xref: /openbmc/linux/mm/memory.c (revision cd4d09ec)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 
67 #include <asm/io.h>
68 #include <asm/pgalloc.h>
69 #include <asm/uaccess.h>
70 #include <asm/tlb.h>
71 #include <asm/tlbflush.h>
72 #include <asm/pgtable.h>
73 
74 #include "internal.h"
75 
76 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
77 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #endif
79 
80 #ifndef CONFIG_NEED_MULTIPLE_NODES
81 /* use the per-pgdat data instead for discontigmem - mbligh */
82 unsigned long max_mapnr;
83 struct page *mem_map;
84 
85 EXPORT_SYMBOL(max_mapnr);
86 EXPORT_SYMBOL(mem_map);
87 #endif
88 
89 /*
90  * A number of key systems in x86 including ioremap() rely on the assumption
91  * that high_memory defines the upper bound on direct map memory, then end
92  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
93  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
94  * and ZONE_HIGHMEM.
95  */
96 void * high_memory;
97 
98 EXPORT_SYMBOL(high_memory);
99 
100 /*
101  * Randomize the address space (stacks, mmaps, brk, etc.).
102  *
103  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
104  *   as ancient (libc5 based) binaries can segfault. )
105  */
106 int randomize_va_space __read_mostly =
107 #ifdef CONFIG_COMPAT_BRK
108 					1;
109 #else
110 					2;
111 #endif
112 
113 static int __init disable_randmaps(char *s)
114 {
115 	randomize_va_space = 0;
116 	return 1;
117 }
118 __setup("norandmaps", disable_randmaps);
119 
120 unsigned long zero_pfn __read_mostly;
121 unsigned long highest_memmap_pfn __read_mostly;
122 
123 EXPORT_SYMBOL(zero_pfn);
124 
125 /*
126  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
127  */
128 static int __init init_zero_pfn(void)
129 {
130 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
131 	return 0;
132 }
133 core_initcall(init_zero_pfn);
134 
135 
136 #if defined(SPLIT_RSS_COUNTING)
137 
138 void sync_mm_rss(struct mm_struct *mm)
139 {
140 	int i;
141 
142 	for (i = 0; i < NR_MM_COUNTERS; i++) {
143 		if (current->rss_stat.count[i]) {
144 			add_mm_counter(mm, i, current->rss_stat.count[i]);
145 			current->rss_stat.count[i] = 0;
146 		}
147 	}
148 	current->rss_stat.events = 0;
149 }
150 
151 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
152 {
153 	struct task_struct *task = current;
154 
155 	if (likely(task->mm == mm))
156 		task->rss_stat.count[member] += val;
157 	else
158 		add_mm_counter(mm, member, val);
159 }
160 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
161 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
162 
163 /* sync counter once per 64 page faults */
164 #define TASK_RSS_EVENTS_THRESH	(64)
165 static void check_sync_rss_stat(struct task_struct *task)
166 {
167 	if (unlikely(task != current))
168 		return;
169 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
170 		sync_mm_rss(task->mm);
171 }
172 #else /* SPLIT_RSS_COUNTING */
173 
174 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
175 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
176 
177 static void check_sync_rss_stat(struct task_struct *task)
178 {
179 }
180 
181 #endif /* SPLIT_RSS_COUNTING */
182 
183 #ifdef HAVE_GENERIC_MMU_GATHER
184 
185 static bool tlb_next_batch(struct mmu_gather *tlb)
186 {
187 	struct mmu_gather_batch *batch;
188 
189 	batch = tlb->active;
190 	if (batch->next) {
191 		tlb->active = batch->next;
192 		return true;
193 	}
194 
195 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
196 		return false;
197 
198 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
199 	if (!batch)
200 		return false;
201 
202 	tlb->batch_count++;
203 	batch->next = NULL;
204 	batch->nr   = 0;
205 	batch->max  = MAX_GATHER_BATCH;
206 
207 	tlb->active->next = batch;
208 	tlb->active = batch;
209 
210 	return true;
211 }
212 
213 /* tlb_gather_mmu
214  *	Called to initialize an (on-stack) mmu_gather structure for page-table
215  *	tear-down from @mm. The @fullmm argument is used when @mm is without
216  *	users and we're going to destroy the full address space (exit/execve).
217  */
218 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
219 {
220 	tlb->mm = mm;
221 
222 	/* Is it from 0 to ~0? */
223 	tlb->fullmm     = !(start | (end+1));
224 	tlb->need_flush_all = 0;
225 	tlb->local.next = NULL;
226 	tlb->local.nr   = 0;
227 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
228 	tlb->active     = &tlb->local;
229 	tlb->batch_count = 0;
230 
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 	tlb->batch = NULL;
233 #endif
234 
235 	__tlb_reset_range(tlb);
236 }
237 
238 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
239 {
240 	if (!tlb->end)
241 		return;
242 
243 	tlb_flush(tlb);
244 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246 	tlb_table_flush(tlb);
247 #endif
248 	__tlb_reset_range(tlb);
249 }
250 
251 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
252 {
253 	struct mmu_gather_batch *batch;
254 
255 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
256 		free_pages_and_swap_cache(batch->pages, batch->nr);
257 		batch->nr = 0;
258 	}
259 	tlb->active = &tlb->local;
260 }
261 
262 void tlb_flush_mmu(struct mmu_gather *tlb)
263 {
264 	tlb_flush_mmu_tlbonly(tlb);
265 	tlb_flush_mmu_free(tlb);
266 }
267 
268 /* tlb_finish_mmu
269  *	Called at the end of the shootdown operation to free up any resources
270  *	that were required.
271  */
272 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
273 {
274 	struct mmu_gather_batch *batch, *next;
275 
276 	tlb_flush_mmu(tlb);
277 
278 	/* keep the page table cache within bounds */
279 	check_pgt_cache();
280 
281 	for (batch = tlb->local.next; batch; batch = next) {
282 		next = batch->next;
283 		free_pages((unsigned long)batch, 0);
284 	}
285 	tlb->local.next = NULL;
286 }
287 
288 /* __tlb_remove_page
289  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
290  *	handling the additional races in SMP caused by other CPUs caching valid
291  *	mappings in their TLBs. Returns the number of free page slots left.
292  *	When out of page slots we must call tlb_flush_mmu().
293  */
294 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
295 {
296 	struct mmu_gather_batch *batch;
297 
298 	VM_BUG_ON(!tlb->end);
299 
300 	batch = tlb->active;
301 	batch->pages[batch->nr++] = page;
302 	if (batch->nr == batch->max) {
303 		if (!tlb_next_batch(tlb))
304 			return 0;
305 		batch = tlb->active;
306 	}
307 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
308 
309 	return batch->max - batch->nr;
310 }
311 
312 #endif /* HAVE_GENERIC_MMU_GATHER */
313 
314 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
315 
316 /*
317  * See the comment near struct mmu_table_batch.
318  */
319 
320 static void tlb_remove_table_smp_sync(void *arg)
321 {
322 	/* Simply deliver the interrupt */
323 }
324 
325 static void tlb_remove_table_one(void *table)
326 {
327 	/*
328 	 * This isn't an RCU grace period and hence the page-tables cannot be
329 	 * assumed to be actually RCU-freed.
330 	 *
331 	 * It is however sufficient for software page-table walkers that rely on
332 	 * IRQ disabling. See the comment near struct mmu_table_batch.
333 	 */
334 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
335 	__tlb_remove_table(table);
336 }
337 
338 static void tlb_remove_table_rcu(struct rcu_head *head)
339 {
340 	struct mmu_table_batch *batch;
341 	int i;
342 
343 	batch = container_of(head, struct mmu_table_batch, rcu);
344 
345 	for (i = 0; i < batch->nr; i++)
346 		__tlb_remove_table(batch->tables[i]);
347 
348 	free_page((unsigned long)batch);
349 }
350 
351 void tlb_table_flush(struct mmu_gather *tlb)
352 {
353 	struct mmu_table_batch **batch = &tlb->batch;
354 
355 	if (*batch) {
356 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
357 		*batch = NULL;
358 	}
359 }
360 
361 void tlb_remove_table(struct mmu_gather *tlb, void *table)
362 {
363 	struct mmu_table_batch **batch = &tlb->batch;
364 
365 	/*
366 	 * When there's less then two users of this mm there cannot be a
367 	 * concurrent page-table walk.
368 	 */
369 	if (atomic_read(&tlb->mm->mm_users) < 2) {
370 		__tlb_remove_table(table);
371 		return;
372 	}
373 
374 	if (*batch == NULL) {
375 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
376 		if (*batch == NULL) {
377 			tlb_remove_table_one(table);
378 			return;
379 		}
380 		(*batch)->nr = 0;
381 	}
382 	(*batch)->tables[(*batch)->nr++] = table;
383 	if ((*batch)->nr == MAX_TABLE_BATCH)
384 		tlb_table_flush(tlb);
385 }
386 
387 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
388 
389 /*
390  * Note: this doesn't free the actual pages themselves. That
391  * has been handled earlier when unmapping all the memory regions.
392  */
393 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
394 			   unsigned long addr)
395 {
396 	pgtable_t token = pmd_pgtable(*pmd);
397 	pmd_clear(pmd);
398 	pte_free_tlb(tlb, token, addr);
399 	atomic_long_dec(&tlb->mm->nr_ptes);
400 }
401 
402 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
403 				unsigned long addr, unsigned long end,
404 				unsigned long floor, unsigned long ceiling)
405 {
406 	pmd_t *pmd;
407 	unsigned long next;
408 	unsigned long start;
409 
410 	start = addr;
411 	pmd = pmd_offset(pud, addr);
412 	do {
413 		next = pmd_addr_end(addr, end);
414 		if (pmd_none_or_clear_bad(pmd))
415 			continue;
416 		free_pte_range(tlb, pmd, addr);
417 	} while (pmd++, addr = next, addr != end);
418 
419 	start &= PUD_MASK;
420 	if (start < floor)
421 		return;
422 	if (ceiling) {
423 		ceiling &= PUD_MASK;
424 		if (!ceiling)
425 			return;
426 	}
427 	if (end - 1 > ceiling - 1)
428 		return;
429 
430 	pmd = pmd_offset(pud, start);
431 	pud_clear(pud);
432 	pmd_free_tlb(tlb, pmd, start);
433 	mm_dec_nr_pmds(tlb->mm);
434 }
435 
436 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
437 				unsigned long addr, unsigned long end,
438 				unsigned long floor, unsigned long ceiling)
439 {
440 	pud_t *pud;
441 	unsigned long next;
442 	unsigned long start;
443 
444 	start = addr;
445 	pud = pud_offset(pgd, addr);
446 	do {
447 		next = pud_addr_end(addr, end);
448 		if (pud_none_or_clear_bad(pud))
449 			continue;
450 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
451 	} while (pud++, addr = next, addr != end);
452 
453 	start &= PGDIR_MASK;
454 	if (start < floor)
455 		return;
456 	if (ceiling) {
457 		ceiling &= PGDIR_MASK;
458 		if (!ceiling)
459 			return;
460 	}
461 	if (end - 1 > ceiling - 1)
462 		return;
463 
464 	pud = pud_offset(pgd, start);
465 	pgd_clear(pgd);
466 	pud_free_tlb(tlb, pud, start);
467 }
468 
469 /*
470  * This function frees user-level page tables of a process.
471  */
472 void free_pgd_range(struct mmu_gather *tlb,
473 			unsigned long addr, unsigned long end,
474 			unsigned long floor, unsigned long ceiling)
475 {
476 	pgd_t *pgd;
477 	unsigned long next;
478 
479 	/*
480 	 * The next few lines have given us lots of grief...
481 	 *
482 	 * Why are we testing PMD* at this top level?  Because often
483 	 * there will be no work to do at all, and we'd prefer not to
484 	 * go all the way down to the bottom just to discover that.
485 	 *
486 	 * Why all these "- 1"s?  Because 0 represents both the bottom
487 	 * of the address space and the top of it (using -1 for the
488 	 * top wouldn't help much: the masks would do the wrong thing).
489 	 * The rule is that addr 0 and floor 0 refer to the bottom of
490 	 * the address space, but end 0 and ceiling 0 refer to the top
491 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
492 	 * that end 0 case should be mythical).
493 	 *
494 	 * Wherever addr is brought up or ceiling brought down, we must
495 	 * be careful to reject "the opposite 0" before it confuses the
496 	 * subsequent tests.  But what about where end is brought down
497 	 * by PMD_SIZE below? no, end can't go down to 0 there.
498 	 *
499 	 * Whereas we round start (addr) and ceiling down, by different
500 	 * masks at different levels, in order to test whether a table
501 	 * now has no other vmas using it, so can be freed, we don't
502 	 * bother to round floor or end up - the tests don't need that.
503 	 */
504 
505 	addr &= PMD_MASK;
506 	if (addr < floor) {
507 		addr += PMD_SIZE;
508 		if (!addr)
509 			return;
510 	}
511 	if (ceiling) {
512 		ceiling &= PMD_MASK;
513 		if (!ceiling)
514 			return;
515 	}
516 	if (end - 1 > ceiling - 1)
517 		end -= PMD_SIZE;
518 	if (addr > end - 1)
519 		return;
520 
521 	pgd = pgd_offset(tlb->mm, addr);
522 	do {
523 		next = pgd_addr_end(addr, end);
524 		if (pgd_none_or_clear_bad(pgd))
525 			continue;
526 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
527 	} while (pgd++, addr = next, addr != end);
528 }
529 
530 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
531 		unsigned long floor, unsigned long ceiling)
532 {
533 	while (vma) {
534 		struct vm_area_struct *next = vma->vm_next;
535 		unsigned long addr = vma->vm_start;
536 
537 		/*
538 		 * Hide vma from rmap and truncate_pagecache before freeing
539 		 * pgtables
540 		 */
541 		unlink_anon_vmas(vma);
542 		unlink_file_vma(vma);
543 
544 		if (is_vm_hugetlb_page(vma)) {
545 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
546 				floor, next? next->vm_start: ceiling);
547 		} else {
548 			/*
549 			 * Optimization: gather nearby vmas into one call down
550 			 */
551 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
552 			       && !is_vm_hugetlb_page(next)) {
553 				vma = next;
554 				next = vma->vm_next;
555 				unlink_anon_vmas(vma);
556 				unlink_file_vma(vma);
557 			}
558 			free_pgd_range(tlb, addr, vma->vm_end,
559 				floor, next? next->vm_start: ceiling);
560 		}
561 		vma = next;
562 	}
563 }
564 
565 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
566 		pmd_t *pmd, unsigned long address)
567 {
568 	spinlock_t *ptl;
569 	pgtable_t new = pte_alloc_one(mm, address);
570 	if (!new)
571 		return -ENOMEM;
572 
573 	/*
574 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 	 * visible before the pte is made visible to other CPUs by being
576 	 * put into page tables.
577 	 *
578 	 * The other side of the story is the pointer chasing in the page
579 	 * table walking code (when walking the page table without locking;
580 	 * ie. most of the time). Fortunately, these data accesses consist
581 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 	 * being the notable exception) will already guarantee loads are
583 	 * seen in-order. See the alpha page table accessors for the
584 	 * smp_read_barrier_depends() barriers in page table walking code.
585 	 */
586 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587 
588 	ptl = pmd_lock(mm, pmd);
589 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
590 		atomic_long_inc(&mm->nr_ptes);
591 		pmd_populate(mm, pmd, new);
592 		new = NULL;
593 	}
594 	spin_unlock(ptl);
595 	if (new)
596 		pte_free(mm, new);
597 	return 0;
598 }
599 
600 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
601 {
602 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
603 	if (!new)
604 		return -ENOMEM;
605 
606 	smp_wmb(); /* See comment in __pte_alloc */
607 
608 	spin_lock(&init_mm.page_table_lock);
609 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
610 		pmd_populate_kernel(&init_mm, pmd, new);
611 		new = NULL;
612 	}
613 	spin_unlock(&init_mm.page_table_lock);
614 	if (new)
615 		pte_free_kernel(&init_mm, new);
616 	return 0;
617 }
618 
619 static inline void init_rss_vec(int *rss)
620 {
621 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
622 }
623 
624 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
625 {
626 	int i;
627 
628 	if (current->mm == mm)
629 		sync_mm_rss(mm);
630 	for (i = 0; i < NR_MM_COUNTERS; i++)
631 		if (rss[i])
632 			add_mm_counter(mm, i, rss[i]);
633 }
634 
635 /*
636  * This function is called to print an error when a bad pte
637  * is found. For example, we might have a PFN-mapped pte in
638  * a region that doesn't allow it.
639  *
640  * The calling function must still handle the error.
641  */
642 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
643 			  pte_t pte, struct page *page)
644 {
645 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
646 	pud_t *pud = pud_offset(pgd, addr);
647 	pmd_t *pmd = pmd_offset(pud, addr);
648 	struct address_space *mapping;
649 	pgoff_t index;
650 	static unsigned long resume;
651 	static unsigned long nr_shown;
652 	static unsigned long nr_unshown;
653 
654 	/*
655 	 * Allow a burst of 60 reports, then keep quiet for that minute;
656 	 * or allow a steady drip of one report per second.
657 	 */
658 	if (nr_shown == 60) {
659 		if (time_before(jiffies, resume)) {
660 			nr_unshown++;
661 			return;
662 		}
663 		if (nr_unshown) {
664 			printk(KERN_ALERT
665 				"BUG: Bad page map: %lu messages suppressed\n",
666 				nr_unshown);
667 			nr_unshown = 0;
668 		}
669 		nr_shown = 0;
670 	}
671 	if (nr_shown++ == 0)
672 		resume = jiffies + 60 * HZ;
673 
674 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
675 	index = linear_page_index(vma, addr);
676 
677 	printk(KERN_ALERT
678 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
679 		current->comm,
680 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
681 	if (page)
682 		dump_page(page, "bad pte");
683 	printk(KERN_ALERT
684 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
685 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
686 	/*
687 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
688 	 */
689 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
690 		 vma->vm_file,
691 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
692 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
693 		 mapping ? mapping->a_ops->readpage : NULL);
694 	dump_stack();
695 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
696 }
697 
698 /*
699  * vm_normal_page -- This function gets the "struct page" associated with a pte.
700  *
701  * "Special" mappings do not wish to be associated with a "struct page" (either
702  * it doesn't exist, or it exists but they don't want to touch it). In this
703  * case, NULL is returned here. "Normal" mappings do have a struct page.
704  *
705  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
706  * pte bit, in which case this function is trivial. Secondly, an architecture
707  * may not have a spare pte bit, which requires a more complicated scheme,
708  * described below.
709  *
710  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
711  * special mapping (even if there are underlying and valid "struct pages").
712  * COWed pages of a VM_PFNMAP are always normal.
713  *
714  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
715  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
716  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
717  * mapping will always honor the rule
718  *
719  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
720  *
721  * And for normal mappings this is false.
722  *
723  * This restricts such mappings to be a linear translation from virtual address
724  * to pfn. To get around this restriction, we allow arbitrary mappings so long
725  * as the vma is not a COW mapping; in that case, we know that all ptes are
726  * special (because none can have been COWed).
727  *
728  *
729  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
730  *
731  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
732  * page" backing, however the difference is that _all_ pages with a struct
733  * page (that is, those where pfn_valid is true) are refcounted and considered
734  * normal pages by the VM. The disadvantage is that pages are refcounted
735  * (which can be slower and simply not an option for some PFNMAP users). The
736  * advantage is that we don't have to follow the strict linearity rule of
737  * PFNMAP mappings in order to support COWable mappings.
738  *
739  */
740 #ifdef __HAVE_ARCH_PTE_SPECIAL
741 # define HAVE_PTE_SPECIAL 1
742 #else
743 # define HAVE_PTE_SPECIAL 0
744 #endif
745 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
746 				pte_t pte)
747 {
748 	unsigned long pfn = pte_pfn(pte);
749 
750 	if (HAVE_PTE_SPECIAL) {
751 		if (likely(!pte_special(pte)))
752 			goto check_pfn;
753 		if (vma->vm_ops && vma->vm_ops->find_special_page)
754 			return vma->vm_ops->find_special_page(vma, addr);
755 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
756 			return NULL;
757 		if (!is_zero_pfn(pfn))
758 			print_bad_pte(vma, addr, pte, NULL);
759 		return NULL;
760 	}
761 
762 	/* !HAVE_PTE_SPECIAL case follows: */
763 
764 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
765 		if (vma->vm_flags & VM_MIXEDMAP) {
766 			if (!pfn_valid(pfn))
767 				return NULL;
768 			goto out;
769 		} else {
770 			unsigned long off;
771 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
772 			if (pfn == vma->vm_pgoff + off)
773 				return NULL;
774 			if (!is_cow_mapping(vma->vm_flags))
775 				return NULL;
776 		}
777 	}
778 
779 	if (is_zero_pfn(pfn))
780 		return NULL;
781 check_pfn:
782 	if (unlikely(pfn > highest_memmap_pfn)) {
783 		print_bad_pte(vma, addr, pte, NULL);
784 		return NULL;
785 	}
786 
787 	/*
788 	 * NOTE! We still have PageReserved() pages in the page tables.
789 	 * eg. VDSO mappings can cause them to exist.
790 	 */
791 out:
792 	return pfn_to_page(pfn);
793 }
794 
795 /*
796  * copy one vm_area from one task to the other. Assumes the page tables
797  * already present in the new task to be cleared in the whole range
798  * covered by this vma.
799  */
800 
801 static inline unsigned long
802 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
803 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
804 		unsigned long addr, int *rss)
805 {
806 	unsigned long vm_flags = vma->vm_flags;
807 	pte_t pte = *src_pte;
808 	struct page *page;
809 
810 	/* pte contains position in swap or file, so copy. */
811 	if (unlikely(!pte_present(pte))) {
812 		swp_entry_t entry = pte_to_swp_entry(pte);
813 
814 		if (likely(!non_swap_entry(entry))) {
815 			if (swap_duplicate(entry) < 0)
816 				return entry.val;
817 
818 			/* make sure dst_mm is on swapoff's mmlist. */
819 			if (unlikely(list_empty(&dst_mm->mmlist))) {
820 				spin_lock(&mmlist_lock);
821 				if (list_empty(&dst_mm->mmlist))
822 					list_add(&dst_mm->mmlist,
823 							&src_mm->mmlist);
824 				spin_unlock(&mmlist_lock);
825 			}
826 			rss[MM_SWAPENTS]++;
827 		} else if (is_migration_entry(entry)) {
828 			page = migration_entry_to_page(entry);
829 
830 			rss[mm_counter(page)]++;
831 
832 			if (is_write_migration_entry(entry) &&
833 					is_cow_mapping(vm_flags)) {
834 				/*
835 				 * COW mappings require pages in both
836 				 * parent and child to be set to read.
837 				 */
838 				make_migration_entry_read(&entry);
839 				pte = swp_entry_to_pte(entry);
840 				if (pte_swp_soft_dirty(*src_pte))
841 					pte = pte_swp_mksoft_dirty(pte);
842 				set_pte_at(src_mm, addr, src_pte, pte);
843 			}
844 		}
845 		goto out_set_pte;
846 	}
847 
848 	/*
849 	 * If it's a COW mapping, write protect it both
850 	 * in the parent and the child
851 	 */
852 	if (is_cow_mapping(vm_flags)) {
853 		ptep_set_wrprotect(src_mm, addr, src_pte);
854 		pte = pte_wrprotect(pte);
855 	}
856 
857 	/*
858 	 * If it's a shared mapping, mark it clean in
859 	 * the child
860 	 */
861 	if (vm_flags & VM_SHARED)
862 		pte = pte_mkclean(pte);
863 	pte = pte_mkold(pte);
864 
865 	page = vm_normal_page(vma, addr, pte);
866 	if (page) {
867 		get_page(page);
868 		page_dup_rmap(page, false);
869 		rss[mm_counter(page)]++;
870 	}
871 
872 out_set_pte:
873 	set_pte_at(dst_mm, addr, dst_pte, pte);
874 	return 0;
875 }
876 
877 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
879 		   unsigned long addr, unsigned long end)
880 {
881 	pte_t *orig_src_pte, *orig_dst_pte;
882 	pte_t *src_pte, *dst_pte;
883 	spinlock_t *src_ptl, *dst_ptl;
884 	int progress = 0;
885 	int rss[NR_MM_COUNTERS];
886 	swp_entry_t entry = (swp_entry_t){0};
887 
888 again:
889 	init_rss_vec(rss);
890 
891 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
892 	if (!dst_pte)
893 		return -ENOMEM;
894 	src_pte = pte_offset_map(src_pmd, addr);
895 	src_ptl = pte_lockptr(src_mm, src_pmd);
896 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
897 	orig_src_pte = src_pte;
898 	orig_dst_pte = dst_pte;
899 	arch_enter_lazy_mmu_mode();
900 
901 	do {
902 		/*
903 		 * We are holding two locks at this point - either of them
904 		 * could generate latencies in another task on another CPU.
905 		 */
906 		if (progress >= 32) {
907 			progress = 0;
908 			if (need_resched() ||
909 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
910 				break;
911 		}
912 		if (pte_none(*src_pte)) {
913 			progress++;
914 			continue;
915 		}
916 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
917 							vma, addr, rss);
918 		if (entry.val)
919 			break;
920 		progress += 8;
921 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
922 
923 	arch_leave_lazy_mmu_mode();
924 	spin_unlock(src_ptl);
925 	pte_unmap(orig_src_pte);
926 	add_mm_rss_vec(dst_mm, rss);
927 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
928 	cond_resched();
929 
930 	if (entry.val) {
931 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
932 			return -ENOMEM;
933 		progress = 0;
934 	}
935 	if (addr != end)
936 		goto again;
937 	return 0;
938 }
939 
940 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
941 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
942 		unsigned long addr, unsigned long end)
943 {
944 	pmd_t *src_pmd, *dst_pmd;
945 	unsigned long next;
946 
947 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
948 	if (!dst_pmd)
949 		return -ENOMEM;
950 	src_pmd = pmd_offset(src_pud, addr);
951 	do {
952 		next = pmd_addr_end(addr, end);
953 		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
954 			int err;
955 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
956 			err = copy_huge_pmd(dst_mm, src_mm,
957 					    dst_pmd, src_pmd, addr, vma);
958 			if (err == -ENOMEM)
959 				return -ENOMEM;
960 			if (!err)
961 				continue;
962 			/* fall through */
963 		}
964 		if (pmd_none_or_clear_bad(src_pmd))
965 			continue;
966 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
967 						vma, addr, next))
968 			return -ENOMEM;
969 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
970 	return 0;
971 }
972 
973 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
974 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
975 		unsigned long addr, unsigned long end)
976 {
977 	pud_t *src_pud, *dst_pud;
978 	unsigned long next;
979 
980 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
981 	if (!dst_pud)
982 		return -ENOMEM;
983 	src_pud = pud_offset(src_pgd, addr);
984 	do {
985 		next = pud_addr_end(addr, end);
986 		if (pud_none_or_clear_bad(src_pud))
987 			continue;
988 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
989 						vma, addr, next))
990 			return -ENOMEM;
991 	} while (dst_pud++, src_pud++, addr = next, addr != end);
992 	return 0;
993 }
994 
995 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
996 		struct vm_area_struct *vma)
997 {
998 	pgd_t *src_pgd, *dst_pgd;
999 	unsigned long next;
1000 	unsigned long addr = vma->vm_start;
1001 	unsigned long end = vma->vm_end;
1002 	unsigned long mmun_start;	/* For mmu_notifiers */
1003 	unsigned long mmun_end;		/* For mmu_notifiers */
1004 	bool is_cow;
1005 	int ret;
1006 
1007 	/*
1008 	 * Don't copy ptes where a page fault will fill them correctly.
1009 	 * Fork becomes much lighter when there are big shared or private
1010 	 * readonly mappings. The tradeoff is that copy_page_range is more
1011 	 * efficient than faulting.
1012 	 */
1013 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1014 			!vma->anon_vma)
1015 		return 0;
1016 
1017 	if (is_vm_hugetlb_page(vma))
1018 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1019 
1020 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1021 		/*
1022 		 * We do not free on error cases below as remove_vma
1023 		 * gets called on error from higher level routine
1024 		 */
1025 		ret = track_pfn_copy(vma);
1026 		if (ret)
1027 			return ret;
1028 	}
1029 
1030 	/*
1031 	 * We need to invalidate the secondary MMU mappings only when
1032 	 * there could be a permission downgrade on the ptes of the
1033 	 * parent mm. And a permission downgrade will only happen if
1034 	 * is_cow_mapping() returns true.
1035 	 */
1036 	is_cow = is_cow_mapping(vma->vm_flags);
1037 	mmun_start = addr;
1038 	mmun_end   = end;
1039 	if (is_cow)
1040 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1041 						    mmun_end);
1042 
1043 	ret = 0;
1044 	dst_pgd = pgd_offset(dst_mm, addr);
1045 	src_pgd = pgd_offset(src_mm, addr);
1046 	do {
1047 		next = pgd_addr_end(addr, end);
1048 		if (pgd_none_or_clear_bad(src_pgd))
1049 			continue;
1050 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1051 					    vma, addr, next))) {
1052 			ret = -ENOMEM;
1053 			break;
1054 		}
1055 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1056 
1057 	if (is_cow)
1058 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1059 	return ret;
1060 }
1061 
1062 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1063 				struct vm_area_struct *vma, pmd_t *pmd,
1064 				unsigned long addr, unsigned long end,
1065 				struct zap_details *details)
1066 {
1067 	struct mm_struct *mm = tlb->mm;
1068 	int force_flush = 0;
1069 	int rss[NR_MM_COUNTERS];
1070 	spinlock_t *ptl;
1071 	pte_t *start_pte;
1072 	pte_t *pte;
1073 	swp_entry_t entry;
1074 
1075 again:
1076 	init_rss_vec(rss);
1077 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1078 	pte = start_pte;
1079 	arch_enter_lazy_mmu_mode();
1080 	do {
1081 		pte_t ptent = *pte;
1082 		if (pte_none(ptent)) {
1083 			continue;
1084 		}
1085 
1086 		if (pte_present(ptent)) {
1087 			struct page *page;
1088 
1089 			page = vm_normal_page(vma, addr, ptent);
1090 			if (unlikely(details) && page) {
1091 				/*
1092 				 * unmap_shared_mapping_pages() wants to
1093 				 * invalidate cache without truncating:
1094 				 * unmap shared but keep private pages.
1095 				 */
1096 				if (details->check_mapping &&
1097 				    details->check_mapping != page->mapping)
1098 					continue;
1099 			}
1100 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1101 							tlb->fullmm);
1102 			tlb_remove_tlb_entry(tlb, pte, addr);
1103 			if (unlikely(!page))
1104 				continue;
1105 
1106 			if (!PageAnon(page)) {
1107 				if (pte_dirty(ptent)) {
1108 					force_flush = 1;
1109 					set_page_dirty(page);
1110 				}
1111 				if (pte_young(ptent) &&
1112 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1113 					mark_page_accessed(page);
1114 			}
1115 			rss[mm_counter(page)]--;
1116 			page_remove_rmap(page, false);
1117 			if (unlikely(page_mapcount(page) < 0))
1118 				print_bad_pte(vma, addr, ptent, page);
1119 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1120 				force_flush = 1;
1121 				addr += PAGE_SIZE;
1122 				break;
1123 			}
1124 			continue;
1125 		}
1126 		/* If details->check_mapping, we leave swap entries. */
1127 		if (unlikely(details))
1128 			continue;
1129 
1130 		entry = pte_to_swp_entry(ptent);
1131 		if (!non_swap_entry(entry))
1132 			rss[MM_SWAPENTS]--;
1133 		else if (is_migration_entry(entry)) {
1134 			struct page *page;
1135 
1136 			page = migration_entry_to_page(entry);
1137 			rss[mm_counter(page)]--;
1138 		}
1139 		if (unlikely(!free_swap_and_cache(entry)))
1140 			print_bad_pte(vma, addr, ptent, NULL);
1141 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1142 	} while (pte++, addr += PAGE_SIZE, addr != end);
1143 
1144 	add_mm_rss_vec(mm, rss);
1145 	arch_leave_lazy_mmu_mode();
1146 
1147 	/* Do the actual TLB flush before dropping ptl */
1148 	if (force_flush)
1149 		tlb_flush_mmu_tlbonly(tlb);
1150 	pte_unmap_unlock(start_pte, ptl);
1151 
1152 	/*
1153 	 * If we forced a TLB flush (either due to running out of
1154 	 * batch buffers or because we needed to flush dirty TLB
1155 	 * entries before releasing the ptl), free the batched
1156 	 * memory too. Restart if we didn't do everything.
1157 	 */
1158 	if (force_flush) {
1159 		force_flush = 0;
1160 		tlb_flush_mmu_free(tlb);
1161 
1162 		if (addr != end)
1163 			goto again;
1164 	}
1165 
1166 	return addr;
1167 }
1168 
1169 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1170 				struct vm_area_struct *vma, pud_t *pud,
1171 				unsigned long addr, unsigned long end,
1172 				struct zap_details *details)
1173 {
1174 	pmd_t *pmd;
1175 	unsigned long next;
1176 
1177 	pmd = pmd_offset(pud, addr);
1178 	do {
1179 		next = pmd_addr_end(addr, end);
1180 		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1181 			if (next - addr != HPAGE_PMD_SIZE) {
1182 #ifdef CONFIG_DEBUG_VM
1183 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1184 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1185 						__func__, addr, end,
1186 						vma->vm_start,
1187 						vma->vm_end);
1188 					BUG();
1189 				}
1190 #endif
1191 				split_huge_pmd(vma, pmd, addr);
1192 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1193 				goto next;
1194 			/* fall through */
1195 		}
1196 		/*
1197 		 * Here there can be other concurrent MADV_DONTNEED or
1198 		 * trans huge page faults running, and if the pmd is
1199 		 * none or trans huge it can change under us. This is
1200 		 * because MADV_DONTNEED holds the mmap_sem in read
1201 		 * mode.
1202 		 */
1203 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1204 			goto next;
1205 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1206 next:
1207 		cond_resched();
1208 	} while (pmd++, addr = next, addr != end);
1209 
1210 	return addr;
1211 }
1212 
1213 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1214 				struct vm_area_struct *vma, pgd_t *pgd,
1215 				unsigned long addr, unsigned long end,
1216 				struct zap_details *details)
1217 {
1218 	pud_t *pud;
1219 	unsigned long next;
1220 
1221 	pud = pud_offset(pgd, addr);
1222 	do {
1223 		next = pud_addr_end(addr, end);
1224 		if (pud_none_or_clear_bad(pud))
1225 			continue;
1226 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1227 	} while (pud++, addr = next, addr != end);
1228 
1229 	return addr;
1230 }
1231 
1232 static void unmap_page_range(struct mmu_gather *tlb,
1233 			     struct vm_area_struct *vma,
1234 			     unsigned long addr, unsigned long end,
1235 			     struct zap_details *details)
1236 {
1237 	pgd_t *pgd;
1238 	unsigned long next;
1239 
1240 	if (details && !details->check_mapping)
1241 		details = NULL;
1242 
1243 	BUG_ON(addr >= end);
1244 	tlb_start_vma(tlb, vma);
1245 	pgd = pgd_offset(vma->vm_mm, addr);
1246 	do {
1247 		next = pgd_addr_end(addr, end);
1248 		if (pgd_none_or_clear_bad(pgd))
1249 			continue;
1250 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1251 	} while (pgd++, addr = next, addr != end);
1252 	tlb_end_vma(tlb, vma);
1253 }
1254 
1255 
1256 static void unmap_single_vma(struct mmu_gather *tlb,
1257 		struct vm_area_struct *vma, unsigned long start_addr,
1258 		unsigned long end_addr,
1259 		struct zap_details *details)
1260 {
1261 	unsigned long start = max(vma->vm_start, start_addr);
1262 	unsigned long end;
1263 
1264 	if (start >= vma->vm_end)
1265 		return;
1266 	end = min(vma->vm_end, end_addr);
1267 	if (end <= vma->vm_start)
1268 		return;
1269 
1270 	if (vma->vm_file)
1271 		uprobe_munmap(vma, start, end);
1272 
1273 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1274 		untrack_pfn(vma, 0, 0);
1275 
1276 	if (start != end) {
1277 		if (unlikely(is_vm_hugetlb_page(vma))) {
1278 			/*
1279 			 * It is undesirable to test vma->vm_file as it
1280 			 * should be non-null for valid hugetlb area.
1281 			 * However, vm_file will be NULL in the error
1282 			 * cleanup path of mmap_region. When
1283 			 * hugetlbfs ->mmap method fails,
1284 			 * mmap_region() nullifies vma->vm_file
1285 			 * before calling this function to clean up.
1286 			 * Since no pte has actually been setup, it is
1287 			 * safe to do nothing in this case.
1288 			 */
1289 			if (vma->vm_file) {
1290 				i_mmap_lock_write(vma->vm_file->f_mapping);
1291 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1292 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1293 			}
1294 		} else
1295 			unmap_page_range(tlb, vma, start, end, details);
1296 	}
1297 }
1298 
1299 /**
1300  * unmap_vmas - unmap a range of memory covered by a list of vma's
1301  * @tlb: address of the caller's struct mmu_gather
1302  * @vma: the starting vma
1303  * @start_addr: virtual address at which to start unmapping
1304  * @end_addr: virtual address at which to end unmapping
1305  *
1306  * Unmap all pages in the vma list.
1307  *
1308  * Only addresses between `start' and `end' will be unmapped.
1309  *
1310  * The VMA list must be sorted in ascending virtual address order.
1311  *
1312  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1313  * range after unmap_vmas() returns.  So the only responsibility here is to
1314  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1315  * drops the lock and schedules.
1316  */
1317 void unmap_vmas(struct mmu_gather *tlb,
1318 		struct vm_area_struct *vma, unsigned long start_addr,
1319 		unsigned long end_addr)
1320 {
1321 	struct mm_struct *mm = vma->vm_mm;
1322 
1323 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1324 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1325 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1326 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1327 }
1328 
1329 /**
1330  * zap_page_range - remove user pages in a given range
1331  * @vma: vm_area_struct holding the applicable pages
1332  * @start: starting address of pages to zap
1333  * @size: number of bytes to zap
1334  * @details: details of shared cache invalidation
1335  *
1336  * Caller must protect the VMA list
1337  */
1338 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1339 		unsigned long size, struct zap_details *details)
1340 {
1341 	struct mm_struct *mm = vma->vm_mm;
1342 	struct mmu_gather tlb;
1343 	unsigned long end = start + size;
1344 
1345 	lru_add_drain();
1346 	tlb_gather_mmu(&tlb, mm, start, end);
1347 	update_hiwater_rss(mm);
1348 	mmu_notifier_invalidate_range_start(mm, start, end);
1349 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1350 		unmap_single_vma(&tlb, vma, start, end, details);
1351 	mmu_notifier_invalidate_range_end(mm, start, end);
1352 	tlb_finish_mmu(&tlb, start, end);
1353 }
1354 
1355 /**
1356  * zap_page_range_single - remove user pages in a given range
1357  * @vma: vm_area_struct holding the applicable pages
1358  * @address: starting address of pages to zap
1359  * @size: number of bytes to zap
1360  * @details: details of shared cache invalidation
1361  *
1362  * The range must fit into one VMA.
1363  */
1364 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1365 		unsigned long size, struct zap_details *details)
1366 {
1367 	struct mm_struct *mm = vma->vm_mm;
1368 	struct mmu_gather tlb;
1369 	unsigned long end = address + size;
1370 
1371 	lru_add_drain();
1372 	tlb_gather_mmu(&tlb, mm, address, end);
1373 	update_hiwater_rss(mm);
1374 	mmu_notifier_invalidate_range_start(mm, address, end);
1375 	unmap_single_vma(&tlb, vma, address, end, details);
1376 	mmu_notifier_invalidate_range_end(mm, address, end);
1377 	tlb_finish_mmu(&tlb, address, end);
1378 }
1379 
1380 /**
1381  * zap_vma_ptes - remove ptes mapping the vma
1382  * @vma: vm_area_struct holding ptes to be zapped
1383  * @address: starting address of pages to zap
1384  * @size: number of bytes to zap
1385  *
1386  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1387  *
1388  * The entire address range must be fully contained within the vma.
1389  *
1390  * Returns 0 if successful.
1391  */
1392 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1393 		unsigned long size)
1394 {
1395 	if (address < vma->vm_start || address + size > vma->vm_end ||
1396 	    		!(vma->vm_flags & VM_PFNMAP))
1397 		return -1;
1398 	zap_page_range_single(vma, address, size, NULL);
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1402 
1403 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1404 			spinlock_t **ptl)
1405 {
1406 	pgd_t * pgd = pgd_offset(mm, addr);
1407 	pud_t * pud = pud_alloc(mm, pgd, addr);
1408 	if (pud) {
1409 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1410 		if (pmd) {
1411 			VM_BUG_ON(pmd_trans_huge(*pmd));
1412 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1413 		}
1414 	}
1415 	return NULL;
1416 }
1417 
1418 /*
1419  * This is the old fallback for page remapping.
1420  *
1421  * For historical reasons, it only allows reserved pages. Only
1422  * old drivers should use this, and they needed to mark their
1423  * pages reserved for the old functions anyway.
1424  */
1425 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1426 			struct page *page, pgprot_t prot)
1427 {
1428 	struct mm_struct *mm = vma->vm_mm;
1429 	int retval;
1430 	pte_t *pte;
1431 	spinlock_t *ptl;
1432 
1433 	retval = -EINVAL;
1434 	if (PageAnon(page))
1435 		goto out;
1436 	retval = -ENOMEM;
1437 	flush_dcache_page(page);
1438 	pte = get_locked_pte(mm, addr, &ptl);
1439 	if (!pte)
1440 		goto out;
1441 	retval = -EBUSY;
1442 	if (!pte_none(*pte))
1443 		goto out_unlock;
1444 
1445 	/* Ok, finally just insert the thing.. */
1446 	get_page(page);
1447 	inc_mm_counter_fast(mm, mm_counter_file(page));
1448 	page_add_file_rmap(page);
1449 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1450 
1451 	retval = 0;
1452 	pte_unmap_unlock(pte, ptl);
1453 	return retval;
1454 out_unlock:
1455 	pte_unmap_unlock(pte, ptl);
1456 out:
1457 	return retval;
1458 }
1459 
1460 /**
1461  * vm_insert_page - insert single page into user vma
1462  * @vma: user vma to map to
1463  * @addr: target user address of this page
1464  * @page: source kernel page
1465  *
1466  * This allows drivers to insert individual pages they've allocated
1467  * into a user vma.
1468  *
1469  * The page has to be a nice clean _individual_ kernel allocation.
1470  * If you allocate a compound page, you need to have marked it as
1471  * such (__GFP_COMP), or manually just split the page up yourself
1472  * (see split_page()).
1473  *
1474  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1475  * took an arbitrary page protection parameter. This doesn't allow
1476  * that. Your vma protection will have to be set up correctly, which
1477  * means that if you want a shared writable mapping, you'd better
1478  * ask for a shared writable mapping!
1479  *
1480  * The page does not need to be reserved.
1481  *
1482  * Usually this function is called from f_op->mmap() handler
1483  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1484  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1485  * function from other places, for example from page-fault handler.
1486  */
1487 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1488 			struct page *page)
1489 {
1490 	if (addr < vma->vm_start || addr >= vma->vm_end)
1491 		return -EFAULT;
1492 	if (!page_count(page))
1493 		return -EINVAL;
1494 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1495 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1496 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1497 		vma->vm_flags |= VM_MIXEDMAP;
1498 	}
1499 	return insert_page(vma, addr, page, vma->vm_page_prot);
1500 }
1501 EXPORT_SYMBOL(vm_insert_page);
1502 
1503 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1504 			pfn_t pfn, pgprot_t prot)
1505 {
1506 	struct mm_struct *mm = vma->vm_mm;
1507 	int retval;
1508 	pte_t *pte, entry;
1509 	spinlock_t *ptl;
1510 
1511 	retval = -ENOMEM;
1512 	pte = get_locked_pte(mm, addr, &ptl);
1513 	if (!pte)
1514 		goto out;
1515 	retval = -EBUSY;
1516 	if (!pte_none(*pte))
1517 		goto out_unlock;
1518 
1519 	/* Ok, finally just insert the thing.. */
1520 	if (pfn_t_devmap(pfn))
1521 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1522 	else
1523 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1524 	set_pte_at(mm, addr, pte, entry);
1525 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1526 
1527 	retval = 0;
1528 out_unlock:
1529 	pte_unmap_unlock(pte, ptl);
1530 out:
1531 	return retval;
1532 }
1533 
1534 /**
1535  * vm_insert_pfn - insert single pfn into user vma
1536  * @vma: user vma to map to
1537  * @addr: target user address of this page
1538  * @pfn: source kernel pfn
1539  *
1540  * Similar to vm_insert_page, this allows drivers to insert individual pages
1541  * they've allocated into a user vma. Same comments apply.
1542  *
1543  * This function should only be called from a vm_ops->fault handler, and
1544  * in that case the handler should return NULL.
1545  *
1546  * vma cannot be a COW mapping.
1547  *
1548  * As this is called only for pages that do not currently exist, we
1549  * do not need to flush old virtual caches or the TLB.
1550  */
1551 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1552 			unsigned long pfn)
1553 {
1554 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1555 }
1556 EXPORT_SYMBOL(vm_insert_pfn);
1557 
1558 /**
1559  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1560  * @vma: user vma to map to
1561  * @addr: target user address of this page
1562  * @pfn: source kernel pfn
1563  * @pgprot: pgprot flags for the inserted page
1564  *
1565  * This is exactly like vm_insert_pfn, except that it allows drivers to
1566  * to override pgprot on a per-page basis.
1567  *
1568  * This only makes sense for IO mappings, and it makes no sense for
1569  * cow mappings.  In general, using multiple vmas is preferable;
1570  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1571  * impractical.
1572  */
1573 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1574 			unsigned long pfn, pgprot_t pgprot)
1575 {
1576 	int ret;
1577 	/*
1578 	 * Technically, architectures with pte_special can avoid all these
1579 	 * restrictions (same for remap_pfn_range).  However we would like
1580 	 * consistency in testing and feature parity among all, so we should
1581 	 * try to keep these invariants in place for everybody.
1582 	 */
1583 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1584 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1585 						(VM_PFNMAP|VM_MIXEDMAP));
1586 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1587 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1588 
1589 	if (addr < vma->vm_start || addr >= vma->vm_end)
1590 		return -EFAULT;
1591 	if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1592 		return -EINVAL;
1593 
1594 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1595 
1596 	return ret;
1597 }
1598 EXPORT_SYMBOL(vm_insert_pfn_prot);
1599 
1600 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1601 			pfn_t pfn)
1602 {
1603 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1604 
1605 	if (addr < vma->vm_start || addr >= vma->vm_end)
1606 		return -EFAULT;
1607 
1608 	/*
1609 	 * If we don't have pte special, then we have to use the pfn_valid()
1610 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1611 	 * refcount the page if pfn_valid is true (hence insert_page rather
1612 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1613 	 * without pte special, it would there be refcounted as a normal page.
1614 	 */
1615 	if (!HAVE_PTE_SPECIAL && pfn_t_valid(pfn)) {
1616 		struct page *page;
1617 
1618 		page = pfn_t_to_page(pfn);
1619 		return insert_page(vma, addr, page, vma->vm_page_prot);
1620 	}
1621 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1622 }
1623 EXPORT_SYMBOL(vm_insert_mixed);
1624 
1625 /*
1626  * maps a range of physical memory into the requested pages. the old
1627  * mappings are removed. any references to nonexistent pages results
1628  * in null mappings (currently treated as "copy-on-access")
1629  */
1630 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1631 			unsigned long addr, unsigned long end,
1632 			unsigned long pfn, pgprot_t prot)
1633 {
1634 	pte_t *pte;
1635 	spinlock_t *ptl;
1636 
1637 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1638 	if (!pte)
1639 		return -ENOMEM;
1640 	arch_enter_lazy_mmu_mode();
1641 	do {
1642 		BUG_ON(!pte_none(*pte));
1643 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1644 		pfn++;
1645 	} while (pte++, addr += PAGE_SIZE, addr != end);
1646 	arch_leave_lazy_mmu_mode();
1647 	pte_unmap_unlock(pte - 1, ptl);
1648 	return 0;
1649 }
1650 
1651 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1652 			unsigned long addr, unsigned long end,
1653 			unsigned long pfn, pgprot_t prot)
1654 {
1655 	pmd_t *pmd;
1656 	unsigned long next;
1657 
1658 	pfn -= addr >> PAGE_SHIFT;
1659 	pmd = pmd_alloc(mm, pud, addr);
1660 	if (!pmd)
1661 		return -ENOMEM;
1662 	VM_BUG_ON(pmd_trans_huge(*pmd));
1663 	do {
1664 		next = pmd_addr_end(addr, end);
1665 		if (remap_pte_range(mm, pmd, addr, next,
1666 				pfn + (addr >> PAGE_SHIFT), prot))
1667 			return -ENOMEM;
1668 	} while (pmd++, addr = next, addr != end);
1669 	return 0;
1670 }
1671 
1672 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1673 			unsigned long addr, unsigned long end,
1674 			unsigned long pfn, pgprot_t prot)
1675 {
1676 	pud_t *pud;
1677 	unsigned long next;
1678 
1679 	pfn -= addr >> PAGE_SHIFT;
1680 	pud = pud_alloc(mm, pgd, addr);
1681 	if (!pud)
1682 		return -ENOMEM;
1683 	do {
1684 		next = pud_addr_end(addr, end);
1685 		if (remap_pmd_range(mm, pud, addr, next,
1686 				pfn + (addr >> PAGE_SHIFT), prot))
1687 			return -ENOMEM;
1688 	} while (pud++, addr = next, addr != end);
1689 	return 0;
1690 }
1691 
1692 /**
1693  * remap_pfn_range - remap kernel memory to userspace
1694  * @vma: user vma to map to
1695  * @addr: target user address to start at
1696  * @pfn: physical address of kernel memory
1697  * @size: size of map area
1698  * @prot: page protection flags for this mapping
1699  *
1700  *  Note: this is only safe if the mm semaphore is held when called.
1701  */
1702 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1703 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1704 {
1705 	pgd_t *pgd;
1706 	unsigned long next;
1707 	unsigned long end = addr + PAGE_ALIGN(size);
1708 	struct mm_struct *mm = vma->vm_mm;
1709 	int err;
1710 
1711 	/*
1712 	 * Physically remapped pages are special. Tell the
1713 	 * rest of the world about it:
1714 	 *   VM_IO tells people not to look at these pages
1715 	 *	(accesses can have side effects).
1716 	 *   VM_PFNMAP tells the core MM that the base pages are just
1717 	 *	raw PFN mappings, and do not have a "struct page" associated
1718 	 *	with them.
1719 	 *   VM_DONTEXPAND
1720 	 *      Disable vma merging and expanding with mremap().
1721 	 *   VM_DONTDUMP
1722 	 *      Omit vma from core dump, even when VM_IO turned off.
1723 	 *
1724 	 * There's a horrible special case to handle copy-on-write
1725 	 * behaviour that some programs depend on. We mark the "original"
1726 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1727 	 * See vm_normal_page() for details.
1728 	 */
1729 	if (is_cow_mapping(vma->vm_flags)) {
1730 		if (addr != vma->vm_start || end != vma->vm_end)
1731 			return -EINVAL;
1732 		vma->vm_pgoff = pfn;
1733 	}
1734 
1735 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1736 	if (err)
1737 		return -EINVAL;
1738 
1739 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1740 
1741 	BUG_ON(addr >= end);
1742 	pfn -= addr >> PAGE_SHIFT;
1743 	pgd = pgd_offset(mm, addr);
1744 	flush_cache_range(vma, addr, end);
1745 	do {
1746 		next = pgd_addr_end(addr, end);
1747 		err = remap_pud_range(mm, pgd, addr, next,
1748 				pfn + (addr >> PAGE_SHIFT), prot);
1749 		if (err)
1750 			break;
1751 	} while (pgd++, addr = next, addr != end);
1752 
1753 	if (err)
1754 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1755 
1756 	return err;
1757 }
1758 EXPORT_SYMBOL(remap_pfn_range);
1759 
1760 /**
1761  * vm_iomap_memory - remap memory to userspace
1762  * @vma: user vma to map to
1763  * @start: start of area
1764  * @len: size of area
1765  *
1766  * This is a simplified io_remap_pfn_range() for common driver use. The
1767  * driver just needs to give us the physical memory range to be mapped,
1768  * we'll figure out the rest from the vma information.
1769  *
1770  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1771  * whatever write-combining details or similar.
1772  */
1773 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1774 {
1775 	unsigned long vm_len, pfn, pages;
1776 
1777 	/* Check that the physical memory area passed in looks valid */
1778 	if (start + len < start)
1779 		return -EINVAL;
1780 	/*
1781 	 * You *really* shouldn't map things that aren't page-aligned,
1782 	 * but we've historically allowed it because IO memory might
1783 	 * just have smaller alignment.
1784 	 */
1785 	len += start & ~PAGE_MASK;
1786 	pfn = start >> PAGE_SHIFT;
1787 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1788 	if (pfn + pages < pfn)
1789 		return -EINVAL;
1790 
1791 	/* We start the mapping 'vm_pgoff' pages into the area */
1792 	if (vma->vm_pgoff > pages)
1793 		return -EINVAL;
1794 	pfn += vma->vm_pgoff;
1795 	pages -= vma->vm_pgoff;
1796 
1797 	/* Can we fit all of the mapping? */
1798 	vm_len = vma->vm_end - vma->vm_start;
1799 	if (vm_len >> PAGE_SHIFT > pages)
1800 		return -EINVAL;
1801 
1802 	/* Ok, let it rip */
1803 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1804 }
1805 EXPORT_SYMBOL(vm_iomap_memory);
1806 
1807 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1808 				     unsigned long addr, unsigned long end,
1809 				     pte_fn_t fn, void *data)
1810 {
1811 	pte_t *pte;
1812 	int err;
1813 	pgtable_t token;
1814 	spinlock_t *uninitialized_var(ptl);
1815 
1816 	pte = (mm == &init_mm) ?
1817 		pte_alloc_kernel(pmd, addr) :
1818 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1819 	if (!pte)
1820 		return -ENOMEM;
1821 
1822 	BUG_ON(pmd_huge(*pmd));
1823 
1824 	arch_enter_lazy_mmu_mode();
1825 
1826 	token = pmd_pgtable(*pmd);
1827 
1828 	do {
1829 		err = fn(pte++, token, addr, data);
1830 		if (err)
1831 			break;
1832 	} while (addr += PAGE_SIZE, addr != end);
1833 
1834 	arch_leave_lazy_mmu_mode();
1835 
1836 	if (mm != &init_mm)
1837 		pte_unmap_unlock(pte-1, ptl);
1838 	return err;
1839 }
1840 
1841 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1842 				     unsigned long addr, unsigned long end,
1843 				     pte_fn_t fn, void *data)
1844 {
1845 	pmd_t *pmd;
1846 	unsigned long next;
1847 	int err;
1848 
1849 	BUG_ON(pud_huge(*pud));
1850 
1851 	pmd = pmd_alloc(mm, pud, addr);
1852 	if (!pmd)
1853 		return -ENOMEM;
1854 	do {
1855 		next = pmd_addr_end(addr, end);
1856 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1857 		if (err)
1858 			break;
1859 	} while (pmd++, addr = next, addr != end);
1860 	return err;
1861 }
1862 
1863 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1864 				     unsigned long addr, unsigned long end,
1865 				     pte_fn_t fn, void *data)
1866 {
1867 	pud_t *pud;
1868 	unsigned long next;
1869 	int err;
1870 
1871 	pud = pud_alloc(mm, pgd, addr);
1872 	if (!pud)
1873 		return -ENOMEM;
1874 	do {
1875 		next = pud_addr_end(addr, end);
1876 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1877 		if (err)
1878 			break;
1879 	} while (pud++, addr = next, addr != end);
1880 	return err;
1881 }
1882 
1883 /*
1884  * Scan a region of virtual memory, filling in page tables as necessary
1885  * and calling a provided function on each leaf page table.
1886  */
1887 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1888 			unsigned long size, pte_fn_t fn, void *data)
1889 {
1890 	pgd_t *pgd;
1891 	unsigned long next;
1892 	unsigned long end = addr + size;
1893 	int err;
1894 
1895 	BUG_ON(addr >= end);
1896 	pgd = pgd_offset(mm, addr);
1897 	do {
1898 		next = pgd_addr_end(addr, end);
1899 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1900 		if (err)
1901 			break;
1902 	} while (pgd++, addr = next, addr != end);
1903 
1904 	return err;
1905 }
1906 EXPORT_SYMBOL_GPL(apply_to_page_range);
1907 
1908 /*
1909  * handle_pte_fault chooses page fault handler according to an entry which was
1910  * read non-atomically.  Before making any commitment, on those architectures
1911  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1912  * parts, do_swap_page must check under lock before unmapping the pte and
1913  * proceeding (but do_wp_page is only called after already making such a check;
1914  * and do_anonymous_page can safely check later on).
1915  */
1916 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1917 				pte_t *page_table, pte_t orig_pte)
1918 {
1919 	int same = 1;
1920 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1921 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1922 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1923 		spin_lock(ptl);
1924 		same = pte_same(*page_table, orig_pte);
1925 		spin_unlock(ptl);
1926 	}
1927 #endif
1928 	pte_unmap(page_table);
1929 	return same;
1930 }
1931 
1932 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1933 {
1934 	debug_dma_assert_idle(src);
1935 
1936 	/*
1937 	 * If the source page was a PFN mapping, we don't have
1938 	 * a "struct page" for it. We do a best-effort copy by
1939 	 * just copying from the original user address. If that
1940 	 * fails, we just zero-fill it. Live with it.
1941 	 */
1942 	if (unlikely(!src)) {
1943 		void *kaddr = kmap_atomic(dst);
1944 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1945 
1946 		/*
1947 		 * This really shouldn't fail, because the page is there
1948 		 * in the page tables. But it might just be unreadable,
1949 		 * in which case we just give up and fill the result with
1950 		 * zeroes.
1951 		 */
1952 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1953 			clear_page(kaddr);
1954 		kunmap_atomic(kaddr);
1955 		flush_dcache_page(dst);
1956 	} else
1957 		copy_user_highpage(dst, src, va, vma);
1958 }
1959 
1960 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1961 {
1962 	struct file *vm_file = vma->vm_file;
1963 
1964 	if (vm_file)
1965 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1966 
1967 	/*
1968 	 * Special mappings (e.g. VDSO) do not have any file so fake
1969 	 * a default GFP_KERNEL for them.
1970 	 */
1971 	return GFP_KERNEL;
1972 }
1973 
1974 /*
1975  * Notify the address space that the page is about to become writable so that
1976  * it can prohibit this or wait for the page to get into an appropriate state.
1977  *
1978  * We do this without the lock held, so that it can sleep if it needs to.
1979  */
1980 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1981 	       unsigned long address)
1982 {
1983 	struct vm_fault vmf;
1984 	int ret;
1985 
1986 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1987 	vmf.pgoff = page->index;
1988 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1989 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
1990 	vmf.page = page;
1991 	vmf.cow_page = NULL;
1992 
1993 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1994 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1995 		return ret;
1996 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1997 		lock_page(page);
1998 		if (!page->mapping) {
1999 			unlock_page(page);
2000 			return 0; /* retry */
2001 		}
2002 		ret |= VM_FAULT_LOCKED;
2003 	} else
2004 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2005 	return ret;
2006 }
2007 
2008 /*
2009  * Handle write page faults for pages that can be reused in the current vma
2010  *
2011  * This can happen either due to the mapping being with the VM_SHARED flag,
2012  * or due to us being the last reference standing to the page. In either
2013  * case, all we need to do here is to mark the page as writable and update
2014  * any related book-keeping.
2015  */
2016 static inline int wp_page_reuse(struct mm_struct *mm,
2017 			struct vm_area_struct *vma, unsigned long address,
2018 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2019 			struct page *page, int page_mkwrite,
2020 			int dirty_shared)
2021 	__releases(ptl)
2022 {
2023 	pte_t entry;
2024 	/*
2025 	 * Clear the pages cpupid information as the existing
2026 	 * information potentially belongs to a now completely
2027 	 * unrelated process.
2028 	 */
2029 	if (page)
2030 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2031 
2032 	flush_cache_page(vma, address, pte_pfn(orig_pte));
2033 	entry = pte_mkyoung(orig_pte);
2034 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2035 	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2036 		update_mmu_cache(vma, address, page_table);
2037 	pte_unmap_unlock(page_table, ptl);
2038 
2039 	if (dirty_shared) {
2040 		struct address_space *mapping;
2041 		int dirtied;
2042 
2043 		if (!page_mkwrite)
2044 			lock_page(page);
2045 
2046 		dirtied = set_page_dirty(page);
2047 		VM_BUG_ON_PAGE(PageAnon(page), page);
2048 		mapping = page->mapping;
2049 		unlock_page(page);
2050 		page_cache_release(page);
2051 
2052 		if ((dirtied || page_mkwrite) && mapping) {
2053 			/*
2054 			 * Some device drivers do not set page.mapping
2055 			 * but still dirty their pages
2056 			 */
2057 			balance_dirty_pages_ratelimited(mapping);
2058 		}
2059 
2060 		if (!page_mkwrite)
2061 			file_update_time(vma->vm_file);
2062 	}
2063 
2064 	return VM_FAULT_WRITE;
2065 }
2066 
2067 /*
2068  * Handle the case of a page which we actually need to copy to a new page.
2069  *
2070  * Called with mmap_sem locked and the old page referenced, but
2071  * without the ptl held.
2072  *
2073  * High level logic flow:
2074  *
2075  * - Allocate a page, copy the content of the old page to the new one.
2076  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2077  * - Take the PTL. If the pte changed, bail out and release the allocated page
2078  * - If the pte is still the way we remember it, update the page table and all
2079  *   relevant references. This includes dropping the reference the page-table
2080  *   held to the old page, as well as updating the rmap.
2081  * - In any case, unlock the PTL and drop the reference we took to the old page.
2082  */
2083 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2084 			unsigned long address, pte_t *page_table, pmd_t *pmd,
2085 			pte_t orig_pte, struct page *old_page)
2086 {
2087 	struct page *new_page = NULL;
2088 	spinlock_t *ptl = NULL;
2089 	pte_t entry;
2090 	int page_copied = 0;
2091 	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
2092 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
2093 	struct mem_cgroup *memcg;
2094 
2095 	if (unlikely(anon_vma_prepare(vma)))
2096 		goto oom;
2097 
2098 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2099 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2100 		if (!new_page)
2101 			goto oom;
2102 	} else {
2103 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2104 		if (!new_page)
2105 			goto oom;
2106 		cow_user_page(new_page, old_page, address, vma);
2107 	}
2108 
2109 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2110 		goto oom_free_new;
2111 
2112 	__SetPageUptodate(new_page);
2113 
2114 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2115 
2116 	/*
2117 	 * Re-check the pte - we dropped the lock
2118 	 */
2119 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2120 	if (likely(pte_same(*page_table, orig_pte))) {
2121 		if (old_page) {
2122 			if (!PageAnon(old_page)) {
2123 				dec_mm_counter_fast(mm,
2124 						mm_counter_file(old_page));
2125 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2126 			}
2127 		} else {
2128 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2129 		}
2130 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2131 		entry = mk_pte(new_page, vma->vm_page_prot);
2132 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2133 		/*
2134 		 * Clear the pte entry and flush it first, before updating the
2135 		 * pte with the new entry. This will avoid a race condition
2136 		 * seen in the presence of one thread doing SMC and another
2137 		 * thread doing COW.
2138 		 */
2139 		ptep_clear_flush_notify(vma, address, page_table);
2140 		page_add_new_anon_rmap(new_page, vma, address, false);
2141 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2142 		lru_cache_add_active_or_unevictable(new_page, vma);
2143 		/*
2144 		 * We call the notify macro here because, when using secondary
2145 		 * mmu page tables (such as kvm shadow page tables), we want the
2146 		 * new page to be mapped directly into the secondary page table.
2147 		 */
2148 		set_pte_at_notify(mm, address, page_table, entry);
2149 		update_mmu_cache(vma, address, page_table);
2150 		if (old_page) {
2151 			/*
2152 			 * Only after switching the pte to the new page may
2153 			 * we remove the mapcount here. Otherwise another
2154 			 * process may come and find the rmap count decremented
2155 			 * before the pte is switched to the new page, and
2156 			 * "reuse" the old page writing into it while our pte
2157 			 * here still points into it and can be read by other
2158 			 * threads.
2159 			 *
2160 			 * The critical issue is to order this
2161 			 * page_remove_rmap with the ptp_clear_flush above.
2162 			 * Those stores are ordered by (if nothing else,)
2163 			 * the barrier present in the atomic_add_negative
2164 			 * in page_remove_rmap.
2165 			 *
2166 			 * Then the TLB flush in ptep_clear_flush ensures that
2167 			 * no process can access the old page before the
2168 			 * decremented mapcount is visible. And the old page
2169 			 * cannot be reused until after the decremented
2170 			 * mapcount is visible. So transitively, TLBs to
2171 			 * old page will be flushed before it can be reused.
2172 			 */
2173 			page_remove_rmap(old_page, false);
2174 		}
2175 
2176 		/* Free the old page.. */
2177 		new_page = old_page;
2178 		page_copied = 1;
2179 	} else {
2180 		mem_cgroup_cancel_charge(new_page, memcg, false);
2181 	}
2182 
2183 	if (new_page)
2184 		page_cache_release(new_page);
2185 
2186 	pte_unmap_unlock(page_table, ptl);
2187 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2188 	if (old_page) {
2189 		/*
2190 		 * Don't let another task, with possibly unlocked vma,
2191 		 * keep the mlocked page.
2192 		 */
2193 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2194 			lock_page(old_page);	/* LRU manipulation */
2195 			if (PageMlocked(old_page))
2196 				munlock_vma_page(old_page);
2197 			unlock_page(old_page);
2198 		}
2199 		page_cache_release(old_page);
2200 	}
2201 	return page_copied ? VM_FAULT_WRITE : 0;
2202 oom_free_new:
2203 	page_cache_release(new_page);
2204 oom:
2205 	if (old_page)
2206 		page_cache_release(old_page);
2207 	return VM_FAULT_OOM;
2208 }
2209 
2210 /*
2211  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2212  * mapping
2213  */
2214 static int wp_pfn_shared(struct mm_struct *mm,
2215 			struct vm_area_struct *vma, unsigned long address,
2216 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2217 			pmd_t *pmd)
2218 {
2219 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2220 		struct vm_fault vmf = {
2221 			.page = NULL,
2222 			.pgoff = linear_page_index(vma, address),
2223 			.virtual_address = (void __user *)(address & PAGE_MASK),
2224 			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2225 		};
2226 		int ret;
2227 
2228 		pte_unmap_unlock(page_table, ptl);
2229 		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2230 		if (ret & VM_FAULT_ERROR)
2231 			return ret;
2232 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2233 		/*
2234 		 * We might have raced with another page fault while we
2235 		 * released the pte_offset_map_lock.
2236 		 */
2237 		if (!pte_same(*page_table, orig_pte)) {
2238 			pte_unmap_unlock(page_table, ptl);
2239 			return 0;
2240 		}
2241 	}
2242 	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2243 			     NULL, 0, 0);
2244 }
2245 
2246 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2247 			  unsigned long address, pte_t *page_table,
2248 			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2249 			  struct page *old_page)
2250 	__releases(ptl)
2251 {
2252 	int page_mkwrite = 0;
2253 
2254 	page_cache_get(old_page);
2255 
2256 	/*
2257 	 * Only catch write-faults on shared writable pages,
2258 	 * read-only shared pages can get COWed by
2259 	 * get_user_pages(.write=1, .force=1).
2260 	 */
2261 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2262 		int tmp;
2263 
2264 		pte_unmap_unlock(page_table, ptl);
2265 		tmp = do_page_mkwrite(vma, old_page, address);
2266 		if (unlikely(!tmp || (tmp &
2267 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2268 			page_cache_release(old_page);
2269 			return tmp;
2270 		}
2271 		/*
2272 		 * Since we dropped the lock we need to revalidate
2273 		 * the PTE as someone else may have changed it.  If
2274 		 * they did, we just return, as we can count on the
2275 		 * MMU to tell us if they didn't also make it writable.
2276 		 */
2277 		page_table = pte_offset_map_lock(mm, pmd, address,
2278 						 &ptl);
2279 		if (!pte_same(*page_table, orig_pte)) {
2280 			unlock_page(old_page);
2281 			pte_unmap_unlock(page_table, ptl);
2282 			page_cache_release(old_page);
2283 			return 0;
2284 		}
2285 		page_mkwrite = 1;
2286 	}
2287 
2288 	return wp_page_reuse(mm, vma, address, page_table, ptl,
2289 			     orig_pte, old_page, page_mkwrite, 1);
2290 }
2291 
2292 /*
2293  * This routine handles present pages, when users try to write
2294  * to a shared page. It is done by copying the page to a new address
2295  * and decrementing the shared-page counter for the old page.
2296  *
2297  * Note that this routine assumes that the protection checks have been
2298  * done by the caller (the low-level page fault routine in most cases).
2299  * Thus we can safely just mark it writable once we've done any necessary
2300  * COW.
2301  *
2302  * We also mark the page dirty at this point even though the page will
2303  * change only once the write actually happens. This avoids a few races,
2304  * and potentially makes it more efficient.
2305  *
2306  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2307  * but allow concurrent faults), with pte both mapped and locked.
2308  * We return with mmap_sem still held, but pte unmapped and unlocked.
2309  */
2310 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2311 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2312 		spinlock_t *ptl, pte_t orig_pte)
2313 	__releases(ptl)
2314 {
2315 	struct page *old_page;
2316 
2317 	old_page = vm_normal_page(vma, address, orig_pte);
2318 	if (!old_page) {
2319 		/*
2320 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2321 		 * VM_PFNMAP VMA.
2322 		 *
2323 		 * We should not cow pages in a shared writeable mapping.
2324 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2325 		 */
2326 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2327 				     (VM_WRITE|VM_SHARED))
2328 			return wp_pfn_shared(mm, vma, address, page_table, ptl,
2329 					     orig_pte, pmd);
2330 
2331 		pte_unmap_unlock(page_table, ptl);
2332 		return wp_page_copy(mm, vma, address, page_table, pmd,
2333 				    orig_pte, old_page);
2334 	}
2335 
2336 	/*
2337 	 * Take out anonymous pages first, anonymous shared vmas are
2338 	 * not dirty accountable.
2339 	 */
2340 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2341 		if (!trylock_page(old_page)) {
2342 			page_cache_get(old_page);
2343 			pte_unmap_unlock(page_table, ptl);
2344 			lock_page(old_page);
2345 			page_table = pte_offset_map_lock(mm, pmd, address,
2346 							 &ptl);
2347 			if (!pte_same(*page_table, orig_pte)) {
2348 				unlock_page(old_page);
2349 				pte_unmap_unlock(page_table, ptl);
2350 				page_cache_release(old_page);
2351 				return 0;
2352 			}
2353 			page_cache_release(old_page);
2354 		}
2355 		if (reuse_swap_page(old_page)) {
2356 			/*
2357 			 * The page is all ours.  Move it to our anon_vma so
2358 			 * the rmap code will not search our parent or siblings.
2359 			 * Protected against the rmap code by the page lock.
2360 			 */
2361 			page_move_anon_rmap(old_page, vma, address);
2362 			unlock_page(old_page);
2363 			return wp_page_reuse(mm, vma, address, page_table, ptl,
2364 					     orig_pte, old_page, 0, 0);
2365 		}
2366 		unlock_page(old_page);
2367 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2368 					(VM_WRITE|VM_SHARED))) {
2369 		return wp_page_shared(mm, vma, address, page_table, pmd,
2370 				      ptl, orig_pte, old_page);
2371 	}
2372 
2373 	/*
2374 	 * Ok, we need to copy. Oh, well..
2375 	 */
2376 	page_cache_get(old_page);
2377 
2378 	pte_unmap_unlock(page_table, ptl);
2379 	return wp_page_copy(mm, vma, address, page_table, pmd,
2380 			    orig_pte, old_page);
2381 }
2382 
2383 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2384 		unsigned long start_addr, unsigned long end_addr,
2385 		struct zap_details *details)
2386 {
2387 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2388 }
2389 
2390 static inline void unmap_mapping_range_tree(struct rb_root *root,
2391 					    struct zap_details *details)
2392 {
2393 	struct vm_area_struct *vma;
2394 	pgoff_t vba, vea, zba, zea;
2395 
2396 	vma_interval_tree_foreach(vma, root,
2397 			details->first_index, details->last_index) {
2398 
2399 		vba = vma->vm_pgoff;
2400 		vea = vba + vma_pages(vma) - 1;
2401 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2402 		zba = details->first_index;
2403 		if (zba < vba)
2404 			zba = vba;
2405 		zea = details->last_index;
2406 		if (zea > vea)
2407 			zea = vea;
2408 
2409 		unmap_mapping_range_vma(vma,
2410 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2411 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2412 				details);
2413 	}
2414 }
2415 
2416 /**
2417  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2418  * address_space corresponding to the specified page range in the underlying
2419  * file.
2420  *
2421  * @mapping: the address space containing mmaps to be unmapped.
2422  * @holebegin: byte in first page to unmap, relative to the start of
2423  * the underlying file.  This will be rounded down to a PAGE_SIZE
2424  * boundary.  Note that this is different from truncate_pagecache(), which
2425  * must keep the partial page.  In contrast, we must get rid of
2426  * partial pages.
2427  * @holelen: size of prospective hole in bytes.  This will be rounded
2428  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2429  * end of the file.
2430  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2431  * but 0 when invalidating pagecache, don't throw away private data.
2432  */
2433 void unmap_mapping_range(struct address_space *mapping,
2434 		loff_t const holebegin, loff_t const holelen, int even_cows)
2435 {
2436 	struct zap_details details;
2437 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2438 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2439 
2440 	/* Check for overflow. */
2441 	if (sizeof(holelen) > sizeof(hlen)) {
2442 		long long holeend =
2443 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2444 		if (holeend & ~(long long)ULONG_MAX)
2445 			hlen = ULONG_MAX - hba + 1;
2446 	}
2447 
2448 	details.check_mapping = even_cows? NULL: mapping;
2449 	details.first_index = hba;
2450 	details.last_index = hba + hlen - 1;
2451 	if (details.last_index < details.first_index)
2452 		details.last_index = ULONG_MAX;
2453 
2454 
2455 	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2456 	i_mmap_lock_write(mapping);
2457 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2458 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2459 	i_mmap_unlock_write(mapping);
2460 }
2461 EXPORT_SYMBOL(unmap_mapping_range);
2462 
2463 /*
2464  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2465  * but allow concurrent faults), and pte mapped but not yet locked.
2466  * We return with pte unmapped and unlocked.
2467  *
2468  * We return with the mmap_sem locked or unlocked in the same cases
2469  * as does filemap_fault().
2470  */
2471 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2472 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2473 		unsigned int flags, pte_t orig_pte)
2474 {
2475 	spinlock_t *ptl;
2476 	struct page *page, *swapcache;
2477 	struct mem_cgroup *memcg;
2478 	swp_entry_t entry;
2479 	pte_t pte;
2480 	int locked;
2481 	int exclusive = 0;
2482 	int ret = 0;
2483 
2484 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2485 		goto out;
2486 
2487 	entry = pte_to_swp_entry(orig_pte);
2488 	if (unlikely(non_swap_entry(entry))) {
2489 		if (is_migration_entry(entry)) {
2490 			migration_entry_wait(mm, pmd, address);
2491 		} else if (is_hwpoison_entry(entry)) {
2492 			ret = VM_FAULT_HWPOISON;
2493 		} else {
2494 			print_bad_pte(vma, address, orig_pte, NULL);
2495 			ret = VM_FAULT_SIGBUS;
2496 		}
2497 		goto out;
2498 	}
2499 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2500 	page = lookup_swap_cache(entry);
2501 	if (!page) {
2502 		page = swapin_readahead(entry,
2503 					GFP_HIGHUSER_MOVABLE, vma, address);
2504 		if (!page) {
2505 			/*
2506 			 * Back out if somebody else faulted in this pte
2507 			 * while we released the pte lock.
2508 			 */
2509 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2510 			if (likely(pte_same(*page_table, orig_pte)))
2511 				ret = VM_FAULT_OOM;
2512 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2513 			goto unlock;
2514 		}
2515 
2516 		/* Had to read the page from swap area: Major fault */
2517 		ret = VM_FAULT_MAJOR;
2518 		count_vm_event(PGMAJFAULT);
2519 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2520 	} else if (PageHWPoison(page)) {
2521 		/*
2522 		 * hwpoisoned dirty swapcache pages are kept for killing
2523 		 * owner processes (which may be unknown at hwpoison time)
2524 		 */
2525 		ret = VM_FAULT_HWPOISON;
2526 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2527 		swapcache = page;
2528 		goto out_release;
2529 	}
2530 
2531 	swapcache = page;
2532 	locked = lock_page_or_retry(page, mm, flags);
2533 
2534 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2535 	if (!locked) {
2536 		ret |= VM_FAULT_RETRY;
2537 		goto out_release;
2538 	}
2539 
2540 	/*
2541 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2542 	 * release the swapcache from under us.  The page pin, and pte_same
2543 	 * test below, are not enough to exclude that.  Even if it is still
2544 	 * swapcache, we need to check that the page's swap has not changed.
2545 	 */
2546 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2547 		goto out_page;
2548 
2549 	page = ksm_might_need_to_copy(page, vma, address);
2550 	if (unlikely(!page)) {
2551 		ret = VM_FAULT_OOM;
2552 		page = swapcache;
2553 		goto out_page;
2554 	}
2555 
2556 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2557 		ret = VM_FAULT_OOM;
2558 		goto out_page;
2559 	}
2560 
2561 	/*
2562 	 * Back out if somebody else already faulted in this pte.
2563 	 */
2564 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2565 	if (unlikely(!pte_same(*page_table, orig_pte)))
2566 		goto out_nomap;
2567 
2568 	if (unlikely(!PageUptodate(page))) {
2569 		ret = VM_FAULT_SIGBUS;
2570 		goto out_nomap;
2571 	}
2572 
2573 	/*
2574 	 * The page isn't present yet, go ahead with the fault.
2575 	 *
2576 	 * Be careful about the sequence of operations here.
2577 	 * To get its accounting right, reuse_swap_page() must be called
2578 	 * while the page is counted on swap but not yet in mapcount i.e.
2579 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2580 	 * must be called after the swap_free(), or it will never succeed.
2581 	 */
2582 
2583 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2584 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2585 	pte = mk_pte(page, vma->vm_page_prot);
2586 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2587 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2588 		flags &= ~FAULT_FLAG_WRITE;
2589 		ret |= VM_FAULT_WRITE;
2590 		exclusive = RMAP_EXCLUSIVE;
2591 	}
2592 	flush_icache_page(vma, page);
2593 	if (pte_swp_soft_dirty(orig_pte))
2594 		pte = pte_mksoft_dirty(pte);
2595 	set_pte_at(mm, address, page_table, pte);
2596 	if (page == swapcache) {
2597 		do_page_add_anon_rmap(page, vma, address, exclusive);
2598 		mem_cgroup_commit_charge(page, memcg, true, false);
2599 	} else { /* ksm created a completely new copy */
2600 		page_add_new_anon_rmap(page, vma, address, false);
2601 		mem_cgroup_commit_charge(page, memcg, false, false);
2602 		lru_cache_add_active_or_unevictable(page, vma);
2603 	}
2604 
2605 	swap_free(entry);
2606 	if (mem_cgroup_swap_full(page) ||
2607 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2608 		try_to_free_swap(page);
2609 	unlock_page(page);
2610 	if (page != swapcache) {
2611 		/*
2612 		 * Hold the lock to avoid the swap entry to be reused
2613 		 * until we take the PT lock for the pte_same() check
2614 		 * (to avoid false positives from pte_same). For
2615 		 * further safety release the lock after the swap_free
2616 		 * so that the swap count won't change under a
2617 		 * parallel locked swapcache.
2618 		 */
2619 		unlock_page(swapcache);
2620 		page_cache_release(swapcache);
2621 	}
2622 
2623 	if (flags & FAULT_FLAG_WRITE) {
2624 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2625 		if (ret & VM_FAULT_ERROR)
2626 			ret &= VM_FAULT_ERROR;
2627 		goto out;
2628 	}
2629 
2630 	/* No need to invalidate - it was non-present before */
2631 	update_mmu_cache(vma, address, page_table);
2632 unlock:
2633 	pte_unmap_unlock(page_table, ptl);
2634 out:
2635 	return ret;
2636 out_nomap:
2637 	mem_cgroup_cancel_charge(page, memcg, false);
2638 	pte_unmap_unlock(page_table, ptl);
2639 out_page:
2640 	unlock_page(page);
2641 out_release:
2642 	page_cache_release(page);
2643 	if (page != swapcache) {
2644 		unlock_page(swapcache);
2645 		page_cache_release(swapcache);
2646 	}
2647 	return ret;
2648 }
2649 
2650 /*
2651  * This is like a special single-page "expand_{down|up}wards()",
2652  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2653  * doesn't hit another vma.
2654  */
2655 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2656 {
2657 	address &= PAGE_MASK;
2658 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2659 		struct vm_area_struct *prev = vma->vm_prev;
2660 
2661 		/*
2662 		 * Is there a mapping abutting this one below?
2663 		 *
2664 		 * That's only ok if it's the same stack mapping
2665 		 * that has gotten split..
2666 		 */
2667 		if (prev && prev->vm_end == address)
2668 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2669 
2670 		return expand_downwards(vma, address - PAGE_SIZE);
2671 	}
2672 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2673 		struct vm_area_struct *next = vma->vm_next;
2674 
2675 		/* As VM_GROWSDOWN but s/below/above/ */
2676 		if (next && next->vm_start == address + PAGE_SIZE)
2677 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2678 
2679 		return expand_upwards(vma, address + PAGE_SIZE);
2680 	}
2681 	return 0;
2682 }
2683 
2684 /*
2685  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2686  * but allow concurrent faults), and pte mapped but not yet locked.
2687  * We return with mmap_sem still held, but pte unmapped and unlocked.
2688  */
2689 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2690 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2691 		unsigned int flags)
2692 {
2693 	struct mem_cgroup *memcg;
2694 	struct page *page;
2695 	spinlock_t *ptl;
2696 	pte_t entry;
2697 
2698 	pte_unmap(page_table);
2699 
2700 	/* File mapping without ->vm_ops ? */
2701 	if (vma->vm_flags & VM_SHARED)
2702 		return VM_FAULT_SIGBUS;
2703 
2704 	/* Check if we need to add a guard page to the stack */
2705 	if (check_stack_guard_page(vma, address) < 0)
2706 		return VM_FAULT_SIGSEGV;
2707 
2708 	/* Use the zero-page for reads */
2709 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2710 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2711 						vma->vm_page_prot));
2712 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2713 		if (!pte_none(*page_table))
2714 			goto unlock;
2715 		/* Deliver the page fault to userland, check inside PT lock */
2716 		if (userfaultfd_missing(vma)) {
2717 			pte_unmap_unlock(page_table, ptl);
2718 			return handle_userfault(vma, address, flags,
2719 						VM_UFFD_MISSING);
2720 		}
2721 		goto setpte;
2722 	}
2723 
2724 	/* Allocate our own private page. */
2725 	if (unlikely(anon_vma_prepare(vma)))
2726 		goto oom;
2727 	page = alloc_zeroed_user_highpage_movable(vma, address);
2728 	if (!page)
2729 		goto oom;
2730 
2731 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2732 		goto oom_free_page;
2733 
2734 	/*
2735 	 * The memory barrier inside __SetPageUptodate makes sure that
2736 	 * preceeding stores to the page contents become visible before
2737 	 * the set_pte_at() write.
2738 	 */
2739 	__SetPageUptodate(page);
2740 
2741 	entry = mk_pte(page, vma->vm_page_prot);
2742 	if (vma->vm_flags & VM_WRITE)
2743 		entry = pte_mkwrite(pte_mkdirty(entry));
2744 
2745 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2746 	if (!pte_none(*page_table))
2747 		goto release;
2748 
2749 	/* Deliver the page fault to userland, check inside PT lock */
2750 	if (userfaultfd_missing(vma)) {
2751 		pte_unmap_unlock(page_table, ptl);
2752 		mem_cgroup_cancel_charge(page, memcg, false);
2753 		page_cache_release(page);
2754 		return handle_userfault(vma, address, flags,
2755 					VM_UFFD_MISSING);
2756 	}
2757 
2758 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2759 	page_add_new_anon_rmap(page, vma, address, false);
2760 	mem_cgroup_commit_charge(page, memcg, false, false);
2761 	lru_cache_add_active_or_unevictable(page, vma);
2762 setpte:
2763 	set_pte_at(mm, address, page_table, entry);
2764 
2765 	/* No need to invalidate - it was non-present before */
2766 	update_mmu_cache(vma, address, page_table);
2767 unlock:
2768 	pte_unmap_unlock(page_table, ptl);
2769 	return 0;
2770 release:
2771 	mem_cgroup_cancel_charge(page, memcg, false);
2772 	page_cache_release(page);
2773 	goto unlock;
2774 oom_free_page:
2775 	page_cache_release(page);
2776 oom:
2777 	return VM_FAULT_OOM;
2778 }
2779 
2780 /*
2781  * The mmap_sem must have been held on entry, and may have been
2782  * released depending on flags and vma->vm_ops->fault() return value.
2783  * See filemap_fault() and __lock_page_retry().
2784  */
2785 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2786 			pgoff_t pgoff, unsigned int flags,
2787 			struct page *cow_page, struct page **page)
2788 {
2789 	struct vm_fault vmf;
2790 	int ret;
2791 
2792 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2793 	vmf.pgoff = pgoff;
2794 	vmf.flags = flags;
2795 	vmf.page = NULL;
2796 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2797 	vmf.cow_page = cow_page;
2798 
2799 	ret = vma->vm_ops->fault(vma, &vmf);
2800 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2801 		return ret;
2802 	if (!vmf.page)
2803 		goto out;
2804 
2805 	if (unlikely(PageHWPoison(vmf.page))) {
2806 		if (ret & VM_FAULT_LOCKED)
2807 			unlock_page(vmf.page);
2808 		page_cache_release(vmf.page);
2809 		return VM_FAULT_HWPOISON;
2810 	}
2811 
2812 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2813 		lock_page(vmf.page);
2814 	else
2815 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2816 
2817  out:
2818 	*page = vmf.page;
2819 	return ret;
2820 }
2821 
2822 /**
2823  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2824  *
2825  * @vma: virtual memory area
2826  * @address: user virtual address
2827  * @page: page to map
2828  * @pte: pointer to target page table entry
2829  * @write: true, if new entry is writable
2830  * @anon: true, if it's anonymous page
2831  *
2832  * Caller must hold page table lock relevant for @pte.
2833  *
2834  * Target users are page handler itself and implementations of
2835  * vm_ops->map_pages.
2836  */
2837 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2838 		struct page *page, pte_t *pte, bool write, bool anon)
2839 {
2840 	pte_t entry;
2841 
2842 	flush_icache_page(vma, page);
2843 	entry = mk_pte(page, vma->vm_page_prot);
2844 	if (write)
2845 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2846 	if (anon) {
2847 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2848 		page_add_new_anon_rmap(page, vma, address, false);
2849 	} else {
2850 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2851 		page_add_file_rmap(page);
2852 	}
2853 	set_pte_at(vma->vm_mm, address, pte, entry);
2854 
2855 	/* no need to invalidate: a not-present page won't be cached */
2856 	update_mmu_cache(vma, address, pte);
2857 }
2858 
2859 static unsigned long fault_around_bytes __read_mostly =
2860 	rounddown_pow_of_two(65536);
2861 
2862 #ifdef CONFIG_DEBUG_FS
2863 static int fault_around_bytes_get(void *data, u64 *val)
2864 {
2865 	*val = fault_around_bytes;
2866 	return 0;
2867 }
2868 
2869 /*
2870  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2871  * rounded down to nearest page order. It's what do_fault_around() expects to
2872  * see.
2873  */
2874 static int fault_around_bytes_set(void *data, u64 val)
2875 {
2876 	if (val / PAGE_SIZE > PTRS_PER_PTE)
2877 		return -EINVAL;
2878 	if (val > PAGE_SIZE)
2879 		fault_around_bytes = rounddown_pow_of_two(val);
2880 	else
2881 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2882 	return 0;
2883 }
2884 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2885 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2886 
2887 static int __init fault_around_debugfs(void)
2888 {
2889 	void *ret;
2890 
2891 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2892 			&fault_around_bytes_fops);
2893 	if (!ret)
2894 		pr_warn("Failed to create fault_around_bytes in debugfs");
2895 	return 0;
2896 }
2897 late_initcall(fault_around_debugfs);
2898 #endif
2899 
2900 /*
2901  * do_fault_around() tries to map few pages around the fault address. The hope
2902  * is that the pages will be needed soon and this will lower the number of
2903  * faults to handle.
2904  *
2905  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2906  * not ready to be mapped: not up-to-date, locked, etc.
2907  *
2908  * This function is called with the page table lock taken. In the split ptlock
2909  * case the page table lock only protects only those entries which belong to
2910  * the page table corresponding to the fault address.
2911  *
2912  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2913  * only once.
2914  *
2915  * fault_around_pages() defines how many pages we'll try to map.
2916  * do_fault_around() expects it to return a power of two less than or equal to
2917  * PTRS_PER_PTE.
2918  *
2919  * The virtual address of the area that we map is naturally aligned to the
2920  * fault_around_pages() value (and therefore to page order).  This way it's
2921  * easier to guarantee that we don't cross page table boundaries.
2922  */
2923 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2924 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2925 {
2926 	unsigned long start_addr, nr_pages, mask;
2927 	pgoff_t max_pgoff;
2928 	struct vm_fault vmf;
2929 	int off;
2930 
2931 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2932 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2933 
2934 	start_addr = max(address & mask, vma->vm_start);
2935 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2936 	pte -= off;
2937 	pgoff -= off;
2938 
2939 	/*
2940 	 *  max_pgoff is either end of page table or end of vma
2941 	 *  or fault_around_pages() from pgoff, depending what is nearest.
2942 	 */
2943 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2944 		PTRS_PER_PTE - 1;
2945 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2946 			pgoff + nr_pages - 1);
2947 
2948 	/* Check if it makes any sense to call ->map_pages */
2949 	while (!pte_none(*pte)) {
2950 		if (++pgoff > max_pgoff)
2951 			return;
2952 		start_addr += PAGE_SIZE;
2953 		if (start_addr >= vma->vm_end)
2954 			return;
2955 		pte++;
2956 	}
2957 
2958 	vmf.virtual_address = (void __user *) start_addr;
2959 	vmf.pte = pte;
2960 	vmf.pgoff = pgoff;
2961 	vmf.max_pgoff = max_pgoff;
2962 	vmf.flags = flags;
2963 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2964 	vma->vm_ops->map_pages(vma, &vmf);
2965 }
2966 
2967 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2968 		unsigned long address, pmd_t *pmd,
2969 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2970 {
2971 	struct page *fault_page;
2972 	spinlock_t *ptl;
2973 	pte_t *pte;
2974 	int ret = 0;
2975 
2976 	/*
2977 	 * Let's call ->map_pages() first and use ->fault() as fallback
2978 	 * if page by the offset is not ready to be mapped (cold cache or
2979 	 * something).
2980 	 */
2981 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2982 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2983 		do_fault_around(vma, address, pte, pgoff, flags);
2984 		if (!pte_same(*pte, orig_pte))
2985 			goto unlock_out;
2986 		pte_unmap_unlock(pte, ptl);
2987 	}
2988 
2989 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2990 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2991 		return ret;
2992 
2993 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2994 	if (unlikely(!pte_same(*pte, orig_pte))) {
2995 		pte_unmap_unlock(pte, ptl);
2996 		unlock_page(fault_page);
2997 		page_cache_release(fault_page);
2998 		return ret;
2999 	}
3000 	do_set_pte(vma, address, fault_page, pte, false, false);
3001 	unlock_page(fault_page);
3002 unlock_out:
3003 	pte_unmap_unlock(pte, ptl);
3004 	return ret;
3005 }
3006 
3007 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3008 		unsigned long address, pmd_t *pmd,
3009 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3010 {
3011 	struct page *fault_page, *new_page;
3012 	struct mem_cgroup *memcg;
3013 	spinlock_t *ptl;
3014 	pte_t *pte;
3015 	int ret;
3016 
3017 	if (unlikely(anon_vma_prepare(vma)))
3018 		return VM_FAULT_OOM;
3019 
3020 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3021 	if (!new_page)
3022 		return VM_FAULT_OOM;
3023 
3024 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3025 		page_cache_release(new_page);
3026 		return VM_FAULT_OOM;
3027 	}
3028 
3029 	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3030 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3031 		goto uncharge_out;
3032 
3033 	if (fault_page)
3034 		copy_user_highpage(new_page, fault_page, address, vma);
3035 	__SetPageUptodate(new_page);
3036 
3037 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3038 	if (unlikely(!pte_same(*pte, orig_pte))) {
3039 		pte_unmap_unlock(pte, ptl);
3040 		if (fault_page) {
3041 			unlock_page(fault_page);
3042 			page_cache_release(fault_page);
3043 		} else {
3044 			/*
3045 			 * The fault handler has no page to lock, so it holds
3046 			 * i_mmap_lock for read to protect against truncate.
3047 			 */
3048 			i_mmap_unlock_read(vma->vm_file->f_mapping);
3049 		}
3050 		goto uncharge_out;
3051 	}
3052 	do_set_pte(vma, address, new_page, pte, true, true);
3053 	mem_cgroup_commit_charge(new_page, memcg, false, false);
3054 	lru_cache_add_active_or_unevictable(new_page, vma);
3055 	pte_unmap_unlock(pte, ptl);
3056 	if (fault_page) {
3057 		unlock_page(fault_page);
3058 		page_cache_release(fault_page);
3059 	} else {
3060 		/*
3061 		 * The fault handler has no page to lock, so it holds
3062 		 * i_mmap_lock for read to protect against truncate.
3063 		 */
3064 		i_mmap_unlock_read(vma->vm_file->f_mapping);
3065 	}
3066 	return ret;
3067 uncharge_out:
3068 	mem_cgroup_cancel_charge(new_page, memcg, false);
3069 	page_cache_release(new_page);
3070 	return ret;
3071 }
3072 
3073 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3074 		unsigned long address, pmd_t *pmd,
3075 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3076 {
3077 	struct page *fault_page;
3078 	struct address_space *mapping;
3079 	spinlock_t *ptl;
3080 	pte_t *pte;
3081 	int dirtied = 0;
3082 	int ret, tmp;
3083 
3084 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3085 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3086 		return ret;
3087 
3088 	/*
3089 	 * Check if the backing address space wants to know that the page is
3090 	 * about to become writable
3091 	 */
3092 	if (vma->vm_ops->page_mkwrite) {
3093 		unlock_page(fault_page);
3094 		tmp = do_page_mkwrite(vma, fault_page, address);
3095 		if (unlikely(!tmp ||
3096 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3097 			page_cache_release(fault_page);
3098 			return tmp;
3099 		}
3100 	}
3101 
3102 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3103 	if (unlikely(!pte_same(*pte, orig_pte))) {
3104 		pte_unmap_unlock(pte, ptl);
3105 		unlock_page(fault_page);
3106 		page_cache_release(fault_page);
3107 		return ret;
3108 	}
3109 	do_set_pte(vma, address, fault_page, pte, true, false);
3110 	pte_unmap_unlock(pte, ptl);
3111 
3112 	if (set_page_dirty(fault_page))
3113 		dirtied = 1;
3114 	/*
3115 	 * Take a local copy of the address_space - page.mapping may be zeroed
3116 	 * by truncate after unlock_page().   The address_space itself remains
3117 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3118 	 * release semantics to prevent the compiler from undoing this copying.
3119 	 */
3120 	mapping = page_rmapping(fault_page);
3121 	unlock_page(fault_page);
3122 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3123 		/*
3124 		 * Some device drivers do not set page.mapping but still
3125 		 * dirty their pages
3126 		 */
3127 		balance_dirty_pages_ratelimited(mapping);
3128 	}
3129 
3130 	if (!vma->vm_ops->page_mkwrite)
3131 		file_update_time(vma->vm_file);
3132 
3133 	return ret;
3134 }
3135 
3136 /*
3137  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3138  * but allow concurrent faults).
3139  * The mmap_sem may have been released depending on flags and our
3140  * return value.  See filemap_fault() and __lock_page_or_retry().
3141  */
3142 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3143 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3144 		unsigned int flags, pte_t orig_pte)
3145 {
3146 	pgoff_t pgoff = (((address & PAGE_MASK)
3147 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3148 
3149 	pte_unmap(page_table);
3150 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3151 	if (!vma->vm_ops->fault)
3152 		return VM_FAULT_SIGBUS;
3153 	if (!(flags & FAULT_FLAG_WRITE))
3154 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3155 				orig_pte);
3156 	if (!(vma->vm_flags & VM_SHARED))
3157 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3158 				orig_pte);
3159 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3160 }
3161 
3162 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3163 				unsigned long addr, int page_nid,
3164 				int *flags)
3165 {
3166 	get_page(page);
3167 
3168 	count_vm_numa_event(NUMA_HINT_FAULTS);
3169 	if (page_nid == numa_node_id()) {
3170 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3171 		*flags |= TNF_FAULT_LOCAL;
3172 	}
3173 
3174 	return mpol_misplaced(page, vma, addr);
3175 }
3176 
3177 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3178 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3179 {
3180 	struct page *page = NULL;
3181 	spinlock_t *ptl;
3182 	int page_nid = -1;
3183 	int last_cpupid;
3184 	int target_nid;
3185 	bool migrated = false;
3186 	bool was_writable = pte_write(pte);
3187 	int flags = 0;
3188 
3189 	/* A PROT_NONE fault should not end up here */
3190 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3191 
3192 	/*
3193 	* The "pte" at this point cannot be used safely without
3194 	* validation through pte_unmap_same(). It's of NUMA type but
3195 	* the pfn may be screwed if the read is non atomic.
3196 	*
3197 	* We can safely just do a "set_pte_at()", because the old
3198 	* page table entry is not accessible, so there would be no
3199 	* concurrent hardware modifications to the PTE.
3200 	*/
3201 	ptl = pte_lockptr(mm, pmd);
3202 	spin_lock(ptl);
3203 	if (unlikely(!pte_same(*ptep, pte))) {
3204 		pte_unmap_unlock(ptep, ptl);
3205 		goto out;
3206 	}
3207 
3208 	/* Make it present again */
3209 	pte = pte_modify(pte, vma->vm_page_prot);
3210 	pte = pte_mkyoung(pte);
3211 	if (was_writable)
3212 		pte = pte_mkwrite(pte);
3213 	set_pte_at(mm, addr, ptep, pte);
3214 	update_mmu_cache(vma, addr, ptep);
3215 
3216 	page = vm_normal_page(vma, addr, pte);
3217 	if (!page) {
3218 		pte_unmap_unlock(ptep, ptl);
3219 		return 0;
3220 	}
3221 
3222 	/* TODO: handle PTE-mapped THP */
3223 	if (PageCompound(page)) {
3224 		pte_unmap_unlock(ptep, ptl);
3225 		return 0;
3226 	}
3227 
3228 	/*
3229 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3230 	 * much anyway since they can be in shared cache state. This misses
3231 	 * the case where a mapping is writable but the process never writes
3232 	 * to it but pte_write gets cleared during protection updates and
3233 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3234 	 * background writeback, dirty balancing and application behaviour.
3235 	 */
3236 	if (!(vma->vm_flags & VM_WRITE))
3237 		flags |= TNF_NO_GROUP;
3238 
3239 	/*
3240 	 * Flag if the page is shared between multiple address spaces. This
3241 	 * is later used when determining whether to group tasks together
3242 	 */
3243 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3244 		flags |= TNF_SHARED;
3245 
3246 	last_cpupid = page_cpupid_last(page);
3247 	page_nid = page_to_nid(page);
3248 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3249 	pte_unmap_unlock(ptep, ptl);
3250 	if (target_nid == -1) {
3251 		put_page(page);
3252 		goto out;
3253 	}
3254 
3255 	/* Migrate to the requested node */
3256 	migrated = migrate_misplaced_page(page, vma, target_nid);
3257 	if (migrated) {
3258 		page_nid = target_nid;
3259 		flags |= TNF_MIGRATED;
3260 	} else
3261 		flags |= TNF_MIGRATE_FAIL;
3262 
3263 out:
3264 	if (page_nid != -1)
3265 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3266 	return 0;
3267 }
3268 
3269 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3270 			unsigned long address, pmd_t *pmd, unsigned int flags)
3271 {
3272 	if (vma_is_anonymous(vma))
3273 		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3274 	if (vma->vm_ops->pmd_fault)
3275 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3276 	return VM_FAULT_FALLBACK;
3277 }
3278 
3279 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3280 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3281 			unsigned int flags)
3282 {
3283 	if (vma_is_anonymous(vma))
3284 		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3285 	if (vma->vm_ops->pmd_fault)
3286 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3287 	return VM_FAULT_FALLBACK;
3288 }
3289 
3290 /*
3291  * These routines also need to handle stuff like marking pages dirty
3292  * and/or accessed for architectures that don't do it in hardware (most
3293  * RISC architectures).  The early dirtying is also good on the i386.
3294  *
3295  * There is also a hook called "update_mmu_cache()" that architectures
3296  * with external mmu caches can use to update those (ie the Sparc or
3297  * PowerPC hashed page tables that act as extended TLBs).
3298  *
3299  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3300  * but allow concurrent faults), and pte mapped but not yet locked.
3301  * We return with pte unmapped and unlocked.
3302  *
3303  * The mmap_sem may have been released depending on flags and our
3304  * return value.  See filemap_fault() and __lock_page_or_retry().
3305  */
3306 static int handle_pte_fault(struct mm_struct *mm,
3307 		     struct vm_area_struct *vma, unsigned long address,
3308 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3309 {
3310 	pte_t entry;
3311 	spinlock_t *ptl;
3312 
3313 	/*
3314 	 * some architectures can have larger ptes than wordsize,
3315 	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3316 	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3317 	 * The code below just needs a consistent view for the ifs and
3318 	 * we later double check anyway with the ptl lock held. So here
3319 	 * a barrier will do.
3320 	 */
3321 	entry = *pte;
3322 	barrier();
3323 	if (!pte_present(entry)) {
3324 		if (pte_none(entry)) {
3325 			if (vma_is_anonymous(vma))
3326 				return do_anonymous_page(mm, vma, address,
3327 							 pte, pmd, flags);
3328 			else
3329 				return do_fault(mm, vma, address, pte, pmd,
3330 						flags, entry);
3331 		}
3332 		return do_swap_page(mm, vma, address,
3333 					pte, pmd, flags, entry);
3334 	}
3335 
3336 	if (pte_protnone(entry))
3337 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3338 
3339 	ptl = pte_lockptr(mm, pmd);
3340 	spin_lock(ptl);
3341 	if (unlikely(!pte_same(*pte, entry)))
3342 		goto unlock;
3343 	if (flags & FAULT_FLAG_WRITE) {
3344 		if (!pte_write(entry))
3345 			return do_wp_page(mm, vma, address,
3346 					pte, pmd, ptl, entry);
3347 		entry = pte_mkdirty(entry);
3348 	}
3349 	entry = pte_mkyoung(entry);
3350 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3351 		update_mmu_cache(vma, address, pte);
3352 	} else {
3353 		/*
3354 		 * This is needed only for protection faults but the arch code
3355 		 * is not yet telling us if this is a protection fault or not.
3356 		 * This still avoids useless tlb flushes for .text page faults
3357 		 * with threads.
3358 		 */
3359 		if (flags & FAULT_FLAG_WRITE)
3360 			flush_tlb_fix_spurious_fault(vma, address);
3361 	}
3362 unlock:
3363 	pte_unmap_unlock(pte, ptl);
3364 	return 0;
3365 }
3366 
3367 /*
3368  * By the time we get here, we already hold the mm semaphore
3369  *
3370  * The mmap_sem may have been released depending on flags and our
3371  * return value.  See filemap_fault() and __lock_page_or_retry().
3372  */
3373 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3374 			     unsigned long address, unsigned int flags)
3375 {
3376 	pgd_t *pgd;
3377 	pud_t *pud;
3378 	pmd_t *pmd;
3379 	pte_t *pte;
3380 
3381 	if (unlikely(is_vm_hugetlb_page(vma)))
3382 		return hugetlb_fault(mm, vma, address, flags);
3383 
3384 	pgd = pgd_offset(mm, address);
3385 	pud = pud_alloc(mm, pgd, address);
3386 	if (!pud)
3387 		return VM_FAULT_OOM;
3388 	pmd = pmd_alloc(mm, pud, address);
3389 	if (!pmd)
3390 		return VM_FAULT_OOM;
3391 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3392 		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3393 		if (!(ret & VM_FAULT_FALLBACK))
3394 			return ret;
3395 	} else {
3396 		pmd_t orig_pmd = *pmd;
3397 		int ret;
3398 
3399 		barrier();
3400 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3401 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3402 
3403 			if (pmd_protnone(orig_pmd))
3404 				return do_huge_pmd_numa_page(mm, vma, address,
3405 							     orig_pmd, pmd);
3406 
3407 			if (dirty && !pmd_write(orig_pmd)) {
3408 				ret = wp_huge_pmd(mm, vma, address, pmd,
3409 							orig_pmd, flags);
3410 				if (!(ret & VM_FAULT_FALLBACK))
3411 					return ret;
3412 			} else {
3413 				huge_pmd_set_accessed(mm, vma, address, pmd,
3414 						      orig_pmd, dirty);
3415 				return 0;
3416 			}
3417 		}
3418 	}
3419 
3420 	/*
3421 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3422 	 * run pte_offset_map on the pmd, if an huge pmd could
3423 	 * materialize from under us from a different thread.
3424 	 */
3425 	if (unlikely(pmd_none(*pmd)) &&
3426 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3427 		return VM_FAULT_OOM;
3428 	/* if an huge pmd materialized from under us just retry later */
3429 	if (unlikely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
3430 		return 0;
3431 	/*
3432 	 * A regular pmd is established and it can't morph into a huge pmd
3433 	 * from under us anymore at this point because we hold the mmap_sem
3434 	 * read mode and khugepaged takes it in write mode. So now it's
3435 	 * safe to run pte_offset_map().
3436 	 */
3437 	pte = pte_offset_map(pmd, address);
3438 
3439 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3440 }
3441 
3442 /*
3443  * By the time we get here, we already hold the mm semaphore
3444  *
3445  * The mmap_sem may have been released depending on flags and our
3446  * return value.  See filemap_fault() and __lock_page_or_retry().
3447  */
3448 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3449 		    unsigned long address, unsigned int flags)
3450 {
3451 	int ret;
3452 
3453 	__set_current_state(TASK_RUNNING);
3454 
3455 	count_vm_event(PGFAULT);
3456 	mem_cgroup_count_vm_event(mm, PGFAULT);
3457 
3458 	/* do counter updates before entering really critical section. */
3459 	check_sync_rss_stat(current);
3460 
3461 	/*
3462 	 * Enable the memcg OOM handling for faults triggered in user
3463 	 * space.  Kernel faults are handled more gracefully.
3464 	 */
3465 	if (flags & FAULT_FLAG_USER)
3466 		mem_cgroup_oom_enable();
3467 
3468 	ret = __handle_mm_fault(mm, vma, address, flags);
3469 
3470 	if (flags & FAULT_FLAG_USER) {
3471 		mem_cgroup_oom_disable();
3472                 /*
3473                  * The task may have entered a memcg OOM situation but
3474                  * if the allocation error was handled gracefully (no
3475                  * VM_FAULT_OOM), there is no need to kill anything.
3476                  * Just clean up the OOM state peacefully.
3477                  */
3478                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3479                         mem_cgroup_oom_synchronize(false);
3480 	}
3481 
3482 	return ret;
3483 }
3484 EXPORT_SYMBOL_GPL(handle_mm_fault);
3485 
3486 #ifndef __PAGETABLE_PUD_FOLDED
3487 /*
3488  * Allocate page upper directory.
3489  * We've already handled the fast-path in-line.
3490  */
3491 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3492 {
3493 	pud_t *new = pud_alloc_one(mm, address);
3494 	if (!new)
3495 		return -ENOMEM;
3496 
3497 	smp_wmb(); /* See comment in __pte_alloc */
3498 
3499 	spin_lock(&mm->page_table_lock);
3500 	if (pgd_present(*pgd))		/* Another has populated it */
3501 		pud_free(mm, new);
3502 	else
3503 		pgd_populate(mm, pgd, new);
3504 	spin_unlock(&mm->page_table_lock);
3505 	return 0;
3506 }
3507 #endif /* __PAGETABLE_PUD_FOLDED */
3508 
3509 #ifndef __PAGETABLE_PMD_FOLDED
3510 /*
3511  * Allocate page middle directory.
3512  * We've already handled the fast-path in-line.
3513  */
3514 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3515 {
3516 	pmd_t *new = pmd_alloc_one(mm, address);
3517 	if (!new)
3518 		return -ENOMEM;
3519 
3520 	smp_wmb(); /* See comment in __pte_alloc */
3521 
3522 	spin_lock(&mm->page_table_lock);
3523 #ifndef __ARCH_HAS_4LEVEL_HACK
3524 	if (!pud_present(*pud)) {
3525 		mm_inc_nr_pmds(mm);
3526 		pud_populate(mm, pud, new);
3527 	} else	/* Another has populated it */
3528 		pmd_free(mm, new);
3529 #else
3530 	if (!pgd_present(*pud)) {
3531 		mm_inc_nr_pmds(mm);
3532 		pgd_populate(mm, pud, new);
3533 	} else /* Another has populated it */
3534 		pmd_free(mm, new);
3535 #endif /* __ARCH_HAS_4LEVEL_HACK */
3536 	spin_unlock(&mm->page_table_lock);
3537 	return 0;
3538 }
3539 #endif /* __PAGETABLE_PMD_FOLDED */
3540 
3541 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3542 		pte_t **ptepp, spinlock_t **ptlp)
3543 {
3544 	pgd_t *pgd;
3545 	pud_t *pud;
3546 	pmd_t *pmd;
3547 	pte_t *ptep;
3548 
3549 	pgd = pgd_offset(mm, address);
3550 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3551 		goto out;
3552 
3553 	pud = pud_offset(pgd, address);
3554 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3555 		goto out;
3556 
3557 	pmd = pmd_offset(pud, address);
3558 	VM_BUG_ON(pmd_trans_huge(*pmd));
3559 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3560 		goto out;
3561 
3562 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3563 	if (pmd_huge(*pmd))
3564 		goto out;
3565 
3566 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3567 	if (!ptep)
3568 		goto out;
3569 	if (!pte_present(*ptep))
3570 		goto unlock;
3571 	*ptepp = ptep;
3572 	return 0;
3573 unlock:
3574 	pte_unmap_unlock(ptep, *ptlp);
3575 out:
3576 	return -EINVAL;
3577 }
3578 
3579 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3580 			     pte_t **ptepp, spinlock_t **ptlp)
3581 {
3582 	int res;
3583 
3584 	/* (void) is needed to make gcc happy */
3585 	(void) __cond_lock(*ptlp,
3586 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3587 	return res;
3588 }
3589 
3590 /**
3591  * follow_pfn - look up PFN at a user virtual address
3592  * @vma: memory mapping
3593  * @address: user virtual address
3594  * @pfn: location to store found PFN
3595  *
3596  * Only IO mappings and raw PFN mappings are allowed.
3597  *
3598  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3599  */
3600 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3601 	unsigned long *pfn)
3602 {
3603 	int ret = -EINVAL;
3604 	spinlock_t *ptl;
3605 	pte_t *ptep;
3606 
3607 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3608 		return ret;
3609 
3610 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3611 	if (ret)
3612 		return ret;
3613 	*pfn = pte_pfn(*ptep);
3614 	pte_unmap_unlock(ptep, ptl);
3615 	return 0;
3616 }
3617 EXPORT_SYMBOL(follow_pfn);
3618 
3619 #ifdef CONFIG_HAVE_IOREMAP_PROT
3620 int follow_phys(struct vm_area_struct *vma,
3621 		unsigned long address, unsigned int flags,
3622 		unsigned long *prot, resource_size_t *phys)
3623 {
3624 	int ret = -EINVAL;
3625 	pte_t *ptep, pte;
3626 	spinlock_t *ptl;
3627 
3628 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3629 		goto out;
3630 
3631 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3632 		goto out;
3633 	pte = *ptep;
3634 
3635 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3636 		goto unlock;
3637 
3638 	*prot = pgprot_val(pte_pgprot(pte));
3639 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3640 
3641 	ret = 0;
3642 unlock:
3643 	pte_unmap_unlock(ptep, ptl);
3644 out:
3645 	return ret;
3646 }
3647 
3648 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3649 			void *buf, int len, int write)
3650 {
3651 	resource_size_t phys_addr;
3652 	unsigned long prot = 0;
3653 	void __iomem *maddr;
3654 	int offset = addr & (PAGE_SIZE-1);
3655 
3656 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3657 		return -EINVAL;
3658 
3659 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3660 	if (write)
3661 		memcpy_toio(maddr + offset, buf, len);
3662 	else
3663 		memcpy_fromio(buf, maddr + offset, len);
3664 	iounmap(maddr);
3665 
3666 	return len;
3667 }
3668 EXPORT_SYMBOL_GPL(generic_access_phys);
3669 #endif
3670 
3671 /*
3672  * Access another process' address space as given in mm.  If non-NULL, use the
3673  * given task for page fault accounting.
3674  */
3675 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3676 		unsigned long addr, void *buf, int len, int write)
3677 {
3678 	struct vm_area_struct *vma;
3679 	void *old_buf = buf;
3680 
3681 	down_read(&mm->mmap_sem);
3682 	/* ignore errors, just check how much was successfully transferred */
3683 	while (len) {
3684 		int bytes, ret, offset;
3685 		void *maddr;
3686 		struct page *page = NULL;
3687 
3688 		ret = get_user_pages(tsk, mm, addr, 1,
3689 				write, 1, &page, &vma);
3690 		if (ret <= 0) {
3691 #ifndef CONFIG_HAVE_IOREMAP_PROT
3692 			break;
3693 #else
3694 			/*
3695 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3696 			 * we can access using slightly different code.
3697 			 */
3698 			vma = find_vma(mm, addr);
3699 			if (!vma || vma->vm_start > addr)
3700 				break;
3701 			if (vma->vm_ops && vma->vm_ops->access)
3702 				ret = vma->vm_ops->access(vma, addr, buf,
3703 							  len, write);
3704 			if (ret <= 0)
3705 				break;
3706 			bytes = ret;
3707 #endif
3708 		} else {
3709 			bytes = len;
3710 			offset = addr & (PAGE_SIZE-1);
3711 			if (bytes > PAGE_SIZE-offset)
3712 				bytes = PAGE_SIZE-offset;
3713 
3714 			maddr = kmap(page);
3715 			if (write) {
3716 				copy_to_user_page(vma, page, addr,
3717 						  maddr + offset, buf, bytes);
3718 				set_page_dirty_lock(page);
3719 			} else {
3720 				copy_from_user_page(vma, page, addr,
3721 						    buf, maddr + offset, bytes);
3722 			}
3723 			kunmap(page);
3724 			page_cache_release(page);
3725 		}
3726 		len -= bytes;
3727 		buf += bytes;
3728 		addr += bytes;
3729 	}
3730 	up_read(&mm->mmap_sem);
3731 
3732 	return buf - old_buf;
3733 }
3734 
3735 /**
3736  * access_remote_vm - access another process' address space
3737  * @mm:		the mm_struct of the target address space
3738  * @addr:	start address to access
3739  * @buf:	source or destination buffer
3740  * @len:	number of bytes to transfer
3741  * @write:	whether the access is a write
3742  *
3743  * The caller must hold a reference on @mm.
3744  */
3745 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3746 		void *buf, int len, int write)
3747 {
3748 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3749 }
3750 
3751 /*
3752  * Access another process' address space.
3753  * Source/target buffer must be kernel space,
3754  * Do not walk the page table directly, use get_user_pages
3755  */
3756 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3757 		void *buf, int len, int write)
3758 {
3759 	struct mm_struct *mm;
3760 	int ret;
3761 
3762 	mm = get_task_mm(tsk);
3763 	if (!mm)
3764 		return 0;
3765 
3766 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3767 	mmput(mm);
3768 
3769 	return ret;
3770 }
3771 
3772 /*
3773  * Print the name of a VMA.
3774  */
3775 void print_vma_addr(char *prefix, unsigned long ip)
3776 {
3777 	struct mm_struct *mm = current->mm;
3778 	struct vm_area_struct *vma;
3779 
3780 	/*
3781 	 * Do not print if we are in atomic
3782 	 * contexts (in exception stacks, etc.):
3783 	 */
3784 	if (preempt_count())
3785 		return;
3786 
3787 	down_read(&mm->mmap_sem);
3788 	vma = find_vma(mm, ip);
3789 	if (vma && vma->vm_file) {
3790 		struct file *f = vma->vm_file;
3791 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3792 		if (buf) {
3793 			char *p;
3794 
3795 			p = file_path(f, buf, PAGE_SIZE);
3796 			if (IS_ERR(p))
3797 				p = "?";
3798 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3799 					vma->vm_start,
3800 					vma->vm_end - vma->vm_start);
3801 			free_page((unsigned long)buf);
3802 		}
3803 	}
3804 	up_read(&mm->mmap_sem);
3805 }
3806 
3807 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3808 void __might_fault(const char *file, int line)
3809 {
3810 	/*
3811 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3812 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3813 	 * get paged out, therefore we'll never actually fault, and the
3814 	 * below annotations will generate false positives.
3815 	 */
3816 	if (segment_eq(get_fs(), KERNEL_DS))
3817 		return;
3818 	if (pagefault_disabled())
3819 		return;
3820 	__might_sleep(file, line, 0);
3821 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3822 	if (current->mm)
3823 		might_lock_read(&current->mm->mmap_sem);
3824 #endif
3825 }
3826 EXPORT_SYMBOL(__might_fault);
3827 #endif
3828 
3829 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3830 static void clear_gigantic_page(struct page *page,
3831 				unsigned long addr,
3832 				unsigned int pages_per_huge_page)
3833 {
3834 	int i;
3835 	struct page *p = page;
3836 
3837 	might_sleep();
3838 	for (i = 0; i < pages_per_huge_page;
3839 	     i++, p = mem_map_next(p, page, i)) {
3840 		cond_resched();
3841 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3842 	}
3843 }
3844 void clear_huge_page(struct page *page,
3845 		     unsigned long addr, unsigned int pages_per_huge_page)
3846 {
3847 	int i;
3848 
3849 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3850 		clear_gigantic_page(page, addr, pages_per_huge_page);
3851 		return;
3852 	}
3853 
3854 	might_sleep();
3855 	for (i = 0; i < pages_per_huge_page; i++) {
3856 		cond_resched();
3857 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3858 	}
3859 }
3860 
3861 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3862 				    unsigned long addr,
3863 				    struct vm_area_struct *vma,
3864 				    unsigned int pages_per_huge_page)
3865 {
3866 	int i;
3867 	struct page *dst_base = dst;
3868 	struct page *src_base = src;
3869 
3870 	for (i = 0; i < pages_per_huge_page; ) {
3871 		cond_resched();
3872 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3873 
3874 		i++;
3875 		dst = mem_map_next(dst, dst_base, i);
3876 		src = mem_map_next(src, src_base, i);
3877 	}
3878 }
3879 
3880 void copy_user_huge_page(struct page *dst, struct page *src,
3881 			 unsigned long addr, struct vm_area_struct *vma,
3882 			 unsigned int pages_per_huge_page)
3883 {
3884 	int i;
3885 
3886 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3887 		copy_user_gigantic_page(dst, src, addr, vma,
3888 					pages_per_huge_page);
3889 		return;
3890 	}
3891 
3892 	might_sleep();
3893 	for (i = 0; i < pages_per_huge_page; i++) {
3894 		cond_resched();
3895 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3896 	}
3897 }
3898 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3899 
3900 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3901 
3902 static struct kmem_cache *page_ptl_cachep;
3903 
3904 void __init ptlock_cache_init(void)
3905 {
3906 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3907 			SLAB_PANIC, NULL);
3908 }
3909 
3910 bool ptlock_alloc(struct page *page)
3911 {
3912 	spinlock_t *ptl;
3913 
3914 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3915 	if (!ptl)
3916 		return false;
3917 	page->ptl = ptl;
3918 	return true;
3919 }
3920 
3921 void ptlock_free(struct page *page)
3922 {
3923 	kmem_cache_free(page_ptl_cachep, page->ptl);
3924 }
3925 #endif
3926