xref: /openbmc/linux/mm/memory.c (revision c33c7948)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 
81 #include <trace/events/kmem.h>
82 
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89 
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93 
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97 
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101 
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105 
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
109 
110 /*
111  * Return true if the original pte was a uffd-wp pte marker (so the pte was
112  * wr-protected).
113  */
114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115 {
116 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117 		return false;
118 
119 	return pte_marker_uffd_wp(vmf->orig_pte);
120 }
121 
122 /*
123  * A number of key systems in x86 including ioremap() rely on the assumption
124  * that high_memory defines the upper bound on direct map memory, then end
125  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
126  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127  * and ZONE_HIGHMEM.
128  */
129 void *high_memory;
130 EXPORT_SYMBOL(high_memory);
131 
132 /*
133  * Randomize the address space (stacks, mmaps, brk, etc.).
134  *
135  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136  *   as ancient (libc5 based) binaries can segfault. )
137  */
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
140 					1;
141 #else
142 					2;
143 #endif
144 
145 #ifndef arch_wants_old_prefaulted_pte
146 static inline bool arch_wants_old_prefaulted_pte(void)
147 {
148 	/*
149 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 	 * some architectures, even if it's performed in hardware. By
151 	 * default, "false" means prefaulted entries will be 'young'.
152 	 */
153 	return false;
154 }
155 #endif
156 
157 static int __init disable_randmaps(char *s)
158 {
159 	randomize_va_space = 0;
160 	return 1;
161 }
162 __setup("norandmaps", disable_randmaps);
163 
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
166 
167 unsigned long highest_memmap_pfn __read_mostly;
168 
169 /*
170  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171  */
172 static int __init init_zero_pfn(void)
173 {
174 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 	return 0;
176 }
177 early_initcall(init_zero_pfn);
178 
179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 {
181 	trace_rss_stat(mm, member);
182 }
183 
184 /*
185  * Note: this doesn't free the actual pages themselves. That
186  * has been handled earlier when unmapping all the memory regions.
187  */
188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 			   unsigned long addr)
190 {
191 	pgtable_t token = pmd_pgtable(*pmd);
192 	pmd_clear(pmd);
193 	pte_free_tlb(tlb, token, addr);
194 	mm_dec_nr_ptes(tlb->mm);
195 }
196 
197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 				unsigned long addr, unsigned long end,
199 				unsigned long floor, unsigned long ceiling)
200 {
201 	pmd_t *pmd;
202 	unsigned long next;
203 	unsigned long start;
204 
205 	start = addr;
206 	pmd = pmd_offset(pud, addr);
207 	do {
208 		next = pmd_addr_end(addr, end);
209 		if (pmd_none_or_clear_bad(pmd))
210 			continue;
211 		free_pte_range(tlb, pmd, addr);
212 	} while (pmd++, addr = next, addr != end);
213 
214 	start &= PUD_MASK;
215 	if (start < floor)
216 		return;
217 	if (ceiling) {
218 		ceiling &= PUD_MASK;
219 		if (!ceiling)
220 			return;
221 	}
222 	if (end - 1 > ceiling - 1)
223 		return;
224 
225 	pmd = pmd_offset(pud, start);
226 	pud_clear(pud);
227 	pmd_free_tlb(tlb, pmd, start);
228 	mm_dec_nr_pmds(tlb->mm);
229 }
230 
231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232 				unsigned long addr, unsigned long end,
233 				unsigned long floor, unsigned long ceiling)
234 {
235 	pud_t *pud;
236 	unsigned long next;
237 	unsigned long start;
238 
239 	start = addr;
240 	pud = pud_offset(p4d, addr);
241 	do {
242 		next = pud_addr_end(addr, end);
243 		if (pud_none_or_clear_bad(pud))
244 			continue;
245 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246 	} while (pud++, addr = next, addr != end);
247 
248 	start &= P4D_MASK;
249 	if (start < floor)
250 		return;
251 	if (ceiling) {
252 		ceiling &= P4D_MASK;
253 		if (!ceiling)
254 			return;
255 	}
256 	if (end - 1 > ceiling - 1)
257 		return;
258 
259 	pud = pud_offset(p4d, start);
260 	p4d_clear(p4d);
261 	pud_free_tlb(tlb, pud, start);
262 	mm_dec_nr_puds(tlb->mm);
263 }
264 
265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 				unsigned long addr, unsigned long end,
267 				unsigned long floor, unsigned long ceiling)
268 {
269 	p4d_t *p4d;
270 	unsigned long next;
271 	unsigned long start;
272 
273 	start = addr;
274 	p4d = p4d_offset(pgd, addr);
275 	do {
276 		next = p4d_addr_end(addr, end);
277 		if (p4d_none_or_clear_bad(p4d))
278 			continue;
279 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 	} while (p4d++, addr = next, addr != end);
281 
282 	start &= PGDIR_MASK;
283 	if (start < floor)
284 		return;
285 	if (ceiling) {
286 		ceiling &= PGDIR_MASK;
287 		if (!ceiling)
288 			return;
289 	}
290 	if (end - 1 > ceiling - 1)
291 		return;
292 
293 	p4d = p4d_offset(pgd, start);
294 	pgd_clear(pgd);
295 	p4d_free_tlb(tlb, p4d, start);
296 }
297 
298 /*
299  * This function frees user-level page tables of a process.
300  */
301 void free_pgd_range(struct mmu_gather *tlb,
302 			unsigned long addr, unsigned long end,
303 			unsigned long floor, unsigned long ceiling)
304 {
305 	pgd_t *pgd;
306 	unsigned long next;
307 
308 	/*
309 	 * The next few lines have given us lots of grief...
310 	 *
311 	 * Why are we testing PMD* at this top level?  Because often
312 	 * there will be no work to do at all, and we'd prefer not to
313 	 * go all the way down to the bottom just to discover that.
314 	 *
315 	 * Why all these "- 1"s?  Because 0 represents both the bottom
316 	 * of the address space and the top of it (using -1 for the
317 	 * top wouldn't help much: the masks would do the wrong thing).
318 	 * The rule is that addr 0 and floor 0 refer to the bottom of
319 	 * the address space, but end 0 and ceiling 0 refer to the top
320 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 	 * that end 0 case should be mythical).
322 	 *
323 	 * Wherever addr is brought up or ceiling brought down, we must
324 	 * be careful to reject "the opposite 0" before it confuses the
325 	 * subsequent tests.  But what about where end is brought down
326 	 * by PMD_SIZE below? no, end can't go down to 0 there.
327 	 *
328 	 * Whereas we round start (addr) and ceiling down, by different
329 	 * masks at different levels, in order to test whether a table
330 	 * now has no other vmas using it, so can be freed, we don't
331 	 * bother to round floor or end up - the tests don't need that.
332 	 */
333 
334 	addr &= PMD_MASK;
335 	if (addr < floor) {
336 		addr += PMD_SIZE;
337 		if (!addr)
338 			return;
339 	}
340 	if (ceiling) {
341 		ceiling &= PMD_MASK;
342 		if (!ceiling)
343 			return;
344 	}
345 	if (end - 1 > ceiling - 1)
346 		end -= PMD_SIZE;
347 	if (addr > end - 1)
348 		return;
349 	/*
350 	 * We add page table cache pages with PAGE_SIZE,
351 	 * (see pte_free_tlb()), flush the tlb if we need
352 	 */
353 	tlb_change_page_size(tlb, PAGE_SIZE);
354 	pgd = pgd_offset(tlb->mm, addr);
355 	do {
356 		next = pgd_addr_end(addr, end);
357 		if (pgd_none_or_clear_bad(pgd))
358 			continue;
359 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360 	} while (pgd++, addr = next, addr != end);
361 }
362 
363 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
364 		   struct vm_area_struct *vma, unsigned long floor,
365 		   unsigned long ceiling, bool mm_wr_locked)
366 {
367 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
368 
369 	do {
370 		unsigned long addr = vma->vm_start;
371 		struct vm_area_struct *next;
372 
373 		/*
374 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375 		 * be 0.  This will underflow and is okay.
376 		 */
377 		next = mas_find(&mas, ceiling - 1);
378 
379 		/*
380 		 * Hide vma from rmap and truncate_pagecache before freeing
381 		 * pgtables
382 		 */
383 		if (mm_wr_locked)
384 			vma_start_write(vma);
385 		unlink_anon_vmas(vma);
386 		unlink_file_vma(vma);
387 
388 		if (is_vm_hugetlb_page(vma)) {
389 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
390 				floor, next ? next->vm_start : ceiling);
391 		} else {
392 			/*
393 			 * Optimization: gather nearby vmas into one call down
394 			 */
395 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
396 			       && !is_vm_hugetlb_page(next)) {
397 				vma = next;
398 				next = mas_find(&mas, ceiling - 1);
399 				if (mm_wr_locked)
400 					vma_start_write(vma);
401 				unlink_anon_vmas(vma);
402 				unlink_file_vma(vma);
403 			}
404 			free_pgd_range(tlb, addr, vma->vm_end,
405 				floor, next ? next->vm_start : ceiling);
406 		}
407 		vma = next;
408 	} while (vma);
409 }
410 
411 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
412 {
413 	spinlock_t *ptl = pmd_lock(mm, pmd);
414 
415 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
416 		mm_inc_nr_ptes(mm);
417 		/*
418 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
419 		 * visible before the pte is made visible to other CPUs by being
420 		 * put into page tables.
421 		 *
422 		 * The other side of the story is the pointer chasing in the page
423 		 * table walking code (when walking the page table without locking;
424 		 * ie. most of the time). Fortunately, these data accesses consist
425 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
426 		 * being the notable exception) will already guarantee loads are
427 		 * seen in-order. See the alpha page table accessors for the
428 		 * smp_rmb() barriers in page table walking code.
429 		 */
430 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
431 		pmd_populate(mm, pmd, *pte);
432 		*pte = NULL;
433 	}
434 	spin_unlock(ptl);
435 }
436 
437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 {
439 	pgtable_t new = pte_alloc_one(mm);
440 	if (!new)
441 		return -ENOMEM;
442 
443 	pmd_install(mm, pmd, &new);
444 	if (new)
445 		pte_free(mm, new);
446 	return 0;
447 }
448 
449 int __pte_alloc_kernel(pmd_t *pmd)
450 {
451 	pte_t *new = pte_alloc_one_kernel(&init_mm);
452 	if (!new)
453 		return -ENOMEM;
454 
455 	spin_lock(&init_mm.page_table_lock);
456 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
457 		smp_wmb(); /* See comment in pmd_install() */
458 		pmd_populate_kernel(&init_mm, pmd, new);
459 		new = NULL;
460 	}
461 	spin_unlock(&init_mm.page_table_lock);
462 	if (new)
463 		pte_free_kernel(&init_mm, new);
464 	return 0;
465 }
466 
467 static inline void init_rss_vec(int *rss)
468 {
469 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
470 }
471 
472 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
473 {
474 	int i;
475 
476 	if (current->mm == mm)
477 		sync_mm_rss(mm);
478 	for (i = 0; i < NR_MM_COUNTERS; i++)
479 		if (rss[i])
480 			add_mm_counter(mm, i, rss[i]);
481 }
482 
483 /*
484  * This function is called to print an error when a bad pte
485  * is found. For example, we might have a PFN-mapped pte in
486  * a region that doesn't allow it.
487  *
488  * The calling function must still handle the error.
489  */
490 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
491 			  pte_t pte, struct page *page)
492 {
493 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
494 	p4d_t *p4d = p4d_offset(pgd, addr);
495 	pud_t *pud = pud_offset(p4d, addr);
496 	pmd_t *pmd = pmd_offset(pud, addr);
497 	struct address_space *mapping;
498 	pgoff_t index;
499 	static unsigned long resume;
500 	static unsigned long nr_shown;
501 	static unsigned long nr_unshown;
502 
503 	/*
504 	 * Allow a burst of 60 reports, then keep quiet for that minute;
505 	 * or allow a steady drip of one report per second.
506 	 */
507 	if (nr_shown == 60) {
508 		if (time_before(jiffies, resume)) {
509 			nr_unshown++;
510 			return;
511 		}
512 		if (nr_unshown) {
513 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
514 				 nr_unshown);
515 			nr_unshown = 0;
516 		}
517 		nr_shown = 0;
518 	}
519 	if (nr_shown++ == 0)
520 		resume = jiffies + 60 * HZ;
521 
522 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
523 	index = linear_page_index(vma, addr);
524 
525 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
526 		 current->comm,
527 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
528 	if (page)
529 		dump_page(page, "bad pte");
530 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
531 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
532 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
533 		 vma->vm_file,
534 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
535 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
536 		 mapping ? mapping->a_ops->read_folio : NULL);
537 	dump_stack();
538 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
539 }
540 
541 /*
542  * vm_normal_page -- This function gets the "struct page" associated with a pte.
543  *
544  * "Special" mappings do not wish to be associated with a "struct page" (either
545  * it doesn't exist, or it exists but they don't want to touch it). In this
546  * case, NULL is returned here. "Normal" mappings do have a struct page.
547  *
548  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
549  * pte bit, in which case this function is trivial. Secondly, an architecture
550  * may not have a spare pte bit, which requires a more complicated scheme,
551  * described below.
552  *
553  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
554  * special mapping (even if there are underlying and valid "struct pages").
555  * COWed pages of a VM_PFNMAP are always normal.
556  *
557  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
558  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
559  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
560  * mapping will always honor the rule
561  *
562  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
563  *
564  * And for normal mappings this is false.
565  *
566  * This restricts such mappings to be a linear translation from virtual address
567  * to pfn. To get around this restriction, we allow arbitrary mappings so long
568  * as the vma is not a COW mapping; in that case, we know that all ptes are
569  * special (because none can have been COWed).
570  *
571  *
572  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
573  *
574  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
575  * page" backing, however the difference is that _all_ pages with a struct
576  * page (that is, those where pfn_valid is true) are refcounted and considered
577  * normal pages by the VM. The disadvantage is that pages are refcounted
578  * (which can be slower and simply not an option for some PFNMAP users). The
579  * advantage is that we don't have to follow the strict linearity rule of
580  * PFNMAP mappings in order to support COWable mappings.
581  *
582  */
583 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
584 			    pte_t pte)
585 {
586 	unsigned long pfn = pte_pfn(pte);
587 
588 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
589 		if (likely(!pte_special(pte)))
590 			goto check_pfn;
591 		if (vma->vm_ops && vma->vm_ops->find_special_page)
592 			return vma->vm_ops->find_special_page(vma, addr);
593 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
594 			return NULL;
595 		if (is_zero_pfn(pfn))
596 			return NULL;
597 		if (pte_devmap(pte))
598 		/*
599 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
600 		 * and will have refcounts incremented on their struct pages
601 		 * when they are inserted into PTEs, thus they are safe to
602 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
603 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
604 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
605 		 */
606 			return NULL;
607 
608 		print_bad_pte(vma, addr, pte, NULL);
609 		return NULL;
610 	}
611 
612 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613 
614 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 		if (vma->vm_flags & VM_MIXEDMAP) {
616 			if (!pfn_valid(pfn))
617 				return NULL;
618 			goto out;
619 		} else {
620 			unsigned long off;
621 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 			if (pfn == vma->vm_pgoff + off)
623 				return NULL;
624 			if (!is_cow_mapping(vma->vm_flags))
625 				return NULL;
626 		}
627 	}
628 
629 	if (is_zero_pfn(pfn))
630 		return NULL;
631 
632 check_pfn:
633 	if (unlikely(pfn > highest_memmap_pfn)) {
634 		print_bad_pte(vma, addr, pte, NULL);
635 		return NULL;
636 	}
637 
638 	/*
639 	 * NOTE! We still have PageReserved() pages in the page tables.
640 	 * eg. VDSO mappings can cause them to exist.
641 	 */
642 out:
643 	return pfn_to_page(pfn);
644 }
645 
646 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
647 			    pte_t pte)
648 {
649 	struct page *page = vm_normal_page(vma, addr, pte);
650 
651 	if (page)
652 		return page_folio(page);
653 	return NULL;
654 }
655 
656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
657 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
658 				pmd_t pmd)
659 {
660 	unsigned long pfn = pmd_pfn(pmd);
661 
662 	/*
663 	 * There is no pmd_special() but there may be special pmds, e.g.
664 	 * in a direct-access (dax) mapping, so let's just replicate the
665 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
666 	 */
667 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
668 		if (vma->vm_flags & VM_MIXEDMAP) {
669 			if (!pfn_valid(pfn))
670 				return NULL;
671 			goto out;
672 		} else {
673 			unsigned long off;
674 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
675 			if (pfn == vma->vm_pgoff + off)
676 				return NULL;
677 			if (!is_cow_mapping(vma->vm_flags))
678 				return NULL;
679 		}
680 	}
681 
682 	if (pmd_devmap(pmd))
683 		return NULL;
684 	if (is_huge_zero_pmd(pmd))
685 		return NULL;
686 	if (unlikely(pfn > highest_memmap_pfn))
687 		return NULL;
688 
689 	/*
690 	 * NOTE! We still have PageReserved() pages in the page tables.
691 	 * eg. VDSO mappings can cause them to exist.
692 	 */
693 out:
694 	return pfn_to_page(pfn);
695 }
696 #endif
697 
698 static void restore_exclusive_pte(struct vm_area_struct *vma,
699 				  struct page *page, unsigned long address,
700 				  pte_t *ptep)
701 {
702 	pte_t orig_pte;
703 	pte_t pte;
704 	swp_entry_t entry;
705 
706 	orig_pte = ptep_get(ptep);
707 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
708 	if (pte_swp_soft_dirty(orig_pte))
709 		pte = pte_mksoft_dirty(pte);
710 
711 	entry = pte_to_swp_entry(orig_pte);
712 	if (pte_swp_uffd_wp(orig_pte))
713 		pte = pte_mkuffd_wp(pte);
714 	else if (is_writable_device_exclusive_entry(entry))
715 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
716 
717 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
718 
719 	/*
720 	 * No need to take a page reference as one was already
721 	 * created when the swap entry was made.
722 	 */
723 	if (PageAnon(page))
724 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
725 	else
726 		/*
727 		 * Currently device exclusive access only supports anonymous
728 		 * memory so the entry shouldn't point to a filebacked page.
729 		 */
730 		WARN_ON_ONCE(1);
731 
732 	set_pte_at(vma->vm_mm, address, ptep, pte);
733 
734 	/*
735 	 * No need to invalidate - it was non-present before. However
736 	 * secondary CPUs may have mappings that need invalidating.
737 	 */
738 	update_mmu_cache(vma, address, ptep);
739 }
740 
741 /*
742  * Tries to restore an exclusive pte if the page lock can be acquired without
743  * sleeping.
744  */
745 static int
746 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
747 			unsigned long addr)
748 {
749 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
750 	struct page *page = pfn_swap_entry_to_page(entry);
751 
752 	if (trylock_page(page)) {
753 		restore_exclusive_pte(vma, page, addr, src_pte);
754 		unlock_page(page);
755 		return 0;
756 	}
757 
758 	return -EBUSY;
759 }
760 
761 /*
762  * copy one vm_area from one task to the other. Assumes the page tables
763  * already present in the new task to be cleared in the whole range
764  * covered by this vma.
765  */
766 
767 static unsigned long
768 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
769 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
770 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
771 {
772 	unsigned long vm_flags = dst_vma->vm_flags;
773 	pte_t orig_pte = ptep_get(src_pte);
774 	pte_t pte = orig_pte;
775 	struct page *page;
776 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
777 
778 	if (likely(!non_swap_entry(entry))) {
779 		if (swap_duplicate(entry) < 0)
780 			return -EIO;
781 
782 		/* make sure dst_mm is on swapoff's mmlist. */
783 		if (unlikely(list_empty(&dst_mm->mmlist))) {
784 			spin_lock(&mmlist_lock);
785 			if (list_empty(&dst_mm->mmlist))
786 				list_add(&dst_mm->mmlist,
787 						&src_mm->mmlist);
788 			spin_unlock(&mmlist_lock);
789 		}
790 		/* Mark the swap entry as shared. */
791 		if (pte_swp_exclusive(orig_pte)) {
792 			pte = pte_swp_clear_exclusive(orig_pte);
793 			set_pte_at(src_mm, addr, src_pte, pte);
794 		}
795 		rss[MM_SWAPENTS]++;
796 	} else if (is_migration_entry(entry)) {
797 		page = pfn_swap_entry_to_page(entry);
798 
799 		rss[mm_counter(page)]++;
800 
801 		if (!is_readable_migration_entry(entry) &&
802 				is_cow_mapping(vm_flags)) {
803 			/*
804 			 * COW mappings require pages in both parent and child
805 			 * to be set to read. A previously exclusive entry is
806 			 * now shared.
807 			 */
808 			entry = make_readable_migration_entry(
809 							swp_offset(entry));
810 			pte = swp_entry_to_pte(entry);
811 			if (pte_swp_soft_dirty(orig_pte))
812 				pte = pte_swp_mksoft_dirty(pte);
813 			if (pte_swp_uffd_wp(orig_pte))
814 				pte = pte_swp_mkuffd_wp(pte);
815 			set_pte_at(src_mm, addr, src_pte, pte);
816 		}
817 	} else if (is_device_private_entry(entry)) {
818 		page = pfn_swap_entry_to_page(entry);
819 
820 		/*
821 		 * Update rss count even for unaddressable pages, as
822 		 * they should treated just like normal pages in this
823 		 * respect.
824 		 *
825 		 * We will likely want to have some new rss counters
826 		 * for unaddressable pages, at some point. But for now
827 		 * keep things as they are.
828 		 */
829 		get_page(page);
830 		rss[mm_counter(page)]++;
831 		/* Cannot fail as these pages cannot get pinned. */
832 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
833 
834 		/*
835 		 * We do not preserve soft-dirty information, because so
836 		 * far, checkpoint/restore is the only feature that
837 		 * requires that. And checkpoint/restore does not work
838 		 * when a device driver is involved (you cannot easily
839 		 * save and restore device driver state).
840 		 */
841 		if (is_writable_device_private_entry(entry) &&
842 		    is_cow_mapping(vm_flags)) {
843 			entry = make_readable_device_private_entry(
844 							swp_offset(entry));
845 			pte = swp_entry_to_pte(entry);
846 			if (pte_swp_uffd_wp(orig_pte))
847 				pte = pte_swp_mkuffd_wp(pte);
848 			set_pte_at(src_mm, addr, src_pte, pte);
849 		}
850 	} else if (is_device_exclusive_entry(entry)) {
851 		/*
852 		 * Make device exclusive entries present by restoring the
853 		 * original entry then copying as for a present pte. Device
854 		 * exclusive entries currently only support private writable
855 		 * (ie. COW) mappings.
856 		 */
857 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
858 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
859 			return -EBUSY;
860 		return -ENOENT;
861 	} else if (is_pte_marker_entry(entry)) {
862 		if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
863 			set_pte_at(dst_mm, addr, dst_pte, pte);
864 		return 0;
865 	}
866 	if (!userfaultfd_wp(dst_vma))
867 		pte = pte_swp_clear_uffd_wp(pte);
868 	set_pte_at(dst_mm, addr, dst_pte, pte);
869 	return 0;
870 }
871 
872 /*
873  * Copy a present and normal page.
874  *
875  * NOTE! The usual case is that this isn't required;
876  * instead, the caller can just increase the page refcount
877  * and re-use the pte the traditional way.
878  *
879  * And if we need a pre-allocated page but don't yet have
880  * one, return a negative error to let the preallocation
881  * code know so that it can do so outside the page table
882  * lock.
883  */
884 static inline int
885 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
886 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
887 		  struct folio **prealloc, struct page *page)
888 {
889 	struct folio *new_folio;
890 	pte_t pte;
891 
892 	new_folio = *prealloc;
893 	if (!new_folio)
894 		return -EAGAIN;
895 
896 	/*
897 	 * We have a prealloc page, all good!  Take it
898 	 * over and copy the page & arm it.
899 	 */
900 	*prealloc = NULL;
901 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
902 	__folio_mark_uptodate(new_folio);
903 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
904 	folio_add_lru_vma(new_folio, dst_vma);
905 	rss[MM_ANONPAGES]++;
906 
907 	/* All done, just insert the new page copy in the child */
908 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
909 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
910 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
911 		/* Uffd-wp needs to be delivered to dest pte as well */
912 		pte = pte_mkuffd_wp(pte);
913 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
914 	return 0;
915 }
916 
917 /*
918  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
919  * is required to copy this pte.
920  */
921 static inline int
922 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
923 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
924 		 struct folio **prealloc)
925 {
926 	struct mm_struct *src_mm = src_vma->vm_mm;
927 	unsigned long vm_flags = src_vma->vm_flags;
928 	pte_t pte = ptep_get(src_pte);
929 	struct page *page;
930 	struct folio *folio;
931 
932 	page = vm_normal_page(src_vma, addr, pte);
933 	if (page)
934 		folio = page_folio(page);
935 	if (page && folio_test_anon(folio)) {
936 		/*
937 		 * If this page may have been pinned by the parent process,
938 		 * copy the page immediately for the child so that we'll always
939 		 * guarantee the pinned page won't be randomly replaced in the
940 		 * future.
941 		 */
942 		folio_get(folio);
943 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
944 			/* Page may be pinned, we have to copy. */
945 			folio_put(folio);
946 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
947 						 addr, rss, prealloc, page);
948 		}
949 		rss[MM_ANONPAGES]++;
950 	} else if (page) {
951 		folio_get(folio);
952 		page_dup_file_rmap(page, false);
953 		rss[mm_counter_file(page)]++;
954 	}
955 
956 	/*
957 	 * If it's a COW mapping, write protect it both
958 	 * in the parent and the child
959 	 */
960 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
961 		ptep_set_wrprotect(src_mm, addr, src_pte);
962 		pte = pte_wrprotect(pte);
963 	}
964 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
965 
966 	/*
967 	 * If it's a shared mapping, mark it clean in
968 	 * the child
969 	 */
970 	if (vm_flags & VM_SHARED)
971 		pte = pte_mkclean(pte);
972 	pte = pte_mkold(pte);
973 
974 	if (!userfaultfd_wp(dst_vma))
975 		pte = pte_clear_uffd_wp(pte);
976 
977 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
978 	return 0;
979 }
980 
981 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
982 		struct vm_area_struct *vma, unsigned long addr)
983 {
984 	struct folio *new_folio;
985 
986 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
987 	if (!new_folio)
988 		return NULL;
989 
990 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
991 		folio_put(new_folio);
992 		return NULL;
993 	}
994 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
995 
996 	return new_folio;
997 }
998 
999 static int
1000 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1001 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1002 	       unsigned long end)
1003 {
1004 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1005 	struct mm_struct *src_mm = src_vma->vm_mm;
1006 	pte_t *orig_src_pte, *orig_dst_pte;
1007 	pte_t *src_pte, *dst_pte;
1008 	pte_t ptent;
1009 	spinlock_t *src_ptl, *dst_ptl;
1010 	int progress, ret = 0;
1011 	int rss[NR_MM_COUNTERS];
1012 	swp_entry_t entry = (swp_entry_t){0};
1013 	struct folio *prealloc = NULL;
1014 
1015 again:
1016 	progress = 0;
1017 	init_rss_vec(rss);
1018 
1019 	/*
1020 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1021 	 * error handling here, assume that exclusive mmap_lock on dst and src
1022 	 * protects anon from unexpected THP transitions; with shmem and file
1023 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1024 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1025 	 * can remove such assumptions later, but this is good enough for now.
1026 	 */
1027 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1028 	if (!dst_pte) {
1029 		ret = -ENOMEM;
1030 		goto out;
1031 	}
1032 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1033 	if (!src_pte) {
1034 		pte_unmap_unlock(dst_pte, dst_ptl);
1035 		/* ret == 0 */
1036 		goto out;
1037 	}
1038 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1039 	orig_src_pte = src_pte;
1040 	orig_dst_pte = dst_pte;
1041 	arch_enter_lazy_mmu_mode();
1042 
1043 	do {
1044 		/*
1045 		 * We are holding two locks at this point - either of them
1046 		 * could generate latencies in another task on another CPU.
1047 		 */
1048 		if (progress >= 32) {
1049 			progress = 0;
1050 			if (need_resched() ||
1051 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1052 				break;
1053 		}
1054 		ptent = ptep_get(src_pte);
1055 		if (pte_none(ptent)) {
1056 			progress++;
1057 			continue;
1058 		}
1059 		if (unlikely(!pte_present(ptent))) {
1060 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1061 						  dst_pte, src_pte,
1062 						  dst_vma, src_vma,
1063 						  addr, rss);
1064 			if (ret == -EIO) {
1065 				entry = pte_to_swp_entry(ptep_get(src_pte));
1066 				break;
1067 			} else if (ret == -EBUSY) {
1068 				break;
1069 			} else if (!ret) {
1070 				progress += 8;
1071 				continue;
1072 			}
1073 
1074 			/*
1075 			 * Device exclusive entry restored, continue by copying
1076 			 * the now present pte.
1077 			 */
1078 			WARN_ON_ONCE(ret != -ENOENT);
1079 		}
1080 		/* copy_present_pte() will clear `*prealloc' if consumed */
1081 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1082 				       addr, rss, &prealloc);
1083 		/*
1084 		 * If we need a pre-allocated page for this pte, drop the
1085 		 * locks, allocate, and try again.
1086 		 */
1087 		if (unlikely(ret == -EAGAIN))
1088 			break;
1089 		if (unlikely(prealloc)) {
1090 			/*
1091 			 * pre-alloc page cannot be reused by next time so as
1092 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1093 			 * will allocate page according to address).  This
1094 			 * could only happen if one pinned pte changed.
1095 			 */
1096 			folio_put(prealloc);
1097 			prealloc = NULL;
1098 		}
1099 		progress += 8;
1100 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1101 
1102 	arch_leave_lazy_mmu_mode();
1103 	pte_unmap_unlock(orig_src_pte, src_ptl);
1104 	add_mm_rss_vec(dst_mm, rss);
1105 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1106 	cond_resched();
1107 
1108 	if (ret == -EIO) {
1109 		VM_WARN_ON_ONCE(!entry.val);
1110 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1111 			ret = -ENOMEM;
1112 			goto out;
1113 		}
1114 		entry.val = 0;
1115 	} else if (ret == -EBUSY) {
1116 		goto out;
1117 	} else if (ret ==  -EAGAIN) {
1118 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1119 		if (!prealloc)
1120 			return -ENOMEM;
1121 	} else if (ret) {
1122 		VM_WARN_ON_ONCE(1);
1123 	}
1124 
1125 	/* We've captured and resolved the error. Reset, try again. */
1126 	ret = 0;
1127 
1128 	if (addr != end)
1129 		goto again;
1130 out:
1131 	if (unlikely(prealloc))
1132 		folio_put(prealloc);
1133 	return ret;
1134 }
1135 
1136 static inline int
1137 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1138 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1139 	       unsigned long end)
1140 {
1141 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1142 	struct mm_struct *src_mm = src_vma->vm_mm;
1143 	pmd_t *src_pmd, *dst_pmd;
1144 	unsigned long next;
1145 
1146 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1147 	if (!dst_pmd)
1148 		return -ENOMEM;
1149 	src_pmd = pmd_offset(src_pud, addr);
1150 	do {
1151 		next = pmd_addr_end(addr, end);
1152 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1153 			|| pmd_devmap(*src_pmd)) {
1154 			int err;
1155 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1156 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1157 					    addr, dst_vma, src_vma);
1158 			if (err == -ENOMEM)
1159 				return -ENOMEM;
1160 			if (!err)
1161 				continue;
1162 			/* fall through */
1163 		}
1164 		if (pmd_none_or_clear_bad(src_pmd))
1165 			continue;
1166 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1167 				   addr, next))
1168 			return -ENOMEM;
1169 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1170 	return 0;
1171 }
1172 
1173 static inline int
1174 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1175 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1176 	       unsigned long end)
1177 {
1178 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1179 	struct mm_struct *src_mm = src_vma->vm_mm;
1180 	pud_t *src_pud, *dst_pud;
1181 	unsigned long next;
1182 
1183 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1184 	if (!dst_pud)
1185 		return -ENOMEM;
1186 	src_pud = pud_offset(src_p4d, addr);
1187 	do {
1188 		next = pud_addr_end(addr, end);
1189 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1190 			int err;
1191 
1192 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1193 			err = copy_huge_pud(dst_mm, src_mm,
1194 					    dst_pud, src_pud, addr, src_vma);
1195 			if (err == -ENOMEM)
1196 				return -ENOMEM;
1197 			if (!err)
1198 				continue;
1199 			/* fall through */
1200 		}
1201 		if (pud_none_or_clear_bad(src_pud))
1202 			continue;
1203 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1204 				   addr, next))
1205 			return -ENOMEM;
1206 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1207 	return 0;
1208 }
1209 
1210 static inline int
1211 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1212 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1213 	       unsigned long end)
1214 {
1215 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1216 	p4d_t *src_p4d, *dst_p4d;
1217 	unsigned long next;
1218 
1219 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1220 	if (!dst_p4d)
1221 		return -ENOMEM;
1222 	src_p4d = p4d_offset(src_pgd, addr);
1223 	do {
1224 		next = p4d_addr_end(addr, end);
1225 		if (p4d_none_or_clear_bad(src_p4d))
1226 			continue;
1227 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1228 				   addr, next))
1229 			return -ENOMEM;
1230 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1231 	return 0;
1232 }
1233 
1234 /*
1235  * Return true if the vma needs to copy the pgtable during this fork().  Return
1236  * false when we can speed up fork() by allowing lazy page faults later until
1237  * when the child accesses the memory range.
1238  */
1239 static bool
1240 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1241 {
1242 	/*
1243 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1244 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1245 	 * contains uffd-wp protection information, that's something we can't
1246 	 * retrieve from page cache, and skip copying will lose those info.
1247 	 */
1248 	if (userfaultfd_wp(dst_vma))
1249 		return true;
1250 
1251 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1252 		return true;
1253 
1254 	if (src_vma->anon_vma)
1255 		return true;
1256 
1257 	/*
1258 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1259 	 * becomes much lighter when there are big shared or private readonly
1260 	 * mappings. The tradeoff is that copy_page_range is more efficient
1261 	 * than faulting.
1262 	 */
1263 	return false;
1264 }
1265 
1266 int
1267 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1268 {
1269 	pgd_t *src_pgd, *dst_pgd;
1270 	unsigned long next;
1271 	unsigned long addr = src_vma->vm_start;
1272 	unsigned long end = src_vma->vm_end;
1273 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1274 	struct mm_struct *src_mm = src_vma->vm_mm;
1275 	struct mmu_notifier_range range;
1276 	bool is_cow;
1277 	int ret;
1278 
1279 	if (!vma_needs_copy(dst_vma, src_vma))
1280 		return 0;
1281 
1282 	if (is_vm_hugetlb_page(src_vma))
1283 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1284 
1285 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1286 		/*
1287 		 * We do not free on error cases below as remove_vma
1288 		 * gets called on error from higher level routine
1289 		 */
1290 		ret = track_pfn_copy(src_vma);
1291 		if (ret)
1292 			return ret;
1293 	}
1294 
1295 	/*
1296 	 * We need to invalidate the secondary MMU mappings only when
1297 	 * there could be a permission downgrade on the ptes of the
1298 	 * parent mm. And a permission downgrade will only happen if
1299 	 * is_cow_mapping() returns true.
1300 	 */
1301 	is_cow = is_cow_mapping(src_vma->vm_flags);
1302 
1303 	if (is_cow) {
1304 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1305 					0, src_mm, addr, end);
1306 		mmu_notifier_invalidate_range_start(&range);
1307 		/*
1308 		 * Disabling preemption is not needed for the write side, as
1309 		 * the read side doesn't spin, but goes to the mmap_lock.
1310 		 *
1311 		 * Use the raw variant of the seqcount_t write API to avoid
1312 		 * lockdep complaining about preemptibility.
1313 		 */
1314 		mmap_assert_write_locked(src_mm);
1315 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1316 	}
1317 
1318 	ret = 0;
1319 	dst_pgd = pgd_offset(dst_mm, addr);
1320 	src_pgd = pgd_offset(src_mm, addr);
1321 	do {
1322 		next = pgd_addr_end(addr, end);
1323 		if (pgd_none_or_clear_bad(src_pgd))
1324 			continue;
1325 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1326 					    addr, next))) {
1327 			untrack_pfn_clear(dst_vma);
1328 			ret = -ENOMEM;
1329 			break;
1330 		}
1331 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1332 
1333 	if (is_cow) {
1334 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1335 		mmu_notifier_invalidate_range_end(&range);
1336 	}
1337 	return ret;
1338 }
1339 
1340 /* Whether we should zap all COWed (private) pages too */
1341 static inline bool should_zap_cows(struct zap_details *details)
1342 {
1343 	/* By default, zap all pages */
1344 	if (!details)
1345 		return true;
1346 
1347 	/* Or, we zap COWed pages only if the caller wants to */
1348 	return details->even_cows;
1349 }
1350 
1351 /* Decides whether we should zap this page with the page pointer specified */
1352 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1353 {
1354 	/* If we can make a decision without *page.. */
1355 	if (should_zap_cows(details))
1356 		return true;
1357 
1358 	/* E.g. the caller passes NULL for the case of a zero page */
1359 	if (!page)
1360 		return true;
1361 
1362 	/* Otherwise we should only zap non-anon pages */
1363 	return !PageAnon(page);
1364 }
1365 
1366 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1367 {
1368 	if (!details)
1369 		return false;
1370 
1371 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1372 }
1373 
1374 /*
1375  * This function makes sure that we'll replace the none pte with an uffd-wp
1376  * swap special pte marker when necessary. Must be with the pgtable lock held.
1377  */
1378 static inline void
1379 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1380 			      unsigned long addr, pte_t *pte,
1381 			      struct zap_details *details, pte_t pteval)
1382 {
1383 	/* Zap on anonymous always means dropping everything */
1384 	if (vma_is_anonymous(vma))
1385 		return;
1386 
1387 	if (zap_drop_file_uffd_wp(details))
1388 		return;
1389 
1390 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1391 }
1392 
1393 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1394 				struct vm_area_struct *vma, pmd_t *pmd,
1395 				unsigned long addr, unsigned long end,
1396 				struct zap_details *details)
1397 {
1398 	struct mm_struct *mm = tlb->mm;
1399 	int force_flush = 0;
1400 	int rss[NR_MM_COUNTERS];
1401 	spinlock_t *ptl;
1402 	pte_t *start_pte;
1403 	pte_t *pte;
1404 	swp_entry_t entry;
1405 
1406 	tlb_change_page_size(tlb, PAGE_SIZE);
1407 	init_rss_vec(rss);
1408 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1409 	if (!pte)
1410 		return addr;
1411 
1412 	flush_tlb_batched_pending(mm);
1413 	arch_enter_lazy_mmu_mode();
1414 	do {
1415 		pte_t ptent = ptep_get(pte);
1416 		struct page *page;
1417 
1418 		if (pte_none(ptent))
1419 			continue;
1420 
1421 		if (need_resched())
1422 			break;
1423 
1424 		if (pte_present(ptent)) {
1425 			unsigned int delay_rmap;
1426 
1427 			page = vm_normal_page(vma, addr, ptent);
1428 			if (unlikely(!should_zap_page(details, page)))
1429 				continue;
1430 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1431 							tlb->fullmm);
1432 			tlb_remove_tlb_entry(tlb, pte, addr);
1433 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1434 						      ptent);
1435 			if (unlikely(!page))
1436 				continue;
1437 
1438 			delay_rmap = 0;
1439 			if (!PageAnon(page)) {
1440 				if (pte_dirty(ptent)) {
1441 					set_page_dirty(page);
1442 					if (tlb_delay_rmap(tlb)) {
1443 						delay_rmap = 1;
1444 						force_flush = 1;
1445 					}
1446 				}
1447 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1448 					mark_page_accessed(page);
1449 			}
1450 			rss[mm_counter(page)]--;
1451 			if (!delay_rmap) {
1452 				page_remove_rmap(page, vma, false);
1453 				if (unlikely(page_mapcount(page) < 0))
1454 					print_bad_pte(vma, addr, ptent, page);
1455 			}
1456 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1457 				force_flush = 1;
1458 				addr += PAGE_SIZE;
1459 				break;
1460 			}
1461 			continue;
1462 		}
1463 
1464 		entry = pte_to_swp_entry(ptent);
1465 		if (is_device_private_entry(entry) ||
1466 		    is_device_exclusive_entry(entry)) {
1467 			page = pfn_swap_entry_to_page(entry);
1468 			if (unlikely(!should_zap_page(details, page)))
1469 				continue;
1470 			/*
1471 			 * Both device private/exclusive mappings should only
1472 			 * work with anonymous page so far, so we don't need to
1473 			 * consider uffd-wp bit when zap. For more information,
1474 			 * see zap_install_uffd_wp_if_needed().
1475 			 */
1476 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1477 			rss[mm_counter(page)]--;
1478 			if (is_device_private_entry(entry))
1479 				page_remove_rmap(page, vma, false);
1480 			put_page(page);
1481 		} else if (!non_swap_entry(entry)) {
1482 			/* Genuine swap entry, hence a private anon page */
1483 			if (!should_zap_cows(details))
1484 				continue;
1485 			rss[MM_SWAPENTS]--;
1486 			if (unlikely(!free_swap_and_cache(entry)))
1487 				print_bad_pte(vma, addr, ptent, NULL);
1488 		} else if (is_migration_entry(entry)) {
1489 			page = pfn_swap_entry_to_page(entry);
1490 			if (!should_zap_page(details, page))
1491 				continue;
1492 			rss[mm_counter(page)]--;
1493 		} else if (pte_marker_entry_uffd_wp(entry)) {
1494 			/*
1495 			 * For anon: always drop the marker; for file: only
1496 			 * drop the marker if explicitly requested.
1497 			 */
1498 			if (!vma_is_anonymous(vma) &&
1499 			    !zap_drop_file_uffd_wp(details))
1500 				continue;
1501 		} else if (is_hwpoison_entry(entry) ||
1502 			   is_swapin_error_entry(entry)) {
1503 			if (!should_zap_cows(details))
1504 				continue;
1505 		} else {
1506 			/* We should have covered all the swap entry types */
1507 			WARN_ON_ONCE(1);
1508 		}
1509 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1510 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1511 	} while (pte++, addr += PAGE_SIZE, addr != end);
1512 
1513 	add_mm_rss_vec(mm, rss);
1514 	arch_leave_lazy_mmu_mode();
1515 
1516 	/* Do the actual TLB flush before dropping ptl */
1517 	if (force_flush) {
1518 		tlb_flush_mmu_tlbonly(tlb);
1519 		tlb_flush_rmaps(tlb, vma);
1520 	}
1521 	pte_unmap_unlock(start_pte, ptl);
1522 
1523 	/*
1524 	 * If we forced a TLB flush (either due to running out of
1525 	 * batch buffers or because we needed to flush dirty TLB
1526 	 * entries before releasing the ptl), free the batched
1527 	 * memory too. Come back again if we didn't do everything.
1528 	 */
1529 	if (force_flush)
1530 		tlb_flush_mmu(tlb);
1531 
1532 	return addr;
1533 }
1534 
1535 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1536 				struct vm_area_struct *vma, pud_t *pud,
1537 				unsigned long addr, unsigned long end,
1538 				struct zap_details *details)
1539 {
1540 	pmd_t *pmd;
1541 	unsigned long next;
1542 
1543 	pmd = pmd_offset(pud, addr);
1544 	do {
1545 		next = pmd_addr_end(addr, end);
1546 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1547 			if (next - addr != HPAGE_PMD_SIZE)
1548 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1549 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1550 				addr = next;
1551 				continue;
1552 			}
1553 			/* fall through */
1554 		} else if (details && details->single_folio &&
1555 			   folio_test_pmd_mappable(details->single_folio) &&
1556 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1557 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1558 			/*
1559 			 * Take and drop THP pmd lock so that we cannot return
1560 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1561 			 * but not yet decremented compound_mapcount().
1562 			 */
1563 			spin_unlock(ptl);
1564 		}
1565 		if (pmd_none(*pmd)) {
1566 			addr = next;
1567 			continue;
1568 		}
1569 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1570 		if (addr != next)
1571 			pmd--;
1572 	} while (pmd++, cond_resched(), addr != end);
1573 
1574 	return addr;
1575 }
1576 
1577 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1578 				struct vm_area_struct *vma, p4d_t *p4d,
1579 				unsigned long addr, unsigned long end,
1580 				struct zap_details *details)
1581 {
1582 	pud_t *pud;
1583 	unsigned long next;
1584 
1585 	pud = pud_offset(p4d, addr);
1586 	do {
1587 		next = pud_addr_end(addr, end);
1588 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1589 			if (next - addr != HPAGE_PUD_SIZE) {
1590 				mmap_assert_locked(tlb->mm);
1591 				split_huge_pud(vma, pud, addr);
1592 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1593 				goto next;
1594 			/* fall through */
1595 		}
1596 		if (pud_none_or_clear_bad(pud))
1597 			continue;
1598 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1599 next:
1600 		cond_resched();
1601 	} while (pud++, addr = next, addr != end);
1602 
1603 	return addr;
1604 }
1605 
1606 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1607 				struct vm_area_struct *vma, pgd_t *pgd,
1608 				unsigned long addr, unsigned long end,
1609 				struct zap_details *details)
1610 {
1611 	p4d_t *p4d;
1612 	unsigned long next;
1613 
1614 	p4d = p4d_offset(pgd, addr);
1615 	do {
1616 		next = p4d_addr_end(addr, end);
1617 		if (p4d_none_or_clear_bad(p4d))
1618 			continue;
1619 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1620 	} while (p4d++, addr = next, addr != end);
1621 
1622 	return addr;
1623 }
1624 
1625 void unmap_page_range(struct mmu_gather *tlb,
1626 			     struct vm_area_struct *vma,
1627 			     unsigned long addr, unsigned long end,
1628 			     struct zap_details *details)
1629 {
1630 	pgd_t *pgd;
1631 	unsigned long next;
1632 
1633 	BUG_ON(addr >= end);
1634 	tlb_start_vma(tlb, vma);
1635 	pgd = pgd_offset(vma->vm_mm, addr);
1636 	do {
1637 		next = pgd_addr_end(addr, end);
1638 		if (pgd_none_or_clear_bad(pgd))
1639 			continue;
1640 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1641 	} while (pgd++, addr = next, addr != end);
1642 	tlb_end_vma(tlb, vma);
1643 }
1644 
1645 
1646 static void unmap_single_vma(struct mmu_gather *tlb,
1647 		struct vm_area_struct *vma, unsigned long start_addr,
1648 		unsigned long end_addr,
1649 		struct zap_details *details, bool mm_wr_locked)
1650 {
1651 	unsigned long start = max(vma->vm_start, start_addr);
1652 	unsigned long end;
1653 
1654 	if (start >= vma->vm_end)
1655 		return;
1656 	end = min(vma->vm_end, end_addr);
1657 	if (end <= vma->vm_start)
1658 		return;
1659 
1660 	if (vma->vm_file)
1661 		uprobe_munmap(vma, start, end);
1662 
1663 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1664 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1665 
1666 	if (start != end) {
1667 		if (unlikely(is_vm_hugetlb_page(vma))) {
1668 			/*
1669 			 * It is undesirable to test vma->vm_file as it
1670 			 * should be non-null for valid hugetlb area.
1671 			 * However, vm_file will be NULL in the error
1672 			 * cleanup path of mmap_region. When
1673 			 * hugetlbfs ->mmap method fails,
1674 			 * mmap_region() nullifies vma->vm_file
1675 			 * before calling this function to clean up.
1676 			 * Since no pte has actually been setup, it is
1677 			 * safe to do nothing in this case.
1678 			 */
1679 			if (vma->vm_file) {
1680 				zap_flags_t zap_flags = details ?
1681 				    details->zap_flags : 0;
1682 				__unmap_hugepage_range_final(tlb, vma, start, end,
1683 							     NULL, zap_flags);
1684 			}
1685 		} else
1686 			unmap_page_range(tlb, vma, start, end, details);
1687 	}
1688 }
1689 
1690 /**
1691  * unmap_vmas - unmap a range of memory covered by a list of vma's
1692  * @tlb: address of the caller's struct mmu_gather
1693  * @mt: the maple tree
1694  * @vma: the starting vma
1695  * @start_addr: virtual address at which to start unmapping
1696  * @end_addr: virtual address at which to end unmapping
1697  *
1698  * Unmap all pages in the vma list.
1699  *
1700  * Only addresses between `start' and `end' will be unmapped.
1701  *
1702  * The VMA list must be sorted in ascending virtual address order.
1703  *
1704  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1705  * range after unmap_vmas() returns.  So the only responsibility here is to
1706  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1707  * drops the lock and schedules.
1708  */
1709 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1710 		struct vm_area_struct *vma, unsigned long start_addr,
1711 		unsigned long end_addr, bool mm_wr_locked)
1712 {
1713 	struct mmu_notifier_range range;
1714 	struct zap_details details = {
1715 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1716 		/* Careful - we need to zap private pages too! */
1717 		.even_cows = true,
1718 	};
1719 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1720 
1721 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1722 				start_addr, end_addr);
1723 	mmu_notifier_invalidate_range_start(&range);
1724 	do {
1725 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1726 				 mm_wr_locked);
1727 	} while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1728 	mmu_notifier_invalidate_range_end(&range);
1729 }
1730 
1731 /**
1732  * zap_page_range_single - remove user pages in a given range
1733  * @vma: vm_area_struct holding the applicable pages
1734  * @address: starting address of pages to zap
1735  * @size: number of bytes to zap
1736  * @details: details of shared cache invalidation
1737  *
1738  * The range must fit into one VMA.
1739  */
1740 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1741 		unsigned long size, struct zap_details *details)
1742 {
1743 	const unsigned long end = address + size;
1744 	struct mmu_notifier_range range;
1745 	struct mmu_gather tlb;
1746 
1747 	lru_add_drain();
1748 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1749 				address, end);
1750 	if (is_vm_hugetlb_page(vma))
1751 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1752 						     &range.end);
1753 	tlb_gather_mmu(&tlb, vma->vm_mm);
1754 	update_hiwater_rss(vma->vm_mm);
1755 	mmu_notifier_invalidate_range_start(&range);
1756 	/*
1757 	 * unmap 'address-end' not 'range.start-range.end' as range
1758 	 * could have been expanded for hugetlb pmd sharing.
1759 	 */
1760 	unmap_single_vma(&tlb, vma, address, end, details, false);
1761 	mmu_notifier_invalidate_range_end(&range);
1762 	tlb_finish_mmu(&tlb);
1763 }
1764 
1765 /**
1766  * zap_vma_ptes - remove ptes mapping the vma
1767  * @vma: vm_area_struct holding ptes to be zapped
1768  * @address: starting address of pages to zap
1769  * @size: number of bytes to zap
1770  *
1771  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1772  *
1773  * The entire address range must be fully contained within the vma.
1774  *
1775  */
1776 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1777 		unsigned long size)
1778 {
1779 	if (!range_in_vma(vma, address, address + size) ||
1780 	    		!(vma->vm_flags & VM_PFNMAP))
1781 		return;
1782 
1783 	zap_page_range_single(vma, address, size, NULL);
1784 }
1785 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1786 
1787 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1788 {
1789 	pgd_t *pgd;
1790 	p4d_t *p4d;
1791 	pud_t *pud;
1792 	pmd_t *pmd;
1793 
1794 	pgd = pgd_offset(mm, addr);
1795 	p4d = p4d_alloc(mm, pgd, addr);
1796 	if (!p4d)
1797 		return NULL;
1798 	pud = pud_alloc(mm, p4d, addr);
1799 	if (!pud)
1800 		return NULL;
1801 	pmd = pmd_alloc(mm, pud, addr);
1802 	if (!pmd)
1803 		return NULL;
1804 
1805 	VM_BUG_ON(pmd_trans_huge(*pmd));
1806 	return pmd;
1807 }
1808 
1809 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1810 			spinlock_t **ptl)
1811 {
1812 	pmd_t *pmd = walk_to_pmd(mm, addr);
1813 
1814 	if (!pmd)
1815 		return NULL;
1816 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1817 }
1818 
1819 static int validate_page_before_insert(struct page *page)
1820 {
1821 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1822 		return -EINVAL;
1823 	flush_dcache_page(page);
1824 	return 0;
1825 }
1826 
1827 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1828 			unsigned long addr, struct page *page, pgprot_t prot)
1829 {
1830 	if (!pte_none(ptep_get(pte)))
1831 		return -EBUSY;
1832 	/* Ok, finally just insert the thing.. */
1833 	get_page(page);
1834 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1835 	page_add_file_rmap(page, vma, false);
1836 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1837 	return 0;
1838 }
1839 
1840 /*
1841  * This is the old fallback for page remapping.
1842  *
1843  * For historical reasons, it only allows reserved pages. Only
1844  * old drivers should use this, and they needed to mark their
1845  * pages reserved for the old functions anyway.
1846  */
1847 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1848 			struct page *page, pgprot_t prot)
1849 {
1850 	int retval;
1851 	pte_t *pte;
1852 	spinlock_t *ptl;
1853 
1854 	retval = validate_page_before_insert(page);
1855 	if (retval)
1856 		goto out;
1857 	retval = -ENOMEM;
1858 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1859 	if (!pte)
1860 		goto out;
1861 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1862 	pte_unmap_unlock(pte, ptl);
1863 out:
1864 	return retval;
1865 }
1866 
1867 #ifdef pte_index
1868 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1869 			unsigned long addr, struct page *page, pgprot_t prot)
1870 {
1871 	int err;
1872 
1873 	if (!page_count(page))
1874 		return -EINVAL;
1875 	err = validate_page_before_insert(page);
1876 	if (err)
1877 		return err;
1878 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1879 }
1880 
1881 /* insert_pages() amortizes the cost of spinlock operations
1882  * when inserting pages in a loop. Arch *must* define pte_index.
1883  */
1884 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1885 			struct page **pages, unsigned long *num, pgprot_t prot)
1886 {
1887 	pmd_t *pmd = NULL;
1888 	pte_t *start_pte, *pte;
1889 	spinlock_t *pte_lock;
1890 	struct mm_struct *const mm = vma->vm_mm;
1891 	unsigned long curr_page_idx = 0;
1892 	unsigned long remaining_pages_total = *num;
1893 	unsigned long pages_to_write_in_pmd;
1894 	int ret;
1895 more:
1896 	ret = -EFAULT;
1897 	pmd = walk_to_pmd(mm, addr);
1898 	if (!pmd)
1899 		goto out;
1900 
1901 	pages_to_write_in_pmd = min_t(unsigned long,
1902 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1903 
1904 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1905 	ret = -ENOMEM;
1906 	if (pte_alloc(mm, pmd))
1907 		goto out;
1908 
1909 	while (pages_to_write_in_pmd) {
1910 		int pte_idx = 0;
1911 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1912 
1913 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1914 		if (!start_pte) {
1915 			ret = -EFAULT;
1916 			goto out;
1917 		}
1918 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1919 			int err = insert_page_in_batch_locked(vma, pte,
1920 				addr, pages[curr_page_idx], prot);
1921 			if (unlikely(err)) {
1922 				pte_unmap_unlock(start_pte, pte_lock);
1923 				ret = err;
1924 				remaining_pages_total -= pte_idx;
1925 				goto out;
1926 			}
1927 			addr += PAGE_SIZE;
1928 			++curr_page_idx;
1929 		}
1930 		pte_unmap_unlock(start_pte, pte_lock);
1931 		pages_to_write_in_pmd -= batch_size;
1932 		remaining_pages_total -= batch_size;
1933 	}
1934 	if (remaining_pages_total)
1935 		goto more;
1936 	ret = 0;
1937 out:
1938 	*num = remaining_pages_total;
1939 	return ret;
1940 }
1941 #endif  /* ifdef pte_index */
1942 
1943 /**
1944  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1945  * @vma: user vma to map to
1946  * @addr: target start user address of these pages
1947  * @pages: source kernel pages
1948  * @num: in: number of pages to map. out: number of pages that were *not*
1949  * mapped. (0 means all pages were successfully mapped).
1950  *
1951  * Preferred over vm_insert_page() when inserting multiple pages.
1952  *
1953  * In case of error, we may have mapped a subset of the provided
1954  * pages. It is the caller's responsibility to account for this case.
1955  *
1956  * The same restrictions apply as in vm_insert_page().
1957  */
1958 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1959 			struct page **pages, unsigned long *num)
1960 {
1961 #ifdef pte_index
1962 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1963 
1964 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1965 		return -EFAULT;
1966 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1967 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1968 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1969 		vm_flags_set(vma, VM_MIXEDMAP);
1970 	}
1971 	/* Defer page refcount checking till we're about to map that page. */
1972 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1973 #else
1974 	unsigned long idx = 0, pgcount = *num;
1975 	int err = -EINVAL;
1976 
1977 	for (; idx < pgcount; ++idx) {
1978 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1979 		if (err)
1980 			break;
1981 	}
1982 	*num = pgcount - idx;
1983 	return err;
1984 #endif  /* ifdef pte_index */
1985 }
1986 EXPORT_SYMBOL(vm_insert_pages);
1987 
1988 /**
1989  * vm_insert_page - insert single page into user vma
1990  * @vma: user vma to map to
1991  * @addr: target user address of this page
1992  * @page: source kernel page
1993  *
1994  * This allows drivers to insert individual pages they've allocated
1995  * into a user vma.
1996  *
1997  * The page has to be a nice clean _individual_ kernel allocation.
1998  * If you allocate a compound page, you need to have marked it as
1999  * such (__GFP_COMP), or manually just split the page up yourself
2000  * (see split_page()).
2001  *
2002  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2003  * took an arbitrary page protection parameter. This doesn't allow
2004  * that. Your vma protection will have to be set up correctly, which
2005  * means that if you want a shared writable mapping, you'd better
2006  * ask for a shared writable mapping!
2007  *
2008  * The page does not need to be reserved.
2009  *
2010  * Usually this function is called from f_op->mmap() handler
2011  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2012  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2013  * function from other places, for example from page-fault handler.
2014  *
2015  * Return: %0 on success, negative error code otherwise.
2016  */
2017 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2018 			struct page *page)
2019 {
2020 	if (addr < vma->vm_start || addr >= vma->vm_end)
2021 		return -EFAULT;
2022 	if (!page_count(page))
2023 		return -EINVAL;
2024 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2025 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2026 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2027 		vm_flags_set(vma, VM_MIXEDMAP);
2028 	}
2029 	return insert_page(vma, addr, page, vma->vm_page_prot);
2030 }
2031 EXPORT_SYMBOL(vm_insert_page);
2032 
2033 /*
2034  * __vm_map_pages - maps range of kernel pages into user vma
2035  * @vma: user vma to map to
2036  * @pages: pointer to array of source kernel pages
2037  * @num: number of pages in page array
2038  * @offset: user's requested vm_pgoff
2039  *
2040  * This allows drivers to map range of kernel pages into a user vma.
2041  *
2042  * Return: 0 on success and error code otherwise.
2043  */
2044 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2045 				unsigned long num, unsigned long offset)
2046 {
2047 	unsigned long count = vma_pages(vma);
2048 	unsigned long uaddr = vma->vm_start;
2049 	int ret, i;
2050 
2051 	/* Fail if the user requested offset is beyond the end of the object */
2052 	if (offset >= num)
2053 		return -ENXIO;
2054 
2055 	/* Fail if the user requested size exceeds available object size */
2056 	if (count > num - offset)
2057 		return -ENXIO;
2058 
2059 	for (i = 0; i < count; i++) {
2060 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2061 		if (ret < 0)
2062 			return ret;
2063 		uaddr += PAGE_SIZE;
2064 	}
2065 
2066 	return 0;
2067 }
2068 
2069 /**
2070  * vm_map_pages - maps range of kernel pages starts with non zero offset
2071  * @vma: user vma to map to
2072  * @pages: pointer to array of source kernel pages
2073  * @num: number of pages in page array
2074  *
2075  * Maps an object consisting of @num pages, catering for the user's
2076  * requested vm_pgoff
2077  *
2078  * If we fail to insert any page into the vma, the function will return
2079  * immediately leaving any previously inserted pages present.  Callers
2080  * from the mmap handler may immediately return the error as their caller
2081  * will destroy the vma, removing any successfully inserted pages. Other
2082  * callers should make their own arrangements for calling unmap_region().
2083  *
2084  * Context: Process context. Called by mmap handlers.
2085  * Return: 0 on success and error code otherwise.
2086  */
2087 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2088 				unsigned long num)
2089 {
2090 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2091 }
2092 EXPORT_SYMBOL(vm_map_pages);
2093 
2094 /**
2095  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2096  * @vma: user vma to map to
2097  * @pages: pointer to array of source kernel pages
2098  * @num: number of pages in page array
2099  *
2100  * Similar to vm_map_pages(), except that it explicitly sets the offset
2101  * to 0. This function is intended for the drivers that did not consider
2102  * vm_pgoff.
2103  *
2104  * Context: Process context. Called by mmap handlers.
2105  * Return: 0 on success and error code otherwise.
2106  */
2107 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2108 				unsigned long num)
2109 {
2110 	return __vm_map_pages(vma, pages, num, 0);
2111 }
2112 EXPORT_SYMBOL(vm_map_pages_zero);
2113 
2114 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2115 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2116 {
2117 	struct mm_struct *mm = vma->vm_mm;
2118 	pte_t *pte, entry;
2119 	spinlock_t *ptl;
2120 
2121 	pte = get_locked_pte(mm, addr, &ptl);
2122 	if (!pte)
2123 		return VM_FAULT_OOM;
2124 	entry = ptep_get(pte);
2125 	if (!pte_none(entry)) {
2126 		if (mkwrite) {
2127 			/*
2128 			 * For read faults on private mappings the PFN passed
2129 			 * in may not match the PFN we have mapped if the
2130 			 * mapped PFN is a writeable COW page.  In the mkwrite
2131 			 * case we are creating a writable PTE for a shared
2132 			 * mapping and we expect the PFNs to match. If they
2133 			 * don't match, we are likely racing with block
2134 			 * allocation and mapping invalidation so just skip the
2135 			 * update.
2136 			 */
2137 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2138 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2139 				goto out_unlock;
2140 			}
2141 			entry = pte_mkyoung(entry);
2142 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2143 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2144 				update_mmu_cache(vma, addr, pte);
2145 		}
2146 		goto out_unlock;
2147 	}
2148 
2149 	/* Ok, finally just insert the thing.. */
2150 	if (pfn_t_devmap(pfn))
2151 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2152 	else
2153 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2154 
2155 	if (mkwrite) {
2156 		entry = pte_mkyoung(entry);
2157 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2158 	}
2159 
2160 	set_pte_at(mm, addr, pte, entry);
2161 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2162 
2163 out_unlock:
2164 	pte_unmap_unlock(pte, ptl);
2165 	return VM_FAULT_NOPAGE;
2166 }
2167 
2168 /**
2169  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2170  * @vma: user vma to map to
2171  * @addr: target user address of this page
2172  * @pfn: source kernel pfn
2173  * @pgprot: pgprot flags for the inserted page
2174  *
2175  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2176  * to override pgprot on a per-page basis.
2177  *
2178  * This only makes sense for IO mappings, and it makes no sense for
2179  * COW mappings.  In general, using multiple vmas is preferable;
2180  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2181  * impractical.
2182  *
2183  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2184  * caching- and encryption bits different than those of @vma->vm_page_prot,
2185  * because the caching- or encryption mode may not be known at mmap() time.
2186  *
2187  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2188  * to set caching and encryption bits for those vmas (except for COW pages).
2189  * This is ensured by core vm only modifying these page table entries using
2190  * functions that don't touch caching- or encryption bits, using pte_modify()
2191  * if needed. (See for example mprotect()).
2192  *
2193  * Also when new page-table entries are created, this is only done using the
2194  * fault() callback, and never using the value of vma->vm_page_prot,
2195  * except for page-table entries that point to anonymous pages as the result
2196  * of COW.
2197  *
2198  * Context: Process context.  May allocate using %GFP_KERNEL.
2199  * Return: vm_fault_t value.
2200  */
2201 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2202 			unsigned long pfn, pgprot_t pgprot)
2203 {
2204 	/*
2205 	 * Technically, architectures with pte_special can avoid all these
2206 	 * restrictions (same for remap_pfn_range).  However we would like
2207 	 * consistency in testing and feature parity among all, so we should
2208 	 * try to keep these invariants in place for everybody.
2209 	 */
2210 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2211 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2212 						(VM_PFNMAP|VM_MIXEDMAP));
2213 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2214 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2215 
2216 	if (addr < vma->vm_start || addr >= vma->vm_end)
2217 		return VM_FAULT_SIGBUS;
2218 
2219 	if (!pfn_modify_allowed(pfn, pgprot))
2220 		return VM_FAULT_SIGBUS;
2221 
2222 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2223 
2224 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2225 			false);
2226 }
2227 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2228 
2229 /**
2230  * vmf_insert_pfn - insert single pfn into user vma
2231  * @vma: user vma to map to
2232  * @addr: target user address of this page
2233  * @pfn: source kernel pfn
2234  *
2235  * Similar to vm_insert_page, this allows drivers to insert individual pages
2236  * they've allocated into a user vma. Same comments apply.
2237  *
2238  * This function should only be called from a vm_ops->fault handler, and
2239  * in that case the handler should return the result of this function.
2240  *
2241  * vma cannot be a COW mapping.
2242  *
2243  * As this is called only for pages that do not currently exist, we
2244  * do not need to flush old virtual caches or the TLB.
2245  *
2246  * Context: Process context.  May allocate using %GFP_KERNEL.
2247  * Return: vm_fault_t value.
2248  */
2249 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2250 			unsigned long pfn)
2251 {
2252 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2253 }
2254 EXPORT_SYMBOL(vmf_insert_pfn);
2255 
2256 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2257 {
2258 	/* these checks mirror the abort conditions in vm_normal_page */
2259 	if (vma->vm_flags & VM_MIXEDMAP)
2260 		return true;
2261 	if (pfn_t_devmap(pfn))
2262 		return true;
2263 	if (pfn_t_special(pfn))
2264 		return true;
2265 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2266 		return true;
2267 	return false;
2268 }
2269 
2270 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2271 		unsigned long addr, pfn_t pfn, bool mkwrite)
2272 {
2273 	pgprot_t pgprot = vma->vm_page_prot;
2274 	int err;
2275 
2276 	BUG_ON(!vm_mixed_ok(vma, pfn));
2277 
2278 	if (addr < vma->vm_start || addr >= vma->vm_end)
2279 		return VM_FAULT_SIGBUS;
2280 
2281 	track_pfn_insert(vma, &pgprot, pfn);
2282 
2283 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2284 		return VM_FAULT_SIGBUS;
2285 
2286 	/*
2287 	 * If we don't have pte special, then we have to use the pfn_valid()
2288 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2289 	 * refcount the page if pfn_valid is true (hence insert_page rather
2290 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2291 	 * without pte special, it would there be refcounted as a normal page.
2292 	 */
2293 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2294 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2295 		struct page *page;
2296 
2297 		/*
2298 		 * At this point we are committed to insert_page()
2299 		 * regardless of whether the caller specified flags that
2300 		 * result in pfn_t_has_page() == false.
2301 		 */
2302 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2303 		err = insert_page(vma, addr, page, pgprot);
2304 	} else {
2305 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2306 	}
2307 
2308 	if (err == -ENOMEM)
2309 		return VM_FAULT_OOM;
2310 	if (err < 0 && err != -EBUSY)
2311 		return VM_FAULT_SIGBUS;
2312 
2313 	return VM_FAULT_NOPAGE;
2314 }
2315 
2316 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2317 		pfn_t pfn)
2318 {
2319 	return __vm_insert_mixed(vma, addr, pfn, false);
2320 }
2321 EXPORT_SYMBOL(vmf_insert_mixed);
2322 
2323 /*
2324  *  If the insertion of PTE failed because someone else already added a
2325  *  different entry in the mean time, we treat that as success as we assume
2326  *  the same entry was actually inserted.
2327  */
2328 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2329 		unsigned long addr, pfn_t pfn)
2330 {
2331 	return __vm_insert_mixed(vma, addr, pfn, true);
2332 }
2333 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2334 
2335 /*
2336  * maps a range of physical memory into the requested pages. the old
2337  * mappings are removed. any references to nonexistent pages results
2338  * in null mappings (currently treated as "copy-on-access")
2339  */
2340 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2341 			unsigned long addr, unsigned long end,
2342 			unsigned long pfn, pgprot_t prot)
2343 {
2344 	pte_t *pte, *mapped_pte;
2345 	spinlock_t *ptl;
2346 	int err = 0;
2347 
2348 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2349 	if (!pte)
2350 		return -ENOMEM;
2351 	arch_enter_lazy_mmu_mode();
2352 	do {
2353 		BUG_ON(!pte_none(ptep_get(pte)));
2354 		if (!pfn_modify_allowed(pfn, prot)) {
2355 			err = -EACCES;
2356 			break;
2357 		}
2358 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2359 		pfn++;
2360 	} while (pte++, addr += PAGE_SIZE, addr != end);
2361 	arch_leave_lazy_mmu_mode();
2362 	pte_unmap_unlock(mapped_pte, ptl);
2363 	return err;
2364 }
2365 
2366 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2367 			unsigned long addr, unsigned long end,
2368 			unsigned long pfn, pgprot_t prot)
2369 {
2370 	pmd_t *pmd;
2371 	unsigned long next;
2372 	int err;
2373 
2374 	pfn -= addr >> PAGE_SHIFT;
2375 	pmd = pmd_alloc(mm, pud, addr);
2376 	if (!pmd)
2377 		return -ENOMEM;
2378 	VM_BUG_ON(pmd_trans_huge(*pmd));
2379 	do {
2380 		next = pmd_addr_end(addr, end);
2381 		err = remap_pte_range(mm, pmd, addr, next,
2382 				pfn + (addr >> PAGE_SHIFT), prot);
2383 		if (err)
2384 			return err;
2385 	} while (pmd++, addr = next, addr != end);
2386 	return 0;
2387 }
2388 
2389 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2390 			unsigned long addr, unsigned long end,
2391 			unsigned long pfn, pgprot_t prot)
2392 {
2393 	pud_t *pud;
2394 	unsigned long next;
2395 	int err;
2396 
2397 	pfn -= addr >> PAGE_SHIFT;
2398 	pud = pud_alloc(mm, p4d, addr);
2399 	if (!pud)
2400 		return -ENOMEM;
2401 	do {
2402 		next = pud_addr_end(addr, end);
2403 		err = remap_pmd_range(mm, pud, addr, next,
2404 				pfn + (addr >> PAGE_SHIFT), prot);
2405 		if (err)
2406 			return err;
2407 	} while (pud++, addr = next, addr != end);
2408 	return 0;
2409 }
2410 
2411 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2412 			unsigned long addr, unsigned long end,
2413 			unsigned long pfn, pgprot_t prot)
2414 {
2415 	p4d_t *p4d;
2416 	unsigned long next;
2417 	int err;
2418 
2419 	pfn -= addr >> PAGE_SHIFT;
2420 	p4d = p4d_alloc(mm, pgd, addr);
2421 	if (!p4d)
2422 		return -ENOMEM;
2423 	do {
2424 		next = p4d_addr_end(addr, end);
2425 		err = remap_pud_range(mm, p4d, addr, next,
2426 				pfn + (addr >> PAGE_SHIFT), prot);
2427 		if (err)
2428 			return err;
2429 	} while (p4d++, addr = next, addr != end);
2430 	return 0;
2431 }
2432 
2433 /*
2434  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2435  * must have pre-validated the caching bits of the pgprot_t.
2436  */
2437 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2438 		unsigned long pfn, unsigned long size, pgprot_t prot)
2439 {
2440 	pgd_t *pgd;
2441 	unsigned long next;
2442 	unsigned long end = addr + PAGE_ALIGN(size);
2443 	struct mm_struct *mm = vma->vm_mm;
2444 	int err;
2445 
2446 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2447 		return -EINVAL;
2448 
2449 	/*
2450 	 * Physically remapped pages are special. Tell the
2451 	 * rest of the world about it:
2452 	 *   VM_IO tells people not to look at these pages
2453 	 *	(accesses can have side effects).
2454 	 *   VM_PFNMAP tells the core MM that the base pages are just
2455 	 *	raw PFN mappings, and do not have a "struct page" associated
2456 	 *	with them.
2457 	 *   VM_DONTEXPAND
2458 	 *      Disable vma merging and expanding with mremap().
2459 	 *   VM_DONTDUMP
2460 	 *      Omit vma from core dump, even when VM_IO turned off.
2461 	 *
2462 	 * There's a horrible special case to handle copy-on-write
2463 	 * behaviour that some programs depend on. We mark the "original"
2464 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2465 	 * See vm_normal_page() for details.
2466 	 */
2467 	if (is_cow_mapping(vma->vm_flags)) {
2468 		if (addr != vma->vm_start || end != vma->vm_end)
2469 			return -EINVAL;
2470 		vma->vm_pgoff = pfn;
2471 	}
2472 
2473 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2474 
2475 	BUG_ON(addr >= end);
2476 	pfn -= addr >> PAGE_SHIFT;
2477 	pgd = pgd_offset(mm, addr);
2478 	flush_cache_range(vma, addr, end);
2479 	do {
2480 		next = pgd_addr_end(addr, end);
2481 		err = remap_p4d_range(mm, pgd, addr, next,
2482 				pfn + (addr >> PAGE_SHIFT), prot);
2483 		if (err)
2484 			return err;
2485 	} while (pgd++, addr = next, addr != end);
2486 
2487 	return 0;
2488 }
2489 
2490 /**
2491  * remap_pfn_range - remap kernel memory to userspace
2492  * @vma: user vma to map to
2493  * @addr: target page aligned user address to start at
2494  * @pfn: page frame number of kernel physical memory address
2495  * @size: size of mapping area
2496  * @prot: page protection flags for this mapping
2497  *
2498  * Note: this is only safe if the mm semaphore is held when called.
2499  *
2500  * Return: %0 on success, negative error code otherwise.
2501  */
2502 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2503 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2504 {
2505 	int err;
2506 
2507 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2508 	if (err)
2509 		return -EINVAL;
2510 
2511 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2512 	if (err)
2513 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2514 	return err;
2515 }
2516 EXPORT_SYMBOL(remap_pfn_range);
2517 
2518 /**
2519  * vm_iomap_memory - remap memory to userspace
2520  * @vma: user vma to map to
2521  * @start: start of the physical memory to be mapped
2522  * @len: size of area
2523  *
2524  * This is a simplified io_remap_pfn_range() for common driver use. The
2525  * driver just needs to give us the physical memory range to be mapped,
2526  * we'll figure out the rest from the vma information.
2527  *
2528  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2529  * whatever write-combining details or similar.
2530  *
2531  * Return: %0 on success, negative error code otherwise.
2532  */
2533 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2534 {
2535 	unsigned long vm_len, pfn, pages;
2536 
2537 	/* Check that the physical memory area passed in looks valid */
2538 	if (start + len < start)
2539 		return -EINVAL;
2540 	/*
2541 	 * You *really* shouldn't map things that aren't page-aligned,
2542 	 * but we've historically allowed it because IO memory might
2543 	 * just have smaller alignment.
2544 	 */
2545 	len += start & ~PAGE_MASK;
2546 	pfn = start >> PAGE_SHIFT;
2547 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2548 	if (pfn + pages < pfn)
2549 		return -EINVAL;
2550 
2551 	/* We start the mapping 'vm_pgoff' pages into the area */
2552 	if (vma->vm_pgoff > pages)
2553 		return -EINVAL;
2554 	pfn += vma->vm_pgoff;
2555 	pages -= vma->vm_pgoff;
2556 
2557 	/* Can we fit all of the mapping? */
2558 	vm_len = vma->vm_end - vma->vm_start;
2559 	if (vm_len >> PAGE_SHIFT > pages)
2560 		return -EINVAL;
2561 
2562 	/* Ok, let it rip */
2563 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2564 }
2565 EXPORT_SYMBOL(vm_iomap_memory);
2566 
2567 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2568 				     unsigned long addr, unsigned long end,
2569 				     pte_fn_t fn, void *data, bool create,
2570 				     pgtbl_mod_mask *mask)
2571 {
2572 	pte_t *pte, *mapped_pte;
2573 	int err = 0;
2574 	spinlock_t *ptl;
2575 
2576 	if (create) {
2577 		mapped_pte = pte = (mm == &init_mm) ?
2578 			pte_alloc_kernel_track(pmd, addr, mask) :
2579 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2580 		if (!pte)
2581 			return -ENOMEM;
2582 	} else {
2583 		mapped_pte = pte = (mm == &init_mm) ?
2584 			pte_offset_kernel(pmd, addr) :
2585 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2586 		if (!pte)
2587 			return -EINVAL;
2588 	}
2589 
2590 	arch_enter_lazy_mmu_mode();
2591 
2592 	if (fn) {
2593 		do {
2594 			if (create || !pte_none(ptep_get(pte))) {
2595 				err = fn(pte++, addr, data);
2596 				if (err)
2597 					break;
2598 			}
2599 		} while (addr += PAGE_SIZE, addr != end);
2600 	}
2601 	*mask |= PGTBL_PTE_MODIFIED;
2602 
2603 	arch_leave_lazy_mmu_mode();
2604 
2605 	if (mm != &init_mm)
2606 		pte_unmap_unlock(mapped_pte, ptl);
2607 	return err;
2608 }
2609 
2610 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2611 				     unsigned long addr, unsigned long end,
2612 				     pte_fn_t fn, void *data, bool create,
2613 				     pgtbl_mod_mask *mask)
2614 {
2615 	pmd_t *pmd;
2616 	unsigned long next;
2617 	int err = 0;
2618 
2619 	BUG_ON(pud_huge(*pud));
2620 
2621 	if (create) {
2622 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2623 		if (!pmd)
2624 			return -ENOMEM;
2625 	} else {
2626 		pmd = pmd_offset(pud, addr);
2627 	}
2628 	do {
2629 		next = pmd_addr_end(addr, end);
2630 		if (pmd_none(*pmd) && !create)
2631 			continue;
2632 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2633 			return -EINVAL;
2634 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2635 			if (!create)
2636 				continue;
2637 			pmd_clear_bad(pmd);
2638 		}
2639 		err = apply_to_pte_range(mm, pmd, addr, next,
2640 					 fn, data, create, mask);
2641 		if (err)
2642 			break;
2643 	} while (pmd++, addr = next, addr != end);
2644 
2645 	return err;
2646 }
2647 
2648 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2649 				     unsigned long addr, unsigned long end,
2650 				     pte_fn_t fn, void *data, bool create,
2651 				     pgtbl_mod_mask *mask)
2652 {
2653 	pud_t *pud;
2654 	unsigned long next;
2655 	int err = 0;
2656 
2657 	if (create) {
2658 		pud = pud_alloc_track(mm, p4d, addr, mask);
2659 		if (!pud)
2660 			return -ENOMEM;
2661 	} else {
2662 		pud = pud_offset(p4d, addr);
2663 	}
2664 	do {
2665 		next = pud_addr_end(addr, end);
2666 		if (pud_none(*pud) && !create)
2667 			continue;
2668 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2669 			return -EINVAL;
2670 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2671 			if (!create)
2672 				continue;
2673 			pud_clear_bad(pud);
2674 		}
2675 		err = apply_to_pmd_range(mm, pud, addr, next,
2676 					 fn, data, create, mask);
2677 		if (err)
2678 			break;
2679 	} while (pud++, addr = next, addr != end);
2680 
2681 	return err;
2682 }
2683 
2684 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2685 				     unsigned long addr, unsigned long end,
2686 				     pte_fn_t fn, void *data, bool create,
2687 				     pgtbl_mod_mask *mask)
2688 {
2689 	p4d_t *p4d;
2690 	unsigned long next;
2691 	int err = 0;
2692 
2693 	if (create) {
2694 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2695 		if (!p4d)
2696 			return -ENOMEM;
2697 	} else {
2698 		p4d = p4d_offset(pgd, addr);
2699 	}
2700 	do {
2701 		next = p4d_addr_end(addr, end);
2702 		if (p4d_none(*p4d) && !create)
2703 			continue;
2704 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2705 			return -EINVAL;
2706 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2707 			if (!create)
2708 				continue;
2709 			p4d_clear_bad(p4d);
2710 		}
2711 		err = apply_to_pud_range(mm, p4d, addr, next,
2712 					 fn, data, create, mask);
2713 		if (err)
2714 			break;
2715 	} while (p4d++, addr = next, addr != end);
2716 
2717 	return err;
2718 }
2719 
2720 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2721 				 unsigned long size, pte_fn_t fn,
2722 				 void *data, bool create)
2723 {
2724 	pgd_t *pgd;
2725 	unsigned long start = addr, next;
2726 	unsigned long end = addr + size;
2727 	pgtbl_mod_mask mask = 0;
2728 	int err = 0;
2729 
2730 	if (WARN_ON(addr >= end))
2731 		return -EINVAL;
2732 
2733 	pgd = pgd_offset(mm, addr);
2734 	do {
2735 		next = pgd_addr_end(addr, end);
2736 		if (pgd_none(*pgd) && !create)
2737 			continue;
2738 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2739 			return -EINVAL;
2740 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2741 			if (!create)
2742 				continue;
2743 			pgd_clear_bad(pgd);
2744 		}
2745 		err = apply_to_p4d_range(mm, pgd, addr, next,
2746 					 fn, data, create, &mask);
2747 		if (err)
2748 			break;
2749 	} while (pgd++, addr = next, addr != end);
2750 
2751 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2752 		arch_sync_kernel_mappings(start, start + size);
2753 
2754 	return err;
2755 }
2756 
2757 /*
2758  * Scan a region of virtual memory, filling in page tables as necessary
2759  * and calling a provided function on each leaf page table.
2760  */
2761 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2762 			unsigned long size, pte_fn_t fn, void *data)
2763 {
2764 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2765 }
2766 EXPORT_SYMBOL_GPL(apply_to_page_range);
2767 
2768 /*
2769  * Scan a region of virtual memory, calling a provided function on
2770  * each leaf page table where it exists.
2771  *
2772  * Unlike apply_to_page_range, this does _not_ fill in page tables
2773  * where they are absent.
2774  */
2775 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2776 				 unsigned long size, pte_fn_t fn, void *data)
2777 {
2778 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2779 }
2780 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2781 
2782 /*
2783  * handle_pte_fault chooses page fault handler according to an entry which was
2784  * read non-atomically.  Before making any commitment, on those architectures
2785  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2786  * parts, do_swap_page must check under lock before unmapping the pte and
2787  * proceeding (but do_wp_page is only called after already making such a check;
2788  * and do_anonymous_page can safely check later on).
2789  */
2790 static inline int pte_unmap_same(struct vm_fault *vmf)
2791 {
2792 	int same = 1;
2793 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2794 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2795 		spin_lock(vmf->ptl);
2796 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2797 		spin_unlock(vmf->ptl);
2798 	}
2799 #endif
2800 	pte_unmap(vmf->pte);
2801 	vmf->pte = NULL;
2802 	return same;
2803 }
2804 
2805 /*
2806  * Return:
2807  *	0:		copied succeeded
2808  *	-EHWPOISON:	copy failed due to hwpoison in source page
2809  *	-EAGAIN:	copied failed (some other reason)
2810  */
2811 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2812 				      struct vm_fault *vmf)
2813 {
2814 	int ret;
2815 	void *kaddr;
2816 	void __user *uaddr;
2817 	struct vm_area_struct *vma = vmf->vma;
2818 	struct mm_struct *mm = vma->vm_mm;
2819 	unsigned long addr = vmf->address;
2820 
2821 	if (likely(src)) {
2822 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2823 			memory_failure_queue(page_to_pfn(src), 0);
2824 			return -EHWPOISON;
2825 		}
2826 		return 0;
2827 	}
2828 
2829 	/*
2830 	 * If the source page was a PFN mapping, we don't have
2831 	 * a "struct page" for it. We do a best-effort copy by
2832 	 * just copying from the original user address. If that
2833 	 * fails, we just zero-fill it. Live with it.
2834 	 */
2835 	kaddr = kmap_atomic(dst);
2836 	uaddr = (void __user *)(addr & PAGE_MASK);
2837 
2838 	/*
2839 	 * On architectures with software "accessed" bits, we would
2840 	 * take a double page fault, so mark it accessed here.
2841 	 */
2842 	vmf->pte = NULL;
2843 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2844 		pte_t entry;
2845 
2846 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2847 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2848 			/*
2849 			 * Other thread has already handled the fault
2850 			 * and update local tlb only
2851 			 */
2852 			if (vmf->pte)
2853 				update_mmu_tlb(vma, addr, vmf->pte);
2854 			ret = -EAGAIN;
2855 			goto pte_unlock;
2856 		}
2857 
2858 		entry = pte_mkyoung(vmf->orig_pte);
2859 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2860 			update_mmu_cache(vma, addr, vmf->pte);
2861 	}
2862 
2863 	/*
2864 	 * This really shouldn't fail, because the page is there
2865 	 * in the page tables. But it might just be unreadable,
2866 	 * in which case we just give up and fill the result with
2867 	 * zeroes.
2868 	 */
2869 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2870 		if (vmf->pte)
2871 			goto warn;
2872 
2873 		/* Re-validate under PTL if the page is still mapped */
2874 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2875 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2876 			/* The PTE changed under us, update local tlb */
2877 			if (vmf->pte)
2878 				update_mmu_tlb(vma, addr, vmf->pte);
2879 			ret = -EAGAIN;
2880 			goto pte_unlock;
2881 		}
2882 
2883 		/*
2884 		 * The same page can be mapped back since last copy attempt.
2885 		 * Try to copy again under PTL.
2886 		 */
2887 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2888 			/*
2889 			 * Give a warn in case there can be some obscure
2890 			 * use-case
2891 			 */
2892 warn:
2893 			WARN_ON_ONCE(1);
2894 			clear_page(kaddr);
2895 		}
2896 	}
2897 
2898 	ret = 0;
2899 
2900 pte_unlock:
2901 	if (vmf->pte)
2902 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2903 	kunmap_atomic(kaddr);
2904 	flush_dcache_page(dst);
2905 
2906 	return ret;
2907 }
2908 
2909 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2910 {
2911 	struct file *vm_file = vma->vm_file;
2912 
2913 	if (vm_file)
2914 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2915 
2916 	/*
2917 	 * Special mappings (e.g. VDSO) do not have any file so fake
2918 	 * a default GFP_KERNEL for them.
2919 	 */
2920 	return GFP_KERNEL;
2921 }
2922 
2923 /*
2924  * Notify the address space that the page is about to become writable so that
2925  * it can prohibit this or wait for the page to get into an appropriate state.
2926  *
2927  * We do this without the lock held, so that it can sleep if it needs to.
2928  */
2929 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2930 {
2931 	vm_fault_t ret;
2932 	struct page *page = vmf->page;
2933 	unsigned int old_flags = vmf->flags;
2934 
2935 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2936 
2937 	if (vmf->vma->vm_file &&
2938 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2939 		return VM_FAULT_SIGBUS;
2940 
2941 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2942 	/* Restore original flags so that caller is not surprised */
2943 	vmf->flags = old_flags;
2944 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2945 		return ret;
2946 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2947 		lock_page(page);
2948 		if (!page->mapping) {
2949 			unlock_page(page);
2950 			return 0; /* retry */
2951 		}
2952 		ret |= VM_FAULT_LOCKED;
2953 	} else
2954 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2955 	return ret;
2956 }
2957 
2958 /*
2959  * Handle dirtying of a page in shared file mapping on a write fault.
2960  *
2961  * The function expects the page to be locked and unlocks it.
2962  */
2963 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2964 {
2965 	struct vm_area_struct *vma = vmf->vma;
2966 	struct address_space *mapping;
2967 	struct page *page = vmf->page;
2968 	bool dirtied;
2969 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2970 
2971 	dirtied = set_page_dirty(page);
2972 	VM_BUG_ON_PAGE(PageAnon(page), page);
2973 	/*
2974 	 * Take a local copy of the address_space - page.mapping may be zeroed
2975 	 * by truncate after unlock_page().   The address_space itself remains
2976 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2977 	 * release semantics to prevent the compiler from undoing this copying.
2978 	 */
2979 	mapping = page_rmapping(page);
2980 	unlock_page(page);
2981 
2982 	if (!page_mkwrite)
2983 		file_update_time(vma->vm_file);
2984 
2985 	/*
2986 	 * Throttle page dirtying rate down to writeback speed.
2987 	 *
2988 	 * mapping may be NULL here because some device drivers do not
2989 	 * set page.mapping but still dirty their pages
2990 	 *
2991 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2992 	 * is pinning the mapping, as per above.
2993 	 */
2994 	if ((dirtied || page_mkwrite) && mapping) {
2995 		struct file *fpin;
2996 
2997 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2998 		balance_dirty_pages_ratelimited(mapping);
2999 		if (fpin) {
3000 			fput(fpin);
3001 			return VM_FAULT_COMPLETED;
3002 		}
3003 	}
3004 
3005 	return 0;
3006 }
3007 
3008 /*
3009  * Handle write page faults for pages that can be reused in the current vma
3010  *
3011  * This can happen either due to the mapping being with the VM_SHARED flag,
3012  * or due to us being the last reference standing to the page. In either
3013  * case, all we need to do here is to mark the page as writable and update
3014  * any related book-keeping.
3015  */
3016 static inline void wp_page_reuse(struct vm_fault *vmf)
3017 	__releases(vmf->ptl)
3018 {
3019 	struct vm_area_struct *vma = vmf->vma;
3020 	struct page *page = vmf->page;
3021 	pte_t entry;
3022 
3023 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3024 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3025 
3026 	/*
3027 	 * Clear the pages cpupid information as the existing
3028 	 * information potentially belongs to a now completely
3029 	 * unrelated process.
3030 	 */
3031 	if (page)
3032 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3033 
3034 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3035 	entry = pte_mkyoung(vmf->orig_pte);
3036 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3037 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3038 		update_mmu_cache(vma, vmf->address, vmf->pte);
3039 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3040 	count_vm_event(PGREUSE);
3041 }
3042 
3043 /*
3044  * Handle the case of a page which we actually need to copy to a new page,
3045  * either due to COW or unsharing.
3046  *
3047  * Called with mmap_lock locked and the old page referenced, but
3048  * without the ptl held.
3049  *
3050  * High level logic flow:
3051  *
3052  * - Allocate a page, copy the content of the old page to the new one.
3053  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3054  * - Take the PTL. If the pte changed, bail out and release the allocated page
3055  * - If the pte is still the way we remember it, update the page table and all
3056  *   relevant references. This includes dropping the reference the page-table
3057  *   held to the old page, as well as updating the rmap.
3058  * - In any case, unlock the PTL and drop the reference we took to the old page.
3059  */
3060 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3061 {
3062 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3063 	struct vm_area_struct *vma = vmf->vma;
3064 	struct mm_struct *mm = vma->vm_mm;
3065 	struct folio *old_folio = NULL;
3066 	struct folio *new_folio = NULL;
3067 	pte_t entry;
3068 	int page_copied = 0;
3069 	struct mmu_notifier_range range;
3070 	int ret;
3071 
3072 	delayacct_wpcopy_start();
3073 
3074 	if (vmf->page)
3075 		old_folio = page_folio(vmf->page);
3076 	if (unlikely(anon_vma_prepare(vma)))
3077 		goto oom;
3078 
3079 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3080 		new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3081 		if (!new_folio)
3082 			goto oom;
3083 	} else {
3084 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3085 				vmf->address, false);
3086 		if (!new_folio)
3087 			goto oom;
3088 
3089 		ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3090 		if (ret) {
3091 			/*
3092 			 * COW failed, if the fault was solved by other,
3093 			 * it's fine. If not, userspace would re-fault on
3094 			 * the same address and we will handle the fault
3095 			 * from the second attempt.
3096 			 * The -EHWPOISON case will not be retried.
3097 			 */
3098 			folio_put(new_folio);
3099 			if (old_folio)
3100 				folio_put(old_folio);
3101 
3102 			delayacct_wpcopy_end();
3103 			return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3104 		}
3105 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3106 	}
3107 
3108 	if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3109 		goto oom_free_new;
3110 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
3111 
3112 	__folio_mark_uptodate(new_folio);
3113 
3114 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3115 				vmf->address & PAGE_MASK,
3116 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3117 	mmu_notifier_invalidate_range_start(&range);
3118 
3119 	/*
3120 	 * Re-check the pte - we dropped the lock
3121 	 */
3122 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3123 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3124 		if (old_folio) {
3125 			if (!folio_test_anon(old_folio)) {
3126 				dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3127 				inc_mm_counter(mm, MM_ANONPAGES);
3128 			}
3129 		} else {
3130 			inc_mm_counter(mm, MM_ANONPAGES);
3131 		}
3132 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3133 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3134 		entry = pte_sw_mkyoung(entry);
3135 		if (unlikely(unshare)) {
3136 			if (pte_soft_dirty(vmf->orig_pte))
3137 				entry = pte_mksoft_dirty(entry);
3138 			if (pte_uffd_wp(vmf->orig_pte))
3139 				entry = pte_mkuffd_wp(entry);
3140 		} else {
3141 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3142 		}
3143 
3144 		/*
3145 		 * Clear the pte entry and flush it first, before updating the
3146 		 * pte with the new entry, to keep TLBs on different CPUs in
3147 		 * sync. This code used to set the new PTE then flush TLBs, but
3148 		 * that left a window where the new PTE could be loaded into
3149 		 * some TLBs while the old PTE remains in others.
3150 		 */
3151 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3152 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3153 		folio_add_lru_vma(new_folio, vma);
3154 		/*
3155 		 * We call the notify macro here because, when using secondary
3156 		 * mmu page tables (such as kvm shadow page tables), we want the
3157 		 * new page to be mapped directly into the secondary page table.
3158 		 */
3159 		BUG_ON(unshare && pte_write(entry));
3160 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3161 		update_mmu_cache(vma, vmf->address, vmf->pte);
3162 		if (old_folio) {
3163 			/*
3164 			 * Only after switching the pte to the new page may
3165 			 * we remove the mapcount here. Otherwise another
3166 			 * process may come and find the rmap count decremented
3167 			 * before the pte is switched to the new page, and
3168 			 * "reuse" the old page writing into it while our pte
3169 			 * here still points into it and can be read by other
3170 			 * threads.
3171 			 *
3172 			 * The critical issue is to order this
3173 			 * page_remove_rmap with the ptp_clear_flush above.
3174 			 * Those stores are ordered by (if nothing else,)
3175 			 * the barrier present in the atomic_add_negative
3176 			 * in page_remove_rmap.
3177 			 *
3178 			 * Then the TLB flush in ptep_clear_flush ensures that
3179 			 * no process can access the old page before the
3180 			 * decremented mapcount is visible. And the old page
3181 			 * cannot be reused until after the decremented
3182 			 * mapcount is visible. So transitively, TLBs to
3183 			 * old page will be flushed before it can be reused.
3184 			 */
3185 			page_remove_rmap(vmf->page, vma, false);
3186 		}
3187 
3188 		/* Free the old page.. */
3189 		new_folio = old_folio;
3190 		page_copied = 1;
3191 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3192 	} else if (vmf->pte) {
3193 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3194 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3195 	}
3196 
3197 	/*
3198 	 * No need to double call mmu_notifier->invalidate_range() callback as
3199 	 * the above ptep_clear_flush_notify() did already call it.
3200 	 */
3201 	mmu_notifier_invalidate_range_only_end(&range);
3202 
3203 	if (new_folio)
3204 		folio_put(new_folio);
3205 	if (old_folio) {
3206 		if (page_copied)
3207 			free_swap_cache(&old_folio->page);
3208 		folio_put(old_folio);
3209 	}
3210 
3211 	delayacct_wpcopy_end();
3212 	return 0;
3213 oom_free_new:
3214 	folio_put(new_folio);
3215 oom:
3216 	if (old_folio)
3217 		folio_put(old_folio);
3218 
3219 	delayacct_wpcopy_end();
3220 	return VM_FAULT_OOM;
3221 }
3222 
3223 /**
3224  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3225  *			  writeable once the page is prepared
3226  *
3227  * @vmf: structure describing the fault
3228  *
3229  * This function handles all that is needed to finish a write page fault in a
3230  * shared mapping due to PTE being read-only once the mapped page is prepared.
3231  * It handles locking of PTE and modifying it.
3232  *
3233  * The function expects the page to be locked or other protection against
3234  * concurrent faults / writeback (such as DAX radix tree locks).
3235  *
3236  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3237  * we acquired PTE lock.
3238  */
3239 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3240 {
3241 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3242 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3243 				       &vmf->ptl);
3244 	if (!vmf->pte)
3245 		return VM_FAULT_NOPAGE;
3246 	/*
3247 	 * We might have raced with another page fault while we released the
3248 	 * pte_offset_map_lock.
3249 	 */
3250 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3251 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3252 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3253 		return VM_FAULT_NOPAGE;
3254 	}
3255 	wp_page_reuse(vmf);
3256 	return 0;
3257 }
3258 
3259 /*
3260  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3261  * mapping
3262  */
3263 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3264 {
3265 	struct vm_area_struct *vma = vmf->vma;
3266 
3267 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3268 		vm_fault_t ret;
3269 
3270 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3271 		vmf->flags |= FAULT_FLAG_MKWRITE;
3272 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3273 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3274 			return ret;
3275 		return finish_mkwrite_fault(vmf);
3276 	}
3277 	wp_page_reuse(vmf);
3278 	return 0;
3279 }
3280 
3281 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3282 	__releases(vmf->ptl)
3283 {
3284 	struct vm_area_struct *vma = vmf->vma;
3285 	vm_fault_t ret = 0;
3286 
3287 	get_page(vmf->page);
3288 
3289 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3290 		vm_fault_t tmp;
3291 
3292 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3293 		tmp = do_page_mkwrite(vmf);
3294 		if (unlikely(!tmp || (tmp &
3295 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3296 			put_page(vmf->page);
3297 			return tmp;
3298 		}
3299 		tmp = finish_mkwrite_fault(vmf);
3300 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3301 			unlock_page(vmf->page);
3302 			put_page(vmf->page);
3303 			return tmp;
3304 		}
3305 	} else {
3306 		wp_page_reuse(vmf);
3307 		lock_page(vmf->page);
3308 	}
3309 	ret |= fault_dirty_shared_page(vmf);
3310 	put_page(vmf->page);
3311 
3312 	return ret;
3313 }
3314 
3315 /*
3316  * This routine handles present pages, when
3317  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3318  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3319  *   (FAULT_FLAG_UNSHARE)
3320  *
3321  * It is done by copying the page to a new address and decrementing the
3322  * shared-page counter for the old page.
3323  *
3324  * Note that this routine assumes that the protection checks have been
3325  * done by the caller (the low-level page fault routine in most cases).
3326  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3327  * done any necessary COW.
3328  *
3329  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3330  * though the page will change only once the write actually happens. This
3331  * avoids a few races, and potentially makes it more efficient.
3332  *
3333  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3334  * but allow concurrent faults), with pte both mapped and locked.
3335  * We return with mmap_lock still held, but pte unmapped and unlocked.
3336  */
3337 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3338 	__releases(vmf->ptl)
3339 {
3340 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3341 	struct vm_area_struct *vma = vmf->vma;
3342 	struct folio *folio = NULL;
3343 
3344 	if (likely(!unshare)) {
3345 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3346 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3347 			return handle_userfault(vmf, VM_UFFD_WP);
3348 		}
3349 
3350 		/*
3351 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3352 		 * is flushed in this case before copying.
3353 		 */
3354 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3355 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3356 			flush_tlb_page(vmf->vma, vmf->address);
3357 	}
3358 
3359 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3360 
3361 	/*
3362 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3363 	 * FAULT_FLAG_WRITE set at this point.
3364 	 */
3365 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3366 		/*
3367 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3368 		 * VM_PFNMAP VMA.
3369 		 *
3370 		 * We should not cow pages in a shared writeable mapping.
3371 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3372 		 */
3373 		if (!vmf->page)
3374 			return wp_pfn_shared(vmf);
3375 		return wp_page_shared(vmf);
3376 	}
3377 
3378 	if (vmf->page)
3379 		folio = page_folio(vmf->page);
3380 
3381 	/*
3382 	 * Private mapping: create an exclusive anonymous page copy if reuse
3383 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3384 	 */
3385 	if (folio && folio_test_anon(folio)) {
3386 		/*
3387 		 * If the page is exclusive to this process we must reuse the
3388 		 * page without further checks.
3389 		 */
3390 		if (PageAnonExclusive(vmf->page))
3391 			goto reuse;
3392 
3393 		/*
3394 		 * We have to verify under folio lock: these early checks are
3395 		 * just an optimization to avoid locking the folio and freeing
3396 		 * the swapcache if there is little hope that we can reuse.
3397 		 *
3398 		 * KSM doesn't necessarily raise the folio refcount.
3399 		 */
3400 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3401 			goto copy;
3402 		if (!folio_test_lru(folio))
3403 			/*
3404 			 * Note: We cannot easily detect+handle references from
3405 			 * remote LRU pagevecs or references to LRU folios.
3406 			 */
3407 			lru_add_drain();
3408 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3409 			goto copy;
3410 		if (!folio_trylock(folio))
3411 			goto copy;
3412 		if (folio_test_swapcache(folio))
3413 			folio_free_swap(folio);
3414 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3415 			folio_unlock(folio);
3416 			goto copy;
3417 		}
3418 		/*
3419 		 * Ok, we've got the only folio reference from our mapping
3420 		 * and the folio is locked, it's dark out, and we're wearing
3421 		 * sunglasses. Hit it.
3422 		 */
3423 		page_move_anon_rmap(vmf->page, vma);
3424 		folio_unlock(folio);
3425 reuse:
3426 		if (unlikely(unshare)) {
3427 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3428 			return 0;
3429 		}
3430 		wp_page_reuse(vmf);
3431 		return 0;
3432 	}
3433 copy:
3434 	/*
3435 	 * Ok, we need to copy. Oh, well..
3436 	 */
3437 	if (folio)
3438 		folio_get(folio);
3439 
3440 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3441 #ifdef CONFIG_KSM
3442 	if (folio && folio_test_ksm(folio))
3443 		count_vm_event(COW_KSM);
3444 #endif
3445 	return wp_page_copy(vmf);
3446 }
3447 
3448 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3449 		unsigned long start_addr, unsigned long end_addr,
3450 		struct zap_details *details)
3451 {
3452 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3453 }
3454 
3455 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3456 					    pgoff_t first_index,
3457 					    pgoff_t last_index,
3458 					    struct zap_details *details)
3459 {
3460 	struct vm_area_struct *vma;
3461 	pgoff_t vba, vea, zba, zea;
3462 
3463 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3464 		vba = vma->vm_pgoff;
3465 		vea = vba + vma_pages(vma) - 1;
3466 		zba = max(first_index, vba);
3467 		zea = min(last_index, vea);
3468 
3469 		unmap_mapping_range_vma(vma,
3470 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3471 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3472 				details);
3473 	}
3474 }
3475 
3476 /**
3477  * unmap_mapping_folio() - Unmap single folio from processes.
3478  * @folio: The locked folio to be unmapped.
3479  *
3480  * Unmap this folio from any userspace process which still has it mmaped.
3481  * Typically, for efficiency, the range of nearby pages has already been
3482  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3483  * truncation or invalidation holds the lock on a folio, it may find that
3484  * the page has been remapped again: and then uses unmap_mapping_folio()
3485  * to unmap it finally.
3486  */
3487 void unmap_mapping_folio(struct folio *folio)
3488 {
3489 	struct address_space *mapping = folio->mapping;
3490 	struct zap_details details = { };
3491 	pgoff_t	first_index;
3492 	pgoff_t	last_index;
3493 
3494 	VM_BUG_ON(!folio_test_locked(folio));
3495 
3496 	first_index = folio->index;
3497 	last_index = folio->index + folio_nr_pages(folio) - 1;
3498 
3499 	details.even_cows = false;
3500 	details.single_folio = folio;
3501 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3502 
3503 	i_mmap_lock_read(mapping);
3504 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3505 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3506 					 last_index, &details);
3507 	i_mmap_unlock_read(mapping);
3508 }
3509 
3510 /**
3511  * unmap_mapping_pages() - Unmap pages from processes.
3512  * @mapping: The address space containing pages to be unmapped.
3513  * @start: Index of first page to be unmapped.
3514  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3515  * @even_cows: Whether to unmap even private COWed pages.
3516  *
3517  * Unmap the pages in this address space from any userspace process which
3518  * has them mmaped.  Generally, you want to remove COWed pages as well when
3519  * a file is being truncated, but not when invalidating pages from the page
3520  * cache.
3521  */
3522 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3523 		pgoff_t nr, bool even_cows)
3524 {
3525 	struct zap_details details = { };
3526 	pgoff_t	first_index = start;
3527 	pgoff_t	last_index = start + nr - 1;
3528 
3529 	details.even_cows = even_cows;
3530 	if (last_index < first_index)
3531 		last_index = ULONG_MAX;
3532 
3533 	i_mmap_lock_read(mapping);
3534 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3535 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3536 					 last_index, &details);
3537 	i_mmap_unlock_read(mapping);
3538 }
3539 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3540 
3541 /**
3542  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3543  * address_space corresponding to the specified byte range in the underlying
3544  * file.
3545  *
3546  * @mapping: the address space containing mmaps to be unmapped.
3547  * @holebegin: byte in first page to unmap, relative to the start of
3548  * the underlying file.  This will be rounded down to a PAGE_SIZE
3549  * boundary.  Note that this is different from truncate_pagecache(), which
3550  * must keep the partial page.  In contrast, we must get rid of
3551  * partial pages.
3552  * @holelen: size of prospective hole in bytes.  This will be rounded
3553  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3554  * end of the file.
3555  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3556  * but 0 when invalidating pagecache, don't throw away private data.
3557  */
3558 void unmap_mapping_range(struct address_space *mapping,
3559 		loff_t const holebegin, loff_t const holelen, int even_cows)
3560 {
3561 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3562 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3563 
3564 	/* Check for overflow. */
3565 	if (sizeof(holelen) > sizeof(hlen)) {
3566 		long long holeend =
3567 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3568 		if (holeend & ~(long long)ULONG_MAX)
3569 			hlen = ULONG_MAX - hba + 1;
3570 	}
3571 
3572 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3573 }
3574 EXPORT_SYMBOL(unmap_mapping_range);
3575 
3576 /*
3577  * Restore a potential device exclusive pte to a working pte entry
3578  */
3579 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3580 {
3581 	struct folio *folio = page_folio(vmf->page);
3582 	struct vm_area_struct *vma = vmf->vma;
3583 	struct mmu_notifier_range range;
3584 
3585 	/*
3586 	 * We need a reference to lock the folio because we don't hold
3587 	 * the PTL so a racing thread can remove the device-exclusive
3588 	 * entry and unmap it. If the folio is free the entry must
3589 	 * have been removed already. If it happens to have already
3590 	 * been re-allocated after being freed all we do is lock and
3591 	 * unlock it.
3592 	 */
3593 	if (!folio_try_get(folio))
3594 		return 0;
3595 
3596 	if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3597 		folio_put(folio);
3598 		return VM_FAULT_RETRY;
3599 	}
3600 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3601 				vma->vm_mm, vmf->address & PAGE_MASK,
3602 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3603 	mmu_notifier_invalidate_range_start(&range);
3604 
3605 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3606 				&vmf->ptl);
3607 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3608 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3609 
3610 	if (vmf->pte)
3611 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3612 	folio_unlock(folio);
3613 	folio_put(folio);
3614 
3615 	mmu_notifier_invalidate_range_end(&range);
3616 	return 0;
3617 }
3618 
3619 static inline bool should_try_to_free_swap(struct folio *folio,
3620 					   struct vm_area_struct *vma,
3621 					   unsigned int fault_flags)
3622 {
3623 	if (!folio_test_swapcache(folio))
3624 		return false;
3625 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3626 	    folio_test_mlocked(folio))
3627 		return true;
3628 	/*
3629 	 * If we want to map a page that's in the swapcache writable, we
3630 	 * have to detect via the refcount if we're really the exclusive
3631 	 * user. Try freeing the swapcache to get rid of the swapcache
3632 	 * reference only in case it's likely that we'll be the exlusive user.
3633 	 */
3634 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3635 		folio_ref_count(folio) == 2;
3636 }
3637 
3638 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3639 {
3640 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3641 				       vmf->address, &vmf->ptl);
3642 	if (!vmf->pte)
3643 		return 0;
3644 	/*
3645 	 * Be careful so that we will only recover a special uffd-wp pte into a
3646 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3647 	 *
3648 	 * This should also cover the case where e.g. the pte changed
3649 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3650 	 * So is_pte_marker() check is not enough to safely drop the pte.
3651 	 */
3652 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3653 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3654 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3655 	return 0;
3656 }
3657 
3658 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3659 {
3660 	if (vma_is_anonymous(vmf->vma))
3661 		return do_anonymous_page(vmf);
3662 	else
3663 		return do_fault(vmf);
3664 }
3665 
3666 /*
3667  * This is actually a page-missing access, but with uffd-wp special pte
3668  * installed.  It means this pte was wr-protected before being unmapped.
3669  */
3670 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3671 {
3672 	/*
3673 	 * Just in case there're leftover special ptes even after the region
3674 	 * got unregistered - we can simply clear them.
3675 	 */
3676 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3677 		return pte_marker_clear(vmf);
3678 
3679 	return do_pte_missing(vmf);
3680 }
3681 
3682 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3683 {
3684 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3685 	unsigned long marker = pte_marker_get(entry);
3686 
3687 	/*
3688 	 * PTE markers should never be empty.  If anything weird happened,
3689 	 * the best thing to do is to kill the process along with its mm.
3690 	 */
3691 	if (WARN_ON_ONCE(!marker))
3692 		return VM_FAULT_SIGBUS;
3693 
3694 	/* Higher priority than uffd-wp when data corrupted */
3695 	if (marker & PTE_MARKER_SWAPIN_ERROR)
3696 		return VM_FAULT_SIGBUS;
3697 
3698 	if (pte_marker_entry_uffd_wp(entry))
3699 		return pte_marker_handle_uffd_wp(vmf);
3700 
3701 	/* This is an unknown pte marker */
3702 	return VM_FAULT_SIGBUS;
3703 }
3704 
3705 /*
3706  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3707  * but allow concurrent faults), and pte mapped but not yet locked.
3708  * We return with pte unmapped and unlocked.
3709  *
3710  * We return with the mmap_lock locked or unlocked in the same cases
3711  * as does filemap_fault().
3712  */
3713 vm_fault_t do_swap_page(struct vm_fault *vmf)
3714 {
3715 	struct vm_area_struct *vma = vmf->vma;
3716 	struct folio *swapcache, *folio = NULL;
3717 	struct page *page;
3718 	struct swap_info_struct *si = NULL;
3719 	rmap_t rmap_flags = RMAP_NONE;
3720 	bool exclusive = false;
3721 	swp_entry_t entry;
3722 	pte_t pte;
3723 	int locked;
3724 	vm_fault_t ret = 0;
3725 	void *shadow = NULL;
3726 
3727 	if (!pte_unmap_same(vmf))
3728 		goto out;
3729 
3730 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3731 		ret = VM_FAULT_RETRY;
3732 		goto out;
3733 	}
3734 
3735 	entry = pte_to_swp_entry(vmf->orig_pte);
3736 	if (unlikely(non_swap_entry(entry))) {
3737 		if (is_migration_entry(entry)) {
3738 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3739 					     vmf->address);
3740 		} else if (is_device_exclusive_entry(entry)) {
3741 			vmf->page = pfn_swap_entry_to_page(entry);
3742 			ret = remove_device_exclusive_entry(vmf);
3743 		} else if (is_device_private_entry(entry)) {
3744 			vmf->page = pfn_swap_entry_to_page(entry);
3745 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3746 					vmf->address, &vmf->ptl);
3747 			if (unlikely(!vmf->pte ||
3748 				     !pte_same(ptep_get(vmf->pte),
3749 							vmf->orig_pte)))
3750 				goto unlock;
3751 
3752 			/*
3753 			 * Get a page reference while we know the page can't be
3754 			 * freed.
3755 			 */
3756 			get_page(vmf->page);
3757 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3758 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3759 			put_page(vmf->page);
3760 		} else if (is_hwpoison_entry(entry)) {
3761 			ret = VM_FAULT_HWPOISON;
3762 		} else if (is_pte_marker_entry(entry)) {
3763 			ret = handle_pte_marker(vmf);
3764 		} else {
3765 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3766 			ret = VM_FAULT_SIGBUS;
3767 		}
3768 		goto out;
3769 	}
3770 
3771 	/* Prevent swapoff from happening to us. */
3772 	si = get_swap_device(entry);
3773 	if (unlikely(!si))
3774 		goto out;
3775 
3776 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3777 	if (folio)
3778 		page = folio_file_page(folio, swp_offset(entry));
3779 	swapcache = folio;
3780 
3781 	if (!folio) {
3782 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3783 		    __swap_count(entry) == 1) {
3784 			/* skip swapcache */
3785 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3786 						vma, vmf->address, false);
3787 			page = &folio->page;
3788 			if (folio) {
3789 				__folio_set_locked(folio);
3790 				__folio_set_swapbacked(folio);
3791 
3792 				if (mem_cgroup_swapin_charge_folio(folio,
3793 							vma->vm_mm, GFP_KERNEL,
3794 							entry)) {
3795 					ret = VM_FAULT_OOM;
3796 					goto out_page;
3797 				}
3798 				mem_cgroup_swapin_uncharge_swap(entry);
3799 
3800 				shadow = get_shadow_from_swap_cache(entry);
3801 				if (shadow)
3802 					workingset_refault(folio, shadow);
3803 
3804 				folio_add_lru(folio);
3805 
3806 				/* To provide entry to swap_readpage() */
3807 				folio_set_swap_entry(folio, entry);
3808 				swap_readpage(page, true, NULL);
3809 				folio->private = NULL;
3810 			}
3811 		} else {
3812 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3813 						vmf);
3814 			if (page)
3815 				folio = page_folio(page);
3816 			swapcache = folio;
3817 		}
3818 
3819 		if (!folio) {
3820 			/*
3821 			 * Back out if somebody else faulted in this pte
3822 			 * while we released the pte lock.
3823 			 */
3824 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3825 					vmf->address, &vmf->ptl);
3826 			if (likely(vmf->pte &&
3827 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3828 				ret = VM_FAULT_OOM;
3829 			goto unlock;
3830 		}
3831 
3832 		/* Had to read the page from swap area: Major fault */
3833 		ret = VM_FAULT_MAJOR;
3834 		count_vm_event(PGMAJFAULT);
3835 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3836 	} else if (PageHWPoison(page)) {
3837 		/*
3838 		 * hwpoisoned dirty swapcache pages are kept for killing
3839 		 * owner processes (which may be unknown at hwpoison time)
3840 		 */
3841 		ret = VM_FAULT_HWPOISON;
3842 		goto out_release;
3843 	}
3844 
3845 	locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3846 
3847 	if (!locked) {
3848 		ret |= VM_FAULT_RETRY;
3849 		goto out_release;
3850 	}
3851 
3852 	if (swapcache) {
3853 		/*
3854 		 * Make sure folio_free_swap() or swapoff did not release the
3855 		 * swapcache from under us.  The page pin, and pte_same test
3856 		 * below, are not enough to exclude that.  Even if it is still
3857 		 * swapcache, we need to check that the page's swap has not
3858 		 * changed.
3859 		 */
3860 		if (unlikely(!folio_test_swapcache(folio) ||
3861 			     page_private(page) != entry.val))
3862 			goto out_page;
3863 
3864 		/*
3865 		 * KSM sometimes has to copy on read faults, for example, if
3866 		 * page->index of !PageKSM() pages would be nonlinear inside the
3867 		 * anon VMA -- PageKSM() is lost on actual swapout.
3868 		 */
3869 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3870 		if (unlikely(!page)) {
3871 			ret = VM_FAULT_OOM;
3872 			goto out_page;
3873 		} else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3874 			ret = VM_FAULT_HWPOISON;
3875 			goto out_page;
3876 		}
3877 		folio = page_folio(page);
3878 
3879 		/*
3880 		 * If we want to map a page that's in the swapcache writable, we
3881 		 * have to detect via the refcount if we're really the exclusive
3882 		 * owner. Try removing the extra reference from the local LRU
3883 		 * pagevecs if required.
3884 		 */
3885 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3886 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3887 			lru_add_drain();
3888 	}
3889 
3890 	folio_throttle_swaprate(folio, GFP_KERNEL);
3891 
3892 	/*
3893 	 * Back out if somebody else already faulted in this pte.
3894 	 */
3895 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3896 			&vmf->ptl);
3897 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3898 		goto out_nomap;
3899 
3900 	if (unlikely(!folio_test_uptodate(folio))) {
3901 		ret = VM_FAULT_SIGBUS;
3902 		goto out_nomap;
3903 	}
3904 
3905 	/*
3906 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3907 	 * must never point at an anonymous page in the swapcache that is
3908 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3909 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3910 	 * check after taking the PT lock and making sure that nobody
3911 	 * concurrently faulted in this page and set PG_anon_exclusive.
3912 	 */
3913 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3914 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3915 
3916 	/*
3917 	 * Check under PT lock (to protect against concurrent fork() sharing
3918 	 * the swap entry concurrently) for certainly exclusive pages.
3919 	 */
3920 	if (!folio_test_ksm(folio)) {
3921 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3922 		if (folio != swapcache) {
3923 			/*
3924 			 * We have a fresh page that is not exposed to the
3925 			 * swapcache -> certainly exclusive.
3926 			 */
3927 			exclusive = true;
3928 		} else if (exclusive && folio_test_writeback(folio) &&
3929 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3930 			/*
3931 			 * This is tricky: not all swap backends support
3932 			 * concurrent page modifications while under writeback.
3933 			 *
3934 			 * So if we stumble over such a page in the swapcache
3935 			 * we must not set the page exclusive, otherwise we can
3936 			 * map it writable without further checks and modify it
3937 			 * while still under writeback.
3938 			 *
3939 			 * For these problematic swap backends, simply drop the
3940 			 * exclusive marker: this is perfectly fine as we start
3941 			 * writeback only if we fully unmapped the page and
3942 			 * there are no unexpected references on the page after
3943 			 * unmapping succeeded. After fully unmapped, no
3944 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3945 			 * appear, so dropping the exclusive marker and mapping
3946 			 * it only R/O is fine.
3947 			 */
3948 			exclusive = false;
3949 		}
3950 	}
3951 
3952 	/*
3953 	 * Remove the swap entry and conditionally try to free up the swapcache.
3954 	 * We're already holding a reference on the page but haven't mapped it
3955 	 * yet.
3956 	 */
3957 	swap_free(entry);
3958 	if (should_try_to_free_swap(folio, vma, vmf->flags))
3959 		folio_free_swap(folio);
3960 
3961 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3962 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3963 	pte = mk_pte(page, vma->vm_page_prot);
3964 
3965 	/*
3966 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3967 	 * certainly not shared either because we just allocated them without
3968 	 * exposing them to the swapcache or because the swap entry indicates
3969 	 * exclusivity.
3970 	 */
3971 	if (!folio_test_ksm(folio) &&
3972 	    (exclusive || folio_ref_count(folio) == 1)) {
3973 		if (vmf->flags & FAULT_FLAG_WRITE) {
3974 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3975 			vmf->flags &= ~FAULT_FLAG_WRITE;
3976 		}
3977 		rmap_flags |= RMAP_EXCLUSIVE;
3978 	}
3979 	flush_icache_page(vma, page);
3980 	if (pte_swp_soft_dirty(vmf->orig_pte))
3981 		pte = pte_mksoft_dirty(pte);
3982 	if (pte_swp_uffd_wp(vmf->orig_pte))
3983 		pte = pte_mkuffd_wp(pte);
3984 	vmf->orig_pte = pte;
3985 
3986 	/* ksm created a completely new copy */
3987 	if (unlikely(folio != swapcache && swapcache)) {
3988 		page_add_new_anon_rmap(page, vma, vmf->address);
3989 		folio_add_lru_vma(folio, vma);
3990 	} else {
3991 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3992 	}
3993 
3994 	VM_BUG_ON(!folio_test_anon(folio) ||
3995 			(pte_write(pte) && !PageAnonExclusive(page)));
3996 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3997 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3998 
3999 	folio_unlock(folio);
4000 	if (folio != swapcache && swapcache) {
4001 		/*
4002 		 * Hold the lock to avoid the swap entry to be reused
4003 		 * until we take the PT lock for the pte_same() check
4004 		 * (to avoid false positives from pte_same). For
4005 		 * further safety release the lock after the swap_free
4006 		 * so that the swap count won't change under a
4007 		 * parallel locked swapcache.
4008 		 */
4009 		folio_unlock(swapcache);
4010 		folio_put(swapcache);
4011 	}
4012 
4013 	if (vmf->flags & FAULT_FLAG_WRITE) {
4014 		ret |= do_wp_page(vmf);
4015 		if (ret & VM_FAULT_ERROR)
4016 			ret &= VM_FAULT_ERROR;
4017 		goto out;
4018 	}
4019 
4020 	/* No need to invalidate - it was non-present before */
4021 	update_mmu_cache(vma, vmf->address, vmf->pte);
4022 unlock:
4023 	if (vmf->pte)
4024 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4025 out:
4026 	if (si)
4027 		put_swap_device(si);
4028 	return ret;
4029 out_nomap:
4030 	if (vmf->pte)
4031 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4032 out_page:
4033 	folio_unlock(folio);
4034 out_release:
4035 	folio_put(folio);
4036 	if (folio != swapcache && swapcache) {
4037 		folio_unlock(swapcache);
4038 		folio_put(swapcache);
4039 	}
4040 	if (si)
4041 		put_swap_device(si);
4042 	return ret;
4043 }
4044 
4045 /*
4046  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4047  * but allow concurrent faults), and pte mapped but not yet locked.
4048  * We return with mmap_lock still held, but pte unmapped and unlocked.
4049  */
4050 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4051 {
4052 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4053 	struct vm_area_struct *vma = vmf->vma;
4054 	struct folio *folio;
4055 	vm_fault_t ret = 0;
4056 	pte_t entry;
4057 
4058 	/* File mapping without ->vm_ops ? */
4059 	if (vma->vm_flags & VM_SHARED)
4060 		return VM_FAULT_SIGBUS;
4061 
4062 	/*
4063 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4064 	 * be distinguished from a transient failure of pte_offset_map().
4065 	 */
4066 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4067 		return VM_FAULT_OOM;
4068 
4069 	/* Use the zero-page for reads */
4070 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4071 			!mm_forbids_zeropage(vma->vm_mm)) {
4072 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4073 						vma->vm_page_prot));
4074 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4075 				vmf->address, &vmf->ptl);
4076 		if (!vmf->pte)
4077 			goto unlock;
4078 		if (vmf_pte_changed(vmf)) {
4079 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4080 			goto unlock;
4081 		}
4082 		ret = check_stable_address_space(vma->vm_mm);
4083 		if (ret)
4084 			goto unlock;
4085 		/* Deliver the page fault to userland, check inside PT lock */
4086 		if (userfaultfd_missing(vma)) {
4087 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4088 			return handle_userfault(vmf, VM_UFFD_MISSING);
4089 		}
4090 		goto setpte;
4091 	}
4092 
4093 	/* Allocate our own private page. */
4094 	if (unlikely(anon_vma_prepare(vma)))
4095 		goto oom;
4096 	folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4097 	if (!folio)
4098 		goto oom;
4099 
4100 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4101 		goto oom_free_page;
4102 	folio_throttle_swaprate(folio, GFP_KERNEL);
4103 
4104 	/*
4105 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4106 	 * preceding stores to the page contents become visible before
4107 	 * the set_pte_at() write.
4108 	 */
4109 	__folio_mark_uptodate(folio);
4110 
4111 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4112 	entry = pte_sw_mkyoung(entry);
4113 	if (vma->vm_flags & VM_WRITE)
4114 		entry = pte_mkwrite(pte_mkdirty(entry));
4115 
4116 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4117 			&vmf->ptl);
4118 	if (!vmf->pte)
4119 		goto release;
4120 	if (vmf_pte_changed(vmf)) {
4121 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4122 		goto release;
4123 	}
4124 
4125 	ret = check_stable_address_space(vma->vm_mm);
4126 	if (ret)
4127 		goto release;
4128 
4129 	/* Deliver the page fault to userland, check inside PT lock */
4130 	if (userfaultfd_missing(vma)) {
4131 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4132 		folio_put(folio);
4133 		return handle_userfault(vmf, VM_UFFD_MISSING);
4134 	}
4135 
4136 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4137 	folio_add_new_anon_rmap(folio, vma, vmf->address);
4138 	folio_add_lru_vma(folio, vma);
4139 setpte:
4140 	if (uffd_wp)
4141 		entry = pte_mkuffd_wp(entry);
4142 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4143 
4144 	/* No need to invalidate - it was non-present before */
4145 	update_mmu_cache(vma, vmf->address, vmf->pte);
4146 unlock:
4147 	if (vmf->pte)
4148 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4149 	return ret;
4150 release:
4151 	folio_put(folio);
4152 	goto unlock;
4153 oom_free_page:
4154 	folio_put(folio);
4155 oom:
4156 	return VM_FAULT_OOM;
4157 }
4158 
4159 /*
4160  * The mmap_lock must have been held on entry, and may have been
4161  * released depending on flags and vma->vm_ops->fault() return value.
4162  * See filemap_fault() and __lock_page_retry().
4163  */
4164 static vm_fault_t __do_fault(struct vm_fault *vmf)
4165 {
4166 	struct vm_area_struct *vma = vmf->vma;
4167 	vm_fault_t ret;
4168 
4169 	/*
4170 	 * Preallocate pte before we take page_lock because this might lead to
4171 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4172 	 *				lock_page(A)
4173 	 *				SetPageWriteback(A)
4174 	 *				unlock_page(A)
4175 	 * lock_page(B)
4176 	 *				lock_page(B)
4177 	 * pte_alloc_one
4178 	 *   shrink_page_list
4179 	 *     wait_on_page_writeback(A)
4180 	 *				SetPageWriteback(B)
4181 	 *				unlock_page(B)
4182 	 *				# flush A, B to clear the writeback
4183 	 */
4184 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4185 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4186 		if (!vmf->prealloc_pte)
4187 			return VM_FAULT_OOM;
4188 	}
4189 
4190 	ret = vma->vm_ops->fault(vmf);
4191 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4192 			    VM_FAULT_DONE_COW)))
4193 		return ret;
4194 
4195 	if (unlikely(PageHWPoison(vmf->page))) {
4196 		struct page *page = vmf->page;
4197 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4198 		if (ret & VM_FAULT_LOCKED) {
4199 			if (page_mapped(page))
4200 				unmap_mapping_pages(page_mapping(page),
4201 						    page->index, 1, false);
4202 			/* Retry if a clean page was removed from the cache. */
4203 			if (invalidate_inode_page(page))
4204 				poisonret = VM_FAULT_NOPAGE;
4205 			unlock_page(page);
4206 		}
4207 		put_page(page);
4208 		vmf->page = NULL;
4209 		return poisonret;
4210 	}
4211 
4212 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4213 		lock_page(vmf->page);
4214 	else
4215 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4216 
4217 	return ret;
4218 }
4219 
4220 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4221 static void deposit_prealloc_pte(struct vm_fault *vmf)
4222 {
4223 	struct vm_area_struct *vma = vmf->vma;
4224 
4225 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4226 	/*
4227 	 * We are going to consume the prealloc table,
4228 	 * count that as nr_ptes.
4229 	 */
4230 	mm_inc_nr_ptes(vma->vm_mm);
4231 	vmf->prealloc_pte = NULL;
4232 }
4233 
4234 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4235 {
4236 	struct vm_area_struct *vma = vmf->vma;
4237 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4238 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4239 	pmd_t entry;
4240 	int i;
4241 	vm_fault_t ret = VM_FAULT_FALLBACK;
4242 
4243 	if (!transhuge_vma_suitable(vma, haddr))
4244 		return ret;
4245 
4246 	page = compound_head(page);
4247 	if (compound_order(page) != HPAGE_PMD_ORDER)
4248 		return ret;
4249 
4250 	/*
4251 	 * Just backoff if any subpage of a THP is corrupted otherwise
4252 	 * the corrupted page may mapped by PMD silently to escape the
4253 	 * check.  This kind of THP just can be PTE mapped.  Access to
4254 	 * the corrupted subpage should trigger SIGBUS as expected.
4255 	 */
4256 	if (unlikely(PageHasHWPoisoned(page)))
4257 		return ret;
4258 
4259 	/*
4260 	 * Archs like ppc64 need additional space to store information
4261 	 * related to pte entry. Use the preallocated table for that.
4262 	 */
4263 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4264 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4265 		if (!vmf->prealloc_pte)
4266 			return VM_FAULT_OOM;
4267 	}
4268 
4269 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4270 	if (unlikely(!pmd_none(*vmf->pmd)))
4271 		goto out;
4272 
4273 	for (i = 0; i < HPAGE_PMD_NR; i++)
4274 		flush_icache_page(vma, page + i);
4275 
4276 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4277 	if (write)
4278 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4279 
4280 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4281 	page_add_file_rmap(page, vma, true);
4282 
4283 	/*
4284 	 * deposit and withdraw with pmd lock held
4285 	 */
4286 	if (arch_needs_pgtable_deposit())
4287 		deposit_prealloc_pte(vmf);
4288 
4289 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4290 
4291 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4292 
4293 	/* fault is handled */
4294 	ret = 0;
4295 	count_vm_event(THP_FILE_MAPPED);
4296 out:
4297 	spin_unlock(vmf->ptl);
4298 	return ret;
4299 }
4300 #else
4301 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4302 {
4303 	return VM_FAULT_FALLBACK;
4304 }
4305 #endif
4306 
4307 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4308 {
4309 	struct vm_area_struct *vma = vmf->vma;
4310 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4311 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4312 	bool prefault = vmf->address != addr;
4313 	pte_t entry;
4314 
4315 	flush_icache_page(vma, page);
4316 	entry = mk_pte(page, vma->vm_page_prot);
4317 
4318 	if (prefault && arch_wants_old_prefaulted_pte())
4319 		entry = pte_mkold(entry);
4320 	else
4321 		entry = pte_sw_mkyoung(entry);
4322 
4323 	if (write)
4324 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4325 	if (unlikely(uffd_wp))
4326 		entry = pte_mkuffd_wp(entry);
4327 	/* copy-on-write page */
4328 	if (write && !(vma->vm_flags & VM_SHARED)) {
4329 		inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4330 		page_add_new_anon_rmap(page, vma, addr);
4331 		lru_cache_add_inactive_or_unevictable(page, vma);
4332 	} else {
4333 		inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4334 		page_add_file_rmap(page, vma, false);
4335 	}
4336 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4337 }
4338 
4339 static bool vmf_pte_changed(struct vm_fault *vmf)
4340 {
4341 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4342 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4343 
4344 	return !pte_none(ptep_get(vmf->pte));
4345 }
4346 
4347 /**
4348  * finish_fault - finish page fault once we have prepared the page to fault
4349  *
4350  * @vmf: structure describing the fault
4351  *
4352  * This function handles all that is needed to finish a page fault once the
4353  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4354  * given page, adds reverse page mapping, handles memcg charges and LRU
4355  * addition.
4356  *
4357  * The function expects the page to be locked and on success it consumes a
4358  * reference of a page being mapped (for the PTE which maps it).
4359  *
4360  * Return: %0 on success, %VM_FAULT_ code in case of error.
4361  */
4362 vm_fault_t finish_fault(struct vm_fault *vmf)
4363 {
4364 	struct vm_area_struct *vma = vmf->vma;
4365 	struct page *page;
4366 	vm_fault_t ret;
4367 
4368 	/* Did we COW the page? */
4369 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4370 		page = vmf->cow_page;
4371 	else
4372 		page = vmf->page;
4373 
4374 	/*
4375 	 * check even for read faults because we might have lost our CoWed
4376 	 * page
4377 	 */
4378 	if (!(vma->vm_flags & VM_SHARED)) {
4379 		ret = check_stable_address_space(vma->vm_mm);
4380 		if (ret)
4381 			return ret;
4382 	}
4383 
4384 	if (pmd_none(*vmf->pmd)) {
4385 		if (PageTransCompound(page)) {
4386 			ret = do_set_pmd(vmf, page);
4387 			if (ret != VM_FAULT_FALLBACK)
4388 				return ret;
4389 		}
4390 
4391 		if (vmf->prealloc_pte)
4392 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4393 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4394 			return VM_FAULT_OOM;
4395 	}
4396 
4397 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4398 				      vmf->address, &vmf->ptl);
4399 	if (!vmf->pte)
4400 		return VM_FAULT_NOPAGE;
4401 
4402 	/* Re-check under ptl */
4403 	if (likely(!vmf_pte_changed(vmf))) {
4404 		do_set_pte(vmf, page, vmf->address);
4405 
4406 		/* no need to invalidate: a not-present page won't be cached */
4407 		update_mmu_cache(vma, vmf->address, vmf->pte);
4408 
4409 		ret = 0;
4410 	} else {
4411 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4412 		ret = VM_FAULT_NOPAGE;
4413 	}
4414 
4415 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4416 	return ret;
4417 }
4418 
4419 static unsigned long fault_around_pages __read_mostly =
4420 	65536 >> PAGE_SHIFT;
4421 
4422 #ifdef CONFIG_DEBUG_FS
4423 static int fault_around_bytes_get(void *data, u64 *val)
4424 {
4425 	*val = fault_around_pages << PAGE_SHIFT;
4426 	return 0;
4427 }
4428 
4429 /*
4430  * fault_around_bytes must be rounded down to the nearest page order as it's
4431  * what do_fault_around() expects to see.
4432  */
4433 static int fault_around_bytes_set(void *data, u64 val)
4434 {
4435 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4436 		return -EINVAL;
4437 
4438 	/*
4439 	 * The minimum value is 1 page, however this results in no fault-around
4440 	 * at all. See should_fault_around().
4441 	 */
4442 	fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4443 
4444 	return 0;
4445 }
4446 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4447 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4448 
4449 static int __init fault_around_debugfs(void)
4450 {
4451 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4452 				   &fault_around_bytes_fops);
4453 	return 0;
4454 }
4455 late_initcall(fault_around_debugfs);
4456 #endif
4457 
4458 /*
4459  * do_fault_around() tries to map few pages around the fault address. The hope
4460  * is that the pages will be needed soon and this will lower the number of
4461  * faults to handle.
4462  *
4463  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4464  * not ready to be mapped: not up-to-date, locked, etc.
4465  *
4466  * This function doesn't cross VMA or page table boundaries, in order to call
4467  * map_pages() and acquire a PTE lock only once.
4468  *
4469  * fault_around_pages defines how many pages we'll try to map.
4470  * do_fault_around() expects it to be set to a power of two less than or equal
4471  * to PTRS_PER_PTE.
4472  *
4473  * The virtual address of the area that we map is naturally aligned to
4474  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4475  * (and therefore to page order).  This way it's easier to guarantee
4476  * that we don't cross page table boundaries.
4477  */
4478 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4479 {
4480 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4481 	pgoff_t pte_off = pte_index(vmf->address);
4482 	/* The page offset of vmf->address within the VMA. */
4483 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4484 	pgoff_t from_pte, to_pte;
4485 	vm_fault_t ret;
4486 
4487 	/* The PTE offset of the start address, clamped to the VMA. */
4488 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4489 		       pte_off - min(pte_off, vma_off));
4490 
4491 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4492 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4493 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4494 
4495 	if (pmd_none(*vmf->pmd)) {
4496 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4497 		if (!vmf->prealloc_pte)
4498 			return VM_FAULT_OOM;
4499 	}
4500 
4501 	rcu_read_lock();
4502 	ret = vmf->vma->vm_ops->map_pages(vmf,
4503 			vmf->pgoff + from_pte - pte_off,
4504 			vmf->pgoff + to_pte - pte_off);
4505 	rcu_read_unlock();
4506 
4507 	return ret;
4508 }
4509 
4510 /* Return true if we should do read fault-around, false otherwise */
4511 static inline bool should_fault_around(struct vm_fault *vmf)
4512 {
4513 	/* No ->map_pages?  No way to fault around... */
4514 	if (!vmf->vma->vm_ops->map_pages)
4515 		return false;
4516 
4517 	if (uffd_disable_fault_around(vmf->vma))
4518 		return false;
4519 
4520 	/* A single page implies no faulting 'around' at all. */
4521 	return fault_around_pages > 1;
4522 }
4523 
4524 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4525 {
4526 	vm_fault_t ret = 0;
4527 
4528 	/*
4529 	 * Let's call ->map_pages() first and use ->fault() as fallback
4530 	 * if page by the offset is not ready to be mapped (cold cache or
4531 	 * something).
4532 	 */
4533 	if (should_fault_around(vmf)) {
4534 		ret = do_fault_around(vmf);
4535 		if (ret)
4536 			return ret;
4537 	}
4538 
4539 	ret = __do_fault(vmf);
4540 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4541 		return ret;
4542 
4543 	ret |= finish_fault(vmf);
4544 	unlock_page(vmf->page);
4545 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4546 		put_page(vmf->page);
4547 	return ret;
4548 }
4549 
4550 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4551 {
4552 	struct vm_area_struct *vma = vmf->vma;
4553 	vm_fault_t ret;
4554 
4555 	if (unlikely(anon_vma_prepare(vma)))
4556 		return VM_FAULT_OOM;
4557 
4558 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4559 	if (!vmf->cow_page)
4560 		return VM_FAULT_OOM;
4561 
4562 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4563 				GFP_KERNEL)) {
4564 		put_page(vmf->cow_page);
4565 		return VM_FAULT_OOM;
4566 	}
4567 	folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4568 
4569 	ret = __do_fault(vmf);
4570 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4571 		goto uncharge_out;
4572 	if (ret & VM_FAULT_DONE_COW)
4573 		return ret;
4574 
4575 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4576 	__SetPageUptodate(vmf->cow_page);
4577 
4578 	ret |= finish_fault(vmf);
4579 	unlock_page(vmf->page);
4580 	put_page(vmf->page);
4581 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4582 		goto uncharge_out;
4583 	return ret;
4584 uncharge_out:
4585 	put_page(vmf->cow_page);
4586 	return ret;
4587 }
4588 
4589 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4590 {
4591 	struct vm_area_struct *vma = vmf->vma;
4592 	vm_fault_t ret, tmp;
4593 
4594 	ret = __do_fault(vmf);
4595 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4596 		return ret;
4597 
4598 	/*
4599 	 * Check if the backing address space wants to know that the page is
4600 	 * about to become writable
4601 	 */
4602 	if (vma->vm_ops->page_mkwrite) {
4603 		unlock_page(vmf->page);
4604 		tmp = do_page_mkwrite(vmf);
4605 		if (unlikely(!tmp ||
4606 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4607 			put_page(vmf->page);
4608 			return tmp;
4609 		}
4610 	}
4611 
4612 	ret |= finish_fault(vmf);
4613 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4614 					VM_FAULT_RETRY))) {
4615 		unlock_page(vmf->page);
4616 		put_page(vmf->page);
4617 		return ret;
4618 	}
4619 
4620 	ret |= fault_dirty_shared_page(vmf);
4621 	return ret;
4622 }
4623 
4624 /*
4625  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4626  * but allow concurrent faults).
4627  * The mmap_lock may have been released depending on flags and our
4628  * return value.  See filemap_fault() and __folio_lock_or_retry().
4629  * If mmap_lock is released, vma may become invalid (for example
4630  * by other thread calling munmap()).
4631  */
4632 static vm_fault_t do_fault(struct vm_fault *vmf)
4633 {
4634 	struct vm_area_struct *vma = vmf->vma;
4635 	struct mm_struct *vm_mm = vma->vm_mm;
4636 	vm_fault_t ret;
4637 
4638 	/*
4639 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4640 	 */
4641 	if (!vma->vm_ops->fault) {
4642 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4643 					       vmf->address, &vmf->ptl);
4644 		if (unlikely(!vmf->pte))
4645 			ret = VM_FAULT_SIGBUS;
4646 		else {
4647 			/*
4648 			 * Make sure this is not a temporary clearing of pte
4649 			 * by holding ptl and checking again. A R/M/W update
4650 			 * of pte involves: take ptl, clearing the pte so that
4651 			 * we don't have concurrent modification by hardware
4652 			 * followed by an update.
4653 			 */
4654 			if (unlikely(pte_none(ptep_get(vmf->pte))))
4655 				ret = VM_FAULT_SIGBUS;
4656 			else
4657 				ret = VM_FAULT_NOPAGE;
4658 
4659 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4660 		}
4661 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4662 		ret = do_read_fault(vmf);
4663 	else if (!(vma->vm_flags & VM_SHARED))
4664 		ret = do_cow_fault(vmf);
4665 	else
4666 		ret = do_shared_fault(vmf);
4667 
4668 	/* preallocated pagetable is unused: free it */
4669 	if (vmf->prealloc_pte) {
4670 		pte_free(vm_mm, vmf->prealloc_pte);
4671 		vmf->prealloc_pte = NULL;
4672 	}
4673 	return ret;
4674 }
4675 
4676 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4677 		      unsigned long addr, int page_nid, int *flags)
4678 {
4679 	get_page(page);
4680 
4681 	/* Record the current PID acceesing VMA */
4682 	vma_set_access_pid_bit(vma);
4683 
4684 	count_vm_numa_event(NUMA_HINT_FAULTS);
4685 	if (page_nid == numa_node_id()) {
4686 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4687 		*flags |= TNF_FAULT_LOCAL;
4688 	}
4689 
4690 	return mpol_misplaced(page, vma, addr);
4691 }
4692 
4693 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4694 {
4695 	struct vm_area_struct *vma = vmf->vma;
4696 	struct page *page = NULL;
4697 	int page_nid = NUMA_NO_NODE;
4698 	bool writable = false;
4699 	int last_cpupid;
4700 	int target_nid;
4701 	pte_t pte, old_pte;
4702 	int flags = 0;
4703 
4704 	/*
4705 	 * The "pte" at this point cannot be used safely without
4706 	 * validation through pte_unmap_same(). It's of NUMA type but
4707 	 * the pfn may be screwed if the read is non atomic.
4708 	 */
4709 	spin_lock(vmf->ptl);
4710 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4711 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4712 		goto out;
4713 	}
4714 
4715 	/* Get the normal PTE  */
4716 	old_pte = ptep_get(vmf->pte);
4717 	pte = pte_modify(old_pte, vma->vm_page_prot);
4718 
4719 	/*
4720 	 * Detect now whether the PTE could be writable; this information
4721 	 * is only valid while holding the PT lock.
4722 	 */
4723 	writable = pte_write(pte);
4724 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4725 	    can_change_pte_writable(vma, vmf->address, pte))
4726 		writable = true;
4727 
4728 	page = vm_normal_page(vma, vmf->address, pte);
4729 	if (!page || is_zone_device_page(page))
4730 		goto out_map;
4731 
4732 	/* TODO: handle PTE-mapped THP */
4733 	if (PageCompound(page))
4734 		goto out_map;
4735 
4736 	/*
4737 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4738 	 * much anyway since they can be in shared cache state. This misses
4739 	 * the case where a mapping is writable but the process never writes
4740 	 * to it but pte_write gets cleared during protection updates and
4741 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4742 	 * background writeback, dirty balancing and application behaviour.
4743 	 */
4744 	if (!writable)
4745 		flags |= TNF_NO_GROUP;
4746 
4747 	/*
4748 	 * Flag if the page is shared between multiple address spaces. This
4749 	 * is later used when determining whether to group tasks together
4750 	 */
4751 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4752 		flags |= TNF_SHARED;
4753 
4754 	page_nid = page_to_nid(page);
4755 	/*
4756 	 * For memory tiering mode, cpupid of slow memory page is used
4757 	 * to record page access time.  So use default value.
4758 	 */
4759 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4760 	    !node_is_toptier(page_nid))
4761 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4762 	else
4763 		last_cpupid = page_cpupid_last(page);
4764 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4765 			&flags);
4766 	if (target_nid == NUMA_NO_NODE) {
4767 		put_page(page);
4768 		goto out_map;
4769 	}
4770 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4771 	writable = false;
4772 
4773 	/* Migrate to the requested node */
4774 	if (migrate_misplaced_page(page, vma, target_nid)) {
4775 		page_nid = target_nid;
4776 		flags |= TNF_MIGRATED;
4777 	} else {
4778 		flags |= TNF_MIGRATE_FAIL;
4779 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4780 					       vmf->address, &vmf->ptl);
4781 		if (unlikely(!vmf->pte))
4782 			goto out;
4783 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4784 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4785 			goto out;
4786 		}
4787 		goto out_map;
4788 	}
4789 
4790 out:
4791 	if (page_nid != NUMA_NO_NODE)
4792 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4793 	return 0;
4794 out_map:
4795 	/*
4796 	 * Make it present again, depending on how arch implements
4797 	 * non-accessible ptes, some can allow access by kernel mode.
4798 	 */
4799 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4800 	pte = pte_modify(old_pte, vma->vm_page_prot);
4801 	pte = pte_mkyoung(pte);
4802 	if (writable)
4803 		pte = pte_mkwrite(pte);
4804 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4805 	update_mmu_cache(vma, vmf->address, vmf->pte);
4806 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4807 	goto out;
4808 }
4809 
4810 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4811 {
4812 	if (vma_is_anonymous(vmf->vma))
4813 		return do_huge_pmd_anonymous_page(vmf);
4814 	if (vmf->vma->vm_ops->huge_fault)
4815 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4816 	return VM_FAULT_FALLBACK;
4817 }
4818 
4819 /* `inline' is required to avoid gcc 4.1.2 build error */
4820 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4821 {
4822 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4823 	vm_fault_t ret;
4824 
4825 	if (vma_is_anonymous(vmf->vma)) {
4826 		if (likely(!unshare) &&
4827 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4828 			return handle_userfault(vmf, VM_UFFD_WP);
4829 		return do_huge_pmd_wp_page(vmf);
4830 	}
4831 
4832 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4833 		if (vmf->vma->vm_ops->huge_fault) {
4834 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4835 			if (!(ret & VM_FAULT_FALLBACK))
4836 				return ret;
4837 		}
4838 	}
4839 
4840 	/* COW or write-notify handled on pte level: split pmd. */
4841 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4842 
4843 	return VM_FAULT_FALLBACK;
4844 }
4845 
4846 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4847 {
4848 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4849 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4850 	/* No support for anonymous transparent PUD pages yet */
4851 	if (vma_is_anonymous(vmf->vma))
4852 		return VM_FAULT_FALLBACK;
4853 	if (vmf->vma->vm_ops->huge_fault)
4854 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4855 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4856 	return VM_FAULT_FALLBACK;
4857 }
4858 
4859 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4860 {
4861 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4862 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4863 	vm_fault_t ret;
4864 
4865 	/* No support for anonymous transparent PUD pages yet */
4866 	if (vma_is_anonymous(vmf->vma))
4867 		goto split;
4868 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4869 		if (vmf->vma->vm_ops->huge_fault) {
4870 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4871 			if (!(ret & VM_FAULT_FALLBACK))
4872 				return ret;
4873 		}
4874 	}
4875 split:
4876 	/* COW or write-notify not handled on PUD level: split pud.*/
4877 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4878 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4879 	return VM_FAULT_FALLBACK;
4880 }
4881 
4882 /*
4883  * These routines also need to handle stuff like marking pages dirty
4884  * and/or accessed for architectures that don't do it in hardware (most
4885  * RISC architectures).  The early dirtying is also good on the i386.
4886  *
4887  * There is also a hook called "update_mmu_cache()" that architectures
4888  * with external mmu caches can use to update those (ie the Sparc or
4889  * PowerPC hashed page tables that act as extended TLBs).
4890  *
4891  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4892  * concurrent faults).
4893  *
4894  * The mmap_lock may have been released depending on flags and our return value.
4895  * See filemap_fault() and __folio_lock_or_retry().
4896  */
4897 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4898 {
4899 	pte_t entry;
4900 
4901 	if (unlikely(pmd_none(*vmf->pmd))) {
4902 		/*
4903 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4904 		 * want to allocate huge page, and if we expose page table
4905 		 * for an instant, it will be difficult to retract from
4906 		 * concurrent faults and from rmap lookups.
4907 		 */
4908 		vmf->pte = NULL;
4909 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4910 	} else {
4911 		/*
4912 		 * A regular pmd is established and it can't morph into a huge
4913 		 * pmd by anon khugepaged, since that takes mmap_lock in write
4914 		 * mode; but shmem or file collapse to THP could still morph
4915 		 * it into a huge pmd: just retry later if so.
4916 		 */
4917 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4918 						 vmf->address, &vmf->ptl);
4919 		if (unlikely(!vmf->pte))
4920 			return 0;
4921 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
4922 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4923 
4924 		if (pte_none(vmf->orig_pte)) {
4925 			pte_unmap(vmf->pte);
4926 			vmf->pte = NULL;
4927 		}
4928 	}
4929 
4930 	if (!vmf->pte)
4931 		return do_pte_missing(vmf);
4932 
4933 	if (!pte_present(vmf->orig_pte))
4934 		return do_swap_page(vmf);
4935 
4936 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4937 		return do_numa_page(vmf);
4938 
4939 	spin_lock(vmf->ptl);
4940 	entry = vmf->orig_pte;
4941 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
4942 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4943 		goto unlock;
4944 	}
4945 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4946 		if (!pte_write(entry))
4947 			return do_wp_page(vmf);
4948 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4949 			entry = pte_mkdirty(entry);
4950 	}
4951 	entry = pte_mkyoung(entry);
4952 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4953 				vmf->flags & FAULT_FLAG_WRITE)) {
4954 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4955 	} else {
4956 		/* Skip spurious TLB flush for retried page fault */
4957 		if (vmf->flags & FAULT_FLAG_TRIED)
4958 			goto unlock;
4959 		/*
4960 		 * This is needed only for protection faults but the arch code
4961 		 * is not yet telling us if this is a protection fault or not.
4962 		 * This still avoids useless tlb flushes for .text page faults
4963 		 * with threads.
4964 		 */
4965 		if (vmf->flags & FAULT_FLAG_WRITE)
4966 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4967 						     vmf->pte);
4968 	}
4969 unlock:
4970 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4971 	return 0;
4972 }
4973 
4974 /*
4975  * By the time we get here, we already hold the mm semaphore
4976  *
4977  * The mmap_lock may have been released depending on flags and our
4978  * return value.  See filemap_fault() and __folio_lock_or_retry().
4979  */
4980 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4981 		unsigned long address, unsigned int flags)
4982 {
4983 	struct vm_fault vmf = {
4984 		.vma = vma,
4985 		.address = address & PAGE_MASK,
4986 		.real_address = address,
4987 		.flags = flags,
4988 		.pgoff = linear_page_index(vma, address),
4989 		.gfp_mask = __get_fault_gfp_mask(vma),
4990 	};
4991 	struct mm_struct *mm = vma->vm_mm;
4992 	unsigned long vm_flags = vma->vm_flags;
4993 	pgd_t *pgd;
4994 	p4d_t *p4d;
4995 	vm_fault_t ret;
4996 
4997 	pgd = pgd_offset(mm, address);
4998 	p4d = p4d_alloc(mm, pgd, address);
4999 	if (!p4d)
5000 		return VM_FAULT_OOM;
5001 
5002 	vmf.pud = pud_alloc(mm, p4d, address);
5003 	if (!vmf.pud)
5004 		return VM_FAULT_OOM;
5005 retry_pud:
5006 	if (pud_none(*vmf.pud) &&
5007 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5008 		ret = create_huge_pud(&vmf);
5009 		if (!(ret & VM_FAULT_FALLBACK))
5010 			return ret;
5011 	} else {
5012 		pud_t orig_pud = *vmf.pud;
5013 
5014 		barrier();
5015 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5016 
5017 			/*
5018 			 * TODO once we support anonymous PUDs: NUMA case and
5019 			 * FAULT_FLAG_UNSHARE handling.
5020 			 */
5021 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5022 				ret = wp_huge_pud(&vmf, orig_pud);
5023 				if (!(ret & VM_FAULT_FALLBACK))
5024 					return ret;
5025 			} else {
5026 				huge_pud_set_accessed(&vmf, orig_pud);
5027 				return 0;
5028 			}
5029 		}
5030 	}
5031 
5032 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5033 	if (!vmf.pmd)
5034 		return VM_FAULT_OOM;
5035 
5036 	/* Huge pud page fault raced with pmd_alloc? */
5037 	if (pud_trans_unstable(vmf.pud))
5038 		goto retry_pud;
5039 
5040 	if (pmd_none(*vmf.pmd) &&
5041 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5042 		ret = create_huge_pmd(&vmf);
5043 		if (!(ret & VM_FAULT_FALLBACK))
5044 			return ret;
5045 	} else {
5046 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5047 
5048 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5049 			VM_BUG_ON(thp_migration_supported() &&
5050 					  !is_pmd_migration_entry(vmf.orig_pmd));
5051 			if (is_pmd_migration_entry(vmf.orig_pmd))
5052 				pmd_migration_entry_wait(mm, vmf.pmd);
5053 			return 0;
5054 		}
5055 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5056 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5057 				return do_huge_pmd_numa_page(&vmf);
5058 
5059 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5060 			    !pmd_write(vmf.orig_pmd)) {
5061 				ret = wp_huge_pmd(&vmf);
5062 				if (!(ret & VM_FAULT_FALLBACK))
5063 					return ret;
5064 			} else {
5065 				huge_pmd_set_accessed(&vmf);
5066 				return 0;
5067 			}
5068 		}
5069 	}
5070 
5071 	return handle_pte_fault(&vmf);
5072 }
5073 
5074 /**
5075  * mm_account_fault - Do page fault accounting
5076  *
5077  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5078  *        of perf event counters, but we'll still do the per-task accounting to
5079  *        the task who triggered this page fault.
5080  * @address: the faulted address.
5081  * @flags: the fault flags.
5082  * @ret: the fault retcode.
5083  *
5084  * This will take care of most of the page fault accounting.  Meanwhile, it
5085  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5086  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5087  * still be in per-arch page fault handlers at the entry of page fault.
5088  */
5089 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5090 				    unsigned long address, unsigned int flags,
5091 				    vm_fault_t ret)
5092 {
5093 	bool major;
5094 
5095 	/* Incomplete faults will be accounted upon completion. */
5096 	if (ret & VM_FAULT_RETRY)
5097 		return;
5098 
5099 	/*
5100 	 * To preserve the behavior of older kernels, PGFAULT counters record
5101 	 * both successful and failed faults, as opposed to perf counters,
5102 	 * which ignore failed cases.
5103 	 */
5104 	count_vm_event(PGFAULT);
5105 	count_memcg_event_mm(mm, PGFAULT);
5106 
5107 	/*
5108 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5109 	 * valid).  That includes arch_vma_access_permitted() failing before
5110 	 * reaching here. So this is not a "this many hardware page faults"
5111 	 * counter.  We should use the hw profiling for that.
5112 	 */
5113 	if (ret & VM_FAULT_ERROR)
5114 		return;
5115 
5116 	/*
5117 	 * We define the fault as a major fault when the final successful fault
5118 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5119 	 * handle it immediately previously).
5120 	 */
5121 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5122 
5123 	if (major)
5124 		current->maj_flt++;
5125 	else
5126 		current->min_flt++;
5127 
5128 	/*
5129 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5130 	 * accounting for the per thread fault counters who triggered the
5131 	 * fault, and we skip the perf event updates.
5132 	 */
5133 	if (!regs)
5134 		return;
5135 
5136 	if (major)
5137 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5138 	else
5139 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5140 }
5141 
5142 #ifdef CONFIG_LRU_GEN
5143 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5144 {
5145 	/* the LRU algorithm only applies to accesses with recency */
5146 	current->in_lru_fault = vma_has_recency(vma);
5147 }
5148 
5149 static void lru_gen_exit_fault(void)
5150 {
5151 	current->in_lru_fault = false;
5152 }
5153 #else
5154 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5155 {
5156 }
5157 
5158 static void lru_gen_exit_fault(void)
5159 {
5160 }
5161 #endif /* CONFIG_LRU_GEN */
5162 
5163 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5164 				       unsigned int *flags)
5165 {
5166 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5167 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5168 			return VM_FAULT_SIGSEGV;
5169 		/*
5170 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5171 		 * just treat it like an ordinary read-fault otherwise.
5172 		 */
5173 		if (!is_cow_mapping(vma->vm_flags))
5174 			*flags &= ~FAULT_FLAG_UNSHARE;
5175 	} else if (*flags & FAULT_FLAG_WRITE) {
5176 		/* Write faults on read-only mappings are impossible ... */
5177 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5178 			return VM_FAULT_SIGSEGV;
5179 		/* ... and FOLL_FORCE only applies to COW mappings. */
5180 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5181 				 !is_cow_mapping(vma->vm_flags)))
5182 			return VM_FAULT_SIGSEGV;
5183 	}
5184 	return 0;
5185 }
5186 
5187 /*
5188  * By the time we get here, we already hold the mm semaphore
5189  *
5190  * The mmap_lock may have been released depending on flags and our
5191  * return value.  See filemap_fault() and __folio_lock_or_retry().
5192  */
5193 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5194 			   unsigned int flags, struct pt_regs *regs)
5195 {
5196 	/* If the fault handler drops the mmap_lock, vma may be freed */
5197 	struct mm_struct *mm = vma->vm_mm;
5198 	vm_fault_t ret;
5199 
5200 	__set_current_state(TASK_RUNNING);
5201 
5202 	ret = sanitize_fault_flags(vma, &flags);
5203 	if (ret)
5204 		goto out;
5205 
5206 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5207 					    flags & FAULT_FLAG_INSTRUCTION,
5208 					    flags & FAULT_FLAG_REMOTE)) {
5209 		ret = VM_FAULT_SIGSEGV;
5210 		goto out;
5211 	}
5212 
5213 	/*
5214 	 * Enable the memcg OOM handling for faults triggered in user
5215 	 * space.  Kernel faults are handled more gracefully.
5216 	 */
5217 	if (flags & FAULT_FLAG_USER)
5218 		mem_cgroup_enter_user_fault();
5219 
5220 	lru_gen_enter_fault(vma);
5221 
5222 	if (unlikely(is_vm_hugetlb_page(vma)))
5223 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5224 	else
5225 		ret = __handle_mm_fault(vma, address, flags);
5226 
5227 	lru_gen_exit_fault();
5228 
5229 	if (flags & FAULT_FLAG_USER) {
5230 		mem_cgroup_exit_user_fault();
5231 		/*
5232 		 * The task may have entered a memcg OOM situation but
5233 		 * if the allocation error was handled gracefully (no
5234 		 * VM_FAULT_OOM), there is no need to kill anything.
5235 		 * Just clean up the OOM state peacefully.
5236 		 */
5237 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5238 			mem_cgroup_oom_synchronize(false);
5239 	}
5240 out:
5241 	mm_account_fault(mm, regs, address, flags, ret);
5242 
5243 	return ret;
5244 }
5245 EXPORT_SYMBOL_GPL(handle_mm_fault);
5246 
5247 #ifdef CONFIG_PER_VMA_LOCK
5248 /*
5249  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5250  * stable and not isolated. If the VMA is not found or is being modified the
5251  * function returns NULL.
5252  */
5253 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5254 					  unsigned long address)
5255 {
5256 	MA_STATE(mas, &mm->mm_mt, address, address);
5257 	struct vm_area_struct *vma;
5258 
5259 	rcu_read_lock();
5260 retry:
5261 	vma = mas_walk(&mas);
5262 	if (!vma)
5263 		goto inval;
5264 
5265 	/* Only anonymous vmas are supported for now */
5266 	if (!vma_is_anonymous(vma))
5267 		goto inval;
5268 
5269 	/* find_mergeable_anon_vma uses adjacent vmas which are not locked */
5270 	if (!vma->anon_vma)
5271 		goto inval;
5272 
5273 	if (!vma_start_read(vma))
5274 		goto inval;
5275 
5276 	/*
5277 	 * Due to the possibility of userfault handler dropping mmap_lock, avoid
5278 	 * it for now and fall back to page fault handling under mmap_lock.
5279 	 */
5280 	if (userfaultfd_armed(vma)) {
5281 		vma_end_read(vma);
5282 		goto inval;
5283 	}
5284 
5285 	/* Check since vm_start/vm_end might change before we lock the VMA */
5286 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
5287 		vma_end_read(vma);
5288 		goto inval;
5289 	}
5290 
5291 	/* Check if the VMA got isolated after we found it */
5292 	if (vma->detached) {
5293 		vma_end_read(vma);
5294 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5295 		/* The area was replaced with another one */
5296 		goto retry;
5297 	}
5298 
5299 	rcu_read_unlock();
5300 	return vma;
5301 inval:
5302 	rcu_read_unlock();
5303 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5304 	return NULL;
5305 }
5306 #endif /* CONFIG_PER_VMA_LOCK */
5307 
5308 #ifndef __PAGETABLE_P4D_FOLDED
5309 /*
5310  * Allocate p4d page table.
5311  * We've already handled the fast-path in-line.
5312  */
5313 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5314 {
5315 	p4d_t *new = p4d_alloc_one(mm, address);
5316 	if (!new)
5317 		return -ENOMEM;
5318 
5319 	spin_lock(&mm->page_table_lock);
5320 	if (pgd_present(*pgd)) {	/* Another has populated it */
5321 		p4d_free(mm, new);
5322 	} else {
5323 		smp_wmb(); /* See comment in pmd_install() */
5324 		pgd_populate(mm, pgd, new);
5325 	}
5326 	spin_unlock(&mm->page_table_lock);
5327 	return 0;
5328 }
5329 #endif /* __PAGETABLE_P4D_FOLDED */
5330 
5331 #ifndef __PAGETABLE_PUD_FOLDED
5332 /*
5333  * Allocate page upper directory.
5334  * We've already handled the fast-path in-line.
5335  */
5336 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5337 {
5338 	pud_t *new = pud_alloc_one(mm, address);
5339 	if (!new)
5340 		return -ENOMEM;
5341 
5342 	spin_lock(&mm->page_table_lock);
5343 	if (!p4d_present(*p4d)) {
5344 		mm_inc_nr_puds(mm);
5345 		smp_wmb(); /* See comment in pmd_install() */
5346 		p4d_populate(mm, p4d, new);
5347 	} else	/* Another has populated it */
5348 		pud_free(mm, new);
5349 	spin_unlock(&mm->page_table_lock);
5350 	return 0;
5351 }
5352 #endif /* __PAGETABLE_PUD_FOLDED */
5353 
5354 #ifndef __PAGETABLE_PMD_FOLDED
5355 /*
5356  * Allocate page middle directory.
5357  * We've already handled the fast-path in-line.
5358  */
5359 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5360 {
5361 	spinlock_t *ptl;
5362 	pmd_t *new = pmd_alloc_one(mm, address);
5363 	if (!new)
5364 		return -ENOMEM;
5365 
5366 	ptl = pud_lock(mm, pud);
5367 	if (!pud_present(*pud)) {
5368 		mm_inc_nr_pmds(mm);
5369 		smp_wmb(); /* See comment in pmd_install() */
5370 		pud_populate(mm, pud, new);
5371 	} else {	/* Another has populated it */
5372 		pmd_free(mm, new);
5373 	}
5374 	spin_unlock(ptl);
5375 	return 0;
5376 }
5377 #endif /* __PAGETABLE_PMD_FOLDED */
5378 
5379 /**
5380  * follow_pte - look up PTE at a user virtual address
5381  * @mm: the mm_struct of the target address space
5382  * @address: user virtual address
5383  * @ptepp: location to store found PTE
5384  * @ptlp: location to store the lock for the PTE
5385  *
5386  * On a successful return, the pointer to the PTE is stored in @ptepp;
5387  * the corresponding lock is taken and its location is stored in @ptlp.
5388  * The contents of the PTE are only stable until @ptlp is released;
5389  * any further use, if any, must be protected against invalidation
5390  * with MMU notifiers.
5391  *
5392  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5393  * should be taken for read.
5394  *
5395  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5396  * it is not a good general-purpose API.
5397  *
5398  * Return: zero on success, -ve otherwise.
5399  */
5400 int follow_pte(struct mm_struct *mm, unsigned long address,
5401 	       pte_t **ptepp, spinlock_t **ptlp)
5402 {
5403 	pgd_t *pgd;
5404 	p4d_t *p4d;
5405 	pud_t *pud;
5406 	pmd_t *pmd;
5407 	pte_t *ptep;
5408 
5409 	pgd = pgd_offset(mm, address);
5410 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5411 		goto out;
5412 
5413 	p4d = p4d_offset(pgd, address);
5414 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5415 		goto out;
5416 
5417 	pud = pud_offset(p4d, address);
5418 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5419 		goto out;
5420 
5421 	pmd = pmd_offset(pud, address);
5422 	VM_BUG_ON(pmd_trans_huge(*pmd));
5423 
5424 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5425 	if (!ptep)
5426 		goto out;
5427 	if (!pte_present(ptep_get(ptep)))
5428 		goto unlock;
5429 	*ptepp = ptep;
5430 	return 0;
5431 unlock:
5432 	pte_unmap_unlock(ptep, *ptlp);
5433 out:
5434 	return -EINVAL;
5435 }
5436 EXPORT_SYMBOL_GPL(follow_pte);
5437 
5438 /**
5439  * follow_pfn - look up PFN at a user virtual address
5440  * @vma: memory mapping
5441  * @address: user virtual address
5442  * @pfn: location to store found PFN
5443  *
5444  * Only IO mappings and raw PFN mappings are allowed.
5445  *
5446  * This function does not allow the caller to read the permissions
5447  * of the PTE.  Do not use it.
5448  *
5449  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5450  */
5451 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5452 	unsigned long *pfn)
5453 {
5454 	int ret = -EINVAL;
5455 	spinlock_t *ptl;
5456 	pte_t *ptep;
5457 
5458 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5459 		return ret;
5460 
5461 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5462 	if (ret)
5463 		return ret;
5464 	*pfn = pte_pfn(ptep_get(ptep));
5465 	pte_unmap_unlock(ptep, ptl);
5466 	return 0;
5467 }
5468 EXPORT_SYMBOL(follow_pfn);
5469 
5470 #ifdef CONFIG_HAVE_IOREMAP_PROT
5471 int follow_phys(struct vm_area_struct *vma,
5472 		unsigned long address, unsigned int flags,
5473 		unsigned long *prot, resource_size_t *phys)
5474 {
5475 	int ret = -EINVAL;
5476 	pte_t *ptep, pte;
5477 	spinlock_t *ptl;
5478 
5479 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5480 		goto out;
5481 
5482 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5483 		goto out;
5484 	pte = ptep_get(ptep);
5485 
5486 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5487 		goto unlock;
5488 
5489 	*prot = pgprot_val(pte_pgprot(pte));
5490 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5491 
5492 	ret = 0;
5493 unlock:
5494 	pte_unmap_unlock(ptep, ptl);
5495 out:
5496 	return ret;
5497 }
5498 
5499 /**
5500  * generic_access_phys - generic implementation for iomem mmap access
5501  * @vma: the vma to access
5502  * @addr: userspace address, not relative offset within @vma
5503  * @buf: buffer to read/write
5504  * @len: length of transfer
5505  * @write: set to FOLL_WRITE when writing, otherwise reading
5506  *
5507  * This is a generic implementation for &vm_operations_struct.access for an
5508  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5509  * not page based.
5510  */
5511 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5512 			void *buf, int len, int write)
5513 {
5514 	resource_size_t phys_addr;
5515 	unsigned long prot = 0;
5516 	void __iomem *maddr;
5517 	pte_t *ptep, pte;
5518 	spinlock_t *ptl;
5519 	int offset = offset_in_page(addr);
5520 	int ret = -EINVAL;
5521 
5522 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5523 		return -EINVAL;
5524 
5525 retry:
5526 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5527 		return -EINVAL;
5528 	pte = ptep_get(ptep);
5529 	pte_unmap_unlock(ptep, ptl);
5530 
5531 	prot = pgprot_val(pte_pgprot(pte));
5532 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5533 
5534 	if ((write & FOLL_WRITE) && !pte_write(pte))
5535 		return -EINVAL;
5536 
5537 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5538 	if (!maddr)
5539 		return -ENOMEM;
5540 
5541 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5542 		goto out_unmap;
5543 
5544 	if (!pte_same(pte, ptep_get(ptep))) {
5545 		pte_unmap_unlock(ptep, ptl);
5546 		iounmap(maddr);
5547 
5548 		goto retry;
5549 	}
5550 
5551 	if (write)
5552 		memcpy_toio(maddr + offset, buf, len);
5553 	else
5554 		memcpy_fromio(buf, maddr + offset, len);
5555 	ret = len;
5556 	pte_unmap_unlock(ptep, ptl);
5557 out_unmap:
5558 	iounmap(maddr);
5559 
5560 	return ret;
5561 }
5562 EXPORT_SYMBOL_GPL(generic_access_phys);
5563 #endif
5564 
5565 /*
5566  * Access another process' address space as given in mm.
5567  */
5568 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5569 		       int len, unsigned int gup_flags)
5570 {
5571 	void *old_buf = buf;
5572 	int write = gup_flags & FOLL_WRITE;
5573 
5574 	if (mmap_read_lock_killable(mm))
5575 		return 0;
5576 
5577 	/* ignore errors, just check how much was successfully transferred */
5578 	while (len) {
5579 		int bytes, offset;
5580 		void *maddr;
5581 		struct vm_area_struct *vma = NULL;
5582 		struct page *page = get_user_page_vma_remote(mm, addr,
5583 							     gup_flags, &vma);
5584 
5585 		if (IS_ERR_OR_NULL(page)) {
5586 #ifndef CONFIG_HAVE_IOREMAP_PROT
5587 			break;
5588 #else
5589 			int res = 0;
5590 
5591 			/*
5592 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5593 			 * we can access using slightly different code.
5594 			 */
5595 			if (!vma)
5596 				break;
5597 			if (vma->vm_ops && vma->vm_ops->access)
5598 				res = vma->vm_ops->access(vma, addr, buf,
5599 							  len, write);
5600 			if (res <= 0)
5601 				break;
5602 			bytes = res;
5603 #endif
5604 		} else {
5605 			bytes = len;
5606 			offset = addr & (PAGE_SIZE-1);
5607 			if (bytes > PAGE_SIZE-offset)
5608 				bytes = PAGE_SIZE-offset;
5609 
5610 			maddr = kmap(page);
5611 			if (write) {
5612 				copy_to_user_page(vma, page, addr,
5613 						  maddr + offset, buf, bytes);
5614 				set_page_dirty_lock(page);
5615 			} else {
5616 				copy_from_user_page(vma, page, addr,
5617 						    buf, maddr + offset, bytes);
5618 			}
5619 			kunmap(page);
5620 			put_page(page);
5621 		}
5622 		len -= bytes;
5623 		buf += bytes;
5624 		addr += bytes;
5625 	}
5626 	mmap_read_unlock(mm);
5627 
5628 	return buf - old_buf;
5629 }
5630 
5631 /**
5632  * access_remote_vm - access another process' address space
5633  * @mm:		the mm_struct of the target address space
5634  * @addr:	start address to access
5635  * @buf:	source or destination buffer
5636  * @len:	number of bytes to transfer
5637  * @gup_flags:	flags modifying lookup behaviour
5638  *
5639  * The caller must hold a reference on @mm.
5640  *
5641  * Return: number of bytes copied from source to destination.
5642  */
5643 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5644 		void *buf, int len, unsigned int gup_flags)
5645 {
5646 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5647 }
5648 
5649 /*
5650  * Access another process' address space.
5651  * Source/target buffer must be kernel space,
5652  * Do not walk the page table directly, use get_user_pages
5653  */
5654 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5655 		void *buf, int len, unsigned int gup_flags)
5656 {
5657 	struct mm_struct *mm;
5658 	int ret;
5659 
5660 	mm = get_task_mm(tsk);
5661 	if (!mm)
5662 		return 0;
5663 
5664 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5665 
5666 	mmput(mm);
5667 
5668 	return ret;
5669 }
5670 EXPORT_SYMBOL_GPL(access_process_vm);
5671 
5672 /*
5673  * Print the name of a VMA.
5674  */
5675 void print_vma_addr(char *prefix, unsigned long ip)
5676 {
5677 	struct mm_struct *mm = current->mm;
5678 	struct vm_area_struct *vma;
5679 
5680 	/*
5681 	 * we might be running from an atomic context so we cannot sleep
5682 	 */
5683 	if (!mmap_read_trylock(mm))
5684 		return;
5685 
5686 	vma = find_vma(mm, ip);
5687 	if (vma && vma->vm_file) {
5688 		struct file *f = vma->vm_file;
5689 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5690 		if (buf) {
5691 			char *p;
5692 
5693 			p = file_path(f, buf, PAGE_SIZE);
5694 			if (IS_ERR(p))
5695 				p = "?";
5696 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5697 					vma->vm_start,
5698 					vma->vm_end - vma->vm_start);
5699 			free_page((unsigned long)buf);
5700 		}
5701 	}
5702 	mmap_read_unlock(mm);
5703 }
5704 
5705 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5706 void __might_fault(const char *file, int line)
5707 {
5708 	if (pagefault_disabled())
5709 		return;
5710 	__might_sleep(file, line);
5711 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5712 	if (current->mm)
5713 		might_lock_read(&current->mm->mmap_lock);
5714 #endif
5715 }
5716 EXPORT_SYMBOL(__might_fault);
5717 #endif
5718 
5719 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5720 /*
5721  * Process all subpages of the specified huge page with the specified
5722  * operation.  The target subpage will be processed last to keep its
5723  * cache lines hot.
5724  */
5725 static inline int process_huge_page(
5726 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5727 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
5728 	void *arg)
5729 {
5730 	int i, n, base, l, ret;
5731 	unsigned long addr = addr_hint &
5732 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5733 
5734 	/* Process target subpage last to keep its cache lines hot */
5735 	might_sleep();
5736 	n = (addr_hint - addr) / PAGE_SIZE;
5737 	if (2 * n <= pages_per_huge_page) {
5738 		/* If target subpage in first half of huge page */
5739 		base = 0;
5740 		l = n;
5741 		/* Process subpages at the end of huge page */
5742 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5743 			cond_resched();
5744 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5745 			if (ret)
5746 				return ret;
5747 		}
5748 	} else {
5749 		/* If target subpage in second half of huge page */
5750 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5751 		l = pages_per_huge_page - n;
5752 		/* Process subpages at the begin of huge page */
5753 		for (i = 0; i < base; i++) {
5754 			cond_resched();
5755 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5756 			if (ret)
5757 				return ret;
5758 		}
5759 	}
5760 	/*
5761 	 * Process remaining subpages in left-right-left-right pattern
5762 	 * towards the target subpage
5763 	 */
5764 	for (i = 0; i < l; i++) {
5765 		int left_idx = base + i;
5766 		int right_idx = base + 2 * l - 1 - i;
5767 
5768 		cond_resched();
5769 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5770 		if (ret)
5771 			return ret;
5772 		cond_resched();
5773 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5774 		if (ret)
5775 			return ret;
5776 	}
5777 	return 0;
5778 }
5779 
5780 static void clear_gigantic_page(struct page *page,
5781 				unsigned long addr,
5782 				unsigned int pages_per_huge_page)
5783 {
5784 	int i;
5785 	struct page *p;
5786 
5787 	might_sleep();
5788 	for (i = 0; i < pages_per_huge_page; i++) {
5789 		p = nth_page(page, i);
5790 		cond_resched();
5791 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5792 	}
5793 }
5794 
5795 static int clear_subpage(unsigned long addr, int idx, void *arg)
5796 {
5797 	struct page *page = arg;
5798 
5799 	clear_user_highpage(page + idx, addr);
5800 	return 0;
5801 }
5802 
5803 void clear_huge_page(struct page *page,
5804 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5805 {
5806 	unsigned long addr = addr_hint &
5807 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5808 
5809 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5810 		clear_gigantic_page(page, addr, pages_per_huge_page);
5811 		return;
5812 	}
5813 
5814 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5815 }
5816 
5817 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
5818 				     unsigned long addr,
5819 				     struct vm_area_struct *vma,
5820 				     unsigned int pages_per_huge_page)
5821 {
5822 	int i;
5823 	struct page *dst_page;
5824 	struct page *src_page;
5825 
5826 	for (i = 0; i < pages_per_huge_page; i++) {
5827 		dst_page = folio_page(dst, i);
5828 		src_page = folio_page(src, i);
5829 
5830 		cond_resched();
5831 		if (copy_mc_user_highpage(dst_page, src_page,
5832 					  addr + i*PAGE_SIZE, vma)) {
5833 			memory_failure_queue(page_to_pfn(src_page), 0);
5834 			return -EHWPOISON;
5835 		}
5836 	}
5837 	return 0;
5838 }
5839 
5840 struct copy_subpage_arg {
5841 	struct page *dst;
5842 	struct page *src;
5843 	struct vm_area_struct *vma;
5844 };
5845 
5846 static int copy_subpage(unsigned long addr, int idx, void *arg)
5847 {
5848 	struct copy_subpage_arg *copy_arg = arg;
5849 
5850 	if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5851 				  addr, copy_arg->vma)) {
5852 		memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
5853 		return -EHWPOISON;
5854 	}
5855 	return 0;
5856 }
5857 
5858 int copy_user_large_folio(struct folio *dst, struct folio *src,
5859 			  unsigned long addr_hint, struct vm_area_struct *vma)
5860 {
5861 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
5862 	unsigned long addr = addr_hint &
5863 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5864 	struct copy_subpage_arg arg = {
5865 		.dst = &dst->page,
5866 		.src = &src->page,
5867 		.vma = vma,
5868 	};
5869 
5870 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
5871 		return copy_user_gigantic_page(dst, src, addr, vma,
5872 					       pages_per_huge_page);
5873 
5874 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5875 }
5876 
5877 long copy_folio_from_user(struct folio *dst_folio,
5878 			   const void __user *usr_src,
5879 			   bool allow_pagefault)
5880 {
5881 	void *kaddr;
5882 	unsigned long i, rc = 0;
5883 	unsigned int nr_pages = folio_nr_pages(dst_folio);
5884 	unsigned long ret_val = nr_pages * PAGE_SIZE;
5885 	struct page *subpage;
5886 
5887 	for (i = 0; i < nr_pages; i++) {
5888 		subpage = folio_page(dst_folio, i);
5889 		kaddr = kmap_local_page(subpage);
5890 		if (!allow_pagefault)
5891 			pagefault_disable();
5892 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
5893 		if (!allow_pagefault)
5894 			pagefault_enable();
5895 		kunmap_local(kaddr);
5896 
5897 		ret_val -= (PAGE_SIZE - rc);
5898 		if (rc)
5899 			break;
5900 
5901 		flush_dcache_page(subpage);
5902 
5903 		cond_resched();
5904 	}
5905 	return ret_val;
5906 }
5907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5908 
5909 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5910 
5911 static struct kmem_cache *page_ptl_cachep;
5912 
5913 void __init ptlock_cache_init(void)
5914 {
5915 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5916 			SLAB_PANIC, NULL);
5917 }
5918 
5919 bool ptlock_alloc(struct page *page)
5920 {
5921 	spinlock_t *ptl;
5922 
5923 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5924 	if (!ptl)
5925 		return false;
5926 	page->ptl = ptl;
5927 	return true;
5928 }
5929 
5930 void ptlock_free(struct page *page)
5931 {
5932 	kmem_cache_free(page_ptl_cachep, page->ptl);
5933 }
5934 #endif
5935