1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 75 #include <asm/io.h> 76 #include <asm/mmu_context.h> 77 #include <asm/pgalloc.h> 78 #include <linux/uaccess.h> 79 #include <asm/tlb.h> 80 #include <asm/tlbflush.h> 81 #include <asm/pgtable.h> 82 83 #include "internal.h" 84 85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 87 #endif 88 89 #ifndef CONFIG_NEED_MULTIPLE_NODES 90 /* use the per-pgdat data instead for discontigmem - mbligh */ 91 unsigned long max_mapnr; 92 EXPORT_SYMBOL(max_mapnr); 93 94 struct page *mem_map; 95 EXPORT_SYMBOL(mem_map); 96 #endif 97 98 /* 99 * A number of key systems in x86 including ioremap() rely on the assumption 100 * that high_memory defines the upper bound on direct map memory, then end 101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 103 * and ZONE_HIGHMEM. 104 */ 105 void *high_memory; 106 EXPORT_SYMBOL(high_memory); 107 108 /* 109 * Randomize the address space (stacks, mmaps, brk, etc.). 110 * 111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 112 * as ancient (libc5 based) binaries can segfault. ) 113 */ 114 int randomize_va_space __read_mostly = 115 #ifdef CONFIG_COMPAT_BRK 116 1; 117 #else 118 2; 119 #endif 120 121 #ifndef arch_faults_on_old_pte 122 static inline bool arch_faults_on_old_pte(void) 123 { 124 /* 125 * Those arches which don't have hw access flag feature need to 126 * implement their own helper. By default, "true" means pagefault 127 * will be hit on old pte. 128 */ 129 return true; 130 } 131 #endif 132 133 static int __init disable_randmaps(char *s) 134 { 135 randomize_va_space = 0; 136 return 1; 137 } 138 __setup("norandmaps", disable_randmaps); 139 140 unsigned long zero_pfn __read_mostly; 141 EXPORT_SYMBOL(zero_pfn); 142 143 unsigned long highest_memmap_pfn __read_mostly; 144 145 /* 146 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 147 */ 148 static int __init init_zero_pfn(void) 149 { 150 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 151 return 0; 152 } 153 core_initcall(init_zero_pfn); 154 155 156 #if defined(SPLIT_RSS_COUNTING) 157 158 void sync_mm_rss(struct mm_struct *mm) 159 { 160 int i; 161 162 for (i = 0; i < NR_MM_COUNTERS; i++) { 163 if (current->rss_stat.count[i]) { 164 add_mm_counter(mm, i, current->rss_stat.count[i]); 165 current->rss_stat.count[i] = 0; 166 } 167 } 168 current->rss_stat.events = 0; 169 } 170 171 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 172 { 173 struct task_struct *task = current; 174 175 if (likely(task->mm == mm)) 176 task->rss_stat.count[member] += val; 177 else 178 add_mm_counter(mm, member, val); 179 } 180 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 181 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 182 183 /* sync counter once per 64 page faults */ 184 #define TASK_RSS_EVENTS_THRESH (64) 185 static void check_sync_rss_stat(struct task_struct *task) 186 { 187 if (unlikely(task != current)) 188 return; 189 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 190 sync_mm_rss(task->mm); 191 } 192 #else /* SPLIT_RSS_COUNTING */ 193 194 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 195 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 196 197 static void check_sync_rss_stat(struct task_struct *task) 198 { 199 } 200 201 #endif /* SPLIT_RSS_COUNTING */ 202 203 /* 204 * Note: this doesn't free the actual pages themselves. That 205 * has been handled earlier when unmapping all the memory regions. 206 */ 207 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 208 unsigned long addr) 209 { 210 pgtable_t token = pmd_pgtable(*pmd); 211 pmd_clear(pmd); 212 pte_free_tlb(tlb, token, addr); 213 mm_dec_nr_ptes(tlb->mm); 214 } 215 216 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 217 unsigned long addr, unsigned long end, 218 unsigned long floor, unsigned long ceiling) 219 { 220 pmd_t *pmd; 221 unsigned long next; 222 unsigned long start; 223 224 start = addr; 225 pmd = pmd_offset(pud, addr); 226 do { 227 next = pmd_addr_end(addr, end); 228 if (pmd_none_or_clear_bad(pmd)) 229 continue; 230 free_pte_range(tlb, pmd, addr); 231 } while (pmd++, addr = next, addr != end); 232 233 start &= PUD_MASK; 234 if (start < floor) 235 return; 236 if (ceiling) { 237 ceiling &= PUD_MASK; 238 if (!ceiling) 239 return; 240 } 241 if (end - 1 > ceiling - 1) 242 return; 243 244 pmd = pmd_offset(pud, start); 245 pud_clear(pud); 246 pmd_free_tlb(tlb, pmd, start); 247 mm_dec_nr_pmds(tlb->mm); 248 } 249 250 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 251 unsigned long addr, unsigned long end, 252 unsigned long floor, unsigned long ceiling) 253 { 254 pud_t *pud; 255 unsigned long next; 256 unsigned long start; 257 258 start = addr; 259 pud = pud_offset(p4d, addr); 260 do { 261 next = pud_addr_end(addr, end); 262 if (pud_none_or_clear_bad(pud)) 263 continue; 264 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 265 } while (pud++, addr = next, addr != end); 266 267 start &= P4D_MASK; 268 if (start < floor) 269 return; 270 if (ceiling) { 271 ceiling &= P4D_MASK; 272 if (!ceiling) 273 return; 274 } 275 if (end - 1 > ceiling - 1) 276 return; 277 278 pud = pud_offset(p4d, start); 279 p4d_clear(p4d); 280 pud_free_tlb(tlb, pud, start); 281 mm_dec_nr_puds(tlb->mm); 282 } 283 284 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 285 unsigned long addr, unsigned long end, 286 unsigned long floor, unsigned long ceiling) 287 { 288 p4d_t *p4d; 289 unsigned long next; 290 unsigned long start; 291 292 start = addr; 293 p4d = p4d_offset(pgd, addr); 294 do { 295 next = p4d_addr_end(addr, end); 296 if (p4d_none_or_clear_bad(p4d)) 297 continue; 298 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 299 } while (p4d++, addr = next, addr != end); 300 301 start &= PGDIR_MASK; 302 if (start < floor) 303 return; 304 if (ceiling) { 305 ceiling &= PGDIR_MASK; 306 if (!ceiling) 307 return; 308 } 309 if (end - 1 > ceiling - 1) 310 return; 311 312 p4d = p4d_offset(pgd, start); 313 pgd_clear(pgd); 314 p4d_free_tlb(tlb, p4d, start); 315 } 316 317 /* 318 * This function frees user-level page tables of a process. 319 */ 320 void free_pgd_range(struct mmu_gather *tlb, 321 unsigned long addr, unsigned long end, 322 unsigned long floor, unsigned long ceiling) 323 { 324 pgd_t *pgd; 325 unsigned long next; 326 327 /* 328 * The next few lines have given us lots of grief... 329 * 330 * Why are we testing PMD* at this top level? Because often 331 * there will be no work to do at all, and we'd prefer not to 332 * go all the way down to the bottom just to discover that. 333 * 334 * Why all these "- 1"s? Because 0 represents both the bottom 335 * of the address space and the top of it (using -1 for the 336 * top wouldn't help much: the masks would do the wrong thing). 337 * The rule is that addr 0 and floor 0 refer to the bottom of 338 * the address space, but end 0 and ceiling 0 refer to the top 339 * Comparisons need to use "end - 1" and "ceiling - 1" (though 340 * that end 0 case should be mythical). 341 * 342 * Wherever addr is brought up or ceiling brought down, we must 343 * be careful to reject "the opposite 0" before it confuses the 344 * subsequent tests. But what about where end is brought down 345 * by PMD_SIZE below? no, end can't go down to 0 there. 346 * 347 * Whereas we round start (addr) and ceiling down, by different 348 * masks at different levels, in order to test whether a table 349 * now has no other vmas using it, so can be freed, we don't 350 * bother to round floor or end up - the tests don't need that. 351 */ 352 353 addr &= PMD_MASK; 354 if (addr < floor) { 355 addr += PMD_SIZE; 356 if (!addr) 357 return; 358 } 359 if (ceiling) { 360 ceiling &= PMD_MASK; 361 if (!ceiling) 362 return; 363 } 364 if (end - 1 > ceiling - 1) 365 end -= PMD_SIZE; 366 if (addr > end - 1) 367 return; 368 /* 369 * We add page table cache pages with PAGE_SIZE, 370 * (see pte_free_tlb()), flush the tlb if we need 371 */ 372 tlb_change_page_size(tlb, PAGE_SIZE); 373 pgd = pgd_offset(tlb->mm, addr); 374 do { 375 next = pgd_addr_end(addr, end); 376 if (pgd_none_or_clear_bad(pgd)) 377 continue; 378 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 379 } while (pgd++, addr = next, addr != end); 380 } 381 382 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 383 unsigned long floor, unsigned long ceiling) 384 { 385 while (vma) { 386 struct vm_area_struct *next = vma->vm_next; 387 unsigned long addr = vma->vm_start; 388 389 /* 390 * Hide vma from rmap and truncate_pagecache before freeing 391 * pgtables 392 */ 393 unlink_anon_vmas(vma); 394 unlink_file_vma(vma); 395 396 if (is_vm_hugetlb_page(vma)) { 397 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 398 floor, next ? next->vm_start : ceiling); 399 } else { 400 /* 401 * Optimization: gather nearby vmas into one call down 402 */ 403 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 404 && !is_vm_hugetlb_page(next)) { 405 vma = next; 406 next = vma->vm_next; 407 unlink_anon_vmas(vma); 408 unlink_file_vma(vma); 409 } 410 free_pgd_range(tlb, addr, vma->vm_end, 411 floor, next ? next->vm_start : ceiling); 412 } 413 vma = next; 414 } 415 } 416 417 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 418 { 419 spinlock_t *ptl; 420 pgtable_t new = pte_alloc_one(mm); 421 if (!new) 422 return -ENOMEM; 423 424 /* 425 * Ensure all pte setup (eg. pte page lock and page clearing) are 426 * visible before the pte is made visible to other CPUs by being 427 * put into page tables. 428 * 429 * The other side of the story is the pointer chasing in the page 430 * table walking code (when walking the page table without locking; 431 * ie. most of the time). Fortunately, these data accesses consist 432 * of a chain of data-dependent loads, meaning most CPUs (alpha 433 * being the notable exception) will already guarantee loads are 434 * seen in-order. See the alpha page table accessors for the 435 * smp_read_barrier_depends() barriers in page table walking code. 436 */ 437 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 438 439 ptl = pmd_lock(mm, pmd); 440 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 441 mm_inc_nr_ptes(mm); 442 pmd_populate(mm, pmd, new); 443 new = NULL; 444 } 445 spin_unlock(ptl); 446 if (new) 447 pte_free(mm, new); 448 return 0; 449 } 450 451 int __pte_alloc_kernel(pmd_t *pmd) 452 { 453 pte_t *new = pte_alloc_one_kernel(&init_mm); 454 if (!new) 455 return -ENOMEM; 456 457 smp_wmb(); /* See comment in __pte_alloc */ 458 459 spin_lock(&init_mm.page_table_lock); 460 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 461 pmd_populate_kernel(&init_mm, pmd, new); 462 new = NULL; 463 } 464 spin_unlock(&init_mm.page_table_lock); 465 if (new) 466 pte_free_kernel(&init_mm, new); 467 return 0; 468 } 469 470 static inline void init_rss_vec(int *rss) 471 { 472 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 473 } 474 475 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 476 { 477 int i; 478 479 if (current->mm == mm) 480 sync_mm_rss(mm); 481 for (i = 0; i < NR_MM_COUNTERS; i++) 482 if (rss[i]) 483 add_mm_counter(mm, i, rss[i]); 484 } 485 486 /* 487 * This function is called to print an error when a bad pte 488 * is found. For example, we might have a PFN-mapped pte in 489 * a region that doesn't allow it. 490 * 491 * The calling function must still handle the error. 492 */ 493 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 494 pte_t pte, struct page *page) 495 { 496 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 497 p4d_t *p4d = p4d_offset(pgd, addr); 498 pud_t *pud = pud_offset(p4d, addr); 499 pmd_t *pmd = pmd_offset(pud, addr); 500 struct address_space *mapping; 501 pgoff_t index; 502 static unsigned long resume; 503 static unsigned long nr_shown; 504 static unsigned long nr_unshown; 505 506 /* 507 * Allow a burst of 60 reports, then keep quiet for that minute; 508 * or allow a steady drip of one report per second. 509 */ 510 if (nr_shown == 60) { 511 if (time_before(jiffies, resume)) { 512 nr_unshown++; 513 return; 514 } 515 if (nr_unshown) { 516 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 517 nr_unshown); 518 nr_unshown = 0; 519 } 520 nr_shown = 0; 521 } 522 if (nr_shown++ == 0) 523 resume = jiffies + 60 * HZ; 524 525 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 526 index = linear_page_index(vma, addr); 527 528 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 529 current->comm, 530 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 531 if (page) 532 dump_page(page, "bad pte"); 533 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 534 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 535 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 536 vma->vm_file, 537 vma->vm_ops ? vma->vm_ops->fault : NULL, 538 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 539 mapping ? mapping->a_ops->readpage : NULL); 540 dump_stack(); 541 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 542 } 543 544 /* 545 * vm_normal_page -- This function gets the "struct page" associated with a pte. 546 * 547 * "Special" mappings do not wish to be associated with a "struct page" (either 548 * it doesn't exist, or it exists but they don't want to touch it). In this 549 * case, NULL is returned here. "Normal" mappings do have a struct page. 550 * 551 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 552 * pte bit, in which case this function is trivial. Secondly, an architecture 553 * may not have a spare pte bit, which requires a more complicated scheme, 554 * described below. 555 * 556 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 557 * special mapping (even if there are underlying and valid "struct pages"). 558 * COWed pages of a VM_PFNMAP are always normal. 559 * 560 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 561 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 562 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 563 * mapping will always honor the rule 564 * 565 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 566 * 567 * And for normal mappings this is false. 568 * 569 * This restricts such mappings to be a linear translation from virtual address 570 * to pfn. To get around this restriction, we allow arbitrary mappings so long 571 * as the vma is not a COW mapping; in that case, we know that all ptes are 572 * special (because none can have been COWed). 573 * 574 * 575 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 576 * 577 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 578 * page" backing, however the difference is that _all_ pages with a struct 579 * page (that is, those where pfn_valid is true) are refcounted and considered 580 * normal pages by the VM. The disadvantage is that pages are refcounted 581 * (which can be slower and simply not an option for some PFNMAP users). The 582 * advantage is that we don't have to follow the strict linearity rule of 583 * PFNMAP mappings in order to support COWable mappings. 584 * 585 */ 586 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 587 pte_t pte) 588 { 589 unsigned long pfn = pte_pfn(pte); 590 591 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 592 if (likely(!pte_special(pte))) 593 goto check_pfn; 594 if (vma->vm_ops && vma->vm_ops->find_special_page) 595 return vma->vm_ops->find_special_page(vma, addr); 596 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 597 return NULL; 598 if (is_zero_pfn(pfn)) 599 return NULL; 600 if (pte_devmap(pte)) 601 return NULL; 602 603 print_bad_pte(vma, addr, pte, NULL); 604 return NULL; 605 } 606 607 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 608 609 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 610 if (vma->vm_flags & VM_MIXEDMAP) { 611 if (!pfn_valid(pfn)) 612 return NULL; 613 goto out; 614 } else { 615 unsigned long off; 616 off = (addr - vma->vm_start) >> PAGE_SHIFT; 617 if (pfn == vma->vm_pgoff + off) 618 return NULL; 619 if (!is_cow_mapping(vma->vm_flags)) 620 return NULL; 621 } 622 } 623 624 if (is_zero_pfn(pfn)) 625 return NULL; 626 627 check_pfn: 628 if (unlikely(pfn > highest_memmap_pfn)) { 629 print_bad_pte(vma, addr, pte, NULL); 630 return NULL; 631 } 632 633 /* 634 * NOTE! We still have PageReserved() pages in the page tables. 635 * eg. VDSO mappings can cause them to exist. 636 */ 637 out: 638 return pfn_to_page(pfn); 639 } 640 641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 642 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 643 pmd_t pmd) 644 { 645 unsigned long pfn = pmd_pfn(pmd); 646 647 /* 648 * There is no pmd_special() but there may be special pmds, e.g. 649 * in a direct-access (dax) mapping, so let's just replicate the 650 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 651 */ 652 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 653 if (vma->vm_flags & VM_MIXEDMAP) { 654 if (!pfn_valid(pfn)) 655 return NULL; 656 goto out; 657 } else { 658 unsigned long off; 659 off = (addr - vma->vm_start) >> PAGE_SHIFT; 660 if (pfn == vma->vm_pgoff + off) 661 return NULL; 662 if (!is_cow_mapping(vma->vm_flags)) 663 return NULL; 664 } 665 } 666 667 if (pmd_devmap(pmd)) 668 return NULL; 669 if (is_zero_pfn(pfn)) 670 return NULL; 671 if (unlikely(pfn > highest_memmap_pfn)) 672 return NULL; 673 674 /* 675 * NOTE! We still have PageReserved() pages in the page tables. 676 * eg. VDSO mappings can cause them to exist. 677 */ 678 out: 679 return pfn_to_page(pfn); 680 } 681 #endif 682 683 /* 684 * copy one vm_area from one task to the other. Assumes the page tables 685 * already present in the new task to be cleared in the whole range 686 * covered by this vma. 687 */ 688 689 static inline unsigned long 690 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 691 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 692 unsigned long addr, int *rss) 693 { 694 unsigned long vm_flags = vma->vm_flags; 695 pte_t pte = *src_pte; 696 struct page *page; 697 698 /* pte contains position in swap or file, so copy. */ 699 if (unlikely(!pte_present(pte))) { 700 swp_entry_t entry = pte_to_swp_entry(pte); 701 702 if (likely(!non_swap_entry(entry))) { 703 if (swap_duplicate(entry) < 0) 704 return entry.val; 705 706 /* make sure dst_mm is on swapoff's mmlist. */ 707 if (unlikely(list_empty(&dst_mm->mmlist))) { 708 spin_lock(&mmlist_lock); 709 if (list_empty(&dst_mm->mmlist)) 710 list_add(&dst_mm->mmlist, 711 &src_mm->mmlist); 712 spin_unlock(&mmlist_lock); 713 } 714 rss[MM_SWAPENTS]++; 715 } else if (is_migration_entry(entry)) { 716 page = migration_entry_to_page(entry); 717 718 rss[mm_counter(page)]++; 719 720 if (is_write_migration_entry(entry) && 721 is_cow_mapping(vm_flags)) { 722 /* 723 * COW mappings require pages in both 724 * parent and child to be set to read. 725 */ 726 make_migration_entry_read(&entry); 727 pte = swp_entry_to_pte(entry); 728 if (pte_swp_soft_dirty(*src_pte)) 729 pte = pte_swp_mksoft_dirty(pte); 730 set_pte_at(src_mm, addr, src_pte, pte); 731 } 732 } else if (is_device_private_entry(entry)) { 733 page = device_private_entry_to_page(entry); 734 735 /* 736 * Update rss count even for unaddressable pages, as 737 * they should treated just like normal pages in this 738 * respect. 739 * 740 * We will likely want to have some new rss counters 741 * for unaddressable pages, at some point. But for now 742 * keep things as they are. 743 */ 744 get_page(page); 745 rss[mm_counter(page)]++; 746 page_dup_rmap(page, false); 747 748 /* 749 * We do not preserve soft-dirty information, because so 750 * far, checkpoint/restore is the only feature that 751 * requires that. And checkpoint/restore does not work 752 * when a device driver is involved (you cannot easily 753 * save and restore device driver state). 754 */ 755 if (is_write_device_private_entry(entry) && 756 is_cow_mapping(vm_flags)) { 757 make_device_private_entry_read(&entry); 758 pte = swp_entry_to_pte(entry); 759 set_pte_at(src_mm, addr, src_pte, pte); 760 } 761 } 762 goto out_set_pte; 763 } 764 765 /* 766 * If it's a COW mapping, write protect it both 767 * in the parent and the child 768 */ 769 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 770 ptep_set_wrprotect(src_mm, addr, src_pte); 771 pte = pte_wrprotect(pte); 772 } 773 774 /* 775 * If it's a shared mapping, mark it clean in 776 * the child 777 */ 778 if (vm_flags & VM_SHARED) 779 pte = pte_mkclean(pte); 780 pte = pte_mkold(pte); 781 782 page = vm_normal_page(vma, addr, pte); 783 if (page) { 784 get_page(page); 785 page_dup_rmap(page, false); 786 rss[mm_counter(page)]++; 787 } else if (pte_devmap(pte)) { 788 page = pte_page(pte); 789 } 790 791 out_set_pte: 792 set_pte_at(dst_mm, addr, dst_pte, pte); 793 return 0; 794 } 795 796 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 797 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 798 unsigned long addr, unsigned long end) 799 { 800 pte_t *orig_src_pte, *orig_dst_pte; 801 pte_t *src_pte, *dst_pte; 802 spinlock_t *src_ptl, *dst_ptl; 803 int progress = 0; 804 int rss[NR_MM_COUNTERS]; 805 swp_entry_t entry = (swp_entry_t){0}; 806 807 again: 808 init_rss_vec(rss); 809 810 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 811 if (!dst_pte) 812 return -ENOMEM; 813 src_pte = pte_offset_map(src_pmd, addr); 814 src_ptl = pte_lockptr(src_mm, src_pmd); 815 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 816 orig_src_pte = src_pte; 817 orig_dst_pte = dst_pte; 818 arch_enter_lazy_mmu_mode(); 819 820 do { 821 /* 822 * We are holding two locks at this point - either of them 823 * could generate latencies in another task on another CPU. 824 */ 825 if (progress >= 32) { 826 progress = 0; 827 if (need_resched() || 828 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 829 break; 830 } 831 if (pte_none(*src_pte)) { 832 progress++; 833 continue; 834 } 835 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 836 vma, addr, rss); 837 if (entry.val) 838 break; 839 progress += 8; 840 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 841 842 arch_leave_lazy_mmu_mode(); 843 spin_unlock(src_ptl); 844 pte_unmap(orig_src_pte); 845 add_mm_rss_vec(dst_mm, rss); 846 pte_unmap_unlock(orig_dst_pte, dst_ptl); 847 cond_resched(); 848 849 if (entry.val) { 850 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 851 return -ENOMEM; 852 progress = 0; 853 } 854 if (addr != end) 855 goto again; 856 return 0; 857 } 858 859 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 860 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 861 unsigned long addr, unsigned long end) 862 { 863 pmd_t *src_pmd, *dst_pmd; 864 unsigned long next; 865 866 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 867 if (!dst_pmd) 868 return -ENOMEM; 869 src_pmd = pmd_offset(src_pud, addr); 870 do { 871 next = pmd_addr_end(addr, end); 872 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 873 || pmd_devmap(*src_pmd)) { 874 int err; 875 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 876 err = copy_huge_pmd(dst_mm, src_mm, 877 dst_pmd, src_pmd, addr, vma); 878 if (err == -ENOMEM) 879 return -ENOMEM; 880 if (!err) 881 continue; 882 /* fall through */ 883 } 884 if (pmd_none_or_clear_bad(src_pmd)) 885 continue; 886 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 887 vma, addr, next)) 888 return -ENOMEM; 889 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 890 return 0; 891 } 892 893 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 894 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 895 unsigned long addr, unsigned long end) 896 { 897 pud_t *src_pud, *dst_pud; 898 unsigned long next; 899 900 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 901 if (!dst_pud) 902 return -ENOMEM; 903 src_pud = pud_offset(src_p4d, addr); 904 do { 905 next = pud_addr_end(addr, end); 906 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 907 int err; 908 909 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 910 err = copy_huge_pud(dst_mm, src_mm, 911 dst_pud, src_pud, addr, vma); 912 if (err == -ENOMEM) 913 return -ENOMEM; 914 if (!err) 915 continue; 916 /* fall through */ 917 } 918 if (pud_none_or_clear_bad(src_pud)) 919 continue; 920 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 921 vma, addr, next)) 922 return -ENOMEM; 923 } while (dst_pud++, src_pud++, addr = next, addr != end); 924 return 0; 925 } 926 927 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 928 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 929 unsigned long addr, unsigned long end) 930 { 931 p4d_t *src_p4d, *dst_p4d; 932 unsigned long next; 933 934 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 935 if (!dst_p4d) 936 return -ENOMEM; 937 src_p4d = p4d_offset(src_pgd, addr); 938 do { 939 next = p4d_addr_end(addr, end); 940 if (p4d_none_or_clear_bad(src_p4d)) 941 continue; 942 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 943 vma, addr, next)) 944 return -ENOMEM; 945 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 946 return 0; 947 } 948 949 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 950 struct vm_area_struct *vma) 951 { 952 pgd_t *src_pgd, *dst_pgd; 953 unsigned long next; 954 unsigned long addr = vma->vm_start; 955 unsigned long end = vma->vm_end; 956 struct mmu_notifier_range range; 957 bool is_cow; 958 int ret; 959 960 /* 961 * Don't copy ptes where a page fault will fill them correctly. 962 * Fork becomes much lighter when there are big shared or private 963 * readonly mappings. The tradeoff is that copy_page_range is more 964 * efficient than faulting. 965 */ 966 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 967 !vma->anon_vma) 968 return 0; 969 970 if (is_vm_hugetlb_page(vma)) 971 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 972 973 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 974 /* 975 * We do not free on error cases below as remove_vma 976 * gets called on error from higher level routine 977 */ 978 ret = track_pfn_copy(vma); 979 if (ret) 980 return ret; 981 } 982 983 /* 984 * We need to invalidate the secondary MMU mappings only when 985 * there could be a permission downgrade on the ptes of the 986 * parent mm. And a permission downgrade will only happen if 987 * is_cow_mapping() returns true. 988 */ 989 is_cow = is_cow_mapping(vma->vm_flags); 990 991 if (is_cow) { 992 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 993 0, vma, src_mm, addr, end); 994 mmu_notifier_invalidate_range_start(&range); 995 } 996 997 ret = 0; 998 dst_pgd = pgd_offset(dst_mm, addr); 999 src_pgd = pgd_offset(src_mm, addr); 1000 do { 1001 next = pgd_addr_end(addr, end); 1002 if (pgd_none_or_clear_bad(src_pgd)) 1003 continue; 1004 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1005 vma, addr, next))) { 1006 ret = -ENOMEM; 1007 break; 1008 } 1009 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1010 1011 if (is_cow) 1012 mmu_notifier_invalidate_range_end(&range); 1013 return ret; 1014 } 1015 1016 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1017 struct vm_area_struct *vma, pmd_t *pmd, 1018 unsigned long addr, unsigned long end, 1019 struct zap_details *details) 1020 { 1021 struct mm_struct *mm = tlb->mm; 1022 int force_flush = 0; 1023 int rss[NR_MM_COUNTERS]; 1024 spinlock_t *ptl; 1025 pte_t *start_pte; 1026 pte_t *pte; 1027 swp_entry_t entry; 1028 1029 tlb_change_page_size(tlb, PAGE_SIZE); 1030 again: 1031 init_rss_vec(rss); 1032 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1033 pte = start_pte; 1034 flush_tlb_batched_pending(mm); 1035 arch_enter_lazy_mmu_mode(); 1036 do { 1037 pte_t ptent = *pte; 1038 if (pte_none(ptent)) 1039 continue; 1040 1041 if (need_resched()) 1042 break; 1043 1044 if (pte_present(ptent)) { 1045 struct page *page; 1046 1047 page = vm_normal_page(vma, addr, ptent); 1048 if (unlikely(details) && page) { 1049 /* 1050 * unmap_shared_mapping_pages() wants to 1051 * invalidate cache without truncating: 1052 * unmap shared but keep private pages. 1053 */ 1054 if (details->check_mapping && 1055 details->check_mapping != page_rmapping(page)) 1056 continue; 1057 } 1058 ptent = ptep_get_and_clear_full(mm, addr, pte, 1059 tlb->fullmm); 1060 tlb_remove_tlb_entry(tlb, pte, addr); 1061 if (unlikely(!page)) 1062 continue; 1063 1064 if (!PageAnon(page)) { 1065 if (pte_dirty(ptent)) { 1066 force_flush = 1; 1067 set_page_dirty(page); 1068 } 1069 if (pte_young(ptent) && 1070 likely(!(vma->vm_flags & VM_SEQ_READ))) 1071 mark_page_accessed(page); 1072 } 1073 rss[mm_counter(page)]--; 1074 page_remove_rmap(page, false); 1075 if (unlikely(page_mapcount(page) < 0)) 1076 print_bad_pte(vma, addr, ptent, page); 1077 if (unlikely(__tlb_remove_page(tlb, page))) { 1078 force_flush = 1; 1079 addr += PAGE_SIZE; 1080 break; 1081 } 1082 continue; 1083 } 1084 1085 entry = pte_to_swp_entry(ptent); 1086 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1087 struct page *page = device_private_entry_to_page(entry); 1088 1089 if (unlikely(details && details->check_mapping)) { 1090 /* 1091 * unmap_shared_mapping_pages() wants to 1092 * invalidate cache without truncating: 1093 * unmap shared but keep private pages. 1094 */ 1095 if (details->check_mapping != 1096 page_rmapping(page)) 1097 continue; 1098 } 1099 1100 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1101 rss[mm_counter(page)]--; 1102 page_remove_rmap(page, false); 1103 put_page(page); 1104 continue; 1105 } 1106 1107 /* If details->check_mapping, we leave swap entries. */ 1108 if (unlikely(details)) 1109 continue; 1110 1111 if (!non_swap_entry(entry)) 1112 rss[MM_SWAPENTS]--; 1113 else if (is_migration_entry(entry)) { 1114 struct page *page; 1115 1116 page = migration_entry_to_page(entry); 1117 rss[mm_counter(page)]--; 1118 } 1119 if (unlikely(!free_swap_and_cache(entry))) 1120 print_bad_pte(vma, addr, ptent, NULL); 1121 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1122 } while (pte++, addr += PAGE_SIZE, addr != end); 1123 1124 add_mm_rss_vec(mm, rss); 1125 arch_leave_lazy_mmu_mode(); 1126 1127 /* Do the actual TLB flush before dropping ptl */ 1128 if (force_flush) 1129 tlb_flush_mmu_tlbonly(tlb); 1130 pte_unmap_unlock(start_pte, ptl); 1131 1132 /* 1133 * If we forced a TLB flush (either due to running out of 1134 * batch buffers or because we needed to flush dirty TLB 1135 * entries before releasing the ptl), free the batched 1136 * memory too. Restart if we didn't do everything. 1137 */ 1138 if (force_flush) { 1139 force_flush = 0; 1140 tlb_flush_mmu(tlb); 1141 } 1142 1143 if (addr != end) { 1144 cond_resched(); 1145 goto again; 1146 } 1147 1148 return addr; 1149 } 1150 1151 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1152 struct vm_area_struct *vma, pud_t *pud, 1153 unsigned long addr, unsigned long end, 1154 struct zap_details *details) 1155 { 1156 pmd_t *pmd; 1157 unsigned long next; 1158 1159 pmd = pmd_offset(pud, addr); 1160 do { 1161 next = pmd_addr_end(addr, end); 1162 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1163 if (next - addr != HPAGE_PMD_SIZE) 1164 __split_huge_pmd(vma, pmd, addr, false, NULL); 1165 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1166 goto next; 1167 /* fall through */ 1168 } 1169 /* 1170 * Here there can be other concurrent MADV_DONTNEED or 1171 * trans huge page faults running, and if the pmd is 1172 * none or trans huge it can change under us. This is 1173 * because MADV_DONTNEED holds the mmap_sem in read 1174 * mode. 1175 */ 1176 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1177 goto next; 1178 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1179 next: 1180 cond_resched(); 1181 } while (pmd++, addr = next, addr != end); 1182 1183 return addr; 1184 } 1185 1186 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1187 struct vm_area_struct *vma, p4d_t *p4d, 1188 unsigned long addr, unsigned long end, 1189 struct zap_details *details) 1190 { 1191 pud_t *pud; 1192 unsigned long next; 1193 1194 pud = pud_offset(p4d, addr); 1195 do { 1196 next = pud_addr_end(addr, end); 1197 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1198 if (next - addr != HPAGE_PUD_SIZE) { 1199 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1200 split_huge_pud(vma, pud, addr); 1201 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1202 goto next; 1203 /* fall through */ 1204 } 1205 if (pud_none_or_clear_bad(pud)) 1206 continue; 1207 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1208 next: 1209 cond_resched(); 1210 } while (pud++, addr = next, addr != end); 1211 1212 return addr; 1213 } 1214 1215 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1216 struct vm_area_struct *vma, pgd_t *pgd, 1217 unsigned long addr, unsigned long end, 1218 struct zap_details *details) 1219 { 1220 p4d_t *p4d; 1221 unsigned long next; 1222 1223 p4d = p4d_offset(pgd, addr); 1224 do { 1225 next = p4d_addr_end(addr, end); 1226 if (p4d_none_or_clear_bad(p4d)) 1227 continue; 1228 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1229 } while (p4d++, addr = next, addr != end); 1230 1231 return addr; 1232 } 1233 1234 void unmap_page_range(struct mmu_gather *tlb, 1235 struct vm_area_struct *vma, 1236 unsigned long addr, unsigned long end, 1237 struct zap_details *details) 1238 { 1239 pgd_t *pgd; 1240 unsigned long next; 1241 1242 BUG_ON(addr >= end); 1243 tlb_start_vma(tlb, vma); 1244 pgd = pgd_offset(vma->vm_mm, addr); 1245 do { 1246 next = pgd_addr_end(addr, end); 1247 if (pgd_none_or_clear_bad(pgd)) 1248 continue; 1249 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1250 } while (pgd++, addr = next, addr != end); 1251 tlb_end_vma(tlb, vma); 1252 } 1253 1254 1255 static void unmap_single_vma(struct mmu_gather *tlb, 1256 struct vm_area_struct *vma, unsigned long start_addr, 1257 unsigned long end_addr, 1258 struct zap_details *details) 1259 { 1260 unsigned long start = max(vma->vm_start, start_addr); 1261 unsigned long end; 1262 1263 if (start >= vma->vm_end) 1264 return; 1265 end = min(vma->vm_end, end_addr); 1266 if (end <= vma->vm_start) 1267 return; 1268 1269 if (vma->vm_file) 1270 uprobe_munmap(vma, start, end); 1271 1272 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1273 untrack_pfn(vma, 0, 0); 1274 1275 if (start != end) { 1276 if (unlikely(is_vm_hugetlb_page(vma))) { 1277 /* 1278 * It is undesirable to test vma->vm_file as it 1279 * should be non-null for valid hugetlb area. 1280 * However, vm_file will be NULL in the error 1281 * cleanup path of mmap_region. When 1282 * hugetlbfs ->mmap method fails, 1283 * mmap_region() nullifies vma->vm_file 1284 * before calling this function to clean up. 1285 * Since no pte has actually been setup, it is 1286 * safe to do nothing in this case. 1287 */ 1288 if (vma->vm_file) { 1289 i_mmap_lock_write(vma->vm_file->f_mapping); 1290 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1291 i_mmap_unlock_write(vma->vm_file->f_mapping); 1292 } 1293 } else 1294 unmap_page_range(tlb, vma, start, end, details); 1295 } 1296 } 1297 1298 /** 1299 * unmap_vmas - unmap a range of memory covered by a list of vma's 1300 * @tlb: address of the caller's struct mmu_gather 1301 * @vma: the starting vma 1302 * @start_addr: virtual address at which to start unmapping 1303 * @end_addr: virtual address at which to end unmapping 1304 * 1305 * Unmap all pages in the vma list. 1306 * 1307 * Only addresses between `start' and `end' will be unmapped. 1308 * 1309 * The VMA list must be sorted in ascending virtual address order. 1310 * 1311 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1312 * range after unmap_vmas() returns. So the only responsibility here is to 1313 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1314 * drops the lock and schedules. 1315 */ 1316 void unmap_vmas(struct mmu_gather *tlb, 1317 struct vm_area_struct *vma, unsigned long start_addr, 1318 unsigned long end_addr) 1319 { 1320 struct mmu_notifier_range range; 1321 1322 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1323 start_addr, end_addr); 1324 mmu_notifier_invalidate_range_start(&range); 1325 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1326 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1327 mmu_notifier_invalidate_range_end(&range); 1328 } 1329 1330 /** 1331 * zap_page_range - remove user pages in a given range 1332 * @vma: vm_area_struct holding the applicable pages 1333 * @start: starting address of pages to zap 1334 * @size: number of bytes to zap 1335 * 1336 * Caller must protect the VMA list 1337 */ 1338 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1339 unsigned long size) 1340 { 1341 struct mmu_notifier_range range; 1342 struct mmu_gather tlb; 1343 1344 lru_add_drain(); 1345 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1346 start, start + size); 1347 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1348 update_hiwater_rss(vma->vm_mm); 1349 mmu_notifier_invalidate_range_start(&range); 1350 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1351 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1352 mmu_notifier_invalidate_range_end(&range); 1353 tlb_finish_mmu(&tlb, start, range.end); 1354 } 1355 1356 /** 1357 * zap_page_range_single - remove user pages in a given range 1358 * @vma: vm_area_struct holding the applicable pages 1359 * @address: starting address of pages to zap 1360 * @size: number of bytes to zap 1361 * @details: details of shared cache invalidation 1362 * 1363 * The range must fit into one VMA. 1364 */ 1365 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1366 unsigned long size, struct zap_details *details) 1367 { 1368 struct mmu_notifier_range range; 1369 struct mmu_gather tlb; 1370 1371 lru_add_drain(); 1372 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1373 address, address + size); 1374 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1375 update_hiwater_rss(vma->vm_mm); 1376 mmu_notifier_invalidate_range_start(&range); 1377 unmap_single_vma(&tlb, vma, address, range.end, details); 1378 mmu_notifier_invalidate_range_end(&range); 1379 tlb_finish_mmu(&tlb, address, range.end); 1380 } 1381 1382 /** 1383 * zap_vma_ptes - remove ptes mapping the vma 1384 * @vma: vm_area_struct holding ptes to be zapped 1385 * @address: starting address of pages to zap 1386 * @size: number of bytes to zap 1387 * 1388 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1389 * 1390 * The entire address range must be fully contained within the vma. 1391 * 1392 */ 1393 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1394 unsigned long size) 1395 { 1396 if (address < vma->vm_start || address + size > vma->vm_end || 1397 !(vma->vm_flags & VM_PFNMAP)) 1398 return; 1399 1400 zap_page_range_single(vma, address, size, NULL); 1401 } 1402 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1403 1404 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1405 spinlock_t **ptl) 1406 { 1407 pgd_t *pgd; 1408 p4d_t *p4d; 1409 pud_t *pud; 1410 pmd_t *pmd; 1411 1412 pgd = pgd_offset(mm, addr); 1413 p4d = p4d_alloc(mm, pgd, addr); 1414 if (!p4d) 1415 return NULL; 1416 pud = pud_alloc(mm, p4d, addr); 1417 if (!pud) 1418 return NULL; 1419 pmd = pmd_alloc(mm, pud, addr); 1420 if (!pmd) 1421 return NULL; 1422 1423 VM_BUG_ON(pmd_trans_huge(*pmd)); 1424 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1425 } 1426 1427 /* 1428 * This is the old fallback for page remapping. 1429 * 1430 * For historical reasons, it only allows reserved pages. Only 1431 * old drivers should use this, and they needed to mark their 1432 * pages reserved for the old functions anyway. 1433 */ 1434 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1435 struct page *page, pgprot_t prot) 1436 { 1437 struct mm_struct *mm = vma->vm_mm; 1438 int retval; 1439 pte_t *pte; 1440 spinlock_t *ptl; 1441 1442 retval = -EINVAL; 1443 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1444 goto out; 1445 retval = -ENOMEM; 1446 flush_dcache_page(page); 1447 pte = get_locked_pte(mm, addr, &ptl); 1448 if (!pte) 1449 goto out; 1450 retval = -EBUSY; 1451 if (!pte_none(*pte)) 1452 goto out_unlock; 1453 1454 /* Ok, finally just insert the thing.. */ 1455 get_page(page); 1456 inc_mm_counter_fast(mm, mm_counter_file(page)); 1457 page_add_file_rmap(page, false); 1458 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1459 1460 retval = 0; 1461 out_unlock: 1462 pte_unmap_unlock(pte, ptl); 1463 out: 1464 return retval; 1465 } 1466 1467 /** 1468 * vm_insert_page - insert single page into user vma 1469 * @vma: user vma to map to 1470 * @addr: target user address of this page 1471 * @page: source kernel page 1472 * 1473 * This allows drivers to insert individual pages they've allocated 1474 * into a user vma. 1475 * 1476 * The page has to be a nice clean _individual_ kernel allocation. 1477 * If you allocate a compound page, you need to have marked it as 1478 * such (__GFP_COMP), or manually just split the page up yourself 1479 * (see split_page()). 1480 * 1481 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1482 * took an arbitrary page protection parameter. This doesn't allow 1483 * that. Your vma protection will have to be set up correctly, which 1484 * means that if you want a shared writable mapping, you'd better 1485 * ask for a shared writable mapping! 1486 * 1487 * The page does not need to be reserved. 1488 * 1489 * Usually this function is called from f_op->mmap() handler 1490 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1491 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1492 * function from other places, for example from page-fault handler. 1493 * 1494 * Return: %0 on success, negative error code otherwise. 1495 */ 1496 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1497 struct page *page) 1498 { 1499 if (addr < vma->vm_start || addr >= vma->vm_end) 1500 return -EFAULT; 1501 if (!page_count(page)) 1502 return -EINVAL; 1503 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1504 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1505 BUG_ON(vma->vm_flags & VM_PFNMAP); 1506 vma->vm_flags |= VM_MIXEDMAP; 1507 } 1508 return insert_page(vma, addr, page, vma->vm_page_prot); 1509 } 1510 EXPORT_SYMBOL(vm_insert_page); 1511 1512 /* 1513 * __vm_map_pages - maps range of kernel pages into user vma 1514 * @vma: user vma to map to 1515 * @pages: pointer to array of source kernel pages 1516 * @num: number of pages in page array 1517 * @offset: user's requested vm_pgoff 1518 * 1519 * This allows drivers to map range of kernel pages into a user vma. 1520 * 1521 * Return: 0 on success and error code otherwise. 1522 */ 1523 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1524 unsigned long num, unsigned long offset) 1525 { 1526 unsigned long count = vma_pages(vma); 1527 unsigned long uaddr = vma->vm_start; 1528 int ret, i; 1529 1530 /* Fail if the user requested offset is beyond the end of the object */ 1531 if (offset >= num) 1532 return -ENXIO; 1533 1534 /* Fail if the user requested size exceeds available object size */ 1535 if (count > num - offset) 1536 return -ENXIO; 1537 1538 for (i = 0; i < count; i++) { 1539 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1540 if (ret < 0) 1541 return ret; 1542 uaddr += PAGE_SIZE; 1543 } 1544 1545 return 0; 1546 } 1547 1548 /** 1549 * vm_map_pages - maps range of kernel pages starts with non zero offset 1550 * @vma: user vma to map to 1551 * @pages: pointer to array of source kernel pages 1552 * @num: number of pages in page array 1553 * 1554 * Maps an object consisting of @num pages, catering for the user's 1555 * requested vm_pgoff 1556 * 1557 * If we fail to insert any page into the vma, the function will return 1558 * immediately leaving any previously inserted pages present. Callers 1559 * from the mmap handler may immediately return the error as their caller 1560 * will destroy the vma, removing any successfully inserted pages. Other 1561 * callers should make their own arrangements for calling unmap_region(). 1562 * 1563 * Context: Process context. Called by mmap handlers. 1564 * Return: 0 on success and error code otherwise. 1565 */ 1566 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1567 unsigned long num) 1568 { 1569 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1570 } 1571 EXPORT_SYMBOL(vm_map_pages); 1572 1573 /** 1574 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1575 * @vma: user vma to map to 1576 * @pages: pointer to array of source kernel pages 1577 * @num: number of pages in page array 1578 * 1579 * Similar to vm_map_pages(), except that it explicitly sets the offset 1580 * to 0. This function is intended for the drivers that did not consider 1581 * vm_pgoff. 1582 * 1583 * Context: Process context. Called by mmap handlers. 1584 * Return: 0 on success and error code otherwise. 1585 */ 1586 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1587 unsigned long num) 1588 { 1589 return __vm_map_pages(vma, pages, num, 0); 1590 } 1591 EXPORT_SYMBOL(vm_map_pages_zero); 1592 1593 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1594 pfn_t pfn, pgprot_t prot, bool mkwrite) 1595 { 1596 struct mm_struct *mm = vma->vm_mm; 1597 pte_t *pte, entry; 1598 spinlock_t *ptl; 1599 1600 pte = get_locked_pte(mm, addr, &ptl); 1601 if (!pte) 1602 return VM_FAULT_OOM; 1603 if (!pte_none(*pte)) { 1604 if (mkwrite) { 1605 /* 1606 * For read faults on private mappings the PFN passed 1607 * in may not match the PFN we have mapped if the 1608 * mapped PFN is a writeable COW page. In the mkwrite 1609 * case we are creating a writable PTE for a shared 1610 * mapping and we expect the PFNs to match. If they 1611 * don't match, we are likely racing with block 1612 * allocation and mapping invalidation so just skip the 1613 * update. 1614 */ 1615 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1616 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1617 goto out_unlock; 1618 } 1619 entry = pte_mkyoung(*pte); 1620 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1621 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1622 update_mmu_cache(vma, addr, pte); 1623 } 1624 goto out_unlock; 1625 } 1626 1627 /* Ok, finally just insert the thing.. */ 1628 if (pfn_t_devmap(pfn)) 1629 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1630 else 1631 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1632 1633 if (mkwrite) { 1634 entry = pte_mkyoung(entry); 1635 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1636 } 1637 1638 set_pte_at(mm, addr, pte, entry); 1639 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1640 1641 out_unlock: 1642 pte_unmap_unlock(pte, ptl); 1643 return VM_FAULT_NOPAGE; 1644 } 1645 1646 /** 1647 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1648 * @vma: user vma to map to 1649 * @addr: target user address of this page 1650 * @pfn: source kernel pfn 1651 * @pgprot: pgprot flags for the inserted page 1652 * 1653 * This is exactly like vmf_insert_pfn(), except that it allows drivers to 1654 * to override pgprot on a per-page basis. 1655 * 1656 * This only makes sense for IO mappings, and it makes no sense for 1657 * COW mappings. In general, using multiple vmas is preferable; 1658 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1659 * impractical. 1660 * 1661 * Context: Process context. May allocate using %GFP_KERNEL. 1662 * Return: vm_fault_t value. 1663 */ 1664 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1665 unsigned long pfn, pgprot_t pgprot) 1666 { 1667 /* 1668 * Technically, architectures with pte_special can avoid all these 1669 * restrictions (same for remap_pfn_range). However we would like 1670 * consistency in testing and feature parity among all, so we should 1671 * try to keep these invariants in place for everybody. 1672 */ 1673 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1674 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1675 (VM_PFNMAP|VM_MIXEDMAP)); 1676 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1677 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1678 1679 if (addr < vma->vm_start || addr >= vma->vm_end) 1680 return VM_FAULT_SIGBUS; 1681 1682 if (!pfn_modify_allowed(pfn, pgprot)) 1683 return VM_FAULT_SIGBUS; 1684 1685 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1686 1687 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1688 false); 1689 } 1690 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1691 1692 /** 1693 * vmf_insert_pfn - insert single pfn into user vma 1694 * @vma: user vma to map to 1695 * @addr: target user address of this page 1696 * @pfn: source kernel pfn 1697 * 1698 * Similar to vm_insert_page, this allows drivers to insert individual pages 1699 * they've allocated into a user vma. Same comments apply. 1700 * 1701 * This function should only be called from a vm_ops->fault handler, and 1702 * in that case the handler should return the result of this function. 1703 * 1704 * vma cannot be a COW mapping. 1705 * 1706 * As this is called only for pages that do not currently exist, we 1707 * do not need to flush old virtual caches or the TLB. 1708 * 1709 * Context: Process context. May allocate using %GFP_KERNEL. 1710 * Return: vm_fault_t value. 1711 */ 1712 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1713 unsigned long pfn) 1714 { 1715 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1716 } 1717 EXPORT_SYMBOL(vmf_insert_pfn); 1718 1719 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1720 { 1721 /* these checks mirror the abort conditions in vm_normal_page */ 1722 if (vma->vm_flags & VM_MIXEDMAP) 1723 return true; 1724 if (pfn_t_devmap(pfn)) 1725 return true; 1726 if (pfn_t_special(pfn)) 1727 return true; 1728 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1729 return true; 1730 return false; 1731 } 1732 1733 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1734 unsigned long addr, pfn_t pfn, bool mkwrite) 1735 { 1736 pgprot_t pgprot = vma->vm_page_prot; 1737 int err; 1738 1739 BUG_ON(!vm_mixed_ok(vma, pfn)); 1740 1741 if (addr < vma->vm_start || addr >= vma->vm_end) 1742 return VM_FAULT_SIGBUS; 1743 1744 track_pfn_insert(vma, &pgprot, pfn); 1745 1746 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1747 return VM_FAULT_SIGBUS; 1748 1749 /* 1750 * If we don't have pte special, then we have to use the pfn_valid() 1751 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1752 * refcount the page if pfn_valid is true (hence insert_page rather 1753 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1754 * without pte special, it would there be refcounted as a normal page. 1755 */ 1756 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1757 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1758 struct page *page; 1759 1760 /* 1761 * At this point we are committed to insert_page() 1762 * regardless of whether the caller specified flags that 1763 * result in pfn_t_has_page() == false. 1764 */ 1765 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1766 err = insert_page(vma, addr, page, pgprot); 1767 } else { 1768 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1769 } 1770 1771 if (err == -ENOMEM) 1772 return VM_FAULT_OOM; 1773 if (err < 0 && err != -EBUSY) 1774 return VM_FAULT_SIGBUS; 1775 1776 return VM_FAULT_NOPAGE; 1777 } 1778 1779 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1780 pfn_t pfn) 1781 { 1782 return __vm_insert_mixed(vma, addr, pfn, false); 1783 } 1784 EXPORT_SYMBOL(vmf_insert_mixed); 1785 1786 /* 1787 * If the insertion of PTE failed because someone else already added a 1788 * different entry in the mean time, we treat that as success as we assume 1789 * the same entry was actually inserted. 1790 */ 1791 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1792 unsigned long addr, pfn_t pfn) 1793 { 1794 return __vm_insert_mixed(vma, addr, pfn, true); 1795 } 1796 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1797 1798 /* 1799 * maps a range of physical memory into the requested pages. the old 1800 * mappings are removed. any references to nonexistent pages results 1801 * in null mappings (currently treated as "copy-on-access") 1802 */ 1803 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1804 unsigned long addr, unsigned long end, 1805 unsigned long pfn, pgprot_t prot) 1806 { 1807 pte_t *pte; 1808 spinlock_t *ptl; 1809 int err = 0; 1810 1811 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1812 if (!pte) 1813 return -ENOMEM; 1814 arch_enter_lazy_mmu_mode(); 1815 do { 1816 BUG_ON(!pte_none(*pte)); 1817 if (!pfn_modify_allowed(pfn, prot)) { 1818 err = -EACCES; 1819 break; 1820 } 1821 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1822 pfn++; 1823 } while (pte++, addr += PAGE_SIZE, addr != end); 1824 arch_leave_lazy_mmu_mode(); 1825 pte_unmap_unlock(pte - 1, ptl); 1826 return err; 1827 } 1828 1829 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1830 unsigned long addr, unsigned long end, 1831 unsigned long pfn, pgprot_t prot) 1832 { 1833 pmd_t *pmd; 1834 unsigned long next; 1835 int err; 1836 1837 pfn -= addr >> PAGE_SHIFT; 1838 pmd = pmd_alloc(mm, pud, addr); 1839 if (!pmd) 1840 return -ENOMEM; 1841 VM_BUG_ON(pmd_trans_huge(*pmd)); 1842 do { 1843 next = pmd_addr_end(addr, end); 1844 err = remap_pte_range(mm, pmd, addr, next, 1845 pfn + (addr >> PAGE_SHIFT), prot); 1846 if (err) 1847 return err; 1848 } while (pmd++, addr = next, addr != end); 1849 return 0; 1850 } 1851 1852 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 1853 unsigned long addr, unsigned long end, 1854 unsigned long pfn, pgprot_t prot) 1855 { 1856 pud_t *pud; 1857 unsigned long next; 1858 int err; 1859 1860 pfn -= addr >> PAGE_SHIFT; 1861 pud = pud_alloc(mm, p4d, addr); 1862 if (!pud) 1863 return -ENOMEM; 1864 do { 1865 next = pud_addr_end(addr, end); 1866 err = remap_pmd_range(mm, pud, addr, next, 1867 pfn + (addr >> PAGE_SHIFT), prot); 1868 if (err) 1869 return err; 1870 } while (pud++, addr = next, addr != end); 1871 return 0; 1872 } 1873 1874 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 1875 unsigned long addr, unsigned long end, 1876 unsigned long pfn, pgprot_t prot) 1877 { 1878 p4d_t *p4d; 1879 unsigned long next; 1880 int err; 1881 1882 pfn -= addr >> PAGE_SHIFT; 1883 p4d = p4d_alloc(mm, pgd, addr); 1884 if (!p4d) 1885 return -ENOMEM; 1886 do { 1887 next = p4d_addr_end(addr, end); 1888 err = remap_pud_range(mm, p4d, addr, next, 1889 pfn + (addr >> PAGE_SHIFT), prot); 1890 if (err) 1891 return err; 1892 } while (p4d++, addr = next, addr != end); 1893 return 0; 1894 } 1895 1896 /** 1897 * remap_pfn_range - remap kernel memory to userspace 1898 * @vma: user vma to map to 1899 * @addr: target user address to start at 1900 * @pfn: physical address of kernel memory 1901 * @size: size of map area 1902 * @prot: page protection flags for this mapping 1903 * 1904 * Note: this is only safe if the mm semaphore is held when called. 1905 * 1906 * Return: %0 on success, negative error code otherwise. 1907 */ 1908 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1909 unsigned long pfn, unsigned long size, pgprot_t prot) 1910 { 1911 pgd_t *pgd; 1912 unsigned long next; 1913 unsigned long end = addr + PAGE_ALIGN(size); 1914 struct mm_struct *mm = vma->vm_mm; 1915 unsigned long remap_pfn = pfn; 1916 int err; 1917 1918 /* 1919 * Physically remapped pages are special. Tell the 1920 * rest of the world about it: 1921 * VM_IO tells people not to look at these pages 1922 * (accesses can have side effects). 1923 * VM_PFNMAP tells the core MM that the base pages are just 1924 * raw PFN mappings, and do not have a "struct page" associated 1925 * with them. 1926 * VM_DONTEXPAND 1927 * Disable vma merging and expanding with mremap(). 1928 * VM_DONTDUMP 1929 * Omit vma from core dump, even when VM_IO turned off. 1930 * 1931 * There's a horrible special case to handle copy-on-write 1932 * behaviour that some programs depend on. We mark the "original" 1933 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1934 * See vm_normal_page() for details. 1935 */ 1936 if (is_cow_mapping(vma->vm_flags)) { 1937 if (addr != vma->vm_start || end != vma->vm_end) 1938 return -EINVAL; 1939 vma->vm_pgoff = pfn; 1940 } 1941 1942 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1943 if (err) 1944 return -EINVAL; 1945 1946 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1947 1948 BUG_ON(addr >= end); 1949 pfn -= addr >> PAGE_SHIFT; 1950 pgd = pgd_offset(mm, addr); 1951 flush_cache_range(vma, addr, end); 1952 do { 1953 next = pgd_addr_end(addr, end); 1954 err = remap_p4d_range(mm, pgd, addr, next, 1955 pfn + (addr >> PAGE_SHIFT), prot); 1956 if (err) 1957 break; 1958 } while (pgd++, addr = next, addr != end); 1959 1960 if (err) 1961 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1962 1963 return err; 1964 } 1965 EXPORT_SYMBOL(remap_pfn_range); 1966 1967 /** 1968 * vm_iomap_memory - remap memory to userspace 1969 * @vma: user vma to map to 1970 * @start: start of area 1971 * @len: size of area 1972 * 1973 * This is a simplified io_remap_pfn_range() for common driver use. The 1974 * driver just needs to give us the physical memory range to be mapped, 1975 * we'll figure out the rest from the vma information. 1976 * 1977 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1978 * whatever write-combining details or similar. 1979 * 1980 * Return: %0 on success, negative error code otherwise. 1981 */ 1982 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1983 { 1984 unsigned long vm_len, pfn, pages; 1985 1986 /* Check that the physical memory area passed in looks valid */ 1987 if (start + len < start) 1988 return -EINVAL; 1989 /* 1990 * You *really* shouldn't map things that aren't page-aligned, 1991 * but we've historically allowed it because IO memory might 1992 * just have smaller alignment. 1993 */ 1994 len += start & ~PAGE_MASK; 1995 pfn = start >> PAGE_SHIFT; 1996 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1997 if (pfn + pages < pfn) 1998 return -EINVAL; 1999 2000 /* We start the mapping 'vm_pgoff' pages into the area */ 2001 if (vma->vm_pgoff > pages) 2002 return -EINVAL; 2003 pfn += vma->vm_pgoff; 2004 pages -= vma->vm_pgoff; 2005 2006 /* Can we fit all of the mapping? */ 2007 vm_len = vma->vm_end - vma->vm_start; 2008 if (vm_len >> PAGE_SHIFT > pages) 2009 return -EINVAL; 2010 2011 /* Ok, let it rip */ 2012 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2013 } 2014 EXPORT_SYMBOL(vm_iomap_memory); 2015 2016 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2017 unsigned long addr, unsigned long end, 2018 pte_fn_t fn, void *data) 2019 { 2020 pte_t *pte; 2021 int err; 2022 spinlock_t *uninitialized_var(ptl); 2023 2024 pte = (mm == &init_mm) ? 2025 pte_alloc_kernel(pmd, addr) : 2026 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2027 if (!pte) 2028 return -ENOMEM; 2029 2030 BUG_ON(pmd_huge(*pmd)); 2031 2032 arch_enter_lazy_mmu_mode(); 2033 2034 do { 2035 err = fn(pte++, addr, data); 2036 if (err) 2037 break; 2038 } while (addr += PAGE_SIZE, addr != end); 2039 2040 arch_leave_lazy_mmu_mode(); 2041 2042 if (mm != &init_mm) 2043 pte_unmap_unlock(pte-1, ptl); 2044 return err; 2045 } 2046 2047 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2048 unsigned long addr, unsigned long end, 2049 pte_fn_t fn, void *data) 2050 { 2051 pmd_t *pmd; 2052 unsigned long next; 2053 int err; 2054 2055 BUG_ON(pud_huge(*pud)); 2056 2057 pmd = pmd_alloc(mm, pud, addr); 2058 if (!pmd) 2059 return -ENOMEM; 2060 do { 2061 next = pmd_addr_end(addr, end); 2062 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2063 if (err) 2064 break; 2065 } while (pmd++, addr = next, addr != end); 2066 return err; 2067 } 2068 2069 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2070 unsigned long addr, unsigned long end, 2071 pte_fn_t fn, void *data) 2072 { 2073 pud_t *pud; 2074 unsigned long next; 2075 int err; 2076 2077 pud = pud_alloc(mm, p4d, addr); 2078 if (!pud) 2079 return -ENOMEM; 2080 do { 2081 next = pud_addr_end(addr, end); 2082 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2083 if (err) 2084 break; 2085 } while (pud++, addr = next, addr != end); 2086 return err; 2087 } 2088 2089 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2090 unsigned long addr, unsigned long end, 2091 pte_fn_t fn, void *data) 2092 { 2093 p4d_t *p4d; 2094 unsigned long next; 2095 int err; 2096 2097 p4d = p4d_alloc(mm, pgd, addr); 2098 if (!p4d) 2099 return -ENOMEM; 2100 do { 2101 next = p4d_addr_end(addr, end); 2102 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2103 if (err) 2104 break; 2105 } while (p4d++, addr = next, addr != end); 2106 return err; 2107 } 2108 2109 /* 2110 * Scan a region of virtual memory, filling in page tables as necessary 2111 * and calling a provided function on each leaf page table. 2112 */ 2113 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2114 unsigned long size, pte_fn_t fn, void *data) 2115 { 2116 pgd_t *pgd; 2117 unsigned long next; 2118 unsigned long end = addr + size; 2119 int err; 2120 2121 if (WARN_ON(addr >= end)) 2122 return -EINVAL; 2123 2124 pgd = pgd_offset(mm, addr); 2125 do { 2126 next = pgd_addr_end(addr, end); 2127 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2128 if (err) 2129 break; 2130 } while (pgd++, addr = next, addr != end); 2131 2132 return err; 2133 } 2134 EXPORT_SYMBOL_GPL(apply_to_page_range); 2135 2136 /* 2137 * handle_pte_fault chooses page fault handler according to an entry which was 2138 * read non-atomically. Before making any commitment, on those architectures 2139 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2140 * parts, do_swap_page must check under lock before unmapping the pte and 2141 * proceeding (but do_wp_page is only called after already making such a check; 2142 * and do_anonymous_page can safely check later on). 2143 */ 2144 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2145 pte_t *page_table, pte_t orig_pte) 2146 { 2147 int same = 1; 2148 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2149 if (sizeof(pte_t) > sizeof(unsigned long)) { 2150 spinlock_t *ptl = pte_lockptr(mm, pmd); 2151 spin_lock(ptl); 2152 same = pte_same(*page_table, orig_pte); 2153 spin_unlock(ptl); 2154 } 2155 #endif 2156 pte_unmap(page_table); 2157 return same; 2158 } 2159 2160 static inline bool cow_user_page(struct page *dst, struct page *src, 2161 struct vm_fault *vmf) 2162 { 2163 bool ret; 2164 void *kaddr; 2165 void __user *uaddr; 2166 bool force_mkyoung; 2167 struct vm_area_struct *vma = vmf->vma; 2168 struct mm_struct *mm = vma->vm_mm; 2169 unsigned long addr = vmf->address; 2170 2171 debug_dma_assert_idle(src); 2172 2173 if (likely(src)) { 2174 copy_user_highpage(dst, src, addr, vma); 2175 return true; 2176 } 2177 2178 /* 2179 * If the source page was a PFN mapping, we don't have 2180 * a "struct page" for it. We do a best-effort copy by 2181 * just copying from the original user address. If that 2182 * fails, we just zero-fill it. Live with it. 2183 */ 2184 kaddr = kmap_atomic(dst); 2185 uaddr = (void __user *)(addr & PAGE_MASK); 2186 2187 /* 2188 * On architectures with software "accessed" bits, we would 2189 * take a double page fault, so mark it accessed here. 2190 */ 2191 force_mkyoung = arch_faults_on_old_pte() && !pte_young(vmf->orig_pte); 2192 if (force_mkyoung) { 2193 pte_t entry; 2194 2195 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2196 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2197 /* 2198 * Other thread has already handled the fault 2199 * and we don't need to do anything. If it's 2200 * not the case, the fault will be triggered 2201 * again on the same address. 2202 */ 2203 ret = false; 2204 goto pte_unlock; 2205 } 2206 2207 entry = pte_mkyoung(vmf->orig_pte); 2208 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2209 update_mmu_cache(vma, addr, vmf->pte); 2210 } 2211 2212 /* 2213 * This really shouldn't fail, because the page is there 2214 * in the page tables. But it might just be unreadable, 2215 * in which case we just give up and fill the result with 2216 * zeroes. 2217 */ 2218 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2219 /* 2220 * Give a warn in case there can be some obscure 2221 * use-case 2222 */ 2223 WARN_ON_ONCE(1); 2224 clear_page(kaddr); 2225 } 2226 2227 ret = true; 2228 2229 pte_unlock: 2230 if (force_mkyoung) 2231 pte_unmap_unlock(vmf->pte, vmf->ptl); 2232 kunmap_atomic(kaddr); 2233 flush_dcache_page(dst); 2234 2235 return ret; 2236 } 2237 2238 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2239 { 2240 struct file *vm_file = vma->vm_file; 2241 2242 if (vm_file) 2243 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2244 2245 /* 2246 * Special mappings (e.g. VDSO) do not have any file so fake 2247 * a default GFP_KERNEL for them. 2248 */ 2249 return GFP_KERNEL; 2250 } 2251 2252 /* 2253 * Notify the address space that the page is about to become writable so that 2254 * it can prohibit this or wait for the page to get into an appropriate state. 2255 * 2256 * We do this without the lock held, so that it can sleep if it needs to. 2257 */ 2258 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2259 { 2260 vm_fault_t ret; 2261 struct page *page = vmf->page; 2262 unsigned int old_flags = vmf->flags; 2263 2264 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2265 2266 if (vmf->vma->vm_file && 2267 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2268 return VM_FAULT_SIGBUS; 2269 2270 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2271 /* Restore original flags so that caller is not surprised */ 2272 vmf->flags = old_flags; 2273 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2274 return ret; 2275 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2276 lock_page(page); 2277 if (!page->mapping) { 2278 unlock_page(page); 2279 return 0; /* retry */ 2280 } 2281 ret |= VM_FAULT_LOCKED; 2282 } else 2283 VM_BUG_ON_PAGE(!PageLocked(page), page); 2284 return ret; 2285 } 2286 2287 /* 2288 * Handle dirtying of a page in shared file mapping on a write fault. 2289 * 2290 * The function expects the page to be locked and unlocks it. 2291 */ 2292 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2293 struct page *page) 2294 { 2295 struct address_space *mapping; 2296 bool dirtied; 2297 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2298 2299 dirtied = set_page_dirty(page); 2300 VM_BUG_ON_PAGE(PageAnon(page), page); 2301 /* 2302 * Take a local copy of the address_space - page.mapping may be zeroed 2303 * by truncate after unlock_page(). The address_space itself remains 2304 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2305 * release semantics to prevent the compiler from undoing this copying. 2306 */ 2307 mapping = page_rmapping(page); 2308 unlock_page(page); 2309 2310 if ((dirtied || page_mkwrite) && mapping) { 2311 /* 2312 * Some device drivers do not set page.mapping 2313 * but still dirty their pages 2314 */ 2315 balance_dirty_pages_ratelimited(mapping); 2316 } 2317 2318 if (!page_mkwrite) 2319 file_update_time(vma->vm_file); 2320 } 2321 2322 /* 2323 * Handle write page faults for pages that can be reused in the current vma 2324 * 2325 * This can happen either due to the mapping being with the VM_SHARED flag, 2326 * or due to us being the last reference standing to the page. In either 2327 * case, all we need to do here is to mark the page as writable and update 2328 * any related book-keeping. 2329 */ 2330 static inline void wp_page_reuse(struct vm_fault *vmf) 2331 __releases(vmf->ptl) 2332 { 2333 struct vm_area_struct *vma = vmf->vma; 2334 struct page *page = vmf->page; 2335 pte_t entry; 2336 /* 2337 * Clear the pages cpupid information as the existing 2338 * information potentially belongs to a now completely 2339 * unrelated process. 2340 */ 2341 if (page) 2342 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2343 2344 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2345 entry = pte_mkyoung(vmf->orig_pte); 2346 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2347 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2348 update_mmu_cache(vma, vmf->address, vmf->pte); 2349 pte_unmap_unlock(vmf->pte, vmf->ptl); 2350 } 2351 2352 /* 2353 * Handle the case of a page which we actually need to copy to a new page. 2354 * 2355 * Called with mmap_sem locked and the old page referenced, but 2356 * without the ptl held. 2357 * 2358 * High level logic flow: 2359 * 2360 * - Allocate a page, copy the content of the old page to the new one. 2361 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2362 * - Take the PTL. If the pte changed, bail out and release the allocated page 2363 * - If the pte is still the way we remember it, update the page table and all 2364 * relevant references. This includes dropping the reference the page-table 2365 * held to the old page, as well as updating the rmap. 2366 * - In any case, unlock the PTL and drop the reference we took to the old page. 2367 */ 2368 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2369 { 2370 struct vm_area_struct *vma = vmf->vma; 2371 struct mm_struct *mm = vma->vm_mm; 2372 struct page *old_page = vmf->page; 2373 struct page *new_page = NULL; 2374 pte_t entry; 2375 int page_copied = 0; 2376 struct mem_cgroup *memcg; 2377 struct mmu_notifier_range range; 2378 2379 if (unlikely(anon_vma_prepare(vma))) 2380 goto oom; 2381 2382 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2383 new_page = alloc_zeroed_user_highpage_movable(vma, 2384 vmf->address); 2385 if (!new_page) 2386 goto oom; 2387 } else { 2388 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2389 vmf->address); 2390 if (!new_page) 2391 goto oom; 2392 2393 if (!cow_user_page(new_page, old_page, vmf)) { 2394 /* 2395 * COW failed, if the fault was solved by other, 2396 * it's fine. If not, userspace would re-fault on 2397 * the same address and we will handle the fault 2398 * from the second attempt. 2399 */ 2400 put_page(new_page); 2401 if (old_page) 2402 put_page(old_page); 2403 return 0; 2404 } 2405 } 2406 2407 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2408 goto oom_free_new; 2409 2410 __SetPageUptodate(new_page); 2411 2412 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2413 vmf->address & PAGE_MASK, 2414 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2415 mmu_notifier_invalidate_range_start(&range); 2416 2417 /* 2418 * Re-check the pte - we dropped the lock 2419 */ 2420 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2421 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2422 if (old_page) { 2423 if (!PageAnon(old_page)) { 2424 dec_mm_counter_fast(mm, 2425 mm_counter_file(old_page)); 2426 inc_mm_counter_fast(mm, MM_ANONPAGES); 2427 } 2428 } else { 2429 inc_mm_counter_fast(mm, MM_ANONPAGES); 2430 } 2431 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2432 entry = mk_pte(new_page, vma->vm_page_prot); 2433 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2434 /* 2435 * Clear the pte entry and flush it first, before updating the 2436 * pte with the new entry. This will avoid a race condition 2437 * seen in the presence of one thread doing SMC and another 2438 * thread doing COW. 2439 */ 2440 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2441 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2442 mem_cgroup_commit_charge(new_page, memcg, false, false); 2443 lru_cache_add_active_or_unevictable(new_page, vma); 2444 /* 2445 * We call the notify macro here because, when using secondary 2446 * mmu page tables (such as kvm shadow page tables), we want the 2447 * new page to be mapped directly into the secondary page table. 2448 */ 2449 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2450 update_mmu_cache(vma, vmf->address, vmf->pte); 2451 if (old_page) { 2452 /* 2453 * Only after switching the pte to the new page may 2454 * we remove the mapcount here. Otherwise another 2455 * process may come and find the rmap count decremented 2456 * before the pte is switched to the new page, and 2457 * "reuse" the old page writing into it while our pte 2458 * here still points into it and can be read by other 2459 * threads. 2460 * 2461 * The critical issue is to order this 2462 * page_remove_rmap with the ptp_clear_flush above. 2463 * Those stores are ordered by (if nothing else,) 2464 * the barrier present in the atomic_add_negative 2465 * in page_remove_rmap. 2466 * 2467 * Then the TLB flush in ptep_clear_flush ensures that 2468 * no process can access the old page before the 2469 * decremented mapcount is visible. And the old page 2470 * cannot be reused until after the decremented 2471 * mapcount is visible. So transitively, TLBs to 2472 * old page will be flushed before it can be reused. 2473 */ 2474 page_remove_rmap(old_page, false); 2475 } 2476 2477 /* Free the old page.. */ 2478 new_page = old_page; 2479 page_copied = 1; 2480 } else { 2481 mem_cgroup_cancel_charge(new_page, memcg, false); 2482 } 2483 2484 if (new_page) 2485 put_page(new_page); 2486 2487 pte_unmap_unlock(vmf->pte, vmf->ptl); 2488 /* 2489 * No need to double call mmu_notifier->invalidate_range() callback as 2490 * the above ptep_clear_flush_notify() did already call it. 2491 */ 2492 mmu_notifier_invalidate_range_only_end(&range); 2493 if (old_page) { 2494 /* 2495 * Don't let another task, with possibly unlocked vma, 2496 * keep the mlocked page. 2497 */ 2498 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2499 lock_page(old_page); /* LRU manipulation */ 2500 if (PageMlocked(old_page)) 2501 munlock_vma_page(old_page); 2502 unlock_page(old_page); 2503 } 2504 put_page(old_page); 2505 } 2506 return page_copied ? VM_FAULT_WRITE : 0; 2507 oom_free_new: 2508 put_page(new_page); 2509 oom: 2510 if (old_page) 2511 put_page(old_page); 2512 return VM_FAULT_OOM; 2513 } 2514 2515 /** 2516 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2517 * writeable once the page is prepared 2518 * 2519 * @vmf: structure describing the fault 2520 * 2521 * This function handles all that is needed to finish a write page fault in a 2522 * shared mapping due to PTE being read-only once the mapped page is prepared. 2523 * It handles locking of PTE and modifying it. 2524 * 2525 * The function expects the page to be locked or other protection against 2526 * concurrent faults / writeback (such as DAX radix tree locks). 2527 * 2528 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2529 * we acquired PTE lock. 2530 */ 2531 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2532 { 2533 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2534 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2535 &vmf->ptl); 2536 /* 2537 * We might have raced with another page fault while we released the 2538 * pte_offset_map_lock. 2539 */ 2540 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2541 pte_unmap_unlock(vmf->pte, vmf->ptl); 2542 return VM_FAULT_NOPAGE; 2543 } 2544 wp_page_reuse(vmf); 2545 return 0; 2546 } 2547 2548 /* 2549 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2550 * mapping 2551 */ 2552 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2553 { 2554 struct vm_area_struct *vma = vmf->vma; 2555 2556 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2557 vm_fault_t ret; 2558 2559 pte_unmap_unlock(vmf->pte, vmf->ptl); 2560 vmf->flags |= FAULT_FLAG_MKWRITE; 2561 ret = vma->vm_ops->pfn_mkwrite(vmf); 2562 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2563 return ret; 2564 return finish_mkwrite_fault(vmf); 2565 } 2566 wp_page_reuse(vmf); 2567 return VM_FAULT_WRITE; 2568 } 2569 2570 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2571 __releases(vmf->ptl) 2572 { 2573 struct vm_area_struct *vma = vmf->vma; 2574 2575 get_page(vmf->page); 2576 2577 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2578 vm_fault_t tmp; 2579 2580 pte_unmap_unlock(vmf->pte, vmf->ptl); 2581 tmp = do_page_mkwrite(vmf); 2582 if (unlikely(!tmp || (tmp & 2583 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2584 put_page(vmf->page); 2585 return tmp; 2586 } 2587 tmp = finish_mkwrite_fault(vmf); 2588 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2589 unlock_page(vmf->page); 2590 put_page(vmf->page); 2591 return tmp; 2592 } 2593 } else { 2594 wp_page_reuse(vmf); 2595 lock_page(vmf->page); 2596 } 2597 fault_dirty_shared_page(vma, vmf->page); 2598 put_page(vmf->page); 2599 2600 return VM_FAULT_WRITE; 2601 } 2602 2603 /* 2604 * This routine handles present pages, when users try to write 2605 * to a shared page. It is done by copying the page to a new address 2606 * and decrementing the shared-page counter for the old page. 2607 * 2608 * Note that this routine assumes that the protection checks have been 2609 * done by the caller (the low-level page fault routine in most cases). 2610 * Thus we can safely just mark it writable once we've done any necessary 2611 * COW. 2612 * 2613 * We also mark the page dirty at this point even though the page will 2614 * change only once the write actually happens. This avoids a few races, 2615 * and potentially makes it more efficient. 2616 * 2617 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2618 * but allow concurrent faults), with pte both mapped and locked. 2619 * We return with mmap_sem still held, but pte unmapped and unlocked. 2620 */ 2621 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2622 __releases(vmf->ptl) 2623 { 2624 struct vm_area_struct *vma = vmf->vma; 2625 2626 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2627 if (!vmf->page) { 2628 /* 2629 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2630 * VM_PFNMAP VMA. 2631 * 2632 * We should not cow pages in a shared writeable mapping. 2633 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2634 */ 2635 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2636 (VM_WRITE|VM_SHARED)) 2637 return wp_pfn_shared(vmf); 2638 2639 pte_unmap_unlock(vmf->pte, vmf->ptl); 2640 return wp_page_copy(vmf); 2641 } 2642 2643 /* 2644 * Take out anonymous pages first, anonymous shared vmas are 2645 * not dirty accountable. 2646 */ 2647 if (PageAnon(vmf->page)) { 2648 int total_map_swapcount; 2649 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || 2650 page_count(vmf->page) != 1)) 2651 goto copy; 2652 if (!trylock_page(vmf->page)) { 2653 get_page(vmf->page); 2654 pte_unmap_unlock(vmf->pte, vmf->ptl); 2655 lock_page(vmf->page); 2656 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2657 vmf->address, &vmf->ptl); 2658 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2659 unlock_page(vmf->page); 2660 pte_unmap_unlock(vmf->pte, vmf->ptl); 2661 put_page(vmf->page); 2662 return 0; 2663 } 2664 put_page(vmf->page); 2665 } 2666 if (PageKsm(vmf->page)) { 2667 bool reused = reuse_ksm_page(vmf->page, vmf->vma, 2668 vmf->address); 2669 unlock_page(vmf->page); 2670 if (!reused) 2671 goto copy; 2672 wp_page_reuse(vmf); 2673 return VM_FAULT_WRITE; 2674 } 2675 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2676 if (total_map_swapcount == 1) { 2677 /* 2678 * The page is all ours. Move it to 2679 * our anon_vma so the rmap code will 2680 * not search our parent or siblings. 2681 * Protected against the rmap code by 2682 * the page lock. 2683 */ 2684 page_move_anon_rmap(vmf->page, vma); 2685 } 2686 unlock_page(vmf->page); 2687 wp_page_reuse(vmf); 2688 return VM_FAULT_WRITE; 2689 } 2690 unlock_page(vmf->page); 2691 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2692 (VM_WRITE|VM_SHARED))) { 2693 return wp_page_shared(vmf); 2694 } 2695 copy: 2696 /* 2697 * Ok, we need to copy. Oh, well.. 2698 */ 2699 get_page(vmf->page); 2700 2701 pte_unmap_unlock(vmf->pte, vmf->ptl); 2702 return wp_page_copy(vmf); 2703 } 2704 2705 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2706 unsigned long start_addr, unsigned long end_addr, 2707 struct zap_details *details) 2708 { 2709 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2710 } 2711 2712 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2713 struct zap_details *details) 2714 { 2715 struct vm_area_struct *vma; 2716 pgoff_t vba, vea, zba, zea; 2717 2718 vma_interval_tree_foreach(vma, root, 2719 details->first_index, details->last_index) { 2720 2721 vba = vma->vm_pgoff; 2722 vea = vba + vma_pages(vma) - 1; 2723 zba = details->first_index; 2724 if (zba < vba) 2725 zba = vba; 2726 zea = details->last_index; 2727 if (zea > vea) 2728 zea = vea; 2729 2730 unmap_mapping_range_vma(vma, 2731 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2732 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2733 details); 2734 } 2735 } 2736 2737 /** 2738 * unmap_mapping_pages() - Unmap pages from processes. 2739 * @mapping: The address space containing pages to be unmapped. 2740 * @start: Index of first page to be unmapped. 2741 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2742 * @even_cows: Whether to unmap even private COWed pages. 2743 * 2744 * Unmap the pages in this address space from any userspace process which 2745 * has them mmaped. Generally, you want to remove COWed pages as well when 2746 * a file is being truncated, but not when invalidating pages from the page 2747 * cache. 2748 */ 2749 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2750 pgoff_t nr, bool even_cows) 2751 { 2752 struct zap_details details = { }; 2753 2754 details.check_mapping = even_cows ? NULL : mapping; 2755 details.first_index = start; 2756 details.last_index = start + nr - 1; 2757 if (details.last_index < details.first_index) 2758 details.last_index = ULONG_MAX; 2759 2760 i_mmap_lock_write(mapping); 2761 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2762 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2763 i_mmap_unlock_write(mapping); 2764 } 2765 2766 /** 2767 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2768 * address_space corresponding to the specified byte range in the underlying 2769 * file. 2770 * 2771 * @mapping: the address space containing mmaps to be unmapped. 2772 * @holebegin: byte in first page to unmap, relative to the start of 2773 * the underlying file. This will be rounded down to a PAGE_SIZE 2774 * boundary. Note that this is different from truncate_pagecache(), which 2775 * must keep the partial page. In contrast, we must get rid of 2776 * partial pages. 2777 * @holelen: size of prospective hole in bytes. This will be rounded 2778 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2779 * end of the file. 2780 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2781 * but 0 when invalidating pagecache, don't throw away private data. 2782 */ 2783 void unmap_mapping_range(struct address_space *mapping, 2784 loff_t const holebegin, loff_t const holelen, int even_cows) 2785 { 2786 pgoff_t hba = holebegin >> PAGE_SHIFT; 2787 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2788 2789 /* Check for overflow. */ 2790 if (sizeof(holelen) > sizeof(hlen)) { 2791 long long holeend = 2792 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2793 if (holeend & ~(long long)ULONG_MAX) 2794 hlen = ULONG_MAX - hba + 1; 2795 } 2796 2797 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2798 } 2799 EXPORT_SYMBOL(unmap_mapping_range); 2800 2801 /* 2802 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2803 * but allow concurrent faults), and pte mapped but not yet locked. 2804 * We return with pte unmapped and unlocked. 2805 * 2806 * We return with the mmap_sem locked or unlocked in the same cases 2807 * as does filemap_fault(). 2808 */ 2809 vm_fault_t do_swap_page(struct vm_fault *vmf) 2810 { 2811 struct vm_area_struct *vma = vmf->vma; 2812 struct page *page = NULL, *swapcache; 2813 struct mem_cgroup *memcg; 2814 swp_entry_t entry; 2815 pte_t pte; 2816 int locked; 2817 int exclusive = 0; 2818 vm_fault_t ret = 0; 2819 2820 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2821 goto out; 2822 2823 entry = pte_to_swp_entry(vmf->orig_pte); 2824 if (unlikely(non_swap_entry(entry))) { 2825 if (is_migration_entry(entry)) { 2826 migration_entry_wait(vma->vm_mm, vmf->pmd, 2827 vmf->address); 2828 } else if (is_device_private_entry(entry)) { 2829 vmf->page = device_private_entry_to_page(entry); 2830 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 2831 } else if (is_hwpoison_entry(entry)) { 2832 ret = VM_FAULT_HWPOISON; 2833 } else { 2834 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2835 ret = VM_FAULT_SIGBUS; 2836 } 2837 goto out; 2838 } 2839 2840 2841 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2842 page = lookup_swap_cache(entry, vma, vmf->address); 2843 swapcache = page; 2844 2845 if (!page) { 2846 struct swap_info_struct *si = swp_swap_info(entry); 2847 2848 if (si->flags & SWP_SYNCHRONOUS_IO && 2849 __swap_count(entry) == 1) { 2850 /* skip swapcache */ 2851 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2852 vmf->address); 2853 if (page) { 2854 __SetPageLocked(page); 2855 __SetPageSwapBacked(page); 2856 set_page_private(page, entry.val); 2857 lru_cache_add_anon(page); 2858 swap_readpage(page, true); 2859 } 2860 } else { 2861 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2862 vmf); 2863 swapcache = page; 2864 } 2865 2866 if (!page) { 2867 /* 2868 * Back out if somebody else faulted in this pte 2869 * while we released the pte lock. 2870 */ 2871 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2872 vmf->address, &vmf->ptl); 2873 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2874 ret = VM_FAULT_OOM; 2875 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2876 goto unlock; 2877 } 2878 2879 /* Had to read the page from swap area: Major fault */ 2880 ret = VM_FAULT_MAJOR; 2881 count_vm_event(PGMAJFAULT); 2882 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2883 } else if (PageHWPoison(page)) { 2884 /* 2885 * hwpoisoned dirty swapcache pages are kept for killing 2886 * owner processes (which may be unknown at hwpoison time) 2887 */ 2888 ret = VM_FAULT_HWPOISON; 2889 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2890 goto out_release; 2891 } 2892 2893 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2894 2895 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2896 if (!locked) { 2897 ret |= VM_FAULT_RETRY; 2898 goto out_release; 2899 } 2900 2901 /* 2902 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2903 * release the swapcache from under us. The page pin, and pte_same 2904 * test below, are not enough to exclude that. Even if it is still 2905 * swapcache, we need to check that the page's swap has not changed. 2906 */ 2907 if (unlikely((!PageSwapCache(page) || 2908 page_private(page) != entry.val)) && swapcache) 2909 goto out_page; 2910 2911 page = ksm_might_need_to_copy(page, vma, vmf->address); 2912 if (unlikely(!page)) { 2913 ret = VM_FAULT_OOM; 2914 page = swapcache; 2915 goto out_page; 2916 } 2917 2918 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 2919 &memcg, false)) { 2920 ret = VM_FAULT_OOM; 2921 goto out_page; 2922 } 2923 2924 /* 2925 * Back out if somebody else already faulted in this pte. 2926 */ 2927 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2928 &vmf->ptl); 2929 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2930 goto out_nomap; 2931 2932 if (unlikely(!PageUptodate(page))) { 2933 ret = VM_FAULT_SIGBUS; 2934 goto out_nomap; 2935 } 2936 2937 /* 2938 * The page isn't present yet, go ahead with the fault. 2939 * 2940 * Be careful about the sequence of operations here. 2941 * To get its accounting right, reuse_swap_page() must be called 2942 * while the page is counted on swap but not yet in mapcount i.e. 2943 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2944 * must be called after the swap_free(), or it will never succeed. 2945 */ 2946 2947 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2948 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2949 pte = mk_pte(page, vma->vm_page_prot); 2950 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2951 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2952 vmf->flags &= ~FAULT_FLAG_WRITE; 2953 ret |= VM_FAULT_WRITE; 2954 exclusive = RMAP_EXCLUSIVE; 2955 } 2956 flush_icache_page(vma, page); 2957 if (pte_swp_soft_dirty(vmf->orig_pte)) 2958 pte = pte_mksoft_dirty(pte); 2959 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2960 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 2961 vmf->orig_pte = pte; 2962 2963 /* ksm created a completely new copy */ 2964 if (unlikely(page != swapcache && swapcache)) { 2965 page_add_new_anon_rmap(page, vma, vmf->address, false); 2966 mem_cgroup_commit_charge(page, memcg, false, false); 2967 lru_cache_add_active_or_unevictable(page, vma); 2968 } else { 2969 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2970 mem_cgroup_commit_charge(page, memcg, true, false); 2971 activate_page(page); 2972 } 2973 2974 swap_free(entry); 2975 if (mem_cgroup_swap_full(page) || 2976 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2977 try_to_free_swap(page); 2978 unlock_page(page); 2979 if (page != swapcache && swapcache) { 2980 /* 2981 * Hold the lock to avoid the swap entry to be reused 2982 * until we take the PT lock for the pte_same() check 2983 * (to avoid false positives from pte_same). For 2984 * further safety release the lock after the swap_free 2985 * so that the swap count won't change under a 2986 * parallel locked swapcache. 2987 */ 2988 unlock_page(swapcache); 2989 put_page(swapcache); 2990 } 2991 2992 if (vmf->flags & FAULT_FLAG_WRITE) { 2993 ret |= do_wp_page(vmf); 2994 if (ret & VM_FAULT_ERROR) 2995 ret &= VM_FAULT_ERROR; 2996 goto out; 2997 } 2998 2999 /* No need to invalidate - it was non-present before */ 3000 update_mmu_cache(vma, vmf->address, vmf->pte); 3001 unlock: 3002 pte_unmap_unlock(vmf->pte, vmf->ptl); 3003 out: 3004 return ret; 3005 out_nomap: 3006 mem_cgroup_cancel_charge(page, memcg, false); 3007 pte_unmap_unlock(vmf->pte, vmf->ptl); 3008 out_page: 3009 unlock_page(page); 3010 out_release: 3011 put_page(page); 3012 if (page != swapcache && swapcache) { 3013 unlock_page(swapcache); 3014 put_page(swapcache); 3015 } 3016 return ret; 3017 } 3018 3019 /* 3020 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3021 * but allow concurrent faults), and pte mapped but not yet locked. 3022 * We return with mmap_sem still held, but pte unmapped and unlocked. 3023 */ 3024 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3025 { 3026 struct vm_area_struct *vma = vmf->vma; 3027 struct mem_cgroup *memcg; 3028 struct page *page; 3029 vm_fault_t ret = 0; 3030 pte_t entry; 3031 3032 /* File mapping without ->vm_ops ? */ 3033 if (vma->vm_flags & VM_SHARED) 3034 return VM_FAULT_SIGBUS; 3035 3036 /* 3037 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3038 * pte_offset_map() on pmds where a huge pmd might be created 3039 * from a different thread. 3040 * 3041 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 3042 * parallel threads are excluded by other means. 3043 * 3044 * Here we only have down_read(mmap_sem). 3045 */ 3046 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3047 return VM_FAULT_OOM; 3048 3049 /* See the comment in pte_alloc_one_map() */ 3050 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3051 return 0; 3052 3053 /* Use the zero-page for reads */ 3054 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3055 !mm_forbids_zeropage(vma->vm_mm)) { 3056 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3057 vma->vm_page_prot)); 3058 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3059 vmf->address, &vmf->ptl); 3060 if (!pte_none(*vmf->pte)) 3061 goto unlock; 3062 ret = check_stable_address_space(vma->vm_mm); 3063 if (ret) 3064 goto unlock; 3065 /* Deliver the page fault to userland, check inside PT lock */ 3066 if (userfaultfd_missing(vma)) { 3067 pte_unmap_unlock(vmf->pte, vmf->ptl); 3068 return handle_userfault(vmf, VM_UFFD_MISSING); 3069 } 3070 goto setpte; 3071 } 3072 3073 /* Allocate our own private page. */ 3074 if (unlikely(anon_vma_prepare(vma))) 3075 goto oom; 3076 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3077 if (!page) 3078 goto oom; 3079 3080 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 3081 false)) 3082 goto oom_free_page; 3083 3084 /* 3085 * The memory barrier inside __SetPageUptodate makes sure that 3086 * preceeding stores to the page contents become visible before 3087 * the set_pte_at() write. 3088 */ 3089 __SetPageUptodate(page); 3090 3091 entry = mk_pte(page, vma->vm_page_prot); 3092 if (vma->vm_flags & VM_WRITE) 3093 entry = pte_mkwrite(pte_mkdirty(entry)); 3094 3095 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3096 &vmf->ptl); 3097 if (!pte_none(*vmf->pte)) 3098 goto release; 3099 3100 ret = check_stable_address_space(vma->vm_mm); 3101 if (ret) 3102 goto release; 3103 3104 /* Deliver the page fault to userland, check inside PT lock */ 3105 if (userfaultfd_missing(vma)) { 3106 pte_unmap_unlock(vmf->pte, vmf->ptl); 3107 mem_cgroup_cancel_charge(page, memcg, false); 3108 put_page(page); 3109 return handle_userfault(vmf, VM_UFFD_MISSING); 3110 } 3111 3112 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3113 page_add_new_anon_rmap(page, vma, vmf->address, false); 3114 mem_cgroup_commit_charge(page, memcg, false, false); 3115 lru_cache_add_active_or_unevictable(page, vma); 3116 setpte: 3117 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3118 3119 /* No need to invalidate - it was non-present before */ 3120 update_mmu_cache(vma, vmf->address, vmf->pte); 3121 unlock: 3122 pte_unmap_unlock(vmf->pte, vmf->ptl); 3123 return ret; 3124 release: 3125 mem_cgroup_cancel_charge(page, memcg, false); 3126 put_page(page); 3127 goto unlock; 3128 oom_free_page: 3129 put_page(page); 3130 oom: 3131 return VM_FAULT_OOM; 3132 } 3133 3134 /* 3135 * The mmap_sem must have been held on entry, and may have been 3136 * released depending on flags and vma->vm_ops->fault() return value. 3137 * See filemap_fault() and __lock_page_retry(). 3138 */ 3139 static vm_fault_t __do_fault(struct vm_fault *vmf) 3140 { 3141 struct vm_area_struct *vma = vmf->vma; 3142 vm_fault_t ret; 3143 3144 /* 3145 * Preallocate pte before we take page_lock because this might lead to 3146 * deadlocks for memcg reclaim which waits for pages under writeback: 3147 * lock_page(A) 3148 * SetPageWriteback(A) 3149 * unlock_page(A) 3150 * lock_page(B) 3151 * lock_page(B) 3152 * pte_alloc_pne 3153 * shrink_page_list 3154 * wait_on_page_writeback(A) 3155 * SetPageWriteback(B) 3156 * unlock_page(B) 3157 * # flush A, B to clear the writeback 3158 */ 3159 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3160 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3161 if (!vmf->prealloc_pte) 3162 return VM_FAULT_OOM; 3163 smp_wmb(); /* See comment in __pte_alloc() */ 3164 } 3165 3166 ret = vma->vm_ops->fault(vmf); 3167 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3168 VM_FAULT_DONE_COW))) 3169 return ret; 3170 3171 if (unlikely(PageHWPoison(vmf->page))) { 3172 if (ret & VM_FAULT_LOCKED) 3173 unlock_page(vmf->page); 3174 put_page(vmf->page); 3175 vmf->page = NULL; 3176 return VM_FAULT_HWPOISON; 3177 } 3178 3179 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3180 lock_page(vmf->page); 3181 else 3182 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3183 3184 return ret; 3185 } 3186 3187 /* 3188 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3189 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3190 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3191 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3192 */ 3193 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3194 { 3195 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3196 } 3197 3198 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3199 { 3200 struct vm_area_struct *vma = vmf->vma; 3201 3202 if (!pmd_none(*vmf->pmd)) 3203 goto map_pte; 3204 if (vmf->prealloc_pte) { 3205 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3206 if (unlikely(!pmd_none(*vmf->pmd))) { 3207 spin_unlock(vmf->ptl); 3208 goto map_pte; 3209 } 3210 3211 mm_inc_nr_ptes(vma->vm_mm); 3212 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3213 spin_unlock(vmf->ptl); 3214 vmf->prealloc_pte = NULL; 3215 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3216 return VM_FAULT_OOM; 3217 } 3218 map_pte: 3219 /* 3220 * If a huge pmd materialized under us just retry later. Use 3221 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3222 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3223 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3224 * running immediately after a huge pmd fault in a different thread of 3225 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3226 * All we have to ensure is that it is a regular pmd that we can walk 3227 * with pte_offset_map() and we can do that through an atomic read in 3228 * C, which is what pmd_trans_unstable() provides. 3229 */ 3230 if (pmd_devmap_trans_unstable(vmf->pmd)) 3231 return VM_FAULT_NOPAGE; 3232 3233 /* 3234 * At this point we know that our vmf->pmd points to a page of ptes 3235 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3236 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3237 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3238 * be valid and we will re-check to make sure the vmf->pte isn't 3239 * pte_none() under vmf->ptl protection when we return to 3240 * alloc_set_pte(). 3241 */ 3242 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3243 &vmf->ptl); 3244 return 0; 3245 } 3246 3247 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3248 static void deposit_prealloc_pte(struct vm_fault *vmf) 3249 { 3250 struct vm_area_struct *vma = vmf->vma; 3251 3252 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3253 /* 3254 * We are going to consume the prealloc table, 3255 * count that as nr_ptes. 3256 */ 3257 mm_inc_nr_ptes(vma->vm_mm); 3258 vmf->prealloc_pte = NULL; 3259 } 3260 3261 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3262 { 3263 struct vm_area_struct *vma = vmf->vma; 3264 bool write = vmf->flags & FAULT_FLAG_WRITE; 3265 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3266 pmd_t entry; 3267 int i; 3268 vm_fault_t ret; 3269 3270 if (!transhuge_vma_suitable(vma, haddr)) 3271 return VM_FAULT_FALLBACK; 3272 3273 ret = VM_FAULT_FALLBACK; 3274 page = compound_head(page); 3275 3276 /* 3277 * Archs like ppc64 need additonal space to store information 3278 * related to pte entry. Use the preallocated table for that. 3279 */ 3280 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3281 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3282 if (!vmf->prealloc_pte) 3283 return VM_FAULT_OOM; 3284 smp_wmb(); /* See comment in __pte_alloc() */ 3285 } 3286 3287 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3288 if (unlikely(!pmd_none(*vmf->pmd))) 3289 goto out; 3290 3291 for (i = 0; i < HPAGE_PMD_NR; i++) 3292 flush_icache_page(vma, page + i); 3293 3294 entry = mk_huge_pmd(page, vma->vm_page_prot); 3295 if (write) 3296 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3297 3298 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3299 page_add_file_rmap(page, true); 3300 /* 3301 * deposit and withdraw with pmd lock held 3302 */ 3303 if (arch_needs_pgtable_deposit()) 3304 deposit_prealloc_pte(vmf); 3305 3306 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3307 3308 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3309 3310 /* fault is handled */ 3311 ret = 0; 3312 count_vm_event(THP_FILE_MAPPED); 3313 out: 3314 spin_unlock(vmf->ptl); 3315 return ret; 3316 } 3317 #else 3318 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3319 { 3320 BUILD_BUG(); 3321 return 0; 3322 } 3323 #endif 3324 3325 /** 3326 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3327 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3328 * 3329 * @vmf: fault environment 3330 * @memcg: memcg to charge page (only for private mappings) 3331 * @page: page to map 3332 * 3333 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3334 * return. 3335 * 3336 * Target users are page handler itself and implementations of 3337 * vm_ops->map_pages. 3338 * 3339 * Return: %0 on success, %VM_FAULT_ code in case of error. 3340 */ 3341 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3342 struct page *page) 3343 { 3344 struct vm_area_struct *vma = vmf->vma; 3345 bool write = vmf->flags & FAULT_FLAG_WRITE; 3346 pte_t entry; 3347 vm_fault_t ret; 3348 3349 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3350 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3351 /* THP on COW? */ 3352 VM_BUG_ON_PAGE(memcg, page); 3353 3354 ret = do_set_pmd(vmf, page); 3355 if (ret != VM_FAULT_FALLBACK) 3356 return ret; 3357 } 3358 3359 if (!vmf->pte) { 3360 ret = pte_alloc_one_map(vmf); 3361 if (ret) 3362 return ret; 3363 } 3364 3365 /* Re-check under ptl */ 3366 if (unlikely(!pte_none(*vmf->pte))) 3367 return VM_FAULT_NOPAGE; 3368 3369 flush_icache_page(vma, page); 3370 entry = mk_pte(page, vma->vm_page_prot); 3371 if (write) 3372 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3373 /* copy-on-write page */ 3374 if (write && !(vma->vm_flags & VM_SHARED)) { 3375 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3376 page_add_new_anon_rmap(page, vma, vmf->address, false); 3377 mem_cgroup_commit_charge(page, memcg, false, false); 3378 lru_cache_add_active_or_unevictable(page, vma); 3379 } else { 3380 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3381 page_add_file_rmap(page, false); 3382 } 3383 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3384 3385 /* no need to invalidate: a not-present page won't be cached */ 3386 update_mmu_cache(vma, vmf->address, vmf->pte); 3387 3388 return 0; 3389 } 3390 3391 3392 /** 3393 * finish_fault - finish page fault once we have prepared the page to fault 3394 * 3395 * @vmf: structure describing the fault 3396 * 3397 * This function handles all that is needed to finish a page fault once the 3398 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3399 * given page, adds reverse page mapping, handles memcg charges and LRU 3400 * addition. 3401 * 3402 * The function expects the page to be locked and on success it consumes a 3403 * reference of a page being mapped (for the PTE which maps it). 3404 * 3405 * Return: %0 on success, %VM_FAULT_ code in case of error. 3406 */ 3407 vm_fault_t finish_fault(struct vm_fault *vmf) 3408 { 3409 struct page *page; 3410 vm_fault_t ret = 0; 3411 3412 /* Did we COW the page? */ 3413 if ((vmf->flags & FAULT_FLAG_WRITE) && 3414 !(vmf->vma->vm_flags & VM_SHARED)) 3415 page = vmf->cow_page; 3416 else 3417 page = vmf->page; 3418 3419 /* 3420 * check even for read faults because we might have lost our CoWed 3421 * page 3422 */ 3423 if (!(vmf->vma->vm_flags & VM_SHARED)) 3424 ret = check_stable_address_space(vmf->vma->vm_mm); 3425 if (!ret) 3426 ret = alloc_set_pte(vmf, vmf->memcg, page); 3427 if (vmf->pte) 3428 pte_unmap_unlock(vmf->pte, vmf->ptl); 3429 return ret; 3430 } 3431 3432 static unsigned long fault_around_bytes __read_mostly = 3433 rounddown_pow_of_two(65536); 3434 3435 #ifdef CONFIG_DEBUG_FS 3436 static int fault_around_bytes_get(void *data, u64 *val) 3437 { 3438 *val = fault_around_bytes; 3439 return 0; 3440 } 3441 3442 /* 3443 * fault_around_bytes must be rounded down to the nearest page order as it's 3444 * what do_fault_around() expects to see. 3445 */ 3446 static int fault_around_bytes_set(void *data, u64 val) 3447 { 3448 if (val / PAGE_SIZE > PTRS_PER_PTE) 3449 return -EINVAL; 3450 if (val > PAGE_SIZE) 3451 fault_around_bytes = rounddown_pow_of_two(val); 3452 else 3453 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3454 return 0; 3455 } 3456 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3457 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3458 3459 static int __init fault_around_debugfs(void) 3460 { 3461 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3462 &fault_around_bytes_fops); 3463 return 0; 3464 } 3465 late_initcall(fault_around_debugfs); 3466 #endif 3467 3468 /* 3469 * do_fault_around() tries to map few pages around the fault address. The hope 3470 * is that the pages will be needed soon and this will lower the number of 3471 * faults to handle. 3472 * 3473 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3474 * not ready to be mapped: not up-to-date, locked, etc. 3475 * 3476 * This function is called with the page table lock taken. In the split ptlock 3477 * case the page table lock only protects only those entries which belong to 3478 * the page table corresponding to the fault address. 3479 * 3480 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3481 * only once. 3482 * 3483 * fault_around_bytes defines how many bytes we'll try to map. 3484 * do_fault_around() expects it to be set to a power of two less than or equal 3485 * to PTRS_PER_PTE. 3486 * 3487 * The virtual address of the area that we map is naturally aligned to 3488 * fault_around_bytes rounded down to the machine page size 3489 * (and therefore to page order). This way it's easier to guarantee 3490 * that we don't cross page table boundaries. 3491 */ 3492 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3493 { 3494 unsigned long address = vmf->address, nr_pages, mask; 3495 pgoff_t start_pgoff = vmf->pgoff; 3496 pgoff_t end_pgoff; 3497 int off; 3498 vm_fault_t ret = 0; 3499 3500 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3501 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3502 3503 vmf->address = max(address & mask, vmf->vma->vm_start); 3504 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3505 start_pgoff -= off; 3506 3507 /* 3508 * end_pgoff is either the end of the page table, the end of 3509 * the vma or nr_pages from start_pgoff, depending what is nearest. 3510 */ 3511 end_pgoff = start_pgoff - 3512 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3513 PTRS_PER_PTE - 1; 3514 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3515 start_pgoff + nr_pages - 1); 3516 3517 if (pmd_none(*vmf->pmd)) { 3518 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3519 if (!vmf->prealloc_pte) 3520 goto out; 3521 smp_wmb(); /* See comment in __pte_alloc() */ 3522 } 3523 3524 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3525 3526 /* Huge page is mapped? Page fault is solved */ 3527 if (pmd_trans_huge(*vmf->pmd)) { 3528 ret = VM_FAULT_NOPAGE; 3529 goto out; 3530 } 3531 3532 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3533 if (!vmf->pte) 3534 goto out; 3535 3536 /* check if the page fault is solved */ 3537 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3538 if (!pte_none(*vmf->pte)) 3539 ret = VM_FAULT_NOPAGE; 3540 pte_unmap_unlock(vmf->pte, vmf->ptl); 3541 out: 3542 vmf->address = address; 3543 vmf->pte = NULL; 3544 return ret; 3545 } 3546 3547 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3548 { 3549 struct vm_area_struct *vma = vmf->vma; 3550 vm_fault_t ret = 0; 3551 3552 /* 3553 * Let's call ->map_pages() first and use ->fault() as fallback 3554 * if page by the offset is not ready to be mapped (cold cache or 3555 * something). 3556 */ 3557 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3558 ret = do_fault_around(vmf); 3559 if (ret) 3560 return ret; 3561 } 3562 3563 ret = __do_fault(vmf); 3564 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3565 return ret; 3566 3567 ret |= finish_fault(vmf); 3568 unlock_page(vmf->page); 3569 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3570 put_page(vmf->page); 3571 return ret; 3572 } 3573 3574 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3575 { 3576 struct vm_area_struct *vma = vmf->vma; 3577 vm_fault_t ret; 3578 3579 if (unlikely(anon_vma_prepare(vma))) 3580 return VM_FAULT_OOM; 3581 3582 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3583 if (!vmf->cow_page) 3584 return VM_FAULT_OOM; 3585 3586 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3587 &vmf->memcg, false)) { 3588 put_page(vmf->cow_page); 3589 return VM_FAULT_OOM; 3590 } 3591 3592 ret = __do_fault(vmf); 3593 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3594 goto uncharge_out; 3595 if (ret & VM_FAULT_DONE_COW) 3596 return ret; 3597 3598 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3599 __SetPageUptodate(vmf->cow_page); 3600 3601 ret |= finish_fault(vmf); 3602 unlock_page(vmf->page); 3603 put_page(vmf->page); 3604 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3605 goto uncharge_out; 3606 return ret; 3607 uncharge_out: 3608 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3609 put_page(vmf->cow_page); 3610 return ret; 3611 } 3612 3613 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3614 { 3615 struct vm_area_struct *vma = vmf->vma; 3616 vm_fault_t ret, tmp; 3617 3618 ret = __do_fault(vmf); 3619 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3620 return ret; 3621 3622 /* 3623 * Check if the backing address space wants to know that the page is 3624 * about to become writable 3625 */ 3626 if (vma->vm_ops->page_mkwrite) { 3627 unlock_page(vmf->page); 3628 tmp = do_page_mkwrite(vmf); 3629 if (unlikely(!tmp || 3630 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3631 put_page(vmf->page); 3632 return tmp; 3633 } 3634 } 3635 3636 ret |= finish_fault(vmf); 3637 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3638 VM_FAULT_RETRY))) { 3639 unlock_page(vmf->page); 3640 put_page(vmf->page); 3641 return ret; 3642 } 3643 3644 fault_dirty_shared_page(vma, vmf->page); 3645 return ret; 3646 } 3647 3648 /* 3649 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3650 * but allow concurrent faults). 3651 * The mmap_sem may have been released depending on flags and our 3652 * return value. See filemap_fault() and __lock_page_or_retry(). 3653 * If mmap_sem is released, vma may become invalid (for example 3654 * by other thread calling munmap()). 3655 */ 3656 static vm_fault_t do_fault(struct vm_fault *vmf) 3657 { 3658 struct vm_area_struct *vma = vmf->vma; 3659 struct mm_struct *vm_mm = vma->vm_mm; 3660 vm_fault_t ret; 3661 3662 /* 3663 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3664 */ 3665 if (!vma->vm_ops->fault) { 3666 /* 3667 * If we find a migration pmd entry or a none pmd entry, which 3668 * should never happen, return SIGBUS 3669 */ 3670 if (unlikely(!pmd_present(*vmf->pmd))) 3671 ret = VM_FAULT_SIGBUS; 3672 else { 3673 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3674 vmf->pmd, 3675 vmf->address, 3676 &vmf->ptl); 3677 /* 3678 * Make sure this is not a temporary clearing of pte 3679 * by holding ptl and checking again. A R/M/W update 3680 * of pte involves: take ptl, clearing the pte so that 3681 * we don't have concurrent modification by hardware 3682 * followed by an update. 3683 */ 3684 if (unlikely(pte_none(*vmf->pte))) 3685 ret = VM_FAULT_SIGBUS; 3686 else 3687 ret = VM_FAULT_NOPAGE; 3688 3689 pte_unmap_unlock(vmf->pte, vmf->ptl); 3690 } 3691 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3692 ret = do_read_fault(vmf); 3693 else if (!(vma->vm_flags & VM_SHARED)) 3694 ret = do_cow_fault(vmf); 3695 else 3696 ret = do_shared_fault(vmf); 3697 3698 /* preallocated pagetable is unused: free it */ 3699 if (vmf->prealloc_pte) { 3700 pte_free(vm_mm, vmf->prealloc_pte); 3701 vmf->prealloc_pte = NULL; 3702 } 3703 return ret; 3704 } 3705 3706 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3707 unsigned long addr, int page_nid, 3708 int *flags) 3709 { 3710 get_page(page); 3711 3712 count_vm_numa_event(NUMA_HINT_FAULTS); 3713 if (page_nid == numa_node_id()) { 3714 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3715 *flags |= TNF_FAULT_LOCAL; 3716 } 3717 3718 return mpol_misplaced(page, vma, addr); 3719 } 3720 3721 static vm_fault_t do_numa_page(struct vm_fault *vmf) 3722 { 3723 struct vm_area_struct *vma = vmf->vma; 3724 struct page *page = NULL; 3725 int page_nid = NUMA_NO_NODE; 3726 int last_cpupid; 3727 int target_nid; 3728 bool migrated = false; 3729 pte_t pte, old_pte; 3730 bool was_writable = pte_savedwrite(vmf->orig_pte); 3731 int flags = 0; 3732 3733 /* 3734 * The "pte" at this point cannot be used safely without 3735 * validation through pte_unmap_same(). It's of NUMA type but 3736 * the pfn may be screwed if the read is non atomic. 3737 */ 3738 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3739 spin_lock(vmf->ptl); 3740 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3741 pte_unmap_unlock(vmf->pte, vmf->ptl); 3742 goto out; 3743 } 3744 3745 /* 3746 * Make it present again, Depending on how arch implementes non 3747 * accessible ptes, some can allow access by kernel mode. 3748 */ 3749 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 3750 pte = pte_modify(old_pte, vma->vm_page_prot); 3751 pte = pte_mkyoung(pte); 3752 if (was_writable) 3753 pte = pte_mkwrite(pte); 3754 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 3755 update_mmu_cache(vma, vmf->address, vmf->pte); 3756 3757 page = vm_normal_page(vma, vmf->address, pte); 3758 if (!page) { 3759 pte_unmap_unlock(vmf->pte, vmf->ptl); 3760 return 0; 3761 } 3762 3763 /* TODO: handle PTE-mapped THP */ 3764 if (PageCompound(page)) { 3765 pte_unmap_unlock(vmf->pte, vmf->ptl); 3766 return 0; 3767 } 3768 3769 /* 3770 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3771 * much anyway since they can be in shared cache state. This misses 3772 * the case where a mapping is writable but the process never writes 3773 * to it but pte_write gets cleared during protection updates and 3774 * pte_dirty has unpredictable behaviour between PTE scan updates, 3775 * background writeback, dirty balancing and application behaviour. 3776 */ 3777 if (!pte_write(pte)) 3778 flags |= TNF_NO_GROUP; 3779 3780 /* 3781 * Flag if the page is shared between multiple address spaces. This 3782 * is later used when determining whether to group tasks together 3783 */ 3784 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3785 flags |= TNF_SHARED; 3786 3787 last_cpupid = page_cpupid_last(page); 3788 page_nid = page_to_nid(page); 3789 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3790 &flags); 3791 pte_unmap_unlock(vmf->pte, vmf->ptl); 3792 if (target_nid == NUMA_NO_NODE) { 3793 put_page(page); 3794 goto out; 3795 } 3796 3797 /* Migrate to the requested node */ 3798 migrated = migrate_misplaced_page(page, vma, target_nid); 3799 if (migrated) { 3800 page_nid = target_nid; 3801 flags |= TNF_MIGRATED; 3802 } else 3803 flags |= TNF_MIGRATE_FAIL; 3804 3805 out: 3806 if (page_nid != NUMA_NO_NODE) 3807 task_numa_fault(last_cpupid, page_nid, 1, flags); 3808 return 0; 3809 } 3810 3811 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 3812 { 3813 if (vma_is_anonymous(vmf->vma)) 3814 return do_huge_pmd_anonymous_page(vmf); 3815 if (vmf->vma->vm_ops->huge_fault) 3816 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3817 return VM_FAULT_FALLBACK; 3818 } 3819 3820 /* `inline' is required to avoid gcc 4.1.2 build error */ 3821 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3822 { 3823 if (vma_is_anonymous(vmf->vma)) 3824 return do_huge_pmd_wp_page(vmf, orig_pmd); 3825 if (vmf->vma->vm_ops->huge_fault) 3826 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3827 3828 /* COW handled on pte level: split pmd */ 3829 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3830 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3831 3832 return VM_FAULT_FALLBACK; 3833 } 3834 3835 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3836 { 3837 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3838 } 3839 3840 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 3841 { 3842 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3843 /* No support for anonymous transparent PUD pages yet */ 3844 if (vma_is_anonymous(vmf->vma)) 3845 return VM_FAULT_FALLBACK; 3846 if (vmf->vma->vm_ops->huge_fault) 3847 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3848 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3849 return VM_FAULT_FALLBACK; 3850 } 3851 3852 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3853 { 3854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3855 /* No support for anonymous transparent PUD pages yet */ 3856 if (vma_is_anonymous(vmf->vma)) 3857 return VM_FAULT_FALLBACK; 3858 if (vmf->vma->vm_ops->huge_fault) 3859 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3860 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3861 return VM_FAULT_FALLBACK; 3862 } 3863 3864 /* 3865 * These routines also need to handle stuff like marking pages dirty 3866 * and/or accessed for architectures that don't do it in hardware (most 3867 * RISC architectures). The early dirtying is also good on the i386. 3868 * 3869 * There is also a hook called "update_mmu_cache()" that architectures 3870 * with external mmu caches can use to update those (ie the Sparc or 3871 * PowerPC hashed page tables that act as extended TLBs). 3872 * 3873 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3874 * concurrent faults). 3875 * 3876 * The mmap_sem may have been released depending on flags and our return value. 3877 * See filemap_fault() and __lock_page_or_retry(). 3878 */ 3879 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 3880 { 3881 pte_t entry; 3882 3883 if (unlikely(pmd_none(*vmf->pmd))) { 3884 /* 3885 * Leave __pte_alloc() until later: because vm_ops->fault may 3886 * want to allocate huge page, and if we expose page table 3887 * for an instant, it will be difficult to retract from 3888 * concurrent faults and from rmap lookups. 3889 */ 3890 vmf->pte = NULL; 3891 } else { 3892 /* See comment in pte_alloc_one_map() */ 3893 if (pmd_devmap_trans_unstable(vmf->pmd)) 3894 return 0; 3895 /* 3896 * A regular pmd is established and it can't morph into a huge 3897 * pmd from under us anymore at this point because we hold the 3898 * mmap_sem read mode and khugepaged takes it in write mode. 3899 * So now it's safe to run pte_offset_map(). 3900 */ 3901 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3902 vmf->orig_pte = *vmf->pte; 3903 3904 /* 3905 * some architectures can have larger ptes than wordsize, 3906 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3907 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3908 * accesses. The code below just needs a consistent view 3909 * for the ifs and we later double check anyway with the 3910 * ptl lock held. So here a barrier will do. 3911 */ 3912 barrier(); 3913 if (pte_none(vmf->orig_pte)) { 3914 pte_unmap(vmf->pte); 3915 vmf->pte = NULL; 3916 } 3917 } 3918 3919 if (!vmf->pte) { 3920 if (vma_is_anonymous(vmf->vma)) 3921 return do_anonymous_page(vmf); 3922 else 3923 return do_fault(vmf); 3924 } 3925 3926 if (!pte_present(vmf->orig_pte)) 3927 return do_swap_page(vmf); 3928 3929 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3930 return do_numa_page(vmf); 3931 3932 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3933 spin_lock(vmf->ptl); 3934 entry = vmf->orig_pte; 3935 if (unlikely(!pte_same(*vmf->pte, entry))) 3936 goto unlock; 3937 if (vmf->flags & FAULT_FLAG_WRITE) { 3938 if (!pte_write(entry)) 3939 return do_wp_page(vmf); 3940 entry = pte_mkdirty(entry); 3941 } 3942 entry = pte_mkyoung(entry); 3943 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3944 vmf->flags & FAULT_FLAG_WRITE)) { 3945 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3946 } else { 3947 /* 3948 * This is needed only for protection faults but the arch code 3949 * is not yet telling us if this is a protection fault or not. 3950 * This still avoids useless tlb flushes for .text page faults 3951 * with threads. 3952 */ 3953 if (vmf->flags & FAULT_FLAG_WRITE) 3954 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3955 } 3956 unlock: 3957 pte_unmap_unlock(vmf->pte, vmf->ptl); 3958 return 0; 3959 } 3960 3961 /* 3962 * By the time we get here, we already hold the mm semaphore 3963 * 3964 * The mmap_sem may have been released depending on flags and our 3965 * return value. See filemap_fault() and __lock_page_or_retry(). 3966 */ 3967 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 3968 unsigned long address, unsigned int flags) 3969 { 3970 struct vm_fault vmf = { 3971 .vma = vma, 3972 .address = address & PAGE_MASK, 3973 .flags = flags, 3974 .pgoff = linear_page_index(vma, address), 3975 .gfp_mask = __get_fault_gfp_mask(vma), 3976 }; 3977 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3978 struct mm_struct *mm = vma->vm_mm; 3979 pgd_t *pgd; 3980 p4d_t *p4d; 3981 vm_fault_t ret; 3982 3983 pgd = pgd_offset(mm, address); 3984 p4d = p4d_alloc(mm, pgd, address); 3985 if (!p4d) 3986 return VM_FAULT_OOM; 3987 3988 vmf.pud = pud_alloc(mm, p4d, address); 3989 if (!vmf.pud) 3990 return VM_FAULT_OOM; 3991 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 3992 ret = create_huge_pud(&vmf); 3993 if (!(ret & VM_FAULT_FALLBACK)) 3994 return ret; 3995 } else { 3996 pud_t orig_pud = *vmf.pud; 3997 3998 barrier(); 3999 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4000 4001 /* NUMA case for anonymous PUDs would go here */ 4002 4003 if (dirty && !pud_write(orig_pud)) { 4004 ret = wp_huge_pud(&vmf, orig_pud); 4005 if (!(ret & VM_FAULT_FALLBACK)) 4006 return ret; 4007 } else { 4008 huge_pud_set_accessed(&vmf, orig_pud); 4009 return 0; 4010 } 4011 } 4012 } 4013 4014 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4015 if (!vmf.pmd) 4016 return VM_FAULT_OOM; 4017 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4018 ret = create_huge_pmd(&vmf); 4019 if (!(ret & VM_FAULT_FALLBACK)) 4020 return ret; 4021 } else { 4022 pmd_t orig_pmd = *vmf.pmd; 4023 4024 barrier(); 4025 if (unlikely(is_swap_pmd(orig_pmd))) { 4026 VM_BUG_ON(thp_migration_supported() && 4027 !is_pmd_migration_entry(orig_pmd)); 4028 if (is_pmd_migration_entry(orig_pmd)) 4029 pmd_migration_entry_wait(mm, vmf.pmd); 4030 return 0; 4031 } 4032 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4033 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4034 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4035 4036 if (dirty && !pmd_write(orig_pmd)) { 4037 ret = wp_huge_pmd(&vmf, orig_pmd); 4038 if (!(ret & VM_FAULT_FALLBACK)) 4039 return ret; 4040 } else { 4041 huge_pmd_set_accessed(&vmf, orig_pmd); 4042 return 0; 4043 } 4044 } 4045 } 4046 4047 return handle_pte_fault(&vmf); 4048 } 4049 4050 /* 4051 * By the time we get here, we already hold the mm semaphore 4052 * 4053 * The mmap_sem may have been released depending on flags and our 4054 * return value. See filemap_fault() and __lock_page_or_retry(). 4055 */ 4056 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4057 unsigned int flags) 4058 { 4059 vm_fault_t ret; 4060 4061 __set_current_state(TASK_RUNNING); 4062 4063 count_vm_event(PGFAULT); 4064 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4065 4066 /* do counter updates before entering really critical section. */ 4067 check_sync_rss_stat(current); 4068 4069 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4070 flags & FAULT_FLAG_INSTRUCTION, 4071 flags & FAULT_FLAG_REMOTE)) 4072 return VM_FAULT_SIGSEGV; 4073 4074 /* 4075 * Enable the memcg OOM handling for faults triggered in user 4076 * space. Kernel faults are handled more gracefully. 4077 */ 4078 if (flags & FAULT_FLAG_USER) 4079 mem_cgroup_enter_user_fault(); 4080 4081 if (unlikely(is_vm_hugetlb_page(vma))) 4082 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4083 else 4084 ret = __handle_mm_fault(vma, address, flags); 4085 4086 if (flags & FAULT_FLAG_USER) { 4087 mem_cgroup_exit_user_fault(); 4088 /* 4089 * The task may have entered a memcg OOM situation but 4090 * if the allocation error was handled gracefully (no 4091 * VM_FAULT_OOM), there is no need to kill anything. 4092 * Just clean up the OOM state peacefully. 4093 */ 4094 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4095 mem_cgroup_oom_synchronize(false); 4096 } 4097 4098 return ret; 4099 } 4100 EXPORT_SYMBOL_GPL(handle_mm_fault); 4101 4102 #ifndef __PAGETABLE_P4D_FOLDED 4103 /* 4104 * Allocate p4d page table. 4105 * We've already handled the fast-path in-line. 4106 */ 4107 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4108 { 4109 p4d_t *new = p4d_alloc_one(mm, address); 4110 if (!new) 4111 return -ENOMEM; 4112 4113 smp_wmb(); /* See comment in __pte_alloc */ 4114 4115 spin_lock(&mm->page_table_lock); 4116 if (pgd_present(*pgd)) /* Another has populated it */ 4117 p4d_free(mm, new); 4118 else 4119 pgd_populate(mm, pgd, new); 4120 spin_unlock(&mm->page_table_lock); 4121 return 0; 4122 } 4123 #endif /* __PAGETABLE_P4D_FOLDED */ 4124 4125 #ifndef __PAGETABLE_PUD_FOLDED 4126 /* 4127 * Allocate page upper directory. 4128 * We've already handled the fast-path in-line. 4129 */ 4130 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4131 { 4132 pud_t *new = pud_alloc_one(mm, address); 4133 if (!new) 4134 return -ENOMEM; 4135 4136 smp_wmb(); /* See comment in __pte_alloc */ 4137 4138 spin_lock(&mm->page_table_lock); 4139 #ifndef __ARCH_HAS_5LEVEL_HACK 4140 if (!p4d_present(*p4d)) { 4141 mm_inc_nr_puds(mm); 4142 p4d_populate(mm, p4d, new); 4143 } else /* Another has populated it */ 4144 pud_free(mm, new); 4145 #else 4146 if (!pgd_present(*p4d)) { 4147 mm_inc_nr_puds(mm); 4148 pgd_populate(mm, p4d, new); 4149 } else /* Another has populated it */ 4150 pud_free(mm, new); 4151 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4152 spin_unlock(&mm->page_table_lock); 4153 return 0; 4154 } 4155 #endif /* __PAGETABLE_PUD_FOLDED */ 4156 4157 #ifndef __PAGETABLE_PMD_FOLDED 4158 /* 4159 * Allocate page middle directory. 4160 * We've already handled the fast-path in-line. 4161 */ 4162 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4163 { 4164 spinlock_t *ptl; 4165 pmd_t *new = pmd_alloc_one(mm, address); 4166 if (!new) 4167 return -ENOMEM; 4168 4169 smp_wmb(); /* See comment in __pte_alloc */ 4170 4171 ptl = pud_lock(mm, pud); 4172 #ifndef __ARCH_HAS_4LEVEL_HACK 4173 if (!pud_present(*pud)) { 4174 mm_inc_nr_pmds(mm); 4175 pud_populate(mm, pud, new); 4176 } else /* Another has populated it */ 4177 pmd_free(mm, new); 4178 #else 4179 if (!pgd_present(*pud)) { 4180 mm_inc_nr_pmds(mm); 4181 pgd_populate(mm, pud, new); 4182 } else /* Another has populated it */ 4183 pmd_free(mm, new); 4184 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4185 spin_unlock(ptl); 4186 return 0; 4187 } 4188 #endif /* __PAGETABLE_PMD_FOLDED */ 4189 4190 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4191 struct mmu_notifier_range *range, 4192 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4193 { 4194 pgd_t *pgd; 4195 p4d_t *p4d; 4196 pud_t *pud; 4197 pmd_t *pmd; 4198 pte_t *ptep; 4199 4200 pgd = pgd_offset(mm, address); 4201 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4202 goto out; 4203 4204 p4d = p4d_offset(pgd, address); 4205 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4206 goto out; 4207 4208 pud = pud_offset(p4d, address); 4209 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4210 goto out; 4211 4212 pmd = pmd_offset(pud, address); 4213 VM_BUG_ON(pmd_trans_huge(*pmd)); 4214 4215 if (pmd_huge(*pmd)) { 4216 if (!pmdpp) 4217 goto out; 4218 4219 if (range) { 4220 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4221 NULL, mm, address & PMD_MASK, 4222 (address & PMD_MASK) + PMD_SIZE); 4223 mmu_notifier_invalidate_range_start(range); 4224 } 4225 *ptlp = pmd_lock(mm, pmd); 4226 if (pmd_huge(*pmd)) { 4227 *pmdpp = pmd; 4228 return 0; 4229 } 4230 spin_unlock(*ptlp); 4231 if (range) 4232 mmu_notifier_invalidate_range_end(range); 4233 } 4234 4235 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4236 goto out; 4237 4238 if (range) { 4239 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4240 address & PAGE_MASK, 4241 (address & PAGE_MASK) + PAGE_SIZE); 4242 mmu_notifier_invalidate_range_start(range); 4243 } 4244 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4245 if (!pte_present(*ptep)) 4246 goto unlock; 4247 *ptepp = ptep; 4248 return 0; 4249 unlock: 4250 pte_unmap_unlock(ptep, *ptlp); 4251 if (range) 4252 mmu_notifier_invalidate_range_end(range); 4253 out: 4254 return -EINVAL; 4255 } 4256 4257 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4258 pte_t **ptepp, spinlock_t **ptlp) 4259 { 4260 int res; 4261 4262 /* (void) is needed to make gcc happy */ 4263 (void) __cond_lock(*ptlp, 4264 !(res = __follow_pte_pmd(mm, address, NULL, 4265 ptepp, NULL, ptlp))); 4266 return res; 4267 } 4268 4269 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4270 struct mmu_notifier_range *range, 4271 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4272 { 4273 int res; 4274 4275 /* (void) is needed to make gcc happy */ 4276 (void) __cond_lock(*ptlp, 4277 !(res = __follow_pte_pmd(mm, address, range, 4278 ptepp, pmdpp, ptlp))); 4279 return res; 4280 } 4281 EXPORT_SYMBOL(follow_pte_pmd); 4282 4283 /** 4284 * follow_pfn - look up PFN at a user virtual address 4285 * @vma: memory mapping 4286 * @address: user virtual address 4287 * @pfn: location to store found PFN 4288 * 4289 * Only IO mappings and raw PFN mappings are allowed. 4290 * 4291 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4292 */ 4293 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4294 unsigned long *pfn) 4295 { 4296 int ret = -EINVAL; 4297 spinlock_t *ptl; 4298 pte_t *ptep; 4299 4300 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4301 return ret; 4302 4303 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4304 if (ret) 4305 return ret; 4306 *pfn = pte_pfn(*ptep); 4307 pte_unmap_unlock(ptep, ptl); 4308 return 0; 4309 } 4310 EXPORT_SYMBOL(follow_pfn); 4311 4312 #ifdef CONFIG_HAVE_IOREMAP_PROT 4313 int follow_phys(struct vm_area_struct *vma, 4314 unsigned long address, unsigned int flags, 4315 unsigned long *prot, resource_size_t *phys) 4316 { 4317 int ret = -EINVAL; 4318 pte_t *ptep, pte; 4319 spinlock_t *ptl; 4320 4321 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4322 goto out; 4323 4324 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4325 goto out; 4326 pte = *ptep; 4327 4328 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4329 goto unlock; 4330 4331 *prot = pgprot_val(pte_pgprot(pte)); 4332 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4333 4334 ret = 0; 4335 unlock: 4336 pte_unmap_unlock(ptep, ptl); 4337 out: 4338 return ret; 4339 } 4340 4341 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4342 void *buf, int len, int write) 4343 { 4344 resource_size_t phys_addr; 4345 unsigned long prot = 0; 4346 void __iomem *maddr; 4347 int offset = addr & (PAGE_SIZE-1); 4348 4349 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4350 return -EINVAL; 4351 4352 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4353 if (!maddr) 4354 return -ENOMEM; 4355 4356 if (write) 4357 memcpy_toio(maddr + offset, buf, len); 4358 else 4359 memcpy_fromio(buf, maddr + offset, len); 4360 iounmap(maddr); 4361 4362 return len; 4363 } 4364 EXPORT_SYMBOL_GPL(generic_access_phys); 4365 #endif 4366 4367 /* 4368 * Access another process' address space as given in mm. If non-NULL, use the 4369 * given task for page fault accounting. 4370 */ 4371 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4372 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4373 { 4374 struct vm_area_struct *vma; 4375 void *old_buf = buf; 4376 int write = gup_flags & FOLL_WRITE; 4377 4378 if (down_read_killable(&mm->mmap_sem)) 4379 return 0; 4380 4381 /* ignore errors, just check how much was successfully transferred */ 4382 while (len) { 4383 int bytes, ret, offset; 4384 void *maddr; 4385 struct page *page = NULL; 4386 4387 ret = get_user_pages_remote(tsk, mm, addr, 1, 4388 gup_flags, &page, &vma, NULL); 4389 if (ret <= 0) { 4390 #ifndef CONFIG_HAVE_IOREMAP_PROT 4391 break; 4392 #else 4393 /* 4394 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4395 * we can access using slightly different code. 4396 */ 4397 vma = find_vma(mm, addr); 4398 if (!vma || vma->vm_start > addr) 4399 break; 4400 if (vma->vm_ops && vma->vm_ops->access) 4401 ret = vma->vm_ops->access(vma, addr, buf, 4402 len, write); 4403 if (ret <= 0) 4404 break; 4405 bytes = ret; 4406 #endif 4407 } else { 4408 bytes = len; 4409 offset = addr & (PAGE_SIZE-1); 4410 if (bytes > PAGE_SIZE-offset) 4411 bytes = PAGE_SIZE-offset; 4412 4413 maddr = kmap(page); 4414 if (write) { 4415 copy_to_user_page(vma, page, addr, 4416 maddr + offset, buf, bytes); 4417 set_page_dirty_lock(page); 4418 } else { 4419 copy_from_user_page(vma, page, addr, 4420 buf, maddr + offset, bytes); 4421 } 4422 kunmap(page); 4423 put_page(page); 4424 } 4425 len -= bytes; 4426 buf += bytes; 4427 addr += bytes; 4428 } 4429 up_read(&mm->mmap_sem); 4430 4431 return buf - old_buf; 4432 } 4433 4434 /** 4435 * access_remote_vm - access another process' address space 4436 * @mm: the mm_struct of the target address space 4437 * @addr: start address to access 4438 * @buf: source or destination buffer 4439 * @len: number of bytes to transfer 4440 * @gup_flags: flags modifying lookup behaviour 4441 * 4442 * The caller must hold a reference on @mm. 4443 * 4444 * Return: number of bytes copied from source to destination. 4445 */ 4446 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4447 void *buf, int len, unsigned int gup_flags) 4448 { 4449 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4450 } 4451 4452 /* 4453 * Access another process' address space. 4454 * Source/target buffer must be kernel space, 4455 * Do not walk the page table directly, use get_user_pages 4456 */ 4457 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4458 void *buf, int len, unsigned int gup_flags) 4459 { 4460 struct mm_struct *mm; 4461 int ret; 4462 4463 mm = get_task_mm(tsk); 4464 if (!mm) 4465 return 0; 4466 4467 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4468 4469 mmput(mm); 4470 4471 return ret; 4472 } 4473 EXPORT_SYMBOL_GPL(access_process_vm); 4474 4475 /* 4476 * Print the name of a VMA. 4477 */ 4478 void print_vma_addr(char *prefix, unsigned long ip) 4479 { 4480 struct mm_struct *mm = current->mm; 4481 struct vm_area_struct *vma; 4482 4483 /* 4484 * we might be running from an atomic context so we cannot sleep 4485 */ 4486 if (!down_read_trylock(&mm->mmap_sem)) 4487 return; 4488 4489 vma = find_vma(mm, ip); 4490 if (vma && vma->vm_file) { 4491 struct file *f = vma->vm_file; 4492 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4493 if (buf) { 4494 char *p; 4495 4496 p = file_path(f, buf, PAGE_SIZE); 4497 if (IS_ERR(p)) 4498 p = "?"; 4499 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4500 vma->vm_start, 4501 vma->vm_end - vma->vm_start); 4502 free_page((unsigned long)buf); 4503 } 4504 } 4505 up_read(&mm->mmap_sem); 4506 } 4507 4508 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4509 void __might_fault(const char *file, int line) 4510 { 4511 /* 4512 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4513 * holding the mmap_sem, this is safe because kernel memory doesn't 4514 * get paged out, therefore we'll never actually fault, and the 4515 * below annotations will generate false positives. 4516 */ 4517 if (uaccess_kernel()) 4518 return; 4519 if (pagefault_disabled()) 4520 return; 4521 __might_sleep(file, line, 0); 4522 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4523 if (current->mm) 4524 might_lock_read(¤t->mm->mmap_sem); 4525 #endif 4526 } 4527 EXPORT_SYMBOL(__might_fault); 4528 #endif 4529 4530 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4531 /* 4532 * Process all subpages of the specified huge page with the specified 4533 * operation. The target subpage will be processed last to keep its 4534 * cache lines hot. 4535 */ 4536 static inline void process_huge_page( 4537 unsigned long addr_hint, unsigned int pages_per_huge_page, 4538 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4539 void *arg) 4540 { 4541 int i, n, base, l; 4542 unsigned long addr = addr_hint & 4543 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4544 4545 /* Process target subpage last to keep its cache lines hot */ 4546 might_sleep(); 4547 n = (addr_hint - addr) / PAGE_SIZE; 4548 if (2 * n <= pages_per_huge_page) { 4549 /* If target subpage in first half of huge page */ 4550 base = 0; 4551 l = n; 4552 /* Process subpages at the end of huge page */ 4553 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4554 cond_resched(); 4555 process_subpage(addr + i * PAGE_SIZE, i, arg); 4556 } 4557 } else { 4558 /* If target subpage in second half of huge page */ 4559 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4560 l = pages_per_huge_page - n; 4561 /* Process subpages at the begin of huge page */ 4562 for (i = 0; i < base; i++) { 4563 cond_resched(); 4564 process_subpage(addr + i * PAGE_SIZE, i, arg); 4565 } 4566 } 4567 /* 4568 * Process remaining subpages in left-right-left-right pattern 4569 * towards the target subpage 4570 */ 4571 for (i = 0; i < l; i++) { 4572 int left_idx = base + i; 4573 int right_idx = base + 2 * l - 1 - i; 4574 4575 cond_resched(); 4576 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4577 cond_resched(); 4578 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4579 } 4580 } 4581 4582 static void clear_gigantic_page(struct page *page, 4583 unsigned long addr, 4584 unsigned int pages_per_huge_page) 4585 { 4586 int i; 4587 struct page *p = page; 4588 4589 might_sleep(); 4590 for (i = 0; i < pages_per_huge_page; 4591 i++, p = mem_map_next(p, page, i)) { 4592 cond_resched(); 4593 clear_user_highpage(p, addr + i * PAGE_SIZE); 4594 } 4595 } 4596 4597 static void clear_subpage(unsigned long addr, int idx, void *arg) 4598 { 4599 struct page *page = arg; 4600 4601 clear_user_highpage(page + idx, addr); 4602 } 4603 4604 void clear_huge_page(struct page *page, 4605 unsigned long addr_hint, unsigned int pages_per_huge_page) 4606 { 4607 unsigned long addr = addr_hint & 4608 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4609 4610 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4611 clear_gigantic_page(page, addr, pages_per_huge_page); 4612 return; 4613 } 4614 4615 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4616 } 4617 4618 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4619 unsigned long addr, 4620 struct vm_area_struct *vma, 4621 unsigned int pages_per_huge_page) 4622 { 4623 int i; 4624 struct page *dst_base = dst; 4625 struct page *src_base = src; 4626 4627 for (i = 0; i < pages_per_huge_page; ) { 4628 cond_resched(); 4629 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4630 4631 i++; 4632 dst = mem_map_next(dst, dst_base, i); 4633 src = mem_map_next(src, src_base, i); 4634 } 4635 } 4636 4637 struct copy_subpage_arg { 4638 struct page *dst; 4639 struct page *src; 4640 struct vm_area_struct *vma; 4641 }; 4642 4643 static void copy_subpage(unsigned long addr, int idx, void *arg) 4644 { 4645 struct copy_subpage_arg *copy_arg = arg; 4646 4647 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4648 addr, copy_arg->vma); 4649 } 4650 4651 void copy_user_huge_page(struct page *dst, struct page *src, 4652 unsigned long addr_hint, struct vm_area_struct *vma, 4653 unsigned int pages_per_huge_page) 4654 { 4655 unsigned long addr = addr_hint & 4656 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4657 struct copy_subpage_arg arg = { 4658 .dst = dst, 4659 .src = src, 4660 .vma = vma, 4661 }; 4662 4663 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4664 copy_user_gigantic_page(dst, src, addr, vma, 4665 pages_per_huge_page); 4666 return; 4667 } 4668 4669 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4670 } 4671 4672 long copy_huge_page_from_user(struct page *dst_page, 4673 const void __user *usr_src, 4674 unsigned int pages_per_huge_page, 4675 bool allow_pagefault) 4676 { 4677 void *src = (void *)usr_src; 4678 void *page_kaddr; 4679 unsigned long i, rc = 0; 4680 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4681 4682 for (i = 0; i < pages_per_huge_page; i++) { 4683 if (allow_pagefault) 4684 page_kaddr = kmap(dst_page + i); 4685 else 4686 page_kaddr = kmap_atomic(dst_page + i); 4687 rc = copy_from_user(page_kaddr, 4688 (const void __user *)(src + i * PAGE_SIZE), 4689 PAGE_SIZE); 4690 if (allow_pagefault) 4691 kunmap(dst_page + i); 4692 else 4693 kunmap_atomic(page_kaddr); 4694 4695 ret_val -= (PAGE_SIZE - rc); 4696 if (rc) 4697 break; 4698 4699 cond_resched(); 4700 } 4701 return ret_val; 4702 } 4703 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4704 4705 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4706 4707 static struct kmem_cache *page_ptl_cachep; 4708 4709 void __init ptlock_cache_init(void) 4710 { 4711 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4712 SLAB_PANIC, NULL); 4713 } 4714 4715 bool ptlock_alloc(struct page *page) 4716 { 4717 spinlock_t *ptl; 4718 4719 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4720 if (!ptl) 4721 return false; 4722 page->ptl = ptl; 4723 return true; 4724 } 4725 4726 void ptlock_free(struct page *page) 4727 { 4728 kmem_cache_free(page_ptl_cachep, page->ptl); 4729 } 4730 #endif 4731