1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/memremap.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/export.h> 56 #include <linux/delayacct.h> 57 #include <linux/init.h> 58 #include <linux/pfn_t.h> 59 #include <linux/writeback.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 #include <linux/numa.h> 73 74 #include <asm/io.h> 75 #include <asm/mmu_context.h> 76 #include <asm/pgalloc.h> 77 #include <linux/uaccess.h> 78 #include <asm/tlb.h> 79 #include <asm/tlbflush.h> 80 #include <asm/pgtable.h> 81 82 #include "internal.h" 83 84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 86 #endif 87 88 #ifndef CONFIG_NEED_MULTIPLE_NODES 89 /* use the per-pgdat data instead for discontigmem - mbligh */ 90 unsigned long max_mapnr; 91 EXPORT_SYMBOL(max_mapnr); 92 93 struct page *mem_map; 94 EXPORT_SYMBOL(mem_map); 95 #endif 96 97 /* 98 * A number of key systems in x86 including ioremap() rely on the assumption 99 * that high_memory defines the upper bound on direct map memory, then end 100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 102 * and ZONE_HIGHMEM. 103 */ 104 void *high_memory; 105 EXPORT_SYMBOL(high_memory); 106 107 /* 108 * Randomize the address space (stacks, mmaps, brk, etc.). 109 * 110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 111 * as ancient (libc5 based) binaries can segfault. ) 112 */ 113 int randomize_va_space __read_mostly = 114 #ifdef CONFIG_COMPAT_BRK 115 1; 116 #else 117 2; 118 #endif 119 120 static int __init disable_randmaps(char *s) 121 { 122 randomize_va_space = 0; 123 return 1; 124 } 125 __setup("norandmaps", disable_randmaps); 126 127 unsigned long zero_pfn __read_mostly; 128 EXPORT_SYMBOL(zero_pfn); 129 130 unsigned long highest_memmap_pfn __read_mostly; 131 132 /* 133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 134 */ 135 static int __init init_zero_pfn(void) 136 { 137 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 138 return 0; 139 } 140 core_initcall(init_zero_pfn); 141 142 143 #if defined(SPLIT_RSS_COUNTING) 144 145 void sync_mm_rss(struct mm_struct *mm) 146 { 147 int i; 148 149 for (i = 0; i < NR_MM_COUNTERS; i++) { 150 if (current->rss_stat.count[i]) { 151 add_mm_counter(mm, i, current->rss_stat.count[i]); 152 current->rss_stat.count[i] = 0; 153 } 154 } 155 current->rss_stat.events = 0; 156 } 157 158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 159 { 160 struct task_struct *task = current; 161 162 if (likely(task->mm == mm)) 163 task->rss_stat.count[member] += val; 164 else 165 add_mm_counter(mm, member, val); 166 } 167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 169 170 /* sync counter once per 64 page faults */ 171 #define TASK_RSS_EVENTS_THRESH (64) 172 static void check_sync_rss_stat(struct task_struct *task) 173 { 174 if (unlikely(task != current)) 175 return; 176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 177 sync_mm_rss(task->mm); 178 } 179 #else /* SPLIT_RSS_COUNTING */ 180 181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 183 184 static void check_sync_rss_stat(struct task_struct *task) 185 { 186 } 187 188 #endif /* SPLIT_RSS_COUNTING */ 189 190 /* 191 * Note: this doesn't free the actual pages themselves. That 192 * has been handled earlier when unmapping all the memory regions. 193 */ 194 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 195 unsigned long addr) 196 { 197 pgtable_t token = pmd_pgtable(*pmd); 198 pmd_clear(pmd); 199 pte_free_tlb(tlb, token, addr); 200 mm_dec_nr_ptes(tlb->mm); 201 } 202 203 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 204 unsigned long addr, unsigned long end, 205 unsigned long floor, unsigned long ceiling) 206 { 207 pmd_t *pmd; 208 unsigned long next; 209 unsigned long start; 210 211 start = addr; 212 pmd = pmd_offset(pud, addr); 213 do { 214 next = pmd_addr_end(addr, end); 215 if (pmd_none_or_clear_bad(pmd)) 216 continue; 217 free_pte_range(tlb, pmd, addr); 218 } while (pmd++, addr = next, addr != end); 219 220 start &= PUD_MASK; 221 if (start < floor) 222 return; 223 if (ceiling) { 224 ceiling &= PUD_MASK; 225 if (!ceiling) 226 return; 227 } 228 if (end - 1 > ceiling - 1) 229 return; 230 231 pmd = pmd_offset(pud, start); 232 pud_clear(pud); 233 pmd_free_tlb(tlb, pmd, start); 234 mm_dec_nr_pmds(tlb->mm); 235 } 236 237 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 238 unsigned long addr, unsigned long end, 239 unsigned long floor, unsigned long ceiling) 240 { 241 pud_t *pud; 242 unsigned long next; 243 unsigned long start; 244 245 start = addr; 246 pud = pud_offset(p4d, addr); 247 do { 248 next = pud_addr_end(addr, end); 249 if (pud_none_or_clear_bad(pud)) 250 continue; 251 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 252 } while (pud++, addr = next, addr != end); 253 254 start &= P4D_MASK; 255 if (start < floor) 256 return; 257 if (ceiling) { 258 ceiling &= P4D_MASK; 259 if (!ceiling) 260 return; 261 } 262 if (end - 1 > ceiling - 1) 263 return; 264 265 pud = pud_offset(p4d, start); 266 p4d_clear(p4d); 267 pud_free_tlb(tlb, pud, start); 268 mm_dec_nr_puds(tlb->mm); 269 } 270 271 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 272 unsigned long addr, unsigned long end, 273 unsigned long floor, unsigned long ceiling) 274 { 275 p4d_t *p4d; 276 unsigned long next; 277 unsigned long start; 278 279 start = addr; 280 p4d = p4d_offset(pgd, addr); 281 do { 282 next = p4d_addr_end(addr, end); 283 if (p4d_none_or_clear_bad(p4d)) 284 continue; 285 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 286 } while (p4d++, addr = next, addr != end); 287 288 start &= PGDIR_MASK; 289 if (start < floor) 290 return; 291 if (ceiling) { 292 ceiling &= PGDIR_MASK; 293 if (!ceiling) 294 return; 295 } 296 if (end - 1 > ceiling - 1) 297 return; 298 299 p4d = p4d_offset(pgd, start); 300 pgd_clear(pgd); 301 p4d_free_tlb(tlb, p4d, start); 302 } 303 304 /* 305 * This function frees user-level page tables of a process. 306 */ 307 void free_pgd_range(struct mmu_gather *tlb, 308 unsigned long addr, unsigned long end, 309 unsigned long floor, unsigned long ceiling) 310 { 311 pgd_t *pgd; 312 unsigned long next; 313 314 /* 315 * The next few lines have given us lots of grief... 316 * 317 * Why are we testing PMD* at this top level? Because often 318 * there will be no work to do at all, and we'd prefer not to 319 * go all the way down to the bottom just to discover that. 320 * 321 * Why all these "- 1"s? Because 0 represents both the bottom 322 * of the address space and the top of it (using -1 for the 323 * top wouldn't help much: the masks would do the wrong thing). 324 * The rule is that addr 0 and floor 0 refer to the bottom of 325 * the address space, but end 0 and ceiling 0 refer to the top 326 * Comparisons need to use "end - 1" and "ceiling - 1" (though 327 * that end 0 case should be mythical). 328 * 329 * Wherever addr is brought up or ceiling brought down, we must 330 * be careful to reject "the opposite 0" before it confuses the 331 * subsequent tests. But what about where end is brought down 332 * by PMD_SIZE below? no, end can't go down to 0 there. 333 * 334 * Whereas we round start (addr) and ceiling down, by different 335 * masks at different levels, in order to test whether a table 336 * now has no other vmas using it, so can be freed, we don't 337 * bother to round floor or end up - the tests don't need that. 338 */ 339 340 addr &= PMD_MASK; 341 if (addr < floor) { 342 addr += PMD_SIZE; 343 if (!addr) 344 return; 345 } 346 if (ceiling) { 347 ceiling &= PMD_MASK; 348 if (!ceiling) 349 return; 350 } 351 if (end - 1 > ceiling - 1) 352 end -= PMD_SIZE; 353 if (addr > end - 1) 354 return; 355 /* 356 * We add page table cache pages with PAGE_SIZE, 357 * (see pte_free_tlb()), flush the tlb if we need 358 */ 359 tlb_change_page_size(tlb, PAGE_SIZE); 360 pgd = pgd_offset(tlb->mm, addr); 361 do { 362 next = pgd_addr_end(addr, end); 363 if (pgd_none_or_clear_bad(pgd)) 364 continue; 365 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 366 } while (pgd++, addr = next, addr != end); 367 } 368 369 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 370 unsigned long floor, unsigned long ceiling) 371 { 372 while (vma) { 373 struct vm_area_struct *next = vma->vm_next; 374 unsigned long addr = vma->vm_start; 375 376 /* 377 * Hide vma from rmap and truncate_pagecache before freeing 378 * pgtables 379 */ 380 unlink_anon_vmas(vma); 381 unlink_file_vma(vma); 382 383 if (is_vm_hugetlb_page(vma)) { 384 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 385 floor, next ? next->vm_start : ceiling); 386 } else { 387 /* 388 * Optimization: gather nearby vmas into one call down 389 */ 390 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 391 && !is_vm_hugetlb_page(next)) { 392 vma = next; 393 next = vma->vm_next; 394 unlink_anon_vmas(vma); 395 unlink_file_vma(vma); 396 } 397 free_pgd_range(tlb, addr, vma->vm_end, 398 floor, next ? next->vm_start : ceiling); 399 } 400 vma = next; 401 } 402 } 403 404 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 405 { 406 spinlock_t *ptl; 407 pgtable_t new = pte_alloc_one(mm); 408 if (!new) 409 return -ENOMEM; 410 411 /* 412 * Ensure all pte setup (eg. pte page lock and page clearing) are 413 * visible before the pte is made visible to other CPUs by being 414 * put into page tables. 415 * 416 * The other side of the story is the pointer chasing in the page 417 * table walking code (when walking the page table without locking; 418 * ie. most of the time). Fortunately, these data accesses consist 419 * of a chain of data-dependent loads, meaning most CPUs (alpha 420 * being the notable exception) will already guarantee loads are 421 * seen in-order. See the alpha page table accessors for the 422 * smp_read_barrier_depends() barriers in page table walking code. 423 */ 424 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 425 426 ptl = pmd_lock(mm, pmd); 427 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 428 mm_inc_nr_ptes(mm); 429 pmd_populate(mm, pmd, new); 430 new = NULL; 431 } 432 spin_unlock(ptl); 433 if (new) 434 pte_free(mm, new); 435 return 0; 436 } 437 438 int __pte_alloc_kernel(pmd_t *pmd) 439 { 440 pte_t *new = pte_alloc_one_kernel(&init_mm); 441 if (!new) 442 return -ENOMEM; 443 444 smp_wmb(); /* See comment in __pte_alloc */ 445 446 spin_lock(&init_mm.page_table_lock); 447 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 448 pmd_populate_kernel(&init_mm, pmd, new); 449 new = NULL; 450 } 451 spin_unlock(&init_mm.page_table_lock); 452 if (new) 453 pte_free_kernel(&init_mm, new); 454 return 0; 455 } 456 457 static inline void init_rss_vec(int *rss) 458 { 459 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 460 } 461 462 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 463 { 464 int i; 465 466 if (current->mm == mm) 467 sync_mm_rss(mm); 468 for (i = 0; i < NR_MM_COUNTERS; i++) 469 if (rss[i]) 470 add_mm_counter(mm, i, rss[i]); 471 } 472 473 /* 474 * This function is called to print an error when a bad pte 475 * is found. For example, we might have a PFN-mapped pte in 476 * a region that doesn't allow it. 477 * 478 * The calling function must still handle the error. 479 */ 480 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 481 pte_t pte, struct page *page) 482 { 483 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 484 p4d_t *p4d = p4d_offset(pgd, addr); 485 pud_t *pud = pud_offset(p4d, addr); 486 pmd_t *pmd = pmd_offset(pud, addr); 487 struct address_space *mapping; 488 pgoff_t index; 489 static unsigned long resume; 490 static unsigned long nr_shown; 491 static unsigned long nr_unshown; 492 493 /* 494 * Allow a burst of 60 reports, then keep quiet for that minute; 495 * or allow a steady drip of one report per second. 496 */ 497 if (nr_shown == 60) { 498 if (time_before(jiffies, resume)) { 499 nr_unshown++; 500 return; 501 } 502 if (nr_unshown) { 503 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 504 nr_unshown); 505 nr_unshown = 0; 506 } 507 nr_shown = 0; 508 } 509 if (nr_shown++ == 0) 510 resume = jiffies + 60 * HZ; 511 512 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 513 index = linear_page_index(vma, addr); 514 515 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 516 current->comm, 517 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 518 if (page) 519 dump_page(page, "bad pte"); 520 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 521 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 522 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 523 vma->vm_file, 524 vma->vm_ops ? vma->vm_ops->fault : NULL, 525 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 526 mapping ? mapping->a_ops->readpage : NULL); 527 dump_stack(); 528 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 529 } 530 531 /* 532 * vm_normal_page -- This function gets the "struct page" associated with a pte. 533 * 534 * "Special" mappings do not wish to be associated with a "struct page" (either 535 * it doesn't exist, or it exists but they don't want to touch it). In this 536 * case, NULL is returned here. "Normal" mappings do have a struct page. 537 * 538 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 539 * pte bit, in which case this function is trivial. Secondly, an architecture 540 * may not have a spare pte bit, which requires a more complicated scheme, 541 * described below. 542 * 543 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 544 * special mapping (even if there are underlying and valid "struct pages"). 545 * COWed pages of a VM_PFNMAP are always normal. 546 * 547 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 548 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 549 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 550 * mapping will always honor the rule 551 * 552 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 553 * 554 * And for normal mappings this is false. 555 * 556 * This restricts such mappings to be a linear translation from virtual address 557 * to pfn. To get around this restriction, we allow arbitrary mappings so long 558 * as the vma is not a COW mapping; in that case, we know that all ptes are 559 * special (because none can have been COWed). 560 * 561 * 562 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 563 * 564 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 565 * page" backing, however the difference is that _all_ pages with a struct 566 * page (that is, those where pfn_valid is true) are refcounted and considered 567 * normal pages by the VM. The disadvantage is that pages are refcounted 568 * (which can be slower and simply not an option for some PFNMAP users). The 569 * advantage is that we don't have to follow the strict linearity rule of 570 * PFNMAP mappings in order to support COWable mappings. 571 * 572 */ 573 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 574 pte_t pte, bool with_public_device) 575 { 576 unsigned long pfn = pte_pfn(pte); 577 578 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 579 if (likely(!pte_special(pte))) 580 goto check_pfn; 581 if (vma->vm_ops && vma->vm_ops->find_special_page) 582 return vma->vm_ops->find_special_page(vma, addr); 583 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 584 return NULL; 585 if (is_zero_pfn(pfn)) 586 return NULL; 587 588 /* 589 * Device public pages are special pages (they are ZONE_DEVICE 590 * pages but different from persistent memory). They behave 591 * allmost like normal pages. The difference is that they are 592 * not on the lru and thus should never be involve with any- 593 * thing that involve lru manipulation (mlock, numa balancing, 594 * ...). 595 * 596 * This is why we still want to return NULL for such page from 597 * vm_normal_page() so that we do not have to special case all 598 * call site of vm_normal_page(). 599 */ 600 if (likely(pfn <= highest_memmap_pfn)) { 601 struct page *page = pfn_to_page(pfn); 602 603 if (is_device_public_page(page)) { 604 if (with_public_device) 605 return page; 606 return NULL; 607 } 608 } 609 610 if (pte_devmap(pte)) 611 return NULL; 612 613 print_bad_pte(vma, addr, pte, NULL); 614 return NULL; 615 } 616 617 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 618 619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 620 if (vma->vm_flags & VM_MIXEDMAP) { 621 if (!pfn_valid(pfn)) 622 return NULL; 623 goto out; 624 } else { 625 unsigned long off; 626 off = (addr - vma->vm_start) >> PAGE_SHIFT; 627 if (pfn == vma->vm_pgoff + off) 628 return NULL; 629 if (!is_cow_mapping(vma->vm_flags)) 630 return NULL; 631 } 632 } 633 634 if (is_zero_pfn(pfn)) 635 return NULL; 636 637 check_pfn: 638 if (unlikely(pfn > highest_memmap_pfn)) { 639 print_bad_pte(vma, addr, pte, NULL); 640 return NULL; 641 } 642 643 /* 644 * NOTE! We still have PageReserved() pages in the page tables. 645 * eg. VDSO mappings can cause them to exist. 646 */ 647 out: 648 return pfn_to_page(pfn); 649 } 650 651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 652 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 653 pmd_t pmd) 654 { 655 unsigned long pfn = pmd_pfn(pmd); 656 657 /* 658 * There is no pmd_special() but there may be special pmds, e.g. 659 * in a direct-access (dax) mapping, so let's just replicate the 660 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 661 */ 662 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 663 if (vma->vm_flags & VM_MIXEDMAP) { 664 if (!pfn_valid(pfn)) 665 return NULL; 666 goto out; 667 } else { 668 unsigned long off; 669 off = (addr - vma->vm_start) >> PAGE_SHIFT; 670 if (pfn == vma->vm_pgoff + off) 671 return NULL; 672 if (!is_cow_mapping(vma->vm_flags)) 673 return NULL; 674 } 675 } 676 677 if (pmd_devmap(pmd)) 678 return NULL; 679 if (is_zero_pfn(pfn)) 680 return NULL; 681 if (unlikely(pfn > highest_memmap_pfn)) 682 return NULL; 683 684 /* 685 * NOTE! We still have PageReserved() pages in the page tables. 686 * eg. VDSO mappings can cause them to exist. 687 */ 688 out: 689 return pfn_to_page(pfn); 690 } 691 #endif 692 693 /* 694 * copy one vm_area from one task to the other. Assumes the page tables 695 * already present in the new task to be cleared in the whole range 696 * covered by this vma. 697 */ 698 699 static inline unsigned long 700 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 701 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 702 unsigned long addr, int *rss) 703 { 704 unsigned long vm_flags = vma->vm_flags; 705 pte_t pte = *src_pte; 706 struct page *page; 707 708 /* pte contains position in swap or file, so copy. */ 709 if (unlikely(!pte_present(pte))) { 710 swp_entry_t entry = pte_to_swp_entry(pte); 711 712 if (likely(!non_swap_entry(entry))) { 713 if (swap_duplicate(entry) < 0) 714 return entry.val; 715 716 /* make sure dst_mm is on swapoff's mmlist. */ 717 if (unlikely(list_empty(&dst_mm->mmlist))) { 718 spin_lock(&mmlist_lock); 719 if (list_empty(&dst_mm->mmlist)) 720 list_add(&dst_mm->mmlist, 721 &src_mm->mmlist); 722 spin_unlock(&mmlist_lock); 723 } 724 rss[MM_SWAPENTS]++; 725 } else if (is_migration_entry(entry)) { 726 page = migration_entry_to_page(entry); 727 728 rss[mm_counter(page)]++; 729 730 if (is_write_migration_entry(entry) && 731 is_cow_mapping(vm_flags)) { 732 /* 733 * COW mappings require pages in both 734 * parent and child to be set to read. 735 */ 736 make_migration_entry_read(&entry); 737 pte = swp_entry_to_pte(entry); 738 if (pte_swp_soft_dirty(*src_pte)) 739 pte = pte_swp_mksoft_dirty(pte); 740 set_pte_at(src_mm, addr, src_pte, pte); 741 } 742 } else if (is_device_private_entry(entry)) { 743 page = device_private_entry_to_page(entry); 744 745 /* 746 * Update rss count even for unaddressable pages, as 747 * they should treated just like normal pages in this 748 * respect. 749 * 750 * We will likely want to have some new rss counters 751 * for unaddressable pages, at some point. But for now 752 * keep things as they are. 753 */ 754 get_page(page); 755 rss[mm_counter(page)]++; 756 page_dup_rmap(page, false); 757 758 /* 759 * We do not preserve soft-dirty information, because so 760 * far, checkpoint/restore is the only feature that 761 * requires that. And checkpoint/restore does not work 762 * when a device driver is involved (you cannot easily 763 * save and restore device driver state). 764 */ 765 if (is_write_device_private_entry(entry) && 766 is_cow_mapping(vm_flags)) { 767 make_device_private_entry_read(&entry); 768 pte = swp_entry_to_pte(entry); 769 set_pte_at(src_mm, addr, src_pte, pte); 770 } 771 } 772 goto out_set_pte; 773 } 774 775 /* 776 * If it's a COW mapping, write protect it both 777 * in the parent and the child 778 */ 779 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 780 ptep_set_wrprotect(src_mm, addr, src_pte); 781 pte = pte_wrprotect(pte); 782 } 783 784 /* 785 * If it's a shared mapping, mark it clean in 786 * the child 787 */ 788 if (vm_flags & VM_SHARED) 789 pte = pte_mkclean(pte); 790 pte = pte_mkold(pte); 791 792 page = vm_normal_page(vma, addr, pte); 793 if (page) { 794 get_page(page); 795 page_dup_rmap(page, false); 796 rss[mm_counter(page)]++; 797 } else if (pte_devmap(pte)) { 798 page = pte_page(pte); 799 800 /* 801 * Cache coherent device memory behave like regular page and 802 * not like persistent memory page. For more informations see 803 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 804 */ 805 if (is_device_public_page(page)) { 806 get_page(page); 807 page_dup_rmap(page, false); 808 rss[mm_counter(page)]++; 809 } 810 } 811 812 out_set_pte: 813 set_pte_at(dst_mm, addr, dst_pte, pte); 814 return 0; 815 } 816 817 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 818 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 819 unsigned long addr, unsigned long end) 820 { 821 pte_t *orig_src_pte, *orig_dst_pte; 822 pte_t *src_pte, *dst_pte; 823 spinlock_t *src_ptl, *dst_ptl; 824 int progress = 0; 825 int rss[NR_MM_COUNTERS]; 826 swp_entry_t entry = (swp_entry_t){0}; 827 828 again: 829 init_rss_vec(rss); 830 831 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 832 if (!dst_pte) 833 return -ENOMEM; 834 src_pte = pte_offset_map(src_pmd, addr); 835 src_ptl = pte_lockptr(src_mm, src_pmd); 836 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 837 orig_src_pte = src_pte; 838 orig_dst_pte = dst_pte; 839 arch_enter_lazy_mmu_mode(); 840 841 do { 842 /* 843 * We are holding two locks at this point - either of them 844 * could generate latencies in another task on another CPU. 845 */ 846 if (progress >= 32) { 847 progress = 0; 848 if (need_resched() || 849 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 850 break; 851 } 852 if (pte_none(*src_pte)) { 853 progress++; 854 continue; 855 } 856 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 857 vma, addr, rss); 858 if (entry.val) 859 break; 860 progress += 8; 861 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 862 863 arch_leave_lazy_mmu_mode(); 864 spin_unlock(src_ptl); 865 pte_unmap(orig_src_pte); 866 add_mm_rss_vec(dst_mm, rss); 867 pte_unmap_unlock(orig_dst_pte, dst_ptl); 868 cond_resched(); 869 870 if (entry.val) { 871 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 872 return -ENOMEM; 873 progress = 0; 874 } 875 if (addr != end) 876 goto again; 877 return 0; 878 } 879 880 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 881 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 882 unsigned long addr, unsigned long end) 883 { 884 pmd_t *src_pmd, *dst_pmd; 885 unsigned long next; 886 887 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 888 if (!dst_pmd) 889 return -ENOMEM; 890 src_pmd = pmd_offset(src_pud, addr); 891 do { 892 next = pmd_addr_end(addr, end); 893 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 894 || pmd_devmap(*src_pmd)) { 895 int err; 896 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 897 err = copy_huge_pmd(dst_mm, src_mm, 898 dst_pmd, src_pmd, addr, vma); 899 if (err == -ENOMEM) 900 return -ENOMEM; 901 if (!err) 902 continue; 903 /* fall through */ 904 } 905 if (pmd_none_or_clear_bad(src_pmd)) 906 continue; 907 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 908 vma, addr, next)) 909 return -ENOMEM; 910 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 911 return 0; 912 } 913 914 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 915 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 916 unsigned long addr, unsigned long end) 917 { 918 pud_t *src_pud, *dst_pud; 919 unsigned long next; 920 921 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 922 if (!dst_pud) 923 return -ENOMEM; 924 src_pud = pud_offset(src_p4d, addr); 925 do { 926 next = pud_addr_end(addr, end); 927 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 928 int err; 929 930 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 931 err = copy_huge_pud(dst_mm, src_mm, 932 dst_pud, src_pud, addr, vma); 933 if (err == -ENOMEM) 934 return -ENOMEM; 935 if (!err) 936 continue; 937 /* fall through */ 938 } 939 if (pud_none_or_clear_bad(src_pud)) 940 continue; 941 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 942 vma, addr, next)) 943 return -ENOMEM; 944 } while (dst_pud++, src_pud++, addr = next, addr != end); 945 return 0; 946 } 947 948 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 949 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 950 unsigned long addr, unsigned long end) 951 { 952 p4d_t *src_p4d, *dst_p4d; 953 unsigned long next; 954 955 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 956 if (!dst_p4d) 957 return -ENOMEM; 958 src_p4d = p4d_offset(src_pgd, addr); 959 do { 960 next = p4d_addr_end(addr, end); 961 if (p4d_none_or_clear_bad(src_p4d)) 962 continue; 963 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 964 vma, addr, next)) 965 return -ENOMEM; 966 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 967 return 0; 968 } 969 970 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 971 struct vm_area_struct *vma) 972 { 973 pgd_t *src_pgd, *dst_pgd; 974 unsigned long next; 975 unsigned long addr = vma->vm_start; 976 unsigned long end = vma->vm_end; 977 struct mmu_notifier_range range; 978 bool is_cow; 979 int ret; 980 981 /* 982 * Don't copy ptes where a page fault will fill them correctly. 983 * Fork becomes much lighter when there are big shared or private 984 * readonly mappings. The tradeoff is that copy_page_range is more 985 * efficient than faulting. 986 */ 987 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 988 !vma->anon_vma) 989 return 0; 990 991 if (is_vm_hugetlb_page(vma)) 992 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 993 994 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 995 /* 996 * We do not free on error cases below as remove_vma 997 * gets called on error from higher level routine 998 */ 999 ret = track_pfn_copy(vma); 1000 if (ret) 1001 return ret; 1002 } 1003 1004 /* 1005 * We need to invalidate the secondary MMU mappings only when 1006 * there could be a permission downgrade on the ptes of the 1007 * parent mm. And a permission downgrade will only happen if 1008 * is_cow_mapping() returns true. 1009 */ 1010 is_cow = is_cow_mapping(vma->vm_flags); 1011 1012 if (is_cow) { 1013 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1014 0, vma, src_mm, addr, end); 1015 mmu_notifier_invalidate_range_start(&range); 1016 } 1017 1018 ret = 0; 1019 dst_pgd = pgd_offset(dst_mm, addr); 1020 src_pgd = pgd_offset(src_mm, addr); 1021 do { 1022 next = pgd_addr_end(addr, end); 1023 if (pgd_none_or_clear_bad(src_pgd)) 1024 continue; 1025 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1026 vma, addr, next))) { 1027 ret = -ENOMEM; 1028 break; 1029 } 1030 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1031 1032 if (is_cow) 1033 mmu_notifier_invalidate_range_end(&range); 1034 return ret; 1035 } 1036 1037 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1038 struct vm_area_struct *vma, pmd_t *pmd, 1039 unsigned long addr, unsigned long end, 1040 struct zap_details *details) 1041 { 1042 struct mm_struct *mm = tlb->mm; 1043 int force_flush = 0; 1044 int rss[NR_MM_COUNTERS]; 1045 spinlock_t *ptl; 1046 pte_t *start_pte; 1047 pte_t *pte; 1048 swp_entry_t entry; 1049 1050 tlb_change_page_size(tlb, PAGE_SIZE); 1051 again: 1052 init_rss_vec(rss); 1053 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1054 pte = start_pte; 1055 flush_tlb_batched_pending(mm); 1056 arch_enter_lazy_mmu_mode(); 1057 do { 1058 pte_t ptent = *pte; 1059 if (pte_none(ptent)) 1060 continue; 1061 1062 if (pte_present(ptent)) { 1063 struct page *page; 1064 1065 page = _vm_normal_page(vma, addr, ptent, true); 1066 if (unlikely(details) && page) { 1067 /* 1068 * unmap_shared_mapping_pages() wants to 1069 * invalidate cache without truncating: 1070 * unmap shared but keep private pages. 1071 */ 1072 if (details->check_mapping && 1073 details->check_mapping != page_rmapping(page)) 1074 continue; 1075 } 1076 ptent = ptep_get_and_clear_full(mm, addr, pte, 1077 tlb->fullmm); 1078 tlb_remove_tlb_entry(tlb, pte, addr); 1079 if (unlikely(!page)) 1080 continue; 1081 1082 if (!PageAnon(page)) { 1083 if (pte_dirty(ptent)) { 1084 force_flush = 1; 1085 set_page_dirty(page); 1086 } 1087 if (pte_young(ptent) && 1088 likely(!(vma->vm_flags & VM_SEQ_READ))) 1089 mark_page_accessed(page); 1090 } 1091 rss[mm_counter(page)]--; 1092 page_remove_rmap(page, false); 1093 if (unlikely(page_mapcount(page) < 0)) 1094 print_bad_pte(vma, addr, ptent, page); 1095 if (unlikely(__tlb_remove_page(tlb, page))) { 1096 force_flush = 1; 1097 addr += PAGE_SIZE; 1098 break; 1099 } 1100 continue; 1101 } 1102 1103 entry = pte_to_swp_entry(ptent); 1104 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1105 struct page *page = device_private_entry_to_page(entry); 1106 1107 if (unlikely(details && details->check_mapping)) { 1108 /* 1109 * unmap_shared_mapping_pages() wants to 1110 * invalidate cache without truncating: 1111 * unmap shared but keep private pages. 1112 */ 1113 if (details->check_mapping != 1114 page_rmapping(page)) 1115 continue; 1116 } 1117 1118 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1119 rss[mm_counter(page)]--; 1120 page_remove_rmap(page, false); 1121 put_page(page); 1122 continue; 1123 } 1124 1125 /* If details->check_mapping, we leave swap entries. */ 1126 if (unlikely(details)) 1127 continue; 1128 1129 entry = pte_to_swp_entry(ptent); 1130 if (!non_swap_entry(entry)) 1131 rss[MM_SWAPENTS]--; 1132 else if (is_migration_entry(entry)) { 1133 struct page *page; 1134 1135 page = migration_entry_to_page(entry); 1136 rss[mm_counter(page)]--; 1137 } 1138 if (unlikely(!free_swap_and_cache(entry))) 1139 print_bad_pte(vma, addr, ptent, NULL); 1140 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1141 } while (pte++, addr += PAGE_SIZE, addr != end); 1142 1143 add_mm_rss_vec(mm, rss); 1144 arch_leave_lazy_mmu_mode(); 1145 1146 /* Do the actual TLB flush before dropping ptl */ 1147 if (force_flush) 1148 tlb_flush_mmu_tlbonly(tlb); 1149 pte_unmap_unlock(start_pte, ptl); 1150 1151 /* 1152 * If we forced a TLB flush (either due to running out of 1153 * batch buffers or because we needed to flush dirty TLB 1154 * entries before releasing the ptl), free the batched 1155 * memory too. Restart if we didn't do everything. 1156 */ 1157 if (force_flush) { 1158 force_flush = 0; 1159 tlb_flush_mmu(tlb); 1160 if (addr != end) 1161 goto again; 1162 } 1163 1164 return addr; 1165 } 1166 1167 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1168 struct vm_area_struct *vma, pud_t *pud, 1169 unsigned long addr, unsigned long end, 1170 struct zap_details *details) 1171 { 1172 pmd_t *pmd; 1173 unsigned long next; 1174 1175 pmd = pmd_offset(pud, addr); 1176 do { 1177 next = pmd_addr_end(addr, end); 1178 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1179 if (next - addr != HPAGE_PMD_SIZE) 1180 __split_huge_pmd(vma, pmd, addr, false, NULL); 1181 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1182 goto next; 1183 /* fall through */ 1184 } 1185 /* 1186 * Here there can be other concurrent MADV_DONTNEED or 1187 * trans huge page faults running, and if the pmd is 1188 * none or trans huge it can change under us. This is 1189 * because MADV_DONTNEED holds the mmap_sem in read 1190 * mode. 1191 */ 1192 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1193 goto next; 1194 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1195 next: 1196 cond_resched(); 1197 } while (pmd++, addr = next, addr != end); 1198 1199 return addr; 1200 } 1201 1202 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1203 struct vm_area_struct *vma, p4d_t *p4d, 1204 unsigned long addr, unsigned long end, 1205 struct zap_details *details) 1206 { 1207 pud_t *pud; 1208 unsigned long next; 1209 1210 pud = pud_offset(p4d, addr); 1211 do { 1212 next = pud_addr_end(addr, end); 1213 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1214 if (next - addr != HPAGE_PUD_SIZE) { 1215 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1216 split_huge_pud(vma, pud, addr); 1217 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1218 goto next; 1219 /* fall through */ 1220 } 1221 if (pud_none_or_clear_bad(pud)) 1222 continue; 1223 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1224 next: 1225 cond_resched(); 1226 } while (pud++, addr = next, addr != end); 1227 1228 return addr; 1229 } 1230 1231 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1232 struct vm_area_struct *vma, pgd_t *pgd, 1233 unsigned long addr, unsigned long end, 1234 struct zap_details *details) 1235 { 1236 p4d_t *p4d; 1237 unsigned long next; 1238 1239 p4d = p4d_offset(pgd, addr); 1240 do { 1241 next = p4d_addr_end(addr, end); 1242 if (p4d_none_or_clear_bad(p4d)) 1243 continue; 1244 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1245 } while (p4d++, addr = next, addr != end); 1246 1247 return addr; 1248 } 1249 1250 void unmap_page_range(struct mmu_gather *tlb, 1251 struct vm_area_struct *vma, 1252 unsigned long addr, unsigned long end, 1253 struct zap_details *details) 1254 { 1255 pgd_t *pgd; 1256 unsigned long next; 1257 1258 BUG_ON(addr >= end); 1259 tlb_start_vma(tlb, vma); 1260 pgd = pgd_offset(vma->vm_mm, addr); 1261 do { 1262 next = pgd_addr_end(addr, end); 1263 if (pgd_none_or_clear_bad(pgd)) 1264 continue; 1265 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1266 } while (pgd++, addr = next, addr != end); 1267 tlb_end_vma(tlb, vma); 1268 } 1269 1270 1271 static void unmap_single_vma(struct mmu_gather *tlb, 1272 struct vm_area_struct *vma, unsigned long start_addr, 1273 unsigned long end_addr, 1274 struct zap_details *details) 1275 { 1276 unsigned long start = max(vma->vm_start, start_addr); 1277 unsigned long end; 1278 1279 if (start >= vma->vm_end) 1280 return; 1281 end = min(vma->vm_end, end_addr); 1282 if (end <= vma->vm_start) 1283 return; 1284 1285 if (vma->vm_file) 1286 uprobe_munmap(vma, start, end); 1287 1288 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1289 untrack_pfn(vma, 0, 0); 1290 1291 if (start != end) { 1292 if (unlikely(is_vm_hugetlb_page(vma))) { 1293 /* 1294 * It is undesirable to test vma->vm_file as it 1295 * should be non-null for valid hugetlb area. 1296 * However, vm_file will be NULL in the error 1297 * cleanup path of mmap_region. When 1298 * hugetlbfs ->mmap method fails, 1299 * mmap_region() nullifies vma->vm_file 1300 * before calling this function to clean up. 1301 * Since no pte has actually been setup, it is 1302 * safe to do nothing in this case. 1303 */ 1304 if (vma->vm_file) { 1305 i_mmap_lock_write(vma->vm_file->f_mapping); 1306 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1307 i_mmap_unlock_write(vma->vm_file->f_mapping); 1308 } 1309 } else 1310 unmap_page_range(tlb, vma, start, end, details); 1311 } 1312 } 1313 1314 /** 1315 * unmap_vmas - unmap a range of memory covered by a list of vma's 1316 * @tlb: address of the caller's struct mmu_gather 1317 * @vma: the starting vma 1318 * @start_addr: virtual address at which to start unmapping 1319 * @end_addr: virtual address at which to end unmapping 1320 * 1321 * Unmap all pages in the vma list. 1322 * 1323 * Only addresses between `start' and `end' will be unmapped. 1324 * 1325 * The VMA list must be sorted in ascending virtual address order. 1326 * 1327 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1328 * range after unmap_vmas() returns. So the only responsibility here is to 1329 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1330 * drops the lock and schedules. 1331 */ 1332 void unmap_vmas(struct mmu_gather *tlb, 1333 struct vm_area_struct *vma, unsigned long start_addr, 1334 unsigned long end_addr) 1335 { 1336 struct mmu_notifier_range range; 1337 1338 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1339 start_addr, end_addr); 1340 mmu_notifier_invalidate_range_start(&range); 1341 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1342 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1343 mmu_notifier_invalidate_range_end(&range); 1344 } 1345 1346 /** 1347 * zap_page_range - remove user pages in a given range 1348 * @vma: vm_area_struct holding the applicable pages 1349 * @start: starting address of pages to zap 1350 * @size: number of bytes to zap 1351 * 1352 * Caller must protect the VMA list 1353 */ 1354 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1355 unsigned long size) 1356 { 1357 struct mmu_notifier_range range; 1358 struct mmu_gather tlb; 1359 1360 lru_add_drain(); 1361 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1362 start, start + size); 1363 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1364 update_hiwater_rss(vma->vm_mm); 1365 mmu_notifier_invalidate_range_start(&range); 1366 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1367 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1368 mmu_notifier_invalidate_range_end(&range); 1369 tlb_finish_mmu(&tlb, start, range.end); 1370 } 1371 1372 /** 1373 * zap_page_range_single - remove user pages in a given range 1374 * @vma: vm_area_struct holding the applicable pages 1375 * @address: starting address of pages to zap 1376 * @size: number of bytes to zap 1377 * @details: details of shared cache invalidation 1378 * 1379 * The range must fit into one VMA. 1380 */ 1381 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1382 unsigned long size, struct zap_details *details) 1383 { 1384 struct mmu_notifier_range range; 1385 struct mmu_gather tlb; 1386 1387 lru_add_drain(); 1388 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1389 address, address + size); 1390 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1391 update_hiwater_rss(vma->vm_mm); 1392 mmu_notifier_invalidate_range_start(&range); 1393 unmap_single_vma(&tlb, vma, address, range.end, details); 1394 mmu_notifier_invalidate_range_end(&range); 1395 tlb_finish_mmu(&tlb, address, range.end); 1396 } 1397 1398 /** 1399 * zap_vma_ptes - remove ptes mapping the vma 1400 * @vma: vm_area_struct holding ptes to be zapped 1401 * @address: starting address of pages to zap 1402 * @size: number of bytes to zap 1403 * 1404 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1405 * 1406 * The entire address range must be fully contained within the vma. 1407 * 1408 */ 1409 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1410 unsigned long size) 1411 { 1412 if (address < vma->vm_start || address + size > vma->vm_end || 1413 !(vma->vm_flags & VM_PFNMAP)) 1414 return; 1415 1416 zap_page_range_single(vma, address, size, NULL); 1417 } 1418 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1419 1420 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1421 spinlock_t **ptl) 1422 { 1423 pgd_t *pgd; 1424 p4d_t *p4d; 1425 pud_t *pud; 1426 pmd_t *pmd; 1427 1428 pgd = pgd_offset(mm, addr); 1429 p4d = p4d_alloc(mm, pgd, addr); 1430 if (!p4d) 1431 return NULL; 1432 pud = pud_alloc(mm, p4d, addr); 1433 if (!pud) 1434 return NULL; 1435 pmd = pmd_alloc(mm, pud, addr); 1436 if (!pmd) 1437 return NULL; 1438 1439 VM_BUG_ON(pmd_trans_huge(*pmd)); 1440 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1441 } 1442 1443 /* 1444 * This is the old fallback for page remapping. 1445 * 1446 * For historical reasons, it only allows reserved pages. Only 1447 * old drivers should use this, and they needed to mark their 1448 * pages reserved for the old functions anyway. 1449 */ 1450 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1451 struct page *page, pgprot_t prot) 1452 { 1453 struct mm_struct *mm = vma->vm_mm; 1454 int retval; 1455 pte_t *pte; 1456 spinlock_t *ptl; 1457 1458 retval = -EINVAL; 1459 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1460 goto out; 1461 retval = -ENOMEM; 1462 flush_dcache_page(page); 1463 pte = get_locked_pte(mm, addr, &ptl); 1464 if (!pte) 1465 goto out; 1466 retval = -EBUSY; 1467 if (!pte_none(*pte)) 1468 goto out_unlock; 1469 1470 /* Ok, finally just insert the thing.. */ 1471 get_page(page); 1472 inc_mm_counter_fast(mm, mm_counter_file(page)); 1473 page_add_file_rmap(page, false); 1474 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1475 1476 retval = 0; 1477 pte_unmap_unlock(pte, ptl); 1478 return retval; 1479 out_unlock: 1480 pte_unmap_unlock(pte, ptl); 1481 out: 1482 return retval; 1483 } 1484 1485 /** 1486 * vm_insert_page - insert single page into user vma 1487 * @vma: user vma to map to 1488 * @addr: target user address of this page 1489 * @page: source kernel page 1490 * 1491 * This allows drivers to insert individual pages they've allocated 1492 * into a user vma. 1493 * 1494 * The page has to be a nice clean _individual_ kernel allocation. 1495 * If you allocate a compound page, you need to have marked it as 1496 * such (__GFP_COMP), or manually just split the page up yourself 1497 * (see split_page()). 1498 * 1499 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1500 * took an arbitrary page protection parameter. This doesn't allow 1501 * that. Your vma protection will have to be set up correctly, which 1502 * means that if you want a shared writable mapping, you'd better 1503 * ask for a shared writable mapping! 1504 * 1505 * The page does not need to be reserved. 1506 * 1507 * Usually this function is called from f_op->mmap() handler 1508 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1509 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1510 * function from other places, for example from page-fault handler. 1511 * 1512 * Return: %0 on success, negative error code otherwise. 1513 */ 1514 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1515 struct page *page) 1516 { 1517 if (addr < vma->vm_start || addr >= vma->vm_end) 1518 return -EFAULT; 1519 if (!page_count(page)) 1520 return -EINVAL; 1521 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1522 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1523 BUG_ON(vma->vm_flags & VM_PFNMAP); 1524 vma->vm_flags |= VM_MIXEDMAP; 1525 } 1526 return insert_page(vma, addr, page, vma->vm_page_prot); 1527 } 1528 EXPORT_SYMBOL(vm_insert_page); 1529 1530 /* 1531 * __vm_map_pages - maps range of kernel pages into user vma 1532 * @vma: user vma to map to 1533 * @pages: pointer to array of source kernel pages 1534 * @num: number of pages in page array 1535 * @offset: user's requested vm_pgoff 1536 * 1537 * This allows drivers to map range of kernel pages into a user vma. 1538 * 1539 * Return: 0 on success and error code otherwise. 1540 */ 1541 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1542 unsigned long num, unsigned long offset) 1543 { 1544 unsigned long count = vma_pages(vma); 1545 unsigned long uaddr = vma->vm_start; 1546 int ret, i; 1547 1548 /* Fail if the user requested offset is beyond the end of the object */ 1549 if (offset > num) 1550 return -ENXIO; 1551 1552 /* Fail if the user requested size exceeds available object size */ 1553 if (count > num - offset) 1554 return -ENXIO; 1555 1556 for (i = 0; i < count; i++) { 1557 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1558 if (ret < 0) 1559 return ret; 1560 uaddr += PAGE_SIZE; 1561 } 1562 1563 return 0; 1564 } 1565 1566 /** 1567 * vm_map_pages - maps range of kernel pages starts with non zero offset 1568 * @vma: user vma to map to 1569 * @pages: pointer to array of source kernel pages 1570 * @num: number of pages in page array 1571 * 1572 * Maps an object consisting of @num pages, catering for the user's 1573 * requested vm_pgoff 1574 * 1575 * If we fail to insert any page into the vma, the function will return 1576 * immediately leaving any previously inserted pages present. Callers 1577 * from the mmap handler may immediately return the error as their caller 1578 * will destroy the vma, removing any successfully inserted pages. Other 1579 * callers should make their own arrangements for calling unmap_region(). 1580 * 1581 * Context: Process context. Called by mmap handlers. 1582 * Return: 0 on success and error code otherwise. 1583 */ 1584 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1585 unsigned long num) 1586 { 1587 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1588 } 1589 EXPORT_SYMBOL(vm_map_pages); 1590 1591 /** 1592 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1593 * @vma: user vma to map to 1594 * @pages: pointer to array of source kernel pages 1595 * @num: number of pages in page array 1596 * 1597 * Similar to vm_map_pages(), except that it explicitly sets the offset 1598 * to 0. This function is intended for the drivers that did not consider 1599 * vm_pgoff. 1600 * 1601 * Context: Process context. Called by mmap handlers. 1602 * Return: 0 on success and error code otherwise. 1603 */ 1604 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1605 unsigned long num) 1606 { 1607 return __vm_map_pages(vma, pages, num, 0); 1608 } 1609 EXPORT_SYMBOL(vm_map_pages_zero); 1610 1611 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1612 pfn_t pfn, pgprot_t prot, bool mkwrite) 1613 { 1614 struct mm_struct *mm = vma->vm_mm; 1615 pte_t *pte, entry; 1616 spinlock_t *ptl; 1617 1618 pte = get_locked_pte(mm, addr, &ptl); 1619 if (!pte) 1620 return VM_FAULT_OOM; 1621 if (!pte_none(*pte)) { 1622 if (mkwrite) { 1623 /* 1624 * For read faults on private mappings the PFN passed 1625 * in may not match the PFN we have mapped if the 1626 * mapped PFN is a writeable COW page. In the mkwrite 1627 * case we are creating a writable PTE for a shared 1628 * mapping and we expect the PFNs to match. If they 1629 * don't match, we are likely racing with block 1630 * allocation and mapping invalidation so just skip the 1631 * update. 1632 */ 1633 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1634 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1635 goto out_unlock; 1636 } 1637 entry = pte_mkyoung(*pte); 1638 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1639 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1640 update_mmu_cache(vma, addr, pte); 1641 } 1642 goto out_unlock; 1643 } 1644 1645 /* Ok, finally just insert the thing.. */ 1646 if (pfn_t_devmap(pfn)) 1647 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1648 else 1649 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1650 1651 if (mkwrite) { 1652 entry = pte_mkyoung(entry); 1653 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1654 } 1655 1656 set_pte_at(mm, addr, pte, entry); 1657 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1658 1659 out_unlock: 1660 pte_unmap_unlock(pte, ptl); 1661 return VM_FAULT_NOPAGE; 1662 } 1663 1664 /** 1665 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1666 * @vma: user vma to map to 1667 * @addr: target user address of this page 1668 * @pfn: source kernel pfn 1669 * @pgprot: pgprot flags for the inserted page 1670 * 1671 * This is exactly like vmf_insert_pfn(), except that it allows drivers to 1672 * to override pgprot on a per-page basis. 1673 * 1674 * This only makes sense for IO mappings, and it makes no sense for 1675 * COW mappings. In general, using multiple vmas is preferable; 1676 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1677 * impractical. 1678 * 1679 * Context: Process context. May allocate using %GFP_KERNEL. 1680 * Return: vm_fault_t value. 1681 */ 1682 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1683 unsigned long pfn, pgprot_t pgprot) 1684 { 1685 /* 1686 * Technically, architectures with pte_special can avoid all these 1687 * restrictions (same for remap_pfn_range). However we would like 1688 * consistency in testing and feature parity among all, so we should 1689 * try to keep these invariants in place for everybody. 1690 */ 1691 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1692 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1693 (VM_PFNMAP|VM_MIXEDMAP)); 1694 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1695 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1696 1697 if (addr < vma->vm_start || addr >= vma->vm_end) 1698 return VM_FAULT_SIGBUS; 1699 1700 if (!pfn_modify_allowed(pfn, pgprot)) 1701 return VM_FAULT_SIGBUS; 1702 1703 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1704 1705 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1706 false); 1707 } 1708 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1709 1710 /** 1711 * vmf_insert_pfn - insert single pfn into user vma 1712 * @vma: user vma to map to 1713 * @addr: target user address of this page 1714 * @pfn: source kernel pfn 1715 * 1716 * Similar to vm_insert_page, this allows drivers to insert individual pages 1717 * they've allocated into a user vma. Same comments apply. 1718 * 1719 * This function should only be called from a vm_ops->fault handler, and 1720 * in that case the handler should return the result of this function. 1721 * 1722 * vma cannot be a COW mapping. 1723 * 1724 * As this is called only for pages that do not currently exist, we 1725 * do not need to flush old virtual caches or the TLB. 1726 * 1727 * Context: Process context. May allocate using %GFP_KERNEL. 1728 * Return: vm_fault_t value. 1729 */ 1730 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1731 unsigned long pfn) 1732 { 1733 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1734 } 1735 EXPORT_SYMBOL(vmf_insert_pfn); 1736 1737 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1738 { 1739 /* these checks mirror the abort conditions in vm_normal_page */ 1740 if (vma->vm_flags & VM_MIXEDMAP) 1741 return true; 1742 if (pfn_t_devmap(pfn)) 1743 return true; 1744 if (pfn_t_special(pfn)) 1745 return true; 1746 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1747 return true; 1748 return false; 1749 } 1750 1751 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1752 unsigned long addr, pfn_t pfn, bool mkwrite) 1753 { 1754 pgprot_t pgprot = vma->vm_page_prot; 1755 int err; 1756 1757 BUG_ON(!vm_mixed_ok(vma, pfn)); 1758 1759 if (addr < vma->vm_start || addr >= vma->vm_end) 1760 return VM_FAULT_SIGBUS; 1761 1762 track_pfn_insert(vma, &pgprot, pfn); 1763 1764 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1765 return VM_FAULT_SIGBUS; 1766 1767 /* 1768 * If we don't have pte special, then we have to use the pfn_valid() 1769 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1770 * refcount the page if pfn_valid is true (hence insert_page rather 1771 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1772 * without pte special, it would there be refcounted as a normal page. 1773 */ 1774 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1775 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1776 struct page *page; 1777 1778 /* 1779 * At this point we are committed to insert_page() 1780 * regardless of whether the caller specified flags that 1781 * result in pfn_t_has_page() == false. 1782 */ 1783 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1784 err = insert_page(vma, addr, page, pgprot); 1785 } else { 1786 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1787 } 1788 1789 if (err == -ENOMEM) 1790 return VM_FAULT_OOM; 1791 if (err < 0 && err != -EBUSY) 1792 return VM_FAULT_SIGBUS; 1793 1794 return VM_FAULT_NOPAGE; 1795 } 1796 1797 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1798 pfn_t pfn) 1799 { 1800 return __vm_insert_mixed(vma, addr, pfn, false); 1801 } 1802 EXPORT_SYMBOL(vmf_insert_mixed); 1803 1804 /* 1805 * If the insertion of PTE failed because someone else already added a 1806 * different entry in the mean time, we treat that as success as we assume 1807 * the same entry was actually inserted. 1808 */ 1809 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1810 unsigned long addr, pfn_t pfn) 1811 { 1812 return __vm_insert_mixed(vma, addr, pfn, true); 1813 } 1814 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1815 1816 /* 1817 * maps a range of physical memory into the requested pages. the old 1818 * mappings are removed. any references to nonexistent pages results 1819 * in null mappings (currently treated as "copy-on-access") 1820 */ 1821 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1822 unsigned long addr, unsigned long end, 1823 unsigned long pfn, pgprot_t prot) 1824 { 1825 pte_t *pte; 1826 spinlock_t *ptl; 1827 int err = 0; 1828 1829 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1830 if (!pte) 1831 return -ENOMEM; 1832 arch_enter_lazy_mmu_mode(); 1833 do { 1834 BUG_ON(!pte_none(*pte)); 1835 if (!pfn_modify_allowed(pfn, prot)) { 1836 err = -EACCES; 1837 break; 1838 } 1839 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1840 pfn++; 1841 } while (pte++, addr += PAGE_SIZE, addr != end); 1842 arch_leave_lazy_mmu_mode(); 1843 pte_unmap_unlock(pte - 1, ptl); 1844 return err; 1845 } 1846 1847 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1848 unsigned long addr, unsigned long end, 1849 unsigned long pfn, pgprot_t prot) 1850 { 1851 pmd_t *pmd; 1852 unsigned long next; 1853 int err; 1854 1855 pfn -= addr >> PAGE_SHIFT; 1856 pmd = pmd_alloc(mm, pud, addr); 1857 if (!pmd) 1858 return -ENOMEM; 1859 VM_BUG_ON(pmd_trans_huge(*pmd)); 1860 do { 1861 next = pmd_addr_end(addr, end); 1862 err = remap_pte_range(mm, pmd, addr, next, 1863 pfn + (addr >> PAGE_SHIFT), prot); 1864 if (err) 1865 return err; 1866 } while (pmd++, addr = next, addr != end); 1867 return 0; 1868 } 1869 1870 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 1871 unsigned long addr, unsigned long end, 1872 unsigned long pfn, pgprot_t prot) 1873 { 1874 pud_t *pud; 1875 unsigned long next; 1876 int err; 1877 1878 pfn -= addr >> PAGE_SHIFT; 1879 pud = pud_alloc(mm, p4d, addr); 1880 if (!pud) 1881 return -ENOMEM; 1882 do { 1883 next = pud_addr_end(addr, end); 1884 err = remap_pmd_range(mm, pud, addr, next, 1885 pfn + (addr >> PAGE_SHIFT), prot); 1886 if (err) 1887 return err; 1888 } while (pud++, addr = next, addr != end); 1889 return 0; 1890 } 1891 1892 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 1893 unsigned long addr, unsigned long end, 1894 unsigned long pfn, pgprot_t prot) 1895 { 1896 p4d_t *p4d; 1897 unsigned long next; 1898 int err; 1899 1900 pfn -= addr >> PAGE_SHIFT; 1901 p4d = p4d_alloc(mm, pgd, addr); 1902 if (!p4d) 1903 return -ENOMEM; 1904 do { 1905 next = p4d_addr_end(addr, end); 1906 err = remap_pud_range(mm, p4d, addr, next, 1907 pfn + (addr >> PAGE_SHIFT), prot); 1908 if (err) 1909 return err; 1910 } while (p4d++, addr = next, addr != end); 1911 return 0; 1912 } 1913 1914 /** 1915 * remap_pfn_range - remap kernel memory to userspace 1916 * @vma: user vma to map to 1917 * @addr: target user address to start at 1918 * @pfn: physical address of kernel memory 1919 * @size: size of map area 1920 * @prot: page protection flags for this mapping 1921 * 1922 * Note: this is only safe if the mm semaphore is held when called. 1923 * 1924 * Return: %0 on success, negative error code otherwise. 1925 */ 1926 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1927 unsigned long pfn, unsigned long size, pgprot_t prot) 1928 { 1929 pgd_t *pgd; 1930 unsigned long next; 1931 unsigned long end = addr + PAGE_ALIGN(size); 1932 struct mm_struct *mm = vma->vm_mm; 1933 unsigned long remap_pfn = pfn; 1934 int err; 1935 1936 /* 1937 * Physically remapped pages are special. Tell the 1938 * rest of the world about it: 1939 * VM_IO tells people not to look at these pages 1940 * (accesses can have side effects). 1941 * VM_PFNMAP tells the core MM that the base pages are just 1942 * raw PFN mappings, and do not have a "struct page" associated 1943 * with them. 1944 * VM_DONTEXPAND 1945 * Disable vma merging and expanding with mremap(). 1946 * VM_DONTDUMP 1947 * Omit vma from core dump, even when VM_IO turned off. 1948 * 1949 * There's a horrible special case to handle copy-on-write 1950 * behaviour that some programs depend on. We mark the "original" 1951 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1952 * See vm_normal_page() for details. 1953 */ 1954 if (is_cow_mapping(vma->vm_flags)) { 1955 if (addr != vma->vm_start || end != vma->vm_end) 1956 return -EINVAL; 1957 vma->vm_pgoff = pfn; 1958 } 1959 1960 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1961 if (err) 1962 return -EINVAL; 1963 1964 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1965 1966 BUG_ON(addr >= end); 1967 pfn -= addr >> PAGE_SHIFT; 1968 pgd = pgd_offset(mm, addr); 1969 flush_cache_range(vma, addr, end); 1970 do { 1971 next = pgd_addr_end(addr, end); 1972 err = remap_p4d_range(mm, pgd, addr, next, 1973 pfn + (addr >> PAGE_SHIFT), prot); 1974 if (err) 1975 break; 1976 } while (pgd++, addr = next, addr != end); 1977 1978 if (err) 1979 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1980 1981 return err; 1982 } 1983 EXPORT_SYMBOL(remap_pfn_range); 1984 1985 /** 1986 * vm_iomap_memory - remap memory to userspace 1987 * @vma: user vma to map to 1988 * @start: start of area 1989 * @len: size of area 1990 * 1991 * This is a simplified io_remap_pfn_range() for common driver use. The 1992 * driver just needs to give us the physical memory range to be mapped, 1993 * we'll figure out the rest from the vma information. 1994 * 1995 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1996 * whatever write-combining details or similar. 1997 * 1998 * Return: %0 on success, negative error code otherwise. 1999 */ 2000 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2001 { 2002 unsigned long vm_len, pfn, pages; 2003 2004 /* Check that the physical memory area passed in looks valid */ 2005 if (start + len < start) 2006 return -EINVAL; 2007 /* 2008 * You *really* shouldn't map things that aren't page-aligned, 2009 * but we've historically allowed it because IO memory might 2010 * just have smaller alignment. 2011 */ 2012 len += start & ~PAGE_MASK; 2013 pfn = start >> PAGE_SHIFT; 2014 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2015 if (pfn + pages < pfn) 2016 return -EINVAL; 2017 2018 /* We start the mapping 'vm_pgoff' pages into the area */ 2019 if (vma->vm_pgoff > pages) 2020 return -EINVAL; 2021 pfn += vma->vm_pgoff; 2022 pages -= vma->vm_pgoff; 2023 2024 /* Can we fit all of the mapping? */ 2025 vm_len = vma->vm_end - vma->vm_start; 2026 if (vm_len >> PAGE_SHIFT > pages) 2027 return -EINVAL; 2028 2029 /* Ok, let it rip */ 2030 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2031 } 2032 EXPORT_SYMBOL(vm_iomap_memory); 2033 2034 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2035 unsigned long addr, unsigned long end, 2036 pte_fn_t fn, void *data) 2037 { 2038 pte_t *pte; 2039 int err; 2040 pgtable_t token; 2041 spinlock_t *uninitialized_var(ptl); 2042 2043 pte = (mm == &init_mm) ? 2044 pte_alloc_kernel(pmd, addr) : 2045 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2046 if (!pte) 2047 return -ENOMEM; 2048 2049 BUG_ON(pmd_huge(*pmd)); 2050 2051 arch_enter_lazy_mmu_mode(); 2052 2053 token = pmd_pgtable(*pmd); 2054 2055 do { 2056 err = fn(pte++, token, addr, data); 2057 if (err) 2058 break; 2059 } while (addr += PAGE_SIZE, addr != end); 2060 2061 arch_leave_lazy_mmu_mode(); 2062 2063 if (mm != &init_mm) 2064 pte_unmap_unlock(pte-1, ptl); 2065 return err; 2066 } 2067 2068 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2069 unsigned long addr, unsigned long end, 2070 pte_fn_t fn, void *data) 2071 { 2072 pmd_t *pmd; 2073 unsigned long next; 2074 int err; 2075 2076 BUG_ON(pud_huge(*pud)); 2077 2078 pmd = pmd_alloc(mm, pud, addr); 2079 if (!pmd) 2080 return -ENOMEM; 2081 do { 2082 next = pmd_addr_end(addr, end); 2083 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2084 if (err) 2085 break; 2086 } while (pmd++, addr = next, addr != end); 2087 return err; 2088 } 2089 2090 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2091 unsigned long addr, unsigned long end, 2092 pte_fn_t fn, void *data) 2093 { 2094 pud_t *pud; 2095 unsigned long next; 2096 int err; 2097 2098 pud = pud_alloc(mm, p4d, addr); 2099 if (!pud) 2100 return -ENOMEM; 2101 do { 2102 next = pud_addr_end(addr, end); 2103 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2104 if (err) 2105 break; 2106 } while (pud++, addr = next, addr != end); 2107 return err; 2108 } 2109 2110 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2111 unsigned long addr, unsigned long end, 2112 pte_fn_t fn, void *data) 2113 { 2114 p4d_t *p4d; 2115 unsigned long next; 2116 int err; 2117 2118 p4d = p4d_alloc(mm, pgd, addr); 2119 if (!p4d) 2120 return -ENOMEM; 2121 do { 2122 next = p4d_addr_end(addr, end); 2123 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2124 if (err) 2125 break; 2126 } while (p4d++, addr = next, addr != end); 2127 return err; 2128 } 2129 2130 /* 2131 * Scan a region of virtual memory, filling in page tables as necessary 2132 * and calling a provided function on each leaf page table. 2133 */ 2134 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2135 unsigned long size, pte_fn_t fn, void *data) 2136 { 2137 pgd_t *pgd; 2138 unsigned long next; 2139 unsigned long end = addr + size; 2140 int err; 2141 2142 if (WARN_ON(addr >= end)) 2143 return -EINVAL; 2144 2145 pgd = pgd_offset(mm, addr); 2146 do { 2147 next = pgd_addr_end(addr, end); 2148 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2149 if (err) 2150 break; 2151 } while (pgd++, addr = next, addr != end); 2152 2153 return err; 2154 } 2155 EXPORT_SYMBOL_GPL(apply_to_page_range); 2156 2157 /* 2158 * handle_pte_fault chooses page fault handler according to an entry which was 2159 * read non-atomically. Before making any commitment, on those architectures 2160 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2161 * parts, do_swap_page must check under lock before unmapping the pte and 2162 * proceeding (but do_wp_page is only called after already making such a check; 2163 * and do_anonymous_page can safely check later on). 2164 */ 2165 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2166 pte_t *page_table, pte_t orig_pte) 2167 { 2168 int same = 1; 2169 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2170 if (sizeof(pte_t) > sizeof(unsigned long)) { 2171 spinlock_t *ptl = pte_lockptr(mm, pmd); 2172 spin_lock(ptl); 2173 same = pte_same(*page_table, orig_pte); 2174 spin_unlock(ptl); 2175 } 2176 #endif 2177 pte_unmap(page_table); 2178 return same; 2179 } 2180 2181 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2182 { 2183 debug_dma_assert_idle(src); 2184 2185 /* 2186 * If the source page was a PFN mapping, we don't have 2187 * a "struct page" for it. We do a best-effort copy by 2188 * just copying from the original user address. If that 2189 * fails, we just zero-fill it. Live with it. 2190 */ 2191 if (unlikely(!src)) { 2192 void *kaddr = kmap_atomic(dst); 2193 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2194 2195 /* 2196 * This really shouldn't fail, because the page is there 2197 * in the page tables. But it might just be unreadable, 2198 * in which case we just give up and fill the result with 2199 * zeroes. 2200 */ 2201 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2202 clear_page(kaddr); 2203 kunmap_atomic(kaddr); 2204 flush_dcache_page(dst); 2205 } else 2206 copy_user_highpage(dst, src, va, vma); 2207 } 2208 2209 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2210 { 2211 struct file *vm_file = vma->vm_file; 2212 2213 if (vm_file) 2214 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2215 2216 /* 2217 * Special mappings (e.g. VDSO) do not have any file so fake 2218 * a default GFP_KERNEL for them. 2219 */ 2220 return GFP_KERNEL; 2221 } 2222 2223 /* 2224 * Notify the address space that the page is about to become writable so that 2225 * it can prohibit this or wait for the page to get into an appropriate state. 2226 * 2227 * We do this without the lock held, so that it can sleep if it needs to. 2228 */ 2229 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2230 { 2231 vm_fault_t ret; 2232 struct page *page = vmf->page; 2233 unsigned int old_flags = vmf->flags; 2234 2235 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2236 2237 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2238 /* Restore original flags so that caller is not surprised */ 2239 vmf->flags = old_flags; 2240 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2241 return ret; 2242 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2243 lock_page(page); 2244 if (!page->mapping) { 2245 unlock_page(page); 2246 return 0; /* retry */ 2247 } 2248 ret |= VM_FAULT_LOCKED; 2249 } else 2250 VM_BUG_ON_PAGE(!PageLocked(page), page); 2251 return ret; 2252 } 2253 2254 /* 2255 * Handle dirtying of a page in shared file mapping on a write fault. 2256 * 2257 * The function expects the page to be locked and unlocks it. 2258 */ 2259 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2260 struct page *page) 2261 { 2262 struct address_space *mapping; 2263 bool dirtied; 2264 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2265 2266 dirtied = set_page_dirty(page); 2267 VM_BUG_ON_PAGE(PageAnon(page), page); 2268 /* 2269 * Take a local copy of the address_space - page.mapping may be zeroed 2270 * by truncate after unlock_page(). The address_space itself remains 2271 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2272 * release semantics to prevent the compiler from undoing this copying. 2273 */ 2274 mapping = page_rmapping(page); 2275 unlock_page(page); 2276 2277 if ((dirtied || page_mkwrite) && mapping) { 2278 /* 2279 * Some device drivers do not set page.mapping 2280 * but still dirty their pages 2281 */ 2282 balance_dirty_pages_ratelimited(mapping); 2283 } 2284 2285 if (!page_mkwrite) 2286 file_update_time(vma->vm_file); 2287 } 2288 2289 /* 2290 * Handle write page faults for pages that can be reused in the current vma 2291 * 2292 * This can happen either due to the mapping being with the VM_SHARED flag, 2293 * or due to us being the last reference standing to the page. In either 2294 * case, all we need to do here is to mark the page as writable and update 2295 * any related book-keeping. 2296 */ 2297 static inline void wp_page_reuse(struct vm_fault *vmf) 2298 __releases(vmf->ptl) 2299 { 2300 struct vm_area_struct *vma = vmf->vma; 2301 struct page *page = vmf->page; 2302 pte_t entry; 2303 /* 2304 * Clear the pages cpupid information as the existing 2305 * information potentially belongs to a now completely 2306 * unrelated process. 2307 */ 2308 if (page) 2309 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2310 2311 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2312 entry = pte_mkyoung(vmf->orig_pte); 2313 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2314 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2315 update_mmu_cache(vma, vmf->address, vmf->pte); 2316 pte_unmap_unlock(vmf->pte, vmf->ptl); 2317 } 2318 2319 /* 2320 * Handle the case of a page which we actually need to copy to a new page. 2321 * 2322 * Called with mmap_sem locked and the old page referenced, but 2323 * without the ptl held. 2324 * 2325 * High level logic flow: 2326 * 2327 * - Allocate a page, copy the content of the old page to the new one. 2328 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2329 * - Take the PTL. If the pte changed, bail out and release the allocated page 2330 * - If the pte is still the way we remember it, update the page table and all 2331 * relevant references. This includes dropping the reference the page-table 2332 * held to the old page, as well as updating the rmap. 2333 * - In any case, unlock the PTL and drop the reference we took to the old page. 2334 */ 2335 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2336 { 2337 struct vm_area_struct *vma = vmf->vma; 2338 struct mm_struct *mm = vma->vm_mm; 2339 struct page *old_page = vmf->page; 2340 struct page *new_page = NULL; 2341 pte_t entry; 2342 int page_copied = 0; 2343 struct mem_cgroup *memcg; 2344 struct mmu_notifier_range range; 2345 2346 if (unlikely(anon_vma_prepare(vma))) 2347 goto oom; 2348 2349 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2350 new_page = alloc_zeroed_user_highpage_movable(vma, 2351 vmf->address); 2352 if (!new_page) 2353 goto oom; 2354 } else { 2355 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2356 vmf->address); 2357 if (!new_page) 2358 goto oom; 2359 cow_user_page(new_page, old_page, vmf->address, vma); 2360 } 2361 2362 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2363 goto oom_free_new; 2364 2365 __SetPageUptodate(new_page); 2366 2367 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2368 vmf->address & PAGE_MASK, 2369 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2370 mmu_notifier_invalidate_range_start(&range); 2371 2372 /* 2373 * Re-check the pte - we dropped the lock 2374 */ 2375 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2376 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2377 if (old_page) { 2378 if (!PageAnon(old_page)) { 2379 dec_mm_counter_fast(mm, 2380 mm_counter_file(old_page)); 2381 inc_mm_counter_fast(mm, MM_ANONPAGES); 2382 } 2383 } else { 2384 inc_mm_counter_fast(mm, MM_ANONPAGES); 2385 } 2386 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2387 entry = mk_pte(new_page, vma->vm_page_prot); 2388 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2389 /* 2390 * Clear the pte entry and flush it first, before updating the 2391 * pte with the new entry. This will avoid a race condition 2392 * seen in the presence of one thread doing SMC and another 2393 * thread doing COW. 2394 */ 2395 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2396 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2397 mem_cgroup_commit_charge(new_page, memcg, false, false); 2398 lru_cache_add_active_or_unevictable(new_page, vma); 2399 /* 2400 * We call the notify macro here because, when using secondary 2401 * mmu page tables (such as kvm shadow page tables), we want the 2402 * new page to be mapped directly into the secondary page table. 2403 */ 2404 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2405 update_mmu_cache(vma, vmf->address, vmf->pte); 2406 if (old_page) { 2407 /* 2408 * Only after switching the pte to the new page may 2409 * we remove the mapcount here. Otherwise another 2410 * process may come and find the rmap count decremented 2411 * before the pte is switched to the new page, and 2412 * "reuse" the old page writing into it while our pte 2413 * here still points into it and can be read by other 2414 * threads. 2415 * 2416 * The critical issue is to order this 2417 * page_remove_rmap with the ptp_clear_flush above. 2418 * Those stores are ordered by (if nothing else,) 2419 * the barrier present in the atomic_add_negative 2420 * in page_remove_rmap. 2421 * 2422 * Then the TLB flush in ptep_clear_flush ensures that 2423 * no process can access the old page before the 2424 * decremented mapcount is visible. And the old page 2425 * cannot be reused until after the decremented 2426 * mapcount is visible. So transitively, TLBs to 2427 * old page will be flushed before it can be reused. 2428 */ 2429 page_remove_rmap(old_page, false); 2430 } 2431 2432 /* Free the old page.. */ 2433 new_page = old_page; 2434 page_copied = 1; 2435 } else { 2436 mem_cgroup_cancel_charge(new_page, memcg, false); 2437 } 2438 2439 if (new_page) 2440 put_page(new_page); 2441 2442 pte_unmap_unlock(vmf->pte, vmf->ptl); 2443 /* 2444 * No need to double call mmu_notifier->invalidate_range() callback as 2445 * the above ptep_clear_flush_notify() did already call it. 2446 */ 2447 mmu_notifier_invalidate_range_only_end(&range); 2448 if (old_page) { 2449 /* 2450 * Don't let another task, with possibly unlocked vma, 2451 * keep the mlocked page. 2452 */ 2453 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2454 lock_page(old_page); /* LRU manipulation */ 2455 if (PageMlocked(old_page)) 2456 munlock_vma_page(old_page); 2457 unlock_page(old_page); 2458 } 2459 put_page(old_page); 2460 } 2461 return page_copied ? VM_FAULT_WRITE : 0; 2462 oom_free_new: 2463 put_page(new_page); 2464 oom: 2465 if (old_page) 2466 put_page(old_page); 2467 return VM_FAULT_OOM; 2468 } 2469 2470 /** 2471 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2472 * writeable once the page is prepared 2473 * 2474 * @vmf: structure describing the fault 2475 * 2476 * This function handles all that is needed to finish a write page fault in a 2477 * shared mapping due to PTE being read-only once the mapped page is prepared. 2478 * It handles locking of PTE and modifying it. 2479 * 2480 * The function expects the page to be locked or other protection against 2481 * concurrent faults / writeback (such as DAX radix tree locks). 2482 * 2483 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2484 * we acquired PTE lock. 2485 */ 2486 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2487 { 2488 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2489 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2490 &vmf->ptl); 2491 /* 2492 * We might have raced with another page fault while we released the 2493 * pte_offset_map_lock. 2494 */ 2495 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2496 pte_unmap_unlock(vmf->pte, vmf->ptl); 2497 return VM_FAULT_NOPAGE; 2498 } 2499 wp_page_reuse(vmf); 2500 return 0; 2501 } 2502 2503 /* 2504 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2505 * mapping 2506 */ 2507 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2508 { 2509 struct vm_area_struct *vma = vmf->vma; 2510 2511 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2512 vm_fault_t ret; 2513 2514 pte_unmap_unlock(vmf->pte, vmf->ptl); 2515 vmf->flags |= FAULT_FLAG_MKWRITE; 2516 ret = vma->vm_ops->pfn_mkwrite(vmf); 2517 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2518 return ret; 2519 return finish_mkwrite_fault(vmf); 2520 } 2521 wp_page_reuse(vmf); 2522 return VM_FAULT_WRITE; 2523 } 2524 2525 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2526 __releases(vmf->ptl) 2527 { 2528 struct vm_area_struct *vma = vmf->vma; 2529 2530 get_page(vmf->page); 2531 2532 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2533 vm_fault_t tmp; 2534 2535 pte_unmap_unlock(vmf->pte, vmf->ptl); 2536 tmp = do_page_mkwrite(vmf); 2537 if (unlikely(!tmp || (tmp & 2538 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2539 put_page(vmf->page); 2540 return tmp; 2541 } 2542 tmp = finish_mkwrite_fault(vmf); 2543 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2544 unlock_page(vmf->page); 2545 put_page(vmf->page); 2546 return tmp; 2547 } 2548 } else { 2549 wp_page_reuse(vmf); 2550 lock_page(vmf->page); 2551 } 2552 fault_dirty_shared_page(vma, vmf->page); 2553 put_page(vmf->page); 2554 2555 return VM_FAULT_WRITE; 2556 } 2557 2558 /* 2559 * This routine handles present pages, when users try to write 2560 * to a shared page. It is done by copying the page to a new address 2561 * and decrementing the shared-page counter for the old page. 2562 * 2563 * Note that this routine assumes that the protection checks have been 2564 * done by the caller (the low-level page fault routine in most cases). 2565 * Thus we can safely just mark it writable once we've done any necessary 2566 * COW. 2567 * 2568 * We also mark the page dirty at this point even though the page will 2569 * change only once the write actually happens. This avoids a few races, 2570 * and potentially makes it more efficient. 2571 * 2572 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2573 * but allow concurrent faults), with pte both mapped and locked. 2574 * We return with mmap_sem still held, but pte unmapped and unlocked. 2575 */ 2576 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2577 __releases(vmf->ptl) 2578 { 2579 struct vm_area_struct *vma = vmf->vma; 2580 2581 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2582 if (!vmf->page) { 2583 /* 2584 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2585 * VM_PFNMAP VMA. 2586 * 2587 * We should not cow pages in a shared writeable mapping. 2588 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2589 */ 2590 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2591 (VM_WRITE|VM_SHARED)) 2592 return wp_pfn_shared(vmf); 2593 2594 pte_unmap_unlock(vmf->pte, vmf->ptl); 2595 return wp_page_copy(vmf); 2596 } 2597 2598 /* 2599 * Take out anonymous pages first, anonymous shared vmas are 2600 * not dirty accountable. 2601 */ 2602 if (PageAnon(vmf->page)) { 2603 int total_map_swapcount; 2604 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || 2605 page_count(vmf->page) != 1)) 2606 goto copy; 2607 if (!trylock_page(vmf->page)) { 2608 get_page(vmf->page); 2609 pte_unmap_unlock(vmf->pte, vmf->ptl); 2610 lock_page(vmf->page); 2611 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2612 vmf->address, &vmf->ptl); 2613 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2614 unlock_page(vmf->page); 2615 pte_unmap_unlock(vmf->pte, vmf->ptl); 2616 put_page(vmf->page); 2617 return 0; 2618 } 2619 put_page(vmf->page); 2620 } 2621 if (PageKsm(vmf->page)) { 2622 bool reused = reuse_ksm_page(vmf->page, vmf->vma, 2623 vmf->address); 2624 unlock_page(vmf->page); 2625 if (!reused) 2626 goto copy; 2627 wp_page_reuse(vmf); 2628 return VM_FAULT_WRITE; 2629 } 2630 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2631 if (total_map_swapcount == 1) { 2632 /* 2633 * The page is all ours. Move it to 2634 * our anon_vma so the rmap code will 2635 * not search our parent or siblings. 2636 * Protected against the rmap code by 2637 * the page lock. 2638 */ 2639 page_move_anon_rmap(vmf->page, vma); 2640 } 2641 unlock_page(vmf->page); 2642 wp_page_reuse(vmf); 2643 return VM_FAULT_WRITE; 2644 } 2645 unlock_page(vmf->page); 2646 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2647 (VM_WRITE|VM_SHARED))) { 2648 return wp_page_shared(vmf); 2649 } 2650 copy: 2651 /* 2652 * Ok, we need to copy. Oh, well.. 2653 */ 2654 get_page(vmf->page); 2655 2656 pte_unmap_unlock(vmf->pte, vmf->ptl); 2657 return wp_page_copy(vmf); 2658 } 2659 2660 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2661 unsigned long start_addr, unsigned long end_addr, 2662 struct zap_details *details) 2663 { 2664 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2665 } 2666 2667 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2668 struct zap_details *details) 2669 { 2670 struct vm_area_struct *vma; 2671 pgoff_t vba, vea, zba, zea; 2672 2673 vma_interval_tree_foreach(vma, root, 2674 details->first_index, details->last_index) { 2675 2676 vba = vma->vm_pgoff; 2677 vea = vba + vma_pages(vma) - 1; 2678 zba = details->first_index; 2679 if (zba < vba) 2680 zba = vba; 2681 zea = details->last_index; 2682 if (zea > vea) 2683 zea = vea; 2684 2685 unmap_mapping_range_vma(vma, 2686 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2687 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2688 details); 2689 } 2690 } 2691 2692 /** 2693 * unmap_mapping_pages() - Unmap pages from processes. 2694 * @mapping: The address space containing pages to be unmapped. 2695 * @start: Index of first page to be unmapped. 2696 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2697 * @even_cows: Whether to unmap even private COWed pages. 2698 * 2699 * Unmap the pages in this address space from any userspace process which 2700 * has them mmaped. Generally, you want to remove COWed pages as well when 2701 * a file is being truncated, but not when invalidating pages from the page 2702 * cache. 2703 */ 2704 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2705 pgoff_t nr, bool even_cows) 2706 { 2707 struct zap_details details = { }; 2708 2709 details.check_mapping = even_cows ? NULL : mapping; 2710 details.first_index = start; 2711 details.last_index = start + nr - 1; 2712 if (details.last_index < details.first_index) 2713 details.last_index = ULONG_MAX; 2714 2715 i_mmap_lock_write(mapping); 2716 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2717 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2718 i_mmap_unlock_write(mapping); 2719 } 2720 2721 /** 2722 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2723 * address_space corresponding to the specified byte range in the underlying 2724 * file. 2725 * 2726 * @mapping: the address space containing mmaps to be unmapped. 2727 * @holebegin: byte in first page to unmap, relative to the start of 2728 * the underlying file. This will be rounded down to a PAGE_SIZE 2729 * boundary. Note that this is different from truncate_pagecache(), which 2730 * must keep the partial page. In contrast, we must get rid of 2731 * partial pages. 2732 * @holelen: size of prospective hole in bytes. This will be rounded 2733 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2734 * end of the file. 2735 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2736 * but 0 when invalidating pagecache, don't throw away private data. 2737 */ 2738 void unmap_mapping_range(struct address_space *mapping, 2739 loff_t const holebegin, loff_t const holelen, int even_cows) 2740 { 2741 pgoff_t hba = holebegin >> PAGE_SHIFT; 2742 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2743 2744 /* Check for overflow. */ 2745 if (sizeof(holelen) > sizeof(hlen)) { 2746 long long holeend = 2747 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2748 if (holeend & ~(long long)ULONG_MAX) 2749 hlen = ULONG_MAX - hba + 1; 2750 } 2751 2752 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2753 } 2754 EXPORT_SYMBOL(unmap_mapping_range); 2755 2756 /* 2757 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2758 * but allow concurrent faults), and pte mapped but not yet locked. 2759 * We return with pte unmapped and unlocked. 2760 * 2761 * We return with the mmap_sem locked or unlocked in the same cases 2762 * as does filemap_fault(). 2763 */ 2764 vm_fault_t do_swap_page(struct vm_fault *vmf) 2765 { 2766 struct vm_area_struct *vma = vmf->vma; 2767 struct page *page = NULL, *swapcache; 2768 struct mem_cgroup *memcg; 2769 swp_entry_t entry; 2770 pte_t pte; 2771 int locked; 2772 int exclusive = 0; 2773 vm_fault_t ret = 0; 2774 2775 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2776 goto out; 2777 2778 entry = pte_to_swp_entry(vmf->orig_pte); 2779 if (unlikely(non_swap_entry(entry))) { 2780 if (is_migration_entry(entry)) { 2781 migration_entry_wait(vma->vm_mm, vmf->pmd, 2782 vmf->address); 2783 } else if (is_device_private_entry(entry)) { 2784 /* 2785 * For un-addressable device memory we call the pgmap 2786 * fault handler callback. The callback must migrate 2787 * the page back to some CPU accessible page. 2788 */ 2789 ret = device_private_entry_fault(vma, vmf->address, entry, 2790 vmf->flags, vmf->pmd); 2791 } else if (is_hwpoison_entry(entry)) { 2792 ret = VM_FAULT_HWPOISON; 2793 } else { 2794 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2795 ret = VM_FAULT_SIGBUS; 2796 } 2797 goto out; 2798 } 2799 2800 2801 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2802 page = lookup_swap_cache(entry, vma, vmf->address); 2803 swapcache = page; 2804 2805 if (!page) { 2806 struct swap_info_struct *si = swp_swap_info(entry); 2807 2808 if (si->flags & SWP_SYNCHRONOUS_IO && 2809 __swap_count(si, entry) == 1) { 2810 /* skip swapcache */ 2811 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2812 vmf->address); 2813 if (page) { 2814 __SetPageLocked(page); 2815 __SetPageSwapBacked(page); 2816 set_page_private(page, entry.val); 2817 lru_cache_add_anon(page); 2818 swap_readpage(page, true); 2819 } 2820 } else { 2821 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2822 vmf); 2823 swapcache = page; 2824 } 2825 2826 if (!page) { 2827 /* 2828 * Back out if somebody else faulted in this pte 2829 * while we released the pte lock. 2830 */ 2831 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2832 vmf->address, &vmf->ptl); 2833 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2834 ret = VM_FAULT_OOM; 2835 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2836 goto unlock; 2837 } 2838 2839 /* Had to read the page from swap area: Major fault */ 2840 ret = VM_FAULT_MAJOR; 2841 count_vm_event(PGMAJFAULT); 2842 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2843 } else if (PageHWPoison(page)) { 2844 /* 2845 * hwpoisoned dirty swapcache pages are kept for killing 2846 * owner processes (which may be unknown at hwpoison time) 2847 */ 2848 ret = VM_FAULT_HWPOISON; 2849 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2850 goto out_release; 2851 } 2852 2853 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2854 2855 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2856 if (!locked) { 2857 ret |= VM_FAULT_RETRY; 2858 goto out_release; 2859 } 2860 2861 /* 2862 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2863 * release the swapcache from under us. The page pin, and pte_same 2864 * test below, are not enough to exclude that. Even if it is still 2865 * swapcache, we need to check that the page's swap has not changed. 2866 */ 2867 if (unlikely((!PageSwapCache(page) || 2868 page_private(page) != entry.val)) && swapcache) 2869 goto out_page; 2870 2871 page = ksm_might_need_to_copy(page, vma, vmf->address); 2872 if (unlikely(!page)) { 2873 ret = VM_FAULT_OOM; 2874 page = swapcache; 2875 goto out_page; 2876 } 2877 2878 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 2879 &memcg, false)) { 2880 ret = VM_FAULT_OOM; 2881 goto out_page; 2882 } 2883 2884 /* 2885 * Back out if somebody else already faulted in this pte. 2886 */ 2887 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2888 &vmf->ptl); 2889 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2890 goto out_nomap; 2891 2892 if (unlikely(!PageUptodate(page))) { 2893 ret = VM_FAULT_SIGBUS; 2894 goto out_nomap; 2895 } 2896 2897 /* 2898 * The page isn't present yet, go ahead with the fault. 2899 * 2900 * Be careful about the sequence of operations here. 2901 * To get its accounting right, reuse_swap_page() must be called 2902 * while the page is counted on swap but not yet in mapcount i.e. 2903 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2904 * must be called after the swap_free(), or it will never succeed. 2905 */ 2906 2907 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2908 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2909 pte = mk_pte(page, vma->vm_page_prot); 2910 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2911 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2912 vmf->flags &= ~FAULT_FLAG_WRITE; 2913 ret |= VM_FAULT_WRITE; 2914 exclusive = RMAP_EXCLUSIVE; 2915 } 2916 flush_icache_page(vma, page); 2917 if (pte_swp_soft_dirty(vmf->orig_pte)) 2918 pte = pte_mksoft_dirty(pte); 2919 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2920 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 2921 vmf->orig_pte = pte; 2922 2923 /* ksm created a completely new copy */ 2924 if (unlikely(page != swapcache && swapcache)) { 2925 page_add_new_anon_rmap(page, vma, vmf->address, false); 2926 mem_cgroup_commit_charge(page, memcg, false, false); 2927 lru_cache_add_active_or_unevictable(page, vma); 2928 } else { 2929 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2930 mem_cgroup_commit_charge(page, memcg, true, false); 2931 activate_page(page); 2932 } 2933 2934 swap_free(entry); 2935 if (mem_cgroup_swap_full(page) || 2936 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2937 try_to_free_swap(page); 2938 unlock_page(page); 2939 if (page != swapcache && swapcache) { 2940 /* 2941 * Hold the lock to avoid the swap entry to be reused 2942 * until we take the PT lock for the pte_same() check 2943 * (to avoid false positives from pte_same). For 2944 * further safety release the lock after the swap_free 2945 * so that the swap count won't change under a 2946 * parallel locked swapcache. 2947 */ 2948 unlock_page(swapcache); 2949 put_page(swapcache); 2950 } 2951 2952 if (vmf->flags & FAULT_FLAG_WRITE) { 2953 ret |= do_wp_page(vmf); 2954 if (ret & VM_FAULT_ERROR) 2955 ret &= VM_FAULT_ERROR; 2956 goto out; 2957 } 2958 2959 /* No need to invalidate - it was non-present before */ 2960 update_mmu_cache(vma, vmf->address, vmf->pte); 2961 unlock: 2962 pte_unmap_unlock(vmf->pte, vmf->ptl); 2963 out: 2964 return ret; 2965 out_nomap: 2966 mem_cgroup_cancel_charge(page, memcg, false); 2967 pte_unmap_unlock(vmf->pte, vmf->ptl); 2968 out_page: 2969 unlock_page(page); 2970 out_release: 2971 put_page(page); 2972 if (page != swapcache && swapcache) { 2973 unlock_page(swapcache); 2974 put_page(swapcache); 2975 } 2976 return ret; 2977 } 2978 2979 /* 2980 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2981 * but allow concurrent faults), and pte mapped but not yet locked. 2982 * We return with mmap_sem still held, but pte unmapped and unlocked. 2983 */ 2984 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 2985 { 2986 struct vm_area_struct *vma = vmf->vma; 2987 struct mem_cgroup *memcg; 2988 struct page *page; 2989 vm_fault_t ret = 0; 2990 pte_t entry; 2991 2992 /* File mapping without ->vm_ops ? */ 2993 if (vma->vm_flags & VM_SHARED) 2994 return VM_FAULT_SIGBUS; 2995 2996 /* 2997 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2998 * pte_offset_map() on pmds where a huge pmd might be created 2999 * from a different thread. 3000 * 3001 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 3002 * parallel threads are excluded by other means. 3003 * 3004 * Here we only have down_read(mmap_sem). 3005 */ 3006 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3007 return VM_FAULT_OOM; 3008 3009 /* See the comment in pte_alloc_one_map() */ 3010 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3011 return 0; 3012 3013 /* Use the zero-page for reads */ 3014 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3015 !mm_forbids_zeropage(vma->vm_mm)) { 3016 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3017 vma->vm_page_prot)); 3018 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3019 vmf->address, &vmf->ptl); 3020 if (!pte_none(*vmf->pte)) 3021 goto unlock; 3022 ret = check_stable_address_space(vma->vm_mm); 3023 if (ret) 3024 goto unlock; 3025 /* Deliver the page fault to userland, check inside PT lock */ 3026 if (userfaultfd_missing(vma)) { 3027 pte_unmap_unlock(vmf->pte, vmf->ptl); 3028 return handle_userfault(vmf, VM_UFFD_MISSING); 3029 } 3030 goto setpte; 3031 } 3032 3033 /* Allocate our own private page. */ 3034 if (unlikely(anon_vma_prepare(vma))) 3035 goto oom; 3036 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3037 if (!page) 3038 goto oom; 3039 3040 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 3041 false)) 3042 goto oom_free_page; 3043 3044 /* 3045 * The memory barrier inside __SetPageUptodate makes sure that 3046 * preceeding stores to the page contents become visible before 3047 * the set_pte_at() write. 3048 */ 3049 __SetPageUptodate(page); 3050 3051 entry = mk_pte(page, vma->vm_page_prot); 3052 if (vma->vm_flags & VM_WRITE) 3053 entry = pte_mkwrite(pte_mkdirty(entry)); 3054 3055 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3056 &vmf->ptl); 3057 if (!pte_none(*vmf->pte)) 3058 goto release; 3059 3060 ret = check_stable_address_space(vma->vm_mm); 3061 if (ret) 3062 goto release; 3063 3064 /* Deliver the page fault to userland, check inside PT lock */ 3065 if (userfaultfd_missing(vma)) { 3066 pte_unmap_unlock(vmf->pte, vmf->ptl); 3067 mem_cgroup_cancel_charge(page, memcg, false); 3068 put_page(page); 3069 return handle_userfault(vmf, VM_UFFD_MISSING); 3070 } 3071 3072 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3073 page_add_new_anon_rmap(page, vma, vmf->address, false); 3074 mem_cgroup_commit_charge(page, memcg, false, false); 3075 lru_cache_add_active_or_unevictable(page, vma); 3076 setpte: 3077 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3078 3079 /* No need to invalidate - it was non-present before */ 3080 update_mmu_cache(vma, vmf->address, vmf->pte); 3081 unlock: 3082 pte_unmap_unlock(vmf->pte, vmf->ptl); 3083 return ret; 3084 release: 3085 mem_cgroup_cancel_charge(page, memcg, false); 3086 put_page(page); 3087 goto unlock; 3088 oom_free_page: 3089 put_page(page); 3090 oom: 3091 return VM_FAULT_OOM; 3092 } 3093 3094 /* 3095 * The mmap_sem must have been held on entry, and may have been 3096 * released depending on flags and vma->vm_ops->fault() return value. 3097 * See filemap_fault() and __lock_page_retry(). 3098 */ 3099 static vm_fault_t __do_fault(struct vm_fault *vmf) 3100 { 3101 struct vm_area_struct *vma = vmf->vma; 3102 vm_fault_t ret; 3103 3104 /* 3105 * Preallocate pte before we take page_lock because this might lead to 3106 * deadlocks for memcg reclaim which waits for pages under writeback: 3107 * lock_page(A) 3108 * SetPageWriteback(A) 3109 * unlock_page(A) 3110 * lock_page(B) 3111 * lock_page(B) 3112 * pte_alloc_pne 3113 * shrink_page_list 3114 * wait_on_page_writeback(A) 3115 * SetPageWriteback(B) 3116 * unlock_page(B) 3117 * # flush A, B to clear the writeback 3118 */ 3119 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3120 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3121 if (!vmf->prealloc_pte) 3122 return VM_FAULT_OOM; 3123 smp_wmb(); /* See comment in __pte_alloc() */ 3124 } 3125 3126 ret = vma->vm_ops->fault(vmf); 3127 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3128 VM_FAULT_DONE_COW))) 3129 return ret; 3130 3131 if (unlikely(PageHWPoison(vmf->page))) { 3132 if (ret & VM_FAULT_LOCKED) 3133 unlock_page(vmf->page); 3134 put_page(vmf->page); 3135 vmf->page = NULL; 3136 return VM_FAULT_HWPOISON; 3137 } 3138 3139 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3140 lock_page(vmf->page); 3141 else 3142 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3143 3144 return ret; 3145 } 3146 3147 /* 3148 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3149 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3150 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3151 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3152 */ 3153 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3154 { 3155 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3156 } 3157 3158 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3159 { 3160 struct vm_area_struct *vma = vmf->vma; 3161 3162 if (!pmd_none(*vmf->pmd)) 3163 goto map_pte; 3164 if (vmf->prealloc_pte) { 3165 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3166 if (unlikely(!pmd_none(*vmf->pmd))) { 3167 spin_unlock(vmf->ptl); 3168 goto map_pte; 3169 } 3170 3171 mm_inc_nr_ptes(vma->vm_mm); 3172 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3173 spin_unlock(vmf->ptl); 3174 vmf->prealloc_pte = NULL; 3175 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3176 return VM_FAULT_OOM; 3177 } 3178 map_pte: 3179 /* 3180 * If a huge pmd materialized under us just retry later. Use 3181 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3182 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3183 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3184 * running immediately after a huge pmd fault in a different thread of 3185 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3186 * All we have to ensure is that it is a regular pmd that we can walk 3187 * with pte_offset_map() and we can do that through an atomic read in 3188 * C, which is what pmd_trans_unstable() provides. 3189 */ 3190 if (pmd_devmap_trans_unstable(vmf->pmd)) 3191 return VM_FAULT_NOPAGE; 3192 3193 /* 3194 * At this point we know that our vmf->pmd points to a page of ptes 3195 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3196 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3197 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3198 * be valid and we will re-check to make sure the vmf->pte isn't 3199 * pte_none() under vmf->ptl protection when we return to 3200 * alloc_set_pte(). 3201 */ 3202 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3203 &vmf->ptl); 3204 return 0; 3205 } 3206 3207 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3208 3209 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3210 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3211 unsigned long haddr) 3212 { 3213 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3214 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3215 return false; 3216 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3217 return false; 3218 return true; 3219 } 3220 3221 static void deposit_prealloc_pte(struct vm_fault *vmf) 3222 { 3223 struct vm_area_struct *vma = vmf->vma; 3224 3225 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3226 /* 3227 * We are going to consume the prealloc table, 3228 * count that as nr_ptes. 3229 */ 3230 mm_inc_nr_ptes(vma->vm_mm); 3231 vmf->prealloc_pte = NULL; 3232 } 3233 3234 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3235 { 3236 struct vm_area_struct *vma = vmf->vma; 3237 bool write = vmf->flags & FAULT_FLAG_WRITE; 3238 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3239 pmd_t entry; 3240 int i; 3241 vm_fault_t ret; 3242 3243 if (!transhuge_vma_suitable(vma, haddr)) 3244 return VM_FAULT_FALLBACK; 3245 3246 ret = VM_FAULT_FALLBACK; 3247 page = compound_head(page); 3248 3249 /* 3250 * Archs like ppc64 need additonal space to store information 3251 * related to pte entry. Use the preallocated table for that. 3252 */ 3253 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3254 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3255 if (!vmf->prealloc_pte) 3256 return VM_FAULT_OOM; 3257 smp_wmb(); /* See comment in __pte_alloc() */ 3258 } 3259 3260 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3261 if (unlikely(!pmd_none(*vmf->pmd))) 3262 goto out; 3263 3264 for (i = 0; i < HPAGE_PMD_NR; i++) 3265 flush_icache_page(vma, page + i); 3266 3267 entry = mk_huge_pmd(page, vma->vm_page_prot); 3268 if (write) 3269 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3270 3271 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3272 page_add_file_rmap(page, true); 3273 /* 3274 * deposit and withdraw with pmd lock held 3275 */ 3276 if (arch_needs_pgtable_deposit()) 3277 deposit_prealloc_pte(vmf); 3278 3279 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3280 3281 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3282 3283 /* fault is handled */ 3284 ret = 0; 3285 count_vm_event(THP_FILE_MAPPED); 3286 out: 3287 spin_unlock(vmf->ptl); 3288 return ret; 3289 } 3290 #else 3291 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3292 { 3293 BUILD_BUG(); 3294 return 0; 3295 } 3296 #endif 3297 3298 /** 3299 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3300 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3301 * 3302 * @vmf: fault environment 3303 * @memcg: memcg to charge page (only for private mappings) 3304 * @page: page to map 3305 * 3306 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3307 * return. 3308 * 3309 * Target users are page handler itself and implementations of 3310 * vm_ops->map_pages. 3311 * 3312 * Return: %0 on success, %VM_FAULT_ code in case of error. 3313 */ 3314 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3315 struct page *page) 3316 { 3317 struct vm_area_struct *vma = vmf->vma; 3318 bool write = vmf->flags & FAULT_FLAG_WRITE; 3319 pte_t entry; 3320 vm_fault_t ret; 3321 3322 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3323 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3324 /* THP on COW? */ 3325 VM_BUG_ON_PAGE(memcg, page); 3326 3327 ret = do_set_pmd(vmf, page); 3328 if (ret != VM_FAULT_FALLBACK) 3329 return ret; 3330 } 3331 3332 if (!vmf->pte) { 3333 ret = pte_alloc_one_map(vmf); 3334 if (ret) 3335 return ret; 3336 } 3337 3338 /* Re-check under ptl */ 3339 if (unlikely(!pte_none(*vmf->pte))) 3340 return VM_FAULT_NOPAGE; 3341 3342 flush_icache_page(vma, page); 3343 entry = mk_pte(page, vma->vm_page_prot); 3344 if (write) 3345 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3346 /* copy-on-write page */ 3347 if (write && !(vma->vm_flags & VM_SHARED)) { 3348 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3349 page_add_new_anon_rmap(page, vma, vmf->address, false); 3350 mem_cgroup_commit_charge(page, memcg, false, false); 3351 lru_cache_add_active_or_unevictable(page, vma); 3352 } else { 3353 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3354 page_add_file_rmap(page, false); 3355 } 3356 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3357 3358 /* no need to invalidate: a not-present page won't be cached */ 3359 update_mmu_cache(vma, vmf->address, vmf->pte); 3360 3361 return 0; 3362 } 3363 3364 3365 /** 3366 * finish_fault - finish page fault once we have prepared the page to fault 3367 * 3368 * @vmf: structure describing the fault 3369 * 3370 * This function handles all that is needed to finish a page fault once the 3371 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3372 * given page, adds reverse page mapping, handles memcg charges and LRU 3373 * addition. 3374 * 3375 * The function expects the page to be locked and on success it consumes a 3376 * reference of a page being mapped (for the PTE which maps it). 3377 * 3378 * Return: %0 on success, %VM_FAULT_ code in case of error. 3379 */ 3380 vm_fault_t finish_fault(struct vm_fault *vmf) 3381 { 3382 struct page *page; 3383 vm_fault_t ret = 0; 3384 3385 /* Did we COW the page? */ 3386 if ((vmf->flags & FAULT_FLAG_WRITE) && 3387 !(vmf->vma->vm_flags & VM_SHARED)) 3388 page = vmf->cow_page; 3389 else 3390 page = vmf->page; 3391 3392 /* 3393 * check even for read faults because we might have lost our CoWed 3394 * page 3395 */ 3396 if (!(vmf->vma->vm_flags & VM_SHARED)) 3397 ret = check_stable_address_space(vmf->vma->vm_mm); 3398 if (!ret) 3399 ret = alloc_set_pte(vmf, vmf->memcg, page); 3400 if (vmf->pte) 3401 pte_unmap_unlock(vmf->pte, vmf->ptl); 3402 return ret; 3403 } 3404 3405 static unsigned long fault_around_bytes __read_mostly = 3406 rounddown_pow_of_two(65536); 3407 3408 #ifdef CONFIG_DEBUG_FS 3409 static int fault_around_bytes_get(void *data, u64 *val) 3410 { 3411 *val = fault_around_bytes; 3412 return 0; 3413 } 3414 3415 /* 3416 * fault_around_bytes must be rounded down to the nearest page order as it's 3417 * what do_fault_around() expects to see. 3418 */ 3419 static int fault_around_bytes_set(void *data, u64 val) 3420 { 3421 if (val / PAGE_SIZE > PTRS_PER_PTE) 3422 return -EINVAL; 3423 if (val > PAGE_SIZE) 3424 fault_around_bytes = rounddown_pow_of_two(val); 3425 else 3426 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3427 return 0; 3428 } 3429 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3430 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3431 3432 static int __init fault_around_debugfs(void) 3433 { 3434 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3435 &fault_around_bytes_fops); 3436 return 0; 3437 } 3438 late_initcall(fault_around_debugfs); 3439 #endif 3440 3441 /* 3442 * do_fault_around() tries to map few pages around the fault address. The hope 3443 * is that the pages will be needed soon and this will lower the number of 3444 * faults to handle. 3445 * 3446 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3447 * not ready to be mapped: not up-to-date, locked, etc. 3448 * 3449 * This function is called with the page table lock taken. In the split ptlock 3450 * case the page table lock only protects only those entries which belong to 3451 * the page table corresponding to the fault address. 3452 * 3453 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3454 * only once. 3455 * 3456 * fault_around_bytes defines how many bytes we'll try to map. 3457 * do_fault_around() expects it to be set to a power of two less than or equal 3458 * to PTRS_PER_PTE. 3459 * 3460 * The virtual address of the area that we map is naturally aligned to 3461 * fault_around_bytes rounded down to the machine page size 3462 * (and therefore to page order). This way it's easier to guarantee 3463 * that we don't cross page table boundaries. 3464 */ 3465 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3466 { 3467 unsigned long address = vmf->address, nr_pages, mask; 3468 pgoff_t start_pgoff = vmf->pgoff; 3469 pgoff_t end_pgoff; 3470 int off; 3471 vm_fault_t ret = 0; 3472 3473 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3474 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3475 3476 vmf->address = max(address & mask, vmf->vma->vm_start); 3477 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3478 start_pgoff -= off; 3479 3480 /* 3481 * end_pgoff is either the end of the page table, the end of 3482 * the vma or nr_pages from start_pgoff, depending what is nearest. 3483 */ 3484 end_pgoff = start_pgoff - 3485 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3486 PTRS_PER_PTE - 1; 3487 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3488 start_pgoff + nr_pages - 1); 3489 3490 if (pmd_none(*vmf->pmd)) { 3491 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3492 if (!vmf->prealloc_pte) 3493 goto out; 3494 smp_wmb(); /* See comment in __pte_alloc() */ 3495 } 3496 3497 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3498 3499 /* Huge page is mapped? Page fault is solved */ 3500 if (pmd_trans_huge(*vmf->pmd)) { 3501 ret = VM_FAULT_NOPAGE; 3502 goto out; 3503 } 3504 3505 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3506 if (!vmf->pte) 3507 goto out; 3508 3509 /* check if the page fault is solved */ 3510 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3511 if (!pte_none(*vmf->pte)) 3512 ret = VM_FAULT_NOPAGE; 3513 pte_unmap_unlock(vmf->pte, vmf->ptl); 3514 out: 3515 vmf->address = address; 3516 vmf->pte = NULL; 3517 return ret; 3518 } 3519 3520 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3521 { 3522 struct vm_area_struct *vma = vmf->vma; 3523 vm_fault_t ret = 0; 3524 3525 /* 3526 * Let's call ->map_pages() first and use ->fault() as fallback 3527 * if page by the offset is not ready to be mapped (cold cache or 3528 * something). 3529 */ 3530 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3531 ret = do_fault_around(vmf); 3532 if (ret) 3533 return ret; 3534 } 3535 3536 ret = __do_fault(vmf); 3537 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3538 return ret; 3539 3540 ret |= finish_fault(vmf); 3541 unlock_page(vmf->page); 3542 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3543 put_page(vmf->page); 3544 return ret; 3545 } 3546 3547 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3548 { 3549 struct vm_area_struct *vma = vmf->vma; 3550 vm_fault_t ret; 3551 3552 if (unlikely(anon_vma_prepare(vma))) 3553 return VM_FAULT_OOM; 3554 3555 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3556 if (!vmf->cow_page) 3557 return VM_FAULT_OOM; 3558 3559 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3560 &vmf->memcg, false)) { 3561 put_page(vmf->cow_page); 3562 return VM_FAULT_OOM; 3563 } 3564 3565 ret = __do_fault(vmf); 3566 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3567 goto uncharge_out; 3568 if (ret & VM_FAULT_DONE_COW) 3569 return ret; 3570 3571 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3572 __SetPageUptodate(vmf->cow_page); 3573 3574 ret |= finish_fault(vmf); 3575 unlock_page(vmf->page); 3576 put_page(vmf->page); 3577 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3578 goto uncharge_out; 3579 return ret; 3580 uncharge_out: 3581 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3582 put_page(vmf->cow_page); 3583 return ret; 3584 } 3585 3586 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3587 { 3588 struct vm_area_struct *vma = vmf->vma; 3589 vm_fault_t ret, tmp; 3590 3591 ret = __do_fault(vmf); 3592 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3593 return ret; 3594 3595 /* 3596 * Check if the backing address space wants to know that the page is 3597 * about to become writable 3598 */ 3599 if (vma->vm_ops->page_mkwrite) { 3600 unlock_page(vmf->page); 3601 tmp = do_page_mkwrite(vmf); 3602 if (unlikely(!tmp || 3603 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3604 put_page(vmf->page); 3605 return tmp; 3606 } 3607 } 3608 3609 ret |= finish_fault(vmf); 3610 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3611 VM_FAULT_RETRY))) { 3612 unlock_page(vmf->page); 3613 put_page(vmf->page); 3614 return ret; 3615 } 3616 3617 fault_dirty_shared_page(vma, vmf->page); 3618 return ret; 3619 } 3620 3621 /* 3622 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3623 * but allow concurrent faults). 3624 * The mmap_sem may have been released depending on flags and our 3625 * return value. See filemap_fault() and __lock_page_or_retry(). 3626 * If mmap_sem is released, vma may become invalid (for example 3627 * by other thread calling munmap()). 3628 */ 3629 static vm_fault_t do_fault(struct vm_fault *vmf) 3630 { 3631 struct vm_area_struct *vma = vmf->vma; 3632 struct mm_struct *vm_mm = vma->vm_mm; 3633 vm_fault_t ret; 3634 3635 /* 3636 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3637 */ 3638 if (!vma->vm_ops->fault) { 3639 /* 3640 * If we find a migration pmd entry or a none pmd entry, which 3641 * should never happen, return SIGBUS 3642 */ 3643 if (unlikely(!pmd_present(*vmf->pmd))) 3644 ret = VM_FAULT_SIGBUS; 3645 else { 3646 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3647 vmf->pmd, 3648 vmf->address, 3649 &vmf->ptl); 3650 /* 3651 * Make sure this is not a temporary clearing of pte 3652 * by holding ptl and checking again. A R/M/W update 3653 * of pte involves: take ptl, clearing the pte so that 3654 * we don't have concurrent modification by hardware 3655 * followed by an update. 3656 */ 3657 if (unlikely(pte_none(*vmf->pte))) 3658 ret = VM_FAULT_SIGBUS; 3659 else 3660 ret = VM_FAULT_NOPAGE; 3661 3662 pte_unmap_unlock(vmf->pte, vmf->ptl); 3663 } 3664 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3665 ret = do_read_fault(vmf); 3666 else if (!(vma->vm_flags & VM_SHARED)) 3667 ret = do_cow_fault(vmf); 3668 else 3669 ret = do_shared_fault(vmf); 3670 3671 /* preallocated pagetable is unused: free it */ 3672 if (vmf->prealloc_pte) { 3673 pte_free(vm_mm, vmf->prealloc_pte); 3674 vmf->prealloc_pte = NULL; 3675 } 3676 return ret; 3677 } 3678 3679 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3680 unsigned long addr, int page_nid, 3681 int *flags) 3682 { 3683 get_page(page); 3684 3685 count_vm_numa_event(NUMA_HINT_FAULTS); 3686 if (page_nid == numa_node_id()) { 3687 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3688 *flags |= TNF_FAULT_LOCAL; 3689 } 3690 3691 return mpol_misplaced(page, vma, addr); 3692 } 3693 3694 static vm_fault_t do_numa_page(struct vm_fault *vmf) 3695 { 3696 struct vm_area_struct *vma = vmf->vma; 3697 struct page *page = NULL; 3698 int page_nid = NUMA_NO_NODE; 3699 int last_cpupid; 3700 int target_nid; 3701 bool migrated = false; 3702 pte_t pte, old_pte; 3703 bool was_writable = pte_savedwrite(vmf->orig_pte); 3704 int flags = 0; 3705 3706 /* 3707 * The "pte" at this point cannot be used safely without 3708 * validation through pte_unmap_same(). It's of NUMA type but 3709 * the pfn may be screwed if the read is non atomic. 3710 */ 3711 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3712 spin_lock(vmf->ptl); 3713 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3714 pte_unmap_unlock(vmf->pte, vmf->ptl); 3715 goto out; 3716 } 3717 3718 /* 3719 * Make it present again, Depending on how arch implementes non 3720 * accessible ptes, some can allow access by kernel mode. 3721 */ 3722 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 3723 pte = pte_modify(old_pte, vma->vm_page_prot); 3724 pte = pte_mkyoung(pte); 3725 if (was_writable) 3726 pte = pte_mkwrite(pte); 3727 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 3728 update_mmu_cache(vma, vmf->address, vmf->pte); 3729 3730 page = vm_normal_page(vma, vmf->address, pte); 3731 if (!page) { 3732 pte_unmap_unlock(vmf->pte, vmf->ptl); 3733 return 0; 3734 } 3735 3736 /* TODO: handle PTE-mapped THP */ 3737 if (PageCompound(page)) { 3738 pte_unmap_unlock(vmf->pte, vmf->ptl); 3739 return 0; 3740 } 3741 3742 /* 3743 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3744 * much anyway since they can be in shared cache state. This misses 3745 * the case where a mapping is writable but the process never writes 3746 * to it but pte_write gets cleared during protection updates and 3747 * pte_dirty has unpredictable behaviour between PTE scan updates, 3748 * background writeback, dirty balancing and application behaviour. 3749 */ 3750 if (!pte_write(pte)) 3751 flags |= TNF_NO_GROUP; 3752 3753 /* 3754 * Flag if the page is shared between multiple address spaces. This 3755 * is later used when determining whether to group tasks together 3756 */ 3757 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3758 flags |= TNF_SHARED; 3759 3760 last_cpupid = page_cpupid_last(page); 3761 page_nid = page_to_nid(page); 3762 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3763 &flags); 3764 pte_unmap_unlock(vmf->pte, vmf->ptl); 3765 if (target_nid == NUMA_NO_NODE) { 3766 put_page(page); 3767 goto out; 3768 } 3769 3770 /* Migrate to the requested node */ 3771 migrated = migrate_misplaced_page(page, vma, target_nid); 3772 if (migrated) { 3773 page_nid = target_nid; 3774 flags |= TNF_MIGRATED; 3775 } else 3776 flags |= TNF_MIGRATE_FAIL; 3777 3778 out: 3779 if (page_nid != NUMA_NO_NODE) 3780 task_numa_fault(last_cpupid, page_nid, 1, flags); 3781 return 0; 3782 } 3783 3784 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 3785 { 3786 if (vma_is_anonymous(vmf->vma)) 3787 return do_huge_pmd_anonymous_page(vmf); 3788 if (vmf->vma->vm_ops->huge_fault) 3789 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3790 return VM_FAULT_FALLBACK; 3791 } 3792 3793 /* `inline' is required to avoid gcc 4.1.2 build error */ 3794 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3795 { 3796 if (vma_is_anonymous(vmf->vma)) 3797 return do_huge_pmd_wp_page(vmf, orig_pmd); 3798 if (vmf->vma->vm_ops->huge_fault) 3799 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3800 3801 /* COW handled on pte level: split pmd */ 3802 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3803 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3804 3805 return VM_FAULT_FALLBACK; 3806 } 3807 3808 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3809 { 3810 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3811 } 3812 3813 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 3814 { 3815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3816 /* No support for anonymous transparent PUD pages yet */ 3817 if (vma_is_anonymous(vmf->vma)) 3818 return VM_FAULT_FALLBACK; 3819 if (vmf->vma->vm_ops->huge_fault) 3820 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3821 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3822 return VM_FAULT_FALLBACK; 3823 } 3824 3825 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3826 { 3827 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3828 /* No support for anonymous transparent PUD pages yet */ 3829 if (vma_is_anonymous(vmf->vma)) 3830 return VM_FAULT_FALLBACK; 3831 if (vmf->vma->vm_ops->huge_fault) 3832 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3833 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3834 return VM_FAULT_FALLBACK; 3835 } 3836 3837 /* 3838 * These routines also need to handle stuff like marking pages dirty 3839 * and/or accessed for architectures that don't do it in hardware (most 3840 * RISC architectures). The early dirtying is also good on the i386. 3841 * 3842 * There is also a hook called "update_mmu_cache()" that architectures 3843 * with external mmu caches can use to update those (ie the Sparc or 3844 * PowerPC hashed page tables that act as extended TLBs). 3845 * 3846 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3847 * concurrent faults). 3848 * 3849 * The mmap_sem may have been released depending on flags and our return value. 3850 * See filemap_fault() and __lock_page_or_retry(). 3851 */ 3852 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 3853 { 3854 pte_t entry; 3855 3856 if (unlikely(pmd_none(*vmf->pmd))) { 3857 /* 3858 * Leave __pte_alloc() until later: because vm_ops->fault may 3859 * want to allocate huge page, and if we expose page table 3860 * for an instant, it will be difficult to retract from 3861 * concurrent faults and from rmap lookups. 3862 */ 3863 vmf->pte = NULL; 3864 } else { 3865 /* See comment in pte_alloc_one_map() */ 3866 if (pmd_devmap_trans_unstable(vmf->pmd)) 3867 return 0; 3868 /* 3869 * A regular pmd is established and it can't morph into a huge 3870 * pmd from under us anymore at this point because we hold the 3871 * mmap_sem read mode and khugepaged takes it in write mode. 3872 * So now it's safe to run pte_offset_map(). 3873 */ 3874 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3875 vmf->orig_pte = *vmf->pte; 3876 3877 /* 3878 * some architectures can have larger ptes than wordsize, 3879 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3880 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3881 * accesses. The code below just needs a consistent view 3882 * for the ifs and we later double check anyway with the 3883 * ptl lock held. So here a barrier will do. 3884 */ 3885 barrier(); 3886 if (pte_none(vmf->orig_pte)) { 3887 pte_unmap(vmf->pte); 3888 vmf->pte = NULL; 3889 } 3890 } 3891 3892 if (!vmf->pte) { 3893 if (vma_is_anonymous(vmf->vma)) 3894 return do_anonymous_page(vmf); 3895 else 3896 return do_fault(vmf); 3897 } 3898 3899 if (!pte_present(vmf->orig_pte)) 3900 return do_swap_page(vmf); 3901 3902 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3903 return do_numa_page(vmf); 3904 3905 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3906 spin_lock(vmf->ptl); 3907 entry = vmf->orig_pte; 3908 if (unlikely(!pte_same(*vmf->pte, entry))) 3909 goto unlock; 3910 if (vmf->flags & FAULT_FLAG_WRITE) { 3911 if (!pte_write(entry)) 3912 return do_wp_page(vmf); 3913 entry = pte_mkdirty(entry); 3914 } 3915 entry = pte_mkyoung(entry); 3916 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3917 vmf->flags & FAULT_FLAG_WRITE)) { 3918 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3919 } else { 3920 /* 3921 * This is needed only for protection faults but the arch code 3922 * is not yet telling us if this is a protection fault or not. 3923 * This still avoids useless tlb flushes for .text page faults 3924 * with threads. 3925 */ 3926 if (vmf->flags & FAULT_FLAG_WRITE) 3927 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3928 } 3929 unlock: 3930 pte_unmap_unlock(vmf->pte, vmf->ptl); 3931 return 0; 3932 } 3933 3934 /* 3935 * By the time we get here, we already hold the mm semaphore 3936 * 3937 * The mmap_sem may have been released depending on flags and our 3938 * return value. See filemap_fault() and __lock_page_or_retry(). 3939 */ 3940 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 3941 unsigned long address, unsigned int flags) 3942 { 3943 struct vm_fault vmf = { 3944 .vma = vma, 3945 .address = address & PAGE_MASK, 3946 .flags = flags, 3947 .pgoff = linear_page_index(vma, address), 3948 .gfp_mask = __get_fault_gfp_mask(vma), 3949 }; 3950 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3951 struct mm_struct *mm = vma->vm_mm; 3952 pgd_t *pgd; 3953 p4d_t *p4d; 3954 vm_fault_t ret; 3955 3956 pgd = pgd_offset(mm, address); 3957 p4d = p4d_alloc(mm, pgd, address); 3958 if (!p4d) 3959 return VM_FAULT_OOM; 3960 3961 vmf.pud = pud_alloc(mm, p4d, address); 3962 if (!vmf.pud) 3963 return VM_FAULT_OOM; 3964 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 3965 ret = create_huge_pud(&vmf); 3966 if (!(ret & VM_FAULT_FALLBACK)) 3967 return ret; 3968 } else { 3969 pud_t orig_pud = *vmf.pud; 3970 3971 barrier(); 3972 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 3973 3974 /* NUMA case for anonymous PUDs would go here */ 3975 3976 if (dirty && !pud_write(orig_pud)) { 3977 ret = wp_huge_pud(&vmf, orig_pud); 3978 if (!(ret & VM_FAULT_FALLBACK)) 3979 return ret; 3980 } else { 3981 huge_pud_set_accessed(&vmf, orig_pud); 3982 return 0; 3983 } 3984 } 3985 } 3986 3987 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 3988 if (!vmf.pmd) 3989 return VM_FAULT_OOM; 3990 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 3991 ret = create_huge_pmd(&vmf); 3992 if (!(ret & VM_FAULT_FALLBACK)) 3993 return ret; 3994 } else { 3995 pmd_t orig_pmd = *vmf.pmd; 3996 3997 barrier(); 3998 if (unlikely(is_swap_pmd(orig_pmd))) { 3999 VM_BUG_ON(thp_migration_supported() && 4000 !is_pmd_migration_entry(orig_pmd)); 4001 if (is_pmd_migration_entry(orig_pmd)) 4002 pmd_migration_entry_wait(mm, vmf.pmd); 4003 return 0; 4004 } 4005 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4006 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4007 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4008 4009 if (dirty && !pmd_write(orig_pmd)) { 4010 ret = wp_huge_pmd(&vmf, orig_pmd); 4011 if (!(ret & VM_FAULT_FALLBACK)) 4012 return ret; 4013 } else { 4014 huge_pmd_set_accessed(&vmf, orig_pmd); 4015 return 0; 4016 } 4017 } 4018 } 4019 4020 return handle_pte_fault(&vmf); 4021 } 4022 4023 /* 4024 * By the time we get here, we already hold the mm semaphore 4025 * 4026 * The mmap_sem may have been released depending on flags and our 4027 * return value. See filemap_fault() and __lock_page_or_retry(). 4028 */ 4029 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4030 unsigned int flags) 4031 { 4032 vm_fault_t ret; 4033 4034 __set_current_state(TASK_RUNNING); 4035 4036 count_vm_event(PGFAULT); 4037 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4038 4039 /* do counter updates before entering really critical section. */ 4040 check_sync_rss_stat(current); 4041 4042 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4043 flags & FAULT_FLAG_INSTRUCTION, 4044 flags & FAULT_FLAG_REMOTE)) 4045 return VM_FAULT_SIGSEGV; 4046 4047 /* 4048 * Enable the memcg OOM handling for faults triggered in user 4049 * space. Kernel faults are handled more gracefully. 4050 */ 4051 if (flags & FAULT_FLAG_USER) 4052 mem_cgroup_enter_user_fault(); 4053 4054 if (unlikely(is_vm_hugetlb_page(vma))) 4055 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4056 else 4057 ret = __handle_mm_fault(vma, address, flags); 4058 4059 if (flags & FAULT_FLAG_USER) { 4060 mem_cgroup_exit_user_fault(); 4061 /* 4062 * The task may have entered a memcg OOM situation but 4063 * if the allocation error was handled gracefully (no 4064 * VM_FAULT_OOM), there is no need to kill anything. 4065 * Just clean up the OOM state peacefully. 4066 */ 4067 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4068 mem_cgroup_oom_synchronize(false); 4069 } 4070 4071 return ret; 4072 } 4073 EXPORT_SYMBOL_GPL(handle_mm_fault); 4074 4075 #ifndef __PAGETABLE_P4D_FOLDED 4076 /* 4077 * Allocate p4d page table. 4078 * We've already handled the fast-path in-line. 4079 */ 4080 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4081 { 4082 p4d_t *new = p4d_alloc_one(mm, address); 4083 if (!new) 4084 return -ENOMEM; 4085 4086 smp_wmb(); /* See comment in __pte_alloc */ 4087 4088 spin_lock(&mm->page_table_lock); 4089 if (pgd_present(*pgd)) /* Another has populated it */ 4090 p4d_free(mm, new); 4091 else 4092 pgd_populate(mm, pgd, new); 4093 spin_unlock(&mm->page_table_lock); 4094 return 0; 4095 } 4096 #endif /* __PAGETABLE_P4D_FOLDED */ 4097 4098 #ifndef __PAGETABLE_PUD_FOLDED 4099 /* 4100 * Allocate page upper directory. 4101 * We've already handled the fast-path in-line. 4102 */ 4103 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4104 { 4105 pud_t *new = pud_alloc_one(mm, address); 4106 if (!new) 4107 return -ENOMEM; 4108 4109 smp_wmb(); /* See comment in __pte_alloc */ 4110 4111 spin_lock(&mm->page_table_lock); 4112 #ifndef __ARCH_HAS_5LEVEL_HACK 4113 if (!p4d_present(*p4d)) { 4114 mm_inc_nr_puds(mm); 4115 p4d_populate(mm, p4d, new); 4116 } else /* Another has populated it */ 4117 pud_free(mm, new); 4118 #else 4119 if (!pgd_present(*p4d)) { 4120 mm_inc_nr_puds(mm); 4121 pgd_populate(mm, p4d, new); 4122 } else /* Another has populated it */ 4123 pud_free(mm, new); 4124 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4125 spin_unlock(&mm->page_table_lock); 4126 return 0; 4127 } 4128 #endif /* __PAGETABLE_PUD_FOLDED */ 4129 4130 #ifndef __PAGETABLE_PMD_FOLDED 4131 /* 4132 * Allocate page middle directory. 4133 * We've already handled the fast-path in-line. 4134 */ 4135 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4136 { 4137 spinlock_t *ptl; 4138 pmd_t *new = pmd_alloc_one(mm, address); 4139 if (!new) 4140 return -ENOMEM; 4141 4142 smp_wmb(); /* See comment in __pte_alloc */ 4143 4144 ptl = pud_lock(mm, pud); 4145 #ifndef __ARCH_HAS_4LEVEL_HACK 4146 if (!pud_present(*pud)) { 4147 mm_inc_nr_pmds(mm); 4148 pud_populate(mm, pud, new); 4149 } else /* Another has populated it */ 4150 pmd_free(mm, new); 4151 #else 4152 if (!pgd_present(*pud)) { 4153 mm_inc_nr_pmds(mm); 4154 pgd_populate(mm, pud, new); 4155 } else /* Another has populated it */ 4156 pmd_free(mm, new); 4157 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4158 spin_unlock(ptl); 4159 return 0; 4160 } 4161 #endif /* __PAGETABLE_PMD_FOLDED */ 4162 4163 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4164 struct mmu_notifier_range *range, 4165 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4166 { 4167 pgd_t *pgd; 4168 p4d_t *p4d; 4169 pud_t *pud; 4170 pmd_t *pmd; 4171 pte_t *ptep; 4172 4173 pgd = pgd_offset(mm, address); 4174 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4175 goto out; 4176 4177 p4d = p4d_offset(pgd, address); 4178 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4179 goto out; 4180 4181 pud = pud_offset(p4d, address); 4182 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4183 goto out; 4184 4185 pmd = pmd_offset(pud, address); 4186 VM_BUG_ON(pmd_trans_huge(*pmd)); 4187 4188 if (pmd_huge(*pmd)) { 4189 if (!pmdpp) 4190 goto out; 4191 4192 if (range) { 4193 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4194 NULL, mm, address & PMD_MASK, 4195 (address & PMD_MASK) + PMD_SIZE); 4196 mmu_notifier_invalidate_range_start(range); 4197 } 4198 *ptlp = pmd_lock(mm, pmd); 4199 if (pmd_huge(*pmd)) { 4200 *pmdpp = pmd; 4201 return 0; 4202 } 4203 spin_unlock(*ptlp); 4204 if (range) 4205 mmu_notifier_invalidate_range_end(range); 4206 } 4207 4208 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4209 goto out; 4210 4211 if (range) { 4212 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4213 address & PAGE_MASK, 4214 (address & PAGE_MASK) + PAGE_SIZE); 4215 mmu_notifier_invalidate_range_start(range); 4216 } 4217 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4218 if (!pte_present(*ptep)) 4219 goto unlock; 4220 *ptepp = ptep; 4221 return 0; 4222 unlock: 4223 pte_unmap_unlock(ptep, *ptlp); 4224 if (range) 4225 mmu_notifier_invalidate_range_end(range); 4226 out: 4227 return -EINVAL; 4228 } 4229 4230 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4231 pte_t **ptepp, spinlock_t **ptlp) 4232 { 4233 int res; 4234 4235 /* (void) is needed to make gcc happy */ 4236 (void) __cond_lock(*ptlp, 4237 !(res = __follow_pte_pmd(mm, address, NULL, 4238 ptepp, NULL, ptlp))); 4239 return res; 4240 } 4241 4242 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4243 struct mmu_notifier_range *range, 4244 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4245 { 4246 int res; 4247 4248 /* (void) is needed to make gcc happy */ 4249 (void) __cond_lock(*ptlp, 4250 !(res = __follow_pte_pmd(mm, address, range, 4251 ptepp, pmdpp, ptlp))); 4252 return res; 4253 } 4254 EXPORT_SYMBOL(follow_pte_pmd); 4255 4256 /** 4257 * follow_pfn - look up PFN at a user virtual address 4258 * @vma: memory mapping 4259 * @address: user virtual address 4260 * @pfn: location to store found PFN 4261 * 4262 * Only IO mappings and raw PFN mappings are allowed. 4263 * 4264 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4265 */ 4266 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4267 unsigned long *pfn) 4268 { 4269 int ret = -EINVAL; 4270 spinlock_t *ptl; 4271 pte_t *ptep; 4272 4273 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4274 return ret; 4275 4276 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4277 if (ret) 4278 return ret; 4279 *pfn = pte_pfn(*ptep); 4280 pte_unmap_unlock(ptep, ptl); 4281 return 0; 4282 } 4283 EXPORT_SYMBOL(follow_pfn); 4284 4285 #ifdef CONFIG_HAVE_IOREMAP_PROT 4286 int follow_phys(struct vm_area_struct *vma, 4287 unsigned long address, unsigned int flags, 4288 unsigned long *prot, resource_size_t *phys) 4289 { 4290 int ret = -EINVAL; 4291 pte_t *ptep, pte; 4292 spinlock_t *ptl; 4293 4294 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4295 goto out; 4296 4297 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4298 goto out; 4299 pte = *ptep; 4300 4301 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4302 goto unlock; 4303 4304 *prot = pgprot_val(pte_pgprot(pte)); 4305 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4306 4307 ret = 0; 4308 unlock: 4309 pte_unmap_unlock(ptep, ptl); 4310 out: 4311 return ret; 4312 } 4313 4314 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4315 void *buf, int len, int write) 4316 { 4317 resource_size_t phys_addr; 4318 unsigned long prot = 0; 4319 void __iomem *maddr; 4320 int offset = addr & (PAGE_SIZE-1); 4321 4322 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4323 return -EINVAL; 4324 4325 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4326 if (!maddr) 4327 return -ENOMEM; 4328 4329 if (write) 4330 memcpy_toio(maddr + offset, buf, len); 4331 else 4332 memcpy_fromio(buf, maddr + offset, len); 4333 iounmap(maddr); 4334 4335 return len; 4336 } 4337 EXPORT_SYMBOL_GPL(generic_access_phys); 4338 #endif 4339 4340 /* 4341 * Access another process' address space as given in mm. If non-NULL, use the 4342 * given task for page fault accounting. 4343 */ 4344 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4345 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4346 { 4347 struct vm_area_struct *vma; 4348 void *old_buf = buf; 4349 int write = gup_flags & FOLL_WRITE; 4350 4351 down_read(&mm->mmap_sem); 4352 /* ignore errors, just check how much was successfully transferred */ 4353 while (len) { 4354 int bytes, ret, offset; 4355 void *maddr; 4356 struct page *page = NULL; 4357 4358 ret = get_user_pages_remote(tsk, mm, addr, 1, 4359 gup_flags, &page, &vma, NULL); 4360 if (ret <= 0) { 4361 #ifndef CONFIG_HAVE_IOREMAP_PROT 4362 break; 4363 #else 4364 /* 4365 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4366 * we can access using slightly different code. 4367 */ 4368 vma = find_vma(mm, addr); 4369 if (!vma || vma->vm_start > addr) 4370 break; 4371 if (vma->vm_ops && vma->vm_ops->access) 4372 ret = vma->vm_ops->access(vma, addr, buf, 4373 len, write); 4374 if (ret <= 0) 4375 break; 4376 bytes = ret; 4377 #endif 4378 } else { 4379 bytes = len; 4380 offset = addr & (PAGE_SIZE-1); 4381 if (bytes > PAGE_SIZE-offset) 4382 bytes = PAGE_SIZE-offset; 4383 4384 maddr = kmap(page); 4385 if (write) { 4386 copy_to_user_page(vma, page, addr, 4387 maddr + offset, buf, bytes); 4388 set_page_dirty_lock(page); 4389 } else { 4390 copy_from_user_page(vma, page, addr, 4391 buf, maddr + offset, bytes); 4392 } 4393 kunmap(page); 4394 put_page(page); 4395 } 4396 len -= bytes; 4397 buf += bytes; 4398 addr += bytes; 4399 } 4400 up_read(&mm->mmap_sem); 4401 4402 return buf - old_buf; 4403 } 4404 4405 /** 4406 * access_remote_vm - access another process' address space 4407 * @mm: the mm_struct of the target address space 4408 * @addr: start address to access 4409 * @buf: source or destination buffer 4410 * @len: number of bytes to transfer 4411 * @gup_flags: flags modifying lookup behaviour 4412 * 4413 * The caller must hold a reference on @mm. 4414 * 4415 * Return: number of bytes copied from source to destination. 4416 */ 4417 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4418 void *buf, int len, unsigned int gup_flags) 4419 { 4420 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4421 } 4422 4423 /* 4424 * Access another process' address space. 4425 * Source/target buffer must be kernel space, 4426 * Do not walk the page table directly, use get_user_pages 4427 */ 4428 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4429 void *buf, int len, unsigned int gup_flags) 4430 { 4431 struct mm_struct *mm; 4432 int ret; 4433 4434 mm = get_task_mm(tsk); 4435 if (!mm) 4436 return 0; 4437 4438 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4439 4440 mmput(mm); 4441 4442 return ret; 4443 } 4444 EXPORT_SYMBOL_GPL(access_process_vm); 4445 4446 /* 4447 * Print the name of a VMA. 4448 */ 4449 void print_vma_addr(char *prefix, unsigned long ip) 4450 { 4451 struct mm_struct *mm = current->mm; 4452 struct vm_area_struct *vma; 4453 4454 /* 4455 * we might be running from an atomic context so we cannot sleep 4456 */ 4457 if (!down_read_trylock(&mm->mmap_sem)) 4458 return; 4459 4460 vma = find_vma(mm, ip); 4461 if (vma && vma->vm_file) { 4462 struct file *f = vma->vm_file; 4463 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4464 if (buf) { 4465 char *p; 4466 4467 p = file_path(f, buf, PAGE_SIZE); 4468 if (IS_ERR(p)) 4469 p = "?"; 4470 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4471 vma->vm_start, 4472 vma->vm_end - vma->vm_start); 4473 free_page((unsigned long)buf); 4474 } 4475 } 4476 up_read(&mm->mmap_sem); 4477 } 4478 4479 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4480 void __might_fault(const char *file, int line) 4481 { 4482 /* 4483 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4484 * holding the mmap_sem, this is safe because kernel memory doesn't 4485 * get paged out, therefore we'll never actually fault, and the 4486 * below annotations will generate false positives. 4487 */ 4488 if (uaccess_kernel()) 4489 return; 4490 if (pagefault_disabled()) 4491 return; 4492 __might_sleep(file, line, 0); 4493 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4494 if (current->mm) 4495 might_lock_read(¤t->mm->mmap_sem); 4496 #endif 4497 } 4498 EXPORT_SYMBOL(__might_fault); 4499 #endif 4500 4501 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4502 /* 4503 * Process all subpages of the specified huge page with the specified 4504 * operation. The target subpage will be processed last to keep its 4505 * cache lines hot. 4506 */ 4507 static inline void process_huge_page( 4508 unsigned long addr_hint, unsigned int pages_per_huge_page, 4509 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4510 void *arg) 4511 { 4512 int i, n, base, l; 4513 unsigned long addr = addr_hint & 4514 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4515 4516 /* Process target subpage last to keep its cache lines hot */ 4517 might_sleep(); 4518 n = (addr_hint - addr) / PAGE_SIZE; 4519 if (2 * n <= pages_per_huge_page) { 4520 /* If target subpage in first half of huge page */ 4521 base = 0; 4522 l = n; 4523 /* Process subpages at the end of huge page */ 4524 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4525 cond_resched(); 4526 process_subpage(addr + i * PAGE_SIZE, i, arg); 4527 } 4528 } else { 4529 /* If target subpage in second half of huge page */ 4530 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4531 l = pages_per_huge_page - n; 4532 /* Process subpages at the begin of huge page */ 4533 for (i = 0; i < base; i++) { 4534 cond_resched(); 4535 process_subpage(addr + i * PAGE_SIZE, i, arg); 4536 } 4537 } 4538 /* 4539 * Process remaining subpages in left-right-left-right pattern 4540 * towards the target subpage 4541 */ 4542 for (i = 0; i < l; i++) { 4543 int left_idx = base + i; 4544 int right_idx = base + 2 * l - 1 - i; 4545 4546 cond_resched(); 4547 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4548 cond_resched(); 4549 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4550 } 4551 } 4552 4553 static void clear_gigantic_page(struct page *page, 4554 unsigned long addr, 4555 unsigned int pages_per_huge_page) 4556 { 4557 int i; 4558 struct page *p = page; 4559 4560 might_sleep(); 4561 for (i = 0; i < pages_per_huge_page; 4562 i++, p = mem_map_next(p, page, i)) { 4563 cond_resched(); 4564 clear_user_highpage(p, addr + i * PAGE_SIZE); 4565 } 4566 } 4567 4568 static void clear_subpage(unsigned long addr, int idx, void *arg) 4569 { 4570 struct page *page = arg; 4571 4572 clear_user_highpage(page + idx, addr); 4573 } 4574 4575 void clear_huge_page(struct page *page, 4576 unsigned long addr_hint, unsigned int pages_per_huge_page) 4577 { 4578 unsigned long addr = addr_hint & 4579 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4580 4581 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4582 clear_gigantic_page(page, addr, pages_per_huge_page); 4583 return; 4584 } 4585 4586 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4587 } 4588 4589 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4590 unsigned long addr, 4591 struct vm_area_struct *vma, 4592 unsigned int pages_per_huge_page) 4593 { 4594 int i; 4595 struct page *dst_base = dst; 4596 struct page *src_base = src; 4597 4598 for (i = 0; i < pages_per_huge_page; ) { 4599 cond_resched(); 4600 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4601 4602 i++; 4603 dst = mem_map_next(dst, dst_base, i); 4604 src = mem_map_next(src, src_base, i); 4605 } 4606 } 4607 4608 struct copy_subpage_arg { 4609 struct page *dst; 4610 struct page *src; 4611 struct vm_area_struct *vma; 4612 }; 4613 4614 static void copy_subpage(unsigned long addr, int idx, void *arg) 4615 { 4616 struct copy_subpage_arg *copy_arg = arg; 4617 4618 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4619 addr, copy_arg->vma); 4620 } 4621 4622 void copy_user_huge_page(struct page *dst, struct page *src, 4623 unsigned long addr_hint, struct vm_area_struct *vma, 4624 unsigned int pages_per_huge_page) 4625 { 4626 unsigned long addr = addr_hint & 4627 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4628 struct copy_subpage_arg arg = { 4629 .dst = dst, 4630 .src = src, 4631 .vma = vma, 4632 }; 4633 4634 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4635 copy_user_gigantic_page(dst, src, addr, vma, 4636 pages_per_huge_page); 4637 return; 4638 } 4639 4640 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4641 } 4642 4643 long copy_huge_page_from_user(struct page *dst_page, 4644 const void __user *usr_src, 4645 unsigned int pages_per_huge_page, 4646 bool allow_pagefault) 4647 { 4648 void *src = (void *)usr_src; 4649 void *page_kaddr; 4650 unsigned long i, rc = 0; 4651 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4652 4653 for (i = 0; i < pages_per_huge_page; i++) { 4654 if (allow_pagefault) 4655 page_kaddr = kmap(dst_page + i); 4656 else 4657 page_kaddr = kmap_atomic(dst_page + i); 4658 rc = copy_from_user(page_kaddr, 4659 (const void __user *)(src + i * PAGE_SIZE), 4660 PAGE_SIZE); 4661 if (allow_pagefault) 4662 kunmap(dst_page + i); 4663 else 4664 kunmap_atomic(page_kaddr); 4665 4666 ret_val -= (PAGE_SIZE - rc); 4667 if (rc) 4668 break; 4669 4670 cond_resched(); 4671 } 4672 return ret_val; 4673 } 4674 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4675 4676 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4677 4678 static struct kmem_cache *page_ptl_cachep; 4679 4680 void __init ptlock_cache_init(void) 4681 { 4682 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4683 SLAB_PANIC, NULL); 4684 } 4685 4686 bool ptlock_alloc(struct page *page) 4687 { 4688 spinlock_t *ptl; 4689 4690 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4691 if (!ptl) 4692 return false; 4693 page->ptl = ptl; 4694 return true; 4695 } 4696 4697 void ptlock_free(struct page *page) 4698 { 4699 kmem_cache_free(page_ptl_cachep, page->ptl); 4700 } 4701 #endif 4702