1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 81 #include <trace/events/kmem.h> 82 83 #include <asm/io.h> 84 #include <asm/mmu_context.h> 85 #include <asm/pgalloc.h> 86 #include <linux/uaccess.h> 87 #include <asm/tlb.h> 88 #include <asm/tlbflush.h> 89 90 #include "pgalloc-track.h" 91 #include "internal.h" 92 #include "swap.h" 93 94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 96 #endif 97 98 #ifndef CONFIG_NUMA 99 unsigned long max_mapnr; 100 EXPORT_SYMBOL(max_mapnr); 101 102 struct page *mem_map; 103 EXPORT_SYMBOL(mem_map); 104 #endif 105 106 static vm_fault_t do_fault(struct vm_fault *vmf); 107 108 /* 109 * A number of key systems in x86 including ioremap() rely on the assumption 110 * that high_memory defines the upper bound on direct map memory, then end 111 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 113 * and ZONE_HIGHMEM. 114 */ 115 void *high_memory; 116 EXPORT_SYMBOL(high_memory); 117 118 /* 119 * Randomize the address space (stacks, mmaps, brk, etc.). 120 * 121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 122 * as ancient (libc5 based) binaries can segfault. ) 123 */ 124 int randomize_va_space __read_mostly = 125 #ifdef CONFIG_COMPAT_BRK 126 1; 127 #else 128 2; 129 #endif 130 131 #ifndef arch_wants_old_prefaulted_pte 132 static inline bool arch_wants_old_prefaulted_pte(void) 133 { 134 /* 135 * Transitioning a PTE from 'old' to 'young' can be expensive on 136 * some architectures, even if it's performed in hardware. By 137 * default, "false" means prefaulted entries will be 'young'. 138 */ 139 return false; 140 } 141 #endif 142 143 static int __init disable_randmaps(char *s) 144 { 145 randomize_va_space = 0; 146 return 1; 147 } 148 __setup("norandmaps", disable_randmaps); 149 150 unsigned long zero_pfn __read_mostly; 151 EXPORT_SYMBOL(zero_pfn); 152 153 unsigned long highest_memmap_pfn __read_mostly; 154 155 /* 156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 157 */ 158 static int __init init_zero_pfn(void) 159 { 160 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 161 return 0; 162 } 163 early_initcall(init_zero_pfn); 164 165 void mm_trace_rss_stat(struct mm_struct *mm, int member) 166 { 167 trace_rss_stat(mm, member); 168 } 169 170 /* 171 * Note: this doesn't free the actual pages themselves. That 172 * has been handled earlier when unmapping all the memory regions. 173 */ 174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 175 unsigned long addr) 176 { 177 pgtable_t token = pmd_pgtable(*pmd); 178 pmd_clear(pmd); 179 pte_free_tlb(tlb, token, addr); 180 mm_dec_nr_ptes(tlb->mm); 181 } 182 183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 184 unsigned long addr, unsigned long end, 185 unsigned long floor, unsigned long ceiling) 186 { 187 pmd_t *pmd; 188 unsigned long next; 189 unsigned long start; 190 191 start = addr; 192 pmd = pmd_offset(pud, addr); 193 do { 194 next = pmd_addr_end(addr, end); 195 if (pmd_none_or_clear_bad(pmd)) 196 continue; 197 free_pte_range(tlb, pmd, addr); 198 } while (pmd++, addr = next, addr != end); 199 200 start &= PUD_MASK; 201 if (start < floor) 202 return; 203 if (ceiling) { 204 ceiling &= PUD_MASK; 205 if (!ceiling) 206 return; 207 } 208 if (end - 1 > ceiling - 1) 209 return; 210 211 pmd = pmd_offset(pud, start); 212 pud_clear(pud); 213 pmd_free_tlb(tlb, pmd, start); 214 mm_dec_nr_pmds(tlb->mm); 215 } 216 217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 218 unsigned long addr, unsigned long end, 219 unsigned long floor, unsigned long ceiling) 220 { 221 pud_t *pud; 222 unsigned long next; 223 unsigned long start; 224 225 start = addr; 226 pud = pud_offset(p4d, addr); 227 do { 228 next = pud_addr_end(addr, end); 229 if (pud_none_or_clear_bad(pud)) 230 continue; 231 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 232 } while (pud++, addr = next, addr != end); 233 234 start &= P4D_MASK; 235 if (start < floor) 236 return; 237 if (ceiling) { 238 ceiling &= P4D_MASK; 239 if (!ceiling) 240 return; 241 } 242 if (end - 1 > ceiling - 1) 243 return; 244 245 pud = pud_offset(p4d, start); 246 p4d_clear(p4d); 247 pud_free_tlb(tlb, pud, start); 248 mm_dec_nr_puds(tlb->mm); 249 } 250 251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 252 unsigned long addr, unsigned long end, 253 unsigned long floor, unsigned long ceiling) 254 { 255 p4d_t *p4d; 256 unsigned long next; 257 unsigned long start; 258 259 start = addr; 260 p4d = p4d_offset(pgd, addr); 261 do { 262 next = p4d_addr_end(addr, end); 263 if (p4d_none_or_clear_bad(p4d)) 264 continue; 265 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 266 } while (p4d++, addr = next, addr != end); 267 268 start &= PGDIR_MASK; 269 if (start < floor) 270 return; 271 if (ceiling) { 272 ceiling &= PGDIR_MASK; 273 if (!ceiling) 274 return; 275 } 276 if (end - 1 > ceiling - 1) 277 return; 278 279 p4d = p4d_offset(pgd, start); 280 pgd_clear(pgd); 281 p4d_free_tlb(tlb, p4d, start); 282 } 283 284 /* 285 * This function frees user-level page tables of a process. 286 */ 287 void free_pgd_range(struct mmu_gather *tlb, 288 unsigned long addr, unsigned long end, 289 unsigned long floor, unsigned long ceiling) 290 { 291 pgd_t *pgd; 292 unsigned long next; 293 294 /* 295 * The next few lines have given us lots of grief... 296 * 297 * Why are we testing PMD* at this top level? Because often 298 * there will be no work to do at all, and we'd prefer not to 299 * go all the way down to the bottom just to discover that. 300 * 301 * Why all these "- 1"s? Because 0 represents both the bottom 302 * of the address space and the top of it (using -1 for the 303 * top wouldn't help much: the masks would do the wrong thing). 304 * The rule is that addr 0 and floor 0 refer to the bottom of 305 * the address space, but end 0 and ceiling 0 refer to the top 306 * Comparisons need to use "end - 1" and "ceiling - 1" (though 307 * that end 0 case should be mythical). 308 * 309 * Wherever addr is brought up or ceiling brought down, we must 310 * be careful to reject "the opposite 0" before it confuses the 311 * subsequent tests. But what about where end is brought down 312 * by PMD_SIZE below? no, end can't go down to 0 there. 313 * 314 * Whereas we round start (addr) and ceiling down, by different 315 * masks at different levels, in order to test whether a table 316 * now has no other vmas using it, so can be freed, we don't 317 * bother to round floor or end up - the tests don't need that. 318 */ 319 320 addr &= PMD_MASK; 321 if (addr < floor) { 322 addr += PMD_SIZE; 323 if (!addr) 324 return; 325 } 326 if (ceiling) { 327 ceiling &= PMD_MASK; 328 if (!ceiling) 329 return; 330 } 331 if (end - 1 > ceiling - 1) 332 end -= PMD_SIZE; 333 if (addr > end - 1) 334 return; 335 /* 336 * We add page table cache pages with PAGE_SIZE, 337 * (see pte_free_tlb()), flush the tlb if we need 338 */ 339 tlb_change_page_size(tlb, PAGE_SIZE); 340 pgd = pgd_offset(tlb->mm, addr); 341 do { 342 next = pgd_addr_end(addr, end); 343 if (pgd_none_or_clear_bad(pgd)) 344 continue; 345 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 346 } while (pgd++, addr = next, addr != end); 347 } 348 349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, 350 struct vm_area_struct *vma, unsigned long floor, 351 unsigned long ceiling) 352 { 353 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 354 355 do { 356 unsigned long addr = vma->vm_start; 357 struct vm_area_struct *next; 358 359 /* 360 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 361 * be 0. This will underflow and is okay. 362 */ 363 next = mas_find(&mas, ceiling - 1); 364 365 /* 366 * Hide vma from rmap and truncate_pagecache before freeing 367 * pgtables 368 */ 369 unlink_anon_vmas(vma); 370 unlink_file_vma(vma); 371 372 if (is_vm_hugetlb_page(vma)) { 373 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 374 floor, next ? next->vm_start : ceiling); 375 } else { 376 /* 377 * Optimization: gather nearby vmas into one call down 378 */ 379 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 380 && !is_vm_hugetlb_page(next)) { 381 vma = next; 382 next = mas_find(&mas, ceiling - 1); 383 unlink_anon_vmas(vma); 384 unlink_file_vma(vma); 385 } 386 free_pgd_range(tlb, addr, vma->vm_end, 387 floor, next ? next->vm_start : ceiling); 388 } 389 vma = next; 390 } while (vma); 391 } 392 393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 394 { 395 spinlock_t *ptl = pmd_lock(mm, pmd); 396 397 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 398 mm_inc_nr_ptes(mm); 399 /* 400 * Ensure all pte setup (eg. pte page lock and page clearing) are 401 * visible before the pte is made visible to other CPUs by being 402 * put into page tables. 403 * 404 * The other side of the story is the pointer chasing in the page 405 * table walking code (when walking the page table without locking; 406 * ie. most of the time). Fortunately, these data accesses consist 407 * of a chain of data-dependent loads, meaning most CPUs (alpha 408 * being the notable exception) will already guarantee loads are 409 * seen in-order. See the alpha page table accessors for the 410 * smp_rmb() barriers in page table walking code. 411 */ 412 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 413 pmd_populate(mm, pmd, *pte); 414 *pte = NULL; 415 } 416 spin_unlock(ptl); 417 } 418 419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 420 { 421 pgtable_t new = pte_alloc_one(mm); 422 if (!new) 423 return -ENOMEM; 424 425 pmd_install(mm, pmd, &new); 426 if (new) 427 pte_free(mm, new); 428 return 0; 429 } 430 431 int __pte_alloc_kernel(pmd_t *pmd) 432 { 433 pte_t *new = pte_alloc_one_kernel(&init_mm); 434 if (!new) 435 return -ENOMEM; 436 437 spin_lock(&init_mm.page_table_lock); 438 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 439 smp_wmb(); /* See comment in pmd_install() */ 440 pmd_populate_kernel(&init_mm, pmd, new); 441 new = NULL; 442 } 443 spin_unlock(&init_mm.page_table_lock); 444 if (new) 445 pte_free_kernel(&init_mm, new); 446 return 0; 447 } 448 449 static inline void init_rss_vec(int *rss) 450 { 451 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 452 } 453 454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 455 { 456 int i; 457 458 if (current->mm == mm) 459 sync_mm_rss(mm); 460 for (i = 0; i < NR_MM_COUNTERS; i++) 461 if (rss[i]) 462 add_mm_counter(mm, i, rss[i]); 463 } 464 465 /* 466 * This function is called to print an error when a bad pte 467 * is found. For example, we might have a PFN-mapped pte in 468 * a region that doesn't allow it. 469 * 470 * The calling function must still handle the error. 471 */ 472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 473 pte_t pte, struct page *page) 474 { 475 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 476 p4d_t *p4d = p4d_offset(pgd, addr); 477 pud_t *pud = pud_offset(p4d, addr); 478 pmd_t *pmd = pmd_offset(pud, addr); 479 struct address_space *mapping; 480 pgoff_t index; 481 static unsigned long resume; 482 static unsigned long nr_shown; 483 static unsigned long nr_unshown; 484 485 /* 486 * Allow a burst of 60 reports, then keep quiet for that minute; 487 * or allow a steady drip of one report per second. 488 */ 489 if (nr_shown == 60) { 490 if (time_before(jiffies, resume)) { 491 nr_unshown++; 492 return; 493 } 494 if (nr_unshown) { 495 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 496 nr_unshown); 497 nr_unshown = 0; 498 } 499 nr_shown = 0; 500 } 501 if (nr_shown++ == 0) 502 resume = jiffies + 60 * HZ; 503 504 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 505 index = linear_page_index(vma, addr); 506 507 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 508 current->comm, 509 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 510 if (page) 511 dump_page(page, "bad pte"); 512 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 513 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 514 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 515 vma->vm_file, 516 vma->vm_ops ? vma->vm_ops->fault : NULL, 517 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 518 mapping ? mapping->a_ops->read_folio : NULL); 519 dump_stack(); 520 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 521 } 522 523 /* 524 * vm_normal_page -- This function gets the "struct page" associated with a pte. 525 * 526 * "Special" mappings do not wish to be associated with a "struct page" (either 527 * it doesn't exist, or it exists but they don't want to touch it). In this 528 * case, NULL is returned here. "Normal" mappings do have a struct page. 529 * 530 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 531 * pte bit, in which case this function is trivial. Secondly, an architecture 532 * may not have a spare pte bit, which requires a more complicated scheme, 533 * described below. 534 * 535 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 536 * special mapping (even if there are underlying and valid "struct pages"). 537 * COWed pages of a VM_PFNMAP are always normal. 538 * 539 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 540 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 541 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 542 * mapping will always honor the rule 543 * 544 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 545 * 546 * And for normal mappings this is false. 547 * 548 * This restricts such mappings to be a linear translation from virtual address 549 * to pfn. To get around this restriction, we allow arbitrary mappings so long 550 * as the vma is not a COW mapping; in that case, we know that all ptes are 551 * special (because none can have been COWed). 552 * 553 * 554 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 555 * 556 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 557 * page" backing, however the difference is that _all_ pages with a struct 558 * page (that is, those where pfn_valid is true) are refcounted and considered 559 * normal pages by the VM. The disadvantage is that pages are refcounted 560 * (which can be slower and simply not an option for some PFNMAP users). The 561 * advantage is that we don't have to follow the strict linearity rule of 562 * PFNMAP mappings in order to support COWable mappings. 563 * 564 */ 565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 566 pte_t pte) 567 { 568 unsigned long pfn = pte_pfn(pte); 569 570 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 571 if (likely(!pte_special(pte))) 572 goto check_pfn; 573 if (vma->vm_ops && vma->vm_ops->find_special_page) 574 return vma->vm_ops->find_special_page(vma, addr); 575 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 576 return NULL; 577 if (is_zero_pfn(pfn)) 578 return NULL; 579 if (pte_devmap(pte)) 580 /* 581 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 582 * and will have refcounts incremented on their struct pages 583 * when they are inserted into PTEs, thus they are safe to 584 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 585 * do not have refcounts. Example of legacy ZONE_DEVICE is 586 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 587 */ 588 return NULL; 589 590 print_bad_pte(vma, addr, pte, NULL); 591 return NULL; 592 } 593 594 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 595 596 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 597 if (vma->vm_flags & VM_MIXEDMAP) { 598 if (!pfn_valid(pfn)) 599 return NULL; 600 goto out; 601 } else { 602 unsigned long off; 603 off = (addr - vma->vm_start) >> PAGE_SHIFT; 604 if (pfn == vma->vm_pgoff + off) 605 return NULL; 606 if (!is_cow_mapping(vma->vm_flags)) 607 return NULL; 608 } 609 } 610 611 if (is_zero_pfn(pfn)) 612 return NULL; 613 614 check_pfn: 615 if (unlikely(pfn > highest_memmap_pfn)) { 616 print_bad_pte(vma, addr, pte, NULL); 617 return NULL; 618 } 619 620 /* 621 * NOTE! We still have PageReserved() pages in the page tables. 622 * eg. VDSO mappings can cause them to exist. 623 */ 624 out: 625 return pfn_to_page(pfn); 626 } 627 628 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 629 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 630 pmd_t pmd) 631 { 632 unsigned long pfn = pmd_pfn(pmd); 633 634 /* 635 * There is no pmd_special() but there may be special pmds, e.g. 636 * in a direct-access (dax) mapping, so let's just replicate the 637 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 638 */ 639 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 640 if (vma->vm_flags & VM_MIXEDMAP) { 641 if (!pfn_valid(pfn)) 642 return NULL; 643 goto out; 644 } else { 645 unsigned long off; 646 off = (addr - vma->vm_start) >> PAGE_SHIFT; 647 if (pfn == vma->vm_pgoff + off) 648 return NULL; 649 if (!is_cow_mapping(vma->vm_flags)) 650 return NULL; 651 } 652 } 653 654 if (pmd_devmap(pmd)) 655 return NULL; 656 if (is_huge_zero_pmd(pmd)) 657 return NULL; 658 if (unlikely(pfn > highest_memmap_pfn)) 659 return NULL; 660 661 /* 662 * NOTE! We still have PageReserved() pages in the page tables. 663 * eg. VDSO mappings can cause them to exist. 664 */ 665 out: 666 return pfn_to_page(pfn); 667 } 668 #endif 669 670 static void restore_exclusive_pte(struct vm_area_struct *vma, 671 struct page *page, unsigned long address, 672 pte_t *ptep) 673 { 674 pte_t pte; 675 swp_entry_t entry; 676 677 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 678 if (pte_swp_soft_dirty(*ptep)) 679 pte = pte_mksoft_dirty(pte); 680 681 entry = pte_to_swp_entry(*ptep); 682 if (pte_swp_uffd_wp(*ptep)) 683 pte = pte_mkuffd_wp(pte); 684 else if (is_writable_device_exclusive_entry(entry)) 685 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 686 687 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 688 689 /* 690 * No need to take a page reference as one was already 691 * created when the swap entry was made. 692 */ 693 if (PageAnon(page)) 694 page_add_anon_rmap(page, vma, address, RMAP_NONE); 695 else 696 /* 697 * Currently device exclusive access only supports anonymous 698 * memory so the entry shouldn't point to a filebacked page. 699 */ 700 WARN_ON_ONCE(1); 701 702 set_pte_at(vma->vm_mm, address, ptep, pte); 703 704 /* 705 * No need to invalidate - it was non-present before. However 706 * secondary CPUs may have mappings that need invalidating. 707 */ 708 update_mmu_cache(vma, address, ptep); 709 } 710 711 /* 712 * Tries to restore an exclusive pte if the page lock can be acquired without 713 * sleeping. 714 */ 715 static int 716 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 717 unsigned long addr) 718 { 719 swp_entry_t entry = pte_to_swp_entry(*src_pte); 720 struct page *page = pfn_swap_entry_to_page(entry); 721 722 if (trylock_page(page)) { 723 restore_exclusive_pte(vma, page, addr, src_pte); 724 unlock_page(page); 725 return 0; 726 } 727 728 return -EBUSY; 729 } 730 731 /* 732 * copy one vm_area from one task to the other. Assumes the page tables 733 * already present in the new task to be cleared in the whole range 734 * covered by this vma. 735 */ 736 737 static unsigned long 738 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 739 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 740 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 741 { 742 unsigned long vm_flags = dst_vma->vm_flags; 743 pte_t pte = *src_pte; 744 struct page *page; 745 swp_entry_t entry = pte_to_swp_entry(pte); 746 747 if (likely(!non_swap_entry(entry))) { 748 if (swap_duplicate(entry) < 0) 749 return -EIO; 750 751 /* make sure dst_mm is on swapoff's mmlist. */ 752 if (unlikely(list_empty(&dst_mm->mmlist))) { 753 spin_lock(&mmlist_lock); 754 if (list_empty(&dst_mm->mmlist)) 755 list_add(&dst_mm->mmlist, 756 &src_mm->mmlist); 757 spin_unlock(&mmlist_lock); 758 } 759 /* Mark the swap entry as shared. */ 760 if (pte_swp_exclusive(*src_pte)) { 761 pte = pte_swp_clear_exclusive(*src_pte); 762 set_pte_at(src_mm, addr, src_pte, pte); 763 } 764 rss[MM_SWAPENTS]++; 765 } else if (is_migration_entry(entry)) { 766 page = pfn_swap_entry_to_page(entry); 767 768 rss[mm_counter(page)]++; 769 770 if (!is_readable_migration_entry(entry) && 771 is_cow_mapping(vm_flags)) { 772 /* 773 * COW mappings require pages in both parent and child 774 * to be set to read. A previously exclusive entry is 775 * now shared. 776 */ 777 entry = make_readable_migration_entry( 778 swp_offset(entry)); 779 pte = swp_entry_to_pte(entry); 780 if (pte_swp_soft_dirty(*src_pte)) 781 pte = pte_swp_mksoft_dirty(pte); 782 if (pte_swp_uffd_wp(*src_pte)) 783 pte = pte_swp_mkuffd_wp(pte); 784 set_pte_at(src_mm, addr, src_pte, pte); 785 } 786 } else if (is_device_private_entry(entry)) { 787 page = pfn_swap_entry_to_page(entry); 788 789 /* 790 * Update rss count even for unaddressable pages, as 791 * they should treated just like normal pages in this 792 * respect. 793 * 794 * We will likely want to have some new rss counters 795 * for unaddressable pages, at some point. But for now 796 * keep things as they are. 797 */ 798 get_page(page); 799 rss[mm_counter(page)]++; 800 /* Cannot fail as these pages cannot get pinned. */ 801 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 802 803 /* 804 * We do not preserve soft-dirty information, because so 805 * far, checkpoint/restore is the only feature that 806 * requires that. And checkpoint/restore does not work 807 * when a device driver is involved (you cannot easily 808 * save and restore device driver state). 809 */ 810 if (is_writable_device_private_entry(entry) && 811 is_cow_mapping(vm_flags)) { 812 entry = make_readable_device_private_entry( 813 swp_offset(entry)); 814 pte = swp_entry_to_pte(entry); 815 if (pte_swp_uffd_wp(*src_pte)) 816 pte = pte_swp_mkuffd_wp(pte); 817 set_pte_at(src_mm, addr, src_pte, pte); 818 } 819 } else if (is_device_exclusive_entry(entry)) { 820 /* 821 * Make device exclusive entries present by restoring the 822 * original entry then copying as for a present pte. Device 823 * exclusive entries currently only support private writable 824 * (ie. COW) mappings. 825 */ 826 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 827 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 828 return -EBUSY; 829 return -ENOENT; 830 } else if (is_pte_marker_entry(entry)) { 831 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma)) 832 set_pte_at(dst_mm, addr, dst_pte, pte); 833 return 0; 834 } 835 if (!userfaultfd_wp(dst_vma)) 836 pte = pte_swp_clear_uffd_wp(pte); 837 set_pte_at(dst_mm, addr, dst_pte, pte); 838 return 0; 839 } 840 841 /* 842 * Copy a present and normal page. 843 * 844 * NOTE! The usual case is that this isn't required; 845 * instead, the caller can just increase the page refcount 846 * and re-use the pte the traditional way. 847 * 848 * And if we need a pre-allocated page but don't yet have 849 * one, return a negative error to let the preallocation 850 * code know so that it can do so outside the page table 851 * lock. 852 */ 853 static inline int 854 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 855 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 856 struct page **prealloc, struct page *page) 857 { 858 struct page *new_page; 859 pte_t pte; 860 861 new_page = *prealloc; 862 if (!new_page) 863 return -EAGAIN; 864 865 /* 866 * We have a prealloc page, all good! Take it 867 * over and copy the page & arm it. 868 */ 869 *prealloc = NULL; 870 copy_user_highpage(new_page, page, addr, src_vma); 871 __SetPageUptodate(new_page); 872 page_add_new_anon_rmap(new_page, dst_vma, addr); 873 lru_cache_add_inactive_or_unevictable(new_page, dst_vma); 874 rss[mm_counter(new_page)]++; 875 876 /* All done, just insert the new page copy in the child */ 877 pte = mk_pte(new_page, dst_vma->vm_page_prot); 878 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 879 if (userfaultfd_pte_wp(dst_vma, *src_pte)) 880 /* Uffd-wp needs to be delivered to dest pte as well */ 881 pte = pte_wrprotect(pte_mkuffd_wp(pte)); 882 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 883 return 0; 884 } 885 886 /* 887 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 888 * is required to copy this pte. 889 */ 890 static inline int 891 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 892 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 893 struct page **prealloc) 894 { 895 struct mm_struct *src_mm = src_vma->vm_mm; 896 unsigned long vm_flags = src_vma->vm_flags; 897 pte_t pte = *src_pte; 898 struct page *page; 899 900 page = vm_normal_page(src_vma, addr, pte); 901 if (page && PageAnon(page)) { 902 /* 903 * If this page may have been pinned by the parent process, 904 * copy the page immediately for the child so that we'll always 905 * guarantee the pinned page won't be randomly replaced in the 906 * future. 907 */ 908 get_page(page); 909 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 910 /* Page maybe pinned, we have to copy. */ 911 put_page(page); 912 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 913 addr, rss, prealloc, page); 914 } 915 rss[mm_counter(page)]++; 916 } else if (page) { 917 get_page(page); 918 page_dup_file_rmap(page, false); 919 rss[mm_counter(page)]++; 920 } 921 922 /* 923 * If it's a COW mapping, write protect it both 924 * in the parent and the child 925 */ 926 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 927 ptep_set_wrprotect(src_mm, addr, src_pte); 928 pte = pte_wrprotect(pte); 929 } 930 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page)); 931 932 /* 933 * If it's a shared mapping, mark it clean in 934 * the child 935 */ 936 if (vm_flags & VM_SHARED) 937 pte = pte_mkclean(pte); 938 pte = pte_mkold(pte); 939 940 if (!userfaultfd_wp(dst_vma)) 941 pte = pte_clear_uffd_wp(pte); 942 943 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 944 return 0; 945 } 946 947 static inline struct page * 948 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, 949 unsigned long addr) 950 { 951 struct page *new_page; 952 953 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); 954 if (!new_page) 955 return NULL; 956 957 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) { 958 put_page(new_page); 959 return NULL; 960 } 961 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 962 963 return new_page; 964 } 965 966 static int 967 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 968 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 969 unsigned long end) 970 { 971 struct mm_struct *dst_mm = dst_vma->vm_mm; 972 struct mm_struct *src_mm = src_vma->vm_mm; 973 pte_t *orig_src_pte, *orig_dst_pte; 974 pte_t *src_pte, *dst_pte; 975 spinlock_t *src_ptl, *dst_ptl; 976 int progress, ret = 0; 977 int rss[NR_MM_COUNTERS]; 978 swp_entry_t entry = (swp_entry_t){0}; 979 struct page *prealloc = NULL; 980 981 again: 982 progress = 0; 983 init_rss_vec(rss); 984 985 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 986 if (!dst_pte) { 987 ret = -ENOMEM; 988 goto out; 989 } 990 src_pte = pte_offset_map(src_pmd, addr); 991 src_ptl = pte_lockptr(src_mm, src_pmd); 992 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 993 orig_src_pte = src_pte; 994 orig_dst_pte = dst_pte; 995 arch_enter_lazy_mmu_mode(); 996 997 do { 998 /* 999 * We are holding two locks at this point - either of them 1000 * could generate latencies in another task on another CPU. 1001 */ 1002 if (progress >= 32) { 1003 progress = 0; 1004 if (need_resched() || 1005 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1006 break; 1007 } 1008 if (pte_none(*src_pte)) { 1009 progress++; 1010 continue; 1011 } 1012 if (unlikely(!pte_present(*src_pte))) { 1013 ret = copy_nonpresent_pte(dst_mm, src_mm, 1014 dst_pte, src_pte, 1015 dst_vma, src_vma, 1016 addr, rss); 1017 if (ret == -EIO) { 1018 entry = pte_to_swp_entry(*src_pte); 1019 break; 1020 } else if (ret == -EBUSY) { 1021 break; 1022 } else if (!ret) { 1023 progress += 8; 1024 continue; 1025 } 1026 1027 /* 1028 * Device exclusive entry restored, continue by copying 1029 * the now present pte. 1030 */ 1031 WARN_ON_ONCE(ret != -ENOENT); 1032 } 1033 /* copy_present_pte() will clear `*prealloc' if consumed */ 1034 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1035 addr, rss, &prealloc); 1036 /* 1037 * If we need a pre-allocated page for this pte, drop the 1038 * locks, allocate, and try again. 1039 */ 1040 if (unlikely(ret == -EAGAIN)) 1041 break; 1042 if (unlikely(prealloc)) { 1043 /* 1044 * pre-alloc page cannot be reused by next time so as 1045 * to strictly follow mempolicy (e.g., alloc_page_vma() 1046 * will allocate page according to address). This 1047 * could only happen if one pinned pte changed. 1048 */ 1049 put_page(prealloc); 1050 prealloc = NULL; 1051 } 1052 progress += 8; 1053 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1054 1055 arch_leave_lazy_mmu_mode(); 1056 spin_unlock(src_ptl); 1057 pte_unmap(orig_src_pte); 1058 add_mm_rss_vec(dst_mm, rss); 1059 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1060 cond_resched(); 1061 1062 if (ret == -EIO) { 1063 VM_WARN_ON_ONCE(!entry.val); 1064 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1065 ret = -ENOMEM; 1066 goto out; 1067 } 1068 entry.val = 0; 1069 } else if (ret == -EBUSY) { 1070 goto out; 1071 } else if (ret == -EAGAIN) { 1072 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1073 if (!prealloc) 1074 return -ENOMEM; 1075 } else if (ret) { 1076 VM_WARN_ON_ONCE(1); 1077 } 1078 1079 /* We've captured and resolved the error. Reset, try again. */ 1080 ret = 0; 1081 1082 if (addr != end) 1083 goto again; 1084 out: 1085 if (unlikely(prealloc)) 1086 put_page(prealloc); 1087 return ret; 1088 } 1089 1090 static inline int 1091 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1092 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1093 unsigned long end) 1094 { 1095 struct mm_struct *dst_mm = dst_vma->vm_mm; 1096 struct mm_struct *src_mm = src_vma->vm_mm; 1097 pmd_t *src_pmd, *dst_pmd; 1098 unsigned long next; 1099 1100 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1101 if (!dst_pmd) 1102 return -ENOMEM; 1103 src_pmd = pmd_offset(src_pud, addr); 1104 do { 1105 next = pmd_addr_end(addr, end); 1106 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1107 || pmd_devmap(*src_pmd)) { 1108 int err; 1109 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1110 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1111 addr, dst_vma, src_vma); 1112 if (err == -ENOMEM) 1113 return -ENOMEM; 1114 if (!err) 1115 continue; 1116 /* fall through */ 1117 } 1118 if (pmd_none_or_clear_bad(src_pmd)) 1119 continue; 1120 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1121 addr, next)) 1122 return -ENOMEM; 1123 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1124 return 0; 1125 } 1126 1127 static inline int 1128 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1129 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1130 unsigned long end) 1131 { 1132 struct mm_struct *dst_mm = dst_vma->vm_mm; 1133 struct mm_struct *src_mm = src_vma->vm_mm; 1134 pud_t *src_pud, *dst_pud; 1135 unsigned long next; 1136 1137 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1138 if (!dst_pud) 1139 return -ENOMEM; 1140 src_pud = pud_offset(src_p4d, addr); 1141 do { 1142 next = pud_addr_end(addr, end); 1143 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1144 int err; 1145 1146 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1147 err = copy_huge_pud(dst_mm, src_mm, 1148 dst_pud, src_pud, addr, src_vma); 1149 if (err == -ENOMEM) 1150 return -ENOMEM; 1151 if (!err) 1152 continue; 1153 /* fall through */ 1154 } 1155 if (pud_none_or_clear_bad(src_pud)) 1156 continue; 1157 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1158 addr, next)) 1159 return -ENOMEM; 1160 } while (dst_pud++, src_pud++, addr = next, addr != end); 1161 return 0; 1162 } 1163 1164 static inline int 1165 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1166 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1167 unsigned long end) 1168 { 1169 struct mm_struct *dst_mm = dst_vma->vm_mm; 1170 p4d_t *src_p4d, *dst_p4d; 1171 unsigned long next; 1172 1173 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1174 if (!dst_p4d) 1175 return -ENOMEM; 1176 src_p4d = p4d_offset(src_pgd, addr); 1177 do { 1178 next = p4d_addr_end(addr, end); 1179 if (p4d_none_or_clear_bad(src_p4d)) 1180 continue; 1181 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1182 addr, next)) 1183 return -ENOMEM; 1184 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1185 return 0; 1186 } 1187 1188 /* 1189 * Return true if the vma needs to copy the pgtable during this fork(). Return 1190 * false when we can speed up fork() by allowing lazy page faults later until 1191 * when the child accesses the memory range. 1192 */ 1193 static bool 1194 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1195 { 1196 /* 1197 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1198 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1199 * contains uffd-wp protection information, that's something we can't 1200 * retrieve from page cache, and skip copying will lose those info. 1201 */ 1202 if (userfaultfd_wp(dst_vma)) 1203 return true; 1204 1205 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1206 return true; 1207 1208 if (src_vma->anon_vma) 1209 return true; 1210 1211 /* 1212 * Don't copy ptes where a page fault will fill them correctly. Fork 1213 * becomes much lighter when there are big shared or private readonly 1214 * mappings. The tradeoff is that copy_page_range is more efficient 1215 * than faulting. 1216 */ 1217 return false; 1218 } 1219 1220 int 1221 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1222 { 1223 pgd_t *src_pgd, *dst_pgd; 1224 unsigned long next; 1225 unsigned long addr = src_vma->vm_start; 1226 unsigned long end = src_vma->vm_end; 1227 struct mm_struct *dst_mm = dst_vma->vm_mm; 1228 struct mm_struct *src_mm = src_vma->vm_mm; 1229 struct mmu_notifier_range range; 1230 bool is_cow; 1231 int ret; 1232 1233 if (!vma_needs_copy(dst_vma, src_vma)) 1234 return 0; 1235 1236 if (is_vm_hugetlb_page(src_vma)) 1237 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1238 1239 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1240 /* 1241 * We do not free on error cases below as remove_vma 1242 * gets called on error from higher level routine 1243 */ 1244 ret = track_pfn_copy(src_vma); 1245 if (ret) 1246 return ret; 1247 } 1248 1249 /* 1250 * We need to invalidate the secondary MMU mappings only when 1251 * there could be a permission downgrade on the ptes of the 1252 * parent mm. And a permission downgrade will only happen if 1253 * is_cow_mapping() returns true. 1254 */ 1255 is_cow = is_cow_mapping(src_vma->vm_flags); 1256 1257 if (is_cow) { 1258 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1259 0, src_vma, src_mm, addr, end); 1260 mmu_notifier_invalidate_range_start(&range); 1261 /* 1262 * Disabling preemption is not needed for the write side, as 1263 * the read side doesn't spin, but goes to the mmap_lock. 1264 * 1265 * Use the raw variant of the seqcount_t write API to avoid 1266 * lockdep complaining about preemptibility. 1267 */ 1268 mmap_assert_write_locked(src_mm); 1269 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1270 } 1271 1272 ret = 0; 1273 dst_pgd = pgd_offset(dst_mm, addr); 1274 src_pgd = pgd_offset(src_mm, addr); 1275 do { 1276 next = pgd_addr_end(addr, end); 1277 if (pgd_none_or_clear_bad(src_pgd)) 1278 continue; 1279 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1280 addr, next))) { 1281 ret = -ENOMEM; 1282 break; 1283 } 1284 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1285 1286 if (is_cow) { 1287 raw_write_seqcount_end(&src_mm->write_protect_seq); 1288 mmu_notifier_invalidate_range_end(&range); 1289 } 1290 return ret; 1291 } 1292 1293 /* Whether we should zap all COWed (private) pages too */ 1294 static inline bool should_zap_cows(struct zap_details *details) 1295 { 1296 /* By default, zap all pages */ 1297 if (!details) 1298 return true; 1299 1300 /* Or, we zap COWed pages only if the caller wants to */ 1301 return details->even_cows; 1302 } 1303 1304 /* Decides whether we should zap this page with the page pointer specified */ 1305 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1306 { 1307 /* If we can make a decision without *page.. */ 1308 if (should_zap_cows(details)) 1309 return true; 1310 1311 /* E.g. the caller passes NULL for the case of a zero page */ 1312 if (!page) 1313 return true; 1314 1315 /* Otherwise we should only zap non-anon pages */ 1316 return !PageAnon(page); 1317 } 1318 1319 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1320 { 1321 if (!details) 1322 return false; 1323 1324 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1325 } 1326 1327 /* 1328 * This function makes sure that we'll replace the none pte with an uffd-wp 1329 * swap special pte marker when necessary. Must be with the pgtable lock held. 1330 */ 1331 static inline void 1332 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1333 unsigned long addr, pte_t *pte, 1334 struct zap_details *details, pte_t pteval) 1335 { 1336 if (zap_drop_file_uffd_wp(details)) 1337 return; 1338 1339 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1340 } 1341 1342 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1343 struct vm_area_struct *vma, pmd_t *pmd, 1344 unsigned long addr, unsigned long end, 1345 struct zap_details *details) 1346 { 1347 struct mm_struct *mm = tlb->mm; 1348 int force_flush = 0; 1349 int rss[NR_MM_COUNTERS]; 1350 spinlock_t *ptl; 1351 pte_t *start_pte; 1352 pte_t *pte; 1353 swp_entry_t entry; 1354 1355 tlb_change_page_size(tlb, PAGE_SIZE); 1356 again: 1357 init_rss_vec(rss); 1358 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1359 pte = start_pte; 1360 flush_tlb_batched_pending(mm); 1361 arch_enter_lazy_mmu_mode(); 1362 do { 1363 pte_t ptent = *pte; 1364 struct page *page; 1365 1366 if (pte_none(ptent)) 1367 continue; 1368 1369 if (need_resched()) 1370 break; 1371 1372 if (pte_present(ptent)) { 1373 unsigned int delay_rmap; 1374 1375 page = vm_normal_page(vma, addr, ptent); 1376 if (unlikely(!should_zap_page(details, page))) 1377 continue; 1378 ptent = ptep_get_and_clear_full(mm, addr, pte, 1379 tlb->fullmm); 1380 tlb_remove_tlb_entry(tlb, pte, addr); 1381 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1382 ptent); 1383 if (unlikely(!page)) 1384 continue; 1385 1386 delay_rmap = 0; 1387 if (!PageAnon(page)) { 1388 if (pte_dirty(ptent)) { 1389 set_page_dirty(page); 1390 if (tlb_delay_rmap(tlb)) { 1391 delay_rmap = 1; 1392 force_flush = 1; 1393 } 1394 } 1395 if (pte_young(ptent) && 1396 likely(!(vma->vm_flags & VM_SEQ_READ))) 1397 mark_page_accessed(page); 1398 } 1399 rss[mm_counter(page)]--; 1400 if (!delay_rmap) { 1401 page_remove_rmap(page, vma, false); 1402 if (unlikely(page_mapcount(page) < 0)) 1403 print_bad_pte(vma, addr, ptent, page); 1404 } 1405 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1406 force_flush = 1; 1407 addr += PAGE_SIZE; 1408 break; 1409 } 1410 continue; 1411 } 1412 1413 entry = pte_to_swp_entry(ptent); 1414 if (is_device_private_entry(entry) || 1415 is_device_exclusive_entry(entry)) { 1416 page = pfn_swap_entry_to_page(entry); 1417 if (unlikely(!should_zap_page(details, page))) 1418 continue; 1419 /* 1420 * Both device private/exclusive mappings should only 1421 * work with anonymous page so far, so we don't need to 1422 * consider uffd-wp bit when zap. For more information, 1423 * see zap_install_uffd_wp_if_needed(). 1424 */ 1425 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1426 rss[mm_counter(page)]--; 1427 if (is_device_private_entry(entry)) 1428 page_remove_rmap(page, vma, false); 1429 put_page(page); 1430 } else if (!non_swap_entry(entry)) { 1431 /* Genuine swap entry, hence a private anon page */ 1432 if (!should_zap_cows(details)) 1433 continue; 1434 rss[MM_SWAPENTS]--; 1435 if (unlikely(!free_swap_and_cache(entry))) 1436 print_bad_pte(vma, addr, ptent, NULL); 1437 } else if (is_migration_entry(entry)) { 1438 page = pfn_swap_entry_to_page(entry); 1439 if (!should_zap_page(details, page)) 1440 continue; 1441 rss[mm_counter(page)]--; 1442 } else if (pte_marker_entry_uffd_wp(entry)) { 1443 /* Only drop the uffd-wp marker if explicitly requested */ 1444 if (!zap_drop_file_uffd_wp(details)) 1445 continue; 1446 } else if (is_hwpoison_entry(entry) || 1447 is_swapin_error_entry(entry)) { 1448 if (!should_zap_cows(details)) 1449 continue; 1450 } else { 1451 /* We should have covered all the swap entry types */ 1452 WARN_ON_ONCE(1); 1453 } 1454 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1455 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1456 } while (pte++, addr += PAGE_SIZE, addr != end); 1457 1458 add_mm_rss_vec(mm, rss); 1459 arch_leave_lazy_mmu_mode(); 1460 1461 /* Do the actual TLB flush before dropping ptl */ 1462 if (force_flush) { 1463 tlb_flush_mmu_tlbonly(tlb); 1464 tlb_flush_rmaps(tlb, vma); 1465 } 1466 pte_unmap_unlock(start_pte, ptl); 1467 1468 /* 1469 * If we forced a TLB flush (either due to running out of 1470 * batch buffers or because we needed to flush dirty TLB 1471 * entries before releasing the ptl), free the batched 1472 * memory too. Restart if we didn't do everything. 1473 */ 1474 if (force_flush) { 1475 force_flush = 0; 1476 tlb_flush_mmu(tlb); 1477 } 1478 1479 if (addr != end) { 1480 cond_resched(); 1481 goto again; 1482 } 1483 1484 return addr; 1485 } 1486 1487 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1488 struct vm_area_struct *vma, pud_t *pud, 1489 unsigned long addr, unsigned long end, 1490 struct zap_details *details) 1491 { 1492 pmd_t *pmd; 1493 unsigned long next; 1494 1495 pmd = pmd_offset(pud, addr); 1496 do { 1497 next = pmd_addr_end(addr, end); 1498 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1499 if (next - addr != HPAGE_PMD_SIZE) 1500 __split_huge_pmd(vma, pmd, addr, false, NULL); 1501 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1502 goto next; 1503 /* fall through */ 1504 } else if (details && details->single_folio && 1505 folio_test_pmd_mappable(details->single_folio) && 1506 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1507 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1508 /* 1509 * Take and drop THP pmd lock so that we cannot return 1510 * prematurely, while zap_huge_pmd() has cleared *pmd, 1511 * but not yet decremented compound_mapcount(). 1512 */ 1513 spin_unlock(ptl); 1514 } 1515 1516 /* 1517 * Here there can be other concurrent MADV_DONTNEED or 1518 * trans huge page faults running, and if the pmd is 1519 * none or trans huge it can change under us. This is 1520 * because MADV_DONTNEED holds the mmap_lock in read 1521 * mode. 1522 */ 1523 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1524 goto next; 1525 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1526 next: 1527 cond_resched(); 1528 } while (pmd++, addr = next, addr != end); 1529 1530 return addr; 1531 } 1532 1533 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1534 struct vm_area_struct *vma, p4d_t *p4d, 1535 unsigned long addr, unsigned long end, 1536 struct zap_details *details) 1537 { 1538 pud_t *pud; 1539 unsigned long next; 1540 1541 pud = pud_offset(p4d, addr); 1542 do { 1543 next = pud_addr_end(addr, end); 1544 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1545 if (next - addr != HPAGE_PUD_SIZE) { 1546 mmap_assert_locked(tlb->mm); 1547 split_huge_pud(vma, pud, addr); 1548 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1549 goto next; 1550 /* fall through */ 1551 } 1552 if (pud_none_or_clear_bad(pud)) 1553 continue; 1554 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1555 next: 1556 cond_resched(); 1557 } while (pud++, addr = next, addr != end); 1558 1559 return addr; 1560 } 1561 1562 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1563 struct vm_area_struct *vma, pgd_t *pgd, 1564 unsigned long addr, unsigned long end, 1565 struct zap_details *details) 1566 { 1567 p4d_t *p4d; 1568 unsigned long next; 1569 1570 p4d = p4d_offset(pgd, addr); 1571 do { 1572 next = p4d_addr_end(addr, end); 1573 if (p4d_none_or_clear_bad(p4d)) 1574 continue; 1575 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1576 } while (p4d++, addr = next, addr != end); 1577 1578 return addr; 1579 } 1580 1581 void unmap_page_range(struct mmu_gather *tlb, 1582 struct vm_area_struct *vma, 1583 unsigned long addr, unsigned long end, 1584 struct zap_details *details) 1585 { 1586 pgd_t *pgd; 1587 unsigned long next; 1588 1589 BUG_ON(addr >= end); 1590 tlb_start_vma(tlb, vma); 1591 pgd = pgd_offset(vma->vm_mm, addr); 1592 do { 1593 next = pgd_addr_end(addr, end); 1594 if (pgd_none_or_clear_bad(pgd)) 1595 continue; 1596 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1597 } while (pgd++, addr = next, addr != end); 1598 tlb_end_vma(tlb, vma); 1599 } 1600 1601 1602 static void unmap_single_vma(struct mmu_gather *tlb, 1603 struct vm_area_struct *vma, unsigned long start_addr, 1604 unsigned long end_addr, 1605 struct zap_details *details) 1606 { 1607 unsigned long start = max(vma->vm_start, start_addr); 1608 unsigned long end; 1609 1610 if (start >= vma->vm_end) 1611 return; 1612 end = min(vma->vm_end, end_addr); 1613 if (end <= vma->vm_start) 1614 return; 1615 1616 if (vma->vm_file) 1617 uprobe_munmap(vma, start, end); 1618 1619 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1620 untrack_pfn(vma, 0, 0); 1621 1622 if (start != end) { 1623 if (unlikely(is_vm_hugetlb_page(vma))) { 1624 /* 1625 * It is undesirable to test vma->vm_file as it 1626 * should be non-null for valid hugetlb area. 1627 * However, vm_file will be NULL in the error 1628 * cleanup path of mmap_region. When 1629 * hugetlbfs ->mmap method fails, 1630 * mmap_region() nullifies vma->vm_file 1631 * before calling this function to clean up. 1632 * Since no pte has actually been setup, it is 1633 * safe to do nothing in this case. 1634 */ 1635 if (vma->vm_file) { 1636 zap_flags_t zap_flags = details ? 1637 details->zap_flags : 0; 1638 __unmap_hugepage_range_final(tlb, vma, start, end, 1639 NULL, zap_flags); 1640 } 1641 } else 1642 unmap_page_range(tlb, vma, start, end, details); 1643 } 1644 } 1645 1646 /** 1647 * unmap_vmas - unmap a range of memory covered by a list of vma's 1648 * @tlb: address of the caller's struct mmu_gather 1649 * @mt: the maple tree 1650 * @vma: the starting vma 1651 * @start_addr: virtual address at which to start unmapping 1652 * @end_addr: virtual address at which to end unmapping 1653 * 1654 * Unmap all pages in the vma list. 1655 * 1656 * Only addresses between `start' and `end' will be unmapped. 1657 * 1658 * The VMA list must be sorted in ascending virtual address order. 1659 * 1660 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1661 * range after unmap_vmas() returns. So the only responsibility here is to 1662 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1663 * drops the lock and schedules. 1664 */ 1665 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 1666 struct vm_area_struct *vma, unsigned long start_addr, 1667 unsigned long end_addr) 1668 { 1669 struct mmu_notifier_range range; 1670 struct zap_details details = { 1671 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1672 /* Careful - we need to zap private pages too! */ 1673 .even_cows = true, 1674 }; 1675 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 1676 1677 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1678 start_addr, end_addr); 1679 mmu_notifier_invalidate_range_start(&range); 1680 do { 1681 unmap_single_vma(tlb, vma, start_addr, end_addr, &details); 1682 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL); 1683 mmu_notifier_invalidate_range_end(&range); 1684 } 1685 1686 /** 1687 * zap_page_range - remove user pages in a given range 1688 * @vma: vm_area_struct holding the applicable pages 1689 * @start: starting address of pages to zap 1690 * @size: number of bytes to zap 1691 * 1692 * Caller must protect the VMA list 1693 */ 1694 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1695 unsigned long size) 1696 { 1697 struct maple_tree *mt = &vma->vm_mm->mm_mt; 1698 unsigned long end = start + size; 1699 struct mmu_notifier_range range; 1700 struct mmu_gather tlb; 1701 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 1702 1703 lru_add_drain(); 1704 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1705 start, start + size); 1706 tlb_gather_mmu(&tlb, vma->vm_mm); 1707 update_hiwater_rss(vma->vm_mm); 1708 mmu_notifier_invalidate_range_start(&range); 1709 do { 1710 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1711 } while ((vma = mas_find(&mas, end - 1)) != NULL); 1712 mmu_notifier_invalidate_range_end(&range); 1713 tlb_finish_mmu(&tlb); 1714 } 1715 1716 /** 1717 * zap_page_range_single - remove user pages in a given range 1718 * @vma: vm_area_struct holding the applicable pages 1719 * @address: starting address of pages to zap 1720 * @size: number of bytes to zap 1721 * @details: details of shared cache invalidation 1722 * 1723 * The range must fit into one VMA. 1724 */ 1725 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1726 unsigned long size, struct zap_details *details) 1727 { 1728 const unsigned long end = address + size; 1729 struct mmu_notifier_range range; 1730 struct mmu_gather tlb; 1731 1732 lru_add_drain(); 1733 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1734 address, end); 1735 if (is_vm_hugetlb_page(vma)) 1736 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1737 &range.end); 1738 tlb_gather_mmu(&tlb, vma->vm_mm); 1739 update_hiwater_rss(vma->vm_mm); 1740 mmu_notifier_invalidate_range_start(&range); 1741 /* 1742 * unmap 'address-end' not 'range.start-range.end' as range 1743 * could have been expanded for hugetlb pmd sharing. 1744 */ 1745 unmap_single_vma(&tlb, vma, address, end, details); 1746 mmu_notifier_invalidate_range_end(&range); 1747 tlb_finish_mmu(&tlb); 1748 } 1749 1750 /** 1751 * zap_vma_ptes - remove ptes mapping the vma 1752 * @vma: vm_area_struct holding ptes to be zapped 1753 * @address: starting address of pages to zap 1754 * @size: number of bytes to zap 1755 * 1756 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1757 * 1758 * The entire address range must be fully contained within the vma. 1759 * 1760 */ 1761 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1762 unsigned long size) 1763 { 1764 if (!range_in_vma(vma, address, address + size) || 1765 !(vma->vm_flags & VM_PFNMAP)) 1766 return; 1767 1768 zap_page_range_single(vma, address, size, NULL); 1769 } 1770 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1771 1772 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1773 { 1774 pgd_t *pgd; 1775 p4d_t *p4d; 1776 pud_t *pud; 1777 pmd_t *pmd; 1778 1779 pgd = pgd_offset(mm, addr); 1780 p4d = p4d_alloc(mm, pgd, addr); 1781 if (!p4d) 1782 return NULL; 1783 pud = pud_alloc(mm, p4d, addr); 1784 if (!pud) 1785 return NULL; 1786 pmd = pmd_alloc(mm, pud, addr); 1787 if (!pmd) 1788 return NULL; 1789 1790 VM_BUG_ON(pmd_trans_huge(*pmd)); 1791 return pmd; 1792 } 1793 1794 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1795 spinlock_t **ptl) 1796 { 1797 pmd_t *pmd = walk_to_pmd(mm, addr); 1798 1799 if (!pmd) 1800 return NULL; 1801 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1802 } 1803 1804 static int validate_page_before_insert(struct page *page) 1805 { 1806 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1807 return -EINVAL; 1808 flush_dcache_page(page); 1809 return 0; 1810 } 1811 1812 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1813 unsigned long addr, struct page *page, pgprot_t prot) 1814 { 1815 if (!pte_none(*pte)) 1816 return -EBUSY; 1817 /* Ok, finally just insert the thing.. */ 1818 get_page(page); 1819 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1820 page_add_file_rmap(page, vma, false); 1821 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1822 return 0; 1823 } 1824 1825 /* 1826 * This is the old fallback for page remapping. 1827 * 1828 * For historical reasons, it only allows reserved pages. Only 1829 * old drivers should use this, and they needed to mark their 1830 * pages reserved for the old functions anyway. 1831 */ 1832 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1833 struct page *page, pgprot_t prot) 1834 { 1835 int retval; 1836 pte_t *pte; 1837 spinlock_t *ptl; 1838 1839 retval = validate_page_before_insert(page); 1840 if (retval) 1841 goto out; 1842 retval = -ENOMEM; 1843 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1844 if (!pte) 1845 goto out; 1846 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1847 pte_unmap_unlock(pte, ptl); 1848 out: 1849 return retval; 1850 } 1851 1852 #ifdef pte_index 1853 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1854 unsigned long addr, struct page *page, pgprot_t prot) 1855 { 1856 int err; 1857 1858 if (!page_count(page)) 1859 return -EINVAL; 1860 err = validate_page_before_insert(page); 1861 if (err) 1862 return err; 1863 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1864 } 1865 1866 /* insert_pages() amortizes the cost of spinlock operations 1867 * when inserting pages in a loop. Arch *must* define pte_index. 1868 */ 1869 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1870 struct page **pages, unsigned long *num, pgprot_t prot) 1871 { 1872 pmd_t *pmd = NULL; 1873 pte_t *start_pte, *pte; 1874 spinlock_t *pte_lock; 1875 struct mm_struct *const mm = vma->vm_mm; 1876 unsigned long curr_page_idx = 0; 1877 unsigned long remaining_pages_total = *num; 1878 unsigned long pages_to_write_in_pmd; 1879 int ret; 1880 more: 1881 ret = -EFAULT; 1882 pmd = walk_to_pmd(mm, addr); 1883 if (!pmd) 1884 goto out; 1885 1886 pages_to_write_in_pmd = min_t(unsigned long, 1887 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1888 1889 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1890 ret = -ENOMEM; 1891 if (pte_alloc(mm, pmd)) 1892 goto out; 1893 1894 while (pages_to_write_in_pmd) { 1895 int pte_idx = 0; 1896 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1897 1898 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1899 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1900 int err = insert_page_in_batch_locked(vma, pte, 1901 addr, pages[curr_page_idx], prot); 1902 if (unlikely(err)) { 1903 pte_unmap_unlock(start_pte, pte_lock); 1904 ret = err; 1905 remaining_pages_total -= pte_idx; 1906 goto out; 1907 } 1908 addr += PAGE_SIZE; 1909 ++curr_page_idx; 1910 } 1911 pte_unmap_unlock(start_pte, pte_lock); 1912 pages_to_write_in_pmd -= batch_size; 1913 remaining_pages_total -= batch_size; 1914 } 1915 if (remaining_pages_total) 1916 goto more; 1917 ret = 0; 1918 out: 1919 *num = remaining_pages_total; 1920 return ret; 1921 } 1922 #endif /* ifdef pte_index */ 1923 1924 /** 1925 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1926 * @vma: user vma to map to 1927 * @addr: target start user address of these pages 1928 * @pages: source kernel pages 1929 * @num: in: number of pages to map. out: number of pages that were *not* 1930 * mapped. (0 means all pages were successfully mapped). 1931 * 1932 * Preferred over vm_insert_page() when inserting multiple pages. 1933 * 1934 * In case of error, we may have mapped a subset of the provided 1935 * pages. It is the caller's responsibility to account for this case. 1936 * 1937 * The same restrictions apply as in vm_insert_page(). 1938 */ 1939 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1940 struct page **pages, unsigned long *num) 1941 { 1942 #ifdef pte_index 1943 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1944 1945 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1946 return -EFAULT; 1947 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1948 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1949 BUG_ON(vma->vm_flags & VM_PFNMAP); 1950 vma->vm_flags |= VM_MIXEDMAP; 1951 } 1952 /* Defer page refcount checking till we're about to map that page. */ 1953 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1954 #else 1955 unsigned long idx = 0, pgcount = *num; 1956 int err = -EINVAL; 1957 1958 for (; idx < pgcount; ++idx) { 1959 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1960 if (err) 1961 break; 1962 } 1963 *num = pgcount - idx; 1964 return err; 1965 #endif /* ifdef pte_index */ 1966 } 1967 EXPORT_SYMBOL(vm_insert_pages); 1968 1969 /** 1970 * vm_insert_page - insert single page into user vma 1971 * @vma: user vma to map to 1972 * @addr: target user address of this page 1973 * @page: source kernel page 1974 * 1975 * This allows drivers to insert individual pages they've allocated 1976 * into a user vma. 1977 * 1978 * The page has to be a nice clean _individual_ kernel allocation. 1979 * If you allocate a compound page, you need to have marked it as 1980 * such (__GFP_COMP), or manually just split the page up yourself 1981 * (see split_page()). 1982 * 1983 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1984 * took an arbitrary page protection parameter. This doesn't allow 1985 * that. Your vma protection will have to be set up correctly, which 1986 * means that if you want a shared writable mapping, you'd better 1987 * ask for a shared writable mapping! 1988 * 1989 * The page does not need to be reserved. 1990 * 1991 * Usually this function is called from f_op->mmap() handler 1992 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1993 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1994 * function from other places, for example from page-fault handler. 1995 * 1996 * Return: %0 on success, negative error code otherwise. 1997 */ 1998 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1999 struct page *page) 2000 { 2001 if (addr < vma->vm_start || addr >= vma->vm_end) 2002 return -EFAULT; 2003 if (!page_count(page)) 2004 return -EINVAL; 2005 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2006 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2007 BUG_ON(vma->vm_flags & VM_PFNMAP); 2008 vma->vm_flags |= VM_MIXEDMAP; 2009 } 2010 return insert_page(vma, addr, page, vma->vm_page_prot); 2011 } 2012 EXPORT_SYMBOL(vm_insert_page); 2013 2014 /* 2015 * __vm_map_pages - maps range of kernel pages into user vma 2016 * @vma: user vma to map to 2017 * @pages: pointer to array of source kernel pages 2018 * @num: number of pages in page array 2019 * @offset: user's requested vm_pgoff 2020 * 2021 * This allows drivers to map range of kernel pages into a user vma. 2022 * 2023 * Return: 0 on success and error code otherwise. 2024 */ 2025 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2026 unsigned long num, unsigned long offset) 2027 { 2028 unsigned long count = vma_pages(vma); 2029 unsigned long uaddr = vma->vm_start; 2030 int ret, i; 2031 2032 /* Fail if the user requested offset is beyond the end of the object */ 2033 if (offset >= num) 2034 return -ENXIO; 2035 2036 /* Fail if the user requested size exceeds available object size */ 2037 if (count > num - offset) 2038 return -ENXIO; 2039 2040 for (i = 0; i < count; i++) { 2041 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2042 if (ret < 0) 2043 return ret; 2044 uaddr += PAGE_SIZE; 2045 } 2046 2047 return 0; 2048 } 2049 2050 /** 2051 * vm_map_pages - maps range of kernel pages starts with non zero offset 2052 * @vma: user vma to map to 2053 * @pages: pointer to array of source kernel pages 2054 * @num: number of pages in page array 2055 * 2056 * Maps an object consisting of @num pages, catering for the user's 2057 * requested vm_pgoff 2058 * 2059 * If we fail to insert any page into the vma, the function will return 2060 * immediately leaving any previously inserted pages present. Callers 2061 * from the mmap handler may immediately return the error as their caller 2062 * will destroy the vma, removing any successfully inserted pages. Other 2063 * callers should make their own arrangements for calling unmap_region(). 2064 * 2065 * Context: Process context. Called by mmap handlers. 2066 * Return: 0 on success and error code otherwise. 2067 */ 2068 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2069 unsigned long num) 2070 { 2071 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2072 } 2073 EXPORT_SYMBOL(vm_map_pages); 2074 2075 /** 2076 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2077 * @vma: user vma to map to 2078 * @pages: pointer to array of source kernel pages 2079 * @num: number of pages in page array 2080 * 2081 * Similar to vm_map_pages(), except that it explicitly sets the offset 2082 * to 0. This function is intended for the drivers that did not consider 2083 * vm_pgoff. 2084 * 2085 * Context: Process context. Called by mmap handlers. 2086 * Return: 0 on success and error code otherwise. 2087 */ 2088 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2089 unsigned long num) 2090 { 2091 return __vm_map_pages(vma, pages, num, 0); 2092 } 2093 EXPORT_SYMBOL(vm_map_pages_zero); 2094 2095 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2096 pfn_t pfn, pgprot_t prot, bool mkwrite) 2097 { 2098 struct mm_struct *mm = vma->vm_mm; 2099 pte_t *pte, entry; 2100 spinlock_t *ptl; 2101 2102 pte = get_locked_pte(mm, addr, &ptl); 2103 if (!pte) 2104 return VM_FAULT_OOM; 2105 if (!pte_none(*pte)) { 2106 if (mkwrite) { 2107 /* 2108 * For read faults on private mappings the PFN passed 2109 * in may not match the PFN we have mapped if the 2110 * mapped PFN is a writeable COW page. In the mkwrite 2111 * case we are creating a writable PTE for a shared 2112 * mapping and we expect the PFNs to match. If they 2113 * don't match, we are likely racing with block 2114 * allocation and mapping invalidation so just skip the 2115 * update. 2116 */ 2117 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 2118 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 2119 goto out_unlock; 2120 } 2121 entry = pte_mkyoung(*pte); 2122 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2123 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2124 update_mmu_cache(vma, addr, pte); 2125 } 2126 goto out_unlock; 2127 } 2128 2129 /* Ok, finally just insert the thing.. */ 2130 if (pfn_t_devmap(pfn)) 2131 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2132 else 2133 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2134 2135 if (mkwrite) { 2136 entry = pte_mkyoung(entry); 2137 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2138 } 2139 2140 set_pte_at(mm, addr, pte, entry); 2141 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2142 2143 out_unlock: 2144 pte_unmap_unlock(pte, ptl); 2145 return VM_FAULT_NOPAGE; 2146 } 2147 2148 /** 2149 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2150 * @vma: user vma to map to 2151 * @addr: target user address of this page 2152 * @pfn: source kernel pfn 2153 * @pgprot: pgprot flags for the inserted page 2154 * 2155 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2156 * to override pgprot on a per-page basis. 2157 * 2158 * This only makes sense for IO mappings, and it makes no sense for 2159 * COW mappings. In general, using multiple vmas is preferable; 2160 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2161 * impractical. 2162 * 2163 * See vmf_insert_mixed_prot() for a discussion of the implication of using 2164 * a value of @pgprot different from that of @vma->vm_page_prot. 2165 * 2166 * Context: Process context. May allocate using %GFP_KERNEL. 2167 * Return: vm_fault_t value. 2168 */ 2169 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2170 unsigned long pfn, pgprot_t pgprot) 2171 { 2172 /* 2173 * Technically, architectures with pte_special can avoid all these 2174 * restrictions (same for remap_pfn_range). However we would like 2175 * consistency in testing and feature parity among all, so we should 2176 * try to keep these invariants in place for everybody. 2177 */ 2178 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2179 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2180 (VM_PFNMAP|VM_MIXEDMAP)); 2181 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2182 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2183 2184 if (addr < vma->vm_start || addr >= vma->vm_end) 2185 return VM_FAULT_SIGBUS; 2186 2187 if (!pfn_modify_allowed(pfn, pgprot)) 2188 return VM_FAULT_SIGBUS; 2189 2190 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2191 2192 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2193 false); 2194 } 2195 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2196 2197 /** 2198 * vmf_insert_pfn - insert single pfn into user vma 2199 * @vma: user vma to map to 2200 * @addr: target user address of this page 2201 * @pfn: source kernel pfn 2202 * 2203 * Similar to vm_insert_page, this allows drivers to insert individual pages 2204 * they've allocated into a user vma. Same comments apply. 2205 * 2206 * This function should only be called from a vm_ops->fault handler, and 2207 * in that case the handler should return the result of this function. 2208 * 2209 * vma cannot be a COW mapping. 2210 * 2211 * As this is called only for pages that do not currently exist, we 2212 * do not need to flush old virtual caches or the TLB. 2213 * 2214 * Context: Process context. May allocate using %GFP_KERNEL. 2215 * Return: vm_fault_t value. 2216 */ 2217 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2218 unsigned long pfn) 2219 { 2220 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2221 } 2222 EXPORT_SYMBOL(vmf_insert_pfn); 2223 2224 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2225 { 2226 /* these checks mirror the abort conditions in vm_normal_page */ 2227 if (vma->vm_flags & VM_MIXEDMAP) 2228 return true; 2229 if (pfn_t_devmap(pfn)) 2230 return true; 2231 if (pfn_t_special(pfn)) 2232 return true; 2233 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2234 return true; 2235 return false; 2236 } 2237 2238 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2239 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2240 bool mkwrite) 2241 { 2242 int err; 2243 2244 BUG_ON(!vm_mixed_ok(vma, pfn)); 2245 2246 if (addr < vma->vm_start || addr >= vma->vm_end) 2247 return VM_FAULT_SIGBUS; 2248 2249 track_pfn_insert(vma, &pgprot, pfn); 2250 2251 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2252 return VM_FAULT_SIGBUS; 2253 2254 /* 2255 * If we don't have pte special, then we have to use the pfn_valid() 2256 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2257 * refcount the page if pfn_valid is true (hence insert_page rather 2258 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2259 * without pte special, it would there be refcounted as a normal page. 2260 */ 2261 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2262 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2263 struct page *page; 2264 2265 /* 2266 * At this point we are committed to insert_page() 2267 * regardless of whether the caller specified flags that 2268 * result in pfn_t_has_page() == false. 2269 */ 2270 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2271 err = insert_page(vma, addr, page, pgprot); 2272 } else { 2273 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2274 } 2275 2276 if (err == -ENOMEM) 2277 return VM_FAULT_OOM; 2278 if (err < 0 && err != -EBUSY) 2279 return VM_FAULT_SIGBUS; 2280 2281 return VM_FAULT_NOPAGE; 2282 } 2283 2284 /** 2285 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2286 * @vma: user vma to map to 2287 * @addr: target user address of this page 2288 * @pfn: source kernel pfn 2289 * @pgprot: pgprot flags for the inserted page 2290 * 2291 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2292 * to override pgprot on a per-page basis. 2293 * 2294 * Typically this function should be used by drivers to set caching- and 2295 * encryption bits different than those of @vma->vm_page_prot, because 2296 * the caching- or encryption mode may not be known at mmap() time. 2297 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2298 * to set caching and encryption bits for those vmas (except for COW pages). 2299 * This is ensured by core vm only modifying these page table entries using 2300 * functions that don't touch caching- or encryption bits, using pte_modify() 2301 * if needed. (See for example mprotect()). 2302 * Also when new page-table entries are created, this is only done using the 2303 * fault() callback, and never using the value of vma->vm_page_prot, 2304 * except for page-table entries that point to anonymous pages as the result 2305 * of COW. 2306 * 2307 * Context: Process context. May allocate using %GFP_KERNEL. 2308 * Return: vm_fault_t value. 2309 */ 2310 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2311 pfn_t pfn, pgprot_t pgprot) 2312 { 2313 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2314 } 2315 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2316 2317 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2318 pfn_t pfn) 2319 { 2320 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2321 } 2322 EXPORT_SYMBOL(vmf_insert_mixed); 2323 2324 /* 2325 * If the insertion of PTE failed because someone else already added a 2326 * different entry in the mean time, we treat that as success as we assume 2327 * the same entry was actually inserted. 2328 */ 2329 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2330 unsigned long addr, pfn_t pfn) 2331 { 2332 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2333 } 2334 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2335 2336 /* 2337 * maps a range of physical memory into the requested pages. the old 2338 * mappings are removed. any references to nonexistent pages results 2339 * in null mappings (currently treated as "copy-on-access") 2340 */ 2341 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2342 unsigned long addr, unsigned long end, 2343 unsigned long pfn, pgprot_t prot) 2344 { 2345 pte_t *pte, *mapped_pte; 2346 spinlock_t *ptl; 2347 int err = 0; 2348 2349 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2350 if (!pte) 2351 return -ENOMEM; 2352 arch_enter_lazy_mmu_mode(); 2353 do { 2354 BUG_ON(!pte_none(*pte)); 2355 if (!pfn_modify_allowed(pfn, prot)) { 2356 err = -EACCES; 2357 break; 2358 } 2359 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2360 pfn++; 2361 } while (pte++, addr += PAGE_SIZE, addr != end); 2362 arch_leave_lazy_mmu_mode(); 2363 pte_unmap_unlock(mapped_pte, ptl); 2364 return err; 2365 } 2366 2367 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2368 unsigned long addr, unsigned long end, 2369 unsigned long pfn, pgprot_t prot) 2370 { 2371 pmd_t *pmd; 2372 unsigned long next; 2373 int err; 2374 2375 pfn -= addr >> PAGE_SHIFT; 2376 pmd = pmd_alloc(mm, pud, addr); 2377 if (!pmd) 2378 return -ENOMEM; 2379 VM_BUG_ON(pmd_trans_huge(*pmd)); 2380 do { 2381 next = pmd_addr_end(addr, end); 2382 err = remap_pte_range(mm, pmd, addr, next, 2383 pfn + (addr >> PAGE_SHIFT), prot); 2384 if (err) 2385 return err; 2386 } while (pmd++, addr = next, addr != end); 2387 return 0; 2388 } 2389 2390 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2391 unsigned long addr, unsigned long end, 2392 unsigned long pfn, pgprot_t prot) 2393 { 2394 pud_t *pud; 2395 unsigned long next; 2396 int err; 2397 2398 pfn -= addr >> PAGE_SHIFT; 2399 pud = pud_alloc(mm, p4d, addr); 2400 if (!pud) 2401 return -ENOMEM; 2402 do { 2403 next = pud_addr_end(addr, end); 2404 err = remap_pmd_range(mm, pud, addr, next, 2405 pfn + (addr >> PAGE_SHIFT), prot); 2406 if (err) 2407 return err; 2408 } while (pud++, addr = next, addr != end); 2409 return 0; 2410 } 2411 2412 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2413 unsigned long addr, unsigned long end, 2414 unsigned long pfn, pgprot_t prot) 2415 { 2416 p4d_t *p4d; 2417 unsigned long next; 2418 int err; 2419 2420 pfn -= addr >> PAGE_SHIFT; 2421 p4d = p4d_alloc(mm, pgd, addr); 2422 if (!p4d) 2423 return -ENOMEM; 2424 do { 2425 next = p4d_addr_end(addr, end); 2426 err = remap_pud_range(mm, p4d, addr, next, 2427 pfn + (addr >> PAGE_SHIFT), prot); 2428 if (err) 2429 return err; 2430 } while (p4d++, addr = next, addr != end); 2431 return 0; 2432 } 2433 2434 /* 2435 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2436 * must have pre-validated the caching bits of the pgprot_t. 2437 */ 2438 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2439 unsigned long pfn, unsigned long size, pgprot_t prot) 2440 { 2441 pgd_t *pgd; 2442 unsigned long next; 2443 unsigned long end = addr + PAGE_ALIGN(size); 2444 struct mm_struct *mm = vma->vm_mm; 2445 int err; 2446 2447 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2448 return -EINVAL; 2449 2450 /* 2451 * Physically remapped pages are special. Tell the 2452 * rest of the world about it: 2453 * VM_IO tells people not to look at these pages 2454 * (accesses can have side effects). 2455 * VM_PFNMAP tells the core MM that the base pages are just 2456 * raw PFN mappings, and do not have a "struct page" associated 2457 * with them. 2458 * VM_DONTEXPAND 2459 * Disable vma merging and expanding with mremap(). 2460 * VM_DONTDUMP 2461 * Omit vma from core dump, even when VM_IO turned off. 2462 * 2463 * There's a horrible special case to handle copy-on-write 2464 * behaviour that some programs depend on. We mark the "original" 2465 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2466 * See vm_normal_page() for details. 2467 */ 2468 if (is_cow_mapping(vma->vm_flags)) { 2469 if (addr != vma->vm_start || end != vma->vm_end) 2470 return -EINVAL; 2471 vma->vm_pgoff = pfn; 2472 } 2473 2474 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2475 2476 BUG_ON(addr >= end); 2477 pfn -= addr >> PAGE_SHIFT; 2478 pgd = pgd_offset(mm, addr); 2479 flush_cache_range(vma, addr, end); 2480 do { 2481 next = pgd_addr_end(addr, end); 2482 err = remap_p4d_range(mm, pgd, addr, next, 2483 pfn + (addr >> PAGE_SHIFT), prot); 2484 if (err) 2485 return err; 2486 } while (pgd++, addr = next, addr != end); 2487 2488 return 0; 2489 } 2490 2491 /** 2492 * remap_pfn_range - remap kernel memory to userspace 2493 * @vma: user vma to map to 2494 * @addr: target page aligned user address to start at 2495 * @pfn: page frame number of kernel physical memory address 2496 * @size: size of mapping area 2497 * @prot: page protection flags for this mapping 2498 * 2499 * Note: this is only safe if the mm semaphore is held when called. 2500 * 2501 * Return: %0 on success, negative error code otherwise. 2502 */ 2503 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2504 unsigned long pfn, unsigned long size, pgprot_t prot) 2505 { 2506 int err; 2507 2508 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2509 if (err) 2510 return -EINVAL; 2511 2512 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2513 if (err) 2514 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2515 return err; 2516 } 2517 EXPORT_SYMBOL(remap_pfn_range); 2518 2519 /** 2520 * vm_iomap_memory - remap memory to userspace 2521 * @vma: user vma to map to 2522 * @start: start of the physical memory to be mapped 2523 * @len: size of area 2524 * 2525 * This is a simplified io_remap_pfn_range() for common driver use. The 2526 * driver just needs to give us the physical memory range to be mapped, 2527 * we'll figure out the rest from the vma information. 2528 * 2529 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2530 * whatever write-combining details or similar. 2531 * 2532 * Return: %0 on success, negative error code otherwise. 2533 */ 2534 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2535 { 2536 unsigned long vm_len, pfn, pages; 2537 2538 /* Check that the physical memory area passed in looks valid */ 2539 if (start + len < start) 2540 return -EINVAL; 2541 /* 2542 * You *really* shouldn't map things that aren't page-aligned, 2543 * but we've historically allowed it because IO memory might 2544 * just have smaller alignment. 2545 */ 2546 len += start & ~PAGE_MASK; 2547 pfn = start >> PAGE_SHIFT; 2548 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2549 if (pfn + pages < pfn) 2550 return -EINVAL; 2551 2552 /* We start the mapping 'vm_pgoff' pages into the area */ 2553 if (vma->vm_pgoff > pages) 2554 return -EINVAL; 2555 pfn += vma->vm_pgoff; 2556 pages -= vma->vm_pgoff; 2557 2558 /* Can we fit all of the mapping? */ 2559 vm_len = vma->vm_end - vma->vm_start; 2560 if (vm_len >> PAGE_SHIFT > pages) 2561 return -EINVAL; 2562 2563 /* Ok, let it rip */ 2564 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2565 } 2566 EXPORT_SYMBOL(vm_iomap_memory); 2567 2568 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2569 unsigned long addr, unsigned long end, 2570 pte_fn_t fn, void *data, bool create, 2571 pgtbl_mod_mask *mask) 2572 { 2573 pte_t *pte, *mapped_pte; 2574 int err = 0; 2575 spinlock_t *ptl; 2576 2577 if (create) { 2578 mapped_pte = pte = (mm == &init_mm) ? 2579 pte_alloc_kernel_track(pmd, addr, mask) : 2580 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2581 if (!pte) 2582 return -ENOMEM; 2583 } else { 2584 mapped_pte = pte = (mm == &init_mm) ? 2585 pte_offset_kernel(pmd, addr) : 2586 pte_offset_map_lock(mm, pmd, addr, &ptl); 2587 } 2588 2589 BUG_ON(pmd_huge(*pmd)); 2590 2591 arch_enter_lazy_mmu_mode(); 2592 2593 if (fn) { 2594 do { 2595 if (create || !pte_none(*pte)) { 2596 err = fn(pte++, addr, data); 2597 if (err) 2598 break; 2599 } 2600 } while (addr += PAGE_SIZE, addr != end); 2601 } 2602 *mask |= PGTBL_PTE_MODIFIED; 2603 2604 arch_leave_lazy_mmu_mode(); 2605 2606 if (mm != &init_mm) 2607 pte_unmap_unlock(mapped_pte, ptl); 2608 return err; 2609 } 2610 2611 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2612 unsigned long addr, unsigned long end, 2613 pte_fn_t fn, void *data, bool create, 2614 pgtbl_mod_mask *mask) 2615 { 2616 pmd_t *pmd; 2617 unsigned long next; 2618 int err = 0; 2619 2620 BUG_ON(pud_huge(*pud)); 2621 2622 if (create) { 2623 pmd = pmd_alloc_track(mm, pud, addr, mask); 2624 if (!pmd) 2625 return -ENOMEM; 2626 } else { 2627 pmd = pmd_offset(pud, addr); 2628 } 2629 do { 2630 next = pmd_addr_end(addr, end); 2631 if (pmd_none(*pmd) && !create) 2632 continue; 2633 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2634 return -EINVAL; 2635 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2636 if (!create) 2637 continue; 2638 pmd_clear_bad(pmd); 2639 } 2640 err = apply_to_pte_range(mm, pmd, addr, next, 2641 fn, data, create, mask); 2642 if (err) 2643 break; 2644 } while (pmd++, addr = next, addr != end); 2645 2646 return err; 2647 } 2648 2649 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2650 unsigned long addr, unsigned long end, 2651 pte_fn_t fn, void *data, bool create, 2652 pgtbl_mod_mask *mask) 2653 { 2654 pud_t *pud; 2655 unsigned long next; 2656 int err = 0; 2657 2658 if (create) { 2659 pud = pud_alloc_track(mm, p4d, addr, mask); 2660 if (!pud) 2661 return -ENOMEM; 2662 } else { 2663 pud = pud_offset(p4d, addr); 2664 } 2665 do { 2666 next = pud_addr_end(addr, end); 2667 if (pud_none(*pud) && !create) 2668 continue; 2669 if (WARN_ON_ONCE(pud_leaf(*pud))) 2670 return -EINVAL; 2671 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2672 if (!create) 2673 continue; 2674 pud_clear_bad(pud); 2675 } 2676 err = apply_to_pmd_range(mm, pud, addr, next, 2677 fn, data, create, mask); 2678 if (err) 2679 break; 2680 } while (pud++, addr = next, addr != end); 2681 2682 return err; 2683 } 2684 2685 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2686 unsigned long addr, unsigned long end, 2687 pte_fn_t fn, void *data, bool create, 2688 pgtbl_mod_mask *mask) 2689 { 2690 p4d_t *p4d; 2691 unsigned long next; 2692 int err = 0; 2693 2694 if (create) { 2695 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2696 if (!p4d) 2697 return -ENOMEM; 2698 } else { 2699 p4d = p4d_offset(pgd, addr); 2700 } 2701 do { 2702 next = p4d_addr_end(addr, end); 2703 if (p4d_none(*p4d) && !create) 2704 continue; 2705 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2706 return -EINVAL; 2707 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2708 if (!create) 2709 continue; 2710 p4d_clear_bad(p4d); 2711 } 2712 err = apply_to_pud_range(mm, p4d, addr, next, 2713 fn, data, create, mask); 2714 if (err) 2715 break; 2716 } while (p4d++, addr = next, addr != end); 2717 2718 return err; 2719 } 2720 2721 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2722 unsigned long size, pte_fn_t fn, 2723 void *data, bool create) 2724 { 2725 pgd_t *pgd; 2726 unsigned long start = addr, next; 2727 unsigned long end = addr + size; 2728 pgtbl_mod_mask mask = 0; 2729 int err = 0; 2730 2731 if (WARN_ON(addr >= end)) 2732 return -EINVAL; 2733 2734 pgd = pgd_offset(mm, addr); 2735 do { 2736 next = pgd_addr_end(addr, end); 2737 if (pgd_none(*pgd) && !create) 2738 continue; 2739 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2740 return -EINVAL; 2741 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2742 if (!create) 2743 continue; 2744 pgd_clear_bad(pgd); 2745 } 2746 err = apply_to_p4d_range(mm, pgd, addr, next, 2747 fn, data, create, &mask); 2748 if (err) 2749 break; 2750 } while (pgd++, addr = next, addr != end); 2751 2752 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2753 arch_sync_kernel_mappings(start, start + size); 2754 2755 return err; 2756 } 2757 2758 /* 2759 * Scan a region of virtual memory, filling in page tables as necessary 2760 * and calling a provided function on each leaf page table. 2761 */ 2762 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2763 unsigned long size, pte_fn_t fn, void *data) 2764 { 2765 return __apply_to_page_range(mm, addr, size, fn, data, true); 2766 } 2767 EXPORT_SYMBOL_GPL(apply_to_page_range); 2768 2769 /* 2770 * Scan a region of virtual memory, calling a provided function on 2771 * each leaf page table where it exists. 2772 * 2773 * Unlike apply_to_page_range, this does _not_ fill in page tables 2774 * where they are absent. 2775 */ 2776 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2777 unsigned long size, pte_fn_t fn, void *data) 2778 { 2779 return __apply_to_page_range(mm, addr, size, fn, data, false); 2780 } 2781 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2782 2783 /* 2784 * handle_pte_fault chooses page fault handler according to an entry which was 2785 * read non-atomically. Before making any commitment, on those architectures 2786 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2787 * parts, do_swap_page must check under lock before unmapping the pte and 2788 * proceeding (but do_wp_page is only called after already making such a check; 2789 * and do_anonymous_page can safely check later on). 2790 */ 2791 static inline int pte_unmap_same(struct vm_fault *vmf) 2792 { 2793 int same = 1; 2794 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2795 if (sizeof(pte_t) > sizeof(unsigned long)) { 2796 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 2797 spin_lock(ptl); 2798 same = pte_same(*vmf->pte, vmf->orig_pte); 2799 spin_unlock(ptl); 2800 } 2801 #endif 2802 pte_unmap(vmf->pte); 2803 vmf->pte = NULL; 2804 return same; 2805 } 2806 2807 /* 2808 * Return: 2809 * 0: copied succeeded 2810 * -EHWPOISON: copy failed due to hwpoison in source page 2811 * -EAGAIN: copied failed (some other reason) 2812 */ 2813 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2814 struct vm_fault *vmf) 2815 { 2816 int ret; 2817 void *kaddr; 2818 void __user *uaddr; 2819 bool locked = false; 2820 struct vm_area_struct *vma = vmf->vma; 2821 struct mm_struct *mm = vma->vm_mm; 2822 unsigned long addr = vmf->address; 2823 2824 if (likely(src)) { 2825 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2826 memory_failure_queue(page_to_pfn(src), 0); 2827 return -EHWPOISON; 2828 } 2829 return 0; 2830 } 2831 2832 /* 2833 * If the source page was a PFN mapping, we don't have 2834 * a "struct page" for it. We do a best-effort copy by 2835 * just copying from the original user address. If that 2836 * fails, we just zero-fill it. Live with it. 2837 */ 2838 kaddr = kmap_atomic(dst); 2839 uaddr = (void __user *)(addr & PAGE_MASK); 2840 2841 /* 2842 * On architectures with software "accessed" bits, we would 2843 * take a double page fault, so mark it accessed here. 2844 */ 2845 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2846 pte_t entry; 2847 2848 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2849 locked = true; 2850 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2851 /* 2852 * Other thread has already handled the fault 2853 * and update local tlb only 2854 */ 2855 update_mmu_tlb(vma, addr, vmf->pte); 2856 ret = -EAGAIN; 2857 goto pte_unlock; 2858 } 2859 2860 entry = pte_mkyoung(vmf->orig_pte); 2861 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2862 update_mmu_cache(vma, addr, vmf->pte); 2863 } 2864 2865 /* 2866 * This really shouldn't fail, because the page is there 2867 * in the page tables. But it might just be unreadable, 2868 * in which case we just give up and fill the result with 2869 * zeroes. 2870 */ 2871 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2872 if (locked) 2873 goto warn; 2874 2875 /* Re-validate under PTL if the page is still mapped */ 2876 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2877 locked = true; 2878 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2879 /* The PTE changed under us, update local tlb */ 2880 update_mmu_tlb(vma, addr, vmf->pte); 2881 ret = -EAGAIN; 2882 goto pte_unlock; 2883 } 2884 2885 /* 2886 * The same page can be mapped back since last copy attempt. 2887 * Try to copy again under PTL. 2888 */ 2889 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2890 /* 2891 * Give a warn in case there can be some obscure 2892 * use-case 2893 */ 2894 warn: 2895 WARN_ON_ONCE(1); 2896 clear_page(kaddr); 2897 } 2898 } 2899 2900 ret = 0; 2901 2902 pte_unlock: 2903 if (locked) 2904 pte_unmap_unlock(vmf->pte, vmf->ptl); 2905 kunmap_atomic(kaddr); 2906 flush_dcache_page(dst); 2907 2908 return ret; 2909 } 2910 2911 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2912 { 2913 struct file *vm_file = vma->vm_file; 2914 2915 if (vm_file) 2916 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2917 2918 /* 2919 * Special mappings (e.g. VDSO) do not have any file so fake 2920 * a default GFP_KERNEL for them. 2921 */ 2922 return GFP_KERNEL; 2923 } 2924 2925 /* 2926 * Notify the address space that the page is about to become writable so that 2927 * it can prohibit this or wait for the page to get into an appropriate state. 2928 * 2929 * We do this without the lock held, so that it can sleep if it needs to. 2930 */ 2931 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2932 { 2933 vm_fault_t ret; 2934 struct page *page = vmf->page; 2935 unsigned int old_flags = vmf->flags; 2936 2937 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2938 2939 if (vmf->vma->vm_file && 2940 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2941 return VM_FAULT_SIGBUS; 2942 2943 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2944 /* Restore original flags so that caller is not surprised */ 2945 vmf->flags = old_flags; 2946 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2947 return ret; 2948 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2949 lock_page(page); 2950 if (!page->mapping) { 2951 unlock_page(page); 2952 return 0; /* retry */ 2953 } 2954 ret |= VM_FAULT_LOCKED; 2955 } else 2956 VM_BUG_ON_PAGE(!PageLocked(page), page); 2957 return ret; 2958 } 2959 2960 /* 2961 * Handle dirtying of a page in shared file mapping on a write fault. 2962 * 2963 * The function expects the page to be locked and unlocks it. 2964 */ 2965 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2966 { 2967 struct vm_area_struct *vma = vmf->vma; 2968 struct address_space *mapping; 2969 struct page *page = vmf->page; 2970 bool dirtied; 2971 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2972 2973 dirtied = set_page_dirty(page); 2974 VM_BUG_ON_PAGE(PageAnon(page), page); 2975 /* 2976 * Take a local copy of the address_space - page.mapping may be zeroed 2977 * by truncate after unlock_page(). The address_space itself remains 2978 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2979 * release semantics to prevent the compiler from undoing this copying. 2980 */ 2981 mapping = page_rmapping(page); 2982 unlock_page(page); 2983 2984 if (!page_mkwrite) 2985 file_update_time(vma->vm_file); 2986 2987 /* 2988 * Throttle page dirtying rate down to writeback speed. 2989 * 2990 * mapping may be NULL here because some device drivers do not 2991 * set page.mapping but still dirty their pages 2992 * 2993 * Drop the mmap_lock before waiting on IO, if we can. The file 2994 * is pinning the mapping, as per above. 2995 */ 2996 if ((dirtied || page_mkwrite) && mapping) { 2997 struct file *fpin; 2998 2999 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3000 balance_dirty_pages_ratelimited(mapping); 3001 if (fpin) { 3002 fput(fpin); 3003 return VM_FAULT_COMPLETED; 3004 } 3005 } 3006 3007 return 0; 3008 } 3009 3010 /* 3011 * Handle write page faults for pages that can be reused in the current vma 3012 * 3013 * This can happen either due to the mapping being with the VM_SHARED flag, 3014 * or due to us being the last reference standing to the page. In either 3015 * case, all we need to do here is to mark the page as writable and update 3016 * any related book-keeping. 3017 */ 3018 static inline void wp_page_reuse(struct vm_fault *vmf) 3019 __releases(vmf->ptl) 3020 { 3021 struct vm_area_struct *vma = vmf->vma; 3022 struct page *page = vmf->page; 3023 pte_t entry; 3024 3025 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3026 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3027 3028 /* 3029 * Clear the pages cpupid information as the existing 3030 * information potentially belongs to a now completely 3031 * unrelated process. 3032 */ 3033 if (page) 3034 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3035 3036 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3037 entry = pte_mkyoung(vmf->orig_pte); 3038 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3039 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3040 update_mmu_cache(vma, vmf->address, vmf->pte); 3041 pte_unmap_unlock(vmf->pte, vmf->ptl); 3042 count_vm_event(PGREUSE); 3043 } 3044 3045 /* 3046 * Handle the case of a page which we actually need to copy to a new page, 3047 * either due to COW or unsharing. 3048 * 3049 * Called with mmap_lock locked and the old page referenced, but 3050 * without the ptl held. 3051 * 3052 * High level logic flow: 3053 * 3054 * - Allocate a page, copy the content of the old page to the new one. 3055 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3056 * - Take the PTL. If the pte changed, bail out and release the allocated page 3057 * - If the pte is still the way we remember it, update the page table and all 3058 * relevant references. This includes dropping the reference the page-table 3059 * held to the old page, as well as updating the rmap. 3060 * - In any case, unlock the PTL and drop the reference we took to the old page. 3061 */ 3062 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3063 { 3064 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3065 struct vm_area_struct *vma = vmf->vma; 3066 struct mm_struct *mm = vma->vm_mm; 3067 struct page *old_page = vmf->page; 3068 struct page *new_page = NULL; 3069 pte_t entry; 3070 int page_copied = 0; 3071 struct mmu_notifier_range range; 3072 int ret; 3073 3074 delayacct_wpcopy_start(); 3075 3076 if (unlikely(anon_vma_prepare(vma))) 3077 goto oom; 3078 3079 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3080 new_page = alloc_zeroed_user_highpage_movable(vma, 3081 vmf->address); 3082 if (!new_page) 3083 goto oom; 3084 } else { 3085 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3086 vmf->address); 3087 if (!new_page) 3088 goto oom; 3089 3090 ret = __wp_page_copy_user(new_page, old_page, vmf); 3091 if (ret) { 3092 /* 3093 * COW failed, if the fault was solved by other, 3094 * it's fine. If not, userspace would re-fault on 3095 * the same address and we will handle the fault 3096 * from the second attempt. 3097 * The -EHWPOISON case will not be retried. 3098 */ 3099 put_page(new_page); 3100 if (old_page) 3101 put_page(old_page); 3102 3103 delayacct_wpcopy_end(); 3104 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3105 } 3106 kmsan_copy_page_meta(new_page, old_page); 3107 } 3108 3109 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL)) 3110 goto oom_free_new; 3111 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 3112 3113 __SetPageUptodate(new_page); 3114 3115 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 3116 vmf->address & PAGE_MASK, 3117 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3118 mmu_notifier_invalidate_range_start(&range); 3119 3120 /* 3121 * Re-check the pte - we dropped the lock 3122 */ 3123 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3124 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3125 if (old_page) { 3126 if (!PageAnon(old_page)) { 3127 dec_mm_counter(mm, mm_counter_file(old_page)); 3128 inc_mm_counter(mm, MM_ANONPAGES); 3129 } 3130 } else { 3131 inc_mm_counter(mm, MM_ANONPAGES); 3132 } 3133 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3134 entry = mk_pte(new_page, vma->vm_page_prot); 3135 entry = pte_sw_mkyoung(entry); 3136 if (unlikely(unshare)) { 3137 if (pte_soft_dirty(vmf->orig_pte)) 3138 entry = pte_mksoft_dirty(entry); 3139 if (pte_uffd_wp(vmf->orig_pte)) 3140 entry = pte_mkuffd_wp(entry); 3141 } else { 3142 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3143 } 3144 3145 /* 3146 * Clear the pte entry and flush it first, before updating the 3147 * pte with the new entry, to keep TLBs on different CPUs in 3148 * sync. This code used to set the new PTE then flush TLBs, but 3149 * that left a window where the new PTE could be loaded into 3150 * some TLBs while the old PTE remains in others. 3151 */ 3152 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3153 page_add_new_anon_rmap(new_page, vma, vmf->address); 3154 lru_cache_add_inactive_or_unevictable(new_page, vma); 3155 /* 3156 * We call the notify macro here because, when using secondary 3157 * mmu page tables (such as kvm shadow page tables), we want the 3158 * new page to be mapped directly into the secondary page table. 3159 */ 3160 BUG_ON(unshare && pte_write(entry)); 3161 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3162 update_mmu_cache(vma, vmf->address, vmf->pte); 3163 if (old_page) { 3164 /* 3165 * Only after switching the pte to the new page may 3166 * we remove the mapcount here. Otherwise another 3167 * process may come and find the rmap count decremented 3168 * before the pte is switched to the new page, and 3169 * "reuse" the old page writing into it while our pte 3170 * here still points into it and can be read by other 3171 * threads. 3172 * 3173 * The critical issue is to order this 3174 * page_remove_rmap with the ptp_clear_flush above. 3175 * Those stores are ordered by (if nothing else,) 3176 * the barrier present in the atomic_add_negative 3177 * in page_remove_rmap. 3178 * 3179 * Then the TLB flush in ptep_clear_flush ensures that 3180 * no process can access the old page before the 3181 * decremented mapcount is visible. And the old page 3182 * cannot be reused until after the decremented 3183 * mapcount is visible. So transitively, TLBs to 3184 * old page will be flushed before it can be reused. 3185 */ 3186 page_remove_rmap(old_page, vma, false); 3187 } 3188 3189 /* Free the old page.. */ 3190 new_page = old_page; 3191 page_copied = 1; 3192 } else { 3193 update_mmu_tlb(vma, vmf->address, vmf->pte); 3194 } 3195 3196 if (new_page) 3197 put_page(new_page); 3198 3199 pte_unmap_unlock(vmf->pte, vmf->ptl); 3200 /* 3201 * No need to double call mmu_notifier->invalidate_range() callback as 3202 * the above ptep_clear_flush_notify() did already call it. 3203 */ 3204 mmu_notifier_invalidate_range_only_end(&range); 3205 if (old_page) { 3206 if (page_copied) 3207 free_swap_cache(old_page); 3208 put_page(old_page); 3209 } 3210 3211 delayacct_wpcopy_end(); 3212 return 0; 3213 oom_free_new: 3214 put_page(new_page); 3215 oom: 3216 if (old_page) 3217 put_page(old_page); 3218 3219 delayacct_wpcopy_end(); 3220 return VM_FAULT_OOM; 3221 } 3222 3223 /** 3224 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3225 * writeable once the page is prepared 3226 * 3227 * @vmf: structure describing the fault 3228 * 3229 * This function handles all that is needed to finish a write page fault in a 3230 * shared mapping due to PTE being read-only once the mapped page is prepared. 3231 * It handles locking of PTE and modifying it. 3232 * 3233 * The function expects the page to be locked or other protection against 3234 * concurrent faults / writeback (such as DAX radix tree locks). 3235 * 3236 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3237 * we acquired PTE lock. 3238 */ 3239 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3240 { 3241 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3242 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3243 &vmf->ptl); 3244 /* 3245 * We might have raced with another page fault while we released the 3246 * pte_offset_map_lock. 3247 */ 3248 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3249 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3250 pte_unmap_unlock(vmf->pte, vmf->ptl); 3251 return VM_FAULT_NOPAGE; 3252 } 3253 wp_page_reuse(vmf); 3254 return 0; 3255 } 3256 3257 /* 3258 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3259 * mapping 3260 */ 3261 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3262 { 3263 struct vm_area_struct *vma = vmf->vma; 3264 3265 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3266 vm_fault_t ret; 3267 3268 pte_unmap_unlock(vmf->pte, vmf->ptl); 3269 vmf->flags |= FAULT_FLAG_MKWRITE; 3270 ret = vma->vm_ops->pfn_mkwrite(vmf); 3271 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3272 return ret; 3273 return finish_mkwrite_fault(vmf); 3274 } 3275 wp_page_reuse(vmf); 3276 return 0; 3277 } 3278 3279 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3280 __releases(vmf->ptl) 3281 { 3282 struct vm_area_struct *vma = vmf->vma; 3283 vm_fault_t ret = 0; 3284 3285 get_page(vmf->page); 3286 3287 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3288 vm_fault_t tmp; 3289 3290 pte_unmap_unlock(vmf->pte, vmf->ptl); 3291 tmp = do_page_mkwrite(vmf); 3292 if (unlikely(!tmp || (tmp & 3293 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3294 put_page(vmf->page); 3295 return tmp; 3296 } 3297 tmp = finish_mkwrite_fault(vmf); 3298 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3299 unlock_page(vmf->page); 3300 put_page(vmf->page); 3301 return tmp; 3302 } 3303 } else { 3304 wp_page_reuse(vmf); 3305 lock_page(vmf->page); 3306 } 3307 ret |= fault_dirty_shared_page(vmf); 3308 put_page(vmf->page); 3309 3310 return ret; 3311 } 3312 3313 /* 3314 * This routine handles present pages, when 3315 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3316 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3317 * (FAULT_FLAG_UNSHARE) 3318 * 3319 * It is done by copying the page to a new address and decrementing the 3320 * shared-page counter for the old page. 3321 * 3322 * Note that this routine assumes that the protection checks have been 3323 * done by the caller (the low-level page fault routine in most cases). 3324 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3325 * done any necessary COW. 3326 * 3327 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3328 * though the page will change only once the write actually happens. This 3329 * avoids a few races, and potentially makes it more efficient. 3330 * 3331 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3332 * but allow concurrent faults), with pte both mapped and locked. 3333 * We return with mmap_lock still held, but pte unmapped and unlocked. 3334 */ 3335 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3336 __releases(vmf->ptl) 3337 { 3338 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3339 struct vm_area_struct *vma = vmf->vma; 3340 struct folio *folio = NULL; 3341 3342 if (likely(!unshare)) { 3343 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3344 pte_unmap_unlock(vmf->pte, vmf->ptl); 3345 return handle_userfault(vmf, VM_UFFD_WP); 3346 } 3347 3348 /* 3349 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3350 * is flushed in this case before copying. 3351 */ 3352 if (unlikely(userfaultfd_wp(vmf->vma) && 3353 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3354 flush_tlb_page(vmf->vma, vmf->address); 3355 } 3356 3357 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3358 3359 /* 3360 * Shared mapping: we are guaranteed to have VM_WRITE and 3361 * FAULT_FLAG_WRITE set at this point. 3362 */ 3363 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3364 /* 3365 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3366 * VM_PFNMAP VMA. 3367 * 3368 * We should not cow pages in a shared writeable mapping. 3369 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3370 */ 3371 if (!vmf->page) 3372 return wp_pfn_shared(vmf); 3373 return wp_page_shared(vmf); 3374 } 3375 3376 if (vmf->page) 3377 folio = page_folio(vmf->page); 3378 3379 /* 3380 * Private mapping: create an exclusive anonymous page copy if reuse 3381 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3382 */ 3383 if (folio && folio_test_anon(folio)) { 3384 /* 3385 * If the page is exclusive to this process we must reuse the 3386 * page without further checks. 3387 */ 3388 if (PageAnonExclusive(vmf->page)) 3389 goto reuse; 3390 3391 /* 3392 * We have to verify under folio lock: these early checks are 3393 * just an optimization to avoid locking the folio and freeing 3394 * the swapcache if there is little hope that we can reuse. 3395 * 3396 * KSM doesn't necessarily raise the folio refcount. 3397 */ 3398 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3399 goto copy; 3400 if (!folio_test_lru(folio)) 3401 /* 3402 * Note: We cannot easily detect+handle references from 3403 * remote LRU pagevecs or references to LRU folios. 3404 */ 3405 lru_add_drain(); 3406 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3407 goto copy; 3408 if (!folio_trylock(folio)) 3409 goto copy; 3410 if (folio_test_swapcache(folio)) 3411 folio_free_swap(folio); 3412 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3413 folio_unlock(folio); 3414 goto copy; 3415 } 3416 /* 3417 * Ok, we've got the only folio reference from our mapping 3418 * and the folio is locked, it's dark out, and we're wearing 3419 * sunglasses. Hit it. 3420 */ 3421 page_move_anon_rmap(vmf->page, vma); 3422 folio_unlock(folio); 3423 reuse: 3424 if (unlikely(unshare)) { 3425 pte_unmap_unlock(vmf->pte, vmf->ptl); 3426 return 0; 3427 } 3428 wp_page_reuse(vmf); 3429 return 0; 3430 } 3431 copy: 3432 /* 3433 * Ok, we need to copy. Oh, well.. 3434 */ 3435 if (folio) 3436 folio_get(folio); 3437 3438 pte_unmap_unlock(vmf->pte, vmf->ptl); 3439 #ifdef CONFIG_KSM 3440 if (folio && folio_test_ksm(folio)) 3441 count_vm_event(COW_KSM); 3442 #endif 3443 return wp_page_copy(vmf); 3444 } 3445 3446 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3447 unsigned long start_addr, unsigned long end_addr, 3448 struct zap_details *details) 3449 { 3450 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3451 } 3452 3453 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3454 pgoff_t first_index, 3455 pgoff_t last_index, 3456 struct zap_details *details) 3457 { 3458 struct vm_area_struct *vma; 3459 pgoff_t vba, vea, zba, zea; 3460 3461 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3462 vba = vma->vm_pgoff; 3463 vea = vba + vma_pages(vma) - 1; 3464 zba = max(first_index, vba); 3465 zea = min(last_index, vea); 3466 3467 unmap_mapping_range_vma(vma, 3468 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3469 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3470 details); 3471 } 3472 } 3473 3474 /** 3475 * unmap_mapping_folio() - Unmap single folio from processes. 3476 * @folio: The locked folio to be unmapped. 3477 * 3478 * Unmap this folio from any userspace process which still has it mmaped. 3479 * Typically, for efficiency, the range of nearby pages has already been 3480 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3481 * truncation or invalidation holds the lock on a folio, it may find that 3482 * the page has been remapped again: and then uses unmap_mapping_folio() 3483 * to unmap it finally. 3484 */ 3485 void unmap_mapping_folio(struct folio *folio) 3486 { 3487 struct address_space *mapping = folio->mapping; 3488 struct zap_details details = { }; 3489 pgoff_t first_index; 3490 pgoff_t last_index; 3491 3492 VM_BUG_ON(!folio_test_locked(folio)); 3493 3494 first_index = folio->index; 3495 last_index = folio->index + folio_nr_pages(folio) - 1; 3496 3497 details.even_cows = false; 3498 details.single_folio = folio; 3499 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3500 3501 i_mmap_lock_read(mapping); 3502 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3503 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3504 last_index, &details); 3505 i_mmap_unlock_read(mapping); 3506 } 3507 3508 /** 3509 * unmap_mapping_pages() - Unmap pages from processes. 3510 * @mapping: The address space containing pages to be unmapped. 3511 * @start: Index of first page to be unmapped. 3512 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3513 * @even_cows: Whether to unmap even private COWed pages. 3514 * 3515 * Unmap the pages in this address space from any userspace process which 3516 * has them mmaped. Generally, you want to remove COWed pages as well when 3517 * a file is being truncated, but not when invalidating pages from the page 3518 * cache. 3519 */ 3520 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3521 pgoff_t nr, bool even_cows) 3522 { 3523 struct zap_details details = { }; 3524 pgoff_t first_index = start; 3525 pgoff_t last_index = start + nr - 1; 3526 3527 details.even_cows = even_cows; 3528 if (last_index < first_index) 3529 last_index = ULONG_MAX; 3530 3531 i_mmap_lock_read(mapping); 3532 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3533 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3534 last_index, &details); 3535 i_mmap_unlock_read(mapping); 3536 } 3537 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3538 3539 /** 3540 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3541 * address_space corresponding to the specified byte range in the underlying 3542 * file. 3543 * 3544 * @mapping: the address space containing mmaps to be unmapped. 3545 * @holebegin: byte in first page to unmap, relative to the start of 3546 * the underlying file. This will be rounded down to a PAGE_SIZE 3547 * boundary. Note that this is different from truncate_pagecache(), which 3548 * must keep the partial page. In contrast, we must get rid of 3549 * partial pages. 3550 * @holelen: size of prospective hole in bytes. This will be rounded 3551 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3552 * end of the file. 3553 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3554 * but 0 when invalidating pagecache, don't throw away private data. 3555 */ 3556 void unmap_mapping_range(struct address_space *mapping, 3557 loff_t const holebegin, loff_t const holelen, int even_cows) 3558 { 3559 pgoff_t hba = holebegin >> PAGE_SHIFT; 3560 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3561 3562 /* Check for overflow. */ 3563 if (sizeof(holelen) > sizeof(hlen)) { 3564 long long holeend = 3565 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3566 if (holeend & ~(long long)ULONG_MAX) 3567 hlen = ULONG_MAX - hba + 1; 3568 } 3569 3570 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3571 } 3572 EXPORT_SYMBOL(unmap_mapping_range); 3573 3574 /* 3575 * Restore a potential device exclusive pte to a working pte entry 3576 */ 3577 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3578 { 3579 struct folio *folio = page_folio(vmf->page); 3580 struct vm_area_struct *vma = vmf->vma; 3581 struct mmu_notifier_range range; 3582 3583 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) 3584 return VM_FAULT_RETRY; 3585 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 3586 vma->vm_mm, vmf->address & PAGE_MASK, 3587 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3588 mmu_notifier_invalidate_range_start(&range); 3589 3590 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3591 &vmf->ptl); 3592 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3593 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3594 3595 pte_unmap_unlock(vmf->pte, vmf->ptl); 3596 folio_unlock(folio); 3597 3598 mmu_notifier_invalidate_range_end(&range); 3599 return 0; 3600 } 3601 3602 static inline bool should_try_to_free_swap(struct folio *folio, 3603 struct vm_area_struct *vma, 3604 unsigned int fault_flags) 3605 { 3606 if (!folio_test_swapcache(folio)) 3607 return false; 3608 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3609 folio_test_mlocked(folio)) 3610 return true; 3611 /* 3612 * If we want to map a page that's in the swapcache writable, we 3613 * have to detect via the refcount if we're really the exclusive 3614 * user. Try freeing the swapcache to get rid of the swapcache 3615 * reference only in case it's likely that we'll be the exlusive user. 3616 */ 3617 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3618 folio_ref_count(folio) == 2; 3619 } 3620 3621 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3622 { 3623 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3624 vmf->address, &vmf->ptl); 3625 /* 3626 * Be careful so that we will only recover a special uffd-wp pte into a 3627 * none pte. Otherwise it means the pte could have changed, so retry. 3628 * 3629 * This should also cover the case where e.g. the pte changed 3630 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR. 3631 * So is_pte_marker() check is not enough to safely drop the pte. 3632 */ 3633 if (pte_same(vmf->orig_pte, *vmf->pte)) 3634 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3635 pte_unmap_unlock(vmf->pte, vmf->ptl); 3636 return 0; 3637 } 3638 3639 /* 3640 * This is actually a page-missing access, but with uffd-wp special pte 3641 * installed. It means this pte was wr-protected before being unmapped. 3642 */ 3643 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3644 { 3645 /* 3646 * Just in case there're leftover special ptes even after the region 3647 * got unregistered - we can simply clear them. We can also do that 3648 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp 3649 * ranges, but it should be more efficient to be done lazily here. 3650 */ 3651 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma))) 3652 return pte_marker_clear(vmf); 3653 3654 /* do_fault() can handle pte markers too like none pte */ 3655 return do_fault(vmf); 3656 } 3657 3658 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3659 { 3660 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3661 unsigned long marker = pte_marker_get(entry); 3662 3663 /* 3664 * PTE markers should never be empty. If anything weird happened, 3665 * the best thing to do is to kill the process along with its mm. 3666 */ 3667 if (WARN_ON_ONCE(!marker)) 3668 return VM_FAULT_SIGBUS; 3669 3670 /* Higher priority than uffd-wp when data corrupted */ 3671 if (marker & PTE_MARKER_SWAPIN_ERROR) 3672 return VM_FAULT_SIGBUS; 3673 3674 if (pte_marker_entry_uffd_wp(entry)) 3675 return pte_marker_handle_uffd_wp(vmf); 3676 3677 /* This is an unknown pte marker */ 3678 return VM_FAULT_SIGBUS; 3679 } 3680 3681 /* 3682 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3683 * but allow concurrent faults), and pte mapped but not yet locked. 3684 * We return with pte unmapped and unlocked. 3685 * 3686 * We return with the mmap_lock locked or unlocked in the same cases 3687 * as does filemap_fault(). 3688 */ 3689 vm_fault_t do_swap_page(struct vm_fault *vmf) 3690 { 3691 struct vm_area_struct *vma = vmf->vma; 3692 struct folio *swapcache, *folio = NULL; 3693 struct page *page; 3694 struct swap_info_struct *si = NULL; 3695 rmap_t rmap_flags = RMAP_NONE; 3696 bool exclusive = false; 3697 swp_entry_t entry; 3698 pte_t pte; 3699 int locked; 3700 vm_fault_t ret = 0; 3701 void *shadow = NULL; 3702 3703 if (!pte_unmap_same(vmf)) 3704 goto out; 3705 3706 entry = pte_to_swp_entry(vmf->orig_pte); 3707 if (unlikely(non_swap_entry(entry))) { 3708 if (is_migration_entry(entry)) { 3709 migration_entry_wait(vma->vm_mm, vmf->pmd, 3710 vmf->address); 3711 } else if (is_device_exclusive_entry(entry)) { 3712 vmf->page = pfn_swap_entry_to_page(entry); 3713 ret = remove_device_exclusive_entry(vmf); 3714 } else if (is_device_private_entry(entry)) { 3715 vmf->page = pfn_swap_entry_to_page(entry); 3716 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3717 vmf->address, &vmf->ptl); 3718 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3719 spin_unlock(vmf->ptl); 3720 goto out; 3721 } 3722 3723 /* 3724 * Get a page reference while we know the page can't be 3725 * freed. 3726 */ 3727 get_page(vmf->page); 3728 pte_unmap_unlock(vmf->pte, vmf->ptl); 3729 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3730 put_page(vmf->page); 3731 } else if (is_hwpoison_entry(entry)) { 3732 ret = VM_FAULT_HWPOISON; 3733 } else if (is_pte_marker_entry(entry)) { 3734 ret = handle_pte_marker(vmf); 3735 } else { 3736 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3737 ret = VM_FAULT_SIGBUS; 3738 } 3739 goto out; 3740 } 3741 3742 /* Prevent swapoff from happening to us. */ 3743 si = get_swap_device(entry); 3744 if (unlikely(!si)) 3745 goto out; 3746 3747 folio = swap_cache_get_folio(entry, vma, vmf->address); 3748 if (folio) 3749 page = folio_file_page(folio, swp_offset(entry)); 3750 swapcache = folio; 3751 3752 if (!folio) { 3753 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3754 __swap_count(entry) == 1) { 3755 /* skip swapcache */ 3756 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3757 vma, vmf->address, false); 3758 page = &folio->page; 3759 if (folio) { 3760 __folio_set_locked(folio); 3761 __folio_set_swapbacked(folio); 3762 3763 if (mem_cgroup_swapin_charge_folio(folio, 3764 vma->vm_mm, GFP_KERNEL, 3765 entry)) { 3766 ret = VM_FAULT_OOM; 3767 goto out_page; 3768 } 3769 mem_cgroup_swapin_uncharge_swap(entry); 3770 3771 shadow = get_shadow_from_swap_cache(entry); 3772 if (shadow) 3773 workingset_refault(folio, shadow); 3774 3775 folio_add_lru(folio); 3776 3777 /* To provide entry to swap_readpage() */ 3778 folio_set_swap_entry(folio, entry); 3779 swap_readpage(page, true, NULL); 3780 folio->private = NULL; 3781 } 3782 } else { 3783 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3784 vmf); 3785 if (page) 3786 folio = page_folio(page); 3787 swapcache = folio; 3788 } 3789 3790 if (!folio) { 3791 /* 3792 * Back out if somebody else faulted in this pte 3793 * while we released the pte lock. 3794 */ 3795 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3796 vmf->address, &vmf->ptl); 3797 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3798 ret = VM_FAULT_OOM; 3799 goto unlock; 3800 } 3801 3802 /* Had to read the page from swap area: Major fault */ 3803 ret = VM_FAULT_MAJOR; 3804 count_vm_event(PGMAJFAULT); 3805 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3806 } else if (PageHWPoison(page)) { 3807 /* 3808 * hwpoisoned dirty swapcache pages are kept for killing 3809 * owner processes (which may be unknown at hwpoison time) 3810 */ 3811 ret = VM_FAULT_HWPOISON; 3812 goto out_release; 3813 } 3814 3815 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags); 3816 3817 if (!locked) { 3818 ret |= VM_FAULT_RETRY; 3819 goto out_release; 3820 } 3821 3822 if (swapcache) { 3823 /* 3824 * Make sure folio_free_swap() or swapoff did not release the 3825 * swapcache from under us. The page pin, and pte_same test 3826 * below, are not enough to exclude that. Even if it is still 3827 * swapcache, we need to check that the page's swap has not 3828 * changed. 3829 */ 3830 if (unlikely(!folio_test_swapcache(folio) || 3831 page_private(page) != entry.val)) 3832 goto out_page; 3833 3834 /* 3835 * KSM sometimes has to copy on read faults, for example, if 3836 * page->index of !PageKSM() pages would be nonlinear inside the 3837 * anon VMA -- PageKSM() is lost on actual swapout. 3838 */ 3839 page = ksm_might_need_to_copy(page, vma, vmf->address); 3840 if (unlikely(!page)) { 3841 ret = VM_FAULT_OOM; 3842 goto out_page; 3843 } 3844 folio = page_folio(page); 3845 3846 /* 3847 * If we want to map a page that's in the swapcache writable, we 3848 * have to detect via the refcount if we're really the exclusive 3849 * owner. Try removing the extra reference from the local LRU 3850 * pagevecs if required. 3851 */ 3852 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3853 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3854 lru_add_drain(); 3855 } 3856 3857 cgroup_throttle_swaprate(page, GFP_KERNEL); 3858 3859 /* 3860 * Back out if somebody else already faulted in this pte. 3861 */ 3862 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3863 &vmf->ptl); 3864 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3865 goto out_nomap; 3866 3867 if (unlikely(!folio_test_uptodate(folio))) { 3868 ret = VM_FAULT_SIGBUS; 3869 goto out_nomap; 3870 } 3871 3872 /* 3873 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3874 * must never point at an anonymous page in the swapcache that is 3875 * PG_anon_exclusive. Sanity check that this holds and especially, that 3876 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3877 * check after taking the PT lock and making sure that nobody 3878 * concurrently faulted in this page and set PG_anon_exclusive. 3879 */ 3880 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3881 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3882 3883 /* 3884 * Check under PT lock (to protect against concurrent fork() sharing 3885 * the swap entry concurrently) for certainly exclusive pages. 3886 */ 3887 if (!folio_test_ksm(folio)) { 3888 /* 3889 * Note that pte_swp_exclusive() == false for architectures 3890 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE. 3891 */ 3892 exclusive = pte_swp_exclusive(vmf->orig_pte); 3893 if (folio != swapcache) { 3894 /* 3895 * We have a fresh page that is not exposed to the 3896 * swapcache -> certainly exclusive. 3897 */ 3898 exclusive = true; 3899 } else if (exclusive && folio_test_writeback(folio) && 3900 data_race(si->flags & SWP_STABLE_WRITES)) { 3901 /* 3902 * This is tricky: not all swap backends support 3903 * concurrent page modifications while under writeback. 3904 * 3905 * So if we stumble over such a page in the swapcache 3906 * we must not set the page exclusive, otherwise we can 3907 * map it writable without further checks and modify it 3908 * while still under writeback. 3909 * 3910 * For these problematic swap backends, simply drop the 3911 * exclusive marker: this is perfectly fine as we start 3912 * writeback only if we fully unmapped the page and 3913 * there are no unexpected references on the page after 3914 * unmapping succeeded. After fully unmapped, no 3915 * further GUP references (FOLL_GET and FOLL_PIN) can 3916 * appear, so dropping the exclusive marker and mapping 3917 * it only R/O is fine. 3918 */ 3919 exclusive = false; 3920 } 3921 } 3922 3923 /* 3924 * Remove the swap entry and conditionally try to free up the swapcache. 3925 * We're already holding a reference on the page but haven't mapped it 3926 * yet. 3927 */ 3928 swap_free(entry); 3929 if (should_try_to_free_swap(folio, vma, vmf->flags)) 3930 folio_free_swap(folio); 3931 3932 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 3933 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 3934 pte = mk_pte(page, vma->vm_page_prot); 3935 3936 /* 3937 * Same logic as in do_wp_page(); however, optimize for pages that are 3938 * certainly not shared either because we just allocated them without 3939 * exposing them to the swapcache or because the swap entry indicates 3940 * exclusivity. 3941 */ 3942 if (!folio_test_ksm(folio) && 3943 (exclusive || folio_ref_count(folio) == 1)) { 3944 if (vmf->flags & FAULT_FLAG_WRITE) { 3945 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3946 vmf->flags &= ~FAULT_FLAG_WRITE; 3947 } 3948 rmap_flags |= RMAP_EXCLUSIVE; 3949 } 3950 flush_icache_page(vma, page); 3951 if (pte_swp_soft_dirty(vmf->orig_pte)) 3952 pte = pte_mksoft_dirty(pte); 3953 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3954 pte = pte_mkuffd_wp(pte); 3955 pte = pte_wrprotect(pte); 3956 } 3957 vmf->orig_pte = pte; 3958 3959 /* ksm created a completely new copy */ 3960 if (unlikely(folio != swapcache && swapcache)) { 3961 page_add_new_anon_rmap(page, vma, vmf->address); 3962 folio_add_lru_vma(folio, vma); 3963 } else { 3964 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 3965 } 3966 3967 VM_BUG_ON(!folio_test_anon(folio) || 3968 (pte_write(pte) && !PageAnonExclusive(page))); 3969 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3970 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3971 3972 folio_unlock(folio); 3973 if (folio != swapcache && swapcache) { 3974 /* 3975 * Hold the lock to avoid the swap entry to be reused 3976 * until we take the PT lock for the pte_same() check 3977 * (to avoid false positives from pte_same). For 3978 * further safety release the lock after the swap_free 3979 * so that the swap count won't change under a 3980 * parallel locked swapcache. 3981 */ 3982 folio_unlock(swapcache); 3983 folio_put(swapcache); 3984 } 3985 3986 if (vmf->flags & FAULT_FLAG_WRITE) { 3987 ret |= do_wp_page(vmf); 3988 if (ret & VM_FAULT_ERROR) 3989 ret &= VM_FAULT_ERROR; 3990 goto out; 3991 } 3992 3993 /* No need to invalidate - it was non-present before */ 3994 update_mmu_cache(vma, vmf->address, vmf->pte); 3995 unlock: 3996 pte_unmap_unlock(vmf->pte, vmf->ptl); 3997 out: 3998 if (si) 3999 put_swap_device(si); 4000 return ret; 4001 out_nomap: 4002 pte_unmap_unlock(vmf->pte, vmf->ptl); 4003 out_page: 4004 folio_unlock(folio); 4005 out_release: 4006 folio_put(folio); 4007 if (folio != swapcache && swapcache) { 4008 folio_unlock(swapcache); 4009 folio_put(swapcache); 4010 } 4011 if (si) 4012 put_swap_device(si); 4013 return ret; 4014 } 4015 4016 /* 4017 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4018 * but allow concurrent faults), and pte mapped but not yet locked. 4019 * We return with mmap_lock still held, but pte unmapped and unlocked. 4020 */ 4021 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4022 { 4023 struct vm_area_struct *vma = vmf->vma; 4024 struct page *page; 4025 vm_fault_t ret = 0; 4026 pte_t entry; 4027 4028 /* File mapping without ->vm_ops ? */ 4029 if (vma->vm_flags & VM_SHARED) 4030 return VM_FAULT_SIGBUS; 4031 4032 /* 4033 * Use pte_alloc() instead of pte_alloc_map(). We can't run 4034 * pte_offset_map() on pmds where a huge pmd might be created 4035 * from a different thread. 4036 * 4037 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 4038 * parallel threads are excluded by other means. 4039 * 4040 * Here we only have mmap_read_lock(mm). 4041 */ 4042 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4043 return VM_FAULT_OOM; 4044 4045 /* See comment in handle_pte_fault() */ 4046 if (unlikely(pmd_trans_unstable(vmf->pmd))) 4047 return 0; 4048 4049 /* Use the zero-page for reads */ 4050 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4051 !mm_forbids_zeropage(vma->vm_mm)) { 4052 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4053 vma->vm_page_prot)); 4054 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4055 vmf->address, &vmf->ptl); 4056 if (!pte_none(*vmf->pte)) { 4057 update_mmu_tlb(vma, vmf->address, vmf->pte); 4058 goto unlock; 4059 } 4060 ret = check_stable_address_space(vma->vm_mm); 4061 if (ret) 4062 goto unlock; 4063 /* Deliver the page fault to userland, check inside PT lock */ 4064 if (userfaultfd_missing(vma)) { 4065 pte_unmap_unlock(vmf->pte, vmf->ptl); 4066 return handle_userfault(vmf, VM_UFFD_MISSING); 4067 } 4068 goto setpte; 4069 } 4070 4071 /* Allocate our own private page. */ 4072 if (unlikely(anon_vma_prepare(vma))) 4073 goto oom; 4074 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 4075 if (!page) 4076 goto oom; 4077 4078 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) 4079 goto oom_free_page; 4080 cgroup_throttle_swaprate(page, GFP_KERNEL); 4081 4082 /* 4083 * The memory barrier inside __SetPageUptodate makes sure that 4084 * preceding stores to the page contents become visible before 4085 * the set_pte_at() write. 4086 */ 4087 __SetPageUptodate(page); 4088 4089 entry = mk_pte(page, vma->vm_page_prot); 4090 entry = pte_sw_mkyoung(entry); 4091 if (vma->vm_flags & VM_WRITE) 4092 entry = pte_mkwrite(pte_mkdirty(entry)); 4093 4094 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4095 &vmf->ptl); 4096 if (!pte_none(*vmf->pte)) { 4097 update_mmu_tlb(vma, vmf->address, vmf->pte); 4098 goto release; 4099 } 4100 4101 ret = check_stable_address_space(vma->vm_mm); 4102 if (ret) 4103 goto release; 4104 4105 /* Deliver the page fault to userland, check inside PT lock */ 4106 if (userfaultfd_missing(vma)) { 4107 pte_unmap_unlock(vmf->pte, vmf->ptl); 4108 put_page(page); 4109 return handle_userfault(vmf, VM_UFFD_MISSING); 4110 } 4111 4112 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4113 page_add_new_anon_rmap(page, vma, vmf->address); 4114 lru_cache_add_inactive_or_unevictable(page, vma); 4115 setpte: 4116 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4117 4118 /* No need to invalidate - it was non-present before */ 4119 update_mmu_cache(vma, vmf->address, vmf->pte); 4120 unlock: 4121 pte_unmap_unlock(vmf->pte, vmf->ptl); 4122 return ret; 4123 release: 4124 put_page(page); 4125 goto unlock; 4126 oom_free_page: 4127 put_page(page); 4128 oom: 4129 return VM_FAULT_OOM; 4130 } 4131 4132 /* 4133 * The mmap_lock must have been held on entry, and may have been 4134 * released depending on flags and vma->vm_ops->fault() return value. 4135 * See filemap_fault() and __lock_page_retry(). 4136 */ 4137 static vm_fault_t __do_fault(struct vm_fault *vmf) 4138 { 4139 struct vm_area_struct *vma = vmf->vma; 4140 vm_fault_t ret; 4141 4142 /* 4143 * Preallocate pte before we take page_lock because this might lead to 4144 * deadlocks for memcg reclaim which waits for pages under writeback: 4145 * lock_page(A) 4146 * SetPageWriteback(A) 4147 * unlock_page(A) 4148 * lock_page(B) 4149 * lock_page(B) 4150 * pte_alloc_one 4151 * shrink_page_list 4152 * wait_on_page_writeback(A) 4153 * SetPageWriteback(B) 4154 * unlock_page(B) 4155 * # flush A, B to clear the writeback 4156 */ 4157 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4158 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4159 if (!vmf->prealloc_pte) 4160 return VM_FAULT_OOM; 4161 } 4162 4163 ret = vma->vm_ops->fault(vmf); 4164 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4165 VM_FAULT_DONE_COW))) 4166 return ret; 4167 4168 if (unlikely(PageHWPoison(vmf->page))) { 4169 struct page *page = vmf->page; 4170 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4171 if (ret & VM_FAULT_LOCKED) { 4172 if (page_mapped(page)) 4173 unmap_mapping_pages(page_mapping(page), 4174 page->index, 1, false); 4175 /* Retry if a clean page was removed from the cache. */ 4176 if (invalidate_inode_page(page)) 4177 poisonret = VM_FAULT_NOPAGE; 4178 unlock_page(page); 4179 } 4180 put_page(page); 4181 vmf->page = NULL; 4182 return poisonret; 4183 } 4184 4185 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4186 lock_page(vmf->page); 4187 else 4188 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4189 4190 return ret; 4191 } 4192 4193 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4194 static void deposit_prealloc_pte(struct vm_fault *vmf) 4195 { 4196 struct vm_area_struct *vma = vmf->vma; 4197 4198 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4199 /* 4200 * We are going to consume the prealloc table, 4201 * count that as nr_ptes. 4202 */ 4203 mm_inc_nr_ptes(vma->vm_mm); 4204 vmf->prealloc_pte = NULL; 4205 } 4206 4207 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4208 { 4209 struct vm_area_struct *vma = vmf->vma; 4210 bool write = vmf->flags & FAULT_FLAG_WRITE; 4211 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4212 pmd_t entry; 4213 int i; 4214 vm_fault_t ret = VM_FAULT_FALLBACK; 4215 4216 if (!transhuge_vma_suitable(vma, haddr)) 4217 return ret; 4218 4219 page = compound_head(page); 4220 if (compound_order(page) != HPAGE_PMD_ORDER) 4221 return ret; 4222 4223 /* 4224 * Just backoff if any subpage of a THP is corrupted otherwise 4225 * the corrupted page may mapped by PMD silently to escape the 4226 * check. This kind of THP just can be PTE mapped. Access to 4227 * the corrupted subpage should trigger SIGBUS as expected. 4228 */ 4229 if (unlikely(PageHasHWPoisoned(page))) 4230 return ret; 4231 4232 /* 4233 * Archs like ppc64 need additional space to store information 4234 * related to pte entry. Use the preallocated table for that. 4235 */ 4236 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4237 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4238 if (!vmf->prealloc_pte) 4239 return VM_FAULT_OOM; 4240 } 4241 4242 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4243 if (unlikely(!pmd_none(*vmf->pmd))) 4244 goto out; 4245 4246 for (i = 0; i < HPAGE_PMD_NR; i++) 4247 flush_icache_page(vma, page + i); 4248 4249 entry = mk_huge_pmd(page, vma->vm_page_prot); 4250 if (write) 4251 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4252 4253 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4254 page_add_file_rmap(page, vma, true); 4255 4256 /* 4257 * deposit and withdraw with pmd lock held 4258 */ 4259 if (arch_needs_pgtable_deposit()) 4260 deposit_prealloc_pte(vmf); 4261 4262 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4263 4264 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4265 4266 /* fault is handled */ 4267 ret = 0; 4268 count_vm_event(THP_FILE_MAPPED); 4269 out: 4270 spin_unlock(vmf->ptl); 4271 return ret; 4272 } 4273 #else 4274 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4275 { 4276 return VM_FAULT_FALLBACK; 4277 } 4278 #endif 4279 4280 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 4281 { 4282 struct vm_area_struct *vma = vmf->vma; 4283 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte); 4284 bool write = vmf->flags & FAULT_FLAG_WRITE; 4285 bool prefault = vmf->address != addr; 4286 pte_t entry; 4287 4288 flush_icache_page(vma, page); 4289 entry = mk_pte(page, vma->vm_page_prot); 4290 4291 if (prefault && arch_wants_old_prefaulted_pte()) 4292 entry = pte_mkold(entry); 4293 else 4294 entry = pte_sw_mkyoung(entry); 4295 4296 if (write) 4297 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4298 if (unlikely(uffd_wp)) 4299 entry = pte_mkuffd_wp(pte_wrprotect(entry)); 4300 /* copy-on-write page */ 4301 if (write && !(vma->vm_flags & VM_SHARED)) { 4302 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4303 page_add_new_anon_rmap(page, vma, addr); 4304 lru_cache_add_inactive_or_unevictable(page, vma); 4305 } else { 4306 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 4307 page_add_file_rmap(page, vma, false); 4308 } 4309 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 4310 } 4311 4312 static bool vmf_pte_changed(struct vm_fault *vmf) 4313 { 4314 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4315 return !pte_same(*vmf->pte, vmf->orig_pte); 4316 4317 return !pte_none(*vmf->pte); 4318 } 4319 4320 /** 4321 * finish_fault - finish page fault once we have prepared the page to fault 4322 * 4323 * @vmf: structure describing the fault 4324 * 4325 * This function handles all that is needed to finish a page fault once the 4326 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4327 * given page, adds reverse page mapping, handles memcg charges and LRU 4328 * addition. 4329 * 4330 * The function expects the page to be locked and on success it consumes a 4331 * reference of a page being mapped (for the PTE which maps it). 4332 * 4333 * Return: %0 on success, %VM_FAULT_ code in case of error. 4334 */ 4335 vm_fault_t finish_fault(struct vm_fault *vmf) 4336 { 4337 struct vm_area_struct *vma = vmf->vma; 4338 struct page *page; 4339 vm_fault_t ret; 4340 4341 /* Did we COW the page? */ 4342 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4343 page = vmf->cow_page; 4344 else 4345 page = vmf->page; 4346 4347 /* 4348 * check even for read faults because we might have lost our CoWed 4349 * page 4350 */ 4351 if (!(vma->vm_flags & VM_SHARED)) { 4352 ret = check_stable_address_space(vma->vm_mm); 4353 if (ret) 4354 return ret; 4355 } 4356 4357 if (pmd_none(*vmf->pmd)) { 4358 if (PageTransCompound(page)) { 4359 ret = do_set_pmd(vmf, page); 4360 if (ret != VM_FAULT_FALLBACK) 4361 return ret; 4362 } 4363 4364 if (vmf->prealloc_pte) 4365 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4366 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4367 return VM_FAULT_OOM; 4368 } 4369 4370 /* 4371 * See comment in handle_pte_fault() for how this scenario happens, we 4372 * need to return NOPAGE so that we drop this page. 4373 */ 4374 if (pmd_devmap_trans_unstable(vmf->pmd)) 4375 return VM_FAULT_NOPAGE; 4376 4377 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4378 vmf->address, &vmf->ptl); 4379 4380 /* Re-check under ptl */ 4381 if (likely(!vmf_pte_changed(vmf))) { 4382 do_set_pte(vmf, page, vmf->address); 4383 4384 /* no need to invalidate: a not-present page won't be cached */ 4385 update_mmu_cache(vma, vmf->address, vmf->pte); 4386 4387 ret = 0; 4388 } else { 4389 update_mmu_tlb(vma, vmf->address, vmf->pte); 4390 ret = VM_FAULT_NOPAGE; 4391 } 4392 4393 pte_unmap_unlock(vmf->pte, vmf->ptl); 4394 return ret; 4395 } 4396 4397 static unsigned long fault_around_bytes __read_mostly = 4398 rounddown_pow_of_two(65536); 4399 4400 #ifdef CONFIG_DEBUG_FS 4401 static int fault_around_bytes_get(void *data, u64 *val) 4402 { 4403 *val = fault_around_bytes; 4404 return 0; 4405 } 4406 4407 /* 4408 * fault_around_bytes must be rounded down to the nearest page order as it's 4409 * what do_fault_around() expects to see. 4410 */ 4411 static int fault_around_bytes_set(void *data, u64 val) 4412 { 4413 if (val / PAGE_SIZE > PTRS_PER_PTE) 4414 return -EINVAL; 4415 if (val > PAGE_SIZE) 4416 fault_around_bytes = rounddown_pow_of_two(val); 4417 else 4418 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 4419 return 0; 4420 } 4421 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4422 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4423 4424 static int __init fault_around_debugfs(void) 4425 { 4426 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4427 &fault_around_bytes_fops); 4428 return 0; 4429 } 4430 late_initcall(fault_around_debugfs); 4431 #endif 4432 4433 /* 4434 * do_fault_around() tries to map few pages around the fault address. The hope 4435 * is that the pages will be needed soon and this will lower the number of 4436 * faults to handle. 4437 * 4438 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4439 * not ready to be mapped: not up-to-date, locked, etc. 4440 * 4441 * This function doesn't cross the VMA boundaries, in order to call map_pages() 4442 * only once. 4443 * 4444 * fault_around_bytes defines how many bytes we'll try to map. 4445 * do_fault_around() expects it to be set to a power of two less than or equal 4446 * to PTRS_PER_PTE. 4447 * 4448 * The virtual address of the area that we map is naturally aligned to 4449 * fault_around_bytes rounded down to the machine page size 4450 * (and therefore to page order). This way it's easier to guarantee 4451 * that we don't cross page table boundaries. 4452 */ 4453 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4454 { 4455 unsigned long address = vmf->address, nr_pages, mask; 4456 pgoff_t start_pgoff = vmf->pgoff; 4457 pgoff_t end_pgoff; 4458 int off; 4459 4460 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 4461 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 4462 4463 address = max(address & mask, vmf->vma->vm_start); 4464 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 4465 start_pgoff -= off; 4466 4467 /* 4468 * end_pgoff is either the end of the page table, the end of 4469 * the vma or nr_pages from start_pgoff, depending what is nearest. 4470 */ 4471 end_pgoff = start_pgoff - 4472 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 4473 PTRS_PER_PTE - 1; 4474 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 4475 start_pgoff + nr_pages - 1); 4476 4477 if (pmd_none(*vmf->pmd)) { 4478 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4479 if (!vmf->prealloc_pte) 4480 return VM_FAULT_OOM; 4481 } 4482 4483 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 4484 } 4485 4486 /* Return true if we should do read fault-around, false otherwise */ 4487 static inline bool should_fault_around(struct vm_fault *vmf) 4488 { 4489 /* No ->map_pages? No way to fault around... */ 4490 if (!vmf->vma->vm_ops->map_pages) 4491 return false; 4492 4493 if (uffd_disable_fault_around(vmf->vma)) 4494 return false; 4495 4496 return fault_around_bytes >> PAGE_SHIFT > 1; 4497 } 4498 4499 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4500 { 4501 vm_fault_t ret = 0; 4502 4503 /* 4504 * Let's call ->map_pages() first and use ->fault() as fallback 4505 * if page by the offset is not ready to be mapped (cold cache or 4506 * something). 4507 */ 4508 if (should_fault_around(vmf)) { 4509 ret = do_fault_around(vmf); 4510 if (ret) 4511 return ret; 4512 } 4513 4514 ret = __do_fault(vmf); 4515 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4516 return ret; 4517 4518 ret |= finish_fault(vmf); 4519 unlock_page(vmf->page); 4520 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4521 put_page(vmf->page); 4522 return ret; 4523 } 4524 4525 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4526 { 4527 struct vm_area_struct *vma = vmf->vma; 4528 vm_fault_t ret; 4529 4530 if (unlikely(anon_vma_prepare(vma))) 4531 return VM_FAULT_OOM; 4532 4533 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4534 if (!vmf->cow_page) 4535 return VM_FAULT_OOM; 4536 4537 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4538 GFP_KERNEL)) { 4539 put_page(vmf->cow_page); 4540 return VM_FAULT_OOM; 4541 } 4542 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4543 4544 ret = __do_fault(vmf); 4545 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4546 goto uncharge_out; 4547 if (ret & VM_FAULT_DONE_COW) 4548 return ret; 4549 4550 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4551 __SetPageUptodate(vmf->cow_page); 4552 4553 ret |= finish_fault(vmf); 4554 unlock_page(vmf->page); 4555 put_page(vmf->page); 4556 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4557 goto uncharge_out; 4558 return ret; 4559 uncharge_out: 4560 put_page(vmf->cow_page); 4561 return ret; 4562 } 4563 4564 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4565 { 4566 struct vm_area_struct *vma = vmf->vma; 4567 vm_fault_t ret, tmp; 4568 4569 ret = __do_fault(vmf); 4570 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4571 return ret; 4572 4573 /* 4574 * Check if the backing address space wants to know that the page is 4575 * about to become writable 4576 */ 4577 if (vma->vm_ops->page_mkwrite) { 4578 unlock_page(vmf->page); 4579 tmp = do_page_mkwrite(vmf); 4580 if (unlikely(!tmp || 4581 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4582 put_page(vmf->page); 4583 return tmp; 4584 } 4585 } 4586 4587 ret |= finish_fault(vmf); 4588 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4589 VM_FAULT_RETRY))) { 4590 unlock_page(vmf->page); 4591 put_page(vmf->page); 4592 return ret; 4593 } 4594 4595 ret |= fault_dirty_shared_page(vmf); 4596 return ret; 4597 } 4598 4599 /* 4600 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4601 * but allow concurrent faults). 4602 * The mmap_lock may have been released depending on flags and our 4603 * return value. See filemap_fault() and __folio_lock_or_retry(). 4604 * If mmap_lock is released, vma may become invalid (for example 4605 * by other thread calling munmap()). 4606 */ 4607 static vm_fault_t do_fault(struct vm_fault *vmf) 4608 { 4609 struct vm_area_struct *vma = vmf->vma; 4610 struct mm_struct *vm_mm = vma->vm_mm; 4611 vm_fault_t ret; 4612 4613 /* 4614 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4615 */ 4616 if (!vma->vm_ops->fault) { 4617 /* 4618 * If we find a migration pmd entry or a none pmd entry, which 4619 * should never happen, return SIGBUS 4620 */ 4621 if (unlikely(!pmd_present(*vmf->pmd))) 4622 ret = VM_FAULT_SIGBUS; 4623 else { 4624 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4625 vmf->pmd, 4626 vmf->address, 4627 &vmf->ptl); 4628 /* 4629 * Make sure this is not a temporary clearing of pte 4630 * by holding ptl and checking again. A R/M/W update 4631 * of pte involves: take ptl, clearing the pte so that 4632 * we don't have concurrent modification by hardware 4633 * followed by an update. 4634 */ 4635 if (unlikely(pte_none(*vmf->pte))) 4636 ret = VM_FAULT_SIGBUS; 4637 else 4638 ret = VM_FAULT_NOPAGE; 4639 4640 pte_unmap_unlock(vmf->pte, vmf->ptl); 4641 } 4642 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4643 ret = do_read_fault(vmf); 4644 else if (!(vma->vm_flags & VM_SHARED)) 4645 ret = do_cow_fault(vmf); 4646 else 4647 ret = do_shared_fault(vmf); 4648 4649 /* preallocated pagetable is unused: free it */ 4650 if (vmf->prealloc_pte) { 4651 pte_free(vm_mm, vmf->prealloc_pte); 4652 vmf->prealloc_pte = NULL; 4653 } 4654 return ret; 4655 } 4656 4657 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4658 unsigned long addr, int page_nid, int *flags) 4659 { 4660 get_page(page); 4661 4662 count_vm_numa_event(NUMA_HINT_FAULTS); 4663 if (page_nid == numa_node_id()) { 4664 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4665 *flags |= TNF_FAULT_LOCAL; 4666 } 4667 4668 return mpol_misplaced(page, vma, addr); 4669 } 4670 4671 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4672 { 4673 struct vm_area_struct *vma = vmf->vma; 4674 struct page *page = NULL; 4675 int page_nid = NUMA_NO_NODE; 4676 bool writable = false; 4677 int last_cpupid; 4678 int target_nid; 4679 pte_t pte, old_pte; 4680 int flags = 0; 4681 4682 /* 4683 * The "pte" at this point cannot be used safely without 4684 * validation through pte_unmap_same(). It's of NUMA type but 4685 * the pfn may be screwed if the read is non atomic. 4686 */ 4687 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4688 spin_lock(vmf->ptl); 4689 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4690 pte_unmap_unlock(vmf->pte, vmf->ptl); 4691 goto out; 4692 } 4693 4694 /* Get the normal PTE */ 4695 old_pte = ptep_get(vmf->pte); 4696 pte = pte_modify(old_pte, vma->vm_page_prot); 4697 4698 /* 4699 * Detect now whether the PTE could be writable; this information 4700 * is only valid while holding the PT lock. 4701 */ 4702 writable = pte_write(pte); 4703 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4704 can_change_pte_writable(vma, vmf->address, pte)) 4705 writable = true; 4706 4707 page = vm_normal_page(vma, vmf->address, pte); 4708 if (!page || is_zone_device_page(page)) 4709 goto out_map; 4710 4711 /* TODO: handle PTE-mapped THP */ 4712 if (PageCompound(page)) 4713 goto out_map; 4714 4715 /* 4716 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4717 * much anyway since they can be in shared cache state. This misses 4718 * the case where a mapping is writable but the process never writes 4719 * to it but pte_write gets cleared during protection updates and 4720 * pte_dirty has unpredictable behaviour between PTE scan updates, 4721 * background writeback, dirty balancing and application behaviour. 4722 */ 4723 if (!writable) 4724 flags |= TNF_NO_GROUP; 4725 4726 /* 4727 * Flag if the page is shared between multiple address spaces. This 4728 * is later used when determining whether to group tasks together 4729 */ 4730 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4731 flags |= TNF_SHARED; 4732 4733 page_nid = page_to_nid(page); 4734 /* 4735 * For memory tiering mode, cpupid of slow memory page is used 4736 * to record page access time. So use default value. 4737 */ 4738 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4739 !node_is_toptier(page_nid)) 4740 last_cpupid = (-1 & LAST_CPUPID_MASK); 4741 else 4742 last_cpupid = page_cpupid_last(page); 4743 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4744 &flags); 4745 if (target_nid == NUMA_NO_NODE) { 4746 put_page(page); 4747 goto out_map; 4748 } 4749 pte_unmap_unlock(vmf->pte, vmf->ptl); 4750 writable = false; 4751 4752 /* Migrate to the requested node */ 4753 if (migrate_misplaced_page(page, vma, target_nid)) { 4754 page_nid = target_nid; 4755 flags |= TNF_MIGRATED; 4756 } else { 4757 flags |= TNF_MIGRATE_FAIL; 4758 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4759 spin_lock(vmf->ptl); 4760 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4761 pte_unmap_unlock(vmf->pte, vmf->ptl); 4762 goto out; 4763 } 4764 goto out_map; 4765 } 4766 4767 out: 4768 if (page_nid != NUMA_NO_NODE) 4769 task_numa_fault(last_cpupid, page_nid, 1, flags); 4770 return 0; 4771 out_map: 4772 /* 4773 * Make it present again, depending on how arch implements 4774 * non-accessible ptes, some can allow access by kernel mode. 4775 */ 4776 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4777 pte = pte_modify(old_pte, vma->vm_page_prot); 4778 pte = pte_mkyoung(pte); 4779 if (writable) 4780 pte = pte_mkwrite(pte); 4781 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4782 update_mmu_cache(vma, vmf->address, vmf->pte); 4783 pte_unmap_unlock(vmf->pte, vmf->ptl); 4784 goto out; 4785 } 4786 4787 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4788 { 4789 if (vma_is_anonymous(vmf->vma)) 4790 return do_huge_pmd_anonymous_page(vmf); 4791 if (vmf->vma->vm_ops->huge_fault) 4792 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4793 return VM_FAULT_FALLBACK; 4794 } 4795 4796 /* `inline' is required to avoid gcc 4.1.2 build error */ 4797 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4798 { 4799 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4800 vm_fault_t ret; 4801 4802 if (vma_is_anonymous(vmf->vma)) { 4803 if (likely(!unshare) && 4804 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4805 return handle_userfault(vmf, VM_UFFD_WP); 4806 return do_huge_pmd_wp_page(vmf); 4807 } 4808 4809 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4810 if (vmf->vma->vm_ops->huge_fault) { 4811 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4812 if (!(ret & VM_FAULT_FALLBACK)) 4813 return ret; 4814 } 4815 } 4816 4817 /* COW or write-notify handled on pte level: split pmd. */ 4818 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4819 4820 return VM_FAULT_FALLBACK; 4821 } 4822 4823 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4824 { 4825 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4826 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4827 /* No support for anonymous transparent PUD pages yet */ 4828 if (vma_is_anonymous(vmf->vma)) 4829 return VM_FAULT_FALLBACK; 4830 if (vmf->vma->vm_ops->huge_fault) 4831 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4832 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4833 return VM_FAULT_FALLBACK; 4834 } 4835 4836 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4837 { 4838 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4839 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4840 vm_fault_t ret; 4841 4842 /* No support for anonymous transparent PUD pages yet */ 4843 if (vma_is_anonymous(vmf->vma)) 4844 goto split; 4845 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4846 if (vmf->vma->vm_ops->huge_fault) { 4847 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4848 if (!(ret & VM_FAULT_FALLBACK)) 4849 return ret; 4850 } 4851 } 4852 split: 4853 /* COW or write-notify not handled on PUD level: split pud.*/ 4854 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4855 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4856 return VM_FAULT_FALLBACK; 4857 } 4858 4859 /* 4860 * These routines also need to handle stuff like marking pages dirty 4861 * and/or accessed for architectures that don't do it in hardware (most 4862 * RISC architectures). The early dirtying is also good on the i386. 4863 * 4864 * There is also a hook called "update_mmu_cache()" that architectures 4865 * with external mmu caches can use to update those (ie the Sparc or 4866 * PowerPC hashed page tables that act as extended TLBs). 4867 * 4868 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4869 * concurrent faults). 4870 * 4871 * The mmap_lock may have been released depending on flags and our return value. 4872 * See filemap_fault() and __folio_lock_or_retry(). 4873 */ 4874 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4875 { 4876 pte_t entry; 4877 4878 if (unlikely(pmd_none(*vmf->pmd))) { 4879 /* 4880 * Leave __pte_alloc() until later: because vm_ops->fault may 4881 * want to allocate huge page, and if we expose page table 4882 * for an instant, it will be difficult to retract from 4883 * concurrent faults and from rmap lookups. 4884 */ 4885 vmf->pte = NULL; 4886 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4887 } else { 4888 /* 4889 * If a huge pmd materialized under us just retry later. Use 4890 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead 4891 * of pmd_trans_huge() to ensure the pmd didn't become 4892 * pmd_trans_huge under us and then back to pmd_none, as a 4893 * result of MADV_DONTNEED running immediately after a huge pmd 4894 * fault in a different thread of this mm, in turn leading to a 4895 * misleading pmd_trans_huge() retval. All we have to ensure is 4896 * that it is a regular pmd that we can walk with 4897 * pte_offset_map() and we can do that through an atomic read 4898 * in C, which is what pmd_trans_unstable() provides. 4899 */ 4900 if (pmd_devmap_trans_unstable(vmf->pmd)) 4901 return 0; 4902 /* 4903 * A regular pmd is established and it can't morph into a huge 4904 * pmd from under us anymore at this point because we hold the 4905 * mmap_lock read mode and khugepaged takes it in write mode. 4906 * So now it's safe to run pte_offset_map(). 4907 */ 4908 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4909 vmf->orig_pte = *vmf->pte; 4910 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4911 4912 /* 4913 * some architectures can have larger ptes than wordsize, 4914 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4915 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4916 * accesses. The code below just needs a consistent view 4917 * for the ifs and we later double check anyway with the 4918 * ptl lock held. So here a barrier will do. 4919 */ 4920 barrier(); 4921 if (pte_none(vmf->orig_pte)) { 4922 pte_unmap(vmf->pte); 4923 vmf->pte = NULL; 4924 } 4925 } 4926 4927 if (!vmf->pte) { 4928 if (vma_is_anonymous(vmf->vma)) 4929 return do_anonymous_page(vmf); 4930 else 4931 return do_fault(vmf); 4932 } 4933 4934 if (!pte_present(vmf->orig_pte)) 4935 return do_swap_page(vmf); 4936 4937 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4938 return do_numa_page(vmf); 4939 4940 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4941 spin_lock(vmf->ptl); 4942 entry = vmf->orig_pte; 4943 if (unlikely(!pte_same(*vmf->pte, entry))) { 4944 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4945 goto unlock; 4946 } 4947 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4948 if (!pte_write(entry)) 4949 return do_wp_page(vmf); 4950 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4951 entry = pte_mkdirty(entry); 4952 } 4953 entry = pte_mkyoung(entry); 4954 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4955 vmf->flags & FAULT_FLAG_WRITE)) { 4956 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4957 } else { 4958 /* Skip spurious TLB flush for retried page fault */ 4959 if (vmf->flags & FAULT_FLAG_TRIED) 4960 goto unlock; 4961 /* 4962 * This is needed only for protection faults but the arch code 4963 * is not yet telling us if this is a protection fault or not. 4964 * This still avoids useless tlb flushes for .text page faults 4965 * with threads. 4966 */ 4967 if (vmf->flags & FAULT_FLAG_WRITE) 4968 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4969 } 4970 unlock: 4971 pte_unmap_unlock(vmf->pte, vmf->ptl); 4972 return 0; 4973 } 4974 4975 /* 4976 * By the time we get here, we already hold the mm semaphore 4977 * 4978 * The mmap_lock may have been released depending on flags and our 4979 * return value. See filemap_fault() and __folio_lock_or_retry(). 4980 */ 4981 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4982 unsigned long address, unsigned int flags) 4983 { 4984 struct vm_fault vmf = { 4985 .vma = vma, 4986 .address = address & PAGE_MASK, 4987 .real_address = address, 4988 .flags = flags, 4989 .pgoff = linear_page_index(vma, address), 4990 .gfp_mask = __get_fault_gfp_mask(vma), 4991 }; 4992 struct mm_struct *mm = vma->vm_mm; 4993 unsigned long vm_flags = vma->vm_flags; 4994 pgd_t *pgd; 4995 p4d_t *p4d; 4996 vm_fault_t ret; 4997 4998 pgd = pgd_offset(mm, address); 4999 p4d = p4d_alloc(mm, pgd, address); 5000 if (!p4d) 5001 return VM_FAULT_OOM; 5002 5003 vmf.pud = pud_alloc(mm, p4d, address); 5004 if (!vmf.pud) 5005 return VM_FAULT_OOM; 5006 retry_pud: 5007 if (pud_none(*vmf.pud) && 5008 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5009 ret = create_huge_pud(&vmf); 5010 if (!(ret & VM_FAULT_FALLBACK)) 5011 return ret; 5012 } else { 5013 pud_t orig_pud = *vmf.pud; 5014 5015 barrier(); 5016 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5017 5018 /* 5019 * TODO once we support anonymous PUDs: NUMA case and 5020 * FAULT_FLAG_UNSHARE handling. 5021 */ 5022 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5023 ret = wp_huge_pud(&vmf, orig_pud); 5024 if (!(ret & VM_FAULT_FALLBACK)) 5025 return ret; 5026 } else { 5027 huge_pud_set_accessed(&vmf, orig_pud); 5028 return 0; 5029 } 5030 } 5031 } 5032 5033 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5034 if (!vmf.pmd) 5035 return VM_FAULT_OOM; 5036 5037 /* Huge pud page fault raced with pmd_alloc? */ 5038 if (pud_trans_unstable(vmf.pud)) 5039 goto retry_pud; 5040 5041 if (pmd_none(*vmf.pmd) && 5042 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5043 ret = create_huge_pmd(&vmf); 5044 if (!(ret & VM_FAULT_FALLBACK)) 5045 return ret; 5046 } else { 5047 vmf.orig_pmd = *vmf.pmd; 5048 5049 barrier(); 5050 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5051 VM_BUG_ON(thp_migration_supported() && 5052 !is_pmd_migration_entry(vmf.orig_pmd)); 5053 if (is_pmd_migration_entry(vmf.orig_pmd)) 5054 pmd_migration_entry_wait(mm, vmf.pmd); 5055 return 0; 5056 } 5057 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5058 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5059 return do_huge_pmd_numa_page(&vmf); 5060 5061 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5062 !pmd_write(vmf.orig_pmd)) { 5063 ret = wp_huge_pmd(&vmf); 5064 if (!(ret & VM_FAULT_FALLBACK)) 5065 return ret; 5066 } else { 5067 huge_pmd_set_accessed(&vmf); 5068 return 0; 5069 } 5070 } 5071 } 5072 5073 return handle_pte_fault(&vmf); 5074 } 5075 5076 /** 5077 * mm_account_fault - Do page fault accounting 5078 * 5079 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5080 * of perf event counters, but we'll still do the per-task accounting to 5081 * the task who triggered this page fault. 5082 * @address: the faulted address. 5083 * @flags: the fault flags. 5084 * @ret: the fault retcode. 5085 * 5086 * This will take care of most of the page fault accounting. Meanwhile, it 5087 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5088 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5089 * still be in per-arch page fault handlers at the entry of page fault. 5090 */ 5091 static inline void mm_account_fault(struct pt_regs *regs, 5092 unsigned long address, unsigned int flags, 5093 vm_fault_t ret) 5094 { 5095 bool major; 5096 5097 /* 5098 * We don't do accounting for some specific faults: 5099 * 5100 * - Unsuccessful faults (e.g. when the address wasn't valid). That 5101 * includes arch_vma_access_permitted() failing before reaching here. 5102 * So this is not a "this many hardware page faults" counter. We 5103 * should use the hw profiling for that. 5104 * 5105 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 5106 * once they're completed. 5107 */ 5108 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 5109 return; 5110 5111 /* 5112 * We define the fault as a major fault when the final successful fault 5113 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5114 * handle it immediately previously). 5115 */ 5116 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5117 5118 if (major) 5119 current->maj_flt++; 5120 else 5121 current->min_flt++; 5122 5123 /* 5124 * If the fault is done for GUP, regs will be NULL. We only do the 5125 * accounting for the per thread fault counters who triggered the 5126 * fault, and we skip the perf event updates. 5127 */ 5128 if (!regs) 5129 return; 5130 5131 if (major) 5132 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5133 else 5134 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5135 } 5136 5137 #ifdef CONFIG_LRU_GEN 5138 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5139 { 5140 /* the LRU algorithm doesn't apply to sequential or random reads */ 5141 current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ)); 5142 } 5143 5144 static void lru_gen_exit_fault(void) 5145 { 5146 current->in_lru_fault = false; 5147 } 5148 #else 5149 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5150 { 5151 } 5152 5153 static void lru_gen_exit_fault(void) 5154 { 5155 } 5156 #endif /* CONFIG_LRU_GEN */ 5157 5158 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5159 unsigned int *flags) 5160 { 5161 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5162 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5163 return VM_FAULT_SIGSEGV; 5164 /* 5165 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5166 * just treat it like an ordinary read-fault otherwise. 5167 */ 5168 if (!is_cow_mapping(vma->vm_flags)) 5169 *flags &= ~FAULT_FLAG_UNSHARE; 5170 } else if (*flags & FAULT_FLAG_WRITE) { 5171 /* Write faults on read-only mappings are impossible ... */ 5172 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5173 return VM_FAULT_SIGSEGV; 5174 /* ... and FOLL_FORCE only applies to COW mappings. */ 5175 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5176 !is_cow_mapping(vma->vm_flags))) 5177 return VM_FAULT_SIGSEGV; 5178 } 5179 return 0; 5180 } 5181 5182 /* 5183 * By the time we get here, we already hold the mm semaphore 5184 * 5185 * The mmap_lock may have been released depending on flags and our 5186 * return value. See filemap_fault() and __folio_lock_or_retry(). 5187 */ 5188 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5189 unsigned int flags, struct pt_regs *regs) 5190 { 5191 vm_fault_t ret; 5192 5193 __set_current_state(TASK_RUNNING); 5194 5195 count_vm_event(PGFAULT); 5196 count_memcg_event_mm(vma->vm_mm, PGFAULT); 5197 5198 ret = sanitize_fault_flags(vma, &flags); 5199 if (ret) 5200 return ret; 5201 5202 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5203 flags & FAULT_FLAG_INSTRUCTION, 5204 flags & FAULT_FLAG_REMOTE)) 5205 return VM_FAULT_SIGSEGV; 5206 5207 /* 5208 * Enable the memcg OOM handling for faults triggered in user 5209 * space. Kernel faults are handled more gracefully. 5210 */ 5211 if (flags & FAULT_FLAG_USER) 5212 mem_cgroup_enter_user_fault(); 5213 5214 lru_gen_enter_fault(vma); 5215 5216 if (unlikely(is_vm_hugetlb_page(vma))) 5217 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5218 else 5219 ret = __handle_mm_fault(vma, address, flags); 5220 5221 lru_gen_exit_fault(); 5222 5223 if (flags & FAULT_FLAG_USER) { 5224 mem_cgroup_exit_user_fault(); 5225 /* 5226 * The task may have entered a memcg OOM situation but 5227 * if the allocation error was handled gracefully (no 5228 * VM_FAULT_OOM), there is no need to kill anything. 5229 * Just clean up the OOM state peacefully. 5230 */ 5231 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5232 mem_cgroup_oom_synchronize(false); 5233 } 5234 5235 mm_account_fault(regs, address, flags, ret); 5236 5237 return ret; 5238 } 5239 EXPORT_SYMBOL_GPL(handle_mm_fault); 5240 5241 #ifndef __PAGETABLE_P4D_FOLDED 5242 /* 5243 * Allocate p4d page table. 5244 * We've already handled the fast-path in-line. 5245 */ 5246 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5247 { 5248 p4d_t *new = p4d_alloc_one(mm, address); 5249 if (!new) 5250 return -ENOMEM; 5251 5252 spin_lock(&mm->page_table_lock); 5253 if (pgd_present(*pgd)) { /* Another has populated it */ 5254 p4d_free(mm, new); 5255 } else { 5256 smp_wmb(); /* See comment in pmd_install() */ 5257 pgd_populate(mm, pgd, new); 5258 } 5259 spin_unlock(&mm->page_table_lock); 5260 return 0; 5261 } 5262 #endif /* __PAGETABLE_P4D_FOLDED */ 5263 5264 #ifndef __PAGETABLE_PUD_FOLDED 5265 /* 5266 * Allocate page upper directory. 5267 * We've already handled the fast-path in-line. 5268 */ 5269 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5270 { 5271 pud_t *new = pud_alloc_one(mm, address); 5272 if (!new) 5273 return -ENOMEM; 5274 5275 spin_lock(&mm->page_table_lock); 5276 if (!p4d_present(*p4d)) { 5277 mm_inc_nr_puds(mm); 5278 smp_wmb(); /* See comment in pmd_install() */ 5279 p4d_populate(mm, p4d, new); 5280 } else /* Another has populated it */ 5281 pud_free(mm, new); 5282 spin_unlock(&mm->page_table_lock); 5283 return 0; 5284 } 5285 #endif /* __PAGETABLE_PUD_FOLDED */ 5286 5287 #ifndef __PAGETABLE_PMD_FOLDED 5288 /* 5289 * Allocate page middle directory. 5290 * We've already handled the fast-path in-line. 5291 */ 5292 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5293 { 5294 spinlock_t *ptl; 5295 pmd_t *new = pmd_alloc_one(mm, address); 5296 if (!new) 5297 return -ENOMEM; 5298 5299 ptl = pud_lock(mm, pud); 5300 if (!pud_present(*pud)) { 5301 mm_inc_nr_pmds(mm); 5302 smp_wmb(); /* See comment in pmd_install() */ 5303 pud_populate(mm, pud, new); 5304 } else { /* Another has populated it */ 5305 pmd_free(mm, new); 5306 } 5307 spin_unlock(ptl); 5308 return 0; 5309 } 5310 #endif /* __PAGETABLE_PMD_FOLDED */ 5311 5312 /** 5313 * follow_pte - look up PTE at a user virtual address 5314 * @mm: the mm_struct of the target address space 5315 * @address: user virtual address 5316 * @ptepp: location to store found PTE 5317 * @ptlp: location to store the lock for the PTE 5318 * 5319 * On a successful return, the pointer to the PTE is stored in @ptepp; 5320 * the corresponding lock is taken and its location is stored in @ptlp. 5321 * The contents of the PTE are only stable until @ptlp is released; 5322 * any further use, if any, must be protected against invalidation 5323 * with MMU notifiers. 5324 * 5325 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5326 * should be taken for read. 5327 * 5328 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5329 * it is not a good general-purpose API. 5330 * 5331 * Return: zero on success, -ve otherwise. 5332 */ 5333 int follow_pte(struct mm_struct *mm, unsigned long address, 5334 pte_t **ptepp, spinlock_t **ptlp) 5335 { 5336 pgd_t *pgd; 5337 p4d_t *p4d; 5338 pud_t *pud; 5339 pmd_t *pmd; 5340 pte_t *ptep; 5341 5342 pgd = pgd_offset(mm, address); 5343 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5344 goto out; 5345 5346 p4d = p4d_offset(pgd, address); 5347 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5348 goto out; 5349 5350 pud = pud_offset(p4d, address); 5351 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5352 goto out; 5353 5354 pmd = pmd_offset(pud, address); 5355 VM_BUG_ON(pmd_trans_huge(*pmd)); 5356 5357 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 5358 goto out; 5359 5360 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5361 if (!pte_present(*ptep)) 5362 goto unlock; 5363 *ptepp = ptep; 5364 return 0; 5365 unlock: 5366 pte_unmap_unlock(ptep, *ptlp); 5367 out: 5368 return -EINVAL; 5369 } 5370 EXPORT_SYMBOL_GPL(follow_pte); 5371 5372 /** 5373 * follow_pfn - look up PFN at a user virtual address 5374 * @vma: memory mapping 5375 * @address: user virtual address 5376 * @pfn: location to store found PFN 5377 * 5378 * Only IO mappings and raw PFN mappings are allowed. 5379 * 5380 * This function does not allow the caller to read the permissions 5381 * of the PTE. Do not use it. 5382 * 5383 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5384 */ 5385 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5386 unsigned long *pfn) 5387 { 5388 int ret = -EINVAL; 5389 spinlock_t *ptl; 5390 pte_t *ptep; 5391 5392 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5393 return ret; 5394 5395 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5396 if (ret) 5397 return ret; 5398 *pfn = pte_pfn(*ptep); 5399 pte_unmap_unlock(ptep, ptl); 5400 return 0; 5401 } 5402 EXPORT_SYMBOL(follow_pfn); 5403 5404 #ifdef CONFIG_HAVE_IOREMAP_PROT 5405 int follow_phys(struct vm_area_struct *vma, 5406 unsigned long address, unsigned int flags, 5407 unsigned long *prot, resource_size_t *phys) 5408 { 5409 int ret = -EINVAL; 5410 pte_t *ptep, pte; 5411 spinlock_t *ptl; 5412 5413 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5414 goto out; 5415 5416 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5417 goto out; 5418 pte = *ptep; 5419 5420 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5421 goto unlock; 5422 5423 *prot = pgprot_val(pte_pgprot(pte)); 5424 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5425 5426 ret = 0; 5427 unlock: 5428 pte_unmap_unlock(ptep, ptl); 5429 out: 5430 return ret; 5431 } 5432 5433 /** 5434 * generic_access_phys - generic implementation for iomem mmap access 5435 * @vma: the vma to access 5436 * @addr: userspace address, not relative offset within @vma 5437 * @buf: buffer to read/write 5438 * @len: length of transfer 5439 * @write: set to FOLL_WRITE when writing, otherwise reading 5440 * 5441 * This is a generic implementation for &vm_operations_struct.access for an 5442 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5443 * not page based. 5444 */ 5445 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5446 void *buf, int len, int write) 5447 { 5448 resource_size_t phys_addr; 5449 unsigned long prot = 0; 5450 void __iomem *maddr; 5451 pte_t *ptep, pte; 5452 spinlock_t *ptl; 5453 int offset = offset_in_page(addr); 5454 int ret = -EINVAL; 5455 5456 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5457 return -EINVAL; 5458 5459 retry: 5460 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5461 return -EINVAL; 5462 pte = *ptep; 5463 pte_unmap_unlock(ptep, ptl); 5464 5465 prot = pgprot_val(pte_pgprot(pte)); 5466 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5467 5468 if ((write & FOLL_WRITE) && !pte_write(pte)) 5469 return -EINVAL; 5470 5471 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5472 if (!maddr) 5473 return -ENOMEM; 5474 5475 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5476 goto out_unmap; 5477 5478 if (!pte_same(pte, *ptep)) { 5479 pte_unmap_unlock(ptep, ptl); 5480 iounmap(maddr); 5481 5482 goto retry; 5483 } 5484 5485 if (write) 5486 memcpy_toio(maddr + offset, buf, len); 5487 else 5488 memcpy_fromio(buf, maddr + offset, len); 5489 ret = len; 5490 pte_unmap_unlock(ptep, ptl); 5491 out_unmap: 5492 iounmap(maddr); 5493 5494 return ret; 5495 } 5496 EXPORT_SYMBOL_GPL(generic_access_phys); 5497 #endif 5498 5499 /* 5500 * Access another process' address space as given in mm. 5501 */ 5502 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5503 int len, unsigned int gup_flags) 5504 { 5505 struct vm_area_struct *vma; 5506 void *old_buf = buf; 5507 int write = gup_flags & FOLL_WRITE; 5508 5509 if (mmap_read_lock_killable(mm)) 5510 return 0; 5511 5512 /* ignore errors, just check how much was successfully transferred */ 5513 while (len) { 5514 int bytes, ret, offset; 5515 void *maddr; 5516 struct page *page = NULL; 5517 5518 ret = get_user_pages_remote(mm, addr, 1, 5519 gup_flags, &page, &vma, NULL); 5520 if (ret <= 0) { 5521 #ifndef CONFIG_HAVE_IOREMAP_PROT 5522 break; 5523 #else 5524 /* 5525 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5526 * we can access using slightly different code. 5527 */ 5528 vma = vma_lookup(mm, addr); 5529 if (!vma) 5530 break; 5531 if (vma->vm_ops && vma->vm_ops->access) 5532 ret = vma->vm_ops->access(vma, addr, buf, 5533 len, write); 5534 if (ret <= 0) 5535 break; 5536 bytes = ret; 5537 #endif 5538 } else { 5539 bytes = len; 5540 offset = addr & (PAGE_SIZE-1); 5541 if (bytes > PAGE_SIZE-offset) 5542 bytes = PAGE_SIZE-offset; 5543 5544 maddr = kmap(page); 5545 if (write) { 5546 copy_to_user_page(vma, page, addr, 5547 maddr + offset, buf, bytes); 5548 set_page_dirty_lock(page); 5549 } else { 5550 copy_from_user_page(vma, page, addr, 5551 buf, maddr + offset, bytes); 5552 } 5553 kunmap(page); 5554 put_page(page); 5555 } 5556 len -= bytes; 5557 buf += bytes; 5558 addr += bytes; 5559 } 5560 mmap_read_unlock(mm); 5561 5562 return buf - old_buf; 5563 } 5564 5565 /** 5566 * access_remote_vm - access another process' address space 5567 * @mm: the mm_struct of the target address space 5568 * @addr: start address to access 5569 * @buf: source or destination buffer 5570 * @len: number of bytes to transfer 5571 * @gup_flags: flags modifying lookup behaviour 5572 * 5573 * The caller must hold a reference on @mm. 5574 * 5575 * Return: number of bytes copied from source to destination. 5576 */ 5577 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5578 void *buf, int len, unsigned int gup_flags) 5579 { 5580 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5581 } 5582 5583 /* 5584 * Access another process' address space. 5585 * Source/target buffer must be kernel space, 5586 * Do not walk the page table directly, use get_user_pages 5587 */ 5588 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5589 void *buf, int len, unsigned int gup_flags) 5590 { 5591 struct mm_struct *mm; 5592 int ret; 5593 5594 mm = get_task_mm(tsk); 5595 if (!mm) 5596 return 0; 5597 5598 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5599 5600 mmput(mm); 5601 5602 return ret; 5603 } 5604 EXPORT_SYMBOL_GPL(access_process_vm); 5605 5606 /* 5607 * Print the name of a VMA. 5608 */ 5609 void print_vma_addr(char *prefix, unsigned long ip) 5610 { 5611 struct mm_struct *mm = current->mm; 5612 struct vm_area_struct *vma; 5613 5614 /* 5615 * we might be running from an atomic context so we cannot sleep 5616 */ 5617 if (!mmap_read_trylock(mm)) 5618 return; 5619 5620 vma = find_vma(mm, ip); 5621 if (vma && vma->vm_file) { 5622 struct file *f = vma->vm_file; 5623 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5624 if (buf) { 5625 char *p; 5626 5627 p = file_path(f, buf, PAGE_SIZE); 5628 if (IS_ERR(p)) 5629 p = "?"; 5630 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5631 vma->vm_start, 5632 vma->vm_end - vma->vm_start); 5633 free_page((unsigned long)buf); 5634 } 5635 } 5636 mmap_read_unlock(mm); 5637 } 5638 5639 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5640 void __might_fault(const char *file, int line) 5641 { 5642 if (pagefault_disabled()) 5643 return; 5644 __might_sleep(file, line); 5645 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5646 if (current->mm) 5647 might_lock_read(¤t->mm->mmap_lock); 5648 #endif 5649 } 5650 EXPORT_SYMBOL(__might_fault); 5651 #endif 5652 5653 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5654 /* 5655 * Process all subpages of the specified huge page with the specified 5656 * operation. The target subpage will be processed last to keep its 5657 * cache lines hot. 5658 */ 5659 static inline void process_huge_page( 5660 unsigned long addr_hint, unsigned int pages_per_huge_page, 5661 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5662 void *arg) 5663 { 5664 int i, n, base, l; 5665 unsigned long addr = addr_hint & 5666 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5667 5668 /* Process target subpage last to keep its cache lines hot */ 5669 might_sleep(); 5670 n = (addr_hint - addr) / PAGE_SIZE; 5671 if (2 * n <= pages_per_huge_page) { 5672 /* If target subpage in first half of huge page */ 5673 base = 0; 5674 l = n; 5675 /* Process subpages at the end of huge page */ 5676 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5677 cond_resched(); 5678 process_subpage(addr + i * PAGE_SIZE, i, arg); 5679 } 5680 } else { 5681 /* If target subpage in second half of huge page */ 5682 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5683 l = pages_per_huge_page - n; 5684 /* Process subpages at the begin of huge page */ 5685 for (i = 0; i < base; i++) { 5686 cond_resched(); 5687 process_subpage(addr + i * PAGE_SIZE, i, arg); 5688 } 5689 } 5690 /* 5691 * Process remaining subpages in left-right-left-right pattern 5692 * towards the target subpage 5693 */ 5694 for (i = 0; i < l; i++) { 5695 int left_idx = base + i; 5696 int right_idx = base + 2 * l - 1 - i; 5697 5698 cond_resched(); 5699 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5700 cond_resched(); 5701 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5702 } 5703 } 5704 5705 static void clear_gigantic_page(struct page *page, 5706 unsigned long addr, 5707 unsigned int pages_per_huge_page) 5708 { 5709 int i; 5710 struct page *p; 5711 5712 might_sleep(); 5713 for (i = 0; i < pages_per_huge_page; i++) { 5714 p = nth_page(page, i); 5715 cond_resched(); 5716 clear_user_highpage(p, addr + i * PAGE_SIZE); 5717 } 5718 } 5719 5720 static void clear_subpage(unsigned long addr, int idx, void *arg) 5721 { 5722 struct page *page = arg; 5723 5724 clear_user_highpage(page + idx, addr); 5725 } 5726 5727 void clear_huge_page(struct page *page, 5728 unsigned long addr_hint, unsigned int pages_per_huge_page) 5729 { 5730 unsigned long addr = addr_hint & 5731 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5732 5733 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5734 clear_gigantic_page(page, addr, pages_per_huge_page); 5735 return; 5736 } 5737 5738 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5739 } 5740 5741 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5742 unsigned long addr, 5743 struct vm_area_struct *vma, 5744 unsigned int pages_per_huge_page) 5745 { 5746 int i; 5747 struct page *dst_base = dst; 5748 struct page *src_base = src; 5749 5750 for (i = 0; i < pages_per_huge_page; i++) { 5751 dst = nth_page(dst_base, i); 5752 src = nth_page(src_base, i); 5753 5754 cond_resched(); 5755 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5756 } 5757 } 5758 5759 struct copy_subpage_arg { 5760 struct page *dst; 5761 struct page *src; 5762 struct vm_area_struct *vma; 5763 }; 5764 5765 static void copy_subpage(unsigned long addr, int idx, void *arg) 5766 { 5767 struct copy_subpage_arg *copy_arg = arg; 5768 5769 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5770 addr, copy_arg->vma); 5771 } 5772 5773 void copy_user_huge_page(struct page *dst, struct page *src, 5774 unsigned long addr_hint, struct vm_area_struct *vma, 5775 unsigned int pages_per_huge_page) 5776 { 5777 unsigned long addr = addr_hint & 5778 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5779 struct copy_subpage_arg arg = { 5780 .dst = dst, 5781 .src = src, 5782 .vma = vma, 5783 }; 5784 5785 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5786 copy_user_gigantic_page(dst, src, addr, vma, 5787 pages_per_huge_page); 5788 return; 5789 } 5790 5791 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5792 } 5793 5794 long copy_huge_page_from_user(struct page *dst_page, 5795 const void __user *usr_src, 5796 unsigned int pages_per_huge_page, 5797 bool allow_pagefault) 5798 { 5799 void *page_kaddr; 5800 unsigned long i, rc = 0; 5801 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5802 struct page *subpage; 5803 5804 for (i = 0; i < pages_per_huge_page; i++) { 5805 subpage = nth_page(dst_page, i); 5806 if (allow_pagefault) 5807 page_kaddr = kmap(subpage); 5808 else 5809 page_kaddr = kmap_atomic(subpage); 5810 rc = copy_from_user(page_kaddr, 5811 usr_src + i * PAGE_SIZE, PAGE_SIZE); 5812 if (allow_pagefault) 5813 kunmap(subpage); 5814 else 5815 kunmap_atomic(page_kaddr); 5816 5817 ret_val -= (PAGE_SIZE - rc); 5818 if (rc) 5819 break; 5820 5821 flush_dcache_page(subpage); 5822 5823 cond_resched(); 5824 } 5825 return ret_val; 5826 } 5827 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5828 5829 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5830 5831 static struct kmem_cache *page_ptl_cachep; 5832 5833 void __init ptlock_cache_init(void) 5834 { 5835 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5836 SLAB_PANIC, NULL); 5837 } 5838 5839 bool ptlock_alloc(struct page *page) 5840 { 5841 spinlock_t *ptl; 5842 5843 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5844 if (!ptl) 5845 return false; 5846 page->ptl = ptl; 5847 return true; 5848 } 5849 5850 void ptlock_free(struct page *page) 5851 { 5852 kmem_cache_free(page_ptl_cachep, page->ptl); 5853 } 5854 #endif 5855