1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/pfn_t.h> 61 #include <linux/writeback.h> 62 #include <linux/memcontrol.h> 63 #include <linux/mmu_notifier.h> 64 #include <linux/swapops.h> 65 #include <linux/elf.h> 66 #include <linux/gfp.h> 67 #include <linux/migrate.h> 68 #include <linux/string.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 #include <linux/perf_event.h> 75 #include <linux/ptrace.h> 76 #include <linux/vmalloc.h> 77 78 #include <trace/events/kmem.h> 79 80 #include <asm/io.h> 81 #include <asm/mmu_context.h> 82 #include <asm/pgalloc.h> 83 #include <linux/uaccess.h> 84 #include <asm/tlb.h> 85 #include <asm/tlbflush.h> 86 87 #include "pgalloc-track.h" 88 #include "internal.h" 89 90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 92 #endif 93 94 #ifndef CONFIG_NUMA 95 unsigned long max_mapnr; 96 EXPORT_SYMBOL(max_mapnr); 97 98 struct page *mem_map; 99 EXPORT_SYMBOL(mem_map); 100 #endif 101 102 /* 103 * A number of key systems in x86 including ioremap() rely on the assumption 104 * that high_memory defines the upper bound on direct map memory, then end 105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 107 * and ZONE_HIGHMEM. 108 */ 109 void *high_memory; 110 EXPORT_SYMBOL(high_memory); 111 112 /* 113 * Randomize the address space (stacks, mmaps, brk, etc.). 114 * 115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 116 * as ancient (libc5 based) binaries can segfault. ) 117 */ 118 int randomize_va_space __read_mostly = 119 #ifdef CONFIG_COMPAT_BRK 120 1; 121 #else 122 2; 123 #endif 124 125 #ifndef arch_faults_on_old_pte 126 static inline bool arch_faults_on_old_pte(void) 127 { 128 /* 129 * Those arches which don't have hw access flag feature need to 130 * implement their own helper. By default, "true" means pagefault 131 * will be hit on old pte. 132 */ 133 return true; 134 } 135 #endif 136 137 #ifndef arch_wants_old_prefaulted_pte 138 static inline bool arch_wants_old_prefaulted_pte(void) 139 { 140 /* 141 * Transitioning a PTE from 'old' to 'young' can be expensive on 142 * some architectures, even if it's performed in hardware. By 143 * default, "false" means prefaulted entries will be 'young'. 144 */ 145 return false; 146 } 147 #endif 148 149 static int __init disable_randmaps(char *s) 150 { 151 randomize_va_space = 0; 152 return 1; 153 } 154 __setup("norandmaps", disable_randmaps); 155 156 unsigned long zero_pfn __read_mostly; 157 EXPORT_SYMBOL(zero_pfn); 158 159 unsigned long highest_memmap_pfn __read_mostly; 160 161 /* 162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 163 */ 164 static int __init init_zero_pfn(void) 165 { 166 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 167 return 0; 168 } 169 early_initcall(init_zero_pfn); 170 171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 172 { 173 trace_rss_stat(mm, member, count); 174 } 175 176 #if defined(SPLIT_RSS_COUNTING) 177 178 void sync_mm_rss(struct mm_struct *mm) 179 { 180 int i; 181 182 for (i = 0; i < NR_MM_COUNTERS; i++) { 183 if (current->rss_stat.count[i]) { 184 add_mm_counter(mm, i, current->rss_stat.count[i]); 185 current->rss_stat.count[i] = 0; 186 } 187 } 188 current->rss_stat.events = 0; 189 } 190 191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 192 { 193 struct task_struct *task = current; 194 195 if (likely(task->mm == mm)) 196 task->rss_stat.count[member] += val; 197 else 198 add_mm_counter(mm, member, val); 199 } 200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 202 203 /* sync counter once per 64 page faults */ 204 #define TASK_RSS_EVENTS_THRESH (64) 205 static void check_sync_rss_stat(struct task_struct *task) 206 { 207 if (unlikely(task != current)) 208 return; 209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 210 sync_mm_rss(task->mm); 211 } 212 #else /* SPLIT_RSS_COUNTING */ 213 214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 216 217 static void check_sync_rss_stat(struct task_struct *task) 218 { 219 } 220 221 #endif /* SPLIT_RSS_COUNTING */ 222 223 /* 224 * Note: this doesn't free the actual pages themselves. That 225 * has been handled earlier when unmapping all the memory regions. 226 */ 227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 228 unsigned long addr) 229 { 230 pgtable_t token = pmd_pgtable(*pmd); 231 pmd_clear(pmd); 232 pte_free_tlb(tlb, token, addr); 233 mm_dec_nr_ptes(tlb->mm); 234 } 235 236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 237 unsigned long addr, unsigned long end, 238 unsigned long floor, unsigned long ceiling) 239 { 240 pmd_t *pmd; 241 unsigned long next; 242 unsigned long start; 243 244 start = addr; 245 pmd = pmd_offset(pud, addr); 246 do { 247 next = pmd_addr_end(addr, end); 248 if (pmd_none_or_clear_bad(pmd)) 249 continue; 250 free_pte_range(tlb, pmd, addr); 251 } while (pmd++, addr = next, addr != end); 252 253 start &= PUD_MASK; 254 if (start < floor) 255 return; 256 if (ceiling) { 257 ceiling &= PUD_MASK; 258 if (!ceiling) 259 return; 260 } 261 if (end - 1 > ceiling - 1) 262 return; 263 264 pmd = pmd_offset(pud, start); 265 pud_clear(pud); 266 pmd_free_tlb(tlb, pmd, start); 267 mm_dec_nr_pmds(tlb->mm); 268 } 269 270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 271 unsigned long addr, unsigned long end, 272 unsigned long floor, unsigned long ceiling) 273 { 274 pud_t *pud; 275 unsigned long next; 276 unsigned long start; 277 278 start = addr; 279 pud = pud_offset(p4d, addr); 280 do { 281 next = pud_addr_end(addr, end); 282 if (pud_none_or_clear_bad(pud)) 283 continue; 284 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 285 } while (pud++, addr = next, addr != end); 286 287 start &= P4D_MASK; 288 if (start < floor) 289 return; 290 if (ceiling) { 291 ceiling &= P4D_MASK; 292 if (!ceiling) 293 return; 294 } 295 if (end - 1 > ceiling - 1) 296 return; 297 298 pud = pud_offset(p4d, start); 299 p4d_clear(p4d); 300 pud_free_tlb(tlb, pud, start); 301 mm_dec_nr_puds(tlb->mm); 302 } 303 304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 305 unsigned long addr, unsigned long end, 306 unsigned long floor, unsigned long ceiling) 307 { 308 p4d_t *p4d; 309 unsigned long next; 310 unsigned long start; 311 312 start = addr; 313 p4d = p4d_offset(pgd, addr); 314 do { 315 next = p4d_addr_end(addr, end); 316 if (p4d_none_or_clear_bad(p4d)) 317 continue; 318 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 319 } while (p4d++, addr = next, addr != end); 320 321 start &= PGDIR_MASK; 322 if (start < floor) 323 return; 324 if (ceiling) { 325 ceiling &= PGDIR_MASK; 326 if (!ceiling) 327 return; 328 } 329 if (end - 1 > ceiling - 1) 330 return; 331 332 p4d = p4d_offset(pgd, start); 333 pgd_clear(pgd); 334 p4d_free_tlb(tlb, p4d, start); 335 } 336 337 /* 338 * This function frees user-level page tables of a process. 339 */ 340 void free_pgd_range(struct mmu_gather *tlb, 341 unsigned long addr, unsigned long end, 342 unsigned long floor, unsigned long ceiling) 343 { 344 pgd_t *pgd; 345 unsigned long next; 346 347 /* 348 * The next few lines have given us lots of grief... 349 * 350 * Why are we testing PMD* at this top level? Because often 351 * there will be no work to do at all, and we'd prefer not to 352 * go all the way down to the bottom just to discover that. 353 * 354 * Why all these "- 1"s? Because 0 represents both the bottom 355 * of the address space and the top of it (using -1 for the 356 * top wouldn't help much: the masks would do the wrong thing). 357 * The rule is that addr 0 and floor 0 refer to the bottom of 358 * the address space, but end 0 and ceiling 0 refer to the top 359 * Comparisons need to use "end - 1" and "ceiling - 1" (though 360 * that end 0 case should be mythical). 361 * 362 * Wherever addr is brought up or ceiling brought down, we must 363 * be careful to reject "the opposite 0" before it confuses the 364 * subsequent tests. But what about where end is brought down 365 * by PMD_SIZE below? no, end can't go down to 0 there. 366 * 367 * Whereas we round start (addr) and ceiling down, by different 368 * masks at different levels, in order to test whether a table 369 * now has no other vmas using it, so can be freed, we don't 370 * bother to round floor or end up - the tests don't need that. 371 */ 372 373 addr &= PMD_MASK; 374 if (addr < floor) { 375 addr += PMD_SIZE; 376 if (!addr) 377 return; 378 } 379 if (ceiling) { 380 ceiling &= PMD_MASK; 381 if (!ceiling) 382 return; 383 } 384 if (end - 1 > ceiling - 1) 385 end -= PMD_SIZE; 386 if (addr > end - 1) 387 return; 388 /* 389 * We add page table cache pages with PAGE_SIZE, 390 * (see pte_free_tlb()), flush the tlb if we need 391 */ 392 tlb_change_page_size(tlb, PAGE_SIZE); 393 pgd = pgd_offset(tlb->mm, addr); 394 do { 395 next = pgd_addr_end(addr, end); 396 if (pgd_none_or_clear_bad(pgd)) 397 continue; 398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 399 } while (pgd++, addr = next, addr != end); 400 } 401 402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 403 unsigned long floor, unsigned long ceiling) 404 { 405 while (vma) { 406 struct vm_area_struct *next = vma->vm_next; 407 unsigned long addr = vma->vm_start; 408 409 /* 410 * Hide vma from rmap and truncate_pagecache before freeing 411 * pgtables 412 */ 413 unlink_anon_vmas(vma); 414 unlink_file_vma(vma); 415 416 if (is_vm_hugetlb_page(vma)) { 417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 418 floor, next ? next->vm_start : ceiling); 419 } else { 420 /* 421 * Optimization: gather nearby vmas into one call down 422 */ 423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 424 && !is_vm_hugetlb_page(next)) { 425 vma = next; 426 next = vma->vm_next; 427 unlink_anon_vmas(vma); 428 unlink_file_vma(vma); 429 } 430 free_pgd_range(tlb, addr, vma->vm_end, 431 floor, next ? next->vm_start : ceiling); 432 } 433 vma = next; 434 } 435 } 436 437 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 438 { 439 spinlock_t *ptl = pmd_lock(mm, pmd); 440 441 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 442 mm_inc_nr_ptes(mm); 443 /* 444 * Ensure all pte setup (eg. pte page lock and page clearing) are 445 * visible before the pte is made visible to other CPUs by being 446 * put into page tables. 447 * 448 * The other side of the story is the pointer chasing in the page 449 * table walking code (when walking the page table without locking; 450 * ie. most of the time). Fortunately, these data accesses consist 451 * of a chain of data-dependent loads, meaning most CPUs (alpha 452 * being the notable exception) will already guarantee loads are 453 * seen in-order. See the alpha page table accessors for the 454 * smp_rmb() barriers in page table walking code. 455 */ 456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 457 pmd_populate(mm, pmd, *pte); 458 *pte = NULL; 459 } 460 spin_unlock(ptl); 461 } 462 463 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 464 { 465 pgtable_t new = pte_alloc_one(mm); 466 if (!new) 467 return -ENOMEM; 468 469 pmd_install(mm, pmd, &new); 470 if (new) 471 pte_free(mm, new); 472 return 0; 473 } 474 475 int __pte_alloc_kernel(pmd_t *pmd) 476 { 477 pte_t *new = pte_alloc_one_kernel(&init_mm); 478 if (!new) 479 return -ENOMEM; 480 481 spin_lock(&init_mm.page_table_lock); 482 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 483 smp_wmb(); /* See comment in pmd_install() */ 484 pmd_populate_kernel(&init_mm, pmd, new); 485 new = NULL; 486 } 487 spin_unlock(&init_mm.page_table_lock); 488 if (new) 489 pte_free_kernel(&init_mm, new); 490 return 0; 491 } 492 493 static inline void init_rss_vec(int *rss) 494 { 495 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 496 } 497 498 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 499 { 500 int i; 501 502 if (current->mm == mm) 503 sync_mm_rss(mm); 504 for (i = 0; i < NR_MM_COUNTERS; i++) 505 if (rss[i]) 506 add_mm_counter(mm, i, rss[i]); 507 } 508 509 /* 510 * This function is called to print an error when a bad pte 511 * is found. For example, we might have a PFN-mapped pte in 512 * a region that doesn't allow it. 513 * 514 * The calling function must still handle the error. 515 */ 516 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 517 pte_t pte, struct page *page) 518 { 519 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 520 p4d_t *p4d = p4d_offset(pgd, addr); 521 pud_t *pud = pud_offset(p4d, addr); 522 pmd_t *pmd = pmd_offset(pud, addr); 523 struct address_space *mapping; 524 pgoff_t index; 525 static unsigned long resume; 526 static unsigned long nr_shown; 527 static unsigned long nr_unshown; 528 529 /* 530 * Allow a burst of 60 reports, then keep quiet for that minute; 531 * or allow a steady drip of one report per second. 532 */ 533 if (nr_shown == 60) { 534 if (time_before(jiffies, resume)) { 535 nr_unshown++; 536 return; 537 } 538 if (nr_unshown) { 539 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 540 nr_unshown); 541 nr_unshown = 0; 542 } 543 nr_shown = 0; 544 } 545 if (nr_shown++ == 0) 546 resume = jiffies + 60 * HZ; 547 548 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 549 index = linear_page_index(vma, addr); 550 551 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 552 current->comm, 553 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 554 if (page) 555 dump_page(page, "bad pte"); 556 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 557 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 558 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 559 vma->vm_file, 560 vma->vm_ops ? vma->vm_ops->fault : NULL, 561 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 562 mapping ? mapping->a_ops->readpage : NULL); 563 dump_stack(); 564 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 565 } 566 567 /* 568 * vm_normal_page -- This function gets the "struct page" associated with a pte. 569 * 570 * "Special" mappings do not wish to be associated with a "struct page" (either 571 * it doesn't exist, or it exists but they don't want to touch it). In this 572 * case, NULL is returned here. "Normal" mappings do have a struct page. 573 * 574 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 575 * pte bit, in which case this function is trivial. Secondly, an architecture 576 * may not have a spare pte bit, which requires a more complicated scheme, 577 * described below. 578 * 579 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 580 * special mapping (even if there are underlying and valid "struct pages"). 581 * COWed pages of a VM_PFNMAP are always normal. 582 * 583 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 584 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 585 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 586 * mapping will always honor the rule 587 * 588 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 589 * 590 * And for normal mappings this is false. 591 * 592 * This restricts such mappings to be a linear translation from virtual address 593 * to pfn. To get around this restriction, we allow arbitrary mappings so long 594 * as the vma is not a COW mapping; in that case, we know that all ptes are 595 * special (because none can have been COWed). 596 * 597 * 598 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 599 * 600 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 601 * page" backing, however the difference is that _all_ pages with a struct 602 * page (that is, those where pfn_valid is true) are refcounted and considered 603 * normal pages by the VM. The disadvantage is that pages are refcounted 604 * (which can be slower and simply not an option for some PFNMAP users). The 605 * advantage is that we don't have to follow the strict linearity rule of 606 * PFNMAP mappings in order to support COWable mappings. 607 * 608 */ 609 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 610 pte_t pte) 611 { 612 unsigned long pfn = pte_pfn(pte); 613 614 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 615 if (likely(!pte_special(pte))) 616 goto check_pfn; 617 if (vma->vm_ops && vma->vm_ops->find_special_page) 618 return vma->vm_ops->find_special_page(vma, addr); 619 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 620 return NULL; 621 if (is_zero_pfn(pfn)) 622 return NULL; 623 if (pte_devmap(pte)) 624 return NULL; 625 626 print_bad_pte(vma, addr, pte, NULL); 627 return NULL; 628 } 629 630 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 631 632 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 633 if (vma->vm_flags & VM_MIXEDMAP) { 634 if (!pfn_valid(pfn)) 635 return NULL; 636 goto out; 637 } else { 638 unsigned long off; 639 off = (addr - vma->vm_start) >> PAGE_SHIFT; 640 if (pfn == vma->vm_pgoff + off) 641 return NULL; 642 if (!is_cow_mapping(vma->vm_flags)) 643 return NULL; 644 } 645 } 646 647 if (is_zero_pfn(pfn)) 648 return NULL; 649 650 check_pfn: 651 if (unlikely(pfn > highest_memmap_pfn)) { 652 print_bad_pte(vma, addr, pte, NULL); 653 return NULL; 654 } 655 656 /* 657 * NOTE! We still have PageReserved() pages in the page tables. 658 * eg. VDSO mappings can cause them to exist. 659 */ 660 out: 661 return pfn_to_page(pfn); 662 } 663 664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 665 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 666 pmd_t pmd) 667 { 668 unsigned long pfn = pmd_pfn(pmd); 669 670 /* 671 * There is no pmd_special() but there may be special pmds, e.g. 672 * in a direct-access (dax) mapping, so let's just replicate the 673 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 674 */ 675 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 676 if (vma->vm_flags & VM_MIXEDMAP) { 677 if (!pfn_valid(pfn)) 678 return NULL; 679 goto out; 680 } else { 681 unsigned long off; 682 off = (addr - vma->vm_start) >> PAGE_SHIFT; 683 if (pfn == vma->vm_pgoff + off) 684 return NULL; 685 if (!is_cow_mapping(vma->vm_flags)) 686 return NULL; 687 } 688 } 689 690 if (pmd_devmap(pmd)) 691 return NULL; 692 if (is_huge_zero_pmd(pmd)) 693 return NULL; 694 if (unlikely(pfn > highest_memmap_pfn)) 695 return NULL; 696 697 /* 698 * NOTE! We still have PageReserved() pages in the page tables. 699 * eg. VDSO mappings can cause them to exist. 700 */ 701 out: 702 return pfn_to_page(pfn); 703 } 704 #endif 705 706 static void restore_exclusive_pte(struct vm_area_struct *vma, 707 struct page *page, unsigned long address, 708 pte_t *ptep) 709 { 710 pte_t pte; 711 swp_entry_t entry; 712 713 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 714 if (pte_swp_soft_dirty(*ptep)) 715 pte = pte_mksoft_dirty(pte); 716 717 entry = pte_to_swp_entry(*ptep); 718 if (pte_swp_uffd_wp(*ptep)) 719 pte = pte_mkuffd_wp(pte); 720 else if (is_writable_device_exclusive_entry(entry)) 721 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 722 723 /* 724 * No need to take a page reference as one was already 725 * created when the swap entry was made. 726 */ 727 if (PageAnon(page)) 728 page_add_anon_rmap(page, vma, address, false); 729 else 730 /* 731 * Currently device exclusive access only supports anonymous 732 * memory so the entry shouldn't point to a filebacked page. 733 */ 734 WARN_ON_ONCE(!PageAnon(page)); 735 736 set_pte_at(vma->vm_mm, address, ptep, pte); 737 738 if (vma->vm_flags & VM_LOCKED) 739 mlock_vma_page(page); 740 741 /* 742 * No need to invalidate - it was non-present before. However 743 * secondary CPUs may have mappings that need invalidating. 744 */ 745 update_mmu_cache(vma, address, ptep); 746 } 747 748 /* 749 * Tries to restore an exclusive pte if the page lock can be acquired without 750 * sleeping. 751 */ 752 static int 753 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 754 unsigned long addr) 755 { 756 swp_entry_t entry = pte_to_swp_entry(*src_pte); 757 struct page *page = pfn_swap_entry_to_page(entry); 758 759 if (trylock_page(page)) { 760 restore_exclusive_pte(vma, page, addr, src_pte); 761 unlock_page(page); 762 return 0; 763 } 764 765 return -EBUSY; 766 } 767 768 /* 769 * copy one vm_area from one task to the other. Assumes the page tables 770 * already present in the new task to be cleared in the whole range 771 * covered by this vma. 772 */ 773 774 static unsigned long 775 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 776 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 777 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 778 { 779 unsigned long vm_flags = dst_vma->vm_flags; 780 pte_t pte = *src_pte; 781 struct page *page; 782 swp_entry_t entry = pte_to_swp_entry(pte); 783 784 if (likely(!non_swap_entry(entry))) { 785 if (swap_duplicate(entry) < 0) 786 return -EIO; 787 788 /* make sure dst_mm is on swapoff's mmlist. */ 789 if (unlikely(list_empty(&dst_mm->mmlist))) { 790 spin_lock(&mmlist_lock); 791 if (list_empty(&dst_mm->mmlist)) 792 list_add(&dst_mm->mmlist, 793 &src_mm->mmlist); 794 spin_unlock(&mmlist_lock); 795 } 796 rss[MM_SWAPENTS]++; 797 } else if (is_migration_entry(entry)) { 798 page = pfn_swap_entry_to_page(entry); 799 800 rss[mm_counter(page)]++; 801 802 if (is_writable_migration_entry(entry) && 803 is_cow_mapping(vm_flags)) { 804 /* 805 * COW mappings require pages in both 806 * parent and child to be set to read. 807 */ 808 entry = make_readable_migration_entry( 809 swp_offset(entry)); 810 pte = swp_entry_to_pte(entry); 811 if (pte_swp_soft_dirty(*src_pte)) 812 pte = pte_swp_mksoft_dirty(pte); 813 if (pte_swp_uffd_wp(*src_pte)) 814 pte = pte_swp_mkuffd_wp(pte); 815 set_pte_at(src_mm, addr, src_pte, pte); 816 } 817 } else if (is_device_private_entry(entry)) { 818 page = pfn_swap_entry_to_page(entry); 819 820 /* 821 * Update rss count even for unaddressable pages, as 822 * they should treated just like normal pages in this 823 * respect. 824 * 825 * We will likely want to have some new rss counters 826 * for unaddressable pages, at some point. But for now 827 * keep things as they are. 828 */ 829 get_page(page); 830 rss[mm_counter(page)]++; 831 page_dup_rmap(page, false); 832 833 /* 834 * We do not preserve soft-dirty information, because so 835 * far, checkpoint/restore is the only feature that 836 * requires that. And checkpoint/restore does not work 837 * when a device driver is involved (you cannot easily 838 * save and restore device driver state). 839 */ 840 if (is_writable_device_private_entry(entry) && 841 is_cow_mapping(vm_flags)) { 842 entry = make_readable_device_private_entry( 843 swp_offset(entry)); 844 pte = swp_entry_to_pte(entry); 845 if (pte_swp_uffd_wp(*src_pte)) 846 pte = pte_swp_mkuffd_wp(pte); 847 set_pte_at(src_mm, addr, src_pte, pte); 848 } 849 } else if (is_device_exclusive_entry(entry)) { 850 /* 851 * Make device exclusive entries present by restoring the 852 * original entry then copying as for a present pte. Device 853 * exclusive entries currently only support private writable 854 * (ie. COW) mappings. 855 */ 856 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 857 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 858 return -EBUSY; 859 return -ENOENT; 860 } 861 if (!userfaultfd_wp(dst_vma)) 862 pte = pte_swp_clear_uffd_wp(pte); 863 set_pte_at(dst_mm, addr, dst_pte, pte); 864 return 0; 865 } 866 867 /* 868 * Copy a present and normal page if necessary. 869 * 870 * NOTE! The usual case is that this doesn't need to do 871 * anything, and can just return a positive value. That 872 * will let the caller know that it can just increase 873 * the page refcount and re-use the pte the traditional 874 * way. 875 * 876 * But _if_ we need to copy it because it needs to be 877 * pinned in the parent (and the child should get its own 878 * copy rather than just a reference to the same page), 879 * we'll do that here and return zero to let the caller 880 * know we're done. 881 * 882 * And if we need a pre-allocated page but don't yet have 883 * one, return a negative error to let the preallocation 884 * code know so that it can do so outside the page table 885 * lock. 886 */ 887 static inline int 888 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 889 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 890 struct page **prealloc, pte_t pte, struct page *page) 891 { 892 struct page *new_page; 893 894 /* 895 * What we want to do is to check whether this page may 896 * have been pinned by the parent process. If so, 897 * instead of wrprotect the pte on both sides, we copy 898 * the page immediately so that we'll always guarantee 899 * the pinned page won't be randomly replaced in the 900 * future. 901 * 902 * The page pinning checks are just "has this mm ever 903 * seen pinning", along with the (inexact) check of 904 * the page count. That might give false positives for 905 * for pinning, but it will work correctly. 906 */ 907 if (likely(!page_needs_cow_for_dma(src_vma, page))) 908 return 1; 909 910 new_page = *prealloc; 911 if (!new_page) 912 return -EAGAIN; 913 914 /* 915 * We have a prealloc page, all good! Take it 916 * over and copy the page & arm it. 917 */ 918 *prealloc = NULL; 919 copy_user_highpage(new_page, page, addr, src_vma); 920 __SetPageUptodate(new_page); 921 page_add_new_anon_rmap(new_page, dst_vma, addr, false); 922 lru_cache_add_inactive_or_unevictable(new_page, dst_vma); 923 rss[mm_counter(new_page)]++; 924 925 /* All done, just insert the new page copy in the child */ 926 pte = mk_pte(new_page, dst_vma->vm_page_prot); 927 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 928 if (userfaultfd_pte_wp(dst_vma, *src_pte)) 929 /* Uffd-wp needs to be delivered to dest pte as well */ 930 pte = pte_wrprotect(pte_mkuffd_wp(pte)); 931 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 932 return 0; 933 } 934 935 /* 936 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 937 * is required to copy this pte. 938 */ 939 static inline int 940 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 941 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 942 struct page **prealloc) 943 { 944 struct mm_struct *src_mm = src_vma->vm_mm; 945 unsigned long vm_flags = src_vma->vm_flags; 946 pte_t pte = *src_pte; 947 struct page *page; 948 949 page = vm_normal_page(src_vma, addr, pte); 950 if (page) { 951 int retval; 952 953 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 954 addr, rss, prealloc, pte, page); 955 if (retval <= 0) 956 return retval; 957 958 get_page(page); 959 page_dup_rmap(page, false); 960 rss[mm_counter(page)]++; 961 } 962 963 /* 964 * If it's a COW mapping, write protect it both 965 * in the parent and the child 966 */ 967 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 968 ptep_set_wrprotect(src_mm, addr, src_pte); 969 pte = pte_wrprotect(pte); 970 } 971 972 /* 973 * If it's a shared mapping, mark it clean in 974 * the child 975 */ 976 if (vm_flags & VM_SHARED) 977 pte = pte_mkclean(pte); 978 pte = pte_mkold(pte); 979 980 if (!userfaultfd_wp(dst_vma)) 981 pte = pte_clear_uffd_wp(pte); 982 983 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 984 return 0; 985 } 986 987 static inline struct page * 988 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, 989 unsigned long addr) 990 { 991 struct page *new_page; 992 993 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); 994 if (!new_page) 995 return NULL; 996 997 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) { 998 put_page(new_page); 999 return NULL; 1000 } 1001 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 1002 1003 return new_page; 1004 } 1005 1006 static int 1007 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1008 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1009 unsigned long end) 1010 { 1011 struct mm_struct *dst_mm = dst_vma->vm_mm; 1012 struct mm_struct *src_mm = src_vma->vm_mm; 1013 pte_t *orig_src_pte, *orig_dst_pte; 1014 pte_t *src_pte, *dst_pte; 1015 spinlock_t *src_ptl, *dst_ptl; 1016 int progress, ret = 0; 1017 int rss[NR_MM_COUNTERS]; 1018 swp_entry_t entry = (swp_entry_t){0}; 1019 struct page *prealloc = NULL; 1020 1021 again: 1022 progress = 0; 1023 init_rss_vec(rss); 1024 1025 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1026 if (!dst_pte) { 1027 ret = -ENOMEM; 1028 goto out; 1029 } 1030 src_pte = pte_offset_map(src_pmd, addr); 1031 src_ptl = pte_lockptr(src_mm, src_pmd); 1032 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1033 orig_src_pte = src_pte; 1034 orig_dst_pte = dst_pte; 1035 arch_enter_lazy_mmu_mode(); 1036 1037 do { 1038 /* 1039 * We are holding two locks at this point - either of them 1040 * could generate latencies in another task on another CPU. 1041 */ 1042 if (progress >= 32) { 1043 progress = 0; 1044 if (need_resched() || 1045 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1046 break; 1047 } 1048 if (pte_none(*src_pte)) { 1049 progress++; 1050 continue; 1051 } 1052 if (unlikely(!pte_present(*src_pte))) { 1053 ret = copy_nonpresent_pte(dst_mm, src_mm, 1054 dst_pte, src_pte, 1055 dst_vma, src_vma, 1056 addr, rss); 1057 if (ret == -EIO) { 1058 entry = pte_to_swp_entry(*src_pte); 1059 break; 1060 } else if (ret == -EBUSY) { 1061 break; 1062 } else if (!ret) { 1063 progress += 8; 1064 continue; 1065 } 1066 1067 /* 1068 * Device exclusive entry restored, continue by copying 1069 * the now present pte. 1070 */ 1071 WARN_ON_ONCE(ret != -ENOENT); 1072 } 1073 /* copy_present_pte() will clear `*prealloc' if consumed */ 1074 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1075 addr, rss, &prealloc); 1076 /* 1077 * If we need a pre-allocated page for this pte, drop the 1078 * locks, allocate, and try again. 1079 */ 1080 if (unlikely(ret == -EAGAIN)) 1081 break; 1082 if (unlikely(prealloc)) { 1083 /* 1084 * pre-alloc page cannot be reused by next time so as 1085 * to strictly follow mempolicy (e.g., alloc_page_vma() 1086 * will allocate page according to address). This 1087 * could only happen if one pinned pte changed. 1088 */ 1089 put_page(prealloc); 1090 prealloc = NULL; 1091 } 1092 progress += 8; 1093 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1094 1095 arch_leave_lazy_mmu_mode(); 1096 spin_unlock(src_ptl); 1097 pte_unmap(orig_src_pte); 1098 add_mm_rss_vec(dst_mm, rss); 1099 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1100 cond_resched(); 1101 1102 if (ret == -EIO) { 1103 VM_WARN_ON_ONCE(!entry.val); 1104 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1105 ret = -ENOMEM; 1106 goto out; 1107 } 1108 entry.val = 0; 1109 } else if (ret == -EBUSY) { 1110 goto out; 1111 } else if (ret == -EAGAIN) { 1112 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1113 if (!prealloc) 1114 return -ENOMEM; 1115 } else if (ret) { 1116 VM_WARN_ON_ONCE(1); 1117 } 1118 1119 /* We've captured and resolved the error. Reset, try again. */ 1120 ret = 0; 1121 1122 if (addr != end) 1123 goto again; 1124 out: 1125 if (unlikely(prealloc)) 1126 put_page(prealloc); 1127 return ret; 1128 } 1129 1130 static inline int 1131 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1132 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1133 unsigned long end) 1134 { 1135 struct mm_struct *dst_mm = dst_vma->vm_mm; 1136 struct mm_struct *src_mm = src_vma->vm_mm; 1137 pmd_t *src_pmd, *dst_pmd; 1138 unsigned long next; 1139 1140 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1141 if (!dst_pmd) 1142 return -ENOMEM; 1143 src_pmd = pmd_offset(src_pud, addr); 1144 do { 1145 next = pmd_addr_end(addr, end); 1146 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1147 || pmd_devmap(*src_pmd)) { 1148 int err; 1149 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1150 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1151 addr, dst_vma, src_vma); 1152 if (err == -ENOMEM) 1153 return -ENOMEM; 1154 if (!err) 1155 continue; 1156 /* fall through */ 1157 } 1158 if (pmd_none_or_clear_bad(src_pmd)) 1159 continue; 1160 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1161 addr, next)) 1162 return -ENOMEM; 1163 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1164 return 0; 1165 } 1166 1167 static inline int 1168 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1169 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1170 unsigned long end) 1171 { 1172 struct mm_struct *dst_mm = dst_vma->vm_mm; 1173 struct mm_struct *src_mm = src_vma->vm_mm; 1174 pud_t *src_pud, *dst_pud; 1175 unsigned long next; 1176 1177 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1178 if (!dst_pud) 1179 return -ENOMEM; 1180 src_pud = pud_offset(src_p4d, addr); 1181 do { 1182 next = pud_addr_end(addr, end); 1183 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1184 int err; 1185 1186 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1187 err = copy_huge_pud(dst_mm, src_mm, 1188 dst_pud, src_pud, addr, src_vma); 1189 if (err == -ENOMEM) 1190 return -ENOMEM; 1191 if (!err) 1192 continue; 1193 /* fall through */ 1194 } 1195 if (pud_none_or_clear_bad(src_pud)) 1196 continue; 1197 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1198 addr, next)) 1199 return -ENOMEM; 1200 } while (dst_pud++, src_pud++, addr = next, addr != end); 1201 return 0; 1202 } 1203 1204 static inline int 1205 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1206 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1207 unsigned long end) 1208 { 1209 struct mm_struct *dst_mm = dst_vma->vm_mm; 1210 p4d_t *src_p4d, *dst_p4d; 1211 unsigned long next; 1212 1213 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1214 if (!dst_p4d) 1215 return -ENOMEM; 1216 src_p4d = p4d_offset(src_pgd, addr); 1217 do { 1218 next = p4d_addr_end(addr, end); 1219 if (p4d_none_or_clear_bad(src_p4d)) 1220 continue; 1221 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1222 addr, next)) 1223 return -ENOMEM; 1224 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1225 return 0; 1226 } 1227 1228 int 1229 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1230 { 1231 pgd_t *src_pgd, *dst_pgd; 1232 unsigned long next; 1233 unsigned long addr = src_vma->vm_start; 1234 unsigned long end = src_vma->vm_end; 1235 struct mm_struct *dst_mm = dst_vma->vm_mm; 1236 struct mm_struct *src_mm = src_vma->vm_mm; 1237 struct mmu_notifier_range range; 1238 bool is_cow; 1239 int ret; 1240 1241 /* 1242 * Don't copy ptes where a page fault will fill them correctly. 1243 * Fork becomes much lighter when there are big shared or private 1244 * readonly mappings. The tradeoff is that copy_page_range is more 1245 * efficient than faulting. 1246 */ 1247 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1248 !src_vma->anon_vma) 1249 return 0; 1250 1251 if (is_vm_hugetlb_page(src_vma)) 1252 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); 1253 1254 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1255 /* 1256 * We do not free on error cases below as remove_vma 1257 * gets called on error from higher level routine 1258 */ 1259 ret = track_pfn_copy(src_vma); 1260 if (ret) 1261 return ret; 1262 } 1263 1264 /* 1265 * We need to invalidate the secondary MMU mappings only when 1266 * there could be a permission downgrade on the ptes of the 1267 * parent mm. And a permission downgrade will only happen if 1268 * is_cow_mapping() returns true. 1269 */ 1270 is_cow = is_cow_mapping(src_vma->vm_flags); 1271 1272 if (is_cow) { 1273 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1274 0, src_vma, src_mm, addr, end); 1275 mmu_notifier_invalidate_range_start(&range); 1276 /* 1277 * Disabling preemption is not needed for the write side, as 1278 * the read side doesn't spin, but goes to the mmap_lock. 1279 * 1280 * Use the raw variant of the seqcount_t write API to avoid 1281 * lockdep complaining about preemptibility. 1282 */ 1283 mmap_assert_write_locked(src_mm); 1284 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1285 } 1286 1287 ret = 0; 1288 dst_pgd = pgd_offset(dst_mm, addr); 1289 src_pgd = pgd_offset(src_mm, addr); 1290 do { 1291 next = pgd_addr_end(addr, end); 1292 if (pgd_none_or_clear_bad(src_pgd)) 1293 continue; 1294 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1295 addr, next))) { 1296 ret = -ENOMEM; 1297 break; 1298 } 1299 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1300 1301 if (is_cow) { 1302 raw_write_seqcount_end(&src_mm->write_protect_seq); 1303 mmu_notifier_invalidate_range_end(&range); 1304 } 1305 return ret; 1306 } 1307 1308 /* 1309 * Parameter block passed down to zap_pte_range in exceptional cases. 1310 */ 1311 struct zap_details { 1312 struct folio *single_folio; /* Locked folio to be unmapped */ 1313 bool even_cows; /* Zap COWed private pages too? */ 1314 }; 1315 1316 /* Whether we should zap all COWed (private) pages too */ 1317 static inline bool should_zap_cows(struct zap_details *details) 1318 { 1319 /* By default, zap all pages */ 1320 if (!details) 1321 return true; 1322 1323 /* Or, we zap COWed pages only if the caller wants to */ 1324 return details->even_cows; 1325 } 1326 1327 /* Decides whether we should zap this page with the page pointer specified */ 1328 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1329 { 1330 /* If we can make a decision without *page.. */ 1331 if (should_zap_cows(details)) 1332 return true; 1333 1334 /* E.g. the caller passes NULL for the case of a zero page */ 1335 if (!page) 1336 return true; 1337 1338 /* Otherwise we should only zap non-anon pages */ 1339 return !PageAnon(page); 1340 } 1341 1342 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1343 struct vm_area_struct *vma, pmd_t *pmd, 1344 unsigned long addr, unsigned long end, 1345 struct zap_details *details) 1346 { 1347 struct mm_struct *mm = tlb->mm; 1348 int force_flush = 0; 1349 int rss[NR_MM_COUNTERS]; 1350 spinlock_t *ptl; 1351 pte_t *start_pte; 1352 pte_t *pte; 1353 swp_entry_t entry; 1354 1355 tlb_change_page_size(tlb, PAGE_SIZE); 1356 again: 1357 init_rss_vec(rss); 1358 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1359 pte = start_pte; 1360 flush_tlb_batched_pending(mm); 1361 arch_enter_lazy_mmu_mode(); 1362 do { 1363 pte_t ptent = *pte; 1364 struct page *page; 1365 1366 if (pte_none(ptent)) 1367 continue; 1368 1369 if (need_resched()) 1370 break; 1371 1372 if (pte_present(ptent)) { 1373 page = vm_normal_page(vma, addr, ptent); 1374 if (unlikely(!should_zap_page(details, page))) 1375 continue; 1376 ptent = ptep_get_and_clear_full(mm, addr, pte, 1377 tlb->fullmm); 1378 tlb_remove_tlb_entry(tlb, pte, addr); 1379 if (unlikely(!page)) 1380 continue; 1381 1382 if (!PageAnon(page)) { 1383 if (pte_dirty(ptent)) { 1384 force_flush = 1; 1385 set_page_dirty(page); 1386 } 1387 if (pte_young(ptent) && 1388 likely(!(vma->vm_flags & VM_SEQ_READ))) 1389 mark_page_accessed(page); 1390 } 1391 rss[mm_counter(page)]--; 1392 page_remove_rmap(page, false); 1393 if (unlikely(page_mapcount(page) < 0)) 1394 print_bad_pte(vma, addr, ptent, page); 1395 if (unlikely(__tlb_remove_page(tlb, page))) { 1396 force_flush = 1; 1397 addr += PAGE_SIZE; 1398 break; 1399 } 1400 continue; 1401 } 1402 1403 entry = pte_to_swp_entry(ptent); 1404 if (is_device_private_entry(entry) || 1405 is_device_exclusive_entry(entry)) { 1406 page = pfn_swap_entry_to_page(entry); 1407 if (unlikely(!should_zap_page(details, page))) 1408 continue; 1409 rss[mm_counter(page)]--; 1410 if (is_device_private_entry(entry)) 1411 page_remove_rmap(page, false); 1412 put_page(page); 1413 } else if (!non_swap_entry(entry)) { 1414 /* Genuine swap entry, hence a private anon page */ 1415 if (!should_zap_cows(details)) 1416 continue; 1417 rss[MM_SWAPENTS]--; 1418 if (unlikely(!free_swap_and_cache(entry))) 1419 print_bad_pte(vma, addr, ptent, NULL); 1420 } else if (is_migration_entry(entry)) { 1421 page = pfn_swap_entry_to_page(entry); 1422 if (!should_zap_page(details, page)) 1423 continue; 1424 rss[mm_counter(page)]--; 1425 } else if (is_hwpoison_entry(entry)) { 1426 if (!should_zap_cows(details)) 1427 continue; 1428 } else { 1429 /* We should have covered all the swap entry types */ 1430 WARN_ON_ONCE(1); 1431 } 1432 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1433 } while (pte++, addr += PAGE_SIZE, addr != end); 1434 1435 add_mm_rss_vec(mm, rss); 1436 arch_leave_lazy_mmu_mode(); 1437 1438 /* Do the actual TLB flush before dropping ptl */ 1439 if (force_flush) 1440 tlb_flush_mmu_tlbonly(tlb); 1441 pte_unmap_unlock(start_pte, ptl); 1442 1443 /* 1444 * If we forced a TLB flush (either due to running out of 1445 * batch buffers or because we needed to flush dirty TLB 1446 * entries before releasing the ptl), free the batched 1447 * memory too. Restart if we didn't do everything. 1448 */ 1449 if (force_flush) { 1450 force_flush = 0; 1451 tlb_flush_mmu(tlb); 1452 } 1453 1454 if (addr != end) { 1455 cond_resched(); 1456 goto again; 1457 } 1458 1459 return addr; 1460 } 1461 1462 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1463 struct vm_area_struct *vma, pud_t *pud, 1464 unsigned long addr, unsigned long end, 1465 struct zap_details *details) 1466 { 1467 pmd_t *pmd; 1468 unsigned long next; 1469 1470 pmd = pmd_offset(pud, addr); 1471 do { 1472 next = pmd_addr_end(addr, end); 1473 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1474 if (next - addr != HPAGE_PMD_SIZE) 1475 __split_huge_pmd(vma, pmd, addr, false, NULL); 1476 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1477 goto next; 1478 /* fall through */ 1479 } else if (details && details->single_folio && 1480 folio_test_pmd_mappable(details->single_folio) && 1481 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1482 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1483 /* 1484 * Take and drop THP pmd lock so that we cannot return 1485 * prematurely, while zap_huge_pmd() has cleared *pmd, 1486 * but not yet decremented compound_mapcount(). 1487 */ 1488 spin_unlock(ptl); 1489 } 1490 1491 /* 1492 * Here there can be other concurrent MADV_DONTNEED or 1493 * trans huge page faults running, and if the pmd is 1494 * none or trans huge it can change under us. This is 1495 * because MADV_DONTNEED holds the mmap_lock in read 1496 * mode. 1497 */ 1498 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1499 goto next; 1500 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1501 next: 1502 cond_resched(); 1503 } while (pmd++, addr = next, addr != end); 1504 1505 return addr; 1506 } 1507 1508 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1509 struct vm_area_struct *vma, p4d_t *p4d, 1510 unsigned long addr, unsigned long end, 1511 struct zap_details *details) 1512 { 1513 pud_t *pud; 1514 unsigned long next; 1515 1516 pud = pud_offset(p4d, addr); 1517 do { 1518 next = pud_addr_end(addr, end); 1519 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1520 if (next - addr != HPAGE_PUD_SIZE) { 1521 mmap_assert_locked(tlb->mm); 1522 split_huge_pud(vma, pud, addr); 1523 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1524 goto next; 1525 /* fall through */ 1526 } 1527 if (pud_none_or_clear_bad(pud)) 1528 continue; 1529 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1530 next: 1531 cond_resched(); 1532 } while (pud++, addr = next, addr != end); 1533 1534 return addr; 1535 } 1536 1537 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1538 struct vm_area_struct *vma, pgd_t *pgd, 1539 unsigned long addr, unsigned long end, 1540 struct zap_details *details) 1541 { 1542 p4d_t *p4d; 1543 unsigned long next; 1544 1545 p4d = p4d_offset(pgd, addr); 1546 do { 1547 next = p4d_addr_end(addr, end); 1548 if (p4d_none_or_clear_bad(p4d)) 1549 continue; 1550 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1551 } while (p4d++, addr = next, addr != end); 1552 1553 return addr; 1554 } 1555 1556 void unmap_page_range(struct mmu_gather *tlb, 1557 struct vm_area_struct *vma, 1558 unsigned long addr, unsigned long end, 1559 struct zap_details *details) 1560 { 1561 pgd_t *pgd; 1562 unsigned long next; 1563 1564 BUG_ON(addr >= end); 1565 tlb_start_vma(tlb, vma); 1566 pgd = pgd_offset(vma->vm_mm, addr); 1567 do { 1568 next = pgd_addr_end(addr, end); 1569 if (pgd_none_or_clear_bad(pgd)) 1570 continue; 1571 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1572 } while (pgd++, addr = next, addr != end); 1573 tlb_end_vma(tlb, vma); 1574 } 1575 1576 1577 static void unmap_single_vma(struct mmu_gather *tlb, 1578 struct vm_area_struct *vma, unsigned long start_addr, 1579 unsigned long end_addr, 1580 struct zap_details *details) 1581 { 1582 unsigned long start = max(vma->vm_start, start_addr); 1583 unsigned long end; 1584 1585 if (start >= vma->vm_end) 1586 return; 1587 end = min(vma->vm_end, end_addr); 1588 if (end <= vma->vm_start) 1589 return; 1590 1591 if (vma->vm_file) 1592 uprobe_munmap(vma, start, end); 1593 1594 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1595 untrack_pfn(vma, 0, 0); 1596 1597 if (start != end) { 1598 if (unlikely(is_vm_hugetlb_page(vma))) { 1599 /* 1600 * It is undesirable to test vma->vm_file as it 1601 * should be non-null for valid hugetlb area. 1602 * However, vm_file will be NULL in the error 1603 * cleanup path of mmap_region. When 1604 * hugetlbfs ->mmap method fails, 1605 * mmap_region() nullifies vma->vm_file 1606 * before calling this function to clean up. 1607 * Since no pte has actually been setup, it is 1608 * safe to do nothing in this case. 1609 */ 1610 if (vma->vm_file) { 1611 i_mmap_lock_write(vma->vm_file->f_mapping); 1612 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1613 i_mmap_unlock_write(vma->vm_file->f_mapping); 1614 } 1615 } else 1616 unmap_page_range(tlb, vma, start, end, details); 1617 } 1618 } 1619 1620 /** 1621 * unmap_vmas - unmap a range of memory covered by a list of vma's 1622 * @tlb: address of the caller's struct mmu_gather 1623 * @vma: the starting vma 1624 * @start_addr: virtual address at which to start unmapping 1625 * @end_addr: virtual address at which to end unmapping 1626 * 1627 * Unmap all pages in the vma list. 1628 * 1629 * Only addresses between `start' and `end' will be unmapped. 1630 * 1631 * The VMA list must be sorted in ascending virtual address order. 1632 * 1633 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1634 * range after unmap_vmas() returns. So the only responsibility here is to 1635 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1636 * drops the lock and schedules. 1637 */ 1638 void unmap_vmas(struct mmu_gather *tlb, 1639 struct vm_area_struct *vma, unsigned long start_addr, 1640 unsigned long end_addr) 1641 { 1642 struct mmu_notifier_range range; 1643 1644 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1645 start_addr, end_addr); 1646 mmu_notifier_invalidate_range_start(&range); 1647 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1648 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1649 mmu_notifier_invalidate_range_end(&range); 1650 } 1651 1652 /** 1653 * zap_page_range - remove user pages in a given range 1654 * @vma: vm_area_struct holding the applicable pages 1655 * @start: starting address of pages to zap 1656 * @size: number of bytes to zap 1657 * 1658 * Caller must protect the VMA list 1659 */ 1660 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1661 unsigned long size) 1662 { 1663 struct mmu_notifier_range range; 1664 struct mmu_gather tlb; 1665 1666 lru_add_drain(); 1667 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1668 start, start + size); 1669 tlb_gather_mmu(&tlb, vma->vm_mm); 1670 update_hiwater_rss(vma->vm_mm); 1671 mmu_notifier_invalidate_range_start(&range); 1672 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1673 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1674 mmu_notifier_invalidate_range_end(&range); 1675 tlb_finish_mmu(&tlb); 1676 } 1677 1678 /** 1679 * zap_page_range_single - remove user pages in a given range 1680 * @vma: vm_area_struct holding the applicable pages 1681 * @address: starting address of pages to zap 1682 * @size: number of bytes to zap 1683 * @details: details of shared cache invalidation 1684 * 1685 * The range must fit into one VMA. 1686 */ 1687 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1688 unsigned long size, struct zap_details *details) 1689 { 1690 struct mmu_notifier_range range; 1691 struct mmu_gather tlb; 1692 1693 lru_add_drain(); 1694 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1695 address, address + size); 1696 tlb_gather_mmu(&tlb, vma->vm_mm); 1697 update_hiwater_rss(vma->vm_mm); 1698 mmu_notifier_invalidate_range_start(&range); 1699 unmap_single_vma(&tlb, vma, address, range.end, details); 1700 mmu_notifier_invalidate_range_end(&range); 1701 tlb_finish_mmu(&tlb); 1702 } 1703 1704 /** 1705 * zap_vma_ptes - remove ptes mapping the vma 1706 * @vma: vm_area_struct holding ptes to be zapped 1707 * @address: starting address of pages to zap 1708 * @size: number of bytes to zap 1709 * 1710 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1711 * 1712 * The entire address range must be fully contained within the vma. 1713 * 1714 */ 1715 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1716 unsigned long size) 1717 { 1718 if (!range_in_vma(vma, address, address + size) || 1719 !(vma->vm_flags & VM_PFNMAP)) 1720 return; 1721 1722 zap_page_range_single(vma, address, size, NULL); 1723 } 1724 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1725 1726 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1727 { 1728 pgd_t *pgd; 1729 p4d_t *p4d; 1730 pud_t *pud; 1731 pmd_t *pmd; 1732 1733 pgd = pgd_offset(mm, addr); 1734 p4d = p4d_alloc(mm, pgd, addr); 1735 if (!p4d) 1736 return NULL; 1737 pud = pud_alloc(mm, p4d, addr); 1738 if (!pud) 1739 return NULL; 1740 pmd = pmd_alloc(mm, pud, addr); 1741 if (!pmd) 1742 return NULL; 1743 1744 VM_BUG_ON(pmd_trans_huge(*pmd)); 1745 return pmd; 1746 } 1747 1748 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1749 spinlock_t **ptl) 1750 { 1751 pmd_t *pmd = walk_to_pmd(mm, addr); 1752 1753 if (!pmd) 1754 return NULL; 1755 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1756 } 1757 1758 static int validate_page_before_insert(struct page *page) 1759 { 1760 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1761 return -EINVAL; 1762 flush_dcache_page(page); 1763 return 0; 1764 } 1765 1766 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1767 unsigned long addr, struct page *page, pgprot_t prot) 1768 { 1769 if (!pte_none(*pte)) 1770 return -EBUSY; 1771 /* Ok, finally just insert the thing.. */ 1772 get_page(page); 1773 inc_mm_counter_fast(mm, mm_counter_file(page)); 1774 page_add_file_rmap(page, false); 1775 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1776 return 0; 1777 } 1778 1779 /* 1780 * This is the old fallback for page remapping. 1781 * 1782 * For historical reasons, it only allows reserved pages. Only 1783 * old drivers should use this, and they needed to mark their 1784 * pages reserved for the old functions anyway. 1785 */ 1786 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1787 struct page *page, pgprot_t prot) 1788 { 1789 struct mm_struct *mm = vma->vm_mm; 1790 int retval; 1791 pte_t *pte; 1792 spinlock_t *ptl; 1793 1794 retval = validate_page_before_insert(page); 1795 if (retval) 1796 goto out; 1797 retval = -ENOMEM; 1798 pte = get_locked_pte(mm, addr, &ptl); 1799 if (!pte) 1800 goto out; 1801 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1802 pte_unmap_unlock(pte, ptl); 1803 out: 1804 return retval; 1805 } 1806 1807 #ifdef pte_index 1808 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, 1809 unsigned long addr, struct page *page, pgprot_t prot) 1810 { 1811 int err; 1812 1813 if (!page_count(page)) 1814 return -EINVAL; 1815 err = validate_page_before_insert(page); 1816 if (err) 1817 return err; 1818 return insert_page_into_pte_locked(mm, pte, addr, page, prot); 1819 } 1820 1821 /* insert_pages() amortizes the cost of spinlock operations 1822 * when inserting pages in a loop. Arch *must* define pte_index. 1823 */ 1824 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1825 struct page **pages, unsigned long *num, pgprot_t prot) 1826 { 1827 pmd_t *pmd = NULL; 1828 pte_t *start_pte, *pte; 1829 spinlock_t *pte_lock; 1830 struct mm_struct *const mm = vma->vm_mm; 1831 unsigned long curr_page_idx = 0; 1832 unsigned long remaining_pages_total = *num; 1833 unsigned long pages_to_write_in_pmd; 1834 int ret; 1835 more: 1836 ret = -EFAULT; 1837 pmd = walk_to_pmd(mm, addr); 1838 if (!pmd) 1839 goto out; 1840 1841 pages_to_write_in_pmd = min_t(unsigned long, 1842 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1843 1844 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1845 ret = -ENOMEM; 1846 if (pte_alloc(mm, pmd)) 1847 goto out; 1848 1849 while (pages_to_write_in_pmd) { 1850 int pte_idx = 0; 1851 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1852 1853 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1854 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1855 int err = insert_page_in_batch_locked(mm, pte, 1856 addr, pages[curr_page_idx], prot); 1857 if (unlikely(err)) { 1858 pte_unmap_unlock(start_pte, pte_lock); 1859 ret = err; 1860 remaining_pages_total -= pte_idx; 1861 goto out; 1862 } 1863 addr += PAGE_SIZE; 1864 ++curr_page_idx; 1865 } 1866 pte_unmap_unlock(start_pte, pte_lock); 1867 pages_to_write_in_pmd -= batch_size; 1868 remaining_pages_total -= batch_size; 1869 } 1870 if (remaining_pages_total) 1871 goto more; 1872 ret = 0; 1873 out: 1874 *num = remaining_pages_total; 1875 return ret; 1876 } 1877 #endif /* ifdef pte_index */ 1878 1879 /** 1880 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1881 * @vma: user vma to map to 1882 * @addr: target start user address of these pages 1883 * @pages: source kernel pages 1884 * @num: in: number of pages to map. out: number of pages that were *not* 1885 * mapped. (0 means all pages were successfully mapped). 1886 * 1887 * Preferred over vm_insert_page() when inserting multiple pages. 1888 * 1889 * In case of error, we may have mapped a subset of the provided 1890 * pages. It is the caller's responsibility to account for this case. 1891 * 1892 * The same restrictions apply as in vm_insert_page(). 1893 */ 1894 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1895 struct page **pages, unsigned long *num) 1896 { 1897 #ifdef pte_index 1898 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1899 1900 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1901 return -EFAULT; 1902 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1903 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1904 BUG_ON(vma->vm_flags & VM_PFNMAP); 1905 vma->vm_flags |= VM_MIXEDMAP; 1906 } 1907 /* Defer page refcount checking till we're about to map that page. */ 1908 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1909 #else 1910 unsigned long idx = 0, pgcount = *num; 1911 int err = -EINVAL; 1912 1913 for (; idx < pgcount; ++idx) { 1914 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1915 if (err) 1916 break; 1917 } 1918 *num = pgcount - idx; 1919 return err; 1920 #endif /* ifdef pte_index */ 1921 } 1922 EXPORT_SYMBOL(vm_insert_pages); 1923 1924 /** 1925 * vm_insert_page - insert single page into user vma 1926 * @vma: user vma to map to 1927 * @addr: target user address of this page 1928 * @page: source kernel page 1929 * 1930 * This allows drivers to insert individual pages they've allocated 1931 * into a user vma. 1932 * 1933 * The page has to be a nice clean _individual_ kernel allocation. 1934 * If you allocate a compound page, you need to have marked it as 1935 * such (__GFP_COMP), or manually just split the page up yourself 1936 * (see split_page()). 1937 * 1938 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1939 * took an arbitrary page protection parameter. This doesn't allow 1940 * that. Your vma protection will have to be set up correctly, which 1941 * means that if you want a shared writable mapping, you'd better 1942 * ask for a shared writable mapping! 1943 * 1944 * The page does not need to be reserved. 1945 * 1946 * Usually this function is called from f_op->mmap() handler 1947 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1948 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1949 * function from other places, for example from page-fault handler. 1950 * 1951 * Return: %0 on success, negative error code otherwise. 1952 */ 1953 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1954 struct page *page) 1955 { 1956 if (addr < vma->vm_start || addr >= vma->vm_end) 1957 return -EFAULT; 1958 if (!page_count(page)) 1959 return -EINVAL; 1960 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1961 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1962 BUG_ON(vma->vm_flags & VM_PFNMAP); 1963 vma->vm_flags |= VM_MIXEDMAP; 1964 } 1965 return insert_page(vma, addr, page, vma->vm_page_prot); 1966 } 1967 EXPORT_SYMBOL(vm_insert_page); 1968 1969 /* 1970 * __vm_map_pages - maps range of kernel pages into user vma 1971 * @vma: user vma to map to 1972 * @pages: pointer to array of source kernel pages 1973 * @num: number of pages in page array 1974 * @offset: user's requested vm_pgoff 1975 * 1976 * This allows drivers to map range of kernel pages into a user vma. 1977 * 1978 * Return: 0 on success and error code otherwise. 1979 */ 1980 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1981 unsigned long num, unsigned long offset) 1982 { 1983 unsigned long count = vma_pages(vma); 1984 unsigned long uaddr = vma->vm_start; 1985 int ret, i; 1986 1987 /* Fail if the user requested offset is beyond the end of the object */ 1988 if (offset >= num) 1989 return -ENXIO; 1990 1991 /* Fail if the user requested size exceeds available object size */ 1992 if (count > num - offset) 1993 return -ENXIO; 1994 1995 for (i = 0; i < count; i++) { 1996 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1997 if (ret < 0) 1998 return ret; 1999 uaddr += PAGE_SIZE; 2000 } 2001 2002 return 0; 2003 } 2004 2005 /** 2006 * vm_map_pages - maps range of kernel pages starts with non zero offset 2007 * @vma: user vma to map to 2008 * @pages: pointer to array of source kernel pages 2009 * @num: number of pages in page array 2010 * 2011 * Maps an object consisting of @num pages, catering for the user's 2012 * requested vm_pgoff 2013 * 2014 * If we fail to insert any page into the vma, the function will return 2015 * immediately leaving any previously inserted pages present. Callers 2016 * from the mmap handler may immediately return the error as their caller 2017 * will destroy the vma, removing any successfully inserted pages. Other 2018 * callers should make their own arrangements for calling unmap_region(). 2019 * 2020 * Context: Process context. Called by mmap handlers. 2021 * Return: 0 on success and error code otherwise. 2022 */ 2023 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2024 unsigned long num) 2025 { 2026 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2027 } 2028 EXPORT_SYMBOL(vm_map_pages); 2029 2030 /** 2031 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2032 * @vma: user vma to map to 2033 * @pages: pointer to array of source kernel pages 2034 * @num: number of pages in page array 2035 * 2036 * Similar to vm_map_pages(), except that it explicitly sets the offset 2037 * to 0. This function is intended for the drivers that did not consider 2038 * vm_pgoff. 2039 * 2040 * Context: Process context. Called by mmap handlers. 2041 * Return: 0 on success and error code otherwise. 2042 */ 2043 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2044 unsigned long num) 2045 { 2046 return __vm_map_pages(vma, pages, num, 0); 2047 } 2048 EXPORT_SYMBOL(vm_map_pages_zero); 2049 2050 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2051 pfn_t pfn, pgprot_t prot, bool mkwrite) 2052 { 2053 struct mm_struct *mm = vma->vm_mm; 2054 pte_t *pte, entry; 2055 spinlock_t *ptl; 2056 2057 pte = get_locked_pte(mm, addr, &ptl); 2058 if (!pte) 2059 return VM_FAULT_OOM; 2060 if (!pte_none(*pte)) { 2061 if (mkwrite) { 2062 /* 2063 * For read faults on private mappings the PFN passed 2064 * in may not match the PFN we have mapped if the 2065 * mapped PFN is a writeable COW page. In the mkwrite 2066 * case we are creating a writable PTE for a shared 2067 * mapping and we expect the PFNs to match. If they 2068 * don't match, we are likely racing with block 2069 * allocation and mapping invalidation so just skip the 2070 * update. 2071 */ 2072 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 2073 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 2074 goto out_unlock; 2075 } 2076 entry = pte_mkyoung(*pte); 2077 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2078 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2079 update_mmu_cache(vma, addr, pte); 2080 } 2081 goto out_unlock; 2082 } 2083 2084 /* Ok, finally just insert the thing.. */ 2085 if (pfn_t_devmap(pfn)) 2086 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2087 else 2088 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2089 2090 if (mkwrite) { 2091 entry = pte_mkyoung(entry); 2092 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2093 } 2094 2095 set_pte_at(mm, addr, pte, entry); 2096 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2097 2098 out_unlock: 2099 pte_unmap_unlock(pte, ptl); 2100 return VM_FAULT_NOPAGE; 2101 } 2102 2103 /** 2104 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2105 * @vma: user vma to map to 2106 * @addr: target user address of this page 2107 * @pfn: source kernel pfn 2108 * @pgprot: pgprot flags for the inserted page 2109 * 2110 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2111 * to override pgprot on a per-page basis. 2112 * 2113 * This only makes sense for IO mappings, and it makes no sense for 2114 * COW mappings. In general, using multiple vmas is preferable; 2115 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2116 * impractical. 2117 * 2118 * See vmf_insert_mixed_prot() for a discussion of the implication of using 2119 * a value of @pgprot different from that of @vma->vm_page_prot. 2120 * 2121 * Context: Process context. May allocate using %GFP_KERNEL. 2122 * Return: vm_fault_t value. 2123 */ 2124 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2125 unsigned long pfn, pgprot_t pgprot) 2126 { 2127 /* 2128 * Technically, architectures with pte_special can avoid all these 2129 * restrictions (same for remap_pfn_range). However we would like 2130 * consistency in testing and feature parity among all, so we should 2131 * try to keep these invariants in place for everybody. 2132 */ 2133 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2134 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2135 (VM_PFNMAP|VM_MIXEDMAP)); 2136 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2137 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2138 2139 if (addr < vma->vm_start || addr >= vma->vm_end) 2140 return VM_FAULT_SIGBUS; 2141 2142 if (!pfn_modify_allowed(pfn, pgprot)) 2143 return VM_FAULT_SIGBUS; 2144 2145 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2146 2147 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2148 false); 2149 } 2150 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2151 2152 /** 2153 * vmf_insert_pfn - insert single pfn into user vma 2154 * @vma: user vma to map to 2155 * @addr: target user address of this page 2156 * @pfn: source kernel pfn 2157 * 2158 * Similar to vm_insert_page, this allows drivers to insert individual pages 2159 * they've allocated into a user vma. Same comments apply. 2160 * 2161 * This function should only be called from a vm_ops->fault handler, and 2162 * in that case the handler should return the result of this function. 2163 * 2164 * vma cannot be a COW mapping. 2165 * 2166 * As this is called only for pages that do not currently exist, we 2167 * do not need to flush old virtual caches or the TLB. 2168 * 2169 * Context: Process context. May allocate using %GFP_KERNEL. 2170 * Return: vm_fault_t value. 2171 */ 2172 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2173 unsigned long pfn) 2174 { 2175 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2176 } 2177 EXPORT_SYMBOL(vmf_insert_pfn); 2178 2179 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2180 { 2181 /* these checks mirror the abort conditions in vm_normal_page */ 2182 if (vma->vm_flags & VM_MIXEDMAP) 2183 return true; 2184 if (pfn_t_devmap(pfn)) 2185 return true; 2186 if (pfn_t_special(pfn)) 2187 return true; 2188 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2189 return true; 2190 return false; 2191 } 2192 2193 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2194 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2195 bool mkwrite) 2196 { 2197 int err; 2198 2199 BUG_ON(!vm_mixed_ok(vma, pfn)); 2200 2201 if (addr < vma->vm_start || addr >= vma->vm_end) 2202 return VM_FAULT_SIGBUS; 2203 2204 track_pfn_insert(vma, &pgprot, pfn); 2205 2206 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2207 return VM_FAULT_SIGBUS; 2208 2209 /* 2210 * If we don't have pte special, then we have to use the pfn_valid() 2211 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2212 * refcount the page if pfn_valid is true (hence insert_page rather 2213 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2214 * without pte special, it would there be refcounted as a normal page. 2215 */ 2216 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2217 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2218 struct page *page; 2219 2220 /* 2221 * At this point we are committed to insert_page() 2222 * regardless of whether the caller specified flags that 2223 * result in pfn_t_has_page() == false. 2224 */ 2225 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2226 err = insert_page(vma, addr, page, pgprot); 2227 } else { 2228 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2229 } 2230 2231 if (err == -ENOMEM) 2232 return VM_FAULT_OOM; 2233 if (err < 0 && err != -EBUSY) 2234 return VM_FAULT_SIGBUS; 2235 2236 return VM_FAULT_NOPAGE; 2237 } 2238 2239 /** 2240 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2241 * @vma: user vma to map to 2242 * @addr: target user address of this page 2243 * @pfn: source kernel pfn 2244 * @pgprot: pgprot flags for the inserted page 2245 * 2246 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2247 * to override pgprot on a per-page basis. 2248 * 2249 * Typically this function should be used by drivers to set caching- and 2250 * encryption bits different than those of @vma->vm_page_prot, because 2251 * the caching- or encryption mode may not be known at mmap() time. 2252 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2253 * to set caching and encryption bits for those vmas (except for COW pages). 2254 * This is ensured by core vm only modifying these page table entries using 2255 * functions that don't touch caching- or encryption bits, using pte_modify() 2256 * if needed. (See for example mprotect()). 2257 * Also when new page-table entries are created, this is only done using the 2258 * fault() callback, and never using the value of vma->vm_page_prot, 2259 * except for page-table entries that point to anonymous pages as the result 2260 * of COW. 2261 * 2262 * Context: Process context. May allocate using %GFP_KERNEL. 2263 * Return: vm_fault_t value. 2264 */ 2265 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2266 pfn_t pfn, pgprot_t pgprot) 2267 { 2268 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2269 } 2270 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2271 2272 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2273 pfn_t pfn) 2274 { 2275 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2276 } 2277 EXPORT_SYMBOL(vmf_insert_mixed); 2278 2279 /* 2280 * If the insertion of PTE failed because someone else already added a 2281 * different entry in the mean time, we treat that as success as we assume 2282 * the same entry was actually inserted. 2283 */ 2284 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2285 unsigned long addr, pfn_t pfn) 2286 { 2287 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2288 } 2289 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2290 2291 /* 2292 * maps a range of physical memory into the requested pages. the old 2293 * mappings are removed. any references to nonexistent pages results 2294 * in null mappings (currently treated as "copy-on-access") 2295 */ 2296 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2297 unsigned long addr, unsigned long end, 2298 unsigned long pfn, pgprot_t prot) 2299 { 2300 pte_t *pte, *mapped_pte; 2301 spinlock_t *ptl; 2302 int err = 0; 2303 2304 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2305 if (!pte) 2306 return -ENOMEM; 2307 arch_enter_lazy_mmu_mode(); 2308 do { 2309 BUG_ON(!pte_none(*pte)); 2310 if (!pfn_modify_allowed(pfn, prot)) { 2311 err = -EACCES; 2312 break; 2313 } 2314 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2315 pfn++; 2316 } while (pte++, addr += PAGE_SIZE, addr != end); 2317 arch_leave_lazy_mmu_mode(); 2318 pte_unmap_unlock(mapped_pte, ptl); 2319 return err; 2320 } 2321 2322 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2323 unsigned long addr, unsigned long end, 2324 unsigned long pfn, pgprot_t prot) 2325 { 2326 pmd_t *pmd; 2327 unsigned long next; 2328 int err; 2329 2330 pfn -= addr >> PAGE_SHIFT; 2331 pmd = pmd_alloc(mm, pud, addr); 2332 if (!pmd) 2333 return -ENOMEM; 2334 VM_BUG_ON(pmd_trans_huge(*pmd)); 2335 do { 2336 next = pmd_addr_end(addr, end); 2337 err = remap_pte_range(mm, pmd, addr, next, 2338 pfn + (addr >> PAGE_SHIFT), prot); 2339 if (err) 2340 return err; 2341 } while (pmd++, addr = next, addr != end); 2342 return 0; 2343 } 2344 2345 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2346 unsigned long addr, unsigned long end, 2347 unsigned long pfn, pgprot_t prot) 2348 { 2349 pud_t *pud; 2350 unsigned long next; 2351 int err; 2352 2353 pfn -= addr >> PAGE_SHIFT; 2354 pud = pud_alloc(mm, p4d, addr); 2355 if (!pud) 2356 return -ENOMEM; 2357 do { 2358 next = pud_addr_end(addr, end); 2359 err = remap_pmd_range(mm, pud, addr, next, 2360 pfn + (addr >> PAGE_SHIFT), prot); 2361 if (err) 2362 return err; 2363 } while (pud++, addr = next, addr != end); 2364 return 0; 2365 } 2366 2367 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2368 unsigned long addr, unsigned long end, 2369 unsigned long pfn, pgprot_t prot) 2370 { 2371 p4d_t *p4d; 2372 unsigned long next; 2373 int err; 2374 2375 pfn -= addr >> PAGE_SHIFT; 2376 p4d = p4d_alloc(mm, pgd, addr); 2377 if (!p4d) 2378 return -ENOMEM; 2379 do { 2380 next = p4d_addr_end(addr, end); 2381 err = remap_pud_range(mm, p4d, addr, next, 2382 pfn + (addr >> PAGE_SHIFT), prot); 2383 if (err) 2384 return err; 2385 } while (p4d++, addr = next, addr != end); 2386 return 0; 2387 } 2388 2389 /* 2390 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2391 * must have pre-validated the caching bits of the pgprot_t. 2392 */ 2393 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2394 unsigned long pfn, unsigned long size, pgprot_t prot) 2395 { 2396 pgd_t *pgd; 2397 unsigned long next; 2398 unsigned long end = addr + PAGE_ALIGN(size); 2399 struct mm_struct *mm = vma->vm_mm; 2400 int err; 2401 2402 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2403 return -EINVAL; 2404 2405 /* 2406 * Physically remapped pages are special. Tell the 2407 * rest of the world about it: 2408 * VM_IO tells people not to look at these pages 2409 * (accesses can have side effects). 2410 * VM_PFNMAP tells the core MM that the base pages are just 2411 * raw PFN mappings, and do not have a "struct page" associated 2412 * with them. 2413 * VM_DONTEXPAND 2414 * Disable vma merging and expanding with mremap(). 2415 * VM_DONTDUMP 2416 * Omit vma from core dump, even when VM_IO turned off. 2417 * 2418 * There's a horrible special case to handle copy-on-write 2419 * behaviour that some programs depend on. We mark the "original" 2420 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2421 * See vm_normal_page() for details. 2422 */ 2423 if (is_cow_mapping(vma->vm_flags)) { 2424 if (addr != vma->vm_start || end != vma->vm_end) 2425 return -EINVAL; 2426 vma->vm_pgoff = pfn; 2427 } 2428 2429 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2430 2431 BUG_ON(addr >= end); 2432 pfn -= addr >> PAGE_SHIFT; 2433 pgd = pgd_offset(mm, addr); 2434 flush_cache_range(vma, addr, end); 2435 do { 2436 next = pgd_addr_end(addr, end); 2437 err = remap_p4d_range(mm, pgd, addr, next, 2438 pfn + (addr >> PAGE_SHIFT), prot); 2439 if (err) 2440 return err; 2441 } while (pgd++, addr = next, addr != end); 2442 2443 return 0; 2444 } 2445 2446 /** 2447 * remap_pfn_range - remap kernel memory to userspace 2448 * @vma: user vma to map to 2449 * @addr: target page aligned user address to start at 2450 * @pfn: page frame number of kernel physical memory address 2451 * @size: size of mapping area 2452 * @prot: page protection flags for this mapping 2453 * 2454 * Note: this is only safe if the mm semaphore is held when called. 2455 * 2456 * Return: %0 on success, negative error code otherwise. 2457 */ 2458 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2459 unsigned long pfn, unsigned long size, pgprot_t prot) 2460 { 2461 int err; 2462 2463 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2464 if (err) 2465 return -EINVAL; 2466 2467 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2468 if (err) 2469 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2470 return err; 2471 } 2472 EXPORT_SYMBOL(remap_pfn_range); 2473 2474 /** 2475 * vm_iomap_memory - remap memory to userspace 2476 * @vma: user vma to map to 2477 * @start: start of the physical memory to be mapped 2478 * @len: size of area 2479 * 2480 * This is a simplified io_remap_pfn_range() for common driver use. The 2481 * driver just needs to give us the physical memory range to be mapped, 2482 * we'll figure out the rest from the vma information. 2483 * 2484 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2485 * whatever write-combining details or similar. 2486 * 2487 * Return: %0 on success, negative error code otherwise. 2488 */ 2489 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2490 { 2491 unsigned long vm_len, pfn, pages; 2492 2493 /* Check that the physical memory area passed in looks valid */ 2494 if (start + len < start) 2495 return -EINVAL; 2496 /* 2497 * You *really* shouldn't map things that aren't page-aligned, 2498 * but we've historically allowed it because IO memory might 2499 * just have smaller alignment. 2500 */ 2501 len += start & ~PAGE_MASK; 2502 pfn = start >> PAGE_SHIFT; 2503 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2504 if (pfn + pages < pfn) 2505 return -EINVAL; 2506 2507 /* We start the mapping 'vm_pgoff' pages into the area */ 2508 if (vma->vm_pgoff > pages) 2509 return -EINVAL; 2510 pfn += vma->vm_pgoff; 2511 pages -= vma->vm_pgoff; 2512 2513 /* Can we fit all of the mapping? */ 2514 vm_len = vma->vm_end - vma->vm_start; 2515 if (vm_len >> PAGE_SHIFT > pages) 2516 return -EINVAL; 2517 2518 /* Ok, let it rip */ 2519 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2520 } 2521 EXPORT_SYMBOL(vm_iomap_memory); 2522 2523 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2524 unsigned long addr, unsigned long end, 2525 pte_fn_t fn, void *data, bool create, 2526 pgtbl_mod_mask *mask) 2527 { 2528 pte_t *pte, *mapped_pte; 2529 int err = 0; 2530 spinlock_t *ptl; 2531 2532 if (create) { 2533 mapped_pte = pte = (mm == &init_mm) ? 2534 pte_alloc_kernel_track(pmd, addr, mask) : 2535 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2536 if (!pte) 2537 return -ENOMEM; 2538 } else { 2539 mapped_pte = pte = (mm == &init_mm) ? 2540 pte_offset_kernel(pmd, addr) : 2541 pte_offset_map_lock(mm, pmd, addr, &ptl); 2542 } 2543 2544 BUG_ON(pmd_huge(*pmd)); 2545 2546 arch_enter_lazy_mmu_mode(); 2547 2548 if (fn) { 2549 do { 2550 if (create || !pte_none(*pte)) { 2551 err = fn(pte++, addr, data); 2552 if (err) 2553 break; 2554 } 2555 } while (addr += PAGE_SIZE, addr != end); 2556 } 2557 *mask |= PGTBL_PTE_MODIFIED; 2558 2559 arch_leave_lazy_mmu_mode(); 2560 2561 if (mm != &init_mm) 2562 pte_unmap_unlock(mapped_pte, ptl); 2563 return err; 2564 } 2565 2566 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2567 unsigned long addr, unsigned long end, 2568 pte_fn_t fn, void *data, bool create, 2569 pgtbl_mod_mask *mask) 2570 { 2571 pmd_t *pmd; 2572 unsigned long next; 2573 int err = 0; 2574 2575 BUG_ON(pud_huge(*pud)); 2576 2577 if (create) { 2578 pmd = pmd_alloc_track(mm, pud, addr, mask); 2579 if (!pmd) 2580 return -ENOMEM; 2581 } else { 2582 pmd = pmd_offset(pud, addr); 2583 } 2584 do { 2585 next = pmd_addr_end(addr, end); 2586 if (pmd_none(*pmd) && !create) 2587 continue; 2588 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2589 return -EINVAL; 2590 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2591 if (!create) 2592 continue; 2593 pmd_clear_bad(pmd); 2594 } 2595 err = apply_to_pte_range(mm, pmd, addr, next, 2596 fn, data, create, mask); 2597 if (err) 2598 break; 2599 } while (pmd++, addr = next, addr != end); 2600 2601 return err; 2602 } 2603 2604 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2605 unsigned long addr, unsigned long end, 2606 pte_fn_t fn, void *data, bool create, 2607 pgtbl_mod_mask *mask) 2608 { 2609 pud_t *pud; 2610 unsigned long next; 2611 int err = 0; 2612 2613 if (create) { 2614 pud = pud_alloc_track(mm, p4d, addr, mask); 2615 if (!pud) 2616 return -ENOMEM; 2617 } else { 2618 pud = pud_offset(p4d, addr); 2619 } 2620 do { 2621 next = pud_addr_end(addr, end); 2622 if (pud_none(*pud) && !create) 2623 continue; 2624 if (WARN_ON_ONCE(pud_leaf(*pud))) 2625 return -EINVAL; 2626 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2627 if (!create) 2628 continue; 2629 pud_clear_bad(pud); 2630 } 2631 err = apply_to_pmd_range(mm, pud, addr, next, 2632 fn, data, create, mask); 2633 if (err) 2634 break; 2635 } while (pud++, addr = next, addr != end); 2636 2637 return err; 2638 } 2639 2640 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2641 unsigned long addr, unsigned long end, 2642 pte_fn_t fn, void *data, bool create, 2643 pgtbl_mod_mask *mask) 2644 { 2645 p4d_t *p4d; 2646 unsigned long next; 2647 int err = 0; 2648 2649 if (create) { 2650 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2651 if (!p4d) 2652 return -ENOMEM; 2653 } else { 2654 p4d = p4d_offset(pgd, addr); 2655 } 2656 do { 2657 next = p4d_addr_end(addr, end); 2658 if (p4d_none(*p4d) && !create) 2659 continue; 2660 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2661 return -EINVAL; 2662 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2663 if (!create) 2664 continue; 2665 p4d_clear_bad(p4d); 2666 } 2667 err = apply_to_pud_range(mm, p4d, addr, next, 2668 fn, data, create, mask); 2669 if (err) 2670 break; 2671 } while (p4d++, addr = next, addr != end); 2672 2673 return err; 2674 } 2675 2676 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2677 unsigned long size, pte_fn_t fn, 2678 void *data, bool create) 2679 { 2680 pgd_t *pgd; 2681 unsigned long start = addr, next; 2682 unsigned long end = addr + size; 2683 pgtbl_mod_mask mask = 0; 2684 int err = 0; 2685 2686 if (WARN_ON(addr >= end)) 2687 return -EINVAL; 2688 2689 pgd = pgd_offset(mm, addr); 2690 do { 2691 next = pgd_addr_end(addr, end); 2692 if (pgd_none(*pgd) && !create) 2693 continue; 2694 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2695 return -EINVAL; 2696 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2697 if (!create) 2698 continue; 2699 pgd_clear_bad(pgd); 2700 } 2701 err = apply_to_p4d_range(mm, pgd, addr, next, 2702 fn, data, create, &mask); 2703 if (err) 2704 break; 2705 } while (pgd++, addr = next, addr != end); 2706 2707 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2708 arch_sync_kernel_mappings(start, start + size); 2709 2710 return err; 2711 } 2712 2713 /* 2714 * Scan a region of virtual memory, filling in page tables as necessary 2715 * and calling a provided function on each leaf page table. 2716 */ 2717 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2718 unsigned long size, pte_fn_t fn, void *data) 2719 { 2720 return __apply_to_page_range(mm, addr, size, fn, data, true); 2721 } 2722 EXPORT_SYMBOL_GPL(apply_to_page_range); 2723 2724 /* 2725 * Scan a region of virtual memory, calling a provided function on 2726 * each leaf page table where it exists. 2727 * 2728 * Unlike apply_to_page_range, this does _not_ fill in page tables 2729 * where they are absent. 2730 */ 2731 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2732 unsigned long size, pte_fn_t fn, void *data) 2733 { 2734 return __apply_to_page_range(mm, addr, size, fn, data, false); 2735 } 2736 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2737 2738 /* 2739 * handle_pte_fault chooses page fault handler according to an entry which was 2740 * read non-atomically. Before making any commitment, on those architectures 2741 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2742 * parts, do_swap_page must check under lock before unmapping the pte and 2743 * proceeding (but do_wp_page is only called after already making such a check; 2744 * and do_anonymous_page can safely check later on). 2745 */ 2746 static inline int pte_unmap_same(struct vm_fault *vmf) 2747 { 2748 int same = 1; 2749 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2750 if (sizeof(pte_t) > sizeof(unsigned long)) { 2751 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 2752 spin_lock(ptl); 2753 same = pte_same(*vmf->pte, vmf->orig_pte); 2754 spin_unlock(ptl); 2755 } 2756 #endif 2757 pte_unmap(vmf->pte); 2758 vmf->pte = NULL; 2759 return same; 2760 } 2761 2762 static inline bool cow_user_page(struct page *dst, struct page *src, 2763 struct vm_fault *vmf) 2764 { 2765 bool ret; 2766 void *kaddr; 2767 void __user *uaddr; 2768 bool locked = false; 2769 struct vm_area_struct *vma = vmf->vma; 2770 struct mm_struct *mm = vma->vm_mm; 2771 unsigned long addr = vmf->address; 2772 2773 if (likely(src)) { 2774 copy_user_highpage(dst, src, addr, vma); 2775 return true; 2776 } 2777 2778 /* 2779 * If the source page was a PFN mapping, we don't have 2780 * a "struct page" for it. We do a best-effort copy by 2781 * just copying from the original user address. If that 2782 * fails, we just zero-fill it. Live with it. 2783 */ 2784 kaddr = kmap_atomic(dst); 2785 uaddr = (void __user *)(addr & PAGE_MASK); 2786 2787 /* 2788 * On architectures with software "accessed" bits, we would 2789 * take a double page fault, so mark it accessed here. 2790 */ 2791 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2792 pte_t entry; 2793 2794 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2795 locked = true; 2796 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2797 /* 2798 * Other thread has already handled the fault 2799 * and update local tlb only 2800 */ 2801 update_mmu_tlb(vma, addr, vmf->pte); 2802 ret = false; 2803 goto pte_unlock; 2804 } 2805 2806 entry = pte_mkyoung(vmf->orig_pte); 2807 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2808 update_mmu_cache(vma, addr, vmf->pte); 2809 } 2810 2811 /* 2812 * This really shouldn't fail, because the page is there 2813 * in the page tables. But it might just be unreadable, 2814 * in which case we just give up and fill the result with 2815 * zeroes. 2816 */ 2817 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2818 if (locked) 2819 goto warn; 2820 2821 /* Re-validate under PTL if the page is still mapped */ 2822 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2823 locked = true; 2824 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2825 /* The PTE changed under us, update local tlb */ 2826 update_mmu_tlb(vma, addr, vmf->pte); 2827 ret = false; 2828 goto pte_unlock; 2829 } 2830 2831 /* 2832 * The same page can be mapped back since last copy attempt. 2833 * Try to copy again under PTL. 2834 */ 2835 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2836 /* 2837 * Give a warn in case there can be some obscure 2838 * use-case 2839 */ 2840 warn: 2841 WARN_ON_ONCE(1); 2842 clear_page(kaddr); 2843 } 2844 } 2845 2846 ret = true; 2847 2848 pte_unlock: 2849 if (locked) 2850 pte_unmap_unlock(vmf->pte, vmf->ptl); 2851 kunmap_atomic(kaddr); 2852 flush_dcache_page(dst); 2853 2854 return ret; 2855 } 2856 2857 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2858 { 2859 struct file *vm_file = vma->vm_file; 2860 2861 if (vm_file) 2862 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2863 2864 /* 2865 * Special mappings (e.g. VDSO) do not have any file so fake 2866 * a default GFP_KERNEL for them. 2867 */ 2868 return GFP_KERNEL; 2869 } 2870 2871 /* 2872 * Notify the address space that the page is about to become writable so that 2873 * it can prohibit this or wait for the page to get into an appropriate state. 2874 * 2875 * We do this without the lock held, so that it can sleep if it needs to. 2876 */ 2877 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2878 { 2879 vm_fault_t ret; 2880 struct page *page = vmf->page; 2881 unsigned int old_flags = vmf->flags; 2882 2883 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2884 2885 if (vmf->vma->vm_file && 2886 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2887 return VM_FAULT_SIGBUS; 2888 2889 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2890 /* Restore original flags so that caller is not surprised */ 2891 vmf->flags = old_flags; 2892 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2893 return ret; 2894 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2895 lock_page(page); 2896 if (!page->mapping) { 2897 unlock_page(page); 2898 return 0; /* retry */ 2899 } 2900 ret |= VM_FAULT_LOCKED; 2901 } else 2902 VM_BUG_ON_PAGE(!PageLocked(page), page); 2903 return ret; 2904 } 2905 2906 /* 2907 * Handle dirtying of a page in shared file mapping on a write fault. 2908 * 2909 * The function expects the page to be locked and unlocks it. 2910 */ 2911 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2912 { 2913 struct vm_area_struct *vma = vmf->vma; 2914 struct address_space *mapping; 2915 struct page *page = vmf->page; 2916 bool dirtied; 2917 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2918 2919 dirtied = set_page_dirty(page); 2920 VM_BUG_ON_PAGE(PageAnon(page), page); 2921 /* 2922 * Take a local copy of the address_space - page.mapping may be zeroed 2923 * by truncate after unlock_page(). The address_space itself remains 2924 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2925 * release semantics to prevent the compiler from undoing this copying. 2926 */ 2927 mapping = page_rmapping(page); 2928 unlock_page(page); 2929 2930 if (!page_mkwrite) 2931 file_update_time(vma->vm_file); 2932 2933 /* 2934 * Throttle page dirtying rate down to writeback speed. 2935 * 2936 * mapping may be NULL here because some device drivers do not 2937 * set page.mapping but still dirty their pages 2938 * 2939 * Drop the mmap_lock before waiting on IO, if we can. The file 2940 * is pinning the mapping, as per above. 2941 */ 2942 if ((dirtied || page_mkwrite) && mapping) { 2943 struct file *fpin; 2944 2945 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2946 balance_dirty_pages_ratelimited(mapping); 2947 if (fpin) { 2948 fput(fpin); 2949 return VM_FAULT_RETRY; 2950 } 2951 } 2952 2953 return 0; 2954 } 2955 2956 /* 2957 * Handle write page faults for pages that can be reused in the current vma 2958 * 2959 * This can happen either due to the mapping being with the VM_SHARED flag, 2960 * or due to us being the last reference standing to the page. In either 2961 * case, all we need to do here is to mark the page as writable and update 2962 * any related book-keeping. 2963 */ 2964 static inline void wp_page_reuse(struct vm_fault *vmf) 2965 __releases(vmf->ptl) 2966 { 2967 struct vm_area_struct *vma = vmf->vma; 2968 struct page *page = vmf->page; 2969 pte_t entry; 2970 /* 2971 * Clear the pages cpupid information as the existing 2972 * information potentially belongs to a now completely 2973 * unrelated process. 2974 */ 2975 if (page) 2976 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2977 2978 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2979 entry = pte_mkyoung(vmf->orig_pte); 2980 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2981 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2982 update_mmu_cache(vma, vmf->address, vmf->pte); 2983 pte_unmap_unlock(vmf->pte, vmf->ptl); 2984 count_vm_event(PGREUSE); 2985 } 2986 2987 /* 2988 * Handle the case of a page which we actually need to copy to a new page. 2989 * 2990 * Called with mmap_lock locked and the old page referenced, but 2991 * without the ptl held. 2992 * 2993 * High level logic flow: 2994 * 2995 * - Allocate a page, copy the content of the old page to the new one. 2996 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2997 * - Take the PTL. If the pte changed, bail out and release the allocated page 2998 * - If the pte is still the way we remember it, update the page table and all 2999 * relevant references. This includes dropping the reference the page-table 3000 * held to the old page, as well as updating the rmap. 3001 * - In any case, unlock the PTL and drop the reference we took to the old page. 3002 */ 3003 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3004 { 3005 struct vm_area_struct *vma = vmf->vma; 3006 struct mm_struct *mm = vma->vm_mm; 3007 struct page *old_page = vmf->page; 3008 struct page *new_page = NULL; 3009 pte_t entry; 3010 int page_copied = 0; 3011 struct mmu_notifier_range range; 3012 3013 if (unlikely(anon_vma_prepare(vma))) 3014 goto oom; 3015 3016 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3017 new_page = alloc_zeroed_user_highpage_movable(vma, 3018 vmf->address); 3019 if (!new_page) 3020 goto oom; 3021 } else { 3022 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3023 vmf->address); 3024 if (!new_page) 3025 goto oom; 3026 3027 if (!cow_user_page(new_page, old_page, vmf)) { 3028 /* 3029 * COW failed, if the fault was solved by other, 3030 * it's fine. If not, userspace would re-fault on 3031 * the same address and we will handle the fault 3032 * from the second attempt. 3033 */ 3034 put_page(new_page); 3035 if (old_page) 3036 put_page(old_page); 3037 return 0; 3038 } 3039 } 3040 3041 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL)) 3042 goto oom_free_new; 3043 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 3044 3045 __SetPageUptodate(new_page); 3046 3047 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 3048 vmf->address & PAGE_MASK, 3049 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3050 mmu_notifier_invalidate_range_start(&range); 3051 3052 /* 3053 * Re-check the pte - we dropped the lock 3054 */ 3055 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3056 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3057 if (old_page) { 3058 if (!PageAnon(old_page)) { 3059 dec_mm_counter_fast(mm, 3060 mm_counter_file(old_page)); 3061 inc_mm_counter_fast(mm, MM_ANONPAGES); 3062 } 3063 } else { 3064 inc_mm_counter_fast(mm, MM_ANONPAGES); 3065 } 3066 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3067 entry = mk_pte(new_page, vma->vm_page_prot); 3068 entry = pte_sw_mkyoung(entry); 3069 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3070 3071 /* 3072 * Clear the pte entry and flush it first, before updating the 3073 * pte with the new entry, to keep TLBs on different CPUs in 3074 * sync. This code used to set the new PTE then flush TLBs, but 3075 * that left a window where the new PTE could be loaded into 3076 * some TLBs while the old PTE remains in others. 3077 */ 3078 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3079 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 3080 lru_cache_add_inactive_or_unevictable(new_page, vma); 3081 /* 3082 * We call the notify macro here because, when using secondary 3083 * mmu page tables (such as kvm shadow page tables), we want the 3084 * new page to be mapped directly into the secondary page table. 3085 */ 3086 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3087 update_mmu_cache(vma, vmf->address, vmf->pte); 3088 if (old_page) { 3089 /* 3090 * Only after switching the pte to the new page may 3091 * we remove the mapcount here. Otherwise another 3092 * process may come and find the rmap count decremented 3093 * before the pte is switched to the new page, and 3094 * "reuse" the old page writing into it while our pte 3095 * here still points into it and can be read by other 3096 * threads. 3097 * 3098 * The critical issue is to order this 3099 * page_remove_rmap with the ptp_clear_flush above. 3100 * Those stores are ordered by (if nothing else,) 3101 * the barrier present in the atomic_add_negative 3102 * in page_remove_rmap. 3103 * 3104 * Then the TLB flush in ptep_clear_flush ensures that 3105 * no process can access the old page before the 3106 * decremented mapcount is visible. And the old page 3107 * cannot be reused until after the decremented 3108 * mapcount is visible. So transitively, TLBs to 3109 * old page will be flushed before it can be reused. 3110 */ 3111 page_remove_rmap(old_page, false); 3112 } 3113 3114 /* Free the old page.. */ 3115 new_page = old_page; 3116 page_copied = 1; 3117 } else { 3118 update_mmu_tlb(vma, vmf->address, vmf->pte); 3119 } 3120 3121 if (new_page) 3122 put_page(new_page); 3123 3124 pte_unmap_unlock(vmf->pte, vmf->ptl); 3125 /* 3126 * No need to double call mmu_notifier->invalidate_range() callback as 3127 * the above ptep_clear_flush_notify() did already call it. 3128 */ 3129 mmu_notifier_invalidate_range_only_end(&range); 3130 if (old_page) { 3131 /* 3132 * Don't let another task, with possibly unlocked vma, 3133 * keep the mlocked page. 3134 */ 3135 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 3136 lock_page(old_page); /* LRU manipulation */ 3137 if (PageMlocked(old_page)) 3138 munlock_vma_page(old_page); 3139 unlock_page(old_page); 3140 } 3141 if (page_copied) 3142 free_swap_cache(old_page); 3143 put_page(old_page); 3144 } 3145 return page_copied ? VM_FAULT_WRITE : 0; 3146 oom_free_new: 3147 put_page(new_page); 3148 oom: 3149 if (old_page) 3150 put_page(old_page); 3151 return VM_FAULT_OOM; 3152 } 3153 3154 /** 3155 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3156 * writeable once the page is prepared 3157 * 3158 * @vmf: structure describing the fault 3159 * 3160 * This function handles all that is needed to finish a write page fault in a 3161 * shared mapping due to PTE being read-only once the mapped page is prepared. 3162 * It handles locking of PTE and modifying it. 3163 * 3164 * The function expects the page to be locked or other protection against 3165 * concurrent faults / writeback (such as DAX radix tree locks). 3166 * 3167 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3168 * we acquired PTE lock. 3169 */ 3170 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3171 { 3172 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3173 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3174 &vmf->ptl); 3175 /* 3176 * We might have raced with another page fault while we released the 3177 * pte_offset_map_lock. 3178 */ 3179 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3180 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3181 pte_unmap_unlock(vmf->pte, vmf->ptl); 3182 return VM_FAULT_NOPAGE; 3183 } 3184 wp_page_reuse(vmf); 3185 return 0; 3186 } 3187 3188 /* 3189 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3190 * mapping 3191 */ 3192 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3193 { 3194 struct vm_area_struct *vma = vmf->vma; 3195 3196 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3197 vm_fault_t ret; 3198 3199 pte_unmap_unlock(vmf->pte, vmf->ptl); 3200 vmf->flags |= FAULT_FLAG_MKWRITE; 3201 ret = vma->vm_ops->pfn_mkwrite(vmf); 3202 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3203 return ret; 3204 return finish_mkwrite_fault(vmf); 3205 } 3206 wp_page_reuse(vmf); 3207 return VM_FAULT_WRITE; 3208 } 3209 3210 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3211 __releases(vmf->ptl) 3212 { 3213 struct vm_area_struct *vma = vmf->vma; 3214 vm_fault_t ret = VM_FAULT_WRITE; 3215 3216 get_page(vmf->page); 3217 3218 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3219 vm_fault_t tmp; 3220 3221 pte_unmap_unlock(vmf->pte, vmf->ptl); 3222 tmp = do_page_mkwrite(vmf); 3223 if (unlikely(!tmp || (tmp & 3224 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3225 put_page(vmf->page); 3226 return tmp; 3227 } 3228 tmp = finish_mkwrite_fault(vmf); 3229 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3230 unlock_page(vmf->page); 3231 put_page(vmf->page); 3232 return tmp; 3233 } 3234 } else { 3235 wp_page_reuse(vmf); 3236 lock_page(vmf->page); 3237 } 3238 ret |= fault_dirty_shared_page(vmf); 3239 put_page(vmf->page); 3240 3241 return ret; 3242 } 3243 3244 /* 3245 * This routine handles present pages, when users try to write 3246 * to a shared page. It is done by copying the page to a new address 3247 * and decrementing the shared-page counter for the old page. 3248 * 3249 * Note that this routine assumes that the protection checks have been 3250 * done by the caller (the low-level page fault routine in most cases). 3251 * Thus we can safely just mark it writable once we've done any necessary 3252 * COW. 3253 * 3254 * We also mark the page dirty at this point even though the page will 3255 * change only once the write actually happens. This avoids a few races, 3256 * and potentially makes it more efficient. 3257 * 3258 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3259 * but allow concurrent faults), with pte both mapped and locked. 3260 * We return with mmap_lock still held, but pte unmapped and unlocked. 3261 */ 3262 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3263 __releases(vmf->ptl) 3264 { 3265 struct vm_area_struct *vma = vmf->vma; 3266 3267 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3268 pte_unmap_unlock(vmf->pte, vmf->ptl); 3269 return handle_userfault(vmf, VM_UFFD_WP); 3270 } 3271 3272 /* 3273 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3274 * is flushed in this case before copying. 3275 */ 3276 if (unlikely(userfaultfd_wp(vmf->vma) && 3277 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3278 flush_tlb_page(vmf->vma, vmf->address); 3279 3280 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3281 if (!vmf->page) { 3282 /* 3283 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3284 * VM_PFNMAP VMA. 3285 * 3286 * We should not cow pages in a shared writeable mapping. 3287 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3288 */ 3289 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3290 (VM_WRITE|VM_SHARED)) 3291 return wp_pfn_shared(vmf); 3292 3293 pte_unmap_unlock(vmf->pte, vmf->ptl); 3294 return wp_page_copy(vmf); 3295 } 3296 3297 /* 3298 * Take out anonymous pages first, anonymous shared vmas are 3299 * not dirty accountable. 3300 */ 3301 if (PageAnon(vmf->page)) { 3302 struct page *page = vmf->page; 3303 3304 /* PageKsm() doesn't necessarily raise the page refcount */ 3305 if (PageKsm(page) || page_count(page) != 1) 3306 goto copy; 3307 if (!trylock_page(page)) 3308 goto copy; 3309 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { 3310 unlock_page(page); 3311 goto copy; 3312 } 3313 /* 3314 * Ok, we've got the only map reference, and the only 3315 * page count reference, and the page is locked, 3316 * it's dark out, and we're wearing sunglasses. Hit it. 3317 */ 3318 unlock_page(page); 3319 wp_page_reuse(vmf); 3320 return VM_FAULT_WRITE; 3321 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3322 (VM_WRITE|VM_SHARED))) { 3323 return wp_page_shared(vmf); 3324 } 3325 copy: 3326 /* 3327 * Ok, we need to copy. Oh, well.. 3328 */ 3329 get_page(vmf->page); 3330 3331 pte_unmap_unlock(vmf->pte, vmf->ptl); 3332 return wp_page_copy(vmf); 3333 } 3334 3335 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3336 unsigned long start_addr, unsigned long end_addr, 3337 struct zap_details *details) 3338 { 3339 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3340 } 3341 3342 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3343 pgoff_t first_index, 3344 pgoff_t last_index, 3345 struct zap_details *details) 3346 { 3347 struct vm_area_struct *vma; 3348 pgoff_t vba, vea, zba, zea; 3349 3350 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3351 vba = vma->vm_pgoff; 3352 vea = vba + vma_pages(vma) - 1; 3353 zba = max(first_index, vba); 3354 zea = min(last_index, vea); 3355 3356 unmap_mapping_range_vma(vma, 3357 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3358 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3359 details); 3360 } 3361 } 3362 3363 /** 3364 * unmap_mapping_folio() - Unmap single folio from processes. 3365 * @folio: The locked folio to be unmapped. 3366 * 3367 * Unmap this folio from any userspace process which still has it mmaped. 3368 * Typically, for efficiency, the range of nearby pages has already been 3369 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3370 * truncation or invalidation holds the lock on a folio, it may find that 3371 * the page has been remapped again: and then uses unmap_mapping_folio() 3372 * to unmap it finally. 3373 */ 3374 void unmap_mapping_folio(struct folio *folio) 3375 { 3376 struct address_space *mapping = folio->mapping; 3377 struct zap_details details = { }; 3378 pgoff_t first_index; 3379 pgoff_t last_index; 3380 3381 VM_BUG_ON(!folio_test_locked(folio)); 3382 3383 first_index = folio->index; 3384 last_index = folio->index + folio_nr_pages(folio) - 1; 3385 3386 details.even_cows = false; 3387 details.single_folio = folio; 3388 3389 i_mmap_lock_write(mapping); 3390 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3391 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3392 last_index, &details); 3393 i_mmap_unlock_write(mapping); 3394 } 3395 3396 /** 3397 * unmap_mapping_pages() - Unmap pages from processes. 3398 * @mapping: The address space containing pages to be unmapped. 3399 * @start: Index of first page to be unmapped. 3400 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3401 * @even_cows: Whether to unmap even private COWed pages. 3402 * 3403 * Unmap the pages in this address space from any userspace process which 3404 * has them mmaped. Generally, you want to remove COWed pages as well when 3405 * a file is being truncated, but not when invalidating pages from the page 3406 * cache. 3407 */ 3408 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3409 pgoff_t nr, bool even_cows) 3410 { 3411 struct zap_details details = { }; 3412 pgoff_t first_index = start; 3413 pgoff_t last_index = start + nr - 1; 3414 3415 details.even_cows = even_cows; 3416 if (last_index < first_index) 3417 last_index = ULONG_MAX; 3418 3419 i_mmap_lock_write(mapping); 3420 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3421 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3422 last_index, &details); 3423 i_mmap_unlock_write(mapping); 3424 } 3425 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3426 3427 /** 3428 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3429 * address_space corresponding to the specified byte range in the underlying 3430 * file. 3431 * 3432 * @mapping: the address space containing mmaps to be unmapped. 3433 * @holebegin: byte in first page to unmap, relative to the start of 3434 * the underlying file. This will be rounded down to a PAGE_SIZE 3435 * boundary. Note that this is different from truncate_pagecache(), which 3436 * must keep the partial page. In contrast, we must get rid of 3437 * partial pages. 3438 * @holelen: size of prospective hole in bytes. This will be rounded 3439 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3440 * end of the file. 3441 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3442 * but 0 when invalidating pagecache, don't throw away private data. 3443 */ 3444 void unmap_mapping_range(struct address_space *mapping, 3445 loff_t const holebegin, loff_t const holelen, int even_cows) 3446 { 3447 pgoff_t hba = holebegin >> PAGE_SHIFT; 3448 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3449 3450 /* Check for overflow. */ 3451 if (sizeof(holelen) > sizeof(hlen)) { 3452 long long holeend = 3453 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3454 if (holeend & ~(long long)ULONG_MAX) 3455 hlen = ULONG_MAX - hba + 1; 3456 } 3457 3458 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3459 } 3460 EXPORT_SYMBOL(unmap_mapping_range); 3461 3462 /* 3463 * Restore a potential device exclusive pte to a working pte entry 3464 */ 3465 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3466 { 3467 struct page *page = vmf->page; 3468 struct vm_area_struct *vma = vmf->vma; 3469 struct mmu_notifier_range range; 3470 3471 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) 3472 return VM_FAULT_RETRY; 3473 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 3474 vma->vm_mm, vmf->address & PAGE_MASK, 3475 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3476 mmu_notifier_invalidate_range_start(&range); 3477 3478 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3479 &vmf->ptl); 3480 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3481 restore_exclusive_pte(vma, page, vmf->address, vmf->pte); 3482 3483 pte_unmap_unlock(vmf->pte, vmf->ptl); 3484 unlock_page(page); 3485 3486 mmu_notifier_invalidate_range_end(&range); 3487 return 0; 3488 } 3489 3490 /* 3491 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3492 * but allow concurrent faults), and pte mapped but not yet locked. 3493 * We return with pte unmapped and unlocked. 3494 * 3495 * We return with the mmap_lock locked or unlocked in the same cases 3496 * as does filemap_fault(). 3497 */ 3498 vm_fault_t do_swap_page(struct vm_fault *vmf) 3499 { 3500 struct vm_area_struct *vma = vmf->vma; 3501 struct page *page = NULL, *swapcache; 3502 struct swap_info_struct *si = NULL; 3503 swp_entry_t entry; 3504 pte_t pte; 3505 int locked; 3506 int exclusive = 0; 3507 vm_fault_t ret = 0; 3508 void *shadow = NULL; 3509 3510 if (!pte_unmap_same(vmf)) 3511 goto out; 3512 3513 entry = pte_to_swp_entry(vmf->orig_pte); 3514 if (unlikely(non_swap_entry(entry))) { 3515 if (is_migration_entry(entry)) { 3516 migration_entry_wait(vma->vm_mm, vmf->pmd, 3517 vmf->address); 3518 } else if (is_device_exclusive_entry(entry)) { 3519 vmf->page = pfn_swap_entry_to_page(entry); 3520 ret = remove_device_exclusive_entry(vmf); 3521 } else if (is_device_private_entry(entry)) { 3522 vmf->page = pfn_swap_entry_to_page(entry); 3523 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3524 } else if (is_hwpoison_entry(entry)) { 3525 ret = VM_FAULT_HWPOISON; 3526 } else { 3527 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3528 ret = VM_FAULT_SIGBUS; 3529 } 3530 goto out; 3531 } 3532 3533 /* Prevent swapoff from happening to us. */ 3534 si = get_swap_device(entry); 3535 if (unlikely(!si)) 3536 goto out; 3537 3538 page = lookup_swap_cache(entry, vma, vmf->address); 3539 swapcache = page; 3540 3541 if (!page) { 3542 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3543 __swap_count(entry) == 1) { 3544 /* skip swapcache */ 3545 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3546 vmf->address); 3547 if (page) { 3548 __SetPageLocked(page); 3549 __SetPageSwapBacked(page); 3550 3551 if (mem_cgroup_swapin_charge_page(page, 3552 vma->vm_mm, GFP_KERNEL, entry)) { 3553 ret = VM_FAULT_OOM; 3554 goto out_page; 3555 } 3556 mem_cgroup_swapin_uncharge_swap(entry); 3557 3558 shadow = get_shadow_from_swap_cache(entry); 3559 if (shadow) 3560 workingset_refault(page_folio(page), 3561 shadow); 3562 3563 lru_cache_add(page); 3564 3565 /* To provide entry to swap_readpage() */ 3566 set_page_private(page, entry.val); 3567 swap_readpage(page, true); 3568 set_page_private(page, 0); 3569 } 3570 } else { 3571 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3572 vmf); 3573 swapcache = page; 3574 } 3575 3576 if (!page) { 3577 /* 3578 * Back out if somebody else faulted in this pte 3579 * while we released the pte lock. 3580 */ 3581 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3582 vmf->address, &vmf->ptl); 3583 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3584 ret = VM_FAULT_OOM; 3585 goto unlock; 3586 } 3587 3588 /* Had to read the page from swap area: Major fault */ 3589 ret = VM_FAULT_MAJOR; 3590 count_vm_event(PGMAJFAULT); 3591 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3592 } else if (PageHWPoison(page)) { 3593 /* 3594 * hwpoisoned dirty swapcache pages are kept for killing 3595 * owner processes (which may be unknown at hwpoison time) 3596 */ 3597 ret = VM_FAULT_HWPOISON; 3598 goto out_release; 3599 } 3600 3601 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3602 3603 if (!locked) { 3604 ret |= VM_FAULT_RETRY; 3605 goto out_release; 3606 } 3607 3608 /* 3609 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3610 * release the swapcache from under us. The page pin, and pte_same 3611 * test below, are not enough to exclude that. Even if it is still 3612 * swapcache, we need to check that the page's swap has not changed. 3613 */ 3614 if (unlikely((!PageSwapCache(page) || 3615 page_private(page) != entry.val)) && swapcache) 3616 goto out_page; 3617 3618 page = ksm_might_need_to_copy(page, vma, vmf->address); 3619 if (unlikely(!page)) { 3620 ret = VM_FAULT_OOM; 3621 page = swapcache; 3622 goto out_page; 3623 } 3624 3625 cgroup_throttle_swaprate(page, GFP_KERNEL); 3626 3627 /* 3628 * Back out if somebody else already faulted in this pte. 3629 */ 3630 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3631 &vmf->ptl); 3632 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3633 goto out_nomap; 3634 3635 if (unlikely(!PageUptodate(page))) { 3636 ret = VM_FAULT_SIGBUS; 3637 goto out_nomap; 3638 } 3639 3640 /* 3641 * The page isn't present yet, go ahead with the fault. 3642 * 3643 * Be careful about the sequence of operations here. 3644 * To get its accounting right, reuse_swap_page() must be called 3645 * while the page is counted on swap but not yet in mapcount i.e. 3646 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3647 * must be called after the swap_free(), or it will never succeed. 3648 */ 3649 3650 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3651 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3652 pte = mk_pte(page, vma->vm_page_prot); 3653 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 3654 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3655 vmf->flags &= ~FAULT_FLAG_WRITE; 3656 ret |= VM_FAULT_WRITE; 3657 exclusive = RMAP_EXCLUSIVE; 3658 } 3659 flush_icache_page(vma, page); 3660 if (pte_swp_soft_dirty(vmf->orig_pte)) 3661 pte = pte_mksoft_dirty(pte); 3662 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3663 pte = pte_mkuffd_wp(pte); 3664 pte = pte_wrprotect(pte); 3665 } 3666 vmf->orig_pte = pte; 3667 3668 /* ksm created a completely new copy */ 3669 if (unlikely(page != swapcache && swapcache)) { 3670 page_add_new_anon_rmap(page, vma, vmf->address, false); 3671 lru_cache_add_inactive_or_unevictable(page, vma); 3672 } else { 3673 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3674 } 3675 3676 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3677 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3678 3679 swap_free(entry); 3680 if (mem_cgroup_swap_full(page) || 3681 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3682 try_to_free_swap(page); 3683 unlock_page(page); 3684 if (page != swapcache && swapcache) { 3685 /* 3686 * Hold the lock to avoid the swap entry to be reused 3687 * until we take the PT lock for the pte_same() check 3688 * (to avoid false positives from pte_same). For 3689 * further safety release the lock after the swap_free 3690 * so that the swap count won't change under a 3691 * parallel locked swapcache. 3692 */ 3693 unlock_page(swapcache); 3694 put_page(swapcache); 3695 } 3696 3697 if (vmf->flags & FAULT_FLAG_WRITE) { 3698 ret |= do_wp_page(vmf); 3699 if (ret & VM_FAULT_ERROR) 3700 ret &= VM_FAULT_ERROR; 3701 goto out; 3702 } 3703 3704 /* No need to invalidate - it was non-present before */ 3705 update_mmu_cache(vma, vmf->address, vmf->pte); 3706 unlock: 3707 pte_unmap_unlock(vmf->pte, vmf->ptl); 3708 out: 3709 if (si) 3710 put_swap_device(si); 3711 return ret; 3712 out_nomap: 3713 pte_unmap_unlock(vmf->pte, vmf->ptl); 3714 out_page: 3715 unlock_page(page); 3716 out_release: 3717 put_page(page); 3718 if (page != swapcache && swapcache) { 3719 unlock_page(swapcache); 3720 put_page(swapcache); 3721 } 3722 if (si) 3723 put_swap_device(si); 3724 return ret; 3725 } 3726 3727 /* 3728 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3729 * but allow concurrent faults), and pte mapped but not yet locked. 3730 * We return with mmap_lock still held, but pte unmapped and unlocked. 3731 */ 3732 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3733 { 3734 struct vm_area_struct *vma = vmf->vma; 3735 struct page *page; 3736 vm_fault_t ret = 0; 3737 pte_t entry; 3738 3739 /* File mapping without ->vm_ops ? */ 3740 if (vma->vm_flags & VM_SHARED) 3741 return VM_FAULT_SIGBUS; 3742 3743 /* 3744 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3745 * pte_offset_map() on pmds where a huge pmd might be created 3746 * from a different thread. 3747 * 3748 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 3749 * parallel threads are excluded by other means. 3750 * 3751 * Here we only have mmap_read_lock(mm). 3752 */ 3753 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3754 return VM_FAULT_OOM; 3755 3756 /* See comment in handle_pte_fault() */ 3757 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3758 return 0; 3759 3760 /* Use the zero-page for reads */ 3761 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3762 !mm_forbids_zeropage(vma->vm_mm)) { 3763 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3764 vma->vm_page_prot)); 3765 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3766 vmf->address, &vmf->ptl); 3767 if (!pte_none(*vmf->pte)) { 3768 update_mmu_tlb(vma, vmf->address, vmf->pte); 3769 goto unlock; 3770 } 3771 ret = check_stable_address_space(vma->vm_mm); 3772 if (ret) 3773 goto unlock; 3774 /* Deliver the page fault to userland, check inside PT lock */ 3775 if (userfaultfd_missing(vma)) { 3776 pte_unmap_unlock(vmf->pte, vmf->ptl); 3777 return handle_userfault(vmf, VM_UFFD_MISSING); 3778 } 3779 goto setpte; 3780 } 3781 3782 /* Allocate our own private page. */ 3783 if (unlikely(anon_vma_prepare(vma))) 3784 goto oom; 3785 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3786 if (!page) 3787 goto oom; 3788 3789 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) 3790 goto oom_free_page; 3791 cgroup_throttle_swaprate(page, GFP_KERNEL); 3792 3793 /* 3794 * The memory barrier inside __SetPageUptodate makes sure that 3795 * preceding stores to the page contents become visible before 3796 * the set_pte_at() write. 3797 */ 3798 __SetPageUptodate(page); 3799 3800 entry = mk_pte(page, vma->vm_page_prot); 3801 entry = pte_sw_mkyoung(entry); 3802 if (vma->vm_flags & VM_WRITE) 3803 entry = pte_mkwrite(pte_mkdirty(entry)); 3804 3805 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3806 &vmf->ptl); 3807 if (!pte_none(*vmf->pte)) { 3808 update_mmu_cache(vma, vmf->address, vmf->pte); 3809 goto release; 3810 } 3811 3812 ret = check_stable_address_space(vma->vm_mm); 3813 if (ret) 3814 goto release; 3815 3816 /* Deliver the page fault to userland, check inside PT lock */ 3817 if (userfaultfd_missing(vma)) { 3818 pte_unmap_unlock(vmf->pte, vmf->ptl); 3819 put_page(page); 3820 return handle_userfault(vmf, VM_UFFD_MISSING); 3821 } 3822 3823 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3824 page_add_new_anon_rmap(page, vma, vmf->address, false); 3825 lru_cache_add_inactive_or_unevictable(page, vma); 3826 setpte: 3827 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3828 3829 /* No need to invalidate - it was non-present before */ 3830 update_mmu_cache(vma, vmf->address, vmf->pte); 3831 unlock: 3832 pte_unmap_unlock(vmf->pte, vmf->ptl); 3833 return ret; 3834 release: 3835 put_page(page); 3836 goto unlock; 3837 oom_free_page: 3838 put_page(page); 3839 oom: 3840 return VM_FAULT_OOM; 3841 } 3842 3843 /* 3844 * The mmap_lock must have been held on entry, and may have been 3845 * released depending on flags and vma->vm_ops->fault() return value. 3846 * See filemap_fault() and __lock_page_retry(). 3847 */ 3848 static vm_fault_t __do_fault(struct vm_fault *vmf) 3849 { 3850 struct vm_area_struct *vma = vmf->vma; 3851 vm_fault_t ret; 3852 3853 /* 3854 * Preallocate pte before we take page_lock because this might lead to 3855 * deadlocks for memcg reclaim which waits for pages under writeback: 3856 * lock_page(A) 3857 * SetPageWriteback(A) 3858 * unlock_page(A) 3859 * lock_page(B) 3860 * lock_page(B) 3861 * pte_alloc_one 3862 * shrink_page_list 3863 * wait_on_page_writeback(A) 3864 * SetPageWriteback(B) 3865 * unlock_page(B) 3866 * # flush A, B to clear the writeback 3867 */ 3868 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3869 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3870 if (!vmf->prealloc_pte) 3871 return VM_FAULT_OOM; 3872 } 3873 3874 ret = vma->vm_ops->fault(vmf); 3875 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3876 VM_FAULT_DONE_COW))) 3877 return ret; 3878 3879 if (unlikely(PageHWPoison(vmf->page))) { 3880 vm_fault_t poisonret = VM_FAULT_HWPOISON; 3881 if (ret & VM_FAULT_LOCKED) { 3882 /* Retry if a clean page was removed from the cache. */ 3883 if (invalidate_inode_page(vmf->page)) 3884 poisonret = 0; 3885 unlock_page(vmf->page); 3886 } 3887 put_page(vmf->page); 3888 vmf->page = NULL; 3889 return poisonret; 3890 } 3891 3892 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3893 lock_page(vmf->page); 3894 else 3895 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3896 3897 return ret; 3898 } 3899 3900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3901 static void deposit_prealloc_pte(struct vm_fault *vmf) 3902 { 3903 struct vm_area_struct *vma = vmf->vma; 3904 3905 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3906 /* 3907 * We are going to consume the prealloc table, 3908 * count that as nr_ptes. 3909 */ 3910 mm_inc_nr_ptes(vma->vm_mm); 3911 vmf->prealloc_pte = NULL; 3912 } 3913 3914 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3915 { 3916 struct vm_area_struct *vma = vmf->vma; 3917 bool write = vmf->flags & FAULT_FLAG_WRITE; 3918 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3919 pmd_t entry; 3920 int i; 3921 vm_fault_t ret = VM_FAULT_FALLBACK; 3922 3923 if (!transhuge_vma_suitable(vma, haddr)) 3924 return ret; 3925 3926 page = compound_head(page); 3927 if (compound_order(page) != HPAGE_PMD_ORDER) 3928 return ret; 3929 3930 /* 3931 * Just backoff if any subpage of a THP is corrupted otherwise 3932 * the corrupted page may mapped by PMD silently to escape the 3933 * check. This kind of THP just can be PTE mapped. Access to 3934 * the corrupted subpage should trigger SIGBUS as expected. 3935 */ 3936 if (unlikely(PageHasHWPoisoned(page))) 3937 return ret; 3938 3939 /* 3940 * Archs like ppc64 need additional space to store information 3941 * related to pte entry. Use the preallocated table for that. 3942 */ 3943 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3944 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3945 if (!vmf->prealloc_pte) 3946 return VM_FAULT_OOM; 3947 } 3948 3949 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3950 if (unlikely(!pmd_none(*vmf->pmd))) 3951 goto out; 3952 3953 for (i = 0; i < HPAGE_PMD_NR; i++) 3954 flush_icache_page(vma, page + i); 3955 3956 entry = mk_huge_pmd(page, vma->vm_page_prot); 3957 if (write) 3958 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3959 3960 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3961 page_add_file_rmap(page, true); 3962 /* 3963 * deposit and withdraw with pmd lock held 3964 */ 3965 if (arch_needs_pgtable_deposit()) 3966 deposit_prealloc_pte(vmf); 3967 3968 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3969 3970 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3971 3972 /* fault is handled */ 3973 ret = 0; 3974 count_vm_event(THP_FILE_MAPPED); 3975 out: 3976 spin_unlock(vmf->ptl); 3977 return ret; 3978 } 3979 #else 3980 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3981 { 3982 return VM_FAULT_FALLBACK; 3983 } 3984 #endif 3985 3986 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 3987 { 3988 struct vm_area_struct *vma = vmf->vma; 3989 bool write = vmf->flags & FAULT_FLAG_WRITE; 3990 bool prefault = vmf->address != addr; 3991 pte_t entry; 3992 3993 flush_icache_page(vma, page); 3994 entry = mk_pte(page, vma->vm_page_prot); 3995 3996 if (prefault && arch_wants_old_prefaulted_pte()) 3997 entry = pte_mkold(entry); 3998 else 3999 entry = pte_sw_mkyoung(entry); 4000 4001 if (write) 4002 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4003 /* copy-on-write page */ 4004 if (write && !(vma->vm_flags & VM_SHARED)) { 4005 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 4006 page_add_new_anon_rmap(page, vma, addr, false); 4007 lru_cache_add_inactive_or_unevictable(page, vma); 4008 } else { 4009 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 4010 page_add_file_rmap(page, false); 4011 } 4012 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 4013 } 4014 4015 /** 4016 * finish_fault - finish page fault once we have prepared the page to fault 4017 * 4018 * @vmf: structure describing the fault 4019 * 4020 * This function handles all that is needed to finish a page fault once the 4021 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4022 * given page, adds reverse page mapping, handles memcg charges and LRU 4023 * addition. 4024 * 4025 * The function expects the page to be locked and on success it consumes a 4026 * reference of a page being mapped (for the PTE which maps it). 4027 * 4028 * Return: %0 on success, %VM_FAULT_ code in case of error. 4029 */ 4030 vm_fault_t finish_fault(struct vm_fault *vmf) 4031 { 4032 struct vm_area_struct *vma = vmf->vma; 4033 struct page *page; 4034 vm_fault_t ret; 4035 4036 /* Did we COW the page? */ 4037 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4038 page = vmf->cow_page; 4039 else 4040 page = vmf->page; 4041 4042 /* 4043 * check even for read faults because we might have lost our CoWed 4044 * page 4045 */ 4046 if (!(vma->vm_flags & VM_SHARED)) { 4047 ret = check_stable_address_space(vma->vm_mm); 4048 if (ret) 4049 return ret; 4050 } 4051 4052 if (pmd_none(*vmf->pmd)) { 4053 if (PageTransCompound(page)) { 4054 ret = do_set_pmd(vmf, page); 4055 if (ret != VM_FAULT_FALLBACK) 4056 return ret; 4057 } 4058 4059 if (vmf->prealloc_pte) 4060 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4061 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4062 return VM_FAULT_OOM; 4063 } 4064 4065 /* See comment in handle_pte_fault() */ 4066 if (pmd_devmap_trans_unstable(vmf->pmd)) 4067 return 0; 4068 4069 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4070 vmf->address, &vmf->ptl); 4071 ret = 0; 4072 /* Re-check under ptl */ 4073 if (likely(pte_none(*vmf->pte))) 4074 do_set_pte(vmf, page, vmf->address); 4075 else 4076 ret = VM_FAULT_NOPAGE; 4077 4078 update_mmu_tlb(vma, vmf->address, vmf->pte); 4079 pte_unmap_unlock(vmf->pte, vmf->ptl); 4080 return ret; 4081 } 4082 4083 static unsigned long fault_around_bytes __read_mostly = 4084 rounddown_pow_of_two(65536); 4085 4086 #ifdef CONFIG_DEBUG_FS 4087 static int fault_around_bytes_get(void *data, u64 *val) 4088 { 4089 *val = fault_around_bytes; 4090 return 0; 4091 } 4092 4093 /* 4094 * fault_around_bytes must be rounded down to the nearest page order as it's 4095 * what do_fault_around() expects to see. 4096 */ 4097 static int fault_around_bytes_set(void *data, u64 val) 4098 { 4099 if (val / PAGE_SIZE > PTRS_PER_PTE) 4100 return -EINVAL; 4101 if (val > PAGE_SIZE) 4102 fault_around_bytes = rounddown_pow_of_two(val); 4103 else 4104 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 4105 return 0; 4106 } 4107 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4108 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4109 4110 static int __init fault_around_debugfs(void) 4111 { 4112 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4113 &fault_around_bytes_fops); 4114 return 0; 4115 } 4116 late_initcall(fault_around_debugfs); 4117 #endif 4118 4119 /* 4120 * do_fault_around() tries to map few pages around the fault address. The hope 4121 * is that the pages will be needed soon and this will lower the number of 4122 * faults to handle. 4123 * 4124 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4125 * not ready to be mapped: not up-to-date, locked, etc. 4126 * 4127 * This function is called with the page table lock taken. In the split ptlock 4128 * case the page table lock only protects only those entries which belong to 4129 * the page table corresponding to the fault address. 4130 * 4131 * This function doesn't cross the VMA boundaries, in order to call map_pages() 4132 * only once. 4133 * 4134 * fault_around_bytes defines how many bytes we'll try to map. 4135 * do_fault_around() expects it to be set to a power of two less than or equal 4136 * to PTRS_PER_PTE. 4137 * 4138 * The virtual address of the area that we map is naturally aligned to 4139 * fault_around_bytes rounded down to the machine page size 4140 * (and therefore to page order). This way it's easier to guarantee 4141 * that we don't cross page table boundaries. 4142 */ 4143 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4144 { 4145 unsigned long address = vmf->address, nr_pages, mask; 4146 pgoff_t start_pgoff = vmf->pgoff; 4147 pgoff_t end_pgoff; 4148 int off; 4149 4150 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 4151 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 4152 4153 address = max(address & mask, vmf->vma->vm_start); 4154 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 4155 start_pgoff -= off; 4156 4157 /* 4158 * end_pgoff is either the end of the page table, the end of 4159 * the vma or nr_pages from start_pgoff, depending what is nearest. 4160 */ 4161 end_pgoff = start_pgoff - 4162 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 4163 PTRS_PER_PTE - 1; 4164 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 4165 start_pgoff + nr_pages - 1); 4166 4167 if (pmd_none(*vmf->pmd)) { 4168 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4169 if (!vmf->prealloc_pte) 4170 return VM_FAULT_OOM; 4171 } 4172 4173 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 4174 } 4175 4176 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4177 { 4178 struct vm_area_struct *vma = vmf->vma; 4179 vm_fault_t ret = 0; 4180 4181 /* 4182 * Let's call ->map_pages() first and use ->fault() as fallback 4183 * if page by the offset is not ready to be mapped (cold cache or 4184 * something). 4185 */ 4186 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 4187 if (likely(!userfaultfd_minor(vmf->vma))) { 4188 ret = do_fault_around(vmf); 4189 if (ret) 4190 return ret; 4191 } 4192 } 4193 4194 ret = __do_fault(vmf); 4195 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4196 return ret; 4197 4198 ret |= finish_fault(vmf); 4199 unlock_page(vmf->page); 4200 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4201 put_page(vmf->page); 4202 return ret; 4203 } 4204 4205 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4206 { 4207 struct vm_area_struct *vma = vmf->vma; 4208 vm_fault_t ret; 4209 4210 if (unlikely(anon_vma_prepare(vma))) 4211 return VM_FAULT_OOM; 4212 4213 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4214 if (!vmf->cow_page) 4215 return VM_FAULT_OOM; 4216 4217 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4218 GFP_KERNEL)) { 4219 put_page(vmf->cow_page); 4220 return VM_FAULT_OOM; 4221 } 4222 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4223 4224 ret = __do_fault(vmf); 4225 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4226 goto uncharge_out; 4227 if (ret & VM_FAULT_DONE_COW) 4228 return ret; 4229 4230 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4231 __SetPageUptodate(vmf->cow_page); 4232 4233 ret |= finish_fault(vmf); 4234 unlock_page(vmf->page); 4235 put_page(vmf->page); 4236 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4237 goto uncharge_out; 4238 return ret; 4239 uncharge_out: 4240 put_page(vmf->cow_page); 4241 return ret; 4242 } 4243 4244 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4245 { 4246 struct vm_area_struct *vma = vmf->vma; 4247 vm_fault_t ret, tmp; 4248 4249 ret = __do_fault(vmf); 4250 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4251 return ret; 4252 4253 /* 4254 * Check if the backing address space wants to know that the page is 4255 * about to become writable 4256 */ 4257 if (vma->vm_ops->page_mkwrite) { 4258 unlock_page(vmf->page); 4259 tmp = do_page_mkwrite(vmf); 4260 if (unlikely(!tmp || 4261 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4262 put_page(vmf->page); 4263 return tmp; 4264 } 4265 } 4266 4267 ret |= finish_fault(vmf); 4268 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4269 VM_FAULT_RETRY))) { 4270 unlock_page(vmf->page); 4271 put_page(vmf->page); 4272 return ret; 4273 } 4274 4275 ret |= fault_dirty_shared_page(vmf); 4276 return ret; 4277 } 4278 4279 /* 4280 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4281 * but allow concurrent faults). 4282 * The mmap_lock may have been released depending on flags and our 4283 * return value. See filemap_fault() and __folio_lock_or_retry(). 4284 * If mmap_lock is released, vma may become invalid (for example 4285 * by other thread calling munmap()). 4286 */ 4287 static vm_fault_t do_fault(struct vm_fault *vmf) 4288 { 4289 struct vm_area_struct *vma = vmf->vma; 4290 struct mm_struct *vm_mm = vma->vm_mm; 4291 vm_fault_t ret; 4292 4293 /* 4294 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4295 */ 4296 if (!vma->vm_ops->fault) { 4297 /* 4298 * If we find a migration pmd entry or a none pmd entry, which 4299 * should never happen, return SIGBUS 4300 */ 4301 if (unlikely(!pmd_present(*vmf->pmd))) 4302 ret = VM_FAULT_SIGBUS; 4303 else { 4304 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4305 vmf->pmd, 4306 vmf->address, 4307 &vmf->ptl); 4308 /* 4309 * Make sure this is not a temporary clearing of pte 4310 * by holding ptl and checking again. A R/M/W update 4311 * of pte involves: take ptl, clearing the pte so that 4312 * we don't have concurrent modification by hardware 4313 * followed by an update. 4314 */ 4315 if (unlikely(pte_none(*vmf->pte))) 4316 ret = VM_FAULT_SIGBUS; 4317 else 4318 ret = VM_FAULT_NOPAGE; 4319 4320 pte_unmap_unlock(vmf->pte, vmf->ptl); 4321 } 4322 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4323 ret = do_read_fault(vmf); 4324 else if (!(vma->vm_flags & VM_SHARED)) 4325 ret = do_cow_fault(vmf); 4326 else 4327 ret = do_shared_fault(vmf); 4328 4329 /* preallocated pagetable is unused: free it */ 4330 if (vmf->prealloc_pte) { 4331 pte_free(vm_mm, vmf->prealloc_pte); 4332 vmf->prealloc_pte = NULL; 4333 } 4334 return ret; 4335 } 4336 4337 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4338 unsigned long addr, int page_nid, int *flags) 4339 { 4340 get_page(page); 4341 4342 count_vm_numa_event(NUMA_HINT_FAULTS); 4343 if (page_nid == numa_node_id()) { 4344 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4345 *flags |= TNF_FAULT_LOCAL; 4346 } 4347 4348 return mpol_misplaced(page, vma, addr); 4349 } 4350 4351 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4352 { 4353 struct vm_area_struct *vma = vmf->vma; 4354 struct page *page = NULL; 4355 int page_nid = NUMA_NO_NODE; 4356 int last_cpupid; 4357 int target_nid; 4358 pte_t pte, old_pte; 4359 bool was_writable = pte_savedwrite(vmf->orig_pte); 4360 int flags = 0; 4361 4362 /* 4363 * The "pte" at this point cannot be used safely without 4364 * validation through pte_unmap_same(). It's of NUMA type but 4365 * the pfn may be screwed if the read is non atomic. 4366 */ 4367 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4368 spin_lock(vmf->ptl); 4369 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4370 pte_unmap_unlock(vmf->pte, vmf->ptl); 4371 goto out; 4372 } 4373 4374 /* Get the normal PTE */ 4375 old_pte = ptep_get(vmf->pte); 4376 pte = pte_modify(old_pte, vma->vm_page_prot); 4377 4378 page = vm_normal_page(vma, vmf->address, pte); 4379 if (!page) 4380 goto out_map; 4381 4382 /* TODO: handle PTE-mapped THP */ 4383 if (PageCompound(page)) 4384 goto out_map; 4385 4386 /* 4387 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4388 * much anyway since they can be in shared cache state. This misses 4389 * the case where a mapping is writable but the process never writes 4390 * to it but pte_write gets cleared during protection updates and 4391 * pte_dirty has unpredictable behaviour between PTE scan updates, 4392 * background writeback, dirty balancing and application behaviour. 4393 */ 4394 if (!was_writable) 4395 flags |= TNF_NO_GROUP; 4396 4397 /* 4398 * Flag if the page is shared between multiple address spaces. This 4399 * is later used when determining whether to group tasks together 4400 */ 4401 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4402 flags |= TNF_SHARED; 4403 4404 last_cpupid = page_cpupid_last(page); 4405 page_nid = page_to_nid(page); 4406 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4407 &flags); 4408 if (target_nid == NUMA_NO_NODE) { 4409 put_page(page); 4410 goto out_map; 4411 } 4412 pte_unmap_unlock(vmf->pte, vmf->ptl); 4413 4414 /* Migrate to the requested node */ 4415 if (migrate_misplaced_page(page, vma, target_nid)) { 4416 page_nid = target_nid; 4417 flags |= TNF_MIGRATED; 4418 } else { 4419 flags |= TNF_MIGRATE_FAIL; 4420 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4421 spin_lock(vmf->ptl); 4422 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4423 pte_unmap_unlock(vmf->pte, vmf->ptl); 4424 goto out; 4425 } 4426 goto out_map; 4427 } 4428 4429 out: 4430 if (page_nid != NUMA_NO_NODE) 4431 task_numa_fault(last_cpupid, page_nid, 1, flags); 4432 return 0; 4433 out_map: 4434 /* 4435 * Make it present again, depending on how arch implements 4436 * non-accessible ptes, some can allow access by kernel mode. 4437 */ 4438 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4439 pte = pte_modify(old_pte, vma->vm_page_prot); 4440 pte = pte_mkyoung(pte); 4441 if (was_writable) 4442 pte = pte_mkwrite(pte); 4443 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4444 update_mmu_cache(vma, vmf->address, vmf->pte); 4445 pte_unmap_unlock(vmf->pte, vmf->ptl); 4446 goto out; 4447 } 4448 4449 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4450 { 4451 if (vma_is_anonymous(vmf->vma)) 4452 return do_huge_pmd_anonymous_page(vmf); 4453 if (vmf->vma->vm_ops->huge_fault) 4454 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4455 return VM_FAULT_FALLBACK; 4456 } 4457 4458 /* `inline' is required to avoid gcc 4.1.2 build error */ 4459 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4460 { 4461 if (vma_is_anonymous(vmf->vma)) { 4462 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4463 return handle_userfault(vmf, VM_UFFD_WP); 4464 return do_huge_pmd_wp_page(vmf); 4465 } 4466 if (vmf->vma->vm_ops->huge_fault) { 4467 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4468 4469 if (!(ret & VM_FAULT_FALLBACK)) 4470 return ret; 4471 } 4472 4473 /* COW or write-notify handled on pte level: split pmd. */ 4474 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4475 4476 return VM_FAULT_FALLBACK; 4477 } 4478 4479 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4480 { 4481 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4482 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4483 /* No support for anonymous transparent PUD pages yet */ 4484 if (vma_is_anonymous(vmf->vma)) 4485 goto split; 4486 if (vmf->vma->vm_ops->huge_fault) { 4487 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4488 4489 if (!(ret & VM_FAULT_FALLBACK)) 4490 return ret; 4491 } 4492 split: 4493 /* COW or write-notify not handled on PUD level: split pud.*/ 4494 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4495 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4496 return VM_FAULT_FALLBACK; 4497 } 4498 4499 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4500 { 4501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4502 /* No support for anonymous transparent PUD pages yet */ 4503 if (vma_is_anonymous(vmf->vma)) 4504 return VM_FAULT_FALLBACK; 4505 if (vmf->vma->vm_ops->huge_fault) 4506 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4507 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4508 return VM_FAULT_FALLBACK; 4509 } 4510 4511 /* 4512 * These routines also need to handle stuff like marking pages dirty 4513 * and/or accessed for architectures that don't do it in hardware (most 4514 * RISC architectures). The early dirtying is also good on the i386. 4515 * 4516 * There is also a hook called "update_mmu_cache()" that architectures 4517 * with external mmu caches can use to update those (ie the Sparc or 4518 * PowerPC hashed page tables that act as extended TLBs). 4519 * 4520 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4521 * concurrent faults). 4522 * 4523 * The mmap_lock may have been released depending on flags and our return value. 4524 * See filemap_fault() and __folio_lock_or_retry(). 4525 */ 4526 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4527 { 4528 pte_t entry; 4529 4530 if (unlikely(pmd_none(*vmf->pmd))) { 4531 /* 4532 * Leave __pte_alloc() until later: because vm_ops->fault may 4533 * want to allocate huge page, and if we expose page table 4534 * for an instant, it will be difficult to retract from 4535 * concurrent faults and from rmap lookups. 4536 */ 4537 vmf->pte = NULL; 4538 } else { 4539 /* 4540 * If a huge pmd materialized under us just retry later. Use 4541 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead 4542 * of pmd_trans_huge() to ensure the pmd didn't become 4543 * pmd_trans_huge under us and then back to pmd_none, as a 4544 * result of MADV_DONTNEED running immediately after a huge pmd 4545 * fault in a different thread of this mm, in turn leading to a 4546 * misleading pmd_trans_huge() retval. All we have to ensure is 4547 * that it is a regular pmd that we can walk with 4548 * pte_offset_map() and we can do that through an atomic read 4549 * in C, which is what pmd_trans_unstable() provides. 4550 */ 4551 if (pmd_devmap_trans_unstable(vmf->pmd)) 4552 return 0; 4553 /* 4554 * A regular pmd is established and it can't morph into a huge 4555 * pmd from under us anymore at this point because we hold the 4556 * mmap_lock read mode and khugepaged takes it in write mode. 4557 * So now it's safe to run pte_offset_map(). 4558 */ 4559 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4560 vmf->orig_pte = *vmf->pte; 4561 4562 /* 4563 * some architectures can have larger ptes than wordsize, 4564 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4565 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4566 * accesses. The code below just needs a consistent view 4567 * for the ifs and we later double check anyway with the 4568 * ptl lock held. So here a barrier will do. 4569 */ 4570 barrier(); 4571 if (pte_none(vmf->orig_pte)) { 4572 pte_unmap(vmf->pte); 4573 vmf->pte = NULL; 4574 } 4575 } 4576 4577 if (!vmf->pte) { 4578 if (vma_is_anonymous(vmf->vma)) 4579 return do_anonymous_page(vmf); 4580 else 4581 return do_fault(vmf); 4582 } 4583 4584 if (!pte_present(vmf->orig_pte)) 4585 return do_swap_page(vmf); 4586 4587 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4588 return do_numa_page(vmf); 4589 4590 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4591 spin_lock(vmf->ptl); 4592 entry = vmf->orig_pte; 4593 if (unlikely(!pte_same(*vmf->pte, entry))) { 4594 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4595 goto unlock; 4596 } 4597 if (vmf->flags & FAULT_FLAG_WRITE) { 4598 if (!pte_write(entry)) 4599 return do_wp_page(vmf); 4600 entry = pte_mkdirty(entry); 4601 } 4602 entry = pte_mkyoung(entry); 4603 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4604 vmf->flags & FAULT_FLAG_WRITE)) { 4605 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4606 } else { 4607 /* Skip spurious TLB flush for retried page fault */ 4608 if (vmf->flags & FAULT_FLAG_TRIED) 4609 goto unlock; 4610 /* 4611 * This is needed only for protection faults but the arch code 4612 * is not yet telling us if this is a protection fault or not. 4613 * This still avoids useless tlb flushes for .text page faults 4614 * with threads. 4615 */ 4616 if (vmf->flags & FAULT_FLAG_WRITE) 4617 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4618 } 4619 unlock: 4620 pte_unmap_unlock(vmf->pte, vmf->ptl); 4621 return 0; 4622 } 4623 4624 /* 4625 * By the time we get here, we already hold the mm semaphore 4626 * 4627 * The mmap_lock may have been released depending on flags and our 4628 * return value. See filemap_fault() and __folio_lock_or_retry(). 4629 */ 4630 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4631 unsigned long address, unsigned int flags) 4632 { 4633 struct vm_fault vmf = { 4634 .vma = vma, 4635 .address = address & PAGE_MASK, 4636 .real_address = address, 4637 .flags = flags, 4638 .pgoff = linear_page_index(vma, address), 4639 .gfp_mask = __get_fault_gfp_mask(vma), 4640 }; 4641 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4642 struct mm_struct *mm = vma->vm_mm; 4643 pgd_t *pgd; 4644 p4d_t *p4d; 4645 vm_fault_t ret; 4646 4647 pgd = pgd_offset(mm, address); 4648 p4d = p4d_alloc(mm, pgd, address); 4649 if (!p4d) 4650 return VM_FAULT_OOM; 4651 4652 vmf.pud = pud_alloc(mm, p4d, address); 4653 if (!vmf.pud) 4654 return VM_FAULT_OOM; 4655 retry_pud: 4656 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4657 ret = create_huge_pud(&vmf); 4658 if (!(ret & VM_FAULT_FALLBACK)) 4659 return ret; 4660 } else { 4661 pud_t orig_pud = *vmf.pud; 4662 4663 barrier(); 4664 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4665 4666 /* NUMA case for anonymous PUDs would go here */ 4667 4668 if (dirty && !pud_write(orig_pud)) { 4669 ret = wp_huge_pud(&vmf, orig_pud); 4670 if (!(ret & VM_FAULT_FALLBACK)) 4671 return ret; 4672 } else { 4673 huge_pud_set_accessed(&vmf, orig_pud); 4674 return 0; 4675 } 4676 } 4677 } 4678 4679 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4680 if (!vmf.pmd) 4681 return VM_FAULT_OOM; 4682 4683 /* Huge pud page fault raced with pmd_alloc? */ 4684 if (pud_trans_unstable(vmf.pud)) 4685 goto retry_pud; 4686 4687 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4688 ret = create_huge_pmd(&vmf); 4689 if (!(ret & VM_FAULT_FALLBACK)) 4690 return ret; 4691 } else { 4692 vmf.orig_pmd = *vmf.pmd; 4693 4694 barrier(); 4695 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 4696 VM_BUG_ON(thp_migration_supported() && 4697 !is_pmd_migration_entry(vmf.orig_pmd)); 4698 if (is_pmd_migration_entry(vmf.orig_pmd)) 4699 pmd_migration_entry_wait(mm, vmf.pmd); 4700 return 0; 4701 } 4702 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 4703 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 4704 return do_huge_pmd_numa_page(&vmf); 4705 4706 if (dirty && !pmd_write(vmf.orig_pmd)) { 4707 ret = wp_huge_pmd(&vmf); 4708 if (!(ret & VM_FAULT_FALLBACK)) 4709 return ret; 4710 } else { 4711 huge_pmd_set_accessed(&vmf); 4712 return 0; 4713 } 4714 } 4715 } 4716 4717 return handle_pte_fault(&vmf); 4718 } 4719 4720 /** 4721 * mm_account_fault - Do page fault accounting 4722 * 4723 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 4724 * of perf event counters, but we'll still do the per-task accounting to 4725 * the task who triggered this page fault. 4726 * @address: the faulted address. 4727 * @flags: the fault flags. 4728 * @ret: the fault retcode. 4729 * 4730 * This will take care of most of the page fault accounting. Meanwhile, it 4731 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 4732 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 4733 * still be in per-arch page fault handlers at the entry of page fault. 4734 */ 4735 static inline void mm_account_fault(struct pt_regs *regs, 4736 unsigned long address, unsigned int flags, 4737 vm_fault_t ret) 4738 { 4739 bool major; 4740 4741 /* 4742 * We don't do accounting for some specific faults: 4743 * 4744 * - Unsuccessful faults (e.g. when the address wasn't valid). That 4745 * includes arch_vma_access_permitted() failing before reaching here. 4746 * So this is not a "this many hardware page faults" counter. We 4747 * should use the hw profiling for that. 4748 * 4749 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 4750 * once they're completed. 4751 */ 4752 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 4753 return; 4754 4755 /* 4756 * We define the fault as a major fault when the final successful fault 4757 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 4758 * handle it immediately previously). 4759 */ 4760 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 4761 4762 if (major) 4763 current->maj_flt++; 4764 else 4765 current->min_flt++; 4766 4767 /* 4768 * If the fault is done for GUP, regs will be NULL. We only do the 4769 * accounting for the per thread fault counters who triggered the 4770 * fault, and we skip the perf event updates. 4771 */ 4772 if (!regs) 4773 return; 4774 4775 if (major) 4776 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 4777 else 4778 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 4779 } 4780 4781 /* 4782 * By the time we get here, we already hold the mm semaphore 4783 * 4784 * The mmap_lock may have been released depending on flags and our 4785 * return value. See filemap_fault() and __folio_lock_or_retry(). 4786 */ 4787 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4788 unsigned int flags, struct pt_regs *regs) 4789 { 4790 vm_fault_t ret; 4791 4792 __set_current_state(TASK_RUNNING); 4793 4794 count_vm_event(PGFAULT); 4795 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4796 4797 /* do counter updates before entering really critical section. */ 4798 check_sync_rss_stat(current); 4799 4800 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4801 flags & FAULT_FLAG_INSTRUCTION, 4802 flags & FAULT_FLAG_REMOTE)) 4803 return VM_FAULT_SIGSEGV; 4804 4805 /* 4806 * Enable the memcg OOM handling for faults triggered in user 4807 * space. Kernel faults are handled more gracefully. 4808 */ 4809 if (flags & FAULT_FLAG_USER) 4810 mem_cgroup_enter_user_fault(); 4811 4812 if (unlikely(is_vm_hugetlb_page(vma))) 4813 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4814 else 4815 ret = __handle_mm_fault(vma, address, flags); 4816 4817 if (flags & FAULT_FLAG_USER) { 4818 mem_cgroup_exit_user_fault(); 4819 /* 4820 * The task may have entered a memcg OOM situation but 4821 * if the allocation error was handled gracefully (no 4822 * VM_FAULT_OOM), there is no need to kill anything. 4823 * Just clean up the OOM state peacefully. 4824 */ 4825 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4826 mem_cgroup_oom_synchronize(false); 4827 } 4828 4829 mm_account_fault(regs, address, flags, ret); 4830 4831 return ret; 4832 } 4833 EXPORT_SYMBOL_GPL(handle_mm_fault); 4834 4835 #ifndef __PAGETABLE_P4D_FOLDED 4836 /* 4837 * Allocate p4d page table. 4838 * We've already handled the fast-path in-line. 4839 */ 4840 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4841 { 4842 p4d_t *new = p4d_alloc_one(mm, address); 4843 if (!new) 4844 return -ENOMEM; 4845 4846 spin_lock(&mm->page_table_lock); 4847 if (pgd_present(*pgd)) { /* Another has populated it */ 4848 p4d_free(mm, new); 4849 } else { 4850 smp_wmb(); /* See comment in pmd_install() */ 4851 pgd_populate(mm, pgd, new); 4852 } 4853 spin_unlock(&mm->page_table_lock); 4854 return 0; 4855 } 4856 #endif /* __PAGETABLE_P4D_FOLDED */ 4857 4858 #ifndef __PAGETABLE_PUD_FOLDED 4859 /* 4860 * Allocate page upper directory. 4861 * We've already handled the fast-path in-line. 4862 */ 4863 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4864 { 4865 pud_t *new = pud_alloc_one(mm, address); 4866 if (!new) 4867 return -ENOMEM; 4868 4869 spin_lock(&mm->page_table_lock); 4870 if (!p4d_present(*p4d)) { 4871 mm_inc_nr_puds(mm); 4872 smp_wmb(); /* See comment in pmd_install() */ 4873 p4d_populate(mm, p4d, new); 4874 } else /* Another has populated it */ 4875 pud_free(mm, new); 4876 spin_unlock(&mm->page_table_lock); 4877 return 0; 4878 } 4879 #endif /* __PAGETABLE_PUD_FOLDED */ 4880 4881 #ifndef __PAGETABLE_PMD_FOLDED 4882 /* 4883 * Allocate page middle directory. 4884 * We've already handled the fast-path in-line. 4885 */ 4886 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4887 { 4888 spinlock_t *ptl; 4889 pmd_t *new = pmd_alloc_one(mm, address); 4890 if (!new) 4891 return -ENOMEM; 4892 4893 ptl = pud_lock(mm, pud); 4894 if (!pud_present(*pud)) { 4895 mm_inc_nr_pmds(mm); 4896 smp_wmb(); /* See comment in pmd_install() */ 4897 pud_populate(mm, pud, new); 4898 } else { /* Another has populated it */ 4899 pmd_free(mm, new); 4900 } 4901 spin_unlock(ptl); 4902 return 0; 4903 } 4904 #endif /* __PAGETABLE_PMD_FOLDED */ 4905 4906 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 4907 struct mmu_notifier_range *range, pte_t **ptepp, 4908 pmd_t **pmdpp, spinlock_t **ptlp) 4909 { 4910 pgd_t *pgd; 4911 p4d_t *p4d; 4912 pud_t *pud; 4913 pmd_t *pmd; 4914 pte_t *ptep; 4915 4916 pgd = pgd_offset(mm, address); 4917 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4918 goto out; 4919 4920 p4d = p4d_offset(pgd, address); 4921 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4922 goto out; 4923 4924 pud = pud_offset(p4d, address); 4925 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4926 goto out; 4927 4928 pmd = pmd_offset(pud, address); 4929 VM_BUG_ON(pmd_trans_huge(*pmd)); 4930 4931 if (pmd_huge(*pmd)) { 4932 if (!pmdpp) 4933 goto out; 4934 4935 if (range) { 4936 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4937 NULL, mm, address & PMD_MASK, 4938 (address & PMD_MASK) + PMD_SIZE); 4939 mmu_notifier_invalidate_range_start(range); 4940 } 4941 *ptlp = pmd_lock(mm, pmd); 4942 if (pmd_huge(*pmd)) { 4943 *pmdpp = pmd; 4944 return 0; 4945 } 4946 spin_unlock(*ptlp); 4947 if (range) 4948 mmu_notifier_invalidate_range_end(range); 4949 } 4950 4951 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4952 goto out; 4953 4954 if (range) { 4955 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4956 address & PAGE_MASK, 4957 (address & PAGE_MASK) + PAGE_SIZE); 4958 mmu_notifier_invalidate_range_start(range); 4959 } 4960 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4961 if (!pte_present(*ptep)) 4962 goto unlock; 4963 *ptepp = ptep; 4964 return 0; 4965 unlock: 4966 pte_unmap_unlock(ptep, *ptlp); 4967 if (range) 4968 mmu_notifier_invalidate_range_end(range); 4969 out: 4970 return -EINVAL; 4971 } 4972 4973 /** 4974 * follow_pte - look up PTE at a user virtual address 4975 * @mm: the mm_struct of the target address space 4976 * @address: user virtual address 4977 * @ptepp: location to store found PTE 4978 * @ptlp: location to store the lock for the PTE 4979 * 4980 * On a successful return, the pointer to the PTE is stored in @ptepp; 4981 * the corresponding lock is taken and its location is stored in @ptlp. 4982 * The contents of the PTE are only stable until @ptlp is released; 4983 * any further use, if any, must be protected against invalidation 4984 * with MMU notifiers. 4985 * 4986 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 4987 * should be taken for read. 4988 * 4989 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 4990 * it is not a good general-purpose API. 4991 * 4992 * Return: zero on success, -ve otherwise. 4993 */ 4994 int follow_pte(struct mm_struct *mm, unsigned long address, 4995 pte_t **ptepp, spinlock_t **ptlp) 4996 { 4997 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp); 4998 } 4999 EXPORT_SYMBOL_GPL(follow_pte); 5000 5001 /** 5002 * follow_pfn - look up PFN at a user virtual address 5003 * @vma: memory mapping 5004 * @address: user virtual address 5005 * @pfn: location to store found PFN 5006 * 5007 * Only IO mappings and raw PFN mappings are allowed. 5008 * 5009 * This function does not allow the caller to read the permissions 5010 * of the PTE. Do not use it. 5011 * 5012 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5013 */ 5014 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5015 unsigned long *pfn) 5016 { 5017 int ret = -EINVAL; 5018 spinlock_t *ptl; 5019 pte_t *ptep; 5020 5021 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5022 return ret; 5023 5024 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5025 if (ret) 5026 return ret; 5027 *pfn = pte_pfn(*ptep); 5028 pte_unmap_unlock(ptep, ptl); 5029 return 0; 5030 } 5031 EXPORT_SYMBOL(follow_pfn); 5032 5033 #ifdef CONFIG_HAVE_IOREMAP_PROT 5034 int follow_phys(struct vm_area_struct *vma, 5035 unsigned long address, unsigned int flags, 5036 unsigned long *prot, resource_size_t *phys) 5037 { 5038 int ret = -EINVAL; 5039 pte_t *ptep, pte; 5040 spinlock_t *ptl; 5041 5042 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5043 goto out; 5044 5045 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5046 goto out; 5047 pte = *ptep; 5048 5049 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5050 goto unlock; 5051 5052 *prot = pgprot_val(pte_pgprot(pte)); 5053 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5054 5055 ret = 0; 5056 unlock: 5057 pte_unmap_unlock(ptep, ptl); 5058 out: 5059 return ret; 5060 } 5061 5062 /** 5063 * generic_access_phys - generic implementation for iomem mmap access 5064 * @vma: the vma to access 5065 * @addr: userspace address, not relative offset within @vma 5066 * @buf: buffer to read/write 5067 * @len: length of transfer 5068 * @write: set to FOLL_WRITE when writing, otherwise reading 5069 * 5070 * This is a generic implementation for &vm_operations_struct.access for an 5071 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5072 * not page based. 5073 */ 5074 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5075 void *buf, int len, int write) 5076 { 5077 resource_size_t phys_addr; 5078 unsigned long prot = 0; 5079 void __iomem *maddr; 5080 pte_t *ptep, pte; 5081 spinlock_t *ptl; 5082 int offset = offset_in_page(addr); 5083 int ret = -EINVAL; 5084 5085 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5086 return -EINVAL; 5087 5088 retry: 5089 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5090 return -EINVAL; 5091 pte = *ptep; 5092 pte_unmap_unlock(ptep, ptl); 5093 5094 prot = pgprot_val(pte_pgprot(pte)); 5095 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5096 5097 if ((write & FOLL_WRITE) && !pte_write(pte)) 5098 return -EINVAL; 5099 5100 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5101 if (!maddr) 5102 return -ENOMEM; 5103 5104 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5105 goto out_unmap; 5106 5107 if (!pte_same(pte, *ptep)) { 5108 pte_unmap_unlock(ptep, ptl); 5109 iounmap(maddr); 5110 5111 goto retry; 5112 } 5113 5114 if (write) 5115 memcpy_toio(maddr + offset, buf, len); 5116 else 5117 memcpy_fromio(buf, maddr + offset, len); 5118 ret = len; 5119 pte_unmap_unlock(ptep, ptl); 5120 out_unmap: 5121 iounmap(maddr); 5122 5123 return ret; 5124 } 5125 EXPORT_SYMBOL_GPL(generic_access_phys); 5126 #endif 5127 5128 /* 5129 * Access another process' address space as given in mm. 5130 */ 5131 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5132 int len, unsigned int gup_flags) 5133 { 5134 struct vm_area_struct *vma; 5135 void *old_buf = buf; 5136 int write = gup_flags & FOLL_WRITE; 5137 5138 if (mmap_read_lock_killable(mm)) 5139 return 0; 5140 5141 /* ignore errors, just check how much was successfully transferred */ 5142 while (len) { 5143 int bytes, ret, offset; 5144 void *maddr; 5145 struct page *page = NULL; 5146 5147 ret = get_user_pages_remote(mm, addr, 1, 5148 gup_flags, &page, &vma, NULL); 5149 if (ret <= 0) { 5150 #ifndef CONFIG_HAVE_IOREMAP_PROT 5151 break; 5152 #else 5153 /* 5154 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5155 * we can access using slightly different code. 5156 */ 5157 vma = vma_lookup(mm, addr); 5158 if (!vma) 5159 break; 5160 if (vma->vm_ops && vma->vm_ops->access) 5161 ret = vma->vm_ops->access(vma, addr, buf, 5162 len, write); 5163 if (ret <= 0) 5164 break; 5165 bytes = ret; 5166 #endif 5167 } else { 5168 bytes = len; 5169 offset = addr & (PAGE_SIZE-1); 5170 if (bytes > PAGE_SIZE-offset) 5171 bytes = PAGE_SIZE-offset; 5172 5173 maddr = kmap(page); 5174 if (write) { 5175 copy_to_user_page(vma, page, addr, 5176 maddr + offset, buf, bytes); 5177 set_page_dirty_lock(page); 5178 } else { 5179 copy_from_user_page(vma, page, addr, 5180 buf, maddr + offset, bytes); 5181 } 5182 kunmap(page); 5183 put_page(page); 5184 } 5185 len -= bytes; 5186 buf += bytes; 5187 addr += bytes; 5188 } 5189 mmap_read_unlock(mm); 5190 5191 return buf - old_buf; 5192 } 5193 5194 /** 5195 * access_remote_vm - access another process' address space 5196 * @mm: the mm_struct of the target address space 5197 * @addr: start address to access 5198 * @buf: source or destination buffer 5199 * @len: number of bytes to transfer 5200 * @gup_flags: flags modifying lookup behaviour 5201 * 5202 * The caller must hold a reference on @mm. 5203 * 5204 * Return: number of bytes copied from source to destination. 5205 */ 5206 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5207 void *buf, int len, unsigned int gup_flags) 5208 { 5209 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5210 } 5211 5212 /* 5213 * Access another process' address space. 5214 * Source/target buffer must be kernel space, 5215 * Do not walk the page table directly, use get_user_pages 5216 */ 5217 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5218 void *buf, int len, unsigned int gup_flags) 5219 { 5220 struct mm_struct *mm; 5221 int ret; 5222 5223 mm = get_task_mm(tsk); 5224 if (!mm) 5225 return 0; 5226 5227 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5228 5229 mmput(mm); 5230 5231 return ret; 5232 } 5233 EXPORT_SYMBOL_GPL(access_process_vm); 5234 5235 /* 5236 * Print the name of a VMA. 5237 */ 5238 void print_vma_addr(char *prefix, unsigned long ip) 5239 { 5240 struct mm_struct *mm = current->mm; 5241 struct vm_area_struct *vma; 5242 5243 /* 5244 * we might be running from an atomic context so we cannot sleep 5245 */ 5246 if (!mmap_read_trylock(mm)) 5247 return; 5248 5249 vma = find_vma(mm, ip); 5250 if (vma && vma->vm_file) { 5251 struct file *f = vma->vm_file; 5252 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5253 if (buf) { 5254 char *p; 5255 5256 p = file_path(f, buf, PAGE_SIZE); 5257 if (IS_ERR(p)) 5258 p = "?"; 5259 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5260 vma->vm_start, 5261 vma->vm_end - vma->vm_start); 5262 free_page((unsigned long)buf); 5263 } 5264 } 5265 mmap_read_unlock(mm); 5266 } 5267 5268 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5269 void __might_fault(const char *file, int line) 5270 { 5271 /* 5272 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 5273 * holding the mmap_lock, this is safe because kernel memory doesn't 5274 * get paged out, therefore we'll never actually fault, and the 5275 * below annotations will generate false positives. 5276 */ 5277 if (uaccess_kernel()) 5278 return; 5279 if (pagefault_disabled()) 5280 return; 5281 __might_sleep(file, line); 5282 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5283 if (current->mm) 5284 might_lock_read(¤t->mm->mmap_lock); 5285 #endif 5286 } 5287 EXPORT_SYMBOL(__might_fault); 5288 #endif 5289 5290 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5291 /* 5292 * Process all subpages of the specified huge page with the specified 5293 * operation. The target subpage will be processed last to keep its 5294 * cache lines hot. 5295 */ 5296 static inline void process_huge_page( 5297 unsigned long addr_hint, unsigned int pages_per_huge_page, 5298 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5299 void *arg) 5300 { 5301 int i, n, base, l; 5302 unsigned long addr = addr_hint & 5303 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5304 5305 /* Process target subpage last to keep its cache lines hot */ 5306 might_sleep(); 5307 n = (addr_hint - addr) / PAGE_SIZE; 5308 if (2 * n <= pages_per_huge_page) { 5309 /* If target subpage in first half of huge page */ 5310 base = 0; 5311 l = n; 5312 /* Process subpages at the end of huge page */ 5313 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5314 cond_resched(); 5315 process_subpage(addr + i * PAGE_SIZE, i, arg); 5316 } 5317 } else { 5318 /* If target subpage in second half of huge page */ 5319 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5320 l = pages_per_huge_page - n; 5321 /* Process subpages at the begin of huge page */ 5322 for (i = 0; i < base; i++) { 5323 cond_resched(); 5324 process_subpage(addr + i * PAGE_SIZE, i, arg); 5325 } 5326 } 5327 /* 5328 * Process remaining subpages in left-right-left-right pattern 5329 * towards the target subpage 5330 */ 5331 for (i = 0; i < l; i++) { 5332 int left_idx = base + i; 5333 int right_idx = base + 2 * l - 1 - i; 5334 5335 cond_resched(); 5336 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5337 cond_resched(); 5338 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5339 } 5340 } 5341 5342 static void clear_gigantic_page(struct page *page, 5343 unsigned long addr, 5344 unsigned int pages_per_huge_page) 5345 { 5346 int i; 5347 struct page *p = page; 5348 5349 might_sleep(); 5350 for (i = 0; i < pages_per_huge_page; 5351 i++, p = mem_map_next(p, page, i)) { 5352 cond_resched(); 5353 clear_user_highpage(p, addr + i * PAGE_SIZE); 5354 } 5355 } 5356 5357 static void clear_subpage(unsigned long addr, int idx, void *arg) 5358 { 5359 struct page *page = arg; 5360 5361 clear_user_highpage(page + idx, addr); 5362 } 5363 5364 void clear_huge_page(struct page *page, 5365 unsigned long addr_hint, unsigned int pages_per_huge_page) 5366 { 5367 unsigned long addr = addr_hint & 5368 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5369 5370 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5371 clear_gigantic_page(page, addr, pages_per_huge_page); 5372 return; 5373 } 5374 5375 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5376 } 5377 5378 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5379 unsigned long addr, 5380 struct vm_area_struct *vma, 5381 unsigned int pages_per_huge_page) 5382 { 5383 int i; 5384 struct page *dst_base = dst; 5385 struct page *src_base = src; 5386 5387 for (i = 0; i < pages_per_huge_page; ) { 5388 cond_resched(); 5389 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5390 5391 i++; 5392 dst = mem_map_next(dst, dst_base, i); 5393 src = mem_map_next(src, src_base, i); 5394 } 5395 } 5396 5397 struct copy_subpage_arg { 5398 struct page *dst; 5399 struct page *src; 5400 struct vm_area_struct *vma; 5401 }; 5402 5403 static void copy_subpage(unsigned long addr, int idx, void *arg) 5404 { 5405 struct copy_subpage_arg *copy_arg = arg; 5406 5407 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5408 addr, copy_arg->vma); 5409 } 5410 5411 void copy_user_huge_page(struct page *dst, struct page *src, 5412 unsigned long addr_hint, struct vm_area_struct *vma, 5413 unsigned int pages_per_huge_page) 5414 { 5415 unsigned long addr = addr_hint & 5416 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5417 struct copy_subpage_arg arg = { 5418 .dst = dst, 5419 .src = src, 5420 .vma = vma, 5421 }; 5422 5423 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5424 copy_user_gigantic_page(dst, src, addr, vma, 5425 pages_per_huge_page); 5426 return; 5427 } 5428 5429 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5430 } 5431 5432 long copy_huge_page_from_user(struct page *dst_page, 5433 const void __user *usr_src, 5434 unsigned int pages_per_huge_page, 5435 bool allow_pagefault) 5436 { 5437 void *page_kaddr; 5438 unsigned long i, rc = 0; 5439 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5440 struct page *subpage = dst_page; 5441 5442 for (i = 0; i < pages_per_huge_page; 5443 i++, subpage = mem_map_next(subpage, dst_page, i)) { 5444 if (allow_pagefault) 5445 page_kaddr = kmap(subpage); 5446 else 5447 page_kaddr = kmap_atomic(subpage); 5448 rc = copy_from_user(page_kaddr, 5449 usr_src + i * PAGE_SIZE, PAGE_SIZE); 5450 if (allow_pagefault) 5451 kunmap(subpage); 5452 else 5453 kunmap_atomic(page_kaddr); 5454 5455 ret_val -= (PAGE_SIZE - rc); 5456 if (rc) 5457 break; 5458 5459 flush_dcache_page(subpage); 5460 5461 cond_resched(); 5462 } 5463 return ret_val; 5464 } 5465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5466 5467 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5468 5469 static struct kmem_cache *page_ptl_cachep; 5470 5471 void __init ptlock_cache_init(void) 5472 { 5473 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5474 SLAB_PANIC, NULL); 5475 } 5476 5477 bool ptlock_alloc(struct page *page) 5478 { 5479 spinlock_t *ptl; 5480 5481 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5482 if (!ptl) 5483 return false; 5484 page->ptl = ptl; 5485 return true; 5486 } 5487 5488 void ptlock_free(struct page *page) 5489 { 5490 kmem_cache_free(page_ptl_cachep, page->ptl); 5491 } 5492 #endif 5493