xref: /openbmc/linux/mm/memory.c (revision c0e297dc)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71 
72 #include "internal.h"
73 
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77 
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82 
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86 
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95 
96 EXPORT_SYMBOL(high_memory);
97 
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 					1;
107 #else
108 					2;
109 #endif
110 
111 static int __init disable_randmaps(char *s)
112 {
113 	randomize_va_space = 0;
114 	return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117 
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120 
121 EXPORT_SYMBOL(zero_pfn);
122 
123 /*
124  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125  */
126 static int __init init_zero_pfn(void)
127 {
128 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 	return 0;
130 }
131 core_initcall(init_zero_pfn);
132 
133 
134 #if defined(SPLIT_RSS_COUNTING)
135 
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138 	int i;
139 
140 	for (i = 0; i < NR_MM_COUNTERS; i++) {
141 		if (current->rss_stat.count[i]) {
142 			add_mm_counter(mm, i, current->rss_stat.count[i]);
143 			current->rss_stat.count[i] = 0;
144 		}
145 	}
146 	current->rss_stat.events = 0;
147 }
148 
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151 	struct task_struct *task = current;
152 
153 	if (likely(task->mm == mm))
154 		task->rss_stat.count[member] += val;
155 	else
156 		add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160 
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH	(64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165 	if (unlikely(task != current))
166 		return;
167 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168 		sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171 
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174 
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178 
179 #endif /* SPLIT_RSS_COUNTING */
180 
181 #ifdef HAVE_GENERIC_MMU_GATHER
182 
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185 	struct mmu_gather_batch *batch;
186 
187 	batch = tlb->active;
188 	if (batch->next) {
189 		tlb->active = batch->next;
190 		return 1;
191 	}
192 
193 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 		return 0;
195 
196 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 	if (!batch)
198 		return 0;
199 
200 	tlb->batch_count++;
201 	batch->next = NULL;
202 	batch->nr   = 0;
203 	batch->max  = MAX_GATHER_BATCH;
204 
205 	tlb->active->next = batch;
206 	tlb->active = batch;
207 
208 	return 1;
209 }
210 
211 /* tlb_gather_mmu
212  *	Called to initialize an (on-stack) mmu_gather structure for page-table
213  *	tear-down from @mm. The @fullmm argument is used when @mm is without
214  *	users and we're going to destroy the full address space (exit/execve).
215  */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218 	tlb->mm = mm;
219 
220 	/* Is it from 0 to ~0? */
221 	tlb->fullmm     = !(start | (end+1));
222 	tlb->need_flush_all = 0;
223 	tlb->local.next = NULL;
224 	tlb->local.nr   = 0;
225 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226 	tlb->active     = &tlb->local;
227 	tlb->batch_count = 0;
228 
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 	tlb->batch = NULL;
231 #endif
232 
233 	__tlb_reset_range(tlb);
234 }
235 
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 {
238 	if (!tlb->end)
239 		return;
240 
241 	tlb_flush(tlb);
242 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 	tlb_table_flush(tlb);
245 #endif
246 	__tlb_reset_range(tlb);
247 }
248 
249 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
250 {
251 	struct mmu_gather_batch *batch;
252 
253 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
254 		free_pages_and_swap_cache(batch->pages, batch->nr);
255 		batch->nr = 0;
256 	}
257 	tlb->active = &tlb->local;
258 }
259 
260 void tlb_flush_mmu(struct mmu_gather *tlb)
261 {
262 	tlb_flush_mmu_tlbonly(tlb);
263 	tlb_flush_mmu_free(tlb);
264 }
265 
266 /* tlb_finish_mmu
267  *	Called at the end of the shootdown operation to free up any resources
268  *	that were required.
269  */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272 	struct mmu_gather_batch *batch, *next;
273 
274 	tlb_flush_mmu(tlb);
275 
276 	/* keep the page table cache within bounds */
277 	check_pgt_cache();
278 
279 	for (batch = tlb->local.next; batch; batch = next) {
280 		next = batch->next;
281 		free_pages((unsigned long)batch, 0);
282 	}
283 	tlb->local.next = NULL;
284 }
285 
286 /* __tlb_remove_page
287  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *	handling the additional races in SMP caused by other CPUs caching valid
289  *	mappings in their TLBs. Returns the number of free page slots left.
290  *	When out of page slots we must call tlb_flush_mmu().
291  */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294 	struct mmu_gather_batch *batch;
295 
296 	VM_BUG_ON(!tlb->end);
297 
298 	batch = tlb->active;
299 	batch->pages[batch->nr++] = page;
300 	if (batch->nr == batch->max) {
301 		if (!tlb_next_batch(tlb))
302 			return 0;
303 		batch = tlb->active;
304 	}
305 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
306 
307 	return batch->max - batch->nr;
308 }
309 
310 #endif /* HAVE_GENERIC_MMU_GATHER */
311 
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
313 
314 /*
315  * See the comment near struct mmu_table_batch.
316  */
317 
318 static void tlb_remove_table_smp_sync(void *arg)
319 {
320 	/* Simply deliver the interrupt */
321 }
322 
323 static void tlb_remove_table_one(void *table)
324 {
325 	/*
326 	 * This isn't an RCU grace period and hence the page-tables cannot be
327 	 * assumed to be actually RCU-freed.
328 	 *
329 	 * It is however sufficient for software page-table walkers that rely on
330 	 * IRQ disabling. See the comment near struct mmu_table_batch.
331 	 */
332 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333 	__tlb_remove_table(table);
334 }
335 
336 static void tlb_remove_table_rcu(struct rcu_head *head)
337 {
338 	struct mmu_table_batch *batch;
339 	int i;
340 
341 	batch = container_of(head, struct mmu_table_batch, rcu);
342 
343 	for (i = 0; i < batch->nr; i++)
344 		__tlb_remove_table(batch->tables[i]);
345 
346 	free_page((unsigned long)batch);
347 }
348 
349 void tlb_table_flush(struct mmu_gather *tlb)
350 {
351 	struct mmu_table_batch **batch = &tlb->batch;
352 
353 	if (*batch) {
354 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355 		*batch = NULL;
356 	}
357 }
358 
359 void tlb_remove_table(struct mmu_gather *tlb, void *table)
360 {
361 	struct mmu_table_batch **batch = &tlb->batch;
362 
363 	/*
364 	 * When there's less then two users of this mm there cannot be a
365 	 * concurrent page-table walk.
366 	 */
367 	if (atomic_read(&tlb->mm->mm_users) < 2) {
368 		__tlb_remove_table(table);
369 		return;
370 	}
371 
372 	if (*batch == NULL) {
373 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374 		if (*batch == NULL) {
375 			tlb_remove_table_one(table);
376 			return;
377 		}
378 		(*batch)->nr = 0;
379 	}
380 	(*batch)->tables[(*batch)->nr++] = table;
381 	if ((*batch)->nr == MAX_TABLE_BATCH)
382 		tlb_table_flush(tlb);
383 }
384 
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386 
387 /*
388  * Note: this doesn't free the actual pages themselves. That
389  * has been handled earlier when unmapping all the memory regions.
390  */
391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392 			   unsigned long addr)
393 {
394 	pgtable_t token = pmd_pgtable(*pmd);
395 	pmd_clear(pmd);
396 	pte_free_tlb(tlb, token, addr);
397 	atomic_long_dec(&tlb->mm->nr_ptes);
398 }
399 
400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401 				unsigned long addr, unsigned long end,
402 				unsigned long floor, unsigned long ceiling)
403 {
404 	pmd_t *pmd;
405 	unsigned long next;
406 	unsigned long start;
407 
408 	start = addr;
409 	pmd = pmd_offset(pud, addr);
410 	do {
411 		next = pmd_addr_end(addr, end);
412 		if (pmd_none_or_clear_bad(pmd))
413 			continue;
414 		free_pte_range(tlb, pmd, addr);
415 	} while (pmd++, addr = next, addr != end);
416 
417 	start &= PUD_MASK;
418 	if (start < floor)
419 		return;
420 	if (ceiling) {
421 		ceiling &= PUD_MASK;
422 		if (!ceiling)
423 			return;
424 	}
425 	if (end - 1 > ceiling - 1)
426 		return;
427 
428 	pmd = pmd_offset(pud, start);
429 	pud_clear(pud);
430 	pmd_free_tlb(tlb, pmd, start);
431 	mm_dec_nr_pmds(tlb->mm);
432 }
433 
434 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
435 				unsigned long addr, unsigned long end,
436 				unsigned long floor, unsigned long ceiling)
437 {
438 	pud_t *pud;
439 	unsigned long next;
440 	unsigned long start;
441 
442 	start = addr;
443 	pud = pud_offset(pgd, addr);
444 	do {
445 		next = pud_addr_end(addr, end);
446 		if (pud_none_or_clear_bad(pud))
447 			continue;
448 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
449 	} while (pud++, addr = next, addr != end);
450 
451 	start &= PGDIR_MASK;
452 	if (start < floor)
453 		return;
454 	if (ceiling) {
455 		ceiling &= PGDIR_MASK;
456 		if (!ceiling)
457 			return;
458 	}
459 	if (end - 1 > ceiling - 1)
460 		return;
461 
462 	pud = pud_offset(pgd, start);
463 	pgd_clear(pgd);
464 	pud_free_tlb(tlb, pud, start);
465 }
466 
467 /*
468  * This function frees user-level page tables of a process.
469  */
470 void free_pgd_range(struct mmu_gather *tlb,
471 			unsigned long addr, unsigned long end,
472 			unsigned long floor, unsigned long ceiling)
473 {
474 	pgd_t *pgd;
475 	unsigned long next;
476 
477 	/*
478 	 * The next few lines have given us lots of grief...
479 	 *
480 	 * Why are we testing PMD* at this top level?  Because often
481 	 * there will be no work to do at all, and we'd prefer not to
482 	 * go all the way down to the bottom just to discover that.
483 	 *
484 	 * Why all these "- 1"s?  Because 0 represents both the bottom
485 	 * of the address space and the top of it (using -1 for the
486 	 * top wouldn't help much: the masks would do the wrong thing).
487 	 * The rule is that addr 0 and floor 0 refer to the bottom of
488 	 * the address space, but end 0 and ceiling 0 refer to the top
489 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
490 	 * that end 0 case should be mythical).
491 	 *
492 	 * Wherever addr is brought up or ceiling brought down, we must
493 	 * be careful to reject "the opposite 0" before it confuses the
494 	 * subsequent tests.  But what about where end is brought down
495 	 * by PMD_SIZE below? no, end can't go down to 0 there.
496 	 *
497 	 * Whereas we round start (addr) and ceiling down, by different
498 	 * masks at different levels, in order to test whether a table
499 	 * now has no other vmas using it, so can be freed, we don't
500 	 * bother to round floor or end up - the tests don't need that.
501 	 */
502 
503 	addr &= PMD_MASK;
504 	if (addr < floor) {
505 		addr += PMD_SIZE;
506 		if (!addr)
507 			return;
508 	}
509 	if (ceiling) {
510 		ceiling &= PMD_MASK;
511 		if (!ceiling)
512 			return;
513 	}
514 	if (end - 1 > ceiling - 1)
515 		end -= PMD_SIZE;
516 	if (addr > end - 1)
517 		return;
518 
519 	pgd = pgd_offset(tlb->mm, addr);
520 	do {
521 		next = pgd_addr_end(addr, end);
522 		if (pgd_none_or_clear_bad(pgd))
523 			continue;
524 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
525 	} while (pgd++, addr = next, addr != end);
526 }
527 
528 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
529 		unsigned long floor, unsigned long ceiling)
530 {
531 	while (vma) {
532 		struct vm_area_struct *next = vma->vm_next;
533 		unsigned long addr = vma->vm_start;
534 
535 		/*
536 		 * Hide vma from rmap and truncate_pagecache before freeing
537 		 * pgtables
538 		 */
539 		unlink_anon_vmas(vma);
540 		unlink_file_vma(vma);
541 
542 		if (is_vm_hugetlb_page(vma)) {
543 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
544 				floor, next? next->vm_start: ceiling);
545 		} else {
546 			/*
547 			 * Optimization: gather nearby vmas into one call down
548 			 */
549 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
550 			       && !is_vm_hugetlb_page(next)) {
551 				vma = next;
552 				next = vma->vm_next;
553 				unlink_anon_vmas(vma);
554 				unlink_file_vma(vma);
555 			}
556 			free_pgd_range(tlb, addr, vma->vm_end,
557 				floor, next? next->vm_start: ceiling);
558 		}
559 		vma = next;
560 	}
561 }
562 
563 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
564 		pmd_t *pmd, unsigned long address)
565 {
566 	spinlock_t *ptl;
567 	pgtable_t new = pte_alloc_one(mm, address);
568 	int wait_split_huge_page;
569 	if (!new)
570 		return -ENOMEM;
571 
572 	/*
573 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 	 * visible before the pte is made visible to other CPUs by being
575 	 * put into page tables.
576 	 *
577 	 * The other side of the story is the pointer chasing in the page
578 	 * table walking code (when walking the page table without locking;
579 	 * ie. most of the time). Fortunately, these data accesses consist
580 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 	 * being the notable exception) will already guarantee loads are
582 	 * seen in-order. See the alpha page table accessors for the
583 	 * smp_read_barrier_depends() barriers in page table walking code.
584 	 */
585 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586 
587 	ptl = pmd_lock(mm, pmd);
588 	wait_split_huge_page = 0;
589 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
590 		atomic_long_inc(&mm->nr_ptes);
591 		pmd_populate(mm, pmd, new);
592 		new = NULL;
593 	} else if (unlikely(pmd_trans_splitting(*pmd)))
594 		wait_split_huge_page = 1;
595 	spin_unlock(ptl);
596 	if (new)
597 		pte_free(mm, new);
598 	if (wait_split_huge_page)
599 		wait_split_huge_page(vma->anon_vma, pmd);
600 	return 0;
601 }
602 
603 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
604 {
605 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
606 	if (!new)
607 		return -ENOMEM;
608 
609 	smp_wmb(); /* See comment in __pte_alloc */
610 
611 	spin_lock(&init_mm.page_table_lock);
612 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
613 		pmd_populate_kernel(&init_mm, pmd, new);
614 		new = NULL;
615 	} else
616 		VM_BUG_ON(pmd_trans_splitting(*pmd));
617 	spin_unlock(&init_mm.page_table_lock);
618 	if (new)
619 		pte_free_kernel(&init_mm, new);
620 	return 0;
621 }
622 
623 static inline void init_rss_vec(int *rss)
624 {
625 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
626 }
627 
628 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
629 {
630 	int i;
631 
632 	if (current->mm == mm)
633 		sync_mm_rss(mm);
634 	for (i = 0; i < NR_MM_COUNTERS; i++)
635 		if (rss[i])
636 			add_mm_counter(mm, i, rss[i]);
637 }
638 
639 /*
640  * This function is called to print an error when a bad pte
641  * is found. For example, we might have a PFN-mapped pte in
642  * a region that doesn't allow it.
643  *
644  * The calling function must still handle the error.
645  */
646 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
647 			  pte_t pte, struct page *page)
648 {
649 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
650 	pud_t *pud = pud_offset(pgd, addr);
651 	pmd_t *pmd = pmd_offset(pud, addr);
652 	struct address_space *mapping;
653 	pgoff_t index;
654 	static unsigned long resume;
655 	static unsigned long nr_shown;
656 	static unsigned long nr_unshown;
657 
658 	/*
659 	 * Allow a burst of 60 reports, then keep quiet for that minute;
660 	 * or allow a steady drip of one report per second.
661 	 */
662 	if (nr_shown == 60) {
663 		if (time_before(jiffies, resume)) {
664 			nr_unshown++;
665 			return;
666 		}
667 		if (nr_unshown) {
668 			printk(KERN_ALERT
669 				"BUG: Bad page map: %lu messages suppressed\n",
670 				nr_unshown);
671 			nr_unshown = 0;
672 		}
673 		nr_shown = 0;
674 	}
675 	if (nr_shown++ == 0)
676 		resume = jiffies + 60 * HZ;
677 
678 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
679 	index = linear_page_index(vma, addr);
680 
681 	printk(KERN_ALERT
682 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
683 		current->comm,
684 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
685 	if (page)
686 		dump_page(page, "bad pte");
687 	printk(KERN_ALERT
688 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
689 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
690 	/*
691 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692 	 */
693 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
694 		 vma->vm_file,
695 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
696 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
697 		 mapping ? mapping->a_ops->readpage : NULL);
698 	dump_stack();
699 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
700 }
701 
702 /*
703  * vm_normal_page -- This function gets the "struct page" associated with a pte.
704  *
705  * "Special" mappings do not wish to be associated with a "struct page" (either
706  * it doesn't exist, or it exists but they don't want to touch it). In this
707  * case, NULL is returned here. "Normal" mappings do have a struct page.
708  *
709  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
710  * pte bit, in which case this function is trivial. Secondly, an architecture
711  * may not have a spare pte bit, which requires a more complicated scheme,
712  * described below.
713  *
714  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
715  * special mapping (even if there are underlying and valid "struct pages").
716  * COWed pages of a VM_PFNMAP are always normal.
717  *
718  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
719  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
720  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
721  * mapping will always honor the rule
722  *
723  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
724  *
725  * And for normal mappings this is false.
726  *
727  * This restricts such mappings to be a linear translation from virtual address
728  * to pfn. To get around this restriction, we allow arbitrary mappings so long
729  * as the vma is not a COW mapping; in that case, we know that all ptes are
730  * special (because none can have been COWed).
731  *
732  *
733  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
734  *
735  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
736  * page" backing, however the difference is that _all_ pages with a struct
737  * page (that is, those where pfn_valid is true) are refcounted and considered
738  * normal pages by the VM. The disadvantage is that pages are refcounted
739  * (which can be slower and simply not an option for some PFNMAP users). The
740  * advantage is that we don't have to follow the strict linearity rule of
741  * PFNMAP mappings in order to support COWable mappings.
742  *
743  */
744 #ifdef __HAVE_ARCH_PTE_SPECIAL
745 # define HAVE_PTE_SPECIAL 1
746 #else
747 # define HAVE_PTE_SPECIAL 0
748 #endif
749 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
750 				pte_t pte)
751 {
752 	unsigned long pfn = pte_pfn(pte);
753 
754 	if (HAVE_PTE_SPECIAL) {
755 		if (likely(!pte_special(pte)))
756 			goto check_pfn;
757 		if (vma->vm_ops && vma->vm_ops->find_special_page)
758 			return vma->vm_ops->find_special_page(vma, addr);
759 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
760 			return NULL;
761 		if (!is_zero_pfn(pfn))
762 			print_bad_pte(vma, addr, pte, NULL);
763 		return NULL;
764 	}
765 
766 	/* !HAVE_PTE_SPECIAL case follows: */
767 
768 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
769 		if (vma->vm_flags & VM_MIXEDMAP) {
770 			if (!pfn_valid(pfn))
771 				return NULL;
772 			goto out;
773 		} else {
774 			unsigned long off;
775 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
776 			if (pfn == vma->vm_pgoff + off)
777 				return NULL;
778 			if (!is_cow_mapping(vma->vm_flags))
779 				return NULL;
780 		}
781 	}
782 
783 	if (is_zero_pfn(pfn))
784 		return NULL;
785 check_pfn:
786 	if (unlikely(pfn > highest_memmap_pfn)) {
787 		print_bad_pte(vma, addr, pte, NULL);
788 		return NULL;
789 	}
790 
791 	/*
792 	 * NOTE! We still have PageReserved() pages in the page tables.
793 	 * eg. VDSO mappings can cause them to exist.
794 	 */
795 out:
796 	return pfn_to_page(pfn);
797 }
798 
799 /*
800  * copy one vm_area from one task to the other. Assumes the page tables
801  * already present in the new task to be cleared in the whole range
802  * covered by this vma.
803  */
804 
805 static inline unsigned long
806 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
807 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
808 		unsigned long addr, int *rss)
809 {
810 	unsigned long vm_flags = vma->vm_flags;
811 	pte_t pte = *src_pte;
812 	struct page *page;
813 
814 	/* pte contains position in swap or file, so copy. */
815 	if (unlikely(!pte_present(pte))) {
816 		swp_entry_t entry = pte_to_swp_entry(pte);
817 
818 		if (likely(!non_swap_entry(entry))) {
819 			if (swap_duplicate(entry) < 0)
820 				return entry.val;
821 
822 			/* make sure dst_mm is on swapoff's mmlist. */
823 			if (unlikely(list_empty(&dst_mm->mmlist))) {
824 				spin_lock(&mmlist_lock);
825 				if (list_empty(&dst_mm->mmlist))
826 					list_add(&dst_mm->mmlist,
827 							&src_mm->mmlist);
828 				spin_unlock(&mmlist_lock);
829 			}
830 			rss[MM_SWAPENTS]++;
831 		} else if (is_migration_entry(entry)) {
832 			page = migration_entry_to_page(entry);
833 
834 			if (PageAnon(page))
835 				rss[MM_ANONPAGES]++;
836 			else
837 				rss[MM_FILEPAGES]++;
838 
839 			if (is_write_migration_entry(entry) &&
840 					is_cow_mapping(vm_flags)) {
841 				/*
842 				 * COW mappings require pages in both
843 				 * parent and child to be set to read.
844 				 */
845 				make_migration_entry_read(&entry);
846 				pte = swp_entry_to_pte(entry);
847 				if (pte_swp_soft_dirty(*src_pte))
848 					pte = pte_swp_mksoft_dirty(pte);
849 				set_pte_at(src_mm, addr, src_pte, pte);
850 			}
851 		}
852 		goto out_set_pte;
853 	}
854 
855 	/*
856 	 * If it's a COW mapping, write protect it both
857 	 * in the parent and the child
858 	 */
859 	if (is_cow_mapping(vm_flags)) {
860 		ptep_set_wrprotect(src_mm, addr, src_pte);
861 		pte = pte_wrprotect(pte);
862 	}
863 
864 	/*
865 	 * If it's a shared mapping, mark it clean in
866 	 * the child
867 	 */
868 	if (vm_flags & VM_SHARED)
869 		pte = pte_mkclean(pte);
870 	pte = pte_mkold(pte);
871 
872 	page = vm_normal_page(vma, addr, pte);
873 	if (page) {
874 		get_page(page);
875 		page_dup_rmap(page);
876 		if (PageAnon(page))
877 			rss[MM_ANONPAGES]++;
878 		else
879 			rss[MM_FILEPAGES]++;
880 	}
881 
882 out_set_pte:
883 	set_pte_at(dst_mm, addr, dst_pte, pte);
884 	return 0;
885 }
886 
887 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
888 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
889 		   unsigned long addr, unsigned long end)
890 {
891 	pte_t *orig_src_pte, *orig_dst_pte;
892 	pte_t *src_pte, *dst_pte;
893 	spinlock_t *src_ptl, *dst_ptl;
894 	int progress = 0;
895 	int rss[NR_MM_COUNTERS];
896 	swp_entry_t entry = (swp_entry_t){0};
897 
898 again:
899 	init_rss_vec(rss);
900 
901 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
902 	if (!dst_pte)
903 		return -ENOMEM;
904 	src_pte = pte_offset_map(src_pmd, addr);
905 	src_ptl = pte_lockptr(src_mm, src_pmd);
906 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
907 	orig_src_pte = src_pte;
908 	orig_dst_pte = dst_pte;
909 	arch_enter_lazy_mmu_mode();
910 
911 	do {
912 		/*
913 		 * We are holding two locks at this point - either of them
914 		 * could generate latencies in another task on another CPU.
915 		 */
916 		if (progress >= 32) {
917 			progress = 0;
918 			if (need_resched() ||
919 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
920 				break;
921 		}
922 		if (pte_none(*src_pte)) {
923 			progress++;
924 			continue;
925 		}
926 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
927 							vma, addr, rss);
928 		if (entry.val)
929 			break;
930 		progress += 8;
931 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
932 
933 	arch_leave_lazy_mmu_mode();
934 	spin_unlock(src_ptl);
935 	pte_unmap(orig_src_pte);
936 	add_mm_rss_vec(dst_mm, rss);
937 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
938 	cond_resched();
939 
940 	if (entry.val) {
941 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
942 			return -ENOMEM;
943 		progress = 0;
944 	}
945 	if (addr != end)
946 		goto again;
947 	return 0;
948 }
949 
950 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
952 		unsigned long addr, unsigned long end)
953 {
954 	pmd_t *src_pmd, *dst_pmd;
955 	unsigned long next;
956 
957 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
958 	if (!dst_pmd)
959 		return -ENOMEM;
960 	src_pmd = pmd_offset(src_pud, addr);
961 	do {
962 		next = pmd_addr_end(addr, end);
963 		if (pmd_trans_huge(*src_pmd)) {
964 			int err;
965 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
966 			err = copy_huge_pmd(dst_mm, src_mm,
967 					    dst_pmd, src_pmd, addr, vma);
968 			if (err == -ENOMEM)
969 				return -ENOMEM;
970 			if (!err)
971 				continue;
972 			/* fall through */
973 		}
974 		if (pmd_none_or_clear_bad(src_pmd))
975 			continue;
976 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
977 						vma, addr, next))
978 			return -ENOMEM;
979 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
980 	return 0;
981 }
982 
983 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
984 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
985 		unsigned long addr, unsigned long end)
986 {
987 	pud_t *src_pud, *dst_pud;
988 	unsigned long next;
989 
990 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
991 	if (!dst_pud)
992 		return -ENOMEM;
993 	src_pud = pud_offset(src_pgd, addr);
994 	do {
995 		next = pud_addr_end(addr, end);
996 		if (pud_none_or_clear_bad(src_pud))
997 			continue;
998 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
999 						vma, addr, next))
1000 			return -ENOMEM;
1001 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1002 	return 0;
1003 }
1004 
1005 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1006 		struct vm_area_struct *vma)
1007 {
1008 	pgd_t *src_pgd, *dst_pgd;
1009 	unsigned long next;
1010 	unsigned long addr = vma->vm_start;
1011 	unsigned long end = vma->vm_end;
1012 	unsigned long mmun_start;	/* For mmu_notifiers */
1013 	unsigned long mmun_end;		/* For mmu_notifiers */
1014 	bool is_cow;
1015 	int ret;
1016 
1017 	/*
1018 	 * Don't copy ptes where a page fault will fill them correctly.
1019 	 * Fork becomes much lighter when there are big shared or private
1020 	 * readonly mappings. The tradeoff is that copy_page_range is more
1021 	 * efficient than faulting.
1022 	 */
1023 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1024 			!vma->anon_vma)
1025 		return 0;
1026 
1027 	if (is_vm_hugetlb_page(vma))
1028 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1029 
1030 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1031 		/*
1032 		 * We do not free on error cases below as remove_vma
1033 		 * gets called on error from higher level routine
1034 		 */
1035 		ret = track_pfn_copy(vma);
1036 		if (ret)
1037 			return ret;
1038 	}
1039 
1040 	/*
1041 	 * We need to invalidate the secondary MMU mappings only when
1042 	 * there could be a permission downgrade on the ptes of the
1043 	 * parent mm. And a permission downgrade will only happen if
1044 	 * is_cow_mapping() returns true.
1045 	 */
1046 	is_cow = is_cow_mapping(vma->vm_flags);
1047 	mmun_start = addr;
1048 	mmun_end   = end;
1049 	if (is_cow)
1050 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1051 						    mmun_end);
1052 
1053 	ret = 0;
1054 	dst_pgd = pgd_offset(dst_mm, addr);
1055 	src_pgd = pgd_offset(src_mm, addr);
1056 	do {
1057 		next = pgd_addr_end(addr, end);
1058 		if (pgd_none_or_clear_bad(src_pgd))
1059 			continue;
1060 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1061 					    vma, addr, next))) {
1062 			ret = -ENOMEM;
1063 			break;
1064 		}
1065 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1066 
1067 	if (is_cow)
1068 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1069 	return ret;
1070 }
1071 
1072 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1073 				struct vm_area_struct *vma, pmd_t *pmd,
1074 				unsigned long addr, unsigned long end,
1075 				struct zap_details *details)
1076 {
1077 	struct mm_struct *mm = tlb->mm;
1078 	int force_flush = 0;
1079 	int rss[NR_MM_COUNTERS];
1080 	spinlock_t *ptl;
1081 	pte_t *start_pte;
1082 	pte_t *pte;
1083 	swp_entry_t entry;
1084 
1085 again:
1086 	init_rss_vec(rss);
1087 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1088 	pte = start_pte;
1089 	arch_enter_lazy_mmu_mode();
1090 	do {
1091 		pte_t ptent = *pte;
1092 		if (pte_none(ptent)) {
1093 			continue;
1094 		}
1095 
1096 		if (pte_present(ptent)) {
1097 			struct page *page;
1098 
1099 			page = vm_normal_page(vma, addr, ptent);
1100 			if (unlikely(details) && page) {
1101 				/*
1102 				 * unmap_shared_mapping_pages() wants to
1103 				 * invalidate cache without truncating:
1104 				 * unmap shared but keep private pages.
1105 				 */
1106 				if (details->check_mapping &&
1107 				    details->check_mapping != page->mapping)
1108 					continue;
1109 			}
1110 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1111 							tlb->fullmm);
1112 			tlb_remove_tlb_entry(tlb, pte, addr);
1113 			if (unlikely(!page))
1114 				continue;
1115 			if (PageAnon(page))
1116 				rss[MM_ANONPAGES]--;
1117 			else {
1118 				if (pte_dirty(ptent)) {
1119 					force_flush = 1;
1120 					set_page_dirty(page);
1121 				}
1122 				if (pte_young(ptent) &&
1123 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1124 					mark_page_accessed(page);
1125 				rss[MM_FILEPAGES]--;
1126 			}
1127 			page_remove_rmap(page);
1128 			if (unlikely(page_mapcount(page) < 0))
1129 				print_bad_pte(vma, addr, ptent, page);
1130 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1131 				force_flush = 1;
1132 				addr += PAGE_SIZE;
1133 				break;
1134 			}
1135 			continue;
1136 		}
1137 		/* If details->check_mapping, we leave swap entries. */
1138 		if (unlikely(details))
1139 			continue;
1140 
1141 		entry = pte_to_swp_entry(ptent);
1142 		if (!non_swap_entry(entry))
1143 			rss[MM_SWAPENTS]--;
1144 		else if (is_migration_entry(entry)) {
1145 			struct page *page;
1146 
1147 			page = migration_entry_to_page(entry);
1148 
1149 			if (PageAnon(page))
1150 				rss[MM_ANONPAGES]--;
1151 			else
1152 				rss[MM_FILEPAGES]--;
1153 		}
1154 		if (unlikely(!free_swap_and_cache(entry)))
1155 			print_bad_pte(vma, addr, ptent, NULL);
1156 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1157 	} while (pte++, addr += PAGE_SIZE, addr != end);
1158 
1159 	add_mm_rss_vec(mm, rss);
1160 	arch_leave_lazy_mmu_mode();
1161 
1162 	/* Do the actual TLB flush before dropping ptl */
1163 	if (force_flush)
1164 		tlb_flush_mmu_tlbonly(tlb);
1165 	pte_unmap_unlock(start_pte, ptl);
1166 
1167 	/*
1168 	 * If we forced a TLB flush (either due to running out of
1169 	 * batch buffers or because we needed to flush dirty TLB
1170 	 * entries before releasing the ptl), free the batched
1171 	 * memory too. Restart if we didn't do everything.
1172 	 */
1173 	if (force_flush) {
1174 		force_flush = 0;
1175 		tlb_flush_mmu_free(tlb);
1176 
1177 		if (addr != end)
1178 			goto again;
1179 	}
1180 
1181 	return addr;
1182 }
1183 
1184 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1185 				struct vm_area_struct *vma, pud_t *pud,
1186 				unsigned long addr, unsigned long end,
1187 				struct zap_details *details)
1188 {
1189 	pmd_t *pmd;
1190 	unsigned long next;
1191 
1192 	pmd = pmd_offset(pud, addr);
1193 	do {
1194 		next = pmd_addr_end(addr, end);
1195 		if (pmd_trans_huge(*pmd)) {
1196 			if (next - addr != HPAGE_PMD_SIZE) {
1197 #ifdef CONFIG_DEBUG_VM
1198 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1199 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1200 						__func__, addr, end,
1201 						vma->vm_start,
1202 						vma->vm_end);
1203 					BUG();
1204 				}
1205 #endif
1206 				split_huge_page_pmd(vma, addr, pmd);
1207 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1208 				goto next;
1209 			/* fall through */
1210 		}
1211 		/*
1212 		 * Here there can be other concurrent MADV_DONTNEED or
1213 		 * trans huge page faults running, and if the pmd is
1214 		 * none or trans huge it can change under us. This is
1215 		 * because MADV_DONTNEED holds the mmap_sem in read
1216 		 * mode.
1217 		 */
1218 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1219 			goto next;
1220 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1221 next:
1222 		cond_resched();
1223 	} while (pmd++, addr = next, addr != end);
1224 
1225 	return addr;
1226 }
1227 
1228 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1229 				struct vm_area_struct *vma, pgd_t *pgd,
1230 				unsigned long addr, unsigned long end,
1231 				struct zap_details *details)
1232 {
1233 	pud_t *pud;
1234 	unsigned long next;
1235 
1236 	pud = pud_offset(pgd, addr);
1237 	do {
1238 		next = pud_addr_end(addr, end);
1239 		if (pud_none_or_clear_bad(pud))
1240 			continue;
1241 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1242 	} while (pud++, addr = next, addr != end);
1243 
1244 	return addr;
1245 }
1246 
1247 static void unmap_page_range(struct mmu_gather *tlb,
1248 			     struct vm_area_struct *vma,
1249 			     unsigned long addr, unsigned long end,
1250 			     struct zap_details *details)
1251 {
1252 	pgd_t *pgd;
1253 	unsigned long next;
1254 
1255 	if (details && !details->check_mapping)
1256 		details = NULL;
1257 
1258 	BUG_ON(addr >= end);
1259 	tlb_start_vma(tlb, vma);
1260 	pgd = pgd_offset(vma->vm_mm, addr);
1261 	do {
1262 		next = pgd_addr_end(addr, end);
1263 		if (pgd_none_or_clear_bad(pgd))
1264 			continue;
1265 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1266 	} while (pgd++, addr = next, addr != end);
1267 	tlb_end_vma(tlb, vma);
1268 }
1269 
1270 
1271 static void unmap_single_vma(struct mmu_gather *tlb,
1272 		struct vm_area_struct *vma, unsigned long start_addr,
1273 		unsigned long end_addr,
1274 		struct zap_details *details)
1275 {
1276 	unsigned long start = max(vma->vm_start, start_addr);
1277 	unsigned long end;
1278 
1279 	if (start >= vma->vm_end)
1280 		return;
1281 	end = min(vma->vm_end, end_addr);
1282 	if (end <= vma->vm_start)
1283 		return;
1284 
1285 	if (vma->vm_file)
1286 		uprobe_munmap(vma, start, end);
1287 
1288 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1289 		untrack_pfn(vma, 0, 0);
1290 
1291 	if (start != end) {
1292 		if (unlikely(is_vm_hugetlb_page(vma))) {
1293 			/*
1294 			 * It is undesirable to test vma->vm_file as it
1295 			 * should be non-null for valid hugetlb area.
1296 			 * However, vm_file will be NULL in the error
1297 			 * cleanup path of mmap_region. When
1298 			 * hugetlbfs ->mmap method fails,
1299 			 * mmap_region() nullifies vma->vm_file
1300 			 * before calling this function to clean up.
1301 			 * Since no pte has actually been setup, it is
1302 			 * safe to do nothing in this case.
1303 			 */
1304 			if (vma->vm_file) {
1305 				i_mmap_lock_write(vma->vm_file->f_mapping);
1306 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1307 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1308 			}
1309 		} else
1310 			unmap_page_range(tlb, vma, start, end, details);
1311 	}
1312 }
1313 
1314 /**
1315  * unmap_vmas - unmap a range of memory covered by a list of vma's
1316  * @tlb: address of the caller's struct mmu_gather
1317  * @vma: the starting vma
1318  * @start_addr: virtual address at which to start unmapping
1319  * @end_addr: virtual address at which to end unmapping
1320  *
1321  * Unmap all pages in the vma list.
1322  *
1323  * Only addresses between `start' and `end' will be unmapped.
1324  *
1325  * The VMA list must be sorted in ascending virtual address order.
1326  *
1327  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1328  * range after unmap_vmas() returns.  So the only responsibility here is to
1329  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1330  * drops the lock and schedules.
1331  */
1332 void unmap_vmas(struct mmu_gather *tlb,
1333 		struct vm_area_struct *vma, unsigned long start_addr,
1334 		unsigned long end_addr)
1335 {
1336 	struct mm_struct *mm = vma->vm_mm;
1337 
1338 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1339 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1340 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1341 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1342 }
1343 
1344 /**
1345  * zap_page_range - remove user pages in a given range
1346  * @vma: vm_area_struct holding the applicable pages
1347  * @start: starting address of pages to zap
1348  * @size: number of bytes to zap
1349  * @details: details of shared cache invalidation
1350  *
1351  * Caller must protect the VMA list
1352  */
1353 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1354 		unsigned long size, struct zap_details *details)
1355 {
1356 	struct mm_struct *mm = vma->vm_mm;
1357 	struct mmu_gather tlb;
1358 	unsigned long end = start + size;
1359 
1360 	lru_add_drain();
1361 	tlb_gather_mmu(&tlb, mm, start, end);
1362 	update_hiwater_rss(mm);
1363 	mmu_notifier_invalidate_range_start(mm, start, end);
1364 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1365 		unmap_single_vma(&tlb, vma, start, end, details);
1366 	mmu_notifier_invalidate_range_end(mm, start, end);
1367 	tlb_finish_mmu(&tlb, start, end);
1368 }
1369 
1370 /**
1371  * zap_page_range_single - remove user pages in a given range
1372  * @vma: vm_area_struct holding the applicable pages
1373  * @address: starting address of pages to zap
1374  * @size: number of bytes to zap
1375  * @details: details of shared cache invalidation
1376  *
1377  * The range must fit into one VMA.
1378  */
1379 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1380 		unsigned long size, struct zap_details *details)
1381 {
1382 	struct mm_struct *mm = vma->vm_mm;
1383 	struct mmu_gather tlb;
1384 	unsigned long end = address + size;
1385 
1386 	lru_add_drain();
1387 	tlb_gather_mmu(&tlb, mm, address, end);
1388 	update_hiwater_rss(mm);
1389 	mmu_notifier_invalidate_range_start(mm, address, end);
1390 	unmap_single_vma(&tlb, vma, address, end, details);
1391 	mmu_notifier_invalidate_range_end(mm, address, end);
1392 	tlb_finish_mmu(&tlb, address, end);
1393 }
1394 
1395 /**
1396  * zap_vma_ptes - remove ptes mapping the vma
1397  * @vma: vm_area_struct holding ptes to be zapped
1398  * @address: starting address of pages to zap
1399  * @size: number of bytes to zap
1400  *
1401  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1402  *
1403  * The entire address range must be fully contained within the vma.
1404  *
1405  * Returns 0 if successful.
1406  */
1407 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1408 		unsigned long size)
1409 {
1410 	if (address < vma->vm_start || address + size > vma->vm_end ||
1411 	    		!(vma->vm_flags & VM_PFNMAP))
1412 		return -1;
1413 	zap_page_range_single(vma, address, size, NULL);
1414 	return 0;
1415 }
1416 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1417 
1418 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1419 			spinlock_t **ptl)
1420 {
1421 	pgd_t * pgd = pgd_offset(mm, addr);
1422 	pud_t * pud = pud_alloc(mm, pgd, addr);
1423 	if (pud) {
1424 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1425 		if (pmd) {
1426 			VM_BUG_ON(pmd_trans_huge(*pmd));
1427 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1428 		}
1429 	}
1430 	return NULL;
1431 }
1432 
1433 /*
1434  * This is the old fallback for page remapping.
1435  *
1436  * For historical reasons, it only allows reserved pages. Only
1437  * old drivers should use this, and they needed to mark their
1438  * pages reserved for the old functions anyway.
1439  */
1440 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1441 			struct page *page, pgprot_t prot)
1442 {
1443 	struct mm_struct *mm = vma->vm_mm;
1444 	int retval;
1445 	pte_t *pte;
1446 	spinlock_t *ptl;
1447 
1448 	retval = -EINVAL;
1449 	if (PageAnon(page))
1450 		goto out;
1451 	retval = -ENOMEM;
1452 	flush_dcache_page(page);
1453 	pte = get_locked_pte(mm, addr, &ptl);
1454 	if (!pte)
1455 		goto out;
1456 	retval = -EBUSY;
1457 	if (!pte_none(*pte))
1458 		goto out_unlock;
1459 
1460 	/* Ok, finally just insert the thing.. */
1461 	get_page(page);
1462 	inc_mm_counter_fast(mm, MM_FILEPAGES);
1463 	page_add_file_rmap(page);
1464 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1465 
1466 	retval = 0;
1467 	pte_unmap_unlock(pte, ptl);
1468 	return retval;
1469 out_unlock:
1470 	pte_unmap_unlock(pte, ptl);
1471 out:
1472 	return retval;
1473 }
1474 
1475 /**
1476  * vm_insert_page - insert single page into user vma
1477  * @vma: user vma to map to
1478  * @addr: target user address of this page
1479  * @page: source kernel page
1480  *
1481  * This allows drivers to insert individual pages they've allocated
1482  * into a user vma.
1483  *
1484  * The page has to be a nice clean _individual_ kernel allocation.
1485  * If you allocate a compound page, you need to have marked it as
1486  * such (__GFP_COMP), or manually just split the page up yourself
1487  * (see split_page()).
1488  *
1489  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1490  * took an arbitrary page protection parameter. This doesn't allow
1491  * that. Your vma protection will have to be set up correctly, which
1492  * means that if you want a shared writable mapping, you'd better
1493  * ask for a shared writable mapping!
1494  *
1495  * The page does not need to be reserved.
1496  *
1497  * Usually this function is called from f_op->mmap() handler
1498  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1499  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1500  * function from other places, for example from page-fault handler.
1501  */
1502 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1503 			struct page *page)
1504 {
1505 	if (addr < vma->vm_start || addr >= vma->vm_end)
1506 		return -EFAULT;
1507 	if (!page_count(page))
1508 		return -EINVAL;
1509 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1510 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1511 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1512 		vma->vm_flags |= VM_MIXEDMAP;
1513 	}
1514 	return insert_page(vma, addr, page, vma->vm_page_prot);
1515 }
1516 EXPORT_SYMBOL(vm_insert_page);
1517 
1518 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1519 			unsigned long pfn, pgprot_t prot)
1520 {
1521 	struct mm_struct *mm = vma->vm_mm;
1522 	int retval;
1523 	pte_t *pte, entry;
1524 	spinlock_t *ptl;
1525 
1526 	retval = -ENOMEM;
1527 	pte = get_locked_pte(mm, addr, &ptl);
1528 	if (!pte)
1529 		goto out;
1530 	retval = -EBUSY;
1531 	if (!pte_none(*pte))
1532 		goto out_unlock;
1533 
1534 	/* Ok, finally just insert the thing.. */
1535 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1536 	set_pte_at(mm, addr, pte, entry);
1537 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1538 
1539 	retval = 0;
1540 out_unlock:
1541 	pte_unmap_unlock(pte, ptl);
1542 out:
1543 	return retval;
1544 }
1545 
1546 /**
1547  * vm_insert_pfn - insert single pfn into user vma
1548  * @vma: user vma to map to
1549  * @addr: target user address of this page
1550  * @pfn: source kernel pfn
1551  *
1552  * Similar to vm_insert_page, this allows drivers to insert individual pages
1553  * they've allocated into a user vma. Same comments apply.
1554  *
1555  * This function should only be called from a vm_ops->fault handler, and
1556  * in that case the handler should return NULL.
1557  *
1558  * vma cannot be a COW mapping.
1559  *
1560  * As this is called only for pages that do not currently exist, we
1561  * do not need to flush old virtual caches or the TLB.
1562  */
1563 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1564 			unsigned long pfn)
1565 {
1566 	int ret;
1567 	pgprot_t pgprot = vma->vm_page_prot;
1568 	/*
1569 	 * Technically, architectures with pte_special can avoid all these
1570 	 * restrictions (same for remap_pfn_range).  However we would like
1571 	 * consistency in testing and feature parity among all, so we should
1572 	 * try to keep these invariants in place for everybody.
1573 	 */
1574 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1575 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1576 						(VM_PFNMAP|VM_MIXEDMAP));
1577 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1578 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1579 
1580 	if (addr < vma->vm_start || addr >= vma->vm_end)
1581 		return -EFAULT;
1582 	if (track_pfn_insert(vma, &pgprot, pfn))
1583 		return -EINVAL;
1584 
1585 	ret = insert_pfn(vma, addr, pfn, pgprot);
1586 
1587 	return ret;
1588 }
1589 EXPORT_SYMBOL(vm_insert_pfn);
1590 
1591 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1592 			unsigned long pfn)
1593 {
1594 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1595 
1596 	if (addr < vma->vm_start || addr >= vma->vm_end)
1597 		return -EFAULT;
1598 
1599 	/*
1600 	 * If we don't have pte special, then we have to use the pfn_valid()
1601 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1602 	 * refcount the page if pfn_valid is true (hence insert_page rather
1603 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1604 	 * without pte special, it would there be refcounted as a normal page.
1605 	 */
1606 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1607 		struct page *page;
1608 
1609 		page = pfn_to_page(pfn);
1610 		return insert_page(vma, addr, page, vma->vm_page_prot);
1611 	}
1612 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1613 }
1614 EXPORT_SYMBOL(vm_insert_mixed);
1615 
1616 /*
1617  * maps a range of physical memory into the requested pages. the old
1618  * mappings are removed. any references to nonexistent pages results
1619  * in null mappings (currently treated as "copy-on-access")
1620  */
1621 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1622 			unsigned long addr, unsigned long end,
1623 			unsigned long pfn, pgprot_t prot)
1624 {
1625 	pte_t *pte;
1626 	spinlock_t *ptl;
1627 
1628 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1629 	if (!pte)
1630 		return -ENOMEM;
1631 	arch_enter_lazy_mmu_mode();
1632 	do {
1633 		BUG_ON(!pte_none(*pte));
1634 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1635 		pfn++;
1636 	} while (pte++, addr += PAGE_SIZE, addr != end);
1637 	arch_leave_lazy_mmu_mode();
1638 	pte_unmap_unlock(pte - 1, ptl);
1639 	return 0;
1640 }
1641 
1642 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1643 			unsigned long addr, unsigned long end,
1644 			unsigned long pfn, pgprot_t prot)
1645 {
1646 	pmd_t *pmd;
1647 	unsigned long next;
1648 
1649 	pfn -= addr >> PAGE_SHIFT;
1650 	pmd = pmd_alloc(mm, pud, addr);
1651 	if (!pmd)
1652 		return -ENOMEM;
1653 	VM_BUG_ON(pmd_trans_huge(*pmd));
1654 	do {
1655 		next = pmd_addr_end(addr, end);
1656 		if (remap_pte_range(mm, pmd, addr, next,
1657 				pfn + (addr >> PAGE_SHIFT), prot))
1658 			return -ENOMEM;
1659 	} while (pmd++, addr = next, addr != end);
1660 	return 0;
1661 }
1662 
1663 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1664 			unsigned long addr, unsigned long end,
1665 			unsigned long pfn, pgprot_t prot)
1666 {
1667 	pud_t *pud;
1668 	unsigned long next;
1669 
1670 	pfn -= addr >> PAGE_SHIFT;
1671 	pud = pud_alloc(mm, pgd, addr);
1672 	if (!pud)
1673 		return -ENOMEM;
1674 	do {
1675 		next = pud_addr_end(addr, end);
1676 		if (remap_pmd_range(mm, pud, addr, next,
1677 				pfn + (addr >> PAGE_SHIFT), prot))
1678 			return -ENOMEM;
1679 	} while (pud++, addr = next, addr != end);
1680 	return 0;
1681 }
1682 
1683 /**
1684  * remap_pfn_range - remap kernel memory to userspace
1685  * @vma: user vma to map to
1686  * @addr: target user address to start at
1687  * @pfn: physical address of kernel memory
1688  * @size: size of map area
1689  * @prot: page protection flags for this mapping
1690  *
1691  *  Note: this is only safe if the mm semaphore is held when called.
1692  */
1693 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1694 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1695 {
1696 	pgd_t *pgd;
1697 	unsigned long next;
1698 	unsigned long end = addr + PAGE_ALIGN(size);
1699 	struct mm_struct *mm = vma->vm_mm;
1700 	int err;
1701 
1702 	/*
1703 	 * Physically remapped pages are special. Tell the
1704 	 * rest of the world about it:
1705 	 *   VM_IO tells people not to look at these pages
1706 	 *	(accesses can have side effects).
1707 	 *   VM_PFNMAP tells the core MM that the base pages are just
1708 	 *	raw PFN mappings, and do not have a "struct page" associated
1709 	 *	with them.
1710 	 *   VM_DONTEXPAND
1711 	 *      Disable vma merging and expanding with mremap().
1712 	 *   VM_DONTDUMP
1713 	 *      Omit vma from core dump, even when VM_IO turned off.
1714 	 *
1715 	 * There's a horrible special case to handle copy-on-write
1716 	 * behaviour that some programs depend on. We mark the "original"
1717 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1718 	 * See vm_normal_page() for details.
1719 	 */
1720 	if (is_cow_mapping(vma->vm_flags)) {
1721 		if (addr != vma->vm_start || end != vma->vm_end)
1722 			return -EINVAL;
1723 		vma->vm_pgoff = pfn;
1724 	}
1725 
1726 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1727 	if (err)
1728 		return -EINVAL;
1729 
1730 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1731 
1732 	BUG_ON(addr >= end);
1733 	pfn -= addr >> PAGE_SHIFT;
1734 	pgd = pgd_offset(mm, addr);
1735 	flush_cache_range(vma, addr, end);
1736 	do {
1737 		next = pgd_addr_end(addr, end);
1738 		err = remap_pud_range(mm, pgd, addr, next,
1739 				pfn + (addr >> PAGE_SHIFT), prot);
1740 		if (err)
1741 			break;
1742 	} while (pgd++, addr = next, addr != end);
1743 
1744 	if (err)
1745 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1746 
1747 	return err;
1748 }
1749 EXPORT_SYMBOL(remap_pfn_range);
1750 
1751 /**
1752  * vm_iomap_memory - remap memory to userspace
1753  * @vma: user vma to map to
1754  * @start: start of area
1755  * @len: size of area
1756  *
1757  * This is a simplified io_remap_pfn_range() for common driver use. The
1758  * driver just needs to give us the physical memory range to be mapped,
1759  * we'll figure out the rest from the vma information.
1760  *
1761  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1762  * whatever write-combining details or similar.
1763  */
1764 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1765 {
1766 	unsigned long vm_len, pfn, pages;
1767 
1768 	/* Check that the physical memory area passed in looks valid */
1769 	if (start + len < start)
1770 		return -EINVAL;
1771 	/*
1772 	 * You *really* shouldn't map things that aren't page-aligned,
1773 	 * but we've historically allowed it because IO memory might
1774 	 * just have smaller alignment.
1775 	 */
1776 	len += start & ~PAGE_MASK;
1777 	pfn = start >> PAGE_SHIFT;
1778 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1779 	if (pfn + pages < pfn)
1780 		return -EINVAL;
1781 
1782 	/* We start the mapping 'vm_pgoff' pages into the area */
1783 	if (vma->vm_pgoff > pages)
1784 		return -EINVAL;
1785 	pfn += vma->vm_pgoff;
1786 	pages -= vma->vm_pgoff;
1787 
1788 	/* Can we fit all of the mapping? */
1789 	vm_len = vma->vm_end - vma->vm_start;
1790 	if (vm_len >> PAGE_SHIFT > pages)
1791 		return -EINVAL;
1792 
1793 	/* Ok, let it rip */
1794 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1795 }
1796 EXPORT_SYMBOL(vm_iomap_memory);
1797 
1798 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1799 				     unsigned long addr, unsigned long end,
1800 				     pte_fn_t fn, void *data)
1801 {
1802 	pte_t *pte;
1803 	int err;
1804 	pgtable_t token;
1805 	spinlock_t *uninitialized_var(ptl);
1806 
1807 	pte = (mm == &init_mm) ?
1808 		pte_alloc_kernel(pmd, addr) :
1809 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1810 	if (!pte)
1811 		return -ENOMEM;
1812 
1813 	BUG_ON(pmd_huge(*pmd));
1814 
1815 	arch_enter_lazy_mmu_mode();
1816 
1817 	token = pmd_pgtable(*pmd);
1818 
1819 	do {
1820 		err = fn(pte++, token, addr, data);
1821 		if (err)
1822 			break;
1823 	} while (addr += PAGE_SIZE, addr != end);
1824 
1825 	arch_leave_lazy_mmu_mode();
1826 
1827 	if (mm != &init_mm)
1828 		pte_unmap_unlock(pte-1, ptl);
1829 	return err;
1830 }
1831 
1832 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1833 				     unsigned long addr, unsigned long end,
1834 				     pte_fn_t fn, void *data)
1835 {
1836 	pmd_t *pmd;
1837 	unsigned long next;
1838 	int err;
1839 
1840 	BUG_ON(pud_huge(*pud));
1841 
1842 	pmd = pmd_alloc(mm, pud, addr);
1843 	if (!pmd)
1844 		return -ENOMEM;
1845 	do {
1846 		next = pmd_addr_end(addr, end);
1847 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1848 		if (err)
1849 			break;
1850 	} while (pmd++, addr = next, addr != end);
1851 	return err;
1852 }
1853 
1854 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1855 				     unsigned long addr, unsigned long end,
1856 				     pte_fn_t fn, void *data)
1857 {
1858 	pud_t *pud;
1859 	unsigned long next;
1860 	int err;
1861 
1862 	pud = pud_alloc(mm, pgd, addr);
1863 	if (!pud)
1864 		return -ENOMEM;
1865 	do {
1866 		next = pud_addr_end(addr, end);
1867 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1868 		if (err)
1869 			break;
1870 	} while (pud++, addr = next, addr != end);
1871 	return err;
1872 }
1873 
1874 /*
1875  * Scan a region of virtual memory, filling in page tables as necessary
1876  * and calling a provided function on each leaf page table.
1877  */
1878 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1879 			unsigned long size, pte_fn_t fn, void *data)
1880 {
1881 	pgd_t *pgd;
1882 	unsigned long next;
1883 	unsigned long end = addr + size;
1884 	int err;
1885 
1886 	BUG_ON(addr >= end);
1887 	pgd = pgd_offset(mm, addr);
1888 	do {
1889 		next = pgd_addr_end(addr, end);
1890 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1891 		if (err)
1892 			break;
1893 	} while (pgd++, addr = next, addr != end);
1894 
1895 	return err;
1896 }
1897 EXPORT_SYMBOL_GPL(apply_to_page_range);
1898 
1899 /*
1900  * handle_pte_fault chooses page fault handler according to an entry which was
1901  * read non-atomically.  Before making any commitment, on those architectures
1902  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1903  * parts, do_swap_page must check under lock before unmapping the pte and
1904  * proceeding (but do_wp_page is only called after already making such a check;
1905  * and do_anonymous_page can safely check later on).
1906  */
1907 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1908 				pte_t *page_table, pte_t orig_pte)
1909 {
1910 	int same = 1;
1911 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1912 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1913 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1914 		spin_lock(ptl);
1915 		same = pte_same(*page_table, orig_pte);
1916 		spin_unlock(ptl);
1917 	}
1918 #endif
1919 	pte_unmap(page_table);
1920 	return same;
1921 }
1922 
1923 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1924 {
1925 	debug_dma_assert_idle(src);
1926 
1927 	/*
1928 	 * If the source page was a PFN mapping, we don't have
1929 	 * a "struct page" for it. We do a best-effort copy by
1930 	 * just copying from the original user address. If that
1931 	 * fails, we just zero-fill it. Live with it.
1932 	 */
1933 	if (unlikely(!src)) {
1934 		void *kaddr = kmap_atomic(dst);
1935 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1936 
1937 		/*
1938 		 * This really shouldn't fail, because the page is there
1939 		 * in the page tables. But it might just be unreadable,
1940 		 * in which case we just give up and fill the result with
1941 		 * zeroes.
1942 		 */
1943 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1944 			clear_page(kaddr);
1945 		kunmap_atomic(kaddr);
1946 		flush_dcache_page(dst);
1947 	} else
1948 		copy_user_highpage(dst, src, va, vma);
1949 }
1950 
1951 /*
1952  * Notify the address space that the page is about to become writable so that
1953  * it can prohibit this or wait for the page to get into an appropriate state.
1954  *
1955  * We do this without the lock held, so that it can sleep if it needs to.
1956  */
1957 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1958 	       unsigned long address)
1959 {
1960 	struct vm_fault vmf;
1961 	int ret;
1962 
1963 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1964 	vmf.pgoff = page->index;
1965 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1966 	vmf.page = page;
1967 	vmf.cow_page = NULL;
1968 
1969 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1970 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1971 		return ret;
1972 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1973 		lock_page(page);
1974 		if (!page->mapping) {
1975 			unlock_page(page);
1976 			return 0; /* retry */
1977 		}
1978 		ret |= VM_FAULT_LOCKED;
1979 	} else
1980 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1981 	return ret;
1982 }
1983 
1984 /*
1985  * Handle write page faults for pages that can be reused in the current vma
1986  *
1987  * This can happen either due to the mapping being with the VM_SHARED flag,
1988  * or due to us being the last reference standing to the page. In either
1989  * case, all we need to do here is to mark the page as writable and update
1990  * any related book-keeping.
1991  */
1992 static inline int wp_page_reuse(struct mm_struct *mm,
1993 			struct vm_area_struct *vma, unsigned long address,
1994 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
1995 			struct page *page, int page_mkwrite,
1996 			int dirty_shared)
1997 	__releases(ptl)
1998 {
1999 	pte_t entry;
2000 	/*
2001 	 * Clear the pages cpupid information as the existing
2002 	 * information potentially belongs to a now completely
2003 	 * unrelated process.
2004 	 */
2005 	if (page)
2006 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2007 
2008 	flush_cache_page(vma, address, pte_pfn(orig_pte));
2009 	entry = pte_mkyoung(orig_pte);
2010 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2011 	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2012 		update_mmu_cache(vma, address, page_table);
2013 	pte_unmap_unlock(page_table, ptl);
2014 
2015 	if (dirty_shared) {
2016 		struct address_space *mapping;
2017 		int dirtied;
2018 
2019 		if (!page_mkwrite)
2020 			lock_page(page);
2021 
2022 		dirtied = set_page_dirty(page);
2023 		VM_BUG_ON_PAGE(PageAnon(page), page);
2024 		mapping = page->mapping;
2025 		unlock_page(page);
2026 		page_cache_release(page);
2027 
2028 		if ((dirtied || page_mkwrite) && mapping) {
2029 			/*
2030 			 * Some device drivers do not set page.mapping
2031 			 * but still dirty their pages
2032 			 */
2033 			balance_dirty_pages_ratelimited(mapping);
2034 		}
2035 
2036 		if (!page_mkwrite)
2037 			file_update_time(vma->vm_file);
2038 	}
2039 
2040 	return VM_FAULT_WRITE;
2041 }
2042 
2043 /*
2044  * Handle the case of a page which we actually need to copy to a new page.
2045  *
2046  * Called with mmap_sem locked and the old page referenced, but
2047  * without the ptl held.
2048  *
2049  * High level logic flow:
2050  *
2051  * - Allocate a page, copy the content of the old page to the new one.
2052  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2053  * - Take the PTL. If the pte changed, bail out and release the allocated page
2054  * - If the pte is still the way we remember it, update the page table and all
2055  *   relevant references. This includes dropping the reference the page-table
2056  *   held to the old page, as well as updating the rmap.
2057  * - In any case, unlock the PTL and drop the reference we took to the old page.
2058  */
2059 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2060 			unsigned long address, pte_t *page_table, pmd_t *pmd,
2061 			pte_t orig_pte, struct page *old_page)
2062 {
2063 	struct page *new_page = NULL;
2064 	spinlock_t *ptl = NULL;
2065 	pte_t entry;
2066 	int page_copied = 0;
2067 	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
2068 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
2069 	struct mem_cgroup *memcg;
2070 
2071 	if (unlikely(anon_vma_prepare(vma)))
2072 		goto oom;
2073 
2074 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2075 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2076 		if (!new_page)
2077 			goto oom;
2078 	} else {
2079 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2080 		if (!new_page)
2081 			goto oom;
2082 		cow_user_page(new_page, old_page, address, vma);
2083 	}
2084 
2085 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2086 		goto oom_free_new;
2087 
2088 	__SetPageUptodate(new_page);
2089 
2090 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2091 
2092 	/*
2093 	 * Re-check the pte - we dropped the lock
2094 	 */
2095 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2096 	if (likely(pte_same(*page_table, orig_pte))) {
2097 		if (old_page) {
2098 			if (!PageAnon(old_page)) {
2099 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2100 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2101 			}
2102 		} else {
2103 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2104 		}
2105 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2106 		entry = mk_pte(new_page, vma->vm_page_prot);
2107 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2108 		/*
2109 		 * Clear the pte entry and flush it first, before updating the
2110 		 * pte with the new entry. This will avoid a race condition
2111 		 * seen in the presence of one thread doing SMC and another
2112 		 * thread doing COW.
2113 		 */
2114 		ptep_clear_flush_notify(vma, address, page_table);
2115 		page_add_new_anon_rmap(new_page, vma, address);
2116 		mem_cgroup_commit_charge(new_page, memcg, false);
2117 		lru_cache_add_active_or_unevictable(new_page, vma);
2118 		/*
2119 		 * We call the notify macro here because, when using secondary
2120 		 * mmu page tables (such as kvm shadow page tables), we want the
2121 		 * new page to be mapped directly into the secondary page table.
2122 		 */
2123 		set_pte_at_notify(mm, address, page_table, entry);
2124 		update_mmu_cache(vma, address, page_table);
2125 		if (old_page) {
2126 			/*
2127 			 * Only after switching the pte to the new page may
2128 			 * we remove the mapcount here. Otherwise another
2129 			 * process may come and find the rmap count decremented
2130 			 * before the pte is switched to the new page, and
2131 			 * "reuse" the old page writing into it while our pte
2132 			 * here still points into it and can be read by other
2133 			 * threads.
2134 			 *
2135 			 * The critical issue is to order this
2136 			 * page_remove_rmap with the ptp_clear_flush above.
2137 			 * Those stores are ordered by (if nothing else,)
2138 			 * the barrier present in the atomic_add_negative
2139 			 * in page_remove_rmap.
2140 			 *
2141 			 * Then the TLB flush in ptep_clear_flush ensures that
2142 			 * no process can access the old page before the
2143 			 * decremented mapcount is visible. And the old page
2144 			 * cannot be reused until after the decremented
2145 			 * mapcount is visible. So transitively, TLBs to
2146 			 * old page will be flushed before it can be reused.
2147 			 */
2148 			page_remove_rmap(old_page);
2149 		}
2150 
2151 		/* Free the old page.. */
2152 		new_page = old_page;
2153 		page_copied = 1;
2154 	} else {
2155 		mem_cgroup_cancel_charge(new_page, memcg);
2156 	}
2157 
2158 	if (new_page)
2159 		page_cache_release(new_page);
2160 
2161 	pte_unmap_unlock(page_table, ptl);
2162 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2163 	if (old_page) {
2164 		/*
2165 		 * Don't let another task, with possibly unlocked vma,
2166 		 * keep the mlocked page.
2167 		 */
2168 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2169 			lock_page(old_page);	/* LRU manipulation */
2170 			munlock_vma_page(old_page);
2171 			unlock_page(old_page);
2172 		}
2173 		page_cache_release(old_page);
2174 	}
2175 	return page_copied ? VM_FAULT_WRITE : 0;
2176 oom_free_new:
2177 	page_cache_release(new_page);
2178 oom:
2179 	if (old_page)
2180 		page_cache_release(old_page);
2181 	return VM_FAULT_OOM;
2182 }
2183 
2184 /*
2185  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2186  * mapping
2187  */
2188 static int wp_pfn_shared(struct mm_struct *mm,
2189 			struct vm_area_struct *vma, unsigned long address,
2190 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2191 			pmd_t *pmd)
2192 {
2193 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2194 		struct vm_fault vmf = {
2195 			.page = NULL,
2196 			.pgoff = linear_page_index(vma, address),
2197 			.virtual_address = (void __user *)(address & PAGE_MASK),
2198 			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2199 		};
2200 		int ret;
2201 
2202 		pte_unmap_unlock(page_table, ptl);
2203 		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2204 		if (ret & VM_FAULT_ERROR)
2205 			return ret;
2206 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2207 		/*
2208 		 * We might have raced with another page fault while we
2209 		 * released the pte_offset_map_lock.
2210 		 */
2211 		if (!pte_same(*page_table, orig_pte)) {
2212 			pte_unmap_unlock(page_table, ptl);
2213 			return 0;
2214 		}
2215 	}
2216 	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2217 			     NULL, 0, 0);
2218 }
2219 
2220 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2221 			  unsigned long address, pte_t *page_table,
2222 			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2223 			  struct page *old_page)
2224 	__releases(ptl)
2225 {
2226 	int page_mkwrite = 0;
2227 
2228 	page_cache_get(old_page);
2229 
2230 	/*
2231 	 * Only catch write-faults on shared writable pages,
2232 	 * read-only shared pages can get COWed by
2233 	 * get_user_pages(.write=1, .force=1).
2234 	 */
2235 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2236 		int tmp;
2237 
2238 		pte_unmap_unlock(page_table, ptl);
2239 		tmp = do_page_mkwrite(vma, old_page, address);
2240 		if (unlikely(!tmp || (tmp &
2241 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2242 			page_cache_release(old_page);
2243 			return tmp;
2244 		}
2245 		/*
2246 		 * Since we dropped the lock we need to revalidate
2247 		 * the PTE as someone else may have changed it.  If
2248 		 * they did, we just return, as we can count on the
2249 		 * MMU to tell us if they didn't also make it writable.
2250 		 */
2251 		page_table = pte_offset_map_lock(mm, pmd, address,
2252 						 &ptl);
2253 		if (!pte_same(*page_table, orig_pte)) {
2254 			unlock_page(old_page);
2255 			pte_unmap_unlock(page_table, ptl);
2256 			page_cache_release(old_page);
2257 			return 0;
2258 		}
2259 		page_mkwrite = 1;
2260 	}
2261 
2262 	return wp_page_reuse(mm, vma, address, page_table, ptl,
2263 			     orig_pte, old_page, page_mkwrite, 1);
2264 }
2265 
2266 /*
2267  * This routine handles present pages, when users try to write
2268  * to a shared page. It is done by copying the page to a new address
2269  * and decrementing the shared-page counter for the old page.
2270  *
2271  * Note that this routine assumes that the protection checks have been
2272  * done by the caller (the low-level page fault routine in most cases).
2273  * Thus we can safely just mark it writable once we've done any necessary
2274  * COW.
2275  *
2276  * We also mark the page dirty at this point even though the page will
2277  * change only once the write actually happens. This avoids a few races,
2278  * and potentially makes it more efficient.
2279  *
2280  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2281  * but allow concurrent faults), with pte both mapped and locked.
2282  * We return with mmap_sem still held, but pte unmapped and unlocked.
2283  */
2284 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2285 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2286 		spinlock_t *ptl, pte_t orig_pte)
2287 	__releases(ptl)
2288 {
2289 	struct page *old_page;
2290 
2291 	old_page = vm_normal_page(vma, address, orig_pte);
2292 	if (!old_page) {
2293 		/*
2294 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2295 		 * VM_PFNMAP VMA.
2296 		 *
2297 		 * We should not cow pages in a shared writeable mapping.
2298 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2299 		 */
2300 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2301 				     (VM_WRITE|VM_SHARED))
2302 			return wp_pfn_shared(mm, vma, address, page_table, ptl,
2303 					     orig_pte, pmd);
2304 
2305 		pte_unmap_unlock(page_table, ptl);
2306 		return wp_page_copy(mm, vma, address, page_table, pmd,
2307 				    orig_pte, old_page);
2308 	}
2309 
2310 	/*
2311 	 * Take out anonymous pages first, anonymous shared vmas are
2312 	 * not dirty accountable.
2313 	 */
2314 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2315 		if (!trylock_page(old_page)) {
2316 			page_cache_get(old_page);
2317 			pte_unmap_unlock(page_table, ptl);
2318 			lock_page(old_page);
2319 			page_table = pte_offset_map_lock(mm, pmd, address,
2320 							 &ptl);
2321 			if (!pte_same(*page_table, orig_pte)) {
2322 				unlock_page(old_page);
2323 				pte_unmap_unlock(page_table, ptl);
2324 				page_cache_release(old_page);
2325 				return 0;
2326 			}
2327 			page_cache_release(old_page);
2328 		}
2329 		if (reuse_swap_page(old_page)) {
2330 			/*
2331 			 * The page is all ours.  Move it to our anon_vma so
2332 			 * the rmap code will not search our parent or siblings.
2333 			 * Protected against the rmap code by the page lock.
2334 			 */
2335 			page_move_anon_rmap(old_page, vma, address);
2336 			unlock_page(old_page);
2337 			return wp_page_reuse(mm, vma, address, page_table, ptl,
2338 					     orig_pte, old_page, 0, 0);
2339 		}
2340 		unlock_page(old_page);
2341 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2342 					(VM_WRITE|VM_SHARED))) {
2343 		return wp_page_shared(mm, vma, address, page_table, pmd,
2344 				      ptl, orig_pte, old_page);
2345 	}
2346 
2347 	/*
2348 	 * Ok, we need to copy. Oh, well..
2349 	 */
2350 	page_cache_get(old_page);
2351 
2352 	pte_unmap_unlock(page_table, ptl);
2353 	return wp_page_copy(mm, vma, address, page_table, pmd,
2354 			    orig_pte, old_page);
2355 }
2356 
2357 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2358 		unsigned long start_addr, unsigned long end_addr,
2359 		struct zap_details *details)
2360 {
2361 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2362 }
2363 
2364 static inline void unmap_mapping_range_tree(struct rb_root *root,
2365 					    struct zap_details *details)
2366 {
2367 	struct vm_area_struct *vma;
2368 	pgoff_t vba, vea, zba, zea;
2369 
2370 	vma_interval_tree_foreach(vma, root,
2371 			details->first_index, details->last_index) {
2372 
2373 		vba = vma->vm_pgoff;
2374 		vea = vba + vma_pages(vma) - 1;
2375 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2376 		zba = details->first_index;
2377 		if (zba < vba)
2378 			zba = vba;
2379 		zea = details->last_index;
2380 		if (zea > vea)
2381 			zea = vea;
2382 
2383 		unmap_mapping_range_vma(vma,
2384 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2385 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2386 				details);
2387 	}
2388 }
2389 
2390 /**
2391  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2392  * address_space corresponding to the specified page range in the underlying
2393  * file.
2394  *
2395  * @mapping: the address space containing mmaps to be unmapped.
2396  * @holebegin: byte in first page to unmap, relative to the start of
2397  * the underlying file.  This will be rounded down to a PAGE_SIZE
2398  * boundary.  Note that this is different from truncate_pagecache(), which
2399  * must keep the partial page.  In contrast, we must get rid of
2400  * partial pages.
2401  * @holelen: size of prospective hole in bytes.  This will be rounded
2402  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2403  * end of the file.
2404  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2405  * but 0 when invalidating pagecache, don't throw away private data.
2406  */
2407 void unmap_mapping_range(struct address_space *mapping,
2408 		loff_t const holebegin, loff_t const holelen, int even_cows)
2409 {
2410 	struct zap_details details;
2411 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2412 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2413 
2414 	/* Check for overflow. */
2415 	if (sizeof(holelen) > sizeof(hlen)) {
2416 		long long holeend =
2417 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2418 		if (holeend & ~(long long)ULONG_MAX)
2419 			hlen = ULONG_MAX - hba + 1;
2420 	}
2421 
2422 	details.check_mapping = even_cows? NULL: mapping;
2423 	details.first_index = hba;
2424 	details.last_index = hba + hlen - 1;
2425 	if (details.last_index < details.first_index)
2426 		details.last_index = ULONG_MAX;
2427 
2428 
2429 	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2430 	i_mmap_lock_write(mapping);
2431 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2432 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2433 	i_mmap_unlock_write(mapping);
2434 }
2435 EXPORT_SYMBOL(unmap_mapping_range);
2436 
2437 /*
2438  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2439  * but allow concurrent faults), and pte mapped but not yet locked.
2440  * We return with pte unmapped and unlocked.
2441  *
2442  * We return with the mmap_sem locked or unlocked in the same cases
2443  * as does filemap_fault().
2444  */
2445 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2446 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2447 		unsigned int flags, pte_t orig_pte)
2448 {
2449 	spinlock_t *ptl;
2450 	struct page *page, *swapcache;
2451 	struct mem_cgroup *memcg;
2452 	swp_entry_t entry;
2453 	pte_t pte;
2454 	int locked;
2455 	int exclusive = 0;
2456 	int ret = 0;
2457 
2458 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2459 		goto out;
2460 
2461 	entry = pte_to_swp_entry(orig_pte);
2462 	if (unlikely(non_swap_entry(entry))) {
2463 		if (is_migration_entry(entry)) {
2464 			migration_entry_wait(mm, pmd, address);
2465 		} else if (is_hwpoison_entry(entry)) {
2466 			ret = VM_FAULT_HWPOISON;
2467 		} else {
2468 			print_bad_pte(vma, address, orig_pte, NULL);
2469 			ret = VM_FAULT_SIGBUS;
2470 		}
2471 		goto out;
2472 	}
2473 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2474 	page = lookup_swap_cache(entry);
2475 	if (!page) {
2476 		page = swapin_readahead(entry,
2477 					GFP_HIGHUSER_MOVABLE, vma, address);
2478 		if (!page) {
2479 			/*
2480 			 * Back out if somebody else faulted in this pte
2481 			 * while we released the pte lock.
2482 			 */
2483 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2484 			if (likely(pte_same(*page_table, orig_pte)))
2485 				ret = VM_FAULT_OOM;
2486 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2487 			goto unlock;
2488 		}
2489 
2490 		/* Had to read the page from swap area: Major fault */
2491 		ret = VM_FAULT_MAJOR;
2492 		count_vm_event(PGMAJFAULT);
2493 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2494 	} else if (PageHWPoison(page)) {
2495 		/*
2496 		 * hwpoisoned dirty swapcache pages are kept for killing
2497 		 * owner processes (which may be unknown at hwpoison time)
2498 		 */
2499 		ret = VM_FAULT_HWPOISON;
2500 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2501 		swapcache = page;
2502 		goto out_release;
2503 	}
2504 
2505 	swapcache = page;
2506 	locked = lock_page_or_retry(page, mm, flags);
2507 
2508 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2509 	if (!locked) {
2510 		ret |= VM_FAULT_RETRY;
2511 		goto out_release;
2512 	}
2513 
2514 	/*
2515 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2516 	 * release the swapcache from under us.  The page pin, and pte_same
2517 	 * test below, are not enough to exclude that.  Even if it is still
2518 	 * swapcache, we need to check that the page's swap has not changed.
2519 	 */
2520 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2521 		goto out_page;
2522 
2523 	page = ksm_might_need_to_copy(page, vma, address);
2524 	if (unlikely(!page)) {
2525 		ret = VM_FAULT_OOM;
2526 		page = swapcache;
2527 		goto out_page;
2528 	}
2529 
2530 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2531 		ret = VM_FAULT_OOM;
2532 		goto out_page;
2533 	}
2534 
2535 	/*
2536 	 * Back out if somebody else already faulted in this pte.
2537 	 */
2538 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2539 	if (unlikely(!pte_same(*page_table, orig_pte)))
2540 		goto out_nomap;
2541 
2542 	if (unlikely(!PageUptodate(page))) {
2543 		ret = VM_FAULT_SIGBUS;
2544 		goto out_nomap;
2545 	}
2546 
2547 	/*
2548 	 * The page isn't present yet, go ahead with the fault.
2549 	 *
2550 	 * Be careful about the sequence of operations here.
2551 	 * To get its accounting right, reuse_swap_page() must be called
2552 	 * while the page is counted on swap but not yet in mapcount i.e.
2553 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2554 	 * must be called after the swap_free(), or it will never succeed.
2555 	 */
2556 
2557 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2558 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2559 	pte = mk_pte(page, vma->vm_page_prot);
2560 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2561 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2562 		flags &= ~FAULT_FLAG_WRITE;
2563 		ret |= VM_FAULT_WRITE;
2564 		exclusive = 1;
2565 	}
2566 	flush_icache_page(vma, page);
2567 	if (pte_swp_soft_dirty(orig_pte))
2568 		pte = pte_mksoft_dirty(pte);
2569 	set_pte_at(mm, address, page_table, pte);
2570 	if (page == swapcache) {
2571 		do_page_add_anon_rmap(page, vma, address, exclusive);
2572 		mem_cgroup_commit_charge(page, memcg, true);
2573 	} else { /* ksm created a completely new copy */
2574 		page_add_new_anon_rmap(page, vma, address);
2575 		mem_cgroup_commit_charge(page, memcg, false);
2576 		lru_cache_add_active_or_unevictable(page, vma);
2577 	}
2578 
2579 	swap_free(entry);
2580 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2581 		try_to_free_swap(page);
2582 	unlock_page(page);
2583 	if (page != swapcache) {
2584 		/*
2585 		 * Hold the lock to avoid the swap entry to be reused
2586 		 * until we take the PT lock for the pte_same() check
2587 		 * (to avoid false positives from pte_same). For
2588 		 * further safety release the lock after the swap_free
2589 		 * so that the swap count won't change under a
2590 		 * parallel locked swapcache.
2591 		 */
2592 		unlock_page(swapcache);
2593 		page_cache_release(swapcache);
2594 	}
2595 
2596 	if (flags & FAULT_FLAG_WRITE) {
2597 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2598 		if (ret & VM_FAULT_ERROR)
2599 			ret &= VM_FAULT_ERROR;
2600 		goto out;
2601 	}
2602 
2603 	/* No need to invalidate - it was non-present before */
2604 	update_mmu_cache(vma, address, page_table);
2605 unlock:
2606 	pte_unmap_unlock(page_table, ptl);
2607 out:
2608 	return ret;
2609 out_nomap:
2610 	mem_cgroup_cancel_charge(page, memcg);
2611 	pte_unmap_unlock(page_table, ptl);
2612 out_page:
2613 	unlock_page(page);
2614 out_release:
2615 	page_cache_release(page);
2616 	if (page != swapcache) {
2617 		unlock_page(swapcache);
2618 		page_cache_release(swapcache);
2619 	}
2620 	return ret;
2621 }
2622 
2623 /*
2624  * This is like a special single-page "expand_{down|up}wards()",
2625  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2626  * doesn't hit another vma.
2627  */
2628 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2629 {
2630 	address &= PAGE_MASK;
2631 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2632 		struct vm_area_struct *prev = vma->vm_prev;
2633 
2634 		/*
2635 		 * Is there a mapping abutting this one below?
2636 		 *
2637 		 * That's only ok if it's the same stack mapping
2638 		 * that has gotten split..
2639 		 */
2640 		if (prev && prev->vm_end == address)
2641 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2642 
2643 		return expand_downwards(vma, address - PAGE_SIZE);
2644 	}
2645 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2646 		struct vm_area_struct *next = vma->vm_next;
2647 
2648 		/* As VM_GROWSDOWN but s/below/above/ */
2649 		if (next && next->vm_start == address + PAGE_SIZE)
2650 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2651 
2652 		return expand_upwards(vma, address + PAGE_SIZE);
2653 	}
2654 	return 0;
2655 }
2656 
2657 /*
2658  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2659  * but allow concurrent faults), and pte mapped but not yet locked.
2660  * We return with mmap_sem still held, but pte unmapped and unlocked.
2661  */
2662 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2663 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2664 		unsigned int flags)
2665 {
2666 	struct mem_cgroup *memcg;
2667 	struct page *page;
2668 	spinlock_t *ptl;
2669 	pte_t entry;
2670 
2671 	pte_unmap(page_table);
2672 
2673 	/* File mapping without ->vm_ops ? */
2674 	if (vma->vm_flags & VM_SHARED)
2675 		return VM_FAULT_SIGBUS;
2676 
2677 	/* Check if we need to add a guard page to the stack */
2678 	if (check_stack_guard_page(vma, address) < 0)
2679 		return VM_FAULT_SIGSEGV;
2680 
2681 	/* Use the zero-page for reads */
2682 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2683 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2684 						vma->vm_page_prot));
2685 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2686 		if (!pte_none(*page_table))
2687 			goto unlock;
2688 		goto setpte;
2689 	}
2690 
2691 	/* Allocate our own private page. */
2692 	if (unlikely(anon_vma_prepare(vma)))
2693 		goto oom;
2694 	page = alloc_zeroed_user_highpage_movable(vma, address);
2695 	if (!page)
2696 		goto oom;
2697 
2698 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2699 		goto oom_free_page;
2700 
2701 	/*
2702 	 * The memory barrier inside __SetPageUptodate makes sure that
2703 	 * preceeding stores to the page contents become visible before
2704 	 * the set_pte_at() write.
2705 	 */
2706 	__SetPageUptodate(page);
2707 
2708 	entry = mk_pte(page, vma->vm_page_prot);
2709 	if (vma->vm_flags & VM_WRITE)
2710 		entry = pte_mkwrite(pte_mkdirty(entry));
2711 
2712 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2713 	if (!pte_none(*page_table))
2714 		goto release;
2715 
2716 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2717 	page_add_new_anon_rmap(page, vma, address);
2718 	mem_cgroup_commit_charge(page, memcg, false);
2719 	lru_cache_add_active_or_unevictable(page, vma);
2720 setpte:
2721 	set_pte_at(mm, address, page_table, entry);
2722 
2723 	/* No need to invalidate - it was non-present before */
2724 	update_mmu_cache(vma, address, page_table);
2725 unlock:
2726 	pte_unmap_unlock(page_table, ptl);
2727 	return 0;
2728 release:
2729 	mem_cgroup_cancel_charge(page, memcg);
2730 	page_cache_release(page);
2731 	goto unlock;
2732 oom_free_page:
2733 	page_cache_release(page);
2734 oom:
2735 	return VM_FAULT_OOM;
2736 }
2737 
2738 /*
2739  * The mmap_sem must have been held on entry, and may have been
2740  * released depending on flags and vma->vm_ops->fault() return value.
2741  * See filemap_fault() and __lock_page_retry().
2742  */
2743 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2744 			pgoff_t pgoff, unsigned int flags,
2745 			struct page *cow_page, struct page **page)
2746 {
2747 	struct vm_fault vmf;
2748 	int ret;
2749 
2750 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2751 	vmf.pgoff = pgoff;
2752 	vmf.flags = flags;
2753 	vmf.page = NULL;
2754 	vmf.cow_page = cow_page;
2755 
2756 	ret = vma->vm_ops->fault(vma, &vmf);
2757 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2758 		return ret;
2759 	if (!vmf.page)
2760 		goto out;
2761 
2762 	if (unlikely(PageHWPoison(vmf.page))) {
2763 		if (ret & VM_FAULT_LOCKED)
2764 			unlock_page(vmf.page);
2765 		page_cache_release(vmf.page);
2766 		return VM_FAULT_HWPOISON;
2767 	}
2768 
2769 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2770 		lock_page(vmf.page);
2771 	else
2772 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2773 
2774  out:
2775 	*page = vmf.page;
2776 	return ret;
2777 }
2778 
2779 /**
2780  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2781  *
2782  * @vma: virtual memory area
2783  * @address: user virtual address
2784  * @page: page to map
2785  * @pte: pointer to target page table entry
2786  * @write: true, if new entry is writable
2787  * @anon: true, if it's anonymous page
2788  *
2789  * Caller must hold page table lock relevant for @pte.
2790  *
2791  * Target users are page handler itself and implementations of
2792  * vm_ops->map_pages.
2793  */
2794 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2795 		struct page *page, pte_t *pte, bool write, bool anon)
2796 {
2797 	pte_t entry;
2798 
2799 	flush_icache_page(vma, page);
2800 	entry = mk_pte(page, vma->vm_page_prot);
2801 	if (write)
2802 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2803 	if (anon) {
2804 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2805 		page_add_new_anon_rmap(page, vma, address);
2806 	} else {
2807 		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2808 		page_add_file_rmap(page);
2809 	}
2810 	set_pte_at(vma->vm_mm, address, pte, entry);
2811 
2812 	/* no need to invalidate: a not-present page won't be cached */
2813 	update_mmu_cache(vma, address, pte);
2814 }
2815 
2816 static unsigned long fault_around_bytes __read_mostly =
2817 	rounddown_pow_of_two(65536);
2818 
2819 #ifdef CONFIG_DEBUG_FS
2820 static int fault_around_bytes_get(void *data, u64 *val)
2821 {
2822 	*val = fault_around_bytes;
2823 	return 0;
2824 }
2825 
2826 /*
2827  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2828  * rounded down to nearest page order. It's what do_fault_around() expects to
2829  * see.
2830  */
2831 static int fault_around_bytes_set(void *data, u64 val)
2832 {
2833 	if (val / PAGE_SIZE > PTRS_PER_PTE)
2834 		return -EINVAL;
2835 	if (val > PAGE_SIZE)
2836 		fault_around_bytes = rounddown_pow_of_two(val);
2837 	else
2838 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2839 	return 0;
2840 }
2841 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2842 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2843 
2844 static int __init fault_around_debugfs(void)
2845 {
2846 	void *ret;
2847 
2848 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2849 			&fault_around_bytes_fops);
2850 	if (!ret)
2851 		pr_warn("Failed to create fault_around_bytes in debugfs");
2852 	return 0;
2853 }
2854 late_initcall(fault_around_debugfs);
2855 #endif
2856 
2857 /*
2858  * do_fault_around() tries to map few pages around the fault address. The hope
2859  * is that the pages will be needed soon and this will lower the number of
2860  * faults to handle.
2861  *
2862  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2863  * not ready to be mapped: not up-to-date, locked, etc.
2864  *
2865  * This function is called with the page table lock taken. In the split ptlock
2866  * case the page table lock only protects only those entries which belong to
2867  * the page table corresponding to the fault address.
2868  *
2869  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2870  * only once.
2871  *
2872  * fault_around_pages() defines how many pages we'll try to map.
2873  * do_fault_around() expects it to return a power of two less than or equal to
2874  * PTRS_PER_PTE.
2875  *
2876  * The virtual address of the area that we map is naturally aligned to the
2877  * fault_around_pages() value (and therefore to page order).  This way it's
2878  * easier to guarantee that we don't cross page table boundaries.
2879  */
2880 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2881 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2882 {
2883 	unsigned long start_addr, nr_pages, mask;
2884 	pgoff_t max_pgoff;
2885 	struct vm_fault vmf;
2886 	int off;
2887 
2888 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2889 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2890 
2891 	start_addr = max(address & mask, vma->vm_start);
2892 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2893 	pte -= off;
2894 	pgoff -= off;
2895 
2896 	/*
2897 	 *  max_pgoff is either end of page table or end of vma
2898 	 *  or fault_around_pages() from pgoff, depending what is nearest.
2899 	 */
2900 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2901 		PTRS_PER_PTE - 1;
2902 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2903 			pgoff + nr_pages - 1);
2904 
2905 	/* Check if it makes any sense to call ->map_pages */
2906 	while (!pte_none(*pte)) {
2907 		if (++pgoff > max_pgoff)
2908 			return;
2909 		start_addr += PAGE_SIZE;
2910 		if (start_addr >= vma->vm_end)
2911 			return;
2912 		pte++;
2913 	}
2914 
2915 	vmf.virtual_address = (void __user *) start_addr;
2916 	vmf.pte = pte;
2917 	vmf.pgoff = pgoff;
2918 	vmf.max_pgoff = max_pgoff;
2919 	vmf.flags = flags;
2920 	vma->vm_ops->map_pages(vma, &vmf);
2921 }
2922 
2923 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2924 		unsigned long address, pmd_t *pmd,
2925 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2926 {
2927 	struct page *fault_page;
2928 	spinlock_t *ptl;
2929 	pte_t *pte;
2930 	int ret = 0;
2931 
2932 	/*
2933 	 * Let's call ->map_pages() first and use ->fault() as fallback
2934 	 * if page by the offset is not ready to be mapped (cold cache or
2935 	 * something).
2936 	 */
2937 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2938 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2939 		do_fault_around(vma, address, pte, pgoff, flags);
2940 		if (!pte_same(*pte, orig_pte))
2941 			goto unlock_out;
2942 		pte_unmap_unlock(pte, ptl);
2943 	}
2944 
2945 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2946 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2947 		return ret;
2948 
2949 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2950 	if (unlikely(!pte_same(*pte, orig_pte))) {
2951 		pte_unmap_unlock(pte, ptl);
2952 		unlock_page(fault_page);
2953 		page_cache_release(fault_page);
2954 		return ret;
2955 	}
2956 	do_set_pte(vma, address, fault_page, pte, false, false);
2957 	unlock_page(fault_page);
2958 unlock_out:
2959 	pte_unmap_unlock(pte, ptl);
2960 	return ret;
2961 }
2962 
2963 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2964 		unsigned long address, pmd_t *pmd,
2965 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2966 {
2967 	struct page *fault_page, *new_page;
2968 	struct mem_cgroup *memcg;
2969 	spinlock_t *ptl;
2970 	pte_t *pte;
2971 	int ret;
2972 
2973 	if (unlikely(anon_vma_prepare(vma)))
2974 		return VM_FAULT_OOM;
2975 
2976 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2977 	if (!new_page)
2978 		return VM_FAULT_OOM;
2979 
2980 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2981 		page_cache_release(new_page);
2982 		return VM_FAULT_OOM;
2983 	}
2984 
2985 	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
2986 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2987 		goto uncharge_out;
2988 
2989 	if (fault_page)
2990 		copy_user_highpage(new_page, fault_page, address, vma);
2991 	__SetPageUptodate(new_page);
2992 
2993 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2994 	if (unlikely(!pte_same(*pte, orig_pte))) {
2995 		pte_unmap_unlock(pte, ptl);
2996 		if (fault_page) {
2997 			unlock_page(fault_page);
2998 			page_cache_release(fault_page);
2999 		} else {
3000 			/*
3001 			 * The fault handler has no page to lock, so it holds
3002 			 * i_mmap_lock for read to protect against truncate.
3003 			 */
3004 			i_mmap_unlock_read(vma->vm_file->f_mapping);
3005 		}
3006 		goto uncharge_out;
3007 	}
3008 	do_set_pte(vma, address, new_page, pte, true, true);
3009 	mem_cgroup_commit_charge(new_page, memcg, false);
3010 	lru_cache_add_active_or_unevictable(new_page, vma);
3011 	pte_unmap_unlock(pte, ptl);
3012 	if (fault_page) {
3013 		unlock_page(fault_page);
3014 		page_cache_release(fault_page);
3015 	} else {
3016 		/*
3017 		 * The fault handler has no page to lock, so it holds
3018 		 * i_mmap_lock for read to protect against truncate.
3019 		 */
3020 		i_mmap_unlock_read(vma->vm_file->f_mapping);
3021 	}
3022 	return ret;
3023 uncharge_out:
3024 	mem_cgroup_cancel_charge(new_page, memcg);
3025 	page_cache_release(new_page);
3026 	return ret;
3027 }
3028 
3029 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3030 		unsigned long address, pmd_t *pmd,
3031 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3032 {
3033 	struct page *fault_page;
3034 	struct address_space *mapping;
3035 	spinlock_t *ptl;
3036 	pte_t *pte;
3037 	int dirtied = 0;
3038 	int ret, tmp;
3039 
3040 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3041 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3042 		return ret;
3043 
3044 	/*
3045 	 * Check if the backing address space wants to know that the page is
3046 	 * about to become writable
3047 	 */
3048 	if (vma->vm_ops->page_mkwrite) {
3049 		unlock_page(fault_page);
3050 		tmp = do_page_mkwrite(vma, fault_page, address);
3051 		if (unlikely(!tmp ||
3052 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3053 			page_cache_release(fault_page);
3054 			return tmp;
3055 		}
3056 	}
3057 
3058 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3059 	if (unlikely(!pte_same(*pte, orig_pte))) {
3060 		pte_unmap_unlock(pte, ptl);
3061 		unlock_page(fault_page);
3062 		page_cache_release(fault_page);
3063 		return ret;
3064 	}
3065 	do_set_pte(vma, address, fault_page, pte, true, false);
3066 	pte_unmap_unlock(pte, ptl);
3067 
3068 	if (set_page_dirty(fault_page))
3069 		dirtied = 1;
3070 	/*
3071 	 * Take a local copy of the address_space - page.mapping may be zeroed
3072 	 * by truncate after unlock_page().   The address_space itself remains
3073 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3074 	 * release semantics to prevent the compiler from undoing this copying.
3075 	 */
3076 	mapping = fault_page->mapping;
3077 	unlock_page(fault_page);
3078 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3079 		/*
3080 		 * Some device drivers do not set page.mapping but still
3081 		 * dirty their pages
3082 		 */
3083 		balance_dirty_pages_ratelimited(mapping);
3084 	}
3085 
3086 	if (!vma->vm_ops->page_mkwrite)
3087 		file_update_time(vma->vm_file);
3088 
3089 	return ret;
3090 }
3091 
3092 /*
3093  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3094  * but allow concurrent faults).
3095  * The mmap_sem may have been released depending on flags and our
3096  * return value.  See filemap_fault() and __lock_page_or_retry().
3097  */
3098 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3099 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3100 		unsigned int flags, pte_t orig_pte)
3101 {
3102 	pgoff_t pgoff = (((address & PAGE_MASK)
3103 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3104 
3105 	pte_unmap(page_table);
3106 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3107 	if (!vma->vm_ops->fault)
3108 		return VM_FAULT_SIGBUS;
3109 	if (!(flags & FAULT_FLAG_WRITE))
3110 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3111 				orig_pte);
3112 	if (!(vma->vm_flags & VM_SHARED))
3113 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3114 				orig_pte);
3115 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3116 }
3117 
3118 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3119 				unsigned long addr, int page_nid,
3120 				int *flags)
3121 {
3122 	get_page(page);
3123 
3124 	count_vm_numa_event(NUMA_HINT_FAULTS);
3125 	if (page_nid == numa_node_id()) {
3126 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3127 		*flags |= TNF_FAULT_LOCAL;
3128 	}
3129 
3130 	return mpol_misplaced(page, vma, addr);
3131 }
3132 
3133 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3134 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3135 {
3136 	struct page *page = NULL;
3137 	spinlock_t *ptl;
3138 	int page_nid = -1;
3139 	int last_cpupid;
3140 	int target_nid;
3141 	bool migrated = false;
3142 	bool was_writable = pte_write(pte);
3143 	int flags = 0;
3144 
3145 	/* A PROT_NONE fault should not end up here */
3146 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3147 
3148 	/*
3149 	* The "pte" at this point cannot be used safely without
3150 	* validation through pte_unmap_same(). It's of NUMA type but
3151 	* the pfn may be screwed if the read is non atomic.
3152 	*
3153 	* We can safely just do a "set_pte_at()", because the old
3154 	* page table entry is not accessible, so there would be no
3155 	* concurrent hardware modifications to the PTE.
3156 	*/
3157 	ptl = pte_lockptr(mm, pmd);
3158 	spin_lock(ptl);
3159 	if (unlikely(!pte_same(*ptep, pte))) {
3160 		pte_unmap_unlock(ptep, ptl);
3161 		goto out;
3162 	}
3163 
3164 	/* Make it present again */
3165 	pte = pte_modify(pte, vma->vm_page_prot);
3166 	pte = pte_mkyoung(pte);
3167 	if (was_writable)
3168 		pte = pte_mkwrite(pte);
3169 	set_pte_at(mm, addr, ptep, pte);
3170 	update_mmu_cache(vma, addr, ptep);
3171 
3172 	page = vm_normal_page(vma, addr, pte);
3173 	if (!page) {
3174 		pte_unmap_unlock(ptep, ptl);
3175 		return 0;
3176 	}
3177 
3178 	/*
3179 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3180 	 * much anyway since they can be in shared cache state. This misses
3181 	 * the case where a mapping is writable but the process never writes
3182 	 * to it but pte_write gets cleared during protection updates and
3183 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3184 	 * background writeback, dirty balancing and application behaviour.
3185 	 */
3186 	if (!(vma->vm_flags & VM_WRITE))
3187 		flags |= TNF_NO_GROUP;
3188 
3189 	/*
3190 	 * Flag if the page is shared between multiple address spaces. This
3191 	 * is later used when determining whether to group tasks together
3192 	 */
3193 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3194 		flags |= TNF_SHARED;
3195 
3196 	last_cpupid = page_cpupid_last(page);
3197 	page_nid = page_to_nid(page);
3198 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3199 	pte_unmap_unlock(ptep, ptl);
3200 	if (target_nid == -1) {
3201 		put_page(page);
3202 		goto out;
3203 	}
3204 
3205 	/* Migrate to the requested node */
3206 	migrated = migrate_misplaced_page(page, vma, target_nid);
3207 	if (migrated) {
3208 		page_nid = target_nid;
3209 		flags |= TNF_MIGRATED;
3210 	} else
3211 		flags |= TNF_MIGRATE_FAIL;
3212 
3213 out:
3214 	if (page_nid != -1)
3215 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3216 	return 0;
3217 }
3218 
3219 /*
3220  * These routines also need to handle stuff like marking pages dirty
3221  * and/or accessed for architectures that don't do it in hardware (most
3222  * RISC architectures).  The early dirtying is also good on the i386.
3223  *
3224  * There is also a hook called "update_mmu_cache()" that architectures
3225  * with external mmu caches can use to update those (ie the Sparc or
3226  * PowerPC hashed page tables that act as extended TLBs).
3227  *
3228  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3229  * but allow concurrent faults), and pte mapped but not yet locked.
3230  * We return with pte unmapped and unlocked.
3231  *
3232  * The mmap_sem may have been released depending on flags and our
3233  * return value.  See filemap_fault() and __lock_page_or_retry().
3234  */
3235 static int handle_pte_fault(struct mm_struct *mm,
3236 		     struct vm_area_struct *vma, unsigned long address,
3237 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3238 {
3239 	pte_t entry;
3240 	spinlock_t *ptl;
3241 
3242 	/*
3243 	 * some architectures can have larger ptes than wordsize,
3244 	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3245 	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3246 	 * The code below just needs a consistent view for the ifs and
3247 	 * we later double check anyway with the ptl lock held. So here
3248 	 * a barrier will do.
3249 	 */
3250 	entry = *pte;
3251 	barrier();
3252 	if (!pte_present(entry)) {
3253 		if (pte_none(entry)) {
3254 			if (vma->vm_ops)
3255 				return do_fault(mm, vma, address, pte, pmd,
3256 						flags, entry);
3257 
3258 			return do_anonymous_page(mm, vma, address, pte, pmd,
3259 					flags);
3260 		}
3261 		return do_swap_page(mm, vma, address,
3262 					pte, pmd, flags, entry);
3263 	}
3264 
3265 	if (pte_protnone(entry))
3266 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3267 
3268 	ptl = pte_lockptr(mm, pmd);
3269 	spin_lock(ptl);
3270 	if (unlikely(!pte_same(*pte, entry)))
3271 		goto unlock;
3272 	if (flags & FAULT_FLAG_WRITE) {
3273 		if (!pte_write(entry))
3274 			return do_wp_page(mm, vma, address,
3275 					pte, pmd, ptl, entry);
3276 		entry = pte_mkdirty(entry);
3277 	}
3278 	entry = pte_mkyoung(entry);
3279 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3280 		update_mmu_cache(vma, address, pte);
3281 	} else {
3282 		/*
3283 		 * This is needed only for protection faults but the arch code
3284 		 * is not yet telling us if this is a protection fault or not.
3285 		 * This still avoids useless tlb flushes for .text page faults
3286 		 * with threads.
3287 		 */
3288 		if (flags & FAULT_FLAG_WRITE)
3289 			flush_tlb_fix_spurious_fault(vma, address);
3290 	}
3291 unlock:
3292 	pte_unmap_unlock(pte, ptl);
3293 	return 0;
3294 }
3295 
3296 /*
3297  * By the time we get here, we already hold the mm semaphore
3298  *
3299  * The mmap_sem may have been released depending on flags and our
3300  * return value.  See filemap_fault() and __lock_page_or_retry().
3301  */
3302 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3303 			     unsigned long address, unsigned int flags)
3304 {
3305 	pgd_t *pgd;
3306 	pud_t *pud;
3307 	pmd_t *pmd;
3308 	pte_t *pte;
3309 
3310 	if (unlikely(is_vm_hugetlb_page(vma)))
3311 		return hugetlb_fault(mm, vma, address, flags);
3312 
3313 	pgd = pgd_offset(mm, address);
3314 	pud = pud_alloc(mm, pgd, address);
3315 	if (!pud)
3316 		return VM_FAULT_OOM;
3317 	pmd = pmd_alloc(mm, pud, address);
3318 	if (!pmd)
3319 		return VM_FAULT_OOM;
3320 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3321 		int ret = VM_FAULT_FALLBACK;
3322 		if (!vma->vm_ops)
3323 			ret = do_huge_pmd_anonymous_page(mm, vma, address,
3324 					pmd, flags);
3325 		if (!(ret & VM_FAULT_FALLBACK))
3326 			return ret;
3327 	} else {
3328 		pmd_t orig_pmd = *pmd;
3329 		int ret;
3330 
3331 		barrier();
3332 		if (pmd_trans_huge(orig_pmd)) {
3333 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3334 
3335 			/*
3336 			 * If the pmd is splitting, return and retry the
3337 			 * the fault.  Alternative: wait until the split
3338 			 * is done, and goto retry.
3339 			 */
3340 			if (pmd_trans_splitting(orig_pmd))
3341 				return 0;
3342 
3343 			if (pmd_protnone(orig_pmd))
3344 				return do_huge_pmd_numa_page(mm, vma, address,
3345 							     orig_pmd, pmd);
3346 
3347 			if (dirty && !pmd_write(orig_pmd)) {
3348 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3349 							  orig_pmd);
3350 				if (!(ret & VM_FAULT_FALLBACK))
3351 					return ret;
3352 			} else {
3353 				huge_pmd_set_accessed(mm, vma, address, pmd,
3354 						      orig_pmd, dirty);
3355 				return 0;
3356 			}
3357 		}
3358 	}
3359 
3360 	/*
3361 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3362 	 * run pte_offset_map on the pmd, if an huge pmd could
3363 	 * materialize from under us from a different thread.
3364 	 */
3365 	if (unlikely(pmd_none(*pmd)) &&
3366 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3367 		return VM_FAULT_OOM;
3368 	/* if an huge pmd materialized from under us just retry later */
3369 	if (unlikely(pmd_trans_huge(*pmd)))
3370 		return 0;
3371 	/*
3372 	 * A regular pmd is established and it can't morph into a huge pmd
3373 	 * from under us anymore at this point because we hold the mmap_sem
3374 	 * read mode and khugepaged takes it in write mode. So now it's
3375 	 * safe to run pte_offset_map().
3376 	 */
3377 	pte = pte_offset_map(pmd, address);
3378 
3379 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3380 }
3381 
3382 /*
3383  * By the time we get here, we already hold the mm semaphore
3384  *
3385  * The mmap_sem may have been released depending on flags and our
3386  * return value.  See filemap_fault() and __lock_page_or_retry().
3387  */
3388 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3389 		    unsigned long address, unsigned int flags)
3390 {
3391 	int ret;
3392 
3393 	__set_current_state(TASK_RUNNING);
3394 
3395 	count_vm_event(PGFAULT);
3396 	mem_cgroup_count_vm_event(mm, PGFAULT);
3397 
3398 	/* do counter updates before entering really critical section. */
3399 	check_sync_rss_stat(current);
3400 
3401 	/*
3402 	 * Enable the memcg OOM handling for faults triggered in user
3403 	 * space.  Kernel faults are handled more gracefully.
3404 	 */
3405 	if (flags & FAULT_FLAG_USER)
3406 		mem_cgroup_oom_enable();
3407 
3408 	ret = __handle_mm_fault(mm, vma, address, flags);
3409 
3410 	if (flags & FAULT_FLAG_USER) {
3411 		mem_cgroup_oom_disable();
3412                 /*
3413                  * The task may have entered a memcg OOM situation but
3414                  * if the allocation error was handled gracefully (no
3415                  * VM_FAULT_OOM), there is no need to kill anything.
3416                  * Just clean up the OOM state peacefully.
3417                  */
3418                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3419                         mem_cgroup_oom_synchronize(false);
3420 	}
3421 
3422 	return ret;
3423 }
3424 EXPORT_SYMBOL_GPL(handle_mm_fault);
3425 
3426 #ifndef __PAGETABLE_PUD_FOLDED
3427 /*
3428  * Allocate page upper directory.
3429  * We've already handled the fast-path in-line.
3430  */
3431 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3432 {
3433 	pud_t *new = pud_alloc_one(mm, address);
3434 	if (!new)
3435 		return -ENOMEM;
3436 
3437 	smp_wmb(); /* See comment in __pte_alloc */
3438 
3439 	spin_lock(&mm->page_table_lock);
3440 	if (pgd_present(*pgd))		/* Another has populated it */
3441 		pud_free(mm, new);
3442 	else
3443 		pgd_populate(mm, pgd, new);
3444 	spin_unlock(&mm->page_table_lock);
3445 	return 0;
3446 }
3447 #endif /* __PAGETABLE_PUD_FOLDED */
3448 
3449 #ifndef __PAGETABLE_PMD_FOLDED
3450 /*
3451  * Allocate page middle directory.
3452  * We've already handled the fast-path in-line.
3453  */
3454 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3455 {
3456 	pmd_t *new = pmd_alloc_one(mm, address);
3457 	if (!new)
3458 		return -ENOMEM;
3459 
3460 	smp_wmb(); /* See comment in __pte_alloc */
3461 
3462 	spin_lock(&mm->page_table_lock);
3463 #ifndef __ARCH_HAS_4LEVEL_HACK
3464 	if (!pud_present(*pud)) {
3465 		mm_inc_nr_pmds(mm);
3466 		pud_populate(mm, pud, new);
3467 	} else	/* Another has populated it */
3468 		pmd_free(mm, new);
3469 #else
3470 	if (!pgd_present(*pud)) {
3471 		mm_inc_nr_pmds(mm);
3472 		pgd_populate(mm, pud, new);
3473 	} else /* Another has populated it */
3474 		pmd_free(mm, new);
3475 #endif /* __ARCH_HAS_4LEVEL_HACK */
3476 	spin_unlock(&mm->page_table_lock);
3477 	return 0;
3478 }
3479 #endif /* __PAGETABLE_PMD_FOLDED */
3480 
3481 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3482 		pte_t **ptepp, spinlock_t **ptlp)
3483 {
3484 	pgd_t *pgd;
3485 	pud_t *pud;
3486 	pmd_t *pmd;
3487 	pte_t *ptep;
3488 
3489 	pgd = pgd_offset(mm, address);
3490 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3491 		goto out;
3492 
3493 	pud = pud_offset(pgd, address);
3494 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3495 		goto out;
3496 
3497 	pmd = pmd_offset(pud, address);
3498 	VM_BUG_ON(pmd_trans_huge(*pmd));
3499 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3500 		goto out;
3501 
3502 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3503 	if (pmd_huge(*pmd))
3504 		goto out;
3505 
3506 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3507 	if (!ptep)
3508 		goto out;
3509 	if (!pte_present(*ptep))
3510 		goto unlock;
3511 	*ptepp = ptep;
3512 	return 0;
3513 unlock:
3514 	pte_unmap_unlock(ptep, *ptlp);
3515 out:
3516 	return -EINVAL;
3517 }
3518 
3519 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3520 			     pte_t **ptepp, spinlock_t **ptlp)
3521 {
3522 	int res;
3523 
3524 	/* (void) is needed to make gcc happy */
3525 	(void) __cond_lock(*ptlp,
3526 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3527 	return res;
3528 }
3529 
3530 /**
3531  * follow_pfn - look up PFN at a user virtual address
3532  * @vma: memory mapping
3533  * @address: user virtual address
3534  * @pfn: location to store found PFN
3535  *
3536  * Only IO mappings and raw PFN mappings are allowed.
3537  *
3538  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3539  */
3540 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3541 	unsigned long *pfn)
3542 {
3543 	int ret = -EINVAL;
3544 	spinlock_t *ptl;
3545 	pte_t *ptep;
3546 
3547 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3548 		return ret;
3549 
3550 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3551 	if (ret)
3552 		return ret;
3553 	*pfn = pte_pfn(*ptep);
3554 	pte_unmap_unlock(ptep, ptl);
3555 	return 0;
3556 }
3557 EXPORT_SYMBOL(follow_pfn);
3558 
3559 #ifdef CONFIG_HAVE_IOREMAP_PROT
3560 int follow_phys(struct vm_area_struct *vma,
3561 		unsigned long address, unsigned int flags,
3562 		unsigned long *prot, resource_size_t *phys)
3563 {
3564 	int ret = -EINVAL;
3565 	pte_t *ptep, pte;
3566 	spinlock_t *ptl;
3567 
3568 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3569 		goto out;
3570 
3571 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3572 		goto out;
3573 	pte = *ptep;
3574 
3575 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3576 		goto unlock;
3577 
3578 	*prot = pgprot_val(pte_pgprot(pte));
3579 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3580 
3581 	ret = 0;
3582 unlock:
3583 	pte_unmap_unlock(ptep, ptl);
3584 out:
3585 	return ret;
3586 }
3587 
3588 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3589 			void *buf, int len, int write)
3590 {
3591 	resource_size_t phys_addr;
3592 	unsigned long prot = 0;
3593 	void __iomem *maddr;
3594 	int offset = addr & (PAGE_SIZE-1);
3595 
3596 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3597 		return -EINVAL;
3598 
3599 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3600 	if (write)
3601 		memcpy_toio(maddr + offset, buf, len);
3602 	else
3603 		memcpy_fromio(buf, maddr + offset, len);
3604 	iounmap(maddr);
3605 
3606 	return len;
3607 }
3608 EXPORT_SYMBOL_GPL(generic_access_phys);
3609 #endif
3610 
3611 /*
3612  * Access another process' address space as given in mm.  If non-NULL, use the
3613  * given task for page fault accounting.
3614  */
3615 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3616 		unsigned long addr, void *buf, int len, int write)
3617 {
3618 	struct vm_area_struct *vma;
3619 	void *old_buf = buf;
3620 
3621 	down_read(&mm->mmap_sem);
3622 	/* ignore errors, just check how much was successfully transferred */
3623 	while (len) {
3624 		int bytes, ret, offset;
3625 		void *maddr;
3626 		struct page *page = NULL;
3627 
3628 		ret = get_user_pages(tsk, mm, addr, 1,
3629 				write, 1, &page, &vma);
3630 		if (ret <= 0) {
3631 #ifndef CONFIG_HAVE_IOREMAP_PROT
3632 			break;
3633 #else
3634 			/*
3635 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3636 			 * we can access using slightly different code.
3637 			 */
3638 			vma = find_vma(mm, addr);
3639 			if (!vma || vma->vm_start > addr)
3640 				break;
3641 			if (vma->vm_ops && vma->vm_ops->access)
3642 				ret = vma->vm_ops->access(vma, addr, buf,
3643 							  len, write);
3644 			if (ret <= 0)
3645 				break;
3646 			bytes = ret;
3647 #endif
3648 		} else {
3649 			bytes = len;
3650 			offset = addr & (PAGE_SIZE-1);
3651 			if (bytes > PAGE_SIZE-offset)
3652 				bytes = PAGE_SIZE-offset;
3653 
3654 			maddr = kmap(page);
3655 			if (write) {
3656 				copy_to_user_page(vma, page, addr,
3657 						  maddr + offset, buf, bytes);
3658 				set_page_dirty_lock(page);
3659 			} else {
3660 				copy_from_user_page(vma, page, addr,
3661 						    buf, maddr + offset, bytes);
3662 			}
3663 			kunmap(page);
3664 			page_cache_release(page);
3665 		}
3666 		len -= bytes;
3667 		buf += bytes;
3668 		addr += bytes;
3669 	}
3670 	up_read(&mm->mmap_sem);
3671 
3672 	return buf - old_buf;
3673 }
3674 
3675 /**
3676  * access_remote_vm - access another process' address space
3677  * @mm:		the mm_struct of the target address space
3678  * @addr:	start address to access
3679  * @buf:	source or destination buffer
3680  * @len:	number of bytes to transfer
3681  * @write:	whether the access is a write
3682  *
3683  * The caller must hold a reference on @mm.
3684  */
3685 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3686 		void *buf, int len, int write)
3687 {
3688 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3689 }
3690 
3691 /*
3692  * Access another process' address space.
3693  * Source/target buffer must be kernel space,
3694  * Do not walk the page table directly, use get_user_pages
3695  */
3696 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3697 		void *buf, int len, int write)
3698 {
3699 	struct mm_struct *mm;
3700 	int ret;
3701 
3702 	mm = get_task_mm(tsk);
3703 	if (!mm)
3704 		return 0;
3705 
3706 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3707 	mmput(mm);
3708 
3709 	return ret;
3710 }
3711 
3712 /*
3713  * Print the name of a VMA.
3714  */
3715 void print_vma_addr(char *prefix, unsigned long ip)
3716 {
3717 	struct mm_struct *mm = current->mm;
3718 	struct vm_area_struct *vma;
3719 
3720 	/*
3721 	 * Do not print if we are in atomic
3722 	 * contexts (in exception stacks, etc.):
3723 	 */
3724 	if (preempt_count())
3725 		return;
3726 
3727 	down_read(&mm->mmap_sem);
3728 	vma = find_vma(mm, ip);
3729 	if (vma && vma->vm_file) {
3730 		struct file *f = vma->vm_file;
3731 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3732 		if (buf) {
3733 			char *p;
3734 
3735 			p = file_path(f, buf, PAGE_SIZE);
3736 			if (IS_ERR(p))
3737 				p = "?";
3738 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3739 					vma->vm_start,
3740 					vma->vm_end - vma->vm_start);
3741 			free_page((unsigned long)buf);
3742 		}
3743 	}
3744 	up_read(&mm->mmap_sem);
3745 }
3746 
3747 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3748 void __might_fault(const char *file, int line)
3749 {
3750 	/*
3751 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3752 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3753 	 * get paged out, therefore we'll never actually fault, and the
3754 	 * below annotations will generate false positives.
3755 	 */
3756 	if (segment_eq(get_fs(), KERNEL_DS))
3757 		return;
3758 	if (pagefault_disabled())
3759 		return;
3760 	__might_sleep(file, line, 0);
3761 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3762 	if (current->mm)
3763 		might_lock_read(&current->mm->mmap_sem);
3764 #endif
3765 }
3766 EXPORT_SYMBOL(__might_fault);
3767 #endif
3768 
3769 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3770 static void clear_gigantic_page(struct page *page,
3771 				unsigned long addr,
3772 				unsigned int pages_per_huge_page)
3773 {
3774 	int i;
3775 	struct page *p = page;
3776 
3777 	might_sleep();
3778 	for (i = 0; i < pages_per_huge_page;
3779 	     i++, p = mem_map_next(p, page, i)) {
3780 		cond_resched();
3781 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3782 	}
3783 }
3784 void clear_huge_page(struct page *page,
3785 		     unsigned long addr, unsigned int pages_per_huge_page)
3786 {
3787 	int i;
3788 
3789 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3790 		clear_gigantic_page(page, addr, pages_per_huge_page);
3791 		return;
3792 	}
3793 
3794 	might_sleep();
3795 	for (i = 0; i < pages_per_huge_page; i++) {
3796 		cond_resched();
3797 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3798 	}
3799 }
3800 
3801 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3802 				    unsigned long addr,
3803 				    struct vm_area_struct *vma,
3804 				    unsigned int pages_per_huge_page)
3805 {
3806 	int i;
3807 	struct page *dst_base = dst;
3808 	struct page *src_base = src;
3809 
3810 	for (i = 0; i < pages_per_huge_page; ) {
3811 		cond_resched();
3812 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3813 
3814 		i++;
3815 		dst = mem_map_next(dst, dst_base, i);
3816 		src = mem_map_next(src, src_base, i);
3817 	}
3818 }
3819 
3820 void copy_user_huge_page(struct page *dst, struct page *src,
3821 			 unsigned long addr, struct vm_area_struct *vma,
3822 			 unsigned int pages_per_huge_page)
3823 {
3824 	int i;
3825 
3826 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3827 		copy_user_gigantic_page(dst, src, addr, vma,
3828 					pages_per_huge_page);
3829 		return;
3830 	}
3831 
3832 	might_sleep();
3833 	for (i = 0; i < pages_per_huge_page; i++) {
3834 		cond_resched();
3835 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3836 	}
3837 }
3838 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3839 
3840 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3841 
3842 static struct kmem_cache *page_ptl_cachep;
3843 
3844 void __init ptlock_cache_init(void)
3845 {
3846 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3847 			SLAB_PANIC, NULL);
3848 }
3849 
3850 bool ptlock_alloc(struct page *page)
3851 {
3852 	spinlock_t *ptl;
3853 
3854 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3855 	if (!ptl)
3856 		return false;
3857 	page->ptl = ptl;
3858 	return true;
3859 }
3860 
3861 void ptlock_free(struct page *page)
3862 {
3863 	kmem_cache_free(page_ptl_cachep, page->ptl);
3864 }
3865 #endif
3866