exclusive entries currently only support private writable 856 * (ie. COW) mappings. 857 */ 858 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 859 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 860 return -EBUSY; 861 return -ENOENT; 862 } else if (is_pte_marker_entry(entry)) { 863 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma)) 864 set_pte_at(dst_mm, addr, dst_pte, pte); 865 return 0; 866 } 867 if (!userfaultfd_wp(dst_vma)) 868 pte = pte_swp_clear_uffd_wp(pte); 869 set_pte_at(dst_mm, addr, dst_pte, pte); 870 return 0; 871 } 872 873 /* 874 * Copy a present and normal page. 875 * 876 * NOTE! The usual case is that this isn't required; 877 * instead, the caller can just increase the page refcount 878 * and re-use the pte the traditional way. 879 * 880 * And if we need a pre-allocated page but don't yet have 881 * one, return a negative error to let the preallocation 882 * code know so that it can do so outside the page table 883 * lock. 884 */ 885 static inline int 886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 888 struct folio **prealloc, struct page *page) 889 { 890 struct folio *new_folio; 891 pte_t pte; 892 893 new_folio = *prealloc; 894 if (!new_folio) 895 return -EAGAIN; 896 897 /* 898 * We have a prealloc page, all good! Take it 899 * over and copy the page & arm it. 900 */ 901 *prealloc = NULL; 902 copy_user_highpage(&new_folio->page, page, addr, src_vma); 903 __folio_mark_uptodate(new_folio); 904 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 905 folio_add_lru_vma(new_folio, dst_vma); 906 rss[MM_ANONPAGES]++; 907 908 /* All done, just insert the new page copy in the child */ 909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 912 /* Uffd-wp needs to be delivered to dest pte as well */ 913 pte = pte_mkuffd_wp(pte); 914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 915 return 0; 916 } 917 918 /* 919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 920 * is required to copy this pte. 921 */ 922 static inline int 923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 925 struct folio **prealloc) 926 { 927 struct mm_struct *src_mm = src_vma->vm_mm; 928 unsigned long vm_flags = src_vma->vm_flags; 929 pte_t pte = ptep_get(src_pte); 930 struct page *page; 931 struct folio *folio; 932 933 page = vm_normal_page(src_vma, addr, pte); 934 if (page) 935 folio = page_folio(page); 936 if (page && folio_test_anon(folio)) { 937 /* 938 * If this page may have been pinned by the parent process, 939 * copy the page immediately for the child so that we'll always 940 * guarantee the pinned page won't be randomly replaced in the 941 * future. 942 */ 943 folio_get(folio); 944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 945 /* Page may be pinned, we have to copy. */ 946 folio_put(folio); 947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 948 addr, rss, prealloc, page); 949 } 950 rss[MM_ANONPAGES]++; 951 } else if (page) { 952 folio_get(folio); 953 page_dup_file_rmap(page, false); 954 rss[mm_counter_file(page)]++; 955 } 956 957 /* 958 * If it's a COW mapping, write protect it both 959 * in the parent and the child 960 */ 961 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 962 ptep_set_wrprotect(src_mm, addr, src_pte); 963 pte = pte_wrprotect(pte); 964 } 965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); 966 967 /* 968 * If it's a shared mapping, mark it clean in 969 * the child 970 */ 971 if (vm_flags & VM_SHARED) 972 pte = pte_mkclean(pte); 973 pte = pte_mkold(pte); 974 975 if (!userfaultfd_wp(dst_vma)) 976 pte = pte_clear_uffd_wp(pte); 977 978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 979 return 0; 980 } 981 982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, 983 struct vm_area_struct *vma, unsigned long addr) 984 { 985 struct folio *new_folio; 986 987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 988 if (!new_folio) 989 return NULL; 990 991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 992 folio_put(new_folio); 993 return NULL; 994 } 995 folio_throttle_swaprate(new_folio, GFP_KERNEL); 996 997 return new_folio; 998 } 999 1000 static int 1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1003 unsigned long end) 1004 { 1005 struct mm_struct *dst_mm = dst_vma->vm_mm; 1006 struct mm_struct *src_mm = src_vma->vm_mm; 1007 pte_t *orig_src_pte, *orig_dst_pte; 1008 pte_t *src_pte, *dst_pte; 1009 pte_t ptent; 1010 spinlock_t *src_ptl, *dst_ptl; 1011 int progress, ret = 0; 1012 int rss[NR_MM_COUNTERS]; 1013 swp_entry_t entry = (swp_entry_t){0}; 1014 struct folio *prealloc = NULL; 1015 1016 again: 1017 progress = 0; 1018 init_rss_vec(rss); 1019 1020 /* 1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1022 * error handling here, assume that exclusive mmap_lock on dst and src 1023 * protects anon from unexpected THP transitions; with shmem and file 1024 * protected by mmap_lock-less collapse skipping areas with anon_vma 1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1026 * can remove such assumptions later, but this is good enough for now. 1027 */ 1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1029 if (!dst_pte) { 1030 ret = -ENOMEM; 1031 goto out; 1032 } 1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1034 if (!src_pte) { 1035 pte_unmap_unlock(dst_pte, dst_ptl); 1036 /* ret == 0 */ 1037 goto out; 1038 } 1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1040 orig_src_pte = src_pte; 1041 orig_dst_pte = dst_pte; 1042 arch_enter_lazy_mmu_mode(); 1043 1044 do { 1045 /* 1046 * We are holding two locks at this point - either of them 1047 * could generate latencies in another task on another CPU. 1048 */ 1049 if (progress >= 32) { 1050 progress = 0; 1051 if (need_resched() || 1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1053 break; 1054 } 1055 ptent = ptep_get(src_pte); 1056 if (pte_none(ptent)) { 1057 progress++; 1058 continue; 1059 } 1060 if (unlikely(!pte_present(ptent))) { 1061 ret = copy_nonpresent_pte(dst_mm, src_mm, 1062 dst_pte, src_pte, 1063 dst_vma, src_vma, 1064 addr, rss); 1065 if (ret == -EIO) { 1066 entry = pte_to_swp_entry(ptep_get(src_pte)); 1067 break; 1068 } else if (ret == -EBUSY) { 1069 break; 1070 } else if (!ret) { 1071 progress += 8; 1072 continue; 1073 } 1074 1075 /* 1076 * Device exclusive entry restored, continue by copying 1077 * the now present pte. 1078 */ 1079 WARN_ON_ONCE(ret != -ENOENT); 1080 } 1081 /* copy_present_pte() will clear `*prealloc' if consumed */ 1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1083 addr, rss, &prealloc); 1084 /* 1085 * If we need a pre-allocated page for this pte, drop the 1086 * locks, allocate, and try again. 1087 */ 1088 if (unlikely(ret == -EAGAIN)) 1089 break; 1090 if (unlikely(prealloc)) { 1091 /* 1092 * pre-alloc page cannot be reused by next time so as 1093 * to strictly follow mempolicy (e.g., alloc_page_vma() 1094 * will allocate page according to address). This 1095 * could only happen if one pinned pte changed. 1096 */ 1097 folio_put(prealloc); 1098 prealloc = NULL; 1099 } 1100 progress += 8; 1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1102 1103 arch_leave_lazy_mmu_mode(); 1104 pte_unmap_unlock(orig_src_pte, src_ptl); 1105 add_mm_rss_vec(dst_mm, rss); 1106 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1107 cond_resched(); 1108 1109 if (ret == -EIO) { 1110 VM_WARN_ON_ONCE(!entry.val); 1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1112 ret = -ENOMEM; 1113 goto out; 1114 } 1115 entry.val = 0; 1116 } else if (ret == -EBUSY) { 1117 goto out; 1118 } else if (ret == -EAGAIN) { 1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1120 if (!prealloc) 1121 return -ENOMEM; 1122 } else if (ret) { 1123 VM_WARN_ON_ONCE(1); 1124 } 1125 1126 /* We've captured and resolved the error. Reset, try again. */ 1127 ret = 0; 1128 1129 if (addr != end) 1130 goto again; 1131 out: 1132 if (unlikely(prealloc)) 1133 folio_put(prealloc); 1134 return ret; 1135 } 1136 1137 static inline int 1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1140 unsigned long end) 1141 { 1142 struct mm_struct *dst_mm = dst_vma->vm_mm; 1143 struct mm_struct *src_mm = src_vma->vm_mm; 1144 pmd_t *src_pmd, *dst_pmd; 1145 unsigned long next; 1146 1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1148 if (!dst_pmd) 1149 return -ENOMEM; 1150 src_pmd = pmd_offset(src_pud, addr); 1151 do { 1152 next = pmd_addr_end(addr, end); 1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1154 || pmd_devmap(*src_pmd)) { 1155 int err; 1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1158 addr, dst_vma, src_vma); 1159 if (err == -ENOMEM) 1160 return -ENOMEM; 1161 if (!err) 1162 continue; 1163 /* fall through */ 1164 } 1165 if (pmd_none_or_clear_bad(src_pmd)) 1166 continue; 1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1168 addr, next)) 1169 return -ENOMEM; 1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1171 return 0; 1172 } 1173 1174 static inline int 1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1177 unsigned long end) 1178 { 1179 struct mm_struct *dst_mm = dst_vma->vm_mm; 1180 struct mm_struct *src_mm = src_vma->vm_mm; 1181 pud_t *src_pud, *dst_pud; 1182 unsigned long next; 1183 1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1185 if (!dst_pud) 1186 return -ENOMEM; 1187 src_pud = pud_offset(src_p4d, addr); 1188 do { 1189 next = pud_addr_end(addr, end); 1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1191 int err; 1192 1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1194 err = copy_huge_pud(dst_mm, src_mm, 1195 dst_pud, src_pud, addr, src_vma); 1196 if (err == -ENOMEM) 1197 return -ENOMEM; 1198 if (!err) 1199 continue; 1200 /* fall through */ 1201 } 1202 if (pud_none_or_clear_bad(src_pud)) 1203 continue; 1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1205 addr, next)) 1206 return -ENOMEM; 1207 } while (dst_pud++, src_pud++, addr = next, addr != end); 1208 return 0; 1209 } 1210 1211 static inline int 1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1214 unsigned long end) 1215 { 1216 struct mm_struct *dst_mm = dst_vma->vm_mm; 1217 p4d_t *src_p4d, *dst_p4d; 1218 unsigned long next; 1219 1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1221 if (!dst_p4d) 1222 return -ENOMEM; 1223 src_p4d = p4d_offset(src_pgd, addr); 1224 do { 1225 next = p4d_addr_end(addr, end); 1226 if (p4d_none_or_clear_bad(src_p4d)) 1227 continue; 1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1229 addr, next)) 1230 return -ENOMEM; 1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1232 return 0; 1233 } 1234 1235 /* 1236 * Return true if the vma needs to copy the pgtable during this fork(). Return 1237 * false when we can speed up fork() by allowing lazy page faults later until 1238 * when the child accesses the memory range. 1239 */ 1240 static bool 1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1242 { 1243 /* 1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1246 * contains uffd-wp protection information, that's something we can't 1247 * retrieve from page cache, and skip copying will lose those info. 1248 */ 1249 if (userfaultfd_wp(dst_vma)) 1250 return true; 1251 1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1253 return true; 1254 1255 if (src_vma->anon_vma) 1256 return true; 1257 1258 /* 1259 * Don't copy ptes where a page fault will fill them correctly. Fork 1260 * becomes much lighter when there are big shared or private readonly 1261 * mappings. The tradeoff is that copy_page_range is more efficient 1262 * than faulting. 1263 */ 1264 return false; 1265 } 1266 1267 int 1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1269 { 1270 pgd_t *src_pgd, *dst_pgd; 1271 unsigned long next; 1272 unsigned long addr = src_vma->vm_start; 1273 unsigned long end = src_vma->vm_end; 1274 struct mm_struct *dst_mm = dst_vma->vm_mm; 1275 struct mm_struct *src_mm = src_vma->vm_mm; 1276 struct mmu_notifier_range range; 1277 bool is_cow; 1278 int ret; 1279 1280 if (!vma_needs_copy(dst_vma, src_vma)) 1281 return 0; 1282 1283 if (is_vm_hugetlb_page(src_vma)) 1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1285 1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1287 /* 1288 * We do not free on error cases below as remove_vma 1289 * gets called on error from higher level routine 1290 */ 1291 ret = track_pfn_copy(src_vma); 1292 if (ret) 1293 return ret; 1294 } 1295 1296 /* 1297 * We need to invalidate the secondary MMU mappings only when 1298 * there could be a permission downgrade on the ptes of the 1299 * parent mm. And a permission downgrade will only happen if 1300 * is_cow_mapping() returns true. 1301 */ 1302 is_cow = is_cow_mapping(src_vma->vm_flags); 1303 1304 if (is_cow) { 1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1306 0, src_mm, addr, end); 1307 mmu_notifier_invalidate_range_start(&range); 1308 /* 1309 * Disabling preemption is not needed for the write side, as 1310 * the read side doesn't spin, but goes to the mmap_lock. 1311 * 1312 * Use the raw variant of the seqcount_t write API to avoid 1313 * lockdep complaining about preemptibility. 1314 */ 1315 mmap_assert_write_locked(src_mm); 1316 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1317 } 1318 1319 ret = 0; 1320 dst_pgd = pgd_offset(dst_mm, addr); 1321 src_pgd = pgd_offset(src_mm, addr); 1322 do { 1323 next = pgd_addr_end(addr, end); 1324 if (pgd_none_or_clear_bad(src_pgd)) 1325 continue; 1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1327 addr, next))) { 1328 untrack_pfn_clear(dst_vma); 1329 ret = -ENOMEM; 1330 break; 1331 } 1332 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1333 1334 if (is_cow) { 1335 raw_write_seqcount_end(&src_mm->write_protect_seq); 1336 mmu_notifier_invalidate_range_end(&range); 1337 } 1338 return ret; 1339 } 1340 1341 /* Whether we should zap all COWed (private) pages too */ 1342 static inline bool should_zap_cows(struct zap_details *details) 1343 { 1344 /* By default, zap all pages */ 1345 if (!details) 1346 return true; 1347 1348 /* Or, we zap COWed pages only if the caller wants to */ 1349 return details->even_cows; 1350 } 1351 1352 /* Decides whether we should zap this page with the page pointer specified */ 1353 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1354 { 1355 /* If we can make a decision without *page.. */ 1356 if (should_zap_cows(details)) 1357 return true; 1358 1359 /* E.g. the caller passes NULL for the case of a zero page */ 1360 if (!page) 1361 return true; 1362 1363 /* Otherwise we should only zap non-anon pages */ 1364 return !PageAnon(page); 1365 } 1366 1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1368 { 1369 if (!details) 1370 return false; 1371 1372 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1373 } 1374 1375 /* 1376 * This function makes sure that we'll replace the none pte with an uffd-wp 1377 * swap special pte marker when necessary. Must be with the pgtable lock held. 1378 */ 1379 static inline void 1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1381 unsigned long addr, pte_t *pte, 1382 struct zap_details *details, pte_t pteval) 1383 { 1384 /* Zap on anonymous always means dropping everything */ 1385 if (vma_is_anonymous(vma)) 1386 return; 1387 1388 if (zap_drop_file_uffd_wp(details)) 1389 return; 1390 1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1392 } 1393 1394 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1395 struct vm_area_struct *vma, pmd_t *pmd, 1396 unsigned long addr, unsigned long end, 1397 struct zap_details *details) 1398 { 1399 struct mm_struct *mm = tlb->mm; 1400 int force_flush = 0; 1401 int rss[NR_MM_COUNTERS]; 1402 spinlock_t *ptl; 1403 pte_t *start_pte; 1404 pte_t *pte; 1405 swp_entry_t entry; 1406 1407 tlb_change_page_size(tlb, PAGE_SIZE); 1408 init_rss_vec(rss); 1409 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1410 if (!pte) 1411 return addr; 1412 1413 flush_tlb_batched_pending(mm); 1414 arch_enter_lazy_mmu_mode(); 1415 do { 1416 pte_t ptent = ptep_get(pte); 1417 struct page *page; 1418 1419 if (pte_none(ptent)) 1420 continue; 1421 1422 if (need_resched()) 1423 break; 1424 1425 if (pte_present(ptent)) { 1426 unsigned int delay_rmap; 1427 1428 page = vm_normal_page(vma, addr, ptent); 1429 if (unlikely(!should_zap_page(details, page))) 1430 continue; 1431 ptent = ptep_get_and_clear_full(mm, addr, pte, 1432 tlb->fullmm); 1433 tlb_remove_tlb_entry(tlb, pte, addr); 1434 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1435 ptent); 1436 if (unlikely(!page)) 1437 continue; 1438 1439 delay_rmap = 0; 1440 if (!PageAnon(page)) { 1441 if (pte_dirty(ptent)) { 1442 set_page_dirty(page); 1443 if (tlb_delay_rmap(tlb)) { 1444 delay_rmap = 1; 1445 force_flush = 1; 1446 } 1447 } 1448 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1449 mark_page_accessed(page); 1450 } 1451 rss[mm_counter(page)]--; 1452 if (!delay_rmap) { 1453 page_remove_rmap(page, vma, false); 1454 if (unlikely(page_mapcount(page) < 0)) 1455 print_bad_pte(vma, addr, ptent, page); 1456 } 1457 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1458 force_flush = 1; 1459 addr += PAGE_SIZE; 1460 break; 1461 } 1462 continue; 1463 } 1464 1465 entry = pte_to_swp_entry(ptent); 1466 if (is_device_private_entry(entry) || 1467 is_device_exclusive_entry(entry)) { 1468 page = pfn_swap_entry_to_page(entry); 1469 if (unlikely(!should_zap_page(details, page))) 1470 continue; 1471 /* 1472 * Both device private/exclusive mappings should only 1473 * work with anonymous page so far, so we don't need to 1474 * consider uffd-wp bit when zap. For more information, 1475 * see zap_install_uffd_wp_if_needed(). 1476 */ 1477 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1478 rss[mm_counter(page)]--; 1479 if (is_device_private_entry(entry)) 1480 page_remove_rmap(page, vma, false); 1481 put_page(page); 1482 } else if (!non_swap_entry(entry)) { 1483 /* Genuine swap entry, hence a private anon page */ 1484 if (!should_zap_cows(details)) 1485 continue; 1486 rss[MM_SWAPENTS]--; 1487 if (unlikely(!free_swap_and_cache(entry))) 1488 print_bad_pte(vma, addr, ptent, NULL); 1489 } else if (is_migration_entry(entry)) { 1490 page = pfn_swap_entry_to_page(entry); 1491 if (!should_zap_page(details, page)) 1492 continue; 1493 rss[mm_counter(page)]--; 1494 } else if (pte_marker_entry_uffd_wp(entry)) { 1495 /* 1496 * For anon: always drop the marker; for file: only 1497 * drop the marker if explicitly requested. 1498 */ 1499 if (!vma_is_anonymous(vma) && 1500 !zap_drop_file_uffd_wp(details)) 1501 continue; 1502 } else if (is_hwpoison_entry(entry) || 1503 is_swapin_error_entry(entry)) { 1504 if (!should_zap_cows(details)) 1505 continue; 1506 } else { 1507 /* We should have covered all the swap entry types */ 1508 WARN_ON_ONCE(1); 1509 } 1510 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1511 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1512 } while (pte++, addr += PAGE_SIZE, addr != end); 1513 1514 add_mm_rss_vec(mm, rss); 1515 arch_leave_lazy_mmu_mode(); 1516 1517 /* Do the actual TLB flush before dropping ptl */ 1518 if (force_flush) { 1519 tlb_flush_mmu_tlbonly(tlb); 1520 tlb_flush_rmaps(tlb, vma); 1521 } 1522 pte_unmap_unlock(start_pte, ptl); 1523 1524 /* 1525 * If we forced a TLB flush (either due to running out of 1526 * batch buffers or because we needed to flush dirty TLB 1527 * entries before releasing the ptl), free the batched 1528 * memory too. Come back again if we didn't do everything. 1529 */ 1530 if (force_flush) 1531 tlb_flush_mmu(tlb); 1532 1533 return addr; 1534 } 1535 1536 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1537 struct vm_area_struct *vma, pud_t *pud, 1538 unsigned long addr, unsigned long end, 1539 struct zap_details *details) 1540 { 1541 pmd_t *pmd; 1542 unsigned long next; 1543 1544 pmd = pmd_offset(pud, addr); 1545 do { 1546 next = pmd_addr_end(addr, end); 1547 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1548 if (next - addr != HPAGE_PMD_SIZE) 1549 __split_huge_pmd(vma, pmd, addr, false, NULL); 1550 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1551 addr = next; 1552 continue; 1553 } 1554 /* fall through */ 1555 } else if (details && details->single_folio && 1556 folio_test_pmd_mappable(details->single_folio) && 1557 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1558 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1559 /* 1560 * Take and drop THP pmd lock so that we cannot return 1561 * prematurely, while zap_huge_pmd() has cleared *pmd, 1562 * but not yet decremented compound_mapcount(). 1563 */ 1564 spin_unlock(ptl); 1565 } 1566 if (pmd_none(*pmd)) { 1567 addr = next; 1568 continue; 1569 } 1570 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1571 if (addr != next) 1572 pmd--; 1573 } while (pmd++, cond_resched(), addr != end); 1574 1575 return addr; 1576 } 1577 1578 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1579 struct vm_area_struct *vma, p4d_t *p4d, 1580 unsigned long addr, unsigned long end, 1581 struct zap_details *details) 1582 { 1583 pud_t *pud; 1584 unsigned long next; 1585 1586 pud = pud_offset(p4d, addr); 1587 do { 1588 next = pud_addr_end(addr, end); 1589 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1590 if (next - addr != HPAGE_PUD_SIZE) { 1591 mmap_assert_locked(tlb->mm); 1592 split_huge_pud(vma, pud, addr); 1593 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1594 goto next; 1595 /* fall through */ 1596 } 1597 if (pud_none_or_clear_bad(pud)) 1598 continue; 1599 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1600 next: 1601 cond_resched(); 1602 } while (pud++, addr = next, addr != end); 1603 1604 return addr; 1605 } 1606 1607 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1608 struct vm_area_struct *vma, pgd_t *pgd, 1609 unsigned long addr, unsigned long end, 1610 struct zap_details *details) 1611 { 1612 p4d_t *p4d; 1613 unsigned long next; 1614 1615 p4d = p4d_offset(pgd, addr); 1616 do { 1617 next = p4d_addr_end(addr, end); 1618 if (p4d_none_or_clear_bad(p4d)) 1619 continue; 1620 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1621 } while (p4d++, addr = next, addr != end); 1622 1623 return addr; 1624 } 1625 1626 void unmap_page_range(struct mmu_gather *tlb, 1627 struct vm_area_struct *vma, 1628 unsigned long addr, unsigned long end, 1629 struct zap_details *details) 1630 { 1631 pgd_t *pgd; 1632 unsigned long next; 1633 1634 BUG_ON(addr >= end); 1635 tlb_start_vma(tlb, vma); 1636 pgd = pgd_offset(vma->vm_mm, addr); 1637 do { 1638 next = pgd_addr_end(addr, end); 1639 if (pgd_none_or_clear_bad(pgd)) 1640 continue; 1641 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1642 } while (pgd++, addr = next, addr != end); 1643 tlb_end_vma(tlb, vma); 1644 } 1645 1646 1647 static void unmap_single_vma(struct mmu_gather *tlb, 1648 struct vm_area_struct *vma, unsigned long start_addr, 1649 unsigned long end_addr, 1650 struct zap_details *details, bool mm_wr_locked) 1651 { 1652 unsigned long start = max(vma->vm_start, start_addr); 1653 unsigned long end; 1654 1655 if (start >= vma->vm_end) 1656 return; 1657 end = min(vma->vm_end, end_addr); 1658 if (end <= vma->vm_start) 1659 return; 1660 1661 if (vma->vm_file) 1662 uprobe_munmap(vma, start, end); 1663 1664 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1665 untrack_pfn(vma, 0, 0, mm_wr_locked); 1666 1667 if (start != end) { 1668 if (unlikely(is_vm_hugetlb_page(vma))) { 1669 /* 1670 * It is undesirable to test vma->vm_file as it 1671 * should be non-null for valid hugetlb area. 1672 * However, vm_file will be NULL in the error 1673 * cleanup path of mmap_region. When 1674 * hugetlbfs ->mmap method fails, 1675 * mmap_region() nullifies vma->vm_file 1676 * before calling this function to clean up. 1677 * Since no pte has actually been setup, it is 1678 * safe to do nothing in this case. 1679 */ 1680 if (vma->vm_file) { 1681 zap_flags_t zap_flags = details ? 1682 details->zap_flags : 0; 1683 __unmap_hugepage_range_final(tlb, vma, start, end, 1684 NULL, zap_flags); 1685 } 1686 } else 1687 unmap_page_range(tlb, vma, start, end, details); 1688 } 1689 } 1690 1691 /** 1692 * unmap_vmas - unmap a range of memory covered by a list of vma's 1693 * @tlb: address of the caller's struct mmu_gather 1694 * @mt: the maple tree 1695 * @vma: the starting vma 1696 * @start_addr: virtual address at which to start unmapping 1697 * @end_addr: virtual address at which to end unmapping 1698 * 1699 * Unmap all pages in the vma list. 1700 * 1701 * Only addresses between `start' and `end' will be unmapped. 1702 * 1703 * The VMA list must be sorted in ascending virtual address order. 1704 * 1705 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1706 * range after unmap_vmas() returns. So the only responsibility here is to 1707 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1708 * drops the lock and schedules. 1709 */ 1710 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 1711 struct vm_area_struct *vma, unsigned long start_addr, 1712 unsigned long end_addr, bool mm_wr_locked) 1713 { 1714 struct mmu_notifier_range range; 1715 struct zap_details details = { 1716 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1717 /* Careful - we need to zap private pages too! */ 1718 .even_cows = true, 1719 }; 1720 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 1721 1722 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1723 start_addr, end_addr); 1724 mmu_notifier_invalidate_range_start(&range); 1725 do { 1726 unmap_single_vma(tlb, vma, start_addr, end_addr, &details, 1727 mm_wr_locked); 1728 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL); 1729 mmu_notifier_invalidate_range_end(&range); 1730 } 1731 1732 /** 1733 * zap_page_range_single - remove user pages in a given range 1734 * @vma: vm_area_struct holding the applicable pages 1735 * @address: starting address of pages to zap 1736 * @size: number of bytes to zap 1737 * @details: details of shared cache invalidation 1738 * 1739 * The range must fit into one VMA. 1740 */ 1741 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1742 unsigned long size, struct zap_details *details) 1743 { 1744 const unsigned long end = address + size; 1745 struct mmu_notifier_range range; 1746 struct mmu_gather tlb; 1747 1748 lru_add_drain(); 1749 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1750 address, end); 1751 if (is_vm_hugetlb_page(vma)) 1752 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1753 &range.end); 1754 tlb_gather_mmu(&tlb, vma->vm_mm); 1755 update_hiwater_rss(vma->vm_mm); 1756 mmu_notifier_invalidate_range_start(&range); 1757 /* 1758 * unmap 'address-end' not 'range.start-range.end' as range 1759 * could have been expanded for hugetlb pmd sharing. 1760 */ 1761 unmap_single_vma(&tlb, vma, address, end, details, false); 1762 mmu_notifier_invalidate_range_end(&range); 1763 tlb_finish_mmu(&tlb); 1764 } 1765 1766 /** 1767 * zap_vma_ptes - remove ptes mapping the vma 1768 * @vma: vm_area_struct holding ptes to be zapped 1769 * @address: starting address of pages to zap 1770 * @size: number of bytes to zap 1771 * 1772 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1773 * 1774 * The entire address range must be fully contained within the vma. 1775 * 1776 */ 1777 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1778 unsigned long size) 1779 { 1780 if (!range_in_vma(vma, address, address + size) || 1781 !(vma->vm_flags & VM_PFNMAP)) 1782 return; 1783 1784 zap_page_range_single(vma, address, size, NULL); 1785 } 1786 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1787 1788 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1789 { 1790 pgd_t *pgd; 1791 p4d_t *p4d; 1792 pud_t *pud; 1793 pmd_t *pmd; 1794 1795 pgd = pgd_offset(mm, addr); 1796 p4d = p4d_alloc(mm, pgd, addr); 1797 if (!p4d) 1798 return NULL; 1799 pud = pud_alloc(mm, p4d, addr); 1800 if (!pud) 1801 return NULL; 1802 pmd = pmd_alloc(mm, pud, addr); 1803 if (!pmd) 1804 return NULL; 1805 1806 VM_BUG_ON(pmd_trans_huge(*pmd)); 1807 return pmd; 1808 } 1809 1810 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1811 spinlock_t **ptl) 1812 { 1813 pmd_t *pmd = walk_to_pmd(mm, addr); 1814 1815 if (!pmd) 1816 return NULL; 1817 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1818 } 1819 1820 static int validate_page_before_insert(struct page *page) 1821 { 1822 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1823 return -EINVAL; 1824 flush_dcache_page(page); 1825 return 0; 1826 } 1827 1828 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1829 unsigned long addr, struct page *page, pgprot_t prot) 1830 { 1831 if (!pte_none(ptep_get(pte))) 1832 return -EBUSY; 1833 /* Ok, finally just insert the thing.. */ 1834 get_page(page); 1835 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1836 page_add_file_rmap(page, vma, false); 1837 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1838 return 0; 1839 } 1840 1841 /* 1842 * This is the old fallback for page remapping. 1843 * 1844 * For historical reasons, it only allows reserved pages. Only 1845 * old drivers should use this, and they needed to mark their 1846 * pages reserved for the old functions anyway. 1847 */ 1848 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1849 struct page *page, pgprot_t prot) 1850 { 1851 int retval; 1852 pte_t *pte; 1853 spinlock_t *ptl; 1854 1855 retval = validate_page_before_insert(page); 1856 if (retval) 1857 goto out; 1858 retval = -ENOMEM; 1859 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1860 if (!pte) 1861 goto out; 1862 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1863 pte_unmap_unlock(pte, ptl); 1864 out: 1865 return retval; 1866 } 1867 1868 #ifdef pte_index 1869 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1870 unsigned long addr, struct page *page, pgprot_t prot) 1871 { 1872 int err; 1873 1874 if (!page_count(page)) 1875 return -EINVAL; 1876 err = validate_page_before_insert(page); 1877 if (err) 1878 return err; 1879 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1880 } 1881 1882 /* insert_pages() amortizes the cost of spinlock operations 1883 * when inserting pages in a loop. Arch *must* define pte_index. 1884 */ 1885 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1886 struct page **pages, unsigned long *num, pgprot_t prot) 1887 { 1888 pmd_t *pmd = NULL; 1889 pte_t *start_pte, *pte; 1890 spinlock_t *pte_lock; 1891 struct mm_struct *const mm = vma->vm_mm; 1892 unsigned long curr_page_idx = 0; 1893 unsigned long remaining_pages_total = *num; 1894 unsigned long pages_to_write_in_pmd; 1895 int ret; 1896 more: 1897 ret = -EFAULT; 1898 pmd = walk_to_pmd(mm, addr); 1899 if (!pmd) 1900 goto out; 1901 1902 pages_to_write_in_pmd = min_t(unsigned long, 1903 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1904 1905 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1906 ret = -ENOMEM; 1907 if (pte_alloc(mm, pmd)) 1908 goto out; 1909 1910 while (pages_to_write_in_pmd) { 1911 int pte_idx = 0; 1912 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1913 1914 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1915 if (!start_pte) { 1916 ret = -EFAULT; 1917 goto out; 1918 } 1919 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1920 int err = insert_page_in_batch_locked(vma, pte, 1921 addr, pages[curr_page_idx], prot); 1922 if (unlikely(err)) { 1923 pte_unmap_unlock(start_pte, pte_lock); 1924 ret = err; 1925 remaining_pages_total -= pte_idx; 1926 goto out; 1927 } 1928 addr += PAGE_SIZE; 1929 ++curr_page_idx; 1930 } 1931 pte_unmap_unlock(start_pte, pte_lock); 1932 pages_to_write_in_pmd -= batch_size; 1933 remaining_pages_total -= batch_size; 1934 } 1935 if (remaining_pages_total) 1936 goto more; 1937 ret = 0; 1938 out: 1939 *num = remaining_pages_total; 1940 return ret; 1941 } 1942 #endif /* ifdef pte_index */ 1943 1944 /** 1945 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1946 * @vma: user vma to map to 1947 * @addr: target start user address of these pages 1948 * @pages: source kernel pages 1949 * @num: in: number of pages to map. out: number of pages that were *not* 1950 * mapped. (0 means all pages were successfully mapped). 1951 * 1952 * Preferred over vm_insert_page() when inserting multiple pages. 1953 * 1954 * In case of error, we may have mapped a subset of the provided 1955 * pages. It is the caller's responsibility to account for this case. 1956 * 1957 * The same restrictions apply as in vm_insert_page(). 1958 */ 1959 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1960 struct page **pages, unsigned long *num) 1961 { 1962 #ifdef pte_index 1963 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1964 1965 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1966 return -EFAULT; 1967 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1968 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1969 BUG_ON(vma->vm_flags & VM_PFNMAP); 1970 vm_flags_set(vma, VM_MIXEDMAP); 1971 } 1972 /* Defer page refcount checking till we're about to map that page. */ 1973 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1974 #else 1975 unsigned long idx = 0, pgcount = *num; 1976 int err = -EINVAL; 1977 1978 for (; idx < pgcount; ++idx) { 1979 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1980 if (err) 1981 break; 1982 } 1983 *num = pgcount - idx; 1984 return err; 1985 #endif /* ifdef pte_index */ 1986 } 1987 EXPORT_SYMBOL(vm_insert_pages); 1988 1989 /** 1990 * vm_insert_page - insert single page into user vma 1991 * @vma: user vma to map to 1992 * @addr: target user address of this page 1993 * @page: source kernel page 1994 * 1995 * This allows drivers to insert individual pages they've allocated 1996 * into a user vma. 1997 * 1998 * The page has to be a nice clean _individual_ kernel allocation. 1999 * If you allocate a compound page, you need to have marked it as 2000 * such (__GFP_COMP), or manually just split the page up yourself 2001 * (see split_page()). 2002 * 2003 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2004 * took an arbitrary page protection parameter. This doesn't allow 2005 * that. Your vma protection will have to be set up correctly, which 2006 * means that if you want a shared writable mapping, you'd better 2007 * ask for a shared writable mapping! 2008 * 2009 * The page does not need to be reserved. 2010 * 2011 * Usually this function is called from f_op->mmap() handler 2012 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2013 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2014 * function from other places, for example from page-fault handler. 2015 * 2016 * Return: %0 on success, negative error code otherwise. 2017 */ 2018 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2019 struct page *page) 2020 { 2021 if (addr < vma->vm_start || addr >= vma->vm_end) 2022 return -EFAULT; 2023 if (!page_count(page)) 2024 return -EINVAL; 2025 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2026 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2027 BUG_ON(vma->vm_flags & VM_PFNMAP); 2028 vm_flags_set(vma, VM_MIXEDMAP); 2029 } 2030 return insert_page(vma, addr, page, vma->vm_page_prot); 2031 } 2032 EXPORT_SYMBOL(vm_insert_page); 2033 2034 /* 2035 * __vm_map_pages - maps range of kernel pages into user vma 2036 * @vma: user vma to map to 2037 * @pages: pointer to array of source kernel pages 2038 * @num: number of pages in page array 2039 * @offset: user's requested vm_pgoff 2040 * 2041 * This allows drivers to map range of kernel pages into a user vma. 2042 * 2043 * Return: 0 on success and error code otherwise. 2044 */ 2045 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2046 unsigned long num, unsigned long offset) 2047 { 2048 unsigned long count = vma_pages(vma); 2049 unsigned long uaddr = vma->vm_start; 2050 int ret, i; 2051 2052 /* Fail if the user requested offset is beyond the end of the object */ 2053 if (offset >= num) 2054 return -ENXIO; 2055 2056 /* Fail if the user requested size exceeds available object size */ 2057 if (count > num - offset) 2058 return -ENXIO; 2059 2060 for (i = 0; i < count; i++) { 2061 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2062 if (ret < 0) 2063 return ret; 2064 uaddr += PAGE_SIZE; 2065 } 2066 2067 return 0; 2068 } 2069 2070 /** 2071 * vm_map_pages - maps range of kernel pages starts with non zero offset 2072 * @vma: user vma to map to 2073 * @pages: pointer to array of source kernel pages 2074 * @num: number of pages in page array 2075 * 2076 * Maps an object consisting of @num pages, catering for the user's 2077 * requested vm_pgoff 2078 * 2079 * If we fail to insert any page into the vma, the function will return 2080 * immediately leaving any previously inserted pages present. Callers 2081 * from the mmap handler may immediately return the error as their caller 2082 * will destroy the vma, removing any successfully inserted pages. Other 2083 * callers should make their own arrangements for calling unmap_region(). 2084 * 2085 * Context: Process context. Called by mmap handlers. 2086 * Return: 0 on success and error code otherwise. 2087 */ 2088 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2089 unsigned long num) 2090 { 2091 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2092 } 2093 EXPORT_SYMBOL(vm_map_pages); 2094 2095 /** 2096 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2097 * @vma: user vma to map to 2098 * @pages: pointer to array of source kernel pages 2099 * @num: number of pages in page array 2100 * 2101 * Similar to vm_map_pages(), except that it explicitly sets the offset 2102 * to 0. This function is intended for the drivers that did not consider 2103 * vm_pgoff. 2104 * 2105 * Context: Process context. Called by mmap handlers. 2106 * Return: 0 on success and error code otherwise. 2107 */ 2108 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2109 unsigned long num) 2110 { 2111 return __vm_map_pages(vma, pages, num, 0); 2112 } 2113 EXPORT_SYMBOL(vm_map_pages_zero); 2114 2115 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2116 pfn_t pfn, pgprot_t prot, bool mkwrite) 2117 { 2118 struct mm_struct *mm = vma->vm_mm; 2119 pte_t *pte, entry; 2120 spinlock_t *ptl; 2121 2122 pte = get_locked_pte(mm, addr, &ptl); 2123 if (!pte) 2124 return VM_FAULT_OOM; 2125 entry = ptep_get(pte); 2126 if (!pte_none(entry)) { 2127 if (mkwrite) { 2128 /* 2129 * For read faults on private mappings the PFN passed 2130 * in may not match the PFN we have mapped if the 2131 * mapped PFN is a writeable COW page. In the mkwrite 2132 * case we are creating a writable PTE for a shared 2133 * mapping and we expect the PFNs to match. If they 2134 * don't match, we are likely racing with block 2135 * allocation and mapping invalidation so just skip the 2136 * update. 2137 */ 2138 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2139 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2140 goto out_unlock; 2141 } 2142 entry = pte_mkyoung(entry); 2143 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2144 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2145 update_mmu_cache(vma, addr, pte); 2146 } 2147 goto out_unlock; 2148 } 2149 2150 /* Ok, finally just insert the thing.. */ 2151 if (pfn_t_devmap(pfn)) 2152 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2153 else 2154 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2155 2156 if (mkwrite) { 2157 entry = pte_mkyoung(entry); 2158 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2159 } 2160 2161 set_pte_at(mm, addr, pte, entry); 2162 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2163 2164 out_unlock: 2165 pte_unmap_unlock(pte, ptl); 2166 return VM_FAULT_NOPAGE; 2167 } 2168 2169 /** 2170 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2171 * @vma: user vma to map to 2172 * @addr: target user address of this page 2173 * @pfn: source kernel pfn 2174 * @pgprot: pgprot flags for the inserted page 2175 * 2176 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2177 * to override pgprot on a per-page basis. 2178 * 2179 * This only makes sense for IO mappings, and it makes no sense for 2180 * COW mappings. In general, using multiple vmas is preferable; 2181 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2182 * impractical. 2183 * 2184 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2185 * caching- and encryption bits different than those of @vma->vm_page_prot, 2186 * because the caching- or encryption mode may not be known at mmap() time. 2187 * 2188 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2189 * to set caching and encryption bits for those vmas (except for COW pages). 2190 * This is ensured by core vm only modifying these page table entries using 2191 * functions that don't touch caching- or encryption bits, using pte_modify() 2192 * if needed. (See for example mprotect()). 2193 * 2194 * Also when new page-table entries are created, this is only done using the 2195 * fault() callback, and never using the value of vma->vm_page_prot, 2196 * except for page-table entries that point to anonymous pages as the result 2197 * of COW. 2198 * 2199 * Context: Process context. May allocate using %GFP_KERNEL. 2200 * Return: vm_fault_t value. 2201 */ 2202 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2203 unsigned long pfn, pgprot_t pgprot) 2204 { 2205 /* 2206 * Technically, architectures with pte_special can avoid all these 2207 * restrictions (same for remap_pfn_range). However we would like 2208 * consistency in testing and feature parity among all, so we should 2209 * try to keep these invariants in place for everybody. 2210 */ 2211 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2212 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2213 (VM_PFNMAP|VM_MIXEDMAP)); 2214 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2215 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2216 2217 if (addr < vma->vm_start || addr >= vma->vm_end) 2218 return VM_FAULT_SIGBUS; 2219 2220 if (!pfn_modify_allowed(pfn, pgprot)) 2221 return VM_FAULT_SIGBUS; 2222 2223 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2224 2225 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2226 false); 2227 } 2228 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2229 2230 /** 2231 * vmf_insert_pfn - insert single pfn into user vma 2232 * @vma: user vma to map to 2233 * @addr: target user address of this page 2234 * @pfn: source kernel pfn 2235 * 2236 * Similar to vm_insert_page, this allows drivers to insert individual pages 2237 * they've allocated into a user vma. Same comments apply. 2238 * 2239 * This function should only be called from a vm_ops->fault handler, and 2240 * in that case the handler should return the result of this function. 2241 * 2242 * vma cannot be a COW mapping. 2243 * 2244 * As this is called only for pages that do not currently exist, we 2245 * do not need to flush old virtual caches or the TLB. 2246 * 2247 * Context: Process context. May allocate using %GFP_KERNEL. 2248 * Return: vm_fault_t value. 2249 */ 2250 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2251 unsigned long pfn) 2252 { 2253 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2254 } 2255 EXPORT_SYMBOL(vmf_insert_pfn); 2256 2257 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2258 { 2259 /* these checks mirror the abort conditions in vm_normal_page */ 2260 if (vma->vm_flags & VM_MIXEDMAP) 2261 return true; 2262 if (pfn_t_devmap(pfn)) 2263 return true; 2264 if (pfn_t_special(pfn)) 2265 return true; 2266 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2267 return true; 2268 return false; 2269 } 2270 2271 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2272 unsigned long addr, pfn_t pfn, bool mkwrite) 2273 { 2274 pgprot_t pgprot = vma->vm_page_prot; 2275 int err; 2276 2277 BUG_ON(!vm_mixed_ok(vma, pfn)); 2278 2279 if (addr < vma->vm_start || addr >= vma->vm_end) 2280 return VM_FAULT_SIGBUS; 2281 2282 track_pfn_insert(vma, &pgprot, pfn); 2283 2284 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2285 return VM_FAULT_SIGBUS; 2286 2287 /* 2288 * If we don't have pte special, then we have to use the pfn_valid() 2289 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2290 * refcount the page if pfn_valid is true (hence insert_page rather 2291 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2292 * without pte special, it would there be refcounted as a normal page. 2293 */ 2294 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2295 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2296 struct page *page; 2297 2298 /* 2299 * At this point we are committed to insert_page() 2300 * regardless of whether the caller specified flags that 2301 * result in pfn_t_has_page() == false. 2302 */ 2303 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2304 err = insert_page(vma, addr, page, pgprot); 2305 } else { 2306 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2307 } 2308 2309 if (err == -ENOMEM) 2310 return VM_FAULT_OOM; 2311 if (err < 0 && err != -EBUSY) 2312 return VM_FAULT_SIGBUS; 2313 2314 return VM_FAULT_NOPAGE; 2315 } 2316 2317 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2318 pfn_t pfn) 2319 { 2320 return __vm_insert_mixed(vma, addr, pfn, false); 2321 } 2322 EXPORT_SYMBOL(vmf_insert_mixed); 2323 2324 /* 2325 * If the insertion of PTE failed because someone else already added a 2326 * different entry in the mean time, we treat that as success as we assume 2327 * the same entry was actually inserted. 2328 */ 2329 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2330 unsigned long addr, pfn_t pfn) 2331 { 2332 return __vm_insert_mixed(vma, addr, pfn, true); 2333 } 2334 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2335 2336 /* 2337 * maps a range of physical memory into the requested pages. the old 2338 * mappings are removed. any references to nonexistent pages results 2339 * in null mappings (currently treated as "copy-on-access") 2340 */ 2341 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2342 unsigned long addr, unsigned long end, 2343 unsigned long pfn, pgprot_t prot) 2344 { 2345 pte_t *pte, *mapped_pte; 2346 spinlock_t *ptl; 2347 int err = 0; 2348 2349 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2350 if (!pte) 2351 return -ENOMEM; 2352 arch_enter_lazy_mmu_mode(); 2353 do { 2354 BUG_ON(!pte_none(ptep_get(pte))); 2355 if (!pfn_modify_allowed(pfn, prot)) { 2356 err = -EACCES; 2357 break; 2358 } 2359 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2360 pfn++; 2361 } while (pte++, addr += PAGE_SIZE, addr != end); 2362 arch_leave_lazy_mmu_mode(); 2363 pte_unmap_unlock(mapped_pte, ptl); 2364 return err; 2365 } 2366 2367 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2368 unsigned long addr, unsigned long end, 2369 unsigned long pfn, pgprot_t prot) 2370 { 2371 pmd_t *pmd; 2372 unsigned long next; 2373 int err; 2374 2375 pfn -= addr >> PAGE_SHIFT; 2376 pmd = pmd_alloc(mm, pud, addr); 2377 if (!pmd) 2378 return -ENOMEM; 2379 VM_BUG_ON(pmd_trans_huge(*pmd)); 2380 do { 2381 next = pmd_addr_end(addr, end); 2382 err = remap_pte_range(mm, pmd, addr, next, 2383 pfn + (addr >> PAGE_SHIFT), prot); 2384 if (err) 2385 return err; 2386 } while (pmd++, addr = next, addr != end); 2387 return 0; 2388 } 2389 2390 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2391 unsigned long addr, unsigned long end, 2392 unsigned long pfn, pgprot_t prot) 2393 { 2394 pud_t *pud; 2395 unsigned long next; 2396 int err; 2397 2398 pfn -= addr >> PAGE_SHIFT; 2399 pud = pud_alloc(mm, p4d, addr); 2400 if (!pud) 2401 return -ENOMEM; 2402 do { 2403 next = pud_addr_end(addr, end); 2404 err = remap_pmd_range(mm, pud, addr, next, 2405 pfn + (addr >> PAGE_SHIFT), prot); 2406 if (err) 2407 return err; 2408 } while (pud++, addr = next, addr != end); 2409 return 0; 2410 } 2411 2412 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2413 unsigned long addr, unsigned long end, 2414 unsigned long pfn, pgprot_t prot) 2415 { 2416 p4d_t *p4d; 2417 unsigned long next; 2418 int err; 2419 2420 pfn -= addr >> PAGE_SHIFT; 2421 p4d = p4d_alloc(mm, pgd, addr); 2422 if (!p4d) 2423 return -ENOMEM; 2424 do { 2425 next = p4d_addr_end(addr, end); 2426 err = remap_pud_range(mm, p4d, addr, next, 2427 pfn + (addr >> PAGE_SHIFT), prot); 2428 if (err) 2429 return err; 2430 } while (p4d++, addr = next, addr != end); 2431 return 0; 2432 } 2433 2434 /* 2435 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2436 * must have pre-validated the caching bits of the pgprot_t. 2437 */ 2438 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2439 unsigned long pfn, unsigned long size, pgprot_t prot) 2440 { 2441 pgd_t *pgd; 2442 unsigned long next; 2443 unsigned long end = addr + PAGE_ALIGN(size); 2444 struct mm_struct *mm = vma->vm_mm; 2445 int err; 2446 2447 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2448 return -EINVAL; 2449 2450 /* 2451 * Physically remapped pages are special. Tell the 2452 * rest of the world about it: 2453 * VM_IO tells people not to look at these pages 2454 * (accesses can have side effects). 2455 * VM_PFNMAP tells the core MM that the base pages are just 2456 * raw PFN mappings, and do not have a "struct page" associated 2457 * with them. 2458 * VM_DONTEXPAND 2459 * Disable vma merging and expanding with mremap(). 2460 * VM_DONTDUMP 2461 * Omit vma from core dump, even when VM_IO turned off. 2462 * 2463 * There's a horrible special case to handle copy-on-write 2464 * behaviour that some programs depend on. We mark the "original" 2465 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2466 * See vm_normal_page() for details. 2467 */ 2468 if (is_cow_mapping(vma->vm_flags)) { 2469 if (addr != vma->vm_start || end != vma->vm_end) 2470 return -EINVAL; 2471 vma->vm_pgoff = pfn; 2472 } 2473 2474 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2475 2476 BUG_ON(addr >= end); 2477 pfn -= addr >> PAGE_SHIFT; 2478 pgd = pgd_offset(mm, addr); 2479 flush_cache_range(vma, addr, end); 2480 do { 2481 next = pgd_addr_end(addr, end); 2482 err = remap_p4d_range(mm, pgd, addr, next, 2483 pfn + (addr >> PAGE_SHIFT), prot); 2484 if (err) 2485 return err; 2486 } while (pgd++, addr = next, addr != end); 2487 2488 return 0; 2489 } 2490 2491 /** 2492 * remap_pfn_range - remap kernel memory to userspace 2493 * @vma: user vma to map to 2494 * @addr: target page aligned user address to start at 2495 * @pfn: page frame number of kernel physical memory address 2496 * @size: size of mapping area 2497 * @prot: page protection flags for this mapping 2498 * 2499 * Note: this is only safe if the mm semaphore is held when called. 2500 * 2501 * Return: %0 on success, negative error code otherwise. 2502 */ 2503 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2504 unsigned long pfn, unsigned long size, pgprot_t prot) 2505 { 2506 int err; 2507 2508 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2509 if (err) 2510 return -EINVAL; 2511 2512 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2513 if (err) 2514 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2515 return err; 2516 } 2517 EXPORT_SYMBOL(remap_pfn_range); 2518 2519 /** 2520 * vm_iomap_memory - remap memory to userspace 2521 * @vma: user vma to map to 2522 * @start: start of the physical memory to be mapped 2523 * @len: size of area 2524 * 2525 * This is a simplified io_remap_pfn_range() for common driver use. The 2526 * driver just needs to give us the physical memory range to be mapped, 2527 * we'll figure out the rest from the vma information. 2528 * 2529 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2530 * whatever write-combining details or similar. 2531 * 2532 * Return: %0 on success, negative error code otherwise. 2533 */ 2534 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2535 { 2536 unsigned long vm_len, pfn, pages; 2537 2538 /* Check that the physical memory area passed in looks valid */ 2539 if (start + len < start) 2540 return -EINVAL; 2541 /* 2542 * You *really* shouldn't map things that aren't page-aligned, 2543 * but we've historically allowed it because IO memory might 2544 * just have smaller alignment. 2545 */ 2546 len += start & ~PAGE_MASK; 2547 pfn = start >> PAGE_SHIFT; 2548 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2549 if (pfn + pages < pfn) 2550 return -EINVAL; 2551 2552 /* We start the mapping 'vm_pgoff' pages into the area */ 2553 if (vma->vm_pgoff > pages) 2554 return -EINVAL; 2555 pfn += vma->vm_pgoff; 2556 pages -= vma->vm_pgoff; 2557 2558 /* Can we fit all of the mapping? */ 2559 vm_len = vma->vm_end - vma->vm_start; 2560 if (vm_len >> PAGE_SHIFT > pages) 2561 return -EINVAL; 2562 2563 /* Ok, let it rip */ 2564 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2565 } 2566 EXPORT_SYMBOL(vm_iomap_memory); 2567 2568 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2569 unsigned long addr, unsigned long end, 2570 pte_fn_t fn, void *data, bool create, 2571 pgtbl_mod_mask *mask) 2572 { 2573 pte_t *pte, *mapped_pte; 2574 int err = 0; 2575 spinlock_t *ptl; 2576 2577 if (create) { 2578 mapped_pte = pte = (mm == &init_mm) ? 2579 pte_alloc_kernel_track(pmd, addr, mask) : 2580 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2581 if (!pte) 2582 return -ENOMEM; 2583 } else { 2584 mapped_pte = pte = (mm == &init_mm) ? 2585 pte_offset_kernel(pmd, addr) : 2586 pte_offset_map_lock(mm, pmd, addr, &ptl); 2587 if (!pte) 2588 return -EINVAL; 2589 } 2590 2591 arch_enter_lazy_mmu_mode(); 2592 2593 if (fn) { 2594 do { 2595 if (create || !pte_none(ptep_get(pte))) { 2596 err = fn(pte++, addr, data); 2597 if (err) 2598 break; 2599 } 2600 } while (addr += PAGE_SIZE, addr != end); 2601 } 2602 *mask |= PGTBL_PTE_MODIFIED; 2603 2604 arch_leave_lazy_mmu_mode(); 2605 2606 if (mm != &init_mm) 2607 pte_unmap_unlock(mapped_pte, ptl); 2608 return err; 2609 } 2610 2611 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2612 unsigned long addr, unsigned long end, 2613 pte_fn_t fn, void *data, bool create, 2614 pgtbl_mod_mask *mask) 2615 { 2616 pmd_t *pmd; 2617 unsigned long next; 2618 int err = 0; 2619 2620 BUG_ON(pud_huge(*pud)); 2621 2622 if (create) { 2623 pmd = pmd_alloc_track(mm, pud, addr, mask); 2624 if (!pmd) 2625 return -ENOMEM; 2626 } else { 2627 pmd = pmd_offset(pud, addr); 2628 } 2629 do { 2630 next = pmd_addr_end(addr, end); 2631 if (pmd_none(*pmd) && !create) 2632 continue; 2633 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2634 return -EINVAL; 2635 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2636 if (!create) 2637 continue; 2638 pmd_clear_bad(pmd); 2639 } 2640 err = apply_to_pte_range(mm, pmd, addr, next, 2641 fn, data, create, mask); 2642 if (err) 2643 break; 2644 } while (pmd++, addr = next, addr != end); 2645 2646 return err; 2647 } 2648 2649 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2650 unsigned long addr, unsigned long end, 2651 pte_fn_t fn, void *data, bool create, 2652 pgtbl_mod_mask *mask) 2653 { 2654 pud_t *pud; 2655 unsigned long next; 2656 int err = 0; 2657 2658 if (create) { 2659 pud = pud_alloc_track(mm, p4d, addr, mask); 2660 if (!pud) 2661 return -ENOMEM; 2662 } else { 2663 pud = pud_offset(p4d, addr); 2664 } 2665 do { 2666 next = pud_addr_end(addr, end); 2667 if (pud_none(*pud) && !create) 2668 continue; 2669 if (WARN_ON_ONCE(pud_leaf(*pud))) 2670 return -EINVAL; 2671 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2672 if (!create) 2673 continue; 2674 pud_clear_bad(pud); 2675 } 2676 err = apply_to_pmd_range(mm, pud, addr, next, 2677 fn, data, create, mask); 2678 if (err) 2679 break; 2680 } while (pud++, addr = next, addr != end); 2681 2682 return err; 2683 } 2684 2685 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2686 unsigned long addr, unsigned long end, 2687 pte_fn_t fn, void *data, bool create, 2688 pgtbl_mod_mask *mask) 2689 { 2690 p4d_t *p4d; 2691 unsigned long next; 2692 int err = 0; 2693 2694 if (create) { 2695 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2696 if (!p4d) 2697 return -ENOMEM; 2698 } else { 2699 p4d = p4d_offset(pgd, addr); 2700 } 2701 do { 2702 next = p4d_addr_end(addr, end); 2703 if (p4d_none(*p4d) && !create) 2704 continue; 2705 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2706 return -EINVAL; 2707 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2708 if (!create) 2709 continue; 2710 p4d_clear_bad(p4d); 2711 } 2712 err = apply_to_pud_range(mm, p4d, addr, next, 2713 fn, data, create, mask); 2714 if (err) 2715 break; 2716 } while (p4d++, addr = next, addr != end); 2717 2718 return err; 2719 } 2720 2721 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2722 unsigned long size, pte_fn_t fn, 2723 void *data, bool create) 2724 { 2725 pgd_t *pgd; 2726 unsigned long start = addr, next; 2727 unsigned long end = addr + size; 2728 pgtbl_mod_mask mask = 0; 2729 int err = 0; 2730 2731 if (WARN_ON(addr >= end)) 2732 return -EINVAL; 2733 2734 pgd = pgd_offset(mm, addr); 2735 do { 2736 next = pgd_addr_end(addr, end); 2737 if (pgd_none(*pgd) && !create) 2738 continue; 2739 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2740 return -EINVAL; 2741 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2742 if (!create) 2743 continue; 2744 pgd_clear_bad(pgd); 2745 } 2746 err = apply_to_p4d_range(mm, pgd, addr, next, 2747 fn, data, create, &mask); 2748 if (err) 2749 break; 2750 } while (pgd++, addr = next, addr != end); 2751 2752 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2753 arch_sync_kernel_mappings(start, start + size); 2754 2755 return err; 2756 } 2757 2758 /* 2759 * Scan a region of virtual memory, filling in page tables as necessary 2760 * and calling a provided function on each leaf page table. 2761 */ 2762 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2763 unsigned long size, pte_fn_t fn, void *data) 2764 { 2765 return __apply_to_page_range(mm, addr, size, fn, data, true); 2766 } 2767 EXPORT_SYMBOL_GPL(apply_to_page_range); 2768 2769 /* 2770 * Scan a region of virtual memory, calling a provided function on 2771 * each leaf page table where it exists. 2772 * 2773 * Unlike apply_to_page_range, this does _not_ fill in page tables 2774 * where they are absent. 2775 */ 2776 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2777 unsigned long size, pte_fn_t fn, void *data) 2778 { 2779 return __apply_to_page_range(mm, addr, size, fn, data, false); 2780 } 2781 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2782 2783 /* 2784 * handle_pte_fault chooses page fault handler according to an entry which was 2785 * read non-atomically. Before making any commitment, on those architectures 2786 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2787 * parts, do_swap_page must check under lock before unmapping the pte and 2788 * proceeding (but do_wp_page is only called after already making such a check; 2789 * and do_anonymous_page can safely check later on). 2790 */ 2791 static inline int pte_unmap_same(struct vm_fault *vmf) 2792 { 2793 int same = 1; 2794 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2795 if (sizeof(pte_t) > sizeof(unsigned long)) { 2796 spin_lock(vmf->ptl); 2797 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2798 spin_unlock(vmf->ptl); 2799 } 2800 #endif 2801 pte_unmap(vmf->pte); 2802 vmf->pte = NULL; 2803 return same; 2804 } 2805 2806 /* 2807 * Return: 2808 * 0: copied succeeded 2809 * -EHWPOISON: copy failed due to hwpoison in source page 2810 * -EAGAIN: copied failed (some other reason) 2811 */ 2812 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2813 struct vm_fault *vmf) 2814 { 2815 int ret; 2816 void *kaddr; 2817 void __user *uaddr; 2818 struct vm_area_struct *vma = vmf->vma; 2819 struct mm_struct *mm = vma->vm_mm; 2820 unsigned long addr = vmf->address; 2821 2822 if (likely(src)) { 2823 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2824 memory_failure_queue(page_to_pfn(src), 0); 2825 return -EHWPOISON; 2826 } 2827 return 0; 2828 } 2829 2830 /* 2831 * If the source page was a PFN mapping, we don't have 2832 * a "struct page" for it. We do a best-effort copy by 2833 * just copying from the original user address. If that 2834 * fails, we just zero-fill it. Live with it. 2835 */ 2836 kaddr = kmap_atomic(dst); 2837 uaddr = (void __user *)(addr & PAGE_MASK); 2838 2839 /* 2840 * On architectures with software "accessed" bits, we would 2841 * take a double page fault, so mark it accessed here. 2842 */ 2843 vmf->pte = NULL; 2844 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2845 pte_t entry; 2846 2847 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2848 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2849 /* 2850 * Other thread has already handled the fault 2851 * and update local tlb only 2852 */ 2853 if (vmf->pte) 2854 update_mmu_tlb(vma, addr, vmf->pte); 2855 ret = -EAGAIN; 2856 goto pte_unlock; 2857 } 2858 2859 entry = pte_mkyoung(vmf->orig_pte); 2860 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2861 update_mmu_cache(vma, addr, vmf->pte); 2862 } 2863 2864 /* 2865 * This really shouldn't fail, because the page is there 2866 * in the page tables. But it might just be unreadable, 2867 * in which case we just give up and fill the result with 2868 * zeroes. 2869 */ 2870 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2871 if (vmf->pte) 2872 goto warn; 2873 2874 /* Re-validate under PTL if the page is still mapped */ 2875 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2876 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2877 /* The PTE changed under us, update local tlb */ 2878 if (vmf->pte) 2879 update_mmu_tlb(vma, addr, vmf->pte); 2880 ret = -EAGAIN; 2881 goto pte_unlock; 2882 } 2883 2884 /* 2885 * The same page can be mapped back since last copy attempt. 2886 * Try to copy again under PTL. 2887 */ 2888 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2889 /* 2890 * Give a warn in case there can be some obscure 2891 * use-case 2892 */ 2893 warn: 2894 WARN_ON_ONCE(1); 2895 clear_page(kaddr); 2896 } 2897 } 2898 2899 ret = 0; 2900 2901 pte_unlock: 2902 if (vmf->pte) 2903 pte_unmap_unlock(vmf->pte, vmf->ptl); 2904 kunmap_atomic(kaddr); 2905 flush_dcache_page(dst); 2906 2907 return ret; 2908 } 2909 2910 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2911 { 2912 struct file *vm_file = vma->vm_file; 2913 2914 if (vm_file) 2915 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2916 2917 /* 2918 * Special mappings (e.g. VDSO) do not have any file so fake 2919 * a default GFP_KERNEL for them. 2920 */ 2921 return GFP_KERNEL; 2922 } 2923 2924 /* 2925 * Notify the address space that the page is about to become writable so that 2926 * it can prohibit this or wait for the page to get into an appropriate state. 2927 * 2928 * We do this without the lock held, so that it can sleep if it needs to. 2929 */ 2930 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2931 { 2932 vm_fault_t ret; 2933 struct page *page = vmf->page; 2934 unsigned int old_flags = vmf->flags; 2935 2936 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2937 2938 if (vmf->vma->vm_file && 2939 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2940 return VM_FAULT_SIGBUS; 2941 2942 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2943 /* Restore original flags so that caller is not surprised */ 2944 vmf->flags = old_flags; 2945 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2946 return ret; 2947 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2948 lock_page(page); 2949 if (!page->mapping) { 2950 unlock_page(page); 2951 return 0; /* retry */ 2952 } 2953 ret |= VM_FAULT_LOCKED; 2954 } else 2955 VM_BUG_ON_PAGE(!PageLocked(page), page); 2956 return ret; 2957 } 2958 2959 /* 2960 * Handle dirtying of a page in shared file mapping on a write fault. 2961 * 2962 * The function expects the page to be locked and unlocks it. 2963 */ 2964 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2965 { 2966 struct vm_area_struct *vma = vmf->vma; 2967 struct address_space *mapping; 2968 struct page *page = vmf->page; 2969 bool dirtied; 2970 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2971 2972 dirtied = set_page_dirty(page); 2973 VM_BUG_ON_PAGE(PageAnon(page), page); 2974 /* 2975 * Take a local copy of the address_space - page.mapping may be zeroed 2976 * by truncate after unlock_page(). The address_space itself remains 2977 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2978 * release semantics to prevent the compiler from undoing this copying. 2979 */ 2980 mapping = page_rmapping(page); 2981 unlock_page(page); 2982 2983 if (!page_mkwrite) 2984 file_update_time(vma->vm_file); 2985 2986 /* 2987 * Throttle page dirtying rate down to writeback speed. 2988 * 2989 * mapping may be NULL here because some device drivers do not 2990 * set page.mapping but still dirty their pages 2991 * 2992 * Drop the mmap_lock before waiting on IO, if we can. The file 2993 * is pinning the mapping, as per above. 2994 */ 2995 if ((dirtied || page_mkwrite) && mapping) { 2996 struct file *fpin; 2997 2998 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2999 balance_dirty_pages_ratelimited(mapping); 3000 if (fpin) { 3001 fput(fpin); 3002 return VM_FAULT_COMPLETED; 3003 } 3004 } 3005 3006 return 0; 3007 } 3008 3009 /* 3010 * Handle write page faults for pages that can be reused in the current vma 3011 * 3012 * This can happen either due to the mapping being with the VM_SHARED flag, 3013 * or due to us being the last reference standing to the page. In either 3014 * case, all we need to do here is to mark the page as writable and update 3015 * any related book-keeping. 3016 */ 3017 static inline void wp_page_reuse(struct vm_fault *vmf) 3018 __releases(vmf->ptl) 3019 { 3020 struct vm_area_struct *vma = vmf->vma; 3021 struct page *page = vmf->page; 3022 pte_t entry; 3023 3024 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3025 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3026 3027 /* 3028 * Clear the pages cpupid information as the existing 3029 * information potentially belongs to a now completely 3030 * unrelated process. 3031 */ 3032 if (page) 3033 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3034 3035 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3036 entry = pte_mkyoung(vmf->orig_pte); 3037 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3038 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3039 update_mmu_cache(vma, vmf->address, vmf->pte); 3040 pte_unmap_unlock(vmf->pte, vmf->ptl); 3041 count_vm_event(PGREUSE); 3042 } 3043 3044 /* 3045 * Handle the case of a page which we actually need to copy to a new page, 3046 * either due to COW or unsharing. 3047 * 3048 * Called with mmap_lock locked and the old page referenced, but 3049 * without the ptl held. 3050 * 3051 * High level logic flow: 3052 * 3053 * - Allocate a page, copy the content of the old page to the new one. 3054 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3055 * - Take the PTL. If the pte changed, bail out and release the allocated page 3056 * - If the pte is still the way we remember it, update the page table and all 3057 * relevant references. This includes dropping the reference the page-table 3058 * held to the old page, as well as updating the rmap. 3059 * - In any case, unlock the PTL and drop the reference we took to the old page. 3060 */ 3061 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3062 { 3063 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3064 struct vm_area_struct *vma = vmf->vma; 3065 struct mm_struct *mm = vma->vm_mm; 3066 struct folio *old_folio = NULL; 3067 struct folio *new_folio = NULL; 3068 pte_t entry; 3069 int page_copied = 0; 3070 struct mmu_notifier_range range; 3071 int ret; 3072 3073 delayacct_wpcopy_start(); 3074 3075 if (vmf->page) 3076 old_folio = page_folio(vmf->page); 3077 if (unlikely(anon_vma_prepare(vma))) 3078 goto oom; 3079 3080 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3081 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 3082 if (!new_folio) 3083 goto oom; 3084 } else { 3085 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 3086 vmf->address, false); 3087 if (!new_folio) 3088 goto oom; 3089 3090 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3091 if (ret) { 3092 /* 3093 * COW failed, if the fault was solved by other, 3094 * it's fine. If not, userspace would re-fault on 3095 * the same address and we will handle the fault 3096 * from the second attempt. 3097 * The -EHWPOISON case will not be retried. 3098 */ 3099 folio_put(new_folio); 3100 if (old_folio) 3101 folio_put(old_folio); 3102 3103 delayacct_wpcopy_end(); 3104 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3105 } 3106 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3107 } 3108 3109 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) 3110 goto oom_free_new; 3111 folio_throttle_swaprate(new_folio, GFP_KERNEL); 3112 3113 __folio_mark_uptodate(new_folio); 3114 3115 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3116 vmf->address & PAGE_MASK, 3117 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3118 mmu_notifier_invalidate_range_start(&range); 3119 3120 /* 3121 * Re-check the pte - we dropped the lock 3122 */ 3123 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3124 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3125 if (old_folio) { 3126 if (!folio_test_anon(old_folio)) { 3127 dec_mm_counter(mm, mm_counter_file(&old_folio->page)); 3128 inc_mm_counter(mm, MM_ANONPAGES); 3129 } 3130 } else { 3131 inc_mm_counter(mm, MM_ANONPAGES); 3132 } 3133 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3134 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3135 entry = pte_sw_mkyoung(entry); 3136 if (unlikely(unshare)) { 3137 if (pte_soft_dirty(vmf->orig_pte)) 3138 entry = pte_mksoft_dirty(entry); 3139 if (pte_uffd_wp(vmf->orig_pte)) 3140 entry = pte_mkuffd_wp(entry); 3141 } else { 3142 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3143 } 3144 3145 /* 3146 * Clear the pte entry and flush it first, before updating the 3147 * pte with the new entry, to keep TLBs on different CPUs in 3148 * sync. This code used to set the new PTE then flush TLBs, but 3149 * that left a window where the new PTE could be loaded into 3150 * some TLBs while the old PTE remains in others. 3151 */ 3152 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3153 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3154 folio_add_lru_vma(new_folio, vma); 3155 /* 3156 * We call the notify macro here because, when using secondary 3157 * mmu page tables (such as kvm shadow page tables), we want the 3158 * new page to be mapped directly into the secondary page table. 3159 */ 3160 BUG_ON(unshare && pte_write(entry)); 3161 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3162 update_mmu_cache(vma, vmf->address, vmf->pte); 3163 if (old_folio) { 3164 /* 3165 * Only after switching the pte to the new page may 3166 * we remove the mapcount here. Otherwise another 3167 * process may come and find the rmap count decremented 3168 * before the pte is switched to the new page, and 3169 * "reuse" the old page writing into it while our pte 3170 * here still points into it and can be read by other 3171 * threads. 3172 * 3173 * The critical issue is to order this 3174 * page_remove_rmap with the ptp_clear_flush above. 3175 * Those stores are ordered by (if nothing else,) 3176 * the barrier present in the atomic_add_negative 3177 * in page_remove_rmap. 3178 * 3179 * Then the TLB flush in ptep_clear_flush ensures that 3180 * no process can access the old page before the 3181 * decremented mapcount is visible. And the old page 3182 * cannot be reused until after the decremented 3183 * mapcount is visible. So transitively, TLBs to 3184 * old page will be flushed before it can be reused. 3185 */ 3186 page_remove_rmap(vmf->page, vma, false); 3187 } 3188 3189 /* Free the old page.. */ 3190 new_folio = old_folio; 3191 page_copied = 1; 3192 pte_unmap_unlock(vmf->pte, vmf->ptl); 3193 } else if (vmf->pte) { 3194 update_mmu_tlb(vma, vmf->address, vmf->pte); 3195 pte_unmap_unlock(vmf->pte, vmf->ptl); 3196 } 3197 3198 /* 3199 * No need to double call mmu_notifier->invalidate_range() callback as 3200 * the above ptep_clear_flush_notify() did already call it. 3201 */ 3202 mmu_notifier_invalidate_range_only_end(&range); 3203 3204 if (new_folio) 3205 folio_put(new_folio); 3206 if (old_folio) { 3207 if (page_copied) 3208 free_swap_cache(&old_folio->page); 3209 folio_put(old_folio); 3210 } 3211 3212 delayacct_wpcopy_end(); 3213 return 0; 3214 oom_free_new: 3215 folio_put(new_folio); 3216 oom: 3217 if (old_folio) 3218 folio_put(old_folio); 3219 3220 delayacct_wpcopy_end(); 3221 return VM_FAULT_OOM; 3222 } 3223 3224 /** 3225 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3226 * writeable once the page is prepared 3227 * 3228 * @vmf: structure describing the fault 3229 * 3230 * This function handles all that is needed to finish a write page fault in a 3231 * shared mapping due to PTE being read-only once the mapped page is prepared. 3232 * It handles locking of PTE and modifying it. 3233 * 3234 * The function expects the page to be locked or other protection against 3235 * concurrent faults / writeback (such as DAX radix tree locks). 3236 * 3237 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3238 * we acquired PTE lock. 3239 */ 3240 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3241 { 3242 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3243 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3244 &vmf->ptl); 3245 if (!vmf->pte) 3246 return VM_FAULT_NOPAGE; 3247 /* 3248 * We might have raced with another page fault while we released the 3249 * pte_offset_map_lock. 3250 */ 3251 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3252 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3253 pte_unmap_unlock(vmf->pte, vmf->ptl); 3254 return VM_FAULT_NOPAGE; 3255 } 3256 wp_page_reuse(vmf); 3257 return 0; 3258 } 3259 3260 /* 3261 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3262 * mapping 3263 */ 3264 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3265 { 3266 struct vm_area_struct *vma = vmf->vma; 3267 3268 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3269 vm_fault_t ret; 3270 3271 pte_unmap_unlock(vmf->pte, vmf->ptl); 3272 vmf->flags |= FAULT_FLAG_MKWRITE; 3273 ret = vma->vm_ops->pfn_mkwrite(vmf); 3274 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3275 return ret; 3276 return finish_mkwrite_fault(vmf); 3277 } 3278 wp_page_reuse(vmf); 3279 return 0; 3280 } 3281 3282 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3283 __releases(vmf->ptl) 3284 { 3285 struct vm_area_struct *vma = vmf->vma; 3286 vm_fault_t ret = 0; 3287 3288 get_page(vmf->page); 3289 3290 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3291 vm_fault_t tmp; 3292 3293 pte_unmap_unlock(vmf->pte, vmf->ptl); 3294 tmp = do_page_mkwrite(vmf); 3295 if (unlikely(!tmp || (tmp & 3296 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3297 put_page(vmf->page); 3298 return tmp; 3299 } 3300 tmp = finish_mkwrite_fault(vmf); 3301 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3302 unlock_page(vmf->page); 3303 put_page(vmf->page); 3304 return tmp; 3305 } 3306 } else { 3307 wp_page_reuse(vmf); 3308 lock_page(vmf->page); 3309 } 3310 ret |= fault_dirty_shared_page(vmf); 3311 put_page(vmf->page); 3312 3313 return ret; 3314 } 3315 3316 /* 3317 * This routine handles present pages, when 3318 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3319 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3320 * (FAULT_FLAG_UNSHARE) 3321 * 3322 * It is done by copying the page to a new address and decrementing the 3323 * shared-page counter for the old page. 3324 * 3325 * Note that this routine assumes that the protection checks have been 3326 * done by the caller (the low-level page fault routine in most cases). 3327 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3328 * done any necessary COW. 3329 * 3330 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3331 * though the page will change only once the write actually happens. This 3332 * avoids a few races, and potentially makes it more efficient. 3333 * 3334 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3335 * but allow concurrent faults), with pte both mapped and locked. 3336 * We return with mmap_lock still held, but pte unmapped and unlocked. 3337 */ 3338 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3339 __releases(vmf->ptl) 3340 { 3341 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3342 struct vm_area_struct *vma = vmf->vma; 3343 struct folio *folio = NULL; 3344 3345 if (likely(!unshare)) { 3346 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3347 pte_unmap_unlock(vmf->pte, vmf->ptl); 3348 return handle_userfault(vmf, VM_UFFD_WP); 3349 } 3350 3351 /* 3352 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3353 * is flushed in this case before copying. 3354 */ 3355 if (unlikely(userfaultfd_wp(vmf->vma) && 3356 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3357 flush_tlb_page(vmf->vma, vmf->address); 3358 } 3359 3360 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3361 3362 /* 3363 * Shared mapping: we are guaranteed to have VM_WRITE and 3364 * FAULT_FLAG_WRITE set at this point. 3365 */ 3366 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3367 /* 3368 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3369 * VM_PFNMAP VMA. 3370 * 3371 * We should not cow pages in a shared writeable mapping. 3372 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3373 */ 3374 if (!vmf->page) 3375 return wp_pfn_shared(vmf); 3376 return wp_page_shared(vmf); 3377 } 3378 3379 if (vmf->page) 3380 folio = page_folio(vmf->page); 3381 3382 /* 3383 * Private mapping: create an exclusive anonymous page copy if reuse 3384 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3385 */ 3386 if (folio && folio_test_anon(folio)) { 3387 /* 3388 * If the page is exclusive to this process we must reuse the 3389 * page without further checks. 3390 */ 3391 if (PageAnonExclusive(vmf->page)) 3392 goto reuse; 3393 3394 /* 3395 * We have to verify under folio lock: these early checks are 3396 * just an optimization to avoid locking the folio and freeing 3397 * the swapcache if there is little hope that we can reuse. 3398 * 3399 * KSM doesn't necessarily raise the folio refcount. 3400 */ 3401 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3402 goto copy; 3403 if (!folio_test_lru(folio)) 3404 /* 3405 * We cannot easily detect+handle references from 3406 * remote LRU caches or references to LRU folios. 3407 */ 3408 lru_add_drain(); 3409 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3410 goto copy; 3411 if (!folio_trylock(folio)) 3412 goto copy; 3413 if (folio_test_swapcache(folio)) 3414 folio_free_swap(folio); 3415 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3416 folio_unlock(folio); 3417 goto copy; 3418 } 3419 /* 3420 * Ok, we've got the only folio reference from our mapping 3421 * and the folio is locked, it's dark out, and we're wearing 3422 * sunglasses. Hit it. 3423 */ 3424 page_move_anon_rmap(vmf->page, vma); 3425 folio_unlock(folio); 3426 reuse: 3427 if (unlikely(unshare)) { 3428 pte_unmap_unlock(vmf->pte, vmf->ptl); 3429 return 0; 3430 } 3431 wp_page_reuse(vmf); 3432 return 0; 3433 } 3434 copy: 3435 /* 3436 * Ok, we need to copy. Oh, well.. 3437 */ 3438 if (folio) 3439 folio_get(folio); 3440 3441 pte_unmap_unlock(vmf->pte, vmf->ptl); 3442 #ifdef CONFIG_KSM 3443 if (folio && folio_test_ksm(folio)) 3444 count_vm_event(COW_KSM); 3445 #endif 3446 return wp_page_copy(vmf); 3447 } 3448 3449 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3450 unsigned long start_addr, unsigned long end_addr, 3451 struct zap_details *details) 3452 { 3453 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3454 } 3455 3456 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3457 pgoff_t first_index, 3458 pgoff_t last_index, 3459 struct zap_details *details) 3460 { 3461 struct vm_area_struct *vma; 3462 pgoff_t vba, vea, zba, zea; 3463 3464 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3465 vba = vma->vm_pgoff; 3466 vea = vba + vma_pages(vma) - 1; 3467 zba = max(first_index, vba); 3468 zea = min(last_index, vea); 3469 3470 unmap_mapping_range_vma(vma, 3471 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3472 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3473 details); 3474 } 3475 } 3476 3477 /** 3478 * unmap_mapping_folio() - Unmap single folio from processes. 3479 * @folio: The locked folio to be unmapped. 3480 * 3481 * Unmap this folio from any userspace process which still has it mmaped. 3482 * Typically, for efficiency, the range of nearby pages has already been 3483 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3484 * truncation or invalidation holds the lock on a folio, it may find that 3485 * the page has been remapped again: and then uses unmap_mapping_folio() 3486 * to unmap it finally. 3487 */ 3488 void unmap_mapping_folio(struct folio *folio) 3489 { 3490 struct address_space *mapping = folio->mapping; 3491 struct zap_details details = { }; 3492 pgoff_t first_index; 3493 pgoff_t last_index; 3494 3495 VM_BUG_ON(!folio_test_locked(folio)); 3496 3497 first_index = folio->index; 3498 last_index = folio->index + folio_nr_pages(folio) - 1; 3499 3500 details.even_cows = false; 3501 details.single_folio = folio; 3502 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3503 3504 i_mmap_lock_read(mapping); 3505 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3506 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3507 last_index, &details); 3508 i_mmap_unlock_read(mapping); 3509 } 3510 3511 /** 3512 * unmap_mapping_pages() - Unmap pages from processes. 3513 * @mapping: The address space containing pages to be unmapped. 3514 * @start: Index of first page to be unmapped. 3515 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3516 * @even_cows: Whether to unmap even private COWed pages. 3517 * 3518 * Unmap the pages in this address space from any userspace process which 3519 * has them mmaped. Generally, you want to remove COWed pages as well when 3520 * a file is being truncated, but not when invalidating pages from the page 3521 * cache. 3522 */ 3523 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3524 pgoff_t nr, bool even_cows) 3525 { 3526 struct zap_details details = { }; 3527 pgoff_t first_index = start; 3528 pgoff_t last_index = start + nr - 1; 3529 3530 details.even_cows = even_cows; 3531 if (last_index < first_index) 3532 last_index = ULONG_MAX; 3533 3534 i_mmap_lock_read(mapping); 3535 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3536 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3537 last_index, &details); 3538 i_mmap_unlock_read(mapping); 3539 } 3540 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3541 3542 /** 3543 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3544 * address_space corresponding to the specified byte range in the underlying 3545 * file. 3546 * 3547 * @mapping: the address space containing mmaps to be unmapped. 3548 * @holebegin: byte in first page to unmap, relative to the start of 3549 * the underlying file. This will be rounded down to a PAGE_SIZE 3550 * boundary. Note that this is different from truncate_pagecache(), which 3551 * must keep the partial page. In contrast, we must get rid of 3552 * partial pages. 3553 * @holelen: size of prospective hole in bytes. This will be rounded 3554 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3555 * end of the file. 3556 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3557 * but 0 when invalidating pagecache, don't throw away private data. 3558 */ 3559 void unmap_mapping_range(struct address_space *mapping, 3560 loff_t const holebegin, loff_t const holelen, int even_cows) 3561 { 3562 pgoff_t hba = holebegin >> PAGE_SHIFT; 3563 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3564 3565 /* Check for overflow. */ 3566 if (sizeof(holelen) > sizeof(hlen)) { 3567 long long holeend = 3568 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3569 if (holeend & ~(long long)ULONG_MAX) 3570 hlen = ULONG_MAX - hba + 1; 3571 } 3572 3573 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3574 } 3575 EXPORT_SYMBOL(unmap_mapping_range); 3576 3577 /* 3578 * Restore a potential device exclusive pte to a working pte entry 3579 */ 3580 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3581 { 3582 struct folio *folio = page_folio(vmf->page); 3583 struct vm_area_struct *vma = vmf->vma; 3584 struct mmu_notifier_range range; 3585 3586 /* 3587 * We need a reference to lock the folio because we don't hold 3588 * the PTL so a racing thread can remove the device-exclusive 3589 * entry and unmap it. If the folio is free the entry must 3590 * have been removed already. If it happens to have already 3591 * been re-allocated after being freed all we do is lock and 3592 * unlock it. 3593 */ 3594 if (!folio_try_get(folio)) 3595 return 0; 3596 3597 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) { 3598 folio_put(folio); 3599 return VM_FAULT_RETRY; 3600 } 3601 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3602 vma->vm_mm, vmf->address & PAGE_MASK, 3603 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3604 mmu_notifier_invalidate_range_start(&range); 3605 3606 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3607 &vmf->ptl); 3608 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3609 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3610 3611 if (vmf->pte) 3612 pte_unmap_unlock(vmf->pte, vmf->ptl); 3613 folio_unlock(folio); 3614 folio_put(folio); 3615 3616 mmu_notifier_invalidate_range_end(&range); 3617 return 0; 3618 } 3619 3620 static inline bool should_try_to_free_swap(struct folio *folio, 3621 struct vm_area_struct *vma, 3622 unsigned int fault_flags) 3623 { 3624 if (!folio_test_swapcache(folio)) 3625 return false; 3626 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3627 folio_test_mlocked(folio)) 3628 return true; 3629 /* 3630 * If we want to map a page that's in the swapcache writable, we 3631 * have to detect via the refcount if we're really the exclusive 3632 * user. Try freeing the swapcache to get rid of the swapcache 3633 * reference only in case it's likely that we'll be the exlusive user. 3634 */ 3635 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3636 folio_ref_count(folio) == 2; 3637 } 3638 3639 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3640 { 3641 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3642 vmf->address, &vmf->ptl); 3643 if (!vmf->pte) 3644 return 0; 3645 /* 3646 * Be careful so that we will only recover a special uffd-wp pte into a 3647 * none pte. Otherwise it means the pte could have changed, so retry. 3648 * 3649 * This should also cover the case where e.g. the pte changed 3650 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR. 3651 * So is_pte_marker() check is not enough to safely drop the pte. 3652 */ 3653 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3654 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3655 pte_unmap_unlock(vmf->pte, vmf->ptl); 3656 return 0; 3657 } 3658 3659 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3660 { 3661 if (vma_is_anonymous(vmf->vma)) 3662 return do_anonymous_page(vmf); 3663 else 3664 return do_fault(vmf); 3665 } 3666 3667 /* 3668 * This is actually a page-missing access, but with uffd-wp special pte 3669 * installed. It means this pte was wr-protected before being unmapped. 3670 */ 3671 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3672 { 3673 /* 3674 * Just in case there're leftover special ptes even after the region 3675 * got unregistered - we can simply clear them. 3676 */ 3677 if (unlikely(!userfaultfd_wp(vmf->vma))) 3678 return pte_marker_clear(vmf); 3679 3680 return do_pte_missing(vmf); 3681 } 3682 3683 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3684 { 3685 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3686 unsigned long marker = pte_marker_get(entry); 3687 3688 /* 3689 * PTE markers should never be empty. If anything weird happened, 3690 * the best thing to do is to kill the process along with its mm. 3691 */ 3692 if (WARN_ON_ONCE(!marker)) 3693 return VM_FAULT_SIGBUS; 3694 3695 /* Higher priority than uffd-wp when data corrupted */ 3696 if (marker & PTE_MARKER_SWAPIN_ERROR) 3697 return VM_FAULT_SIGBUS; 3698 3699 if (pte_marker_entry_uffd_wp(entry)) 3700 return pte_marker_handle_uffd_wp(vmf); 3701 3702 /* This is an unknown pte marker */ 3703 return VM_FAULT_SIGBUS; 3704 } 3705 3706 /* 3707 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3708 * but allow concurrent faults), and pte mapped but not yet locked. 3709 * We return with pte unmapped and unlocked. 3710 * 3711 * We return with the mmap_lock locked or unlocked in the same cases 3712 * as does filemap_fault(). 3713 */ 3714 vm_fault_t do_swap_page(struct vm_fault *vmf) 3715 { 3716 struct vm_area_struct *vma = vmf->vma; 3717 struct folio *swapcache, *folio = NULL; 3718 struct page *page; 3719 struct swap_info_struct *si = NULL; 3720 rmap_t rmap_flags = RMAP_NONE; 3721 bool exclusive = false; 3722 swp_entry_t entry; 3723 pte_t pte; 3724 int locked; 3725 vm_fault_t ret = 0; 3726 void *shadow = NULL; 3727 3728 if (!pte_unmap_same(vmf)) 3729 goto out; 3730 3731 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3732 ret = VM_FAULT_RETRY; 3733 goto out; 3734 } 3735 3736 entry = pte_to_swp_entry(vmf->orig_pte); 3737 if (unlikely(non_swap_entry(entry))) { 3738 if (is_migration_entry(entry)) { 3739 migration_entry_wait(vma->vm_mm, vmf->pmd, 3740 vmf->address); 3741 } else if (is_device_exclusive_entry(entry)) { 3742 vmf->page = pfn_swap_entry_to_page(entry); 3743 ret = remove_device_exclusive_entry(vmf); 3744 } else if (is_device_private_entry(entry)) { 3745 vmf->page = pfn_swap_entry_to_page(entry); 3746 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3747 vmf->address, &vmf->ptl); 3748 if (unlikely(!vmf->pte || 3749 !pte_same(ptep_get(vmf->pte), 3750 vmf->orig_pte))) 3751 goto unlock; 3752 3753 /* 3754 * Get a page reference while we know the page can't be 3755 * freed. 3756 */ 3757 get_page(vmf->page); 3758 pte_unmap_unlock(vmf->pte, vmf->ptl); 3759 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3760 put_page(vmf->page); 3761 } else if (is_hwpoison_entry(entry)) { 3762 ret = VM_FAULT_HWPOISON; 3763 } else if (is_pte_marker_entry(entry)) { 3764 ret = handle_pte_marker(vmf); 3765 } else { 3766 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3767 ret = VM_FAULT_SIGBUS; 3768 } 3769 goto out; 3770 } 3771 3772 /* Prevent swapoff from happening to us. */ 3773 si = get_swap_device(entry); 3774 if (unlikely(!si)) 3775 goto out; 3776 3777 folio = swap_cache_get_folio(entry, vma, vmf->address); 3778 if (folio) 3779 page = folio_file_page(folio, swp_offset(entry)); 3780 swapcache = folio; 3781 3782 if (!folio) { 3783 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3784 __swap_count(entry) == 1) { 3785 /* skip swapcache */ 3786 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3787 vma, vmf->address, false); 3788 page = &folio->page; 3789 if (folio) { 3790 __folio_set_locked(folio); 3791 __folio_set_swapbacked(folio); 3792 3793 if (mem_cgroup_swapin_charge_folio(folio, 3794 vma->vm_mm, GFP_KERNEL, 3795 entry)) { 3796 ret = VM_FAULT_OOM; 3797 goto out_page; 3798 } 3799 mem_cgroup_swapin_uncharge_swap(entry); 3800 3801 shadow = get_shadow_from_swap_cache(entry); 3802 if (shadow) 3803 workingset_refault(folio, shadow); 3804 3805 folio_add_lru(folio); 3806 3807 /* To provide entry to swap_readpage() */ 3808 folio_set_swap_entry(folio, entry); 3809 swap_readpage(page, true, NULL); 3810 folio->private = NULL; 3811 } 3812 } else { 3813 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3814 vmf); 3815 if (page) 3816 folio = page_folio(page); 3817 swapcache = folio; 3818 } 3819 3820 if (!folio) { 3821 /* 3822 * Back out if somebody else faulted in this pte 3823 * while we released the pte lock. 3824 */ 3825 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3826 vmf->address, &vmf->ptl); 3827 if (likely(vmf->pte && 3828 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3829 ret = VM_FAULT_OOM; 3830 goto unlock; 3831 } 3832 3833 /* Had to read the page from swap area: Major fault */ 3834 ret = VM_FAULT_MAJOR; 3835 count_vm_event(PGMAJFAULT); 3836 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3837 } else if (PageHWPoison(page)) { 3838 /* 3839 * hwpoisoned dirty swapcache pages are kept for killing 3840 * owner processes (which may be unknown at hwpoison time) 3841 */ 3842 ret = VM_FAULT_HWPOISON; 3843 goto out_release; 3844 } 3845 3846 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags); 3847 3848 if (!locked) { 3849 ret |= VM_FAULT_RETRY; 3850 goto out_release; 3851 } 3852 3853 if (swapcache) { 3854 /* 3855 * Make sure folio_free_swap() or swapoff did not release the 3856 * swapcache from under us. The page pin, and pte_same test 3857 * below, are not enough to exclude that. Even if it is still 3858 * swapcache, we need to check that the page's swap has not 3859 * changed. 3860 */ 3861 if (unlikely(!folio_test_swapcache(folio) || 3862 page_private(page) != entry.val)) 3863 goto out_page; 3864 3865 /* 3866 * KSM sometimes has to copy on read faults, for example, if 3867 * page->index of !PageKSM() pages would be nonlinear inside the 3868 * anon VMA -- PageKSM() is lost on actual swapout. 3869 */ 3870 page = ksm_might_need_to_copy(page, vma, vmf->address); 3871 if (unlikely(!page)) { 3872 ret = VM_FAULT_OOM; 3873 goto out_page; 3874 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { 3875 ret = VM_FAULT_HWPOISON; 3876 goto out_page; 3877 } 3878 folio = page_folio(page); 3879 3880 /* 3881 * If we want to map a page that's in the swapcache writable, we 3882 * have to detect via the refcount if we're really the exclusive 3883 * owner. Try removing the extra reference from the local LRU 3884 * caches if required. 3885 */ 3886 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3887 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3888 lru_add_drain(); 3889 } 3890 3891 folio_throttle_swaprate(folio, GFP_KERNEL); 3892 3893 /* 3894 * Back out if somebody else already faulted in this pte. 3895 */ 3896 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3897 &vmf->ptl); 3898 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3899 goto out_nomap; 3900 3901 if (unlikely(!folio_test_uptodate(folio))) { 3902 ret = VM_FAULT_SIGBUS; 3903 goto out_nomap; 3904 } 3905 3906 /* 3907 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3908 * must never point at an anonymous page in the swapcache that is 3909 * PG_anon_exclusive. Sanity check that this holds and especially, that 3910 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3911 * check after taking the PT lock and making sure that nobody 3912 * concurrently faulted in this page and set PG_anon_exclusive. 3913 */ 3914 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3915 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3916 3917 /* 3918 * Check under PT lock (to protect against concurrent fork() sharing 3919 * the swap entry concurrently) for certainly exclusive pages. 3920 */ 3921 if (!folio_test_ksm(folio)) { 3922 exclusive = pte_swp_exclusive(vmf->orig_pte); 3923 if (folio != swapcache) { 3924 /* 3925 * We have a fresh page that is not exposed to the 3926 * swapcache -> certainly exclusive. 3927 */ 3928 exclusive = true; 3929 } else if (exclusive && folio_test_writeback(folio) && 3930 data_race(si->flags & SWP_STABLE_WRITES)) { 3931 /* 3932 * This is tricky: not all swap backends support 3933 * concurrent page modifications while under writeback. 3934 * 3935 * So if we stumble over such a page in the swapcache 3936 * we must not set the page exclusive, otherwise we can 3937 * map it writable without further checks and modify it 3938 * while still under writeback. 3939 * 3940 * For these problematic swap backends, simply drop the 3941 * exclusive marker: this is perfectly fine as we start 3942 * writeback only if we fully unmapped the page and 3943 * there are no unexpected references on the page after 3944 * unmapping succeeded. After fully unmapped, no 3945 * further GUP references (FOLL_GET and FOLL_PIN) can 3946 * appear, so dropping the exclusive marker and mapping 3947 * it only R/O is fine. 3948 */ 3949 exclusive = false; 3950 } 3951 } 3952 3953 /* 3954 * Remove the swap entry and conditionally try to free up the swapcache. 3955 * We're already holding a reference on the page but haven't mapped it 3956 * yet. 3957 */ 3958 swap_free(entry); 3959 if (should_try_to_free_swap(folio, vma, vmf->flags)) 3960 folio_free_swap(folio); 3961 3962 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 3963 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 3964 pte = mk_pte(page, vma->vm_page_prot); 3965 3966 /* 3967 * Same logic as in do_wp_page(); however, optimize for pages that are 3968 * certainly not shared either because we just allocated them without 3969 * exposing them to the swapcache or because the swap entry indicates 3970 * exclusivity. 3971 */ 3972 if (!folio_test_ksm(folio) && 3973 (exclusive || folio_ref_count(folio) == 1)) { 3974 if (vmf->flags & FAULT_FLAG_WRITE) { 3975 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3976 vmf->flags &= ~FAULT_FLAG_WRITE; 3977 } 3978 rmap_flags |= RMAP_EXCLUSIVE; 3979 } 3980 flush_icache_page(vma, page); 3981 if (pte_swp_soft_dirty(vmf->orig_pte)) 3982 pte = pte_mksoft_dirty(pte); 3983 if (pte_swp_uffd_wp(vmf->orig_pte)) 3984 pte = pte_mkuffd_wp(pte); 3985 vmf->orig_pte = pte; 3986 3987 /* ksm created a completely new copy */ 3988 if (unlikely(folio != swapcache && swapcache)) { 3989 page_add_new_anon_rmap(page, vma, vmf->address); 3990 folio_add_lru_vma(folio, vma); 3991 } else { 3992 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 3993 } 3994 3995 VM_BUG_ON(!folio_test_anon(folio) || 3996 (pte_write(pte) && !PageAnonExclusive(page))); 3997 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3998 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3999 4000 folio_unlock(folio); 4001 if (folio != swapcache && swapcache) { 4002 /* 4003 * Hold the lock to avoid the swap entry to be reused 4004 * until we take the PT lock for the pte_same() check 4005 * (to avoid false positives from pte_same). For 4006 * further safety release the lock after the swap_free 4007 * so that the swap count won't change under a 4008 * parallel locked swapcache. 4009 */ 4010 folio_unlock(swapcache); 4011 folio_put(swapcache); 4012 } 4013 4014 if (vmf->flags & FAULT_FLAG_WRITE) { 4015 ret |= do_wp_page(vmf); 4016 if (ret & VM_FAULT_ERROR) 4017 ret &= VM_FAULT_ERROR; 4018 goto out; 4019 } 4020 4021 /* No need to invalidate - it was non-present before */ 4022 update_mmu_cache(vma, vmf->address, vmf->pte); 4023 unlock: 4024 if (vmf->pte) 4025 pte_unmap_unlock(vmf->pte, vmf->ptl); 4026 out: 4027 if (si) 4028 put_swap_device(si); 4029 return ret; 4030 out_nomap: 4031 if (vmf->pte) 4032 pte_unmap_unlock(vmf->pte, vmf->ptl); 4033 out_page: 4034 folio_unlock(folio); 4035 out_release: 4036 folio_put(folio); 4037 if (folio != swapcache && swapcache) { 4038 folio_unlock(swapcache); 4039 folio_put(swapcache); 4040 } 4041 if (si) 4042 put_swap_device(si); 4043 return ret; 4044 } 4045 4046 /* 4047 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4048 * but allow concurrent faults), and pte mapped but not yet locked. 4049 * We return with mmap_lock still held, but pte unmapped and unlocked. 4050 */ 4051 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4052 { 4053 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4054 struct vm_area_struct *vma = vmf->vma; 4055 struct folio *folio; 4056 vm_fault_t ret = 0; 4057 pte_t entry; 4058 4059 /* File mapping without ->vm_ops ? */ 4060 if (vma->vm_flags & VM_SHARED) 4061 return VM_FAULT_SIGBUS; 4062 4063 /* 4064 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4065 * be distinguished from a transient failure of pte_offset_map(). 4066 */ 4067 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4068 return VM_FAULT_OOM; 4069 4070 /* Use the zero-page for reads */ 4071 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4072 !mm_forbids_zeropage(vma->vm_mm)) { 4073 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4074 vma->vm_page_prot)); 4075 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4076 vmf->address, &vmf->ptl); 4077 if (!vmf->pte) 4078 goto unlock; 4079 if (vmf_pte_changed(vmf)) { 4080 update_mmu_tlb(vma, vmf->address, vmf->pte); 4081 goto unlock; 4082 } 4083 ret = check_stable_address_space(vma->vm_mm); 4084 if (ret) 4085 goto unlock; 4086 /* Deliver the page fault to userland, check inside PT lock */ 4087 if (userfaultfd_missing(vma)) { 4088 pte_unmap_unlock(vmf->pte, vmf->ptl); 4089 return handle_userfault(vmf, VM_UFFD_MISSING); 4090 } 4091 goto setpte; 4092 } 4093 4094 /* Allocate our own private page. */ 4095 if (unlikely(anon_vma_prepare(vma))) 4096 goto oom; 4097 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 4098 if (!folio) 4099 goto oom; 4100 4101 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 4102 goto oom_free_page; 4103 folio_throttle_swaprate(folio, GFP_KERNEL); 4104 4105 /* 4106 * The memory barrier inside __folio_mark_uptodate makes sure that 4107 * preceding stores to the page contents become visible before 4108 * the set_pte_at() write. 4109 */ 4110 __folio_mark_uptodate(folio); 4111 4112 entry = mk_pte(&folio->page, vma->vm_page_prot); 4113 entry = pte_sw_mkyoung(entry); 4114 if (vma->vm_flags & VM_WRITE) 4115 entry = pte_mkwrite(pte_mkdirty(entry)); 4116 4117 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4118 &vmf->ptl); 4119 if (!vmf->pte) 4120 goto release; 4121 if (vmf_pte_changed(vmf)) { 4122 update_mmu_tlb(vma, vmf->address, vmf->pte); 4123 goto release; 4124 } 4125 4126 ret = check_stable_address_space(vma->vm_mm); 4127 if (ret) 4128 goto release; 4129 4130 /* Deliver the page fault to userland, check inside PT lock */ 4131 if (userfaultfd_missing(vma)) { 4132 pte_unmap_unlock(vmf->pte, vmf->ptl); 4133 folio_put(folio); 4134 return handle_userfault(vmf, VM_UFFD_MISSING); 4135 } 4136 4137 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4138 folio_add_new_anon_rmap(folio, vma, vmf->address); 4139 folio_add_lru_vma(folio, vma); 4140 setpte: 4141 if (uffd_wp) 4142 entry = pte_mkuffd_wp(entry); 4143 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4144 4145 /* No need to invalidate - it was non-present before */ 4146 update_mmu_cache(vma, vmf->address, vmf->pte); 4147 unlock: 4148 if (vmf->pte) 4149 pte_unmap_unlock(vmf->pte, vmf->ptl); 4150 return ret; 4151 release: 4152 folio_put(folio); 4153 goto unlock; 4154 oom_free_page: 4155 folio_put(folio); 4156 oom: 4157 return VM_FAULT_OOM; 4158 } 4159 4160 /* 4161 * The mmap_lock must have been held on entry, and may have been 4162 * released depending on flags and vma->vm_ops->fault() return value. 4163 * See filemap_fault() and __lock_page_retry(). 4164 */ 4165 static vm_fault_t __do_fault(struct vm_fault *vmf) 4166 { 4167 struct vm_area_struct *vma = vmf->vma; 4168 vm_fault_t ret; 4169 4170 /* 4171 * Preallocate pte before we take page_lock because this might lead to 4172 * deadlocks for memcg reclaim which waits for pages under writeback: 4173 * lock_page(A) 4174 * SetPageWriteback(A) 4175 * unlock_page(A) 4176 * lock_page(B) 4177 * lock_page(B) 4178 * pte_alloc_one 4179 * shrink_page_list 4180 * wait_on_page_writeback(A) 4181 * SetPageWriteback(B) 4182 * unlock_page(B) 4183 * # flush A, B to clear the writeback 4184 */ 4185 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4186 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4187 if (!vmf->prealloc_pte) 4188 return VM_FAULT_OOM; 4189 } 4190 4191 ret = vma->vm_ops->fault(vmf); 4192 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4193 VM_FAULT_DONE_COW))) 4194 return ret; 4195 4196 if (unlikely(PageHWPoison(vmf->page))) { 4197 struct page *page = vmf->page; 4198 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4199 if (ret & VM_FAULT_LOCKED) { 4200 if (page_mapped(page)) 4201 unmap_mapping_pages(page_mapping(page), 4202 page->index, 1, false); 4203 /* Retry if a clean page was removed from the cache. */ 4204 if (invalidate_inode_page(page)) 4205 poisonret = VM_FAULT_NOPAGE; 4206 unlock_page(page); 4207 } 4208 put_page(page); 4209 vmf->page = NULL; 4210 return poisonret; 4211 } 4212 4213 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4214 lock_page(vmf->page); 4215 else 4216 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4217 4218 return ret; 4219 } 4220 4221 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4222 static void deposit_prealloc_pte(struct vm_fault *vmf) 4223 { 4224 struct vm_area_struct *vma = vmf->vma; 4225 4226 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4227 /* 4228 * We are going to consume the prealloc table, 4229 * count that as nr_ptes. 4230 */ 4231 mm_inc_nr_ptes(vma->vm_mm); 4232 vmf->prealloc_pte = NULL; 4233 } 4234 4235 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4236 { 4237 struct vm_area_struct *vma = vmf->vma; 4238 bool write = vmf->flags & FAULT_FLAG_WRITE; 4239 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4240 pmd_t entry; 4241 int i; 4242 vm_fault_t ret = VM_FAULT_FALLBACK; 4243 4244 if (!transhuge_vma_suitable(vma, haddr)) 4245 return ret; 4246 4247 page = compound_head(page); 4248 if (compound_order(page) != HPAGE_PMD_ORDER) 4249 return ret; 4250 4251 /* 4252 * Just backoff if any subpage of a THP is corrupted otherwise 4253 * the corrupted page may mapped by PMD silently to escape the 4254 * check. This kind of THP just can be PTE mapped. Access to 4255 * the corrupted subpage should trigger SIGBUS as expected. 4256 */ 4257 if (unlikely(PageHasHWPoisoned(page))) 4258 return ret; 4259 4260 /* 4261 * Archs like ppc64 need additional space to store information 4262 * related to pte entry. Use the preallocated table for that. 4263 */ 4264 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4265 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4266 if (!vmf->prealloc_pte) 4267 return VM_FAULT_OOM; 4268 } 4269 4270 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4271 if (unlikely(!pmd_none(*vmf->pmd))) 4272 goto out; 4273 4274 for (i = 0; i < HPAGE_PMD_NR; i++) 4275 flush_icache_page(vma, page + i); 4276 4277 entry = mk_huge_pmd(page, vma->vm_page_prot); 4278 if (write) 4279 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4280 4281 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4282 page_add_file_rmap(page, vma, true); 4283 4284 /* 4285 * deposit and withdraw with pmd lock held 4286 */ 4287 if (arch_needs_pgtable_deposit()) 4288 deposit_prealloc_pte(vmf); 4289 4290 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4291 4292 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4293 4294 /* fault is handled */ 4295 ret = 0; 4296 count_vm_event(THP_FILE_MAPPED); 4297 out: 4298 spin_unlock(vmf->ptl); 4299 return ret; 4300 } 4301 #else 4302 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4303 { 4304 return VM_FAULT_FALLBACK; 4305 } 4306 #endif 4307 4308 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 4309 { 4310 struct vm_area_struct *vma = vmf->vma; 4311 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4312 bool write = vmf->flags & FAULT_FLAG_WRITE; 4313 bool prefault = vmf->address != addr; 4314 pte_t entry; 4315 4316 flush_icache_page(vma, page); 4317 entry = mk_pte(page, vma->vm_page_prot); 4318 4319 if (prefault && arch_wants_old_prefaulted_pte()) 4320 entry = pte_mkold(entry); 4321 else 4322 entry = pte_sw_mkyoung(entry); 4323 4324 if (write) 4325 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4326 if (unlikely(uffd_wp)) 4327 entry = pte_mkuffd_wp(entry); 4328 /* copy-on-write page */ 4329 if (write && !(vma->vm_flags & VM_SHARED)) { 4330 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4331 page_add_new_anon_rmap(page, vma, addr); 4332 lru_cache_add_inactive_or_unevictable(page, vma); 4333 } else { 4334 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 4335 page_add_file_rmap(page, vma, false); 4336 } 4337 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 4338 } 4339 4340 static bool vmf_pte_changed(struct vm_fault *vmf) 4341 { 4342 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4343 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4344 4345 return !pte_none(ptep_get(vmf->pte)); 4346 } 4347 4348 /** 4349 * finish_fault - finish page fault once we have prepared the page to fault 4350 * 4351 * @vmf: structure describing the fault 4352 * 4353 * This function handles all that is needed to finish a page fault once the 4354 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4355 * given page, adds reverse page mapping, handles memcg charges and LRU 4356 * addition. 4357 * 4358 * The function expects the page to be locked and on success it consumes a 4359 * reference of a page being mapped (for the PTE which maps it). 4360 * 4361 * Return: %0 on success, %VM_FAULT_ code in case of error. 4362 */ 4363 vm_fault_t finish_fault(struct vm_fault *vmf) 4364 { 4365 struct vm_area_struct *vma = vmf->vma; 4366 struct page *page; 4367 vm_fault_t ret; 4368 4369 /* Did we COW the page? */ 4370 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4371 page = vmf->cow_page; 4372 else 4373 page = vmf->page; 4374 4375 /* 4376 * check even for read faults because we might have lost our CoWed 4377 * page 4378 */ 4379 if (!(vma->vm_flags & VM_SHARED)) { 4380 ret = check_stable_address_space(vma->vm_mm); 4381 if (ret) 4382 return ret; 4383 } 4384 4385 if (pmd_none(*vmf->pmd)) { 4386 if (PageTransCompound(page)) { 4387 ret = do_set_pmd(vmf, page); 4388 if (ret != VM_FAULT_FALLBACK) 4389 return ret; 4390 } 4391 4392 if (vmf->prealloc_pte) 4393 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4394 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4395 return VM_FAULT_OOM; 4396 } 4397 4398 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4399 vmf->address, &vmf->ptl); 4400 if (!vmf->pte) 4401 return VM_FAULT_NOPAGE; 4402 4403 /* Re-check under ptl */ 4404 if (likely(!vmf_pte_changed(vmf))) { 4405 do_set_pte(vmf, page, vmf->address); 4406 4407 /* no need to invalidate: a not-present page won't be cached */ 4408 update_mmu_cache(vma, vmf->address, vmf->pte); 4409 4410 ret = 0; 4411 } else { 4412 update_mmu_tlb(vma, vmf->address, vmf->pte); 4413 ret = VM_FAULT_NOPAGE; 4414 } 4415 4416 pte_unmap_unlock(vmf->pte, vmf->ptl); 4417 return ret; 4418 } 4419 4420 static unsigned long fault_around_pages __read_mostly = 4421 65536 >> PAGE_SHIFT; 4422 4423 #ifdef CONFIG_DEBUG_FS 4424 static int fault_around_bytes_get(void *data, u64 *val) 4425 { 4426 *val = fault_around_pages << PAGE_SHIFT; 4427 return 0; 4428 } 4429 4430 /* 4431 * fault_around_bytes must be rounded down to the nearest page order as it's 4432 * what do_fault_around() expects to see. 4433 */ 4434 static int fault_around_bytes_set(void *data, u64 val) 4435 { 4436 if (val / PAGE_SIZE > PTRS_PER_PTE) 4437 return -EINVAL; 4438 4439 /* 4440 * The minimum value is 1 page, however this results in no fault-around 4441 * at all. See should_fault_around(). 4442 */ 4443 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL); 4444 4445 return 0; 4446 } 4447 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4448 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4449 4450 static int __init fault_around_debugfs(void) 4451 { 4452 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4453 &fault_around_bytes_fops); 4454 return 0; 4455 } 4456 late_initcall(fault_around_debugfs); 4457 #endif 4458 4459 /* 4460 * do_fault_around() tries to map few pages around the fault address. The hope 4461 * is that the pages will be needed soon and this will lower the number of 4462 * faults to handle. 4463 * 4464 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4465 * not ready to be mapped: not up-to-date, locked, etc. 4466 * 4467 * This function doesn't cross VMA or page table boundaries, in order to call 4468 * map_pages() and acquire a PTE lock only once. 4469 * 4470 * fault_around_pages defines how many pages we'll try to map. 4471 * do_fault_around() expects it to be set to a power of two less than or equal 4472 * to PTRS_PER_PTE. 4473 * 4474 * The virtual address of the area that we map is naturally aligned to 4475 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4476 * (and therefore to page order). This way it's easier to guarantee 4477 * that we don't cross page table boundaries. 4478 */ 4479 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4480 { 4481 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4482 pgoff_t pte_off = pte_index(vmf->address); 4483 /* The page offset of vmf->address within the VMA. */ 4484 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4485 pgoff_t from_pte, to_pte; 4486 vm_fault_t ret; 4487 4488 /* The PTE offset of the start address, clamped to the VMA. */ 4489 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4490 pte_off - min(pte_off, vma_off)); 4491 4492 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4493 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4494 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4495 4496 if (pmd_none(*vmf->pmd)) { 4497 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4498 if (!vmf->prealloc_pte) 4499 return VM_FAULT_OOM; 4500 } 4501 4502 rcu_read_lock(); 4503 ret = vmf->vma->vm_ops->map_pages(vmf, 4504 vmf->pgoff + from_pte - pte_off, 4505 vmf->pgoff + to_pte - pte_off); 4506 rcu_read_unlock(); 4507 4508 return ret; 4509 } 4510 4511 /* Return true if we should do read fault-around, false otherwise */ 4512 static inline bool should_fault_around(struct vm_fault *vmf) 4513 { 4514 /* No ->map_pages? No way to fault around... */ 4515 if (!vmf->vma->vm_ops->map_pages) 4516 return false; 4517 4518 if (uffd_disable_fault_around(vmf->vma)) 4519 return false; 4520 4521 /* A single page implies no faulting 'around' at all. */ 4522 return fault_around_pages > 1; 4523 } 4524 4525 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4526 { 4527 vm_fault_t ret = 0; 4528 4529 /* 4530 * Let's call ->map_pages() first and use ->fault() as fallback 4531 * if page by the offset is not ready to be mapped (cold cache or 4532 * something). 4533 */ 4534 if (should_fault_around(vmf)) { 4535 ret = do_fault_around(vmf); 4536 if (ret) 4537 return ret; 4538 } 4539 4540 ret = __do_fault(vmf); 4541 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4542 return ret; 4543 4544 ret |= finish_fault(vmf); 4545 unlock_page(vmf->page); 4546 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4547 put_page(vmf->page); 4548 return ret; 4549 } 4550 4551 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4552 { 4553 struct vm_area_struct *vma = vmf->vma; 4554 vm_fault_t ret; 4555 4556 if (unlikely(anon_vma_prepare(vma))) 4557 return VM_FAULT_OOM; 4558 4559 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4560 if (!vmf->cow_page) 4561 return VM_FAULT_OOM; 4562 4563 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4564 GFP_KERNEL)) { 4565 put_page(vmf->cow_page); 4566 return VM_FAULT_OOM; 4567 } 4568 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL); 4569 4570 ret = __do_fault(vmf); 4571 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4572 goto uncharge_out; 4573 if (ret & VM_FAULT_DONE_COW) 4574 return ret; 4575 4576 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4577 __SetPageUptodate(vmf->cow_page); 4578 4579 ret |= finish_fault(vmf); 4580 unlock_page(vmf->page); 4581 put_page(vmf->page); 4582 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4583 goto uncharge_out; 4584 return ret; 4585 uncharge_out: 4586 put_page(vmf->cow_page); 4587 return ret; 4588 } 4589 4590 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4591 { 4592 struct vm_area_struct *vma = vmf->vma; 4593 vm_fault_t ret, tmp; 4594 4595 ret = __do_fault(vmf); 4596 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4597 return ret; 4598 4599 /* 4600 * Check if the backing address space wants to know that the page is 4601 * about to become writable 4602 */ 4603 if (vma->vm_ops->page_mkwrite) { 4604 unlock_page(vmf->page); 4605 tmp = do_page_mkwrite(vmf); 4606 if (unlikely(!tmp || 4607 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4608 put_page(vmf->page); 4609 return tmp; 4610 } 4611 } 4612 4613 ret |= finish_fault(vmf); 4614 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4615 VM_FAULT_RETRY))) { 4616 unlock_page(vmf->page); 4617 put_page(vmf->page); 4618 return ret; 4619 } 4620 4621 ret |= fault_dirty_shared_page(vmf); 4622 return ret; 4623 } 4624 4625 /* 4626 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4627 * but allow concurrent faults). 4628 * The mmap_lock may have been released depending on flags and our 4629 * return value. See filemap_fault() and __folio_lock_or_retry(). 4630 * If mmap_lock is released, vma may become invalid (for example 4631 * by other thread calling munmap()). 4632 */ 4633 static vm_fault_t do_fault(struct vm_fault *vmf) 4634 { 4635 struct vm_area_struct *vma = vmf->vma; 4636 struct mm_struct *vm_mm = vma->vm_mm; 4637 vm_fault_t ret; 4638 4639 /* 4640 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4641 */ 4642 if (!vma->vm_ops->fault) { 4643 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4644 vmf->address, &vmf->ptl); 4645 if (unlikely(!vmf->pte)) 4646 ret = VM_FAULT_SIGBUS; 4647 else { 4648 /* 4649 * Make sure this is not a temporary clearing of pte 4650 * by holding ptl and checking again. A R/M/W update 4651 * of pte involves: take ptl, clearing the pte so that 4652 * we don't have concurrent modification by hardware 4653 * followed by an update. 4654 */ 4655 if (unlikely(pte_none(ptep_get(vmf->pte)))) 4656 ret = VM_FAULT_SIGBUS; 4657 else 4658 ret = VM_FAULT_NOPAGE; 4659 4660 pte_unmap_unlock(vmf->pte, vmf->ptl); 4661 } 4662 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4663 ret = do_read_fault(vmf); 4664 else if (!(vma->vm_flags & VM_SHARED)) 4665 ret = do_cow_fault(vmf); 4666 else 4667 ret = do_shared_fault(vmf); 4668 4669 /* preallocated pagetable is unused: free it */ 4670 if (vmf->prealloc_pte) { 4671 pte_free(vm_mm, vmf->prealloc_pte); 4672 vmf->prealloc_pte = NULL; 4673 } 4674 return ret; 4675 } 4676 4677 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4678 unsigned long addr, int page_nid, int *flags) 4679 { 4680 get_page(page); 4681 4682 /* Record the current PID acceesing VMA */ 4683 vma_set_access_pid_bit(vma); 4684 4685 count_vm_numa_event(NUMA_HINT_FAULTS); 4686 if (page_nid == numa_node_id()) { 4687 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4688 *flags |= TNF_FAULT_LOCAL; 4689 } 4690 4691 return mpol_misplaced(page, vma, addr); 4692 } 4693 4694 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4695 { 4696 struct vm_area_struct *vma = vmf->vma; 4697 struct page *page = NULL; 4698 int page_nid = NUMA_NO_NODE; 4699 bool writable = false; 4700 int last_cpupid; 4701 int target_nid; 4702 pte_t pte, old_pte; 4703 int flags = 0; 4704 4705 /* 4706 * The "pte" at this point cannot be used safely without 4707 * validation through pte_unmap_same(). It's of NUMA type but 4708 * the pfn may be screwed if the read is non atomic. 4709 */ 4710 spin_lock(vmf->ptl); 4711 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4712 pte_unmap_unlock(vmf->pte, vmf->ptl); 4713 goto out; 4714 } 4715 4716 /* Get the normal PTE */ 4717 old_pte = ptep_get(vmf->pte); 4718 pte = pte_modify(old_pte, vma->vm_page_prot); 4719 4720 /* 4721 * Detect now whether the PTE could be writable; this information 4722 * is only valid while holding the PT lock. 4723 */ 4724 writable = pte_write(pte); 4725 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4726 can_change_pte_writable(vma, vmf->address, pte)) 4727 writable = true; 4728 4729 page = vm_normal_page(vma, vmf->address, pte); 4730 if (!page || is_zone_device_page(page)) 4731 goto out_map; 4732 4733 /* TODO: handle PTE-mapped THP */ 4734 if (PageCompound(page)) 4735 goto out_map; 4736 4737 /* 4738 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4739 * much anyway since they can be in shared cache state. This misses 4740 * the case where a mapping is writable but the process never writes 4741 * to it but pte_write gets cleared during protection updates and 4742 * pte_dirty has unpredictable behaviour between PTE scan updates, 4743 * background writeback, dirty balancing and application behaviour. 4744 */ 4745 if (!writable) 4746 flags |= TNF_NO_GROUP; 4747 4748 /* 4749 * Flag if the page is shared between multiple address spaces. This 4750 * is later used when determining whether to group tasks together 4751 */ 4752 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4753 flags |= TNF_SHARED; 4754 4755 page_nid = page_to_nid(page); 4756 /* 4757 * For memory tiering mode, cpupid of slow memory page is used 4758 * to record page access time. So use default value. 4759 */ 4760 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4761 !node_is_toptier(page_nid)) 4762 last_cpupid = (-1 & LAST_CPUPID_MASK); 4763 else 4764 last_cpupid = page_cpupid_last(page); 4765 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4766 &flags); 4767 if (target_nid == NUMA_NO_NODE) { 4768 put_page(page); 4769 goto out_map; 4770 } 4771 pte_unmap_unlock(vmf->pte, vmf->ptl); 4772 writable = false; 4773 4774 /* Migrate to the requested node */ 4775 if (migrate_misplaced_page(page, vma, target_nid)) { 4776 page_nid = target_nid; 4777 flags |= TNF_MIGRATED; 4778 } else { 4779 flags |= TNF_MIGRATE_FAIL; 4780 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4781 vmf->address, &vmf->ptl); 4782 if (unlikely(!vmf->pte)) 4783 goto out; 4784 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4785 pte_unmap_unlock(vmf->pte, vmf->ptl); 4786 goto out; 4787 } 4788 goto out_map; 4789 } 4790 4791 out: 4792 if (page_nid != NUMA_NO_NODE) 4793 task_numa_fault(last_cpupid, page_nid, 1, flags); 4794 return 0; 4795 out_map: 4796 /* 4797 * Make it present again, depending on how arch implements 4798 * non-accessible ptes, some can allow access by kernel mode. 4799 */ 4800 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4801 pte = pte_modify(old_pte, vma->vm_page_prot); 4802 pte = pte_mkyoung(pte); 4803 if (writable) 4804 pte = pte_mkwrite(pte); 4805 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4806 update_mmu_cache(vma, vmf->address, vmf->pte); 4807 pte_unmap_unlock(vmf->pte, vmf->ptl); 4808 goto out; 4809 } 4810 4811 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4812 { 4813 if (vma_is_anonymous(vmf->vma)) 4814 return do_huge_pmd_anonymous_page(vmf); 4815 if (vmf->vma->vm_ops->huge_fault) 4816 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4817 return VM_FAULT_FALLBACK; 4818 } 4819 4820 /* `inline' is required to avoid gcc 4.1.2 build error */ 4821 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4822 { 4823 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4824 vm_fault_t ret; 4825 4826 if (vma_is_anonymous(vmf->vma)) { 4827 if (likely(!unshare) && 4828 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4829 return handle_userfault(vmf, VM_UFFD_WP); 4830 return do_huge_pmd_wp_page(vmf); 4831 } 4832 4833 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4834 if (vmf->vma->vm_ops->huge_fault) { 4835 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4836 if (!(ret & VM_FAULT_FALLBACK)) 4837 return ret; 4838 } 4839 } 4840 4841 /* COW or write-notify handled on pte level: split pmd. */ 4842 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4843 4844 return VM_FAULT_FALLBACK; 4845 } 4846 4847 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4848 { 4849 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4850 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4851 /* No support for anonymous transparent PUD pages yet */ 4852 if (vma_is_anonymous(vmf->vma)) 4853 return VM_FAULT_FALLBACK; 4854 if (vmf->vma->vm_ops->huge_fault) 4855 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4856 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4857 return VM_FAULT_FALLBACK; 4858 } 4859 4860 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4861 { 4862 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4863 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4864 vm_fault_t ret; 4865 4866 /* No support for anonymous transparent PUD pages yet */ 4867 if (vma_is_anonymous(vmf->vma)) 4868 goto split; 4869 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4870 if (vmf->vma->vm_ops->huge_fault) { 4871 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4872 if (!(ret & VM_FAULT_FALLBACK)) 4873 return ret; 4874 } 4875 } 4876 split: 4877 /* COW or write-notify not handled on PUD level: split pud.*/ 4878 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4879 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4880 return VM_FAULT_FALLBACK; 4881 } 4882 4883 /* 4884 * These routines also need to handle stuff like marking pages dirty 4885 * and/or accessed for architectures that don't do it in hardware (most 4886 * RISC architectures). The early dirtying is also good on the i386. 4887 * 4888 * There is also a hook called "update_mmu_cache()" that architectures 4889 * with external mmu caches can use to update those (ie the Sparc or 4890 * PowerPC hashed page tables that act as extended TLBs). 4891 * 4892 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4893 * concurrent faults). 4894 * 4895 * The mmap_lock may have been released depending on flags and our return value. 4896 * See filemap_fault() and __folio_lock_or_retry(). 4897 */ 4898 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4899 { 4900 pte_t entry; 4901 4902 if (unlikely(pmd_none(*vmf->pmd))) { 4903 /* 4904 * Leave __pte_alloc() until later: because vm_ops->fault may 4905 * want to allocate huge page, and if we expose page table 4906 * for an instant, it will be difficult to retract from 4907 * concurrent faults and from rmap lookups. 4908 */ 4909 vmf->pte = NULL; 4910 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4911 } else { 4912 /* 4913 * A regular pmd is established and it can't morph into a huge 4914 * pmd by anon khugepaged, since that takes mmap_lock in write 4915 * mode; but shmem or file collapse to THP could still morph 4916 * it into a huge pmd: just retry later if so. 4917 */ 4918 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 4919 vmf->address, &vmf->ptl); 4920 if (unlikely(!vmf->pte)) 4921 return 0; 4922 vmf->orig_pte = ptep_get_lockless(vmf->pte); 4923 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4924 4925 if (pte_none(vmf->orig_pte)) { 4926 pte_unmap(vmf->pte); 4927 vmf->pte = NULL; 4928 } 4929 } 4930 4931 if (!vmf->pte) 4932 return do_pte_missing(vmf); 4933 4934 if (!pte_present(vmf->orig_pte)) 4935 return do_swap_page(vmf); 4936 4937 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4938 return do_numa_page(vmf); 4939 4940 spin_lock(vmf->ptl); 4941 entry = vmf->orig_pte; 4942 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 4943 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4944 goto unlock; 4945 } 4946 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4947 if (!pte_write(entry)) 4948 return do_wp_page(vmf); 4949 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4950 entry = pte_mkdirty(entry); 4951 } 4952 entry = pte_mkyoung(entry); 4953 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4954 vmf->flags & FAULT_FLAG_WRITE)) { 4955 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4956 } else { 4957 /* Skip spurious TLB flush for retried page fault */ 4958 if (vmf->flags & FAULT_FLAG_TRIED) 4959 goto unlock; 4960 /* 4961 * This is needed only for protection faults but the arch code 4962 * is not yet telling us if this is a protection fault or not. 4963 * This still avoids useless tlb flushes for .text page faults 4964 * with threads. 4965 */ 4966 if (vmf->flags & FAULT_FLAG_WRITE) 4967 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 4968 vmf->pte); 4969 } 4970 unlock: 4971 pte_unmap_unlock(vmf->pte, vmf->ptl); 4972 return 0; 4973 } 4974 4975 /* 4976 * By the time we get here, we already hold the mm semaphore 4977 * 4978 * The mmap_lock may have been released depending on flags and our 4979 * return value. See filemap_fault() and __folio_lock_or_retry(). 4980 */ 4981 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4982 unsigned long address, unsigned int flags) 4983 { 4984 struct vm_fault vmf = { 4985 .vma = vma, 4986 .address = address & PAGE_MASK, 4987 .real_address = address, 4988 .flags = flags, 4989 .pgoff = linear_page_index(vma, address), 4990 .gfp_mask = __get_fault_gfp_mask(vma), 4991 }; 4992 struct mm_struct *mm = vma->vm_mm; 4993 unsigned long vm_flags = vma->vm_flags; 4994 pgd_t *pgd; 4995 p4d_t *p4d; 4996 vm_fault_t ret; 4997 4998 pgd = pgd_offset(mm, address); 4999 p4d = p4d_alloc(mm, pgd, address); 5000 if (!p4d) 5001 return VM_FAULT_OOM; 5002 5003 vmf.pud = pud_alloc(mm, p4d, address); 5004 if (!vmf.pud) 5005 return VM_FAULT_OOM; 5006 retry_pud: 5007 if (pud_none(*vmf.pud) && 5008 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5009 ret = create_huge_pud(&vmf); 5010 if (!(ret & VM_FAULT_FALLBACK)) 5011 return ret; 5012 } else { 5013 pud_t orig_pud = *vmf.pud; 5014 5015 barrier(); 5016 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5017 5018 /* 5019 * TODO once we support anonymous PUDs: NUMA case and 5020 * FAULT_FLAG_UNSHARE handling. 5021 */ 5022 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5023 ret = wp_huge_pud(&vmf, orig_pud); 5024 if (!(ret & VM_FAULT_FALLBACK)) 5025 return ret; 5026 } else { 5027 huge_pud_set_accessed(&vmf, orig_pud); 5028 return 0; 5029 } 5030 } 5031 } 5032 5033 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5034 if (!vmf.pmd) 5035 return VM_FAULT_OOM; 5036 5037 /* Huge pud page fault raced with pmd_alloc? */ 5038 if (pud_trans_unstable(vmf.pud)) 5039 goto retry_pud; 5040 5041 if (pmd_none(*vmf.pmd) && 5042 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5043 ret = create_huge_pmd(&vmf); 5044 if (!(ret & VM_FAULT_FALLBACK)) 5045 return ret; 5046 } else { 5047 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5048 5049 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5050 VM_BUG_ON(thp_migration_supported() && 5051 !is_pmd_migration_entry(vmf.orig_pmd)); 5052 if (is_pmd_migration_entry(vmf.orig_pmd)) 5053 pmd_migration_entry_wait(mm, vmf.pmd); 5054 return 0; 5055 } 5056 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5057 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5058 return do_huge_pmd_numa_page(&vmf); 5059 5060 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5061 !pmd_write(vmf.orig_pmd)) { 5062 ret = wp_huge_pmd(&vmf); 5063 if (!(ret & VM_FAULT_FALLBACK)) 5064 return ret; 5065 } else { 5066 huge_pmd_set_accessed(&vmf); 5067 return 0; 5068 } 5069 } 5070 } 5071 5072 return handle_pte_fault(&vmf); 5073 } 5074 5075 /** 5076 * mm_account_fault - Do page fault accounting 5077 * 5078 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5079 * of perf event counters, but we'll still do the per-task accounting to 5080 * the task who triggered this page fault. 5081 * @address: the faulted address. 5082 * @flags: the fault flags. 5083 * @ret: the fault retcode. 5084 * 5085 * This will take care of most of the page fault accounting. Meanwhile, it 5086 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5087 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5088 * still be in per-arch page fault handlers at the entry of page fault. 5089 */ 5090 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5091 unsigned long address, unsigned int flags, 5092 vm_fault_t ret) 5093 { 5094 bool major; 5095 5096 /* Incomplete faults will be accounted upon completion. */ 5097 if (ret & VM_FAULT_RETRY) 5098 return; 5099 5100 /* 5101 * To preserve the behavior of older kernels, PGFAULT counters record 5102 * both successful and failed faults, as opposed to perf counters, 5103 * which ignore failed cases. 5104 */ 5105 count_vm_event(PGFAULT); 5106 count_memcg_event_mm(mm, PGFAULT); 5107 5108 /* 5109 * Do not account for unsuccessful faults (e.g. when the address wasn't 5110 * valid). That includes arch_vma_access_permitted() failing before 5111 * reaching here. So this is not a "this many hardware page faults" 5112 * counter. We should use the hw profiling for that. 5113 */ 5114 if (ret & VM_FAULT_ERROR) 5115 return; 5116 5117 /* 5118 * We define the fault as a major fault when the final successful fault 5119 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5120 * handle it immediately previously). 5121 */ 5122 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5123 5124 if (major) 5125 current->maj_flt++; 5126 else 5127 current->min_flt++; 5128 5129 /* 5130 * If the fault is done for GUP, regs will be NULL. We only do the 5131 * accounting for the per thread fault counters who triggered the 5132 * fault, and we skip the perf event updates. 5133 */ 5134 if (!regs) 5135 return; 5136 5137 if (major) 5138 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5139 else 5140 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5141 } 5142 5143 #ifdef CONFIG_LRU_GEN 5144 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5145 { 5146 /* the LRU algorithm only applies to accesses with recency */ 5147 current->in_lru_fault = vma_has_recency(vma); 5148 } 5149 5150 static void lru_gen_exit_fault(void) 5151 { 5152 current->in_lru_fault = false; 5153 } 5154 #else 5155 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5156 { 5157 } 5158 5159 static void lru_gen_exit_fault(void) 5160 { 5161 } 5162 #endif /* CONFIG_LRU_GEN */ 5163 5164 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5165 unsigned int *flags) 5166 { 5167 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5168 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5169 return VM_FAULT_SIGSEGV; 5170 /* 5171 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5172 * just treat it like an ordinary read-fault otherwise. 5173 */ 5174 if (!is_cow_mapping(vma->vm_flags)) 5175 *flags &= ~FAULT_FLAG_UNSHARE; 5176 } else if (*flags & FAULT_FLAG_WRITE) { 5177 /* Write faults on read-only mappings are impossible ... */ 5178 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5179 return VM_FAULT_SIGSEGV; 5180 /* ... and FOLL_FORCE only applies to COW mappings. */ 5181 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5182 !is_cow_mapping(vma->vm_flags))) 5183 return VM_FAULT_SIGSEGV; 5184 } 5185 return 0; 5186 } 5187 5188 /* 5189 * By the time we get here, we already hold the mm semaphore 5190 * 5191 * The mmap_lock may have been released depending on flags and our 5192 * return value. See filemap_fault() and __folio_lock_or_retry(). 5193 */ 5194 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5195 unsigned int flags, struct pt_regs *regs) 5196 { 5197 /* If the fault handler drops the mmap_lock, vma may be freed */ 5198 struct mm_struct *mm = vma->vm_mm; 5199 vm_fault_t ret; 5200 5201 __set_current_state(TASK_RUNNING); 5202 5203 ret = sanitize_fault_flags(vma, &flags); 5204 if (ret) 5205 goto out; 5206 5207 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5208 flags & FAULT_FLAG_INSTRUCTION, 5209 flags & FAULT_FLAG_REMOTE)) { 5210 ret = VM_FAULT_SIGSEGV; 5211 goto out; 5212 } 5213 5214 /* 5215 * Enable the memcg OOM handling for faults triggered in user 5216 * space. Kernel faults are handled more gracefully. 5217 */ 5218 if (flags & FAULT_FLAG_USER) 5219 mem_cgroup_enter_user_fault(); 5220 5221 lru_gen_enter_fault(vma); 5222 5223 if (unlikely(is_vm_hugetlb_page(vma))) 5224 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5225 else 5226 ret = __handle_mm_fault(vma, address, flags); 5227 5228 lru_gen_exit_fault(); 5229 5230 if (flags & FAULT_FLAG_USER) { 5231 mem_cgroup_exit_user_fault(); 5232 /* 5233 * The task may have entered a memcg OOM situation but 5234 * if the allocation error was handled gracefully (no 5235 * VM_FAULT_OOM), there is no need to kill anything. 5236 * Just clean up the OOM state peacefully. 5237 */ 5238 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5239 mem_cgroup_oom_synchronize(false); 5240 } 5241 out: 5242 mm_account_fault(mm, regs, address, flags, ret); 5243 5244 return ret; 5245 } 5246 EXPORT_SYMBOL_GPL(handle_mm_fault); 5247 5248 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5249 #include <linux/extable.h> 5250 5251 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5252 { 5253 /* Even if this succeeds, make it clear we *might* have slept */ 5254 if (likely(mmap_read_trylock(mm))) { 5255 might_sleep(); 5256 return true; 5257 } 5258 5259 if (regs && !user_mode(regs)) { 5260 unsigned long ip = instruction_pointer(regs); 5261 if (!search_exception_tables(ip)) 5262 return false; 5263 } 5264 5265 return !mmap_read_lock_killable(mm); 5266 } 5267 5268 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5269 { 5270 /* 5271 * We don't have this operation yet. 5272 * 5273 * It should be easy enough to do: it's basically a 5274 * atomic_long_try_cmpxchg_acquire() 5275 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5276 * it also needs the proper lockdep magic etc. 5277 */ 5278 return false; 5279 } 5280 5281 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5282 { 5283 mmap_read_unlock(mm); 5284 if (regs && !user_mode(regs)) { 5285 unsigned long ip = instruction_pointer(regs); 5286 if (!search_exception_tables(ip)) 5287 return false; 5288 } 5289 return !mmap_write_lock_killable(mm); 5290 } 5291 5292 /* 5293 * Helper for page fault handling. 5294 * 5295 * This is kind of equivalend to "mmap_read_lock()" followed 5296 * by "find_extend_vma()", except it's a lot more careful about 5297 * the locking (and will drop the lock on failure). 5298 * 5299 * For example, if we have a kernel bug that causes a page 5300 * fault, we don't want to just use mmap_read_lock() to get 5301 * the mm lock, because that would deadlock if the bug were 5302 * to happen while we're holding the mm lock for writing. 5303 * 5304 * So this checks the exception tables on kernel faults in 5305 * order to only do this all for instructions that are actually 5306 * expected to fault. 5307 * 5308 * We can also actually take the mm lock for writing if we 5309 * need to extend the vma, which helps the VM layer a lot. 5310 */ 5311 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5312 unsigned long addr, struct pt_regs *regs) 5313 { 5314 struct vm_area_struct *vma; 5315 5316 if (!get_mmap_lock_carefully(mm, regs)) 5317 return NULL; 5318 5319 vma = find_vma(mm, addr); 5320 if (likely(vma && (vma->vm_start <= addr))) 5321 return vma; 5322 5323 /* 5324 * Well, dang. We might still be successful, but only 5325 * if we can extend a vma to do so. 5326 */ 5327 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5328 mmap_read_unlock(mm); 5329 return NULL; 5330 } 5331 5332 /* 5333 * We can try to upgrade the mmap lock atomically, 5334 * in which case we can continue to use the vma 5335 * we already looked up. 5336 * 5337 * Otherwise we'll have to drop the mmap lock and 5338 * re-take it, and also look up the vma again, 5339 * re-checking it. 5340 */ 5341 if (!mmap_upgrade_trylock(mm)) { 5342 if (!upgrade_mmap_lock_carefully(mm, regs)) 5343 return NULL; 5344 5345 vma = find_vma(mm, addr); 5346 if (!vma) 5347 goto fail; 5348 if (vma->vm_start <= addr) 5349 goto success; 5350 if (!(vma->vm_flags & VM_GROWSDOWN)) 5351 goto fail; 5352 } 5353 5354 if (expand_stack_locked(vma, addr)) 5355 goto fail; 5356 5357 success: 5358 mmap_write_downgrade(mm); 5359 return vma; 5360 5361 fail: 5362 mmap_write_unlock(mm); 5363 return NULL; 5364 } 5365 #endif 5366 5367 #ifdef CONFIG_PER_VMA_LOCK 5368 /* 5369 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5370 * stable and not isolated. If the VMA is not found or is being modified the 5371 * function returns NULL. 5372 */ 5373 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5374 unsigned long address) 5375 { 5376 MA_STATE(mas, &mm->mm_mt, address, address); 5377 struct vm_area_struct *vma; 5378 5379 rcu_read_lock(); 5380 retry: 5381 vma = mas_walk(&mas); 5382 if (!vma) 5383 goto inval; 5384 5385 /* Only anonymous and tcp vmas are supported for now */ 5386 if (!vma_is_anonymous(vma) && !vma_is_tcp(vma)) 5387 goto inval; 5388 5389 /* find_mergeable_anon_vma uses adjacent vmas which are not locked */ 5390 if (!vma->anon_vma && !vma_is_tcp(vma)) 5391 goto inval; 5392 5393 if (!vma_start_read(vma)) 5394 goto inval; 5395 5396 /* 5397 * Due to the possibility of userfault handler dropping mmap_lock, avoid 5398 * it for now and fall back to page fault handling under mmap_lock. 5399 */ 5400 if (userfaultfd_armed(vma)) { 5401 vma_end_read(vma); 5402 goto inval; 5403 } 5404 5405 /* Check since vm_start/vm_end might change before we lock the VMA */ 5406 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 5407 vma_end_read(vma); 5408 goto inval; 5409 } 5410 5411 /* Check if the VMA got isolated after we found it */ 5412 if (vma->detached) { 5413 vma_end_read(vma); 5414 count_vm_vma_lock_event(VMA_LOCK_MISS); 5415 /* The area was replaced with another one */ 5416 goto retry; 5417 } 5418 5419 rcu_read_unlock(); 5420 return vma; 5421 inval: 5422 rcu_read_unlock(); 5423 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5424 return NULL; 5425 } 5426 #endif /* CONFIG_PER_VMA_LOCK */ 5427 5428 #ifndef __PAGETABLE_P4D_FOLDED 5429 /* 5430 * Allocate p4d page table. 5431 * We've already handled the fast-path in-line. 5432 */ 5433 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5434 { 5435 p4d_t *new = p4d_alloc_one(mm, address); 5436 if (!new) 5437 return -ENOMEM; 5438 5439 spin_lock(&mm->page_table_lock); 5440 if (pgd_present(*pgd)) { /* Another has populated it */ 5441 p4d_free(mm, new); 5442 } else { 5443 smp_wmb(); /* See comment in pmd_install() */ 5444 pgd_populate(mm, pgd, new); 5445 } 5446 spin_unlock(&mm->page_table_lock); 5447 return 0; 5448 } 5449 #endif /* __PAGETABLE_P4D_FOLDED */ 5450 5451 #ifndef __PAGETABLE_PUD_FOLDED 5452 /* 5453 * Allocate page upper directory. 5454 * We've already handled the fast-path in-line. 5455 */ 5456 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5457 { 5458 pud_t *new = pud_alloc_one(mm, address); 5459 if (!new) 5460 return -ENOMEM; 5461 5462 spin_lock(&mm->page_table_lock); 5463 if (!p4d_present(*p4d)) { 5464 mm_inc_nr_puds(mm); 5465 smp_wmb(); /* See comment in pmd_install() */ 5466 p4d_populate(mm, p4d, new); 5467 } else /* Another has populated it */ 5468 pud_free(mm, new); 5469 spin_unlock(&mm->page_table_lock); 5470 return 0; 5471 } 5472 #endif /* __PAGETABLE_PUD_FOLDED */ 5473 5474 #ifndef __PAGETABLE_PMD_FOLDED 5475 /* 5476 * Allocate page middle directory. 5477 * We've already handled the fast-path in-line. 5478 */ 5479 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5480 { 5481 spinlock_t *ptl; 5482 pmd_t *new = pmd_alloc_one(mm, address); 5483 if (!new) 5484 return -ENOMEM; 5485 5486 ptl = pud_lock(mm, pud); 5487 if (!pud_present(*pud)) { 5488 mm_inc_nr_pmds(mm); 5489 smp_wmb(); /* See comment in pmd_install() */ 5490 pud_populate(mm, pud, new); 5491 } else { /* Another has populated it */ 5492 pmd_free(mm, new); 5493 } 5494 spin_unlock(ptl); 5495 return 0; 5496 } 5497 #endif /* __PAGETABLE_PMD_FOLDED */ 5498 5499 /** 5500 * follow_pte - look up PTE at a user virtual address 5501 * @mm: the mm_struct of the target address space 5502 * @address: user virtual address 5503 * @ptepp: location to store found PTE 5504 * @ptlp: location to store the lock for the PTE 5505 * 5506 * On a successful return, the pointer to the PTE is stored in @ptepp; 5507 * the corresponding lock is taken and its location is stored in @ptlp. 5508 * The contents of the PTE are only stable until @ptlp is released; 5509 * any further use, if any, must be protected against invalidation 5510 * with MMU notifiers. 5511 * 5512 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5513 * should be taken for read. 5514 * 5515 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5516 * it is not a good general-purpose API. 5517 * 5518 * Return: zero on success, -ve otherwise. 5519 */ 5520 int follow_pte(struct mm_struct *mm, unsigned long address, 5521 pte_t **ptepp, spinlock_t **ptlp) 5522 { 5523 pgd_t *pgd; 5524 p4d_t *p4d; 5525 pud_t *pud; 5526 pmd_t *pmd; 5527 pte_t *ptep; 5528 5529 pgd = pgd_offset(mm, address); 5530 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5531 goto out; 5532 5533 p4d = p4d_offset(pgd, address); 5534 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5535 goto out; 5536 5537 pud = pud_offset(p4d, address); 5538 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5539 goto out; 5540 5541 pmd = pmd_offset(pud, address); 5542 VM_BUG_ON(pmd_trans_huge(*pmd)); 5543 5544 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5545 if (!ptep) 5546 goto out; 5547 if (!pte_present(ptep_get(ptep))) 5548 goto unlock; 5549 *ptepp = ptep; 5550 return 0; 5551 unlock: 5552 pte_unmap_unlock(ptep, *ptlp); 5553 out: 5554 return -EINVAL; 5555 } 5556 EXPORT_SYMBOL_GPL(follow_pte); 5557 5558 /** 5559 * follow_pfn - look up PFN at a user virtual address 5560 * @vma: memory mapping 5561 * @address: user virtual address 5562 * @pfn: location to store found PFN 5563 * 5564 * Only IO mappings and raw PFN mappings are allowed. 5565 * 5566 * This function does not allow the caller to read the permissions 5567 * of the PTE. Do not use it. 5568 * 5569 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5570 */ 5571 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5572 unsigned long *pfn) 5573 { 5574 int ret = -EINVAL; 5575 spinlock_t *ptl; 5576 pte_t *ptep; 5577 5578 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5579 return ret; 5580 5581 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5582 if (ret) 5583 return ret; 5584 *pfn = pte_pfn(ptep_get(ptep)); 5585 pte_unmap_unlock(ptep, ptl); 5586 return 0; 5587 } 5588 EXPORT_SYMBOL(follow_pfn); 5589 5590 #ifdef CONFIG_HAVE_IOREMAP_PROT 5591 int follow_phys(struct vm_area_struct *vma, 5592 unsigned long address, unsigned int flags, 5593 unsigned long *prot, resource_size_t *phys) 5594 { 5595 int ret = -EINVAL; 5596 pte_t *ptep, pte; 5597 spinlock_t *ptl; 5598 5599 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5600 goto out; 5601 5602 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5603 goto out; 5604 pte = ptep_get(ptep); 5605 5606 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5607 goto unlock; 5608 5609 *prot = pgprot_val(pte_pgprot(pte)); 5610 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5611 5612 ret = 0; 5613 unlock: 5614 pte_unmap_unlock(ptep, ptl); 5615 out: 5616 return ret; 5617 } 5618 5619 /** 5620 * generic_access_phys - generic implementation for iomem mmap access 5621 * @vma: the vma to access 5622 * @addr: userspace address, not relative offset within @vma 5623 * @buf: buffer to read/write 5624 * @len: length of transfer 5625 * @write: set to FOLL_WRITE when writing, otherwise reading 5626 * 5627 * This is a generic implementation for &vm_operations_struct.access for an 5628 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5629 * not page based. 5630 */ 5631 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5632 void *buf, int len, int write) 5633 { 5634 resource_size_t phys_addr; 5635 unsigned long prot = 0; 5636 void __iomem *maddr; 5637 pte_t *ptep, pte; 5638 spinlock_t *ptl; 5639 int offset = offset_in_page(addr); 5640 int ret = -EINVAL; 5641 5642 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5643 return -EINVAL; 5644 5645 retry: 5646 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5647 return -EINVAL; 5648 pte = ptep_get(ptep); 5649 pte_unmap_unlock(ptep, ptl); 5650 5651 prot = pgprot_val(pte_pgprot(pte)); 5652 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5653 5654 if ((write & FOLL_WRITE) && !pte_write(pte)) 5655 return -EINVAL; 5656 5657 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5658 if (!maddr) 5659 return -ENOMEM; 5660 5661 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5662 goto out_unmap; 5663 5664 if (!pte_same(pte, ptep_get(ptep))) { 5665 pte_unmap_unlock(ptep, ptl); 5666 iounmap(maddr); 5667 5668 goto retry; 5669 } 5670 5671 if (write) 5672 memcpy_toio(maddr + offset, buf, len); 5673 else 5674 memcpy_fromio(buf, maddr + offset, len); 5675 ret = len; 5676 pte_unmap_unlock(ptep, ptl); 5677 out_unmap: 5678 iounmap(maddr); 5679 5680 return ret; 5681 } 5682 EXPORT_SYMBOL_GPL(generic_access_phys); 5683 #endif 5684 5685 /* 5686 * Access another process' address space as given in mm. 5687 */ 5688 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5689 int len, unsigned int gup_flags) 5690 { 5691 void *old_buf = buf; 5692 int write = gup_flags & FOLL_WRITE; 5693 5694 if (mmap_read_lock_killable(mm)) 5695 return 0; 5696 5697 /* Avoid triggering the temporary warning in __get_user_pages */ 5698 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 5699 return 0; 5700 5701 /* ignore errors, just check how much was successfully transferred */ 5702 while (len) { 5703 int bytes, offset; 5704 void *maddr; 5705 struct vm_area_struct *vma = NULL; 5706 struct page *page = get_user_page_vma_remote(mm, addr, 5707 gup_flags, &vma); 5708 5709 if (IS_ERR_OR_NULL(page)) { 5710 /* We might need to expand the stack to access it */ 5711 vma = vma_lookup(mm, addr); 5712 if (!vma) { 5713 vma = expand_stack(mm, addr); 5714 5715 /* mmap_lock was dropped on failure */ 5716 if (!vma) 5717 return buf - old_buf; 5718 5719 /* Try again if stack expansion worked */ 5720 continue; 5721 } 5722 5723 5724 /* 5725 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5726 * we can access using slightly different code. 5727 */ 5728 bytes = 0; 5729 #ifdef CONFIG_HAVE_IOREMAP_PROT 5730 if (vma->vm_ops && vma->vm_ops->access) 5731 bytes = vma->vm_ops->access(vma, addr, buf, 5732 len, write); 5733 #endif 5734 if (bytes <= 0) 5735 break; 5736 } else { 5737 bytes = len; 5738 offset = addr & (PAGE_SIZE-1); 5739 if (bytes > PAGE_SIZE-offset) 5740 bytes = PAGE_SIZE-offset; 5741 5742 maddr = kmap(page); 5743 if (write) { 5744 copy_to_user_page(vma, page, addr, 5745 maddr + offset, buf, bytes); 5746 set_page_dirty_lock(page); 5747 } else { 5748 copy_from_user_page(vma, page, addr, 5749 buf, maddr + offset, bytes); 5750 } 5751 kunmap(page); 5752 put_page(page); 5753 } 5754 len -= bytes; 5755 buf += bytes; 5756 addr += bytes; 5757 } 5758 mmap_read_unlock(mm); 5759 5760 return buf - old_buf; 5761 } 5762 5763 /** 5764 * access_remote_vm - access another process' address space 5765 * @mm: the mm_struct of the target address space 5766 * @addr: start address to access 5767 * @buf: source or destination buffer 5768 * @len: number of bytes to transfer 5769 * @gup_flags: flags modifying lookup behaviour 5770 * 5771 * The caller must hold a reference on @mm. 5772 * 5773 * Return: number of bytes copied from source to destination. 5774 */ 5775 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5776 void *buf, int len, unsigned int gup_flags) 5777 { 5778 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5779 } 5780 5781 /* 5782 * Access another process' address space. 5783 * Source/target buffer must be kernel space, 5784 * Do not walk the page table directly, use get_user_pages 5785 */ 5786 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5787 void *buf, int len, unsigned int gup_flags) 5788 { 5789 struct mm_struct *mm; 5790 int ret; 5791 5792 mm = get_task_mm(tsk); 5793 if (!mm) 5794 return 0; 5795 5796 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5797 5798 mmput(mm); 5799 5800 return ret; 5801 } 5802 EXPORT_SYMBOL_GPL(access_process_vm); 5803 5804 /* 5805 * Print the name of a VMA. 5806 */ 5807 void print_vma_addr(char *prefix, unsigned long ip) 5808 { 5809 struct mm_struct *mm = current->mm; 5810 struct vm_area_struct *vma; 5811 5812 /* 5813 * we might be running from an atomic context so we cannot sleep 5814 */ 5815 if (!mmap_read_trylock(mm)) 5816 return; 5817 5818 vma = find_vma(mm, ip); 5819 if (vma && vma->vm_file) { 5820 struct file *f = vma->vm_file; 5821 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5822 if (buf) { 5823 char *p; 5824 5825 p = file_path(f, buf, PAGE_SIZE); 5826 if (IS_ERR(p)) 5827 p = "?"; 5828 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5829 vma->vm_start, 5830 vma->vm_end - vma->vm_start); 5831 free_page((unsigned long)buf); 5832 } 5833 } 5834 mmap_read_unlock(mm); 5835 } 5836 5837 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5838 void __might_fault(const char *file, int line) 5839 { 5840 if (pagefault_disabled()) 5841 return; 5842 __might_sleep(file, line); 5843 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5844 if (current->mm) 5845 might_lock_read(¤t->mm->mmap_lock); 5846 #endif 5847 } 5848 EXPORT_SYMBOL(__might_fault); 5849 #endif 5850 5851 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5852 /* 5853 * Process all subpages of the specified huge page with the specified 5854 * operation. The target subpage will be processed last to keep its 5855 * cache lines hot. 5856 */ 5857 static inline int process_huge_page( 5858 unsigned long addr_hint, unsigned int pages_per_huge_page, 5859 int (*process_subpage)(unsigned long addr, int idx, void *arg), 5860 void *arg) 5861 { 5862 int i, n, base, l, ret; 5863 unsigned long addr = addr_hint & 5864 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5865 5866 /* Process target subpage last to keep its cache lines hot */ 5867 might_sleep(); 5868 n = (addr_hint - addr) / PAGE_SIZE; 5869 if (2 * n <= pages_per_huge_page) { 5870 /* If target subpage in first half of huge page */ 5871 base = 0; 5872 l = n; 5873 /* Process subpages at the end of huge page */ 5874 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5875 cond_resched(); 5876 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5877 if (ret) 5878 return ret; 5879 } 5880 } else { 5881 /* If target subpage in second half of huge page */ 5882 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5883 l = pages_per_huge_page - n; 5884 /* Process subpages at the begin of huge page */ 5885 for (i = 0; i < base; i++) { 5886 cond_resched(); 5887 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5888 if (ret) 5889 return ret; 5890 } 5891 } 5892 /* 5893 * Process remaining subpages in left-right-left-right pattern 5894 * towards the target subpage 5895 */ 5896 for (i = 0; i < l; i++) { 5897 int left_idx = base + i; 5898 int right_idx = base + 2 * l - 1 - i; 5899 5900 cond_resched(); 5901 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5902 if (ret) 5903 return ret; 5904 cond_resched(); 5905 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5906 if (ret) 5907 return ret; 5908 } 5909 return 0; 5910 } 5911 5912 static void clear_gigantic_page(struct page *page, 5913 unsigned long addr, 5914 unsigned int pages_per_huge_page) 5915 { 5916 int i; 5917 struct page *p; 5918 5919 might_sleep(); 5920 for (i = 0; i < pages_per_huge_page; i++) { 5921 p = nth_page(page, i); 5922 cond_resched(); 5923 clear_user_highpage(p, addr + i * PAGE_SIZE); 5924 } 5925 } 5926 5927 static int clear_subpage(unsigned long addr, int idx, void *arg) 5928 { 5929 struct page *page = arg; 5930 5931 clear_user_highpage(page + idx, addr); 5932 return 0; 5933 } 5934 5935 void clear_huge_page(struct page *page, 5936 unsigned long addr_hint, unsigned int pages_per_huge_page) 5937 { 5938 unsigned long addr = addr_hint & 5939 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5940 5941 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5942 clear_gigantic_page(page, addr, pages_per_huge_page); 5943 return; 5944 } 5945 5946 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5947 } 5948 5949 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 5950 unsigned long addr, 5951 struct vm_area_struct *vma, 5952 unsigned int pages_per_huge_page) 5953 { 5954 int i; 5955 struct page *dst_page; 5956 struct page *src_page; 5957 5958 for (i = 0; i < pages_per_huge_page; i++) { 5959 dst_page = folio_page(dst, i); 5960 src_page = folio_page(src, i); 5961 5962 cond_resched(); 5963 if (copy_mc_user_highpage(dst_page, src_page, 5964 addr + i*PAGE_SIZE, vma)) { 5965 memory_failure_queue(page_to_pfn(src_page), 0); 5966 return -EHWPOISON; 5967 } 5968 } 5969 return 0; 5970 } 5971 5972 struct copy_subpage_arg { 5973 struct page *dst; 5974 struct page *src; 5975 struct vm_area_struct *vma; 5976 }; 5977 5978 static int copy_subpage(unsigned long addr, int idx, void *arg) 5979 { 5980 struct copy_subpage_arg *copy_arg = arg; 5981 5982 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5983 addr, copy_arg->vma)) { 5984 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0); 5985 return -EHWPOISON; 5986 } 5987 return 0; 5988 } 5989 5990 int copy_user_large_folio(struct folio *dst, struct folio *src, 5991 unsigned long addr_hint, struct vm_area_struct *vma) 5992 { 5993 unsigned int pages_per_huge_page = folio_nr_pages(dst); 5994 unsigned long addr = addr_hint & 5995 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5996 struct copy_subpage_arg arg = { 5997 .dst = &dst->page, 5998 .src = &src->page, 5999 .vma = vma, 6000 }; 6001 6002 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 6003 return copy_user_gigantic_page(dst, src, addr, vma, 6004 pages_per_huge_page); 6005 6006 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6007 } 6008 6009 long copy_folio_from_user(struct folio *dst_folio, 6010 const void __user *usr_src, 6011 bool allow_pagefault) 6012 { 6013 void *kaddr; 6014 unsigned long i, rc = 0; 6015 unsigned int nr_pages = folio_nr_pages(dst_folio); 6016 unsigned long ret_val = nr_pages * PAGE_SIZE; 6017 struct page *subpage; 6018 6019 for (i = 0; i < nr_pages; i++) { 6020 subpage = folio_page(dst_folio, i); 6021 kaddr = kmap_local_page(subpage); 6022 if (!allow_pagefault) 6023 pagefault_disable(); 6024 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6025 if (!allow_pagefault) 6026 pagefault_enable(); 6027 kunmap_local(kaddr); 6028 6029 ret_val -= (PAGE_SIZE - rc); 6030 if (rc) 6031 break; 6032 6033 flush_dcache_page(subpage); 6034 6035 cond_resched(); 6036 } 6037 return ret_val; 6038 } 6039 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6040 6041 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6042 6043 static struct kmem_cache *page_ptl_cachep; 6044 6045 void __init ptlock_cache_init(void) 6046 { 6047 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6048 SLAB_PANIC, NULL); 6049 } 6050 6051 bool ptlock_alloc(struct page *page) 6052 { 6053 spinlock_t *ptl; 6054 6055 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6056 if (!ptl) 6057 return false; 6058 page->ptl = ptl; 6059 return true; 6060 } 6061 6062 void ptlock_free(struct page *page) 6063 { 6064 kmem_cache_free(page_ptl_cachep, page->ptl); 6065 } 6066 #endif 6067