xref: /openbmc/linux/mm/memory.c (revision c24c57a4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82 
83 #include "internal.h"
84 
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88 
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93 
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97 
98 /*
99  * A number of key systems in x86 including ioremap() rely on the assumption
100  * that high_memory defines the upper bound on direct map memory, then end
101  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
102  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103  * and ZONE_HIGHMEM.
104  */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107 
108 /*
109  * Randomize the address space (stacks, mmaps, brk, etc.).
110  *
111  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112  *   as ancient (libc5 based) binaries can segfault. )
113  */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116 					1;
117 #else
118 					2;
119 #endif
120 
121 #ifndef arch_faults_on_old_pte
122 static inline bool arch_faults_on_old_pte(void)
123 {
124 	/*
125 	 * Those arches which don't have hw access flag feature need to
126 	 * implement their own helper. By default, "true" means pagefault
127 	 * will be hit on old pte.
128 	 */
129 	return true;
130 }
131 #endif
132 
133 static int __init disable_randmaps(char *s)
134 {
135 	randomize_va_space = 0;
136 	return 1;
137 }
138 __setup("norandmaps", disable_randmaps);
139 
140 unsigned long zero_pfn __read_mostly;
141 EXPORT_SYMBOL(zero_pfn);
142 
143 unsigned long highest_memmap_pfn __read_mostly;
144 
145 /*
146  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
147  */
148 static int __init init_zero_pfn(void)
149 {
150 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
151 	return 0;
152 }
153 core_initcall(init_zero_pfn);
154 
155 
156 #if defined(SPLIT_RSS_COUNTING)
157 
158 void sync_mm_rss(struct mm_struct *mm)
159 {
160 	int i;
161 
162 	for (i = 0; i < NR_MM_COUNTERS; i++) {
163 		if (current->rss_stat.count[i]) {
164 			add_mm_counter(mm, i, current->rss_stat.count[i]);
165 			current->rss_stat.count[i] = 0;
166 		}
167 	}
168 	current->rss_stat.events = 0;
169 }
170 
171 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
172 {
173 	struct task_struct *task = current;
174 
175 	if (likely(task->mm == mm))
176 		task->rss_stat.count[member] += val;
177 	else
178 		add_mm_counter(mm, member, val);
179 }
180 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
181 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
182 
183 /* sync counter once per 64 page faults */
184 #define TASK_RSS_EVENTS_THRESH	(64)
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 	if (unlikely(task != current))
188 		return;
189 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
190 		sync_mm_rss(task->mm);
191 }
192 #else /* SPLIT_RSS_COUNTING */
193 
194 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
195 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
196 
197 static void check_sync_rss_stat(struct task_struct *task)
198 {
199 }
200 
201 #endif /* SPLIT_RSS_COUNTING */
202 
203 /*
204  * Note: this doesn't free the actual pages themselves. That
205  * has been handled earlier when unmapping all the memory regions.
206  */
207 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
208 			   unsigned long addr)
209 {
210 	pgtable_t token = pmd_pgtable(*pmd);
211 	pmd_clear(pmd);
212 	pte_free_tlb(tlb, token, addr);
213 	mm_dec_nr_ptes(tlb->mm);
214 }
215 
216 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
217 				unsigned long addr, unsigned long end,
218 				unsigned long floor, unsigned long ceiling)
219 {
220 	pmd_t *pmd;
221 	unsigned long next;
222 	unsigned long start;
223 
224 	start = addr;
225 	pmd = pmd_offset(pud, addr);
226 	do {
227 		next = pmd_addr_end(addr, end);
228 		if (pmd_none_or_clear_bad(pmd))
229 			continue;
230 		free_pte_range(tlb, pmd, addr);
231 	} while (pmd++, addr = next, addr != end);
232 
233 	start &= PUD_MASK;
234 	if (start < floor)
235 		return;
236 	if (ceiling) {
237 		ceiling &= PUD_MASK;
238 		if (!ceiling)
239 			return;
240 	}
241 	if (end - 1 > ceiling - 1)
242 		return;
243 
244 	pmd = pmd_offset(pud, start);
245 	pud_clear(pud);
246 	pmd_free_tlb(tlb, pmd, start);
247 	mm_dec_nr_pmds(tlb->mm);
248 }
249 
250 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
251 				unsigned long addr, unsigned long end,
252 				unsigned long floor, unsigned long ceiling)
253 {
254 	pud_t *pud;
255 	unsigned long next;
256 	unsigned long start;
257 
258 	start = addr;
259 	pud = pud_offset(p4d, addr);
260 	do {
261 		next = pud_addr_end(addr, end);
262 		if (pud_none_or_clear_bad(pud))
263 			continue;
264 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
265 	} while (pud++, addr = next, addr != end);
266 
267 	start &= P4D_MASK;
268 	if (start < floor)
269 		return;
270 	if (ceiling) {
271 		ceiling &= P4D_MASK;
272 		if (!ceiling)
273 			return;
274 	}
275 	if (end - 1 > ceiling - 1)
276 		return;
277 
278 	pud = pud_offset(p4d, start);
279 	p4d_clear(p4d);
280 	pud_free_tlb(tlb, pud, start);
281 	mm_dec_nr_puds(tlb->mm);
282 }
283 
284 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
285 				unsigned long addr, unsigned long end,
286 				unsigned long floor, unsigned long ceiling)
287 {
288 	p4d_t *p4d;
289 	unsigned long next;
290 	unsigned long start;
291 
292 	start = addr;
293 	p4d = p4d_offset(pgd, addr);
294 	do {
295 		next = p4d_addr_end(addr, end);
296 		if (p4d_none_or_clear_bad(p4d))
297 			continue;
298 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
299 	} while (p4d++, addr = next, addr != end);
300 
301 	start &= PGDIR_MASK;
302 	if (start < floor)
303 		return;
304 	if (ceiling) {
305 		ceiling &= PGDIR_MASK;
306 		if (!ceiling)
307 			return;
308 	}
309 	if (end - 1 > ceiling - 1)
310 		return;
311 
312 	p4d = p4d_offset(pgd, start);
313 	pgd_clear(pgd);
314 	p4d_free_tlb(tlb, p4d, start);
315 }
316 
317 /*
318  * This function frees user-level page tables of a process.
319  */
320 void free_pgd_range(struct mmu_gather *tlb,
321 			unsigned long addr, unsigned long end,
322 			unsigned long floor, unsigned long ceiling)
323 {
324 	pgd_t *pgd;
325 	unsigned long next;
326 
327 	/*
328 	 * The next few lines have given us lots of grief...
329 	 *
330 	 * Why are we testing PMD* at this top level?  Because often
331 	 * there will be no work to do at all, and we'd prefer not to
332 	 * go all the way down to the bottom just to discover that.
333 	 *
334 	 * Why all these "- 1"s?  Because 0 represents both the bottom
335 	 * of the address space and the top of it (using -1 for the
336 	 * top wouldn't help much: the masks would do the wrong thing).
337 	 * The rule is that addr 0 and floor 0 refer to the bottom of
338 	 * the address space, but end 0 and ceiling 0 refer to the top
339 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
340 	 * that end 0 case should be mythical).
341 	 *
342 	 * Wherever addr is brought up or ceiling brought down, we must
343 	 * be careful to reject "the opposite 0" before it confuses the
344 	 * subsequent tests.  But what about where end is brought down
345 	 * by PMD_SIZE below? no, end can't go down to 0 there.
346 	 *
347 	 * Whereas we round start (addr) and ceiling down, by different
348 	 * masks at different levels, in order to test whether a table
349 	 * now has no other vmas using it, so can be freed, we don't
350 	 * bother to round floor or end up - the tests don't need that.
351 	 */
352 
353 	addr &= PMD_MASK;
354 	if (addr < floor) {
355 		addr += PMD_SIZE;
356 		if (!addr)
357 			return;
358 	}
359 	if (ceiling) {
360 		ceiling &= PMD_MASK;
361 		if (!ceiling)
362 			return;
363 	}
364 	if (end - 1 > ceiling - 1)
365 		end -= PMD_SIZE;
366 	if (addr > end - 1)
367 		return;
368 	/*
369 	 * We add page table cache pages with PAGE_SIZE,
370 	 * (see pte_free_tlb()), flush the tlb if we need
371 	 */
372 	tlb_change_page_size(tlb, PAGE_SIZE);
373 	pgd = pgd_offset(tlb->mm, addr);
374 	do {
375 		next = pgd_addr_end(addr, end);
376 		if (pgd_none_or_clear_bad(pgd))
377 			continue;
378 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
379 	} while (pgd++, addr = next, addr != end);
380 }
381 
382 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
383 		unsigned long floor, unsigned long ceiling)
384 {
385 	while (vma) {
386 		struct vm_area_struct *next = vma->vm_next;
387 		unsigned long addr = vma->vm_start;
388 
389 		/*
390 		 * Hide vma from rmap and truncate_pagecache before freeing
391 		 * pgtables
392 		 */
393 		unlink_anon_vmas(vma);
394 		unlink_file_vma(vma);
395 
396 		if (is_vm_hugetlb_page(vma)) {
397 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
398 				floor, next ? next->vm_start : ceiling);
399 		} else {
400 			/*
401 			 * Optimization: gather nearby vmas into one call down
402 			 */
403 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
404 			       && !is_vm_hugetlb_page(next)) {
405 				vma = next;
406 				next = vma->vm_next;
407 				unlink_anon_vmas(vma);
408 				unlink_file_vma(vma);
409 			}
410 			free_pgd_range(tlb, addr, vma->vm_end,
411 				floor, next ? next->vm_start : ceiling);
412 		}
413 		vma = next;
414 	}
415 }
416 
417 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
418 {
419 	spinlock_t *ptl;
420 	pgtable_t new = pte_alloc_one(mm);
421 	if (!new)
422 		return -ENOMEM;
423 
424 	/*
425 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
426 	 * visible before the pte is made visible to other CPUs by being
427 	 * put into page tables.
428 	 *
429 	 * The other side of the story is the pointer chasing in the page
430 	 * table walking code (when walking the page table without locking;
431 	 * ie. most of the time). Fortunately, these data accesses consist
432 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
433 	 * being the notable exception) will already guarantee loads are
434 	 * seen in-order. See the alpha page table accessors for the
435 	 * smp_read_barrier_depends() barriers in page table walking code.
436 	 */
437 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438 
439 	ptl = pmd_lock(mm, pmd);
440 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
441 		mm_inc_nr_ptes(mm);
442 		pmd_populate(mm, pmd, new);
443 		new = NULL;
444 	}
445 	spin_unlock(ptl);
446 	if (new)
447 		pte_free(mm, new);
448 	return 0;
449 }
450 
451 int __pte_alloc_kernel(pmd_t *pmd)
452 {
453 	pte_t *new = pte_alloc_one_kernel(&init_mm);
454 	if (!new)
455 		return -ENOMEM;
456 
457 	smp_wmb(); /* See comment in __pte_alloc */
458 
459 	spin_lock(&init_mm.page_table_lock);
460 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
461 		pmd_populate_kernel(&init_mm, pmd, new);
462 		new = NULL;
463 	}
464 	spin_unlock(&init_mm.page_table_lock);
465 	if (new)
466 		pte_free_kernel(&init_mm, new);
467 	return 0;
468 }
469 
470 static inline void init_rss_vec(int *rss)
471 {
472 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473 }
474 
475 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
476 {
477 	int i;
478 
479 	if (current->mm == mm)
480 		sync_mm_rss(mm);
481 	for (i = 0; i < NR_MM_COUNTERS; i++)
482 		if (rss[i])
483 			add_mm_counter(mm, i, rss[i]);
484 }
485 
486 /*
487  * This function is called to print an error when a bad pte
488  * is found. For example, we might have a PFN-mapped pte in
489  * a region that doesn't allow it.
490  *
491  * The calling function must still handle the error.
492  */
493 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
494 			  pte_t pte, struct page *page)
495 {
496 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
497 	p4d_t *p4d = p4d_offset(pgd, addr);
498 	pud_t *pud = pud_offset(p4d, addr);
499 	pmd_t *pmd = pmd_offset(pud, addr);
500 	struct address_space *mapping;
501 	pgoff_t index;
502 	static unsigned long resume;
503 	static unsigned long nr_shown;
504 	static unsigned long nr_unshown;
505 
506 	/*
507 	 * Allow a burst of 60 reports, then keep quiet for that minute;
508 	 * or allow a steady drip of one report per second.
509 	 */
510 	if (nr_shown == 60) {
511 		if (time_before(jiffies, resume)) {
512 			nr_unshown++;
513 			return;
514 		}
515 		if (nr_unshown) {
516 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
517 				 nr_unshown);
518 			nr_unshown = 0;
519 		}
520 		nr_shown = 0;
521 	}
522 	if (nr_shown++ == 0)
523 		resume = jiffies + 60 * HZ;
524 
525 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
526 	index = linear_page_index(vma, addr);
527 
528 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
529 		 current->comm,
530 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
531 	if (page)
532 		dump_page(page, "bad pte");
533 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
534 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
535 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
536 		 vma->vm_file,
537 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
538 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
539 		 mapping ? mapping->a_ops->readpage : NULL);
540 	dump_stack();
541 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
542 }
543 
544 /*
545  * vm_normal_page -- This function gets the "struct page" associated with a pte.
546  *
547  * "Special" mappings do not wish to be associated with a "struct page" (either
548  * it doesn't exist, or it exists but they don't want to touch it). In this
549  * case, NULL is returned here. "Normal" mappings do have a struct page.
550  *
551  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
552  * pte bit, in which case this function is trivial. Secondly, an architecture
553  * may not have a spare pte bit, which requires a more complicated scheme,
554  * described below.
555  *
556  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
557  * special mapping (even if there are underlying and valid "struct pages").
558  * COWed pages of a VM_PFNMAP are always normal.
559  *
560  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
561  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
562  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
563  * mapping will always honor the rule
564  *
565  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
566  *
567  * And for normal mappings this is false.
568  *
569  * This restricts such mappings to be a linear translation from virtual address
570  * to pfn. To get around this restriction, we allow arbitrary mappings so long
571  * as the vma is not a COW mapping; in that case, we know that all ptes are
572  * special (because none can have been COWed).
573  *
574  *
575  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
576  *
577  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
578  * page" backing, however the difference is that _all_ pages with a struct
579  * page (that is, those where pfn_valid is true) are refcounted and considered
580  * normal pages by the VM. The disadvantage is that pages are refcounted
581  * (which can be slower and simply not an option for some PFNMAP users). The
582  * advantage is that we don't have to follow the strict linearity rule of
583  * PFNMAP mappings in order to support COWable mappings.
584  *
585  */
586 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
587 			    pte_t pte)
588 {
589 	unsigned long pfn = pte_pfn(pte);
590 
591 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
592 		if (likely(!pte_special(pte)))
593 			goto check_pfn;
594 		if (vma->vm_ops && vma->vm_ops->find_special_page)
595 			return vma->vm_ops->find_special_page(vma, addr);
596 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
597 			return NULL;
598 		if (is_zero_pfn(pfn))
599 			return NULL;
600 		if (pte_devmap(pte))
601 			return NULL;
602 
603 		print_bad_pte(vma, addr, pte, NULL);
604 		return NULL;
605 	}
606 
607 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
608 
609 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
610 		if (vma->vm_flags & VM_MIXEDMAP) {
611 			if (!pfn_valid(pfn))
612 				return NULL;
613 			goto out;
614 		} else {
615 			unsigned long off;
616 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
617 			if (pfn == vma->vm_pgoff + off)
618 				return NULL;
619 			if (!is_cow_mapping(vma->vm_flags))
620 				return NULL;
621 		}
622 	}
623 
624 	if (is_zero_pfn(pfn))
625 		return NULL;
626 
627 check_pfn:
628 	if (unlikely(pfn > highest_memmap_pfn)) {
629 		print_bad_pte(vma, addr, pte, NULL);
630 		return NULL;
631 	}
632 
633 	/*
634 	 * NOTE! We still have PageReserved() pages in the page tables.
635 	 * eg. VDSO mappings can cause them to exist.
636 	 */
637 out:
638 	return pfn_to_page(pfn);
639 }
640 
641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
642 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
643 				pmd_t pmd)
644 {
645 	unsigned long pfn = pmd_pfn(pmd);
646 
647 	/*
648 	 * There is no pmd_special() but there may be special pmds, e.g.
649 	 * in a direct-access (dax) mapping, so let's just replicate the
650 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
651 	 */
652 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
653 		if (vma->vm_flags & VM_MIXEDMAP) {
654 			if (!pfn_valid(pfn))
655 				return NULL;
656 			goto out;
657 		} else {
658 			unsigned long off;
659 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
660 			if (pfn == vma->vm_pgoff + off)
661 				return NULL;
662 			if (!is_cow_mapping(vma->vm_flags))
663 				return NULL;
664 		}
665 	}
666 
667 	if (pmd_devmap(pmd))
668 		return NULL;
669 	if (is_zero_pfn(pfn))
670 		return NULL;
671 	if (unlikely(pfn > highest_memmap_pfn))
672 		return NULL;
673 
674 	/*
675 	 * NOTE! We still have PageReserved() pages in the page tables.
676 	 * eg. VDSO mappings can cause them to exist.
677 	 */
678 out:
679 	return pfn_to_page(pfn);
680 }
681 #endif
682 
683 /*
684  * copy one vm_area from one task to the other. Assumes the page tables
685  * already present in the new task to be cleared in the whole range
686  * covered by this vma.
687  */
688 
689 static inline unsigned long
690 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
691 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
692 		unsigned long addr, int *rss)
693 {
694 	unsigned long vm_flags = vma->vm_flags;
695 	pte_t pte = *src_pte;
696 	struct page *page;
697 
698 	/* pte contains position in swap or file, so copy. */
699 	if (unlikely(!pte_present(pte))) {
700 		swp_entry_t entry = pte_to_swp_entry(pte);
701 
702 		if (likely(!non_swap_entry(entry))) {
703 			if (swap_duplicate(entry) < 0)
704 				return entry.val;
705 
706 			/* make sure dst_mm is on swapoff's mmlist. */
707 			if (unlikely(list_empty(&dst_mm->mmlist))) {
708 				spin_lock(&mmlist_lock);
709 				if (list_empty(&dst_mm->mmlist))
710 					list_add(&dst_mm->mmlist,
711 							&src_mm->mmlist);
712 				spin_unlock(&mmlist_lock);
713 			}
714 			rss[MM_SWAPENTS]++;
715 		} else if (is_migration_entry(entry)) {
716 			page = migration_entry_to_page(entry);
717 
718 			rss[mm_counter(page)]++;
719 
720 			if (is_write_migration_entry(entry) &&
721 					is_cow_mapping(vm_flags)) {
722 				/*
723 				 * COW mappings require pages in both
724 				 * parent and child to be set to read.
725 				 */
726 				make_migration_entry_read(&entry);
727 				pte = swp_entry_to_pte(entry);
728 				if (pte_swp_soft_dirty(*src_pte))
729 					pte = pte_swp_mksoft_dirty(pte);
730 				set_pte_at(src_mm, addr, src_pte, pte);
731 			}
732 		} else if (is_device_private_entry(entry)) {
733 			page = device_private_entry_to_page(entry);
734 
735 			/*
736 			 * Update rss count even for unaddressable pages, as
737 			 * they should treated just like normal pages in this
738 			 * respect.
739 			 *
740 			 * We will likely want to have some new rss counters
741 			 * for unaddressable pages, at some point. But for now
742 			 * keep things as they are.
743 			 */
744 			get_page(page);
745 			rss[mm_counter(page)]++;
746 			page_dup_rmap(page, false);
747 
748 			/*
749 			 * We do not preserve soft-dirty information, because so
750 			 * far, checkpoint/restore is the only feature that
751 			 * requires that. And checkpoint/restore does not work
752 			 * when a device driver is involved (you cannot easily
753 			 * save and restore device driver state).
754 			 */
755 			if (is_write_device_private_entry(entry) &&
756 			    is_cow_mapping(vm_flags)) {
757 				make_device_private_entry_read(&entry);
758 				pte = swp_entry_to_pte(entry);
759 				set_pte_at(src_mm, addr, src_pte, pte);
760 			}
761 		}
762 		goto out_set_pte;
763 	}
764 
765 	/*
766 	 * If it's a COW mapping, write protect it both
767 	 * in the parent and the child
768 	 */
769 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
770 		ptep_set_wrprotect(src_mm, addr, src_pte);
771 		pte = pte_wrprotect(pte);
772 	}
773 
774 	/*
775 	 * If it's a shared mapping, mark it clean in
776 	 * the child
777 	 */
778 	if (vm_flags & VM_SHARED)
779 		pte = pte_mkclean(pte);
780 	pte = pte_mkold(pte);
781 
782 	page = vm_normal_page(vma, addr, pte);
783 	if (page) {
784 		get_page(page);
785 		page_dup_rmap(page, false);
786 		rss[mm_counter(page)]++;
787 	} else if (pte_devmap(pte)) {
788 		page = pte_page(pte);
789 	}
790 
791 out_set_pte:
792 	set_pte_at(dst_mm, addr, dst_pte, pte);
793 	return 0;
794 }
795 
796 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
797 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
798 		   unsigned long addr, unsigned long end)
799 {
800 	pte_t *orig_src_pte, *orig_dst_pte;
801 	pte_t *src_pte, *dst_pte;
802 	spinlock_t *src_ptl, *dst_ptl;
803 	int progress = 0;
804 	int rss[NR_MM_COUNTERS];
805 	swp_entry_t entry = (swp_entry_t){0};
806 
807 again:
808 	init_rss_vec(rss);
809 
810 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
811 	if (!dst_pte)
812 		return -ENOMEM;
813 	src_pte = pte_offset_map(src_pmd, addr);
814 	src_ptl = pte_lockptr(src_mm, src_pmd);
815 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
816 	orig_src_pte = src_pte;
817 	orig_dst_pte = dst_pte;
818 	arch_enter_lazy_mmu_mode();
819 
820 	do {
821 		/*
822 		 * We are holding two locks at this point - either of them
823 		 * could generate latencies in another task on another CPU.
824 		 */
825 		if (progress >= 32) {
826 			progress = 0;
827 			if (need_resched() ||
828 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
829 				break;
830 		}
831 		if (pte_none(*src_pte)) {
832 			progress++;
833 			continue;
834 		}
835 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
836 							vma, addr, rss);
837 		if (entry.val)
838 			break;
839 		progress += 8;
840 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
841 
842 	arch_leave_lazy_mmu_mode();
843 	spin_unlock(src_ptl);
844 	pte_unmap(orig_src_pte);
845 	add_mm_rss_vec(dst_mm, rss);
846 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
847 	cond_resched();
848 
849 	if (entry.val) {
850 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
851 			return -ENOMEM;
852 		progress = 0;
853 	}
854 	if (addr != end)
855 		goto again;
856 	return 0;
857 }
858 
859 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
860 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
861 		unsigned long addr, unsigned long end)
862 {
863 	pmd_t *src_pmd, *dst_pmd;
864 	unsigned long next;
865 
866 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
867 	if (!dst_pmd)
868 		return -ENOMEM;
869 	src_pmd = pmd_offset(src_pud, addr);
870 	do {
871 		next = pmd_addr_end(addr, end);
872 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
873 			|| pmd_devmap(*src_pmd)) {
874 			int err;
875 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
876 			err = copy_huge_pmd(dst_mm, src_mm,
877 					    dst_pmd, src_pmd, addr, vma);
878 			if (err == -ENOMEM)
879 				return -ENOMEM;
880 			if (!err)
881 				continue;
882 			/* fall through */
883 		}
884 		if (pmd_none_or_clear_bad(src_pmd))
885 			continue;
886 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
887 						vma, addr, next))
888 			return -ENOMEM;
889 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
890 	return 0;
891 }
892 
893 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
894 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
895 		unsigned long addr, unsigned long end)
896 {
897 	pud_t *src_pud, *dst_pud;
898 	unsigned long next;
899 
900 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
901 	if (!dst_pud)
902 		return -ENOMEM;
903 	src_pud = pud_offset(src_p4d, addr);
904 	do {
905 		next = pud_addr_end(addr, end);
906 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
907 			int err;
908 
909 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
910 			err = copy_huge_pud(dst_mm, src_mm,
911 					    dst_pud, src_pud, addr, vma);
912 			if (err == -ENOMEM)
913 				return -ENOMEM;
914 			if (!err)
915 				continue;
916 			/* fall through */
917 		}
918 		if (pud_none_or_clear_bad(src_pud))
919 			continue;
920 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
921 						vma, addr, next))
922 			return -ENOMEM;
923 	} while (dst_pud++, src_pud++, addr = next, addr != end);
924 	return 0;
925 }
926 
927 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
929 		unsigned long addr, unsigned long end)
930 {
931 	p4d_t *src_p4d, *dst_p4d;
932 	unsigned long next;
933 
934 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
935 	if (!dst_p4d)
936 		return -ENOMEM;
937 	src_p4d = p4d_offset(src_pgd, addr);
938 	do {
939 		next = p4d_addr_end(addr, end);
940 		if (p4d_none_or_clear_bad(src_p4d))
941 			continue;
942 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
943 						vma, addr, next))
944 			return -ENOMEM;
945 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
946 	return 0;
947 }
948 
949 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 		struct vm_area_struct *vma)
951 {
952 	pgd_t *src_pgd, *dst_pgd;
953 	unsigned long next;
954 	unsigned long addr = vma->vm_start;
955 	unsigned long end = vma->vm_end;
956 	struct mmu_notifier_range range;
957 	bool is_cow;
958 	int ret;
959 
960 	/*
961 	 * Don't copy ptes where a page fault will fill them correctly.
962 	 * Fork becomes much lighter when there are big shared or private
963 	 * readonly mappings. The tradeoff is that copy_page_range is more
964 	 * efficient than faulting.
965 	 */
966 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
967 			!vma->anon_vma)
968 		return 0;
969 
970 	if (is_vm_hugetlb_page(vma))
971 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
972 
973 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
974 		/*
975 		 * We do not free on error cases below as remove_vma
976 		 * gets called on error from higher level routine
977 		 */
978 		ret = track_pfn_copy(vma);
979 		if (ret)
980 			return ret;
981 	}
982 
983 	/*
984 	 * We need to invalidate the secondary MMU mappings only when
985 	 * there could be a permission downgrade on the ptes of the
986 	 * parent mm. And a permission downgrade will only happen if
987 	 * is_cow_mapping() returns true.
988 	 */
989 	is_cow = is_cow_mapping(vma->vm_flags);
990 
991 	if (is_cow) {
992 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
993 					0, vma, src_mm, addr, end);
994 		mmu_notifier_invalidate_range_start(&range);
995 	}
996 
997 	ret = 0;
998 	dst_pgd = pgd_offset(dst_mm, addr);
999 	src_pgd = pgd_offset(src_mm, addr);
1000 	do {
1001 		next = pgd_addr_end(addr, end);
1002 		if (pgd_none_or_clear_bad(src_pgd))
1003 			continue;
1004 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1005 					    vma, addr, next))) {
1006 			ret = -ENOMEM;
1007 			break;
1008 		}
1009 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1010 
1011 	if (is_cow)
1012 		mmu_notifier_invalidate_range_end(&range);
1013 	return ret;
1014 }
1015 
1016 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1017 				struct vm_area_struct *vma, pmd_t *pmd,
1018 				unsigned long addr, unsigned long end,
1019 				struct zap_details *details)
1020 {
1021 	struct mm_struct *mm = tlb->mm;
1022 	int force_flush = 0;
1023 	int rss[NR_MM_COUNTERS];
1024 	spinlock_t *ptl;
1025 	pte_t *start_pte;
1026 	pte_t *pte;
1027 	swp_entry_t entry;
1028 
1029 	tlb_change_page_size(tlb, PAGE_SIZE);
1030 again:
1031 	init_rss_vec(rss);
1032 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1033 	pte = start_pte;
1034 	flush_tlb_batched_pending(mm);
1035 	arch_enter_lazy_mmu_mode();
1036 	do {
1037 		pte_t ptent = *pte;
1038 		if (pte_none(ptent))
1039 			continue;
1040 
1041 		if (need_resched())
1042 			break;
1043 
1044 		if (pte_present(ptent)) {
1045 			struct page *page;
1046 
1047 			page = vm_normal_page(vma, addr, ptent);
1048 			if (unlikely(details) && page) {
1049 				/*
1050 				 * unmap_shared_mapping_pages() wants to
1051 				 * invalidate cache without truncating:
1052 				 * unmap shared but keep private pages.
1053 				 */
1054 				if (details->check_mapping &&
1055 				    details->check_mapping != page_rmapping(page))
1056 					continue;
1057 			}
1058 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1059 							tlb->fullmm);
1060 			tlb_remove_tlb_entry(tlb, pte, addr);
1061 			if (unlikely(!page))
1062 				continue;
1063 
1064 			if (!PageAnon(page)) {
1065 				if (pte_dirty(ptent)) {
1066 					force_flush = 1;
1067 					set_page_dirty(page);
1068 				}
1069 				if (pte_young(ptent) &&
1070 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1071 					mark_page_accessed(page);
1072 			}
1073 			rss[mm_counter(page)]--;
1074 			page_remove_rmap(page, false);
1075 			if (unlikely(page_mapcount(page) < 0))
1076 				print_bad_pte(vma, addr, ptent, page);
1077 			if (unlikely(__tlb_remove_page(tlb, page))) {
1078 				force_flush = 1;
1079 				addr += PAGE_SIZE;
1080 				break;
1081 			}
1082 			continue;
1083 		}
1084 
1085 		entry = pte_to_swp_entry(ptent);
1086 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1087 			struct page *page = device_private_entry_to_page(entry);
1088 
1089 			if (unlikely(details && details->check_mapping)) {
1090 				/*
1091 				 * unmap_shared_mapping_pages() wants to
1092 				 * invalidate cache without truncating:
1093 				 * unmap shared but keep private pages.
1094 				 */
1095 				if (details->check_mapping !=
1096 				    page_rmapping(page))
1097 					continue;
1098 			}
1099 
1100 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1101 			rss[mm_counter(page)]--;
1102 			page_remove_rmap(page, false);
1103 			put_page(page);
1104 			continue;
1105 		}
1106 
1107 		/* If details->check_mapping, we leave swap entries. */
1108 		if (unlikely(details))
1109 			continue;
1110 
1111 		if (!non_swap_entry(entry))
1112 			rss[MM_SWAPENTS]--;
1113 		else if (is_migration_entry(entry)) {
1114 			struct page *page;
1115 
1116 			page = migration_entry_to_page(entry);
1117 			rss[mm_counter(page)]--;
1118 		}
1119 		if (unlikely(!free_swap_and_cache(entry)))
1120 			print_bad_pte(vma, addr, ptent, NULL);
1121 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1122 	} while (pte++, addr += PAGE_SIZE, addr != end);
1123 
1124 	add_mm_rss_vec(mm, rss);
1125 	arch_leave_lazy_mmu_mode();
1126 
1127 	/* Do the actual TLB flush before dropping ptl */
1128 	if (force_flush)
1129 		tlb_flush_mmu_tlbonly(tlb);
1130 	pte_unmap_unlock(start_pte, ptl);
1131 
1132 	/*
1133 	 * If we forced a TLB flush (either due to running out of
1134 	 * batch buffers or because we needed to flush dirty TLB
1135 	 * entries before releasing the ptl), free the batched
1136 	 * memory too. Restart if we didn't do everything.
1137 	 */
1138 	if (force_flush) {
1139 		force_flush = 0;
1140 		tlb_flush_mmu(tlb);
1141 	}
1142 
1143 	if (addr != end) {
1144 		cond_resched();
1145 		goto again;
1146 	}
1147 
1148 	return addr;
1149 }
1150 
1151 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1152 				struct vm_area_struct *vma, pud_t *pud,
1153 				unsigned long addr, unsigned long end,
1154 				struct zap_details *details)
1155 {
1156 	pmd_t *pmd;
1157 	unsigned long next;
1158 
1159 	pmd = pmd_offset(pud, addr);
1160 	do {
1161 		next = pmd_addr_end(addr, end);
1162 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1163 			if (next - addr != HPAGE_PMD_SIZE)
1164 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1165 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1166 				goto next;
1167 			/* fall through */
1168 		}
1169 		/*
1170 		 * Here there can be other concurrent MADV_DONTNEED or
1171 		 * trans huge page faults running, and if the pmd is
1172 		 * none or trans huge it can change under us. This is
1173 		 * because MADV_DONTNEED holds the mmap_sem in read
1174 		 * mode.
1175 		 */
1176 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1177 			goto next;
1178 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1179 next:
1180 		cond_resched();
1181 	} while (pmd++, addr = next, addr != end);
1182 
1183 	return addr;
1184 }
1185 
1186 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1187 				struct vm_area_struct *vma, p4d_t *p4d,
1188 				unsigned long addr, unsigned long end,
1189 				struct zap_details *details)
1190 {
1191 	pud_t *pud;
1192 	unsigned long next;
1193 
1194 	pud = pud_offset(p4d, addr);
1195 	do {
1196 		next = pud_addr_end(addr, end);
1197 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1198 			if (next - addr != HPAGE_PUD_SIZE) {
1199 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1200 				split_huge_pud(vma, pud, addr);
1201 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1202 				goto next;
1203 			/* fall through */
1204 		}
1205 		if (pud_none_or_clear_bad(pud))
1206 			continue;
1207 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1208 next:
1209 		cond_resched();
1210 	} while (pud++, addr = next, addr != end);
1211 
1212 	return addr;
1213 }
1214 
1215 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1216 				struct vm_area_struct *vma, pgd_t *pgd,
1217 				unsigned long addr, unsigned long end,
1218 				struct zap_details *details)
1219 {
1220 	p4d_t *p4d;
1221 	unsigned long next;
1222 
1223 	p4d = p4d_offset(pgd, addr);
1224 	do {
1225 		next = p4d_addr_end(addr, end);
1226 		if (p4d_none_or_clear_bad(p4d))
1227 			continue;
1228 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1229 	} while (p4d++, addr = next, addr != end);
1230 
1231 	return addr;
1232 }
1233 
1234 void unmap_page_range(struct mmu_gather *tlb,
1235 			     struct vm_area_struct *vma,
1236 			     unsigned long addr, unsigned long end,
1237 			     struct zap_details *details)
1238 {
1239 	pgd_t *pgd;
1240 	unsigned long next;
1241 
1242 	BUG_ON(addr >= end);
1243 	tlb_start_vma(tlb, vma);
1244 	pgd = pgd_offset(vma->vm_mm, addr);
1245 	do {
1246 		next = pgd_addr_end(addr, end);
1247 		if (pgd_none_or_clear_bad(pgd))
1248 			continue;
1249 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1250 	} while (pgd++, addr = next, addr != end);
1251 	tlb_end_vma(tlb, vma);
1252 }
1253 
1254 
1255 static void unmap_single_vma(struct mmu_gather *tlb,
1256 		struct vm_area_struct *vma, unsigned long start_addr,
1257 		unsigned long end_addr,
1258 		struct zap_details *details)
1259 {
1260 	unsigned long start = max(vma->vm_start, start_addr);
1261 	unsigned long end;
1262 
1263 	if (start >= vma->vm_end)
1264 		return;
1265 	end = min(vma->vm_end, end_addr);
1266 	if (end <= vma->vm_start)
1267 		return;
1268 
1269 	if (vma->vm_file)
1270 		uprobe_munmap(vma, start, end);
1271 
1272 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1273 		untrack_pfn(vma, 0, 0);
1274 
1275 	if (start != end) {
1276 		if (unlikely(is_vm_hugetlb_page(vma))) {
1277 			/*
1278 			 * It is undesirable to test vma->vm_file as it
1279 			 * should be non-null for valid hugetlb area.
1280 			 * However, vm_file will be NULL in the error
1281 			 * cleanup path of mmap_region. When
1282 			 * hugetlbfs ->mmap method fails,
1283 			 * mmap_region() nullifies vma->vm_file
1284 			 * before calling this function to clean up.
1285 			 * Since no pte has actually been setup, it is
1286 			 * safe to do nothing in this case.
1287 			 */
1288 			if (vma->vm_file) {
1289 				i_mmap_lock_write(vma->vm_file->f_mapping);
1290 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1291 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1292 			}
1293 		} else
1294 			unmap_page_range(tlb, vma, start, end, details);
1295 	}
1296 }
1297 
1298 /**
1299  * unmap_vmas - unmap a range of memory covered by a list of vma's
1300  * @tlb: address of the caller's struct mmu_gather
1301  * @vma: the starting vma
1302  * @start_addr: virtual address at which to start unmapping
1303  * @end_addr: virtual address at which to end unmapping
1304  *
1305  * Unmap all pages in the vma list.
1306  *
1307  * Only addresses between `start' and `end' will be unmapped.
1308  *
1309  * The VMA list must be sorted in ascending virtual address order.
1310  *
1311  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1312  * range after unmap_vmas() returns.  So the only responsibility here is to
1313  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1314  * drops the lock and schedules.
1315  */
1316 void unmap_vmas(struct mmu_gather *tlb,
1317 		struct vm_area_struct *vma, unsigned long start_addr,
1318 		unsigned long end_addr)
1319 {
1320 	struct mmu_notifier_range range;
1321 
1322 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1323 				start_addr, end_addr);
1324 	mmu_notifier_invalidate_range_start(&range);
1325 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1326 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1327 	mmu_notifier_invalidate_range_end(&range);
1328 }
1329 
1330 /**
1331  * zap_page_range - remove user pages in a given range
1332  * @vma: vm_area_struct holding the applicable pages
1333  * @start: starting address of pages to zap
1334  * @size: number of bytes to zap
1335  *
1336  * Caller must protect the VMA list
1337  */
1338 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1339 		unsigned long size)
1340 {
1341 	struct mmu_notifier_range range;
1342 	struct mmu_gather tlb;
1343 
1344 	lru_add_drain();
1345 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1346 				start, start + size);
1347 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1348 	update_hiwater_rss(vma->vm_mm);
1349 	mmu_notifier_invalidate_range_start(&range);
1350 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1351 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1352 	mmu_notifier_invalidate_range_end(&range);
1353 	tlb_finish_mmu(&tlb, start, range.end);
1354 }
1355 
1356 /**
1357  * zap_page_range_single - remove user pages in a given range
1358  * @vma: vm_area_struct holding the applicable pages
1359  * @address: starting address of pages to zap
1360  * @size: number of bytes to zap
1361  * @details: details of shared cache invalidation
1362  *
1363  * The range must fit into one VMA.
1364  */
1365 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1366 		unsigned long size, struct zap_details *details)
1367 {
1368 	struct mmu_notifier_range range;
1369 	struct mmu_gather tlb;
1370 
1371 	lru_add_drain();
1372 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1373 				address, address + size);
1374 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1375 	update_hiwater_rss(vma->vm_mm);
1376 	mmu_notifier_invalidate_range_start(&range);
1377 	unmap_single_vma(&tlb, vma, address, range.end, details);
1378 	mmu_notifier_invalidate_range_end(&range);
1379 	tlb_finish_mmu(&tlb, address, range.end);
1380 }
1381 
1382 /**
1383  * zap_vma_ptes - remove ptes mapping the vma
1384  * @vma: vm_area_struct holding ptes to be zapped
1385  * @address: starting address of pages to zap
1386  * @size: number of bytes to zap
1387  *
1388  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1389  *
1390  * The entire address range must be fully contained within the vma.
1391  *
1392  */
1393 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1394 		unsigned long size)
1395 {
1396 	if (address < vma->vm_start || address + size > vma->vm_end ||
1397 	    		!(vma->vm_flags & VM_PFNMAP))
1398 		return;
1399 
1400 	zap_page_range_single(vma, address, size, NULL);
1401 }
1402 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1403 
1404 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1405 			spinlock_t **ptl)
1406 {
1407 	pgd_t *pgd;
1408 	p4d_t *p4d;
1409 	pud_t *pud;
1410 	pmd_t *pmd;
1411 
1412 	pgd = pgd_offset(mm, addr);
1413 	p4d = p4d_alloc(mm, pgd, addr);
1414 	if (!p4d)
1415 		return NULL;
1416 	pud = pud_alloc(mm, p4d, addr);
1417 	if (!pud)
1418 		return NULL;
1419 	pmd = pmd_alloc(mm, pud, addr);
1420 	if (!pmd)
1421 		return NULL;
1422 
1423 	VM_BUG_ON(pmd_trans_huge(*pmd));
1424 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1425 }
1426 
1427 /*
1428  * This is the old fallback for page remapping.
1429  *
1430  * For historical reasons, it only allows reserved pages. Only
1431  * old drivers should use this, and they needed to mark their
1432  * pages reserved for the old functions anyway.
1433  */
1434 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1435 			struct page *page, pgprot_t prot)
1436 {
1437 	struct mm_struct *mm = vma->vm_mm;
1438 	int retval;
1439 	pte_t *pte;
1440 	spinlock_t *ptl;
1441 
1442 	retval = -EINVAL;
1443 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1444 		goto out;
1445 	retval = -ENOMEM;
1446 	flush_dcache_page(page);
1447 	pte = get_locked_pte(mm, addr, &ptl);
1448 	if (!pte)
1449 		goto out;
1450 	retval = -EBUSY;
1451 	if (!pte_none(*pte))
1452 		goto out_unlock;
1453 
1454 	/* Ok, finally just insert the thing.. */
1455 	get_page(page);
1456 	inc_mm_counter_fast(mm, mm_counter_file(page));
1457 	page_add_file_rmap(page, false);
1458 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1459 
1460 	retval = 0;
1461 out_unlock:
1462 	pte_unmap_unlock(pte, ptl);
1463 out:
1464 	return retval;
1465 }
1466 
1467 /**
1468  * vm_insert_page - insert single page into user vma
1469  * @vma: user vma to map to
1470  * @addr: target user address of this page
1471  * @page: source kernel page
1472  *
1473  * This allows drivers to insert individual pages they've allocated
1474  * into a user vma.
1475  *
1476  * The page has to be a nice clean _individual_ kernel allocation.
1477  * If you allocate a compound page, you need to have marked it as
1478  * such (__GFP_COMP), or manually just split the page up yourself
1479  * (see split_page()).
1480  *
1481  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1482  * took an arbitrary page protection parameter. This doesn't allow
1483  * that. Your vma protection will have to be set up correctly, which
1484  * means that if you want a shared writable mapping, you'd better
1485  * ask for a shared writable mapping!
1486  *
1487  * The page does not need to be reserved.
1488  *
1489  * Usually this function is called from f_op->mmap() handler
1490  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1491  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1492  * function from other places, for example from page-fault handler.
1493  *
1494  * Return: %0 on success, negative error code otherwise.
1495  */
1496 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1497 			struct page *page)
1498 {
1499 	if (addr < vma->vm_start || addr >= vma->vm_end)
1500 		return -EFAULT;
1501 	if (!page_count(page))
1502 		return -EINVAL;
1503 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1504 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1505 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1506 		vma->vm_flags |= VM_MIXEDMAP;
1507 	}
1508 	return insert_page(vma, addr, page, vma->vm_page_prot);
1509 }
1510 EXPORT_SYMBOL(vm_insert_page);
1511 
1512 /*
1513  * __vm_map_pages - maps range of kernel pages into user vma
1514  * @vma: user vma to map to
1515  * @pages: pointer to array of source kernel pages
1516  * @num: number of pages in page array
1517  * @offset: user's requested vm_pgoff
1518  *
1519  * This allows drivers to map range of kernel pages into a user vma.
1520  *
1521  * Return: 0 on success and error code otherwise.
1522  */
1523 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1524 				unsigned long num, unsigned long offset)
1525 {
1526 	unsigned long count = vma_pages(vma);
1527 	unsigned long uaddr = vma->vm_start;
1528 	int ret, i;
1529 
1530 	/* Fail if the user requested offset is beyond the end of the object */
1531 	if (offset >= num)
1532 		return -ENXIO;
1533 
1534 	/* Fail if the user requested size exceeds available object size */
1535 	if (count > num - offset)
1536 		return -ENXIO;
1537 
1538 	for (i = 0; i < count; i++) {
1539 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1540 		if (ret < 0)
1541 			return ret;
1542 		uaddr += PAGE_SIZE;
1543 	}
1544 
1545 	return 0;
1546 }
1547 
1548 /**
1549  * vm_map_pages - maps range of kernel pages starts with non zero offset
1550  * @vma: user vma to map to
1551  * @pages: pointer to array of source kernel pages
1552  * @num: number of pages in page array
1553  *
1554  * Maps an object consisting of @num pages, catering for the user's
1555  * requested vm_pgoff
1556  *
1557  * If we fail to insert any page into the vma, the function will return
1558  * immediately leaving any previously inserted pages present.  Callers
1559  * from the mmap handler may immediately return the error as their caller
1560  * will destroy the vma, removing any successfully inserted pages. Other
1561  * callers should make their own arrangements for calling unmap_region().
1562  *
1563  * Context: Process context. Called by mmap handlers.
1564  * Return: 0 on success and error code otherwise.
1565  */
1566 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1567 				unsigned long num)
1568 {
1569 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1570 }
1571 EXPORT_SYMBOL(vm_map_pages);
1572 
1573 /**
1574  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1575  * @vma: user vma to map to
1576  * @pages: pointer to array of source kernel pages
1577  * @num: number of pages in page array
1578  *
1579  * Similar to vm_map_pages(), except that it explicitly sets the offset
1580  * to 0. This function is intended for the drivers that did not consider
1581  * vm_pgoff.
1582  *
1583  * Context: Process context. Called by mmap handlers.
1584  * Return: 0 on success and error code otherwise.
1585  */
1586 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1587 				unsigned long num)
1588 {
1589 	return __vm_map_pages(vma, pages, num, 0);
1590 }
1591 EXPORT_SYMBOL(vm_map_pages_zero);
1592 
1593 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1594 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1595 {
1596 	struct mm_struct *mm = vma->vm_mm;
1597 	pte_t *pte, entry;
1598 	spinlock_t *ptl;
1599 
1600 	pte = get_locked_pte(mm, addr, &ptl);
1601 	if (!pte)
1602 		return VM_FAULT_OOM;
1603 	if (!pte_none(*pte)) {
1604 		if (mkwrite) {
1605 			/*
1606 			 * For read faults on private mappings the PFN passed
1607 			 * in may not match the PFN we have mapped if the
1608 			 * mapped PFN is a writeable COW page.  In the mkwrite
1609 			 * case we are creating a writable PTE for a shared
1610 			 * mapping and we expect the PFNs to match. If they
1611 			 * don't match, we are likely racing with block
1612 			 * allocation and mapping invalidation so just skip the
1613 			 * update.
1614 			 */
1615 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1616 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1617 				goto out_unlock;
1618 			}
1619 			entry = pte_mkyoung(*pte);
1620 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1621 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1622 				update_mmu_cache(vma, addr, pte);
1623 		}
1624 		goto out_unlock;
1625 	}
1626 
1627 	/* Ok, finally just insert the thing.. */
1628 	if (pfn_t_devmap(pfn))
1629 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1630 	else
1631 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1632 
1633 	if (mkwrite) {
1634 		entry = pte_mkyoung(entry);
1635 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1636 	}
1637 
1638 	set_pte_at(mm, addr, pte, entry);
1639 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1640 
1641 out_unlock:
1642 	pte_unmap_unlock(pte, ptl);
1643 	return VM_FAULT_NOPAGE;
1644 }
1645 
1646 /**
1647  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1648  * @vma: user vma to map to
1649  * @addr: target user address of this page
1650  * @pfn: source kernel pfn
1651  * @pgprot: pgprot flags for the inserted page
1652  *
1653  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1654  * to override pgprot on a per-page basis.
1655  *
1656  * This only makes sense for IO mappings, and it makes no sense for
1657  * COW mappings.  In general, using multiple vmas is preferable;
1658  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1659  * impractical.
1660  *
1661  * Context: Process context.  May allocate using %GFP_KERNEL.
1662  * Return: vm_fault_t value.
1663  */
1664 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1665 			unsigned long pfn, pgprot_t pgprot)
1666 {
1667 	/*
1668 	 * Technically, architectures with pte_special can avoid all these
1669 	 * restrictions (same for remap_pfn_range).  However we would like
1670 	 * consistency in testing and feature parity among all, so we should
1671 	 * try to keep these invariants in place for everybody.
1672 	 */
1673 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1674 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1675 						(VM_PFNMAP|VM_MIXEDMAP));
1676 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1677 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1678 
1679 	if (addr < vma->vm_start || addr >= vma->vm_end)
1680 		return VM_FAULT_SIGBUS;
1681 
1682 	if (!pfn_modify_allowed(pfn, pgprot))
1683 		return VM_FAULT_SIGBUS;
1684 
1685 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1686 
1687 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1688 			false);
1689 }
1690 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1691 
1692 /**
1693  * vmf_insert_pfn - insert single pfn into user vma
1694  * @vma: user vma to map to
1695  * @addr: target user address of this page
1696  * @pfn: source kernel pfn
1697  *
1698  * Similar to vm_insert_page, this allows drivers to insert individual pages
1699  * they've allocated into a user vma. Same comments apply.
1700  *
1701  * This function should only be called from a vm_ops->fault handler, and
1702  * in that case the handler should return the result of this function.
1703  *
1704  * vma cannot be a COW mapping.
1705  *
1706  * As this is called only for pages that do not currently exist, we
1707  * do not need to flush old virtual caches or the TLB.
1708  *
1709  * Context: Process context.  May allocate using %GFP_KERNEL.
1710  * Return: vm_fault_t value.
1711  */
1712 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1713 			unsigned long pfn)
1714 {
1715 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1716 }
1717 EXPORT_SYMBOL(vmf_insert_pfn);
1718 
1719 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1720 {
1721 	/* these checks mirror the abort conditions in vm_normal_page */
1722 	if (vma->vm_flags & VM_MIXEDMAP)
1723 		return true;
1724 	if (pfn_t_devmap(pfn))
1725 		return true;
1726 	if (pfn_t_special(pfn))
1727 		return true;
1728 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1729 		return true;
1730 	return false;
1731 }
1732 
1733 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1734 		unsigned long addr, pfn_t pfn, bool mkwrite)
1735 {
1736 	pgprot_t pgprot = vma->vm_page_prot;
1737 	int err;
1738 
1739 	BUG_ON(!vm_mixed_ok(vma, pfn));
1740 
1741 	if (addr < vma->vm_start || addr >= vma->vm_end)
1742 		return VM_FAULT_SIGBUS;
1743 
1744 	track_pfn_insert(vma, &pgprot, pfn);
1745 
1746 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1747 		return VM_FAULT_SIGBUS;
1748 
1749 	/*
1750 	 * If we don't have pte special, then we have to use the pfn_valid()
1751 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1752 	 * refcount the page if pfn_valid is true (hence insert_page rather
1753 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1754 	 * without pte special, it would there be refcounted as a normal page.
1755 	 */
1756 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1757 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1758 		struct page *page;
1759 
1760 		/*
1761 		 * At this point we are committed to insert_page()
1762 		 * regardless of whether the caller specified flags that
1763 		 * result in pfn_t_has_page() == false.
1764 		 */
1765 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1766 		err = insert_page(vma, addr, page, pgprot);
1767 	} else {
1768 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1769 	}
1770 
1771 	if (err == -ENOMEM)
1772 		return VM_FAULT_OOM;
1773 	if (err < 0 && err != -EBUSY)
1774 		return VM_FAULT_SIGBUS;
1775 
1776 	return VM_FAULT_NOPAGE;
1777 }
1778 
1779 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1780 		pfn_t pfn)
1781 {
1782 	return __vm_insert_mixed(vma, addr, pfn, false);
1783 }
1784 EXPORT_SYMBOL(vmf_insert_mixed);
1785 
1786 /*
1787  *  If the insertion of PTE failed because someone else already added a
1788  *  different entry in the mean time, we treat that as success as we assume
1789  *  the same entry was actually inserted.
1790  */
1791 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1792 		unsigned long addr, pfn_t pfn)
1793 {
1794 	return __vm_insert_mixed(vma, addr, pfn, true);
1795 }
1796 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1797 
1798 /*
1799  * maps a range of physical memory into the requested pages. the old
1800  * mappings are removed. any references to nonexistent pages results
1801  * in null mappings (currently treated as "copy-on-access")
1802  */
1803 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1804 			unsigned long addr, unsigned long end,
1805 			unsigned long pfn, pgprot_t prot)
1806 {
1807 	pte_t *pte;
1808 	spinlock_t *ptl;
1809 	int err = 0;
1810 
1811 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1812 	if (!pte)
1813 		return -ENOMEM;
1814 	arch_enter_lazy_mmu_mode();
1815 	do {
1816 		BUG_ON(!pte_none(*pte));
1817 		if (!pfn_modify_allowed(pfn, prot)) {
1818 			err = -EACCES;
1819 			break;
1820 		}
1821 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1822 		pfn++;
1823 	} while (pte++, addr += PAGE_SIZE, addr != end);
1824 	arch_leave_lazy_mmu_mode();
1825 	pte_unmap_unlock(pte - 1, ptl);
1826 	return err;
1827 }
1828 
1829 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1830 			unsigned long addr, unsigned long end,
1831 			unsigned long pfn, pgprot_t prot)
1832 {
1833 	pmd_t *pmd;
1834 	unsigned long next;
1835 	int err;
1836 
1837 	pfn -= addr >> PAGE_SHIFT;
1838 	pmd = pmd_alloc(mm, pud, addr);
1839 	if (!pmd)
1840 		return -ENOMEM;
1841 	VM_BUG_ON(pmd_trans_huge(*pmd));
1842 	do {
1843 		next = pmd_addr_end(addr, end);
1844 		err = remap_pte_range(mm, pmd, addr, next,
1845 				pfn + (addr >> PAGE_SHIFT), prot);
1846 		if (err)
1847 			return err;
1848 	} while (pmd++, addr = next, addr != end);
1849 	return 0;
1850 }
1851 
1852 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1853 			unsigned long addr, unsigned long end,
1854 			unsigned long pfn, pgprot_t prot)
1855 {
1856 	pud_t *pud;
1857 	unsigned long next;
1858 	int err;
1859 
1860 	pfn -= addr >> PAGE_SHIFT;
1861 	pud = pud_alloc(mm, p4d, addr);
1862 	if (!pud)
1863 		return -ENOMEM;
1864 	do {
1865 		next = pud_addr_end(addr, end);
1866 		err = remap_pmd_range(mm, pud, addr, next,
1867 				pfn + (addr >> PAGE_SHIFT), prot);
1868 		if (err)
1869 			return err;
1870 	} while (pud++, addr = next, addr != end);
1871 	return 0;
1872 }
1873 
1874 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1875 			unsigned long addr, unsigned long end,
1876 			unsigned long pfn, pgprot_t prot)
1877 {
1878 	p4d_t *p4d;
1879 	unsigned long next;
1880 	int err;
1881 
1882 	pfn -= addr >> PAGE_SHIFT;
1883 	p4d = p4d_alloc(mm, pgd, addr);
1884 	if (!p4d)
1885 		return -ENOMEM;
1886 	do {
1887 		next = p4d_addr_end(addr, end);
1888 		err = remap_pud_range(mm, p4d, addr, next,
1889 				pfn + (addr >> PAGE_SHIFT), prot);
1890 		if (err)
1891 			return err;
1892 	} while (p4d++, addr = next, addr != end);
1893 	return 0;
1894 }
1895 
1896 /**
1897  * remap_pfn_range - remap kernel memory to userspace
1898  * @vma: user vma to map to
1899  * @addr: target user address to start at
1900  * @pfn: physical address of kernel memory
1901  * @size: size of map area
1902  * @prot: page protection flags for this mapping
1903  *
1904  * Note: this is only safe if the mm semaphore is held when called.
1905  *
1906  * Return: %0 on success, negative error code otherwise.
1907  */
1908 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1909 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1910 {
1911 	pgd_t *pgd;
1912 	unsigned long next;
1913 	unsigned long end = addr + PAGE_ALIGN(size);
1914 	struct mm_struct *mm = vma->vm_mm;
1915 	unsigned long remap_pfn = pfn;
1916 	int err;
1917 
1918 	/*
1919 	 * Physically remapped pages are special. Tell the
1920 	 * rest of the world about it:
1921 	 *   VM_IO tells people not to look at these pages
1922 	 *	(accesses can have side effects).
1923 	 *   VM_PFNMAP tells the core MM that the base pages are just
1924 	 *	raw PFN mappings, and do not have a "struct page" associated
1925 	 *	with them.
1926 	 *   VM_DONTEXPAND
1927 	 *      Disable vma merging and expanding with mremap().
1928 	 *   VM_DONTDUMP
1929 	 *      Omit vma from core dump, even when VM_IO turned off.
1930 	 *
1931 	 * There's a horrible special case to handle copy-on-write
1932 	 * behaviour that some programs depend on. We mark the "original"
1933 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1934 	 * See vm_normal_page() for details.
1935 	 */
1936 	if (is_cow_mapping(vma->vm_flags)) {
1937 		if (addr != vma->vm_start || end != vma->vm_end)
1938 			return -EINVAL;
1939 		vma->vm_pgoff = pfn;
1940 	}
1941 
1942 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1943 	if (err)
1944 		return -EINVAL;
1945 
1946 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1947 
1948 	BUG_ON(addr >= end);
1949 	pfn -= addr >> PAGE_SHIFT;
1950 	pgd = pgd_offset(mm, addr);
1951 	flush_cache_range(vma, addr, end);
1952 	do {
1953 		next = pgd_addr_end(addr, end);
1954 		err = remap_p4d_range(mm, pgd, addr, next,
1955 				pfn + (addr >> PAGE_SHIFT), prot);
1956 		if (err)
1957 			break;
1958 	} while (pgd++, addr = next, addr != end);
1959 
1960 	if (err)
1961 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1962 
1963 	return err;
1964 }
1965 EXPORT_SYMBOL(remap_pfn_range);
1966 
1967 /**
1968  * vm_iomap_memory - remap memory to userspace
1969  * @vma: user vma to map to
1970  * @start: start of area
1971  * @len: size of area
1972  *
1973  * This is a simplified io_remap_pfn_range() for common driver use. The
1974  * driver just needs to give us the physical memory range to be mapped,
1975  * we'll figure out the rest from the vma information.
1976  *
1977  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1978  * whatever write-combining details or similar.
1979  *
1980  * Return: %0 on success, negative error code otherwise.
1981  */
1982 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1983 {
1984 	unsigned long vm_len, pfn, pages;
1985 
1986 	/* Check that the physical memory area passed in looks valid */
1987 	if (start + len < start)
1988 		return -EINVAL;
1989 	/*
1990 	 * You *really* shouldn't map things that aren't page-aligned,
1991 	 * but we've historically allowed it because IO memory might
1992 	 * just have smaller alignment.
1993 	 */
1994 	len += start & ~PAGE_MASK;
1995 	pfn = start >> PAGE_SHIFT;
1996 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1997 	if (pfn + pages < pfn)
1998 		return -EINVAL;
1999 
2000 	/* We start the mapping 'vm_pgoff' pages into the area */
2001 	if (vma->vm_pgoff > pages)
2002 		return -EINVAL;
2003 	pfn += vma->vm_pgoff;
2004 	pages -= vma->vm_pgoff;
2005 
2006 	/* Can we fit all of the mapping? */
2007 	vm_len = vma->vm_end - vma->vm_start;
2008 	if (vm_len >> PAGE_SHIFT > pages)
2009 		return -EINVAL;
2010 
2011 	/* Ok, let it rip */
2012 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2013 }
2014 EXPORT_SYMBOL(vm_iomap_memory);
2015 
2016 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2017 				     unsigned long addr, unsigned long end,
2018 				     pte_fn_t fn, void *data)
2019 {
2020 	pte_t *pte;
2021 	int err;
2022 	spinlock_t *uninitialized_var(ptl);
2023 
2024 	pte = (mm == &init_mm) ?
2025 		pte_alloc_kernel(pmd, addr) :
2026 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2027 	if (!pte)
2028 		return -ENOMEM;
2029 
2030 	BUG_ON(pmd_huge(*pmd));
2031 
2032 	arch_enter_lazy_mmu_mode();
2033 
2034 	do {
2035 		err = fn(pte++, addr, data);
2036 		if (err)
2037 			break;
2038 	} while (addr += PAGE_SIZE, addr != end);
2039 
2040 	arch_leave_lazy_mmu_mode();
2041 
2042 	if (mm != &init_mm)
2043 		pte_unmap_unlock(pte-1, ptl);
2044 	return err;
2045 }
2046 
2047 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2048 				     unsigned long addr, unsigned long end,
2049 				     pte_fn_t fn, void *data)
2050 {
2051 	pmd_t *pmd;
2052 	unsigned long next;
2053 	int err;
2054 
2055 	BUG_ON(pud_huge(*pud));
2056 
2057 	pmd = pmd_alloc(mm, pud, addr);
2058 	if (!pmd)
2059 		return -ENOMEM;
2060 	do {
2061 		next = pmd_addr_end(addr, end);
2062 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2063 		if (err)
2064 			break;
2065 	} while (pmd++, addr = next, addr != end);
2066 	return err;
2067 }
2068 
2069 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2070 				     unsigned long addr, unsigned long end,
2071 				     pte_fn_t fn, void *data)
2072 {
2073 	pud_t *pud;
2074 	unsigned long next;
2075 	int err;
2076 
2077 	pud = pud_alloc(mm, p4d, addr);
2078 	if (!pud)
2079 		return -ENOMEM;
2080 	do {
2081 		next = pud_addr_end(addr, end);
2082 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2083 		if (err)
2084 			break;
2085 	} while (pud++, addr = next, addr != end);
2086 	return err;
2087 }
2088 
2089 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2090 				     unsigned long addr, unsigned long end,
2091 				     pte_fn_t fn, void *data)
2092 {
2093 	p4d_t *p4d;
2094 	unsigned long next;
2095 	int err;
2096 
2097 	p4d = p4d_alloc(mm, pgd, addr);
2098 	if (!p4d)
2099 		return -ENOMEM;
2100 	do {
2101 		next = p4d_addr_end(addr, end);
2102 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2103 		if (err)
2104 			break;
2105 	} while (p4d++, addr = next, addr != end);
2106 	return err;
2107 }
2108 
2109 /*
2110  * Scan a region of virtual memory, filling in page tables as necessary
2111  * and calling a provided function on each leaf page table.
2112  */
2113 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2114 			unsigned long size, pte_fn_t fn, void *data)
2115 {
2116 	pgd_t *pgd;
2117 	unsigned long next;
2118 	unsigned long end = addr + size;
2119 	int err;
2120 
2121 	if (WARN_ON(addr >= end))
2122 		return -EINVAL;
2123 
2124 	pgd = pgd_offset(mm, addr);
2125 	do {
2126 		next = pgd_addr_end(addr, end);
2127 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2128 		if (err)
2129 			break;
2130 	} while (pgd++, addr = next, addr != end);
2131 
2132 	return err;
2133 }
2134 EXPORT_SYMBOL_GPL(apply_to_page_range);
2135 
2136 /*
2137  * handle_pte_fault chooses page fault handler according to an entry which was
2138  * read non-atomically.  Before making any commitment, on those architectures
2139  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2140  * parts, do_swap_page must check under lock before unmapping the pte and
2141  * proceeding (but do_wp_page is only called after already making such a check;
2142  * and do_anonymous_page can safely check later on).
2143  */
2144 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2145 				pte_t *page_table, pte_t orig_pte)
2146 {
2147 	int same = 1;
2148 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2149 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2150 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2151 		spin_lock(ptl);
2152 		same = pte_same(*page_table, orig_pte);
2153 		spin_unlock(ptl);
2154 	}
2155 #endif
2156 	pte_unmap(page_table);
2157 	return same;
2158 }
2159 
2160 static inline bool cow_user_page(struct page *dst, struct page *src,
2161 				 struct vm_fault *vmf)
2162 {
2163 	bool ret;
2164 	void *kaddr;
2165 	void __user *uaddr;
2166 	bool force_mkyoung;
2167 	struct vm_area_struct *vma = vmf->vma;
2168 	struct mm_struct *mm = vma->vm_mm;
2169 	unsigned long addr = vmf->address;
2170 
2171 	debug_dma_assert_idle(src);
2172 
2173 	if (likely(src)) {
2174 		copy_user_highpage(dst, src, addr, vma);
2175 		return true;
2176 	}
2177 
2178 	/*
2179 	 * If the source page was a PFN mapping, we don't have
2180 	 * a "struct page" for it. We do a best-effort copy by
2181 	 * just copying from the original user address. If that
2182 	 * fails, we just zero-fill it. Live with it.
2183 	 */
2184 	kaddr = kmap_atomic(dst);
2185 	uaddr = (void __user *)(addr & PAGE_MASK);
2186 
2187 	/*
2188 	 * On architectures with software "accessed" bits, we would
2189 	 * take a double page fault, so mark it accessed here.
2190 	 */
2191 	force_mkyoung = arch_faults_on_old_pte() && !pte_young(vmf->orig_pte);
2192 	if (force_mkyoung) {
2193 		pte_t entry;
2194 
2195 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2196 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2197 			/*
2198 			 * Other thread has already handled the fault
2199 			 * and we don't need to do anything. If it's
2200 			 * not the case, the fault will be triggered
2201 			 * again on the same address.
2202 			 */
2203 			ret = false;
2204 			goto pte_unlock;
2205 		}
2206 
2207 		entry = pte_mkyoung(vmf->orig_pte);
2208 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2209 			update_mmu_cache(vma, addr, vmf->pte);
2210 	}
2211 
2212 	/*
2213 	 * This really shouldn't fail, because the page is there
2214 	 * in the page tables. But it might just be unreadable,
2215 	 * in which case we just give up and fill the result with
2216 	 * zeroes.
2217 	 */
2218 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2219 		/*
2220 		 * Give a warn in case there can be some obscure
2221 		 * use-case
2222 		 */
2223 		WARN_ON_ONCE(1);
2224 		clear_page(kaddr);
2225 	}
2226 
2227 	ret = true;
2228 
2229 pte_unlock:
2230 	if (force_mkyoung)
2231 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2232 	kunmap_atomic(kaddr);
2233 	flush_dcache_page(dst);
2234 
2235 	return ret;
2236 }
2237 
2238 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2239 {
2240 	struct file *vm_file = vma->vm_file;
2241 
2242 	if (vm_file)
2243 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2244 
2245 	/*
2246 	 * Special mappings (e.g. VDSO) do not have any file so fake
2247 	 * a default GFP_KERNEL for them.
2248 	 */
2249 	return GFP_KERNEL;
2250 }
2251 
2252 /*
2253  * Notify the address space that the page is about to become writable so that
2254  * it can prohibit this or wait for the page to get into an appropriate state.
2255  *
2256  * We do this without the lock held, so that it can sleep if it needs to.
2257  */
2258 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2259 {
2260 	vm_fault_t ret;
2261 	struct page *page = vmf->page;
2262 	unsigned int old_flags = vmf->flags;
2263 
2264 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2265 
2266 	if (vmf->vma->vm_file &&
2267 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2268 		return VM_FAULT_SIGBUS;
2269 
2270 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2271 	/* Restore original flags so that caller is not surprised */
2272 	vmf->flags = old_flags;
2273 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2274 		return ret;
2275 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2276 		lock_page(page);
2277 		if (!page->mapping) {
2278 			unlock_page(page);
2279 			return 0; /* retry */
2280 		}
2281 		ret |= VM_FAULT_LOCKED;
2282 	} else
2283 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2284 	return ret;
2285 }
2286 
2287 /*
2288  * Handle dirtying of a page in shared file mapping on a write fault.
2289  *
2290  * The function expects the page to be locked and unlocks it.
2291  */
2292 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2293 				    struct page *page)
2294 {
2295 	struct address_space *mapping;
2296 	bool dirtied;
2297 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2298 
2299 	dirtied = set_page_dirty(page);
2300 	VM_BUG_ON_PAGE(PageAnon(page), page);
2301 	/*
2302 	 * Take a local copy of the address_space - page.mapping may be zeroed
2303 	 * by truncate after unlock_page().   The address_space itself remains
2304 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2305 	 * release semantics to prevent the compiler from undoing this copying.
2306 	 */
2307 	mapping = page_rmapping(page);
2308 	unlock_page(page);
2309 
2310 	if ((dirtied || page_mkwrite) && mapping) {
2311 		/*
2312 		 * Some device drivers do not set page.mapping
2313 		 * but still dirty their pages
2314 		 */
2315 		balance_dirty_pages_ratelimited(mapping);
2316 	}
2317 
2318 	if (!page_mkwrite)
2319 		file_update_time(vma->vm_file);
2320 }
2321 
2322 /*
2323  * Handle write page faults for pages that can be reused in the current vma
2324  *
2325  * This can happen either due to the mapping being with the VM_SHARED flag,
2326  * or due to us being the last reference standing to the page. In either
2327  * case, all we need to do here is to mark the page as writable and update
2328  * any related book-keeping.
2329  */
2330 static inline void wp_page_reuse(struct vm_fault *vmf)
2331 	__releases(vmf->ptl)
2332 {
2333 	struct vm_area_struct *vma = vmf->vma;
2334 	struct page *page = vmf->page;
2335 	pte_t entry;
2336 	/*
2337 	 * Clear the pages cpupid information as the existing
2338 	 * information potentially belongs to a now completely
2339 	 * unrelated process.
2340 	 */
2341 	if (page)
2342 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2343 
2344 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2345 	entry = pte_mkyoung(vmf->orig_pte);
2346 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2347 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2348 		update_mmu_cache(vma, vmf->address, vmf->pte);
2349 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2350 }
2351 
2352 /*
2353  * Handle the case of a page which we actually need to copy to a new page.
2354  *
2355  * Called with mmap_sem locked and the old page referenced, but
2356  * without the ptl held.
2357  *
2358  * High level logic flow:
2359  *
2360  * - Allocate a page, copy the content of the old page to the new one.
2361  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2362  * - Take the PTL. If the pte changed, bail out and release the allocated page
2363  * - If the pte is still the way we remember it, update the page table and all
2364  *   relevant references. This includes dropping the reference the page-table
2365  *   held to the old page, as well as updating the rmap.
2366  * - In any case, unlock the PTL and drop the reference we took to the old page.
2367  */
2368 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2369 {
2370 	struct vm_area_struct *vma = vmf->vma;
2371 	struct mm_struct *mm = vma->vm_mm;
2372 	struct page *old_page = vmf->page;
2373 	struct page *new_page = NULL;
2374 	pte_t entry;
2375 	int page_copied = 0;
2376 	struct mem_cgroup *memcg;
2377 	struct mmu_notifier_range range;
2378 
2379 	if (unlikely(anon_vma_prepare(vma)))
2380 		goto oom;
2381 
2382 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2383 		new_page = alloc_zeroed_user_highpage_movable(vma,
2384 							      vmf->address);
2385 		if (!new_page)
2386 			goto oom;
2387 	} else {
2388 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2389 				vmf->address);
2390 		if (!new_page)
2391 			goto oom;
2392 
2393 		if (!cow_user_page(new_page, old_page, vmf)) {
2394 			/*
2395 			 * COW failed, if the fault was solved by other,
2396 			 * it's fine. If not, userspace would re-fault on
2397 			 * the same address and we will handle the fault
2398 			 * from the second attempt.
2399 			 */
2400 			put_page(new_page);
2401 			if (old_page)
2402 				put_page(old_page);
2403 			return 0;
2404 		}
2405 	}
2406 
2407 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2408 		goto oom_free_new;
2409 
2410 	__SetPageUptodate(new_page);
2411 
2412 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2413 				vmf->address & PAGE_MASK,
2414 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2415 	mmu_notifier_invalidate_range_start(&range);
2416 
2417 	/*
2418 	 * Re-check the pte - we dropped the lock
2419 	 */
2420 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2421 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2422 		if (old_page) {
2423 			if (!PageAnon(old_page)) {
2424 				dec_mm_counter_fast(mm,
2425 						mm_counter_file(old_page));
2426 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2427 			}
2428 		} else {
2429 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2430 		}
2431 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2432 		entry = mk_pte(new_page, vma->vm_page_prot);
2433 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2434 		/*
2435 		 * Clear the pte entry and flush it first, before updating the
2436 		 * pte with the new entry. This will avoid a race condition
2437 		 * seen in the presence of one thread doing SMC and another
2438 		 * thread doing COW.
2439 		 */
2440 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2441 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2442 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2443 		lru_cache_add_active_or_unevictable(new_page, vma);
2444 		/*
2445 		 * We call the notify macro here because, when using secondary
2446 		 * mmu page tables (such as kvm shadow page tables), we want the
2447 		 * new page to be mapped directly into the secondary page table.
2448 		 */
2449 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2450 		update_mmu_cache(vma, vmf->address, vmf->pte);
2451 		if (old_page) {
2452 			/*
2453 			 * Only after switching the pte to the new page may
2454 			 * we remove the mapcount here. Otherwise another
2455 			 * process may come and find the rmap count decremented
2456 			 * before the pte is switched to the new page, and
2457 			 * "reuse" the old page writing into it while our pte
2458 			 * here still points into it and can be read by other
2459 			 * threads.
2460 			 *
2461 			 * The critical issue is to order this
2462 			 * page_remove_rmap with the ptp_clear_flush above.
2463 			 * Those stores are ordered by (if nothing else,)
2464 			 * the barrier present in the atomic_add_negative
2465 			 * in page_remove_rmap.
2466 			 *
2467 			 * Then the TLB flush in ptep_clear_flush ensures that
2468 			 * no process can access the old page before the
2469 			 * decremented mapcount is visible. And the old page
2470 			 * cannot be reused until after the decremented
2471 			 * mapcount is visible. So transitively, TLBs to
2472 			 * old page will be flushed before it can be reused.
2473 			 */
2474 			page_remove_rmap(old_page, false);
2475 		}
2476 
2477 		/* Free the old page.. */
2478 		new_page = old_page;
2479 		page_copied = 1;
2480 	} else {
2481 		mem_cgroup_cancel_charge(new_page, memcg, false);
2482 	}
2483 
2484 	if (new_page)
2485 		put_page(new_page);
2486 
2487 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2488 	/*
2489 	 * No need to double call mmu_notifier->invalidate_range() callback as
2490 	 * the above ptep_clear_flush_notify() did already call it.
2491 	 */
2492 	mmu_notifier_invalidate_range_only_end(&range);
2493 	if (old_page) {
2494 		/*
2495 		 * Don't let another task, with possibly unlocked vma,
2496 		 * keep the mlocked page.
2497 		 */
2498 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2499 			lock_page(old_page);	/* LRU manipulation */
2500 			if (PageMlocked(old_page))
2501 				munlock_vma_page(old_page);
2502 			unlock_page(old_page);
2503 		}
2504 		put_page(old_page);
2505 	}
2506 	return page_copied ? VM_FAULT_WRITE : 0;
2507 oom_free_new:
2508 	put_page(new_page);
2509 oom:
2510 	if (old_page)
2511 		put_page(old_page);
2512 	return VM_FAULT_OOM;
2513 }
2514 
2515 /**
2516  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2517  *			  writeable once the page is prepared
2518  *
2519  * @vmf: structure describing the fault
2520  *
2521  * This function handles all that is needed to finish a write page fault in a
2522  * shared mapping due to PTE being read-only once the mapped page is prepared.
2523  * It handles locking of PTE and modifying it.
2524  *
2525  * The function expects the page to be locked or other protection against
2526  * concurrent faults / writeback (such as DAX radix tree locks).
2527  *
2528  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2529  * we acquired PTE lock.
2530  */
2531 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2532 {
2533 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2534 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2535 				       &vmf->ptl);
2536 	/*
2537 	 * We might have raced with another page fault while we released the
2538 	 * pte_offset_map_lock.
2539 	 */
2540 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2541 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2542 		return VM_FAULT_NOPAGE;
2543 	}
2544 	wp_page_reuse(vmf);
2545 	return 0;
2546 }
2547 
2548 /*
2549  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2550  * mapping
2551  */
2552 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2553 {
2554 	struct vm_area_struct *vma = vmf->vma;
2555 
2556 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2557 		vm_fault_t ret;
2558 
2559 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2560 		vmf->flags |= FAULT_FLAG_MKWRITE;
2561 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2562 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2563 			return ret;
2564 		return finish_mkwrite_fault(vmf);
2565 	}
2566 	wp_page_reuse(vmf);
2567 	return VM_FAULT_WRITE;
2568 }
2569 
2570 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2571 	__releases(vmf->ptl)
2572 {
2573 	struct vm_area_struct *vma = vmf->vma;
2574 
2575 	get_page(vmf->page);
2576 
2577 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2578 		vm_fault_t tmp;
2579 
2580 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2581 		tmp = do_page_mkwrite(vmf);
2582 		if (unlikely(!tmp || (tmp &
2583 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2584 			put_page(vmf->page);
2585 			return tmp;
2586 		}
2587 		tmp = finish_mkwrite_fault(vmf);
2588 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2589 			unlock_page(vmf->page);
2590 			put_page(vmf->page);
2591 			return tmp;
2592 		}
2593 	} else {
2594 		wp_page_reuse(vmf);
2595 		lock_page(vmf->page);
2596 	}
2597 	fault_dirty_shared_page(vma, vmf->page);
2598 	put_page(vmf->page);
2599 
2600 	return VM_FAULT_WRITE;
2601 }
2602 
2603 /*
2604  * This routine handles present pages, when users try to write
2605  * to a shared page. It is done by copying the page to a new address
2606  * and decrementing the shared-page counter for the old page.
2607  *
2608  * Note that this routine assumes that the protection checks have been
2609  * done by the caller (the low-level page fault routine in most cases).
2610  * Thus we can safely just mark it writable once we've done any necessary
2611  * COW.
2612  *
2613  * We also mark the page dirty at this point even though the page will
2614  * change only once the write actually happens. This avoids a few races,
2615  * and potentially makes it more efficient.
2616  *
2617  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2618  * but allow concurrent faults), with pte both mapped and locked.
2619  * We return with mmap_sem still held, but pte unmapped and unlocked.
2620  */
2621 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2622 	__releases(vmf->ptl)
2623 {
2624 	struct vm_area_struct *vma = vmf->vma;
2625 
2626 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2627 	if (!vmf->page) {
2628 		/*
2629 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2630 		 * VM_PFNMAP VMA.
2631 		 *
2632 		 * We should not cow pages in a shared writeable mapping.
2633 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2634 		 */
2635 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2636 				     (VM_WRITE|VM_SHARED))
2637 			return wp_pfn_shared(vmf);
2638 
2639 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2640 		return wp_page_copy(vmf);
2641 	}
2642 
2643 	/*
2644 	 * Take out anonymous pages first, anonymous shared vmas are
2645 	 * not dirty accountable.
2646 	 */
2647 	if (PageAnon(vmf->page)) {
2648 		int total_map_swapcount;
2649 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2650 					   page_count(vmf->page) != 1))
2651 			goto copy;
2652 		if (!trylock_page(vmf->page)) {
2653 			get_page(vmf->page);
2654 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2655 			lock_page(vmf->page);
2656 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2657 					vmf->address, &vmf->ptl);
2658 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2659 				unlock_page(vmf->page);
2660 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2661 				put_page(vmf->page);
2662 				return 0;
2663 			}
2664 			put_page(vmf->page);
2665 		}
2666 		if (PageKsm(vmf->page)) {
2667 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2668 						     vmf->address);
2669 			unlock_page(vmf->page);
2670 			if (!reused)
2671 				goto copy;
2672 			wp_page_reuse(vmf);
2673 			return VM_FAULT_WRITE;
2674 		}
2675 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2676 			if (total_map_swapcount == 1) {
2677 				/*
2678 				 * The page is all ours. Move it to
2679 				 * our anon_vma so the rmap code will
2680 				 * not search our parent or siblings.
2681 				 * Protected against the rmap code by
2682 				 * the page lock.
2683 				 */
2684 				page_move_anon_rmap(vmf->page, vma);
2685 			}
2686 			unlock_page(vmf->page);
2687 			wp_page_reuse(vmf);
2688 			return VM_FAULT_WRITE;
2689 		}
2690 		unlock_page(vmf->page);
2691 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2692 					(VM_WRITE|VM_SHARED))) {
2693 		return wp_page_shared(vmf);
2694 	}
2695 copy:
2696 	/*
2697 	 * Ok, we need to copy. Oh, well..
2698 	 */
2699 	get_page(vmf->page);
2700 
2701 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2702 	return wp_page_copy(vmf);
2703 }
2704 
2705 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2706 		unsigned long start_addr, unsigned long end_addr,
2707 		struct zap_details *details)
2708 {
2709 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2710 }
2711 
2712 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2713 					    struct zap_details *details)
2714 {
2715 	struct vm_area_struct *vma;
2716 	pgoff_t vba, vea, zba, zea;
2717 
2718 	vma_interval_tree_foreach(vma, root,
2719 			details->first_index, details->last_index) {
2720 
2721 		vba = vma->vm_pgoff;
2722 		vea = vba + vma_pages(vma) - 1;
2723 		zba = details->first_index;
2724 		if (zba < vba)
2725 			zba = vba;
2726 		zea = details->last_index;
2727 		if (zea > vea)
2728 			zea = vea;
2729 
2730 		unmap_mapping_range_vma(vma,
2731 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2732 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2733 				details);
2734 	}
2735 }
2736 
2737 /**
2738  * unmap_mapping_pages() - Unmap pages from processes.
2739  * @mapping: The address space containing pages to be unmapped.
2740  * @start: Index of first page to be unmapped.
2741  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2742  * @even_cows: Whether to unmap even private COWed pages.
2743  *
2744  * Unmap the pages in this address space from any userspace process which
2745  * has them mmaped.  Generally, you want to remove COWed pages as well when
2746  * a file is being truncated, but not when invalidating pages from the page
2747  * cache.
2748  */
2749 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2750 		pgoff_t nr, bool even_cows)
2751 {
2752 	struct zap_details details = { };
2753 
2754 	details.check_mapping = even_cows ? NULL : mapping;
2755 	details.first_index = start;
2756 	details.last_index = start + nr - 1;
2757 	if (details.last_index < details.first_index)
2758 		details.last_index = ULONG_MAX;
2759 
2760 	i_mmap_lock_write(mapping);
2761 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2762 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2763 	i_mmap_unlock_write(mapping);
2764 }
2765 
2766 /**
2767  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2768  * address_space corresponding to the specified byte range in the underlying
2769  * file.
2770  *
2771  * @mapping: the address space containing mmaps to be unmapped.
2772  * @holebegin: byte in first page to unmap, relative to the start of
2773  * the underlying file.  This will be rounded down to a PAGE_SIZE
2774  * boundary.  Note that this is different from truncate_pagecache(), which
2775  * must keep the partial page.  In contrast, we must get rid of
2776  * partial pages.
2777  * @holelen: size of prospective hole in bytes.  This will be rounded
2778  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2779  * end of the file.
2780  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2781  * but 0 when invalidating pagecache, don't throw away private data.
2782  */
2783 void unmap_mapping_range(struct address_space *mapping,
2784 		loff_t const holebegin, loff_t const holelen, int even_cows)
2785 {
2786 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2787 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2788 
2789 	/* Check for overflow. */
2790 	if (sizeof(holelen) > sizeof(hlen)) {
2791 		long long holeend =
2792 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2793 		if (holeend & ~(long long)ULONG_MAX)
2794 			hlen = ULONG_MAX - hba + 1;
2795 	}
2796 
2797 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2798 }
2799 EXPORT_SYMBOL(unmap_mapping_range);
2800 
2801 /*
2802  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2803  * but allow concurrent faults), and pte mapped but not yet locked.
2804  * We return with pte unmapped and unlocked.
2805  *
2806  * We return with the mmap_sem locked or unlocked in the same cases
2807  * as does filemap_fault().
2808  */
2809 vm_fault_t do_swap_page(struct vm_fault *vmf)
2810 {
2811 	struct vm_area_struct *vma = vmf->vma;
2812 	struct page *page = NULL, *swapcache;
2813 	struct mem_cgroup *memcg;
2814 	swp_entry_t entry;
2815 	pte_t pte;
2816 	int locked;
2817 	int exclusive = 0;
2818 	vm_fault_t ret = 0;
2819 
2820 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2821 		goto out;
2822 
2823 	entry = pte_to_swp_entry(vmf->orig_pte);
2824 	if (unlikely(non_swap_entry(entry))) {
2825 		if (is_migration_entry(entry)) {
2826 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2827 					     vmf->address);
2828 		} else if (is_device_private_entry(entry)) {
2829 			vmf->page = device_private_entry_to_page(entry);
2830 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2831 		} else if (is_hwpoison_entry(entry)) {
2832 			ret = VM_FAULT_HWPOISON;
2833 		} else {
2834 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2835 			ret = VM_FAULT_SIGBUS;
2836 		}
2837 		goto out;
2838 	}
2839 
2840 
2841 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2842 	page = lookup_swap_cache(entry, vma, vmf->address);
2843 	swapcache = page;
2844 
2845 	if (!page) {
2846 		struct swap_info_struct *si = swp_swap_info(entry);
2847 
2848 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2849 				__swap_count(entry) == 1) {
2850 			/* skip swapcache */
2851 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2852 							vmf->address);
2853 			if (page) {
2854 				__SetPageLocked(page);
2855 				__SetPageSwapBacked(page);
2856 				set_page_private(page, entry.val);
2857 				lru_cache_add_anon(page);
2858 				swap_readpage(page, true);
2859 			}
2860 		} else {
2861 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2862 						vmf);
2863 			swapcache = page;
2864 		}
2865 
2866 		if (!page) {
2867 			/*
2868 			 * Back out if somebody else faulted in this pte
2869 			 * while we released the pte lock.
2870 			 */
2871 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2872 					vmf->address, &vmf->ptl);
2873 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2874 				ret = VM_FAULT_OOM;
2875 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2876 			goto unlock;
2877 		}
2878 
2879 		/* Had to read the page from swap area: Major fault */
2880 		ret = VM_FAULT_MAJOR;
2881 		count_vm_event(PGMAJFAULT);
2882 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2883 	} else if (PageHWPoison(page)) {
2884 		/*
2885 		 * hwpoisoned dirty swapcache pages are kept for killing
2886 		 * owner processes (which may be unknown at hwpoison time)
2887 		 */
2888 		ret = VM_FAULT_HWPOISON;
2889 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2890 		goto out_release;
2891 	}
2892 
2893 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2894 
2895 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2896 	if (!locked) {
2897 		ret |= VM_FAULT_RETRY;
2898 		goto out_release;
2899 	}
2900 
2901 	/*
2902 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2903 	 * release the swapcache from under us.  The page pin, and pte_same
2904 	 * test below, are not enough to exclude that.  Even if it is still
2905 	 * swapcache, we need to check that the page's swap has not changed.
2906 	 */
2907 	if (unlikely((!PageSwapCache(page) ||
2908 			page_private(page) != entry.val)) && swapcache)
2909 		goto out_page;
2910 
2911 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2912 	if (unlikely(!page)) {
2913 		ret = VM_FAULT_OOM;
2914 		page = swapcache;
2915 		goto out_page;
2916 	}
2917 
2918 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2919 					&memcg, false)) {
2920 		ret = VM_FAULT_OOM;
2921 		goto out_page;
2922 	}
2923 
2924 	/*
2925 	 * Back out if somebody else already faulted in this pte.
2926 	 */
2927 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2928 			&vmf->ptl);
2929 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2930 		goto out_nomap;
2931 
2932 	if (unlikely(!PageUptodate(page))) {
2933 		ret = VM_FAULT_SIGBUS;
2934 		goto out_nomap;
2935 	}
2936 
2937 	/*
2938 	 * The page isn't present yet, go ahead with the fault.
2939 	 *
2940 	 * Be careful about the sequence of operations here.
2941 	 * To get its accounting right, reuse_swap_page() must be called
2942 	 * while the page is counted on swap but not yet in mapcount i.e.
2943 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2944 	 * must be called after the swap_free(), or it will never succeed.
2945 	 */
2946 
2947 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2948 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2949 	pte = mk_pte(page, vma->vm_page_prot);
2950 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2951 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2952 		vmf->flags &= ~FAULT_FLAG_WRITE;
2953 		ret |= VM_FAULT_WRITE;
2954 		exclusive = RMAP_EXCLUSIVE;
2955 	}
2956 	flush_icache_page(vma, page);
2957 	if (pte_swp_soft_dirty(vmf->orig_pte))
2958 		pte = pte_mksoft_dirty(pte);
2959 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2960 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2961 	vmf->orig_pte = pte;
2962 
2963 	/* ksm created a completely new copy */
2964 	if (unlikely(page != swapcache && swapcache)) {
2965 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2966 		mem_cgroup_commit_charge(page, memcg, false, false);
2967 		lru_cache_add_active_or_unevictable(page, vma);
2968 	} else {
2969 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2970 		mem_cgroup_commit_charge(page, memcg, true, false);
2971 		activate_page(page);
2972 	}
2973 
2974 	swap_free(entry);
2975 	if (mem_cgroup_swap_full(page) ||
2976 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2977 		try_to_free_swap(page);
2978 	unlock_page(page);
2979 	if (page != swapcache && swapcache) {
2980 		/*
2981 		 * Hold the lock to avoid the swap entry to be reused
2982 		 * until we take the PT lock for the pte_same() check
2983 		 * (to avoid false positives from pte_same). For
2984 		 * further safety release the lock after the swap_free
2985 		 * so that the swap count won't change under a
2986 		 * parallel locked swapcache.
2987 		 */
2988 		unlock_page(swapcache);
2989 		put_page(swapcache);
2990 	}
2991 
2992 	if (vmf->flags & FAULT_FLAG_WRITE) {
2993 		ret |= do_wp_page(vmf);
2994 		if (ret & VM_FAULT_ERROR)
2995 			ret &= VM_FAULT_ERROR;
2996 		goto out;
2997 	}
2998 
2999 	/* No need to invalidate - it was non-present before */
3000 	update_mmu_cache(vma, vmf->address, vmf->pte);
3001 unlock:
3002 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3003 out:
3004 	return ret;
3005 out_nomap:
3006 	mem_cgroup_cancel_charge(page, memcg, false);
3007 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3008 out_page:
3009 	unlock_page(page);
3010 out_release:
3011 	put_page(page);
3012 	if (page != swapcache && swapcache) {
3013 		unlock_page(swapcache);
3014 		put_page(swapcache);
3015 	}
3016 	return ret;
3017 }
3018 
3019 /*
3020  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3021  * but allow concurrent faults), and pte mapped but not yet locked.
3022  * We return with mmap_sem still held, but pte unmapped and unlocked.
3023  */
3024 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3025 {
3026 	struct vm_area_struct *vma = vmf->vma;
3027 	struct mem_cgroup *memcg;
3028 	struct page *page;
3029 	vm_fault_t ret = 0;
3030 	pte_t entry;
3031 
3032 	/* File mapping without ->vm_ops ? */
3033 	if (vma->vm_flags & VM_SHARED)
3034 		return VM_FAULT_SIGBUS;
3035 
3036 	/*
3037 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3038 	 * pte_offset_map() on pmds where a huge pmd might be created
3039 	 * from a different thread.
3040 	 *
3041 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3042 	 * parallel threads are excluded by other means.
3043 	 *
3044 	 * Here we only have down_read(mmap_sem).
3045 	 */
3046 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3047 		return VM_FAULT_OOM;
3048 
3049 	/* See the comment in pte_alloc_one_map() */
3050 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3051 		return 0;
3052 
3053 	/* Use the zero-page for reads */
3054 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3055 			!mm_forbids_zeropage(vma->vm_mm)) {
3056 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3057 						vma->vm_page_prot));
3058 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3059 				vmf->address, &vmf->ptl);
3060 		if (!pte_none(*vmf->pte))
3061 			goto unlock;
3062 		ret = check_stable_address_space(vma->vm_mm);
3063 		if (ret)
3064 			goto unlock;
3065 		/* Deliver the page fault to userland, check inside PT lock */
3066 		if (userfaultfd_missing(vma)) {
3067 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3068 			return handle_userfault(vmf, VM_UFFD_MISSING);
3069 		}
3070 		goto setpte;
3071 	}
3072 
3073 	/* Allocate our own private page. */
3074 	if (unlikely(anon_vma_prepare(vma)))
3075 		goto oom;
3076 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3077 	if (!page)
3078 		goto oom;
3079 
3080 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3081 					false))
3082 		goto oom_free_page;
3083 
3084 	/*
3085 	 * The memory barrier inside __SetPageUptodate makes sure that
3086 	 * preceeding stores to the page contents become visible before
3087 	 * the set_pte_at() write.
3088 	 */
3089 	__SetPageUptodate(page);
3090 
3091 	entry = mk_pte(page, vma->vm_page_prot);
3092 	if (vma->vm_flags & VM_WRITE)
3093 		entry = pte_mkwrite(pte_mkdirty(entry));
3094 
3095 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3096 			&vmf->ptl);
3097 	if (!pte_none(*vmf->pte))
3098 		goto release;
3099 
3100 	ret = check_stable_address_space(vma->vm_mm);
3101 	if (ret)
3102 		goto release;
3103 
3104 	/* Deliver the page fault to userland, check inside PT lock */
3105 	if (userfaultfd_missing(vma)) {
3106 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3107 		mem_cgroup_cancel_charge(page, memcg, false);
3108 		put_page(page);
3109 		return handle_userfault(vmf, VM_UFFD_MISSING);
3110 	}
3111 
3112 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3113 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3114 	mem_cgroup_commit_charge(page, memcg, false, false);
3115 	lru_cache_add_active_or_unevictable(page, vma);
3116 setpte:
3117 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3118 
3119 	/* No need to invalidate - it was non-present before */
3120 	update_mmu_cache(vma, vmf->address, vmf->pte);
3121 unlock:
3122 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3123 	return ret;
3124 release:
3125 	mem_cgroup_cancel_charge(page, memcg, false);
3126 	put_page(page);
3127 	goto unlock;
3128 oom_free_page:
3129 	put_page(page);
3130 oom:
3131 	return VM_FAULT_OOM;
3132 }
3133 
3134 /*
3135  * The mmap_sem must have been held on entry, and may have been
3136  * released depending on flags and vma->vm_ops->fault() return value.
3137  * See filemap_fault() and __lock_page_retry().
3138  */
3139 static vm_fault_t __do_fault(struct vm_fault *vmf)
3140 {
3141 	struct vm_area_struct *vma = vmf->vma;
3142 	vm_fault_t ret;
3143 
3144 	/*
3145 	 * Preallocate pte before we take page_lock because this might lead to
3146 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3147 	 *				lock_page(A)
3148 	 *				SetPageWriteback(A)
3149 	 *				unlock_page(A)
3150 	 * lock_page(B)
3151 	 *				lock_page(B)
3152 	 * pte_alloc_pne
3153 	 *   shrink_page_list
3154 	 *     wait_on_page_writeback(A)
3155 	 *				SetPageWriteback(B)
3156 	 *				unlock_page(B)
3157 	 *				# flush A, B to clear the writeback
3158 	 */
3159 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3160 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3161 		if (!vmf->prealloc_pte)
3162 			return VM_FAULT_OOM;
3163 		smp_wmb(); /* See comment in __pte_alloc() */
3164 	}
3165 
3166 	ret = vma->vm_ops->fault(vmf);
3167 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3168 			    VM_FAULT_DONE_COW)))
3169 		return ret;
3170 
3171 	if (unlikely(PageHWPoison(vmf->page))) {
3172 		if (ret & VM_FAULT_LOCKED)
3173 			unlock_page(vmf->page);
3174 		put_page(vmf->page);
3175 		vmf->page = NULL;
3176 		return VM_FAULT_HWPOISON;
3177 	}
3178 
3179 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3180 		lock_page(vmf->page);
3181 	else
3182 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3183 
3184 	return ret;
3185 }
3186 
3187 /*
3188  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3189  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3190  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3191  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3192  */
3193 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3194 {
3195 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3196 }
3197 
3198 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3199 {
3200 	struct vm_area_struct *vma = vmf->vma;
3201 
3202 	if (!pmd_none(*vmf->pmd))
3203 		goto map_pte;
3204 	if (vmf->prealloc_pte) {
3205 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3206 		if (unlikely(!pmd_none(*vmf->pmd))) {
3207 			spin_unlock(vmf->ptl);
3208 			goto map_pte;
3209 		}
3210 
3211 		mm_inc_nr_ptes(vma->vm_mm);
3212 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3213 		spin_unlock(vmf->ptl);
3214 		vmf->prealloc_pte = NULL;
3215 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3216 		return VM_FAULT_OOM;
3217 	}
3218 map_pte:
3219 	/*
3220 	 * If a huge pmd materialized under us just retry later.  Use
3221 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3222 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3223 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3224 	 * running immediately after a huge pmd fault in a different thread of
3225 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3226 	 * All we have to ensure is that it is a regular pmd that we can walk
3227 	 * with pte_offset_map() and we can do that through an atomic read in
3228 	 * C, which is what pmd_trans_unstable() provides.
3229 	 */
3230 	if (pmd_devmap_trans_unstable(vmf->pmd))
3231 		return VM_FAULT_NOPAGE;
3232 
3233 	/*
3234 	 * At this point we know that our vmf->pmd points to a page of ptes
3235 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3236 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3237 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3238 	 * be valid and we will re-check to make sure the vmf->pte isn't
3239 	 * pte_none() under vmf->ptl protection when we return to
3240 	 * alloc_set_pte().
3241 	 */
3242 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3243 			&vmf->ptl);
3244 	return 0;
3245 }
3246 
3247 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3248 static void deposit_prealloc_pte(struct vm_fault *vmf)
3249 {
3250 	struct vm_area_struct *vma = vmf->vma;
3251 
3252 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3253 	/*
3254 	 * We are going to consume the prealloc table,
3255 	 * count that as nr_ptes.
3256 	 */
3257 	mm_inc_nr_ptes(vma->vm_mm);
3258 	vmf->prealloc_pte = NULL;
3259 }
3260 
3261 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3262 {
3263 	struct vm_area_struct *vma = vmf->vma;
3264 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3265 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3266 	pmd_t entry;
3267 	int i;
3268 	vm_fault_t ret;
3269 
3270 	if (!transhuge_vma_suitable(vma, haddr))
3271 		return VM_FAULT_FALLBACK;
3272 
3273 	ret = VM_FAULT_FALLBACK;
3274 	page = compound_head(page);
3275 
3276 	/*
3277 	 * Archs like ppc64 need additonal space to store information
3278 	 * related to pte entry. Use the preallocated table for that.
3279 	 */
3280 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3281 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3282 		if (!vmf->prealloc_pte)
3283 			return VM_FAULT_OOM;
3284 		smp_wmb(); /* See comment in __pte_alloc() */
3285 	}
3286 
3287 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3288 	if (unlikely(!pmd_none(*vmf->pmd)))
3289 		goto out;
3290 
3291 	for (i = 0; i < HPAGE_PMD_NR; i++)
3292 		flush_icache_page(vma, page + i);
3293 
3294 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3295 	if (write)
3296 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3297 
3298 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3299 	page_add_file_rmap(page, true);
3300 	/*
3301 	 * deposit and withdraw with pmd lock held
3302 	 */
3303 	if (arch_needs_pgtable_deposit())
3304 		deposit_prealloc_pte(vmf);
3305 
3306 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3307 
3308 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3309 
3310 	/* fault is handled */
3311 	ret = 0;
3312 	count_vm_event(THP_FILE_MAPPED);
3313 out:
3314 	spin_unlock(vmf->ptl);
3315 	return ret;
3316 }
3317 #else
3318 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3319 {
3320 	BUILD_BUG();
3321 	return 0;
3322 }
3323 #endif
3324 
3325 /**
3326  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3327  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3328  *
3329  * @vmf: fault environment
3330  * @memcg: memcg to charge page (only for private mappings)
3331  * @page: page to map
3332  *
3333  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3334  * return.
3335  *
3336  * Target users are page handler itself and implementations of
3337  * vm_ops->map_pages.
3338  *
3339  * Return: %0 on success, %VM_FAULT_ code in case of error.
3340  */
3341 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3342 		struct page *page)
3343 {
3344 	struct vm_area_struct *vma = vmf->vma;
3345 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3346 	pte_t entry;
3347 	vm_fault_t ret;
3348 
3349 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3350 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3351 		/* THP on COW? */
3352 		VM_BUG_ON_PAGE(memcg, page);
3353 
3354 		ret = do_set_pmd(vmf, page);
3355 		if (ret != VM_FAULT_FALLBACK)
3356 			return ret;
3357 	}
3358 
3359 	if (!vmf->pte) {
3360 		ret = pte_alloc_one_map(vmf);
3361 		if (ret)
3362 			return ret;
3363 	}
3364 
3365 	/* Re-check under ptl */
3366 	if (unlikely(!pte_none(*vmf->pte)))
3367 		return VM_FAULT_NOPAGE;
3368 
3369 	flush_icache_page(vma, page);
3370 	entry = mk_pte(page, vma->vm_page_prot);
3371 	if (write)
3372 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3373 	/* copy-on-write page */
3374 	if (write && !(vma->vm_flags & VM_SHARED)) {
3375 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3376 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3377 		mem_cgroup_commit_charge(page, memcg, false, false);
3378 		lru_cache_add_active_or_unevictable(page, vma);
3379 	} else {
3380 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3381 		page_add_file_rmap(page, false);
3382 	}
3383 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3384 
3385 	/* no need to invalidate: a not-present page won't be cached */
3386 	update_mmu_cache(vma, vmf->address, vmf->pte);
3387 
3388 	return 0;
3389 }
3390 
3391 
3392 /**
3393  * finish_fault - finish page fault once we have prepared the page to fault
3394  *
3395  * @vmf: structure describing the fault
3396  *
3397  * This function handles all that is needed to finish a page fault once the
3398  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3399  * given page, adds reverse page mapping, handles memcg charges and LRU
3400  * addition.
3401  *
3402  * The function expects the page to be locked and on success it consumes a
3403  * reference of a page being mapped (for the PTE which maps it).
3404  *
3405  * Return: %0 on success, %VM_FAULT_ code in case of error.
3406  */
3407 vm_fault_t finish_fault(struct vm_fault *vmf)
3408 {
3409 	struct page *page;
3410 	vm_fault_t ret = 0;
3411 
3412 	/* Did we COW the page? */
3413 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3414 	    !(vmf->vma->vm_flags & VM_SHARED))
3415 		page = vmf->cow_page;
3416 	else
3417 		page = vmf->page;
3418 
3419 	/*
3420 	 * check even for read faults because we might have lost our CoWed
3421 	 * page
3422 	 */
3423 	if (!(vmf->vma->vm_flags & VM_SHARED))
3424 		ret = check_stable_address_space(vmf->vma->vm_mm);
3425 	if (!ret)
3426 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3427 	if (vmf->pte)
3428 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3429 	return ret;
3430 }
3431 
3432 static unsigned long fault_around_bytes __read_mostly =
3433 	rounddown_pow_of_two(65536);
3434 
3435 #ifdef CONFIG_DEBUG_FS
3436 static int fault_around_bytes_get(void *data, u64 *val)
3437 {
3438 	*val = fault_around_bytes;
3439 	return 0;
3440 }
3441 
3442 /*
3443  * fault_around_bytes must be rounded down to the nearest page order as it's
3444  * what do_fault_around() expects to see.
3445  */
3446 static int fault_around_bytes_set(void *data, u64 val)
3447 {
3448 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3449 		return -EINVAL;
3450 	if (val > PAGE_SIZE)
3451 		fault_around_bytes = rounddown_pow_of_two(val);
3452 	else
3453 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3454 	return 0;
3455 }
3456 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3457 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3458 
3459 static int __init fault_around_debugfs(void)
3460 {
3461 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3462 				   &fault_around_bytes_fops);
3463 	return 0;
3464 }
3465 late_initcall(fault_around_debugfs);
3466 #endif
3467 
3468 /*
3469  * do_fault_around() tries to map few pages around the fault address. The hope
3470  * is that the pages will be needed soon and this will lower the number of
3471  * faults to handle.
3472  *
3473  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3474  * not ready to be mapped: not up-to-date, locked, etc.
3475  *
3476  * This function is called with the page table lock taken. In the split ptlock
3477  * case the page table lock only protects only those entries which belong to
3478  * the page table corresponding to the fault address.
3479  *
3480  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3481  * only once.
3482  *
3483  * fault_around_bytes defines how many bytes we'll try to map.
3484  * do_fault_around() expects it to be set to a power of two less than or equal
3485  * to PTRS_PER_PTE.
3486  *
3487  * The virtual address of the area that we map is naturally aligned to
3488  * fault_around_bytes rounded down to the machine page size
3489  * (and therefore to page order).  This way it's easier to guarantee
3490  * that we don't cross page table boundaries.
3491  */
3492 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3493 {
3494 	unsigned long address = vmf->address, nr_pages, mask;
3495 	pgoff_t start_pgoff = vmf->pgoff;
3496 	pgoff_t end_pgoff;
3497 	int off;
3498 	vm_fault_t ret = 0;
3499 
3500 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3501 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3502 
3503 	vmf->address = max(address & mask, vmf->vma->vm_start);
3504 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3505 	start_pgoff -= off;
3506 
3507 	/*
3508 	 *  end_pgoff is either the end of the page table, the end of
3509 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3510 	 */
3511 	end_pgoff = start_pgoff -
3512 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3513 		PTRS_PER_PTE - 1;
3514 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3515 			start_pgoff + nr_pages - 1);
3516 
3517 	if (pmd_none(*vmf->pmd)) {
3518 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3519 		if (!vmf->prealloc_pte)
3520 			goto out;
3521 		smp_wmb(); /* See comment in __pte_alloc() */
3522 	}
3523 
3524 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3525 
3526 	/* Huge page is mapped? Page fault is solved */
3527 	if (pmd_trans_huge(*vmf->pmd)) {
3528 		ret = VM_FAULT_NOPAGE;
3529 		goto out;
3530 	}
3531 
3532 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3533 	if (!vmf->pte)
3534 		goto out;
3535 
3536 	/* check if the page fault is solved */
3537 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3538 	if (!pte_none(*vmf->pte))
3539 		ret = VM_FAULT_NOPAGE;
3540 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3541 out:
3542 	vmf->address = address;
3543 	vmf->pte = NULL;
3544 	return ret;
3545 }
3546 
3547 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3548 {
3549 	struct vm_area_struct *vma = vmf->vma;
3550 	vm_fault_t ret = 0;
3551 
3552 	/*
3553 	 * Let's call ->map_pages() first and use ->fault() as fallback
3554 	 * if page by the offset is not ready to be mapped (cold cache or
3555 	 * something).
3556 	 */
3557 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3558 		ret = do_fault_around(vmf);
3559 		if (ret)
3560 			return ret;
3561 	}
3562 
3563 	ret = __do_fault(vmf);
3564 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3565 		return ret;
3566 
3567 	ret |= finish_fault(vmf);
3568 	unlock_page(vmf->page);
3569 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3570 		put_page(vmf->page);
3571 	return ret;
3572 }
3573 
3574 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3575 {
3576 	struct vm_area_struct *vma = vmf->vma;
3577 	vm_fault_t ret;
3578 
3579 	if (unlikely(anon_vma_prepare(vma)))
3580 		return VM_FAULT_OOM;
3581 
3582 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3583 	if (!vmf->cow_page)
3584 		return VM_FAULT_OOM;
3585 
3586 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3587 				&vmf->memcg, false)) {
3588 		put_page(vmf->cow_page);
3589 		return VM_FAULT_OOM;
3590 	}
3591 
3592 	ret = __do_fault(vmf);
3593 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3594 		goto uncharge_out;
3595 	if (ret & VM_FAULT_DONE_COW)
3596 		return ret;
3597 
3598 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3599 	__SetPageUptodate(vmf->cow_page);
3600 
3601 	ret |= finish_fault(vmf);
3602 	unlock_page(vmf->page);
3603 	put_page(vmf->page);
3604 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3605 		goto uncharge_out;
3606 	return ret;
3607 uncharge_out:
3608 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3609 	put_page(vmf->cow_page);
3610 	return ret;
3611 }
3612 
3613 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3614 {
3615 	struct vm_area_struct *vma = vmf->vma;
3616 	vm_fault_t ret, tmp;
3617 
3618 	ret = __do_fault(vmf);
3619 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3620 		return ret;
3621 
3622 	/*
3623 	 * Check if the backing address space wants to know that the page is
3624 	 * about to become writable
3625 	 */
3626 	if (vma->vm_ops->page_mkwrite) {
3627 		unlock_page(vmf->page);
3628 		tmp = do_page_mkwrite(vmf);
3629 		if (unlikely(!tmp ||
3630 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3631 			put_page(vmf->page);
3632 			return tmp;
3633 		}
3634 	}
3635 
3636 	ret |= finish_fault(vmf);
3637 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3638 					VM_FAULT_RETRY))) {
3639 		unlock_page(vmf->page);
3640 		put_page(vmf->page);
3641 		return ret;
3642 	}
3643 
3644 	fault_dirty_shared_page(vma, vmf->page);
3645 	return ret;
3646 }
3647 
3648 /*
3649  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3650  * but allow concurrent faults).
3651  * The mmap_sem may have been released depending on flags and our
3652  * return value.  See filemap_fault() and __lock_page_or_retry().
3653  * If mmap_sem is released, vma may become invalid (for example
3654  * by other thread calling munmap()).
3655  */
3656 static vm_fault_t do_fault(struct vm_fault *vmf)
3657 {
3658 	struct vm_area_struct *vma = vmf->vma;
3659 	struct mm_struct *vm_mm = vma->vm_mm;
3660 	vm_fault_t ret;
3661 
3662 	/*
3663 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3664 	 */
3665 	if (!vma->vm_ops->fault) {
3666 		/*
3667 		 * If we find a migration pmd entry or a none pmd entry, which
3668 		 * should never happen, return SIGBUS
3669 		 */
3670 		if (unlikely(!pmd_present(*vmf->pmd)))
3671 			ret = VM_FAULT_SIGBUS;
3672 		else {
3673 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3674 						       vmf->pmd,
3675 						       vmf->address,
3676 						       &vmf->ptl);
3677 			/*
3678 			 * Make sure this is not a temporary clearing of pte
3679 			 * by holding ptl and checking again. A R/M/W update
3680 			 * of pte involves: take ptl, clearing the pte so that
3681 			 * we don't have concurrent modification by hardware
3682 			 * followed by an update.
3683 			 */
3684 			if (unlikely(pte_none(*vmf->pte)))
3685 				ret = VM_FAULT_SIGBUS;
3686 			else
3687 				ret = VM_FAULT_NOPAGE;
3688 
3689 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3690 		}
3691 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3692 		ret = do_read_fault(vmf);
3693 	else if (!(vma->vm_flags & VM_SHARED))
3694 		ret = do_cow_fault(vmf);
3695 	else
3696 		ret = do_shared_fault(vmf);
3697 
3698 	/* preallocated pagetable is unused: free it */
3699 	if (vmf->prealloc_pte) {
3700 		pte_free(vm_mm, vmf->prealloc_pte);
3701 		vmf->prealloc_pte = NULL;
3702 	}
3703 	return ret;
3704 }
3705 
3706 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3707 				unsigned long addr, int page_nid,
3708 				int *flags)
3709 {
3710 	get_page(page);
3711 
3712 	count_vm_numa_event(NUMA_HINT_FAULTS);
3713 	if (page_nid == numa_node_id()) {
3714 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3715 		*flags |= TNF_FAULT_LOCAL;
3716 	}
3717 
3718 	return mpol_misplaced(page, vma, addr);
3719 }
3720 
3721 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3722 {
3723 	struct vm_area_struct *vma = vmf->vma;
3724 	struct page *page = NULL;
3725 	int page_nid = NUMA_NO_NODE;
3726 	int last_cpupid;
3727 	int target_nid;
3728 	bool migrated = false;
3729 	pte_t pte, old_pte;
3730 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3731 	int flags = 0;
3732 
3733 	/*
3734 	 * The "pte" at this point cannot be used safely without
3735 	 * validation through pte_unmap_same(). It's of NUMA type but
3736 	 * the pfn may be screwed if the read is non atomic.
3737 	 */
3738 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3739 	spin_lock(vmf->ptl);
3740 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3741 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3742 		goto out;
3743 	}
3744 
3745 	/*
3746 	 * Make it present again, Depending on how arch implementes non
3747 	 * accessible ptes, some can allow access by kernel mode.
3748 	 */
3749 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3750 	pte = pte_modify(old_pte, vma->vm_page_prot);
3751 	pte = pte_mkyoung(pte);
3752 	if (was_writable)
3753 		pte = pte_mkwrite(pte);
3754 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3755 	update_mmu_cache(vma, vmf->address, vmf->pte);
3756 
3757 	page = vm_normal_page(vma, vmf->address, pte);
3758 	if (!page) {
3759 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3760 		return 0;
3761 	}
3762 
3763 	/* TODO: handle PTE-mapped THP */
3764 	if (PageCompound(page)) {
3765 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3766 		return 0;
3767 	}
3768 
3769 	/*
3770 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3771 	 * much anyway since they can be in shared cache state. This misses
3772 	 * the case where a mapping is writable but the process never writes
3773 	 * to it but pte_write gets cleared during protection updates and
3774 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3775 	 * background writeback, dirty balancing and application behaviour.
3776 	 */
3777 	if (!pte_write(pte))
3778 		flags |= TNF_NO_GROUP;
3779 
3780 	/*
3781 	 * Flag if the page is shared between multiple address spaces. This
3782 	 * is later used when determining whether to group tasks together
3783 	 */
3784 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3785 		flags |= TNF_SHARED;
3786 
3787 	last_cpupid = page_cpupid_last(page);
3788 	page_nid = page_to_nid(page);
3789 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3790 			&flags);
3791 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3792 	if (target_nid == NUMA_NO_NODE) {
3793 		put_page(page);
3794 		goto out;
3795 	}
3796 
3797 	/* Migrate to the requested node */
3798 	migrated = migrate_misplaced_page(page, vma, target_nid);
3799 	if (migrated) {
3800 		page_nid = target_nid;
3801 		flags |= TNF_MIGRATED;
3802 	} else
3803 		flags |= TNF_MIGRATE_FAIL;
3804 
3805 out:
3806 	if (page_nid != NUMA_NO_NODE)
3807 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3808 	return 0;
3809 }
3810 
3811 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3812 {
3813 	if (vma_is_anonymous(vmf->vma))
3814 		return do_huge_pmd_anonymous_page(vmf);
3815 	if (vmf->vma->vm_ops->huge_fault)
3816 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3817 	return VM_FAULT_FALLBACK;
3818 }
3819 
3820 /* `inline' is required to avoid gcc 4.1.2 build error */
3821 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3822 {
3823 	if (vma_is_anonymous(vmf->vma))
3824 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3825 	if (vmf->vma->vm_ops->huge_fault)
3826 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3827 
3828 	/* COW handled on pte level: split pmd */
3829 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3830 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3831 
3832 	return VM_FAULT_FALLBACK;
3833 }
3834 
3835 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3836 {
3837 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3838 }
3839 
3840 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3841 {
3842 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3843 	/* No support for anonymous transparent PUD pages yet */
3844 	if (vma_is_anonymous(vmf->vma))
3845 		return VM_FAULT_FALLBACK;
3846 	if (vmf->vma->vm_ops->huge_fault)
3847 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3848 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3849 	return VM_FAULT_FALLBACK;
3850 }
3851 
3852 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3853 {
3854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3855 	/* No support for anonymous transparent PUD pages yet */
3856 	if (vma_is_anonymous(vmf->vma))
3857 		return VM_FAULT_FALLBACK;
3858 	if (vmf->vma->vm_ops->huge_fault)
3859 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3860 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3861 	return VM_FAULT_FALLBACK;
3862 }
3863 
3864 /*
3865  * These routines also need to handle stuff like marking pages dirty
3866  * and/or accessed for architectures that don't do it in hardware (most
3867  * RISC architectures).  The early dirtying is also good on the i386.
3868  *
3869  * There is also a hook called "update_mmu_cache()" that architectures
3870  * with external mmu caches can use to update those (ie the Sparc or
3871  * PowerPC hashed page tables that act as extended TLBs).
3872  *
3873  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3874  * concurrent faults).
3875  *
3876  * The mmap_sem may have been released depending on flags and our return value.
3877  * See filemap_fault() and __lock_page_or_retry().
3878  */
3879 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3880 {
3881 	pte_t entry;
3882 
3883 	if (unlikely(pmd_none(*vmf->pmd))) {
3884 		/*
3885 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3886 		 * want to allocate huge page, and if we expose page table
3887 		 * for an instant, it will be difficult to retract from
3888 		 * concurrent faults and from rmap lookups.
3889 		 */
3890 		vmf->pte = NULL;
3891 	} else {
3892 		/* See comment in pte_alloc_one_map() */
3893 		if (pmd_devmap_trans_unstable(vmf->pmd))
3894 			return 0;
3895 		/*
3896 		 * A regular pmd is established and it can't morph into a huge
3897 		 * pmd from under us anymore at this point because we hold the
3898 		 * mmap_sem read mode and khugepaged takes it in write mode.
3899 		 * So now it's safe to run pte_offset_map().
3900 		 */
3901 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3902 		vmf->orig_pte = *vmf->pte;
3903 
3904 		/*
3905 		 * some architectures can have larger ptes than wordsize,
3906 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3907 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3908 		 * accesses.  The code below just needs a consistent view
3909 		 * for the ifs and we later double check anyway with the
3910 		 * ptl lock held. So here a barrier will do.
3911 		 */
3912 		barrier();
3913 		if (pte_none(vmf->orig_pte)) {
3914 			pte_unmap(vmf->pte);
3915 			vmf->pte = NULL;
3916 		}
3917 	}
3918 
3919 	if (!vmf->pte) {
3920 		if (vma_is_anonymous(vmf->vma))
3921 			return do_anonymous_page(vmf);
3922 		else
3923 			return do_fault(vmf);
3924 	}
3925 
3926 	if (!pte_present(vmf->orig_pte))
3927 		return do_swap_page(vmf);
3928 
3929 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3930 		return do_numa_page(vmf);
3931 
3932 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3933 	spin_lock(vmf->ptl);
3934 	entry = vmf->orig_pte;
3935 	if (unlikely(!pte_same(*vmf->pte, entry)))
3936 		goto unlock;
3937 	if (vmf->flags & FAULT_FLAG_WRITE) {
3938 		if (!pte_write(entry))
3939 			return do_wp_page(vmf);
3940 		entry = pte_mkdirty(entry);
3941 	}
3942 	entry = pte_mkyoung(entry);
3943 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3944 				vmf->flags & FAULT_FLAG_WRITE)) {
3945 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3946 	} else {
3947 		/*
3948 		 * This is needed only for protection faults but the arch code
3949 		 * is not yet telling us if this is a protection fault or not.
3950 		 * This still avoids useless tlb flushes for .text page faults
3951 		 * with threads.
3952 		 */
3953 		if (vmf->flags & FAULT_FLAG_WRITE)
3954 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3955 	}
3956 unlock:
3957 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3958 	return 0;
3959 }
3960 
3961 /*
3962  * By the time we get here, we already hold the mm semaphore
3963  *
3964  * The mmap_sem may have been released depending on flags and our
3965  * return value.  See filemap_fault() and __lock_page_or_retry().
3966  */
3967 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3968 		unsigned long address, unsigned int flags)
3969 {
3970 	struct vm_fault vmf = {
3971 		.vma = vma,
3972 		.address = address & PAGE_MASK,
3973 		.flags = flags,
3974 		.pgoff = linear_page_index(vma, address),
3975 		.gfp_mask = __get_fault_gfp_mask(vma),
3976 	};
3977 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
3978 	struct mm_struct *mm = vma->vm_mm;
3979 	pgd_t *pgd;
3980 	p4d_t *p4d;
3981 	vm_fault_t ret;
3982 
3983 	pgd = pgd_offset(mm, address);
3984 	p4d = p4d_alloc(mm, pgd, address);
3985 	if (!p4d)
3986 		return VM_FAULT_OOM;
3987 
3988 	vmf.pud = pud_alloc(mm, p4d, address);
3989 	if (!vmf.pud)
3990 		return VM_FAULT_OOM;
3991 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3992 		ret = create_huge_pud(&vmf);
3993 		if (!(ret & VM_FAULT_FALLBACK))
3994 			return ret;
3995 	} else {
3996 		pud_t orig_pud = *vmf.pud;
3997 
3998 		barrier();
3999 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4000 
4001 			/* NUMA case for anonymous PUDs would go here */
4002 
4003 			if (dirty && !pud_write(orig_pud)) {
4004 				ret = wp_huge_pud(&vmf, orig_pud);
4005 				if (!(ret & VM_FAULT_FALLBACK))
4006 					return ret;
4007 			} else {
4008 				huge_pud_set_accessed(&vmf, orig_pud);
4009 				return 0;
4010 			}
4011 		}
4012 	}
4013 
4014 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4015 	if (!vmf.pmd)
4016 		return VM_FAULT_OOM;
4017 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4018 		ret = create_huge_pmd(&vmf);
4019 		if (!(ret & VM_FAULT_FALLBACK))
4020 			return ret;
4021 	} else {
4022 		pmd_t orig_pmd = *vmf.pmd;
4023 
4024 		barrier();
4025 		if (unlikely(is_swap_pmd(orig_pmd))) {
4026 			VM_BUG_ON(thp_migration_supported() &&
4027 					  !is_pmd_migration_entry(orig_pmd));
4028 			if (is_pmd_migration_entry(orig_pmd))
4029 				pmd_migration_entry_wait(mm, vmf.pmd);
4030 			return 0;
4031 		}
4032 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4033 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4034 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4035 
4036 			if (dirty && !pmd_write(orig_pmd)) {
4037 				ret = wp_huge_pmd(&vmf, orig_pmd);
4038 				if (!(ret & VM_FAULT_FALLBACK))
4039 					return ret;
4040 			} else {
4041 				huge_pmd_set_accessed(&vmf, orig_pmd);
4042 				return 0;
4043 			}
4044 		}
4045 	}
4046 
4047 	return handle_pte_fault(&vmf);
4048 }
4049 
4050 /*
4051  * By the time we get here, we already hold the mm semaphore
4052  *
4053  * The mmap_sem may have been released depending on flags and our
4054  * return value.  See filemap_fault() and __lock_page_or_retry().
4055  */
4056 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4057 		unsigned int flags)
4058 {
4059 	vm_fault_t ret;
4060 
4061 	__set_current_state(TASK_RUNNING);
4062 
4063 	count_vm_event(PGFAULT);
4064 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4065 
4066 	/* do counter updates before entering really critical section. */
4067 	check_sync_rss_stat(current);
4068 
4069 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4070 					    flags & FAULT_FLAG_INSTRUCTION,
4071 					    flags & FAULT_FLAG_REMOTE))
4072 		return VM_FAULT_SIGSEGV;
4073 
4074 	/*
4075 	 * Enable the memcg OOM handling for faults triggered in user
4076 	 * space.  Kernel faults are handled more gracefully.
4077 	 */
4078 	if (flags & FAULT_FLAG_USER)
4079 		mem_cgroup_enter_user_fault();
4080 
4081 	if (unlikely(is_vm_hugetlb_page(vma)))
4082 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4083 	else
4084 		ret = __handle_mm_fault(vma, address, flags);
4085 
4086 	if (flags & FAULT_FLAG_USER) {
4087 		mem_cgroup_exit_user_fault();
4088 		/*
4089 		 * The task may have entered a memcg OOM situation but
4090 		 * if the allocation error was handled gracefully (no
4091 		 * VM_FAULT_OOM), there is no need to kill anything.
4092 		 * Just clean up the OOM state peacefully.
4093 		 */
4094 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4095 			mem_cgroup_oom_synchronize(false);
4096 	}
4097 
4098 	return ret;
4099 }
4100 EXPORT_SYMBOL_GPL(handle_mm_fault);
4101 
4102 #ifndef __PAGETABLE_P4D_FOLDED
4103 /*
4104  * Allocate p4d page table.
4105  * We've already handled the fast-path in-line.
4106  */
4107 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4108 {
4109 	p4d_t *new = p4d_alloc_one(mm, address);
4110 	if (!new)
4111 		return -ENOMEM;
4112 
4113 	smp_wmb(); /* See comment in __pte_alloc */
4114 
4115 	spin_lock(&mm->page_table_lock);
4116 	if (pgd_present(*pgd))		/* Another has populated it */
4117 		p4d_free(mm, new);
4118 	else
4119 		pgd_populate(mm, pgd, new);
4120 	spin_unlock(&mm->page_table_lock);
4121 	return 0;
4122 }
4123 #endif /* __PAGETABLE_P4D_FOLDED */
4124 
4125 #ifndef __PAGETABLE_PUD_FOLDED
4126 /*
4127  * Allocate page upper directory.
4128  * We've already handled the fast-path in-line.
4129  */
4130 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4131 {
4132 	pud_t *new = pud_alloc_one(mm, address);
4133 	if (!new)
4134 		return -ENOMEM;
4135 
4136 	smp_wmb(); /* See comment in __pte_alloc */
4137 
4138 	spin_lock(&mm->page_table_lock);
4139 #ifndef __ARCH_HAS_5LEVEL_HACK
4140 	if (!p4d_present(*p4d)) {
4141 		mm_inc_nr_puds(mm);
4142 		p4d_populate(mm, p4d, new);
4143 	} else	/* Another has populated it */
4144 		pud_free(mm, new);
4145 #else
4146 	if (!pgd_present(*p4d)) {
4147 		mm_inc_nr_puds(mm);
4148 		pgd_populate(mm, p4d, new);
4149 	} else	/* Another has populated it */
4150 		pud_free(mm, new);
4151 #endif /* __ARCH_HAS_5LEVEL_HACK */
4152 	spin_unlock(&mm->page_table_lock);
4153 	return 0;
4154 }
4155 #endif /* __PAGETABLE_PUD_FOLDED */
4156 
4157 #ifndef __PAGETABLE_PMD_FOLDED
4158 /*
4159  * Allocate page middle directory.
4160  * We've already handled the fast-path in-line.
4161  */
4162 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4163 {
4164 	spinlock_t *ptl;
4165 	pmd_t *new = pmd_alloc_one(mm, address);
4166 	if (!new)
4167 		return -ENOMEM;
4168 
4169 	smp_wmb(); /* See comment in __pte_alloc */
4170 
4171 	ptl = pud_lock(mm, pud);
4172 #ifndef __ARCH_HAS_4LEVEL_HACK
4173 	if (!pud_present(*pud)) {
4174 		mm_inc_nr_pmds(mm);
4175 		pud_populate(mm, pud, new);
4176 	} else	/* Another has populated it */
4177 		pmd_free(mm, new);
4178 #else
4179 	if (!pgd_present(*pud)) {
4180 		mm_inc_nr_pmds(mm);
4181 		pgd_populate(mm, pud, new);
4182 	} else /* Another has populated it */
4183 		pmd_free(mm, new);
4184 #endif /* __ARCH_HAS_4LEVEL_HACK */
4185 	spin_unlock(ptl);
4186 	return 0;
4187 }
4188 #endif /* __PAGETABLE_PMD_FOLDED */
4189 
4190 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4191 			    struct mmu_notifier_range *range,
4192 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4193 {
4194 	pgd_t *pgd;
4195 	p4d_t *p4d;
4196 	pud_t *pud;
4197 	pmd_t *pmd;
4198 	pte_t *ptep;
4199 
4200 	pgd = pgd_offset(mm, address);
4201 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4202 		goto out;
4203 
4204 	p4d = p4d_offset(pgd, address);
4205 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4206 		goto out;
4207 
4208 	pud = pud_offset(p4d, address);
4209 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4210 		goto out;
4211 
4212 	pmd = pmd_offset(pud, address);
4213 	VM_BUG_ON(pmd_trans_huge(*pmd));
4214 
4215 	if (pmd_huge(*pmd)) {
4216 		if (!pmdpp)
4217 			goto out;
4218 
4219 		if (range) {
4220 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4221 						NULL, mm, address & PMD_MASK,
4222 						(address & PMD_MASK) + PMD_SIZE);
4223 			mmu_notifier_invalidate_range_start(range);
4224 		}
4225 		*ptlp = pmd_lock(mm, pmd);
4226 		if (pmd_huge(*pmd)) {
4227 			*pmdpp = pmd;
4228 			return 0;
4229 		}
4230 		spin_unlock(*ptlp);
4231 		if (range)
4232 			mmu_notifier_invalidate_range_end(range);
4233 	}
4234 
4235 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4236 		goto out;
4237 
4238 	if (range) {
4239 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4240 					address & PAGE_MASK,
4241 					(address & PAGE_MASK) + PAGE_SIZE);
4242 		mmu_notifier_invalidate_range_start(range);
4243 	}
4244 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4245 	if (!pte_present(*ptep))
4246 		goto unlock;
4247 	*ptepp = ptep;
4248 	return 0;
4249 unlock:
4250 	pte_unmap_unlock(ptep, *ptlp);
4251 	if (range)
4252 		mmu_notifier_invalidate_range_end(range);
4253 out:
4254 	return -EINVAL;
4255 }
4256 
4257 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4258 			     pte_t **ptepp, spinlock_t **ptlp)
4259 {
4260 	int res;
4261 
4262 	/* (void) is needed to make gcc happy */
4263 	(void) __cond_lock(*ptlp,
4264 			   !(res = __follow_pte_pmd(mm, address, NULL,
4265 						    ptepp, NULL, ptlp)));
4266 	return res;
4267 }
4268 
4269 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4270 		   struct mmu_notifier_range *range,
4271 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4272 {
4273 	int res;
4274 
4275 	/* (void) is needed to make gcc happy */
4276 	(void) __cond_lock(*ptlp,
4277 			   !(res = __follow_pte_pmd(mm, address, range,
4278 						    ptepp, pmdpp, ptlp)));
4279 	return res;
4280 }
4281 EXPORT_SYMBOL(follow_pte_pmd);
4282 
4283 /**
4284  * follow_pfn - look up PFN at a user virtual address
4285  * @vma: memory mapping
4286  * @address: user virtual address
4287  * @pfn: location to store found PFN
4288  *
4289  * Only IO mappings and raw PFN mappings are allowed.
4290  *
4291  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4292  */
4293 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4294 	unsigned long *pfn)
4295 {
4296 	int ret = -EINVAL;
4297 	spinlock_t *ptl;
4298 	pte_t *ptep;
4299 
4300 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4301 		return ret;
4302 
4303 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4304 	if (ret)
4305 		return ret;
4306 	*pfn = pte_pfn(*ptep);
4307 	pte_unmap_unlock(ptep, ptl);
4308 	return 0;
4309 }
4310 EXPORT_SYMBOL(follow_pfn);
4311 
4312 #ifdef CONFIG_HAVE_IOREMAP_PROT
4313 int follow_phys(struct vm_area_struct *vma,
4314 		unsigned long address, unsigned int flags,
4315 		unsigned long *prot, resource_size_t *phys)
4316 {
4317 	int ret = -EINVAL;
4318 	pte_t *ptep, pte;
4319 	spinlock_t *ptl;
4320 
4321 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4322 		goto out;
4323 
4324 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4325 		goto out;
4326 	pte = *ptep;
4327 
4328 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4329 		goto unlock;
4330 
4331 	*prot = pgprot_val(pte_pgprot(pte));
4332 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4333 
4334 	ret = 0;
4335 unlock:
4336 	pte_unmap_unlock(ptep, ptl);
4337 out:
4338 	return ret;
4339 }
4340 
4341 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4342 			void *buf, int len, int write)
4343 {
4344 	resource_size_t phys_addr;
4345 	unsigned long prot = 0;
4346 	void __iomem *maddr;
4347 	int offset = addr & (PAGE_SIZE-1);
4348 
4349 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4350 		return -EINVAL;
4351 
4352 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4353 	if (!maddr)
4354 		return -ENOMEM;
4355 
4356 	if (write)
4357 		memcpy_toio(maddr + offset, buf, len);
4358 	else
4359 		memcpy_fromio(buf, maddr + offset, len);
4360 	iounmap(maddr);
4361 
4362 	return len;
4363 }
4364 EXPORT_SYMBOL_GPL(generic_access_phys);
4365 #endif
4366 
4367 /*
4368  * Access another process' address space as given in mm.  If non-NULL, use the
4369  * given task for page fault accounting.
4370  */
4371 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4372 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4373 {
4374 	struct vm_area_struct *vma;
4375 	void *old_buf = buf;
4376 	int write = gup_flags & FOLL_WRITE;
4377 
4378 	if (down_read_killable(&mm->mmap_sem))
4379 		return 0;
4380 
4381 	/* ignore errors, just check how much was successfully transferred */
4382 	while (len) {
4383 		int bytes, ret, offset;
4384 		void *maddr;
4385 		struct page *page = NULL;
4386 
4387 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4388 				gup_flags, &page, &vma, NULL);
4389 		if (ret <= 0) {
4390 #ifndef CONFIG_HAVE_IOREMAP_PROT
4391 			break;
4392 #else
4393 			/*
4394 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4395 			 * we can access using slightly different code.
4396 			 */
4397 			vma = find_vma(mm, addr);
4398 			if (!vma || vma->vm_start > addr)
4399 				break;
4400 			if (vma->vm_ops && vma->vm_ops->access)
4401 				ret = vma->vm_ops->access(vma, addr, buf,
4402 							  len, write);
4403 			if (ret <= 0)
4404 				break;
4405 			bytes = ret;
4406 #endif
4407 		} else {
4408 			bytes = len;
4409 			offset = addr & (PAGE_SIZE-1);
4410 			if (bytes > PAGE_SIZE-offset)
4411 				bytes = PAGE_SIZE-offset;
4412 
4413 			maddr = kmap(page);
4414 			if (write) {
4415 				copy_to_user_page(vma, page, addr,
4416 						  maddr + offset, buf, bytes);
4417 				set_page_dirty_lock(page);
4418 			} else {
4419 				copy_from_user_page(vma, page, addr,
4420 						    buf, maddr + offset, bytes);
4421 			}
4422 			kunmap(page);
4423 			put_page(page);
4424 		}
4425 		len -= bytes;
4426 		buf += bytes;
4427 		addr += bytes;
4428 	}
4429 	up_read(&mm->mmap_sem);
4430 
4431 	return buf - old_buf;
4432 }
4433 
4434 /**
4435  * access_remote_vm - access another process' address space
4436  * @mm:		the mm_struct of the target address space
4437  * @addr:	start address to access
4438  * @buf:	source or destination buffer
4439  * @len:	number of bytes to transfer
4440  * @gup_flags:	flags modifying lookup behaviour
4441  *
4442  * The caller must hold a reference on @mm.
4443  *
4444  * Return: number of bytes copied from source to destination.
4445  */
4446 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4447 		void *buf, int len, unsigned int gup_flags)
4448 {
4449 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4450 }
4451 
4452 /*
4453  * Access another process' address space.
4454  * Source/target buffer must be kernel space,
4455  * Do not walk the page table directly, use get_user_pages
4456  */
4457 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4458 		void *buf, int len, unsigned int gup_flags)
4459 {
4460 	struct mm_struct *mm;
4461 	int ret;
4462 
4463 	mm = get_task_mm(tsk);
4464 	if (!mm)
4465 		return 0;
4466 
4467 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4468 
4469 	mmput(mm);
4470 
4471 	return ret;
4472 }
4473 EXPORT_SYMBOL_GPL(access_process_vm);
4474 
4475 /*
4476  * Print the name of a VMA.
4477  */
4478 void print_vma_addr(char *prefix, unsigned long ip)
4479 {
4480 	struct mm_struct *mm = current->mm;
4481 	struct vm_area_struct *vma;
4482 
4483 	/*
4484 	 * we might be running from an atomic context so we cannot sleep
4485 	 */
4486 	if (!down_read_trylock(&mm->mmap_sem))
4487 		return;
4488 
4489 	vma = find_vma(mm, ip);
4490 	if (vma && vma->vm_file) {
4491 		struct file *f = vma->vm_file;
4492 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4493 		if (buf) {
4494 			char *p;
4495 
4496 			p = file_path(f, buf, PAGE_SIZE);
4497 			if (IS_ERR(p))
4498 				p = "?";
4499 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4500 					vma->vm_start,
4501 					vma->vm_end - vma->vm_start);
4502 			free_page((unsigned long)buf);
4503 		}
4504 	}
4505 	up_read(&mm->mmap_sem);
4506 }
4507 
4508 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4509 void __might_fault(const char *file, int line)
4510 {
4511 	/*
4512 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4513 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4514 	 * get paged out, therefore we'll never actually fault, and the
4515 	 * below annotations will generate false positives.
4516 	 */
4517 	if (uaccess_kernel())
4518 		return;
4519 	if (pagefault_disabled())
4520 		return;
4521 	__might_sleep(file, line, 0);
4522 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4523 	if (current->mm)
4524 		might_lock_read(&current->mm->mmap_sem);
4525 #endif
4526 }
4527 EXPORT_SYMBOL(__might_fault);
4528 #endif
4529 
4530 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4531 /*
4532  * Process all subpages of the specified huge page with the specified
4533  * operation.  The target subpage will be processed last to keep its
4534  * cache lines hot.
4535  */
4536 static inline void process_huge_page(
4537 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4538 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4539 	void *arg)
4540 {
4541 	int i, n, base, l;
4542 	unsigned long addr = addr_hint &
4543 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4544 
4545 	/* Process target subpage last to keep its cache lines hot */
4546 	might_sleep();
4547 	n = (addr_hint - addr) / PAGE_SIZE;
4548 	if (2 * n <= pages_per_huge_page) {
4549 		/* If target subpage in first half of huge page */
4550 		base = 0;
4551 		l = n;
4552 		/* Process subpages at the end of huge page */
4553 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4554 			cond_resched();
4555 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4556 		}
4557 	} else {
4558 		/* If target subpage in second half of huge page */
4559 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4560 		l = pages_per_huge_page - n;
4561 		/* Process subpages at the begin of huge page */
4562 		for (i = 0; i < base; i++) {
4563 			cond_resched();
4564 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4565 		}
4566 	}
4567 	/*
4568 	 * Process remaining subpages in left-right-left-right pattern
4569 	 * towards the target subpage
4570 	 */
4571 	for (i = 0; i < l; i++) {
4572 		int left_idx = base + i;
4573 		int right_idx = base + 2 * l - 1 - i;
4574 
4575 		cond_resched();
4576 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4577 		cond_resched();
4578 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4579 	}
4580 }
4581 
4582 static void clear_gigantic_page(struct page *page,
4583 				unsigned long addr,
4584 				unsigned int pages_per_huge_page)
4585 {
4586 	int i;
4587 	struct page *p = page;
4588 
4589 	might_sleep();
4590 	for (i = 0; i < pages_per_huge_page;
4591 	     i++, p = mem_map_next(p, page, i)) {
4592 		cond_resched();
4593 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4594 	}
4595 }
4596 
4597 static void clear_subpage(unsigned long addr, int idx, void *arg)
4598 {
4599 	struct page *page = arg;
4600 
4601 	clear_user_highpage(page + idx, addr);
4602 }
4603 
4604 void clear_huge_page(struct page *page,
4605 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4606 {
4607 	unsigned long addr = addr_hint &
4608 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4609 
4610 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4611 		clear_gigantic_page(page, addr, pages_per_huge_page);
4612 		return;
4613 	}
4614 
4615 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4616 }
4617 
4618 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4619 				    unsigned long addr,
4620 				    struct vm_area_struct *vma,
4621 				    unsigned int pages_per_huge_page)
4622 {
4623 	int i;
4624 	struct page *dst_base = dst;
4625 	struct page *src_base = src;
4626 
4627 	for (i = 0; i < pages_per_huge_page; ) {
4628 		cond_resched();
4629 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4630 
4631 		i++;
4632 		dst = mem_map_next(dst, dst_base, i);
4633 		src = mem_map_next(src, src_base, i);
4634 	}
4635 }
4636 
4637 struct copy_subpage_arg {
4638 	struct page *dst;
4639 	struct page *src;
4640 	struct vm_area_struct *vma;
4641 };
4642 
4643 static void copy_subpage(unsigned long addr, int idx, void *arg)
4644 {
4645 	struct copy_subpage_arg *copy_arg = arg;
4646 
4647 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4648 			   addr, copy_arg->vma);
4649 }
4650 
4651 void copy_user_huge_page(struct page *dst, struct page *src,
4652 			 unsigned long addr_hint, struct vm_area_struct *vma,
4653 			 unsigned int pages_per_huge_page)
4654 {
4655 	unsigned long addr = addr_hint &
4656 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4657 	struct copy_subpage_arg arg = {
4658 		.dst = dst,
4659 		.src = src,
4660 		.vma = vma,
4661 	};
4662 
4663 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4664 		copy_user_gigantic_page(dst, src, addr, vma,
4665 					pages_per_huge_page);
4666 		return;
4667 	}
4668 
4669 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4670 }
4671 
4672 long copy_huge_page_from_user(struct page *dst_page,
4673 				const void __user *usr_src,
4674 				unsigned int pages_per_huge_page,
4675 				bool allow_pagefault)
4676 {
4677 	void *src = (void *)usr_src;
4678 	void *page_kaddr;
4679 	unsigned long i, rc = 0;
4680 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4681 
4682 	for (i = 0; i < pages_per_huge_page; i++) {
4683 		if (allow_pagefault)
4684 			page_kaddr = kmap(dst_page + i);
4685 		else
4686 			page_kaddr = kmap_atomic(dst_page + i);
4687 		rc = copy_from_user(page_kaddr,
4688 				(const void __user *)(src + i * PAGE_SIZE),
4689 				PAGE_SIZE);
4690 		if (allow_pagefault)
4691 			kunmap(dst_page + i);
4692 		else
4693 			kunmap_atomic(page_kaddr);
4694 
4695 		ret_val -= (PAGE_SIZE - rc);
4696 		if (rc)
4697 			break;
4698 
4699 		cond_resched();
4700 	}
4701 	return ret_val;
4702 }
4703 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4704 
4705 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4706 
4707 static struct kmem_cache *page_ptl_cachep;
4708 
4709 void __init ptlock_cache_init(void)
4710 {
4711 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4712 			SLAB_PANIC, NULL);
4713 }
4714 
4715 bool ptlock_alloc(struct page *page)
4716 {
4717 	spinlock_t *ptl;
4718 
4719 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4720 	if (!ptl)
4721 		return false;
4722 	page->ptl = ptl;
4723 	return true;
4724 }
4725 
4726 void ptlock_free(struct page *page)
4727 {
4728 	kmem_cache_free(page_ptl_cachep, page->ptl);
4729 }
4730 #endif
4731