1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 81 #include <trace/events/kmem.h> 82 83 #include <asm/io.h> 84 #include <asm/mmu_context.h> 85 #include <asm/pgalloc.h> 86 #include <linux/uaccess.h> 87 #include <asm/tlb.h> 88 #include <asm/tlbflush.h> 89 90 #include "pgalloc-track.h" 91 #include "internal.h" 92 #include "swap.h" 93 94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 96 #endif 97 98 #ifndef CONFIG_NUMA 99 unsigned long max_mapnr; 100 EXPORT_SYMBOL(max_mapnr); 101 102 struct page *mem_map; 103 EXPORT_SYMBOL(mem_map); 104 #endif 105 106 static vm_fault_t do_fault(struct vm_fault *vmf); 107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 108 static bool vmf_pte_changed(struct vm_fault *vmf); 109 110 /* 111 * Return true if the original pte was a uffd-wp pte marker (so the pte was 112 * wr-protected). 113 */ 114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 115 { 116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 117 return false; 118 119 return pte_marker_uffd_wp(vmf->orig_pte); 120 } 121 122 /* 123 * A number of key systems in x86 including ioremap() rely on the assumption 124 * that high_memory defines the upper bound on direct map memory, then end 125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 127 * and ZONE_HIGHMEM. 128 */ 129 void *high_memory; 130 EXPORT_SYMBOL(high_memory); 131 132 /* 133 * Randomize the address space (stacks, mmaps, brk, etc.). 134 * 135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 136 * as ancient (libc5 based) binaries can segfault. ) 137 */ 138 int randomize_va_space __read_mostly = 139 #ifdef CONFIG_COMPAT_BRK 140 1; 141 #else 142 2; 143 #endif 144 145 #ifndef arch_wants_old_prefaulted_pte 146 static inline bool arch_wants_old_prefaulted_pte(void) 147 { 148 /* 149 * Transitioning a PTE from 'old' to 'young' can be expensive on 150 * some architectures, even if it's performed in hardware. By 151 * default, "false" means prefaulted entries will be 'young'. 152 */ 153 return false; 154 } 155 #endif 156 157 static int __init disable_randmaps(char *s) 158 { 159 randomize_va_space = 0; 160 return 1; 161 } 162 __setup("norandmaps", disable_randmaps); 163 164 unsigned long zero_pfn __read_mostly; 165 EXPORT_SYMBOL(zero_pfn); 166 167 unsigned long highest_memmap_pfn __read_mostly; 168 169 /* 170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 171 */ 172 static int __init init_zero_pfn(void) 173 { 174 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 175 return 0; 176 } 177 early_initcall(init_zero_pfn); 178 179 void mm_trace_rss_stat(struct mm_struct *mm, int member) 180 { 181 trace_rss_stat(mm, member); 182 } 183 184 /* 185 * Note: this doesn't free the actual pages themselves. That 186 * has been handled earlier when unmapping all the memory regions. 187 */ 188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 189 unsigned long addr) 190 { 191 pgtable_t token = pmd_pgtable(*pmd); 192 pmd_clear(pmd); 193 pte_free_tlb(tlb, token, addr); 194 mm_dec_nr_ptes(tlb->mm); 195 } 196 197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 198 unsigned long addr, unsigned long end, 199 unsigned long floor, unsigned long ceiling) 200 { 201 pmd_t *pmd; 202 unsigned long next; 203 unsigned long start; 204 205 start = addr; 206 pmd = pmd_offset(pud, addr); 207 do { 208 next = pmd_addr_end(addr, end); 209 if (pmd_none_or_clear_bad(pmd)) 210 continue; 211 free_pte_range(tlb, pmd, addr); 212 } while (pmd++, addr = next, addr != end); 213 214 start &= PUD_MASK; 215 if (start < floor) 216 return; 217 if (ceiling) { 218 ceiling &= PUD_MASK; 219 if (!ceiling) 220 return; 221 } 222 if (end - 1 > ceiling - 1) 223 return; 224 225 pmd = pmd_offset(pud, start); 226 pud_clear(pud); 227 pmd_free_tlb(tlb, pmd, start); 228 mm_dec_nr_pmds(tlb->mm); 229 } 230 231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 232 unsigned long addr, unsigned long end, 233 unsigned long floor, unsigned long ceiling) 234 { 235 pud_t *pud; 236 unsigned long next; 237 unsigned long start; 238 239 start = addr; 240 pud = pud_offset(p4d, addr); 241 do { 242 next = pud_addr_end(addr, end); 243 if (pud_none_or_clear_bad(pud)) 244 continue; 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 246 } while (pud++, addr = next, addr != end); 247 248 start &= P4D_MASK; 249 if (start < floor) 250 return; 251 if (ceiling) { 252 ceiling &= P4D_MASK; 253 if (!ceiling) 254 return; 255 } 256 if (end - 1 > ceiling - 1) 257 return; 258 259 pud = pud_offset(p4d, start); 260 p4d_clear(p4d); 261 pud_free_tlb(tlb, pud, start); 262 mm_dec_nr_puds(tlb->mm); 263 } 264 265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 266 unsigned long addr, unsigned long end, 267 unsigned long floor, unsigned long ceiling) 268 { 269 p4d_t *p4d; 270 unsigned long next; 271 unsigned long start; 272 273 start = addr; 274 p4d = p4d_offset(pgd, addr); 275 do { 276 next = p4d_addr_end(addr, end); 277 if (p4d_none_or_clear_bad(p4d)) 278 continue; 279 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 280 } while (p4d++, addr = next, addr != end); 281 282 start &= PGDIR_MASK; 283 if (start < floor) 284 return; 285 if (ceiling) { 286 ceiling &= PGDIR_MASK; 287 if (!ceiling) 288 return; 289 } 290 if (end - 1 > ceiling - 1) 291 return; 292 293 p4d = p4d_offset(pgd, start); 294 pgd_clear(pgd); 295 p4d_free_tlb(tlb, p4d, start); 296 } 297 298 /* 299 * This function frees user-level page tables of a process. 300 */ 301 void free_pgd_range(struct mmu_gather *tlb, 302 unsigned long addr, unsigned long end, 303 unsigned long floor, unsigned long ceiling) 304 { 305 pgd_t *pgd; 306 unsigned long next; 307 308 /* 309 * The next few lines have given us lots of grief... 310 * 311 * Why are we testing PMD* at this top level? Because often 312 * there will be no work to do at all, and we'd prefer not to 313 * go all the way down to the bottom just to discover that. 314 * 315 * Why all these "- 1"s? Because 0 represents both the bottom 316 * of the address space and the top of it (using -1 for the 317 * top wouldn't help much: the masks would do the wrong thing). 318 * The rule is that addr 0 and floor 0 refer to the bottom of 319 * the address space, but end 0 and ceiling 0 refer to the top 320 * Comparisons need to use "end - 1" and "ceiling - 1" (though 321 * that end 0 case should be mythical). 322 * 323 * Wherever addr is brought up or ceiling brought down, we must 324 * be careful to reject "the opposite 0" before it confuses the 325 * subsequent tests. But what about where end is brought down 326 * by PMD_SIZE below? no, end can't go down to 0 there. 327 * 328 * Whereas we round start (addr) and ceiling down, by different 329 * masks at different levels, in order to test whether a table 330 * now has no other vmas using it, so can be freed, we don't 331 * bother to round floor or end up - the tests don't need that. 332 */ 333 334 addr &= PMD_MASK; 335 if (addr < floor) { 336 addr += PMD_SIZE; 337 if (!addr) 338 return; 339 } 340 if (ceiling) { 341 ceiling &= PMD_MASK; 342 if (!ceiling) 343 return; 344 } 345 if (end - 1 > ceiling - 1) 346 end -= PMD_SIZE; 347 if (addr > end - 1) 348 return; 349 /* 350 * We add page table cache pages with PAGE_SIZE, 351 * (see pte_free_tlb()), flush the tlb if we need 352 */ 353 tlb_change_page_size(tlb, PAGE_SIZE); 354 pgd = pgd_offset(tlb->mm, addr); 355 do { 356 next = pgd_addr_end(addr, end); 357 if (pgd_none_or_clear_bad(pgd)) 358 continue; 359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 360 } while (pgd++, addr = next, addr != end); 361 } 362 363 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, 364 struct vm_area_struct *vma, unsigned long floor, 365 unsigned long ceiling, bool mm_wr_locked) 366 { 367 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 368 369 do { 370 unsigned long addr = vma->vm_start; 371 struct vm_area_struct *next; 372 373 /* 374 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 375 * be 0. This will underflow and is okay. 376 */ 377 next = mas_find(&mas, ceiling - 1); 378 379 /* 380 * Hide vma from rmap and truncate_pagecache before freeing 381 * pgtables 382 */ 383 if (mm_wr_locked) 384 vma_start_write(vma); 385 unlink_anon_vmas(vma); 386 unlink_file_vma(vma); 387 388 if (is_vm_hugetlb_page(vma)) { 389 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 390 floor, next ? next->vm_start : ceiling); 391 } else { 392 /* 393 * Optimization: gather nearby vmas into one call down 394 */ 395 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 396 && !is_vm_hugetlb_page(next)) { 397 vma = next; 398 next = mas_find(&mas, ceiling - 1); 399 if (mm_wr_locked) 400 vma_start_write(vma); 401 unlink_anon_vmas(vma); 402 unlink_file_vma(vma); 403 } 404 free_pgd_range(tlb, addr, vma->vm_end, 405 floor, next ? next->vm_start : ceiling); 406 } 407 vma = next; 408 } while (vma); 409 } 410 411 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 412 { 413 spinlock_t *ptl = pmd_lock(mm, pmd); 414 415 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 416 mm_inc_nr_ptes(mm); 417 /* 418 * Ensure all pte setup (eg. pte page lock and page clearing) are 419 * visible before the pte is made visible to other CPUs by being 420 * put into page tables. 421 * 422 * The other side of the story is the pointer chasing in the page 423 * table walking code (when walking the page table without locking; 424 * ie. most of the time). Fortunately, these data accesses consist 425 * of a chain of data-dependent loads, meaning most CPUs (alpha 426 * being the notable exception) will already guarantee loads are 427 * seen in-order. See the alpha page table accessors for the 428 * smp_rmb() barriers in page table walking code. 429 */ 430 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 431 pmd_populate(mm, pmd, *pte); 432 *pte = NULL; 433 } 434 spin_unlock(ptl); 435 } 436 437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 438 { 439 pgtable_t new = pte_alloc_one(mm); 440 if (!new) 441 return -ENOMEM; 442 443 pmd_install(mm, pmd, &new); 444 if (new) 445 pte_free(mm, new); 446 return 0; 447 } 448 449 int __pte_alloc_kernel(pmd_t *pmd) 450 { 451 pte_t *new = pte_alloc_one_kernel(&init_mm); 452 if (!new) 453 return -ENOMEM; 454 455 spin_lock(&init_mm.page_table_lock); 456 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 457 smp_wmb(); /* See comment in pmd_install() */ 458 pmd_populate_kernel(&init_mm, pmd, new); 459 new = NULL; 460 } 461 spin_unlock(&init_mm.page_table_lock); 462 if (new) 463 pte_free_kernel(&init_mm, new); 464 return 0; 465 } 466 467 static inline void init_rss_vec(int *rss) 468 { 469 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 470 } 471 472 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 473 { 474 int i; 475 476 if (current->mm == mm) 477 sync_mm_rss(mm); 478 for (i = 0; i < NR_MM_COUNTERS; i++) 479 if (rss[i]) 480 add_mm_counter(mm, i, rss[i]); 481 } 482 483 /* 484 * This function is called to print an error when a bad pte 485 * is found. For example, we might have a PFN-mapped pte in 486 * a region that doesn't allow it. 487 * 488 * The calling function must still handle the error. 489 */ 490 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 491 pte_t pte, struct page *page) 492 { 493 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 494 p4d_t *p4d = p4d_offset(pgd, addr); 495 pud_t *pud = pud_offset(p4d, addr); 496 pmd_t *pmd = pmd_offset(pud, addr); 497 struct address_space *mapping; 498 pgoff_t index; 499 static unsigned long resume; 500 static unsigned long nr_shown; 501 static unsigned long nr_unshown; 502 503 /* 504 * Allow a burst of 60 reports, then keep quiet for that minute; 505 * or allow a steady drip of one report per second. 506 */ 507 if (nr_shown == 60) { 508 if (time_before(jiffies, resume)) { 509 nr_unshown++; 510 return; 511 } 512 if (nr_unshown) { 513 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 514 nr_unshown); 515 nr_unshown = 0; 516 } 517 nr_shown = 0; 518 } 519 if (nr_shown++ == 0) 520 resume = jiffies + 60 * HZ; 521 522 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 523 index = linear_page_index(vma, addr); 524 525 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 526 current->comm, 527 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 528 if (page) 529 dump_page(page, "bad pte"); 530 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 531 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 532 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 533 vma->vm_file, 534 vma->vm_ops ? vma->vm_ops->fault : NULL, 535 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 536 mapping ? mapping->a_ops->read_folio : NULL); 537 dump_stack(); 538 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 539 } 540 541 /* 542 * vm_normal_page -- This function gets the "struct page" associated with a pte. 543 * 544 * "Special" mappings do not wish to be associated with a "struct page" (either 545 * it doesn't exist, or it exists but they don't want to touch it). In this 546 * case, NULL is returned here. "Normal" mappings do have a struct page. 547 * 548 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 549 * pte bit, in which case this function is trivial. Secondly, an architecture 550 * may not have a spare pte bit, which requires a more complicated scheme, 551 * described below. 552 * 553 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 554 * special mapping (even if there are underlying and valid "struct pages"). 555 * COWed pages of a VM_PFNMAP are always normal. 556 * 557 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 558 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 559 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 560 * mapping will always honor the rule 561 * 562 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 563 * 564 * And for normal mappings this is false. 565 * 566 * This restricts such mappings to be a linear translation from virtual address 567 * to pfn. To get around this restriction, we allow arbitrary mappings so long 568 * as the vma is not a COW mapping; in that case, we know that all ptes are 569 * special (because none can have been COWed). 570 * 571 * 572 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 573 * 574 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 575 * page" backing, however the difference is that _all_ pages with a struct 576 * page (that is, those where pfn_valid is true) are refcounted and considered 577 * normal pages by the VM. The disadvantage is that pages are refcounted 578 * (which can be slower and simply not an option for some PFNMAP users). The 579 * advantage is that we don't have to follow the strict linearity rule of 580 * PFNMAP mappings in order to support COWable mappings. 581 * 582 */ 583 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 584 pte_t pte) 585 { 586 unsigned long pfn = pte_pfn(pte); 587 588 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 589 if (likely(!pte_special(pte))) 590 goto check_pfn; 591 if (vma->vm_ops && vma->vm_ops->find_special_page) 592 return vma->vm_ops->find_special_page(vma, addr); 593 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 594 return NULL; 595 if (is_zero_pfn(pfn)) 596 return NULL; 597 if (pte_devmap(pte)) 598 /* 599 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 600 * and will have refcounts incremented on their struct pages 601 * when they are inserted into PTEs, thus they are safe to 602 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 603 * do not have refcounts. Example of legacy ZONE_DEVICE is 604 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 605 */ 606 return NULL; 607 608 print_bad_pte(vma, addr, pte, NULL); 609 return NULL; 610 } 611 612 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 613 614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 615 if (vma->vm_flags & VM_MIXEDMAP) { 616 if (!pfn_valid(pfn)) 617 return NULL; 618 goto out; 619 } else { 620 unsigned long off; 621 off = (addr - vma->vm_start) >> PAGE_SHIFT; 622 if (pfn == vma->vm_pgoff + off) 623 return NULL; 624 if (!is_cow_mapping(vma->vm_flags)) 625 return NULL; 626 } 627 } 628 629 if (is_zero_pfn(pfn)) 630 return NULL; 631 632 check_pfn: 633 if (unlikely(pfn > highest_memmap_pfn)) { 634 print_bad_pte(vma, addr, pte, NULL); 635 return NULL; 636 } 637 638 /* 639 * NOTE! We still have PageReserved() pages in the page tables. 640 * eg. VDSO mappings can cause them to exist. 641 */ 642 out: 643 return pfn_to_page(pfn); 644 } 645 646 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 647 pte_t pte) 648 { 649 struct page *page = vm_normal_page(vma, addr, pte); 650 651 if (page) 652 return page_folio(page); 653 return NULL; 654 } 655 656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 657 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 658 pmd_t pmd) 659 { 660 unsigned long pfn = pmd_pfn(pmd); 661 662 /* 663 * There is no pmd_special() but there may be special pmds, e.g. 664 * in a direct-access (dax) mapping, so let's just replicate the 665 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 666 */ 667 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 668 if (vma->vm_flags & VM_MIXEDMAP) { 669 if (!pfn_valid(pfn)) 670 return NULL; 671 goto out; 672 } else { 673 unsigned long off; 674 off = (addr - vma->vm_start) >> PAGE_SHIFT; 675 if (pfn == vma->vm_pgoff + off) 676 return NULL; 677 if (!is_cow_mapping(vma->vm_flags)) 678 return NULL; 679 } 680 } 681 682 if (pmd_devmap(pmd)) 683 return NULL; 684 if (is_huge_zero_pmd(pmd)) 685 return NULL; 686 if (unlikely(pfn > highest_memmap_pfn)) 687 return NULL; 688 689 /* 690 * NOTE! We still have PageReserved() pages in the page tables. 691 * eg. VDSO mappings can cause them to exist. 692 */ 693 out: 694 return pfn_to_page(pfn); 695 } 696 #endif 697 698 static void restore_exclusive_pte(struct vm_area_struct *vma, 699 struct page *page, unsigned long address, 700 pte_t *ptep) 701 { 702 pte_t orig_pte; 703 pte_t pte; 704 swp_entry_t entry; 705 706 orig_pte = ptep_get(ptep); 707 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 708 if (pte_swp_soft_dirty(orig_pte)) 709 pte = pte_mksoft_dirty(pte); 710 711 entry = pte_to_swp_entry(orig_pte); 712 if (pte_swp_uffd_wp(orig_pte)) 713 pte = pte_mkuffd_wp(pte); 714 else if (is_writable_device_exclusive_entry(entry)) 715 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 716 717 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 718 719 /* 720 * No need to take a page reference as one was already 721 * created when the swap entry was made. 722 */ 723 if (PageAnon(page)) 724 page_add_anon_rmap(page, vma, address, RMAP_NONE); 725 else 726 /* 727 * Currently device exclusive access only supports anonymous 728 * memory so the entry shouldn't point to a filebacked page. 729 */ 730 WARN_ON_ONCE(1); 731 732 set_pte_at(vma->vm_mm, address, ptep, pte); 733 734 /* 735 * No need to invalidate - it was non-present before. However 736 * secondary CPUs may have mappings that need invalidating. 737 */ 738 update_mmu_cache(vma, address, ptep); 739 } 740 741 /* 742 * Tries to restore an exclusive pte if the page lock can be acquired without 743 * sleeping. 744 */ 745 static int 746 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 747 unsigned long addr) 748 { 749 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 750 struct page *page = pfn_swap_entry_to_page(entry); 751 752 if (trylock_page(page)) { 753 restore_exclusive_pte(vma, page, addr, src_pte); 754 unlock_page(page); 755 return 0; 756 } 757 758 return -EBUSY; 759 } 760 761 /* 762 * copy one vm_area from one task to the other. Assumes the page tables 763 * already present in the new task to be cleared in the whole range 764 * covered by this vma. 765 */ 766 767 static unsigned long 768 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 769 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 770 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 771 { 772 unsigned long vm_flags = dst_vma->vm_flags; 773 pte_t orig_pte = ptep_get(src_pte); 774 pte_t pte = orig_pte; 775 struct page *page; 776 swp_entry_t entry = pte_to_swp_entry(orig_pte); 777 778 if (likely(!non_swap_entry(entry))) { 779 if (swap_duplicate(entry) < 0) 780 return -EIO; 781 782 /* make sure dst_mm is on swapoff's mmlist. */ 783 if (unlikely(list_empty(&dst_mm->mmlist))) { 784 spin_lock(&mmlist_lock); 785 if (list_empty(&dst_mm->mmlist)) 786 list_add(&dst_mm->mmlist, 787 &src_mm->mmlist); 788 spin_unlock(&mmlist_lock); 789 } 790 /* Mark the swap entry as shared. */ 791 if (pte_swp_exclusive(orig_pte)) { 792 pte = pte_swp_clear_exclusive(orig_pte); 793 set_pte_at(src_mm, addr, src_pte, pte); 794 } 795 rss[MM_SWAPENTS]++; 796 } else if (is_migration_entry(entry)) { 797 page = pfn_swap_entry_to_page(entry); 798 799 rss[mm_counter(page)]++; 800 801 if (!is_readable_migration_entry(entry) && 802 is_cow_mapping(vm_flags)) { 803 /* 804 * COW mappings require pages in both parent and child 805 * to be set to read. A previously exclusive entry is 806 * now shared. 807 */ 808 entry = make_readable_migration_entry( 809 swp_offset(entry)); 810 pte = swp_entry_to_pte(entry); 811 if (pte_swp_soft_dirty(orig_pte)) 812 pte = pte_swp_mksoft_dirty(pte); 813 if (pte_swp_uffd_wp(orig_pte)) 814 pte = pte_swp_mkuffd_wp(pte); 815 set_pte_at(src_mm, addr, src_pte, pte); 816 } 817 } else if (is_device_private_entry(entry)) { 818 page = pfn_swap_entry_to_page(entry); 819 820 /* 821 * Update rss count even for unaddressable pages, as 822 * they should treated just like normal pages in this 823 * respect. 824 * 825 * We will likely want to have some new rss counters 826 * for unaddressable pages, at some point. But for now 827 * keep things as they are. 828 */ 829 get_page(page); 830 rss[mm_counter(page)]++; 831 /* Cannot fail as these pages cannot get pinned. */ 832 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 833 834 /* 835 * We do not preserve soft-dirty information, because so 836 * far, checkpoint/restore is the only feature that 837 * requires that. And checkpoint/restore does not work 838 * when a device driver is involved (you cannot easily 839 * save and restore device driver state). 840 */ 841 if (is_writable_device_private_entry(entry) && 842 is_cow_mapping(vm_flags)) { 843 entry = make_readable_device_private_entry( 844 swp_offset(entry)); 845 pte = swp_entry_to_pte(entry); 846 if (pte_swp_uffd_wp(orig_pte)) 847 pte = pte_swp_mkuffd_wp(pte); 848 set_pte_at(src_mm, addr, src_pte, pte); 849 } 850 } else if (is_device_exclusive_entry(entry)) { 851 /* 852 * Make device exclusive entries present by restoring the 853 * original entry then copying as for a present pte. Device 854 * exclusive entries currently only support private writable 855 * (ie. COW) mappings. 856 */ 857 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 858 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 859 return -EBUSY; 860 return -ENOENT; 861 } else if (is_pte_marker_entry(entry)) { 862 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma)) 863 set_pte_at(dst_mm, addr, dst_pte, pte); 864 return 0; 865 } 866 if (!userfaultfd_wp(dst_vma)) 867 pte = pte_swp_clear_uffd_wp(pte); 868 set_pte_at(dst_mm, addr, dst_pte, pte); 869 return 0; 870 } 871 872 /* 873 * Copy a present and normal page. 874 * 875 * NOTE! The usual case is that this isn't required; 876 * instead, the caller can just increase the page refcount 877 * and re-use the pte the traditional way. 878 * 879 * And if we need a pre-allocated page but don't yet have 880 * one, return a negative error to let the preallocation 881 * code know so that it can do so outside the page table 882 * lock. 883 */ 884 static inline int 885 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 886 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 887 struct folio **prealloc, struct page *page) 888 { 889 struct folio *new_folio; 890 pte_t pte; 891 892 new_folio = *prealloc; 893 if (!new_folio) 894 return -EAGAIN; 895 896 /* 897 * We have a prealloc page, all good! Take it 898 * over and copy the page & arm it. 899 */ 900 *prealloc = NULL; 901 copy_user_highpage(&new_folio->page, page, addr, src_vma); 902 __folio_mark_uptodate(new_folio); 903 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 904 folio_add_lru_vma(new_folio, dst_vma); 905 rss[MM_ANONPAGES]++; 906 907 /* All done, just insert the new page copy in the child */ 908 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 909 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 910 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 911 /* Uffd-wp needs to be delivered to dest pte as well */ 912 pte = pte_mkuffd_wp(pte); 913 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 914 return 0; 915 } 916 917 /* 918 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 919 * is required to copy this pte. 920 */ 921 static inline int 922 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 923 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 924 struct folio **prealloc) 925 { 926 struct mm_struct *src_mm = src_vma->vm_mm; 927 unsigned long vm_flags = src_vma->vm_flags; 928 pte_t pte = ptep_get(src_pte); 929 struct page *page; 930 struct folio *folio; 931 932 page = vm_normal_page(src_vma, addr, pte); 933 if (page) 934 folio = page_folio(page); 935 if (page && folio_test_anon(folio)) { 936 /* 937 * If this page may have been pinned by the parent process, 938 * copy the page immediately for the child so that we'll always 939 * guarantee the pinned page won't be randomly replaced in the 940 * future. 941 */ 942 folio_get(folio); 943 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 944 /* Page may be pinned, we have to copy. */ 945 folio_put(folio); 946 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 947 addr, rss, prealloc, page); 948 } 949 rss[MM_ANONPAGES]++; 950 } else if (page) { 951 folio_get(folio); 952 page_dup_file_rmap(page, false); 953 rss[mm_counter_file(page)]++; 954 } 955 956 /* 957 * If it's a COW mapping, write protect it both 958 * in the parent and the child 959 */ 960 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 961 ptep_set_wrprotect(src_mm, addr, src_pte); 962 pte = pte_wrprotect(pte); 963 } 964 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); 965 966 /* 967 * If it's a shared mapping, mark it clean in 968 * the child 969 */ 970 if (vm_flags & VM_SHARED) 971 pte = pte_mkclean(pte); 972 pte = pte_mkold(pte); 973 974 if (!userfaultfd_wp(dst_vma)) 975 pte = pte_clear_uffd_wp(pte); 976 977 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 978 return 0; 979 } 980 981 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, 982 struct vm_area_struct *vma, unsigned long addr) 983 { 984 struct folio *new_folio; 985 986 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 987 if (!new_folio) 988 return NULL; 989 990 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 991 folio_put(new_folio); 992 return NULL; 993 } 994 folio_throttle_swaprate(new_folio, GFP_KERNEL); 995 996 return new_folio; 997 } 998 999 static int 1000 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1001 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1002 unsigned long end) 1003 { 1004 struct mm_struct *dst_mm = dst_vma->vm_mm; 1005 struct mm_struct *src_mm = src_vma->vm_mm; 1006 pte_t *orig_src_pte, *orig_dst_pte; 1007 pte_t *src_pte, *dst_pte; 1008 pte_t ptent; 1009 spinlock_t *src_ptl, *dst_ptl; 1010 int progress, ret = 0; 1011 int rss[NR_MM_COUNTERS]; 1012 swp_entry_t entry = (swp_entry_t){0}; 1013 struct folio *prealloc = NULL; 1014 1015 again: 1016 progress = 0; 1017 init_rss_vec(rss); 1018 1019 /* 1020 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1021 * error handling here, assume that exclusive mmap_lock on dst and src 1022 * protects anon from unexpected THP transitions; with shmem and file 1023 * protected by mmap_lock-less collapse skipping areas with anon_vma 1024 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1025 * can remove such assumptions later, but this is good enough for now. 1026 */ 1027 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1028 if (!dst_pte) { 1029 ret = -ENOMEM; 1030 goto out; 1031 } 1032 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1033 if (!src_pte) { 1034 pte_unmap_unlock(dst_pte, dst_ptl); 1035 /* ret == 0 */ 1036 goto out; 1037 } 1038 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1039 orig_src_pte = src_pte; 1040 orig_dst_pte = dst_pte; 1041 arch_enter_lazy_mmu_mode(); 1042 1043 do { 1044 /* 1045 * We are holding two locks at this point - either of them 1046 * could generate latencies in another task on another CPU. 1047 */ 1048 if (progress >= 32) { 1049 progress = 0; 1050 if (need_resched() || 1051 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1052 break; 1053 } 1054 ptent = ptep_get(src_pte); 1055 if (pte_none(ptent)) { 1056 progress++; 1057 continue; 1058 } 1059 if (unlikely(!pte_present(ptent))) { 1060 ret = copy_nonpresent_pte(dst_mm, src_mm, 1061 dst_pte, src_pte, 1062 dst_vma, src_vma, 1063 addr, rss); 1064 if (ret == -EIO) { 1065 entry = pte_to_swp_entry(ptep_get(src_pte)); 1066 break; 1067 } else if (ret == -EBUSY) { 1068 break; 1069 } else if (!ret) { 1070 progress += 8; 1071 continue; 1072 } 1073 1074 /* 1075 * Device exclusive entry restored, continue by copying 1076 * the now present pte. 1077 */ 1078 WARN_ON_ONCE(ret != -ENOENT); 1079 } 1080 /* copy_present_pte() will clear `*prealloc' if consumed */ 1081 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1082 addr, rss, &prealloc); 1083 /* 1084 * If we need a pre-allocated page for this pte, drop the 1085 * locks, allocate, and try again. 1086 */ 1087 if (unlikely(ret == -EAGAIN)) 1088 break; 1089 if (unlikely(prealloc)) { 1090 /* 1091 * pre-alloc page cannot be reused by next time so as 1092 * to strictly follow mempolicy (e.g., alloc_page_vma() 1093 * will allocate page according to address). This 1094 * could only happen if one pinned pte changed. 1095 */ 1096 folio_put(prealloc); 1097 prealloc = NULL; 1098 } 1099 progress += 8; 1100 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1101 1102 arch_leave_lazy_mmu_mode(); 1103 pte_unmap_unlock(orig_src_pte, src_ptl); 1104 add_mm_rss_vec(dst_mm, rss); 1105 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1106 cond_resched(); 1107 1108 if (ret == -EIO) { 1109 VM_WARN_ON_ONCE(!entry.val); 1110 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1111 ret = -ENOMEM; 1112 goto out; 1113 } 1114 entry.val = 0; 1115 } else if (ret == -EBUSY) { 1116 goto out; 1117 } else if (ret == -EAGAIN) { 1118 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1119 if (!prealloc) 1120 return -ENOMEM; 1121 } else if (ret) { 1122 VM_WARN_ON_ONCE(1); 1123 } 1124 1125 /* We've captured and resolved the error. Reset, try again. */ 1126 ret = 0; 1127 1128 if (addr != end) 1129 goto again; 1130 out: 1131 if (unlikely(prealloc)) 1132 folio_put(prealloc); 1133 return ret; 1134 } 1135 1136 static inline int 1137 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1138 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1139 unsigned long end) 1140 { 1141 struct mm_struct *dst_mm = dst_vma->vm_mm; 1142 struct mm_struct *src_mm = src_vma->vm_mm; 1143 pmd_t *src_pmd, *dst_pmd; 1144 unsigned long next; 1145 1146 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1147 if (!dst_pmd) 1148 return -ENOMEM; 1149 src_pmd = pmd_offset(src_pud, addr); 1150 do { 1151 next = pmd_addr_end(addr, end); 1152 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1153 || pmd_devmap(*src_pmd)) { 1154 int err; 1155 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1156 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1157 addr, dst_vma, src_vma); 1158 if (err == -ENOMEM) 1159 return -ENOMEM; 1160 if (!err) 1161 continue; 1162 /* fall through */ 1163 } 1164 if (pmd_none_or_clear_bad(src_pmd)) 1165 continue; 1166 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1167 addr, next)) 1168 return -ENOMEM; 1169 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1170 return 0; 1171 } 1172 1173 static inline int 1174 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1175 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1176 unsigned long end) 1177 { 1178 struct mm_struct *dst_mm = dst_vma->vm_mm; 1179 struct mm_struct *src_mm = src_vma->vm_mm; 1180 pud_t *src_pud, *dst_pud; 1181 unsigned long next; 1182 1183 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1184 if (!dst_pud) 1185 return -ENOMEM; 1186 src_pud = pud_offset(src_p4d, addr); 1187 do { 1188 next = pud_addr_end(addr, end); 1189 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1190 int err; 1191 1192 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1193 err = copy_huge_pud(dst_mm, src_mm, 1194 dst_pud, src_pud, addr, src_vma); 1195 if (err == -ENOMEM) 1196 return -ENOMEM; 1197 if (!err) 1198 continue; 1199 /* fall through */ 1200 } 1201 if (pud_none_or_clear_bad(src_pud)) 1202 continue; 1203 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1204 addr, next)) 1205 return -ENOMEM; 1206 } while (dst_pud++, src_pud++, addr = next, addr != end); 1207 return 0; 1208 } 1209 1210 static inline int 1211 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1212 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1213 unsigned long end) 1214 { 1215 struct mm_struct *dst_mm = dst_vma->vm_mm; 1216 p4d_t *src_p4d, *dst_p4d; 1217 unsigned long next; 1218 1219 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1220 if (!dst_p4d) 1221 return -ENOMEM; 1222 src_p4d = p4d_offset(src_pgd, addr); 1223 do { 1224 next = p4d_addr_end(addr, end); 1225 if (p4d_none_or_clear_bad(src_p4d)) 1226 continue; 1227 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1228 addr, next)) 1229 return -ENOMEM; 1230 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1231 return 0; 1232 } 1233 1234 /* 1235 * Return true if the vma needs to copy the pgtable during this fork(). Return 1236 * false when we can speed up fork() by allowing lazy page faults later until 1237 * when the child accesses the memory range. 1238 */ 1239 static bool 1240 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1241 { 1242 /* 1243 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1244 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1245 * contains uffd-wp protection information, that's something we can't 1246 * retrieve from page cache, and skip copying will lose those info. 1247 */ 1248 if (userfaultfd_wp(dst_vma)) 1249 return true; 1250 1251 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1252 return true; 1253 1254 if (src_vma->anon_vma) 1255 return true; 1256 1257 /* 1258 * Don't copy ptes where a page fault will fill them correctly. Fork 1259 * becomes much lighter when there are big shared or private readonly 1260 * mappings. The tradeoff is that copy_page_range is more efficient 1261 * than faulting. 1262 */ 1263 return false; 1264 } 1265 1266 int 1267 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1268 { 1269 pgd_t *src_pgd, *dst_pgd; 1270 unsigned long next; 1271 unsigned long addr = src_vma->vm_start; 1272 unsigned long end = src_vma->vm_end; 1273 struct mm_struct *dst_mm = dst_vma->vm_mm; 1274 struct mm_struct *src_mm = src_vma->vm_mm; 1275 struct mmu_notifier_range range; 1276 bool is_cow; 1277 int ret; 1278 1279 if (!vma_needs_copy(dst_vma, src_vma)) 1280 return 0; 1281 1282 if (is_vm_hugetlb_page(src_vma)) 1283 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1284 1285 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1286 /* 1287 * We do not free on error cases below as remove_vma 1288 * gets called on error from higher level routine 1289 */ 1290 ret = track_pfn_copy(src_vma); 1291 if (ret) 1292 return ret; 1293 } 1294 1295 /* 1296 * We need to invalidate the secondary MMU mappings only when 1297 * there could be a permission downgrade on the ptes of the 1298 * parent mm. And a permission downgrade will only happen if 1299 * is_cow_mapping() returns true. 1300 */ 1301 is_cow = is_cow_mapping(src_vma->vm_flags); 1302 1303 if (is_cow) { 1304 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1305 0, src_mm, addr, end); 1306 mmu_notifier_invalidate_range_start(&range); 1307 /* 1308 * Disabling preemption is not needed for the write side, as 1309 * the read side doesn't spin, but goes to the mmap_lock. 1310 * 1311 * Use the raw variant of the seqcount_t write API to avoid 1312 * lockdep complaining about preemptibility. 1313 */ 1314 mmap_assert_write_locked(src_mm); 1315 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1316 } 1317 1318 ret = 0; 1319 dst_pgd = pgd_offset(dst_mm, addr); 1320 src_pgd = pgd_offset(src_mm, addr); 1321 do { 1322 next = pgd_addr_end(addr, end); 1323 if (pgd_none_or_clear_bad(src_pgd)) 1324 continue; 1325 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1326 addr, next))) { 1327 untrack_pfn_clear(dst_vma); 1328 ret = -ENOMEM; 1329 break; 1330 } 1331 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1332 1333 if (is_cow) { 1334 raw_write_seqcount_end(&src_mm->write_protect_seq); 1335 mmu_notifier_invalidate_range_end(&range); 1336 } 1337 return ret; 1338 } 1339 1340 /* Whether we should zap all COWed (private) pages too */ 1341 static inline bool should_zap_cows(struct zap_details *details) 1342 { 1343 /* By default, zap all pages */ 1344 if (!details) 1345 return true; 1346 1347 /* Or, we zap COWed pages only if the caller wants to */ 1348 return details->even_cows; 1349 } 1350 1351 /* Decides whether we should zap this page with the page pointer specified */ 1352 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1353 { 1354 /* If we can make a decision without *page.. */ 1355 if (should_zap_cows(details)) 1356 return true; 1357 1358 /* E.g. the caller passes NULL for the case of a zero page */ 1359 if (!page) 1360 return true; 1361 1362 /* Otherwise we should only zap non-anon pages */ 1363 return !PageAnon(page); 1364 } 1365 1366 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1367 { 1368 if (!details) 1369 return false; 1370 1371 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1372 } 1373 1374 /* 1375 * This function makes sure that we'll replace the none pte with an uffd-wp 1376 * swap special pte marker when necessary. Must be with the pgtable lock held. 1377 */ 1378 static inline void 1379 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1380 unsigned long addr, pte_t *pte, 1381 struct zap_details *details, pte_t pteval) 1382 { 1383 /* Zap on anonymous always means dropping everything */ 1384 if (vma_is_anonymous(vma)) 1385 return; 1386 1387 if (zap_drop_file_uffd_wp(details)) 1388 return; 1389 1390 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1391 } 1392 1393 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1394 struct vm_area_struct *vma, pmd_t *pmd, 1395 unsigned long addr, unsigned long end, 1396 struct zap_details *details) 1397 { 1398 struct mm_struct *mm = tlb->mm; 1399 int force_flush = 0; 1400 int rss[NR_MM_COUNTERS]; 1401 spinlock_t *ptl; 1402 pte_t *start_pte; 1403 pte_t *pte; 1404 swp_entry_t entry; 1405 1406 tlb_change_page_size(tlb, PAGE_SIZE); 1407 init_rss_vec(rss); 1408 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1409 if (!pte) 1410 return addr; 1411 1412 flush_tlb_batched_pending(mm); 1413 arch_enter_lazy_mmu_mode(); 1414 do { 1415 pte_t ptent = ptep_get(pte); 1416 struct page *page; 1417 1418 if (pte_none(ptent)) 1419 continue; 1420 1421 if (need_resched()) 1422 break; 1423 1424 if (pte_present(ptent)) { 1425 unsigned int delay_rmap; 1426 1427 page = vm_normal_page(vma, addr, ptent); 1428 if (unlikely(!should_zap_page(details, page))) 1429 continue; 1430 ptent = ptep_get_and_clear_full(mm, addr, pte, 1431 tlb->fullmm); 1432 tlb_remove_tlb_entry(tlb, pte, addr); 1433 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1434 ptent); 1435 if (unlikely(!page)) 1436 continue; 1437 1438 delay_rmap = 0; 1439 if (!PageAnon(page)) { 1440 if (pte_dirty(ptent)) { 1441 set_page_dirty(page); 1442 if (tlb_delay_rmap(tlb)) { 1443 delay_rmap = 1; 1444 force_flush = 1; 1445 } 1446 } 1447 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1448 mark_page_accessed(page); 1449 } 1450 rss[mm_counter(page)]--; 1451 if (!delay_rmap) { 1452 page_remove_rmap(page, vma, false); 1453 if (unlikely(page_mapcount(page) < 0)) 1454 print_bad_pte(vma, addr, ptent, page); 1455 } 1456 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1457 force_flush = 1; 1458 addr += PAGE_SIZE; 1459 break; 1460 } 1461 continue; 1462 } 1463 1464 entry = pte_to_swp_entry(ptent); 1465 if (is_device_private_entry(entry) || 1466 is_device_exclusive_entry(entry)) { 1467 page = pfn_swap_entry_to_page(entry); 1468 if (unlikely(!should_zap_page(details, page))) 1469 continue; 1470 /* 1471 * Both device private/exclusive mappings should only 1472 * work with anonymous page so far, so we don't need to 1473 * consider uffd-wp bit when zap. For more information, 1474 * see zap_install_uffd_wp_if_needed(). 1475 */ 1476 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1477 rss[mm_counter(page)]--; 1478 if (is_device_private_entry(entry)) 1479 page_remove_rmap(page, vma, false); 1480 put_page(page); 1481 } else if (!non_swap_entry(entry)) { 1482 /* Genuine swap entry, hence a private anon page */ 1483 if (!should_zap_cows(details)) 1484 continue; 1485 rss[MM_SWAPENTS]--; 1486 if (unlikely(!free_swap_and_cache(entry))) 1487 print_bad_pte(vma, addr, ptent, NULL); 1488 } else if (is_migration_entry(entry)) { 1489 page = pfn_swap_entry_to_page(entry); 1490 if (!should_zap_page(details, page)) 1491 continue; 1492 rss[mm_counter(page)]--; 1493 } else if (pte_marker_entry_uffd_wp(entry)) { 1494 /* 1495 * For anon: always drop the marker; for file: only 1496 * drop the marker if explicitly requested. 1497 */ 1498 if (!vma_is_anonymous(vma) && 1499 !zap_drop_file_uffd_wp(details)) 1500 continue; 1501 } else if (is_hwpoison_entry(entry) || 1502 is_swapin_error_entry(entry)) { 1503 if (!should_zap_cows(details)) 1504 continue; 1505 } else { 1506 /* We should have covered all the swap entry types */ 1507 WARN_ON_ONCE(1); 1508 } 1509 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1510 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1511 } while (pte++, addr += PAGE_SIZE, addr != end); 1512 1513 add_mm_rss_vec(mm, rss); 1514 arch_leave_lazy_mmu_mode(); 1515 1516 /* Do the actual TLB flush before dropping ptl */ 1517 if (force_flush) { 1518 tlb_flush_mmu_tlbonly(tlb); 1519 tlb_flush_rmaps(tlb, vma); 1520 } 1521 pte_unmap_unlock(start_pte, ptl); 1522 1523 /* 1524 * If we forced a TLB flush (either due to running out of 1525 * batch buffers or because we needed to flush dirty TLB 1526 * entries before releasing the ptl), free the batched 1527 * memory too. Come back again if we didn't do everything. 1528 */ 1529 if (force_flush) 1530 tlb_flush_mmu(tlb); 1531 1532 return addr; 1533 } 1534 1535 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1536 struct vm_area_struct *vma, pud_t *pud, 1537 unsigned long addr, unsigned long end, 1538 struct zap_details *details) 1539 { 1540 pmd_t *pmd; 1541 unsigned long next; 1542 1543 pmd = pmd_offset(pud, addr); 1544 do { 1545 next = pmd_addr_end(addr, end); 1546 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1547 if (next - addr != HPAGE_PMD_SIZE) 1548 __split_huge_pmd(vma, pmd, addr, false, NULL); 1549 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1550 addr = next; 1551 continue; 1552 } 1553 /* fall through */ 1554 } else if (details && details->single_folio && 1555 folio_test_pmd_mappable(details->single_folio) && 1556 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1557 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1558 /* 1559 * Take and drop THP pmd lock so that we cannot return 1560 * prematurely, while zap_huge_pmd() has cleared *pmd, 1561 * but not yet decremented compound_mapcount(). 1562 */ 1563 spin_unlock(ptl); 1564 } 1565 if (pmd_none(*pmd)) { 1566 addr = next; 1567 continue; 1568 } 1569 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1570 if (addr != next) 1571 pmd--; 1572 } while (pmd++, cond_resched(), addr != end); 1573 1574 return addr; 1575 } 1576 1577 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1578 struct vm_area_struct *vma, p4d_t *p4d, 1579 unsigned long addr, unsigned long end, 1580 struct zap_details *details) 1581 { 1582 pud_t *pud; 1583 unsigned long next; 1584 1585 pud = pud_offset(p4d, addr); 1586 do { 1587 next = pud_addr_end(addr, end); 1588 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1589 if (next - addr != HPAGE_PUD_SIZE) { 1590 mmap_assert_locked(tlb->mm); 1591 split_huge_pud(vma, pud, addr); 1592 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1593 goto next; 1594 /* fall through */ 1595 } 1596 if (pud_none_or_clear_bad(pud)) 1597 continue; 1598 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1599 next: 1600 cond_resched(); 1601 } while (pud++, addr = next, addr != end); 1602 1603 return addr; 1604 } 1605 1606 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1607 struct vm_area_struct *vma, pgd_t *pgd, 1608 unsigned long addr, unsigned long end, 1609 struct zap_details *details) 1610 { 1611 p4d_t *p4d; 1612 unsigned long next; 1613 1614 p4d = p4d_offset(pgd, addr); 1615 do { 1616 next = p4d_addr_end(addr, end); 1617 if (p4d_none_or_clear_bad(p4d)) 1618 continue; 1619 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1620 } while (p4d++, addr = next, addr != end); 1621 1622 return addr; 1623 } 1624 1625 void unmap_page_range(struct mmu_gather *tlb, 1626 struct vm_area_struct *vma, 1627 unsigned long addr, unsigned long end, 1628 struct zap_details *details) 1629 { 1630 pgd_t *pgd; 1631 unsigned long next; 1632 1633 BUG_ON(addr >= end); 1634 tlb_start_vma(tlb, vma); 1635 pgd = pgd_offset(vma->vm_mm, addr); 1636 do { 1637 next = pgd_addr_end(addr, end); 1638 if (pgd_none_or_clear_bad(pgd)) 1639 continue; 1640 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1641 } while (pgd++, addr = next, addr != end); 1642 tlb_end_vma(tlb, vma); 1643 } 1644 1645 1646 static void unmap_single_vma(struct mmu_gather *tlb, 1647 struct vm_area_struct *vma, unsigned long start_addr, 1648 unsigned long end_addr, 1649 struct zap_details *details, bool mm_wr_locked) 1650 { 1651 unsigned long start = max(vma->vm_start, start_addr); 1652 unsigned long end; 1653 1654 if (start >= vma->vm_end) 1655 return; 1656 end = min(vma->vm_end, end_addr); 1657 if (end <= vma->vm_start) 1658 return; 1659 1660 if (vma->vm_file) 1661 uprobe_munmap(vma, start, end); 1662 1663 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1664 untrack_pfn(vma, 0, 0, mm_wr_locked); 1665 1666 if (start != end) { 1667 if (unlikely(is_vm_hugetlb_page(vma))) { 1668 /* 1669 * It is undesirable to test vma->vm_file as it 1670 * should be non-null for valid hugetlb area. 1671 * However, vm_file will be NULL in the error 1672 * cleanup path of mmap_region. When 1673 * hugetlbfs ->mmap method fails, 1674 * mmap_region() nullifies vma->vm_file 1675 * before calling this function to clean up. 1676 * Since no pte has actually been setup, it is 1677 * safe to do nothing in this case. 1678 */ 1679 if (vma->vm_file) { 1680 zap_flags_t zap_flags = details ? 1681 details->zap_flags : 0; 1682 __unmap_hugepage_range_final(tlb, vma, start, end, 1683 NULL, zap_flags); 1684 } 1685 } else 1686 unmap_page_range(tlb, vma, start, end, details); 1687 } 1688 } 1689 1690 /** 1691 * unmap_vmas - unmap a range of memory covered by a list of vma's 1692 * @tlb: address of the caller's struct mmu_gather 1693 * @mt: the maple tree 1694 * @vma: the starting vma 1695 * @start_addr: virtual address at which to start unmapping 1696 * @end_addr: virtual address at which to end unmapping 1697 * 1698 * Unmap all pages in the vma list. 1699 * 1700 * Only addresses between `start' and `end' will be unmapped. 1701 * 1702 * The VMA list must be sorted in ascending virtual address order. 1703 * 1704 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1705 * range after unmap_vmas() returns. So the only responsibility here is to 1706 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1707 * drops the lock and schedules. 1708 */ 1709 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 1710 struct vm_area_struct *vma, unsigned long start_addr, 1711 unsigned long end_addr, bool mm_wr_locked) 1712 { 1713 struct mmu_notifier_range range; 1714 struct zap_details details = { 1715 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1716 /* Careful - we need to zap private pages too! */ 1717 .even_cows = true, 1718 }; 1719 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 1720 1721 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1722 start_addr, end_addr); 1723 mmu_notifier_invalidate_range_start(&range); 1724 do { 1725 unmap_single_vma(tlb, vma, start_addr, end_addr, &details, 1726 mm_wr_locked); 1727 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL); 1728 mmu_notifier_invalidate_range_end(&range); 1729 } 1730 1731 /** 1732 * zap_page_range_single - remove user pages in a given range 1733 * @vma: vm_area_struct holding the applicable pages 1734 * @address: starting address of pages to zap 1735 * @size: number of bytes to zap 1736 * @details: details of shared cache invalidation 1737 * 1738 * The range must fit into one VMA. 1739 */ 1740 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1741 unsigned long size, struct zap_details *details) 1742 { 1743 const unsigned long end = address + size; 1744 struct mmu_notifier_range range; 1745 struct mmu_gather tlb; 1746 1747 lru_add_drain(); 1748 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1749 address, end); 1750 if (is_vm_hugetlb_page(vma)) 1751 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1752 &range.end); 1753 tlb_gather_mmu(&tlb, vma->vm_mm); 1754 update_hiwater_rss(vma->vm_mm); 1755 mmu_notifier_invalidate_range_start(&range); 1756 /* 1757 * unmap 'address-end' not 'range.start-range.end' as range 1758 * could have been expanded for hugetlb pmd sharing. 1759 */ 1760 unmap_single_vma(&tlb, vma, address, end, details, false); 1761 mmu_notifier_invalidate_range_end(&range); 1762 tlb_finish_mmu(&tlb); 1763 } 1764 1765 /** 1766 * zap_vma_ptes - remove ptes mapping the vma 1767 * @vma: vm_area_struct holding ptes to be zapped 1768 * @address: starting address of pages to zap 1769 * @size: number of bytes to zap 1770 * 1771 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1772 * 1773 * The entire address range must be fully contained within the vma. 1774 * 1775 */ 1776 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1777 unsigned long size) 1778 { 1779 if (!range_in_vma(vma, address, address + size) || 1780 !(vma->vm_flags & VM_PFNMAP)) 1781 return; 1782 1783 zap_page_range_single(vma, address, size, NULL); 1784 } 1785 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1786 1787 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1788 { 1789 pgd_t *pgd; 1790 p4d_t *p4d; 1791 pud_t *pud; 1792 pmd_t *pmd; 1793 1794 pgd = pgd_offset(mm, addr); 1795 p4d = p4d_alloc(mm, pgd, addr); 1796 if (!p4d) 1797 return NULL; 1798 pud = pud_alloc(mm, p4d, addr); 1799 if (!pud) 1800 return NULL; 1801 pmd = pmd_alloc(mm, pud, addr); 1802 if (!pmd) 1803 return NULL; 1804 1805 VM_BUG_ON(pmd_trans_huge(*pmd)); 1806 return pmd; 1807 } 1808 1809 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1810 spinlock_t **ptl) 1811 { 1812 pmd_t *pmd = walk_to_pmd(mm, addr); 1813 1814 if (!pmd) 1815 return NULL; 1816 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1817 } 1818 1819 static int validate_page_before_insert(struct page *page) 1820 { 1821 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1822 return -EINVAL; 1823 flush_dcache_page(page); 1824 return 0; 1825 } 1826 1827 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1828 unsigned long addr, struct page *page, pgprot_t prot) 1829 { 1830 if (!pte_none(ptep_get(pte))) 1831 return -EBUSY; 1832 /* Ok, finally just insert the thing.. */ 1833 get_page(page); 1834 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1835 page_add_file_rmap(page, vma, false); 1836 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1837 return 0; 1838 } 1839 1840 /* 1841 * This is the old fallback for page remapping. 1842 * 1843 * For historical reasons, it only allows reserved pages. Only 1844 * old drivers should use this, and they needed to mark their 1845 * pages reserved for the old functions anyway. 1846 */ 1847 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1848 struct page *page, pgprot_t prot) 1849 { 1850 int retval; 1851 pte_t *pte; 1852 spinlock_t *ptl; 1853 1854 retval = validate_page_before_insert(page); 1855 if (retval) 1856 goto out; 1857 retval = -ENOMEM; 1858 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1859 if (!pte) 1860 goto out; 1861 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1862 pte_unmap_unlock(pte, ptl); 1863 out: 1864 return retval; 1865 } 1866 1867 #ifdef pte_index 1868 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1869 unsigned long addr, struct page *page, pgprot_t prot) 1870 { 1871 int err; 1872 1873 if (!page_count(page)) 1874 return -EINVAL; 1875 err = validate_page_before_insert(page); 1876 if (err) 1877 return err; 1878 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1879 } 1880 1881 /* insert_pages() amortizes the cost of spinlock operations 1882 * when inserting pages in a loop. Arch *must* define pte_index. 1883 */ 1884 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1885 struct page **pages, unsigned long *num, pgprot_t prot) 1886 { 1887 pmd_t *pmd = NULL; 1888 pte_t *start_pte, *pte; 1889 spinlock_t *pte_lock; 1890 struct mm_struct *const mm = vma->vm_mm; 1891 unsigned long curr_page_idx = 0; 1892 unsigned long remaining_pages_total = *num; 1893 unsigned long pages_to_write_in_pmd; 1894 int ret; 1895 more: 1896 ret = -EFAULT; 1897 pmd = walk_to_pmd(mm, addr); 1898 if (!pmd) 1899 goto out; 1900 1901 pages_to_write_in_pmd = min_t(unsigned long, 1902 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1903 1904 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1905 ret = -ENOMEM; 1906 if (pte_alloc(mm, pmd)) 1907 goto out; 1908 1909 while (pages_to_write_in_pmd) { 1910 int pte_idx = 0; 1911 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1912 1913 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1914 if (!start_pte) { 1915 ret = -EFAULT; 1916 goto out; 1917 } 1918 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1919 int err = insert_page_in_batch_locked(vma, pte, 1920 addr, pages[curr_page_idx], prot); 1921 if (unlikely(err)) { 1922 pte_unmap_unlock(start_pte, pte_lock); 1923 ret = err; 1924 remaining_pages_total -= pte_idx; 1925 goto out; 1926 } 1927 addr += PAGE_SIZE; 1928 ++curr_page_idx; 1929 } 1930 pte_unmap_unlock(start_pte, pte_lock); 1931 pages_to_write_in_pmd -= batch_size; 1932 remaining_pages_total -= batch_size; 1933 } 1934 if (remaining_pages_total) 1935 goto more; 1936 ret = 0; 1937 out: 1938 *num = remaining_pages_total; 1939 return ret; 1940 } 1941 #endif /* ifdef pte_index */ 1942 1943 /** 1944 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1945 * @vma: user vma to map to 1946 * @addr: target start user address of these pages 1947 * @pages: source kernel pages 1948 * @num: in: number of pages to map. out: number of pages that were *not* 1949 * mapped. (0 means all pages were successfully mapped). 1950 * 1951 * Preferred over vm_insert_page() when inserting multiple pages. 1952 * 1953 * In case of error, we may have mapped a subset of the provided 1954 * pages. It is the caller's responsibility to account for this case. 1955 * 1956 * The same restrictions apply as in vm_insert_page(). 1957 */ 1958 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1959 struct page **pages, unsigned long *num) 1960 { 1961 #ifdef pte_index 1962 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1963 1964 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1965 return -EFAULT; 1966 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1967 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1968 BUG_ON(vma->vm_flags & VM_PFNMAP); 1969 vm_flags_set(vma, VM_MIXEDMAP); 1970 } 1971 /* Defer page refcount checking till we're about to map that page. */ 1972 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1973 #else 1974 unsigned long idx = 0, pgcount = *num; 1975 int err = -EINVAL; 1976 1977 for (; idx < pgcount; ++idx) { 1978 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1979 if (err) 1980 break; 1981 } 1982 *num = pgcount - idx; 1983 return err; 1984 #endif /* ifdef pte_index */ 1985 } 1986 EXPORT_SYMBOL(vm_insert_pages); 1987 1988 /** 1989 * vm_insert_page - insert single page into user vma 1990 * @vma: user vma to map to 1991 * @addr: target user address of this page 1992 * @page: source kernel page 1993 * 1994 * This allows drivers to insert individual pages they've allocated 1995 * into a user vma. 1996 * 1997 * The page has to be a nice clean _individual_ kernel allocation. 1998 * If you allocate a compound page, you need to have marked it as 1999 * such (__GFP_COMP), or manually just split the page up yourself 2000 * (see split_page()). 2001 * 2002 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2003 * took an arbitrary page protection parameter. This doesn't allow 2004 * that. Your vma protection will have to be set up correctly, which 2005 * means that if you want a shared writable mapping, you'd better 2006 * ask for a shared writable mapping! 2007 * 2008 * The page does not need to be reserved. 2009 * 2010 * Usually this function is called from f_op->mmap() handler 2011 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2012 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2013 * function from other places, for example from page-fault handler. 2014 * 2015 * Return: %0 on success, negative error code otherwise. 2016 */ 2017 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2018 struct page *page) 2019 { 2020 if (addr < vma->vm_start || addr >= vma->vm_end) 2021 return -EFAULT; 2022 if (!page_count(page)) 2023 return -EINVAL; 2024 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2025 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2026 BUG_ON(vma->vm_flags & VM_PFNMAP); 2027 vm_flags_set(vma, VM_MIXEDMAP); 2028 } 2029 return insert_page(vma, addr, page, vma->vm_page_prot); 2030 } 2031 EXPORT_SYMBOL(vm_insert_page); 2032 2033 /* 2034 * __vm_map_pages - maps range of kernel pages into user vma 2035 * @vma: user vma to map to 2036 * @pages: pointer to array of source kernel pages 2037 * @num: number of pages in page array 2038 * @offset: user's requested vm_pgoff 2039 * 2040 * This allows drivers to map range of kernel pages into a user vma. 2041 * 2042 * Return: 0 on success and error code otherwise. 2043 */ 2044 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2045 unsigned long num, unsigned long offset) 2046 { 2047 unsigned long count = vma_pages(vma); 2048 unsigned long uaddr = vma->vm_start; 2049 int ret, i; 2050 2051 /* Fail if the user requested offset is beyond the end of the object */ 2052 if (offset >= num) 2053 return -ENXIO; 2054 2055 /* Fail if the user requested size exceeds available object size */ 2056 if (count > num - offset) 2057 return -ENXIO; 2058 2059 for (i = 0; i < count; i++) { 2060 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2061 if (ret < 0) 2062 return ret; 2063 uaddr += PAGE_SIZE; 2064 } 2065 2066 return 0; 2067 } 2068 2069 /** 2070 * vm_map_pages - maps range of kernel pages starts with non zero offset 2071 * @vma: user vma to map to 2072 * @pages: pointer to array of source kernel pages 2073 * @num: number of pages in page array 2074 * 2075 * Maps an object consisting of @num pages, catering for the user's 2076 * requested vm_pgoff 2077 * 2078 * If we fail to insert any page into the vma, the function will return 2079 * immediately leaving any previously inserted pages present. Callers 2080 * from the mmap handler may immediately return the error as their caller 2081 * will destroy the vma, removing any successfully inserted pages. Other 2082 * callers should make their own arrangements for calling unmap_region(). 2083 * 2084 * Context: Process context. Called by mmap handlers. 2085 * Return: 0 on success and error code otherwise. 2086 */ 2087 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2088 unsigned long num) 2089 { 2090 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2091 } 2092 EXPORT_SYMBOL(vm_map_pages); 2093 2094 /** 2095 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2096 * @vma: user vma to map to 2097 * @pages: pointer to array of source kernel pages 2098 * @num: number of pages in page array 2099 * 2100 * Similar to vm_map_pages(), except that it explicitly sets the offset 2101 * to 0. This function is intended for the drivers that did not consider 2102 * vm_pgoff. 2103 * 2104 * Context: Process context. Called by mmap handlers. 2105 * Return: 0 on success and error code otherwise. 2106 */ 2107 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2108 unsigned long num) 2109 { 2110 return __vm_map_pages(vma, pages, num, 0); 2111 } 2112 EXPORT_SYMBOL(vm_map_pages_zero); 2113 2114 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2115 pfn_t pfn, pgprot_t prot, bool mkwrite) 2116 { 2117 struct mm_struct *mm = vma->vm_mm; 2118 pte_t *pte, entry; 2119 spinlock_t *ptl; 2120 2121 pte = get_locked_pte(mm, addr, &ptl); 2122 if (!pte) 2123 return VM_FAULT_OOM; 2124 entry = ptep_get(pte); 2125 if (!pte_none(entry)) { 2126 if (mkwrite) { 2127 /* 2128 * For read faults on private mappings the PFN passed 2129 * in may not match the PFN we have mapped if the 2130 * mapped PFN is a writeable COW page. In the mkwrite 2131 * case we are creating a writable PTE for a shared 2132 * mapping and we expect the PFNs to match. If they 2133 * don't match, we are likely racing with block 2134 * allocation and mapping invalidation so just skip the 2135 * update. 2136 */ 2137 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2138 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2139 goto out_unlock; 2140 } 2141 entry = pte_mkyoung(entry); 2142 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2143 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2144 update_mmu_cache(vma, addr, pte); 2145 } 2146 goto out_unlock; 2147 } 2148 2149 /* Ok, finally just insert the thing.. */ 2150 if (pfn_t_devmap(pfn)) 2151 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2152 else 2153 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2154 2155 if (mkwrite) { 2156 entry = pte_mkyoung(entry); 2157 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2158 } 2159 2160 set_pte_at(mm, addr, pte, entry); 2161 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2162 2163 out_unlock: 2164 pte_unmap_unlock(pte, ptl); 2165 return VM_FAULT_NOPAGE; 2166 } 2167 2168 /** 2169 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2170 * @vma: user vma to map to 2171 * @addr: target user address of this page 2172 * @pfn: source kernel pfn 2173 * @pgprot: pgprot flags for the inserted page 2174 * 2175 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2176 * to override pgprot on a per-page basis. 2177 * 2178 * This only makes sense for IO mappings, and it makes no sense for 2179 * COW mappings. In general, using multiple vmas is preferable; 2180 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2181 * impractical. 2182 * 2183 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2184 * caching- and encryption bits different than those of @vma->vm_page_prot, 2185 * because the caching- or encryption mode may not be known at mmap() time. 2186 * 2187 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2188 * to set caching and encryption bits for those vmas (except for COW pages). 2189 * This is ensured by core vm only modifying these page table entries using 2190 * functions that don't touch caching- or encryption bits, using pte_modify() 2191 * if needed. (See for example mprotect()). 2192 * 2193 * Also when new page-table entries are created, this is only done using the 2194 * fault() callback, and never using the value of vma->vm_page_prot, 2195 * except for page-table entries that point to anonymous pages as the result 2196 * of COW. 2197 * 2198 * Context: Process context. May allocate using %GFP_KERNEL. 2199 * Return: vm_fault_t value. 2200 */ 2201 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2202 unsigned long pfn, pgprot_t pgprot) 2203 { 2204 /* 2205 * Technically, architectures with pte_special can avoid all these 2206 * restrictions (same for remap_pfn_range). However we would like 2207 * consistency in testing and feature parity among all, so we should 2208 * try to keep these invariants in place for everybody. 2209 */ 2210 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2211 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2212 (VM_PFNMAP|VM_MIXEDMAP)); 2213 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2214 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2215 2216 if (addr < vma->vm_start || addr >= vma->vm_end) 2217 return VM_FAULT_SIGBUS; 2218 2219 if (!pfn_modify_allowed(pfn, pgprot)) 2220 return VM_FAULT_SIGBUS; 2221 2222 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2223 2224 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2225 false); 2226 } 2227 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2228 2229 /** 2230 * vmf_insert_pfn - insert single pfn into user vma 2231 * @vma: user vma to map to 2232 * @addr: target user address of this page 2233 * @pfn: source kernel pfn 2234 * 2235 * Similar to vm_insert_page, this allows drivers to insert individual pages 2236 * they've allocated into a user vma. Same comments apply. 2237 * 2238 * This function should only be called from a vm_ops->fault handler, and 2239 * in that case the handler should return the result of this function. 2240 * 2241 * vma cannot be a COW mapping. 2242 * 2243 * As this is called only for pages that do not currently exist, we 2244 * do not need to flush old virtual caches or the TLB. 2245 * 2246 * Context: Process context. May allocate using %GFP_KERNEL. 2247 * Return: vm_fault_t value. 2248 */ 2249 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2250 unsigned long pfn) 2251 { 2252 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2253 } 2254 EXPORT_SYMBOL(vmf_insert_pfn); 2255 2256 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2257 { 2258 /* these checks mirror the abort conditions in vm_normal_page */ 2259 if (vma->vm_flags & VM_MIXEDMAP) 2260 return true; 2261 if (pfn_t_devmap(pfn)) 2262 return true; 2263 if (pfn_t_special(pfn)) 2264 return true; 2265 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2266 return true; 2267 return false; 2268 } 2269 2270 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2271 unsigned long addr, pfn_t pfn, bool mkwrite) 2272 { 2273 pgprot_t pgprot = vma->vm_page_prot; 2274 int err; 2275 2276 BUG_ON(!vm_mixed_ok(vma, pfn)); 2277 2278 if (addr < vma->vm_start || addr >= vma->vm_end) 2279 return VM_FAULT_SIGBUS; 2280 2281 track_pfn_insert(vma, &pgprot, pfn); 2282 2283 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2284 return VM_FAULT_SIGBUS; 2285 2286 /* 2287 * If we don't have pte special, then we have to use the pfn_valid() 2288 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2289 * refcount the page if pfn_valid is true (hence insert_page rather 2290 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2291 * without pte special, it would there be refcounted as a normal page. 2292 */ 2293 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2294 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2295 struct page *page; 2296 2297 /* 2298 * At this point we are committed to insert_page() 2299 * regardless of whether the caller specified flags that 2300 * result in pfn_t_has_page() == false. 2301 */ 2302 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2303 err = insert_page(vma, addr, page, pgprot); 2304 } else { 2305 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2306 } 2307 2308 if (err == -ENOMEM) 2309 return VM_FAULT_OOM; 2310 if (err < 0 && err != -EBUSY) 2311 return VM_FAULT_SIGBUS; 2312 2313 return VM_FAULT_NOPAGE; 2314 } 2315 2316 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2317 pfn_t pfn) 2318 { 2319 return __vm_insert_mixed(vma, addr, pfn, false); 2320 } 2321 EXPORT_SYMBOL(vmf_insert_mixed); 2322 2323 /* 2324 * If the insertion of PTE failed because someone else already added a 2325 * different entry in the mean time, we treat that as success as we assume 2326 * the same entry was actually inserted. 2327 */ 2328 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2329 unsigned long addr, pfn_t pfn) 2330 { 2331 return __vm_insert_mixed(vma, addr, pfn, true); 2332 } 2333 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2334 2335 /* 2336 * maps a range of physical memory into the requested pages. the old 2337 * mappings are removed. any references to nonexistent pages results 2338 * in null mappings (currently treated as "copy-on-access") 2339 */ 2340 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2341 unsigned long addr, unsigned long end, 2342 unsigned long pfn, pgprot_t prot) 2343 { 2344 pte_t *pte, *mapped_pte; 2345 spinlock_t *ptl; 2346 int err = 0; 2347 2348 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2349 if (!pte) 2350 return -ENOMEM; 2351 arch_enter_lazy_mmu_mode(); 2352 do { 2353 BUG_ON(!pte_none(ptep_get(pte))); 2354 if (!pfn_modify_allowed(pfn, prot)) { 2355 err = -EACCES; 2356 break; 2357 } 2358 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2359 pfn++; 2360 } while (pte++, addr += PAGE_SIZE, addr != end); 2361 arch_leave_lazy_mmu_mode(); 2362 pte_unmap_unlock(mapped_pte, ptl); 2363 return err; 2364 } 2365 2366 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2367 unsigned long addr, unsigned long end, 2368 unsigned long pfn, pgprot_t prot) 2369 { 2370 pmd_t *pmd; 2371 unsigned long next; 2372 int err; 2373 2374 pfn -= addr >> PAGE_SHIFT; 2375 pmd = pmd_alloc(mm, pud, addr); 2376 if (!pmd) 2377 return -ENOMEM; 2378 VM_BUG_ON(pmd_trans_huge(*pmd)); 2379 do { 2380 next = pmd_addr_end(addr, end); 2381 err = remap_pte_range(mm, pmd, addr, next, 2382 pfn + (addr >> PAGE_SHIFT), prot); 2383 if (err) 2384 return err; 2385 } while (pmd++, addr = next, addr != end); 2386 return 0; 2387 } 2388 2389 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2390 unsigned long addr, unsigned long end, 2391 unsigned long pfn, pgprot_t prot) 2392 { 2393 pud_t *pud; 2394 unsigned long next; 2395 int err; 2396 2397 pfn -= addr >> PAGE_SHIFT; 2398 pud = pud_alloc(mm, p4d, addr); 2399 if (!pud) 2400 return -ENOMEM; 2401 do { 2402 next = pud_addr_end(addr, end); 2403 err = remap_pmd_range(mm, pud, addr, next, 2404 pfn + (addr >> PAGE_SHIFT), prot); 2405 if (err) 2406 return err; 2407 } while (pud++, addr = next, addr != end); 2408 return 0; 2409 } 2410 2411 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2412 unsigned long addr, unsigned long end, 2413 unsigned long pfn, pgprot_t prot) 2414 { 2415 p4d_t *p4d; 2416 unsigned long next; 2417 int err; 2418 2419 pfn -= addr >> PAGE_SHIFT; 2420 p4d = p4d_alloc(mm, pgd, addr); 2421 if (!p4d) 2422 return -ENOMEM; 2423 do { 2424 next = p4d_addr_end(addr, end); 2425 err = remap_pud_range(mm, p4d, addr, next, 2426 pfn + (addr >> PAGE_SHIFT), prot); 2427 if (err) 2428 return err; 2429 } while (p4d++, addr = next, addr != end); 2430 return 0; 2431 } 2432 2433 /* 2434 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2435 * must have pre-validated the caching bits of the pgprot_t. 2436 */ 2437 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2438 unsigned long pfn, unsigned long size, pgprot_t prot) 2439 { 2440 pgd_t *pgd; 2441 unsigned long next; 2442 unsigned long end = addr + PAGE_ALIGN(size); 2443 struct mm_struct *mm = vma->vm_mm; 2444 int err; 2445 2446 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2447 return -EINVAL; 2448 2449 /* 2450 * Physically remapped pages are special. Tell the 2451 * rest of the world about it: 2452 * VM_IO tells people not to look at these pages 2453 * (accesses can have side effects). 2454 * VM_PFNMAP tells the core MM that the base pages are just 2455 * raw PFN mappings, and do not have a "struct page" associated 2456 * with them. 2457 * VM_DONTEXPAND 2458 * Disable vma merging and expanding with mremap(). 2459 * VM_DONTDUMP 2460 * Omit vma from core dump, even when VM_IO turned off. 2461 * 2462 * There's a horrible special case to handle copy-on-write 2463 * behaviour that some programs depend on. We mark the "original" 2464 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2465 * See vm_normal_page() for details. 2466 */ 2467 if (is_cow_mapping(vma->vm_flags)) { 2468 if (addr != vma->vm_start || end != vma->vm_end) 2469 return -EINVAL; 2470 vma->vm_pgoff = pfn; 2471 } 2472 2473 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2474 2475 BUG_ON(addr >= end); 2476 pfn -= addr >> PAGE_SHIFT; 2477 pgd = pgd_offset(mm, addr); 2478 flush_cache_range(vma, addr, end); 2479 do { 2480 next = pgd_addr_end(addr, end); 2481 err = remap_p4d_range(mm, pgd, addr, next, 2482 pfn + (addr >> PAGE_SHIFT), prot); 2483 if (err) 2484 return err; 2485 } while (pgd++, addr = next, addr != end); 2486 2487 return 0; 2488 } 2489 2490 /** 2491 * remap_pfn_range - remap kernel memory to userspace 2492 * @vma: user vma to map to 2493 * @addr: target page aligned user address to start at 2494 * @pfn: page frame number of kernel physical memory address 2495 * @size: size of mapping area 2496 * @prot: page protection flags for this mapping 2497 * 2498 * Note: this is only safe if the mm semaphore is held when called. 2499 * 2500 * Return: %0 on success, negative error code otherwise. 2501 */ 2502 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2503 unsigned long pfn, unsigned long size, pgprot_t prot) 2504 { 2505 int err; 2506 2507 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2508 if (err) 2509 return -EINVAL; 2510 2511 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2512 if (err) 2513 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2514 return err; 2515 } 2516 EXPORT_SYMBOL(remap_pfn_range); 2517 2518 /** 2519 * vm_iomap_memory - remap memory to userspace 2520 * @vma: user vma to map to 2521 * @start: start of the physical memory to be mapped 2522 * @len: size of area 2523 * 2524 * This is a simplified io_remap_pfn_range() for common driver use. The 2525 * driver just needs to give us the physical memory range to be mapped, 2526 * we'll figure out the rest from the vma information. 2527 * 2528 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2529 * whatever write-combining details or similar. 2530 * 2531 * Return: %0 on success, negative error code otherwise. 2532 */ 2533 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2534 { 2535 unsigned long vm_len, pfn, pages; 2536 2537 /* Check that the physical memory area passed in looks valid */ 2538 if (start + len < start) 2539 return -EINVAL; 2540 /* 2541 * You *really* shouldn't map things that aren't page-aligned, 2542 * but we've historically allowed it because IO memory might 2543 * just have smaller alignment. 2544 */ 2545 len += start & ~PAGE_MASK; 2546 pfn = start >> PAGE_SHIFT; 2547 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2548 if (pfn + pages < pfn) 2549 return -EINVAL; 2550 2551 /* We start the mapping 'vm_pgoff' pages into the area */ 2552 if (vma->vm_pgoff > pages) 2553 return -EINVAL; 2554 pfn += vma->vm_pgoff; 2555 pages -= vma->vm_pgoff; 2556 2557 /* Can we fit all of the mapping? */ 2558 vm_len = vma->vm_end - vma->vm_start; 2559 if (vm_len >> PAGE_SHIFT > pages) 2560 return -EINVAL; 2561 2562 /* Ok, let it rip */ 2563 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2564 } 2565 EXPORT_SYMBOL(vm_iomap_memory); 2566 2567 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2568 unsigned long addr, unsigned long end, 2569 pte_fn_t fn, void *data, bool create, 2570 pgtbl_mod_mask *mask) 2571 { 2572 pte_t *pte, *mapped_pte; 2573 int err = 0; 2574 spinlock_t *ptl; 2575 2576 if (create) { 2577 mapped_pte = pte = (mm == &init_mm) ? 2578 pte_alloc_kernel_track(pmd, addr, mask) : 2579 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2580 if (!pte) 2581 return -ENOMEM; 2582 } else { 2583 mapped_pte = pte = (mm == &init_mm) ? 2584 pte_offset_kernel(pmd, addr) : 2585 pte_offset_map_lock(mm, pmd, addr, &ptl); 2586 if (!pte) 2587 return -EINVAL; 2588 } 2589 2590 arch_enter_lazy_mmu_mode(); 2591 2592 if (fn) { 2593 do { 2594 if (create || !pte_none(ptep_get(pte))) { 2595 err = fn(pte++, addr, data); 2596 if (err) 2597 break; 2598 } 2599 } while (addr += PAGE_SIZE, addr != end); 2600 } 2601 *mask |= PGTBL_PTE_MODIFIED; 2602 2603 arch_leave_lazy_mmu_mode(); 2604 2605 if (mm != &init_mm) 2606 pte_unmap_unlock(mapped_pte, ptl); 2607 return err; 2608 } 2609 2610 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2611 unsigned long addr, unsigned long end, 2612 pte_fn_t fn, void *data, bool create, 2613 pgtbl_mod_mask *mask) 2614 { 2615 pmd_t *pmd; 2616 unsigned long next; 2617 int err = 0; 2618 2619 BUG_ON(pud_huge(*pud)); 2620 2621 if (create) { 2622 pmd = pmd_alloc_track(mm, pud, addr, mask); 2623 if (!pmd) 2624 return -ENOMEM; 2625 } else { 2626 pmd = pmd_offset(pud, addr); 2627 } 2628 do { 2629 next = pmd_addr_end(addr, end); 2630 if (pmd_none(*pmd) && !create) 2631 continue; 2632 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2633 return -EINVAL; 2634 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2635 if (!create) 2636 continue; 2637 pmd_clear_bad(pmd); 2638 } 2639 err = apply_to_pte_range(mm, pmd, addr, next, 2640 fn, data, create, mask); 2641 if (err) 2642 break; 2643 } while (pmd++, addr = next, addr != end); 2644 2645 return err; 2646 } 2647 2648 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2649 unsigned long addr, unsigned long end, 2650 pte_fn_t fn, void *data, bool create, 2651 pgtbl_mod_mask *mask) 2652 { 2653 pud_t *pud; 2654 unsigned long next; 2655 int err = 0; 2656 2657 if (create) { 2658 pud = pud_alloc_track(mm, p4d, addr, mask); 2659 if (!pud) 2660 return -ENOMEM; 2661 } else { 2662 pud = pud_offset(p4d, addr); 2663 } 2664 do { 2665 next = pud_addr_end(addr, end); 2666 if (pud_none(*pud) && !create) 2667 continue; 2668 if (WARN_ON_ONCE(pud_leaf(*pud))) 2669 return -EINVAL; 2670 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2671 if (!create) 2672 continue; 2673 pud_clear_bad(pud); 2674 } 2675 err = apply_to_pmd_range(mm, pud, addr, next, 2676 fn, data, create, mask); 2677 if (err) 2678 break; 2679 } while (pud++, addr = next, addr != end); 2680 2681 return err; 2682 } 2683 2684 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2685 unsigned long addr, unsigned long end, 2686 pte_fn_t fn, void *data, bool create, 2687 pgtbl_mod_mask *mask) 2688 { 2689 p4d_t *p4d; 2690 unsigned long next; 2691 int err = 0; 2692 2693 if (create) { 2694 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2695 if (!p4d) 2696 return -ENOMEM; 2697 } else { 2698 p4d = p4d_offset(pgd, addr); 2699 } 2700 do { 2701 next = p4d_addr_end(addr, end); 2702 if (p4d_none(*p4d) && !create) 2703 continue; 2704 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2705 return -EINVAL; 2706 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2707 if (!create) 2708 continue; 2709 p4d_clear_bad(p4d); 2710 } 2711 err = apply_to_pud_range(mm, p4d, addr, next, 2712 fn, data, create, mask); 2713 if (err) 2714 break; 2715 } while (p4d++, addr = next, addr != end); 2716 2717 return err; 2718 } 2719 2720 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2721 unsigned long size, pte_fn_t fn, 2722 void *data, bool create) 2723 { 2724 pgd_t *pgd; 2725 unsigned long start = addr, next; 2726 unsigned long end = addr + size; 2727 pgtbl_mod_mask mask = 0; 2728 int err = 0; 2729 2730 if (WARN_ON(addr >= end)) 2731 return -EINVAL; 2732 2733 pgd = pgd_offset(mm, addr); 2734 do { 2735 next = pgd_addr_end(addr, end); 2736 if (pgd_none(*pgd) && !create) 2737 continue; 2738 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2739 return -EINVAL; 2740 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2741 if (!create) 2742 continue; 2743 pgd_clear_bad(pgd); 2744 } 2745 err = apply_to_p4d_range(mm, pgd, addr, next, 2746 fn, data, create, &mask); 2747 if (err) 2748 break; 2749 } while (pgd++, addr = next, addr != end); 2750 2751 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2752 arch_sync_kernel_mappings(start, start + size); 2753 2754 return err; 2755 } 2756 2757 /* 2758 * Scan a region of virtual memory, filling in page tables as necessary 2759 * and calling a provided function on each leaf page table. 2760 */ 2761 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2762 unsigned long size, pte_fn_t fn, void *data) 2763 { 2764 return __apply_to_page_range(mm, addr, size, fn, data, true); 2765 } 2766 EXPORT_SYMBOL_GPL(apply_to_page_range); 2767 2768 /* 2769 * Scan a region of virtual memory, calling a provided function on 2770 * each leaf page table where it exists. 2771 * 2772 * Unlike apply_to_page_range, this does _not_ fill in page tables 2773 * where they are absent. 2774 */ 2775 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2776 unsigned long size, pte_fn_t fn, void *data) 2777 { 2778 return __apply_to_page_range(mm, addr, size, fn, data, false); 2779 } 2780 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2781 2782 /* 2783 * handle_pte_fault chooses page fault handler according to an entry which was 2784 * read non-atomically. Before making any commitment, on those architectures 2785 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2786 * parts, do_swap_page must check under lock before unmapping the pte and 2787 * proceeding (but do_wp_page is only called after already making such a check; 2788 * and do_anonymous_page can safely check later on). 2789 */ 2790 static inline int pte_unmap_same(struct vm_fault *vmf) 2791 { 2792 int same = 1; 2793 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2794 if (sizeof(pte_t) > sizeof(unsigned long)) { 2795 spin_lock(vmf->ptl); 2796 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2797 spin_unlock(vmf->ptl); 2798 } 2799 #endif 2800 pte_unmap(vmf->pte); 2801 vmf->pte = NULL; 2802 return same; 2803 } 2804 2805 /* 2806 * Return: 2807 * 0: copied succeeded 2808 * -EHWPOISON: copy failed due to hwpoison in source page 2809 * -EAGAIN: copied failed (some other reason) 2810 */ 2811 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2812 struct vm_fault *vmf) 2813 { 2814 int ret; 2815 void *kaddr; 2816 void __user *uaddr; 2817 struct vm_area_struct *vma = vmf->vma; 2818 struct mm_struct *mm = vma->vm_mm; 2819 unsigned long addr = vmf->address; 2820 2821 if (likely(src)) { 2822 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2823 memory_failure_queue(page_to_pfn(src), 0); 2824 return -EHWPOISON; 2825 } 2826 return 0; 2827 } 2828 2829 /* 2830 * If the source page was a PFN mapping, we don't have 2831 * a "struct page" for it. We do a best-effort copy by 2832 * just copying from the original user address. If that 2833 * fails, we just zero-fill it. Live with it. 2834 */ 2835 kaddr = kmap_atomic(dst); 2836 uaddr = (void __user *)(addr & PAGE_MASK); 2837 2838 /* 2839 * On architectures with software "accessed" bits, we would 2840 * take a double page fault, so mark it accessed here. 2841 */ 2842 vmf->pte = NULL; 2843 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2844 pte_t entry; 2845 2846 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2847 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2848 /* 2849 * Other thread has already handled the fault 2850 * and update local tlb only 2851 */ 2852 if (vmf->pte) 2853 update_mmu_tlb(vma, addr, vmf->pte); 2854 ret = -EAGAIN; 2855 goto pte_unlock; 2856 } 2857 2858 entry = pte_mkyoung(vmf->orig_pte); 2859 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2860 update_mmu_cache(vma, addr, vmf->pte); 2861 } 2862 2863 /* 2864 * This really shouldn't fail, because the page is there 2865 * in the page tables. But it might just be unreadable, 2866 * in which case we just give up and fill the result with 2867 * zeroes. 2868 */ 2869 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2870 if (vmf->pte) 2871 goto warn; 2872 2873 /* Re-validate under PTL if the page is still mapped */ 2874 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2875 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2876 /* The PTE changed under us, update local tlb */ 2877 if (vmf->pte) 2878 update_mmu_tlb(vma, addr, vmf->pte); 2879 ret = -EAGAIN; 2880 goto pte_unlock; 2881 } 2882 2883 /* 2884 * The same page can be mapped back since last copy attempt. 2885 * Try to copy again under PTL. 2886 */ 2887 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2888 /* 2889 * Give a warn in case there can be some obscure 2890 * use-case 2891 */ 2892 warn: 2893 WARN_ON_ONCE(1); 2894 clear_page(kaddr); 2895 } 2896 } 2897 2898 ret = 0; 2899 2900 pte_unlock: 2901 if (vmf->pte) 2902 pte_unmap_unlock(vmf->pte, vmf->ptl); 2903 kunmap_atomic(kaddr); 2904 flush_dcache_page(dst); 2905 2906 return ret; 2907 } 2908 2909 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2910 { 2911 struct file *vm_file = vma->vm_file; 2912 2913 if (vm_file) 2914 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2915 2916 /* 2917 * Special mappings (e.g. VDSO) do not have any file so fake 2918 * a default GFP_KERNEL for them. 2919 */ 2920 return GFP_KERNEL; 2921 } 2922 2923 /* 2924 * Notify the address space that the page is about to become writable so that 2925 * it can prohibit this or wait for the page to get into an appropriate state. 2926 * 2927 * We do this without the lock held, so that it can sleep if it needs to. 2928 */ 2929 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2930 { 2931 vm_fault_t ret; 2932 struct page *page = vmf->page; 2933 unsigned int old_flags = vmf->flags; 2934 2935 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2936 2937 if (vmf->vma->vm_file && 2938 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2939 return VM_FAULT_SIGBUS; 2940 2941 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2942 /* Restore original flags so that caller is not surprised */ 2943 vmf->flags = old_flags; 2944 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2945 return ret; 2946 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2947 lock_page(page); 2948 if (!page->mapping) { 2949 unlock_page(page); 2950 return 0; /* retry */ 2951 } 2952 ret |= VM_FAULT_LOCKED; 2953 } else 2954 VM_BUG_ON_PAGE(!PageLocked(page), page); 2955 return ret; 2956 } 2957 2958 /* 2959 * Handle dirtying of a page in shared file mapping on a write fault. 2960 * 2961 * The function expects the page to be locked and unlocks it. 2962 */ 2963 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2964 { 2965 struct vm_area_struct *vma = vmf->vma; 2966 struct address_space *mapping; 2967 struct page *page = vmf->page; 2968 bool dirtied; 2969 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2970 2971 dirtied = set_page_dirty(page); 2972 VM_BUG_ON_PAGE(PageAnon(page), page); 2973 /* 2974 * Take a local copy of the address_space - page.mapping may be zeroed 2975 * by truncate after unlock_page(). The address_space itself remains 2976 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2977 * release semantics to prevent the compiler from undoing this copying. 2978 */ 2979 mapping = page_rmapping(page); 2980 unlock_page(page); 2981 2982 if (!page_mkwrite) 2983 file_update_time(vma->vm_file); 2984 2985 /* 2986 * Throttle page dirtying rate down to writeback speed. 2987 * 2988 * mapping may be NULL here because some device drivers do not 2989 * set page.mapping but still dirty their pages 2990 * 2991 * Drop the mmap_lock before waiting on IO, if we can. The file 2992 * is pinning the mapping, as per above. 2993 */ 2994 if ((dirtied || page_mkwrite) && mapping) { 2995 struct file *fpin; 2996 2997 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2998 balance_dirty_pages_ratelimited(mapping); 2999 if (fpin) { 3000 fput(fpin); 3001 return VM_FAULT_COMPLETED; 3002 } 3003 } 3004 3005 return 0; 3006 } 3007 3008 /* 3009 * Handle write page faults for pages that can be reused in the current vma 3010 * 3011 * This can happen either due to the mapping being with the VM_SHARED flag, 3012 * or due to us being the last reference standing to the page. In either 3013 * case, all we need to do here is to mark the page as writable and update 3014 * any related book-keeping. 3015 */ 3016 static inline void wp_page_reuse(struct vm_fault *vmf) 3017 __releases(vmf->ptl) 3018 { 3019 struct vm_area_struct *vma = vmf->vma; 3020 struct page *page = vmf->page; 3021 pte_t entry; 3022 3023 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3024 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3025 3026 /* 3027 * Clear the pages cpupid information as the existing 3028 * information potentially belongs to a now completely 3029 * unrelated process. 3030 */ 3031 if (page) 3032 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3033 3034 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3035 entry = pte_mkyoung(vmf->orig_pte); 3036 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3037 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3038 update_mmu_cache(vma, vmf->address, vmf->pte); 3039 pte_unmap_unlock(vmf->pte, vmf->ptl); 3040 count_vm_event(PGREUSE); 3041 } 3042 3043 /* 3044 * Handle the case of a page which we actually need to copy to a new page, 3045 * either due to COW or unsharing. 3046 * 3047 * Called with mmap_lock locked and the old page referenced, but 3048 * without the ptl held. 3049 * 3050 * High level logic flow: 3051 * 3052 * - Allocate a page, copy the content of the old page to the new one. 3053 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3054 * - Take the PTL. If the pte changed, bail out and release the allocated page 3055 * - If the pte is still the way we remember it, update the page table and all 3056 * relevant references. This includes dropping the reference the page-table 3057 * held to the old page, as well as updating the rmap. 3058 * - In any case, unlock the PTL and drop the reference we took to the old page. 3059 */ 3060 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3061 { 3062 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3063 struct vm_area_struct *vma = vmf->vma; 3064 struct mm_struct *mm = vma->vm_mm; 3065 struct folio *old_folio = NULL; 3066 struct folio *new_folio = NULL; 3067 pte_t entry; 3068 int page_copied = 0; 3069 struct mmu_notifier_range range; 3070 int ret; 3071 3072 delayacct_wpcopy_start(); 3073 3074 if (vmf->page) 3075 old_folio = page_folio(vmf->page); 3076 if (unlikely(anon_vma_prepare(vma))) 3077 goto oom; 3078 3079 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3080 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 3081 if (!new_folio) 3082 goto oom; 3083 } else { 3084 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 3085 vmf->address, false); 3086 if (!new_folio) 3087 goto oom; 3088 3089 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3090 if (ret) { 3091 /* 3092 * COW failed, if the fault was solved by other, 3093 * it's fine. If not, userspace would re-fault on 3094 * the same address and we will handle the fault 3095 * from the second attempt. 3096 * The -EHWPOISON case will not be retried. 3097 */ 3098 folio_put(new_folio); 3099 if (old_folio) 3100 folio_put(old_folio); 3101 3102 delayacct_wpcopy_end(); 3103 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3104 } 3105 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3106 } 3107 3108 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) 3109 goto oom_free_new; 3110 folio_throttle_swaprate(new_folio, GFP_KERNEL); 3111 3112 __folio_mark_uptodate(new_folio); 3113 3114 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3115 vmf->address & PAGE_MASK, 3116 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3117 mmu_notifier_invalidate_range_start(&range); 3118 3119 /* 3120 * Re-check the pte - we dropped the lock 3121 */ 3122 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3123 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3124 if (old_folio) { 3125 if (!folio_test_anon(old_folio)) { 3126 dec_mm_counter(mm, mm_counter_file(&old_folio->page)); 3127 inc_mm_counter(mm, MM_ANONPAGES); 3128 } 3129 } else { 3130 inc_mm_counter(mm, MM_ANONPAGES); 3131 } 3132 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3133 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3134 entry = pte_sw_mkyoung(entry); 3135 if (unlikely(unshare)) { 3136 if (pte_soft_dirty(vmf->orig_pte)) 3137 entry = pte_mksoft_dirty(entry); 3138 if (pte_uffd_wp(vmf->orig_pte)) 3139 entry = pte_mkuffd_wp(entry); 3140 } else { 3141 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3142 } 3143 3144 /* 3145 * Clear the pte entry and flush it first, before updating the 3146 * pte with the new entry, to keep TLBs on different CPUs in 3147 * sync. This code used to set the new PTE then flush TLBs, but 3148 * that left a window where the new PTE could be loaded into 3149 * some TLBs while the old PTE remains in others. 3150 */ 3151 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3152 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3153 folio_add_lru_vma(new_folio, vma); 3154 /* 3155 * We call the notify macro here because, when using secondary 3156 * mmu page tables (such as kvm shadow page tables), we want the 3157 * new page to be mapped directly into the secondary page table. 3158 */ 3159 BUG_ON(unshare && pte_write(entry)); 3160 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3161 update_mmu_cache(vma, vmf->address, vmf->pte); 3162 if (old_folio) { 3163 /* 3164 * Only after switching the pte to the new page may 3165 * we remove the mapcount here. Otherwise another 3166 * process may come and find the rmap count decremented 3167 * before the pte is switched to the new page, and 3168 * "reuse" the old page writing into it while our pte 3169 * here still points into it and can be read by other 3170 * threads. 3171 * 3172 * The critical issue is to order this 3173 * page_remove_rmap with the ptp_clear_flush above. 3174 * Those stores are ordered by (if nothing else,) 3175 * the barrier present in the atomic_add_negative 3176 * in page_remove_rmap. 3177 * 3178 * Then the TLB flush in ptep_clear_flush ensures that 3179 * no process can access the old page before the 3180 * decremented mapcount is visible. And the old page 3181 * cannot be reused until after the decremented 3182 * mapcount is visible. So transitively, TLBs to 3183 * old page will be flushed before it can be reused. 3184 */ 3185 page_remove_rmap(vmf->page, vma, false); 3186 } 3187 3188 /* Free the old page.. */ 3189 new_folio = old_folio; 3190 page_copied = 1; 3191 pte_unmap_unlock(vmf->pte, vmf->ptl); 3192 } else if (vmf->pte) { 3193 update_mmu_tlb(vma, vmf->address, vmf->pte); 3194 pte_unmap_unlock(vmf->pte, vmf->ptl); 3195 } 3196 3197 /* 3198 * No need to double call mmu_notifier->invalidate_range() callback as 3199 * the above ptep_clear_flush_notify() did already call it. 3200 */ 3201 mmu_notifier_invalidate_range_only_end(&range); 3202 3203 if (new_folio) 3204 folio_put(new_folio); 3205 if (old_folio) { 3206 if (page_copied) 3207 free_swap_cache(&old_folio->page); 3208 folio_put(old_folio); 3209 } 3210 3211 delayacct_wpcopy_end(); 3212 return 0; 3213 oom_free_new: 3214 folio_put(new_folio); 3215 oom: 3216 if (old_folio) 3217 folio_put(old_folio); 3218 3219 delayacct_wpcopy_end(); 3220 return VM_FAULT_OOM; 3221 } 3222 3223 /** 3224 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3225 * writeable once the page is prepared 3226 * 3227 * @vmf: structure describing the fault 3228 * 3229 * This function handles all that is needed to finish a write page fault in a 3230 * shared mapping due to PTE being read-only once the mapped page is prepared. 3231 * It handles locking of PTE and modifying it. 3232 * 3233 * The function expects the page to be locked or other protection against 3234 * concurrent faults / writeback (such as DAX radix tree locks). 3235 * 3236 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3237 * we acquired PTE lock. 3238 */ 3239 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3240 { 3241 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3242 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3243 &vmf->ptl); 3244 if (!vmf->pte) 3245 return VM_FAULT_NOPAGE; 3246 /* 3247 * We might have raced with another page fault while we released the 3248 * pte_offset_map_lock. 3249 */ 3250 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3251 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3252 pte_unmap_unlock(vmf->pte, vmf->ptl); 3253 return VM_FAULT_NOPAGE; 3254 } 3255 wp_page_reuse(vmf); 3256 return 0; 3257 } 3258 3259 /* 3260 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3261 * mapping 3262 */ 3263 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3264 { 3265 struct vm_area_struct *vma = vmf->vma; 3266 3267 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3268 vm_fault_t ret; 3269 3270 pte_unmap_unlock(vmf->pte, vmf->ptl); 3271 vmf->flags |= FAULT_FLAG_MKWRITE; 3272 ret = vma->vm_ops->pfn_mkwrite(vmf); 3273 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3274 return ret; 3275 return finish_mkwrite_fault(vmf); 3276 } 3277 wp_page_reuse(vmf); 3278 return 0; 3279 } 3280 3281 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3282 __releases(vmf->ptl) 3283 { 3284 struct vm_area_struct *vma = vmf->vma; 3285 vm_fault_t ret = 0; 3286 3287 get_page(vmf->page); 3288 3289 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3290 vm_fault_t tmp; 3291 3292 pte_unmap_unlock(vmf->pte, vmf->ptl); 3293 tmp = do_page_mkwrite(vmf); 3294 if (unlikely(!tmp || (tmp & 3295 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3296 put_page(vmf->page); 3297 return tmp; 3298 } 3299 tmp = finish_mkwrite_fault(vmf); 3300 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3301 unlock_page(vmf->page); 3302 put_page(vmf->page); 3303 return tmp; 3304 } 3305 } else { 3306 wp_page_reuse(vmf); 3307 lock_page(vmf->page); 3308 } 3309 ret |= fault_dirty_shared_page(vmf); 3310 put_page(vmf->page); 3311 3312 return ret; 3313 } 3314 3315 /* 3316 * This routine handles present pages, when 3317 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3318 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3319 * (FAULT_FLAG_UNSHARE) 3320 * 3321 * It is done by copying the page to a new address and decrementing the 3322 * shared-page counter for the old page. 3323 * 3324 * Note that this routine assumes that the protection checks have been 3325 * done by the caller (the low-level page fault routine in most cases). 3326 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3327 * done any necessary COW. 3328 * 3329 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3330 * though the page will change only once the write actually happens. This 3331 * avoids a few races, and potentially makes it more efficient. 3332 * 3333 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3334 * but allow concurrent faults), with pte both mapped and locked. 3335 * We return with mmap_lock still held, but pte unmapped and unlocked. 3336 */ 3337 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3338 __releases(vmf->ptl) 3339 { 3340 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3341 struct vm_area_struct *vma = vmf->vma; 3342 struct folio *folio = NULL; 3343 3344 if (likely(!unshare)) { 3345 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3346 pte_unmap_unlock(vmf->pte, vmf->ptl); 3347 return handle_userfault(vmf, VM_UFFD_WP); 3348 } 3349 3350 /* 3351 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3352 * is flushed in this case before copying. 3353 */ 3354 if (unlikely(userfaultfd_wp(vmf->vma) && 3355 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3356 flush_tlb_page(vmf->vma, vmf->address); 3357 } 3358 3359 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3360 3361 /* 3362 * Shared mapping: we are guaranteed to have VM_WRITE and 3363 * FAULT_FLAG_WRITE set at this point. 3364 */ 3365 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3366 /* 3367 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3368 * VM_PFNMAP VMA. 3369 * 3370 * We should not cow pages in a shared writeable mapping. 3371 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3372 */ 3373 if (!vmf->page) 3374 return wp_pfn_shared(vmf); 3375 return wp_page_shared(vmf); 3376 } 3377 3378 if (vmf->page) 3379 folio = page_folio(vmf->page); 3380 3381 /* 3382 * Private mapping: create an exclusive anonymous page copy if reuse 3383 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3384 */ 3385 if (folio && folio_test_anon(folio)) { 3386 /* 3387 * If the page is exclusive to this process we must reuse the 3388 * page without further checks. 3389 */ 3390 if (PageAnonExclusive(vmf->page)) 3391 goto reuse; 3392 3393 /* 3394 * We have to verify under folio lock: these early checks are 3395 * just an optimization to avoid locking the folio and freeing 3396 * the swapcache if there is little hope that we can reuse. 3397 * 3398 * KSM doesn't necessarily raise the folio refcount. 3399 */ 3400 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3401 goto copy; 3402 if (!folio_test_lru(folio)) 3403 /* 3404 * Note: We cannot easily detect+handle references from 3405 * remote LRU pagevecs or references to LRU folios. 3406 */ 3407 lru_add_drain(); 3408 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3409 goto copy; 3410 if (!folio_trylock(folio)) 3411 goto copy; 3412 if (folio_test_swapcache(folio)) 3413 folio_free_swap(folio); 3414 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3415 folio_unlock(folio); 3416 goto copy; 3417 } 3418 /* 3419 * Ok, we've got the only folio reference from our mapping 3420 * and the folio is locked, it's dark out, and we're wearing 3421 * sunglasses. Hit it. 3422 */ 3423 page_move_anon_rmap(vmf->page, vma); 3424 folio_unlock(folio); 3425 reuse: 3426 if (unlikely(unshare)) { 3427 pte_unmap_unlock(vmf->pte, vmf->ptl); 3428 return 0; 3429 } 3430 wp_page_reuse(vmf); 3431 return 0; 3432 } 3433 copy: 3434 /* 3435 * Ok, we need to copy. Oh, well.. 3436 */ 3437 if (folio) 3438 folio_get(folio); 3439 3440 pte_unmap_unlock(vmf->pte, vmf->ptl); 3441 #ifdef CONFIG_KSM 3442 if (folio && folio_test_ksm(folio)) 3443 count_vm_event(COW_KSM); 3444 #endif 3445 return wp_page_copy(vmf); 3446 } 3447 3448 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3449 unsigned long start_addr, unsigned long end_addr, 3450 struct zap_details *details) 3451 { 3452 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3453 } 3454 3455 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3456 pgoff_t first_index, 3457 pgoff_t last_index, 3458 struct zap_details *details) 3459 { 3460 struct vm_area_struct *vma; 3461 pgoff_t vba, vea, zba, zea; 3462 3463 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3464 vba = vma->vm_pgoff; 3465 vea = vba + vma_pages(vma) - 1; 3466 zba = max(first_index, vba); 3467 zea = min(last_index, vea); 3468 3469 unmap_mapping_range_vma(vma, 3470 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3471 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3472 details); 3473 } 3474 } 3475 3476 /** 3477 * unmap_mapping_folio() - Unmap single folio from processes. 3478 * @folio: The locked folio to be unmapped. 3479 * 3480 * Unmap this folio from any userspace process which still has it mmaped. 3481 * Typically, for efficiency, the range of nearby pages has already been 3482 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3483 * truncation or invalidation holds the lock on a folio, it may find that 3484 * the page has been remapped again: and then uses unmap_mapping_folio() 3485 * to unmap it finally. 3486 */ 3487 void unmap_mapping_folio(struct folio *folio) 3488 { 3489 struct address_space *mapping = folio->mapping; 3490 struct zap_details details = { }; 3491 pgoff_t first_index; 3492 pgoff_t last_index; 3493 3494 VM_BUG_ON(!folio_test_locked(folio)); 3495 3496 first_index = folio->index; 3497 last_index = folio->index + folio_nr_pages(folio) - 1; 3498 3499 details.even_cows = false; 3500 details.single_folio = folio; 3501 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3502 3503 i_mmap_lock_read(mapping); 3504 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3505 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3506 last_index, &details); 3507 i_mmap_unlock_read(mapping); 3508 } 3509 3510 /** 3511 * unmap_mapping_pages() - Unmap pages from processes. 3512 * @mapping: The address space containing pages to be unmapped. 3513 * @start: Index of first page to be unmapped. 3514 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3515 * @even_cows: Whether to unmap even private COWed pages. 3516 * 3517 * Unmap the pages in this address space from any userspace process which 3518 * has them mmaped. Generally, you want to remove COWed pages as well when 3519 * a file is being truncated, but not when invalidating pages from the page 3520 * cache. 3521 */ 3522 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3523 pgoff_t nr, bool even_cows) 3524 { 3525 struct zap_details details = { }; 3526 pgoff_t first_index = start; 3527 pgoff_t last_index = start + nr - 1; 3528 3529 details.even_cows = even_cows; 3530 if (last_index < first_index) 3531 last_index = ULONG_MAX; 3532 3533 i_mmap_lock_read(mapping); 3534 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3535 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3536 last_index, &details); 3537 i_mmap_unlock_read(mapping); 3538 } 3539 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3540 3541 /** 3542 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3543 * address_space corresponding to the specified byte range in the underlying 3544 * file. 3545 * 3546 * @mapping: the address space containing mmaps to be unmapped. 3547 * @holebegin: byte in first page to unmap, relative to the start of 3548 * the underlying file. This will be rounded down to a PAGE_SIZE 3549 * boundary. Note that this is different from truncate_pagecache(), which 3550 * must keep the partial page. In contrast, we must get rid of 3551 * partial pages. 3552 * @holelen: size of prospective hole in bytes. This will be rounded 3553 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3554 * end of the file. 3555 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3556 * but 0 when invalidating pagecache, don't throw away private data. 3557 */ 3558 void unmap_mapping_range(struct address_space *mapping, 3559 loff_t const holebegin, loff_t const holelen, int even_cows) 3560 { 3561 pgoff_t hba = holebegin >> PAGE_SHIFT; 3562 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3563 3564 /* Check for overflow. */ 3565 if (sizeof(holelen) > sizeof(hlen)) { 3566 long long holeend = 3567 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3568 if (holeend & ~(long long)ULONG_MAX) 3569 hlen = ULONG_MAX - hba + 1; 3570 } 3571 3572 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3573 } 3574 EXPORT_SYMBOL(unmap_mapping_range); 3575 3576 /* 3577 * Restore a potential device exclusive pte to a working pte entry 3578 */ 3579 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3580 { 3581 struct folio *folio = page_folio(vmf->page); 3582 struct vm_area_struct *vma = vmf->vma; 3583 struct mmu_notifier_range range; 3584 3585 /* 3586 * We need a reference to lock the folio because we don't hold 3587 * the PTL so a racing thread can remove the device-exclusive 3588 * entry and unmap it. If the folio is free the entry must 3589 * have been removed already. If it happens to have already 3590 * been re-allocated after being freed all we do is lock and 3591 * unlock it. 3592 */ 3593 if (!folio_try_get(folio)) 3594 return 0; 3595 3596 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) { 3597 folio_put(folio); 3598 return VM_FAULT_RETRY; 3599 } 3600 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3601 vma->vm_mm, vmf->address & PAGE_MASK, 3602 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3603 mmu_notifier_invalidate_range_start(&range); 3604 3605 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3606 &vmf->ptl); 3607 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3608 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3609 3610 if (vmf->pte) 3611 pte_unmap_unlock(vmf->pte, vmf->ptl); 3612 folio_unlock(folio); 3613 folio_put(folio); 3614 3615 mmu_notifier_invalidate_range_end(&range); 3616 return 0; 3617 } 3618 3619 static inline bool should_try_to_free_swap(struct folio *folio, 3620 struct vm_area_struct *vma, 3621 unsigned int fault_flags) 3622 { 3623 if (!folio_test_swapcache(folio)) 3624 return false; 3625 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3626 folio_test_mlocked(folio)) 3627 return true; 3628 /* 3629 * If we want to map a page that's in the swapcache writable, we 3630 * have to detect via the refcount if we're really the exclusive 3631 * user. Try freeing the swapcache to get rid of the swapcache 3632 * reference only in case it's likely that we'll be the exlusive user. 3633 */ 3634 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3635 folio_ref_count(folio) == 2; 3636 } 3637 3638 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3639 { 3640 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3641 vmf->address, &vmf->ptl); 3642 if (!vmf->pte) 3643 return 0; 3644 /* 3645 * Be careful so that we will only recover a special uffd-wp pte into a 3646 * none pte. Otherwise it means the pte could have changed, so retry. 3647 * 3648 * This should also cover the case where e.g. the pte changed 3649 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR. 3650 * So is_pte_marker() check is not enough to safely drop the pte. 3651 */ 3652 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3653 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3654 pte_unmap_unlock(vmf->pte, vmf->ptl); 3655 return 0; 3656 } 3657 3658 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3659 { 3660 if (vma_is_anonymous(vmf->vma)) 3661 return do_anonymous_page(vmf); 3662 else 3663 return do_fault(vmf); 3664 } 3665 3666 /* 3667 * This is actually a page-missing access, but with uffd-wp special pte 3668 * installed. It means this pte was wr-protected before being unmapped. 3669 */ 3670 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3671 { 3672 /* 3673 * Just in case there're leftover special ptes even after the region 3674 * got unregistered - we can simply clear them. 3675 */ 3676 if (unlikely(!userfaultfd_wp(vmf->vma))) 3677 return pte_marker_clear(vmf); 3678 3679 return do_pte_missing(vmf); 3680 } 3681 3682 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3683 { 3684 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3685 unsigned long marker = pte_marker_get(entry); 3686 3687 /* 3688 * PTE markers should never be empty. If anything weird happened, 3689 * the best thing to do is to kill the process along with its mm. 3690 */ 3691 if (WARN_ON_ONCE(!marker)) 3692 return VM_FAULT_SIGBUS; 3693 3694 /* Higher priority than uffd-wp when data corrupted */ 3695 if (marker & PTE_MARKER_SWAPIN_ERROR) 3696 return VM_FAULT_SIGBUS; 3697 3698 if (pte_marker_entry_uffd_wp(entry)) 3699 return pte_marker_handle_uffd_wp(vmf); 3700 3701 /* This is an unknown pte marker */ 3702 return VM_FAULT_SIGBUS; 3703 } 3704 3705 /* 3706 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3707 * but allow concurrent faults), and pte mapped but not yet locked. 3708 * We return with pte unmapped and unlocked. 3709 * 3710 * We return with the mmap_lock locked or unlocked in the same cases 3711 * as does filemap_fault(). 3712 */ 3713 vm_fault_t do_swap_page(struct vm_fault *vmf) 3714 { 3715 struct vm_area_struct *vma = vmf->vma; 3716 struct folio *swapcache, *folio = NULL; 3717 struct page *page; 3718 struct swap_info_struct *si = NULL; 3719 rmap_t rmap_flags = RMAP_NONE; 3720 bool exclusive = false; 3721 swp_entry_t entry; 3722 pte_t pte; 3723 int locked; 3724 vm_fault_t ret = 0; 3725 void *shadow = NULL; 3726 3727 if (!pte_unmap_same(vmf)) 3728 goto out; 3729 3730 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3731 ret = VM_FAULT_RETRY; 3732 goto out; 3733 } 3734 3735 entry = pte_to_swp_entry(vmf->orig_pte); 3736 if (unlikely(non_swap_entry(entry))) { 3737 if (is_migration_entry(entry)) { 3738 migration_entry_wait(vma->vm_mm, vmf->pmd, 3739 vmf->address); 3740 } else if (is_device_exclusive_entry(entry)) { 3741 vmf->page = pfn_swap_entry_to_page(entry); 3742 ret = remove_device_exclusive_entry(vmf); 3743 } else if (is_device_private_entry(entry)) { 3744 vmf->page = pfn_swap_entry_to_page(entry); 3745 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3746 vmf->address, &vmf->ptl); 3747 if (unlikely(!vmf->pte || 3748 !pte_same(ptep_get(vmf->pte), 3749 vmf->orig_pte))) 3750 goto unlock; 3751 3752 /* 3753 * Get a page reference while we know the page can't be 3754 * freed. 3755 */ 3756 get_page(vmf->page); 3757 pte_unmap_unlock(vmf->pte, vmf->ptl); 3758 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3759 put_page(vmf->page); 3760 } else if (is_hwpoison_entry(entry)) { 3761 ret = VM_FAULT_HWPOISON; 3762 } else if (is_pte_marker_entry(entry)) { 3763 ret = handle_pte_marker(vmf); 3764 } else { 3765 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3766 ret = VM_FAULT_SIGBUS; 3767 } 3768 goto out; 3769 } 3770 3771 /* Prevent swapoff from happening to us. */ 3772 si = get_swap_device(entry); 3773 if (unlikely(!si)) 3774 goto out; 3775 3776 folio = swap_cache_get_folio(entry, vma, vmf->address); 3777 if (folio) 3778 page = folio_file_page(folio, swp_offset(entry)); 3779 swapcache = folio; 3780 3781 if (!folio) { 3782 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3783 __swap_count(entry) == 1) { 3784 /* skip swapcache */ 3785 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3786 vma, vmf->address, false); 3787 page = &folio->page; 3788 if (folio) { 3789 __folio_set_locked(folio); 3790 __folio_set_swapbacked(folio); 3791 3792 if (mem_cgroup_swapin_charge_folio(folio, 3793 vma->vm_mm, GFP_KERNEL, 3794 entry)) { 3795 ret = VM_FAULT_OOM; 3796 goto out_page; 3797 } 3798 mem_cgroup_swapin_uncharge_swap(entry); 3799 3800 shadow = get_shadow_from_swap_cache(entry); 3801 if (shadow) 3802 workingset_refault(folio, shadow); 3803 3804 folio_add_lru(folio); 3805 3806 /* To provide entry to swap_readpage() */ 3807 folio_set_swap_entry(folio, entry); 3808 swap_readpage(page, true, NULL); 3809 folio->private = NULL; 3810 } 3811 } else { 3812 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3813 vmf); 3814 if (page) 3815 folio = page_folio(page); 3816 swapcache = folio; 3817 } 3818 3819 if (!folio) { 3820 /* 3821 * Back out if somebody else faulted in this pte 3822 * while we released the pte lock. 3823 */ 3824 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3825 vmf->address, &vmf->ptl); 3826 if (likely(vmf->pte && 3827 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3828 ret = VM_FAULT_OOM; 3829 goto unlock; 3830 } 3831 3832 /* Had to read the page from swap area: Major fault */ 3833 ret = VM_FAULT_MAJOR; 3834 count_vm_event(PGMAJFAULT); 3835 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3836 } else if (PageHWPoison(page)) { 3837 /* 3838 * hwpoisoned dirty swapcache pages are kept for killing 3839 * owner processes (which may be unknown at hwpoison time) 3840 */ 3841 ret = VM_FAULT_HWPOISON; 3842 goto out_release; 3843 } 3844 3845 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags); 3846 3847 if (!locked) { 3848 ret |= VM_FAULT_RETRY; 3849 goto out_release; 3850 } 3851 3852 if (swapcache) { 3853 /* 3854 * Make sure folio_free_swap() or swapoff did not release the 3855 * swapcache from under us. The page pin, and pte_same test 3856 * below, are not enough to exclude that. Even if it is still 3857 * swapcache, we need to check that the page's swap has not 3858 * changed. 3859 */ 3860 if (unlikely(!folio_test_swapcache(folio) || 3861 page_private(page) != entry.val)) 3862 goto out_page; 3863 3864 /* 3865 * KSM sometimes has to copy on read faults, for example, if 3866 * page->index of !PageKSM() pages would be nonlinear inside the 3867 * anon VMA -- PageKSM() is lost on actual swapout. 3868 */ 3869 page = ksm_might_need_to_copy(page, vma, vmf->address); 3870 if (unlikely(!page)) { 3871 ret = VM_FAULT_OOM; 3872 goto out_page; 3873 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { 3874 ret = VM_FAULT_HWPOISON; 3875 goto out_page; 3876 } 3877 folio = page_folio(page); 3878 3879 /* 3880 * If we want to map a page that's in the swapcache writable, we 3881 * have to detect via the refcount if we're really the exclusive 3882 * owner. Try removing the extra reference from the local LRU 3883 * pagevecs if required. 3884 */ 3885 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3886 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3887 lru_add_drain(); 3888 } 3889 3890 folio_throttle_swaprate(folio, GFP_KERNEL); 3891 3892 /* 3893 * Back out if somebody else already faulted in this pte. 3894 */ 3895 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3896 &vmf->ptl); 3897 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3898 goto out_nomap; 3899 3900 if (unlikely(!folio_test_uptodate(folio))) { 3901 ret = VM_FAULT_SIGBUS; 3902 goto out_nomap; 3903 } 3904 3905 /* 3906 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3907 * must never point at an anonymous page in the swapcache that is 3908 * PG_anon_exclusive. Sanity check that this holds and especially, that 3909 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3910 * check after taking the PT lock and making sure that nobody 3911 * concurrently faulted in this page and set PG_anon_exclusive. 3912 */ 3913 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3914 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3915 3916 /* 3917 * Check under PT lock (to protect against concurrent fork() sharing 3918 * the swap entry concurrently) for certainly exclusive pages. 3919 */ 3920 if (!folio_test_ksm(folio)) { 3921 exclusive = pte_swp_exclusive(vmf->orig_pte); 3922 if (folio != swapcache) { 3923 /* 3924 * We have a fresh page that is not exposed to the 3925 * swapcache -> certainly exclusive. 3926 */ 3927 exclusive = true; 3928 } else if (exclusive && folio_test_writeback(folio) && 3929 data_race(si->flags & SWP_STABLE_WRITES)) { 3930 /* 3931 * This is tricky: not all swap backends support 3932 * concurrent page modifications while under writeback. 3933 * 3934 * So if we stumble over such a page in the swapcache 3935 * we must not set the page exclusive, otherwise we can 3936 * map it writable without further checks and modify it 3937 * while still under writeback. 3938 * 3939 * For these problematic swap backends, simply drop the 3940 * exclusive marker: this is perfectly fine as we start 3941 * writeback only if we fully unmapped the page and 3942 * there are no unexpected references on the page after 3943 * unmapping succeeded. After fully unmapped, no 3944 * further GUP references (FOLL_GET and FOLL_PIN) can 3945 * appear, so dropping the exclusive marker and mapping 3946 * it only R/O is fine. 3947 */ 3948 exclusive = false; 3949 } 3950 } 3951 3952 /* 3953 * Remove the swap entry and conditionally try to free up the swapcache. 3954 * We're already holding a reference on the page but haven't mapped it 3955 * yet. 3956 */ 3957 swap_free(entry); 3958 if (should_try_to_free_swap(folio, vma, vmf->flags)) 3959 folio_free_swap(folio); 3960 3961 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 3962 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 3963 pte = mk_pte(page, vma->vm_page_prot); 3964 3965 /* 3966 * Same logic as in do_wp_page(); however, optimize for pages that are 3967 * certainly not shared either because we just allocated them without 3968 * exposing them to the swapcache or because the swap entry indicates 3969 * exclusivity. 3970 */ 3971 if (!folio_test_ksm(folio) && 3972 (exclusive || folio_ref_count(folio) == 1)) { 3973 if (vmf->flags & FAULT_FLAG_WRITE) { 3974 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3975 vmf->flags &= ~FAULT_FLAG_WRITE; 3976 } 3977 rmap_flags |= RMAP_EXCLUSIVE; 3978 } 3979 flush_icache_page(vma, page); 3980 if (pte_swp_soft_dirty(vmf->orig_pte)) 3981 pte = pte_mksoft_dirty(pte); 3982 if (pte_swp_uffd_wp(vmf->orig_pte)) 3983 pte = pte_mkuffd_wp(pte); 3984 vmf->orig_pte = pte; 3985 3986 /* ksm created a completely new copy */ 3987 if (unlikely(folio != swapcache && swapcache)) { 3988 page_add_new_anon_rmap(page, vma, vmf->address); 3989 folio_add_lru_vma(folio, vma); 3990 } else { 3991 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 3992 } 3993 3994 VM_BUG_ON(!folio_test_anon(folio) || 3995 (pte_write(pte) && !PageAnonExclusive(page))); 3996 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3997 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3998 3999 folio_unlock(folio); 4000 if (folio != swapcache && swapcache) { 4001 /* 4002 * Hold the lock to avoid the swap entry to be reused 4003 * until we take the PT lock for the pte_same() check 4004 * (to avoid false positives from pte_same). For 4005 * further safety release the lock after the swap_free 4006 * so that the swap count won't change under a 4007 * parallel locked swapcache. 4008 */ 4009 folio_unlock(swapcache); 4010 folio_put(swapcache); 4011 } 4012 4013 if (vmf->flags & FAULT_FLAG_WRITE) { 4014 ret |= do_wp_page(vmf); 4015 if (ret & VM_FAULT_ERROR) 4016 ret &= VM_FAULT_ERROR; 4017 goto out; 4018 } 4019 4020 /* No need to invalidate - it was non-present before */ 4021 update_mmu_cache(vma, vmf->address, vmf->pte); 4022 unlock: 4023 if (vmf->pte) 4024 pte_unmap_unlock(vmf->pte, vmf->ptl); 4025 out: 4026 if (si) 4027 put_swap_device(si); 4028 return ret; 4029 out_nomap: 4030 if (vmf->pte) 4031 pte_unmap_unlock(vmf->pte, vmf->ptl); 4032 out_page: 4033 folio_unlock(folio); 4034 out_release: 4035 folio_put(folio); 4036 if (folio != swapcache && swapcache) { 4037 folio_unlock(swapcache); 4038 folio_put(swapcache); 4039 } 4040 if (si) 4041 put_swap_device(si); 4042 return ret; 4043 } 4044 4045 /* 4046 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4047 * but allow concurrent faults), and pte mapped but not yet locked. 4048 * We return with mmap_lock still held, but pte unmapped and unlocked. 4049 */ 4050 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4051 { 4052 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4053 struct vm_area_struct *vma = vmf->vma; 4054 struct folio *folio; 4055 vm_fault_t ret = 0; 4056 pte_t entry; 4057 4058 /* File mapping without ->vm_ops ? */ 4059 if (vma->vm_flags & VM_SHARED) 4060 return VM_FAULT_SIGBUS; 4061 4062 /* 4063 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4064 * be distinguished from a transient failure of pte_offset_map(). 4065 */ 4066 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4067 return VM_FAULT_OOM; 4068 4069 /* Use the zero-page for reads */ 4070 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4071 !mm_forbids_zeropage(vma->vm_mm)) { 4072 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4073 vma->vm_page_prot)); 4074 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4075 vmf->address, &vmf->ptl); 4076 if (!vmf->pte) 4077 goto unlock; 4078 if (vmf_pte_changed(vmf)) { 4079 update_mmu_tlb(vma, vmf->address, vmf->pte); 4080 goto unlock; 4081 } 4082 ret = check_stable_address_space(vma->vm_mm); 4083 if (ret) 4084 goto unlock; 4085 /* Deliver the page fault to userland, check inside PT lock */ 4086 if (userfaultfd_missing(vma)) { 4087 pte_unmap_unlock(vmf->pte, vmf->ptl); 4088 return handle_userfault(vmf, VM_UFFD_MISSING); 4089 } 4090 goto setpte; 4091 } 4092 4093 /* Allocate our own private page. */ 4094 if (unlikely(anon_vma_prepare(vma))) 4095 goto oom; 4096 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 4097 if (!folio) 4098 goto oom; 4099 4100 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 4101 goto oom_free_page; 4102 folio_throttle_swaprate(folio, GFP_KERNEL); 4103 4104 /* 4105 * The memory barrier inside __folio_mark_uptodate makes sure that 4106 * preceding stores to the page contents become visible before 4107 * the set_pte_at() write. 4108 */ 4109 __folio_mark_uptodate(folio); 4110 4111 entry = mk_pte(&folio->page, vma->vm_page_prot); 4112 entry = pte_sw_mkyoung(entry); 4113 if (vma->vm_flags & VM_WRITE) 4114 entry = pte_mkwrite(pte_mkdirty(entry)); 4115 4116 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4117 &vmf->ptl); 4118 if (!vmf->pte) 4119 goto release; 4120 if (vmf_pte_changed(vmf)) { 4121 update_mmu_tlb(vma, vmf->address, vmf->pte); 4122 goto release; 4123 } 4124 4125 ret = check_stable_address_space(vma->vm_mm); 4126 if (ret) 4127 goto release; 4128 4129 /* Deliver the page fault to userland, check inside PT lock */ 4130 if (userfaultfd_missing(vma)) { 4131 pte_unmap_unlock(vmf->pte, vmf->ptl); 4132 folio_put(folio); 4133 return handle_userfault(vmf, VM_UFFD_MISSING); 4134 } 4135 4136 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4137 folio_add_new_anon_rmap(folio, vma, vmf->address); 4138 folio_add_lru_vma(folio, vma); 4139 setpte: 4140 if (uffd_wp) 4141 entry = pte_mkuffd_wp(entry); 4142 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4143 4144 /* No need to invalidate - it was non-present before */ 4145 update_mmu_cache(vma, vmf->address, vmf->pte); 4146 unlock: 4147 if (vmf->pte) 4148 pte_unmap_unlock(vmf->pte, vmf->ptl); 4149 return ret; 4150 release: 4151 folio_put(folio); 4152 goto unlock; 4153 oom_free_page: 4154 folio_put(folio); 4155 oom: 4156 return VM_FAULT_OOM; 4157 } 4158 4159 /* 4160 * The mmap_lock must have been held on entry, and may have been 4161 * released depending on flags and vma->vm_ops->fault() return value. 4162 * See filemap_fault() and __lock_page_retry(). 4163 */ 4164 static vm_fault_t __do_fault(struct vm_fault *vmf) 4165 { 4166 struct vm_area_struct *vma = vmf->vma; 4167 vm_fault_t ret; 4168 4169 /* 4170 * Preallocate pte before we take page_lock because this might lead to 4171 * deadlocks for memcg reclaim which waits for pages under writeback: 4172 * lock_page(A) 4173 * SetPageWriteback(A) 4174 * unlock_page(A) 4175 * lock_page(B) 4176 * lock_page(B) 4177 * pte_alloc_one 4178 * shrink_page_list 4179 * wait_on_page_writeback(A) 4180 * SetPageWriteback(B) 4181 * unlock_page(B) 4182 * # flush A, B to clear the writeback 4183 */ 4184 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4185 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4186 if (!vmf->prealloc_pte) 4187 return VM_FAULT_OOM; 4188 } 4189 4190 ret = vma->vm_ops->fault(vmf); 4191 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4192 VM_FAULT_DONE_COW))) 4193 return ret; 4194 4195 if (unlikely(PageHWPoison(vmf->page))) { 4196 struct page *page = vmf->page; 4197 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4198 if (ret & VM_FAULT_LOCKED) { 4199 if (page_mapped(page)) 4200 unmap_mapping_pages(page_mapping(page), 4201 page->index, 1, false); 4202 /* Retry if a clean page was removed from the cache. */ 4203 if (invalidate_inode_page(page)) 4204 poisonret = VM_FAULT_NOPAGE; 4205 unlock_page(page); 4206 } 4207 put_page(page); 4208 vmf->page = NULL; 4209 return poisonret; 4210 } 4211 4212 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4213 lock_page(vmf->page); 4214 else 4215 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4216 4217 return ret; 4218 } 4219 4220 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4221 static void deposit_prealloc_pte(struct vm_fault *vmf) 4222 { 4223 struct vm_area_struct *vma = vmf->vma; 4224 4225 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4226 /* 4227 * We are going to consume the prealloc table, 4228 * count that as nr_ptes. 4229 */ 4230 mm_inc_nr_ptes(vma->vm_mm); 4231 vmf->prealloc_pte = NULL; 4232 } 4233 4234 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4235 { 4236 struct vm_area_struct *vma = vmf->vma; 4237 bool write = vmf->flags & FAULT_FLAG_WRITE; 4238 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4239 pmd_t entry; 4240 int i; 4241 vm_fault_t ret = VM_FAULT_FALLBACK; 4242 4243 if (!transhuge_vma_suitable(vma, haddr)) 4244 return ret; 4245 4246 page = compound_head(page); 4247 if (compound_order(page) != HPAGE_PMD_ORDER) 4248 return ret; 4249 4250 /* 4251 * Just backoff if any subpage of a THP is corrupted otherwise 4252 * the corrupted page may mapped by PMD silently to escape the 4253 * check. This kind of THP just can be PTE mapped. Access to 4254 * the corrupted subpage should trigger SIGBUS as expected. 4255 */ 4256 if (unlikely(PageHasHWPoisoned(page))) 4257 return ret; 4258 4259 /* 4260 * Archs like ppc64 need additional space to store information 4261 * related to pte entry. Use the preallocated table for that. 4262 */ 4263 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4264 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4265 if (!vmf->prealloc_pte) 4266 return VM_FAULT_OOM; 4267 } 4268 4269 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4270 if (unlikely(!pmd_none(*vmf->pmd))) 4271 goto out; 4272 4273 for (i = 0; i < HPAGE_PMD_NR; i++) 4274 flush_icache_page(vma, page + i); 4275 4276 entry = mk_huge_pmd(page, vma->vm_page_prot); 4277 if (write) 4278 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4279 4280 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4281 page_add_file_rmap(page, vma, true); 4282 4283 /* 4284 * deposit and withdraw with pmd lock held 4285 */ 4286 if (arch_needs_pgtable_deposit()) 4287 deposit_prealloc_pte(vmf); 4288 4289 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4290 4291 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4292 4293 /* fault is handled */ 4294 ret = 0; 4295 count_vm_event(THP_FILE_MAPPED); 4296 out: 4297 spin_unlock(vmf->ptl); 4298 return ret; 4299 } 4300 #else 4301 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4302 { 4303 return VM_FAULT_FALLBACK; 4304 } 4305 #endif 4306 4307 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 4308 { 4309 struct vm_area_struct *vma = vmf->vma; 4310 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4311 bool write = vmf->flags & FAULT_FLAG_WRITE; 4312 bool prefault = vmf->address != addr; 4313 pte_t entry; 4314 4315 flush_icache_page(vma, page); 4316 entry = mk_pte(page, vma->vm_page_prot); 4317 4318 if (prefault && arch_wants_old_prefaulted_pte()) 4319 entry = pte_mkold(entry); 4320 else 4321 entry = pte_sw_mkyoung(entry); 4322 4323 if (write) 4324 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4325 if (unlikely(uffd_wp)) 4326 entry = pte_mkuffd_wp(entry); 4327 /* copy-on-write page */ 4328 if (write && !(vma->vm_flags & VM_SHARED)) { 4329 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4330 page_add_new_anon_rmap(page, vma, addr); 4331 lru_cache_add_inactive_or_unevictable(page, vma); 4332 } else { 4333 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 4334 page_add_file_rmap(page, vma, false); 4335 } 4336 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 4337 } 4338 4339 static bool vmf_pte_changed(struct vm_fault *vmf) 4340 { 4341 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4342 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4343 4344 return !pte_none(ptep_get(vmf->pte)); 4345 } 4346 4347 /** 4348 * finish_fault - finish page fault once we have prepared the page to fault 4349 * 4350 * @vmf: structure describing the fault 4351 * 4352 * This function handles all that is needed to finish a page fault once the 4353 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4354 * given page, adds reverse page mapping, handles memcg charges and LRU 4355 * addition. 4356 * 4357 * The function expects the page to be locked and on success it consumes a 4358 * reference of a page being mapped (for the PTE which maps it). 4359 * 4360 * Return: %0 on success, %VM_FAULT_ code in case of error. 4361 */ 4362 vm_fault_t finish_fault(struct vm_fault *vmf) 4363 { 4364 struct vm_area_struct *vma = vmf->vma; 4365 struct page *page; 4366 vm_fault_t ret; 4367 4368 /* Did we COW the page? */ 4369 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4370 page = vmf->cow_page; 4371 else 4372 page = vmf->page; 4373 4374 /* 4375 * check even for read faults because we might have lost our CoWed 4376 * page 4377 */ 4378 if (!(vma->vm_flags & VM_SHARED)) { 4379 ret = check_stable_address_space(vma->vm_mm); 4380 if (ret) 4381 return ret; 4382 } 4383 4384 if (pmd_none(*vmf->pmd)) { 4385 if (PageTransCompound(page)) { 4386 ret = do_set_pmd(vmf, page); 4387 if (ret != VM_FAULT_FALLBACK) 4388 return ret; 4389 } 4390 4391 if (vmf->prealloc_pte) 4392 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4393 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4394 return VM_FAULT_OOM; 4395 } 4396 4397 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4398 vmf->address, &vmf->ptl); 4399 if (!vmf->pte) 4400 return VM_FAULT_NOPAGE; 4401 4402 /* Re-check under ptl */ 4403 if (likely(!vmf_pte_changed(vmf))) { 4404 do_set_pte(vmf, page, vmf->address); 4405 4406 /* no need to invalidate: a not-present page won't be cached */ 4407 update_mmu_cache(vma, vmf->address, vmf->pte); 4408 4409 ret = 0; 4410 } else { 4411 update_mmu_tlb(vma, vmf->address, vmf->pte); 4412 ret = VM_FAULT_NOPAGE; 4413 } 4414 4415 pte_unmap_unlock(vmf->pte, vmf->ptl); 4416 return ret; 4417 } 4418 4419 static unsigned long fault_around_pages __read_mostly = 4420 65536 >> PAGE_SHIFT; 4421 4422 #ifdef CONFIG_DEBUG_FS 4423 static int fault_around_bytes_get(void *data, u64 *val) 4424 { 4425 *val = fault_around_pages << PAGE_SHIFT; 4426 return 0; 4427 } 4428 4429 /* 4430 * fault_around_bytes must be rounded down to the nearest page order as it's 4431 * what do_fault_around() expects to see. 4432 */ 4433 static int fault_around_bytes_set(void *data, u64 val) 4434 { 4435 if (val / PAGE_SIZE > PTRS_PER_PTE) 4436 return -EINVAL; 4437 4438 /* 4439 * The minimum value is 1 page, however this results in no fault-around 4440 * at all. See should_fault_around(). 4441 */ 4442 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL); 4443 4444 return 0; 4445 } 4446 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4447 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4448 4449 static int __init fault_around_debugfs(void) 4450 { 4451 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4452 &fault_around_bytes_fops); 4453 return 0; 4454 } 4455 late_initcall(fault_around_debugfs); 4456 #endif 4457 4458 /* 4459 * do_fault_around() tries to map few pages around the fault address. The hope 4460 * is that the pages will be needed soon and this will lower the number of 4461 * faults to handle. 4462 * 4463 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4464 * not ready to be mapped: not up-to-date, locked, etc. 4465 * 4466 * This function doesn't cross VMA or page table boundaries, in order to call 4467 * map_pages() and acquire a PTE lock only once. 4468 * 4469 * fault_around_pages defines how many pages we'll try to map. 4470 * do_fault_around() expects it to be set to a power of two less than or equal 4471 * to PTRS_PER_PTE. 4472 * 4473 * The virtual address of the area that we map is naturally aligned to 4474 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4475 * (and therefore to page order). This way it's easier to guarantee 4476 * that we don't cross page table boundaries. 4477 */ 4478 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4479 { 4480 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4481 pgoff_t pte_off = pte_index(vmf->address); 4482 /* The page offset of vmf->address within the VMA. */ 4483 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4484 pgoff_t from_pte, to_pte; 4485 vm_fault_t ret; 4486 4487 /* The PTE offset of the start address, clamped to the VMA. */ 4488 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4489 pte_off - min(pte_off, vma_off)); 4490 4491 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4492 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4493 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4494 4495 if (pmd_none(*vmf->pmd)) { 4496 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4497 if (!vmf->prealloc_pte) 4498 return VM_FAULT_OOM; 4499 } 4500 4501 rcu_read_lock(); 4502 ret = vmf->vma->vm_ops->map_pages(vmf, 4503 vmf->pgoff + from_pte - pte_off, 4504 vmf->pgoff + to_pte - pte_off); 4505 rcu_read_unlock(); 4506 4507 return ret; 4508 } 4509 4510 /* Return true if we should do read fault-around, false otherwise */ 4511 static inline bool should_fault_around(struct vm_fault *vmf) 4512 { 4513 /* No ->map_pages? No way to fault around... */ 4514 if (!vmf->vma->vm_ops->map_pages) 4515 return false; 4516 4517 if (uffd_disable_fault_around(vmf->vma)) 4518 return false; 4519 4520 /* A single page implies no faulting 'around' at all. */ 4521 return fault_around_pages > 1; 4522 } 4523 4524 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4525 { 4526 vm_fault_t ret = 0; 4527 4528 /* 4529 * Let's call ->map_pages() first and use ->fault() as fallback 4530 * if page by the offset is not ready to be mapped (cold cache or 4531 * something). 4532 */ 4533 if (should_fault_around(vmf)) { 4534 ret = do_fault_around(vmf); 4535 if (ret) 4536 return ret; 4537 } 4538 4539 ret = __do_fault(vmf); 4540 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4541 return ret; 4542 4543 ret |= finish_fault(vmf); 4544 unlock_page(vmf->page); 4545 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4546 put_page(vmf->page); 4547 return ret; 4548 } 4549 4550 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4551 { 4552 struct vm_area_struct *vma = vmf->vma; 4553 vm_fault_t ret; 4554 4555 if (unlikely(anon_vma_prepare(vma))) 4556 return VM_FAULT_OOM; 4557 4558 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4559 if (!vmf->cow_page) 4560 return VM_FAULT_OOM; 4561 4562 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4563 GFP_KERNEL)) { 4564 put_page(vmf->cow_page); 4565 return VM_FAULT_OOM; 4566 } 4567 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL); 4568 4569 ret = __do_fault(vmf); 4570 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4571 goto uncharge_out; 4572 if (ret & VM_FAULT_DONE_COW) 4573 return ret; 4574 4575 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4576 __SetPageUptodate(vmf->cow_page); 4577 4578 ret |= finish_fault(vmf); 4579 unlock_page(vmf->page); 4580 put_page(vmf->page); 4581 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4582 goto uncharge_out; 4583 return ret; 4584 uncharge_out: 4585 put_page(vmf->cow_page); 4586 return ret; 4587 } 4588 4589 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4590 { 4591 struct vm_area_struct *vma = vmf->vma; 4592 vm_fault_t ret, tmp; 4593 4594 ret = __do_fault(vmf); 4595 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4596 return ret; 4597 4598 /* 4599 * Check if the backing address space wants to know that the page is 4600 * about to become writable 4601 */ 4602 if (vma->vm_ops->page_mkwrite) { 4603 unlock_page(vmf->page); 4604 tmp = do_page_mkwrite(vmf); 4605 if (unlikely(!tmp || 4606 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4607 put_page(vmf->page); 4608 return tmp; 4609 } 4610 } 4611 4612 ret |= finish_fault(vmf); 4613 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4614 VM_FAULT_RETRY))) { 4615 unlock_page(vmf->page); 4616 put_page(vmf->page); 4617 return ret; 4618 } 4619 4620 ret |= fault_dirty_shared_page(vmf); 4621 return ret; 4622 } 4623 4624 /* 4625 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4626 * but allow concurrent faults). 4627 * The mmap_lock may have been released depending on flags and our 4628 * return value. See filemap_fault() and __folio_lock_or_retry(). 4629 * If mmap_lock is released, vma may become invalid (for example 4630 * by other thread calling munmap()). 4631 */ 4632 static vm_fault_t do_fault(struct vm_fault *vmf) 4633 { 4634 struct vm_area_struct *vma = vmf->vma; 4635 struct mm_struct *vm_mm = vma->vm_mm; 4636 vm_fault_t ret; 4637 4638 /* 4639 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4640 */ 4641 if (!vma->vm_ops->fault) { 4642 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4643 vmf->address, &vmf->ptl); 4644 if (unlikely(!vmf->pte)) 4645 ret = VM_FAULT_SIGBUS; 4646 else { 4647 /* 4648 * Make sure this is not a temporary clearing of pte 4649 * by holding ptl and checking again. A R/M/W update 4650 * of pte involves: take ptl, clearing the pte so that 4651 * we don't have concurrent modification by hardware 4652 * followed by an update. 4653 */ 4654 if (unlikely(pte_none(ptep_get(vmf->pte)))) 4655 ret = VM_FAULT_SIGBUS; 4656 else 4657 ret = VM_FAULT_NOPAGE; 4658 4659 pte_unmap_unlock(vmf->pte, vmf->ptl); 4660 } 4661 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4662 ret = do_read_fault(vmf); 4663 else if (!(vma->vm_flags & VM_SHARED)) 4664 ret = do_cow_fault(vmf); 4665 else 4666 ret = do_shared_fault(vmf); 4667 4668 /* preallocated pagetable is unused: free it */ 4669 if (vmf->prealloc_pte) { 4670 pte_free(vm_mm, vmf->prealloc_pte); 4671 vmf->prealloc_pte = NULL; 4672 } 4673 return ret; 4674 } 4675 4676 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4677 unsigned long addr, int page_nid, int *flags) 4678 { 4679 get_page(page); 4680 4681 /* Record the current PID acceesing VMA */ 4682 vma_set_access_pid_bit(vma); 4683 4684 count_vm_numa_event(NUMA_HINT_FAULTS); 4685 if (page_nid == numa_node_id()) { 4686 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4687 *flags |= TNF_FAULT_LOCAL; 4688 } 4689 4690 return mpol_misplaced(page, vma, addr); 4691 } 4692 4693 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4694 { 4695 struct vm_area_struct *vma = vmf->vma; 4696 struct page *page = NULL; 4697 int page_nid = NUMA_NO_NODE; 4698 bool writable = false; 4699 int last_cpupid; 4700 int target_nid; 4701 pte_t pte, old_pte; 4702 int flags = 0; 4703 4704 /* 4705 * The "pte" at this point cannot be used safely without 4706 * validation through pte_unmap_same(). It's of NUMA type but 4707 * the pfn may be screwed if the read is non atomic. 4708 */ 4709 spin_lock(vmf->ptl); 4710 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4711 pte_unmap_unlock(vmf->pte, vmf->ptl); 4712 goto out; 4713 } 4714 4715 /* Get the normal PTE */ 4716 old_pte = ptep_get(vmf->pte); 4717 pte = pte_modify(old_pte, vma->vm_page_prot); 4718 4719 /* 4720 * Detect now whether the PTE could be writable; this information 4721 * is only valid while holding the PT lock. 4722 */ 4723 writable = pte_write(pte); 4724 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4725 can_change_pte_writable(vma, vmf->address, pte)) 4726 writable = true; 4727 4728 page = vm_normal_page(vma, vmf->address, pte); 4729 if (!page || is_zone_device_page(page)) 4730 goto out_map; 4731 4732 /* TODO: handle PTE-mapped THP */ 4733 if (PageCompound(page)) 4734 goto out_map; 4735 4736 /* 4737 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4738 * much anyway since they can be in shared cache state. This misses 4739 * the case where a mapping is writable but the process never writes 4740 * to it but pte_write gets cleared during protection updates and 4741 * pte_dirty has unpredictable behaviour between PTE scan updates, 4742 * background writeback, dirty balancing and application behaviour. 4743 */ 4744 if (!writable) 4745 flags |= TNF_NO_GROUP; 4746 4747 /* 4748 * Flag if the page is shared between multiple address spaces. This 4749 * is later used when determining whether to group tasks together 4750 */ 4751 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4752 flags |= TNF_SHARED; 4753 4754 page_nid = page_to_nid(page); 4755 /* 4756 * For memory tiering mode, cpupid of slow memory page is used 4757 * to record page access time. So use default value. 4758 */ 4759 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4760 !node_is_toptier(page_nid)) 4761 last_cpupid = (-1 & LAST_CPUPID_MASK); 4762 else 4763 last_cpupid = page_cpupid_last(page); 4764 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4765 &flags); 4766 if (target_nid == NUMA_NO_NODE) { 4767 put_page(page); 4768 goto out_map; 4769 } 4770 pte_unmap_unlock(vmf->pte, vmf->ptl); 4771 writable = false; 4772 4773 /* Migrate to the requested node */ 4774 if (migrate_misplaced_page(page, vma, target_nid)) { 4775 page_nid = target_nid; 4776 flags |= TNF_MIGRATED; 4777 } else { 4778 flags |= TNF_MIGRATE_FAIL; 4779 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4780 vmf->address, &vmf->ptl); 4781 if (unlikely(!vmf->pte)) 4782 goto out; 4783 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4784 pte_unmap_unlock(vmf->pte, vmf->ptl); 4785 goto out; 4786 } 4787 goto out_map; 4788 } 4789 4790 out: 4791 if (page_nid != NUMA_NO_NODE) 4792 task_numa_fault(last_cpupid, page_nid, 1, flags); 4793 return 0; 4794 out_map: 4795 /* 4796 * Make it present again, depending on how arch implements 4797 * non-accessible ptes, some can allow access by kernel mode. 4798 */ 4799 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4800 pte = pte_modify(old_pte, vma->vm_page_prot); 4801 pte = pte_mkyoung(pte); 4802 if (writable) 4803 pte = pte_mkwrite(pte); 4804 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4805 update_mmu_cache(vma, vmf->address, vmf->pte); 4806 pte_unmap_unlock(vmf->pte, vmf->ptl); 4807 goto out; 4808 } 4809 4810 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4811 { 4812 if (vma_is_anonymous(vmf->vma)) 4813 return do_huge_pmd_anonymous_page(vmf); 4814 if (vmf->vma->vm_ops->huge_fault) 4815 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4816 return VM_FAULT_FALLBACK; 4817 } 4818 4819 /* `inline' is required to avoid gcc 4.1.2 build error */ 4820 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4821 { 4822 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4823 vm_fault_t ret; 4824 4825 if (vma_is_anonymous(vmf->vma)) { 4826 if (likely(!unshare) && 4827 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4828 return handle_userfault(vmf, VM_UFFD_WP); 4829 return do_huge_pmd_wp_page(vmf); 4830 } 4831 4832 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4833 if (vmf->vma->vm_ops->huge_fault) { 4834 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4835 if (!(ret & VM_FAULT_FALLBACK)) 4836 return ret; 4837 } 4838 } 4839 4840 /* COW or write-notify handled on pte level: split pmd. */ 4841 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4842 4843 return VM_FAULT_FALLBACK; 4844 } 4845 4846 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4847 { 4848 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4849 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4850 /* No support for anonymous transparent PUD pages yet */ 4851 if (vma_is_anonymous(vmf->vma)) 4852 return VM_FAULT_FALLBACK; 4853 if (vmf->vma->vm_ops->huge_fault) 4854 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4855 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4856 return VM_FAULT_FALLBACK; 4857 } 4858 4859 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4860 { 4861 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4862 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4863 vm_fault_t ret; 4864 4865 /* No support for anonymous transparent PUD pages yet */ 4866 if (vma_is_anonymous(vmf->vma)) 4867 goto split; 4868 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4869 if (vmf->vma->vm_ops->huge_fault) { 4870 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4871 if (!(ret & VM_FAULT_FALLBACK)) 4872 return ret; 4873 } 4874 } 4875 split: 4876 /* COW or write-notify not handled on PUD level: split pud.*/ 4877 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4878 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4879 return VM_FAULT_FALLBACK; 4880 } 4881 4882 /* 4883 * These routines also need to handle stuff like marking pages dirty 4884 * and/or accessed for architectures that don't do it in hardware (most 4885 * RISC architectures). The early dirtying is also good on the i386. 4886 * 4887 * There is also a hook called "update_mmu_cache()" that architectures 4888 * with external mmu caches can use to update those (ie the Sparc or 4889 * PowerPC hashed page tables that act as extended TLBs). 4890 * 4891 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4892 * concurrent faults). 4893 * 4894 * The mmap_lock may have been released depending on flags and our return value. 4895 * See filemap_fault() and __folio_lock_or_retry(). 4896 */ 4897 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4898 { 4899 pte_t entry; 4900 4901 if (unlikely(pmd_none(*vmf->pmd))) { 4902 /* 4903 * Leave __pte_alloc() until later: because vm_ops->fault may 4904 * want to allocate huge page, and if we expose page table 4905 * for an instant, it will be difficult to retract from 4906 * concurrent faults and from rmap lookups. 4907 */ 4908 vmf->pte = NULL; 4909 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4910 } else { 4911 /* 4912 * A regular pmd is established and it can't morph into a huge 4913 * pmd by anon khugepaged, since that takes mmap_lock in write 4914 * mode; but shmem or file collapse to THP could still morph 4915 * it into a huge pmd: just retry later if so. 4916 */ 4917 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 4918 vmf->address, &vmf->ptl); 4919 if (unlikely(!vmf->pte)) 4920 return 0; 4921 vmf->orig_pte = ptep_get_lockless(vmf->pte); 4922 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4923 4924 if (pte_none(vmf->orig_pte)) { 4925 pte_unmap(vmf->pte); 4926 vmf->pte = NULL; 4927 } 4928 } 4929 4930 if (!vmf->pte) 4931 return do_pte_missing(vmf); 4932 4933 if (!pte_present(vmf->orig_pte)) 4934 return do_swap_page(vmf); 4935 4936 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4937 return do_numa_page(vmf); 4938 4939 spin_lock(vmf->ptl); 4940 entry = vmf->orig_pte; 4941 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 4942 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4943 goto unlock; 4944 } 4945 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4946 if (!pte_write(entry)) 4947 return do_wp_page(vmf); 4948 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4949 entry = pte_mkdirty(entry); 4950 } 4951 entry = pte_mkyoung(entry); 4952 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4953 vmf->flags & FAULT_FLAG_WRITE)) { 4954 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4955 } else { 4956 /* Skip spurious TLB flush for retried page fault */ 4957 if (vmf->flags & FAULT_FLAG_TRIED) 4958 goto unlock; 4959 /* 4960 * This is needed only for protection faults but the arch code 4961 * is not yet telling us if this is a protection fault or not. 4962 * This still avoids useless tlb flushes for .text page faults 4963 * with threads. 4964 */ 4965 if (vmf->flags & FAULT_FLAG_WRITE) 4966 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 4967 vmf->pte); 4968 } 4969 unlock: 4970 pte_unmap_unlock(vmf->pte, vmf->ptl); 4971 return 0; 4972 } 4973 4974 /* 4975 * By the time we get here, we already hold the mm semaphore 4976 * 4977 * The mmap_lock may have been released depending on flags and our 4978 * return value. See filemap_fault() and __folio_lock_or_retry(). 4979 */ 4980 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4981 unsigned long address, unsigned int flags) 4982 { 4983 struct vm_fault vmf = { 4984 .vma = vma, 4985 .address = address & PAGE_MASK, 4986 .real_address = address, 4987 .flags = flags, 4988 .pgoff = linear_page_index(vma, address), 4989 .gfp_mask = __get_fault_gfp_mask(vma), 4990 }; 4991 struct mm_struct *mm = vma->vm_mm; 4992 unsigned long vm_flags = vma->vm_flags; 4993 pgd_t *pgd; 4994 p4d_t *p4d; 4995 vm_fault_t ret; 4996 4997 pgd = pgd_offset(mm, address); 4998 p4d = p4d_alloc(mm, pgd, address); 4999 if (!p4d) 5000 return VM_FAULT_OOM; 5001 5002 vmf.pud = pud_alloc(mm, p4d, address); 5003 if (!vmf.pud) 5004 return VM_FAULT_OOM; 5005 retry_pud: 5006 if (pud_none(*vmf.pud) && 5007 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5008 ret = create_huge_pud(&vmf); 5009 if (!(ret & VM_FAULT_FALLBACK)) 5010 return ret; 5011 } else { 5012 pud_t orig_pud = *vmf.pud; 5013 5014 barrier(); 5015 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5016 5017 /* 5018 * TODO once we support anonymous PUDs: NUMA case and 5019 * FAULT_FLAG_UNSHARE handling. 5020 */ 5021 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5022 ret = wp_huge_pud(&vmf, orig_pud); 5023 if (!(ret & VM_FAULT_FALLBACK)) 5024 return ret; 5025 } else { 5026 huge_pud_set_accessed(&vmf, orig_pud); 5027 return 0; 5028 } 5029 } 5030 } 5031 5032 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5033 if (!vmf.pmd) 5034 return VM_FAULT_OOM; 5035 5036 /* Huge pud page fault raced with pmd_alloc? */ 5037 if (pud_trans_unstable(vmf.pud)) 5038 goto retry_pud; 5039 5040 if (pmd_none(*vmf.pmd) && 5041 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5042 ret = create_huge_pmd(&vmf); 5043 if (!(ret & VM_FAULT_FALLBACK)) 5044 return ret; 5045 } else { 5046 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5047 5048 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5049 VM_BUG_ON(thp_migration_supported() && 5050 !is_pmd_migration_entry(vmf.orig_pmd)); 5051 if (is_pmd_migration_entry(vmf.orig_pmd)) 5052 pmd_migration_entry_wait(mm, vmf.pmd); 5053 return 0; 5054 } 5055 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5056 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5057 return do_huge_pmd_numa_page(&vmf); 5058 5059 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5060 !pmd_write(vmf.orig_pmd)) { 5061 ret = wp_huge_pmd(&vmf); 5062 if (!(ret & VM_FAULT_FALLBACK)) 5063 return ret; 5064 } else { 5065 huge_pmd_set_accessed(&vmf); 5066 return 0; 5067 } 5068 } 5069 } 5070 5071 return handle_pte_fault(&vmf); 5072 } 5073 5074 /** 5075 * mm_account_fault - Do page fault accounting 5076 * 5077 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5078 * of perf event counters, but we'll still do the per-task accounting to 5079 * the task who triggered this page fault. 5080 * @address: the faulted address. 5081 * @flags: the fault flags. 5082 * @ret: the fault retcode. 5083 * 5084 * This will take care of most of the page fault accounting. Meanwhile, it 5085 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5086 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5087 * still be in per-arch page fault handlers at the entry of page fault. 5088 */ 5089 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5090 unsigned long address, unsigned int flags, 5091 vm_fault_t ret) 5092 { 5093 bool major; 5094 5095 /* Incomplete faults will be accounted upon completion. */ 5096 if (ret & VM_FAULT_RETRY) 5097 return; 5098 5099 /* 5100 * To preserve the behavior of older kernels, PGFAULT counters record 5101 * both successful and failed faults, as opposed to perf counters, 5102 * which ignore failed cases. 5103 */ 5104 count_vm_event(PGFAULT); 5105 count_memcg_event_mm(mm, PGFAULT); 5106 5107 /* 5108 * Do not account for unsuccessful faults (e.g. when the address wasn't 5109 * valid). That includes arch_vma_access_permitted() failing before 5110 * reaching here. So this is not a "this many hardware page faults" 5111 * counter. We should use the hw profiling for that. 5112 */ 5113 if (ret & VM_FAULT_ERROR) 5114 return; 5115 5116 /* 5117 * We define the fault as a major fault when the final successful fault 5118 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5119 * handle it immediately previously). 5120 */ 5121 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5122 5123 if (major) 5124 current->maj_flt++; 5125 else 5126 current->min_flt++; 5127 5128 /* 5129 * If the fault is done for GUP, regs will be NULL. We only do the 5130 * accounting for the per thread fault counters who triggered the 5131 * fault, and we skip the perf event updates. 5132 */ 5133 if (!regs) 5134 return; 5135 5136 if (major) 5137 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5138 else 5139 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5140 } 5141 5142 #ifdef CONFIG_LRU_GEN 5143 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5144 { 5145 /* the LRU algorithm only applies to accesses with recency */ 5146 current->in_lru_fault = vma_has_recency(vma); 5147 } 5148 5149 static void lru_gen_exit_fault(void) 5150 { 5151 current->in_lru_fault = false; 5152 } 5153 #else 5154 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5155 { 5156 } 5157 5158 static void lru_gen_exit_fault(void) 5159 { 5160 } 5161 #endif /* CONFIG_LRU_GEN */ 5162 5163 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5164 unsigned int *flags) 5165 { 5166 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5167 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5168 return VM_FAULT_SIGSEGV; 5169 /* 5170 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5171 * just treat it like an ordinary read-fault otherwise. 5172 */ 5173 if (!is_cow_mapping(vma->vm_flags)) 5174 *flags &= ~FAULT_FLAG_UNSHARE; 5175 } else if (*flags & FAULT_FLAG_WRITE) { 5176 /* Write faults on read-only mappings are impossible ... */ 5177 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5178 return VM_FAULT_SIGSEGV; 5179 /* ... and FOLL_FORCE only applies to COW mappings. */ 5180 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5181 !is_cow_mapping(vma->vm_flags))) 5182 return VM_FAULT_SIGSEGV; 5183 } 5184 return 0; 5185 } 5186 5187 /* 5188 * By the time we get here, we already hold the mm semaphore 5189 * 5190 * The mmap_lock may have been released depending on flags and our 5191 * return value. See filemap_fault() and __folio_lock_or_retry(). 5192 */ 5193 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5194 unsigned int flags, struct pt_regs *regs) 5195 { 5196 /* If the fault handler drops the mmap_lock, vma may be freed */ 5197 struct mm_struct *mm = vma->vm_mm; 5198 vm_fault_t ret; 5199 5200 __set_current_state(TASK_RUNNING); 5201 5202 ret = sanitize_fault_flags(vma, &flags); 5203 if (ret) 5204 goto out; 5205 5206 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5207 flags & FAULT_FLAG_INSTRUCTION, 5208 flags & FAULT_FLAG_REMOTE)) { 5209 ret = VM_FAULT_SIGSEGV; 5210 goto out; 5211 } 5212 5213 /* 5214 * Enable the memcg OOM handling for faults triggered in user 5215 * space. Kernel faults are handled more gracefully. 5216 */ 5217 if (flags & FAULT_FLAG_USER) 5218 mem_cgroup_enter_user_fault(); 5219 5220 lru_gen_enter_fault(vma); 5221 5222 if (unlikely(is_vm_hugetlb_page(vma))) 5223 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5224 else 5225 ret = __handle_mm_fault(vma, address, flags); 5226 5227 lru_gen_exit_fault(); 5228 5229 if (flags & FAULT_FLAG_USER) { 5230 mem_cgroup_exit_user_fault(); 5231 /* 5232 * The task may have entered a memcg OOM situation but 5233 * if the allocation error was handled gracefully (no 5234 * VM_FAULT_OOM), there is no need to kill anything. 5235 * Just clean up the OOM state peacefully. 5236 */ 5237 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5238 mem_cgroup_oom_synchronize(false); 5239 } 5240 out: 5241 mm_account_fault(mm, regs, address, flags, ret); 5242 5243 return ret; 5244 } 5245 EXPORT_SYMBOL_GPL(handle_mm_fault); 5246 5247 #ifdef CONFIG_PER_VMA_LOCK 5248 /* 5249 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5250 * stable and not isolated. If the VMA is not found or is being modified the 5251 * function returns NULL. 5252 */ 5253 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5254 unsigned long address) 5255 { 5256 MA_STATE(mas, &mm->mm_mt, address, address); 5257 struct vm_area_struct *vma; 5258 5259 rcu_read_lock(); 5260 retry: 5261 vma = mas_walk(&mas); 5262 if (!vma) 5263 goto inval; 5264 5265 /* Only anonymous vmas are supported for now */ 5266 if (!vma_is_anonymous(vma)) 5267 goto inval; 5268 5269 /* find_mergeable_anon_vma uses adjacent vmas which are not locked */ 5270 if (!vma->anon_vma) 5271 goto inval; 5272 5273 if (!vma_start_read(vma)) 5274 goto inval; 5275 5276 /* 5277 * Due to the possibility of userfault handler dropping mmap_lock, avoid 5278 * it for now and fall back to page fault handling under mmap_lock. 5279 */ 5280 if (userfaultfd_armed(vma)) { 5281 vma_end_read(vma); 5282 goto inval; 5283 } 5284 5285 /* Check since vm_start/vm_end might change before we lock the VMA */ 5286 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 5287 vma_end_read(vma); 5288 goto inval; 5289 } 5290 5291 /* Check if the VMA got isolated after we found it */ 5292 if (vma->detached) { 5293 vma_end_read(vma); 5294 count_vm_vma_lock_event(VMA_LOCK_MISS); 5295 /* The area was replaced with another one */ 5296 goto retry; 5297 } 5298 5299 rcu_read_unlock(); 5300 return vma; 5301 inval: 5302 rcu_read_unlock(); 5303 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5304 return NULL; 5305 } 5306 #endif /* CONFIG_PER_VMA_LOCK */ 5307 5308 #ifndef __PAGETABLE_P4D_FOLDED 5309 /* 5310 * Allocate p4d page table. 5311 * We've already handled the fast-path in-line. 5312 */ 5313 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5314 { 5315 p4d_t *new = p4d_alloc_one(mm, address); 5316 if (!new) 5317 return -ENOMEM; 5318 5319 spin_lock(&mm->page_table_lock); 5320 if (pgd_present(*pgd)) { /* Another has populated it */ 5321 p4d_free(mm, new); 5322 } else { 5323 smp_wmb(); /* See comment in pmd_install() */ 5324 pgd_populate(mm, pgd, new); 5325 } 5326 spin_unlock(&mm->page_table_lock); 5327 return 0; 5328 } 5329 #endif /* __PAGETABLE_P4D_FOLDED */ 5330 5331 #ifndef __PAGETABLE_PUD_FOLDED 5332 /* 5333 * Allocate page upper directory. 5334 * We've already handled the fast-path in-line. 5335 */ 5336 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5337 { 5338 pud_t *new = pud_alloc_one(mm, address); 5339 if (!new) 5340 return -ENOMEM; 5341 5342 spin_lock(&mm->page_table_lock); 5343 if (!p4d_present(*p4d)) { 5344 mm_inc_nr_puds(mm); 5345 smp_wmb(); /* See comment in pmd_install() */ 5346 p4d_populate(mm, p4d, new); 5347 } else /* Another has populated it */ 5348 pud_free(mm, new); 5349 spin_unlock(&mm->page_table_lock); 5350 return 0; 5351 } 5352 #endif /* __PAGETABLE_PUD_FOLDED */ 5353 5354 #ifndef __PAGETABLE_PMD_FOLDED 5355 /* 5356 * Allocate page middle directory. 5357 * We've already handled the fast-path in-line. 5358 */ 5359 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5360 { 5361 spinlock_t *ptl; 5362 pmd_t *new = pmd_alloc_one(mm, address); 5363 if (!new) 5364 return -ENOMEM; 5365 5366 ptl = pud_lock(mm, pud); 5367 if (!pud_present(*pud)) { 5368 mm_inc_nr_pmds(mm); 5369 smp_wmb(); /* See comment in pmd_install() */ 5370 pud_populate(mm, pud, new); 5371 } else { /* Another has populated it */ 5372 pmd_free(mm, new); 5373 } 5374 spin_unlock(ptl); 5375 return 0; 5376 } 5377 #endif /* __PAGETABLE_PMD_FOLDED */ 5378 5379 /** 5380 * follow_pte - look up PTE at a user virtual address 5381 * @mm: the mm_struct of the target address space 5382 * @address: user virtual address 5383 * @ptepp: location to store found PTE 5384 * @ptlp: location to store the lock for the PTE 5385 * 5386 * On a successful return, the pointer to the PTE is stored in @ptepp; 5387 * the corresponding lock is taken and its location is stored in @ptlp. 5388 * The contents of the PTE are only stable until @ptlp is released; 5389 * any further use, if any, must be protected against invalidation 5390 * with MMU notifiers. 5391 * 5392 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5393 * should be taken for read. 5394 * 5395 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5396 * it is not a good general-purpose API. 5397 * 5398 * Return: zero on success, -ve otherwise. 5399 */ 5400 int follow_pte(struct mm_struct *mm, unsigned long address, 5401 pte_t **ptepp, spinlock_t **ptlp) 5402 { 5403 pgd_t *pgd; 5404 p4d_t *p4d; 5405 pud_t *pud; 5406 pmd_t *pmd; 5407 pte_t *ptep; 5408 5409 pgd = pgd_offset(mm, address); 5410 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5411 goto out; 5412 5413 p4d = p4d_offset(pgd, address); 5414 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5415 goto out; 5416 5417 pud = pud_offset(p4d, address); 5418 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5419 goto out; 5420 5421 pmd = pmd_offset(pud, address); 5422 VM_BUG_ON(pmd_trans_huge(*pmd)); 5423 5424 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5425 if (!ptep) 5426 goto out; 5427 if (!pte_present(ptep_get(ptep))) 5428 goto unlock; 5429 *ptepp = ptep; 5430 return 0; 5431 unlock: 5432 pte_unmap_unlock(ptep, *ptlp); 5433 out: 5434 return -EINVAL; 5435 } 5436 EXPORT_SYMBOL_GPL(follow_pte); 5437 5438 /** 5439 * follow_pfn - look up PFN at a user virtual address 5440 * @vma: memory mapping 5441 * @address: user virtual address 5442 * @pfn: location to store found PFN 5443 * 5444 * Only IO mappings and raw PFN mappings are allowed. 5445 * 5446 * This function does not allow the caller to read the permissions 5447 * of the PTE. Do not use it. 5448 * 5449 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5450 */ 5451 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5452 unsigned long *pfn) 5453 { 5454 int ret = -EINVAL; 5455 spinlock_t *ptl; 5456 pte_t *ptep; 5457 5458 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5459 return ret; 5460 5461 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5462 if (ret) 5463 return ret; 5464 *pfn = pte_pfn(ptep_get(ptep)); 5465 pte_unmap_unlock(ptep, ptl); 5466 return 0; 5467 } 5468 EXPORT_SYMBOL(follow_pfn); 5469 5470 #ifdef CONFIG_HAVE_IOREMAP_PROT 5471 int follow_phys(struct vm_area_struct *vma, 5472 unsigned long address, unsigned int flags, 5473 unsigned long *prot, resource_size_t *phys) 5474 { 5475 int ret = -EINVAL; 5476 pte_t *ptep, pte; 5477 spinlock_t *ptl; 5478 5479 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5480 goto out; 5481 5482 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5483 goto out; 5484 pte = ptep_get(ptep); 5485 5486 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5487 goto unlock; 5488 5489 *prot = pgprot_val(pte_pgprot(pte)); 5490 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5491 5492 ret = 0; 5493 unlock: 5494 pte_unmap_unlock(ptep, ptl); 5495 out: 5496 return ret; 5497 } 5498 5499 /** 5500 * generic_access_phys - generic implementation for iomem mmap access 5501 * @vma: the vma to access 5502 * @addr: userspace address, not relative offset within @vma 5503 * @buf: buffer to read/write 5504 * @len: length of transfer 5505 * @write: set to FOLL_WRITE when writing, otherwise reading 5506 * 5507 * This is a generic implementation for &vm_operations_struct.access for an 5508 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5509 * not page based. 5510 */ 5511 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5512 void *buf, int len, int write) 5513 { 5514 resource_size_t phys_addr; 5515 unsigned long prot = 0; 5516 void __iomem *maddr; 5517 pte_t *ptep, pte; 5518 spinlock_t *ptl; 5519 int offset = offset_in_page(addr); 5520 int ret = -EINVAL; 5521 5522 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5523 return -EINVAL; 5524 5525 retry: 5526 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5527 return -EINVAL; 5528 pte = ptep_get(ptep); 5529 pte_unmap_unlock(ptep, ptl); 5530 5531 prot = pgprot_val(pte_pgprot(pte)); 5532 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5533 5534 if ((write & FOLL_WRITE) && !pte_write(pte)) 5535 return -EINVAL; 5536 5537 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5538 if (!maddr) 5539 return -ENOMEM; 5540 5541 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5542 goto out_unmap; 5543 5544 if (!pte_same(pte, ptep_get(ptep))) { 5545 pte_unmap_unlock(ptep, ptl); 5546 iounmap(maddr); 5547 5548 goto retry; 5549 } 5550 5551 if (write) 5552 memcpy_toio(maddr + offset, buf, len); 5553 else 5554 memcpy_fromio(buf, maddr + offset, len); 5555 ret = len; 5556 pte_unmap_unlock(ptep, ptl); 5557 out_unmap: 5558 iounmap(maddr); 5559 5560 return ret; 5561 } 5562 EXPORT_SYMBOL_GPL(generic_access_phys); 5563 #endif 5564 5565 /* 5566 * Access another process' address space as given in mm. 5567 */ 5568 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5569 int len, unsigned int gup_flags) 5570 { 5571 void *old_buf = buf; 5572 int write = gup_flags & FOLL_WRITE; 5573 5574 if (mmap_read_lock_killable(mm)) 5575 return 0; 5576 5577 /* ignore errors, just check how much was successfully transferred */ 5578 while (len) { 5579 int bytes, offset; 5580 void *maddr; 5581 struct vm_area_struct *vma = NULL; 5582 struct page *page = get_user_page_vma_remote(mm, addr, 5583 gup_flags, &vma); 5584 5585 if (IS_ERR_OR_NULL(page)) { 5586 #ifndef CONFIG_HAVE_IOREMAP_PROT 5587 break; 5588 #else 5589 int res = 0; 5590 5591 /* 5592 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5593 * we can access using slightly different code. 5594 */ 5595 if (!vma) 5596 break; 5597 if (vma->vm_ops && vma->vm_ops->access) 5598 res = vma->vm_ops->access(vma, addr, buf, 5599 len, write); 5600 if (res <= 0) 5601 break; 5602 bytes = res; 5603 #endif 5604 } else { 5605 bytes = len; 5606 offset = addr & (PAGE_SIZE-1); 5607 if (bytes > PAGE_SIZE-offset) 5608 bytes = PAGE_SIZE-offset; 5609 5610 maddr = kmap(page); 5611 if (write) { 5612 copy_to_user_page(vma, page, addr, 5613 maddr + offset, buf, bytes); 5614 set_page_dirty_lock(page); 5615 } else { 5616 copy_from_user_page(vma, page, addr, 5617 buf, maddr + offset, bytes); 5618 } 5619 kunmap(page); 5620 put_page(page); 5621 } 5622 len -= bytes; 5623 buf += bytes; 5624 addr += bytes; 5625 } 5626 mmap_read_unlock(mm); 5627 5628 return buf - old_buf; 5629 } 5630 5631 /** 5632 * access_remote_vm - access another process' address space 5633 * @mm: the mm_struct of the target address space 5634 * @addr: start address to access 5635 * @buf: source or destination buffer 5636 * @len: number of bytes to transfer 5637 * @gup_flags: flags modifying lookup behaviour 5638 * 5639 * The caller must hold a reference on @mm. 5640 * 5641 * Return: number of bytes copied from source to destination. 5642 */ 5643 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5644 void *buf, int len, unsigned int gup_flags) 5645 { 5646 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5647 } 5648 5649 /* 5650 * Access another process' address space. 5651 * Source/target buffer must be kernel space, 5652 * Do not walk the page table directly, use get_user_pages 5653 */ 5654 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5655 void *buf, int len, unsigned int gup_flags) 5656 { 5657 struct mm_struct *mm; 5658 int ret; 5659 5660 mm = get_task_mm(tsk); 5661 if (!mm) 5662 return 0; 5663 5664 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5665 5666 mmput(mm); 5667 5668 return ret; 5669 } 5670 EXPORT_SYMBOL_GPL(access_process_vm); 5671 5672 /* 5673 * Print the name of a VMA. 5674 */ 5675 void print_vma_addr(char *prefix, unsigned long ip) 5676 { 5677 struct mm_struct *mm = current->mm; 5678 struct vm_area_struct *vma; 5679 5680 /* 5681 * we might be running from an atomic context so we cannot sleep 5682 */ 5683 if (!mmap_read_trylock(mm)) 5684 return; 5685 5686 vma = find_vma(mm, ip); 5687 if (vma && vma->vm_file) { 5688 struct file *f = vma->vm_file; 5689 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5690 if (buf) { 5691 char *p; 5692 5693 p = file_path(f, buf, PAGE_SIZE); 5694 if (IS_ERR(p)) 5695 p = "?"; 5696 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5697 vma->vm_start, 5698 vma->vm_end - vma->vm_start); 5699 free_page((unsigned long)buf); 5700 } 5701 } 5702 mmap_read_unlock(mm); 5703 } 5704 5705 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5706 void __might_fault(const char *file, int line) 5707 { 5708 if (pagefault_disabled()) 5709 return; 5710 __might_sleep(file, line); 5711 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5712 if (current->mm) 5713 might_lock_read(¤t->mm->mmap_lock); 5714 #endif 5715 } 5716 EXPORT_SYMBOL(__might_fault); 5717 #endif 5718 5719 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5720 /* 5721 * Process all subpages of the specified huge page with the specified 5722 * operation. The target subpage will be processed last to keep its 5723 * cache lines hot. 5724 */ 5725 static inline int process_huge_page( 5726 unsigned long addr_hint, unsigned int pages_per_huge_page, 5727 int (*process_subpage)(unsigned long addr, int idx, void *arg), 5728 void *arg) 5729 { 5730 int i, n, base, l, ret; 5731 unsigned long addr = addr_hint & 5732 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5733 5734 /* Process target subpage last to keep its cache lines hot */ 5735 might_sleep(); 5736 n = (addr_hint - addr) / PAGE_SIZE; 5737 if (2 * n <= pages_per_huge_page) { 5738 /* If target subpage in first half of huge page */ 5739 base = 0; 5740 l = n; 5741 /* Process subpages at the end of huge page */ 5742 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5743 cond_resched(); 5744 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5745 if (ret) 5746 return ret; 5747 } 5748 } else { 5749 /* If target subpage in second half of huge page */ 5750 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5751 l = pages_per_huge_page - n; 5752 /* Process subpages at the begin of huge page */ 5753 for (i = 0; i < base; i++) { 5754 cond_resched(); 5755 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5756 if (ret) 5757 return ret; 5758 } 5759 } 5760 /* 5761 * Process remaining subpages in left-right-left-right pattern 5762 * towards the target subpage 5763 */ 5764 for (i = 0; i < l; i++) { 5765 int left_idx = base + i; 5766 int right_idx = base + 2 * l - 1 - i; 5767 5768 cond_resched(); 5769 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5770 if (ret) 5771 return ret; 5772 cond_resched(); 5773 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5774 if (ret) 5775 return ret; 5776 } 5777 return 0; 5778 } 5779 5780 static void clear_gigantic_page(struct page *page, 5781 unsigned long addr, 5782 unsigned int pages_per_huge_page) 5783 { 5784 int i; 5785 struct page *p; 5786 5787 might_sleep(); 5788 for (i = 0; i < pages_per_huge_page; i++) { 5789 p = nth_page(page, i); 5790 cond_resched(); 5791 clear_user_highpage(p, addr + i * PAGE_SIZE); 5792 } 5793 } 5794 5795 static int clear_subpage(unsigned long addr, int idx, void *arg) 5796 { 5797 struct page *page = arg; 5798 5799 clear_user_highpage(page + idx, addr); 5800 return 0; 5801 } 5802 5803 void clear_huge_page(struct page *page, 5804 unsigned long addr_hint, unsigned int pages_per_huge_page) 5805 { 5806 unsigned long addr = addr_hint & 5807 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5808 5809 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5810 clear_gigantic_page(page, addr, pages_per_huge_page); 5811 return; 5812 } 5813 5814 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5815 } 5816 5817 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 5818 unsigned long addr, 5819 struct vm_area_struct *vma, 5820 unsigned int pages_per_huge_page) 5821 { 5822 int i; 5823 struct page *dst_page; 5824 struct page *src_page; 5825 5826 for (i = 0; i < pages_per_huge_page; i++) { 5827 dst_page = folio_page(dst, i); 5828 src_page = folio_page(src, i); 5829 5830 cond_resched(); 5831 if (copy_mc_user_highpage(dst_page, src_page, 5832 addr + i*PAGE_SIZE, vma)) { 5833 memory_failure_queue(page_to_pfn(src_page), 0); 5834 return -EHWPOISON; 5835 } 5836 } 5837 return 0; 5838 } 5839 5840 struct copy_subpage_arg { 5841 struct page *dst; 5842 struct page *src; 5843 struct vm_area_struct *vma; 5844 }; 5845 5846 static int copy_subpage(unsigned long addr, int idx, void *arg) 5847 { 5848 struct copy_subpage_arg *copy_arg = arg; 5849 5850 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5851 addr, copy_arg->vma)) { 5852 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0); 5853 return -EHWPOISON; 5854 } 5855 return 0; 5856 } 5857 5858 int copy_user_large_folio(struct folio *dst, struct folio *src, 5859 unsigned long addr_hint, struct vm_area_struct *vma) 5860 { 5861 unsigned int pages_per_huge_page = folio_nr_pages(dst); 5862 unsigned long addr = addr_hint & 5863 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5864 struct copy_subpage_arg arg = { 5865 .dst = &dst->page, 5866 .src = &src->page, 5867 .vma = vma, 5868 }; 5869 5870 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 5871 return copy_user_gigantic_page(dst, src, addr, vma, 5872 pages_per_huge_page); 5873 5874 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5875 } 5876 5877 long copy_folio_from_user(struct folio *dst_folio, 5878 const void __user *usr_src, 5879 bool allow_pagefault) 5880 { 5881 void *kaddr; 5882 unsigned long i, rc = 0; 5883 unsigned int nr_pages = folio_nr_pages(dst_folio); 5884 unsigned long ret_val = nr_pages * PAGE_SIZE; 5885 struct page *subpage; 5886 5887 for (i = 0; i < nr_pages; i++) { 5888 subpage = folio_page(dst_folio, i); 5889 kaddr = kmap_local_page(subpage); 5890 if (!allow_pagefault) 5891 pagefault_disable(); 5892 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 5893 if (!allow_pagefault) 5894 pagefault_enable(); 5895 kunmap_local(kaddr); 5896 5897 ret_val -= (PAGE_SIZE - rc); 5898 if (rc) 5899 break; 5900 5901 flush_dcache_page(subpage); 5902 5903 cond_resched(); 5904 } 5905 return ret_val; 5906 } 5907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5908 5909 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5910 5911 static struct kmem_cache *page_ptl_cachep; 5912 5913 void __init ptlock_cache_init(void) 5914 { 5915 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5916 SLAB_PANIC, NULL); 5917 } 5918 5919 bool ptlock_alloc(struct page *page) 5920 { 5921 spinlock_t *ptl; 5922 5923 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5924 if (!ptl) 5925 return false; 5926 page->ptl = ptl; 5927 return true; 5928 } 5929 5930 void ptlock_free(struct page *page) 5931 { 5932 kmem_cache_free(page_ptl_cachep, page->ptl); 5933 } 5934 #endif 5935