xref: /openbmc/linux/mm/memory.c (revision ca79522c)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69 
70 #include "internal.h"
71 
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
75 
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80 
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84 
85 unsigned long num_physpages;
86 /*
87  * A number of key systems in x86 including ioremap() rely on the assumption
88  * that high_memory defines the upper bound on direct map memory, then end
89  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
90  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91  * and ZONE_HIGHMEM.
92  */
93 void * high_memory;
94 
95 EXPORT_SYMBOL(num_physpages);
96 EXPORT_SYMBOL(high_memory);
97 
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 					1;
107 #else
108 					2;
109 #endif
110 
111 static int __init disable_randmaps(char *s)
112 {
113 	randomize_va_space = 0;
114 	return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117 
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120 
121 /*
122  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123  */
124 static int __init init_zero_pfn(void)
125 {
126 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 	return 0;
128 }
129 core_initcall(init_zero_pfn);
130 
131 
132 #if defined(SPLIT_RSS_COUNTING)
133 
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136 	int i;
137 
138 	for (i = 0; i < NR_MM_COUNTERS; i++) {
139 		if (current->rss_stat.count[i]) {
140 			add_mm_counter(mm, i, current->rss_stat.count[i]);
141 			current->rss_stat.count[i] = 0;
142 		}
143 	}
144 	current->rss_stat.events = 0;
145 }
146 
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149 	struct task_struct *task = current;
150 
151 	if (likely(task->mm == mm))
152 		task->rss_stat.count[member] += val;
153 	else
154 		add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158 
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH	(64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163 	if (unlikely(task != current))
164 		return;
165 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166 		sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169 
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172 
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176 
177 #endif /* SPLIT_RSS_COUNTING */
178 
179 #ifdef HAVE_GENERIC_MMU_GATHER
180 
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183 	struct mmu_gather_batch *batch;
184 
185 	batch = tlb->active;
186 	if (batch->next) {
187 		tlb->active = batch->next;
188 		return 1;
189 	}
190 
191 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 		return 0;
193 
194 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 	if (!batch)
196 		return 0;
197 
198 	tlb->batch_count++;
199 	batch->next = NULL;
200 	batch->nr   = 0;
201 	batch->max  = MAX_GATHER_BATCH;
202 
203 	tlb->active->next = batch;
204 	tlb->active = batch;
205 
206 	return 1;
207 }
208 
209 /* tlb_gather_mmu
210  *	Called to initialize an (on-stack) mmu_gather structure for page-table
211  *	tear-down from @mm. The @fullmm argument is used when @mm is without
212  *	users and we're going to destroy the full address space (exit/execve).
213  */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
215 {
216 	tlb->mm = mm;
217 
218 	tlb->fullmm     = fullmm;
219 	tlb->need_flush_all = 0;
220 	tlb->start	= -1UL;
221 	tlb->end	= 0;
222 	tlb->need_flush = 0;
223 	tlb->fast_mode  = (num_possible_cpus() == 1);
224 	tlb->local.next = NULL;
225 	tlb->local.nr   = 0;
226 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227 	tlb->active     = &tlb->local;
228 	tlb->batch_count = 0;
229 
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 	tlb->batch = NULL;
232 #endif
233 }
234 
235 void tlb_flush_mmu(struct mmu_gather *tlb)
236 {
237 	struct mmu_gather_batch *batch;
238 
239 	if (!tlb->need_flush)
240 		return;
241 	tlb->need_flush = 0;
242 	tlb_flush(tlb);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 	tlb_table_flush(tlb);
245 #endif
246 
247 	if (tlb_fast_mode(tlb))
248 		return;
249 
250 	for (batch = &tlb->local; batch; batch = batch->next) {
251 		free_pages_and_swap_cache(batch->pages, batch->nr);
252 		batch->nr = 0;
253 	}
254 	tlb->active = &tlb->local;
255 }
256 
257 /* tlb_finish_mmu
258  *	Called at the end of the shootdown operation to free up any resources
259  *	that were required.
260  */
261 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
262 {
263 	struct mmu_gather_batch *batch, *next;
264 
265 	tlb->start = start;
266 	tlb->end   = end;
267 	tlb_flush_mmu(tlb);
268 
269 	/* keep the page table cache within bounds */
270 	check_pgt_cache();
271 
272 	for (batch = tlb->local.next; batch; batch = next) {
273 		next = batch->next;
274 		free_pages((unsigned long)batch, 0);
275 	}
276 	tlb->local.next = NULL;
277 }
278 
279 /* __tlb_remove_page
280  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
281  *	handling the additional races in SMP caused by other CPUs caching valid
282  *	mappings in their TLBs. Returns the number of free page slots left.
283  *	When out of page slots we must call tlb_flush_mmu().
284  */
285 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
286 {
287 	struct mmu_gather_batch *batch;
288 
289 	VM_BUG_ON(!tlb->need_flush);
290 
291 	if (tlb_fast_mode(tlb)) {
292 		free_page_and_swap_cache(page);
293 		return 1; /* avoid calling tlb_flush_mmu() */
294 	}
295 
296 	batch = tlb->active;
297 	batch->pages[batch->nr++] = page;
298 	if (batch->nr == batch->max) {
299 		if (!tlb_next_batch(tlb))
300 			return 0;
301 		batch = tlb->active;
302 	}
303 	VM_BUG_ON(batch->nr > batch->max);
304 
305 	return batch->max - batch->nr;
306 }
307 
308 #endif /* HAVE_GENERIC_MMU_GATHER */
309 
310 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
311 
312 /*
313  * See the comment near struct mmu_table_batch.
314  */
315 
316 static void tlb_remove_table_smp_sync(void *arg)
317 {
318 	/* Simply deliver the interrupt */
319 }
320 
321 static void tlb_remove_table_one(void *table)
322 {
323 	/*
324 	 * This isn't an RCU grace period and hence the page-tables cannot be
325 	 * assumed to be actually RCU-freed.
326 	 *
327 	 * It is however sufficient for software page-table walkers that rely on
328 	 * IRQ disabling. See the comment near struct mmu_table_batch.
329 	 */
330 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
331 	__tlb_remove_table(table);
332 }
333 
334 static void tlb_remove_table_rcu(struct rcu_head *head)
335 {
336 	struct mmu_table_batch *batch;
337 	int i;
338 
339 	batch = container_of(head, struct mmu_table_batch, rcu);
340 
341 	for (i = 0; i < batch->nr; i++)
342 		__tlb_remove_table(batch->tables[i]);
343 
344 	free_page((unsigned long)batch);
345 }
346 
347 void tlb_table_flush(struct mmu_gather *tlb)
348 {
349 	struct mmu_table_batch **batch = &tlb->batch;
350 
351 	if (*batch) {
352 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
353 		*batch = NULL;
354 	}
355 }
356 
357 void tlb_remove_table(struct mmu_gather *tlb, void *table)
358 {
359 	struct mmu_table_batch **batch = &tlb->batch;
360 
361 	tlb->need_flush = 1;
362 
363 	/*
364 	 * When there's less then two users of this mm there cannot be a
365 	 * concurrent page-table walk.
366 	 */
367 	if (atomic_read(&tlb->mm->mm_users) < 2) {
368 		__tlb_remove_table(table);
369 		return;
370 	}
371 
372 	if (*batch == NULL) {
373 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374 		if (*batch == NULL) {
375 			tlb_remove_table_one(table);
376 			return;
377 		}
378 		(*batch)->nr = 0;
379 	}
380 	(*batch)->tables[(*batch)->nr++] = table;
381 	if ((*batch)->nr == MAX_TABLE_BATCH)
382 		tlb_table_flush(tlb);
383 }
384 
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386 
387 /*
388  * If a p?d_bad entry is found while walking page tables, report
389  * the error, before resetting entry to p?d_none.  Usually (but
390  * very seldom) called out from the p?d_none_or_clear_bad macros.
391  */
392 
393 void pgd_clear_bad(pgd_t *pgd)
394 {
395 	pgd_ERROR(*pgd);
396 	pgd_clear(pgd);
397 }
398 
399 void pud_clear_bad(pud_t *pud)
400 {
401 	pud_ERROR(*pud);
402 	pud_clear(pud);
403 }
404 
405 void pmd_clear_bad(pmd_t *pmd)
406 {
407 	pmd_ERROR(*pmd);
408 	pmd_clear(pmd);
409 }
410 
411 /*
412  * Note: this doesn't free the actual pages themselves. That
413  * has been handled earlier when unmapping all the memory regions.
414  */
415 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
416 			   unsigned long addr)
417 {
418 	pgtable_t token = pmd_pgtable(*pmd);
419 	pmd_clear(pmd);
420 	pte_free_tlb(tlb, token, addr);
421 	tlb->mm->nr_ptes--;
422 }
423 
424 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
425 				unsigned long addr, unsigned long end,
426 				unsigned long floor, unsigned long ceiling)
427 {
428 	pmd_t *pmd;
429 	unsigned long next;
430 	unsigned long start;
431 
432 	start = addr;
433 	pmd = pmd_offset(pud, addr);
434 	do {
435 		next = pmd_addr_end(addr, end);
436 		if (pmd_none_or_clear_bad(pmd))
437 			continue;
438 		free_pte_range(tlb, pmd, addr);
439 	} while (pmd++, addr = next, addr != end);
440 
441 	start &= PUD_MASK;
442 	if (start < floor)
443 		return;
444 	if (ceiling) {
445 		ceiling &= PUD_MASK;
446 		if (!ceiling)
447 			return;
448 	}
449 	if (end - 1 > ceiling - 1)
450 		return;
451 
452 	pmd = pmd_offset(pud, start);
453 	pud_clear(pud);
454 	pmd_free_tlb(tlb, pmd, start);
455 }
456 
457 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
458 				unsigned long addr, unsigned long end,
459 				unsigned long floor, unsigned long ceiling)
460 {
461 	pud_t *pud;
462 	unsigned long next;
463 	unsigned long start;
464 
465 	start = addr;
466 	pud = pud_offset(pgd, addr);
467 	do {
468 		next = pud_addr_end(addr, end);
469 		if (pud_none_or_clear_bad(pud))
470 			continue;
471 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
472 	} while (pud++, addr = next, addr != end);
473 
474 	start &= PGDIR_MASK;
475 	if (start < floor)
476 		return;
477 	if (ceiling) {
478 		ceiling &= PGDIR_MASK;
479 		if (!ceiling)
480 			return;
481 	}
482 	if (end - 1 > ceiling - 1)
483 		return;
484 
485 	pud = pud_offset(pgd, start);
486 	pgd_clear(pgd);
487 	pud_free_tlb(tlb, pud, start);
488 }
489 
490 /*
491  * This function frees user-level page tables of a process.
492  *
493  * Must be called with pagetable lock held.
494  */
495 void free_pgd_range(struct mmu_gather *tlb,
496 			unsigned long addr, unsigned long end,
497 			unsigned long floor, unsigned long ceiling)
498 {
499 	pgd_t *pgd;
500 	unsigned long next;
501 
502 	/*
503 	 * The next few lines have given us lots of grief...
504 	 *
505 	 * Why are we testing PMD* at this top level?  Because often
506 	 * there will be no work to do at all, and we'd prefer not to
507 	 * go all the way down to the bottom just to discover that.
508 	 *
509 	 * Why all these "- 1"s?  Because 0 represents both the bottom
510 	 * of the address space and the top of it (using -1 for the
511 	 * top wouldn't help much: the masks would do the wrong thing).
512 	 * The rule is that addr 0 and floor 0 refer to the bottom of
513 	 * the address space, but end 0 and ceiling 0 refer to the top
514 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
515 	 * that end 0 case should be mythical).
516 	 *
517 	 * Wherever addr is brought up or ceiling brought down, we must
518 	 * be careful to reject "the opposite 0" before it confuses the
519 	 * subsequent tests.  But what about where end is brought down
520 	 * by PMD_SIZE below? no, end can't go down to 0 there.
521 	 *
522 	 * Whereas we round start (addr) and ceiling down, by different
523 	 * masks at different levels, in order to test whether a table
524 	 * now has no other vmas using it, so can be freed, we don't
525 	 * bother to round floor or end up - the tests don't need that.
526 	 */
527 
528 	addr &= PMD_MASK;
529 	if (addr < floor) {
530 		addr += PMD_SIZE;
531 		if (!addr)
532 			return;
533 	}
534 	if (ceiling) {
535 		ceiling &= PMD_MASK;
536 		if (!ceiling)
537 			return;
538 	}
539 	if (end - 1 > ceiling - 1)
540 		end -= PMD_SIZE;
541 	if (addr > end - 1)
542 		return;
543 
544 	pgd = pgd_offset(tlb->mm, addr);
545 	do {
546 		next = pgd_addr_end(addr, end);
547 		if (pgd_none_or_clear_bad(pgd))
548 			continue;
549 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
550 	} while (pgd++, addr = next, addr != end);
551 }
552 
553 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
554 		unsigned long floor, unsigned long ceiling)
555 {
556 	while (vma) {
557 		struct vm_area_struct *next = vma->vm_next;
558 		unsigned long addr = vma->vm_start;
559 
560 		/*
561 		 * Hide vma from rmap and truncate_pagecache before freeing
562 		 * pgtables
563 		 */
564 		unlink_anon_vmas(vma);
565 		unlink_file_vma(vma);
566 
567 		if (is_vm_hugetlb_page(vma)) {
568 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
569 				floor, next? next->vm_start: ceiling);
570 		} else {
571 			/*
572 			 * Optimization: gather nearby vmas into one call down
573 			 */
574 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
575 			       && !is_vm_hugetlb_page(next)) {
576 				vma = next;
577 				next = vma->vm_next;
578 				unlink_anon_vmas(vma);
579 				unlink_file_vma(vma);
580 			}
581 			free_pgd_range(tlb, addr, vma->vm_end,
582 				floor, next? next->vm_start: ceiling);
583 		}
584 		vma = next;
585 	}
586 }
587 
588 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
589 		pmd_t *pmd, unsigned long address)
590 {
591 	pgtable_t new = pte_alloc_one(mm, address);
592 	int wait_split_huge_page;
593 	if (!new)
594 		return -ENOMEM;
595 
596 	/*
597 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
598 	 * visible before the pte is made visible to other CPUs by being
599 	 * put into page tables.
600 	 *
601 	 * The other side of the story is the pointer chasing in the page
602 	 * table walking code (when walking the page table without locking;
603 	 * ie. most of the time). Fortunately, these data accesses consist
604 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
605 	 * being the notable exception) will already guarantee loads are
606 	 * seen in-order. See the alpha page table accessors for the
607 	 * smp_read_barrier_depends() barriers in page table walking code.
608 	 */
609 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
610 
611 	spin_lock(&mm->page_table_lock);
612 	wait_split_huge_page = 0;
613 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
614 		mm->nr_ptes++;
615 		pmd_populate(mm, pmd, new);
616 		new = NULL;
617 	} else if (unlikely(pmd_trans_splitting(*pmd)))
618 		wait_split_huge_page = 1;
619 	spin_unlock(&mm->page_table_lock);
620 	if (new)
621 		pte_free(mm, new);
622 	if (wait_split_huge_page)
623 		wait_split_huge_page(vma->anon_vma, pmd);
624 	return 0;
625 }
626 
627 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
628 {
629 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
630 	if (!new)
631 		return -ENOMEM;
632 
633 	smp_wmb(); /* See comment in __pte_alloc */
634 
635 	spin_lock(&init_mm.page_table_lock);
636 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
637 		pmd_populate_kernel(&init_mm, pmd, new);
638 		new = NULL;
639 	} else
640 		VM_BUG_ON(pmd_trans_splitting(*pmd));
641 	spin_unlock(&init_mm.page_table_lock);
642 	if (new)
643 		pte_free_kernel(&init_mm, new);
644 	return 0;
645 }
646 
647 static inline void init_rss_vec(int *rss)
648 {
649 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
650 }
651 
652 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
653 {
654 	int i;
655 
656 	if (current->mm == mm)
657 		sync_mm_rss(mm);
658 	for (i = 0; i < NR_MM_COUNTERS; i++)
659 		if (rss[i])
660 			add_mm_counter(mm, i, rss[i]);
661 }
662 
663 /*
664  * This function is called to print an error when a bad pte
665  * is found. For example, we might have a PFN-mapped pte in
666  * a region that doesn't allow it.
667  *
668  * The calling function must still handle the error.
669  */
670 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
671 			  pte_t pte, struct page *page)
672 {
673 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
674 	pud_t *pud = pud_offset(pgd, addr);
675 	pmd_t *pmd = pmd_offset(pud, addr);
676 	struct address_space *mapping;
677 	pgoff_t index;
678 	static unsigned long resume;
679 	static unsigned long nr_shown;
680 	static unsigned long nr_unshown;
681 
682 	/*
683 	 * Allow a burst of 60 reports, then keep quiet for that minute;
684 	 * or allow a steady drip of one report per second.
685 	 */
686 	if (nr_shown == 60) {
687 		if (time_before(jiffies, resume)) {
688 			nr_unshown++;
689 			return;
690 		}
691 		if (nr_unshown) {
692 			printk(KERN_ALERT
693 				"BUG: Bad page map: %lu messages suppressed\n",
694 				nr_unshown);
695 			nr_unshown = 0;
696 		}
697 		nr_shown = 0;
698 	}
699 	if (nr_shown++ == 0)
700 		resume = jiffies + 60 * HZ;
701 
702 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
703 	index = linear_page_index(vma, addr);
704 
705 	printk(KERN_ALERT
706 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
707 		current->comm,
708 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
709 	if (page)
710 		dump_page(page);
711 	printk(KERN_ALERT
712 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
713 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
714 	/*
715 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
716 	 */
717 	if (vma->vm_ops)
718 		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
719 		       vma->vm_ops->fault);
720 	if (vma->vm_file && vma->vm_file->f_op)
721 		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
722 		       vma->vm_file->f_op->mmap);
723 	dump_stack();
724 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
725 }
726 
727 static inline bool is_cow_mapping(vm_flags_t flags)
728 {
729 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
730 }
731 
732 /*
733  * vm_normal_page -- This function gets the "struct page" associated with a pte.
734  *
735  * "Special" mappings do not wish to be associated with a "struct page" (either
736  * it doesn't exist, or it exists but they don't want to touch it). In this
737  * case, NULL is returned here. "Normal" mappings do have a struct page.
738  *
739  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
740  * pte bit, in which case this function is trivial. Secondly, an architecture
741  * may not have a spare pte bit, which requires a more complicated scheme,
742  * described below.
743  *
744  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
745  * special mapping (even if there are underlying and valid "struct pages").
746  * COWed pages of a VM_PFNMAP are always normal.
747  *
748  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
749  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
750  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
751  * mapping will always honor the rule
752  *
753  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
754  *
755  * And for normal mappings this is false.
756  *
757  * This restricts such mappings to be a linear translation from virtual address
758  * to pfn. To get around this restriction, we allow arbitrary mappings so long
759  * as the vma is not a COW mapping; in that case, we know that all ptes are
760  * special (because none can have been COWed).
761  *
762  *
763  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
764  *
765  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
766  * page" backing, however the difference is that _all_ pages with a struct
767  * page (that is, those where pfn_valid is true) are refcounted and considered
768  * normal pages by the VM. The disadvantage is that pages are refcounted
769  * (which can be slower and simply not an option for some PFNMAP users). The
770  * advantage is that we don't have to follow the strict linearity rule of
771  * PFNMAP mappings in order to support COWable mappings.
772  *
773  */
774 #ifdef __HAVE_ARCH_PTE_SPECIAL
775 # define HAVE_PTE_SPECIAL 1
776 #else
777 # define HAVE_PTE_SPECIAL 0
778 #endif
779 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
780 				pte_t pte)
781 {
782 	unsigned long pfn = pte_pfn(pte);
783 
784 	if (HAVE_PTE_SPECIAL) {
785 		if (likely(!pte_special(pte)))
786 			goto check_pfn;
787 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
788 			return NULL;
789 		if (!is_zero_pfn(pfn))
790 			print_bad_pte(vma, addr, pte, NULL);
791 		return NULL;
792 	}
793 
794 	/* !HAVE_PTE_SPECIAL case follows: */
795 
796 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
797 		if (vma->vm_flags & VM_MIXEDMAP) {
798 			if (!pfn_valid(pfn))
799 				return NULL;
800 			goto out;
801 		} else {
802 			unsigned long off;
803 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
804 			if (pfn == vma->vm_pgoff + off)
805 				return NULL;
806 			if (!is_cow_mapping(vma->vm_flags))
807 				return NULL;
808 		}
809 	}
810 
811 	if (is_zero_pfn(pfn))
812 		return NULL;
813 check_pfn:
814 	if (unlikely(pfn > highest_memmap_pfn)) {
815 		print_bad_pte(vma, addr, pte, NULL);
816 		return NULL;
817 	}
818 
819 	/*
820 	 * NOTE! We still have PageReserved() pages in the page tables.
821 	 * eg. VDSO mappings can cause them to exist.
822 	 */
823 out:
824 	return pfn_to_page(pfn);
825 }
826 
827 /*
828  * copy one vm_area from one task to the other. Assumes the page tables
829  * already present in the new task to be cleared in the whole range
830  * covered by this vma.
831  */
832 
833 static inline unsigned long
834 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
835 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
836 		unsigned long addr, int *rss)
837 {
838 	unsigned long vm_flags = vma->vm_flags;
839 	pte_t pte = *src_pte;
840 	struct page *page;
841 
842 	/* pte contains position in swap or file, so copy. */
843 	if (unlikely(!pte_present(pte))) {
844 		if (!pte_file(pte)) {
845 			swp_entry_t entry = pte_to_swp_entry(pte);
846 
847 			if (swap_duplicate(entry) < 0)
848 				return entry.val;
849 
850 			/* make sure dst_mm is on swapoff's mmlist. */
851 			if (unlikely(list_empty(&dst_mm->mmlist))) {
852 				spin_lock(&mmlist_lock);
853 				if (list_empty(&dst_mm->mmlist))
854 					list_add(&dst_mm->mmlist,
855 						 &src_mm->mmlist);
856 				spin_unlock(&mmlist_lock);
857 			}
858 			if (likely(!non_swap_entry(entry)))
859 				rss[MM_SWAPENTS]++;
860 			else if (is_migration_entry(entry)) {
861 				page = migration_entry_to_page(entry);
862 
863 				if (PageAnon(page))
864 					rss[MM_ANONPAGES]++;
865 				else
866 					rss[MM_FILEPAGES]++;
867 
868 				if (is_write_migration_entry(entry) &&
869 				    is_cow_mapping(vm_flags)) {
870 					/*
871 					 * COW mappings require pages in both
872 					 * parent and child to be set to read.
873 					 */
874 					make_migration_entry_read(&entry);
875 					pte = swp_entry_to_pte(entry);
876 					set_pte_at(src_mm, addr, src_pte, pte);
877 				}
878 			}
879 		}
880 		goto out_set_pte;
881 	}
882 
883 	/*
884 	 * If it's a COW mapping, write protect it both
885 	 * in the parent and the child
886 	 */
887 	if (is_cow_mapping(vm_flags)) {
888 		ptep_set_wrprotect(src_mm, addr, src_pte);
889 		pte = pte_wrprotect(pte);
890 	}
891 
892 	/*
893 	 * If it's a shared mapping, mark it clean in
894 	 * the child
895 	 */
896 	if (vm_flags & VM_SHARED)
897 		pte = pte_mkclean(pte);
898 	pte = pte_mkold(pte);
899 
900 	page = vm_normal_page(vma, addr, pte);
901 	if (page) {
902 		get_page(page);
903 		page_dup_rmap(page);
904 		if (PageAnon(page))
905 			rss[MM_ANONPAGES]++;
906 		else
907 			rss[MM_FILEPAGES]++;
908 	}
909 
910 out_set_pte:
911 	set_pte_at(dst_mm, addr, dst_pte, pte);
912 	return 0;
913 }
914 
915 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
917 		   unsigned long addr, unsigned long end)
918 {
919 	pte_t *orig_src_pte, *orig_dst_pte;
920 	pte_t *src_pte, *dst_pte;
921 	spinlock_t *src_ptl, *dst_ptl;
922 	int progress = 0;
923 	int rss[NR_MM_COUNTERS];
924 	swp_entry_t entry = (swp_entry_t){0};
925 
926 again:
927 	init_rss_vec(rss);
928 
929 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
930 	if (!dst_pte)
931 		return -ENOMEM;
932 	src_pte = pte_offset_map(src_pmd, addr);
933 	src_ptl = pte_lockptr(src_mm, src_pmd);
934 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
935 	orig_src_pte = src_pte;
936 	orig_dst_pte = dst_pte;
937 	arch_enter_lazy_mmu_mode();
938 
939 	do {
940 		/*
941 		 * We are holding two locks at this point - either of them
942 		 * could generate latencies in another task on another CPU.
943 		 */
944 		if (progress >= 32) {
945 			progress = 0;
946 			if (need_resched() ||
947 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
948 				break;
949 		}
950 		if (pte_none(*src_pte)) {
951 			progress++;
952 			continue;
953 		}
954 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
955 							vma, addr, rss);
956 		if (entry.val)
957 			break;
958 		progress += 8;
959 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
960 
961 	arch_leave_lazy_mmu_mode();
962 	spin_unlock(src_ptl);
963 	pte_unmap(orig_src_pte);
964 	add_mm_rss_vec(dst_mm, rss);
965 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
966 	cond_resched();
967 
968 	if (entry.val) {
969 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
970 			return -ENOMEM;
971 		progress = 0;
972 	}
973 	if (addr != end)
974 		goto again;
975 	return 0;
976 }
977 
978 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
980 		unsigned long addr, unsigned long end)
981 {
982 	pmd_t *src_pmd, *dst_pmd;
983 	unsigned long next;
984 
985 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
986 	if (!dst_pmd)
987 		return -ENOMEM;
988 	src_pmd = pmd_offset(src_pud, addr);
989 	do {
990 		next = pmd_addr_end(addr, end);
991 		if (pmd_trans_huge(*src_pmd)) {
992 			int err;
993 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
994 			err = copy_huge_pmd(dst_mm, src_mm,
995 					    dst_pmd, src_pmd, addr, vma);
996 			if (err == -ENOMEM)
997 				return -ENOMEM;
998 			if (!err)
999 				continue;
1000 			/* fall through */
1001 		}
1002 		if (pmd_none_or_clear_bad(src_pmd))
1003 			continue;
1004 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1005 						vma, addr, next))
1006 			return -ENOMEM;
1007 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1008 	return 0;
1009 }
1010 
1011 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1012 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1013 		unsigned long addr, unsigned long end)
1014 {
1015 	pud_t *src_pud, *dst_pud;
1016 	unsigned long next;
1017 
1018 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1019 	if (!dst_pud)
1020 		return -ENOMEM;
1021 	src_pud = pud_offset(src_pgd, addr);
1022 	do {
1023 		next = pud_addr_end(addr, end);
1024 		if (pud_none_or_clear_bad(src_pud))
1025 			continue;
1026 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1027 						vma, addr, next))
1028 			return -ENOMEM;
1029 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1030 	return 0;
1031 }
1032 
1033 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1034 		struct vm_area_struct *vma)
1035 {
1036 	pgd_t *src_pgd, *dst_pgd;
1037 	unsigned long next;
1038 	unsigned long addr = vma->vm_start;
1039 	unsigned long end = vma->vm_end;
1040 	unsigned long mmun_start;	/* For mmu_notifiers */
1041 	unsigned long mmun_end;		/* For mmu_notifiers */
1042 	bool is_cow;
1043 	int ret;
1044 
1045 	/*
1046 	 * Don't copy ptes where a page fault will fill them correctly.
1047 	 * Fork becomes much lighter when there are big shared or private
1048 	 * readonly mappings. The tradeoff is that copy_page_range is more
1049 	 * efficient than faulting.
1050 	 */
1051 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1052 			       VM_PFNMAP | VM_MIXEDMAP))) {
1053 		if (!vma->anon_vma)
1054 			return 0;
1055 	}
1056 
1057 	if (is_vm_hugetlb_page(vma))
1058 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1059 
1060 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1061 		/*
1062 		 * We do not free on error cases below as remove_vma
1063 		 * gets called on error from higher level routine
1064 		 */
1065 		ret = track_pfn_copy(vma);
1066 		if (ret)
1067 			return ret;
1068 	}
1069 
1070 	/*
1071 	 * We need to invalidate the secondary MMU mappings only when
1072 	 * there could be a permission downgrade on the ptes of the
1073 	 * parent mm. And a permission downgrade will only happen if
1074 	 * is_cow_mapping() returns true.
1075 	 */
1076 	is_cow = is_cow_mapping(vma->vm_flags);
1077 	mmun_start = addr;
1078 	mmun_end   = end;
1079 	if (is_cow)
1080 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1081 						    mmun_end);
1082 
1083 	ret = 0;
1084 	dst_pgd = pgd_offset(dst_mm, addr);
1085 	src_pgd = pgd_offset(src_mm, addr);
1086 	do {
1087 		next = pgd_addr_end(addr, end);
1088 		if (pgd_none_or_clear_bad(src_pgd))
1089 			continue;
1090 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1091 					    vma, addr, next))) {
1092 			ret = -ENOMEM;
1093 			break;
1094 		}
1095 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1096 
1097 	if (is_cow)
1098 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1099 	return ret;
1100 }
1101 
1102 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1103 				struct vm_area_struct *vma, pmd_t *pmd,
1104 				unsigned long addr, unsigned long end,
1105 				struct zap_details *details)
1106 {
1107 	struct mm_struct *mm = tlb->mm;
1108 	int force_flush = 0;
1109 	int rss[NR_MM_COUNTERS];
1110 	spinlock_t *ptl;
1111 	pte_t *start_pte;
1112 	pte_t *pte;
1113 
1114 again:
1115 	init_rss_vec(rss);
1116 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1117 	pte = start_pte;
1118 	arch_enter_lazy_mmu_mode();
1119 	do {
1120 		pte_t ptent = *pte;
1121 		if (pte_none(ptent)) {
1122 			continue;
1123 		}
1124 
1125 		if (pte_present(ptent)) {
1126 			struct page *page;
1127 
1128 			page = vm_normal_page(vma, addr, ptent);
1129 			if (unlikely(details) && page) {
1130 				/*
1131 				 * unmap_shared_mapping_pages() wants to
1132 				 * invalidate cache without truncating:
1133 				 * unmap shared but keep private pages.
1134 				 */
1135 				if (details->check_mapping &&
1136 				    details->check_mapping != page->mapping)
1137 					continue;
1138 				/*
1139 				 * Each page->index must be checked when
1140 				 * invalidating or truncating nonlinear.
1141 				 */
1142 				if (details->nonlinear_vma &&
1143 				    (page->index < details->first_index ||
1144 				     page->index > details->last_index))
1145 					continue;
1146 			}
1147 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1148 							tlb->fullmm);
1149 			tlb_remove_tlb_entry(tlb, pte, addr);
1150 			if (unlikely(!page))
1151 				continue;
1152 			if (unlikely(details) && details->nonlinear_vma
1153 			    && linear_page_index(details->nonlinear_vma,
1154 						addr) != page->index)
1155 				set_pte_at(mm, addr, pte,
1156 					   pgoff_to_pte(page->index));
1157 			if (PageAnon(page))
1158 				rss[MM_ANONPAGES]--;
1159 			else {
1160 				if (pte_dirty(ptent))
1161 					set_page_dirty(page);
1162 				if (pte_young(ptent) &&
1163 				    likely(!VM_SequentialReadHint(vma)))
1164 					mark_page_accessed(page);
1165 				rss[MM_FILEPAGES]--;
1166 			}
1167 			page_remove_rmap(page);
1168 			if (unlikely(page_mapcount(page) < 0))
1169 				print_bad_pte(vma, addr, ptent, page);
1170 			force_flush = !__tlb_remove_page(tlb, page);
1171 			if (force_flush)
1172 				break;
1173 			continue;
1174 		}
1175 		/*
1176 		 * If details->check_mapping, we leave swap entries;
1177 		 * if details->nonlinear_vma, we leave file entries.
1178 		 */
1179 		if (unlikely(details))
1180 			continue;
1181 		if (pte_file(ptent)) {
1182 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1183 				print_bad_pte(vma, addr, ptent, NULL);
1184 		} else {
1185 			swp_entry_t entry = pte_to_swp_entry(ptent);
1186 
1187 			if (!non_swap_entry(entry))
1188 				rss[MM_SWAPENTS]--;
1189 			else if (is_migration_entry(entry)) {
1190 				struct page *page;
1191 
1192 				page = migration_entry_to_page(entry);
1193 
1194 				if (PageAnon(page))
1195 					rss[MM_ANONPAGES]--;
1196 				else
1197 					rss[MM_FILEPAGES]--;
1198 			}
1199 			if (unlikely(!free_swap_and_cache(entry)))
1200 				print_bad_pte(vma, addr, ptent, NULL);
1201 		}
1202 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1203 	} while (pte++, addr += PAGE_SIZE, addr != end);
1204 
1205 	add_mm_rss_vec(mm, rss);
1206 	arch_leave_lazy_mmu_mode();
1207 	pte_unmap_unlock(start_pte, ptl);
1208 
1209 	/*
1210 	 * mmu_gather ran out of room to batch pages, we break out of
1211 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1212 	 * and page-free while holding it.
1213 	 */
1214 	if (force_flush) {
1215 		force_flush = 0;
1216 
1217 #ifdef HAVE_GENERIC_MMU_GATHER
1218 		tlb->start = addr;
1219 		tlb->end = end;
1220 #endif
1221 		tlb_flush_mmu(tlb);
1222 		if (addr != end)
1223 			goto again;
1224 	}
1225 
1226 	return addr;
1227 }
1228 
1229 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1230 				struct vm_area_struct *vma, pud_t *pud,
1231 				unsigned long addr, unsigned long end,
1232 				struct zap_details *details)
1233 {
1234 	pmd_t *pmd;
1235 	unsigned long next;
1236 
1237 	pmd = pmd_offset(pud, addr);
1238 	do {
1239 		next = pmd_addr_end(addr, end);
1240 		if (pmd_trans_huge(*pmd)) {
1241 			if (next - addr != HPAGE_PMD_SIZE) {
1242 #ifdef CONFIG_DEBUG_VM
1243 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1244 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1245 						__func__, addr, end,
1246 						vma->vm_start,
1247 						vma->vm_end);
1248 					BUG();
1249 				}
1250 #endif
1251 				split_huge_page_pmd(vma, addr, pmd);
1252 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1253 				goto next;
1254 			/* fall through */
1255 		}
1256 		/*
1257 		 * Here there can be other concurrent MADV_DONTNEED or
1258 		 * trans huge page faults running, and if the pmd is
1259 		 * none or trans huge it can change under us. This is
1260 		 * because MADV_DONTNEED holds the mmap_sem in read
1261 		 * mode.
1262 		 */
1263 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1264 			goto next;
1265 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1266 next:
1267 		cond_resched();
1268 	} while (pmd++, addr = next, addr != end);
1269 
1270 	return addr;
1271 }
1272 
1273 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1274 				struct vm_area_struct *vma, pgd_t *pgd,
1275 				unsigned long addr, unsigned long end,
1276 				struct zap_details *details)
1277 {
1278 	pud_t *pud;
1279 	unsigned long next;
1280 
1281 	pud = pud_offset(pgd, addr);
1282 	do {
1283 		next = pud_addr_end(addr, end);
1284 		if (pud_none_or_clear_bad(pud))
1285 			continue;
1286 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1287 	} while (pud++, addr = next, addr != end);
1288 
1289 	return addr;
1290 }
1291 
1292 static void unmap_page_range(struct mmu_gather *tlb,
1293 			     struct vm_area_struct *vma,
1294 			     unsigned long addr, unsigned long end,
1295 			     struct zap_details *details)
1296 {
1297 	pgd_t *pgd;
1298 	unsigned long next;
1299 
1300 	if (details && !details->check_mapping && !details->nonlinear_vma)
1301 		details = NULL;
1302 
1303 	BUG_ON(addr >= end);
1304 	mem_cgroup_uncharge_start();
1305 	tlb_start_vma(tlb, vma);
1306 	pgd = pgd_offset(vma->vm_mm, addr);
1307 	do {
1308 		next = pgd_addr_end(addr, end);
1309 		if (pgd_none_or_clear_bad(pgd))
1310 			continue;
1311 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1312 	} while (pgd++, addr = next, addr != end);
1313 	tlb_end_vma(tlb, vma);
1314 	mem_cgroup_uncharge_end();
1315 }
1316 
1317 
1318 static void unmap_single_vma(struct mmu_gather *tlb,
1319 		struct vm_area_struct *vma, unsigned long start_addr,
1320 		unsigned long end_addr,
1321 		struct zap_details *details)
1322 {
1323 	unsigned long start = max(vma->vm_start, start_addr);
1324 	unsigned long end;
1325 
1326 	if (start >= vma->vm_end)
1327 		return;
1328 	end = min(vma->vm_end, end_addr);
1329 	if (end <= vma->vm_start)
1330 		return;
1331 
1332 	if (vma->vm_file)
1333 		uprobe_munmap(vma, start, end);
1334 
1335 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1336 		untrack_pfn(vma, 0, 0);
1337 
1338 	if (start != end) {
1339 		if (unlikely(is_vm_hugetlb_page(vma))) {
1340 			/*
1341 			 * It is undesirable to test vma->vm_file as it
1342 			 * should be non-null for valid hugetlb area.
1343 			 * However, vm_file will be NULL in the error
1344 			 * cleanup path of do_mmap_pgoff. When
1345 			 * hugetlbfs ->mmap method fails,
1346 			 * do_mmap_pgoff() nullifies vma->vm_file
1347 			 * before calling this function to clean up.
1348 			 * Since no pte has actually been setup, it is
1349 			 * safe to do nothing in this case.
1350 			 */
1351 			if (vma->vm_file) {
1352 				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1353 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1354 				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1355 			}
1356 		} else
1357 			unmap_page_range(tlb, vma, start, end, details);
1358 	}
1359 }
1360 
1361 /**
1362  * unmap_vmas - unmap a range of memory covered by a list of vma's
1363  * @tlb: address of the caller's struct mmu_gather
1364  * @vma: the starting vma
1365  * @start_addr: virtual address at which to start unmapping
1366  * @end_addr: virtual address at which to end unmapping
1367  *
1368  * Unmap all pages in the vma list.
1369  *
1370  * Only addresses between `start' and `end' will be unmapped.
1371  *
1372  * The VMA list must be sorted in ascending virtual address order.
1373  *
1374  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1375  * range after unmap_vmas() returns.  So the only responsibility here is to
1376  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1377  * drops the lock and schedules.
1378  */
1379 void unmap_vmas(struct mmu_gather *tlb,
1380 		struct vm_area_struct *vma, unsigned long start_addr,
1381 		unsigned long end_addr)
1382 {
1383 	struct mm_struct *mm = vma->vm_mm;
1384 
1385 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1386 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1387 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1388 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1389 }
1390 
1391 /**
1392  * zap_page_range - remove user pages in a given range
1393  * @vma: vm_area_struct holding the applicable pages
1394  * @start: starting address of pages to zap
1395  * @size: number of bytes to zap
1396  * @details: details of nonlinear truncation or shared cache invalidation
1397  *
1398  * Caller must protect the VMA list
1399  */
1400 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1401 		unsigned long size, struct zap_details *details)
1402 {
1403 	struct mm_struct *mm = vma->vm_mm;
1404 	struct mmu_gather tlb;
1405 	unsigned long end = start + size;
1406 
1407 	lru_add_drain();
1408 	tlb_gather_mmu(&tlb, mm, 0);
1409 	update_hiwater_rss(mm);
1410 	mmu_notifier_invalidate_range_start(mm, start, end);
1411 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1412 		unmap_single_vma(&tlb, vma, start, end, details);
1413 	mmu_notifier_invalidate_range_end(mm, start, end);
1414 	tlb_finish_mmu(&tlb, start, end);
1415 }
1416 
1417 /**
1418  * zap_page_range_single - remove user pages in a given range
1419  * @vma: vm_area_struct holding the applicable pages
1420  * @address: starting address of pages to zap
1421  * @size: number of bytes to zap
1422  * @details: details of nonlinear truncation or shared cache invalidation
1423  *
1424  * The range must fit into one VMA.
1425  */
1426 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1427 		unsigned long size, struct zap_details *details)
1428 {
1429 	struct mm_struct *mm = vma->vm_mm;
1430 	struct mmu_gather tlb;
1431 	unsigned long end = address + size;
1432 
1433 	lru_add_drain();
1434 	tlb_gather_mmu(&tlb, mm, 0);
1435 	update_hiwater_rss(mm);
1436 	mmu_notifier_invalidate_range_start(mm, address, end);
1437 	unmap_single_vma(&tlb, vma, address, end, details);
1438 	mmu_notifier_invalidate_range_end(mm, address, end);
1439 	tlb_finish_mmu(&tlb, address, end);
1440 }
1441 
1442 /**
1443  * zap_vma_ptes - remove ptes mapping the vma
1444  * @vma: vm_area_struct holding ptes to be zapped
1445  * @address: starting address of pages to zap
1446  * @size: number of bytes to zap
1447  *
1448  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1449  *
1450  * The entire address range must be fully contained within the vma.
1451  *
1452  * Returns 0 if successful.
1453  */
1454 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1455 		unsigned long size)
1456 {
1457 	if (address < vma->vm_start || address + size > vma->vm_end ||
1458 	    		!(vma->vm_flags & VM_PFNMAP))
1459 		return -1;
1460 	zap_page_range_single(vma, address, size, NULL);
1461 	return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1464 
1465 /**
1466  * follow_page_mask - look up a page descriptor from a user-virtual address
1467  * @vma: vm_area_struct mapping @address
1468  * @address: virtual address to look up
1469  * @flags: flags modifying lookup behaviour
1470  * @page_mask: on output, *page_mask is set according to the size of the page
1471  *
1472  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1473  *
1474  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1475  * an error pointer if there is a mapping to something not represented
1476  * by a page descriptor (see also vm_normal_page()).
1477  */
1478 struct page *follow_page_mask(struct vm_area_struct *vma,
1479 			      unsigned long address, unsigned int flags,
1480 			      unsigned int *page_mask)
1481 {
1482 	pgd_t *pgd;
1483 	pud_t *pud;
1484 	pmd_t *pmd;
1485 	pte_t *ptep, pte;
1486 	spinlock_t *ptl;
1487 	struct page *page;
1488 	struct mm_struct *mm = vma->vm_mm;
1489 
1490 	*page_mask = 0;
1491 
1492 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1493 	if (!IS_ERR(page)) {
1494 		BUG_ON(flags & FOLL_GET);
1495 		goto out;
1496 	}
1497 
1498 	page = NULL;
1499 	pgd = pgd_offset(mm, address);
1500 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1501 		goto no_page_table;
1502 
1503 	pud = pud_offset(pgd, address);
1504 	if (pud_none(*pud))
1505 		goto no_page_table;
1506 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1507 		BUG_ON(flags & FOLL_GET);
1508 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1509 		goto out;
1510 	}
1511 	if (unlikely(pud_bad(*pud)))
1512 		goto no_page_table;
1513 
1514 	pmd = pmd_offset(pud, address);
1515 	if (pmd_none(*pmd))
1516 		goto no_page_table;
1517 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1518 		BUG_ON(flags & FOLL_GET);
1519 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1520 		goto out;
1521 	}
1522 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1523 		goto no_page_table;
1524 	if (pmd_trans_huge(*pmd)) {
1525 		if (flags & FOLL_SPLIT) {
1526 			split_huge_page_pmd(vma, address, pmd);
1527 			goto split_fallthrough;
1528 		}
1529 		spin_lock(&mm->page_table_lock);
1530 		if (likely(pmd_trans_huge(*pmd))) {
1531 			if (unlikely(pmd_trans_splitting(*pmd))) {
1532 				spin_unlock(&mm->page_table_lock);
1533 				wait_split_huge_page(vma->anon_vma, pmd);
1534 			} else {
1535 				page = follow_trans_huge_pmd(vma, address,
1536 							     pmd, flags);
1537 				spin_unlock(&mm->page_table_lock);
1538 				*page_mask = HPAGE_PMD_NR - 1;
1539 				goto out;
1540 			}
1541 		} else
1542 			spin_unlock(&mm->page_table_lock);
1543 		/* fall through */
1544 	}
1545 split_fallthrough:
1546 	if (unlikely(pmd_bad(*pmd)))
1547 		goto no_page_table;
1548 
1549 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1550 
1551 	pte = *ptep;
1552 	if (!pte_present(pte)) {
1553 		swp_entry_t entry;
1554 		/*
1555 		 * KSM's break_ksm() relies upon recognizing a ksm page
1556 		 * even while it is being migrated, so for that case we
1557 		 * need migration_entry_wait().
1558 		 */
1559 		if (likely(!(flags & FOLL_MIGRATION)))
1560 			goto no_page;
1561 		if (pte_none(pte) || pte_file(pte))
1562 			goto no_page;
1563 		entry = pte_to_swp_entry(pte);
1564 		if (!is_migration_entry(entry))
1565 			goto no_page;
1566 		pte_unmap_unlock(ptep, ptl);
1567 		migration_entry_wait(mm, pmd, address);
1568 		goto split_fallthrough;
1569 	}
1570 	if ((flags & FOLL_NUMA) && pte_numa(pte))
1571 		goto no_page;
1572 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1573 		goto unlock;
1574 
1575 	page = vm_normal_page(vma, address, pte);
1576 	if (unlikely(!page)) {
1577 		if ((flags & FOLL_DUMP) ||
1578 		    !is_zero_pfn(pte_pfn(pte)))
1579 			goto bad_page;
1580 		page = pte_page(pte);
1581 	}
1582 
1583 	if (flags & FOLL_GET)
1584 		get_page_foll(page);
1585 	if (flags & FOLL_TOUCH) {
1586 		if ((flags & FOLL_WRITE) &&
1587 		    !pte_dirty(pte) && !PageDirty(page))
1588 			set_page_dirty(page);
1589 		/*
1590 		 * pte_mkyoung() would be more correct here, but atomic care
1591 		 * is needed to avoid losing the dirty bit: it is easier to use
1592 		 * mark_page_accessed().
1593 		 */
1594 		mark_page_accessed(page);
1595 	}
1596 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1597 		/*
1598 		 * The preliminary mapping check is mainly to avoid the
1599 		 * pointless overhead of lock_page on the ZERO_PAGE
1600 		 * which might bounce very badly if there is contention.
1601 		 *
1602 		 * If the page is already locked, we don't need to
1603 		 * handle it now - vmscan will handle it later if and
1604 		 * when it attempts to reclaim the page.
1605 		 */
1606 		if (page->mapping && trylock_page(page)) {
1607 			lru_add_drain();  /* push cached pages to LRU */
1608 			/*
1609 			 * Because we lock page here, and migration is
1610 			 * blocked by the pte's page reference, and we
1611 			 * know the page is still mapped, we don't even
1612 			 * need to check for file-cache page truncation.
1613 			 */
1614 			mlock_vma_page(page);
1615 			unlock_page(page);
1616 		}
1617 	}
1618 unlock:
1619 	pte_unmap_unlock(ptep, ptl);
1620 out:
1621 	return page;
1622 
1623 bad_page:
1624 	pte_unmap_unlock(ptep, ptl);
1625 	return ERR_PTR(-EFAULT);
1626 
1627 no_page:
1628 	pte_unmap_unlock(ptep, ptl);
1629 	if (!pte_none(pte))
1630 		return page;
1631 
1632 no_page_table:
1633 	/*
1634 	 * When core dumping an enormous anonymous area that nobody
1635 	 * has touched so far, we don't want to allocate unnecessary pages or
1636 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1637 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1638 	 * But we can only make this optimization where a hole would surely
1639 	 * be zero-filled if handle_mm_fault() actually did handle it.
1640 	 */
1641 	if ((flags & FOLL_DUMP) &&
1642 	    (!vma->vm_ops || !vma->vm_ops->fault))
1643 		return ERR_PTR(-EFAULT);
1644 	return page;
1645 }
1646 
1647 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1648 {
1649 	return stack_guard_page_start(vma, addr) ||
1650 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1651 }
1652 
1653 /**
1654  * __get_user_pages() - pin user pages in memory
1655  * @tsk:	task_struct of target task
1656  * @mm:		mm_struct of target mm
1657  * @start:	starting user address
1658  * @nr_pages:	number of pages from start to pin
1659  * @gup_flags:	flags modifying pin behaviour
1660  * @pages:	array that receives pointers to the pages pinned.
1661  *		Should be at least nr_pages long. Or NULL, if caller
1662  *		only intends to ensure the pages are faulted in.
1663  * @vmas:	array of pointers to vmas corresponding to each page.
1664  *		Or NULL if the caller does not require them.
1665  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1666  *
1667  * Returns number of pages pinned. This may be fewer than the number
1668  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1669  * were pinned, returns -errno. Each page returned must be released
1670  * with a put_page() call when it is finished with. vmas will only
1671  * remain valid while mmap_sem is held.
1672  *
1673  * Must be called with mmap_sem held for read or write.
1674  *
1675  * __get_user_pages walks a process's page tables and takes a reference to
1676  * each struct page that each user address corresponds to at a given
1677  * instant. That is, it takes the page that would be accessed if a user
1678  * thread accesses the given user virtual address at that instant.
1679  *
1680  * This does not guarantee that the page exists in the user mappings when
1681  * __get_user_pages returns, and there may even be a completely different
1682  * page there in some cases (eg. if mmapped pagecache has been invalidated
1683  * and subsequently re faulted). However it does guarantee that the page
1684  * won't be freed completely. And mostly callers simply care that the page
1685  * contains data that was valid *at some point in time*. Typically, an IO
1686  * or similar operation cannot guarantee anything stronger anyway because
1687  * locks can't be held over the syscall boundary.
1688  *
1689  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1690  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1691  * appropriate) must be called after the page is finished with, and
1692  * before put_page is called.
1693  *
1694  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1695  * or mmap_sem contention, and if waiting is needed to pin all pages,
1696  * *@nonblocking will be set to 0.
1697  *
1698  * In most cases, get_user_pages or get_user_pages_fast should be used
1699  * instead of __get_user_pages. __get_user_pages should be used only if
1700  * you need some special @gup_flags.
1701  */
1702 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1703 		unsigned long start, unsigned long nr_pages,
1704 		unsigned int gup_flags, struct page **pages,
1705 		struct vm_area_struct **vmas, int *nonblocking)
1706 {
1707 	long i;
1708 	unsigned long vm_flags;
1709 	unsigned int page_mask;
1710 
1711 	if (!nr_pages)
1712 		return 0;
1713 
1714 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1715 
1716 	/*
1717 	 * Require read or write permissions.
1718 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1719 	 */
1720 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1721 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1722 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1723 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1724 
1725 	/*
1726 	 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1727 	 * would be called on PROT_NONE ranges. We must never invoke
1728 	 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1729 	 * page faults would unprotect the PROT_NONE ranges if
1730 	 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1731 	 * bitflag. So to avoid that, don't set FOLL_NUMA if
1732 	 * FOLL_FORCE is set.
1733 	 */
1734 	if (!(gup_flags & FOLL_FORCE))
1735 		gup_flags |= FOLL_NUMA;
1736 
1737 	i = 0;
1738 
1739 	do {
1740 		struct vm_area_struct *vma;
1741 
1742 		vma = find_extend_vma(mm, start);
1743 		if (!vma && in_gate_area(mm, start)) {
1744 			unsigned long pg = start & PAGE_MASK;
1745 			pgd_t *pgd;
1746 			pud_t *pud;
1747 			pmd_t *pmd;
1748 			pte_t *pte;
1749 
1750 			/* user gate pages are read-only */
1751 			if (gup_flags & FOLL_WRITE)
1752 				return i ? : -EFAULT;
1753 			if (pg > TASK_SIZE)
1754 				pgd = pgd_offset_k(pg);
1755 			else
1756 				pgd = pgd_offset_gate(mm, pg);
1757 			BUG_ON(pgd_none(*pgd));
1758 			pud = pud_offset(pgd, pg);
1759 			BUG_ON(pud_none(*pud));
1760 			pmd = pmd_offset(pud, pg);
1761 			if (pmd_none(*pmd))
1762 				return i ? : -EFAULT;
1763 			VM_BUG_ON(pmd_trans_huge(*pmd));
1764 			pte = pte_offset_map(pmd, pg);
1765 			if (pte_none(*pte)) {
1766 				pte_unmap(pte);
1767 				return i ? : -EFAULT;
1768 			}
1769 			vma = get_gate_vma(mm);
1770 			if (pages) {
1771 				struct page *page;
1772 
1773 				page = vm_normal_page(vma, start, *pte);
1774 				if (!page) {
1775 					if (!(gup_flags & FOLL_DUMP) &&
1776 					     is_zero_pfn(pte_pfn(*pte)))
1777 						page = pte_page(*pte);
1778 					else {
1779 						pte_unmap(pte);
1780 						return i ? : -EFAULT;
1781 					}
1782 				}
1783 				pages[i] = page;
1784 				get_page(page);
1785 			}
1786 			pte_unmap(pte);
1787 			page_mask = 0;
1788 			goto next_page;
1789 		}
1790 
1791 		if (!vma ||
1792 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1793 		    !(vm_flags & vma->vm_flags))
1794 			return i ? : -EFAULT;
1795 
1796 		if (is_vm_hugetlb_page(vma)) {
1797 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1798 					&start, &nr_pages, i, gup_flags);
1799 			continue;
1800 		}
1801 
1802 		do {
1803 			struct page *page;
1804 			unsigned int foll_flags = gup_flags;
1805 			unsigned int page_increm;
1806 
1807 			/*
1808 			 * If we have a pending SIGKILL, don't keep faulting
1809 			 * pages and potentially allocating memory.
1810 			 */
1811 			if (unlikely(fatal_signal_pending(current)))
1812 				return i ? i : -ERESTARTSYS;
1813 
1814 			cond_resched();
1815 			while (!(page = follow_page_mask(vma, start,
1816 						foll_flags, &page_mask))) {
1817 				int ret;
1818 				unsigned int fault_flags = 0;
1819 
1820 				/* For mlock, just skip the stack guard page. */
1821 				if (foll_flags & FOLL_MLOCK) {
1822 					if (stack_guard_page(vma, start))
1823 						goto next_page;
1824 				}
1825 				if (foll_flags & FOLL_WRITE)
1826 					fault_flags |= FAULT_FLAG_WRITE;
1827 				if (nonblocking)
1828 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1829 				if (foll_flags & FOLL_NOWAIT)
1830 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1831 
1832 				ret = handle_mm_fault(mm, vma, start,
1833 							fault_flags);
1834 
1835 				if (ret & VM_FAULT_ERROR) {
1836 					if (ret & VM_FAULT_OOM)
1837 						return i ? i : -ENOMEM;
1838 					if (ret & (VM_FAULT_HWPOISON |
1839 						   VM_FAULT_HWPOISON_LARGE)) {
1840 						if (i)
1841 							return i;
1842 						else if (gup_flags & FOLL_HWPOISON)
1843 							return -EHWPOISON;
1844 						else
1845 							return -EFAULT;
1846 					}
1847 					if (ret & VM_FAULT_SIGBUS)
1848 						return i ? i : -EFAULT;
1849 					BUG();
1850 				}
1851 
1852 				if (tsk) {
1853 					if (ret & VM_FAULT_MAJOR)
1854 						tsk->maj_flt++;
1855 					else
1856 						tsk->min_flt++;
1857 				}
1858 
1859 				if (ret & VM_FAULT_RETRY) {
1860 					if (nonblocking)
1861 						*nonblocking = 0;
1862 					return i;
1863 				}
1864 
1865 				/*
1866 				 * The VM_FAULT_WRITE bit tells us that
1867 				 * do_wp_page has broken COW when necessary,
1868 				 * even if maybe_mkwrite decided not to set
1869 				 * pte_write. We can thus safely do subsequent
1870 				 * page lookups as if they were reads. But only
1871 				 * do so when looping for pte_write is futile:
1872 				 * in some cases userspace may also be wanting
1873 				 * to write to the gotten user page, which a
1874 				 * read fault here might prevent (a readonly
1875 				 * page might get reCOWed by userspace write).
1876 				 */
1877 				if ((ret & VM_FAULT_WRITE) &&
1878 				    !(vma->vm_flags & VM_WRITE))
1879 					foll_flags &= ~FOLL_WRITE;
1880 
1881 				cond_resched();
1882 			}
1883 			if (IS_ERR(page))
1884 				return i ? i : PTR_ERR(page);
1885 			if (pages) {
1886 				pages[i] = page;
1887 
1888 				flush_anon_page(vma, page, start);
1889 				flush_dcache_page(page);
1890 				page_mask = 0;
1891 			}
1892 next_page:
1893 			if (vmas) {
1894 				vmas[i] = vma;
1895 				page_mask = 0;
1896 			}
1897 			page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1898 			if (page_increm > nr_pages)
1899 				page_increm = nr_pages;
1900 			i += page_increm;
1901 			start += page_increm * PAGE_SIZE;
1902 			nr_pages -= page_increm;
1903 		} while (nr_pages && start < vma->vm_end);
1904 	} while (nr_pages);
1905 	return i;
1906 }
1907 EXPORT_SYMBOL(__get_user_pages);
1908 
1909 /*
1910  * fixup_user_fault() - manually resolve a user page fault
1911  * @tsk:	the task_struct to use for page fault accounting, or
1912  *		NULL if faults are not to be recorded.
1913  * @mm:		mm_struct of target mm
1914  * @address:	user address
1915  * @fault_flags:flags to pass down to handle_mm_fault()
1916  *
1917  * This is meant to be called in the specific scenario where for locking reasons
1918  * we try to access user memory in atomic context (within a pagefault_disable()
1919  * section), this returns -EFAULT, and we want to resolve the user fault before
1920  * trying again.
1921  *
1922  * Typically this is meant to be used by the futex code.
1923  *
1924  * The main difference with get_user_pages() is that this function will
1925  * unconditionally call handle_mm_fault() which will in turn perform all the
1926  * necessary SW fixup of the dirty and young bits in the PTE, while
1927  * handle_mm_fault() only guarantees to update these in the struct page.
1928  *
1929  * This is important for some architectures where those bits also gate the
1930  * access permission to the page because they are maintained in software.  On
1931  * such architectures, gup() will not be enough to make a subsequent access
1932  * succeed.
1933  *
1934  * This should be called with the mm_sem held for read.
1935  */
1936 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1937 		     unsigned long address, unsigned int fault_flags)
1938 {
1939 	struct vm_area_struct *vma;
1940 	int ret;
1941 
1942 	vma = find_extend_vma(mm, address);
1943 	if (!vma || address < vma->vm_start)
1944 		return -EFAULT;
1945 
1946 	ret = handle_mm_fault(mm, vma, address, fault_flags);
1947 	if (ret & VM_FAULT_ERROR) {
1948 		if (ret & VM_FAULT_OOM)
1949 			return -ENOMEM;
1950 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1951 			return -EHWPOISON;
1952 		if (ret & VM_FAULT_SIGBUS)
1953 			return -EFAULT;
1954 		BUG();
1955 	}
1956 	if (tsk) {
1957 		if (ret & VM_FAULT_MAJOR)
1958 			tsk->maj_flt++;
1959 		else
1960 			tsk->min_flt++;
1961 	}
1962 	return 0;
1963 }
1964 
1965 /*
1966  * get_user_pages() - pin user pages in memory
1967  * @tsk:	the task_struct to use for page fault accounting, or
1968  *		NULL if faults are not to be recorded.
1969  * @mm:		mm_struct of target mm
1970  * @start:	starting user address
1971  * @nr_pages:	number of pages from start to pin
1972  * @write:	whether pages will be written to by the caller
1973  * @force:	whether to force write access even if user mapping is
1974  *		readonly. This will result in the page being COWed even
1975  *		in MAP_SHARED mappings. You do not want this.
1976  * @pages:	array that receives pointers to the pages pinned.
1977  *		Should be at least nr_pages long. Or NULL, if caller
1978  *		only intends to ensure the pages are faulted in.
1979  * @vmas:	array of pointers to vmas corresponding to each page.
1980  *		Or NULL if the caller does not require them.
1981  *
1982  * Returns number of pages pinned. This may be fewer than the number
1983  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1984  * were pinned, returns -errno. Each page returned must be released
1985  * with a put_page() call when it is finished with. vmas will only
1986  * remain valid while mmap_sem is held.
1987  *
1988  * Must be called with mmap_sem held for read or write.
1989  *
1990  * get_user_pages walks a process's page tables and takes a reference to
1991  * each struct page that each user address corresponds to at a given
1992  * instant. That is, it takes the page that would be accessed if a user
1993  * thread accesses the given user virtual address at that instant.
1994  *
1995  * This does not guarantee that the page exists in the user mappings when
1996  * get_user_pages returns, and there may even be a completely different
1997  * page there in some cases (eg. if mmapped pagecache has been invalidated
1998  * and subsequently re faulted). However it does guarantee that the page
1999  * won't be freed completely. And mostly callers simply care that the page
2000  * contains data that was valid *at some point in time*. Typically, an IO
2001  * or similar operation cannot guarantee anything stronger anyway because
2002  * locks can't be held over the syscall boundary.
2003  *
2004  * If write=0, the page must not be written to. If the page is written to,
2005  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2006  * after the page is finished with, and before put_page is called.
2007  *
2008  * get_user_pages is typically used for fewer-copy IO operations, to get a
2009  * handle on the memory by some means other than accesses via the user virtual
2010  * addresses. The pages may be submitted for DMA to devices or accessed via
2011  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2012  * use the correct cache flushing APIs.
2013  *
2014  * See also get_user_pages_fast, for performance critical applications.
2015  */
2016 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2017 		unsigned long start, unsigned long nr_pages, int write,
2018 		int force, struct page **pages, struct vm_area_struct **vmas)
2019 {
2020 	int flags = FOLL_TOUCH;
2021 
2022 	if (pages)
2023 		flags |= FOLL_GET;
2024 	if (write)
2025 		flags |= FOLL_WRITE;
2026 	if (force)
2027 		flags |= FOLL_FORCE;
2028 
2029 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2030 				NULL);
2031 }
2032 EXPORT_SYMBOL(get_user_pages);
2033 
2034 /**
2035  * get_dump_page() - pin user page in memory while writing it to core dump
2036  * @addr: user address
2037  *
2038  * Returns struct page pointer of user page pinned for dump,
2039  * to be freed afterwards by page_cache_release() or put_page().
2040  *
2041  * Returns NULL on any kind of failure - a hole must then be inserted into
2042  * the corefile, to preserve alignment with its headers; and also returns
2043  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2044  * allowing a hole to be left in the corefile to save diskspace.
2045  *
2046  * Called without mmap_sem, but after all other threads have been killed.
2047  */
2048 #ifdef CONFIG_ELF_CORE
2049 struct page *get_dump_page(unsigned long addr)
2050 {
2051 	struct vm_area_struct *vma;
2052 	struct page *page;
2053 
2054 	if (__get_user_pages(current, current->mm, addr, 1,
2055 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2056 			     NULL) < 1)
2057 		return NULL;
2058 	flush_cache_page(vma, addr, page_to_pfn(page));
2059 	return page;
2060 }
2061 #endif /* CONFIG_ELF_CORE */
2062 
2063 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2064 			spinlock_t **ptl)
2065 {
2066 	pgd_t * pgd = pgd_offset(mm, addr);
2067 	pud_t * pud = pud_alloc(mm, pgd, addr);
2068 	if (pud) {
2069 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2070 		if (pmd) {
2071 			VM_BUG_ON(pmd_trans_huge(*pmd));
2072 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2073 		}
2074 	}
2075 	return NULL;
2076 }
2077 
2078 /*
2079  * This is the old fallback for page remapping.
2080  *
2081  * For historical reasons, it only allows reserved pages. Only
2082  * old drivers should use this, and they needed to mark their
2083  * pages reserved for the old functions anyway.
2084  */
2085 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2086 			struct page *page, pgprot_t prot)
2087 {
2088 	struct mm_struct *mm = vma->vm_mm;
2089 	int retval;
2090 	pte_t *pte;
2091 	spinlock_t *ptl;
2092 
2093 	retval = -EINVAL;
2094 	if (PageAnon(page))
2095 		goto out;
2096 	retval = -ENOMEM;
2097 	flush_dcache_page(page);
2098 	pte = get_locked_pte(mm, addr, &ptl);
2099 	if (!pte)
2100 		goto out;
2101 	retval = -EBUSY;
2102 	if (!pte_none(*pte))
2103 		goto out_unlock;
2104 
2105 	/* Ok, finally just insert the thing.. */
2106 	get_page(page);
2107 	inc_mm_counter_fast(mm, MM_FILEPAGES);
2108 	page_add_file_rmap(page);
2109 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2110 
2111 	retval = 0;
2112 	pte_unmap_unlock(pte, ptl);
2113 	return retval;
2114 out_unlock:
2115 	pte_unmap_unlock(pte, ptl);
2116 out:
2117 	return retval;
2118 }
2119 
2120 /**
2121  * vm_insert_page - insert single page into user vma
2122  * @vma: user vma to map to
2123  * @addr: target user address of this page
2124  * @page: source kernel page
2125  *
2126  * This allows drivers to insert individual pages they've allocated
2127  * into a user vma.
2128  *
2129  * The page has to be a nice clean _individual_ kernel allocation.
2130  * If you allocate a compound page, you need to have marked it as
2131  * such (__GFP_COMP), or manually just split the page up yourself
2132  * (see split_page()).
2133  *
2134  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2135  * took an arbitrary page protection parameter. This doesn't allow
2136  * that. Your vma protection will have to be set up correctly, which
2137  * means that if you want a shared writable mapping, you'd better
2138  * ask for a shared writable mapping!
2139  *
2140  * The page does not need to be reserved.
2141  *
2142  * Usually this function is called from f_op->mmap() handler
2143  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2144  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2145  * function from other places, for example from page-fault handler.
2146  */
2147 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2148 			struct page *page)
2149 {
2150 	if (addr < vma->vm_start || addr >= vma->vm_end)
2151 		return -EFAULT;
2152 	if (!page_count(page))
2153 		return -EINVAL;
2154 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2155 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2156 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2157 		vma->vm_flags |= VM_MIXEDMAP;
2158 	}
2159 	return insert_page(vma, addr, page, vma->vm_page_prot);
2160 }
2161 EXPORT_SYMBOL(vm_insert_page);
2162 
2163 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2164 			unsigned long pfn, pgprot_t prot)
2165 {
2166 	struct mm_struct *mm = vma->vm_mm;
2167 	int retval;
2168 	pte_t *pte, entry;
2169 	spinlock_t *ptl;
2170 
2171 	retval = -ENOMEM;
2172 	pte = get_locked_pte(mm, addr, &ptl);
2173 	if (!pte)
2174 		goto out;
2175 	retval = -EBUSY;
2176 	if (!pte_none(*pte))
2177 		goto out_unlock;
2178 
2179 	/* Ok, finally just insert the thing.. */
2180 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2181 	set_pte_at(mm, addr, pte, entry);
2182 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2183 
2184 	retval = 0;
2185 out_unlock:
2186 	pte_unmap_unlock(pte, ptl);
2187 out:
2188 	return retval;
2189 }
2190 
2191 /**
2192  * vm_insert_pfn - insert single pfn into user vma
2193  * @vma: user vma to map to
2194  * @addr: target user address of this page
2195  * @pfn: source kernel pfn
2196  *
2197  * Similar to vm_insert_page, this allows drivers to insert individual pages
2198  * they've allocated into a user vma. Same comments apply.
2199  *
2200  * This function should only be called from a vm_ops->fault handler, and
2201  * in that case the handler should return NULL.
2202  *
2203  * vma cannot be a COW mapping.
2204  *
2205  * As this is called only for pages that do not currently exist, we
2206  * do not need to flush old virtual caches or the TLB.
2207  */
2208 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2209 			unsigned long pfn)
2210 {
2211 	int ret;
2212 	pgprot_t pgprot = vma->vm_page_prot;
2213 	/*
2214 	 * Technically, architectures with pte_special can avoid all these
2215 	 * restrictions (same for remap_pfn_range).  However we would like
2216 	 * consistency in testing and feature parity among all, so we should
2217 	 * try to keep these invariants in place for everybody.
2218 	 */
2219 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2220 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2221 						(VM_PFNMAP|VM_MIXEDMAP));
2222 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2223 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2224 
2225 	if (addr < vma->vm_start || addr >= vma->vm_end)
2226 		return -EFAULT;
2227 	if (track_pfn_insert(vma, &pgprot, pfn))
2228 		return -EINVAL;
2229 
2230 	ret = insert_pfn(vma, addr, pfn, pgprot);
2231 
2232 	return ret;
2233 }
2234 EXPORT_SYMBOL(vm_insert_pfn);
2235 
2236 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2237 			unsigned long pfn)
2238 {
2239 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2240 
2241 	if (addr < vma->vm_start || addr >= vma->vm_end)
2242 		return -EFAULT;
2243 
2244 	/*
2245 	 * If we don't have pte special, then we have to use the pfn_valid()
2246 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2247 	 * refcount the page if pfn_valid is true (hence insert_page rather
2248 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2249 	 * without pte special, it would there be refcounted as a normal page.
2250 	 */
2251 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2252 		struct page *page;
2253 
2254 		page = pfn_to_page(pfn);
2255 		return insert_page(vma, addr, page, vma->vm_page_prot);
2256 	}
2257 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2258 }
2259 EXPORT_SYMBOL(vm_insert_mixed);
2260 
2261 /*
2262  * maps a range of physical memory into the requested pages. the old
2263  * mappings are removed. any references to nonexistent pages results
2264  * in null mappings (currently treated as "copy-on-access")
2265  */
2266 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2267 			unsigned long addr, unsigned long end,
2268 			unsigned long pfn, pgprot_t prot)
2269 {
2270 	pte_t *pte;
2271 	spinlock_t *ptl;
2272 
2273 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2274 	if (!pte)
2275 		return -ENOMEM;
2276 	arch_enter_lazy_mmu_mode();
2277 	do {
2278 		BUG_ON(!pte_none(*pte));
2279 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2280 		pfn++;
2281 	} while (pte++, addr += PAGE_SIZE, addr != end);
2282 	arch_leave_lazy_mmu_mode();
2283 	pte_unmap_unlock(pte - 1, ptl);
2284 	return 0;
2285 }
2286 
2287 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2288 			unsigned long addr, unsigned long end,
2289 			unsigned long pfn, pgprot_t prot)
2290 {
2291 	pmd_t *pmd;
2292 	unsigned long next;
2293 
2294 	pfn -= addr >> PAGE_SHIFT;
2295 	pmd = pmd_alloc(mm, pud, addr);
2296 	if (!pmd)
2297 		return -ENOMEM;
2298 	VM_BUG_ON(pmd_trans_huge(*pmd));
2299 	do {
2300 		next = pmd_addr_end(addr, end);
2301 		if (remap_pte_range(mm, pmd, addr, next,
2302 				pfn + (addr >> PAGE_SHIFT), prot))
2303 			return -ENOMEM;
2304 	} while (pmd++, addr = next, addr != end);
2305 	return 0;
2306 }
2307 
2308 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2309 			unsigned long addr, unsigned long end,
2310 			unsigned long pfn, pgprot_t prot)
2311 {
2312 	pud_t *pud;
2313 	unsigned long next;
2314 
2315 	pfn -= addr >> PAGE_SHIFT;
2316 	pud = pud_alloc(mm, pgd, addr);
2317 	if (!pud)
2318 		return -ENOMEM;
2319 	do {
2320 		next = pud_addr_end(addr, end);
2321 		if (remap_pmd_range(mm, pud, addr, next,
2322 				pfn + (addr >> PAGE_SHIFT), prot))
2323 			return -ENOMEM;
2324 	} while (pud++, addr = next, addr != end);
2325 	return 0;
2326 }
2327 
2328 /**
2329  * remap_pfn_range - remap kernel memory to userspace
2330  * @vma: user vma to map to
2331  * @addr: target user address to start at
2332  * @pfn: physical address of kernel memory
2333  * @size: size of map area
2334  * @prot: page protection flags for this mapping
2335  *
2336  *  Note: this is only safe if the mm semaphore is held when called.
2337  */
2338 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2339 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2340 {
2341 	pgd_t *pgd;
2342 	unsigned long next;
2343 	unsigned long end = addr + PAGE_ALIGN(size);
2344 	struct mm_struct *mm = vma->vm_mm;
2345 	int err;
2346 
2347 	/*
2348 	 * Physically remapped pages are special. Tell the
2349 	 * rest of the world about it:
2350 	 *   VM_IO tells people not to look at these pages
2351 	 *	(accesses can have side effects).
2352 	 *   VM_PFNMAP tells the core MM that the base pages are just
2353 	 *	raw PFN mappings, and do not have a "struct page" associated
2354 	 *	with them.
2355 	 *   VM_DONTEXPAND
2356 	 *      Disable vma merging and expanding with mremap().
2357 	 *   VM_DONTDUMP
2358 	 *      Omit vma from core dump, even when VM_IO turned off.
2359 	 *
2360 	 * There's a horrible special case to handle copy-on-write
2361 	 * behaviour that some programs depend on. We mark the "original"
2362 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2363 	 * See vm_normal_page() for details.
2364 	 */
2365 	if (is_cow_mapping(vma->vm_flags)) {
2366 		if (addr != vma->vm_start || end != vma->vm_end)
2367 			return -EINVAL;
2368 		vma->vm_pgoff = pfn;
2369 	}
2370 
2371 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2372 	if (err)
2373 		return -EINVAL;
2374 
2375 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2376 
2377 	BUG_ON(addr >= end);
2378 	pfn -= addr >> PAGE_SHIFT;
2379 	pgd = pgd_offset(mm, addr);
2380 	flush_cache_range(vma, addr, end);
2381 	do {
2382 		next = pgd_addr_end(addr, end);
2383 		err = remap_pud_range(mm, pgd, addr, next,
2384 				pfn + (addr >> PAGE_SHIFT), prot);
2385 		if (err)
2386 			break;
2387 	} while (pgd++, addr = next, addr != end);
2388 
2389 	if (err)
2390 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2391 
2392 	return err;
2393 }
2394 EXPORT_SYMBOL(remap_pfn_range);
2395 
2396 /**
2397  * vm_iomap_memory - remap memory to userspace
2398  * @vma: user vma to map to
2399  * @start: start of area
2400  * @len: size of area
2401  *
2402  * This is a simplified io_remap_pfn_range() for common driver use. The
2403  * driver just needs to give us the physical memory range to be mapped,
2404  * we'll figure out the rest from the vma information.
2405  *
2406  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2407  * whatever write-combining details or similar.
2408  */
2409 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2410 {
2411 	unsigned long vm_len, pfn, pages;
2412 
2413 	/* Check that the physical memory area passed in looks valid */
2414 	if (start + len < start)
2415 		return -EINVAL;
2416 	/*
2417 	 * You *really* shouldn't map things that aren't page-aligned,
2418 	 * but we've historically allowed it because IO memory might
2419 	 * just have smaller alignment.
2420 	 */
2421 	len += start & ~PAGE_MASK;
2422 	pfn = start >> PAGE_SHIFT;
2423 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2424 	if (pfn + pages < pfn)
2425 		return -EINVAL;
2426 
2427 	/* We start the mapping 'vm_pgoff' pages into the area */
2428 	if (vma->vm_pgoff > pages)
2429 		return -EINVAL;
2430 	pfn += vma->vm_pgoff;
2431 	pages -= vma->vm_pgoff;
2432 
2433 	/* Can we fit all of the mapping? */
2434 	vm_len = vma->vm_end - vma->vm_start;
2435 	if (vm_len >> PAGE_SHIFT > pages)
2436 		return -EINVAL;
2437 
2438 	/* Ok, let it rip */
2439 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2440 }
2441 EXPORT_SYMBOL(vm_iomap_memory);
2442 
2443 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2444 				     unsigned long addr, unsigned long end,
2445 				     pte_fn_t fn, void *data)
2446 {
2447 	pte_t *pte;
2448 	int err;
2449 	pgtable_t token;
2450 	spinlock_t *uninitialized_var(ptl);
2451 
2452 	pte = (mm == &init_mm) ?
2453 		pte_alloc_kernel(pmd, addr) :
2454 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2455 	if (!pte)
2456 		return -ENOMEM;
2457 
2458 	BUG_ON(pmd_huge(*pmd));
2459 
2460 	arch_enter_lazy_mmu_mode();
2461 
2462 	token = pmd_pgtable(*pmd);
2463 
2464 	do {
2465 		err = fn(pte++, token, addr, data);
2466 		if (err)
2467 			break;
2468 	} while (addr += PAGE_SIZE, addr != end);
2469 
2470 	arch_leave_lazy_mmu_mode();
2471 
2472 	if (mm != &init_mm)
2473 		pte_unmap_unlock(pte-1, ptl);
2474 	return err;
2475 }
2476 
2477 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2478 				     unsigned long addr, unsigned long end,
2479 				     pte_fn_t fn, void *data)
2480 {
2481 	pmd_t *pmd;
2482 	unsigned long next;
2483 	int err;
2484 
2485 	BUG_ON(pud_huge(*pud));
2486 
2487 	pmd = pmd_alloc(mm, pud, addr);
2488 	if (!pmd)
2489 		return -ENOMEM;
2490 	do {
2491 		next = pmd_addr_end(addr, end);
2492 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2493 		if (err)
2494 			break;
2495 	} while (pmd++, addr = next, addr != end);
2496 	return err;
2497 }
2498 
2499 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2500 				     unsigned long addr, unsigned long end,
2501 				     pte_fn_t fn, void *data)
2502 {
2503 	pud_t *pud;
2504 	unsigned long next;
2505 	int err;
2506 
2507 	pud = pud_alloc(mm, pgd, addr);
2508 	if (!pud)
2509 		return -ENOMEM;
2510 	do {
2511 		next = pud_addr_end(addr, end);
2512 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2513 		if (err)
2514 			break;
2515 	} while (pud++, addr = next, addr != end);
2516 	return err;
2517 }
2518 
2519 /*
2520  * Scan a region of virtual memory, filling in page tables as necessary
2521  * and calling a provided function on each leaf page table.
2522  */
2523 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2524 			unsigned long size, pte_fn_t fn, void *data)
2525 {
2526 	pgd_t *pgd;
2527 	unsigned long next;
2528 	unsigned long end = addr + size;
2529 	int err;
2530 
2531 	BUG_ON(addr >= end);
2532 	pgd = pgd_offset(mm, addr);
2533 	do {
2534 		next = pgd_addr_end(addr, end);
2535 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2536 		if (err)
2537 			break;
2538 	} while (pgd++, addr = next, addr != end);
2539 
2540 	return err;
2541 }
2542 EXPORT_SYMBOL_GPL(apply_to_page_range);
2543 
2544 /*
2545  * handle_pte_fault chooses page fault handler according to an entry
2546  * which was read non-atomically.  Before making any commitment, on
2547  * those architectures or configurations (e.g. i386 with PAE) which
2548  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2549  * must check under lock before unmapping the pte and proceeding
2550  * (but do_wp_page is only called after already making such a check;
2551  * and do_anonymous_page can safely check later on).
2552  */
2553 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2554 				pte_t *page_table, pte_t orig_pte)
2555 {
2556 	int same = 1;
2557 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2558 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2559 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2560 		spin_lock(ptl);
2561 		same = pte_same(*page_table, orig_pte);
2562 		spin_unlock(ptl);
2563 	}
2564 #endif
2565 	pte_unmap(page_table);
2566 	return same;
2567 }
2568 
2569 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2570 {
2571 	/*
2572 	 * If the source page was a PFN mapping, we don't have
2573 	 * a "struct page" for it. We do a best-effort copy by
2574 	 * just copying from the original user address. If that
2575 	 * fails, we just zero-fill it. Live with it.
2576 	 */
2577 	if (unlikely(!src)) {
2578 		void *kaddr = kmap_atomic(dst);
2579 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2580 
2581 		/*
2582 		 * This really shouldn't fail, because the page is there
2583 		 * in the page tables. But it might just be unreadable,
2584 		 * in which case we just give up and fill the result with
2585 		 * zeroes.
2586 		 */
2587 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2588 			clear_page(kaddr);
2589 		kunmap_atomic(kaddr);
2590 		flush_dcache_page(dst);
2591 	} else
2592 		copy_user_highpage(dst, src, va, vma);
2593 }
2594 
2595 /*
2596  * This routine handles present pages, when users try to write
2597  * to a shared page. It is done by copying the page to a new address
2598  * and decrementing the shared-page counter for the old page.
2599  *
2600  * Note that this routine assumes that the protection checks have been
2601  * done by the caller (the low-level page fault routine in most cases).
2602  * Thus we can safely just mark it writable once we've done any necessary
2603  * COW.
2604  *
2605  * We also mark the page dirty at this point even though the page will
2606  * change only once the write actually happens. This avoids a few races,
2607  * and potentially makes it more efficient.
2608  *
2609  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2610  * but allow concurrent faults), with pte both mapped and locked.
2611  * We return with mmap_sem still held, but pte unmapped and unlocked.
2612  */
2613 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2614 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2615 		spinlock_t *ptl, pte_t orig_pte)
2616 	__releases(ptl)
2617 {
2618 	struct page *old_page, *new_page = NULL;
2619 	pte_t entry;
2620 	int ret = 0;
2621 	int page_mkwrite = 0;
2622 	struct page *dirty_page = NULL;
2623 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2624 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2625 
2626 	old_page = vm_normal_page(vma, address, orig_pte);
2627 	if (!old_page) {
2628 		/*
2629 		 * VM_MIXEDMAP !pfn_valid() case
2630 		 *
2631 		 * We should not cow pages in a shared writeable mapping.
2632 		 * Just mark the pages writable as we can't do any dirty
2633 		 * accounting on raw pfn maps.
2634 		 */
2635 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2636 				     (VM_WRITE|VM_SHARED))
2637 			goto reuse;
2638 		goto gotten;
2639 	}
2640 
2641 	/*
2642 	 * Take out anonymous pages first, anonymous shared vmas are
2643 	 * not dirty accountable.
2644 	 */
2645 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2646 		if (!trylock_page(old_page)) {
2647 			page_cache_get(old_page);
2648 			pte_unmap_unlock(page_table, ptl);
2649 			lock_page(old_page);
2650 			page_table = pte_offset_map_lock(mm, pmd, address,
2651 							 &ptl);
2652 			if (!pte_same(*page_table, orig_pte)) {
2653 				unlock_page(old_page);
2654 				goto unlock;
2655 			}
2656 			page_cache_release(old_page);
2657 		}
2658 		if (reuse_swap_page(old_page)) {
2659 			/*
2660 			 * The page is all ours.  Move it to our anon_vma so
2661 			 * the rmap code will not search our parent or siblings.
2662 			 * Protected against the rmap code by the page lock.
2663 			 */
2664 			page_move_anon_rmap(old_page, vma, address);
2665 			unlock_page(old_page);
2666 			goto reuse;
2667 		}
2668 		unlock_page(old_page);
2669 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2670 					(VM_WRITE|VM_SHARED))) {
2671 		/*
2672 		 * Only catch write-faults on shared writable pages,
2673 		 * read-only shared pages can get COWed by
2674 		 * get_user_pages(.write=1, .force=1).
2675 		 */
2676 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2677 			struct vm_fault vmf;
2678 			int tmp;
2679 
2680 			vmf.virtual_address = (void __user *)(address &
2681 								PAGE_MASK);
2682 			vmf.pgoff = old_page->index;
2683 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2684 			vmf.page = old_page;
2685 
2686 			/*
2687 			 * Notify the address space that the page is about to
2688 			 * become writable so that it can prohibit this or wait
2689 			 * for the page to get into an appropriate state.
2690 			 *
2691 			 * We do this without the lock held, so that it can
2692 			 * sleep if it needs to.
2693 			 */
2694 			page_cache_get(old_page);
2695 			pte_unmap_unlock(page_table, ptl);
2696 
2697 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2698 			if (unlikely(tmp &
2699 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2700 				ret = tmp;
2701 				goto unwritable_page;
2702 			}
2703 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2704 				lock_page(old_page);
2705 				if (!old_page->mapping) {
2706 					ret = 0; /* retry the fault */
2707 					unlock_page(old_page);
2708 					goto unwritable_page;
2709 				}
2710 			} else
2711 				VM_BUG_ON(!PageLocked(old_page));
2712 
2713 			/*
2714 			 * Since we dropped the lock we need to revalidate
2715 			 * the PTE as someone else may have changed it.  If
2716 			 * they did, we just return, as we can count on the
2717 			 * MMU to tell us if they didn't also make it writable.
2718 			 */
2719 			page_table = pte_offset_map_lock(mm, pmd, address,
2720 							 &ptl);
2721 			if (!pte_same(*page_table, orig_pte)) {
2722 				unlock_page(old_page);
2723 				goto unlock;
2724 			}
2725 
2726 			page_mkwrite = 1;
2727 		}
2728 		dirty_page = old_page;
2729 		get_page(dirty_page);
2730 
2731 reuse:
2732 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2733 		entry = pte_mkyoung(orig_pte);
2734 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2735 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2736 			update_mmu_cache(vma, address, page_table);
2737 		pte_unmap_unlock(page_table, ptl);
2738 		ret |= VM_FAULT_WRITE;
2739 
2740 		if (!dirty_page)
2741 			return ret;
2742 
2743 		/*
2744 		 * Yes, Virginia, this is actually required to prevent a race
2745 		 * with clear_page_dirty_for_io() from clearing the page dirty
2746 		 * bit after it clear all dirty ptes, but before a racing
2747 		 * do_wp_page installs a dirty pte.
2748 		 *
2749 		 * __do_fault is protected similarly.
2750 		 */
2751 		if (!page_mkwrite) {
2752 			wait_on_page_locked(dirty_page);
2753 			set_page_dirty_balance(dirty_page, page_mkwrite);
2754 			/* file_update_time outside page_lock */
2755 			if (vma->vm_file)
2756 				file_update_time(vma->vm_file);
2757 		}
2758 		put_page(dirty_page);
2759 		if (page_mkwrite) {
2760 			struct address_space *mapping = dirty_page->mapping;
2761 
2762 			set_page_dirty(dirty_page);
2763 			unlock_page(dirty_page);
2764 			page_cache_release(dirty_page);
2765 			if (mapping)	{
2766 				/*
2767 				 * Some device drivers do not set page.mapping
2768 				 * but still dirty their pages
2769 				 */
2770 				balance_dirty_pages_ratelimited(mapping);
2771 			}
2772 		}
2773 
2774 		return ret;
2775 	}
2776 
2777 	/*
2778 	 * Ok, we need to copy. Oh, well..
2779 	 */
2780 	page_cache_get(old_page);
2781 gotten:
2782 	pte_unmap_unlock(page_table, ptl);
2783 
2784 	if (unlikely(anon_vma_prepare(vma)))
2785 		goto oom;
2786 
2787 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2788 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2789 		if (!new_page)
2790 			goto oom;
2791 	} else {
2792 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2793 		if (!new_page)
2794 			goto oom;
2795 		cow_user_page(new_page, old_page, address, vma);
2796 	}
2797 	__SetPageUptodate(new_page);
2798 
2799 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2800 		goto oom_free_new;
2801 
2802 	mmun_start  = address & PAGE_MASK;
2803 	mmun_end    = mmun_start + PAGE_SIZE;
2804 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2805 
2806 	/*
2807 	 * Re-check the pte - we dropped the lock
2808 	 */
2809 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2810 	if (likely(pte_same(*page_table, orig_pte))) {
2811 		if (old_page) {
2812 			if (!PageAnon(old_page)) {
2813 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2814 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2815 			}
2816 		} else
2817 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2818 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2819 		entry = mk_pte(new_page, vma->vm_page_prot);
2820 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2821 		/*
2822 		 * Clear the pte entry and flush it first, before updating the
2823 		 * pte with the new entry. This will avoid a race condition
2824 		 * seen in the presence of one thread doing SMC and another
2825 		 * thread doing COW.
2826 		 */
2827 		ptep_clear_flush(vma, address, page_table);
2828 		page_add_new_anon_rmap(new_page, vma, address);
2829 		/*
2830 		 * We call the notify macro here because, when using secondary
2831 		 * mmu page tables (such as kvm shadow page tables), we want the
2832 		 * new page to be mapped directly into the secondary page table.
2833 		 */
2834 		set_pte_at_notify(mm, address, page_table, entry);
2835 		update_mmu_cache(vma, address, page_table);
2836 		if (old_page) {
2837 			/*
2838 			 * Only after switching the pte to the new page may
2839 			 * we remove the mapcount here. Otherwise another
2840 			 * process may come and find the rmap count decremented
2841 			 * before the pte is switched to the new page, and
2842 			 * "reuse" the old page writing into it while our pte
2843 			 * here still points into it and can be read by other
2844 			 * threads.
2845 			 *
2846 			 * The critical issue is to order this
2847 			 * page_remove_rmap with the ptp_clear_flush above.
2848 			 * Those stores are ordered by (if nothing else,)
2849 			 * the barrier present in the atomic_add_negative
2850 			 * in page_remove_rmap.
2851 			 *
2852 			 * Then the TLB flush in ptep_clear_flush ensures that
2853 			 * no process can access the old page before the
2854 			 * decremented mapcount is visible. And the old page
2855 			 * cannot be reused until after the decremented
2856 			 * mapcount is visible. So transitively, TLBs to
2857 			 * old page will be flushed before it can be reused.
2858 			 */
2859 			page_remove_rmap(old_page);
2860 		}
2861 
2862 		/* Free the old page.. */
2863 		new_page = old_page;
2864 		ret |= VM_FAULT_WRITE;
2865 	} else
2866 		mem_cgroup_uncharge_page(new_page);
2867 
2868 	if (new_page)
2869 		page_cache_release(new_page);
2870 unlock:
2871 	pte_unmap_unlock(page_table, ptl);
2872 	if (mmun_end > mmun_start)
2873 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2874 	if (old_page) {
2875 		/*
2876 		 * Don't let another task, with possibly unlocked vma,
2877 		 * keep the mlocked page.
2878 		 */
2879 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2880 			lock_page(old_page);	/* LRU manipulation */
2881 			munlock_vma_page(old_page);
2882 			unlock_page(old_page);
2883 		}
2884 		page_cache_release(old_page);
2885 	}
2886 	return ret;
2887 oom_free_new:
2888 	page_cache_release(new_page);
2889 oom:
2890 	if (old_page)
2891 		page_cache_release(old_page);
2892 	return VM_FAULT_OOM;
2893 
2894 unwritable_page:
2895 	page_cache_release(old_page);
2896 	return ret;
2897 }
2898 
2899 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2900 		unsigned long start_addr, unsigned long end_addr,
2901 		struct zap_details *details)
2902 {
2903 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2904 }
2905 
2906 static inline void unmap_mapping_range_tree(struct rb_root *root,
2907 					    struct zap_details *details)
2908 {
2909 	struct vm_area_struct *vma;
2910 	pgoff_t vba, vea, zba, zea;
2911 
2912 	vma_interval_tree_foreach(vma, root,
2913 			details->first_index, details->last_index) {
2914 
2915 		vba = vma->vm_pgoff;
2916 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2917 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2918 		zba = details->first_index;
2919 		if (zba < vba)
2920 			zba = vba;
2921 		zea = details->last_index;
2922 		if (zea > vea)
2923 			zea = vea;
2924 
2925 		unmap_mapping_range_vma(vma,
2926 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2927 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2928 				details);
2929 	}
2930 }
2931 
2932 static inline void unmap_mapping_range_list(struct list_head *head,
2933 					    struct zap_details *details)
2934 {
2935 	struct vm_area_struct *vma;
2936 
2937 	/*
2938 	 * In nonlinear VMAs there is no correspondence between virtual address
2939 	 * offset and file offset.  So we must perform an exhaustive search
2940 	 * across *all* the pages in each nonlinear VMA, not just the pages
2941 	 * whose virtual address lies outside the file truncation point.
2942 	 */
2943 	list_for_each_entry(vma, head, shared.nonlinear) {
2944 		details->nonlinear_vma = vma;
2945 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2946 	}
2947 }
2948 
2949 /**
2950  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2951  * @mapping: the address space containing mmaps to be unmapped.
2952  * @holebegin: byte in first page to unmap, relative to the start of
2953  * the underlying file.  This will be rounded down to a PAGE_SIZE
2954  * boundary.  Note that this is different from truncate_pagecache(), which
2955  * must keep the partial page.  In contrast, we must get rid of
2956  * partial pages.
2957  * @holelen: size of prospective hole in bytes.  This will be rounded
2958  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2959  * end of the file.
2960  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2961  * but 0 when invalidating pagecache, don't throw away private data.
2962  */
2963 void unmap_mapping_range(struct address_space *mapping,
2964 		loff_t const holebegin, loff_t const holelen, int even_cows)
2965 {
2966 	struct zap_details details;
2967 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2968 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2969 
2970 	/* Check for overflow. */
2971 	if (sizeof(holelen) > sizeof(hlen)) {
2972 		long long holeend =
2973 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2974 		if (holeend & ~(long long)ULONG_MAX)
2975 			hlen = ULONG_MAX - hba + 1;
2976 	}
2977 
2978 	details.check_mapping = even_cows? NULL: mapping;
2979 	details.nonlinear_vma = NULL;
2980 	details.first_index = hba;
2981 	details.last_index = hba + hlen - 1;
2982 	if (details.last_index < details.first_index)
2983 		details.last_index = ULONG_MAX;
2984 
2985 
2986 	mutex_lock(&mapping->i_mmap_mutex);
2987 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2988 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2989 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2990 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2991 	mutex_unlock(&mapping->i_mmap_mutex);
2992 }
2993 EXPORT_SYMBOL(unmap_mapping_range);
2994 
2995 /*
2996  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2997  * but allow concurrent faults), and pte mapped but not yet locked.
2998  * We return with mmap_sem still held, but pte unmapped and unlocked.
2999  */
3000 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3001 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3002 		unsigned int flags, pte_t orig_pte)
3003 {
3004 	spinlock_t *ptl;
3005 	struct page *page, *swapcache;
3006 	swp_entry_t entry;
3007 	pte_t pte;
3008 	int locked;
3009 	struct mem_cgroup *ptr;
3010 	int exclusive = 0;
3011 	int ret = 0;
3012 
3013 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3014 		goto out;
3015 
3016 	entry = pte_to_swp_entry(orig_pte);
3017 	if (unlikely(non_swap_entry(entry))) {
3018 		if (is_migration_entry(entry)) {
3019 			migration_entry_wait(mm, pmd, address);
3020 		} else if (is_hwpoison_entry(entry)) {
3021 			ret = VM_FAULT_HWPOISON;
3022 		} else {
3023 			print_bad_pte(vma, address, orig_pte, NULL);
3024 			ret = VM_FAULT_SIGBUS;
3025 		}
3026 		goto out;
3027 	}
3028 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3029 	page = lookup_swap_cache(entry);
3030 	if (!page) {
3031 		page = swapin_readahead(entry,
3032 					GFP_HIGHUSER_MOVABLE, vma, address);
3033 		if (!page) {
3034 			/*
3035 			 * Back out if somebody else faulted in this pte
3036 			 * while we released the pte lock.
3037 			 */
3038 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3039 			if (likely(pte_same(*page_table, orig_pte)))
3040 				ret = VM_FAULT_OOM;
3041 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3042 			goto unlock;
3043 		}
3044 
3045 		/* Had to read the page from swap area: Major fault */
3046 		ret = VM_FAULT_MAJOR;
3047 		count_vm_event(PGMAJFAULT);
3048 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3049 	} else if (PageHWPoison(page)) {
3050 		/*
3051 		 * hwpoisoned dirty swapcache pages are kept for killing
3052 		 * owner processes (which may be unknown at hwpoison time)
3053 		 */
3054 		ret = VM_FAULT_HWPOISON;
3055 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3056 		swapcache = page;
3057 		goto out_release;
3058 	}
3059 
3060 	swapcache = page;
3061 	locked = lock_page_or_retry(page, mm, flags);
3062 
3063 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3064 	if (!locked) {
3065 		ret |= VM_FAULT_RETRY;
3066 		goto out_release;
3067 	}
3068 
3069 	/*
3070 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3071 	 * release the swapcache from under us.  The page pin, and pte_same
3072 	 * test below, are not enough to exclude that.  Even if it is still
3073 	 * swapcache, we need to check that the page's swap has not changed.
3074 	 */
3075 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3076 		goto out_page;
3077 
3078 	page = ksm_might_need_to_copy(page, vma, address);
3079 	if (unlikely(!page)) {
3080 		ret = VM_FAULT_OOM;
3081 		page = swapcache;
3082 		goto out_page;
3083 	}
3084 
3085 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3086 		ret = VM_FAULT_OOM;
3087 		goto out_page;
3088 	}
3089 
3090 	/*
3091 	 * Back out if somebody else already faulted in this pte.
3092 	 */
3093 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3094 	if (unlikely(!pte_same(*page_table, orig_pte)))
3095 		goto out_nomap;
3096 
3097 	if (unlikely(!PageUptodate(page))) {
3098 		ret = VM_FAULT_SIGBUS;
3099 		goto out_nomap;
3100 	}
3101 
3102 	/*
3103 	 * The page isn't present yet, go ahead with the fault.
3104 	 *
3105 	 * Be careful about the sequence of operations here.
3106 	 * To get its accounting right, reuse_swap_page() must be called
3107 	 * while the page is counted on swap but not yet in mapcount i.e.
3108 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3109 	 * must be called after the swap_free(), or it will never succeed.
3110 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3111 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3112 	 * in page->private. In this case, a record in swap_cgroup  is silently
3113 	 * discarded at swap_free().
3114 	 */
3115 
3116 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3117 	dec_mm_counter_fast(mm, MM_SWAPENTS);
3118 	pte = mk_pte(page, vma->vm_page_prot);
3119 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3120 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3121 		flags &= ~FAULT_FLAG_WRITE;
3122 		ret |= VM_FAULT_WRITE;
3123 		exclusive = 1;
3124 	}
3125 	flush_icache_page(vma, page);
3126 	set_pte_at(mm, address, page_table, pte);
3127 	if (page == swapcache)
3128 		do_page_add_anon_rmap(page, vma, address, exclusive);
3129 	else /* ksm created a completely new copy */
3130 		page_add_new_anon_rmap(page, vma, address);
3131 	/* It's better to call commit-charge after rmap is established */
3132 	mem_cgroup_commit_charge_swapin(page, ptr);
3133 
3134 	swap_free(entry);
3135 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3136 		try_to_free_swap(page);
3137 	unlock_page(page);
3138 	if (page != swapcache) {
3139 		/*
3140 		 * Hold the lock to avoid the swap entry to be reused
3141 		 * until we take the PT lock for the pte_same() check
3142 		 * (to avoid false positives from pte_same). For
3143 		 * further safety release the lock after the swap_free
3144 		 * so that the swap count won't change under a
3145 		 * parallel locked swapcache.
3146 		 */
3147 		unlock_page(swapcache);
3148 		page_cache_release(swapcache);
3149 	}
3150 
3151 	if (flags & FAULT_FLAG_WRITE) {
3152 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3153 		if (ret & VM_FAULT_ERROR)
3154 			ret &= VM_FAULT_ERROR;
3155 		goto out;
3156 	}
3157 
3158 	/* No need to invalidate - it was non-present before */
3159 	update_mmu_cache(vma, address, page_table);
3160 unlock:
3161 	pte_unmap_unlock(page_table, ptl);
3162 out:
3163 	return ret;
3164 out_nomap:
3165 	mem_cgroup_cancel_charge_swapin(ptr);
3166 	pte_unmap_unlock(page_table, ptl);
3167 out_page:
3168 	unlock_page(page);
3169 out_release:
3170 	page_cache_release(page);
3171 	if (page != swapcache) {
3172 		unlock_page(swapcache);
3173 		page_cache_release(swapcache);
3174 	}
3175 	return ret;
3176 }
3177 
3178 /*
3179  * This is like a special single-page "expand_{down|up}wards()",
3180  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3181  * doesn't hit another vma.
3182  */
3183 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3184 {
3185 	address &= PAGE_MASK;
3186 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3187 		struct vm_area_struct *prev = vma->vm_prev;
3188 
3189 		/*
3190 		 * Is there a mapping abutting this one below?
3191 		 *
3192 		 * That's only ok if it's the same stack mapping
3193 		 * that has gotten split..
3194 		 */
3195 		if (prev && prev->vm_end == address)
3196 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3197 
3198 		expand_downwards(vma, address - PAGE_SIZE);
3199 	}
3200 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3201 		struct vm_area_struct *next = vma->vm_next;
3202 
3203 		/* As VM_GROWSDOWN but s/below/above/ */
3204 		if (next && next->vm_start == address + PAGE_SIZE)
3205 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3206 
3207 		expand_upwards(vma, address + PAGE_SIZE);
3208 	}
3209 	return 0;
3210 }
3211 
3212 /*
3213  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3214  * but allow concurrent faults), and pte mapped but not yet locked.
3215  * We return with mmap_sem still held, but pte unmapped and unlocked.
3216  */
3217 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3218 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3219 		unsigned int flags)
3220 {
3221 	struct page *page;
3222 	spinlock_t *ptl;
3223 	pte_t entry;
3224 
3225 	pte_unmap(page_table);
3226 
3227 	/* Check if we need to add a guard page to the stack */
3228 	if (check_stack_guard_page(vma, address) < 0)
3229 		return VM_FAULT_SIGBUS;
3230 
3231 	/* Use the zero-page for reads */
3232 	if (!(flags & FAULT_FLAG_WRITE)) {
3233 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3234 						vma->vm_page_prot));
3235 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3236 		if (!pte_none(*page_table))
3237 			goto unlock;
3238 		goto setpte;
3239 	}
3240 
3241 	/* Allocate our own private page. */
3242 	if (unlikely(anon_vma_prepare(vma)))
3243 		goto oom;
3244 	page = alloc_zeroed_user_highpage_movable(vma, address);
3245 	if (!page)
3246 		goto oom;
3247 	/*
3248 	 * The memory barrier inside __SetPageUptodate makes sure that
3249 	 * preceeding stores to the page contents become visible before
3250 	 * the set_pte_at() write.
3251 	 */
3252 	__SetPageUptodate(page);
3253 
3254 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3255 		goto oom_free_page;
3256 
3257 	entry = mk_pte(page, vma->vm_page_prot);
3258 	if (vma->vm_flags & VM_WRITE)
3259 		entry = pte_mkwrite(pte_mkdirty(entry));
3260 
3261 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3262 	if (!pte_none(*page_table))
3263 		goto release;
3264 
3265 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3266 	page_add_new_anon_rmap(page, vma, address);
3267 setpte:
3268 	set_pte_at(mm, address, page_table, entry);
3269 
3270 	/* No need to invalidate - it was non-present before */
3271 	update_mmu_cache(vma, address, page_table);
3272 unlock:
3273 	pte_unmap_unlock(page_table, ptl);
3274 	return 0;
3275 release:
3276 	mem_cgroup_uncharge_page(page);
3277 	page_cache_release(page);
3278 	goto unlock;
3279 oom_free_page:
3280 	page_cache_release(page);
3281 oom:
3282 	return VM_FAULT_OOM;
3283 }
3284 
3285 /*
3286  * __do_fault() tries to create a new page mapping. It aggressively
3287  * tries to share with existing pages, but makes a separate copy if
3288  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3289  * the next page fault.
3290  *
3291  * As this is called only for pages that do not currently exist, we
3292  * do not need to flush old virtual caches or the TLB.
3293  *
3294  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3295  * but allow concurrent faults), and pte neither mapped nor locked.
3296  * We return with mmap_sem still held, but pte unmapped and unlocked.
3297  */
3298 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3299 		unsigned long address, pmd_t *pmd,
3300 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3301 {
3302 	pte_t *page_table;
3303 	spinlock_t *ptl;
3304 	struct page *page;
3305 	struct page *cow_page;
3306 	pte_t entry;
3307 	int anon = 0;
3308 	struct page *dirty_page = NULL;
3309 	struct vm_fault vmf;
3310 	int ret;
3311 	int page_mkwrite = 0;
3312 
3313 	/*
3314 	 * If we do COW later, allocate page befor taking lock_page()
3315 	 * on the file cache page. This will reduce lock holding time.
3316 	 */
3317 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3318 
3319 		if (unlikely(anon_vma_prepare(vma)))
3320 			return VM_FAULT_OOM;
3321 
3322 		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3323 		if (!cow_page)
3324 			return VM_FAULT_OOM;
3325 
3326 		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3327 			page_cache_release(cow_page);
3328 			return VM_FAULT_OOM;
3329 		}
3330 	} else
3331 		cow_page = NULL;
3332 
3333 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3334 	vmf.pgoff = pgoff;
3335 	vmf.flags = flags;
3336 	vmf.page = NULL;
3337 
3338 	ret = vma->vm_ops->fault(vma, &vmf);
3339 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3340 			    VM_FAULT_RETRY)))
3341 		goto uncharge_out;
3342 
3343 	if (unlikely(PageHWPoison(vmf.page))) {
3344 		if (ret & VM_FAULT_LOCKED)
3345 			unlock_page(vmf.page);
3346 		ret = VM_FAULT_HWPOISON;
3347 		goto uncharge_out;
3348 	}
3349 
3350 	/*
3351 	 * For consistency in subsequent calls, make the faulted page always
3352 	 * locked.
3353 	 */
3354 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3355 		lock_page(vmf.page);
3356 	else
3357 		VM_BUG_ON(!PageLocked(vmf.page));
3358 
3359 	/*
3360 	 * Should we do an early C-O-W break?
3361 	 */
3362 	page = vmf.page;
3363 	if (flags & FAULT_FLAG_WRITE) {
3364 		if (!(vma->vm_flags & VM_SHARED)) {
3365 			page = cow_page;
3366 			anon = 1;
3367 			copy_user_highpage(page, vmf.page, address, vma);
3368 			__SetPageUptodate(page);
3369 		} else {
3370 			/*
3371 			 * If the page will be shareable, see if the backing
3372 			 * address space wants to know that the page is about
3373 			 * to become writable
3374 			 */
3375 			if (vma->vm_ops->page_mkwrite) {
3376 				int tmp;
3377 
3378 				unlock_page(page);
3379 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3380 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3381 				if (unlikely(tmp &
3382 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3383 					ret = tmp;
3384 					goto unwritable_page;
3385 				}
3386 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3387 					lock_page(page);
3388 					if (!page->mapping) {
3389 						ret = 0; /* retry the fault */
3390 						unlock_page(page);
3391 						goto unwritable_page;
3392 					}
3393 				} else
3394 					VM_BUG_ON(!PageLocked(page));
3395 				page_mkwrite = 1;
3396 			}
3397 		}
3398 
3399 	}
3400 
3401 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3402 
3403 	/*
3404 	 * This silly early PAGE_DIRTY setting removes a race
3405 	 * due to the bad i386 page protection. But it's valid
3406 	 * for other architectures too.
3407 	 *
3408 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3409 	 * an exclusive copy of the page, or this is a shared mapping,
3410 	 * so we can make it writable and dirty to avoid having to
3411 	 * handle that later.
3412 	 */
3413 	/* Only go through if we didn't race with anybody else... */
3414 	if (likely(pte_same(*page_table, orig_pte))) {
3415 		flush_icache_page(vma, page);
3416 		entry = mk_pte(page, vma->vm_page_prot);
3417 		if (flags & FAULT_FLAG_WRITE)
3418 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3419 		if (anon) {
3420 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3421 			page_add_new_anon_rmap(page, vma, address);
3422 		} else {
3423 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3424 			page_add_file_rmap(page);
3425 			if (flags & FAULT_FLAG_WRITE) {
3426 				dirty_page = page;
3427 				get_page(dirty_page);
3428 			}
3429 		}
3430 		set_pte_at(mm, address, page_table, entry);
3431 
3432 		/* no need to invalidate: a not-present page won't be cached */
3433 		update_mmu_cache(vma, address, page_table);
3434 	} else {
3435 		if (cow_page)
3436 			mem_cgroup_uncharge_page(cow_page);
3437 		if (anon)
3438 			page_cache_release(page);
3439 		else
3440 			anon = 1; /* no anon but release faulted_page */
3441 	}
3442 
3443 	pte_unmap_unlock(page_table, ptl);
3444 
3445 	if (dirty_page) {
3446 		struct address_space *mapping = page->mapping;
3447 		int dirtied = 0;
3448 
3449 		if (set_page_dirty(dirty_page))
3450 			dirtied = 1;
3451 		unlock_page(dirty_page);
3452 		put_page(dirty_page);
3453 		if ((dirtied || page_mkwrite) && mapping) {
3454 			/*
3455 			 * Some device drivers do not set page.mapping but still
3456 			 * dirty their pages
3457 			 */
3458 			balance_dirty_pages_ratelimited(mapping);
3459 		}
3460 
3461 		/* file_update_time outside page_lock */
3462 		if (vma->vm_file && !page_mkwrite)
3463 			file_update_time(vma->vm_file);
3464 	} else {
3465 		unlock_page(vmf.page);
3466 		if (anon)
3467 			page_cache_release(vmf.page);
3468 	}
3469 
3470 	return ret;
3471 
3472 unwritable_page:
3473 	page_cache_release(page);
3474 	return ret;
3475 uncharge_out:
3476 	/* fs's fault handler get error */
3477 	if (cow_page) {
3478 		mem_cgroup_uncharge_page(cow_page);
3479 		page_cache_release(cow_page);
3480 	}
3481 	return ret;
3482 }
3483 
3484 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3485 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3486 		unsigned int flags, pte_t orig_pte)
3487 {
3488 	pgoff_t pgoff = (((address & PAGE_MASK)
3489 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3490 
3491 	pte_unmap(page_table);
3492 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3493 }
3494 
3495 /*
3496  * Fault of a previously existing named mapping. Repopulate the pte
3497  * from the encoded file_pte if possible. This enables swappable
3498  * nonlinear vmas.
3499  *
3500  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3501  * but allow concurrent faults), and pte mapped but not yet locked.
3502  * We return with mmap_sem still held, but pte unmapped and unlocked.
3503  */
3504 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3505 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3506 		unsigned int flags, pte_t orig_pte)
3507 {
3508 	pgoff_t pgoff;
3509 
3510 	flags |= FAULT_FLAG_NONLINEAR;
3511 
3512 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3513 		return 0;
3514 
3515 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3516 		/*
3517 		 * Page table corrupted: show pte and kill process.
3518 		 */
3519 		print_bad_pte(vma, address, orig_pte, NULL);
3520 		return VM_FAULT_SIGBUS;
3521 	}
3522 
3523 	pgoff = pte_to_pgoff(orig_pte);
3524 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3525 }
3526 
3527 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3528 				unsigned long addr, int current_nid)
3529 {
3530 	get_page(page);
3531 
3532 	count_vm_numa_event(NUMA_HINT_FAULTS);
3533 	if (current_nid == numa_node_id())
3534 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3535 
3536 	return mpol_misplaced(page, vma, addr);
3537 }
3538 
3539 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3540 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3541 {
3542 	struct page *page = NULL;
3543 	spinlock_t *ptl;
3544 	int current_nid = -1;
3545 	int target_nid;
3546 	bool migrated = false;
3547 
3548 	/*
3549 	* The "pte" at this point cannot be used safely without
3550 	* validation through pte_unmap_same(). It's of NUMA type but
3551 	* the pfn may be screwed if the read is non atomic.
3552 	*
3553 	* ptep_modify_prot_start is not called as this is clearing
3554 	* the _PAGE_NUMA bit and it is not really expected that there
3555 	* would be concurrent hardware modifications to the PTE.
3556 	*/
3557 	ptl = pte_lockptr(mm, pmd);
3558 	spin_lock(ptl);
3559 	if (unlikely(!pte_same(*ptep, pte))) {
3560 		pte_unmap_unlock(ptep, ptl);
3561 		goto out;
3562 	}
3563 
3564 	pte = pte_mknonnuma(pte);
3565 	set_pte_at(mm, addr, ptep, pte);
3566 	update_mmu_cache(vma, addr, ptep);
3567 
3568 	page = vm_normal_page(vma, addr, pte);
3569 	if (!page) {
3570 		pte_unmap_unlock(ptep, ptl);
3571 		return 0;
3572 	}
3573 
3574 	current_nid = page_to_nid(page);
3575 	target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3576 	pte_unmap_unlock(ptep, ptl);
3577 	if (target_nid == -1) {
3578 		/*
3579 		 * Account for the fault against the current node if it not
3580 		 * being replaced regardless of where the page is located.
3581 		 */
3582 		current_nid = numa_node_id();
3583 		put_page(page);
3584 		goto out;
3585 	}
3586 
3587 	/* Migrate to the requested node */
3588 	migrated = migrate_misplaced_page(page, target_nid);
3589 	if (migrated)
3590 		current_nid = target_nid;
3591 
3592 out:
3593 	if (current_nid != -1)
3594 		task_numa_fault(current_nid, 1, migrated);
3595 	return 0;
3596 }
3597 
3598 /* NUMA hinting page fault entry point for regular pmds */
3599 #ifdef CONFIG_NUMA_BALANCING
3600 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3601 		     unsigned long addr, pmd_t *pmdp)
3602 {
3603 	pmd_t pmd;
3604 	pte_t *pte, *orig_pte;
3605 	unsigned long _addr = addr & PMD_MASK;
3606 	unsigned long offset;
3607 	spinlock_t *ptl;
3608 	bool numa = false;
3609 	int local_nid = numa_node_id();
3610 
3611 	spin_lock(&mm->page_table_lock);
3612 	pmd = *pmdp;
3613 	if (pmd_numa(pmd)) {
3614 		set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3615 		numa = true;
3616 	}
3617 	spin_unlock(&mm->page_table_lock);
3618 
3619 	if (!numa)
3620 		return 0;
3621 
3622 	/* we're in a page fault so some vma must be in the range */
3623 	BUG_ON(!vma);
3624 	BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3625 	offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3626 	VM_BUG_ON(offset >= PMD_SIZE);
3627 	orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3628 	pte += offset >> PAGE_SHIFT;
3629 	for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3630 		pte_t pteval = *pte;
3631 		struct page *page;
3632 		int curr_nid = local_nid;
3633 		int target_nid;
3634 		bool migrated;
3635 		if (!pte_present(pteval))
3636 			continue;
3637 		if (!pte_numa(pteval))
3638 			continue;
3639 		if (addr >= vma->vm_end) {
3640 			vma = find_vma(mm, addr);
3641 			/* there's a pte present so there must be a vma */
3642 			BUG_ON(!vma);
3643 			BUG_ON(addr < vma->vm_start);
3644 		}
3645 		if (pte_numa(pteval)) {
3646 			pteval = pte_mknonnuma(pteval);
3647 			set_pte_at(mm, addr, pte, pteval);
3648 		}
3649 		page = vm_normal_page(vma, addr, pteval);
3650 		if (unlikely(!page))
3651 			continue;
3652 		/* only check non-shared pages */
3653 		if (unlikely(page_mapcount(page) != 1))
3654 			continue;
3655 
3656 		/*
3657 		 * Note that the NUMA fault is later accounted to either
3658 		 * the node that is currently running or where the page is
3659 		 * migrated to.
3660 		 */
3661 		curr_nid = local_nid;
3662 		target_nid = numa_migrate_prep(page, vma, addr,
3663 					       page_to_nid(page));
3664 		if (target_nid == -1) {
3665 			put_page(page);
3666 			continue;
3667 		}
3668 
3669 		/* Migrate to the requested node */
3670 		pte_unmap_unlock(pte, ptl);
3671 		migrated = migrate_misplaced_page(page, target_nid);
3672 		if (migrated)
3673 			curr_nid = target_nid;
3674 		task_numa_fault(curr_nid, 1, migrated);
3675 
3676 		pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3677 	}
3678 	pte_unmap_unlock(orig_pte, ptl);
3679 
3680 	return 0;
3681 }
3682 #else
3683 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3684 		     unsigned long addr, pmd_t *pmdp)
3685 {
3686 	BUG();
3687 	return 0;
3688 }
3689 #endif /* CONFIG_NUMA_BALANCING */
3690 
3691 /*
3692  * These routines also need to handle stuff like marking pages dirty
3693  * and/or accessed for architectures that don't do it in hardware (most
3694  * RISC architectures).  The early dirtying is also good on the i386.
3695  *
3696  * There is also a hook called "update_mmu_cache()" that architectures
3697  * with external mmu caches can use to update those (ie the Sparc or
3698  * PowerPC hashed page tables that act as extended TLBs).
3699  *
3700  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3701  * but allow concurrent faults), and pte mapped but not yet locked.
3702  * We return with mmap_sem still held, but pte unmapped and unlocked.
3703  */
3704 int handle_pte_fault(struct mm_struct *mm,
3705 		     struct vm_area_struct *vma, unsigned long address,
3706 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3707 {
3708 	pte_t entry;
3709 	spinlock_t *ptl;
3710 
3711 	entry = *pte;
3712 	if (!pte_present(entry)) {
3713 		if (pte_none(entry)) {
3714 			if (vma->vm_ops) {
3715 				if (likely(vma->vm_ops->fault))
3716 					return do_linear_fault(mm, vma, address,
3717 						pte, pmd, flags, entry);
3718 			}
3719 			return do_anonymous_page(mm, vma, address,
3720 						 pte, pmd, flags);
3721 		}
3722 		if (pte_file(entry))
3723 			return do_nonlinear_fault(mm, vma, address,
3724 					pte, pmd, flags, entry);
3725 		return do_swap_page(mm, vma, address,
3726 					pte, pmd, flags, entry);
3727 	}
3728 
3729 	if (pte_numa(entry))
3730 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3731 
3732 	ptl = pte_lockptr(mm, pmd);
3733 	spin_lock(ptl);
3734 	if (unlikely(!pte_same(*pte, entry)))
3735 		goto unlock;
3736 	if (flags & FAULT_FLAG_WRITE) {
3737 		if (!pte_write(entry))
3738 			return do_wp_page(mm, vma, address,
3739 					pte, pmd, ptl, entry);
3740 		entry = pte_mkdirty(entry);
3741 	}
3742 	entry = pte_mkyoung(entry);
3743 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3744 		update_mmu_cache(vma, address, pte);
3745 	} else {
3746 		/*
3747 		 * This is needed only for protection faults but the arch code
3748 		 * is not yet telling us if this is a protection fault or not.
3749 		 * This still avoids useless tlb flushes for .text page faults
3750 		 * with threads.
3751 		 */
3752 		if (flags & FAULT_FLAG_WRITE)
3753 			flush_tlb_fix_spurious_fault(vma, address);
3754 	}
3755 unlock:
3756 	pte_unmap_unlock(pte, ptl);
3757 	return 0;
3758 }
3759 
3760 /*
3761  * By the time we get here, we already hold the mm semaphore
3762  */
3763 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3764 		unsigned long address, unsigned int flags)
3765 {
3766 	pgd_t *pgd;
3767 	pud_t *pud;
3768 	pmd_t *pmd;
3769 	pte_t *pte;
3770 
3771 	__set_current_state(TASK_RUNNING);
3772 
3773 	count_vm_event(PGFAULT);
3774 	mem_cgroup_count_vm_event(mm, PGFAULT);
3775 
3776 	/* do counter updates before entering really critical section. */
3777 	check_sync_rss_stat(current);
3778 
3779 	if (unlikely(is_vm_hugetlb_page(vma)))
3780 		return hugetlb_fault(mm, vma, address, flags);
3781 
3782 retry:
3783 	pgd = pgd_offset(mm, address);
3784 	pud = pud_alloc(mm, pgd, address);
3785 	if (!pud)
3786 		return VM_FAULT_OOM;
3787 	pmd = pmd_alloc(mm, pud, address);
3788 	if (!pmd)
3789 		return VM_FAULT_OOM;
3790 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3791 		if (!vma->vm_ops)
3792 			return do_huge_pmd_anonymous_page(mm, vma, address,
3793 							  pmd, flags);
3794 	} else {
3795 		pmd_t orig_pmd = *pmd;
3796 		int ret;
3797 
3798 		barrier();
3799 		if (pmd_trans_huge(orig_pmd)) {
3800 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3801 
3802 			/*
3803 			 * If the pmd is splitting, return and retry the
3804 			 * the fault.  Alternative: wait until the split
3805 			 * is done, and goto retry.
3806 			 */
3807 			if (pmd_trans_splitting(orig_pmd))
3808 				return 0;
3809 
3810 			if (pmd_numa(orig_pmd))
3811 				return do_huge_pmd_numa_page(mm, vma, address,
3812 							     orig_pmd, pmd);
3813 
3814 			if (dirty && !pmd_write(orig_pmd)) {
3815 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3816 							  orig_pmd);
3817 				/*
3818 				 * If COW results in an oom, the huge pmd will
3819 				 * have been split, so retry the fault on the
3820 				 * pte for a smaller charge.
3821 				 */
3822 				if (unlikely(ret & VM_FAULT_OOM))
3823 					goto retry;
3824 				return ret;
3825 			} else {
3826 				huge_pmd_set_accessed(mm, vma, address, pmd,
3827 						      orig_pmd, dirty);
3828 			}
3829 
3830 			return 0;
3831 		}
3832 	}
3833 
3834 	if (pmd_numa(*pmd))
3835 		return do_pmd_numa_page(mm, vma, address, pmd);
3836 
3837 	/*
3838 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3839 	 * run pte_offset_map on the pmd, if an huge pmd could
3840 	 * materialize from under us from a different thread.
3841 	 */
3842 	if (unlikely(pmd_none(*pmd)) &&
3843 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3844 		return VM_FAULT_OOM;
3845 	/* if an huge pmd materialized from under us just retry later */
3846 	if (unlikely(pmd_trans_huge(*pmd)))
3847 		return 0;
3848 	/*
3849 	 * A regular pmd is established and it can't morph into a huge pmd
3850 	 * from under us anymore at this point because we hold the mmap_sem
3851 	 * read mode and khugepaged takes it in write mode. So now it's
3852 	 * safe to run pte_offset_map().
3853 	 */
3854 	pte = pte_offset_map(pmd, address);
3855 
3856 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3857 }
3858 
3859 #ifndef __PAGETABLE_PUD_FOLDED
3860 /*
3861  * Allocate page upper directory.
3862  * We've already handled the fast-path in-line.
3863  */
3864 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3865 {
3866 	pud_t *new = pud_alloc_one(mm, address);
3867 	if (!new)
3868 		return -ENOMEM;
3869 
3870 	smp_wmb(); /* See comment in __pte_alloc */
3871 
3872 	spin_lock(&mm->page_table_lock);
3873 	if (pgd_present(*pgd))		/* Another has populated it */
3874 		pud_free(mm, new);
3875 	else
3876 		pgd_populate(mm, pgd, new);
3877 	spin_unlock(&mm->page_table_lock);
3878 	return 0;
3879 }
3880 #endif /* __PAGETABLE_PUD_FOLDED */
3881 
3882 #ifndef __PAGETABLE_PMD_FOLDED
3883 /*
3884  * Allocate page middle directory.
3885  * We've already handled the fast-path in-line.
3886  */
3887 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3888 {
3889 	pmd_t *new = pmd_alloc_one(mm, address);
3890 	if (!new)
3891 		return -ENOMEM;
3892 
3893 	smp_wmb(); /* See comment in __pte_alloc */
3894 
3895 	spin_lock(&mm->page_table_lock);
3896 #ifndef __ARCH_HAS_4LEVEL_HACK
3897 	if (pud_present(*pud))		/* Another has populated it */
3898 		pmd_free(mm, new);
3899 	else
3900 		pud_populate(mm, pud, new);
3901 #else
3902 	if (pgd_present(*pud))		/* Another has populated it */
3903 		pmd_free(mm, new);
3904 	else
3905 		pgd_populate(mm, pud, new);
3906 #endif /* __ARCH_HAS_4LEVEL_HACK */
3907 	spin_unlock(&mm->page_table_lock);
3908 	return 0;
3909 }
3910 #endif /* __PAGETABLE_PMD_FOLDED */
3911 
3912 #if !defined(__HAVE_ARCH_GATE_AREA)
3913 
3914 #if defined(AT_SYSINFO_EHDR)
3915 static struct vm_area_struct gate_vma;
3916 
3917 static int __init gate_vma_init(void)
3918 {
3919 	gate_vma.vm_mm = NULL;
3920 	gate_vma.vm_start = FIXADDR_USER_START;
3921 	gate_vma.vm_end = FIXADDR_USER_END;
3922 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3923 	gate_vma.vm_page_prot = __P101;
3924 
3925 	return 0;
3926 }
3927 __initcall(gate_vma_init);
3928 #endif
3929 
3930 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3931 {
3932 #ifdef AT_SYSINFO_EHDR
3933 	return &gate_vma;
3934 #else
3935 	return NULL;
3936 #endif
3937 }
3938 
3939 int in_gate_area_no_mm(unsigned long addr)
3940 {
3941 #ifdef AT_SYSINFO_EHDR
3942 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3943 		return 1;
3944 #endif
3945 	return 0;
3946 }
3947 
3948 #endif	/* __HAVE_ARCH_GATE_AREA */
3949 
3950 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3951 		pte_t **ptepp, spinlock_t **ptlp)
3952 {
3953 	pgd_t *pgd;
3954 	pud_t *pud;
3955 	pmd_t *pmd;
3956 	pte_t *ptep;
3957 
3958 	pgd = pgd_offset(mm, address);
3959 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3960 		goto out;
3961 
3962 	pud = pud_offset(pgd, address);
3963 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3964 		goto out;
3965 
3966 	pmd = pmd_offset(pud, address);
3967 	VM_BUG_ON(pmd_trans_huge(*pmd));
3968 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3969 		goto out;
3970 
3971 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3972 	if (pmd_huge(*pmd))
3973 		goto out;
3974 
3975 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3976 	if (!ptep)
3977 		goto out;
3978 	if (!pte_present(*ptep))
3979 		goto unlock;
3980 	*ptepp = ptep;
3981 	return 0;
3982 unlock:
3983 	pte_unmap_unlock(ptep, *ptlp);
3984 out:
3985 	return -EINVAL;
3986 }
3987 
3988 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3989 			     pte_t **ptepp, spinlock_t **ptlp)
3990 {
3991 	int res;
3992 
3993 	/* (void) is needed to make gcc happy */
3994 	(void) __cond_lock(*ptlp,
3995 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3996 	return res;
3997 }
3998 
3999 /**
4000  * follow_pfn - look up PFN at a user virtual address
4001  * @vma: memory mapping
4002  * @address: user virtual address
4003  * @pfn: location to store found PFN
4004  *
4005  * Only IO mappings and raw PFN mappings are allowed.
4006  *
4007  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4008  */
4009 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4010 	unsigned long *pfn)
4011 {
4012 	int ret = -EINVAL;
4013 	spinlock_t *ptl;
4014 	pte_t *ptep;
4015 
4016 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4017 		return ret;
4018 
4019 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4020 	if (ret)
4021 		return ret;
4022 	*pfn = pte_pfn(*ptep);
4023 	pte_unmap_unlock(ptep, ptl);
4024 	return 0;
4025 }
4026 EXPORT_SYMBOL(follow_pfn);
4027 
4028 #ifdef CONFIG_HAVE_IOREMAP_PROT
4029 int follow_phys(struct vm_area_struct *vma,
4030 		unsigned long address, unsigned int flags,
4031 		unsigned long *prot, resource_size_t *phys)
4032 {
4033 	int ret = -EINVAL;
4034 	pte_t *ptep, pte;
4035 	spinlock_t *ptl;
4036 
4037 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4038 		goto out;
4039 
4040 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4041 		goto out;
4042 	pte = *ptep;
4043 
4044 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4045 		goto unlock;
4046 
4047 	*prot = pgprot_val(pte_pgprot(pte));
4048 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4049 
4050 	ret = 0;
4051 unlock:
4052 	pte_unmap_unlock(ptep, ptl);
4053 out:
4054 	return ret;
4055 }
4056 
4057 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4058 			void *buf, int len, int write)
4059 {
4060 	resource_size_t phys_addr;
4061 	unsigned long prot = 0;
4062 	void __iomem *maddr;
4063 	int offset = addr & (PAGE_SIZE-1);
4064 
4065 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4066 		return -EINVAL;
4067 
4068 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4069 	if (write)
4070 		memcpy_toio(maddr + offset, buf, len);
4071 	else
4072 		memcpy_fromio(buf, maddr + offset, len);
4073 	iounmap(maddr);
4074 
4075 	return len;
4076 }
4077 #endif
4078 
4079 /*
4080  * Access another process' address space as given in mm.  If non-NULL, use the
4081  * given task for page fault accounting.
4082  */
4083 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4084 		unsigned long addr, void *buf, int len, int write)
4085 {
4086 	struct vm_area_struct *vma;
4087 	void *old_buf = buf;
4088 
4089 	down_read(&mm->mmap_sem);
4090 	/* ignore errors, just check how much was successfully transferred */
4091 	while (len) {
4092 		int bytes, ret, offset;
4093 		void *maddr;
4094 		struct page *page = NULL;
4095 
4096 		ret = get_user_pages(tsk, mm, addr, 1,
4097 				write, 1, &page, &vma);
4098 		if (ret <= 0) {
4099 			/*
4100 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4101 			 * we can access using slightly different code.
4102 			 */
4103 #ifdef CONFIG_HAVE_IOREMAP_PROT
4104 			vma = find_vma(mm, addr);
4105 			if (!vma || vma->vm_start > addr)
4106 				break;
4107 			if (vma->vm_ops && vma->vm_ops->access)
4108 				ret = vma->vm_ops->access(vma, addr, buf,
4109 							  len, write);
4110 			if (ret <= 0)
4111 #endif
4112 				break;
4113 			bytes = ret;
4114 		} else {
4115 			bytes = len;
4116 			offset = addr & (PAGE_SIZE-1);
4117 			if (bytes > PAGE_SIZE-offset)
4118 				bytes = PAGE_SIZE-offset;
4119 
4120 			maddr = kmap(page);
4121 			if (write) {
4122 				copy_to_user_page(vma, page, addr,
4123 						  maddr + offset, buf, bytes);
4124 				set_page_dirty_lock(page);
4125 			} else {
4126 				copy_from_user_page(vma, page, addr,
4127 						    buf, maddr + offset, bytes);
4128 			}
4129 			kunmap(page);
4130 			page_cache_release(page);
4131 		}
4132 		len -= bytes;
4133 		buf += bytes;
4134 		addr += bytes;
4135 	}
4136 	up_read(&mm->mmap_sem);
4137 
4138 	return buf - old_buf;
4139 }
4140 
4141 /**
4142  * access_remote_vm - access another process' address space
4143  * @mm:		the mm_struct of the target address space
4144  * @addr:	start address to access
4145  * @buf:	source or destination buffer
4146  * @len:	number of bytes to transfer
4147  * @write:	whether the access is a write
4148  *
4149  * The caller must hold a reference on @mm.
4150  */
4151 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4152 		void *buf, int len, int write)
4153 {
4154 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
4155 }
4156 
4157 /*
4158  * Access another process' address space.
4159  * Source/target buffer must be kernel space,
4160  * Do not walk the page table directly, use get_user_pages
4161  */
4162 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4163 		void *buf, int len, int write)
4164 {
4165 	struct mm_struct *mm;
4166 	int ret;
4167 
4168 	mm = get_task_mm(tsk);
4169 	if (!mm)
4170 		return 0;
4171 
4172 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4173 	mmput(mm);
4174 
4175 	return ret;
4176 }
4177 
4178 /*
4179  * Print the name of a VMA.
4180  */
4181 void print_vma_addr(char *prefix, unsigned long ip)
4182 {
4183 	struct mm_struct *mm = current->mm;
4184 	struct vm_area_struct *vma;
4185 
4186 	/*
4187 	 * Do not print if we are in atomic
4188 	 * contexts (in exception stacks, etc.):
4189 	 */
4190 	if (preempt_count())
4191 		return;
4192 
4193 	down_read(&mm->mmap_sem);
4194 	vma = find_vma(mm, ip);
4195 	if (vma && vma->vm_file) {
4196 		struct file *f = vma->vm_file;
4197 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4198 		if (buf) {
4199 			char *p;
4200 
4201 			p = d_path(&f->f_path, buf, PAGE_SIZE);
4202 			if (IS_ERR(p))
4203 				p = "?";
4204 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4205 					vma->vm_start,
4206 					vma->vm_end - vma->vm_start);
4207 			free_page((unsigned long)buf);
4208 		}
4209 	}
4210 	up_read(&mm->mmap_sem);
4211 }
4212 
4213 #ifdef CONFIG_PROVE_LOCKING
4214 void might_fault(void)
4215 {
4216 	/*
4217 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4218 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4219 	 * get paged out, therefore we'll never actually fault, and the
4220 	 * below annotations will generate false positives.
4221 	 */
4222 	if (segment_eq(get_fs(), KERNEL_DS))
4223 		return;
4224 
4225 	might_sleep();
4226 	/*
4227 	 * it would be nicer only to annotate paths which are not under
4228 	 * pagefault_disable, however that requires a larger audit and
4229 	 * providing helpers like get_user_atomic.
4230 	 */
4231 	if (!in_atomic() && current->mm)
4232 		might_lock_read(&current->mm->mmap_sem);
4233 }
4234 EXPORT_SYMBOL(might_fault);
4235 #endif
4236 
4237 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4238 static void clear_gigantic_page(struct page *page,
4239 				unsigned long addr,
4240 				unsigned int pages_per_huge_page)
4241 {
4242 	int i;
4243 	struct page *p = page;
4244 
4245 	might_sleep();
4246 	for (i = 0; i < pages_per_huge_page;
4247 	     i++, p = mem_map_next(p, page, i)) {
4248 		cond_resched();
4249 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4250 	}
4251 }
4252 void clear_huge_page(struct page *page,
4253 		     unsigned long addr, unsigned int pages_per_huge_page)
4254 {
4255 	int i;
4256 
4257 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4258 		clear_gigantic_page(page, addr, pages_per_huge_page);
4259 		return;
4260 	}
4261 
4262 	might_sleep();
4263 	for (i = 0; i < pages_per_huge_page; i++) {
4264 		cond_resched();
4265 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4266 	}
4267 }
4268 
4269 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4270 				    unsigned long addr,
4271 				    struct vm_area_struct *vma,
4272 				    unsigned int pages_per_huge_page)
4273 {
4274 	int i;
4275 	struct page *dst_base = dst;
4276 	struct page *src_base = src;
4277 
4278 	for (i = 0; i < pages_per_huge_page; ) {
4279 		cond_resched();
4280 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4281 
4282 		i++;
4283 		dst = mem_map_next(dst, dst_base, i);
4284 		src = mem_map_next(src, src_base, i);
4285 	}
4286 }
4287 
4288 void copy_user_huge_page(struct page *dst, struct page *src,
4289 			 unsigned long addr, struct vm_area_struct *vma,
4290 			 unsigned int pages_per_huge_page)
4291 {
4292 	int i;
4293 
4294 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4295 		copy_user_gigantic_page(dst, src, addr, vma,
4296 					pages_per_huge_page);
4297 		return;
4298 	}
4299 
4300 	might_sleep();
4301 	for (i = 0; i < pages_per_huge_page; i++) {
4302 		cond_resched();
4303 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4304 	}
4305 }
4306 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4307