1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (task->rss_stat.count[i]) { 134 add_mm_counter(mm, i, task->rss_stat.count[i]); 135 task->rss_stat.count[i] = 0; 136 } 137 } 138 task->rss_stat.events = 0; 139 } 140 141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 142 { 143 struct task_struct *task = current; 144 145 if (likely(task->mm == mm)) 146 task->rss_stat.count[member] += val; 147 else 148 add_mm_counter(mm, member, val); 149 } 150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 152 153 /* sync counter once per 64 page faults */ 154 #define TASK_RSS_EVENTS_THRESH (64) 155 static void check_sync_rss_stat(struct task_struct *task) 156 { 157 if (unlikely(task != current)) 158 return; 159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 160 __sync_task_rss_stat(task, task->mm); 161 } 162 163 unsigned long get_mm_counter(struct mm_struct *mm, int member) 164 { 165 long val = 0; 166 167 /* 168 * Don't use task->mm here...for avoiding to use task_get_mm().. 169 * The caller must guarantee task->mm is not invalid. 170 */ 171 val = atomic_long_read(&mm->rss_stat.count[member]); 172 /* 173 * counter is updated in asynchronous manner and may go to minus. 174 * But it's never be expected number for users. 175 */ 176 if (val < 0) 177 return 0; 178 return (unsigned long)val; 179 } 180 181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 182 { 183 __sync_task_rss_stat(task, mm); 184 } 185 #else /* SPLIT_RSS_COUNTING */ 186 187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 189 190 static void check_sync_rss_stat(struct task_struct *task) 191 { 192 } 193 194 #endif /* SPLIT_RSS_COUNTING */ 195 196 #ifdef HAVE_GENERIC_MMU_GATHER 197 198 static int tlb_next_batch(struct mmu_gather *tlb) 199 { 200 struct mmu_gather_batch *batch; 201 202 batch = tlb->active; 203 if (batch->next) { 204 tlb->active = batch->next; 205 return 1; 206 } 207 208 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 209 if (!batch) 210 return 0; 211 212 batch->next = NULL; 213 batch->nr = 0; 214 batch->max = MAX_GATHER_BATCH; 215 216 tlb->active->next = batch; 217 tlb->active = batch; 218 219 return 1; 220 } 221 222 /* tlb_gather_mmu 223 * Called to initialize an (on-stack) mmu_gather structure for page-table 224 * tear-down from @mm. The @fullmm argument is used when @mm is without 225 * users and we're going to destroy the full address space (exit/execve). 226 */ 227 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm) 228 { 229 tlb->mm = mm; 230 231 tlb->fullmm = fullmm; 232 tlb->need_flush = 0; 233 tlb->fast_mode = (num_possible_cpus() == 1); 234 tlb->local.next = NULL; 235 tlb->local.nr = 0; 236 tlb->local.max = ARRAY_SIZE(tlb->__pages); 237 tlb->active = &tlb->local; 238 239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 240 tlb->batch = NULL; 241 #endif 242 } 243 244 void tlb_flush_mmu(struct mmu_gather *tlb) 245 { 246 struct mmu_gather_batch *batch; 247 248 if (!tlb->need_flush) 249 return; 250 tlb->need_flush = 0; 251 tlb_flush(tlb); 252 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 253 tlb_table_flush(tlb); 254 #endif 255 256 if (tlb_fast_mode(tlb)) 257 return; 258 259 for (batch = &tlb->local; batch; batch = batch->next) { 260 free_pages_and_swap_cache(batch->pages, batch->nr); 261 batch->nr = 0; 262 } 263 tlb->active = &tlb->local; 264 } 265 266 /* tlb_finish_mmu 267 * Called at the end of the shootdown operation to free up any resources 268 * that were required. 269 */ 270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 271 { 272 struct mmu_gather_batch *batch, *next; 273 274 tlb_flush_mmu(tlb); 275 276 /* keep the page table cache within bounds */ 277 check_pgt_cache(); 278 279 for (batch = tlb->local.next; batch; batch = next) { 280 next = batch->next; 281 free_pages((unsigned long)batch, 0); 282 } 283 tlb->local.next = NULL; 284 } 285 286 /* __tlb_remove_page 287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 288 * handling the additional races in SMP caused by other CPUs caching valid 289 * mappings in their TLBs. Returns the number of free page slots left. 290 * When out of page slots we must call tlb_flush_mmu(). 291 */ 292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 293 { 294 struct mmu_gather_batch *batch; 295 296 tlb->need_flush = 1; 297 298 if (tlb_fast_mode(tlb)) { 299 free_page_and_swap_cache(page); 300 return 1; /* avoid calling tlb_flush_mmu() */ 301 } 302 303 batch = tlb->active; 304 batch->pages[batch->nr++] = page; 305 if (batch->nr == batch->max) { 306 if (!tlb_next_batch(tlb)) 307 return 0; 308 batch = tlb->active; 309 } 310 VM_BUG_ON(batch->nr > batch->max); 311 312 return batch->max - batch->nr; 313 } 314 315 #endif /* HAVE_GENERIC_MMU_GATHER */ 316 317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 318 319 /* 320 * See the comment near struct mmu_table_batch. 321 */ 322 323 static void tlb_remove_table_smp_sync(void *arg) 324 { 325 /* Simply deliver the interrupt */ 326 } 327 328 static void tlb_remove_table_one(void *table) 329 { 330 /* 331 * This isn't an RCU grace period and hence the page-tables cannot be 332 * assumed to be actually RCU-freed. 333 * 334 * It is however sufficient for software page-table walkers that rely on 335 * IRQ disabling. See the comment near struct mmu_table_batch. 336 */ 337 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 338 __tlb_remove_table(table); 339 } 340 341 static void tlb_remove_table_rcu(struct rcu_head *head) 342 { 343 struct mmu_table_batch *batch; 344 int i; 345 346 batch = container_of(head, struct mmu_table_batch, rcu); 347 348 for (i = 0; i < batch->nr; i++) 349 __tlb_remove_table(batch->tables[i]); 350 351 free_page((unsigned long)batch); 352 } 353 354 void tlb_table_flush(struct mmu_gather *tlb) 355 { 356 struct mmu_table_batch **batch = &tlb->batch; 357 358 if (*batch) { 359 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 360 *batch = NULL; 361 } 362 } 363 364 void tlb_remove_table(struct mmu_gather *tlb, void *table) 365 { 366 struct mmu_table_batch **batch = &tlb->batch; 367 368 tlb->need_flush = 1; 369 370 /* 371 * When there's less then two users of this mm there cannot be a 372 * concurrent page-table walk. 373 */ 374 if (atomic_read(&tlb->mm->mm_users) < 2) { 375 __tlb_remove_table(table); 376 return; 377 } 378 379 if (*batch == NULL) { 380 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 381 if (*batch == NULL) { 382 tlb_remove_table_one(table); 383 return; 384 } 385 (*batch)->nr = 0; 386 } 387 (*batch)->tables[(*batch)->nr++] = table; 388 if ((*batch)->nr == MAX_TABLE_BATCH) 389 tlb_table_flush(tlb); 390 } 391 392 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 393 394 /* 395 * If a p?d_bad entry is found while walking page tables, report 396 * the error, before resetting entry to p?d_none. Usually (but 397 * very seldom) called out from the p?d_none_or_clear_bad macros. 398 */ 399 400 void pgd_clear_bad(pgd_t *pgd) 401 { 402 pgd_ERROR(*pgd); 403 pgd_clear(pgd); 404 } 405 406 void pud_clear_bad(pud_t *pud) 407 { 408 pud_ERROR(*pud); 409 pud_clear(pud); 410 } 411 412 void pmd_clear_bad(pmd_t *pmd) 413 { 414 pmd_ERROR(*pmd); 415 pmd_clear(pmd); 416 } 417 418 /* 419 * Note: this doesn't free the actual pages themselves. That 420 * has been handled earlier when unmapping all the memory regions. 421 */ 422 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 423 unsigned long addr) 424 { 425 pgtable_t token = pmd_pgtable(*pmd); 426 pmd_clear(pmd); 427 pte_free_tlb(tlb, token, addr); 428 tlb->mm->nr_ptes--; 429 } 430 431 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 432 unsigned long addr, unsigned long end, 433 unsigned long floor, unsigned long ceiling) 434 { 435 pmd_t *pmd; 436 unsigned long next; 437 unsigned long start; 438 439 start = addr; 440 pmd = pmd_offset(pud, addr); 441 do { 442 next = pmd_addr_end(addr, end); 443 if (pmd_none_or_clear_bad(pmd)) 444 continue; 445 free_pte_range(tlb, pmd, addr); 446 } while (pmd++, addr = next, addr != end); 447 448 start &= PUD_MASK; 449 if (start < floor) 450 return; 451 if (ceiling) { 452 ceiling &= PUD_MASK; 453 if (!ceiling) 454 return; 455 } 456 if (end - 1 > ceiling - 1) 457 return; 458 459 pmd = pmd_offset(pud, start); 460 pud_clear(pud); 461 pmd_free_tlb(tlb, pmd, start); 462 } 463 464 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 465 unsigned long addr, unsigned long end, 466 unsigned long floor, unsigned long ceiling) 467 { 468 pud_t *pud; 469 unsigned long next; 470 unsigned long start; 471 472 start = addr; 473 pud = pud_offset(pgd, addr); 474 do { 475 next = pud_addr_end(addr, end); 476 if (pud_none_or_clear_bad(pud)) 477 continue; 478 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 479 } while (pud++, addr = next, addr != end); 480 481 start &= PGDIR_MASK; 482 if (start < floor) 483 return; 484 if (ceiling) { 485 ceiling &= PGDIR_MASK; 486 if (!ceiling) 487 return; 488 } 489 if (end - 1 > ceiling - 1) 490 return; 491 492 pud = pud_offset(pgd, start); 493 pgd_clear(pgd); 494 pud_free_tlb(tlb, pud, start); 495 } 496 497 /* 498 * This function frees user-level page tables of a process. 499 * 500 * Must be called with pagetable lock held. 501 */ 502 void free_pgd_range(struct mmu_gather *tlb, 503 unsigned long addr, unsigned long end, 504 unsigned long floor, unsigned long ceiling) 505 { 506 pgd_t *pgd; 507 unsigned long next; 508 509 /* 510 * The next few lines have given us lots of grief... 511 * 512 * Why are we testing PMD* at this top level? Because often 513 * there will be no work to do at all, and we'd prefer not to 514 * go all the way down to the bottom just to discover that. 515 * 516 * Why all these "- 1"s? Because 0 represents both the bottom 517 * of the address space and the top of it (using -1 for the 518 * top wouldn't help much: the masks would do the wrong thing). 519 * The rule is that addr 0 and floor 0 refer to the bottom of 520 * the address space, but end 0 and ceiling 0 refer to the top 521 * Comparisons need to use "end - 1" and "ceiling - 1" (though 522 * that end 0 case should be mythical). 523 * 524 * Wherever addr is brought up or ceiling brought down, we must 525 * be careful to reject "the opposite 0" before it confuses the 526 * subsequent tests. But what about where end is brought down 527 * by PMD_SIZE below? no, end can't go down to 0 there. 528 * 529 * Whereas we round start (addr) and ceiling down, by different 530 * masks at different levels, in order to test whether a table 531 * now has no other vmas using it, so can be freed, we don't 532 * bother to round floor or end up - the tests don't need that. 533 */ 534 535 addr &= PMD_MASK; 536 if (addr < floor) { 537 addr += PMD_SIZE; 538 if (!addr) 539 return; 540 } 541 if (ceiling) { 542 ceiling &= PMD_MASK; 543 if (!ceiling) 544 return; 545 } 546 if (end - 1 > ceiling - 1) 547 end -= PMD_SIZE; 548 if (addr > end - 1) 549 return; 550 551 pgd = pgd_offset(tlb->mm, addr); 552 do { 553 next = pgd_addr_end(addr, end); 554 if (pgd_none_or_clear_bad(pgd)) 555 continue; 556 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 557 } while (pgd++, addr = next, addr != end); 558 } 559 560 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 561 unsigned long floor, unsigned long ceiling) 562 { 563 while (vma) { 564 struct vm_area_struct *next = vma->vm_next; 565 unsigned long addr = vma->vm_start; 566 567 /* 568 * Hide vma from rmap and truncate_pagecache before freeing 569 * pgtables 570 */ 571 unlink_anon_vmas(vma); 572 unlink_file_vma(vma); 573 574 if (is_vm_hugetlb_page(vma)) { 575 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 576 floor, next? next->vm_start: ceiling); 577 } else { 578 /* 579 * Optimization: gather nearby vmas into one call down 580 */ 581 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 582 && !is_vm_hugetlb_page(next)) { 583 vma = next; 584 next = vma->vm_next; 585 unlink_anon_vmas(vma); 586 unlink_file_vma(vma); 587 } 588 free_pgd_range(tlb, addr, vma->vm_end, 589 floor, next? next->vm_start: ceiling); 590 } 591 vma = next; 592 } 593 } 594 595 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 596 pmd_t *pmd, unsigned long address) 597 { 598 pgtable_t new = pte_alloc_one(mm, address); 599 int wait_split_huge_page; 600 if (!new) 601 return -ENOMEM; 602 603 /* 604 * Ensure all pte setup (eg. pte page lock and page clearing) are 605 * visible before the pte is made visible to other CPUs by being 606 * put into page tables. 607 * 608 * The other side of the story is the pointer chasing in the page 609 * table walking code (when walking the page table without locking; 610 * ie. most of the time). Fortunately, these data accesses consist 611 * of a chain of data-dependent loads, meaning most CPUs (alpha 612 * being the notable exception) will already guarantee loads are 613 * seen in-order. See the alpha page table accessors for the 614 * smp_read_barrier_depends() barriers in page table walking code. 615 */ 616 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 617 618 spin_lock(&mm->page_table_lock); 619 wait_split_huge_page = 0; 620 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 621 mm->nr_ptes++; 622 pmd_populate(mm, pmd, new); 623 new = NULL; 624 } else if (unlikely(pmd_trans_splitting(*pmd))) 625 wait_split_huge_page = 1; 626 spin_unlock(&mm->page_table_lock); 627 if (new) 628 pte_free(mm, new); 629 if (wait_split_huge_page) 630 wait_split_huge_page(vma->anon_vma, pmd); 631 return 0; 632 } 633 634 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 635 { 636 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 637 if (!new) 638 return -ENOMEM; 639 640 smp_wmb(); /* See comment in __pte_alloc */ 641 642 spin_lock(&init_mm.page_table_lock); 643 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 644 pmd_populate_kernel(&init_mm, pmd, new); 645 new = NULL; 646 } else 647 VM_BUG_ON(pmd_trans_splitting(*pmd)); 648 spin_unlock(&init_mm.page_table_lock); 649 if (new) 650 pte_free_kernel(&init_mm, new); 651 return 0; 652 } 653 654 static inline void init_rss_vec(int *rss) 655 { 656 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 657 } 658 659 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 660 { 661 int i; 662 663 if (current->mm == mm) 664 sync_mm_rss(current, mm); 665 for (i = 0; i < NR_MM_COUNTERS; i++) 666 if (rss[i]) 667 add_mm_counter(mm, i, rss[i]); 668 } 669 670 /* 671 * This function is called to print an error when a bad pte 672 * is found. For example, we might have a PFN-mapped pte in 673 * a region that doesn't allow it. 674 * 675 * The calling function must still handle the error. 676 */ 677 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 678 pte_t pte, struct page *page) 679 { 680 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 681 pud_t *pud = pud_offset(pgd, addr); 682 pmd_t *pmd = pmd_offset(pud, addr); 683 struct address_space *mapping; 684 pgoff_t index; 685 static unsigned long resume; 686 static unsigned long nr_shown; 687 static unsigned long nr_unshown; 688 689 /* 690 * Allow a burst of 60 reports, then keep quiet for that minute; 691 * or allow a steady drip of one report per second. 692 */ 693 if (nr_shown == 60) { 694 if (time_before(jiffies, resume)) { 695 nr_unshown++; 696 return; 697 } 698 if (nr_unshown) { 699 printk(KERN_ALERT 700 "BUG: Bad page map: %lu messages suppressed\n", 701 nr_unshown); 702 nr_unshown = 0; 703 } 704 nr_shown = 0; 705 } 706 if (nr_shown++ == 0) 707 resume = jiffies + 60 * HZ; 708 709 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 710 index = linear_page_index(vma, addr); 711 712 printk(KERN_ALERT 713 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 714 current->comm, 715 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 716 if (page) 717 dump_page(page); 718 printk(KERN_ALERT 719 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 720 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 721 /* 722 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 723 */ 724 if (vma->vm_ops) 725 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 726 (unsigned long)vma->vm_ops->fault); 727 if (vma->vm_file && vma->vm_file->f_op) 728 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 729 (unsigned long)vma->vm_file->f_op->mmap); 730 dump_stack(); 731 add_taint(TAINT_BAD_PAGE); 732 } 733 734 static inline int is_cow_mapping(vm_flags_t flags) 735 { 736 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 737 } 738 739 #ifndef is_zero_pfn 740 static inline int is_zero_pfn(unsigned long pfn) 741 { 742 return pfn == zero_pfn; 743 } 744 #endif 745 746 #ifndef my_zero_pfn 747 static inline unsigned long my_zero_pfn(unsigned long addr) 748 { 749 return zero_pfn; 750 } 751 #endif 752 753 /* 754 * vm_normal_page -- This function gets the "struct page" associated with a pte. 755 * 756 * "Special" mappings do not wish to be associated with a "struct page" (either 757 * it doesn't exist, or it exists but they don't want to touch it). In this 758 * case, NULL is returned here. "Normal" mappings do have a struct page. 759 * 760 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 761 * pte bit, in which case this function is trivial. Secondly, an architecture 762 * may not have a spare pte bit, which requires a more complicated scheme, 763 * described below. 764 * 765 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 766 * special mapping (even if there are underlying and valid "struct pages"). 767 * COWed pages of a VM_PFNMAP are always normal. 768 * 769 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 770 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 771 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 772 * mapping will always honor the rule 773 * 774 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 775 * 776 * And for normal mappings this is false. 777 * 778 * This restricts such mappings to be a linear translation from virtual address 779 * to pfn. To get around this restriction, we allow arbitrary mappings so long 780 * as the vma is not a COW mapping; in that case, we know that all ptes are 781 * special (because none can have been COWed). 782 * 783 * 784 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 785 * 786 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 787 * page" backing, however the difference is that _all_ pages with a struct 788 * page (that is, those where pfn_valid is true) are refcounted and considered 789 * normal pages by the VM. The disadvantage is that pages are refcounted 790 * (which can be slower and simply not an option for some PFNMAP users). The 791 * advantage is that we don't have to follow the strict linearity rule of 792 * PFNMAP mappings in order to support COWable mappings. 793 * 794 */ 795 #ifdef __HAVE_ARCH_PTE_SPECIAL 796 # define HAVE_PTE_SPECIAL 1 797 #else 798 # define HAVE_PTE_SPECIAL 0 799 #endif 800 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 801 pte_t pte) 802 { 803 unsigned long pfn = pte_pfn(pte); 804 805 if (HAVE_PTE_SPECIAL) { 806 if (likely(!pte_special(pte))) 807 goto check_pfn; 808 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 809 return NULL; 810 if (!is_zero_pfn(pfn)) 811 print_bad_pte(vma, addr, pte, NULL); 812 return NULL; 813 } 814 815 /* !HAVE_PTE_SPECIAL case follows: */ 816 817 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 818 if (vma->vm_flags & VM_MIXEDMAP) { 819 if (!pfn_valid(pfn)) 820 return NULL; 821 goto out; 822 } else { 823 unsigned long off; 824 off = (addr - vma->vm_start) >> PAGE_SHIFT; 825 if (pfn == vma->vm_pgoff + off) 826 return NULL; 827 if (!is_cow_mapping(vma->vm_flags)) 828 return NULL; 829 } 830 } 831 832 if (is_zero_pfn(pfn)) 833 return NULL; 834 check_pfn: 835 if (unlikely(pfn > highest_memmap_pfn)) { 836 print_bad_pte(vma, addr, pte, NULL); 837 return NULL; 838 } 839 840 /* 841 * NOTE! We still have PageReserved() pages in the page tables. 842 * eg. VDSO mappings can cause them to exist. 843 */ 844 out: 845 return pfn_to_page(pfn); 846 } 847 848 /* 849 * copy one vm_area from one task to the other. Assumes the page tables 850 * already present in the new task to be cleared in the whole range 851 * covered by this vma. 852 */ 853 854 static inline unsigned long 855 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 856 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 857 unsigned long addr, int *rss) 858 { 859 unsigned long vm_flags = vma->vm_flags; 860 pte_t pte = *src_pte; 861 struct page *page; 862 863 /* pte contains position in swap or file, so copy. */ 864 if (unlikely(!pte_present(pte))) { 865 if (!pte_file(pte)) { 866 swp_entry_t entry = pte_to_swp_entry(pte); 867 868 if (swap_duplicate(entry) < 0) 869 return entry.val; 870 871 /* make sure dst_mm is on swapoff's mmlist. */ 872 if (unlikely(list_empty(&dst_mm->mmlist))) { 873 spin_lock(&mmlist_lock); 874 if (list_empty(&dst_mm->mmlist)) 875 list_add(&dst_mm->mmlist, 876 &src_mm->mmlist); 877 spin_unlock(&mmlist_lock); 878 } 879 if (likely(!non_swap_entry(entry))) 880 rss[MM_SWAPENTS]++; 881 else if (is_write_migration_entry(entry) && 882 is_cow_mapping(vm_flags)) { 883 /* 884 * COW mappings require pages in both parent 885 * and child to be set to read. 886 */ 887 make_migration_entry_read(&entry); 888 pte = swp_entry_to_pte(entry); 889 set_pte_at(src_mm, addr, src_pte, pte); 890 } 891 } 892 goto out_set_pte; 893 } 894 895 /* 896 * If it's a COW mapping, write protect it both 897 * in the parent and the child 898 */ 899 if (is_cow_mapping(vm_flags)) { 900 ptep_set_wrprotect(src_mm, addr, src_pte); 901 pte = pte_wrprotect(pte); 902 } 903 904 /* 905 * If it's a shared mapping, mark it clean in 906 * the child 907 */ 908 if (vm_flags & VM_SHARED) 909 pte = pte_mkclean(pte); 910 pte = pte_mkold(pte); 911 912 page = vm_normal_page(vma, addr, pte); 913 if (page) { 914 get_page(page); 915 page_dup_rmap(page); 916 if (PageAnon(page)) 917 rss[MM_ANONPAGES]++; 918 else 919 rss[MM_FILEPAGES]++; 920 } 921 922 out_set_pte: 923 set_pte_at(dst_mm, addr, dst_pte, pte); 924 return 0; 925 } 926 927 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 928 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 929 unsigned long addr, unsigned long end) 930 { 931 pte_t *orig_src_pte, *orig_dst_pte; 932 pte_t *src_pte, *dst_pte; 933 spinlock_t *src_ptl, *dst_ptl; 934 int progress = 0; 935 int rss[NR_MM_COUNTERS]; 936 swp_entry_t entry = (swp_entry_t){0}; 937 938 again: 939 init_rss_vec(rss); 940 941 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 942 if (!dst_pte) 943 return -ENOMEM; 944 src_pte = pte_offset_map(src_pmd, addr); 945 src_ptl = pte_lockptr(src_mm, src_pmd); 946 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 947 orig_src_pte = src_pte; 948 orig_dst_pte = dst_pte; 949 arch_enter_lazy_mmu_mode(); 950 951 do { 952 /* 953 * We are holding two locks at this point - either of them 954 * could generate latencies in another task on another CPU. 955 */ 956 if (progress >= 32) { 957 progress = 0; 958 if (need_resched() || 959 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 960 break; 961 } 962 if (pte_none(*src_pte)) { 963 progress++; 964 continue; 965 } 966 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 967 vma, addr, rss); 968 if (entry.val) 969 break; 970 progress += 8; 971 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 972 973 arch_leave_lazy_mmu_mode(); 974 spin_unlock(src_ptl); 975 pte_unmap(orig_src_pte); 976 add_mm_rss_vec(dst_mm, rss); 977 pte_unmap_unlock(orig_dst_pte, dst_ptl); 978 cond_resched(); 979 980 if (entry.val) { 981 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 982 return -ENOMEM; 983 progress = 0; 984 } 985 if (addr != end) 986 goto again; 987 return 0; 988 } 989 990 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 991 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 992 unsigned long addr, unsigned long end) 993 { 994 pmd_t *src_pmd, *dst_pmd; 995 unsigned long next; 996 997 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 998 if (!dst_pmd) 999 return -ENOMEM; 1000 src_pmd = pmd_offset(src_pud, addr); 1001 do { 1002 next = pmd_addr_end(addr, end); 1003 if (pmd_trans_huge(*src_pmd)) { 1004 int err; 1005 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 1006 err = copy_huge_pmd(dst_mm, src_mm, 1007 dst_pmd, src_pmd, addr, vma); 1008 if (err == -ENOMEM) 1009 return -ENOMEM; 1010 if (!err) 1011 continue; 1012 /* fall through */ 1013 } 1014 if (pmd_none_or_clear_bad(src_pmd)) 1015 continue; 1016 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1017 vma, addr, next)) 1018 return -ENOMEM; 1019 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1020 return 0; 1021 } 1022 1023 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1024 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1025 unsigned long addr, unsigned long end) 1026 { 1027 pud_t *src_pud, *dst_pud; 1028 unsigned long next; 1029 1030 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1031 if (!dst_pud) 1032 return -ENOMEM; 1033 src_pud = pud_offset(src_pgd, addr); 1034 do { 1035 next = pud_addr_end(addr, end); 1036 if (pud_none_or_clear_bad(src_pud)) 1037 continue; 1038 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1039 vma, addr, next)) 1040 return -ENOMEM; 1041 } while (dst_pud++, src_pud++, addr = next, addr != end); 1042 return 0; 1043 } 1044 1045 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1046 struct vm_area_struct *vma) 1047 { 1048 pgd_t *src_pgd, *dst_pgd; 1049 unsigned long next; 1050 unsigned long addr = vma->vm_start; 1051 unsigned long end = vma->vm_end; 1052 int ret; 1053 1054 /* 1055 * Don't copy ptes where a page fault will fill them correctly. 1056 * Fork becomes much lighter when there are big shared or private 1057 * readonly mappings. The tradeoff is that copy_page_range is more 1058 * efficient than faulting. 1059 */ 1060 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 1061 if (!vma->anon_vma) 1062 return 0; 1063 } 1064 1065 if (is_vm_hugetlb_page(vma)) 1066 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1067 1068 if (unlikely(is_pfn_mapping(vma))) { 1069 /* 1070 * We do not free on error cases below as remove_vma 1071 * gets called on error from higher level routine 1072 */ 1073 ret = track_pfn_vma_copy(vma); 1074 if (ret) 1075 return ret; 1076 } 1077 1078 /* 1079 * We need to invalidate the secondary MMU mappings only when 1080 * there could be a permission downgrade on the ptes of the 1081 * parent mm. And a permission downgrade will only happen if 1082 * is_cow_mapping() returns true. 1083 */ 1084 if (is_cow_mapping(vma->vm_flags)) 1085 mmu_notifier_invalidate_range_start(src_mm, addr, end); 1086 1087 ret = 0; 1088 dst_pgd = pgd_offset(dst_mm, addr); 1089 src_pgd = pgd_offset(src_mm, addr); 1090 do { 1091 next = pgd_addr_end(addr, end); 1092 if (pgd_none_or_clear_bad(src_pgd)) 1093 continue; 1094 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1095 vma, addr, next))) { 1096 ret = -ENOMEM; 1097 break; 1098 } 1099 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1100 1101 if (is_cow_mapping(vma->vm_flags)) 1102 mmu_notifier_invalidate_range_end(src_mm, 1103 vma->vm_start, end); 1104 return ret; 1105 } 1106 1107 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1108 struct vm_area_struct *vma, pmd_t *pmd, 1109 unsigned long addr, unsigned long end, 1110 struct zap_details *details) 1111 { 1112 struct mm_struct *mm = tlb->mm; 1113 int force_flush = 0; 1114 int rss[NR_MM_COUNTERS]; 1115 spinlock_t *ptl; 1116 pte_t *start_pte; 1117 pte_t *pte; 1118 1119 again: 1120 init_rss_vec(rss); 1121 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1122 pte = start_pte; 1123 arch_enter_lazy_mmu_mode(); 1124 do { 1125 pte_t ptent = *pte; 1126 if (pte_none(ptent)) { 1127 continue; 1128 } 1129 1130 if (pte_present(ptent)) { 1131 struct page *page; 1132 1133 page = vm_normal_page(vma, addr, ptent); 1134 if (unlikely(details) && page) { 1135 /* 1136 * unmap_shared_mapping_pages() wants to 1137 * invalidate cache without truncating: 1138 * unmap shared but keep private pages. 1139 */ 1140 if (details->check_mapping && 1141 details->check_mapping != page->mapping) 1142 continue; 1143 /* 1144 * Each page->index must be checked when 1145 * invalidating or truncating nonlinear. 1146 */ 1147 if (details->nonlinear_vma && 1148 (page->index < details->first_index || 1149 page->index > details->last_index)) 1150 continue; 1151 } 1152 ptent = ptep_get_and_clear_full(mm, addr, pte, 1153 tlb->fullmm); 1154 tlb_remove_tlb_entry(tlb, pte, addr); 1155 if (unlikely(!page)) 1156 continue; 1157 if (unlikely(details) && details->nonlinear_vma 1158 && linear_page_index(details->nonlinear_vma, 1159 addr) != page->index) 1160 set_pte_at(mm, addr, pte, 1161 pgoff_to_pte(page->index)); 1162 if (PageAnon(page)) 1163 rss[MM_ANONPAGES]--; 1164 else { 1165 if (pte_dirty(ptent)) 1166 set_page_dirty(page); 1167 if (pte_young(ptent) && 1168 likely(!VM_SequentialReadHint(vma))) 1169 mark_page_accessed(page); 1170 rss[MM_FILEPAGES]--; 1171 } 1172 page_remove_rmap(page); 1173 if (unlikely(page_mapcount(page) < 0)) 1174 print_bad_pte(vma, addr, ptent, page); 1175 force_flush = !__tlb_remove_page(tlb, page); 1176 if (force_flush) 1177 break; 1178 continue; 1179 } 1180 /* 1181 * If details->check_mapping, we leave swap entries; 1182 * if details->nonlinear_vma, we leave file entries. 1183 */ 1184 if (unlikely(details)) 1185 continue; 1186 if (pte_file(ptent)) { 1187 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1188 print_bad_pte(vma, addr, ptent, NULL); 1189 } else { 1190 swp_entry_t entry = pte_to_swp_entry(ptent); 1191 1192 if (!non_swap_entry(entry)) 1193 rss[MM_SWAPENTS]--; 1194 if (unlikely(!free_swap_and_cache(entry))) 1195 print_bad_pte(vma, addr, ptent, NULL); 1196 } 1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1198 } while (pte++, addr += PAGE_SIZE, addr != end); 1199 1200 add_mm_rss_vec(mm, rss); 1201 arch_leave_lazy_mmu_mode(); 1202 pte_unmap_unlock(start_pte, ptl); 1203 1204 /* 1205 * mmu_gather ran out of room to batch pages, we break out of 1206 * the PTE lock to avoid doing the potential expensive TLB invalidate 1207 * and page-free while holding it. 1208 */ 1209 if (force_flush) { 1210 force_flush = 0; 1211 tlb_flush_mmu(tlb); 1212 if (addr != end) 1213 goto again; 1214 } 1215 1216 return addr; 1217 } 1218 1219 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1220 struct vm_area_struct *vma, pud_t *pud, 1221 unsigned long addr, unsigned long end, 1222 struct zap_details *details) 1223 { 1224 pmd_t *pmd; 1225 unsigned long next; 1226 1227 pmd = pmd_offset(pud, addr); 1228 do { 1229 next = pmd_addr_end(addr, end); 1230 if (pmd_trans_huge(*pmd)) { 1231 if (next-addr != HPAGE_PMD_SIZE) { 1232 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); 1233 split_huge_page_pmd(vma->vm_mm, pmd); 1234 } else if (zap_huge_pmd(tlb, vma, pmd)) 1235 continue; 1236 /* fall through */ 1237 } 1238 if (pmd_none_or_clear_bad(pmd)) 1239 continue; 1240 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1241 cond_resched(); 1242 } while (pmd++, addr = next, addr != end); 1243 1244 return addr; 1245 } 1246 1247 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1248 struct vm_area_struct *vma, pgd_t *pgd, 1249 unsigned long addr, unsigned long end, 1250 struct zap_details *details) 1251 { 1252 pud_t *pud; 1253 unsigned long next; 1254 1255 pud = pud_offset(pgd, addr); 1256 do { 1257 next = pud_addr_end(addr, end); 1258 if (pud_none_or_clear_bad(pud)) 1259 continue; 1260 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1261 } while (pud++, addr = next, addr != end); 1262 1263 return addr; 1264 } 1265 1266 static unsigned long unmap_page_range(struct mmu_gather *tlb, 1267 struct vm_area_struct *vma, 1268 unsigned long addr, unsigned long end, 1269 struct zap_details *details) 1270 { 1271 pgd_t *pgd; 1272 unsigned long next; 1273 1274 if (details && !details->check_mapping && !details->nonlinear_vma) 1275 details = NULL; 1276 1277 BUG_ON(addr >= end); 1278 mem_cgroup_uncharge_start(); 1279 tlb_start_vma(tlb, vma); 1280 pgd = pgd_offset(vma->vm_mm, addr); 1281 do { 1282 next = pgd_addr_end(addr, end); 1283 if (pgd_none_or_clear_bad(pgd)) 1284 continue; 1285 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1286 } while (pgd++, addr = next, addr != end); 1287 tlb_end_vma(tlb, vma); 1288 mem_cgroup_uncharge_end(); 1289 1290 return addr; 1291 } 1292 1293 /** 1294 * unmap_vmas - unmap a range of memory covered by a list of vma's 1295 * @tlb: address of the caller's struct mmu_gather 1296 * @vma: the starting vma 1297 * @start_addr: virtual address at which to start unmapping 1298 * @end_addr: virtual address at which to end unmapping 1299 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 1300 * @details: details of nonlinear truncation or shared cache invalidation 1301 * 1302 * Returns the end address of the unmapping (restart addr if interrupted). 1303 * 1304 * Unmap all pages in the vma list. 1305 * 1306 * Only addresses between `start' and `end' will be unmapped. 1307 * 1308 * The VMA list must be sorted in ascending virtual address order. 1309 * 1310 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1311 * range after unmap_vmas() returns. So the only responsibility here is to 1312 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1313 * drops the lock and schedules. 1314 */ 1315 unsigned long unmap_vmas(struct mmu_gather *tlb, 1316 struct vm_area_struct *vma, unsigned long start_addr, 1317 unsigned long end_addr, unsigned long *nr_accounted, 1318 struct zap_details *details) 1319 { 1320 unsigned long start = start_addr; 1321 struct mm_struct *mm = vma->vm_mm; 1322 1323 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1324 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 1325 unsigned long end; 1326 1327 start = max(vma->vm_start, start_addr); 1328 if (start >= vma->vm_end) 1329 continue; 1330 end = min(vma->vm_end, end_addr); 1331 if (end <= vma->vm_start) 1332 continue; 1333 1334 if (vma->vm_flags & VM_ACCOUNT) 1335 *nr_accounted += (end - start) >> PAGE_SHIFT; 1336 1337 if (unlikely(is_pfn_mapping(vma))) 1338 untrack_pfn_vma(vma, 0, 0); 1339 1340 while (start != end) { 1341 if (unlikely(is_vm_hugetlb_page(vma))) { 1342 /* 1343 * It is undesirable to test vma->vm_file as it 1344 * should be non-null for valid hugetlb area. 1345 * However, vm_file will be NULL in the error 1346 * cleanup path of do_mmap_pgoff. When 1347 * hugetlbfs ->mmap method fails, 1348 * do_mmap_pgoff() nullifies vma->vm_file 1349 * before calling this function to clean up. 1350 * Since no pte has actually been setup, it is 1351 * safe to do nothing in this case. 1352 */ 1353 if (vma->vm_file) 1354 unmap_hugepage_range(vma, start, end, NULL); 1355 1356 start = end; 1357 } else 1358 start = unmap_page_range(tlb, vma, start, end, details); 1359 } 1360 } 1361 1362 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1363 return start; /* which is now the end (or restart) address */ 1364 } 1365 1366 /** 1367 * zap_page_range - remove user pages in a given range 1368 * @vma: vm_area_struct holding the applicable pages 1369 * @address: starting address of pages to zap 1370 * @size: number of bytes to zap 1371 * @details: details of nonlinear truncation or shared cache invalidation 1372 */ 1373 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1374 unsigned long size, struct zap_details *details) 1375 { 1376 struct mm_struct *mm = vma->vm_mm; 1377 struct mmu_gather tlb; 1378 unsigned long end = address + size; 1379 unsigned long nr_accounted = 0; 1380 1381 lru_add_drain(); 1382 tlb_gather_mmu(&tlb, mm, 0); 1383 update_hiwater_rss(mm); 1384 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1385 tlb_finish_mmu(&tlb, address, end); 1386 return end; 1387 } 1388 1389 /** 1390 * zap_vma_ptes - remove ptes mapping the vma 1391 * @vma: vm_area_struct holding ptes to be zapped 1392 * @address: starting address of pages to zap 1393 * @size: number of bytes to zap 1394 * 1395 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1396 * 1397 * The entire address range must be fully contained within the vma. 1398 * 1399 * Returns 0 if successful. 1400 */ 1401 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1402 unsigned long size) 1403 { 1404 if (address < vma->vm_start || address + size > vma->vm_end || 1405 !(vma->vm_flags & VM_PFNMAP)) 1406 return -1; 1407 zap_page_range(vma, address, size, NULL); 1408 return 0; 1409 } 1410 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1411 1412 /** 1413 * follow_page - look up a page descriptor from a user-virtual address 1414 * @vma: vm_area_struct mapping @address 1415 * @address: virtual address to look up 1416 * @flags: flags modifying lookup behaviour 1417 * 1418 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1419 * 1420 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1421 * an error pointer if there is a mapping to something not represented 1422 * by a page descriptor (see also vm_normal_page()). 1423 */ 1424 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1425 unsigned int flags) 1426 { 1427 pgd_t *pgd; 1428 pud_t *pud; 1429 pmd_t *pmd; 1430 pte_t *ptep, pte; 1431 spinlock_t *ptl; 1432 struct page *page; 1433 struct mm_struct *mm = vma->vm_mm; 1434 1435 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1436 if (!IS_ERR(page)) { 1437 BUG_ON(flags & FOLL_GET); 1438 goto out; 1439 } 1440 1441 page = NULL; 1442 pgd = pgd_offset(mm, address); 1443 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1444 goto no_page_table; 1445 1446 pud = pud_offset(pgd, address); 1447 if (pud_none(*pud)) 1448 goto no_page_table; 1449 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1450 BUG_ON(flags & FOLL_GET); 1451 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1452 goto out; 1453 } 1454 if (unlikely(pud_bad(*pud))) 1455 goto no_page_table; 1456 1457 pmd = pmd_offset(pud, address); 1458 if (pmd_none(*pmd)) 1459 goto no_page_table; 1460 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1461 BUG_ON(flags & FOLL_GET); 1462 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1463 goto out; 1464 } 1465 if (pmd_trans_huge(*pmd)) { 1466 if (flags & FOLL_SPLIT) { 1467 split_huge_page_pmd(mm, pmd); 1468 goto split_fallthrough; 1469 } 1470 spin_lock(&mm->page_table_lock); 1471 if (likely(pmd_trans_huge(*pmd))) { 1472 if (unlikely(pmd_trans_splitting(*pmd))) { 1473 spin_unlock(&mm->page_table_lock); 1474 wait_split_huge_page(vma->anon_vma, pmd); 1475 } else { 1476 page = follow_trans_huge_pmd(mm, address, 1477 pmd, flags); 1478 spin_unlock(&mm->page_table_lock); 1479 goto out; 1480 } 1481 } else 1482 spin_unlock(&mm->page_table_lock); 1483 /* fall through */ 1484 } 1485 split_fallthrough: 1486 if (unlikely(pmd_bad(*pmd))) 1487 goto no_page_table; 1488 1489 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1490 1491 pte = *ptep; 1492 if (!pte_present(pte)) 1493 goto no_page; 1494 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1495 goto unlock; 1496 1497 page = vm_normal_page(vma, address, pte); 1498 if (unlikely(!page)) { 1499 if ((flags & FOLL_DUMP) || 1500 !is_zero_pfn(pte_pfn(pte))) 1501 goto bad_page; 1502 page = pte_page(pte); 1503 } 1504 1505 if (flags & FOLL_GET) 1506 get_page(page); 1507 if (flags & FOLL_TOUCH) { 1508 if ((flags & FOLL_WRITE) && 1509 !pte_dirty(pte) && !PageDirty(page)) 1510 set_page_dirty(page); 1511 /* 1512 * pte_mkyoung() would be more correct here, but atomic care 1513 * is needed to avoid losing the dirty bit: it is easier to use 1514 * mark_page_accessed(). 1515 */ 1516 mark_page_accessed(page); 1517 } 1518 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1519 /* 1520 * The preliminary mapping check is mainly to avoid the 1521 * pointless overhead of lock_page on the ZERO_PAGE 1522 * which might bounce very badly if there is contention. 1523 * 1524 * If the page is already locked, we don't need to 1525 * handle it now - vmscan will handle it later if and 1526 * when it attempts to reclaim the page. 1527 */ 1528 if (page->mapping && trylock_page(page)) { 1529 lru_add_drain(); /* push cached pages to LRU */ 1530 /* 1531 * Because we lock page here and migration is 1532 * blocked by the pte's page reference, we need 1533 * only check for file-cache page truncation. 1534 */ 1535 if (page->mapping) 1536 mlock_vma_page(page); 1537 unlock_page(page); 1538 } 1539 } 1540 unlock: 1541 pte_unmap_unlock(ptep, ptl); 1542 out: 1543 return page; 1544 1545 bad_page: 1546 pte_unmap_unlock(ptep, ptl); 1547 return ERR_PTR(-EFAULT); 1548 1549 no_page: 1550 pte_unmap_unlock(ptep, ptl); 1551 if (!pte_none(pte)) 1552 return page; 1553 1554 no_page_table: 1555 /* 1556 * When core dumping an enormous anonymous area that nobody 1557 * has touched so far, we don't want to allocate unnecessary pages or 1558 * page tables. Return error instead of NULL to skip handle_mm_fault, 1559 * then get_dump_page() will return NULL to leave a hole in the dump. 1560 * But we can only make this optimization where a hole would surely 1561 * be zero-filled if handle_mm_fault() actually did handle it. 1562 */ 1563 if ((flags & FOLL_DUMP) && 1564 (!vma->vm_ops || !vma->vm_ops->fault)) 1565 return ERR_PTR(-EFAULT); 1566 return page; 1567 } 1568 1569 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1570 { 1571 return stack_guard_page_start(vma, addr) || 1572 stack_guard_page_end(vma, addr+PAGE_SIZE); 1573 } 1574 1575 /** 1576 * __get_user_pages() - pin user pages in memory 1577 * @tsk: task_struct of target task 1578 * @mm: mm_struct of target mm 1579 * @start: starting user address 1580 * @nr_pages: number of pages from start to pin 1581 * @gup_flags: flags modifying pin behaviour 1582 * @pages: array that receives pointers to the pages pinned. 1583 * Should be at least nr_pages long. Or NULL, if caller 1584 * only intends to ensure the pages are faulted in. 1585 * @vmas: array of pointers to vmas corresponding to each page. 1586 * Or NULL if the caller does not require them. 1587 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1588 * 1589 * Returns number of pages pinned. This may be fewer than the number 1590 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1591 * were pinned, returns -errno. Each page returned must be released 1592 * with a put_page() call when it is finished with. vmas will only 1593 * remain valid while mmap_sem is held. 1594 * 1595 * Must be called with mmap_sem held for read or write. 1596 * 1597 * __get_user_pages walks a process's page tables and takes a reference to 1598 * each struct page that each user address corresponds to at a given 1599 * instant. That is, it takes the page that would be accessed if a user 1600 * thread accesses the given user virtual address at that instant. 1601 * 1602 * This does not guarantee that the page exists in the user mappings when 1603 * __get_user_pages returns, and there may even be a completely different 1604 * page there in some cases (eg. if mmapped pagecache has been invalidated 1605 * and subsequently re faulted). However it does guarantee that the page 1606 * won't be freed completely. And mostly callers simply care that the page 1607 * contains data that was valid *at some point in time*. Typically, an IO 1608 * or similar operation cannot guarantee anything stronger anyway because 1609 * locks can't be held over the syscall boundary. 1610 * 1611 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1612 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1613 * appropriate) must be called after the page is finished with, and 1614 * before put_page is called. 1615 * 1616 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1617 * or mmap_sem contention, and if waiting is needed to pin all pages, 1618 * *@nonblocking will be set to 0. 1619 * 1620 * In most cases, get_user_pages or get_user_pages_fast should be used 1621 * instead of __get_user_pages. __get_user_pages should be used only if 1622 * you need some special @gup_flags. 1623 */ 1624 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1625 unsigned long start, int nr_pages, unsigned int gup_flags, 1626 struct page **pages, struct vm_area_struct **vmas, 1627 int *nonblocking) 1628 { 1629 int i; 1630 unsigned long vm_flags; 1631 1632 if (nr_pages <= 0) 1633 return 0; 1634 1635 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1636 1637 /* 1638 * Require read or write permissions. 1639 * If FOLL_FORCE is set, we only require the "MAY" flags. 1640 */ 1641 vm_flags = (gup_flags & FOLL_WRITE) ? 1642 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1643 vm_flags &= (gup_flags & FOLL_FORCE) ? 1644 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1645 i = 0; 1646 1647 do { 1648 struct vm_area_struct *vma; 1649 1650 vma = find_extend_vma(mm, start); 1651 if (!vma && in_gate_area(mm, start)) { 1652 unsigned long pg = start & PAGE_MASK; 1653 pgd_t *pgd; 1654 pud_t *pud; 1655 pmd_t *pmd; 1656 pte_t *pte; 1657 1658 /* user gate pages are read-only */ 1659 if (gup_flags & FOLL_WRITE) 1660 return i ? : -EFAULT; 1661 if (pg > TASK_SIZE) 1662 pgd = pgd_offset_k(pg); 1663 else 1664 pgd = pgd_offset_gate(mm, pg); 1665 BUG_ON(pgd_none(*pgd)); 1666 pud = pud_offset(pgd, pg); 1667 BUG_ON(pud_none(*pud)); 1668 pmd = pmd_offset(pud, pg); 1669 if (pmd_none(*pmd)) 1670 return i ? : -EFAULT; 1671 VM_BUG_ON(pmd_trans_huge(*pmd)); 1672 pte = pte_offset_map(pmd, pg); 1673 if (pte_none(*pte)) { 1674 pte_unmap(pte); 1675 return i ? : -EFAULT; 1676 } 1677 vma = get_gate_vma(mm); 1678 if (pages) { 1679 struct page *page; 1680 1681 page = vm_normal_page(vma, start, *pte); 1682 if (!page) { 1683 if (!(gup_flags & FOLL_DUMP) && 1684 is_zero_pfn(pte_pfn(*pte))) 1685 page = pte_page(*pte); 1686 else { 1687 pte_unmap(pte); 1688 return i ? : -EFAULT; 1689 } 1690 } 1691 pages[i] = page; 1692 get_page(page); 1693 } 1694 pte_unmap(pte); 1695 goto next_page; 1696 } 1697 1698 if (!vma || 1699 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1700 !(vm_flags & vma->vm_flags)) 1701 return i ? : -EFAULT; 1702 1703 if (is_vm_hugetlb_page(vma)) { 1704 i = follow_hugetlb_page(mm, vma, pages, vmas, 1705 &start, &nr_pages, i, gup_flags); 1706 continue; 1707 } 1708 1709 do { 1710 struct page *page; 1711 unsigned int foll_flags = gup_flags; 1712 1713 /* 1714 * If we have a pending SIGKILL, don't keep faulting 1715 * pages and potentially allocating memory. 1716 */ 1717 if (unlikely(fatal_signal_pending(current))) 1718 return i ? i : -ERESTARTSYS; 1719 1720 cond_resched(); 1721 while (!(page = follow_page(vma, start, foll_flags))) { 1722 int ret; 1723 unsigned int fault_flags = 0; 1724 1725 /* For mlock, just skip the stack guard page. */ 1726 if (foll_flags & FOLL_MLOCK) { 1727 if (stack_guard_page(vma, start)) 1728 goto next_page; 1729 } 1730 if (foll_flags & FOLL_WRITE) 1731 fault_flags |= FAULT_FLAG_WRITE; 1732 if (nonblocking) 1733 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1734 if (foll_flags & FOLL_NOWAIT) 1735 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1736 1737 ret = handle_mm_fault(mm, vma, start, 1738 fault_flags); 1739 1740 if (ret & VM_FAULT_ERROR) { 1741 if (ret & VM_FAULT_OOM) 1742 return i ? i : -ENOMEM; 1743 if (ret & (VM_FAULT_HWPOISON | 1744 VM_FAULT_HWPOISON_LARGE)) { 1745 if (i) 1746 return i; 1747 else if (gup_flags & FOLL_HWPOISON) 1748 return -EHWPOISON; 1749 else 1750 return -EFAULT; 1751 } 1752 if (ret & VM_FAULT_SIGBUS) 1753 return i ? i : -EFAULT; 1754 BUG(); 1755 } 1756 1757 if (tsk) { 1758 if (ret & VM_FAULT_MAJOR) 1759 tsk->maj_flt++; 1760 else 1761 tsk->min_flt++; 1762 } 1763 1764 if (ret & VM_FAULT_RETRY) { 1765 if (nonblocking) 1766 *nonblocking = 0; 1767 return i; 1768 } 1769 1770 /* 1771 * The VM_FAULT_WRITE bit tells us that 1772 * do_wp_page has broken COW when necessary, 1773 * even if maybe_mkwrite decided not to set 1774 * pte_write. We can thus safely do subsequent 1775 * page lookups as if they were reads. But only 1776 * do so when looping for pte_write is futile: 1777 * in some cases userspace may also be wanting 1778 * to write to the gotten user page, which a 1779 * read fault here might prevent (a readonly 1780 * page might get reCOWed by userspace write). 1781 */ 1782 if ((ret & VM_FAULT_WRITE) && 1783 !(vma->vm_flags & VM_WRITE)) 1784 foll_flags &= ~FOLL_WRITE; 1785 1786 cond_resched(); 1787 } 1788 if (IS_ERR(page)) 1789 return i ? i : PTR_ERR(page); 1790 if (pages) { 1791 pages[i] = page; 1792 1793 flush_anon_page(vma, page, start); 1794 flush_dcache_page(page); 1795 } 1796 next_page: 1797 if (vmas) 1798 vmas[i] = vma; 1799 i++; 1800 start += PAGE_SIZE; 1801 nr_pages--; 1802 } while (nr_pages && start < vma->vm_end); 1803 } while (nr_pages); 1804 return i; 1805 } 1806 EXPORT_SYMBOL(__get_user_pages); 1807 1808 /* 1809 * fixup_user_fault() - manually resolve a user page fault 1810 * @tsk: the task_struct to use for page fault accounting, or 1811 * NULL if faults are not to be recorded. 1812 * @mm: mm_struct of target mm 1813 * @address: user address 1814 * @fault_flags:flags to pass down to handle_mm_fault() 1815 * 1816 * This is meant to be called in the specific scenario where for locking reasons 1817 * we try to access user memory in atomic context (within a pagefault_disable() 1818 * section), this returns -EFAULT, and we want to resolve the user fault before 1819 * trying again. 1820 * 1821 * Typically this is meant to be used by the futex code. 1822 * 1823 * The main difference with get_user_pages() is that this function will 1824 * unconditionally call handle_mm_fault() which will in turn perform all the 1825 * necessary SW fixup of the dirty and young bits in the PTE, while 1826 * handle_mm_fault() only guarantees to update these in the struct page. 1827 * 1828 * This is important for some architectures where those bits also gate the 1829 * access permission to the page because they are maintained in software. On 1830 * such architectures, gup() will not be enough to make a subsequent access 1831 * succeed. 1832 * 1833 * This should be called with the mm_sem held for read. 1834 */ 1835 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1836 unsigned long address, unsigned int fault_flags) 1837 { 1838 struct vm_area_struct *vma; 1839 int ret; 1840 1841 vma = find_extend_vma(mm, address); 1842 if (!vma || address < vma->vm_start) 1843 return -EFAULT; 1844 1845 ret = handle_mm_fault(mm, vma, address, fault_flags); 1846 if (ret & VM_FAULT_ERROR) { 1847 if (ret & VM_FAULT_OOM) 1848 return -ENOMEM; 1849 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 1850 return -EHWPOISON; 1851 if (ret & VM_FAULT_SIGBUS) 1852 return -EFAULT; 1853 BUG(); 1854 } 1855 if (tsk) { 1856 if (ret & VM_FAULT_MAJOR) 1857 tsk->maj_flt++; 1858 else 1859 tsk->min_flt++; 1860 } 1861 return 0; 1862 } 1863 1864 /* 1865 * get_user_pages() - pin user pages in memory 1866 * @tsk: the task_struct to use for page fault accounting, or 1867 * NULL if faults are not to be recorded. 1868 * @mm: mm_struct of target mm 1869 * @start: starting user address 1870 * @nr_pages: number of pages from start to pin 1871 * @write: whether pages will be written to by the caller 1872 * @force: whether to force write access even if user mapping is 1873 * readonly. This will result in the page being COWed even 1874 * in MAP_SHARED mappings. You do not want this. 1875 * @pages: array that receives pointers to the pages pinned. 1876 * Should be at least nr_pages long. Or NULL, if caller 1877 * only intends to ensure the pages are faulted in. 1878 * @vmas: array of pointers to vmas corresponding to each page. 1879 * Or NULL if the caller does not require them. 1880 * 1881 * Returns number of pages pinned. This may be fewer than the number 1882 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1883 * were pinned, returns -errno. Each page returned must be released 1884 * with a put_page() call when it is finished with. vmas will only 1885 * remain valid while mmap_sem is held. 1886 * 1887 * Must be called with mmap_sem held for read or write. 1888 * 1889 * get_user_pages walks a process's page tables and takes a reference to 1890 * each struct page that each user address corresponds to at a given 1891 * instant. That is, it takes the page that would be accessed if a user 1892 * thread accesses the given user virtual address at that instant. 1893 * 1894 * This does not guarantee that the page exists in the user mappings when 1895 * get_user_pages returns, and there may even be a completely different 1896 * page there in some cases (eg. if mmapped pagecache has been invalidated 1897 * and subsequently re faulted). However it does guarantee that the page 1898 * won't be freed completely. And mostly callers simply care that the page 1899 * contains data that was valid *at some point in time*. Typically, an IO 1900 * or similar operation cannot guarantee anything stronger anyway because 1901 * locks can't be held over the syscall boundary. 1902 * 1903 * If write=0, the page must not be written to. If the page is written to, 1904 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1905 * after the page is finished with, and before put_page is called. 1906 * 1907 * get_user_pages is typically used for fewer-copy IO operations, to get a 1908 * handle on the memory by some means other than accesses via the user virtual 1909 * addresses. The pages may be submitted for DMA to devices or accessed via 1910 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1911 * use the correct cache flushing APIs. 1912 * 1913 * See also get_user_pages_fast, for performance critical applications. 1914 */ 1915 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1916 unsigned long start, int nr_pages, int write, int force, 1917 struct page **pages, struct vm_area_struct **vmas) 1918 { 1919 int flags = FOLL_TOUCH; 1920 1921 if (pages) 1922 flags |= FOLL_GET; 1923 if (write) 1924 flags |= FOLL_WRITE; 1925 if (force) 1926 flags |= FOLL_FORCE; 1927 1928 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 1929 NULL); 1930 } 1931 EXPORT_SYMBOL(get_user_pages); 1932 1933 /** 1934 * get_dump_page() - pin user page in memory while writing it to core dump 1935 * @addr: user address 1936 * 1937 * Returns struct page pointer of user page pinned for dump, 1938 * to be freed afterwards by page_cache_release() or put_page(). 1939 * 1940 * Returns NULL on any kind of failure - a hole must then be inserted into 1941 * the corefile, to preserve alignment with its headers; and also returns 1942 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1943 * allowing a hole to be left in the corefile to save diskspace. 1944 * 1945 * Called without mmap_sem, but after all other threads have been killed. 1946 */ 1947 #ifdef CONFIG_ELF_CORE 1948 struct page *get_dump_page(unsigned long addr) 1949 { 1950 struct vm_area_struct *vma; 1951 struct page *page; 1952 1953 if (__get_user_pages(current, current->mm, addr, 1, 1954 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1955 NULL) < 1) 1956 return NULL; 1957 flush_cache_page(vma, addr, page_to_pfn(page)); 1958 return page; 1959 } 1960 #endif /* CONFIG_ELF_CORE */ 1961 1962 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1963 spinlock_t **ptl) 1964 { 1965 pgd_t * pgd = pgd_offset(mm, addr); 1966 pud_t * pud = pud_alloc(mm, pgd, addr); 1967 if (pud) { 1968 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1969 if (pmd) { 1970 VM_BUG_ON(pmd_trans_huge(*pmd)); 1971 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1972 } 1973 } 1974 return NULL; 1975 } 1976 1977 /* 1978 * This is the old fallback for page remapping. 1979 * 1980 * For historical reasons, it only allows reserved pages. Only 1981 * old drivers should use this, and they needed to mark their 1982 * pages reserved for the old functions anyway. 1983 */ 1984 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1985 struct page *page, pgprot_t prot) 1986 { 1987 struct mm_struct *mm = vma->vm_mm; 1988 int retval; 1989 pte_t *pte; 1990 spinlock_t *ptl; 1991 1992 retval = -EINVAL; 1993 if (PageAnon(page)) 1994 goto out; 1995 retval = -ENOMEM; 1996 flush_dcache_page(page); 1997 pte = get_locked_pte(mm, addr, &ptl); 1998 if (!pte) 1999 goto out; 2000 retval = -EBUSY; 2001 if (!pte_none(*pte)) 2002 goto out_unlock; 2003 2004 /* Ok, finally just insert the thing.. */ 2005 get_page(page); 2006 inc_mm_counter_fast(mm, MM_FILEPAGES); 2007 page_add_file_rmap(page); 2008 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 2009 2010 retval = 0; 2011 pte_unmap_unlock(pte, ptl); 2012 return retval; 2013 out_unlock: 2014 pte_unmap_unlock(pte, ptl); 2015 out: 2016 return retval; 2017 } 2018 2019 /** 2020 * vm_insert_page - insert single page into user vma 2021 * @vma: user vma to map to 2022 * @addr: target user address of this page 2023 * @page: source kernel page 2024 * 2025 * This allows drivers to insert individual pages they've allocated 2026 * into a user vma. 2027 * 2028 * The page has to be a nice clean _individual_ kernel allocation. 2029 * If you allocate a compound page, you need to have marked it as 2030 * such (__GFP_COMP), or manually just split the page up yourself 2031 * (see split_page()). 2032 * 2033 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2034 * took an arbitrary page protection parameter. This doesn't allow 2035 * that. Your vma protection will have to be set up correctly, which 2036 * means that if you want a shared writable mapping, you'd better 2037 * ask for a shared writable mapping! 2038 * 2039 * The page does not need to be reserved. 2040 */ 2041 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2042 struct page *page) 2043 { 2044 if (addr < vma->vm_start || addr >= vma->vm_end) 2045 return -EFAULT; 2046 if (!page_count(page)) 2047 return -EINVAL; 2048 vma->vm_flags |= VM_INSERTPAGE; 2049 return insert_page(vma, addr, page, vma->vm_page_prot); 2050 } 2051 EXPORT_SYMBOL(vm_insert_page); 2052 2053 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2054 unsigned long pfn, pgprot_t prot) 2055 { 2056 struct mm_struct *mm = vma->vm_mm; 2057 int retval; 2058 pte_t *pte, entry; 2059 spinlock_t *ptl; 2060 2061 retval = -ENOMEM; 2062 pte = get_locked_pte(mm, addr, &ptl); 2063 if (!pte) 2064 goto out; 2065 retval = -EBUSY; 2066 if (!pte_none(*pte)) 2067 goto out_unlock; 2068 2069 /* Ok, finally just insert the thing.. */ 2070 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2071 set_pte_at(mm, addr, pte, entry); 2072 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2073 2074 retval = 0; 2075 out_unlock: 2076 pte_unmap_unlock(pte, ptl); 2077 out: 2078 return retval; 2079 } 2080 2081 /** 2082 * vm_insert_pfn - insert single pfn into user vma 2083 * @vma: user vma to map to 2084 * @addr: target user address of this page 2085 * @pfn: source kernel pfn 2086 * 2087 * Similar to vm_inert_page, this allows drivers to insert individual pages 2088 * they've allocated into a user vma. Same comments apply. 2089 * 2090 * This function should only be called from a vm_ops->fault handler, and 2091 * in that case the handler should return NULL. 2092 * 2093 * vma cannot be a COW mapping. 2094 * 2095 * As this is called only for pages that do not currently exist, we 2096 * do not need to flush old virtual caches or the TLB. 2097 */ 2098 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2099 unsigned long pfn) 2100 { 2101 int ret; 2102 pgprot_t pgprot = vma->vm_page_prot; 2103 /* 2104 * Technically, architectures with pte_special can avoid all these 2105 * restrictions (same for remap_pfn_range). However we would like 2106 * consistency in testing and feature parity among all, so we should 2107 * try to keep these invariants in place for everybody. 2108 */ 2109 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2110 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2111 (VM_PFNMAP|VM_MIXEDMAP)); 2112 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2113 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2114 2115 if (addr < vma->vm_start || addr >= vma->vm_end) 2116 return -EFAULT; 2117 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 2118 return -EINVAL; 2119 2120 ret = insert_pfn(vma, addr, pfn, pgprot); 2121 2122 if (ret) 2123 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 2124 2125 return ret; 2126 } 2127 EXPORT_SYMBOL(vm_insert_pfn); 2128 2129 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2130 unsigned long pfn) 2131 { 2132 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2133 2134 if (addr < vma->vm_start || addr >= vma->vm_end) 2135 return -EFAULT; 2136 2137 /* 2138 * If we don't have pte special, then we have to use the pfn_valid() 2139 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2140 * refcount the page if pfn_valid is true (hence insert_page rather 2141 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2142 * without pte special, it would there be refcounted as a normal page. 2143 */ 2144 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2145 struct page *page; 2146 2147 page = pfn_to_page(pfn); 2148 return insert_page(vma, addr, page, vma->vm_page_prot); 2149 } 2150 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2151 } 2152 EXPORT_SYMBOL(vm_insert_mixed); 2153 2154 /* 2155 * maps a range of physical memory into the requested pages. the old 2156 * mappings are removed. any references to nonexistent pages results 2157 * in null mappings (currently treated as "copy-on-access") 2158 */ 2159 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2160 unsigned long addr, unsigned long end, 2161 unsigned long pfn, pgprot_t prot) 2162 { 2163 pte_t *pte; 2164 spinlock_t *ptl; 2165 2166 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2167 if (!pte) 2168 return -ENOMEM; 2169 arch_enter_lazy_mmu_mode(); 2170 do { 2171 BUG_ON(!pte_none(*pte)); 2172 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2173 pfn++; 2174 } while (pte++, addr += PAGE_SIZE, addr != end); 2175 arch_leave_lazy_mmu_mode(); 2176 pte_unmap_unlock(pte - 1, ptl); 2177 return 0; 2178 } 2179 2180 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2181 unsigned long addr, unsigned long end, 2182 unsigned long pfn, pgprot_t prot) 2183 { 2184 pmd_t *pmd; 2185 unsigned long next; 2186 2187 pfn -= addr >> PAGE_SHIFT; 2188 pmd = pmd_alloc(mm, pud, addr); 2189 if (!pmd) 2190 return -ENOMEM; 2191 VM_BUG_ON(pmd_trans_huge(*pmd)); 2192 do { 2193 next = pmd_addr_end(addr, end); 2194 if (remap_pte_range(mm, pmd, addr, next, 2195 pfn + (addr >> PAGE_SHIFT), prot)) 2196 return -ENOMEM; 2197 } while (pmd++, addr = next, addr != end); 2198 return 0; 2199 } 2200 2201 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2202 unsigned long addr, unsigned long end, 2203 unsigned long pfn, pgprot_t prot) 2204 { 2205 pud_t *pud; 2206 unsigned long next; 2207 2208 pfn -= addr >> PAGE_SHIFT; 2209 pud = pud_alloc(mm, pgd, addr); 2210 if (!pud) 2211 return -ENOMEM; 2212 do { 2213 next = pud_addr_end(addr, end); 2214 if (remap_pmd_range(mm, pud, addr, next, 2215 pfn + (addr >> PAGE_SHIFT), prot)) 2216 return -ENOMEM; 2217 } while (pud++, addr = next, addr != end); 2218 return 0; 2219 } 2220 2221 /** 2222 * remap_pfn_range - remap kernel memory to userspace 2223 * @vma: user vma to map to 2224 * @addr: target user address to start at 2225 * @pfn: physical address of kernel memory 2226 * @size: size of map area 2227 * @prot: page protection flags for this mapping 2228 * 2229 * Note: this is only safe if the mm semaphore is held when called. 2230 */ 2231 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2232 unsigned long pfn, unsigned long size, pgprot_t prot) 2233 { 2234 pgd_t *pgd; 2235 unsigned long next; 2236 unsigned long end = addr + PAGE_ALIGN(size); 2237 struct mm_struct *mm = vma->vm_mm; 2238 int err; 2239 2240 /* 2241 * Physically remapped pages are special. Tell the 2242 * rest of the world about it: 2243 * VM_IO tells people not to look at these pages 2244 * (accesses can have side effects). 2245 * VM_RESERVED is specified all over the place, because 2246 * in 2.4 it kept swapout's vma scan off this vma; but 2247 * in 2.6 the LRU scan won't even find its pages, so this 2248 * flag means no more than count its pages in reserved_vm, 2249 * and omit it from core dump, even when VM_IO turned off. 2250 * VM_PFNMAP tells the core MM that the base pages are just 2251 * raw PFN mappings, and do not have a "struct page" associated 2252 * with them. 2253 * 2254 * There's a horrible special case to handle copy-on-write 2255 * behaviour that some programs depend on. We mark the "original" 2256 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2257 */ 2258 if (addr == vma->vm_start && end == vma->vm_end) { 2259 vma->vm_pgoff = pfn; 2260 vma->vm_flags |= VM_PFN_AT_MMAP; 2261 } else if (is_cow_mapping(vma->vm_flags)) 2262 return -EINVAL; 2263 2264 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 2265 2266 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 2267 if (err) { 2268 /* 2269 * To indicate that track_pfn related cleanup is not 2270 * needed from higher level routine calling unmap_vmas 2271 */ 2272 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 2273 vma->vm_flags &= ~VM_PFN_AT_MMAP; 2274 return -EINVAL; 2275 } 2276 2277 BUG_ON(addr >= end); 2278 pfn -= addr >> PAGE_SHIFT; 2279 pgd = pgd_offset(mm, addr); 2280 flush_cache_range(vma, addr, end); 2281 do { 2282 next = pgd_addr_end(addr, end); 2283 err = remap_pud_range(mm, pgd, addr, next, 2284 pfn + (addr >> PAGE_SHIFT), prot); 2285 if (err) 2286 break; 2287 } while (pgd++, addr = next, addr != end); 2288 2289 if (err) 2290 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 2291 2292 return err; 2293 } 2294 EXPORT_SYMBOL(remap_pfn_range); 2295 2296 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2297 unsigned long addr, unsigned long end, 2298 pte_fn_t fn, void *data) 2299 { 2300 pte_t *pte; 2301 int err; 2302 pgtable_t token; 2303 spinlock_t *uninitialized_var(ptl); 2304 2305 pte = (mm == &init_mm) ? 2306 pte_alloc_kernel(pmd, addr) : 2307 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2308 if (!pte) 2309 return -ENOMEM; 2310 2311 BUG_ON(pmd_huge(*pmd)); 2312 2313 arch_enter_lazy_mmu_mode(); 2314 2315 token = pmd_pgtable(*pmd); 2316 2317 do { 2318 err = fn(pte++, token, addr, data); 2319 if (err) 2320 break; 2321 } while (addr += PAGE_SIZE, addr != end); 2322 2323 arch_leave_lazy_mmu_mode(); 2324 2325 if (mm != &init_mm) 2326 pte_unmap_unlock(pte-1, ptl); 2327 return err; 2328 } 2329 2330 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2331 unsigned long addr, unsigned long end, 2332 pte_fn_t fn, void *data) 2333 { 2334 pmd_t *pmd; 2335 unsigned long next; 2336 int err; 2337 2338 BUG_ON(pud_huge(*pud)); 2339 2340 pmd = pmd_alloc(mm, pud, addr); 2341 if (!pmd) 2342 return -ENOMEM; 2343 do { 2344 next = pmd_addr_end(addr, end); 2345 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2346 if (err) 2347 break; 2348 } while (pmd++, addr = next, addr != end); 2349 return err; 2350 } 2351 2352 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2353 unsigned long addr, unsigned long end, 2354 pte_fn_t fn, void *data) 2355 { 2356 pud_t *pud; 2357 unsigned long next; 2358 int err; 2359 2360 pud = pud_alloc(mm, pgd, addr); 2361 if (!pud) 2362 return -ENOMEM; 2363 do { 2364 next = pud_addr_end(addr, end); 2365 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2366 if (err) 2367 break; 2368 } while (pud++, addr = next, addr != end); 2369 return err; 2370 } 2371 2372 /* 2373 * Scan a region of virtual memory, filling in page tables as necessary 2374 * and calling a provided function on each leaf page table. 2375 */ 2376 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2377 unsigned long size, pte_fn_t fn, void *data) 2378 { 2379 pgd_t *pgd; 2380 unsigned long next; 2381 unsigned long end = addr + size; 2382 int err; 2383 2384 BUG_ON(addr >= end); 2385 pgd = pgd_offset(mm, addr); 2386 do { 2387 next = pgd_addr_end(addr, end); 2388 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2389 if (err) 2390 break; 2391 } while (pgd++, addr = next, addr != end); 2392 2393 return err; 2394 } 2395 EXPORT_SYMBOL_GPL(apply_to_page_range); 2396 2397 /* 2398 * handle_pte_fault chooses page fault handler according to an entry 2399 * which was read non-atomically. Before making any commitment, on 2400 * those architectures or configurations (e.g. i386 with PAE) which 2401 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2402 * must check under lock before unmapping the pte and proceeding 2403 * (but do_wp_page is only called after already making such a check; 2404 * and do_anonymous_page can safely check later on). 2405 */ 2406 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2407 pte_t *page_table, pte_t orig_pte) 2408 { 2409 int same = 1; 2410 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2411 if (sizeof(pte_t) > sizeof(unsigned long)) { 2412 spinlock_t *ptl = pte_lockptr(mm, pmd); 2413 spin_lock(ptl); 2414 same = pte_same(*page_table, orig_pte); 2415 spin_unlock(ptl); 2416 } 2417 #endif 2418 pte_unmap(page_table); 2419 return same; 2420 } 2421 2422 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2423 { 2424 /* 2425 * If the source page was a PFN mapping, we don't have 2426 * a "struct page" for it. We do a best-effort copy by 2427 * just copying from the original user address. If that 2428 * fails, we just zero-fill it. Live with it. 2429 */ 2430 if (unlikely(!src)) { 2431 void *kaddr = kmap_atomic(dst, KM_USER0); 2432 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2433 2434 /* 2435 * This really shouldn't fail, because the page is there 2436 * in the page tables. But it might just be unreadable, 2437 * in which case we just give up and fill the result with 2438 * zeroes. 2439 */ 2440 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2441 clear_page(kaddr); 2442 kunmap_atomic(kaddr, KM_USER0); 2443 flush_dcache_page(dst); 2444 } else 2445 copy_user_highpage(dst, src, va, vma); 2446 } 2447 2448 /* 2449 * This routine handles present pages, when users try to write 2450 * to a shared page. It is done by copying the page to a new address 2451 * and decrementing the shared-page counter for the old page. 2452 * 2453 * Note that this routine assumes that the protection checks have been 2454 * done by the caller (the low-level page fault routine in most cases). 2455 * Thus we can safely just mark it writable once we've done any necessary 2456 * COW. 2457 * 2458 * We also mark the page dirty at this point even though the page will 2459 * change only once the write actually happens. This avoids a few races, 2460 * and potentially makes it more efficient. 2461 * 2462 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2463 * but allow concurrent faults), with pte both mapped and locked. 2464 * We return with mmap_sem still held, but pte unmapped and unlocked. 2465 */ 2466 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2467 unsigned long address, pte_t *page_table, pmd_t *pmd, 2468 spinlock_t *ptl, pte_t orig_pte) 2469 __releases(ptl) 2470 { 2471 struct page *old_page, *new_page; 2472 pte_t entry; 2473 int ret = 0; 2474 int page_mkwrite = 0; 2475 struct page *dirty_page = NULL; 2476 2477 old_page = vm_normal_page(vma, address, orig_pte); 2478 if (!old_page) { 2479 /* 2480 * VM_MIXEDMAP !pfn_valid() case 2481 * 2482 * We should not cow pages in a shared writeable mapping. 2483 * Just mark the pages writable as we can't do any dirty 2484 * accounting on raw pfn maps. 2485 */ 2486 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2487 (VM_WRITE|VM_SHARED)) 2488 goto reuse; 2489 goto gotten; 2490 } 2491 2492 /* 2493 * Take out anonymous pages first, anonymous shared vmas are 2494 * not dirty accountable. 2495 */ 2496 if (PageAnon(old_page) && !PageKsm(old_page)) { 2497 if (!trylock_page(old_page)) { 2498 page_cache_get(old_page); 2499 pte_unmap_unlock(page_table, ptl); 2500 lock_page(old_page); 2501 page_table = pte_offset_map_lock(mm, pmd, address, 2502 &ptl); 2503 if (!pte_same(*page_table, orig_pte)) { 2504 unlock_page(old_page); 2505 goto unlock; 2506 } 2507 page_cache_release(old_page); 2508 } 2509 if (reuse_swap_page(old_page)) { 2510 /* 2511 * The page is all ours. Move it to our anon_vma so 2512 * the rmap code will not search our parent or siblings. 2513 * Protected against the rmap code by the page lock. 2514 */ 2515 page_move_anon_rmap(old_page, vma, address); 2516 unlock_page(old_page); 2517 goto reuse; 2518 } 2519 unlock_page(old_page); 2520 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2521 (VM_WRITE|VM_SHARED))) { 2522 /* 2523 * Only catch write-faults on shared writable pages, 2524 * read-only shared pages can get COWed by 2525 * get_user_pages(.write=1, .force=1). 2526 */ 2527 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2528 struct vm_fault vmf; 2529 int tmp; 2530 2531 vmf.virtual_address = (void __user *)(address & 2532 PAGE_MASK); 2533 vmf.pgoff = old_page->index; 2534 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2535 vmf.page = old_page; 2536 2537 /* 2538 * Notify the address space that the page is about to 2539 * become writable so that it can prohibit this or wait 2540 * for the page to get into an appropriate state. 2541 * 2542 * We do this without the lock held, so that it can 2543 * sleep if it needs to. 2544 */ 2545 page_cache_get(old_page); 2546 pte_unmap_unlock(page_table, ptl); 2547 2548 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2549 if (unlikely(tmp & 2550 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2551 ret = tmp; 2552 goto unwritable_page; 2553 } 2554 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2555 lock_page(old_page); 2556 if (!old_page->mapping) { 2557 ret = 0; /* retry the fault */ 2558 unlock_page(old_page); 2559 goto unwritable_page; 2560 } 2561 } else 2562 VM_BUG_ON(!PageLocked(old_page)); 2563 2564 /* 2565 * Since we dropped the lock we need to revalidate 2566 * the PTE as someone else may have changed it. If 2567 * they did, we just return, as we can count on the 2568 * MMU to tell us if they didn't also make it writable. 2569 */ 2570 page_table = pte_offset_map_lock(mm, pmd, address, 2571 &ptl); 2572 if (!pte_same(*page_table, orig_pte)) { 2573 unlock_page(old_page); 2574 goto unlock; 2575 } 2576 2577 page_mkwrite = 1; 2578 } 2579 dirty_page = old_page; 2580 get_page(dirty_page); 2581 2582 reuse: 2583 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2584 entry = pte_mkyoung(orig_pte); 2585 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2586 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2587 update_mmu_cache(vma, address, page_table); 2588 pte_unmap_unlock(page_table, ptl); 2589 ret |= VM_FAULT_WRITE; 2590 2591 if (!dirty_page) 2592 return ret; 2593 2594 /* 2595 * Yes, Virginia, this is actually required to prevent a race 2596 * with clear_page_dirty_for_io() from clearing the page dirty 2597 * bit after it clear all dirty ptes, but before a racing 2598 * do_wp_page installs a dirty pte. 2599 * 2600 * __do_fault is protected similarly. 2601 */ 2602 if (!page_mkwrite) { 2603 wait_on_page_locked(dirty_page); 2604 set_page_dirty_balance(dirty_page, page_mkwrite); 2605 } 2606 put_page(dirty_page); 2607 if (page_mkwrite) { 2608 struct address_space *mapping = dirty_page->mapping; 2609 2610 set_page_dirty(dirty_page); 2611 unlock_page(dirty_page); 2612 page_cache_release(dirty_page); 2613 if (mapping) { 2614 /* 2615 * Some device drivers do not set page.mapping 2616 * but still dirty their pages 2617 */ 2618 balance_dirty_pages_ratelimited(mapping); 2619 } 2620 } 2621 2622 /* file_update_time outside page_lock */ 2623 if (vma->vm_file) 2624 file_update_time(vma->vm_file); 2625 2626 return ret; 2627 } 2628 2629 /* 2630 * Ok, we need to copy. Oh, well.. 2631 */ 2632 page_cache_get(old_page); 2633 gotten: 2634 pte_unmap_unlock(page_table, ptl); 2635 2636 if (unlikely(anon_vma_prepare(vma))) 2637 goto oom; 2638 2639 if (is_zero_pfn(pte_pfn(orig_pte))) { 2640 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2641 if (!new_page) 2642 goto oom; 2643 } else { 2644 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2645 if (!new_page) 2646 goto oom; 2647 cow_user_page(new_page, old_page, address, vma); 2648 } 2649 __SetPageUptodate(new_page); 2650 2651 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2652 goto oom_free_new; 2653 2654 /* 2655 * Re-check the pte - we dropped the lock 2656 */ 2657 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2658 if (likely(pte_same(*page_table, orig_pte))) { 2659 if (old_page) { 2660 if (!PageAnon(old_page)) { 2661 dec_mm_counter_fast(mm, MM_FILEPAGES); 2662 inc_mm_counter_fast(mm, MM_ANONPAGES); 2663 } 2664 } else 2665 inc_mm_counter_fast(mm, MM_ANONPAGES); 2666 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2667 entry = mk_pte(new_page, vma->vm_page_prot); 2668 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2669 /* 2670 * Clear the pte entry and flush it first, before updating the 2671 * pte with the new entry. This will avoid a race condition 2672 * seen in the presence of one thread doing SMC and another 2673 * thread doing COW. 2674 */ 2675 ptep_clear_flush(vma, address, page_table); 2676 page_add_new_anon_rmap(new_page, vma, address); 2677 /* 2678 * We call the notify macro here because, when using secondary 2679 * mmu page tables (such as kvm shadow page tables), we want the 2680 * new page to be mapped directly into the secondary page table. 2681 */ 2682 set_pte_at_notify(mm, address, page_table, entry); 2683 update_mmu_cache(vma, address, page_table); 2684 if (old_page) { 2685 /* 2686 * Only after switching the pte to the new page may 2687 * we remove the mapcount here. Otherwise another 2688 * process may come and find the rmap count decremented 2689 * before the pte is switched to the new page, and 2690 * "reuse" the old page writing into it while our pte 2691 * here still points into it and can be read by other 2692 * threads. 2693 * 2694 * The critical issue is to order this 2695 * page_remove_rmap with the ptp_clear_flush above. 2696 * Those stores are ordered by (if nothing else,) 2697 * the barrier present in the atomic_add_negative 2698 * in page_remove_rmap. 2699 * 2700 * Then the TLB flush in ptep_clear_flush ensures that 2701 * no process can access the old page before the 2702 * decremented mapcount is visible. And the old page 2703 * cannot be reused until after the decremented 2704 * mapcount is visible. So transitively, TLBs to 2705 * old page will be flushed before it can be reused. 2706 */ 2707 page_remove_rmap(old_page); 2708 } 2709 2710 /* Free the old page.. */ 2711 new_page = old_page; 2712 ret |= VM_FAULT_WRITE; 2713 } else 2714 mem_cgroup_uncharge_page(new_page); 2715 2716 if (new_page) 2717 page_cache_release(new_page); 2718 unlock: 2719 pte_unmap_unlock(page_table, ptl); 2720 if (old_page) { 2721 /* 2722 * Don't let another task, with possibly unlocked vma, 2723 * keep the mlocked page. 2724 */ 2725 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2726 lock_page(old_page); /* LRU manipulation */ 2727 munlock_vma_page(old_page); 2728 unlock_page(old_page); 2729 } 2730 page_cache_release(old_page); 2731 } 2732 return ret; 2733 oom_free_new: 2734 page_cache_release(new_page); 2735 oom: 2736 if (old_page) { 2737 if (page_mkwrite) { 2738 unlock_page(old_page); 2739 page_cache_release(old_page); 2740 } 2741 page_cache_release(old_page); 2742 } 2743 return VM_FAULT_OOM; 2744 2745 unwritable_page: 2746 page_cache_release(old_page); 2747 return ret; 2748 } 2749 2750 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2751 unsigned long start_addr, unsigned long end_addr, 2752 struct zap_details *details) 2753 { 2754 zap_page_range(vma, start_addr, end_addr - start_addr, details); 2755 } 2756 2757 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2758 struct zap_details *details) 2759 { 2760 struct vm_area_struct *vma; 2761 struct prio_tree_iter iter; 2762 pgoff_t vba, vea, zba, zea; 2763 2764 vma_prio_tree_foreach(vma, &iter, root, 2765 details->first_index, details->last_index) { 2766 2767 vba = vma->vm_pgoff; 2768 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2769 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2770 zba = details->first_index; 2771 if (zba < vba) 2772 zba = vba; 2773 zea = details->last_index; 2774 if (zea > vea) 2775 zea = vea; 2776 2777 unmap_mapping_range_vma(vma, 2778 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2779 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2780 details); 2781 } 2782 } 2783 2784 static inline void unmap_mapping_range_list(struct list_head *head, 2785 struct zap_details *details) 2786 { 2787 struct vm_area_struct *vma; 2788 2789 /* 2790 * In nonlinear VMAs there is no correspondence between virtual address 2791 * offset and file offset. So we must perform an exhaustive search 2792 * across *all* the pages in each nonlinear VMA, not just the pages 2793 * whose virtual address lies outside the file truncation point. 2794 */ 2795 list_for_each_entry(vma, head, shared.vm_set.list) { 2796 details->nonlinear_vma = vma; 2797 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2798 } 2799 } 2800 2801 /** 2802 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2803 * @mapping: the address space containing mmaps to be unmapped. 2804 * @holebegin: byte in first page to unmap, relative to the start of 2805 * the underlying file. This will be rounded down to a PAGE_SIZE 2806 * boundary. Note that this is different from truncate_pagecache(), which 2807 * must keep the partial page. In contrast, we must get rid of 2808 * partial pages. 2809 * @holelen: size of prospective hole in bytes. This will be rounded 2810 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2811 * end of the file. 2812 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2813 * but 0 when invalidating pagecache, don't throw away private data. 2814 */ 2815 void unmap_mapping_range(struct address_space *mapping, 2816 loff_t const holebegin, loff_t const holelen, int even_cows) 2817 { 2818 struct zap_details details; 2819 pgoff_t hba = holebegin >> PAGE_SHIFT; 2820 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2821 2822 /* Check for overflow. */ 2823 if (sizeof(holelen) > sizeof(hlen)) { 2824 long long holeend = 2825 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2826 if (holeend & ~(long long)ULONG_MAX) 2827 hlen = ULONG_MAX - hba + 1; 2828 } 2829 2830 details.check_mapping = even_cows? NULL: mapping; 2831 details.nonlinear_vma = NULL; 2832 details.first_index = hba; 2833 details.last_index = hba + hlen - 1; 2834 if (details.last_index < details.first_index) 2835 details.last_index = ULONG_MAX; 2836 2837 2838 mutex_lock(&mapping->i_mmap_mutex); 2839 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2840 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2841 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2842 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2843 mutex_unlock(&mapping->i_mmap_mutex); 2844 } 2845 EXPORT_SYMBOL(unmap_mapping_range); 2846 2847 /* 2848 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2849 * but allow concurrent faults), and pte mapped but not yet locked. 2850 * We return with mmap_sem still held, but pte unmapped and unlocked. 2851 */ 2852 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2853 unsigned long address, pte_t *page_table, pmd_t *pmd, 2854 unsigned int flags, pte_t orig_pte) 2855 { 2856 spinlock_t *ptl; 2857 struct page *page, *swapcache = NULL; 2858 swp_entry_t entry; 2859 pte_t pte; 2860 int locked; 2861 struct mem_cgroup *ptr; 2862 int exclusive = 0; 2863 int ret = 0; 2864 2865 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2866 goto out; 2867 2868 entry = pte_to_swp_entry(orig_pte); 2869 if (unlikely(non_swap_entry(entry))) { 2870 if (is_migration_entry(entry)) { 2871 migration_entry_wait(mm, pmd, address); 2872 } else if (is_hwpoison_entry(entry)) { 2873 ret = VM_FAULT_HWPOISON; 2874 } else { 2875 print_bad_pte(vma, address, orig_pte, NULL); 2876 ret = VM_FAULT_SIGBUS; 2877 } 2878 goto out; 2879 } 2880 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2881 page = lookup_swap_cache(entry); 2882 if (!page) { 2883 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2884 page = swapin_readahead(entry, 2885 GFP_HIGHUSER_MOVABLE, vma, address); 2886 if (!page) { 2887 /* 2888 * Back out if somebody else faulted in this pte 2889 * while we released the pte lock. 2890 */ 2891 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2892 if (likely(pte_same(*page_table, orig_pte))) 2893 ret = VM_FAULT_OOM; 2894 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2895 goto unlock; 2896 } 2897 2898 /* Had to read the page from swap area: Major fault */ 2899 ret = VM_FAULT_MAJOR; 2900 count_vm_event(PGMAJFAULT); 2901 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2902 } else if (PageHWPoison(page)) { 2903 /* 2904 * hwpoisoned dirty swapcache pages are kept for killing 2905 * owner processes (which may be unknown at hwpoison time) 2906 */ 2907 ret = VM_FAULT_HWPOISON; 2908 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2909 goto out_release; 2910 } 2911 2912 locked = lock_page_or_retry(page, mm, flags); 2913 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2914 if (!locked) { 2915 ret |= VM_FAULT_RETRY; 2916 goto out_release; 2917 } 2918 2919 /* 2920 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2921 * release the swapcache from under us. The page pin, and pte_same 2922 * test below, are not enough to exclude that. Even if it is still 2923 * swapcache, we need to check that the page's swap has not changed. 2924 */ 2925 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2926 goto out_page; 2927 2928 if (ksm_might_need_to_copy(page, vma, address)) { 2929 swapcache = page; 2930 page = ksm_does_need_to_copy(page, vma, address); 2931 2932 if (unlikely(!page)) { 2933 ret = VM_FAULT_OOM; 2934 page = swapcache; 2935 swapcache = NULL; 2936 goto out_page; 2937 } 2938 } 2939 2940 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2941 ret = VM_FAULT_OOM; 2942 goto out_page; 2943 } 2944 2945 /* 2946 * Back out if somebody else already faulted in this pte. 2947 */ 2948 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2949 if (unlikely(!pte_same(*page_table, orig_pte))) 2950 goto out_nomap; 2951 2952 if (unlikely(!PageUptodate(page))) { 2953 ret = VM_FAULT_SIGBUS; 2954 goto out_nomap; 2955 } 2956 2957 /* 2958 * The page isn't present yet, go ahead with the fault. 2959 * 2960 * Be careful about the sequence of operations here. 2961 * To get its accounting right, reuse_swap_page() must be called 2962 * while the page is counted on swap but not yet in mapcount i.e. 2963 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2964 * must be called after the swap_free(), or it will never succeed. 2965 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2966 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2967 * in page->private. In this case, a record in swap_cgroup is silently 2968 * discarded at swap_free(). 2969 */ 2970 2971 inc_mm_counter_fast(mm, MM_ANONPAGES); 2972 dec_mm_counter_fast(mm, MM_SWAPENTS); 2973 pte = mk_pte(page, vma->vm_page_prot); 2974 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2975 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2976 flags &= ~FAULT_FLAG_WRITE; 2977 ret |= VM_FAULT_WRITE; 2978 exclusive = 1; 2979 } 2980 flush_icache_page(vma, page); 2981 set_pte_at(mm, address, page_table, pte); 2982 do_page_add_anon_rmap(page, vma, address, exclusive); 2983 /* It's better to call commit-charge after rmap is established */ 2984 mem_cgroup_commit_charge_swapin(page, ptr); 2985 2986 swap_free(entry); 2987 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2988 try_to_free_swap(page); 2989 unlock_page(page); 2990 if (swapcache) { 2991 /* 2992 * Hold the lock to avoid the swap entry to be reused 2993 * until we take the PT lock for the pte_same() check 2994 * (to avoid false positives from pte_same). For 2995 * further safety release the lock after the swap_free 2996 * so that the swap count won't change under a 2997 * parallel locked swapcache. 2998 */ 2999 unlock_page(swapcache); 3000 page_cache_release(swapcache); 3001 } 3002 3003 if (flags & FAULT_FLAG_WRITE) { 3004 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 3005 if (ret & VM_FAULT_ERROR) 3006 ret &= VM_FAULT_ERROR; 3007 goto out; 3008 } 3009 3010 /* No need to invalidate - it was non-present before */ 3011 update_mmu_cache(vma, address, page_table); 3012 unlock: 3013 pte_unmap_unlock(page_table, ptl); 3014 out: 3015 return ret; 3016 out_nomap: 3017 mem_cgroup_cancel_charge_swapin(ptr); 3018 pte_unmap_unlock(page_table, ptl); 3019 out_page: 3020 unlock_page(page); 3021 out_release: 3022 page_cache_release(page); 3023 if (swapcache) { 3024 unlock_page(swapcache); 3025 page_cache_release(swapcache); 3026 } 3027 return ret; 3028 } 3029 3030 /* 3031 * This is like a special single-page "expand_{down|up}wards()", 3032 * except we must first make sure that 'address{-|+}PAGE_SIZE' 3033 * doesn't hit another vma. 3034 */ 3035 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 3036 { 3037 address &= PAGE_MASK; 3038 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 3039 struct vm_area_struct *prev = vma->vm_prev; 3040 3041 /* 3042 * Is there a mapping abutting this one below? 3043 * 3044 * That's only ok if it's the same stack mapping 3045 * that has gotten split.. 3046 */ 3047 if (prev && prev->vm_end == address) 3048 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3049 3050 expand_downwards(vma, address - PAGE_SIZE); 3051 } 3052 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3053 struct vm_area_struct *next = vma->vm_next; 3054 3055 /* As VM_GROWSDOWN but s/below/above/ */ 3056 if (next && next->vm_start == address + PAGE_SIZE) 3057 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3058 3059 expand_upwards(vma, address + PAGE_SIZE); 3060 } 3061 return 0; 3062 } 3063 3064 /* 3065 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3066 * but allow concurrent faults), and pte mapped but not yet locked. 3067 * We return with mmap_sem still held, but pte unmapped and unlocked. 3068 */ 3069 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3070 unsigned long address, pte_t *page_table, pmd_t *pmd, 3071 unsigned int flags) 3072 { 3073 struct page *page; 3074 spinlock_t *ptl; 3075 pte_t entry; 3076 3077 pte_unmap(page_table); 3078 3079 /* Check if we need to add a guard page to the stack */ 3080 if (check_stack_guard_page(vma, address) < 0) 3081 return VM_FAULT_SIGBUS; 3082 3083 /* Use the zero-page for reads */ 3084 if (!(flags & FAULT_FLAG_WRITE)) { 3085 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3086 vma->vm_page_prot)); 3087 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3088 if (!pte_none(*page_table)) 3089 goto unlock; 3090 goto setpte; 3091 } 3092 3093 /* Allocate our own private page. */ 3094 if (unlikely(anon_vma_prepare(vma))) 3095 goto oom; 3096 page = alloc_zeroed_user_highpage_movable(vma, address); 3097 if (!page) 3098 goto oom; 3099 __SetPageUptodate(page); 3100 3101 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3102 goto oom_free_page; 3103 3104 entry = mk_pte(page, vma->vm_page_prot); 3105 if (vma->vm_flags & VM_WRITE) 3106 entry = pte_mkwrite(pte_mkdirty(entry)); 3107 3108 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3109 if (!pte_none(*page_table)) 3110 goto release; 3111 3112 inc_mm_counter_fast(mm, MM_ANONPAGES); 3113 page_add_new_anon_rmap(page, vma, address); 3114 setpte: 3115 set_pte_at(mm, address, page_table, entry); 3116 3117 /* No need to invalidate - it was non-present before */ 3118 update_mmu_cache(vma, address, page_table); 3119 unlock: 3120 pte_unmap_unlock(page_table, ptl); 3121 return 0; 3122 release: 3123 mem_cgroup_uncharge_page(page); 3124 page_cache_release(page); 3125 goto unlock; 3126 oom_free_page: 3127 page_cache_release(page); 3128 oom: 3129 return VM_FAULT_OOM; 3130 } 3131 3132 /* 3133 * __do_fault() tries to create a new page mapping. It aggressively 3134 * tries to share with existing pages, but makes a separate copy if 3135 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3136 * the next page fault. 3137 * 3138 * As this is called only for pages that do not currently exist, we 3139 * do not need to flush old virtual caches or the TLB. 3140 * 3141 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3142 * but allow concurrent faults), and pte neither mapped nor locked. 3143 * We return with mmap_sem still held, but pte unmapped and unlocked. 3144 */ 3145 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3146 unsigned long address, pmd_t *pmd, 3147 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3148 { 3149 pte_t *page_table; 3150 spinlock_t *ptl; 3151 struct page *page; 3152 struct page *cow_page; 3153 pte_t entry; 3154 int anon = 0; 3155 struct page *dirty_page = NULL; 3156 struct vm_fault vmf; 3157 int ret; 3158 int page_mkwrite = 0; 3159 3160 /* 3161 * If we do COW later, allocate page befor taking lock_page() 3162 * on the file cache page. This will reduce lock holding time. 3163 */ 3164 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3165 3166 if (unlikely(anon_vma_prepare(vma))) 3167 return VM_FAULT_OOM; 3168 3169 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3170 if (!cow_page) 3171 return VM_FAULT_OOM; 3172 3173 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) { 3174 page_cache_release(cow_page); 3175 return VM_FAULT_OOM; 3176 } 3177 } else 3178 cow_page = NULL; 3179 3180 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3181 vmf.pgoff = pgoff; 3182 vmf.flags = flags; 3183 vmf.page = NULL; 3184 3185 ret = vma->vm_ops->fault(vma, &vmf); 3186 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3187 VM_FAULT_RETRY))) 3188 goto uncharge_out; 3189 3190 if (unlikely(PageHWPoison(vmf.page))) { 3191 if (ret & VM_FAULT_LOCKED) 3192 unlock_page(vmf.page); 3193 ret = VM_FAULT_HWPOISON; 3194 goto uncharge_out; 3195 } 3196 3197 /* 3198 * For consistency in subsequent calls, make the faulted page always 3199 * locked. 3200 */ 3201 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3202 lock_page(vmf.page); 3203 else 3204 VM_BUG_ON(!PageLocked(vmf.page)); 3205 3206 /* 3207 * Should we do an early C-O-W break? 3208 */ 3209 page = vmf.page; 3210 if (flags & FAULT_FLAG_WRITE) { 3211 if (!(vma->vm_flags & VM_SHARED)) { 3212 page = cow_page; 3213 anon = 1; 3214 copy_user_highpage(page, vmf.page, address, vma); 3215 __SetPageUptodate(page); 3216 } else { 3217 /* 3218 * If the page will be shareable, see if the backing 3219 * address space wants to know that the page is about 3220 * to become writable 3221 */ 3222 if (vma->vm_ops->page_mkwrite) { 3223 int tmp; 3224 3225 unlock_page(page); 3226 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3227 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3228 if (unlikely(tmp & 3229 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3230 ret = tmp; 3231 goto unwritable_page; 3232 } 3233 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3234 lock_page(page); 3235 if (!page->mapping) { 3236 ret = 0; /* retry the fault */ 3237 unlock_page(page); 3238 goto unwritable_page; 3239 } 3240 } else 3241 VM_BUG_ON(!PageLocked(page)); 3242 page_mkwrite = 1; 3243 } 3244 } 3245 3246 } 3247 3248 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3249 3250 /* 3251 * This silly early PAGE_DIRTY setting removes a race 3252 * due to the bad i386 page protection. But it's valid 3253 * for other architectures too. 3254 * 3255 * Note that if FAULT_FLAG_WRITE is set, we either now have 3256 * an exclusive copy of the page, or this is a shared mapping, 3257 * so we can make it writable and dirty to avoid having to 3258 * handle that later. 3259 */ 3260 /* Only go through if we didn't race with anybody else... */ 3261 if (likely(pte_same(*page_table, orig_pte))) { 3262 flush_icache_page(vma, page); 3263 entry = mk_pte(page, vma->vm_page_prot); 3264 if (flags & FAULT_FLAG_WRITE) 3265 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3266 if (anon) { 3267 inc_mm_counter_fast(mm, MM_ANONPAGES); 3268 page_add_new_anon_rmap(page, vma, address); 3269 } else { 3270 inc_mm_counter_fast(mm, MM_FILEPAGES); 3271 page_add_file_rmap(page); 3272 if (flags & FAULT_FLAG_WRITE) { 3273 dirty_page = page; 3274 get_page(dirty_page); 3275 } 3276 } 3277 set_pte_at(mm, address, page_table, entry); 3278 3279 /* no need to invalidate: a not-present page won't be cached */ 3280 update_mmu_cache(vma, address, page_table); 3281 } else { 3282 if (cow_page) 3283 mem_cgroup_uncharge_page(cow_page); 3284 if (anon) 3285 page_cache_release(page); 3286 else 3287 anon = 1; /* no anon but release faulted_page */ 3288 } 3289 3290 pte_unmap_unlock(page_table, ptl); 3291 3292 if (dirty_page) { 3293 struct address_space *mapping = page->mapping; 3294 3295 if (set_page_dirty(dirty_page)) 3296 page_mkwrite = 1; 3297 unlock_page(dirty_page); 3298 put_page(dirty_page); 3299 if (page_mkwrite && mapping) { 3300 /* 3301 * Some device drivers do not set page.mapping but still 3302 * dirty their pages 3303 */ 3304 balance_dirty_pages_ratelimited(mapping); 3305 } 3306 3307 /* file_update_time outside page_lock */ 3308 if (vma->vm_file) 3309 file_update_time(vma->vm_file); 3310 } else { 3311 unlock_page(vmf.page); 3312 if (anon) 3313 page_cache_release(vmf.page); 3314 } 3315 3316 return ret; 3317 3318 unwritable_page: 3319 page_cache_release(page); 3320 return ret; 3321 uncharge_out: 3322 /* fs's fault handler get error */ 3323 if (cow_page) { 3324 mem_cgroup_uncharge_page(cow_page); 3325 page_cache_release(cow_page); 3326 } 3327 return ret; 3328 } 3329 3330 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3331 unsigned long address, pte_t *page_table, pmd_t *pmd, 3332 unsigned int flags, pte_t orig_pte) 3333 { 3334 pgoff_t pgoff = (((address & PAGE_MASK) 3335 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3336 3337 pte_unmap(page_table); 3338 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3339 } 3340 3341 /* 3342 * Fault of a previously existing named mapping. Repopulate the pte 3343 * from the encoded file_pte if possible. This enables swappable 3344 * nonlinear vmas. 3345 * 3346 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3347 * but allow concurrent faults), and pte mapped but not yet locked. 3348 * We return with mmap_sem still held, but pte unmapped and unlocked. 3349 */ 3350 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3351 unsigned long address, pte_t *page_table, pmd_t *pmd, 3352 unsigned int flags, pte_t orig_pte) 3353 { 3354 pgoff_t pgoff; 3355 3356 flags |= FAULT_FLAG_NONLINEAR; 3357 3358 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3359 return 0; 3360 3361 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3362 /* 3363 * Page table corrupted: show pte and kill process. 3364 */ 3365 print_bad_pte(vma, address, orig_pte, NULL); 3366 return VM_FAULT_SIGBUS; 3367 } 3368 3369 pgoff = pte_to_pgoff(orig_pte); 3370 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3371 } 3372 3373 /* 3374 * These routines also need to handle stuff like marking pages dirty 3375 * and/or accessed for architectures that don't do it in hardware (most 3376 * RISC architectures). The early dirtying is also good on the i386. 3377 * 3378 * There is also a hook called "update_mmu_cache()" that architectures 3379 * with external mmu caches can use to update those (ie the Sparc or 3380 * PowerPC hashed page tables that act as extended TLBs). 3381 * 3382 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3383 * but allow concurrent faults), and pte mapped but not yet locked. 3384 * We return with mmap_sem still held, but pte unmapped and unlocked. 3385 */ 3386 int handle_pte_fault(struct mm_struct *mm, 3387 struct vm_area_struct *vma, unsigned long address, 3388 pte_t *pte, pmd_t *pmd, unsigned int flags) 3389 { 3390 pte_t entry; 3391 spinlock_t *ptl; 3392 3393 entry = *pte; 3394 if (!pte_present(entry)) { 3395 if (pte_none(entry)) { 3396 if (vma->vm_ops) { 3397 if (likely(vma->vm_ops->fault)) 3398 return do_linear_fault(mm, vma, address, 3399 pte, pmd, flags, entry); 3400 } 3401 return do_anonymous_page(mm, vma, address, 3402 pte, pmd, flags); 3403 } 3404 if (pte_file(entry)) 3405 return do_nonlinear_fault(mm, vma, address, 3406 pte, pmd, flags, entry); 3407 return do_swap_page(mm, vma, address, 3408 pte, pmd, flags, entry); 3409 } 3410 3411 ptl = pte_lockptr(mm, pmd); 3412 spin_lock(ptl); 3413 if (unlikely(!pte_same(*pte, entry))) 3414 goto unlock; 3415 if (flags & FAULT_FLAG_WRITE) { 3416 if (!pte_write(entry)) 3417 return do_wp_page(mm, vma, address, 3418 pte, pmd, ptl, entry); 3419 entry = pte_mkdirty(entry); 3420 } 3421 entry = pte_mkyoung(entry); 3422 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3423 update_mmu_cache(vma, address, pte); 3424 } else { 3425 /* 3426 * This is needed only for protection faults but the arch code 3427 * is not yet telling us if this is a protection fault or not. 3428 * This still avoids useless tlb flushes for .text page faults 3429 * with threads. 3430 */ 3431 if (flags & FAULT_FLAG_WRITE) 3432 flush_tlb_fix_spurious_fault(vma, address); 3433 } 3434 unlock: 3435 pte_unmap_unlock(pte, ptl); 3436 return 0; 3437 } 3438 3439 /* 3440 * By the time we get here, we already hold the mm semaphore 3441 */ 3442 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3443 unsigned long address, unsigned int flags) 3444 { 3445 pgd_t *pgd; 3446 pud_t *pud; 3447 pmd_t *pmd; 3448 pte_t *pte; 3449 3450 __set_current_state(TASK_RUNNING); 3451 3452 count_vm_event(PGFAULT); 3453 mem_cgroup_count_vm_event(mm, PGFAULT); 3454 3455 /* do counter updates before entering really critical section. */ 3456 check_sync_rss_stat(current); 3457 3458 if (unlikely(is_vm_hugetlb_page(vma))) 3459 return hugetlb_fault(mm, vma, address, flags); 3460 3461 pgd = pgd_offset(mm, address); 3462 pud = pud_alloc(mm, pgd, address); 3463 if (!pud) 3464 return VM_FAULT_OOM; 3465 pmd = pmd_alloc(mm, pud, address); 3466 if (!pmd) 3467 return VM_FAULT_OOM; 3468 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3469 if (!vma->vm_ops) 3470 return do_huge_pmd_anonymous_page(mm, vma, address, 3471 pmd, flags); 3472 } else { 3473 pmd_t orig_pmd = *pmd; 3474 barrier(); 3475 if (pmd_trans_huge(orig_pmd)) { 3476 if (flags & FAULT_FLAG_WRITE && 3477 !pmd_write(orig_pmd) && 3478 !pmd_trans_splitting(orig_pmd)) 3479 return do_huge_pmd_wp_page(mm, vma, address, 3480 pmd, orig_pmd); 3481 return 0; 3482 } 3483 } 3484 3485 /* 3486 * Use __pte_alloc instead of pte_alloc_map, because we can't 3487 * run pte_offset_map on the pmd, if an huge pmd could 3488 * materialize from under us from a different thread. 3489 */ 3490 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address)) 3491 return VM_FAULT_OOM; 3492 /* if an huge pmd materialized from under us just retry later */ 3493 if (unlikely(pmd_trans_huge(*pmd))) 3494 return 0; 3495 /* 3496 * A regular pmd is established and it can't morph into a huge pmd 3497 * from under us anymore at this point because we hold the mmap_sem 3498 * read mode and khugepaged takes it in write mode. So now it's 3499 * safe to run pte_offset_map(). 3500 */ 3501 pte = pte_offset_map(pmd, address); 3502 3503 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3504 } 3505 3506 #ifndef __PAGETABLE_PUD_FOLDED 3507 /* 3508 * Allocate page upper directory. 3509 * We've already handled the fast-path in-line. 3510 */ 3511 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3512 { 3513 pud_t *new = pud_alloc_one(mm, address); 3514 if (!new) 3515 return -ENOMEM; 3516 3517 smp_wmb(); /* See comment in __pte_alloc */ 3518 3519 spin_lock(&mm->page_table_lock); 3520 if (pgd_present(*pgd)) /* Another has populated it */ 3521 pud_free(mm, new); 3522 else 3523 pgd_populate(mm, pgd, new); 3524 spin_unlock(&mm->page_table_lock); 3525 return 0; 3526 } 3527 #endif /* __PAGETABLE_PUD_FOLDED */ 3528 3529 #ifndef __PAGETABLE_PMD_FOLDED 3530 /* 3531 * Allocate page middle directory. 3532 * We've already handled the fast-path in-line. 3533 */ 3534 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3535 { 3536 pmd_t *new = pmd_alloc_one(mm, address); 3537 if (!new) 3538 return -ENOMEM; 3539 3540 smp_wmb(); /* See comment in __pte_alloc */ 3541 3542 spin_lock(&mm->page_table_lock); 3543 #ifndef __ARCH_HAS_4LEVEL_HACK 3544 if (pud_present(*pud)) /* Another has populated it */ 3545 pmd_free(mm, new); 3546 else 3547 pud_populate(mm, pud, new); 3548 #else 3549 if (pgd_present(*pud)) /* Another has populated it */ 3550 pmd_free(mm, new); 3551 else 3552 pgd_populate(mm, pud, new); 3553 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3554 spin_unlock(&mm->page_table_lock); 3555 return 0; 3556 } 3557 #endif /* __PAGETABLE_PMD_FOLDED */ 3558 3559 int make_pages_present(unsigned long addr, unsigned long end) 3560 { 3561 int ret, len, write; 3562 struct vm_area_struct * vma; 3563 3564 vma = find_vma(current->mm, addr); 3565 if (!vma) 3566 return -ENOMEM; 3567 /* 3568 * We want to touch writable mappings with a write fault in order 3569 * to break COW, except for shared mappings because these don't COW 3570 * and we would not want to dirty them for nothing. 3571 */ 3572 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE; 3573 BUG_ON(addr >= end); 3574 BUG_ON(end > vma->vm_end); 3575 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3576 ret = get_user_pages(current, current->mm, addr, 3577 len, write, 0, NULL, NULL); 3578 if (ret < 0) 3579 return ret; 3580 return ret == len ? 0 : -EFAULT; 3581 } 3582 3583 #if !defined(__HAVE_ARCH_GATE_AREA) 3584 3585 #if defined(AT_SYSINFO_EHDR) 3586 static struct vm_area_struct gate_vma; 3587 3588 static int __init gate_vma_init(void) 3589 { 3590 gate_vma.vm_mm = NULL; 3591 gate_vma.vm_start = FIXADDR_USER_START; 3592 gate_vma.vm_end = FIXADDR_USER_END; 3593 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3594 gate_vma.vm_page_prot = __P101; 3595 /* 3596 * Make sure the vDSO gets into every core dump. 3597 * Dumping its contents makes post-mortem fully interpretable later 3598 * without matching up the same kernel and hardware config to see 3599 * what PC values meant. 3600 */ 3601 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3602 return 0; 3603 } 3604 __initcall(gate_vma_init); 3605 #endif 3606 3607 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3608 { 3609 #ifdef AT_SYSINFO_EHDR 3610 return &gate_vma; 3611 #else 3612 return NULL; 3613 #endif 3614 } 3615 3616 int in_gate_area_no_mm(unsigned long addr) 3617 { 3618 #ifdef AT_SYSINFO_EHDR 3619 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3620 return 1; 3621 #endif 3622 return 0; 3623 } 3624 3625 #endif /* __HAVE_ARCH_GATE_AREA */ 3626 3627 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3628 pte_t **ptepp, spinlock_t **ptlp) 3629 { 3630 pgd_t *pgd; 3631 pud_t *pud; 3632 pmd_t *pmd; 3633 pte_t *ptep; 3634 3635 pgd = pgd_offset(mm, address); 3636 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3637 goto out; 3638 3639 pud = pud_offset(pgd, address); 3640 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3641 goto out; 3642 3643 pmd = pmd_offset(pud, address); 3644 VM_BUG_ON(pmd_trans_huge(*pmd)); 3645 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3646 goto out; 3647 3648 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3649 if (pmd_huge(*pmd)) 3650 goto out; 3651 3652 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3653 if (!ptep) 3654 goto out; 3655 if (!pte_present(*ptep)) 3656 goto unlock; 3657 *ptepp = ptep; 3658 return 0; 3659 unlock: 3660 pte_unmap_unlock(ptep, *ptlp); 3661 out: 3662 return -EINVAL; 3663 } 3664 3665 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3666 pte_t **ptepp, spinlock_t **ptlp) 3667 { 3668 int res; 3669 3670 /* (void) is needed to make gcc happy */ 3671 (void) __cond_lock(*ptlp, 3672 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3673 return res; 3674 } 3675 3676 /** 3677 * follow_pfn - look up PFN at a user virtual address 3678 * @vma: memory mapping 3679 * @address: user virtual address 3680 * @pfn: location to store found PFN 3681 * 3682 * Only IO mappings and raw PFN mappings are allowed. 3683 * 3684 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3685 */ 3686 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3687 unsigned long *pfn) 3688 { 3689 int ret = -EINVAL; 3690 spinlock_t *ptl; 3691 pte_t *ptep; 3692 3693 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3694 return ret; 3695 3696 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3697 if (ret) 3698 return ret; 3699 *pfn = pte_pfn(*ptep); 3700 pte_unmap_unlock(ptep, ptl); 3701 return 0; 3702 } 3703 EXPORT_SYMBOL(follow_pfn); 3704 3705 #ifdef CONFIG_HAVE_IOREMAP_PROT 3706 int follow_phys(struct vm_area_struct *vma, 3707 unsigned long address, unsigned int flags, 3708 unsigned long *prot, resource_size_t *phys) 3709 { 3710 int ret = -EINVAL; 3711 pte_t *ptep, pte; 3712 spinlock_t *ptl; 3713 3714 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3715 goto out; 3716 3717 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3718 goto out; 3719 pte = *ptep; 3720 3721 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3722 goto unlock; 3723 3724 *prot = pgprot_val(pte_pgprot(pte)); 3725 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3726 3727 ret = 0; 3728 unlock: 3729 pte_unmap_unlock(ptep, ptl); 3730 out: 3731 return ret; 3732 } 3733 3734 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3735 void *buf, int len, int write) 3736 { 3737 resource_size_t phys_addr; 3738 unsigned long prot = 0; 3739 void __iomem *maddr; 3740 int offset = addr & (PAGE_SIZE-1); 3741 3742 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3743 return -EINVAL; 3744 3745 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3746 if (write) 3747 memcpy_toio(maddr + offset, buf, len); 3748 else 3749 memcpy_fromio(buf, maddr + offset, len); 3750 iounmap(maddr); 3751 3752 return len; 3753 } 3754 #endif 3755 3756 /* 3757 * Access another process' address space as given in mm. If non-NULL, use the 3758 * given task for page fault accounting. 3759 */ 3760 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3761 unsigned long addr, void *buf, int len, int write) 3762 { 3763 struct vm_area_struct *vma; 3764 void *old_buf = buf; 3765 3766 down_read(&mm->mmap_sem); 3767 /* ignore errors, just check how much was successfully transferred */ 3768 while (len) { 3769 int bytes, ret, offset; 3770 void *maddr; 3771 struct page *page = NULL; 3772 3773 ret = get_user_pages(tsk, mm, addr, 1, 3774 write, 1, &page, &vma); 3775 if (ret <= 0) { 3776 /* 3777 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3778 * we can access using slightly different code. 3779 */ 3780 #ifdef CONFIG_HAVE_IOREMAP_PROT 3781 vma = find_vma(mm, addr); 3782 if (!vma || vma->vm_start > addr) 3783 break; 3784 if (vma->vm_ops && vma->vm_ops->access) 3785 ret = vma->vm_ops->access(vma, addr, buf, 3786 len, write); 3787 if (ret <= 0) 3788 #endif 3789 break; 3790 bytes = ret; 3791 } else { 3792 bytes = len; 3793 offset = addr & (PAGE_SIZE-1); 3794 if (bytes > PAGE_SIZE-offset) 3795 bytes = PAGE_SIZE-offset; 3796 3797 maddr = kmap(page); 3798 if (write) { 3799 copy_to_user_page(vma, page, addr, 3800 maddr + offset, buf, bytes); 3801 set_page_dirty_lock(page); 3802 } else { 3803 copy_from_user_page(vma, page, addr, 3804 buf, maddr + offset, bytes); 3805 } 3806 kunmap(page); 3807 page_cache_release(page); 3808 } 3809 len -= bytes; 3810 buf += bytes; 3811 addr += bytes; 3812 } 3813 up_read(&mm->mmap_sem); 3814 3815 return buf - old_buf; 3816 } 3817 3818 /** 3819 * access_remote_vm - access another process' address space 3820 * @mm: the mm_struct of the target address space 3821 * @addr: start address to access 3822 * @buf: source or destination buffer 3823 * @len: number of bytes to transfer 3824 * @write: whether the access is a write 3825 * 3826 * The caller must hold a reference on @mm. 3827 */ 3828 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3829 void *buf, int len, int write) 3830 { 3831 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3832 } 3833 3834 /* 3835 * Access another process' address space. 3836 * Source/target buffer must be kernel space, 3837 * Do not walk the page table directly, use get_user_pages 3838 */ 3839 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3840 void *buf, int len, int write) 3841 { 3842 struct mm_struct *mm; 3843 int ret; 3844 3845 mm = get_task_mm(tsk); 3846 if (!mm) 3847 return 0; 3848 3849 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3850 mmput(mm); 3851 3852 return ret; 3853 } 3854 3855 /* 3856 * Print the name of a VMA. 3857 */ 3858 void print_vma_addr(char *prefix, unsigned long ip) 3859 { 3860 struct mm_struct *mm = current->mm; 3861 struct vm_area_struct *vma; 3862 3863 /* 3864 * Do not print if we are in atomic 3865 * contexts (in exception stacks, etc.): 3866 */ 3867 if (preempt_count()) 3868 return; 3869 3870 down_read(&mm->mmap_sem); 3871 vma = find_vma(mm, ip); 3872 if (vma && vma->vm_file) { 3873 struct file *f = vma->vm_file; 3874 char *buf = (char *)__get_free_page(GFP_KERNEL); 3875 if (buf) { 3876 char *p, *s; 3877 3878 p = d_path(&f->f_path, buf, PAGE_SIZE); 3879 if (IS_ERR(p)) 3880 p = "?"; 3881 s = strrchr(p, '/'); 3882 if (s) 3883 p = s+1; 3884 printk("%s%s[%lx+%lx]", prefix, p, 3885 vma->vm_start, 3886 vma->vm_end - vma->vm_start); 3887 free_page((unsigned long)buf); 3888 } 3889 } 3890 up_read(¤t->mm->mmap_sem); 3891 } 3892 3893 #ifdef CONFIG_PROVE_LOCKING 3894 void might_fault(void) 3895 { 3896 /* 3897 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3898 * holding the mmap_sem, this is safe because kernel memory doesn't 3899 * get paged out, therefore we'll never actually fault, and the 3900 * below annotations will generate false positives. 3901 */ 3902 if (segment_eq(get_fs(), KERNEL_DS)) 3903 return; 3904 3905 might_sleep(); 3906 /* 3907 * it would be nicer only to annotate paths which are not under 3908 * pagefault_disable, however that requires a larger audit and 3909 * providing helpers like get_user_atomic. 3910 */ 3911 if (!in_atomic() && current->mm) 3912 might_lock_read(¤t->mm->mmap_sem); 3913 } 3914 EXPORT_SYMBOL(might_fault); 3915 #endif 3916 3917 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3918 static void clear_gigantic_page(struct page *page, 3919 unsigned long addr, 3920 unsigned int pages_per_huge_page) 3921 { 3922 int i; 3923 struct page *p = page; 3924 3925 might_sleep(); 3926 for (i = 0; i < pages_per_huge_page; 3927 i++, p = mem_map_next(p, page, i)) { 3928 cond_resched(); 3929 clear_user_highpage(p, addr + i * PAGE_SIZE); 3930 } 3931 } 3932 void clear_huge_page(struct page *page, 3933 unsigned long addr, unsigned int pages_per_huge_page) 3934 { 3935 int i; 3936 3937 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3938 clear_gigantic_page(page, addr, pages_per_huge_page); 3939 return; 3940 } 3941 3942 might_sleep(); 3943 for (i = 0; i < pages_per_huge_page; i++) { 3944 cond_resched(); 3945 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3946 } 3947 } 3948 3949 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3950 unsigned long addr, 3951 struct vm_area_struct *vma, 3952 unsigned int pages_per_huge_page) 3953 { 3954 int i; 3955 struct page *dst_base = dst; 3956 struct page *src_base = src; 3957 3958 for (i = 0; i < pages_per_huge_page; ) { 3959 cond_resched(); 3960 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3961 3962 i++; 3963 dst = mem_map_next(dst, dst_base, i); 3964 src = mem_map_next(src, src_base, i); 3965 } 3966 } 3967 3968 void copy_user_huge_page(struct page *dst, struct page *src, 3969 unsigned long addr, struct vm_area_struct *vma, 3970 unsigned int pages_per_huge_page) 3971 { 3972 int i; 3973 3974 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3975 copy_user_gigantic_page(dst, src, addr, vma, 3976 pages_per_huge_page); 3977 return; 3978 } 3979 3980 might_sleep(); 3981 for (i = 0; i < pages_per_huge_page; i++) { 3982 cond_resched(); 3983 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3984 } 3985 } 3986 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3987