1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 75 #include <trace/events/kmem.h> 76 77 #include <asm/io.h> 78 #include <asm/mmu_context.h> 79 #include <asm/pgalloc.h> 80 #include <linux/uaccess.h> 81 #include <asm/tlb.h> 82 #include <asm/tlbflush.h> 83 84 #include "internal.h" 85 86 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 87 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 88 #endif 89 90 #ifndef CONFIG_NEED_MULTIPLE_NODES 91 /* use the per-pgdat data instead for discontigmem - mbligh */ 92 unsigned long max_mapnr; 93 EXPORT_SYMBOL(max_mapnr); 94 95 struct page *mem_map; 96 EXPORT_SYMBOL(mem_map); 97 #endif 98 99 /* 100 * A number of key systems in x86 including ioremap() rely on the assumption 101 * that high_memory defines the upper bound on direct map memory, then end 102 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 103 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 104 * and ZONE_HIGHMEM. 105 */ 106 void *high_memory; 107 EXPORT_SYMBOL(high_memory); 108 109 /* 110 * Randomize the address space (stacks, mmaps, brk, etc.). 111 * 112 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 113 * as ancient (libc5 based) binaries can segfault. ) 114 */ 115 int randomize_va_space __read_mostly = 116 #ifdef CONFIG_COMPAT_BRK 117 1; 118 #else 119 2; 120 #endif 121 122 #ifndef arch_faults_on_old_pte 123 static inline bool arch_faults_on_old_pte(void) 124 { 125 /* 126 * Those arches which don't have hw access flag feature need to 127 * implement their own helper. By default, "true" means pagefault 128 * will be hit on old pte. 129 */ 130 return true; 131 } 132 #endif 133 134 static int __init disable_randmaps(char *s) 135 { 136 randomize_va_space = 0; 137 return 1; 138 } 139 __setup("norandmaps", disable_randmaps); 140 141 unsigned long zero_pfn __read_mostly; 142 EXPORT_SYMBOL(zero_pfn); 143 144 unsigned long highest_memmap_pfn __read_mostly; 145 146 /* 147 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 148 */ 149 static int __init init_zero_pfn(void) 150 { 151 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 152 return 0; 153 } 154 core_initcall(init_zero_pfn); 155 156 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 157 { 158 trace_rss_stat(mm, member, count); 159 } 160 161 #if defined(SPLIT_RSS_COUNTING) 162 163 void sync_mm_rss(struct mm_struct *mm) 164 { 165 int i; 166 167 for (i = 0; i < NR_MM_COUNTERS; i++) { 168 if (current->rss_stat.count[i]) { 169 add_mm_counter(mm, i, current->rss_stat.count[i]); 170 current->rss_stat.count[i] = 0; 171 } 172 } 173 current->rss_stat.events = 0; 174 } 175 176 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 177 { 178 struct task_struct *task = current; 179 180 if (likely(task->mm == mm)) 181 task->rss_stat.count[member] += val; 182 else 183 add_mm_counter(mm, member, val); 184 } 185 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 186 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 187 188 /* sync counter once per 64 page faults */ 189 #define TASK_RSS_EVENTS_THRESH (64) 190 static void check_sync_rss_stat(struct task_struct *task) 191 { 192 if (unlikely(task != current)) 193 return; 194 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 195 sync_mm_rss(task->mm); 196 } 197 #else /* SPLIT_RSS_COUNTING */ 198 199 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 200 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 201 202 static void check_sync_rss_stat(struct task_struct *task) 203 { 204 } 205 206 #endif /* SPLIT_RSS_COUNTING */ 207 208 /* 209 * Note: this doesn't free the actual pages themselves. That 210 * has been handled earlier when unmapping all the memory regions. 211 */ 212 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 213 unsigned long addr) 214 { 215 pgtable_t token = pmd_pgtable(*pmd); 216 pmd_clear(pmd); 217 pte_free_tlb(tlb, token, addr); 218 mm_dec_nr_ptes(tlb->mm); 219 } 220 221 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 222 unsigned long addr, unsigned long end, 223 unsigned long floor, unsigned long ceiling) 224 { 225 pmd_t *pmd; 226 unsigned long next; 227 unsigned long start; 228 229 start = addr; 230 pmd = pmd_offset(pud, addr); 231 do { 232 next = pmd_addr_end(addr, end); 233 if (pmd_none_or_clear_bad(pmd)) 234 continue; 235 free_pte_range(tlb, pmd, addr); 236 } while (pmd++, addr = next, addr != end); 237 238 start &= PUD_MASK; 239 if (start < floor) 240 return; 241 if (ceiling) { 242 ceiling &= PUD_MASK; 243 if (!ceiling) 244 return; 245 } 246 if (end - 1 > ceiling - 1) 247 return; 248 249 pmd = pmd_offset(pud, start); 250 pud_clear(pud); 251 pmd_free_tlb(tlb, pmd, start); 252 mm_dec_nr_pmds(tlb->mm); 253 } 254 255 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 256 unsigned long addr, unsigned long end, 257 unsigned long floor, unsigned long ceiling) 258 { 259 pud_t *pud; 260 unsigned long next; 261 unsigned long start; 262 263 start = addr; 264 pud = pud_offset(p4d, addr); 265 do { 266 next = pud_addr_end(addr, end); 267 if (pud_none_or_clear_bad(pud)) 268 continue; 269 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 270 } while (pud++, addr = next, addr != end); 271 272 start &= P4D_MASK; 273 if (start < floor) 274 return; 275 if (ceiling) { 276 ceiling &= P4D_MASK; 277 if (!ceiling) 278 return; 279 } 280 if (end - 1 > ceiling - 1) 281 return; 282 283 pud = pud_offset(p4d, start); 284 p4d_clear(p4d); 285 pud_free_tlb(tlb, pud, start); 286 mm_dec_nr_puds(tlb->mm); 287 } 288 289 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 290 unsigned long addr, unsigned long end, 291 unsigned long floor, unsigned long ceiling) 292 { 293 p4d_t *p4d; 294 unsigned long next; 295 unsigned long start; 296 297 start = addr; 298 p4d = p4d_offset(pgd, addr); 299 do { 300 next = p4d_addr_end(addr, end); 301 if (p4d_none_or_clear_bad(p4d)) 302 continue; 303 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 304 } while (p4d++, addr = next, addr != end); 305 306 start &= PGDIR_MASK; 307 if (start < floor) 308 return; 309 if (ceiling) { 310 ceiling &= PGDIR_MASK; 311 if (!ceiling) 312 return; 313 } 314 if (end - 1 > ceiling - 1) 315 return; 316 317 p4d = p4d_offset(pgd, start); 318 pgd_clear(pgd); 319 p4d_free_tlb(tlb, p4d, start); 320 } 321 322 /* 323 * This function frees user-level page tables of a process. 324 */ 325 void free_pgd_range(struct mmu_gather *tlb, 326 unsigned long addr, unsigned long end, 327 unsigned long floor, unsigned long ceiling) 328 { 329 pgd_t *pgd; 330 unsigned long next; 331 332 /* 333 * The next few lines have given us lots of grief... 334 * 335 * Why are we testing PMD* at this top level? Because often 336 * there will be no work to do at all, and we'd prefer not to 337 * go all the way down to the bottom just to discover that. 338 * 339 * Why all these "- 1"s? Because 0 represents both the bottom 340 * of the address space and the top of it (using -1 for the 341 * top wouldn't help much: the masks would do the wrong thing). 342 * The rule is that addr 0 and floor 0 refer to the bottom of 343 * the address space, but end 0 and ceiling 0 refer to the top 344 * Comparisons need to use "end - 1" and "ceiling - 1" (though 345 * that end 0 case should be mythical). 346 * 347 * Wherever addr is brought up or ceiling brought down, we must 348 * be careful to reject "the opposite 0" before it confuses the 349 * subsequent tests. But what about where end is brought down 350 * by PMD_SIZE below? no, end can't go down to 0 there. 351 * 352 * Whereas we round start (addr) and ceiling down, by different 353 * masks at different levels, in order to test whether a table 354 * now has no other vmas using it, so can be freed, we don't 355 * bother to round floor or end up - the tests don't need that. 356 */ 357 358 addr &= PMD_MASK; 359 if (addr < floor) { 360 addr += PMD_SIZE; 361 if (!addr) 362 return; 363 } 364 if (ceiling) { 365 ceiling &= PMD_MASK; 366 if (!ceiling) 367 return; 368 } 369 if (end - 1 > ceiling - 1) 370 end -= PMD_SIZE; 371 if (addr > end - 1) 372 return; 373 /* 374 * We add page table cache pages with PAGE_SIZE, 375 * (see pte_free_tlb()), flush the tlb if we need 376 */ 377 tlb_change_page_size(tlb, PAGE_SIZE); 378 pgd = pgd_offset(tlb->mm, addr); 379 do { 380 next = pgd_addr_end(addr, end); 381 if (pgd_none_or_clear_bad(pgd)) 382 continue; 383 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 384 } while (pgd++, addr = next, addr != end); 385 } 386 387 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 388 unsigned long floor, unsigned long ceiling) 389 { 390 while (vma) { 391 struct vm_area_struct *next = vma->vm_next; 392 unsigned long addr = vma->vm_start; 393 394 /* 395 * Hide vma from rmap and truncate_pagecache before freeing 396 * pgtables 397 */ 398 unlink_anon_vmas(vma); 399 unlink_file_vma(vma); 400 401 if (is_vm_hugetlb_page(vma)) { 402 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 403 floor, next ? next->vm_start : ceiling); 404 } else { 405 /* 406 * Optimization: gather nearby vmas into one call down 407 */ 408 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 409 && !is_vm_hugetlb_page(next)) { 410 vma = next; 411 next = vma->vm_next; 412 unlink_anon_vmas(vma); 413 unlink_file_vma(vma); 414 } 415 free_pgd_range(tlb, addr, vma->vm_end, 416 floor, next ? next->vm_start : ceiling); 417 } 418 vma = next; 419 } 420 } 421 422 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 423 { 424 spinlock_t *ptl; 425 pgtable_t new = pte_alloc_one(mm); 426 if (!new) 427 return -ENOMEM; 428 429 /* 430 * Ensure all pte setup (eg. pte page lock and page clearing) are 431 * visible before the pte is made visible to other CPUs by being 432 * put into page tables. 433 * 434 * The other side of the story is the pointer chasing in the page 435 * table walking code (when walking the page table without locking; 436 * ie. most of the time). Fortunately, these data accesses consist 437 * of a chain of data-dependent loads, meaning most CPUs (alpha 438 * being the notable exception) will already guarantee loads are 439 * seen in-order. See the alpha page table accessors for the 440 * smp_rmb() barriers in page table walking code. 441 */ 442 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 443 444 ptl = pmd_lock(mm, pmd); 445 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 446 mm_inc_nr_ptes(mm); 447 pmd_populate(mm, pmd, new); 448 new = NULL; 449 } 450 spin_unlock(ptl); 451 if (new) 452 pte_free(mm, new); 453 return 0; 454 } 455 456 int __pte_alloc_kernel(pmd_t *pmd) 457 { 458 pte_t *new = pte_alloc_one_kernel(&init_mm); 459 if (!new) 460 return -ENOMEM; 461 462 smp_wmb(); /* See comment in __pte_alloc */ 463 464 spin_lock(&init_mm.page_table_lock); 465 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 466 pmd_populate_kernel(&init_mm, pmd, new); 467 new = NULL; 468 } 469 spin_unlock(&init_mm.page_table_lock); 470 if (new) 471 pte_free_kernel(&init_mm, new); 472 return 0; 473 } 474 475 static inline void init_rss_vec(int *rss) 476 { 477 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 478 } 479 480 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 481 { 482 int i; 483 484 if (current->mm == mm) 485 sync_mm_rss(mm); 486 for (i = 0; i < NR_MM_COUNTERS; i++) 487 if (rss[i]) 488 add_mm_counter(mm, i, rss[i]); 489 } 490 491 /* 492 * This function is called to print an error when a bad pte 493 * is found. For example, we might have a PFN-mapped pte in 494 * a region that doesn't allow it. 495 * 496 * The calling function must still handle the error. 497 */ 498 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 499 pte_t pte, struct page *page) 500 { 501 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 502 p4d_t *p4d = p4d_offset(pgd, addr); 503 pud_t *pud = pud_offset(p4d, addr); 504 pmd_t *pmd = pmd_offset(pud, addr); 505 struct address_space *mapping; 506 pgoff_t index; 507 static unsigned long resume; 508 static unsigned long nr_shown; 509 static unsigned long nr_unshown; 510 511 /* 512 * Allow a burst of 60 reports, then keep quiet for that minute; 513 * or allow a steady drip of one report per second. 514 */ 515 if (nr_shown == 60) { 516 if (time_before(jiffies, resume)) { 517 nr_unshown++; 518 return; 519 } 520 if (nr_unshown) { 521 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 522 nr_unshown); 523 nr_unshown = 0; 524 } 525 nr_shown = 0; 526 } 527 if (nr_shown++ == 0) 528 resume = jiffies + 60 * HZ; 529 530 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 531 index = linear_page_index(vma, addr); 532 533 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 534 current->comm, 535 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 536 if (page) 537 dump_page(page, "bad pte"); 538 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 539 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 540 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 541 vma->vm_file, 542 vma->vm_ops ? vma->vm_ops->fault : NULL, 543 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 544 mapping ? mapping->a_ops->readpage : NULL); 545 dump_stack(); 546 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 547 } 548 549 /* 550 * vm_normal_page -- This function gets the "struct page" associated with a pte. 551 * 552 * "Special" mappings do not wish to be associated with a "struct page" (either 553 * it doesn't exist, or it exists but they don't want to touch it). In this 554 * case, NULL is returned here. "Normal" mappings do have a struct page. 555 * 556 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 557 * pte bit, in which case this function is trivial. Secondly, an architecture 558 * may not have a spare pte bit, which requires a more complicated scheme, 559 * described below. 560 * 561 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 562 * special mapping (even if there are underlying and valid "struct pages"). 563 * COWed pages of a VM_PFNMAP are always normal. 564 * 565 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 566 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 567 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 568 * mapping will always honor the rule 569 * 570 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 571 * 572 * And for normal mappings this is false. 573 * 574 * This restricts such mappings to be a linear translation from virtual address 575 * to pfn. To get around this restriction, we allow arbitrary mappings so long 576 * as the vma is not a COW mapping; in that case, we know that all ptes are 577 * special (because none can have been COWed). 578 * 579 * 580 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 581 * 582 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 583 * page" backing, however the difference is that _all_ pages with a struct 584 * page (that is, those where pfn_valid is true) are refcounted and considered 585 * normal pages by the VM. The disadvantage is that pages are refcounted 586 * (which can be slower and simply not an option for some PFNMAP users). The 587 * advantage is that we don't have to follow the strict linearity rule of 588 * PFNMAP mappings in order to support COWable mappings. 589 * 590 */ 591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 592 pte_t pte) 593 { 594 unsigned long pfn = pte_pfn(pte); 595 596 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 597 if (likely(!pte_special(pte))) 598 goto check_pfn; 599 if (vma->vm_ops && vma->vm_ops->find_special_page) 600 return vma->vm_ops->find_special_page(vma, addr); 601 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 602 return NULL; 603 if (is_zero_pfn(pfn)) 604 return NULL; 605 if (pte_devmap(pte)) 606 return NULL; 607 608 print_bad_pte(vma, addr, pte, NULL); 609 return NULL; 610 } 611 612 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 613 614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 615 if (vma->vm_flags & VM_MIXEDMAP) { 616 if (!pfn_valid(pfn)) 617 return NULL; 618 goto out; 619 } else { 620 unsigned long off; 621 off = (addr - vma->vm_start) >> PAGE_SHIFT; 622 if (pfn == vma->vm_pgoff + off) 623 return NULL; 624 if (!is_cow_mapping(vma->vm_flags)) 625 return NULL; 626 } 627 } 628 629 if (is_zero_pfn(pfn)) 630 return NULL; 631 632 check_pfn: 633 if (unlikely(pfn > highest_memmap_pfn)) { 634 print_bad_pte(vma, addr, pte, NULL); 635 return NULL; 636 } 637 638 /* 639 * NOTE! We still have PageReserved() pages in the page tables. 640 * eg. VDSO mappings can cause them to exist. 641 */ 642 out: 643 return pfn_to_page(pfn); 644 } 645 646 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 647 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 648 pmd_t pmd) 649 { 650 unsigned long pfn = pmd_pfn(pmd); 651 652 /* 653 * There is no pmd_special() but there may be special pmds, e.g. 654 * in a direct-access (dax) mapping, so let's just replicate the 655 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 656 */ 657 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 658 if (vma->vm_flags & VM_MIXEDMAP) { 659 if (!pfn_valid(pfn)) 660 return NULL; 661 goto out; 662 } else { 663 unsigned long off; 664 off = (addr - vma->vm_start) >> PAGE_SHIFT; 665 if (pfn == vma->vm_pgoff + off) 666 return NULL; 667 if (!is_cow_mapping(vma->vm_flags)) 668 return NULL; 669 } 670 } 671 672 if (pmd_devmap(pmd)) 673 return NULL; 674 if (is_huge_zero_pmd(pmd)) 675 return NULL; 676 if (unlikely(pfn > highest_memmap_pfn)) 677 return NULL; 678 679 /* 680 * NOTE! We still have PageReserved() pages in the page tables. 681 * eg. VDSO mappings can cause them to exist. 682 */ 683 out: 684 return pfn_to_page(pfn); 685 } 686 #endif 687 688 /* 689 * copy one vm_area from one task to the other. Assumes the page tables 690 * already present in the new task to be cleared in the whole range 691 * covered by this vma. 692 */ 693 694 static inline unsigned long 695 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 696 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 697 unsigned long addr, int *rss) 698 { 699 unsigned long vm_flags = vma->vm_flags; 700 pte_t pte = *src_pte; 701 struct page *page; 702 703 /* pte contains position in swap or file, so copy. */ 704 if (unlikely(!pte_present(pte))) { 705 swp_entry_t entry = pte_to_swp_entry(pte); 706 707 if (likely(!non_swap_entry(entry))) { 708 if (swap_duplicate(entry) < 0) 709 return entry.val; 710 711 /* make sure dst_mm is on swapoff's mmlist. */ 712 if (unlikely(list_empty(&dst_mm->mmlist))) { 713 spin_lock(&mmlist_lock); 714 if (list_empty(&dst_mm->mmlist)) 715 list_add(&dst_mm->mmlist, 716 &src_mm->mmlist); 717 spin_unlock(&mmlist_lock); 718 } 719 rss[MM_SWAPENTS]++; 720 } else if (is_migration_entry(entry)) { 721 page = migration_entry_to_page(entry); 722 723 rss[mm_counter(page)]++; 724 725 if (is_write_migration_entry(entry) && 726 is_cow_mapping(vm_flags)) { 727 /* 728 * COW mappings require pages in both 729 * parent and child to be set to read. 730 */ 731 make_migration_entry_read(&entry); 732 pte = swp_entry_to_pte(entry); 733 if (pte_swp_soft_dirty(*src_pte)) 734 pte = pte_swp_mksoft_dirty(pte); 735 if (pte_swp_uffd_wp(*src_pte)) 736 pte = pte_swp_mkuffd_wp(pte); 737 set_pte_at(src_mm, addr, src_pte, pte); 738 } 739 } else if (is_device_private_entry(entry)) { 740 page = device_private_entry_to_page(entry); 741 742 /* 743 * Update rss count even for unaddressable pages, as 744 * they should treated just like normal pages in this 745 * respect. 746 * 747 * We will likely want to have some new rss counters 748 * for unaddressable pages, at some point. But for now 749 * keep things as they are. 750 */ 751 get_page(page); 752 rss[mm_counter(page)]++; 753 page_dup_rmap(page, false); 754 755 /* 756 * We do not preserve soft-dirty information, because so 757 * far, checkpoint/restore is the only feature that 758 * requires that. And checkpoint/restore does not work 759 * when a device driver is involved (you cannot easily 760 * save and restore device driver state). 761 */ 762 if (is_write_device_private_entry(entry) && 763 is_cow_mapping(vm_flags)) { 764 make_device_private_entry_read(&entry); 765 pte = swp_entry_to_pte(entry); 766 if (pte_swp_uffd_wp(*src_pte)) 767 pte = pte_swp_mkuffd_wp(pte); 768 set_pte_at(src_mm, addr, src_pte, pte); 769 } 770 } 771 goto out_set_pte; 772 } 773 774 /* 775 * If it's a COW mapping, write protect it both 776 * in the parent and the child 777 */ 778 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 779 ptep_set_wrprotect(src_mm, addr, src_pte); 780 pte = pte_wrprotect(pte); 781 } 782 783 /* 784 * If it's a shared mapping, mark it clean in 785 * the child 786 */ 787 if (vm_flags & VM_SHARED) 788 pte = pte_mkclean(pte); 789 pte = pte_mkold(pte); 790 791 /* 792 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 793 * does not have the VM_UFFD_WP, which means that the uffd 794 * fork event is not enabled. 795 */ 796 if (!(vm_flags & VM_UFFD_WP)) 797 pte = pte_clear_uffd_wp(pte); 798 799 page = vm_normal_page(vma, addr, pte); 800 if (page) { 801 get_page(page); 802 page_dup_rmap(page, false); 803 rss[mm_counter(page)]++; 804 } 805 806 out_set_pte: 807 set_pte_at(dst_mm, addr, dst_pte, pte); 808 return 0; 809 } 810 811 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 812 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 813 unsigned long addr, unsigned long end) 814 { 815 pte_t *orig_src_pte, *orig_dst_pte; 816 pte_t *src_pte, *dst_pte; 817 spinlock_t *src_ptl, *dst_ptl; 818 int progress = 0; 819 int rss[NR_MM_COUNTERS]; 820 swp_entry_t entry = (swp_entry_t){0}; 821 822 again: 823 init_rss_vec(rss); 824 825 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 826 if (!dst_pte) 827 return -ENOMEM; 828 src_pte = pte_offset_map(src_pmd, addr); 829 src_ptl = pte_lockptr(src_mm, src_pmd); 830 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 831 orig_src_pte = src_pte; 832 orig_dst_pte = dst_pte; 833 arch_enter_lazy_mmu_mode(); 834 835 do { 836 /* 837 * We are holding two locks at this point - either of them 838 * could generate latencies in another task on another CPU. 839 */ 840 if (progress >= 32) { 841 progress = 0; 842 if (need_resched() || 843 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 844 break; 845 } 846 if (pte_none(*src_pte)) { 847 progress++; 848 continue; 849 } 850 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 851 vma, addr, rss); 852 if (entry.val) 853 break; 854 progress += 8; 855 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 856 857 arch_leave_lazy_mmu_mode(); 858 spin_unlock(src_ptl); 859 pte_unmap(orig_src_pte); 860 add_mm_rss_vec(dst_mm, rss); 861 pte_unmap_unlock(orig_dst_pte, dst_ptl); 862 cond_resched(); 863 864 if (entry.val) { 865 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 866 return -ENOMEM; 867 progress = 0; 868 } 869 if (addr != end) 870 goto again; 871 return 0; 872 } 873 874 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 875 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 876 unsigned long addr, unsigned long end) 877 { 878 pmd_t *src_pmd, *dst_pmd; 879 unsigned long next; 880 881 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 882 if (!dst_pmd) 883 return -ENOMEM; 884 src_pmd = pmd_offset(src_pud, addr); 885 do { 886 next = pmd_addr_end(addr, end); 887 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 888 || pmd_devmap(*src_pmd)) { 889 int err; 890 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 891 err = copy_huge_pmd(dst_mm, src_mm, 892 dst_pmd, src_pmd, addr, vma); 893 if (err == -ENOMEM) 894 return -ENOMEM; 895 if (!err) 896 continue; 897 /* fall through */ 898 } 899 if (pmd_none_or_clear_bad(src_pmd)) 900 continue; 901 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 902 vma, addr, next)) 903 return -ENOMEM; 904 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 905 return 0; 906 } 907 908 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 909 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 910 unsigned long addr, unsigned long end) 911 { 912 pud_t *src_pud, *dst_pud; 913 unsigned long next; 914 915 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 916 if (!dst_pud) 917 return -ENOMEM; 918 src_pud = pud_offset(src_p4d, addr); 919 do { 920 next = pud_addr_end(addr, end); 921 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 922 int err; 923 924 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 925 err = copy_huge_pud(dst_mm, src_mm, 926 dst_pud, src_pud, addr, vma); 927 if (err == -ENOMEM) 928 return -ENOMEM; 929 if (!err) 930 continue; 931 /* fall through */ 932 } 933 if (pud_none_or_clear_bad(src_pud)) 934 continue; 935 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 936 vma, addr, next)) 937 return -ENOMEM; 938 } while (dst_pud++, src_pud++, addr = next, addr != end); 939 return 0; 940 } 941 942 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 943 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 944 unsigned long addr, unsigned long end) 945 { 946 p4d_t *src_p4d, *dst_p4d; 947 unsigned long next; 948 949 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 950 if (!dst_p4d) 951 return -ENOMEM; 952 src_p4d = p4d_offset(src_pgd, addr); 953 do { 954 next = p4d_addr_end(addr, end); 955 if (p4d_none_or_clear_bad(src_p4d)) 956 continue; 957 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 958 vma, addr, next)) 959 return -ENOMEM; 960 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 961 return 0; 962 } 963 964 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 965 struct vm_area_struct *vma) 966 { 967 pgd_t *src_pgd, *dst_pgd; 968 unsigned long next; 969 unsigned long addr = vma->vm_start; 970 unsigned long end = vma->vm_end; 971 struct mmu_notifier_range range; 972 bool is_cow; 973 int ret; 974 975 /* 976 * Don't copy ptes where a page fault will fill them correctly. 977 * Fork becomes much lighter when there are big shared or private 978 * readonly mappings. The tradeoff is that copy_page_range is more 979 * efficient than faulting. 980 */ 981 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 982 !vma->anon_vma) 983 return 0; 984 985 if (is_vm_hugetlb_page(vma)) 986 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 987 988 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 989 /* 990 * We do not free on error cases below as remove_vma 991 * gets called on error from higher level routine 992 */ 993 ret = track_pfn_copy(vma); 994 if (ret) 995 return ret; 996 } 997 998 /* 999 * We need to invalidate the secondary MMU mappings only when 1000 * there could be a permission downgrade on the ptes of the 1001 * parent mm. And a permission downgrade will only happen if 1002 * is_cow_mapping() returns true. 1003 */ 1004 is_cow = is_cow_mapping(vma->vm_flags); 1005 1006 if (is_cow) { 1007 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1008 0, vma, src_mm, addr, end); 1009 mmu_notifier_invalidate_range_start(&range); 1010 } 1011 1012 ret = 0; 1013 dst_pgd = pgd_offset(dst_mm, addr); 1014 src_pgd = pgd_offset(src_mm, addr); 1015 do { 1016 next = pgd_addr_end(addr, end); 1017 if (pgd_none_or_clear_bad(src_pgd)) 1018 continue; 1019 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1020 vma, addr, next))) { 1021 ret = -ENOMEM; 1022 break; 1023 } 1024 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1025 1026 if (is_cow) 1027 mmu_notifier_invalidate_range_end(&range); 1028 return ret; 1029 } 1030 1031 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1032 struct vm_area_struct *vma, pmd_t *pmd, 1033 unsigned long addr, unsigned long end, 1034 struct zap_details *details) 1035 { 1036 struct mm_struct *mm = tlb->mm; 1037 int force_flush = 0; 1038 int rss[NR_MM_COUNTERS]; 1039 spinlock_t *ptl; 1040 pte_t *start_pte; 1041 pte_t *pte; 1042 swp_entry_t entry; 1043 1044 tlb_change_page_size(tlb, PAGE_SIZE); 1045 again: 1046 init_rss_vec(rss); 1047 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1048 pte = start_pte; 1049 flush_tlb_batched_pending(mm); 1050 arch_enter_lazy_mmu_mode(); 1051 do { 1052 pte_t ptent = *pte; 1053 if (pte_none(ptent)) 1054 continue; 1055 1056 if (need_resched()) 1057 break; 1058 1059 if (pte_present(ptent)) { 1060 struct page *page; 1061 1062 page = vm_normal_page(vma, addr, ptent); 1063 if (unlikely(details) && page) { 1064 /* 1065 * unmap_shared_mapping_pages() wants to 1066 * invalidate cache without truncating: 1067 * unmap shared but keep private pages. 1068 */ 1069 if (details->check_mapping && 1070 details->check_mapping != page_rmapping(page)) 1071 continue; 1072 } 1073 ptent = ptep_get_and_clear_full(mm, addr, pte, 1074 tlb->fullmm); 1075 tlb_remove_tlb_entry(tlb, pte, addr); 1076 if (unlikely(!page)) 1077 continue; 1078 1079 if (!PageAnon(page)) { 1080 if (pte_dirty(ptent)) { 1081 force_flush = 1; 1082 set_page_dirty(page); 1083 } 1084 if (pte_young(ptent) && 1085 likely(!(vma->vm_flags & VM_SEQ_READ))) 1086 mark_page_accessed(page); 1087 } 1088 rss[mm_counter(page)]--; 1089 page_remove_rmap(page, false); 1090 if (unlikely(page_mapcount(page) < 0)) 1091 print_bad_pte(vma, addr, ptent, page); 1092 if (unlikely(__tlb_remove_page(tlb, page))) { 1093 force_flush = 1; 1094 addr += PAGE_SIZE; 1095 break; 1096 } 1097 continue; 1098 } 1099 1100 entry = pte_to_swp_entry(ptent); 1101 if (is_device_private_entry(entry)) { 1102 struct page *page = device_private_entry_to_page(entry); 1103 1104 if (unlikely(details && details->check_mapping)) { 1105 /* 1106 * unmap_shared_mapping_pages() wants to 1107 * invalidate cache without truncating: 1108 * unmap shared but keep private pages. 1109 */ 1110 if (details->check_mapping != 1111 page_rmapping(page)) 1112 continue; 1113 } 1114 1115 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1116 rss[mm_counter(page)]--; 1117 page_remove_rmap(page, false); 1118 put_page(page); 1119 continue; 1120 } 1121 1122 /* If details->check_mapping, we leave swap entries. */ 1123 if (unlikely(details)) 1124 continue; 1125 1126 if (!non_swap_entry(entry)) 1127 rss[MM_SWAPENTS]--; 1128 else if (is_migration_entry(entry)) { 1129 struct page *page; 1130 1131 page = migration_entry_to_page(entry); 1132 rss[mm_counter(page)]--; 1133 } 1134 if (unlikely(!free_swap_and_cache(entry))) 1135 print_bad_pte(vma, addr, ptent, NULL); 1136 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1137 } while (pte++, addr += PAGE_SIZE, addr != end); 1138 1139 add_mm_rss_vec(mm, rss); 1140 arch_leave_lazy_mmu_mode(); 1141 1142 /* Do the actual TLB flush before dropping ptl */ 1143 if (force_flush) 1144 tlb_flush_mmu_tlbonly(tlb); 1145 pte_unmap_unlock(start_pte, ptl); 1146 1147 /* 1148 * If we forced a TLB flush (either due to running out of 1149 * batch buffers or because we needed to flush dirty TLB 1150 * entries before releasing the ptl), free the batched 1151 * memory too. Restart if we didn't do everything. 1152 */ 1153 if (force_flush) { 1154 force_flush = 0; 1155 tlb_flush_mmu(tlb); 1156 } 1157 1158 if (addr != end) { 1159 cond_resched(); 1160 goto again; 1161 } 1162 1163 return addr; 1164 } 1165 1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1167 struct vm_area_struct *vma, pud_t *pud, 1168 unsigned long addr, unsigned long end, 1169 struct zap_details *details) 1170 { 1171 pmd_t *pmd; 1172 unsigned long next; 1173 1174 pmd = pmd_offset(pud, addr); 1175 do { 1176 next = pmd_addr_end(addr, end); 1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1178 if (next - addr != HPAGE_PMD_SIZE) 1179 __split_huge_pmd(vma, pmd, addr, false, NULL); 1180 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1181 goto next; 1182 /* fall through */ 1183 } 1184 /* 1185 * Here there can be other concurrent MADV_DONTNEED or 1186 * trans huge page faults running, and if the pmd is 1187 * none or trans huge it can change under us. This is 1188 * because MADV_DONTNEED holds the mmap_lock in read 1189 * mode. 1190 */ 1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1192 goto next; 1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1194 next: 1195 cond_resched(); 1196 } while (pmd++, addr = next, addr != end); 1197 1198 return addr; 1199 } 1200 1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1202 struct vm_area_struct *vma, p4d_t *p4d, 1203 unsigned long addr, unsigned long end, 1204 struct zap_details *details) 1205 { 1206 pud_t *pud; 1207 unsigned long next; 1208 1209 pud = pud_offset(p4d, addr); 1210 do { 1211 next = pud_addr_end(addr, end); 1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1213 if (next - addr != HPAGE_PUD_SIZE) { 1214 mmap_assert_locked(tlb->mm); 1215 split_huge_pud(vma, pud, addr); 1216 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1217 goto next; 1218 /* fall through */ 1219 } 1220 if (pud_none_or_clear_bad(pud)) 1221 continue; 1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1223 next: 1224 cond_resched(); 1225 } while (pud++, addr = next, addr != end); 1226 1227 return addr; 1228 } 1229 1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1231 struct vm_area_struct *vma, pgd_t *pgd, 1232 unsigned long addr, unsigned long end, 1233 struct zap_details *details) 1234 { 1235 p4d_t *p4d; 1236 unsigned long next; 1237 1238 p4d = p4d_offset(pgd, addr); 1239 do { 1240 next = p4d_addr_end(addr, end); 1241 if (p4d_none_or_clear_bad(p4d)) 1242 continue; 1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1244 } while (p4d++, addr = next, addr != end); 1245 1246 return addr; 1247 } 1248 1249 void unmap_page_range(struct mmu_gather *tlb, 1250 struct vm_area_struct *vma, 1251 unsigned long addr, unsigned long end, 1252 struct zap_details *details) 1253 { 1254 pgd_t *pgd; 1255 unsigned long next; 1256 1257 BUG_ON(addr >= end); 1258 tlb_start_vma(tlb, vma); 1259 pgd = pgd_offset(vma->vm_mm, addr); 1260 do { 1261 next = pgd_addr_end(addr, end); 1262 if (pgd_none_or_clear_bad(pgd)) 1263 continue; 1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1265 } while (pgd++, addr = next, addr != end); 1266 tlb_end_vma(tlb, vma); 1267 } 1268 1269 1270 static void unmap_single_vma(struct mmu_gather *tlb, 1271 struct vm_area_struct *vma, unsigned long start_addr, 1272 unsigned long end_addr, 1273 struct zap_details *details) 1274 { 1275 unsigned long start = max(vma->vm_start, start_addr); 1276 unsigned long end; 1277 1278 if (start >= vma->vm_end) 1279 return; 1280 end = min(vma->vm_end, end_addr); 1281 if (end <= vma->vm_start) 1282 return; 1283 1284 if (vma->vm_file) 1285 uprobe_munmap(vma, start, end); 1286 1287 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1288 untrack_pfn(vma, 0, 0); 1289 1290 if (start != end) { 1291 if (unlikely(is_vm_hugetlb_page(vma))) { 1292 /* 1293 * It is undesirable to test vma->vm_file as it 1294 * should be non-null for valid hugetlb area. 1295 * However, vm_file will be NULL in the error 1296 * cleanup path of mmap_region. When 1297 * hugetlbfs ->mmap method fails, 1298 * mmap_region() nullifies vma->vm_file 1299 * before calling this function to clean up. 1300 * Since no pte has actually been setup, it is 1301 * safe to do nothing in this case. 1302 */ 1303 if (vma->vm_file) { 1304 i_mmap_lock_write(vma->vm_file->f_mapping); 1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1306 i_mmap_unlock_write(vma->vm_file->f_mapping); 1307 } 1308 } else 1309 unmap_page_range(tlb, vma, start, end, details); 1310 } 1311 } 1312 1313 /** 1314 * unmap_vmas - unmap a range of memory covered by a list of vma's 1315 * @tlb: address of the caller's struct mmu_gather 1316 * @vma: the starting vma 1317 * @start_addr: virtual address at which to start unmapping 1318 * @end_addr: virtual address at which to end unmapping 1319 * 1320 * Unmap all pages in the vma list. 1321 * 1322 * Only addresses between `start' and `end' will be unmapped. 1323 * 1324 * The VMA list must be sorted in ascending virtual address order. 1325 * 1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1327 * range after unmap_vmas() returns. So the only responsibility here is to 1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1329 * drops the lock and schedules. 1330 */ 1331 void unmap_vmas(struct mmu_gather *tlb, 1332 struct vm_area_struct *vma, unsigned long start_addr, 1333 unsigned long end_addr) 1334 { 1335 struct mmu_notifier_range range; 1336 1337 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1338 start_addr, end_addr); 1339 mmu_notifier_invalidate_range_start(&range); 1340 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1341 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1342 mmu_notifier_invalidate_range_end(&range); 1343 } 1344 1345 /** 1346 * zap_page_range - remove user pages in a given range 1347 * @vma: vm_area_struct holding the applicable pages 1348 * @start: starting address of pages to zap 1349 * @size: number of bytes to zap 1350 * 1351 * Caller must protect the VMA list 1352 */ 1353 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1354 unsigned long size) 1355 { 1356 struct mmu_notifier_range range; 1357 struct mmu_gather tlb; 1358 1359 lru_add_drain(); 1360 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1361 start, start + size); 1362 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1363 update_hiwater_rss(vma->vm_mm); 1364 mmu_notifier_invalidate_range_start(&range); 1365 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1366 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1367 mmu_notifier_invalidate_range_end(&range); 1368 tlb_finish_mmu(&tlb, start, range.end); 1369 } 1370 1371 /** 1372 * zap_page_range_single - remove user pages in a given range 1373 * @vma: vm_area_struct holding the applicable pages 1374 * @address: starting address of pages to zap 1375 * @size: number of bytes to zap 1376 * @details: details of shared cache invalidation 1377 * 1378 * The range must fit into one VMA. 1379 */ 1380 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1381 unsigned long size, struct zap_details *details) 1382 { 1383 struct mmu_notifier_range range; 1384 struct mmu_gather tlb; 1385 1386 lru_add_drain(); 1387 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1388 address, address + size); 1389 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1390 update_hiwater_rss(vma->vm_mm); 1391 mmu_notifier_invalidate_range_start(&range); 1392 unmap_single_vma(&tlb, vma, address, range.end, details); 1393 mmu_notifier_invalidate_range_end(&range); 1394 tlb_finish_mmu(&tlb, address, range.end); 1395 } 1396 1397 /** 1398 * zap_vma_ptes - remove ptes mapping the vma 1399 * @vma: vm_area_struct holding ptes to be zapped 1400 * @address: starting address of pages to zap 1401 * @size: number of bytes to zap 1402 * 1403 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1404 * 1405 * The entire address range must be fully contained within the vma. 1406 * 1407 */ 1408 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1409 unsigned long size) 1410 { 1411 if (address < vma->vm_start || address + size > vma->vm_end || 1412 !(vma->vm_flags & VM_PFNMAP)) 1413 return; 1414 1415 zap_page_range_single(vma, address, size, NULL); 1416 } 1417 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1418 1419 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1420 { 1421 pgd_t *pgd; 1422 p4d_t *p4d; 1423 pud_t *pud; 1424 pmd_t *pmd; 1425 1426 pgd = pgd_offset(mm, addr); 1427 p4d = p4d_alloc(mm, pgd, addr); 1428 if (!p4d) 1429 return NULL; 1430 pud = pud_alloc(mm, p4d, addr); 1431 if (!pud) 1432 return NULL; 1433 pmd = pmd_alloc(mm, pud, addr); 1434 if (!pmd) 1435 return NULL; 1436 1437 VM_BUG_ON(pmd_trans_huge(*pmd)); 1438 return pmd; 1439 } 1440 1441 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1442 spinlock_t **ptl) 1443 { 1444 pmd_t *pmd = walk_to_pmd(mm, addr); 1445 1446 if (!pmd) 1447 return NULL; 1448 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1449 } 1450 1451 static int validate_page_before_insert(struct page *page) 1452 { 1453 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1454 return -EINVAL; 1455 flush_dcache_page(page); 1456 return 0; 1457 } 1458 1459 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1460 unsigned long addr, struct page *page, pgprot_t prot) 1461 { 1462 if (!pte_none(*pte)) 1463 return -EBUSY; 1464 /* Ok, finally just insert the thing.. */ 1465 get_page(page); 1466 inc_mm_counter_fast(mm, mm_counter_file(page)); 1467 page_add_file_rmap(page, false); 1468 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1469 return 0; 1470 } 1471 1472 /* 1473 * This is the old fallback for page remapping. 1474 * 1475 * For historical reasons, it only allows reserved pages. Only 1476 * old drivers should use this, and they needed to mark their 1477 * pages reserved for the old functions anyway. 1478 */ 1479 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1480 struct page *page, pgprot_t prot) 1481 { 1482 struct mm_struct *mm = vma->vm_mm; 1483 int retval; 1484 pte_t *pte; 1485 spinlock_t *ptl; 1486 1487 retval = validate_page_before_insert(page); 1488 if (retval) 1489 goto out; 1490 retval = -ENOMEM; 1491 pte = get_locked_pte(mm, addr, &ptl); 1492 if (!pte) 1493 goto out; 1494 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1495 pte_unmap_unlock(pte, ptl); 1496 out: 1497 return retval; 1498 } 1499 1500 #ifdef pte_index 1501 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, 1502 unsigned long addr, struct page *page, pgprot_t prot) 1503 { 1504 int err; 1505 1506 if (!page_count(page)) 1507 return -EINVAL; 1508 err = validate_page_before_insert(page); 1509 if (err) 1510 return err; 1511 return insert_page_into_pte_locked(mm, pte, addr, page, prot); 1512 } 1513 1514 /* insert_pages() amortizes the cost of spinlock operations 1515 * when inserting pages in a loop. Arch *must* define pte_index. 1516 */ 1517 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1518 struct page **pages, unsigned long *num, pgprot_t prot) 1519 { 1520 pmd_t *pmd = NULL; 1521 pte_t *start_pte, *pte; 1522 spinlock_t *pte_lock; 1523 struct mm_struct *const mm = vma->vm_mm; 1524 unsigned long curr_page_idx = 0; 1525 unsigned long remaining_pages_total = *num; 1526 unsigned long pages_to_write_in_pmd; 1527 int ret; 1528 more: 1529 ret = -EFAULT; 1530 pmd = walk_to_pmd(mm, addr); 1531 if (!pmd) 1532 goto out; 1533 1534 pages_to_write_in_pmd = min_t(unsigned long, 1535 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1536 1537 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1538 ret = -ENOMEM; 1539 if (pte_alloc(mm, pmd)) 1540 goto out; 1541 1542 while (pages_to_write_in_pmd) { 1543 int pte_idx = 0; 1544 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1545 1546 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1547 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1548 int err = insert_page_in_batch_locked(mm, pte, 1549 addr, pages[curr_page_idx], prot); 1550 if (unlikely(err)) { 1551 pte_unmap_unlock(start_pte, pte_lock); 1552 ret = err; 1553 remaining_pages_total -= pte_idx; 1554 goto out; 1555 } 1556 addr += PAGE_SIZE; 1557 ++curr_page_idx; 1558 } 1559 pte_unmap_unlock(start_pte, pte_lock); 1560 pages_to_write_in_pmd -= batch_size; 1561 remaining_pages_total -= batch_size; 1562 } 1563 if (remaining_pages_total) 1564 goto more; 1565 ret = 0; 1566 out: 1567 *num = remaining_pages_total; 1568 return ret; 1569 } 1570 #endif /* ifdef pte_index */ 1571 1572 /** 1573 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1574 * @vma: user vma to map to 1575 * @addr: target start user address of these pages 1576 * @pages: source kernel pages 1577 * @num: in: number of pages to map. out: number of pages that were *not* 1578 * mapped. (0 means all pages were successfully mapped). 1579 * 1580 * Preferred over vm_insert_page() when inserting multiple pages. 1581 * 1582 * In case of error, we may have mapped a subset of the provided 1583 * pages. It is the caller's responsibility to account for this case. 1584 * 1585 * The same restrictions apply as in vm_insert_page(). 1586 */ 1587 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1588 struct page **pages, unsigned long *num) 1589 { 1590 #ifdef pte_index 1591 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1592 1593 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1594 return -EFAULT; 1595 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1596 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1597 BUG_ON(vma->vm_flags & VM_PFNMAP); 1598 vma->vm_flags |= VM_MIXEDMAP; 1599 } 1600 /* Defer page refcount checking till we're about to map that page. */ 1601 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1602 #else 1603 unsigned long idx = 0, pgcount = *num; 1604 int err = -EINVAL; 1605 1606 for (; idx < pgcount; ++idx) { 1607 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1608 if (err) 1609 break; 1610 } 1611 *num = pgcount - idx; 1612 return err; 1613 #endif /* ifdef pte_index */ 1614 } 1615 EXPORT_SYMBOL(vm_insert_pages); 1616 1617 /** 1618 * vm_insert_page - insert single page into user vma 1619 * @vma: user vma to map to 1620 * @addr: target user address of this page 1621 * @page: source kernel page 1622 * 1623 * This allows drivers to insert individual pages they've allocated 1624 * into a user vma. 1625 * 1626 * The page has to be a nice clean _individual_ kernel allocation. 1627 * If you allocate a compound page, you need to have marked it as 1628 * such (__GFP_COMP), or manually just split the page up yourself 1629 * (see split_page()). 1630 * 1631 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1632 * took an arbitrary page protection parameter. This doesn't allow 1633 * that. Your vma protection will have to be set up correctly, which 1634 * means that if you want a shared writable mapping, you'd better 1635 * ask for a shared writable mapping! 1636 * 1637 * The page does not need to be reserved. 1638 * 1639 * Usually this function is called from f_op->mmap() handler 1640 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1641 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1642 * function from other places, for example from page-fault handler. 1643 * 1644 * Return: %0 on success, negative error code otherwise. 1645 */ 1646 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1647 struct page *page) 1648 { 1649 if (addr < vma->vm_start || addr >= vma->vm_end) 1650 return -EFAULT; 1651 if (!page_count(page)) 1652 return -EINVAL; 1653 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1654 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1655 BUG_ON(vma->vm_flags & VM_PFNMAP); 1656 vma->vm_flags |= VM_MIXEDMAP; 1657 } 1658 return insert_page(vma, addr, page, vma->vm_page_prot); 1659 } 1660 EXPORT_SYMBOL(vm_insert_page); 1661 1662 /* 1663 * __vm_map_pages - maps range of kernel pages into user vma 1664 * @vma: user vma to map to 1665 * @pages: pointer to array of source kernel pages 1666 * @num: number of pages in page array 1667 * @offset: user's requested vm_pgoff 1668 * 1669 * This allows drivers to map range of kernel pages into a user vma. 1670 * 1671 * Return: 0 on success and error code otherwise. 1672 */ 1673 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1674 unsigned long num, unsigned long offset) 1675 { 1676 unsigned long count = vma_pages(vma); 1677 unsigned long uaddr = vma->vm_start; 1678 int ret, i; 1679 1680 /* Fail if the user requested offset is beyond the end of the object */ 1681 if (offset >= num) 1682 return -ENXIO; 1683 1684 /* Fail if the user requested size exceeds available object size */ 1685 if (count > num - offset) 1686 return -ENXIO; 1687 1688 for (i = 0; i < count; i++) { 1689 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1690 if (ret < 0) 1691 return ret; 1692 uaddr += PAGE_SIZE; 1693 } 1694 1695 return 0; 1696 } 1697 1698 /** 1699 * vm_map_pages - maps range of kernel pages starts with non zero offset 1700 * @vma: user vma to map to 1701 * @pages: pointer to array of source kernel pages 1702 * @num: number of pages in page array 1703 * 1704 * Maps an object consisting of @num pages, catering for the user's 1705 * requested vm_pgoff 1706 * 1707 * If we fail to insert any page into the vma, the function will return 1708 * immediately leaving any previously inserted pages present. Callers 1709 * from the mmap handler may immediately return the error as their caller 1710 * will destroy the vma, removing any successfully inserted pages. Other 1711 * callers should make their own arrangements for calling unmap_region(). 1712 * 1713 * Context: Process context. Called by mmap handlers. 1714 * Return: 0 on success and error code otherwise. 1715 */ 1716 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1717 unsigned long num) 1718 { 1719 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1720 } 1721 EXPORT_SYMBOL(vm_map_pages); 1722 1723 /** 1724 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1725 * @vma: user vma to map to 1726 * @pages: pointer to array of source kernel pages 1727 * @num: number of pages in page array 1728 * 1729 * Similar to vm_map_pages(), except that it explicitly sets the offset 1730 * to 0. This function is intended for the drivers that did not consider 1731 * vm_pgoff. 1732 * 1733 * Context: Process context. Called by mmap handlers. 1734 * Return: 0 on success and error code otherwise. 1735 */ 1736 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1737 unsigned long num) 1738 { 1739 return __vm_map_pages(vma, pages, num, 0); 1740 } 1741 EXPORT_SYMBOL(vm_map_pages_zero); 1742 1743 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1744 pfn_t pfn, pgprot_t prot, bool mkwrite) 1745 { 1746 struct mm_struct *mm = vma->vm_mm; 1747 pte_t *pte, entry; 1748 spinlock_t *ptl; 1749 1750 pte = get_locked_pte(mm, addr, &ptl); 1751 if (!pte) 1752 return VM_FAULT_OOM; 1753 if (!pte_none(*pte)) { 1754 if (mkwrite) { 1755 /* 1756 * For read faults on private mappings the PFN passed 1757 * in may not match the PFN we have mapped if the 1758 * mapped PFN is a writeable COW page. In the mkwrite 1759 * case we are creating a writable PTE for a shared 1760 * mapping and we expect the PFNs to match. If they 1761 * don't match, we are likely racing with block 1762 * allocation and mapping invalidation so just skip the 1763 * update. 1764 */ 1765 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1766 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1767 goto out_unlock; 1768 } 1769 entry = pte_mkyoung(*pte); 1770 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1771 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1772 update_mmu_cache(vma, addr, pte); 1773 } 1774 goto out_unlock; 1775 } 1776 1777 /* Ok, finally just insert the thing.. */ 1778 if (pfn_t_devmap(pfn)) 1779 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1780 else 1781 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1782 1783 if (mkwrite) { 1784 entry = pte_mkyoung(entry); 1785 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1786 } 1787 1788 set_pte_at(mm, addr, pte, entry); 1789 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1790 1791 out_unlock: 1792 pte_unmap_unlock(pte, ptl); 1793 return VM_FAULT_NOPAGE; 1794 } 1795 1796 /** 1797 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1798 * @vma: user vma to map to 1799 * @addr: target user address of this page 1800 * @pfn: source kernel pfn 1801 * @pgprot: pgprot flags for the inserted page 1802 * 1803 * This is exactly like vmf_insert_pfn(), except that it allows drivers to 1804 * to override pgprot on a per-page basis. 1805 * 1806 * This only makes sense for IO mappings, and it makes no sense for 1807 * COW mappings. In general, using multiple vmas is preferable; 1808 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1809 * impractical. 1810 * 1811 * See vmf_insert_mixed_prot() for a discussion of the implication of using 1812 * a value of @pgprot different from that of @vma->vm_page_prot. 1813 * 1814 * Context: Process context. May allocate using %GFP_KERNEL. 1815 * Return: vm_fault_t value. 1816 */ 1817 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1818 unsigned long pfn, pgprot_t pgprot) 1819 { 1820 /* 1821 * Technically, architectures with pte_special can avoid all these 1822 * restrictions (same for remap_pfn_range). However we would like 1823 * consistency in testing and feature parity among all, so we should 1824 * try to keep these invariants in place for everybody. 1825 */ 1826 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1827 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1828 (VM_PFNMAP|VM_MIXEDMAP)); 1829 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1830 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1831 1832 if (addr < vma->vm_start || addr >= vma->vm_end) 1833 return VM_FAULT_SIGBUS; 1834 1835 if (!pfn_modify_allowed(pfn, pgprot)) 1836 return VM_FAULT_SIGBUS; 1837 1838 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1839 1840 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1841 false); 1842 } 1843 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1844 1845 /** 1846 * vmf_insert_pfn - insert single pfn into user vma 1847 * @vma: user vma to map to 1848 * @addr: target user address of this page 1849 * @pfn: source kernel pfn 1850 * 1851 * Similar to vm_insert_page, this allows drivers to insert individual pages 1852 * they've allocated into a user vma. Same comments apply. 1853 * 1854 * This function should only be called from a vm_ops->fault handler, and 1855 * in that case the handler should return the result of this function. 1856 * 1857 * vma cannot be a COW mapping. 1858 * 1859 * As this is called only for pages that do not currently exist, we 1860 * do not need to flush old virtual caches or the TLB. 1861 * 1862 * Context: Process context. May allocate using %GFP_KERNEL. 1863 * Return: vm_fault_t value. 1864 */ 1865 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1866 unsigned long pfn) 1867 { 1868 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1869 } 1870 EXPORT_SYMBOL(vmf_insert_pfn); 1871 1872 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1873 { 1874 /* these checks mirror the abort conditions in vm_normal_page */ 1875 if (vma->vm_flags & VM_MIXEDMAP) 1876 return true; 1877 if (pfn_t_devmap(pfn)) 1878 return true; 1879 if (pfn_t_special(pfn)) 1880 return true; 1881 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1882 return true; 1883 return false; 1884 } 1885 1886 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1887 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 1888 bool mkwrite) 1889 { 1890 int err; 1891 1892 BUG_ON(!vm_mixed_ok(vma, pfn)); 1893 1894 if (addr < vma->vm_start || addr >= vma->vm_end) 1895 return VM_FAULT_SIGBUS; 1896 1897 track_pfn_insert(vma, &pgprot, pfn); 1898 1899 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1900 return VM_FAULT_SIGBUS; 1901 1902 /* 1903 * If we don't have pte special, then we have to use the pfn_valid() 1904 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1905 * refcount the page if pfn_valid is true (hence insert_page rather 1906 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1907 * without pte special, it would there be refcounted as a normal page. 1908 */ 1909 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1910 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1911 struct page *page; 1912 1913 /* 1914 * At this point we are committed to insert_page() 1915 * regardless of whether the caller specified flags that 1916 * result in pfn_t_has_page() == false. 1917 */ 1918 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1919 err = insert_page(vma, addr, page, pgprot); 1920 } else { 1921 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1922 } 1923 1924 if (err == -ENOMEM) 1925 return VM_FAULT_OOM; 1926 if (err < 0 && err != -EBUSY) 1927 return VM_FAULT_SIGBUS; 1928 1929 return VM_FAULT_NOPAGE; 1930 } 1931 1932 /** 1933 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 1934 * @vma: user vma to map to 1935 * @addr: target user address of this page 1936 * @pfn: source kernel pfn 1937 * @pgprot: pgprot flags for the inserted page 1938 * 1939 * This is exactly like vmf_insert_mixed(), except that it allows drivers to 1940 * to override pgprot on a per-page basis. 1941 * 1942 * Typically this function should be used by drivers to set caching- and 1943 * encryption bits different than those of @vma->vm_page_prot, because 1944 * the caching- or encryption mode may not be known at mmap() time. 1945 * This is ok as long as @vma->vm_page_prot is not used by the core vm 1946 * to set caching and encryption bits for those vmas (except for COW pages). 1947 * This is ensured by core vm only modifying these page table entries using 1948 * functions that don't touch caching- or encryption bits, using pte_modify() 1949 * if needed. (See for example mprotect()). 1950 * Also when new page-table entries are created, this is only done using the 1951 * fault() callback, and never using the value of vma->vm_page_prot, 1952 * except for page-table entries that point to anonymous pages as the result 1953 * of COW. 1954 * 1955 * Context: Process context. May allocate using %GFP_KERNEL. 1956 * Return: vm_fault_t value. 1957 */ 1958 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 1959 pfn_t pfn, pgprot_t pgprot) 1960 { 1961 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 1962 } 1963 EXPORT_SYMBOL(vmf_insert_mixed_prot); 1964 1965 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1966 pfn_t pfn) 1967 { 1968 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 1969 } 1970 EXPORT_SYMBOL(vmf_insert_mixed); 1971 1972 /* 1973 * If the insertion of PTE failed because someone else already added a 1974 * different entry in the mean time, we treat that as success as we assume 1975 * the same entry was actually inserted. 1976 */ 1977 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1978 unsigned long addr, pfn_t pfn) 1979 { 1980 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 1981 } 1982 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1983 1984 /* 1985 * maps a range of physical memory into the requested pages. the old 1986 * mappings are removed. any references to nonexistent pages results 1987 * in null mappings (currently treated as "copy-on-access") 1988 */ 1989 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1990 unsigned long addr, unsigned long end, 1991 unsigned long pfn, pgprot_t prot) 1992 { 1993 pte_t *pte; 1994 spinlock_t *ptl; 1995 int err = 0; 1996 1997 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1998 if (!pte) 1999 return -ENOMEM; 2000 arch_enter_lazy_mmu_mode(); 2001 do { 2002 BUG_ON(!pte_none(*pte)); 2003 if (!pfn_modify_allowed(pfn, prot)) { 2004 err = -EACCES; 2005 break; 2006 } 2007 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2008 pfn++; 2009 } while (pte++, addr += PAGE_SIZE, addr != end); 2010 arch_leave_lazy_mmu_mode(); 2011 pte_unmap_unlock(pte - 1, ptl); 2012 return err; 2013 } 2014 2015 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2016 unsigned long addr, unsigned long end, 2017 unsigned long pfn, pgprot_t prot) 2018 { 2019 pmd_t *pmd; 2020 unsigned long next; 2021 int err; 2022 2023 pfn -= addr >> PAGE_SHIFT; 2024 pmd = pmd_alloc(mm, pud, addr); 2025 if (!pmd) 2026 return -ENOMEM; 2027 VM_BUG_ON(pmd_trans_huge(*pmd)); 2028 do { 2029 next = pmd_addr_end(addr, end); 2030 err = remap_pte_range(mm, pmd, addr, next, 2031 pfn + (addr >> PAGE_SHIFT), prot); 2032 if (err) 2033 return err; 2034 } while (pmd++, addr = next, addr != end); 2035 return 0; 2036 } 2037 2038 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2039 unsigned long addr, unsigned long end, 2040 unsigned long pfn, pgprot_t prot) 2041 { 2042 pud_t *pud; 2043 unsigned long next; 2044 int err; 2045 2046 pfn -= addr >> PAGE_SHIFT; 2047 pud = pud_alloc(mm, p4d, addr); 2048 if (!pud) 2049 return -ENOMEM; 2050 do { 2051 next = pud_addr_end(addr, end); 2052 err = remap_pmd_range(mm, pud, addr, next, 2053 pfn + (addr >> PAGE_SHIFT), prot); 2054 if (err) 2055 return err; 2056 } while (pud++, addr = next, addr != end); 2057 return 0; 2058 } 2059 2060 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2061 unsigned long addr, unsigned long end, 2062 unsigned long pfn, pgprot_t prot) 2063 { 2064 p4d_t *p4d; 2065 unsigned long next; 2066 int err; 2067 2068 pfn -= addr >> PAGE_SHIFT; 2069 p4d = p4d_alloc(mm, pgd, addr); 2070 if (!p4d) 2071 return -ENOMEM; 2072 do { 2073 next = p4d_addr_end(addr, end); 2074 err = remap_pud_range(mm, p4d, addr, next, 2075 pfn + (addr >> PAGE_SHIFT), prot); 2076 if (err) 2077 return err; 2078 } while (p4d++, addr = next, addr != end); 2079 return 0; 2080 } 2081 2082 /** 2083 * remap_pfn_range - remap kernel memory to userspace 2084 * @vma: user vma to map to 2085 * @addr: target page aligned user address to start at 2086 * @pfn: page frame number of kernel physical memory address 2087 * @size: size of mapping area 2088 * @prot: page protection flags for this mapping 2089 * 2090 * Note: this is only safe if the mm semaphore is held when called. 2091 * 2092 * Return: %0 on success, negative error code otherwise. 2093 */ 2094 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2095 unsigned long pfn, unsigned long size, pgprot_t prot) 2096 { 2097 pgd_t *pgd; 2098 unsigned long next; 2099 unsigned long end = addr + PAGE_ALIGN(size); 2100 struct mm_struct *mm = vma->vm_mm; 2101 unsigned long remap_pfn = pfn; 2102 int err; 2103 2104 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2105 return -EINVAL; 2106 2107 /* 2108 * Physically remapped pages are special. Tell the 2109 * rest of the world about it: 2110 * VM_IO tells people not to look at these pages 2111 * (accesses can have side effects). 2112 * VM_PFNMAP tells the core MM that the base pages are just 2113 * raw PFN mappings, and do not have a "struct page" associated 2114 * with them. 2115 * VM_DONTEXPAND 2116 * Disable vma merging and expanding with mremap(). 2117 * VM_DONTDUMP 2118 * Omit vma from core dump, even when VM_IO turned off. 2119 * 2120 * There's a horrible special case to handle copy-on-write 2121 * behaviour that some programs depend on. We mark the "original" 2122 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2123 * See vm_normal_page() for details. 2124 */ 2125 if (is_cow_mapping(vma->vm_flags)) { 2126 if (addr != vma->vm_start || end != vma->vm_end) 2127 return -EINVAL; 2128 vma->vm_pgoff = pfn; 2129 } 2130 2131 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2132 if (err) 2133 return -EINVAL; 2134 2135 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2136 2137 BUG_ON(addr >= end); 2138 pfn -= addr >> PAGE_SHIFT; 2139 pgd = pgd_offset(mm, addr); 2140 flush_cache_range(vma, addr, end); 2141 do { 2142 next = pgd_addr_end(addr, end); 2143 err = remap_p4d_range(mm, pgd, addr, next, 2144 pfn + (addr >> PAGE_SHIFT), prot); 2145 if (err) 2146 break; 2147 } while (pgd++, addr = next, addr != end); 2148 2149 if (err) 2150 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2151 2152 return err; 2153 } 2154 EXPORT_SYMBOL(remap_pfn_range); 2155 2156 /** 2157 * vm_iomap_memory - remap memory to userspace 2158 * @vma: user vma to map to 2159 * @start: start of the physical memory to be mapped 2160 * @len: size of area 2161 * 2162 * This is a simplified io_remap_pfn_range() for common driver use. The 2163 * driver just needs to give us the physical memory range to be mapped, 2164 * we'll figure out the rest from the vma information. 2165 * 2166 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2167 * whatever write-combining details or similar. 2168 * 2169 * Return: %0 on success, negative error code otherwise. 2170 */ 2171 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2172 { 2173 unsigned long vm_len, pfn, pages; 2174 2175 /* Check that the physical memory area passed in looks valid */ 2176 if (start + len < start) 2177 return -EINVAL; 2178 /* 2179 * You *really* shouldn't map things that aren't page-aligned, 2180 * but we've historically allowed it because IO memory might 2181 * just have smaller alignment. 2182 */ 2183 len += start & ~PAGE_MASK; 2184 pfn = start >> PAGE_SHIFT; 2185 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2186 if (pfn + pages < pfn) 2187 return -EINVAL; 2188 2189 /* We start the mapping 'vm_pgoff' pages into the area */ 2190 if (vma->vm_pgoff > pages) 2191 return -EINVAL; 2192 pfn += vma->vm_pgoff; 2193 pages -= vma->vm_pgoff; 2194 2195 /* Can we fit all of the mapping? */ 2196 vm_len = vma->vm_end - vma->vm_start; 2197 if (vm_len >> PAGE_SHIFT > pages) 2198 return -EINVAL; 2199 2200 /* Ok, let it rip */ 2201 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2202 } 2203 EXPORT_SYMBOL(vm_iomap_memory); 2204 2205 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2206 unsigned long addr, unsigned long end, 2207 pte_fn_t fn, void *data, bool create) 2208 { 2209 pte_t *pte; 2210 int err = 0; 2211 spinlock_t *ptl; 2212 2213 if (create) { 2214 pte = (mm == &init_mm) ? 2215 pte_alloc_kernel(pmd, addr) : 2216 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2217 if (!pte) 2218 return -ENOMEM; 2219 } else { 2220 pte = (mm == &init_mm) ? 2221 pte_offset_kernel(pmd, addr) : 2222 pte_offset_map_lock(mm, pmd, addr, &ptl); 2223 } 2224 2225 BUG_ON(pmd_huge(*pmd)); 2226 2227 arch_enter_lazy_mmu_mode(); 2228 2229 do { 2230 if (create || !pte_none(*pte)) { 2231 err = fn(pte++, addr, data); 2232 if (err) 2233 break; 2234 } 2235 } while (addr += PAGE_SIZE, addr != end); 2236 2237 arch_leave_lazy_mmu_mode(); 2238 2239 if (mm != &init_mm) 2240 pte_unmap_unlock(pte-1, ptl); 2241 return err; 2242 } 2243 2244 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2245 unsigned long addr, unsigned long end, 2246 pte_fn_t fn, void *data, bool create) 2247 { 2248 pmd_t *pmd; 2249 unsigned long next; 2250 int err = 0; 2251 2252 BUG_ON(pud_huge(*pud)); 2253 2254 if (create) { 2255 pmd = pmd_alloc(mm, pud, addr); 2256 if (!pmd) 2257 return -ENOMEM; 2258 } else { 2259 pmd = pmd_offset(pud, addr); 2260 } 2261 do { 2262 next = pmd_addr_end(addr, end); 2263 if (create || !pmd_none_or_clear_bad(pmd)) { 2264 err = apply_to_pte_range(mm, pmd, addr, next, fn, data, 2265 create); 2266 if (err) 2267 break; 2268 } 2269 } while (pmd++, addr = next, addr != end); 2270 return err; 2271 } 2272 2273 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2274 unsigned long addr, unsigned long end, 2275 pte_fn_t fn, void *data, bool create) 2276 { 2277 pud_t *pud; 2278 unsigned long next; 2279 int err = 0; 2280 2281 if (create) { 2282 pud = pud_alloc(mm, p4d, addr); 2283 if (!pud) 2284 return -ENOMEM; 2285 } else { 2286 pud = pud_offset(p4d, addr); 2287 } 2288 do { 2289 next = pud_addr_end(addr, end); 2290 if (create || !pud_none_or_clear_bad(pud)) { 2291 err = apply_to_pmd_range(mm, pud, addr, next, fn, data, 2292 create); 2293 if (err) 2294 break; 2295 } 2296 } while (pud++, addr = next, addr != end); 2297 return err; 2298 } 2299 2300 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2301 unsigned long addr, unsigned long end, 2302 pte_fn_t fn, void *data, bool create) 2303 { 2304 p4d_t *p4d; 2305 unsigned long next; 2306 int err = 0; 2307 2308 if (create) { 2309 p4d = p4d_alloc(mm, pgd, addr); 2310 if (!p4d) 2311 return -ENOMEM; 2312 } else { 2313 p4d = p4d_offset(pgd, addr); 2314 } 2315 do { 2316 next = p4d_addr_end(addr, end); 2317 if (create || !p4d_none_or_clear_bad(p4d)) { 2318 err = apply_to_pud_range(mm, p4d, addr, next, fn, data, 2319 create); 2320 if (err) 2321 break; 2322 } 2323 } while (p4d++, addr = next, addr != end); 2324 return err; 2325 } 2326 2327 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2328 unsigned long size, pte_fn_t fn, 2329 void *data, bool create) 2330 { 2331 pgd_t *pgd; 2332 unsigned long next; 2333 unsigned long end = addr + size; 2334 int err = 0; 2335 2336 if (WARN_ON(addr >= end)) 2337 return -EINVAL; 2338 2339 pgd = pgd_offset(mm, addr); 2340 do { 2341 next = pgd_addr_end(addr, end); 2342 if (!create && pgd_none_or_clear_bad(pgd)) 2343 continue; 2344 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create); 2345 if (err) 2346 break; 2347 } while (pgd++, addr = next, addr != end); 2348 2349 return err; 2350 } 2351 2352 /* 2353 * Scan a region of virtual memory, filling in page tables as necessary 2354 * and calling a provided function on each leaf page table. 2355 */ 2356 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2357 unsigned long size, pte_fn_t fn, void *data) 2358 { 2359 return __apply_to_page_range(mm, addr, size, fn, data, true); 2360 } 2361 EXPORT_SYMBOL_GPL(apply_to_page_range); 2362 2363 /* 2364 * Scan a region of virtual memory, calling a provided function on 2365 * each leaf page table where it exists. 2366 * 2367 * Unlike apply_to_page_range, this does _not_ fill in page tables 2368 * where they are absent. 2369 */ 2370 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2371 unsigned long size, pte_fn_t fn, void *data) 2372 { 2373 return __apply_to_page_range(mm, addr, size, fn, data, false); 2374 } 2375 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2376 2377 /* 2378 * handle_pte_fault chooses page fault handler according to an entry which was 2379 * read non-atomically. Before making any commitment, on those architectures 2380 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2381 * parts, do_swap_page must check under lock before unmapping the pte and 2382 * proceeding (but do_wp_page is only called after already making such a check; 2383 * and do_anonymous_page can safely check later on). 2384 */ 2385 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2386 pte_t *page_table, pte_t orig_pte) 2387 { 2388 int same = 1; 2389 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2390 if (sizeof(pte_t) > sizeof(unsigned long)) { 2391 spinlock_t *ptl = pte_lockptr(mm, pmd); 2392 spin_lock(ptl); 2393 same = pte_same(*page_table, orig_pte); 2394 spin_unlock(ptl); 2395 } 2396 #endif 2397 pte_unmap(page_table); 2398 return same; 2399 } 2400 2401 static inline bool cow_user_page(struct page *dst, struct page *src, 2402 struct vm_fault *vmf) 2403 { 2404 bool ret; 2405 void *kaddr; 2406 void __user *uaddr; 2407 bool locked = false; 2408 struct vm_area_struct *vma = vmf->vma; 2409 struct mm_struct *mm = vma->vm_mm; 2410 unsigned long addr = vmf->address; 2411 2412 debug_dma_assert_idle(src); 2413 2414 if (likely(src)) { 2415 copy_user_highpage(dst, src, addr, vma); 2416 return true; 2417 } 2418 2419 /* 2420 * If the source page was a PFN mapping, we don't have 2421 * a "struct page" for it. We do a best-effort copy by 2422 * just copying from the original user address. If that 2423 * fails, we just zero-fill it. Live with it. 2424 */ 2425 kaddr = kmap_atomic(dst); 2426 uaddr = (void __user *)(addr & PAGE_MASK); 2427 2428 /* 2429 * On architectures with software "accessed" bits, we would 2430 * take a double page fault, so mark it accessed here. 2431 */ 2432 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2433 pte_t entry; 2434 2435 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2436 locked = true; 2437 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2438 /* 2439 * Other thread has already handled the fault 2440 * and update local tlb only 2441 */ 2442 update_mmu_tlb(vma, addr, vmf->pte); 2443 ret = false; 2444 goto pte_unlock; 2445 } 2446 2447 entry = pte_mkyoung(vmf->orig_pte); 2448 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2449 update_mmu_cache(vma, addr, vmf->pte); 2450 } 2451 2452 /* 2453 * This really shouldn't fail, because the page is there 2454 * in the page tables. But it might just be unreadable, 2455 * in which case we just give up and fill the result with 2456 * zeroes. 2457 */ 2458 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2459 if (locked) 2460 goto warn; 2461 2462 /* Re-validate under PTL if the page is still mapped */ 2463 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2464 locked = true; 2465 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2466 /* The PTE changed under us, update local tlb */ 2467 update_mmu_tlb(vma, addr, vmf->pte); 2468 ret = false; 2469 goto pte_unlock; 2470 } 2471 2472 /* 2473 * The same page can be mapped back since last copy attempt. 2474 * Try to copy again under PTL. 2475 */ 2476 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2477 /* 2478 * Give a warn in case there can be some obscure 2479 * use-case 2480 */ 2481 warn: 2482 WARN_ON_ONCE(1); 2483 clear_page(kaddr); 2484 } 2485 } 2486 2487 ret = true; 2488 2489 pte_unlock: 2490 if (locked) 2491 pte_unmap_unlock(vmf->pte, vmf->ptl); 2492 kunmap_atomic(kaddr); 2493 flush_dcache_page(dst); 2494 2495 return ret; 2496 } 2497 2498 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2499 { 2500 struct file *vm_file = vma->vm_file; 2501 2502 if (vm_file) 2503 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2504 2505 /* 2506 * Special mappings (e.g. VDSO) do not have any file so fake 2507 * a default GFP_KERNEL for them. 2508 */ 2509 return GFP_KERNEL; 2510 } 2511 2512 /* 2513 * Notify the address space that the page is about to become writable so that 2514 * it can prohibit this or wait for the page to get into an appropriate state. 2515 * 2516 * We do this without the lock held, so that it can sleep if it needs to. 2517 */ 2518 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2519 { 2520 vm_fault_t ret; 2521 struct page *page = vmf->page; 2522 unsigned int old_flags = vmf->flags; 2523 2524 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2525 2526 if (vmf->vma->vm_file && 2527 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2528 return VM_FAULT_SIGBUS; 2529 2530 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2531 /* Restore original flags so that caller is not surprised */ 2532 vmf->flags = old_flags; 2533 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2534 return ret; 2535 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2536 lock_page(page); 2537 if (!page->mapping) { 2538 unlock_page(page); 2539 return 0; /* retry */ 2540 } 2541 ret |= VM_FAULT_LOCKED; 2542 } else 2543 VM_BUG_ON_PAGE(!PageLocked(page), page); 2544 return ret; 2545 } 2546 2547 /* 2548 * Handle dirtying of a page in shared file mapping on a write fault. 2549 * 2550 * The function expects the page to be locked and unlocks it. 2551 */ 2552 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2553 { 2554 struct vm_area_struct *vma = vmf->vma; 2555 struct address_space *mapping; 2556 struct page *page = vmf->page; 2557 bool dirtied; 2558 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2559 2560 dirtied = set_page_dirty(page); 2561 VM_BUG_ON_PAGE(PageAnon(page), page); 2562 /* 2563 * Take a local copy of the address_space - page.mapping may be zeroed 2564 * by truncate after unlock_page(). The address_space itself remains 2565 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2566 * release semantics to prevent the compiler from undoing this copying. 2567 */ 2568 mapping = page_rmapping(page); 2569 unlock_page(page); 2570 2571 if (!page_mkwrite) 2572 file_update_time(vma->vm_file); 2573 2574 /* 2575 * Throttle page dirtying rate down to writeback speed. 2576 * 2577 * mapping may be NULL here because some device drivers do not 2578 * set page.mapping but still dirty their pages 2579 * 2580 * Drop the mmap_lock before waiting on IO, if we can. The file 2581 * is pinning the mapping, as per above. 2582 */ 2583 if ((dirtied || page_mkwrite) && mapping) { 2584 struct file *fpin; 2585 2586 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2587 balance_dirty_pages_ratelimited(mapping); 2588 if (fpin) { 2589 fput(fpin); 2590 return VM_FAULT_RETRY; 2591 } 2592 } 2593 2594 return 0; 2595 } 2596 2597 /* 2598 * Handle write page faults for pages that can be reused in the current vma 2599 * 2600 * This can happen either due to the mapping being with the VM_SHARED flag, 2601 * or due to us being the last reference standing to the page. In either 2602 * case, all we need to do here is to mark the page as writable and update 2603 * any related book-keeping. 2604 */ 2605 static inline void wp_page_reuse(struct vm_fault *vmf) 2606 __releases(vmf->ptl) 2607 { 2608 struct vm_area_struct *vma = vmf->vma; 2609 struct page *page = vmf->page; 2610 pte_t entry; 2611 /* 2612 * Clear the pages cpupid information as the existing 2613 * information potentially belongs to a now completely 2614 * unrelated process. 2615 */ 2616 if (page) 2617 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2618 2619 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2620 entry = pte_mkyoung(vmf->orig_pte); 2621 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2622 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2623 update_mmu_cache(vma, vmf->address, vmf->pte); 2624 pte_unmap_unlock(vmf->pte, vmf->ptl); 2625 } 2626 2627 /* 2628 * Handle the case of a page which we actually need to copy to a new page. 2629 * 2630 * Called with mmap_lock locked and the old page referenced, but 2631 * without the ptl held. 2632 * 2633 * High level logic flow: 2634 * 2635 * - Allocate a page, copy the content of the old page to the new one. 2636 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2637 * - Take the PTL. If the pte changed, bail out and release the allocated page 2638 * - If the pte is still the way we remember it, update the page table and all 2639 * relevant references. This includes dropping the reference the page-table 2640 * held to the old page, as well as updating the rmap. 2641 * - In any case, unlock the PTL and drop the reference we took to the old page. 2642 */ 2643 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2644 { 2645 struct vm_area_struct *vma = vmf->vma; 2646 struct mm_struct *mm = vma->vm_mm; 2647 struct page *old_page = vmf->page; 2648 struct page *new_page = NULL; 2649 pte_t entry; 2650 int page_copied = 0; 2651 struct mmu_notifier_range range; 2652 2653 if (unlikely(anon_vma_prepare(vma))) 2654 goto oom; 2655 2656 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2657 new_page = alloc_zeroed_user_highpage_movable(vma, 2658 vmf->address); 2659 if (!new_page) 2660 goto oom; 2661 } else { 2662 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2663 vmf->address); 2664 if (!new_page) 2665 goto oom; 2666 2667 if (!cow_user_page(new_page, old_page, vmf)) { 2668 /* 2669 * COW failed, if the fault was solved by other, 2670 * it's fine. If not, userspace would re-fault on 2671 * the same address and we will handle the fault 2672 * from the second attempt. 2673 */ 2674 put_page(new_page); 2675 if (old_page) 2676 put_page(old_page); 2677 return 0; 2678 } 2679 } 2680 2681 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 2682 goto oom_free_new; 2683 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 2684 2685 __SetPageUptodate(new_page); 2686 2687 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2688 vmf->address & PAGE_MASK, 2689 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2690 mmu_notifier_invalidate_range_start(&range); 2691 2692 /* 2693 * Re-check the pte - we dropped the lock 2694 */ 2695 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2696 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2697 if (old_page) { 2698 if (!PageAnon(old_page)) { 2699 dec_mm_counter_fast(mm, 2700 mm_counter_file(old_page)); 2701 inc_mm_counter_fast(mm, MM_ANONPAGES); 2702 } 2703 } else { 2704 inc_mm_counter_fast(mm, MM_ANONPAGES); 2705 } 2706 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2707 entry = mk_pte(new_page, vma->vm_page_prot); 2708 entry = pte_sw_mkyoung(entry); 2709 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2710 /* 2711 * Clear the pte entry and flush it first, before updating the 2712 * pte with the new entry. This will avoid a race condition 2713 * seen in the presence of one thread doing SMC and another 2714 * thread doing COW. 2715 */ 2716 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2717 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2718 lru_cache_add_active_or_unevictable(new_page, vma); 2719 /* 2720 * We call the notify macro here because, when using secondary 2721 * mmu page tables (such as kvm shadow page tables), we want the 2722 * new page to be mapped directly into the secondary page table. 2723 */ 2724 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2725 update_mmu_cache(vma, vmf->address, vmf->pte); 2726 if (old_page) { 2727 /* 2728 * Only after switching the pte to the new page may 2729 * we remove the mapcount here. Otherwise another 2730 * process may come and find the rmap count decremented 2731 * before the pte is switched to the new page, and 2732 * "reuse" the old page writing into it while our pte 2733 * here still points into it and can be read by other 2734 * threads. 2735 * 2736 * The critical issue is to order this 2737 * page_remove_rmap with the ptp_clear_flush above. 2738 * Those stores are ordered by (if nothing else,) 2739 * the barrier present in the atomic_add_negative 2740 * in page_remove_rmap. 2741 * 2742 * Then the TLB flush in ptep_clear_flush ensures that 2743 * no process can access the old page before the 2744 * decremented mapcount is visible. And the old page 2745 * cannot be reused until after the decremented 2746 * mapcount is visible. So transitively, TLBs to 2747 * old page will be flushed before it can be reused. 2748 */ 2749 page_remove_rmap(old_page, false); 2750 } 2751 2752 /* Free the old page.. */ 2753 new_page = old_page; 2754 page_copied = 1; 2755 } else { 2756 update_mmu_tlb(vma, vmf->address, vmf->pte); 2757 } 2758 2759 if (new_page) 2760 put_page(new_page); 2761 2762 pte_unmap_unlock(vmf->pte, vmf->ptl); 2763 /* 2764 * No need to double call mmu_notifier->invalidate_range() callback as 2765 * the above ptep_clear_flush_notify() did already call it. 2766 */ 2767 mmu_notifier_invalidate_range_only_end(&range); 2768 if (old_page) { 2769 /* 2770 * Don't let another task, with possibly unlocked vma, 2771 * keep the mlocked page. 2772 */ 2773 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2774 lock_page(old_page); /* LRU manipulation */ 2775 if (PageMlocked(old_page)) 2776 munlock_vma_page(old_page); 2777 unlock_page(old_page); 2778 } 2779 put_page(old_page); 2780 } 2781 return page_copied ? VM_FAULT_WRITE : 0; 2782 oom_free_new: 2783 put_page(new_page); 2784 oom: 2785 if (old_page) 2786 put_page(old_page); 2787 return VM_FAULT_OOM; 2788 } 2789 2790 /** 2791 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2792 * writeable once the page is prepared 2793 * 2794 * @vmf: structure describing the fault 2795 * 2796 * This function handles all that is needed to finish a write page fault in a 2797 * shared mapping due to PTE being read-only once the mapped page is prepared. 2798 * It handles locking of PTE and modifying it. 2799 * 2800 * The function expects the page to be locked or other protection against 2801 * concurrent faults / writeback (such as DAX radix tree locks). 2802 * 2803 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2804 * we acquired PTE lock. 2805 */ 2806 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2807 { 2808 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2809 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2810 &vmf->ptl); 2811 /* 2812 * We might have raced with another page fault while we released the 2813 * pte_offset_map_lock. 2814 */ 2815 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2816 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 2817 pte_unmap_unlock(vmf->pte, vmf->ptl); 2818 return VM_FAULT_NOPAGE; 2819 } 2820 wp_page_reuse(vmf); 2821 return 0; 2822 } 2823 2824 /* 2825 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2826 * mapping 2827 */ 2828 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2829 { 2830 struct vm_area_struct *vma = vmf->vma; 2831 2832 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2833 vm_fault_t ret; 2834 2835 pte_unmap_unlock(vmf->pte, vmf->ptl); 2836 vmf->flags |= FAULT_FLAG_MKWRITE; 2837 ret = vma->vm_ops->pfn_mkwrite(vmf); 2838 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2839 return ret; 2840 return finish_mkwrite_fault(vmf); 2841 } 2842 wp_page_reuse(vmf); 2843 return VM_FAULT_WRITE; 2844 } 2845 2846 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2847 __releases(vmf->ptl) 2848 { 2849 struct vm_area_struct *vma = vmf->vma; 2850 vm_fault_t ret = VM_FAULT_WRITE; 2851 2852 get_page(vmf->page); 2853 2854 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2855 vm_fault_t tmp; 2856 2857 pte_unmap_unlock(vmf->pte, vmf->ptl); 2858 tmp = do_page_mkwrite(vmf); 2859 if (unlikely(!tmp || (tmp & 2860 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2861 put_page(vmf->page); 2862 return tmp; 2863 } 2864 tmp = finish_mkwrite_fault(vmf); 2865 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2866 unlock_page(vmf->page); 2867 put_page(vmf->page); 2868 return tmp; 2869 } 2870 } else { 2871 wp_page_reuse(vmf); 2872 lock_page(vmf->page); 2873 } 2874 ret |= fault_dirty_shared_page(vmf); 2875 put_page(vmf->page); 2876 2877 return ret; 2878 } 2879 2880 /* 2881 * This routine handles present pages, when users try to write 2882 * to a shared page. It is done by copying the page to a new address 2883 * and decrementing the shared-page counter for the old page. 2884 * 2885 * Note that this routine assumes that the protection checks have been 2886 * done by the caller (the low-level page fault routine in most cases). 2887 * Thus we can safely just mark it writable once we've done any necessary 2888 * COW. 2889 * 2890 * We also mark the page dirty at this point even though the page will 2891 * change only once the write actually happens. This avoids a few races, 2892 * and potentially makes it more efficient. 2893 * 2894 * We enter with non-exclusive mmap_lock (to exclude vma changes, 2895 * but allow concurrent faults), with pte both mapped and locked. 2896 * We return with mmap_lock still held, but pte unmapped and unlocked. 2897 */ 2898 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2899 __releases(vmf->ptl) 2900 { 2901 struct vm_area_struct *vma = vmf->vma; 2902 2903 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 2904 pte_unmap_unlock(vmf->pte, vmf->ptl); 2905 return handle_userfault(vmf, VM_UFFD_WP); 2906 } 2907 2908 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2909 if (!vmf->page) { 2910 /* 2911 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2912 * VM_PFNMAP VMA. 2913 * 2914 * We should not cow pages in a shared writeable mapping. 2915 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2916 */ 2917 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2918 (VM_WRITE|VM_SHARED)) 2919 return wp_pfn_shared(vmf); 2920 2921 pte_unmap_unlock(vmf->pte, vmf->ptl); 2922 return wp_page_copy(vmf); 2923 } 2924 2925 /* 2926 * Take out anonymous pages first, anonymous shared vmas are 2927 * not dirty accountable. 2928 */ 2929 if (PageAnon(vmf->page)) { 2930 int total_map_swapcount; 2931 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || 2932 page_count(vmf->page) != 1)) 2933 goto copy; 2934 if (!trylock_page(vmf->page)) { 2935 get_page(vmf->page); 2936 pte_unmap_unlock(vmf->pte, vmf->ptl); 2937 lock_page(vmf->page); 2938 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2939 vmf->address, &vmf->ptl); 2940 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2941 update_mmu_tlb(vma, vmf->address, vmf->pte); 2942 unlock_page(vmf->page); 2943 pte_unmap_unlock(vmf->pte, vmf->ptl); 2944 put_page(vmf->page); 2945 return 0; 2946 } 2947 put_page(vmf->page); 2948 } 2949 if (PageKsm(vmf->page)) { 2950 bool reused = reuse_ksm_page(vmf->page, vmf->vma, 2951 vmf->address); 2952 unlock_page(vmf->page); 2953 if (!reused) 2954 goto copy; 2955 wp_page_reuse(vmf); 2956 return VM_FAULT_WRITE; 2957 } 2958 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2959 if (total_map_swapcount == 1) { 2960 /* 2961 * The page is all ours. Move it to 2962 * our anon_vma so the rmap code will 2963 * not search our parent or siblings. 2964 * Protected against the rmap code by 2965 * the page lock. 2966 */ 2967 page_move_anon_rmap(vmf->page, vma); 2968 } 2969 unlock_page(vmf->page); 2970 wp_page_reuse(vmf); 2971 return VM_FAULT_WRITE; 2972 } 2973 unlock_page(vmf->page); 2974 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2975 (VM_WRITE|VM_SHARED))) { 2976 return wp_page_shared(vmf); 2977 } 2978 copy: 2979 /* 2980 * Ok, we need to copy. Oh, well.. 2981 */ 2982 get_page(vmf->page); 2983 2984 pte_unmap_unlock(vmf->pte, vmf->ptl); 2985 return wp_page_copy(vmf); 2986 } 2987 2988 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2989 unsigned long start_addr, unsigned long end_addr, 2990 struct zap_details *details) 2991 { 2992 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2993 } 2994 2995 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2996 struct zap_details *details) 2997 { 2998 struct vm_area_struct *vma; 2999 pgoff_t vba, vea, zba, zea; 3000 3001 vma_interval_tree_foreach(vma, root, 3002 details->first_index, details->last_index) { 3003 3004 vba = vma->vm_pgoff; 3005 vea = vba + vma_pages(vma) - 1; 3006 zba = details->first_index; 3007 if (zba < vba) 3008 zba = vba; 3009 zea = details->last_index; 3010 if (zea > vea) 3011 zea = vea; 3012 3013 unmap_mapping_range_vma(vma, 3014 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3015 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3016 details); 3017 } 3018 } 3019 3020 /** 3021 * unmap_mapping_pages() - Unmap pages from processes. 3022 * @mapping: The address space containing pages to be unmapped. 3023 * @start: Index of first page to be unmapped. 3024 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3025 * @even_cows: Whether to unmap even private COWed pages. 3026 * 3027 * Unmap the pages in this address space from any userspace process which 3028 * has them mmaped. Generally, you want to remove COWed pages as well when 3029 * a file is being truncated, but not when invalidating pages from the page 3030 * cache. 3031 */ 3032 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3033 pgoff_t nr, bool even_cows) 3034 { 3035 struct zap_details details = { }; 3036 3037 details.check_mapping = even_cows ? NULL : mapping; 3038 details.first_index = start; 3039 details.last_index = start + nr - 1; 3040 if (details.last_index < details.first_index) 3041 details.last_index = ULONG_MAX; 3042 3043 i_mmap_lock_write(mapping); 3044 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3045 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3046 i_mmap_unlock_write(mapping); 3047 } 3048 3049 /** 3050 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3051 * address_space corresponding to the specified byte range in the underlying 3052 * file. 3053 * 3054 * @mapping: the address space containing mmaps to be unmapped. 3055 * @holebegin: byte in first page to unmap, relative to the start of 3056 * the underlying file. This will be rounded down to a PAGE_SIZE 3057 * boundary. Note that this is different from truncate_pagecache(), which 3058 * must keep the partial page. In contrast, we must get rid of 3059 * partial pages. 3060 * @holelen: size of prospective hole in bytes. This will be rounded 3061 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3062 * end of the file. 3063 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3064 * but 0 when invalidating pagecache, don't throw away private data. 3065 */ 3066 void unmap_mapping_range(struct address_space *mapping, 3067 loff_t const holebegin, loff_t const holelen, int even_cows) 3068 { 3069 pgoff_t hba = holebegin >> PAGE_SHIFT; 3070 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3071 3072 /* Check for overflow. */ 3073 if (sizeof(holelen) > sizeof(hlen)) { 3074 long long holeend = 3075 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3076 if (holeend & ~(long long)ULONG_MAX) 3077 hlen = ULONG_MAX - hba + 1; 3078 } 3079 3080 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3081 } 3082 EXPORT_SYMBOL(unmap_mapping_range); 3083 3084 /* 3085 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3086 * but allow concurrent faults), and pte mapped but not yet locked. 3087 * We return with pte unmapped and unlocked. 3088 * 3089 * We return with the mmap_lock locked or unlocked in the same cases 3090 * as does filemap_fault(). 3091 */ 3092 vm_fault_t do_swap_page(struct vm_fault *vmf) 3093 { 3094 struct vm_area_struct *vma = vmf->vma; 3095 struct page *page = NULL, *swapcache; 3096 swp_entry_t entry; 3097 pte_t pte; 3098 int locked; 3099 int exclusive = 0; 3100 vm_fault_t ret = 0; 3101 3102 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 3103 goto out; 3104 3105 entry = pte_to_swp_entry(vmf->orig_pte); 3106 if (unlikely(non_swap_entry(entry))) { 3107 if (is_migration_entry(entry)) { 3108 migration_entry_wait(vma->vm_mm, vmf->pmd, 3109 vmf->address); 3110 } else if (is_device_private_entry(entry)) { 3111 vmf->page = device_private_entry_to_page(entry); 3112 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3113 } else if (is_hwpoison_entry(entry)) { 3114 ret = VM_FAULT_HWPOISON; 3115 } else { 3116 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3117 ret = VM_FAULT_SIGBUS; 3118 } 3119 goto out; 3120 } 3121 3122 3123 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3124 page = lookup_swap_cache(entry, vma, vmf->address); 3125 swapcache = page; 3126 3127 if (!page) { 3128 struct swap_info_struct *si = swp_swap_info(entry); 3129 3130 if (si->flags & SWP_SYNCHRONOUS_IO && 3131 __swap_count(entry) == 1) { 3132 /* skip swapcache */ 3133 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3134 vmf->address); 3135 if (page) { 3136 int err; 3137 3138 __SetPageLocked(page); 3139 __SetPageSwapBacked(page); 3140 set_page_private(page, entry.val); 3141 3142 /* Tell memcg to use swap ownership records */ 3143 SetPageSwapCache(page); 3144 err = mem_cgroup_charge(page, vma->vm_mm, 3145 GFP_KERNEL); 3146 ClearPageSwapCache(page); 3147 if (err) { 3148 ret = VM_FAULT_OOM; 3149 goto out_page; 3150 } 3151 3152 /* 3153 * XXX: Move to lru_cache_add() when it 3154 * supports new vs putback 3155 */ 3156 spin_lock_irq(&page_pgdat(page)->lru_lock); 3157 lru_note_cost_page(page); 3158 spin_unlock_irq(&page_pgdat(page)->lru_lock); 3159 3160 lru_cache_add(page); 3161 swap_readpage(page, true); 3162 } 3163 } else { 3164 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3165 vmf); 3166 swapcache = page; 3167 } 3168 3169 if (!page) { 3170 /* 3171 * Back out if somebody else faulted in this pte 3172 * while we released the pte lock. 3173 */ 3174 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3175 vmf->address, &vmf->ptl); 3176 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3177 ret = VM_FAULT_OOM; 3178 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3179 goto unlock; 3180 } 3181 3182 /* Had to read the page from swap area: Major fault */ 3183 ret = VM_FAULT_MAJOR; 3184 count_vm_event(PGMAJFAULT); 3185 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3186 } else if (PageHWPoison(page)) { 3187 /* 3188 * hwpoisoned dirty swapcache pages are kept for killing 3189 * owner processes (which may be unknown at hwpoison time) 3190 */ 3191 ret = VM_FAULT_HWPOISON; 3192 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3193 goto out_release; 3194 } 3195 3196 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3197 3198 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3199 if (!locked) { 3200 ret |= VM_FAULT_RETRY; 3201 goto out_release; 3202 } 3203 3204 /* 3205 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3206 * release the swapcache from under us. The page pin, and pte_same 3207 * test below, are not enough to exclude that. Even if it is still 3208 * swapcache, we need to check that the page's swap has not changed. 3209 */ 3210 if (unlikely((!PageSwapCache(page) || 3211 page_private(page) != entry.val)) && swapcache) 3212 goto out_page; 3213 3214 page = ksm_might_need_to_copy(page, vma, vmf->address); 3215 if (unlikely(!page)) { 3216 ret = VM_FAULT_OOM; 3217 page = swapcache; 3218 goto out_page; 3219 } 3220 3221 cgroup_throttle_swaprate(page, GFP_KERNEL); 3222 3223 /* 3224 * Back out if somebody else already faulted in this pte. 3225 */ 3226 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3227 &vmf->ptl); 3228 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3229 goto out_nomap; 3230 3231 if (unlikely(!PageUptodate(page))) { 3232 ret = VM_FAULT_SIGBUS; 3233 goto out_nomap; 3234 } 3235 3236 /* 3237 * The page isn't present yet, go ahead with the fault. 3238 * 3239 * Be careful about the sequence of operations here. 3240 * To get its accounting right, reuse_swap_page() must be called 3241 * while the page is counted on swap but not yet in mapcount i.e. 3242 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3243 * must be called after the swap_free(), or it will never succeed. 3244 */ 3245 3246 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3247 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3248 pte = mk_pte(page, vma->vm_page_prot); 3249 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3250 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3251 vmf->flags &= ~FAULT_FLAG_WRITE; 3252 ret |= VM_FAULT_WRITE; 3253 exclusive = RMAP_EXCLUSIVE; 3254 } 3255 flush_icache_page(vma, page); 3256 if (pte_swp_soft_dirty(vmf->orig_pte)) 3257 pte = pte_mksoft_dirty(pte); 3258 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3259 pte = pte_mkuffd_wp(pte); 3260 pte = pte_wrprotect(pte); 3261 } 3262 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3263 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3264 vmf->orig_pte = pte; 3265 3266 /* ksm created a completely new copy */ 3267 if (unlikely(page != swapcache && swapcache)) { 3268 page_add_new_anon_rmap(page, vma, vmf->address, false); 3269 lru_cache_add_active_or_unevictable(page, vma); 3270 } else { 3271 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3272 activate_page(page); 3273 } 3274 3275 swap_free(entry); 3276 if (mem_cgroup_swap_full(page) || 3277 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3278 try_to_free_swap(page); 3279 unlock_page(page); 3280 if (page != swapcache && swapcache) { 3281 /* 3282 * Hold the lock to avoid the swap entry to be reused 3283 * until we take the PT lock for the pte_same() check 3284 * (to avoid false positives from pte_same). For 3285 * further safety release the lock after the swap_free 3286 * so that the swap count won't change under a 3287 * parallel locked swapcache. 3288 */ 3289 unlock_page(swapcache); 3290 put_page(swapcache); 3291 } 3292 3293 if (vmf->flags & FAULT_FLAG_WRITE) { 3294 ret |= do_wp_page(vmf); 3295 if (ret & VM_FAULT_ERROR) 3296 ret &= VM_FAULT_ERROR; 3297 goto out; 3298 } 3299 3300 /* No need to invalidate - it was non-present before */ 3301 update_mmu_cache(vma, vmf->address, vmf->pte); 3302 unlock: 3303 pte_unmap_unlock(vmf->pte, vmf->ptl); 3304 out: 3305 return ret; 3306 out_nomap: 3307 pte_unmap_unlock(vmf->pte, vmf->ptl); 3308 out_page: 3309 unlock_page(page); 3310 out_release: 3311 put_page(page); 3312 if (page != swapcache && swapcache) { 3313 unlock_page(swapcache); 3314 put_page(swapcache); 3315 } 3316 return ret; 3317 } 3318 3319 /* 3320 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3321 * but allow concurrent faults), and pte mapped but not yet locked. 3322 * We return with mmap_lock still held, but pte unmapped and unlocked. 3323 */ 3324 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3325 { 3326 struct vm_area_struct *vma = vmf->vma; 3327 struct page *page; 3328 vm_fault_t ret = 0; 3329 pte_t entry; 3330 3331 /* File mapping without ->vm_ops ? */ 3332 if (vma->vm_flags & VM_SHARED) 3333 return VM_FAULT_SIGBUS; 3334 3335 /* 3336 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3337 * pte_offset_map() on pmds where a huge pmd might be created 3338 * from a different thread. 3339 * 3340 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 3341 * parallel threads are excluded by other means. 3342 * 3343 * Here we only have mmap_read_lock(mm). 3344 */ 3345 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3346 return VM_FAULT_OOM; 3347 3348 /* See the comment in pte_alloc_one_map() */ 3349 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3350 return 0; 3351 3352 /* Use the zero-page for reads */ 3353 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3354 !mm_forbids_zeropage(vma->vm_mm)) { 3355 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3356 vma->vm_page_prot)); 3357 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3358 vmf->address, &vmf->ptl); 3359 if (!pte_none(*vmf->pte)) { 3360 update_mmu_tlb(vma, vmf->address, vmf->pte); 3361 goto unlock; 3362 } 3363 ret = check_stable_address_space(vma->vm_mm); 3364 if (ret) 3365 goto unlock; 3366 /* Deliver the page fault to userland, check inside PT lock */ 3367 if (userfaultfd_missing(vma)) { 3368 pte_unmap_unlock(vmf->pte, vmf->ptl); 3369 return handle_userfault(vmf, VM_UFFD_MISSING); 3370 } 3371 goto setpte; 3372 } 3373 3374 /* Allocate our own private page. */ 3375 if (unlikely(anon_vma_prepare(vma))) 3376 goto oom; 3377 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3378 if (!page) 3379 goto oom; 3380 3381 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 3382 goto oom_free_page; 3383 cgroup_throttle_swaprate(page, GFP_KERNEL); 3384 3385 /* 3386 * The memory barrier inside __SetPageUptodate makes sure that 3387 * preceding stores to the page contents become visible before 3388 * the set_pte_at() write. 3389 */ 3390 __SetPageUptodate(page); 3391 3392 entry = mk_pte(page, vma->vm_page_prot); 3393 entry = pte_sw_mkyoung(entry); 3394 if (vma->vm_flags & VM_WRITE) 3395 entry = pte_mkwrite(pte_mkdirty(entry)); 3396 3397 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3398 &vmf->ptl); 3399 if (!pte_none(*vmf->pte)) { 3400 update_mmu_cache(vma, vmf->address, vmf->pte); 3401 goto release; 3402 } 3403 3404 ret = check_stable_address_space(vma->vm_mm); 3405 if (ret) 3406 goto release; 3407 3408 /* Deliver the page fault to userland, check inside PT lock */ 3409 if (userfaultfd_missing(vma)) { 3410 pte_unmap_unlock(vmf->pte, vmf->ptl); 3411 put_page(page); 3412 return handle_userfault(vmf, VM_UFFD_MISSING); 3413 } 3414 3415 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3416 page_add_new_anon_rmap(page, vma, vmf->address, false); 3417 lru_cache_add_active_or_unevictable(page, vma); 3418 setpte: 3419 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3420 3421 /* No need to invalidate - it was non-present before */ 3422 update_mmu_cache(vma, vmf->address, vmf->pte); 3423 unlock: 3424 pte_unmap_unlock(vmf->pte, vmf->ptl); 3425 return ret; 3426 release: 3427 put_page(page); 3428 goto unlock; 3429 oom_free_page: 3430 put_page(page); 3431 oom: 3432 return VM_FAULT_OOM; 3433 } 3434 3435 /* 3436 * The mmap_lock must have been held on entry, and may have been 3437 * released depending on flags and vma->vm_ops->fault() return value. 3438 * See filemap_fault() and __lock_page_retry(). 3439 */ 3440 static vm_fault_t __do_fault(struct vm_fault *vmf) 3441 { 3442 struct vm_area_struct *vma = vmf->vma; 3443 vm_fault_t ret; 3444 3445 /* 3446 * Preallocate pte before we take page_lock because this might lead to 3447 * deadlocks for memcg reclaim which waits for pages under writeback: 3448 * lock_page(A) 3449 * SetPageWriteback(A) 3450 * unlock_page(A) 3451 * lock_page(B) 3452 * lock_page(B) 3453 * pte_alloc_pne 3454 * shrink_page_list 3455 * wait_on_page_writeback(A) 3456 * SetPageWriteback(B) 3457 * unlock_page(B) 3458 * # flush A, B to clear the writeback 3459 */ 3460 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3461 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3462 if (!vmf->prealloc_pte) 3463 return VM_FAULT_OOM; 3464 smp_wmb(); /* See comment in __pte_alloc() */ 3465 } 3466 3467 ret = vma->vm_ops->fault(vmf); 3468 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3469 VM_FAULT_DONE_COW))) 3470 return ret; 3471 3472 if (unlikely(PageHWPoison(vmf->page))) { 3473 if (ret & VM_FAULT_LOCKED) 3474 unlock_page(vmf->page); 3475 put_page(vmf->page); 3476 vmf->page = NULL; 3477 return VM_FAULT_HWPOISON; 3478 } 3479 3480 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3481 lock_page(vmf->page); 3482 else 3483 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3484 3485 return ret; 3486 } 3487 3488 /* 3489 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3490 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3491 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3492 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3493 */ 3494 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3495 { 3496 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3497 } 3498 3499 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3500 { 3501 struct vm_area_struct *vma = vmf->vma; 3502 3503 if (!pmd_none(*vmf->pmd)) 3504 goto map_pte; 3505 if (vmf->prealloc_pte) { 3506 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3507 if (unlikely(!pmd_none(*vmf->pmd))) { 3508 spin_unlock(vmf->ptl); 3509 goto map_pte; 3510 } 3511 3512 mm_inc_nr_ptes(vma->vm_mm); 3513 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3514 spin_unlock(vmf->ptl); 3515 vmf->prealloc_pte = NULL; 3516 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3517 return VM_FAULT_OOM; 3518 } 3519 map_pte: 3520 /* 3521 * If a huge pmd materialized under us just retry later. Use 3522 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3523 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3524 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3525 * running immediately after a huge pmd fault in a different thread of 3526 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3527 * All we have to ensure is that it is a regular pmd that we can walk 3528 * with pte_offset_map() and we can do that through an atomic read in 3529 * C, which is what pmd_trans_unstable() provides. 3530 */ 3531 if (pmd_devmap_trans_unstable(vmf->pmd)) 3532 return VM_FAULT_NOPAGE; 3533 3534 /* 3535 * At this point we know that our vmf->pmd points to a page of ptes 3536 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3537 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3538 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3539 * be valid and we will re-check to make sure the vmf->pte isn't 3540 * pte_none() under vmf->ptl protection when we return to 3541 * alloc_set_pte(). 3542 */ 3543 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3544 &vmf->ptl); 3545 return 0; 3546 } 3547 3548 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3549 static void deposit_prealloc_pte(struct vm_fault *vmf) 3550 { 3551 struct vm_area_struct *vma = vmf->vma; 3552 3553 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3554 /* 3555 * We are going to consume the prealloc table, 3556 * count that as nr_ptes. 3557 */ 3558 mm_inc_nr_ptes(vma->vm_mm); 3559 vmf->prealloc_pte = NULL; 3560 } 3561 3562 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3563 { 3564 struct vm_area_struct *vma = vmf->vma; 3565 bool write = vmf->flags & FAULT_FLAG_WRITE; 3566 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3567 pmd_t entry; 3568 int i; 3569 vm_fault_t ret; 3570 3571 if (!transhuge_vma_suitable(vma, haddr)) 3572 return VM_FAULT_FALLBACK; 3573 3574 ret = VM_FAULT_FALLBACK; 3575 page = compound_head(page); 3576 3577 /* 3578 * Archs like ppc64 need additonal space to store information 3579 * related to pte entry. Use the preallocated table for that. 3580 */ 3581 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3582 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3583 if (!vmf->prealloc_pte) 3584 return VM_FAULT_OOM; 3585 smp_wmb(); /* See comment in __pte_alloc() */ 3586 } 3587 3588 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3589 if (unlikely(!pmd_none(*vmf->pmd))) 3590 goto out; 3591 3592 for (i = 0; i < HPAGE_PMD_NR; i++) 3593 flush_icache_page(vma, page + i); 3594 3595 entry = mk_huge_pmd(page, vma->vm_page_prot); 3596 if (write) 3597 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3598 3599 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3600 page_add_file_rmap(page, true); 3601 /* 3602 * deposit and withdraw with pmd lock held 3603 */ 3604 if (arch_needs_pgtable_deposit()) 3605 deposit_prealloc_pte(vmf); 3606 3607 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3608 3609 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3610 3611 /* fault is handled */ 3612 ret = 0; 3613 count_vm_event(THP_FILE_MAPPED); 3614 out: 3615 spin_unlock(vmf->ptl); 3616 return ret; 3617 } 3618 #else 3619 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3620 { 3621 BUILD_BUG(); 3622 return 0; 3623 } 3624 #endif 3625 3626 /** 3627 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3628 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3629 * 3630 * @vmf: fault environment 3631 * @page: page to map 3632 * 3633 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3634 * return. 3635 * 3636 * Target users are page handler itself and implementations of 3637 * vm_ops->map_pages. 3638 * 3639 * Return: %0 on success, %VM_FAULT_ code in case of error. 3640 */ 3641 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) 3642 { 3643 struct vm_area_struct *vma = vmf->vma; 3644 bool write = vmf->flags & FAULT_FLAG_WRITE; 3645 pte_t entry; 3646 vm_fault_t ret; 3647 3648 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { 3649 ret = do_set_pmd(vmf, page); 3650 if (ret != VM_FAULT_FALLBACK) 3651 return ret; 3652 } 3653 3654 if (!vmf->pte) { 3655 ret = pte_alloc_one_map(vmf); 3656 if (ret) 3657 return ret; 3658 } 3659 3660 /* Re-check under ptl */ 3661 if (unlikely(!pte_none(*vmf->pte))) { 3662 update_mmu_tlb(vma, vmf->address, vmf->pte); 3663 return VM_FAULT_NOPAGE; 3664 } 3665 3666 flush_icache_page(vma, page); 3667 entry = mk_pte(page, vma->vm_page_prot); 3668 entry = pte_sw_mkyoung(entry); 3669 if (write) 3670 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3671 /* copy-on-write page */ 3672 if (write && !(vma->vm_flags & VM_SHARED)) { 3673 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3674 page_add_new_anon_rmap(page, vma, vmf->address, false); 3675 lru_cache_add_active_or_unevictable(page, vma); 3676 } else { 3677 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3678 page_add_file_rmap(page, false); 3679 } 3680 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3681 3682 /* no need to invalidate: a not-present page won't be cached */ 3683 update_mmu_cache(vma, vmf->address, vmf->pte); 3684 3685 return 0; 3686 } 3687 3688 3689 /** 3690 * finish_fault - finish page fault once we have prepared the page to fault 3691 * 3692 * @vmf: structure describing the fault 3693 * 3694 * This function handles all that is needed to finish a page fault once the 3695 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3696 * given page, adds reverse page mapping, handles memcg charges and LRU 3697 * addition. 3698 * 3699 * The function expects the page to be locked and on success it consumes a 3700 * reference of a page being mapped (for the PTE which maps it). 3701 * 3702 * Return: %0 on success, %VM_FAULT_ code in case of error. 3703 */ 3704 vm_fault_t finish_fault(struct vm_fault *vmf) 3705 { 3706 struct page *page; 3707 vm_fault_t ret = 0; 3708 3709 /* Did we COW the page? */ 3710 if ((vmf->flags & FAULT_FLAG_WRITE) && 3711 !(vmf->vma->vm_flags & VM_SHARED)) 3712 page = vmf->cow_page; 3713 else 3714 page = vmf->page; 3715 3716 /* 3717 * check even for read faults because we might have lost our CoWed 3718 * page 3719 */ 3720 if (!(vmf->vma->vm_flags & VM_SHARED)) 3721 ret = check_stable_address_space(vmf->vma->vm_mm); 3722 if (!ret) 3723 ret = alloc_set_pte(vmf, page); 3724 if (vmf->pte) 3725 pte_unmap_unlock(vmf->pte, vmf->ptl); 3726 return ret; 3727 } 3728 3729 static unsigned long fault_around_bytes __read_mostly = 3730 rounddown_pow_of_two(65536); 3731 3732 #ifdef CONFIG_DEBUG_FS 3733 static int fault_around_bytes_get(void *data, u64 *val) 3734 { 3735 *val = fault_around_bytes; 3736 return 0; 3737 } 3738 3739 /* 3740 * fault_around_bytes must be rounded down to the nearest page order as it's 3741 * what do_fault_around() expects to see. 3742 */ 3743 static int fault_around_bytes_set(void *data, u64 val) 3744 { 3745 if (val / PAGE_SIZE > PTRS_PER_PTE) 3746 return -EINVAL; 3747 if (val > PAGE_SIZE) 3748 fault_around_bytes = rounddown_pow_of_two(val); 3749 else 3750 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3751 return 0; 3752 } 3753 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3754 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3755 3756 static int __init fault_around_debugfs(void) 3757 { 3758 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3759 &fault_around_bytes_fops); 3760 return 0; 3761 } 3762 late_initcall(fault_around_debugfs); 3763 #endif 3764 3765 /* 3766 * do_fault_around() tries to map few pages around the fault address. The hope 3767 * is that the pages will be needed soon and this will lower the number of 3768 * faults to handle. 3769 * 3770 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3771 * not ready to be mapped: not up-to-date, locked, etc. 3772 * 3773 * This function is called with the page table lock taken. In the split ptlock 3774 * case the page table lock only protects only those entries which belong to 3775 * the page table corresponding to the fault address. 3776 * 3777 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3778 * only once. 3779 * 3780 * fault_around_bytes defines how many bytes we'll try to map. 3781 * do_fault_around() expects it to be set to a power of two less than or equal 3782 * to PTRS_PER_PTE. 3783 * 3784 * The virtual address of the area that we map is naturally aligned to 3785 * fault_around_bytes rounded down to the machine page size 3786 * (and therefore to page order). This way it's easier to guarantee 3787 * that we don't cross page table boundaries. 3788 */ 3789 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3790 { 3791 unsigned long address = vmf->address, nr_pages, mask; 3792 pgoff_t start_pgoff = vmf->pgoff; 3793 pgoff_t end_pgoff; 3794 int off; 3795 vm_fault_t ret = 0; 3796 3797 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3798 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3799 3800 vmf->address = max(address & mask, vmf->vma->vm_start); 3801 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3802 start_pgoff -= off; 3803 3804 /* 3805 * end_pgoff is either the end of the page table, the end of 3806 * the vma or nr_pages from start_pgoff, depending what is nearest. 3807 */ 3808 end_pgoff = start_pgoff - 3809 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3810 PTRS_PER_PTE - 1; 3811 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3812 start_pgoff + nr_pages - 1); 3813 3814 if (pmd_none(*vmf->pmd)) { 3815 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3816 if (!vmf->prealloc_pte) 3817 goto out; 3818 smp_wmb(); /* See comment in __pte_alloc() */ 3819 } 3820 3821 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3822 3823 /* Huge page is mapped? Page fault is solved */ 3824 if (pmd_trans_huge(*vmf->pmd)) { 3825 ret = VM_FAULT_NOPAGE; 3826 goto out; 3827 } 3828 3829 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3830 if (!vmf->pte) 3831 goto out; 3832 3833 /* check if the page fault is solved */ 3834 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3835 if (!pte_none(*vmf->pte)) 3836 ret = VM_FAULT_NOPAGE; 3837 pte_unmap_unlock(vmf->pte, vmf->ptl); 3838 out: 3839 vmf->address = address; 3840 vmf->pte = NULL; 3841 return ret; 3842 } 3843 3844 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3845 { 3846 struct vm_area_struct *vma = vmf->vma; 3847 vm_fault_t ret = 0; 3848 3849 /* 3850 * Let's call ->map_pages() first and use ->fault() as fallback 3851 * if page by the offset is not ready to be mapped (cold cache or 3852 * something). 3853 */ 3854 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3855 ret = do_fault_around(vmf); 3856 if (ret) 3857 return ret; 3858 } 3859 3860 ret = __do_fault(vmf); 3861 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3862 return ret; 3863 3864 ret |= finish_fault(vmf); 3865 unlock_page(vmf->page); 3866 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3867 put_page(vmf->page); 3868 return ret; 3869 } 3870 3871 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3872 { 3873 struct vm_area_struct *vma = vmf->vma; 3874 vm_fault_t ret; 3875 3876 if (unlikely(anon_vma_prepare(vma))) 3877 return VM_FAULT_OOM; 3878 3879 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3880 if (!vmf->cow_page) 3881 return VM_FAULT_OOM; 3882 3883 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { 3884 put_page(vmf->cow_page); 3885 return VM_FAULT_OOM; 3886 } 3887 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 3888 3889 ret = __do_fault(vmf); 3890 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3891 goto uncharge_out; 3892 if (ret & VM_FAULT_DONE_COW) 3893 return ret; 3894 3895 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3896 __SetPageUptodate(vmf->cow_page); 3897 3898 ret |= finish_fault(vmf); 3899 unlock_page(vmf->page); 3900 put_page(vmf->page); 3901 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3902 goto uncharge_out; 3903 return ret; 3904 uncharge_out: 3905 put_page(vmf->cow_page); 3906 return ret; 3907 } 3908 3909 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3910 { 3911 struct vm_area_struct *vma = vmf->vma; 3912 vm_fault_t ret, tmp; 3913 3914 ret = __do_fault(vmf); 3915 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3916 return ret; 3917 3918 /* 3919 * Check if the backing address space wants to know that the page is 3920 * about to become writable 3921 */ 3922 if (vma->vm_ops->page_mkwrite) { 3923 unlock_page(vmf->page); 3924 tmp = do_page_mkwrite(vmf); 3925 if (unlikely(!tmp || 3926 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3927 put_page(vmf->page); 3928 return tmp; 3929 } 3930 } 3931 3932 ret |= finish_fault(vmf); 3933 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3934 VM_FAULT_RETRY))) { 3935 unlock_page(vmf->page); 3936 put_page(vmf->page); 3937 return ret; 3938 } 3939 3940 ret |= fault_dirty_shared_page(vmf); 3941 return ret; 3942 } 3943 3944 /* 3945 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3946 * but allow concurrent faults). 3947 * The mmap_lock may have been released depending on flags and our 3948 * return value. See filemap_fault() and __lock_page_or_retry(). 3949 * If mmap_lock is released, vma may become invalid (for example 3950 * by other thread calling munmap()). 3951 */ 3952 static vm_fault_t do_fault(struct vm_fault *vmf) 3953 { 3954 struct vm_area_struct *vma = vmf->vma; 3955 struct mm_struct *vm_mm = vma->vm_mm; 3956 vm_fault_t ret; 3957 3958 /* 3959 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3960 */ 3961 if (!vma->vm_ops->fault) { 3962 /* 3963 * If we find a migration pmd entry or a none pmd entry, which 3964 * should never happen, return SIGBUS 3965 */ 3966 if (unlikely(!pmd_present(*vmf->pmd))) 3967 ret = VM_FAULT_SIGBUS; 3968 else { 3969 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3970 vmf->pmd, 3971 vmf->address, 3972 &vmf->ptl); 3973 /* 3974 * Make sure this is not a temporary clearing of pte 3975 * by holding ptl and checking again. A R/M/W update 3976 * of pte involves: take ptl, clearing the pte so that 3977 * we don't have concurrent modification by hardware 3978 * followed by an update. 3979 */ 3980 if (unlikely(pte_none(*vmf->pte))) 3981 ret = VM_FAULT_SIGBUS; 3982 else 3983 ret = VM_FAULT_NOPAGE; 3984 3985 pte_unmap_unlock(vmf->pte, vmf->ptl); 3986 } 3987 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3988 ret = do_read_fault(vmf); 3989 else if (!(vma->vm_flags & VM_SHARED)) 3990 ret = do_cow_fault(vmf); 3991 else 3992 ret = do_shared_fault(vmf); 3993 3994 /* preallocated pagetable is unused: free it */ 3995 if (vmf->prealloc_pte) { 3996 pte_free(vm_mm, vmf->prealloc_pte); 3997 vmf->prealloc_pte = NULL; 3998 } 3999 return ret; 4000 } 4001 4002 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4003 unsigned long addr, int page_nid, 4004 int *flags) 4005 { 4006 get_page(page); 4007 4008 count_vm_numa_event(NUMA_HINT_FAULTS); 4009 if (page_nid == numa_node_id()) { 4010 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4011 *flags |= TNF_FAULT_LOCAL; 4012 } 4013 4014 return mpol_misplaced(page, vma, addr); 4015 } 4016 4017 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4018 { 4019 struct vm_area_struct *vma = vmf->vma; 4020 struct page *page = NULL; 4021 int page_nid = NUMA_NO_NODE; 4022 int last_cpupid; 4023 int target_nid; 4024 bool migrated = false; 4025 pte_t pte, old_pte; 4026 bool was_writable = pte_savedwrite(vmf->orig_pte); 4027 int flags = 0; 4028 4029 /* 4030 * The "pte" at this point cannot be used safely without 4031 * validation through pte_unmap_same(). It's of NUMA type but 4032 * the pfn may be screwed if the read is non atomic. 4033 */ 4034 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4035 spin_lock(vmf->ptl); 4036 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4037 pte_unmap_unlock(vmf->pte, vmf->ptl); 4038 goto out; 4039 } 4040 4041 /* 4042 * Make it present again, Depending on how arch implementes non 4043 * accessible ptes, some can allow access by kernel mode. 4044 */ 4045 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4046 pte = pte_modify(old_pte, vma->vm_page_prot); 4047 pte = pte_mkyoung(pte); 4048 if (was_writable) 4049 pte = pte_mkwrite(pte); 4050 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4051 update_mmu_cache(vma, vmf->address, vmf->pte); 4052 4053 page = vm_normal_page(vma, vmf->address, pte); 4054 if (!page) { 4055 pte_unmap_unlock(vmf->pte, vmf->ptl); 4056 return 0; 4057 } 4058 4059 /* TODO: handle PTE-mapped THP */ 4060 if (PageCompound(page)) { 4061 pte_unmap_unlock(vmf->pte, vmf->ptl); 4062 return 0; 4063 } 4064 4065 /* 4066 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4067 * much anyway since they can be in shared cache state. This misses 4068 * the case where a mapping is writable but the process never writes 4069 * to it but pte_write gets cleared during protection updates and 4070 * pte_dirty has unpredictable behaviour between PTE scan updates, 4071 * background writeback, dirty balancing and application behaviour. 4072 */ 4073 if (!pte_write(pte)) 4074 flags |= TNF_NO_GROUP; 4075 4076 /* 4077 * Flag if the page is shared between multiple address spaces. This 4078 * is later used when determining whether to group tasks together 4079 */ 4080 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4081 flags |= TNF_SHARED; 4082 4083 last_cpupid = page_cpupid_last(page); 4084 page_nid = page_to_nid(page); 4085 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4086 &flags); 4087 pte_unmap_unlock(vmf->pte, vmf->ptl); 4088 if (target_nid == NUMA_NO_NODE) { 4089 put_page(page); 4090 goto out; 4091 } 4092 4093 /* Migrate to the requested node */ 4094 migrated = migrate_misplaced_page(page, vma, target_nid); 4095 if (migrated) { 4096 page_nid = target_nid; 4097 flags |= TNF_MIGRATED; 4098 } else 4099 flags |= TNF_MIGRATE_FAIL; 4100 4101 out: 4102 if (page_nid != NUMA_NO_NODE) 4103 task_numa_fault(last_cpupid, page_nid, 1, flags); 4104 return 0; 4105 } 4106 4107 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4108 { 4109 if (vma_is_anonymous(vmf->vma)) 4110 return do_huge_pmd_anonymous_page(vmf); 4111 if (vmf->vma->vm_ops->huge_fault) 4112 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4113 return VM_FAULT_FALLBACK; 4114 } 4115 4116 /* `inline' is required to avoid gcc 4.1.2 build error */ 4117 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 4118 { 4119 if (vma_is_anonymous(vmf->vma)) { 4120 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) 4121 return handle_userfault(vmf, VM_UFFD_WP); 4122 return do_huge_pmd_wp_page(vmf, orig_pmd); 4123 } 4124 if (vmf->vma->vm_ops->huge_fault) { 4125 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4126 4127 if (!(ret & VM_FAULT_FALLBACK)) 4128 return ret; 4129 } 4130 4131 /* COW or write-notify handled on pte level: split pmd. */ 4132 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4133 4134 return VM_FAULT_FALLBACK; 4135 } 4136 4137 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4138 { 4139 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4140 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4141 /* No support for anonymous transparent PUD pages yet */ 4142 if (vma_is_anonymous(vmf->vma)) 4143 goto split; 4144 if (vmf->vma->vm_ops->huge_fault) { 4145 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4146 4147 if (!(ret & VM_FAULT_FALLBACK)) 4148 return ret; 4149 } 4150 split: 4151 /* COW or write-notify not handled on PUD level: split pud.*/ 4152 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4153 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4154 return VM_FAULT_FALLBACK; 4155 } 4156 4157 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4158 { 4159 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4160 /* No support for anonymous transparent PUD pages yet */ 4161 if (vma_is_anonymous(vmf->vma)) 4162 return VM_FAULT_FALLBACK; 4163 if (vmf->vma->vm_ops->huge_fault) 4164 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4165 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4166 return VM_FAULT_FALLBACK; 4167 } 4168 4169 /* 4170 * These routines also need to handle stuff like marking pages dirty 4171 * and/or accessed for architectures that don't do it in hardware (most 4172 * RISC architectures). The early dirtying is also good on the i386. 4173 * 4174 * There is also a hook called "update_mmu_cache()" that architectures 4175 * with external mmu caches can use to update those (ie the Sparc or 4176 * PowerPC hashed page tables that act as extended TLBs). 4177 * 4178 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4179 * concurrent faults). 4180 * 4181 * The mmap_lock may have been released depending on flags and our return value. 4182 * See filemap_fault() and __lock_page_or_retry(). 4183 */ 4184 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4185 { 4186 pte_t entry; 4187 4188 if (unlikely(pmd_none(*vmf->pmd))) { 4189 /* 4190 * Leave __pte_alloc() until later: because vm_ops->fault may 4191 * want to allocate huge page, and if we expose page table 4192 * for an instant, it will be difficult to retract from 4193 * concurrent faults and from rmap lookups. 4194 */ 4195 vmf->pte = NULL; 4196 } else { 4197 /* See comment in pte_alloc_one_map() */ 4198 if (pmd_devmap_trans_unstable(vmf->pmd)) 4199 return 0; 4200 /* 4201 * A regular pmd is established and it can't morph into a huge 4202 * pmd from under us anymore at this point because we hold the 4203 * mmap_lock read mode and khugepaged takes it in write mode. 4204 * So now it's safe to run pte_offset_map(). 4205 */ 4206 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4207 vmf->orig_pte = *vmf->pte; 4208 4209 /* 4210 * some architectures can have larger ptes than wordsize, 4211 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4212 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4213 * accesses. The code below just needs a consistent view 4214 * for the ifs and we later double check anyway with the 4215 * ptl lock held. So here a barrier will do. 4216 */ 4217 barrier(); 4218 if (pte_none(vmf->orig_pte)) { 4219 pte_unmap(vmf->pte); 4220 vmf->pte = NULL; 4221 } 4222 } 4223 4224 if (!vmf->pte) { 4225 if (vma_is_anonymous(vmf->vma)) 4226 return do_anonymous_page(vmf); 4227 else 4228 return do_fault(vmf); 4229 } 4230 4231 if (!pte_present(vmf->orig_pte)) 4232 return do_swap_page(vmf); 4233 4234 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4235 return do_numa_page(vmf); 4236 4237 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4238 spin_lock(vmf->ptl); 4239 entry = vmf->orig_pte; 4240 if (unlikely(!pte_same(*vmf->pte, entry))) { 4241 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4242 goto unlock; 4243 } 4244 if (vmf->flags & FAULT_FLAG_WRITE) { 4245 if (!pte_write(entry)) 4246 return do_wp_page(vmf); 4247 entry = pte_mkdirty(entry); 4248 } 4249 entry = pte_mkyoung(entry); 4250 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4251 vmf->flags & FAULT_FLAG_WRITE)) { 4252 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4253 } else { 4254 /* 4255 * This is needed only for protection faults but the arch code 4256 * is not yet telling us if this is a protection fault or not. 4257 * This still avoids useless tlb flushes for .text page faults 4258 * with threads. 4259 */ 4260 if (vmf->flags & FAULT_FLAG_WRITE) 4261 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4262 } 4263 unlock: 4264 pte_unmap_unlock(vmf->pte, vmf->ptl); 4265 return 0; 4266 } 4267 4268 /* 4269 * By the time we get here, we already hold the mm semaphore 4270 * 4271 * The mmap_lock may have been released depending on flags and our 4272 * return value. See filemap_fault() and __lock_page_or_retry(). 4273 */ 4274 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4275 unsigned long address, unsigned int flags) 4276 { 4277 struct vm_fault vmf = { 4278 .vma = vma, 4279 .address = address & PAGE_MASK, 4280 .flags = flags, 4281 .pgoff = linear_page_index(vma, address), 4282 .gfp_mask = __get_fault_gfp_mask(vma), 4283 }; 4284 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4285 struct mm_struct *mm = vma->vm_mm; 4286 pgd_t *pgd; 4287 p4d_t *p4d; 4288 vm_fault_t ret; 4289 4290 pgd = pgd_offset(mm, address); 4291 p4d = p4d_alloc(mm, pgd, address); 4292 if (!p4d) 4293 return VM_FAULT_OOM; 4294 4295 vmf.pud = pud_alloc(mm, p4d, address); 4296 if (!vmf.pud) 4297 return VM_FAULT_OOM; 4298 retry_pud: 4299 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4300 ret = create_huge_pud(&vmf); 4301 if (!(ret & VM_FAULT_FALLBACK)) 4302 return ret; 4303 } else { 4304 pud_t orig_pud = *vmf.pud; 4305 4306 barrier(); 4307 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4308 4309 /* NUMA case for anonymous PUDs would go here */ 4310 4311 if (dirty && !pud_write(orig_pud)) { 4312 ret = wp_huge_pud(&vmf, orig_pud); 4313 if (!(ret & VM_FAULT_FALLBACK)) 4314 return ret; 4315 } else { 4316 huge_pud_set_accessed(&vmf, orig_pud); 4317 return 0; 4318 } 4319 } 4320 } 4321 4322 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4323 if (!vmf.pmd) 4324 return VM_FAULT_OOM; 4325 4326 /* Huge pud page fault raced with pmd_alloc? */ 4327 if (pud_trans_unstable(vmf.pud)) 4328 goto retry_pud; 4329 4330 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4331 ret = create_huge_pmd(&vmf); 4332 if (!(ret & VM_FAULT_FALLBACK)) 4333 return ret; 4334 } else { 4335 pmd_t orig_pmd = *vmf.pmd; 4336 4337 barrier(); 4338 if (unlikely(is_swap_pmd(orig_pmd))) { 4339 VM_BUG_ON(thp_migration_supported() && 4340 !is_pmd_migration_entry(orig_pmd)); 4341 if (is_pmd_migration_entry(orig_pmd)) 4342 pmd_migration_entry_wait(mm, vmf.pmd); 4343 return 0; 4344 } 4345 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4346 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4347 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4348 4349 if (dirty && !pmd_write(orig_pmd)) { 4350 ret = wp_huge_pmd(&vmf, orig_pmd); 4351 if (!(ret & VM_FAULT_FALLBACK)) 4352 return ret; 4353 } else { 4354 huge_pmd_set_accessed(&vmf, orig_pmd); 4355 return 0; 4356 } 4357 } 4358 } 4359 4360 return handle_pte_fault(&vmf); 4361 } 4362 4363 /* 4364 * By the time we get here, we already hold the mm semaphore 4365 * 4366 * The mmap_lock may have been released depending on flags and our 4367 * return value. See filemap_fault() and __lock_page_or_retry(). 4368 */ 4369 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4370 unsigned int flags) 4371 { 4372 vm_fault_t ret; 4373 4374 __set_current_state(TASK_RUNNING); 4375 4376 count_vm_event(PGFAULT); 4377 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4378 4379 /* do counter updates before entering really critical section. */ 4380 check_sync_rss_stat(current); 4381 4382 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4383 flags & FAULT_FLAG_INSTRUCTION, 4384 flags & FAULT_FLAG_REMOTE)) 4385 return VM_FAULT_SIGSEGV; 4386 4387 /* 4388 * Enable the memcg OOM handling for faults triggered in user 4389 * space. Kernel faults are handled more gracefully. 4390 */ 4391 if (flags & FAULT_FLAG_USER) 4392 mem_cgroup_enter_user_fault(); 4393 4394 if (unlikely(is_vm_hugetlb_page(vma))) 4395 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4396 else 4397 ret = __handle_mm_fault(vma, address, flags); 4398 4399 if (flags & FAULT_FLAG_USER) { 4400 mem_cgroup_exit_user_fault(); 4401 /* 4402 * The task may have entered a memcg OOM situation but 4403 * if the allocation error was handled gracefully (no 4404 * VM_FAULT_OOM), there is no need to kill anything. 4405 * Just clean up the OOM state peacefully. 4406 */ 4407 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4408 mem_cgroup_oom_synchronize(false); 4409 } 4410 4411 return ret; 4412 } 4413 EXPORT_SYMBOL_GPL(handle_mm_fault); 4414 4415 #ifndef __PAGETABLE_P4D_FOLDED 4416 /* 4417 * Allocate p4d page table. 4418 * We've already handled the fast-path in-line. 4419 */ 4420 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4421 { 4422 p4d_t *new = p4d_alloc_one(mm, address); 4423 if (!new) 4424 return -ENOMEM; 4425 4426 smp_wmb(); /* See comment in __pte_alloc */ 4427 4428 spin_lock(&mm->page_table_lock); 4429 if (pgd_present(*pgd)) /* Another has populated it */ 4430 p4d_free(mm, new); 4431 else 4432 pgd_populate(mm, pgd, new); 4433 spin_unlock(&mm->page_table_lock); 4434 return 0; 4435 } 4436 #endif /* __PAGETABLE_P4D_FOLDED */ 4437 4438 #ifndef __PAGETABLE_PUD_FOLDED 4439 /* 4440 * Allocate page upper directory. 4441 * We've already handled the fast-path in-line. 4442 */ 4443 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4444 { 4445 pud_t *new = pud_alloc_one(mm, address); 4446 if (!new) 4447 return -ENOMEM; 4448 4449 smp_wmb(); /* See comment in __pte_alloc */ 4450 4451 spin_lock(&mm->page_table_lock); 4452 if (!p4d_present(*p4d)) { 4453 mm_inc_nr_puds(mm); 4454 p4d_populate(mm, p4d, new); 4455 } else /* Another has populated it */ 4456 pud_free(mm, new); 4457 spin_unlock(&mm->page_table_lock); 4458 return 0; 4459 } 4460 #endif /* __PAGETABLE_PUD_FOLDED */ 4461 4462 #ifndef __PAGETABLE_PMD_FOLDED 4463 /* 4464 * Allocate page middle directory. 4465 * We've already handled the fast-path in-line. 4466 */ 4467 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4468 { 4469 spinlock_t *ptl; 4470 pmd_t *new = pmd_alloc_one(mm, address); 4471 if (!new) 4472 return -ENOMEM; 4473 4474 smp_wmb(); /* See comment in __pte_alloc */ 4475 4476 ptl = pud_lock(mm, pud); 4477 if (!pud_present(*pud)) { 4478 mm_inc_nr_pmds(mm); 4479 pud_populate(mm, pud, new); 4480 } else /* Another has populated it */ 4481 pmd_free(mm, new); 4482 spin_unlock(ptl); 4483 return 0; 4484 } 4485 #endif /* __PAGETABLE_PMD_FOLDED */ 4486 4487 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4488 struct mmu_notifier_range *range, 4489 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4490 { 4491 pgd_t *pgd; 4492 p4d_t *p4d; 4493 pud_t *pud; 4494 pmd_t *pmd; 4495 pte_t *ptep; 4496 4497 pgd = pgd_offset(mm, address); 4498 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4499 goto out; 4500 4501 p4d = p4d_offset(pgd, address); 4502 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4503 goto out; 4504 4505 pud = pud_offset(p4d, address); 4506 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4507 goto out; 4508 4509 pmd = pmd_offset(pud, address); 4510 VM_BUG_ON(pmd_trans_huge(*pmd)); 4511 4512 if (pmd_huge(*pmd)) { 4513 if (!pmdpp) 4514 goto out; 4515 4516 if (range) { 4517 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4518 NULL, mm, address & PMD_MASK, 4519 (address & PMD_MASK) + PMD_SIZE); 4520 mmu_notifier_invalidate_range_start(range); 4521 } 4522 *ptlp = pmd_lock(mm, pmd); 4523 if (pmd_huge(*pmd)) { 4524 *pmdpp = pmd; 4525 return 0; 4526 } 4527 spin_unlock(*ptlp); 4528 if (range) 4529 mmu_notifier_invalidate_range_end(range); 4530 } 4531 4532 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4533 goto out; 4534 4535 if (range) { 4536 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4537 address & PAGE_MASK, 4538 (address & PAGE_MASK) + PAGE_SIZE); 4539 mmu_notifier_invalidate_range_start(range); 4540 } 4541 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4542 if (!pte_present(*ptep)) 4543 goto unlock; 4544 *ptepp = ptep; 4545 return 0; 4546 unlock: 4547 pte_unmap_unlock(ptep, *ptlp); 4548 if (range) 4549 mmu_notifier_invalidate_range_end(range); 4550 out: 4551 return -EINVAL; 4552 } 4553 4554 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4555 pte_t **ptepp, spinlock_t **ptlp) 4556 { 4557 int res; 4558 4559 /* (void) is needed to make gcc happy */ 4560 (void) __cond_lock(*ptlp, 4561 !(res = __follow_pte_pmd(mm, address, NULL, 4562 ptepp, NULL, ptlp))); 4563 return res; 4564 } 4565 4566 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4567 struct mmu_notifier_range *range, 4568 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4569 { 4570 int res; 4571 4572 /* (void) is needed to make gcc happy */ 4573 (void) __cond_lock(*ptlp, 4574 !(res = __follow_pte_pmd(mm, address, range, 4575 ptepp, pmdpp, ptlp))); 4576 return res; 4577 } 4578 EXPORT_SYMBOL(follow_pte_pmd); 4579 4580 /** 4581 * follow_pfn - look up PFN at a user virtual address 4582 * @vma: memory mapping 4583 * @address: user virtual address 4584 * @pfn: location to store found PFN 4585 * 4586 * Only IO mappings and raw PFN mappings are allowed. 4587 * 4588 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4589 */ 4590 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4591 unsigned long *pfn) 4592 { 4593 int ret = -EINVAL; 4594 spinlock_t *ptl; 4595 pte_t *ptep; 4596 4597 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4598 return ret; 4599 4600 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4601 if (ret) 4602 return ret; 4603 *pfn = pte_pfn(*ptep); 4604 pte_unmap_unlock(ptep, ptl); 4605 return 0; 4606 } 4607 EXPORT_SYMBOL(follow_pfn); 4608 4609 #ifdef CONFIG_HAVE_IOREMAP_PROT 4610 int follow_phys(struct vm_area_struct *vma, 4611 unsigned long address, unsigned int flags, 4612 unsigned long *prot, resource_size_t *phys) 4613 { 4614 int ret = -EINVAL; 4615 pte_t *ptep, pte; 4616 spinlock_t *ptl; 4617 4618 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4619 goto out; 4620 4621 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4622 goto out; 4623 pte = *ptep; 4624 4625 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4626 goto unlock; 4627 4628 *prot = pgprot_val(pte_pgprot(pte)); 4629 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4630 4631 ret = 0; 4632 unlock: 4633 pte_unmap_unlock(ptep, ptl); 4634 out: 4635 return ret; 4636 } 4637 4638 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4639 void *buf, int len, int write) 4640 { 4641 resource_size_t phys_addr; 4642 unsigned long prot = 0; 4643 void __iomem *maddr; 4644 int offset = addr & (PAGE_SIZE-1); 4645 4646 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4647 return -EINVAL; 4648 4649 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4650 if (!maddr) 4651 return -ENOMEM; 4652 4653 if (write) 4654 memcpy_toio(maddr + offset, buf, len); 4655 else 4656 memcpy_fromio(buf, maddr + offset, len); 4657 iounmap(maddr); 4658 4659 return len; 4660 } 4661 EXPORT_SYMBOL_GPL(generic_access_phys); 4662 #endif 4663 4664 /* 4665 * Access another process' address space as given in mm. If non-NULL, use the 4666 * given task for page fault accounting. 4667 */ 4668 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4669 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4670 { 4671 struct vm_area_struct *vma; 4672 void *old_buf = buf; 4673 int write = gup_flags & FOLL_WRITE; 4674 4675 if (mmap_read_lock_killable(mm)) 4676 return 0; 4677 4678 /* ignore errors, just check how much was successfully transferred */ 4679 while (len) { 4680 int bytes, ret, offset; 4681 void *maddr; 4682 struct page *page = NULL; 4683 4684 ret = get_user_pages_remote(tsk, mm, addr, 1, 4685 gup_flags, &page, &vma, NULL); 4686 if (ret <= 0) { 4687 #ifndef CONFIG_HAVE_IOREMAP_PROT 4688 break; 4689 #else 4690 /* 4691 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4692 * we can access using slightly different code. 4693 */ 4694 vma = find_vma(mm, addr); 4695 if (!vma || vma->vm_start > addr) 4696 break; 4697 if (vma->vm_ops && vma->vm_ops->access) 4698 ret = vma->vm_ops->access(vma, addr, buf, 4699 len, write); 4700 if (ret <= 0) 4701 break; 4702 bytes = ret; 4703 #endif 4704 } else { 4705 bytes = len; 4706 offset = addr & (PAGE_SIZE-1); 4707 if (bytes > PAGE_SIZE-offset) 4708 bytes = PAGE_SIZE-offset; 4709 4710 maddr = kmap(page); 4711 if (write) { 4712 copy_to_user_page(vma, page, addr, 4713 maddr + offset, buf, bytes); 4714 set_page_dirty_lock(page); 4715 } else { 4716 copy_from_user_page(vma, page, addr, 4717 buf, maddr + offset, bytes); 4718 } 4719 kunmap(page); 4720 put_page(page); 4721 } 4722 len -= bytes; 4723 buf += bytes; 4724 addr += bytes; 4725 } 4726 mmap_read_unlock(mm); 4727 4728 return buf - old_buf; 4729 } 4730 4731 /** 4732 * access_remote_vm - access another process' address space 4733 * @mm: the mm_struct of the target address space 4734 * @addr: start address to access 4735 * @buf: source or destination buffer 4736 * @len: number of bytes to transfer 4737 * @gup_flags: flags modifying lookup behaviour 4738 * 4739 * The caller must hold a reference on @mm. 4740 * 4741 * Return: number of bytes copied from source to destination. 4742 */ 4743 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4744 void *buf, int len, unsigned int gup_flags) 4745 { 4746 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4747 } 4748 4749 /* 4750 * Access another process' address space. 4751 * Source/target buffer must be kernel space, 4752 * Do not walk the page table directly, use get_user_pages 4753 */ 4754 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4755 void *buf, int len, unsigned int gup_flags) 4756 { 4757 struct mm_struct *mm; 4758 int ret; 4759 4760 mm = get_task_mm(tsk); 4761 if (!mm) 4762 return 0; 4763 4764 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4765 4766 mmput(mm); 4767 4768 return ret; 4769 } 4770 EXPORT_SYMBOL_GPL(access_process_vm); 4771 4772 /* 4773 * Print the name of a VMA. 4774 */ 4775 void print_vma_addr(char *prefix, unsigned long ip) 4776 { 4777 struct mm_struct *mm = current->mm; 4778 struct vm_area_struct *vma; 4779 4780 /* 4781 * we might be running from an atomic context so we cannot sleep 4782 */ 4783 if (!mmap_read_trylock(mm)) 4784 return; 4785 4786 vma = find_vma(mm, ip); 4787 if (vma && vma->vm_file) { 4788 struct file *f = vma->vm_file; 4789 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4790 if (buf) { 4791 char *p; 4792 4793 p = file_path(f, buf, PAGE_SIZE); 4794 if (IS_ERR(p)) 4795 p = "?"; 4796 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4797 vma->vm_start, 4798 vma->vm_end - vma->vm_start); 4799 free_page((unsigned long)buf); 4800 } 4801 } 4802 mmap_read_unlock(mm); 4803 } 4804 4805 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4806 void __might_fault(const char *file, int line) 4807 { 4808 /* 4809 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4810 * holding the mmap_lock, this is safe because kernel memory doesn't 4811 * get paged out, therefore we'll never actually fault, and the 4812 * below annotations will generate false positives. 4813 */ 4814 if (uaccess_kernel()) 4815 return; 4816 if (pagefault_disabled()) 4817 return; 4818 __might_sleep(file, line, 0); 4819 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4820 if (current->mm) 4821 might_lock_read(¤t->mm->mmap_lock); 4822 #endif 4823 } 4824 EXPORT_SYMBOL(__might_fault); 4825 #endif 4826 4827 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4828 /* 4829 * Process all subpages of the specified huge page with the specified 4830 * operation. The target subpage will be processed last to keep its 4831 * cache lines hot. 4832 */ 4833 static inline void process_huge_page( 4834 unsigned long addr_hint, unsigned int pages_per_huge_page, 4835 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4836 void *arg) 4837 { 4838 int i, n, base, l; 4839 unsigned long addr = addr_hint & 4840 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4841 4842 /* Process target subpage last to keep its cache lines hot */ 4843 might_sleep(); 4844 n = (addr_hint - addr) / PAGE_SIZE; 4845 if (2 * n <= pages_per_huge_page) { 4846 /* If target subpage in first half of huge page */ 4847 base = 0; 4848 l = n; 4849 /* Process subpages at the end of huge page */ 4850 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4851 cond_resched(); 4852 process_subpage(addr + i * PAGE_SIZE, i, arg); 4853 } 4854 } else { 4855 /* If target subpage in second half of huge page */ 4856 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4857 l = pages_per_huge_page - n; 4858 /* Process subpages at the begin of huge page */ 4859 for (i = 0; i < base; i++) { 4860 cond_resched(); 4861 process_subpage(addr + i * PAGE_SIZE, i, arg); 4862 } 4863 } 4864 /* 4865 * Process remaining subpages in left-right-left-right pattern 4866 * towards the target subpage 4867 */ 4868 for (i = 0; i < l; i++) { 4869 int left_idx = base + i; 4870 int right_idx = base + 2 * l - 1 - i; 4871 4872 cond_resched(); 4873 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4874 cond_resched(); 4875 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4876 } 4877 } 4878 4879 static void clear_gigantic_page(struct page *page, 4880 unsigned long addr, 4881 unsigned int pages_per_huge_page) 4882 { 4883 int i; 4884 struct page *p = page; 4885 4886 might_sleep(); 4887 for (i = 0; i < pages_per_huge_page; 4888 i++, p = mem_map_next(p, page, i)) { 4889 cond_resched(); 4890 clear_user_highpage(p, addr + i * PAGE_SIZE); 4891 } 4892 } 4893 4894 static void clear_subpage(unsigned long addr, int idx, void *arg) 4895 { 4896 struct page *page = arg; 4897 4898 clear_user_highpage(page + idx, addr); 4899 } 4900 4901 void clear_huge_page(struct page *page, 4902 unsigned long addr_hint, unsigned int pages_per_huge_page) 4903 { 4904 unsigned long addr = addr_hint & 4905 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4906 4907 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4908 clear_gigantic_page(page, addr, pages_per_huge_page); 4909 return; 4910 } 4911 4912 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4913 } 4914 4915 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4916 unsigned long addr, 4917 struct vm_area_struct *vma, 4918 unsigned int pages_per_huge_page) 4919 { 4920 int i; 4921 struct page *dst_base = dst; 4922 struct page *src_base = src; 4923 4924 for (i = 0; i < pages_per_huge_page; ) { 4925 cond_resched(); 4926 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4927 4928 i++; 4929 dst = mem_map_next(dst, dst_base, i); 4930 src = mem_map_next(src, src_base, i); 4931 } 4932 } 4933 4934 struct copy_subpage_arg { 4935 struct page *dst; 4936 struct page *src; 4937 struct vm_area_struct *vma; 4938 }; 4939 4940 static void copy_subpage(unsigned long addr, int idx, void *arg) 4941 { 4942 struct copy_subpage_arg *copy_arg = arg; 4943 4944 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4945 addr, copy_arg->vma); 4946 } 4947 4948 void copy_user_huge_page(struct page *dst, struct page *src, 4949 unsigned long addr_hint, struct vm_area_struct *vma, 4950 unsigned int pages_per_huge_page) 4951 { 4952 unsigned long addr = addr_hint & 4953 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4954 struct copy_subpage_arg arg = { 4955 .dst = dst, 4956 .src = src, 4957 .vma = vma, 4958 }; 4959 4960 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4961 copy_user_gigantic_page(dst, src, addr, vma, 4962 pages_per_huge_page); 4963 return; 4964 } 4965 4966 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4967 } 4968 4969 long copy_huge_page_from_user(struct page *dst_page, 4970 const void __user *usr_src, 4971 unsigned int pages_per_huge_page, 4972 bool allow_pagefault) 4973 { 4974 void *src = (void *)usr_src; 4975 void *page_kaddr; 4976 unsigned long i, rc = 0; 4977 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4978 4979 for (i = 0; i < pages_per_huge_page; i++) { 4980 if (allow_pagefault) 4981 page_kaddr = kmap(dst_page + i); 4982 else 4983 page_kaddr = kmap_atomic(dst_page + i); 4984 rc = copy_from_user(page_kaddr, 4985 (const void __user *)(src + i * PAGE_SIZE), 4986 PAGE_SIZE); 4987 if (allow_pagefault) 4988 kunmap(dst_page + i); 4989 else 4990 kunmap_atomic(page_kaddr); 4991 4992 ret_val -= (PAGE_SIZE - rc); 4993 if (rc) 4994 break; 4995 4996 cond_resched(); 4997 } 4998 return ret_val; 4999 } 5000 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5001 5002 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5003 5004 static struct kmem_cache *page_ptl_cachep; 5005 5006 void __init ptlock_cache_init(void) 5007 { 5008 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5009 SLAB_PANIC, NULL); 5010 } 5011 5012 bool ptlock_alloc(struct page *page) 5013 { 5014 spinlock_t *ptl; 5015 5016 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5017 if (!ptl) 5018 return false; 5019 page->ptl = ptl; 5020 return true; 5021 } 5022 5023 void ptlock_free(struct page *page) 5024 { 5025 kmem_cache_free(page_ptl_cachep, page->ptl); 5026 } 5027 #endif 5028