xref: /openbmc/linux/mm/memory.c (revision bcb84fb4)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/export.h>
55 #include <linux/delayacct.h>
56 #include <linux/init.h>
57 #include <linux/pfn_t.h>
58 #include <linux/writeback.h>
59 #include <linux/memcontrol.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/kallsyms.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 
72 #include <asm/io.h>
73 #include <asm/mmu_context.h>
74 #include <asm/pgalloc.h>
75 #include <linux/uaccess.h>
76 #include <asm/tlb.h>
77 #include <asm/tlbflush.h>
78 #include <asm/pgtable.h>
79 
80 #include "internal.h"
81 
82 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
83 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
84 #endif
85 
86 #ifndef CONFIG_NEED_MULTIPLE_NODES
87 /* use the per-pgdat data instead for discontigmem - mbligh */
88 unsigned long max_mapnr;
89 EXPORT_SYMBOL(max_mapnr);
90 
91 struct page *mem_map;
92 EXPORT_SYMBOL(mem_map);
93 #endif
94 
95 /*
96  * A number of key systems in x86 including ioremap() rely on the assumption
97  * that high_memory defines the upper bound on direct map memory, then end
98  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
99  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
100  * and ZONE_HIGHMEM.
101  */
102 void *high_memory;
103 EXPORT_SYMBOL(high_memory);
104 
105 /*
106  * Randomize the address space (stacks, mmaps, brk, etc.).
107  *
108  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
109  *   as ancient (libc5 based) binaries can segfault. )
110  */
111 int randomize_va_space __read_mostly =
112 #ifdef CONFIG_COMPAT_BRK
113 					1;
114 #else
115 					2;
116 #endif
117 
118 static int __init disable_randmaps(char *s)
119 {
120 	randomize_va_space = 0;
121 	return 1;
122 }
123 __setup("norandmaps", disable_randmaps);
124 
125 unsigned long zero_pfn __read_mostly;
126 EXPORT_SYMBOL(zero_pfn);
127 
128 unsigned long highest_memmap_pfn __read_mostly;
129 
130 /*
131  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
132  */
133 static int __init init_zero_pfn(void)
134 {
135 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
136 	return 0;
137 }
138 core_initcall(init_zero_pfn);
139 
140 
141 #if defined(SPLIT_RSS_COUNTING)
142 
143 void sync_mm_rss(struct mm_struct *mm)
144 {
145 	int i;
146 
147 	for (i = 0; i < NR_MM_COUNTERS; i++) {
148 		if (current->rss_stat.count[i]) {
149 			add_mm_counter(mm, i, current->rss_stat.count[i]);
150 			current->rss_stat.count[i] = 0;
151 		}
152 	}
153 	current->rss_stat.events = 0;
154 }
155 
156 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
157 {
158 	struct task_struct *task = current;
159 
160 	if (likely(task->mm == mm))
161 		task->rss_stat.count[member] += val;
162 	else
163 		add_mm_counter(mm, member, val);
164 }
165 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
166 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
167 
168 /* sync counter once per 64 page faults */
169 #define TASK_RSS_EVENTS_THRESH	(64)
170 static void check_sync_rss_stat(struct task_struct *task)
171 {
172 	if (unlikely(task != current))
173 		return;
174 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
175 		sync_mm_rss(task->mm);
176 }
177 #else /* SPLIT_RSS_COUNTING */
178 
179 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
180 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
181 
182 static void check_sync_rss_stat(struct task_struct *task)
183 {
184 }
185 
186 #endif /* SPLIT_RSS_COUNTING */
187 
188 #ifdef HAVE_GENERIC_MMU_GATHER
189 
190 static bool tlb_next_batch(struct mmu_gather *tlb)
191 {
192 	struct mmu_gather_batch *batch;
193 
194 	batch = tlb->active;
195 	if (batch->next) {
196 		tlb->active = batch->next;
197 		return true;
198 	}
199 
200 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
201 		return false;
202 
203 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
204 	if (!batch)
205 		return false;
206 
207 	tlb->batch_count++;
208 	batch->next = NULL;
209 	batch->nr   = 0;
210 	batch->max  = MAX_GATHER_BATCH;
211 
212 	tlb->active->next = batch;
213 	tlb->active = batch;
214 
215 	return true;
216 }
217 
218 /* tlb_gather_mmu
219  *	Called to initialize an (on-stack) mmu_gather structure for page-table
220  *	tear-down from @mm. The @fullmm argument is used when @mm is without
221  *	users and we're going to destroy the full address space (exit/execve).
222  */
223 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
224 {
225 	tlb->mm = mm;
226 
227 	/* Is it from 0 to ~0? */
228 	tlb->fullmm     = !(start | (end+1));
229 	tlb->need_flush_all = 0;
230 	tlb->local.next = NULL;
231 	tlb->local.nr   = 0;
232 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
233 	tlb->active     = &tlb->local;
234 	tlb->batch_count = 0;
235 
236 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
237 	tlb->batch = NULL;
238 #endif
239 	tlb->page_size = 0;
240 
241 	__tlb_reset_range(tlb);
242 }
243 
244 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
245 {
246 	if (!tlb->end)
247 		return;
248 
249 	tlb_flush(tlb);
250 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
251 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
252 	tlb_table_flush(tlb);
253 #endif
254 	__tlb_reset_range(tlb);
255 }
256 
257 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
258 {
259 	struct mmu_gather_batch *batch;
260 
261 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
262 		free_pages_and_swap_cache(batch->pages, batch->nr);
263 		batch->nr = 0;
264 	}
265 	tlb->active = &tlb->local;
266 }
267 
268 void tlb_flush_mmu(struct mmu_gather *tlb)
269 {
270 	tlb_flush_mmu_tlbonly(tlb);
271 	tlb_flush_mmu_free(tlb);
272 }
273 
274 /* tlb_finish_mmu
275  *	Called at the end of the shootdown operation to free up any resources
276  *	that were required.
277  */
278 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
279 {
280 	struct mmu_gather_batch *batch, *next;
281 
282 	tlb_flush_mmu(tlb);
283 
284 	/* keep the page table cache within bounds */
285 	check_pgt_cache();
286 
287 	for (batch = tlb->local.next; batch; batch = next) {
288 		next = batch->next;
289 		free_pages((unsigned long)batch, 0);
290 	}
291 	tlb->local.next = NULL;
292 }
293 
294 /* __tlb_remove_page
295  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
296  *	handling the additional races in SMP caused by other CPUs caching valid
297  *	mappings in their TLBs. Returns the number of free page slots left.
298  *	When out of page slots we must call tlb_flush_mmu().
299  *returns true if the caller should flush.
300  */
301 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
302 {
303 	struct mmu_gather_batch *batch;
304 
305 	VM_BUG_ON(!tlb->end);
306 	VM_WARN_ON(tlb->page_size != page_size);
307 
308 	batch = tlb->active;
309 	/*
310 	 * Add the page and check if we are full. If so
311 	 * force a flush.
312 	 */
313 	batch->pages[batch->nr++] = page;
314 	if (batch->nr == batch->max) {
315 		if (!tlb_next_batch(tlb))
316 			return true;
317 		batch = tlb->active;
318 	}
319 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
320 
321 	return false;
322 }
323 
324 #endif /* HAVE_GENERIC_MMU_GATHER */
325 
326 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
327 
328 /*
329  * See the comment near struct mmu_table_batch.
330  */
331 
332 static void tlb_remove_table_smp_sync(void *arg)
333 {
334 	/* Simply deliver the interrupt */
335 }
336 
337 static void tlb_remove_table_one(void *table)
338 {
339 	/*
340 	 * This isn't an RCU grace period and hence the page-tables cannot be
341 	 * assumed to be actually RCU-freed.
342 	 *
343 	 * It is however sufficient for software page-table walkers that rely on
344 	 * IRQ disabling. See the comment near struct mmu_table_batch.
345 	 */
346 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
347 	__tlb_remove_table(table);
348 }
349 
350 static void tlb_remove_table_rcu(struct rcu_head *head)
351 {
352 	struct mmu_table_batch *batch;
353 	int i;
354 
355 	batch = container_of(head, struct mmu_table_batch, rcu);
356 
357 	for (i = 0; i < batch->nr; i++)
358 		__tlb_remove_table(batch->tables[i]);
359 
360 	free_page((unsigned long)batch);
361 }
362 
363 void tlb_table_flush(struct mmu_gather *tlb)
364 {
365 	struct mmu_table_batch **batch = &tlb->batch;
366 
367 	if (*batch) {
368 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
369 		*batch = NULL;
370 	}
371 }
372 
373 void tlb_remove_table(struct mmu_gather *tlb, void *table)
374 {
375 	struct mmu_table_batch **batch = &tlb->batch;
376 
377 	/*
378 	 * When there's less then two users of this mm there cannot be a
379 	 * concurrent page-table walk.
380 	 */
381 	if (atomic_read(&tlb->mm->mm_users) < 2) {
382 		__tlb_remove_table(table);
383 		return;
384 	}
385 
386 	if (*batch == NULL) {
387 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
388 		if (*batch == NULL) {
389 			tlb_remove_table_one(table);
390 			return;
391 		}
392 		(*batch)->nr = 0;
393 	}
394 	(*batch)->tables[(*batch)->nr++] = table;
395 	if ((*batch)->nr == MAX_TABLE_BATCH)
396 		tlb_table_flush(tlb);
397 }
398 
399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
400 
401 /*
402  * Note: this doesn't free the actual pages themselves. That
403  * has been handled earlier when unmapping all the memory regions.
404  */
405 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
406 			   unsigned long addr)
407 {
408 	pgtable_t token = pmd_pgtable(*pmd);
409 	pmd_clear(pmd);
410 	pte_free_tlb(tlb, token, addr);
411 	atomic_long_dec(&tlb->mm->nr_ptes);
412 }
413 
414 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
415 				unsigned long addr, unsigned long end,
416 				unsigned long floor, unsigned long ceiling)
417 {
418 	pmd_t *pmd;
419 	unsigned long next;
420 	unsigned long start;
421 
422 	start = addr;
423 	pmd = pmd_offset(pud, addr);
424 	do {
425 		next = pmd_addr_end(addr, end);
426 		if (pmd_none_or_clear_bad(pmd))
427 			continue;
428 		free_pte_range(tlb, pmd, addr);
429 	} while (pmd++, addr = next, addr != end);
430 
431 	start &= PUD_MASK;
432 	if (start < floor)
433 		return;
434 	if (ceiling) {
435 		ceiling &= PUD_MASK;
436 		if (!ceiling)
437 			return;
438 	}
439 	if (end - 1 > ceiling - 1)
440 		return;
441 
442 	pmd = pmd_offset(pud, start);
443 	pud_clear(pud);
444 	pmd_free_tlb(tlb, pmd, start);
445 	mm_dec_nr_pmds(tlb->mm);
446 }
447 
448 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
449 				unsigned long addr, unsigned long end,
450 				unsigned long floor, unsigned long ceiling)
451 {
452 	pud_t *pud;
453 	unsigned long next;
454 	unsigned long start;
455 
456 	start = addr;
457 	pud = pud_offset(pgd, addr);
458 	do {
459 		next = pud_addr_end(addr, end);
460 		if (pud_none_or_clear_bad(pud))
461 			continue;
462 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
463 	} while (pud++, addr = next, addr != end);
464 
465 	start &= PGDIR_MASK;
466 	if (start < floor)
467 		return;
468 	if (ceiling) {
469 		ceiling &= PGDIR_MASK;
470 		if (!ceiling)
471 			return;
472 	}
473 	if (end - 1 > ceiling - 1)
474 		return;
475 
476 	pud = pud_offset(pgd, start);
477 	pgd_clear(pgd);
478 	pud_free_tlb(tlb, pud, start);
479 }
480 
481 /*
482  * This function frees user-level page tables of a process.
483  */
484 void free_pgd_range(struct mmu_gather *tlb,
485 			unsigned long addr, unsigned long end,
486 			unsigned long floor, unsigned long ceiling)
487 {
488 	pgd_t *pgd;
489 	unsigned long next;
490 
491 	/*
492 	 * The next few lines have given us lots of grief...
493 	 *
494 	 * Why are we testing PMD* at this top level?  Because often
495 	 * there will be no work to do at all, and we'd prefer not to
496 	 * go all the way down to the bottom just to discover that.
497 	 *
498 	 * Why all these "- 1"s?  Because 0 represents both the bottom
499 	 * of the address space and the top of it (using -1 for the
500 	 * top wouldn't help much: the masks would do the wrong thing).
501 	 * The rule is that addr 0 and floor 0 refer to the bottom of
502 	 * the address space, but end 0 and ceiling 0 refer to the top
503 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
504 	 * that end 0 case should be mythical).
505 	 *
506 	 * Wherever addr is brought up or ceiling brought down, we must
507 	 * be careful to reject "the opposite 0" before it confuses the
508 	 * subsequent tests.  But what about where end is brought down
509 	 * by PMD_SIZE below? no, end can't go down to 0 there.
510 	 *
511 	 * Whereas we round start (addr) and ceiling down, by different
512 	 * masks at different levels, in order to test whether a table
513 	 * now has no other vmas using it, so can be freed, we don't
514 	 * bother to round floor or end up - the tests don't need that.
515 	 */
516 
517 	addr &= PMD_MASK;
518 	if (addr < floor) {
519 		addr += PMD_SIZE;
520 		if (!addr)
521 			return;
522 	}
523 	if (ceiling) {
524 		ceiling &= PMD_MASK;
525 		if (!ceiling)
526 			return;
527 	}
528 	if (end - 1 > ceiling - 1)
529 		end -= PMD_SIZE;
530 	if (addr > end - 1)
531 		return;
532 	/*
533 	 * We add page table cache pages with PAGE_SIZE,
534 	 * (see pte_free_tlb()), flush the tlb if we need
535 	 */
536 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
537 	pgd = pgd_offset(tlb->mm, addr);
538 	do {
539 		next = pgd_addr_end(addr, end);
540 		if (pgd_none_or_clear_bad(pgd))
541 			continue;
542 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
543 	} while (pgd++, addr = next, addr != end);
544 }
545 
546 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
547 		unsigned long floor, unsigned long ceiling)
548 {
549 	while (vma) {
550 		struct vm_area_struct *next = vma->vm_next;
551 		unsigned long addr = vma->vm_start;
552 
553 		/*
554 		 * Hide vma from rmap and truncate_pagecache before freeing
555 		 * pgtables
556 		 */
557 		unlink_anon_vmas(vma);
558 		unlink_file_vma(vma);
559 
560 		if (is_vm_hugetlb_page(vma)) {
561 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
562 				floor, next ? next->vm_start : ceiling);
563 		} else {
564 			/*
565 			 * Optimization: gather nearby vmas into one call down
566 			 */
567 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
568 			       && !is_vm_hugetlb_page(next)) {
569 				vma = next;
570 				next = vma->vm_next;
571 				unlink_anon_vmas(vma);
572 				unlink_file_vma(vma);
573 			}
574 			free_pgd_range(tlb, addr, vma->vm_end,
575 				floor, next ? next->vm_start : ceiling);
576 		}
577 		vma = next;
578 	}
579 }
580 
581 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
582 {
583 	spinlock_t *ptl;
584 	pgtable_t new = pte_alloc_one(mm, address);
585 	if (!new)
586 		return -ENOMEM;
587 
588 	/*
589 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
590 	 * visible before the pte is made visible to other CPUs by being
591 	 * put into page tables.
592 	 *
593 	 * The other side of the story is the pointer chasing in the page
594 	 * table walking code (when walking the page table without locking;
595 	 * ie. most of the time). Fortunately, these data accesses consist
596 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
597 	 * being the notable exception) will already guarantee loads are
598 	 * seen in-order. See the alpha page table accessors for the
599 	 * smp_read_barrier_depends() barriers in page table walking code.
600 	 */
601 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
602 
603 	ptl = pmd_lock(mm, pmd);
604 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
605 		atomic_long_inc(&mm->nr_ptes);
606 		pmd_populate(mm, pmd, new);
607 		new = NULL;
608 	}
609 	spin_unlock(ptl);
610 	if (new)
611 		pte_free(mm, new);
612 	return 0;
613 }
614 
615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
616 {
617 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618 	if (!new)
619 		return -ENOMEM;
620 
621 	smp_wmb(); /* See comment in __pte_alloc */
622 
623 	spin_lock(&init_mm.page_table_lock);
624 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
625 		pmd_populate_kernel(&init_mm, pmd, new);
626 		new = NULL;
627 	}
628 	spin_unlock(&init_mm.page_table_lock);
629 	if (new)
630 		pte_free_kernel(&init_mm, new);
631 	return 0;
632 }
633 
634 static inline void init_rss_vec(int *rss)
635 {
636 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
637 }
638 
639 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
640 {
641 	int i;
642 
643 	if (current->mm == mm)
644 		sync_mm_rss(mm);
645 	for (i = 0; i < NR_MM_COUNTERS; i++)
646 		if (rss[i])
647 			add_mm_counter(mm, i, rss[i]);
648 }
649 
650 /*
651  * This function is called to print an error when a bad pte
652  * is found. For example, we might have a PFN-mapped pte in
653  * a region that doesn't allow it.
654  *
655  * The calling function must still handle the error.
656  */
657 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
658 			  pte_t pte, struct page *page)
659 {
660 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
661 	pud_t *pud = pud_offset(pgd, addr);
662 	pmd_t *pmd = pmd_offset(pud, addr);
663 	struct address_space *mapping;
664 	pgoff_t index;
665 	static unsigned long resume;
666 	static unsigned long nr_shown;
667 	static unsigned long nr_unshown;
668 
669 	/*
670 	 * Allow a burst of 60 reports, then keep quiet for that minute;
671 	 * or allow a steady drip of one report per second.
672 	 */
673 	if (nr_shown == 60) {
674 		if (time_before(jiffies, resume)) {
675 			nr_unshown++;
676 			return;
677 		}
678 		if (nr_unshown) {
679 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
680 				 nr_unshown);
681 			nr_unshown = 0;
682 		}
683 		nr_shown = 0;
684 	}
685 	if (nr_shown++ == 0)
686 		resume = jiffies + 60 * HZ;
687 
688 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
689 	index = linear_page_index(vma, addr);
690 
691 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
692 		 current->comm,
693 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
694 	if (page)
695 		dump_page(page, "bad pte");
696 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
697 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
698 	/*
699 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
700 	 */
701 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
702 		 vma->vm_file,
703 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
704 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
705 		 mapping ? mapping->a_ops->readpage : NULL);
706 	dump_stack();
707 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
708 }
709 
710 /*
711  * vm_normal_page -- This function gets the "struct page" associated with a pte.
712  *
713  * "Special" mappings do not wish to be associated with a "struct page" (either
714  * it doesn't exist, or it exists but they don't want to touch it). In this
715  * case, NULL is returned here. "Normal" mappings do have a struct page.
716  *
717  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
718  * pte bit, in which case this function is trivial. Secondly, an architecture
719  * may not have a spare pte bit, which requires a more complicated scheme,
720  * described below.
721  *
722  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
723  * special mapping (even if there are underlying and valid "struct pages").
724  * COWed pages of a VM_PFNMAP are always normal.
725  *
726  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
727  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
728  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
729  * mapping will always honor the rule
730  *
731  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
732  *
733  * And for normal mappings this is false.
734  *
735  * This restricts such mappings to be a linear translation from virtual address
736  * to pfn. To get around this restriction, we allow arbitrary mappings so long
737  * as the vma is not a COW mapping; in that case, we know that all ptes are
738  * special (because none can have been COWed).
739  *
740  *
741  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
742  *
743  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
744  * page" backing, however the difference is that _all_ pages with a struct
745  * page (that is, those where pfn_valid is true) are refcounted and considered
746  * normal pages by the VM. The disadvantage is that pages are refcounted
747  * (which can be slower and simply not an option for some PFNMAP users). The
748  * advantage is that we don't have to follow the strict linearity rule of
749  * PFNMAP mappings in order to support COWable mappings.
750  *
751  */
752 #ifdef __HAVE_ARCH_PTE_SPECIAL
753 # define HAVE_PTE_SPECIAL 1
754 #else
755 # define HAVE_PTE_SPECIAL 0
756 #endif
757 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
758 				pte_t pte)
759 {
760 	unsigned long pfn = pte_pfn(pte);
761 
762 	if (HAVE_PTE_SPECIAL) {
763 		if (likely(!pte_special(pte)))
764 			goto check_pfn;
765 		if (vma->vm_ops && vma->vm_ops->find_special_page)
766 			return vma->vm_ops->find_special_page(vma, addr);
767 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
768 			return NULL;
769 		if (!is_zero_pfn(pfn))
770 			print_bad_pte(vma, addr, pte, NULL);
771 		return NULL;
772 	}
773 
774 	/* !HAVE_PTE_SPECIAL case follows: */
775 
776 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
777 		if (vma->vm_flags & VM_MIXEDMAP) {
778 			if (!pfn_valid(pfn))
779 				return NULL;
780 			goto out;
781 		} else {
782 			unsigned long off;
783 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
784 			if (pfn == vma->vm_pgoff + off)
785 				return NULL;
786 			if (!is_cow_mapping(vma->vm_flags))
787 				return NULL;
788 		}
789 	}
790 
791 	if (is_zero_pfn(pfn))
792 		return NULL;
793 check_pfn:
794 	if (unlikely(pfn > highest_memmap_pfn)) {
795 		print_bad_pte(vma, addr, pte, NULL);
796 		return NULL;
797 	}
798 
799 	/*
800 	 * NOTE! We still have PageReserved() pages in the page tables.
801 	 * eg. VDSO mappings can cause them to exist.
802 	 */
803 out:
804 	return pfn_to_page(pfn);
805 }
806 
807 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
808 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
809 				pmd_t pmd)
810 {
811 	unsigned long pfn = pmd_pfn(pmd);
812 
813 	/*
814 	 * There is no pmd_special() but there may be special pmds, e.g.
815 	 * in a direct-access (dax) mapping, so let's just replicate the
816 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
817 	 */
818 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
819 		if (vma->vm_flags & VM_MIXEDMAP) {
820 			if (!pfn_valid(pfn))
821 				return NULL;
822 			goto out;
823 		} else {
824 			unsigned long off;
825 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
826 			if (pfn == vma->vm_pgoff + off)
827 				return NULL;
828 			if (!is_cow_mapping(vma->vm_flags))
829 				return NULL;
830 		}
831 	}
832 
833 	if (is_zero_pfn(pfn))
834 		return NULL;
835 	if (unlikely(pfn > highest_memmap_pfn))
836 		return NULL;
837 
838 	/*
839 	 * NOTE! We still have PageReserved() pages in the page tables.
840 	 * eg. VDSO mappings can cause them to exist.
841 	 */
842 out:
843 	return pfn_to_page(pfn);
844 }
845 #endif
846 
847 /*
848  * copy one vm_area from one task to the other. Assumes the page tables
849  * already present in the new task to be cleared in the whole range
850  * covered by this vma.
851  */
852 
853 static inline unsigned long
854 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
855 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
856 		unsigned long addr, int *rss)
857 {
858 	unsigned long vm_flags = vma->vm_flags;
859 	pte_t pte = *src_pte;
860 	struct page *page;
861 
862 	/* pte contains position in swap or file, so copy. */
863 	if (unlikely(!pte_present(pte))) {
864 		swp_entry_t entry = pte_to_swp_entry(pte);
865 
866 		if (likely(!non_swap_entry(entry))) {
867 			if (swap_duplicate(entry) < 0)
868 				return entry.val;
869 
870 			/* make sure dst_mm is on swapoff's mmlist. */
871 			if (unlikely(list_empty(&dst_mm->mmlist))) {
872 				spin_lock(&mmlist_lock);
873 				if (list_empty(&dst_mm->mmlist))
874 					list_add(&dst_mm->mmlist,
875 							&src_mm->mmlist);
876 				spin_unlock(&mmlist_lock);
877 			}
878 			rss[MM_SWAPENTS]++;
879 		} else if (is_migration_entry(entry)) {
880 			page = migration_entry_to_page(entry);
881 
882 			rss[mm_counter(page)]++;
883 
884 			if (is_write_migration_entry(entry) &&
885 					is_cow_mapping(vm_flags)) {
886 				/*
887 				 * COW mappings require pages in both
888 				 * parent and child to be set to read.
889 				 */
890 				make_migration_entry_read(&entry);
891 				pte = swp_entry_to_pte(entry);
892 				if (pte_swp_soft_dirty(*src_pte))
893 					pte = pte_swp_mksoft_dirty(pte);
894 				set_pte_at(src_mm, addr, src_pte, pte);
895 			}
896 		}
897 		goto out_set_pte;
898 	}
899 
900 	/*
901 	 * If it's a COW mapping, write protect it both
902 	 * in the parent and the child
903 	 */
904 	if (is_cow_mapping(vm_flags)) {
905 		ptep_set_wrprotect(src_mm, addr, src_pte);
906 		pte = pte_wrprotect(pte);
907 	}
908 
909 	/*
910 	 * If it's a shared mapping, mark it clean in
911 	 * the child
912 	 */
913 	if (vm_flags & VM_SHARED)
914 		pte = pte_mkclean(pte);
915 	pte = pte_mkold(pte);
916 
917 	page = vm_normal_page(vma, addr, pte);
918 	if (page) {
919 		get_page(page);
920 		page_dup_rmap(page, false);
921 		rss[mm_counter(page)]++;
922 	}
923 
924 out_set_pte:
925 	set_pte_at(dst_mm, addr, dst_pte, pte);
926 	return 0;
927 }
928 
929 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
930 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
931 		   unsigned long addr, unsigned long end)
932 {
933 	pte_t *orig_src_pte, *orig_dst_pte;
934 	pte_t *src_pte, *dst_pte;
935 	spinlock_t *src_ptl, *dst_ptl;
936 	int progress = 0;
937 	int rss[NR_MM_COUNTERS];
938 	swp_entry_t entry = (swp_entry_t){0};
939 
940 again:
941 	init_rss_vec(rss);
942 
943 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
944 	if (!dst_pte)
945 		return -ENOMEM;
946 	src_pte = pte_offset_map(src_pmd, addr);
947 	src_ptl = pte_lockptr(src_mm, src_pmd);
948 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
949 	orig_src_pte = src_pte;
950 	orig_dst_pte = dst_pte;
951 	arch_enter_lazy_mmu_mode();
952 
953 	do {
954 		/*
955 		 * We are holding two locks at this point - either of them
956 		 * could generate latencies in another task on another CPU.
957 		 */
958 		if (progress >= 32) {
959 			progress = 0;
960 			if (need_resched() ||
961 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
962 				break;
963 		}
964 		if (pte_none(*src_pte)) {
965 			progress++;
966 			continue;
967 		}
968 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
969 							vma, addr, rss);
970 		if (entry.val)
971 			break;
972 		progress += 8;
973 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
974 
975 	arch_leave_lazy_mmu_mode();
976 	spin_unlock(src_ptl);
977 	pte_unmap(orig_src_pte);
978 	add_mm_rss_vec(dst_mm, rss);
979 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
980 	cond_resched();
981 
982 	if (entry.val) {
983 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
984 			return -ENOMEM;
985 		progress = 0;
986 	}
987 	if (addr != end)
988 		goto again;
989 	return 0;
990 }
991 
992 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
993 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
994 		unsigned long addr, unsigned long end)
995 {
996 	pmd_t *src_pmd, *dst_pmd;
997 	unsigned long next;
998 
999 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1000 	if (!dst_pmd)
1001 		return -ENOMEM;
1002 	src_pmd = pmd_offset(src_pud, addr);
1003 	do {
1004 		next = pmd_addr_end(addr, end);
1005 		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1006 			int err;
1007 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1008 			err = copy_huge_pmd(dst_mm, src_mm,
1009 					    dst_pmd, src_pmd, addr, vma);
1010 			if (err == -ENOMEM)
1011 				return -ENOMEM;
1012 			if (!err)
1013 				continue;
1014 			/* fall through */
1015 		}
1016 		if (pmd_none_or_clear_bad(src_pmd))
1017 			continue;
1018 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1019 						vma, addr, next))
1020 			return -ENOMEM;
1021 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1022 	return 0;
1023 }
1024 
1025 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1026 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1027 		unsigned long addr, unsigned long end)
1028 {
1029 	pud_t *src_pud, *dst_pud;
1030 	unsigned long next;
1031 
1032 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1033 	if (!dst_pud)
1034 		return -ENOMEM;
1035 	src_pud = pud_offset(src_pgd, addr);
1036 	do {
1037 		next = pud_addr_end(addr, end);
1038 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1039 			int err;
1040 
1041 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1042 			err = copy_huge_pud(dst_mm, src_mm,
1043 					    dst_pud, src_pud, addr, vma);
1044 			if (err == -ENOMEM)
1045 				return -ENOMEM;
1046 			if (!err)
1047 				continue;
1048 			/* fall through */
1049 		}
1050 		if (pud_none_or_clear_bad(src_pud))
1051 			continue;
1052 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1053 						vma, addr, next))
1054 			return -ENOMEM;
1055 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1056 	return 0;
1057 }
1058 
1059 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1060 		struct vm_area_struct *vma)
1061 {
1062 	pgd_t *src_pgd, *dst_pgd;
1063 	unsigned long next;
1064 	unsigned long addr = vma->vm_start;
1065 	unsigned long end = vma->vm_end;
1066 	unsigned long mmun_start;	/* For mmu_notifiers */
1067 	unsigned long mmun_end;		/* For mmu_notifiers */
1068 	bool is_cow;
1069 	int ret;
1070 
1071 	/*
1072 	 * Don't copy ptes where a page fault will fill them correctly.
1073 	 * Fork becomes much lighter when there are big shared or private
1074 	 * readonly mappings. The tradeoff is that copy_page_range is more
1075 	 * efficient than faulting.
1076 	 */
1077 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1078 			!vma->anon_vma)
1079 		return 0;
1080 
1081 	if (is_vm_hugetlb_page(vma))
1082 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1083 
1084 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1085 		/*
1086 		 * We do not free on error cases below as remove_vma
1087 		 * gets called on error from higher level routine
1088 		 */
1089 		ret = track_pfn_copy(vma);
1090 		if (ret)
1091 			return ret;
1092 	}
1093 
1094 	/*
1095 	 * We need to invalidate the secondary MMU mappings only when
1096 	 * there could be a permission downgrade on the ptes of the
1097 	 * parent mm. And a permission downgrade will only happen if
1098 	 * is_cow_mapping() returns true.
1099 	 */
1100 	is_cow = is_cow_mapping(vma->vm_flags);
1101 	mmun_start = addr;
1102 	mmun_end   = end;
1103 	if (is_cow)
1104 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1105 						    mmun_end);
1106 
1107 	ret = 0;
1108 	dst_pgd = pgd_offset(dst_mm, addr);
1109 	src_pgd = pgd_offset(src_mm, addr);
1110 	do {
1111 		next = pgd_addr_end(addr, end);
1112 		if (pgd_none_or_clear_bad(src_pgd))
1113 			continue;
1114 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1115 					    vma, addr, next))) {
1116 			ret = -ENOMEM;
1117 			break;
1118 		}
1119 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1120 
1121 	if (is_cow)
1122 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1123 	return ret;
1124 }
1125 
1126 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1127 				struct vm_area_struct *vma, pmd_t *pmd,
1128 				unsigned long addr, unsigned long end,
1129 				struct zap_details *details)
1130 {
1131 	struct mm_struct *mm = tlb->mm;
1132 	int force_flush = 0;
1133 	int rss[NR_MM_COUNTERS];
1134 	spinlock_t *ptl;
1135 	pte_t *start_pte;
1136 	pte_t *pte;
1137 	swp_entry_t entry;
1138 
1139 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1140 again:
1141 	init_rss_vec(rss);
1142 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1143 	pte = start_pte;
1144 	arch_enter_lazy_mmu_mode();
1145 	do {
1146 		pte_t ptent = *pte;
1147 		if (pte_none(ptent))
1148 			continue;
1149 
1150 		if (pte_present(ptent)) {
1151 			struct page *page;
1152 
1153 			page = vm_normal_page(vma, addr, ptent);
1154 			if (unlikely(details) && page) {
1155 				/*
1156 				 * unmap_shared_mapping_pages() wants to
1157 				 * invalidate cache without truncating:
1158 				 * unmap shared but keep private pages.
1159 				 */
1160 				if (details->check_mapping &&
1161 				    details->check_mapping != page_rmapping(page))
1162 					continue;
1163 			}
1164 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1165 							tlb->fullmm);
1166 			tlb_remove_tlb_entry(tlb, pte, addr);
1167 			if (unlikely(!page))
1168 				continue;
1169 
1170 			if (!PageAnon(page)) {
1171 				if (pte_dirty(ptent)) {
1172 					force_flush = 1;
1173 					set_page_dirty(page);
1174 				}
1175 				if (pte_young(ptent) &&
1176 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1177 					mark_page_accessed(page);
1178 			}
1179 			rss[mm_counter(page)]--;
1180 			page_remove_rmap(page, false);
1181 			if (unlikely(page_mapcount(page) < 0))
1182 				print_bad_pte(vma, addr, ptent, page);
1183 			if (unlikely(__tlb_remove_page(tlb, page))) {
1184 				force_flush = 1;
1185 				addr += PAGE_SIZE;
1186 				break;
1187 			}
1188 			continue;
1189 		}
1190 		/* If details->check_mapping, we leave swap entries. */
1191 		if (unlikely(details))
1192 			continue;
1193 
1194 		entry = pte_to_swp_entry(ptent);
1195 		if (!non_swap_entry(entry))
1196 			rss[MM_SWAPENTS]--;
1197 		else if (is_migration_entry(entry)) {
1198 			struct page *page;
1199 
1200 			page = migration_entry_to_page(entry);
1201 			rss[mm_counter(page)]--;
1202 		}
1203 		if (unlikely(!free_swap_and_cache(entry)))
1204 			print_bad_pte(vma, addr, ptent, NULL);
1205 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1206 	} while (pte++, addr += PAGE_SIZE, addr != end);
1207 
1208 	add_mm_rss_vec(mm, rss);
1209 	arch_leave_lazy_mmu_mode();
1210 
1211 	/* Do the actual TLB flush before dropping ptl */
1212 	if (force_flush)
1213 		tlb_flush_mmu_tlbonly(tlb);
1214 	pte_unmap_unlock(start_pte, ptl);
1215 
1216 	/*
1217 	 * If we forced a TLB flush (either due to running out of
1218 	 * batch buffers or because we needed to flush dirty TLB
1219 	 * entries before releasing the ptl), free the batched
1220 	 * memory too. Restart if we didn't do everything.
1221 	 */
1222 	if (force_flush) {
1223 		force_flush = 0;
1224 		tlb_flush_mmu_free(tlb);
1225 		if (addr != end)
1226 			goto again;
1227 	}
1228 
1229 	return addr;
1230 }
1231 
1232 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1233 				struct vm_area_struct *vma, pud_t *pud,
1234 				unsigned long addr, unsigned long end,
1235 				struct zap_details *details)
1236 {
1237 	pmd_t *pmd;
1238 	unsigned long next;
1239 
1240 	pmd = pmd_offset(pud, addr);
1241 	do {
1242 		next = pmd_addr_end(addr, end);
1243 		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1244 			if (next - addr != HPAGE_PMD_SIZE) {
1245 				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1246 				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1247 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1248 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1249 				goto next;
1250 			/* fall through */
1251 		}
1252 		/*
1253 		 * Here there can be other concurrent MADV_DONTNEED or
1254 		 * trans huge page faults running, and if the pmd is
1255 		 * none or trans huge it can change under us. This is
1256 		 * because MADV_DONTNEED holds the mmap_sem in read
1257 		 * mode.
1258 		 */
1259 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1260 			goto next;
1261 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1262 next:
1263 		cond_resched();
1264 	} while (pmd++, addr = next, addr != end);
1265 
1266 	return addr;
1267 }
1268 
1269 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1270 				struct vm_area_struct *vma, pgd_t *pgd,
1271 				unsigned long addr, unsigned long end,
1272 				struct zap_details *details)
1273 {
1274 	pud_t *pud;
1275 	unsigned long next;
1276 
1277 	pud = pud_offset(pgd, addr);
1278 	do {
1279 		next = pud_addr_end(addr, end);
1280 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1281 			if (next - addr != HPAGE_PUD_SIZE) {
1282 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1283 				split_huge_pud(vma, pud, addr);
1284 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1285 				goto next;
1286 			/* fall through */
1287 		}
1288 		if (pud_none_or_clear_bad(pud))
1289 			continue;
1290 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1291 next:
1292 		cond_resched();
1293 	} while (pud++, addr = next, addr != end);
1294 
1295 	return addr;
1296 }
1297 
1298 void unmap_page_range(struct mmu_gather *tlb,
1299 			     struct vm_area_struct *vma,
1300 			     unsigned long addr, unsigned long end,
1301 			     struct zap_details *details)
1302 {
1303 	pgd_t *pgd;
1304 	unsigned long next;
1305 
1306 	BUG_ON(addr >= end);
1307 	tlb_start_vma(tlb, vma);
1308 	pgd = pgd_offset(vma->vm_mm, addr);
1309 	do {
1310 		next = pgd_addr_end(addr, end);
1311 		if (pgd_none_or_clear_bad(pgd))
1312 			continue;
1313 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1314 	} while (pgd++, addr = next, addr != end);
1315 	tlb_end_vma(tlb, vma);
1316 }
1317 
1318 
1319 static void unmap_single_vma(struct mmu_gather *tlb,
1320 		struct vm_area_struct *vma, unsigned long start_addr,
1321 		unsigned long end_addr,
1322 		struct zap_details *details)
1323 {
1324 	unsigned long start = max(vma->vm_start, start_addr);
1325 	unsigned long end;
1326 
1327 	if (start >= vma->vm_end)
1328 		return;
1329 	end = min(vma->vm_end, end_addr);
1330 	if (end <= vma->vm_start)
1331 		return;
1332 
1333 	if (vma->vm_file)
1334 		uprobe_munmap(vma, start, end);
1335 
1336 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1337 		untrack_pfn(vma, 0, 0);
1338 
1339 	if (start != end) {
1340 		if (unlikely(is_vm_hugetlb_page(vma))) {
1341 			/*
1342 			 * It is undesirable to test vma->vm_file as it
1343 			 * should be non-null for valid hugetlb area.
1344 			 * However, vm_file will be NULL in the error
1345 			 * cleanup path of mmap_region. When
1346 			 * hugetlbfs ->mmap method fails,
1347 			 * mmap_region() nullifies vma->vm_file
1348 			 * before calling this function to clean up.
1349 			 * Since no pte has actually been setup, it is
1350 			 * safe to do nothing in this case.
1351 			 */
1352 			if (vma->vm_file) {
1353 				i_mmap_lock_write(vma->vm_file->f_mapping);
1354 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1355 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1356 			}
1357 		} else
1358 			unmap_page_range(tlb, vma, start, end, details);
1359 	}
1360 }
1361 
1362 /**
1363  * unmap_vmas - unmap a range of memory covered by a list of vma's
1364  * @tlb: address of the caller's struct mmu_gather
1365  * @vma: the starting vma
1366  * @start_addr: virtual address at which to start unmapping
1367  * @end_addr: virtual address at which to end unmapping
1368  *
1369  * Unmap all pages in the vma list.
1370  *
1371  * Only addresses between `start' and `end' will be unmapped.
1372  *
1373  * The VMA list must be sorted in ascending virtual address order.
1374  *
1375  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1376  * range after unmap_vmas() returns.  So the only responsibility here is to
1377  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1378  * drops the lock and schedules.
1379  */
1380 void unmap_vmas(struct mmu_gather *tlb,
1381 		struct vm_area_struct *vma, unsigned long start_addr,
1382 		unsigned long end_addr)
1383 {
1384 	struct mm_struct *mm = vma->vm_mm;
1385 
1386 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1387 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1388 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1389 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1390 }
1391 
1392 /**
1393  * zap_page_range - remove user pages in a given range
1394  * @vma: vm_area_struct holding the applicable pages
1395  * @start: starting address of pages to zap
1396  * @size: number of bytes to zap
1397  *
1398  * Caller must protect the VMA list
1399  */
1400 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1401 		unsigned long size)
1402 {
1403 	struct mm_struct *mm = vma->vm_mm;
1404 	struct mmu_gather tlb;
1405 	unsigned long end = start + size;
1406 
1407 	lru_add_drain();
1408 	tlb_gather_mmu(&tlb, mm, start, end);
1409 	update_hiwater_rss(mm);
1410 	mmu_notifier_invalidate_range_start(mm, start, end);
1411 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1412 		unmap_single_vma(&tlb, vma, start, end, NULL);
1413 	mmu_notifier_invalidate_range_end(mm, start, end);
1414 	tlb_finish_mmu(&tlb, start, end);
1415 }
1416 
1417 /**
1418  * zap_page_range_single - remove user pages in a given range
1419  * @vma: vm_area_struct holding the applicable pages
1420  * @address: starting address of pages to zap
1421  * @size: number of bytes to zap
1422  * @details: details of shared cache invalidation
1423  *
1424  * The range must fit into one VMA.
1425  */
1426 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1427 		unsigned long size, struct zap_details *details)
1428 {
1429 	struct mm_struct *mm = vma->vm_mm;
1430 	struct mmu_gather tlb;
1431 	unsigned long end = address + size;
1432 
1433 	lru_add_drain();
1434 	tlb_gather_mmu(&tlb, mm, address, end);
1435 	update_hiwater_rss(mm);
1436 	mmu_notifier_invalidate_range_start(mm, address, end);
1437 	unmap_single_vma(&tlb, vma, address, end, details);
1438 	mmu_notifier_invalidate_range_end(mm, address, end);
1439 	tlb_finish_mmu(&tlb, address, end);
1440 }
1441 
1442 /**
1443  * zap_vma_ptes - remove ptes mapping the vma
1444  * @vma: vm_area_struct holding ptes to be zapped
1445  * @address: starting address of pages to zap
1446  * @size: number of bytes to zap
1447  *
1448  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1449  *
1450  * The entire address range must be fully contained within the vma.
1451  *
1452  * Returns 0 if successful.
1453  */
1454 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1455 		unsigned long size)
1456 {
1457 	if (address < vma->vm_start || address + size > vma->vm_end ||
1458 	    		!(vma->vm_flags & VM_PFNMAP))
1459 		return -1;
1460 	zap_page_range_single(vma, address, size, NULL);
1461 	return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1464 
1465 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1466 			spinlock_t **ptl)
1467 {
1468 	pgd_t *pgd = pgd_offset(mm, addr);
1469 	pud_t *pud = pud_alloc(mm, pgd, addr);
1470 	if (pud) {
1471 		pmd_t *pmd = pmd_alloc(mm, pud, addr);
1472 		if (pmd) {
1473 			VM_BUG_ON(pmd_trans_huge(*pmd));
1474 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1475 		}
1476 	}
1477 	return NULL;
1478 }
1479 
1480 /*
1481  * This is the old fallback for page remapping.
1482  *
1483  * For historical reasons, it only allows reserved pages. Only
1484  * old drivers should use this, and they needed to mark their
1485  * pages reserved for the old functions anyway.
1486  */
1487 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1488 			struct page *page, pgprot_t prot)
1489 {
1490 	struct mm_struct *mm = vma->vm_mm;
1491 	int retval;
1492 	pte_t *pte;
1493 	spinlock_t *ptl;
1494 
1495 	retval = -EINVAL;
1496 	if (PageAnon(page))
1497 		goto out;
1498 	retval = -ENOMEM;
1499 	flush_dcache_page(page);
1500 	pte = get_locked_pte(mm, addr, &ptl);
1501 	if (!pte)
1502 		goto out;
1503 	retval = -EBUSY;
1504 	if (!pte_none(*pte))
1505 		goto out_unlock;
1506 
1507 	/* Ok, finally just insert the thing.. */
1508 	get_page(page);
1509 	inc_mm_counter_fast(mm, mm_counter_file(page));
1510 	page_add_file_rmap(page, false);
1511 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1512 
1513 	retval = 0;
1514 	pte_unmap_unlock(pte, ptl);
1515 	return retval;
1516 out_unlock:
1517 	pte_unmap_unlock(pte, ptl);
1518 out:
1519 	return retval;
1520 }
1521 
1522 /**
1523  * vm_insert_page - insert single page into user vma
1524  * @vma: user vma to map to
1525  * @addr: target user address of this page
1526  * @page: source kernel page
1527  *
1528  * This allows drivers to insert individual pages they've allocated
1529  * into a user vma.
1530  *
1531  * The page has to be a nice clean _individual_ kernel allocation.
1532  * If you allocate a compound page, you need to have marked it as
1533  * such (__GFP_COMP), or manually just split the page up yourself
1534  * (see split_page()).
1535  *
1536  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1537  * took an arbitrary page protection parameter. This doesn't allow
1538  * that. Your vma protection will have to be set up correctly, which
1539  * means that if you want a shared writable mapping, you'd better
1540  * ask for a shared writable mapping!
1541  *
1542  * The page does not need to be reserved.
1543  *
1544  * Usually this function is called from f_op->mmap() handler
1545  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1546  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1547  * function from other places, for example from page-fault handler.
1548  */
1549 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1550 			struct page *page)
1551 {
1552 	if (addr < vma->vm_start || addr >= vma->vm_end)
1553 		return -EFAULT;
1554 	if (!page_count(page))
1555 		return -EINVAL;
1556 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1557 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1558 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1559 		vma->vm_flags |= VM_MIXEDMAP;
1560 	}
1561 	return insert_page(vma, addr, page, vma->vm_page_prot);
1562 }
1563 EXPORT_SYMBOL(vm_insert_page);
1564 
1565 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1566 			pfn_t pfn, pgprot_t prot)
1567 {
1568 	struct mm_struct *mm = vma->vm_mm;
1569 	int retval;
1570 	pte_t *pte, entry;
1571 	spinlock_t *ptl;
1572 
1573 	retval = -ENOMEM;
1574 	pte = get_locked_pte(mm, addr, &ptl);
1575 	if (!pte)
1576 		goto out;
1577 	retval = -EBUSY;
1578 	if (!pte_none(*pte))
1579 		goto out_unlock;
1580 
1581 	/* Ok, finally just insert the thing.. */
1582 	if (pfn_t_devmap(pfn))
1583 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1584 	else
1585 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1586 	set_pte_at(mm, addr, pte, entry);
1587 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1588 
1589 	retval = 0;
1590 out_unlock:
1591 	pte_unmap_unlock(pte, ptl);
1592 out:
1593 	return retval;
1594 }
1595 
1596 /**
1597  * vm_insert_pfn - insert single pfn into user vma
1598  * @vma: user vma to map to
1599  * @addr: target user address of this page
1600  * @pfn: source kernel pfn
1601  *
1602  * Similar to vm_insert_page, this allows drivers to insert individual pages
1603  * they've allocated into a user vma. Same comments apply.
1604  *
1605  * This function should only be called from a vm_ops->fault handler, and
1606  * in that case the handler should return NULL.
1607  *
1608  * vma cannot be a COW mapping.
1609  *
1610  * As this is called only for pages that do not currently exist, we
1611  * do not need to flush old virtual caches or the TLB.
1612  */
1613 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1614 			unsigned long pfn)
1615 {
1616 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1617 }
1618 EXPORT_SYMBOL(vm_insert_pfn);
1619 
1620 /**
1621  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1622  * @vma: user vma to map to
1623  * @addr: target user address of this page
1624  * @pfn: source kernel pfn
1625  * @pgprot: pgprot flags for the inserted page
1626  *
1627  * This is exactly like vm_insert_pfn, except that it allows drivers to
1628  * to override pgprot on a per-page basis.
1629  *
1630  * This only makes sense for IO mappings, and it makes no sense for
1631  * cow mappings.  In general, using multiple vmas is preferable;
1632  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1633  * impractical.
1634  */
1635 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1636 			unsigned long pfn, pgprot_t pgprot)
1637 {
1638 	int ret;
1639 	/*
1640 	 * Technically, architectures with pte_special can avoid all these
1641 	 * restrictions (same for remap_pfn_range).  However we would like
1642 	 * consistency in testing and feature parity among all, so we should
1643 	 * try to keep these invariants in place for everybody.
1644 	 */
1645 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1646 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1647 						(VM_PFNMAP|VM_MIXEDMAP));
1648 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1649 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1650 
1651 	if (addr < vma->vm_start || addr >= vma->vm_end)
1652 		return -EFAULT;
1653 
1654 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1655 
1656 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1657 
1658 	return ret;
1659 }
1660 EXPORT_SYMBOL(vm_insert_pfn_prot);
1661 
1662 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1663 			pfn_t pfn)
1664 {
1665 	pgprot_t pgprot = vma->vm_page_prot;
1666 
1667 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1668 
1669 	if (addr < vma->vm_start || addr >= vma->vm_end)
1670 		return -EFAULT;
1671 
1672 	track_pfn_insert(vma, &pgprot, pfn);
1673 
1674 	/*
1675 	 * If we don't have pte special, then we have to use the pfn_valid()
1676 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1677 	 * refcount the page if pfn_valid is true (hence insert_page rather
1678 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1679 	 * without pte special, it would there be refcounted as a normal page.
1680 	 */
1681 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1682 		struct page *page;
1683 
1684 		/*
1685 		 * At this point we are committed to insert_page()
1686 		 * regardless of whether the caller specified flags that
1687 		 * result in pfn_t_has_page() == false.
1688 		 */
1689 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1690 		return insert_page(vma, addr, page, pgprot);
1691 	}
1692 	return insert_pfn(vma, addr, pfn, pgprot);
1693 }
1694 EXPORT_SYMBOL(vm_insert_mixed);
1695 
1696 /*
1697  * maps a range of physical memory into the requested pages. the old
1698  * mappings are removed. any references to nonexistent pages results
1699  * in null mappings (currently treated as "copy-on-access")
1700  */
1701 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1702 			unsigned long addr, unsigned long end,
1703 			unsigned long pfn, pgprot_t prot)
1704 {
1705 	pte_t *pte;
1706 	spinlock_t *ptl;
1707 
1708 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1709 	if (!pte)
1710 		return -ENOMEM;
1711 	arch_enter_lazy_mmu_mode();
1712 	do {
1713 		BUG_ON(!pte_none(*pte));
1714 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1715 		pfn++;
1716 	} while (pte++, addr += PAGE_SIZE, addr != end);
1717 	arch_leave_lazy_mmu_mode();
1718 	pte_unmap_unlock(pte - 1, ptl);
1719 	return 0;
1720 }
1721 
1722 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1723 			unsigned long addr, unsigned long end,
1724 			unsigned long pfn, pgprot_t prot)
1725 {
1726 	pmd_t *pmd;
1727 	unsigned long next;
1728 
1729 	pfn -= addr >> PAGE_SHIFT;
1730 	pmd = pmd_alloc(mm, pud, addr);
1731 	if (!pmd)
1732 		return -ENOMEM;
1733 	VM_BUG_ON(pmd_trans_huge(*pmd));
1734 	do {
1735 		next = pmd_addr_end(addr, end);
1736 		if (remap_pte_range(mm, pmd, addr, next,
1737 				pfn + (addr >> PAGE_SHIFT), prot))
1738 			return -ENOMEM;
1739 	} while (pmd++, addr = next, addr != end);
1740 	return 0;
1741 }
1742 
1743 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1744 			unsigned long addr, unsigned long end,
1745 			unsigned long pfn, pgprot_t prot)
1746 {
1747 	pud_t *pud;
1748 	unsigned long next;
1749 
1750 	pfn -= addr >> PAGE_SHIFT;
1751 	pud = pud_alloc(mm, pgd, addr);
1752 	if (!pud)
1753 		return -ENOMEM;
1754 	do {
1755 		next = pud_addr_end(addr, end);
1756 		if (remap_pmd_range(mm, pud, addr, next,
1757 				pfn + (addr >> PAGE_SHIFT), prot))
1758 			return -ENOMEM;
1759 	} while (pud++, addr = next, addr != end);
1760 	return 0;
1761 }
1762 
1763 /**
1764  * remap_pfn_range - remap kernel memory to userspace
1765  * @vma: user vma to map to
1766  * @addr: target user address to start at
1767  * @pfn: physical address of kernel memory
1768  * @size: size of map area
1769  * @prot: page protection flags for this mapping
1770  *
1771  *  Note: this is only safe if the mm semaphore is held when called.
1772  */
1773 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1774 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1775 {
1776 	pgd_t *pgd;
1777 	unsigned long next;
1778 	unsigned long end = addr + PAGE_ALIGN(size);
1779 	struct mm_struct *mm = vma->vm_mm;
1780 	unsigned long remap_pfn = pfn;
1781 	int err;
1782 
1783 	/*
1784 	 * Physically remapped pages are special. Tell the
1785 	 * rest of the world about it:
1786 	 *   VM_IO tells people not to look at these pages
1787 	 *	(accesses can have side effects).
1788 	 *   VM_PFNMAP tells the core MM that the base pages are just
1789 	 *	raw PFN mappings, and do not have a "struct page" associated
1790 	 *	with them.
1791 	 *   VM_DONTEXPAND
1792 	 *      Disable vma merging and expanding with mremap().
1793 	 *   VM_DONTDUMP
1794 	 *      Omit vma from core dump, even when VM_IO turned off.
1795 	 *
1796 	 * There's a horrible special case to handle copy-on-write
1797 	 * behaviour that some programs depend on. We mark the "original"
1798 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1799 	 * See vm_normal_page() for details.
1800 	 */
1801 	if (is_cow_mapping(vma->vm_flags)) {
1802 		if (addr != vma->vm_start || end != vma->vm_end)
1803 			return -EINVAL;
1804 		vma->vm_pgoff = pfn;
1805 	}
1806 
1807 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1808 	if (err)
1809 		return -EINVAL;
1810 
1811 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1812 
1813 	BUG_ON(addr >= end);
1814 	pfn -= addr >> PAGE_SHIFT;
1815 	pgd = pgd_offset(mm, addr);
1816 	flush_cache_range(vma, addr, end);
1817 	do {
1818 		next = pgd_addr_end(addr, end);
1819 		err = remap_pud_range(mm, pgd, addr, next,
1820 				pfn + (addr >> PAGE_SHIFT), prot);
1821 		if (err)
1822 			break;
1823 	} while (pgd++, addr = next, addr != end);
1824 
1825 	if (err)
1826 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1827 
1828 	return err;
1829 }
1830 EXPORT_SYMBOL(remap_pfn_range);
1831 
1832 /**
1833  * vm_iomap_memory - remap memory to userspace
1834  * @vma: user vma to map to
1835  * @start: start of area
1836  * @len: size of area
1837  *
1838  * This is a simplified io_remap_pfn_range() for common driver use. The
1839  * driver just needs to give us the physical memory range to be mapped,
1840  * we'll figure out the rest from the vma information.
1841  *
1842  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1843  * whatever write-combining details or similar.
1844  */
1845 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1846 {
1847 	unsigned long vm_len, pfn, pages;
1848 
1849 	/* Check that the physical memory area passed in looks valid */
1850 	if (start + len < start)
1851 		return -EINVAL;
1852 	/*
1853 	 * You *really* shouldn't map things that aren't page-aligned,
1854 	 * but we've historically allowed it because IO memory might
1855 	 * just have smaller alignment.
1856 	 */
1857 	len += start & ~PAGE_MASK;
1858 	pfn = start >> PAGE_SHIFT;
1859 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1860 	if (pfn + pages < pfn)
1861 		return -EINVAL;
1862 
1863 	/* We start the mapping 'vm_pgoff' pages into the area */
1864 	if (vma->vm_pgoff > pages)
1865 		return -EINVAL;
1866 	pfn += vma->vm_pgoff;
1867 	pages -= vma->vm_pgoff;
1868 
1869 	/* Can we fit all of the mapping? */
1870 	vm_len = vma->vm_end - vma->vm_start;
1871 	if (vm_len >> PAGE_SHIFT > pages)
1872 		return -EINVAL;
1873 
1874 	/* Ok, let it rip */
1875 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1876 }
1877 EXPORT_SYMBOL(vm_iomap_memory);
1878 
1879 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1880 				     unsigned long addr, unsigned long end,
1881 				     pte_fn_t fn, void *data)
1882 {
1883 	pte_t *pte;
1884 	int err;
1885 	pgtable_t token;
1886 	spinlock_t *uninitialized_var(ptl);
1887 
1888 	pte = (mm == &init_mm) ?
1889 		pte_alloc_kernel(pmd, addr) :
1890 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1891 	if (!pte)
1892 		return -ENOMEM;
1893 
1894 	BUG_ON(pmd_huge(*pmd));
1895 
1896 	arch_enter_lazy_mmu_mode();
1897 
1898 	token = pmd_pgtable(*pmd);
1899 
1900 	do {
1901 		err = fn(pte++, token, addr, data);
1902 		if (err)
1903 			break;
1904 	} while (addr += PAGE_SIZE, addr != end);
1905 
1906 	arch_leave_lazy_mmu_mode();
1907 
1908 	if (mm != &init_mm)
1909 		pte_unmap_unlock(pte-1, ptl);
1910 	return err;
1911 }
1912 
1913 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1914 				     unsigned long addr, unsigned long end,
1915 				     pte_fn_t fn, void *data)
1916 {
1917 	pmd_t *pmd;
1918 	unsigned long next;
1919 	int err;
1920 
1921 	BUG_ON(pud_huge(*pud));
1922 
1923 	pmd = pmd_alloc(mm, pud, addr);
1924 	if (!pmd)
1925 		return -ENOMEM;
1926 	do {
1927 		next = pmd_addr_end(addr, end);
1928 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1929 		if (err)
1930 			break;
1931 	} while (pmd++, addr = next, addr != end);
1932 	return err;
1933 }
1934 
1935 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1936 				     unsigned long addr, unsigned long end,
1937 				     pte_fn_t fn, void *data)
1938 {
1939 	pud_t *pud;
1940 	unsigned long next;
1941 	int err;
1942 
1943 	pud = pud_alloc(mm, pgd, addr);
1944 	if (!pud)
1945 		return -ENOMEM;
1946 	do {
1947 		next = pud_addr_end(addr, end);
1948 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1949 		if (err)
1950 			break;
1951 	} while (pud++, addr = next, addr != end);
1952 	return err;
1953 }
1954 
1955 /*
1956  * Scan a region of virtual memory, filling in page tables as necessary
1957  * and calling a provided function on each leaf page table.
1958  */
1959 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1960 			unsigned long size, pte_fn_t fn, void *data)
1961 {
1962 	pgd_t *pgd;
1963 	unsigned long next;
1964 	unsigned long end = addr + size;
1965 	int err;
1966 
1967 	if (WARN_ON(addr >= end))
1968 		return -EINVAL;
1969 
1970 	pgd = pgd_offset(mm, addr);
1971 	do {
1972 		next = pgd_addr_end(addr, end);
1973 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1974 		if (err)
1975 			break;
1976 	} while (pgd++, addr = next, addr != end);
1977 
1978 	return err;
1979 }
1980 EXPORT_SYMBOL_GPL(apply_to_page_range);
1981 
1982 /*
1983  * handle_pte_fault chooses page fault handler according to an entry which was
1984  * read non-atomically.  Before making any commitment, on those architectures
1985  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1986  * parts, do_swap_page must check under lock before unmapping the pte and
1987  * proceeding (but do_wp_page is only called after already making such a check;
1988  * and do_anonymous_page can safely check later on).
1989  */
1990 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1991 				pte_t *page_table, pte_t orig_pte)
1992 {
1993 	int same = 1;
1994 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1995 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1996 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1997 		spin_lock(ptl);
1998 		same = pte_same(*page_table, orig_pte);
1999 		spin_unlock(ptl);
2000 	}
2001 #endif
2002 	pte_unmap(page_table);
2003 	return same;
2004 }
2005 
2006 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2007 {
2008 	debug_dma_assert_idle(src);
2009 
2010 	/*
2011 	 * If the source page was a PFN mapping, we don't have
2012 	 * a "struct page" for it. We do a best-effort copy by
2013 	 * just copying from the original user address. If that
2014 	 * fails, we just zero-fill it. Live with it.
2015 	 */
2016 	if (unlikely(!src)) {
2017 		void *kaddr = kmap_atomic(dst);
2018 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2019 
2020 		/*
2021 		 * This really shouldn't fail, because the page is there
2022 		 * in the page tables. But it might just be unreadable,
2023 		 * in which case we just give up and fill the result with
2024 		 * zeroes.
2025 		 */
2026 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2027 			clear_page(kaddr);
2028 		kunmap_atomic(kaddr);
2029 		flush_dcache_page(dst);
2030 	} else
2031 		copy_user_highpage(dst, src, va, vma);
2032 }
2033 
2034 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2035 {
2036 	struct file *vm_file = vma->vm_file;
2037 
2038 	if (vm_file)
2039 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2040 
2041 	/*
2042 	 * Special mappings (e.g. VDSO) do not have any file so fake
2043 	 * a default GFP_KERNEL for them.
2044 	 */
2045 	return GFP_KERNEL;
2046 }
2047 
2048 /*
2049  * Notify the address space that the page is about to become writable so that
2050  * it can prohibit this or wait for the page to get into an appropriate state.
2051  *
2052  * We do this without the lock held, so that it can sleep if it needs to.
2053  */
2054 static int do_page_mkwrite(struct vm_fault *vmf)
2055 {
2056 	int ret;
2057 	struct page *page = vmf->page;
2058 	unsigned int old_flags = vmf->flags;
2059 
2060 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2061 
2062 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2063 	/* Restore original flags so that caller is not surprised */
2064 	vmf->flags = old_flags;
2065 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2066 		return ret;
2067 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2068 		lock_page(page);
2069 		if (!page->mapping) {
2070 			unlock_page(page);
2071 			return 0; /* retry */
2072 		}
2073 		ret |= VM_FAULT_LOCKED;
2074 	} else
2075 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2076 	return ret;
2077 }
2078 
2079 /*
2080  * Handle dirtying of a page in shared file mapping on a write fault.
2081  *
2082  * The function expects the page to be locked and unlocks it.
2083  */
2084 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2085 				    struct page *page)
2086 {
2087 	struct address_space *mapping;
2088 	bool dirtied;
2089 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2090 
2091 	dirtied = set_page_dirty(page);
2092 	VM_BUG_ON_PAGE(PageAnon(page), page);
2093 	/*
2094 	 * Take a local copy of the address_space - page.mapping may be zeroed
2095 	 * by truncate after unlock_page().   The address_space itself remains
2096 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2097 	 * release semantics to prevent the compiler from undoing this copying.
2098 	 */
2099 	mapping = page_rmapping(page);
2100 	unlock_page(page);
2101 
2102 	if ((dirtied || page_mkwrite) && mapping) {
2103 		/*
2104 		 * Some device drivers do not set page.mapping
2105 		 * but still dirty their pages
2106 		 */
2107 		balance_dirty_pages_ratelimited(mapping);
2108 	}
2109 
2110 	if (!page_mkwrite)
2111 		file_update_time(vma->vm_file);
2112 }
2113 
2114 /*
2115  * Handle write page faults for pages that can be reused in the current vma
2116  *
2117  * This can happen either due to the mapping being with the VM_SHARED flag,
2118  * or due to us being the last reference standing to the page. In either
2119  * case, all we need to do here is to mark the page as writable and update
2120  * any related book-keeping.
2121  */
2122 static inline void wp_page_reuse(struct vm_fault *vmf)
2123 	__releases(vmf->ptl)
2124 {
2125 	struct vm_area_struct *vma = vmf->vma;
2126 	struct page *page = vmf->page;
2127 	pte_t entry;
2128 	/*
2129 	 * Clear the pages cpupid information as the existing
2130 	 * information potentially belongs to a now completely
2131 	 * unrelated process.
2132 	 */
2133 	if (page)
2134 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2135 
2136 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2137 	entry = pte_mkyoung(vmf->orig_pte);
2138 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2139 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2140 		update_mmu_cache(vma, vmf->address, vmf->pte);
2141 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2142 }
2143 
2144 /*
2145  * Handle the case of a page which we actually need to copy to a new page.
2146  *
2147  * Called with mmap_sem locked and the old page referenced, but
2148  * without the ptl held.
2149  *
2150  * High level logic flow:
2151  *
2152  * - Allocate a page, copy the content of the old page to the new one.
2153  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2154  * - Take the PTL. If the pte changed, bail out and release the allocated page
2155  * - If the pte is still the way we remember it, update the page table and all
2156  *   relevant references. This includes dropping the reference the page-table
2157  *   held to the old page, as well as updating the rmap.
2158  * - In any case, unlock the PTL and drop the reference we took to the old page.
2159  */
2160 static int wp_page_copy(struct vm_fault *vmf)
2161 {
2162 	struct vm_area_struct *vma = vmf->vma;
2163 	struct mm_struct *mm = vma->vm_mm;
2164 	struct page *old_page = vmf->page;
2165 	struct page *new_page = NULL;
2166 	pte_t entry;
2167 	int page_copied = 0;
2168 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2169 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2170 	struct mem_cgroup *memcg;
2171 
2172 	if (unlikely(anon_vma_prepare(vma)))
2173 		goto oom;
2174 
2175 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2176 		new_page = alloc_zeroed_user_highpage_movable(vma,
2177 							      vmf->address);
2178 		if (!new_page)
2179 			goto oom;
2180 	} else {
2181 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2182 				vmf->address);
2183 		if (!new_page)
2184 			goto oom;
2185 		cow_user_page(new_page, old_page, vmf->address, vma);
2186 	}
2187 
2188 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2189 		goto oom_free_new;
2190 
2191 	__SetPageUptodate(new_page);
2192 
2193 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2194 
2195 	/*
2196 	 * Re-check the pte - we dropped the lock
2197 	 */
2198 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2199 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2200 		if (old_page) {
2201 			if (!PageAnon(old_page)) {
2202 				dec_mm_counter_fast(mm,
2203 						mm_counter_file(old_page));
2204 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2205 			}
2206 		} else {
2207 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2208 		}
2209 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2210 		entry = mk_pte(new_page, vma->vm_page_prot);
2211 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2212 		/*
2213 		 * Clear the pte entry and flush it first, before updating the
2214 		 * pte with the new entry. This will avoid a race condition
2215 		 * seen in the presence of one thread doing SMC and another
2216 		 * thread doing COW.
2217 		 */
2218 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2219 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2220 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2221 		lru_cache_add_active_or_unevictable(new_page, vma);
2222 		/*
2223 		 * We call the notify macro here because, when using secondary
2224 		 * mmu page tables (such as kvm shadow page tables), we want the
2225 		 * new page to be mapped directly into the secondary page table.
2226 		 */
2227 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2228 		update_mmu_cache(vma, vmf->address, vmf->pte);
2229 		if (old_page) {
2230 			/*
2231 			 * Only after switching the pte to the new page may
2232 			 * we remove the mapcount here. Otherwise another
2233 			 * process may come and find the rmap count decremented
2234 			 * before the pte is switched to the new page, and
2235 			 * "reuse" the old page writing into it while our pte
2236 			 * here still points into it and can be read by other
2237 			 * threads.
2238 			 *
2239 			 * The critical issue is to order this
2240 			 * page_remove_rmap with the ptp_clear_flush above.
2241 			 * Those stores are ordered by (if nothing else,)
2242 			 * the barrier present in the atomic_add_negative
2243 			 * in page_remove_rmap.
2244 			 *
2245 			 * Then the TLB flush in ptep_clear_flush ensures that
2246 			 * no process can access the old page before the
2247 			 * decremented mapcount is visible. And the old page
2248 			 * cannot be reused until after the decremented
2249 			 * mapcount is visible. So transitively, TLBs to
2250 			 * old page will be flushed before it can be reused.
2251 			 */
2252 			page_remove_rmap(old_page, false);
2253 		}
2254 
2255 		/* Free the old page.. */
2256 		new_page = old_page;
2257 		page_copied = 1;
2258 	} else {
2259 		mem_cgroup_cancel_charge(new_page, memcg, false);
2260 	}
2261 
2262 	if (new_page)
2263 		put_page(new_page);
2264 
2265 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2266 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2267 	if (old_page) {
2268 		/*
2269 		 * Don't let another task, with possibly unlocked vma,
2270 		 * keep the mlocked page.
2271 		 */
2272 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2273 			lock_page(old_page);	/* LRU manipulation */
2274 			if (PageMlocked(old_page))
2275 				munlock_vma_page(old_page);
2276 			unlock_page(old_page);
2277 		}
2278 		put_page(old_page);
2279 	}
2280 	return page_copied ? VM_FAULT_WRITE : 0;
2281 oom_free_new:
2282 	put_page(new_page);
2283 oom:
2284 	if (old_page)
2285 		put_page(old_page);
2286 	return VM_FAULT_OOM;
2287 }
2288 
2289 /**
2290  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2291  *			  writeable once the page is prepared
2292  *
2293  * @vmf: structure describing the fault
2294  *
2295  * This function handles all that is needed to finish a write page fault in a
2296  * shared mapping due to PTE being read-only once the mapped page is prepared.
2297  * It handles locking of PTE and modifying it. The function returns
2298  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2299  * lock.
2300  *
2301  * The function expects the page to be locked or other protection against
2302  * concurrent faults / writeback (such as DAX radix tree locks).
2303  */
2304 int finish_mkwrite_fault(struct vm_fault *vmf)
2305 {
2306 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2307 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2308 				       &vmf->ptl);
2309 	/*
2310 	 * We might have raced with another page fault while we released the
2311 	 * pte_offset_map_lock.
2312 	 */
2313 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2314 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2315 		return VM_FAULT_NOPAGE;
2316 	}
2317 	wp_page_reuse(vmf);
2318 	return 0;
2319 }
2320 
2321 /*
2322  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2323  * mapping
2324  */
2325 static int wp_pfn_shared(struct vm_fault *vmf)
2326 {
2327 	struct vm_area_struct *vma = vmf->vma;
2328 
2329 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2330 		int ret;
2331 
2332 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2333 		vmf->flags |= FAULT_FLAG_MKWRITE;
2334 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2335 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2336 			return ret;
2337 		return finish_mkwrite_fault(vmf);
2338 	}
2339 	wp_page_reuse(vmf);
2340 	return VM_FAULT_WRITE;
2341 }
2342 
2343 static int wp_page_shared(struct vm_fault *vmf)
2344 	__releases(vmf->ptl)
2345 {
2346 	struct vm_area_struct *vma = vmf->vma;
2347 
2348 	get_page(vmf->page);
2349 
2350 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2351 		int tmp;
2352 
2353 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2354 		tmp = do_page_mkwrite(vmf);
2355 		if (unlikely(!tmp || (tmp &
2356 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2357 			put_page(vmf->page);
2358 			return tmp;
2359 		}
2360 		tmp = finish_mkwrite_fault(vmf);
2361 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2362 			unlock_page(vmf->page);
2363 			put_page(vmf->page);
2364 			return tmp;
2365 		}
2366 	} else {
2367 		wp_page_reuse(vmf);
2368 		lock_page(vmf->page);
2369 	}
2370 	fault_dirty_shared_page(vma, vmf->page);
2371 	put_page(vmf->page);
2372 
2373 	return VM_FAULT_WRITE;
2374 }
2375 
2376 /*
2377  * This routine handles present pages, when users try to write
2378  * to a shared page. It is done by copying the page to a new address
2379  * and decrementing the shared-page counter for the old page.
2380  *
2381  * Note that this routine assumes that the protection checks have been
2382  * done by the caller (the low-level page fault routine in most cases).
2383  * Thus we can safely just mark it writable once we've done any necessary
2384  * COW.
2385  *
2386  * We also mark the page dirty at this point even though the page will
2387  * change only once the write actually happens. This avoids a few races,
2388  * and potentially makes it more efficient.
2389  *
2390  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2391  * but allow concurrent faults), with pte both mapped and locked.
2392  * We return with mmap_sem still held, but pte unmapped and unlocked.
2393  */
2394 static int do_wp_page(struct vm_fault *vmf)
2395 	__releases(vmf->ptl)
2396 {
2397 	struct vm_area_struct *vma = vmf->vma;
2398 
2399 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2400 	if (!vmf->page) {
2401 		/*
2402 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2403 		 * VM_PFNMAP VMA.
2404 		 *
2405 		 * We should not cow pages in a shared writeable mapping.
2406 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2407 		 */
2408 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2409 				     (VM_WRITE|VM_SHARED))
2410 			return wp_pfn_shared(vmf);
2411 
2412 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2413 		return wp_page_copy(vmf);
2414 	}
2415 
2416 	/*
2417 	 * Take out anonymous pages first, anonymous shared vmas are
2418 	 * not dirty accountable.
2419 	 */
2420 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2421 		int total_mapcount;
2422 		if (!trylock_page(vmf->page)) {
2423 			get_page(vmf->page);
2424 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2425 			lock_page(vmf->page);
2426 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2427 					vmf->address, &vmf->ptl);
2428 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2429 				unlock_page(vmf->page);
2430 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2431 				put_page(vmf->page);
2432 				return 0;
2433 			}
2434 			put_page(vmf->page);
2435 		}
2436 		if (reuse_swap_page(vmf->page, &total_mapcount)) {
2437 			if (total_mapcount == 1) {
2438 				/*
2439 				 * The page is all ours. Move it to
2440 				 * our anon_vma so the rmap code will
2441 				 * not search our parent or siblings.
2442 				 * Protected against the rmap code by
2443 				 * the page lock.
2444 				 */
2445 				page_move_anon_rmap(vmf->page, vma);
2446 			}
2447 			unlock_page(vmf->page);
2448 			wp_page_reuse(vmf);
2449 			return VM_FAULT_WRITE;
2450 		}
2451 		unlock_page(vmf->page);
2452 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2453 					(VM_WRITE|VM_SHARED))) {
2454 		return wp_page_shared(vmf);
2455 	}
2456 
2457 	/*
2458 	 * Ok, we need to copy. Oh, well..
2459 	 */
2460 	get_page(vmf->page);
2461 
2462 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2463 	return wp_page_copy(vmf);
2464 }
2465 
2466 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2467 		unsigned long start_addr, unsigned long end_addr,
2468 		struct zap_details *details)
2469 {
2470 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2471 }
2472 
2473 static inline void unmap_mapping_range_tree(struct rb_root *root,
2474 					    struct zap_details *details)
2475 {
2476 	struct vm_area_struct *vma;
2477 	pgoff_t vba, vea, zba, zea;
2478 
2479 	vma_interval_tree_foreach(vma, root,
2480 			details->first_index, details->last_index) {
2481 
2482 		vba = vma->vm_pgoff;
2483 		vea = vba + vma_pages(vma) - 1;
2484 		zba = details->first_index;
2485 		if (zba < vba)
2486 			zba = vba;
2487 		zea = details->last_index;
2488 		if (zea > vea)
2489 			zea = vea;
2490 
2491 		unmap_mapping_range_vma(vma,
2492 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2493 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2494 				details);
2495 	}
2496 }
2497 
2498 /**
2499  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2500  * address_space corresponding to the specified page range in the underlying
2501  * file.
2502  *
2503  * @mapping: the address space containing mmaps to be unmapped.
2504  * @holebegin: byte in first page to unmap, relative to the start of
2505  * the underlying file.  This will be rounded down to a PAGE_SIZE
2506  * boundary.  Note that this is different from truncate_pagecache(), which
2507  * must keep the partial page.  In contrast, we must get rid of
2508  * partial pages.
2509  * @holelen: size of prospective hole in bytes.  This will be rounded
2510  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2511  * end of the file.
2512  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2513  * but 0 when invalidating pagecache, don't throw away private data.
2514  */
2515 void unmap_mapping_range(struct address_space *mapping,
2516 		loff_t const holebegin, loff_t const holelen, int even_cows)
2517 {
2518 	struct zap_details details = { };
2519 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2520 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2521 
2522 	/* Check for overflow. */
2523 	if (sizeof(holelen) > sizeof(hlen)) {
2524 		long long holeend =
2525 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2526 		if (holeend & ~(long long)ULONG_MAX)
2527 			hlen = ULONG_MAX - hba + 1;
2528 	}
2529 
2530 	details.check_mapping = even_cows ? NULL : mapping;
2531 	details.first_index = hba;
2532 	details.last_index = hba + hlen - 1;
2533 	if (details.last_index < details.first_index)
2534 		details.last_index = ULONG_MAX;
2535 
2536 	i_mmap_lock_write(mapping);
2537 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2538 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2539 	i_mmap_unlock_write(mapping);
2540 }
2541 EXPORT_SYMBOL(unmap_mapping_range);
2542 
2543 /*
2544  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2545  * but allow concurrent faults), and pte mapped but not yet locked.
2546  * We return with pte unmapped and unlocked.
2547  *
2548  * We return with the mmap_sem locked or unlocked in the same cases
2549  * as does filemap_fault().
2550  */
2551 int do_swap_page(struct vm_fault *vmf)
2552 {
2553 	struct vm_area_struct *vma = vmf->vma;
2554 	struct page *page, *swapcache;
2555 	struct mem_cgroup *memcg;
2556 	swp_entry_t entry;
2557 	pte_t pte;
2558 	int locked;
2559 	int exclusive = 0;
2560 	int ret = 0;
2561 
2562 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2563 		goto out;
2564 
2565 	entry = pte_to_swp_entry(vmf->orig_pte);
2566 	if (unlikely(non_swap_entry(entry))) {
2567 		if (is_migration_entry(entry)) {
2568 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2569 					     vmf->address);
2570 		} else if (is_hwpoison_entry(entry)) {
2571 			ret = VM_FAULT_HWPOISON;
2572 		} else {
2573 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2574 			ret = VM_FAULT_SIGBUS;
2575 		}
2576 		goto out;
2577 	}
2578 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2579 	page = lookup_swap_cache(entry);
2580 	if (!page) {
2581 		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2582 					vmf->address);
2583 		if (!page) {
2584 			/*
2585 			 * Back out if somebody else faulted in this pte
2586 			 * while we released the pte lock.
2587 			 */
2588 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2589 					vmf->address, &vmf->ptl);
2590 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2591 				ret = VM_FAULT_OOM;
2592 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2593 			goto unlock;
2594 		}
2595 
2596 		/* Had to read the page from swap area: Major fault */
2597 		ret = VM_FAULT_MAJOR;
2598 		count_vm_event(PGMAJFAULT);
2599 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2600 	} else if (PageHWPoison(page)) {
2601 		/*
2602 		 * hwpoisoned dirty swapcache pages are kept for killing
2603 		 * owner processes (which may be unknown at hwpoison time)
2604 		 */
2605 		ret = VM_FAULT_HWPOISON;
2606 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2607 		swapcache = page;
2608 		goto out_release;
2609 	}
2610 
2611 	swapcache = page;
2612 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2613 
2614 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2615 	if (!locked) {
2616 		ret |= VM_FAULT_RETRY;
2617 		goto out_release;
2618 	}
2619 
2620 	/*
2621 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2622 	 * release the swapcache from under us.  The page pin, and pte_same
2623 	 * test below, are not enough to exclude that.  Even if it is still
2624 	 * swapcache, we need to check that the page's swap has not changed.
2625 	 */
2626 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2627 		goto out_page;
2628 
2629 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2630 	if (unlikely(!page)) {
2631 		ret = VM_FAULT_OOM;
2632 		page = swapcache;
2633 		goto out_page;
2634 	}
2635 
2636 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2637 				&memcg, false)) {
2638 		ret = VM_FAULT_OOM;
2639 		goto out_page;
2640 	}
2641 
2642 	/*
2643 	 * Back out if somebody else already faulted in this pte.
2644 	 */
2645 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2646 			&vmf->ptl);
2647 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2648 		goto out_nomap;
2649 
2650 	if (unlikely(!PageUptodate(page))) {
2651 		ret = VM_FAULT_SIGBUS;
2652 		goto out_nomap;
2653 	}
2654 
2655 	/*
2656 	 * The page isn't present yet, go ahead with the fault.
2657 	 *
2658 	 * Be careful about the sequence of operations here.
2659 	 * To get its accounting right, reuse_swap_page() must be called
2660 	 * while the page is counted on swap but not yet in mapcount i.e.
2661 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2662 	 * must be called after the swap_free(), or it will never succeed.
2663 	 */
2664 
2665 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2666 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2667 	pte = mk_pte(page, vma->vm_page_prot);
2668 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2669 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2670 		vmf->flags &= ~FAULT_FLAG_WRITE;
2671 		ret |= VM_FAULT_WRITE;
2672 		exclusive = RMAP_EXCLUSIVE;
2673 	}
2674 	flush_icache_page(vma, page);
2675 	if (pte_swp_soft_dirty(vmf->orig_pte))
2676 		pte = pte_mksoft_dirty(pte);
2677 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2678 	vmf->orig_pte = pte;
2679 	if (page == swapcache) {
2680 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2681 		mem_cgroup_commit_charge(page, memcg, true, false);
2682 		activate_page(page);
2683 	} else { /* ksm created a completely new copy */
2684 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2685 		mem_cgroup_commit_charge(page, memcg, false, false);
2686 		lru_cache_add_active_or_unevictable(page, vma);
2687 	}
2688 
2689 	swap_free(entry);
2690 	if (mem_cgroup_swap_full(page) ||
2691 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2692 		try_to_free_swap(page);
2693 	unlock_page(page);
2694 	if (page != swapcache) {
2695 		/*
2696 		 * Hold the lock to avoid the swap entry to be reused
2697 		 * until we take the PT lock for the pte_same() check
2698 		 * (to avoid false positives from pte_same). For
2699 		 * further safety release the lock after the swap_free
2700 		 * so that the swap count won't change under a
2701 		 * parallel locked swapcache.
2702 		 */
2703 		unlock_page(swapcache);
2704 		put_page(swapcache);
2705 	}
2706 
2707 	if (vmf->flags & FAULT_FLAG_WRITE) {
2708 		ret |= do_wp_page(vmf);
2709 		if (ret & VM_FAULT_ERROR)
2710 			ret &= VM_FAULT_ERROR;
2711 		goto out;
2712 	}
2713 
2714 	/* No need to invalidate - it was non-present before */
2715 	update_mmu_cache(vma, vmf->address, vmf->pte);
2716 unlock:
2717 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2718 out:
2719 	return ret;
2720 out_nomap:
2721 	mem_cgroup_cancel_charge(page, memcg, false);
2722 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2723 out_page:
2724 	unlock_page(page);
2725 out_release:
2726 	put_page(page);
2727 	if (page != swapcache) {
2728 		unlock_page(swapcache);
2729 		put_page(swapcache);
2730 	}
2731 	return ret;
2732 }
2733 
2734 /*
2735  * This is like a special single-page "expand_{down|up}wards()",
2736  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2737  * doesn't hit another vma.
2738  */
2739 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2740 {
2741 	address &= PAGE_MASK;
2742 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2743 		struct vm_area_struct *prev = vma->vm_prev;
2744 
2745 		/*
2746 		 * Is there a mapping abutting this one below?
2747 		 *
2748 		 * That's only ok if it's the same stack mapping
2749 		 * that has gotten split..
2750 		 */
2751 		if (prev && prev->vm_end == address)
2752 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2753 
2754 		return expand_downwards(vma, address - PAGE_SIZE);
2755 	}
2756 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2757 		struct vm_area_struct *next = vma->vm_next;
2758 
2759 		/* As VM_GROWSDOWN but s/below/above/ */
2760 		if (next && next->vm_start == address + PAGE_SIZE)
2761 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2762 
2763 		return expand_upwards(vma, address + PAGE_SIZE);
2764 	}
2765 	return 0;
2766 }
2767 
2768 /*
2769  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2770  * but allow concurrent faults), and pte mapped but not yet locked.
2771  * We return with mmap_sem still held, but pte unmapped and unlocked.
2772  */
2773 static int do_anonymous_page(struct vm_fault *vmf)
2774 {
2775 	struct vm_area_struct *vma = vmf->vma;
2776 	struct mem_cgroup *memcg;
2777 	struct page *page;
2778 	pte_t entry;
2779 
2780 	/* File mapping without ->vm_ops ? */
2781 	if (vma->vm_flags & VM_SHARED)
2782 		return VM_FAULT_SIGBUS;
2783 
2784 	/* Check if we need to add a guard page to the stack */
2785 	if (check_stack_guard_page(vma, vmf->address) < 0)
2786 		return VM_FAULT_SIGSEGV;
2787 
2788 	/*
2789 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2790 	 * pte_offset_map() on pmds where a huge pmd might be created
2791 	 * from a different thread.
2792 	 *
2793 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2794 	 * parallel threads are excluded by other means.
2795 	 *
2796 	 * Here we only have down_read(mmap_sem).
2797 	 */
2798 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2799 		return VM_FAULT_OOM;
2800 
2801 	/* See the comment in pte_alloc_one_map() */
2802 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2803 		return 0;
2804 
2805 	/* Use the zero-page for reads */
2806 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2807 			!mm_forbids_zeropage(vma->vm_mm)) {
2808 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2809 						vma->vm_page_prot));
2810 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2811 				vmf->address, &vmf->ptl);
2812 		if (!pte_none(*vmf->pte))
2813 			goto unlock;
2814 		/* Deliver the page fault to userland, check inside PT lock */
2815 		if (userfaultfd_missing(vma)) {
2816 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2817 			return handle_userfault(vmf, VM_UFFD_MISSING);
2818 		}
2819 		goto setpte;
2820 	}
2821 
2822 	/* Allocate our own private page. */
2823 	if (unlikely(anon_vma_prepare(vma)))
2824 		goto oom;
2825 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2826 	if (!page)
2827 		goto oom;
2828 
2829 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2830 		goto oom_free_page;
2831 
2832 	/*
2833 	 * The memory barrier inside __SetPageUptodate makes sure that
2834 	 * preceeding stores to the page contents become visible before
2835 	 * the set_pte_at() write.
2836 	 */
2837 	__SetPageUptodate(page);
2838 
2839 	entry = mk_pte(page, vma->vm_page_prot);
2840 	if (vma->vm_flags & VM_WRITE)
2841 		entry = pte_mkwrite(pte_mkdirty(entry));
2842 
2843 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2844 			&vmf->ptl);
2845 	if (!pte_none(*vmf->pte))
2846 		goto release;
2847 
2848 	/* Deliver the page fault to userland, check inside PT lock */
2849 	if (userfaultfd_missing(vma)) {
2850 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2851 		mem_cgroup_cancel_charge(page, memcg, false);
2852 		put_page(page);
2853 		return handle_userfault(vmf, VM_UFFD_MISSING);
2854 	}
2855 
2856 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2857 	page_add_new_anon_rmap(page, vma, vmf->address, false);
2858 	mem_cgroup_commit_charge(page, memcg, false, false);
2859 	lru_cache_add_active_or_unevictable(page, vma);
2860 setpte:
2861 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2862 
2863 	/* No need to invalidate - it was non-present before */
2864 	update_mmu_cache(vma, vmf->address, vmf->pte);
2865 unlock:
2866 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2867 	return 0;
2868 release:
2869 	mem_cgroup_cancel_charge(page, memcg, false);
2870 	put_page(page);
2871 	goto unlock;
2872 oom_free_page:
2873 	put_page(page);
2874 oom:
2875 	return VM_FAULT_OOM;
2876 }
2877 
2878 /*
2879  * The mmap_sem must have been held on entry, and may have been
2880  * released depending on flags and vma->vm_ops->fault() return value.
2881  * See filemap_fault() and __lock_page_retry().
2882  */
2883 static int __do_fault(struct vm_fault *vmf)
2884 {
2885 	struct vm_area_struct *vma = vmf->vma;
2886 	int ret;
2887 
2888 	ret = vma->vm_ops->fault(vmf);
2889 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2890 			    VM_FAULT_DONE_COW)))
2891 		return ret;
2892 
2893 	if (unlikely(PageHWPoison(vmf->page))) {
2894 		if (ret & VM_FAULT_LOCKED)
2895 			unlock_page(vmf->page);
2896 		put_page(vmf->page);
2897 		vmf->page = NULL;
2898 		return VM_FAULT_HWPOISON;
2899 	}
2900 
2901 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2902 		lock_page(vmf->page);
2903 	else
2904 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
2905 
2906 	return ret;
2907 }
2908 
2909 static int pte_alloc_one_map(struct vm_fault *vmf)
2910 {
2911 	struct vm_area_struct *vma = vmf->vma;
2912 
2913 	if (!pmd_none(*vmf->pmd))
2914 		goto map_pte;
2915 	if (vmf->prealloc_pte) {
2916 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2917 		if (unlikely(!pmd_none(*vmf->pmd))) {
2918 			spin_unlock(vmf->ptl);
2919 			goto map_pte;
2920 		}
2921 
2922 		atomic_long_inc(&vma->vm_mm->nr_ptes);
2923 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2924 		spin_unlock(vmf->ptl);
2925 		vmf->prealloc_pte = NULL;
2926 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
2927 		return VM_FAULT_OOM;
2928 	}
2929 map_pte:
2930 	/*
2931 	 * If a huge pmd materialized under us just retry later.  Use
2932 	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2933 	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
2934 	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
2935 	 * in a different thread of this mm, in turn leading to a misleading
2936 	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
2937 	 * regular pmd that we can walk with pte_offset_map() and we can do that
2938 	 * through an atomic read in C, which is what pmd_trans_unstable()
2939 	 * provides.
2940 	 */
2941 	if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
2942 		return VM_FAULT_NOPAGE;
2943 
2944 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2945 			&vmf->ptl);
2946 	return 0;
2947 }
2948 
2949 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2950 
2951 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2952 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2953 		unsigned long haddr)
2954 {
2955 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2956 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2957 		return false;
2958 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2959 		return false;
2960 	return true;
2961 }
2962 
2963 static void deposit_prealloc_pte(struct vm_fault *vmf)
2964 {
2965 	struct vm_area_struct *vma = vmf->vma;
2966 
2967 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2968 	/*
2969 	 * We are going to consume the prealloc table,
2970 	 * count that as nr_ptes.
2971 	 */
2972 	atomic_long_inc(&vma->vm_mm->nr_ptes);
2973 	vmf->prealloc_pte = NULL;
2974 }
2975 
2976 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
2977 {
2978 	struct vm_area_struct *vma = vmf->vma;
2979 	bool write = vmf->flags & FAULT_FLAG_WRITE;
2980 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2981 	pmd_t entry;
2982 	int i, ret;
2983 
2984 	if (!transhuge_vma_suitable(vma, haddr))
2985 		return VM_FAULT_FALLBACK;
2986 
2987 	ret = VM_FAULT_FALLBACK;
2988 	page = compound_head(page);
2989 
2990 	/*
2991 	 * Archs like ppc64 need additonal space to store information
2992 	 * related to pte entry. Use the preallocated table for that.
2993 	 */
2994 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
2995 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
2996 		if (!vmf->prealloc_pte)
2997 			return VM_FAULT_OOM;
2998 		smp_wmb(); /* See comment in __pte_alloc() */
2999 	}
3000 
3001 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3002 	if (unlikely(!pmd_none(*vmf->pmd)))
3003 		goto out;
3004 
3005 	for (i = 0; i < HPAGE_PMD_NR; i++)
3006 		flush_icache_page(vma, page + i);
3007 
3008 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3009 	if (write)
3010 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3011 
3012 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3013 	page_add_file_rmap(page, true);
3014 	/*
3015 	 * deposit and withdraw with pmd lock held
3016 	 */
3017 	if (arch_needs_pgtable_deposit())
3018 		deposit_prealloc_pte(vmf);
3019 
3020 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3021 
3022 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3023 
3024 	/* fault is handled */
3025 	ret = 0;
3026 	count_vm_event(THP_FILE_MAPPED);
3027 out:
3028 	spin_unlock(vmf->ptl);
3029 	return ret;
3030 }
3031 #else
3032 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3033 {
3034 	BUILD_BUG();
3035 	return 0;
3036 }
3037 #endif
3038 
3039 /**
3040  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3041  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3042  *
3043  * @vmf: fault environment
3044  * @memcg: memcg to charge page (only for private mappings)
3045  * @page: page to map
3046  *
3047  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3048  * return.
3049  *
3050  * Target users are page handler itself and implementations of
3051  * vm_ops->map_pages.
3052  */
3053 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3054 		struct page *page)
3055 {
3056 	struct vm_area_struct *vma = vmf->vma;
3057 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3058 	pte_t entry;
3059 	int ret;
3060 
3061 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3062 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3063 		/* THP on COW? */
3064 		VM_BUG_ON_PAGE(memcg, page);
3065 
3066 		ret = do_set_pmd(vmf, page);
3067 		if (ret != VM_FAULT_FALLBACK)
3068 			return ret;
3069 	}
3070 
3071 	if (!vmf->pte) {
3072 		ret = pte_alloc_one_map(vmf);
3073 		if (ret)
3074 			return ret;
3075 	}
3076 
3077 	/* Re-check under ptl */
3078 	if (unlikely(!pte_none(*vmf->pte)))
3079 		return VM_FAULT_NOPAGE;
3080 
3081 	flush_icache_page(vma, page);
3082 	entry = mk_pte(page, vma->vm_page_prot);
3083 	if (write)
3084 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3085 	/* copy-on-write page */
3086 	if (write && !(vma->vm_flags & VM_SHARED)) {
3087 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3088 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3089 		mem_cgroup_commit_charge(page, memcg, false, false);
3090 		lru_cache_add_active_or_unevictable(page, vma);
3091 	} else {
3092 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3093 		page_add_file_rmap(page, false);
3094 	}
3095 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3096 
3097 	/* no need to invalidate: a not-present page won't be cached */
3098 	update_mmu_cache(vma, vmf->address, vmf->pte);
3099 
3100 	return 0;
3101 }
3102 
3103 
3104 /**
3105  * finish_fault - finish page fault once we have prepared the page to fault
3106  *
3107  * @vmf: structure describing the fault
3108  *
3109  * This function handles all that is needed to finish a page fault once the
3110  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3111  * given page, adds reverse page mapping, handles memcg charges and LRU
3112  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3113  * error.
3114  *
3115  * The function expects the page to be locked and on success it consumes a
3116  * reference of a page being mapped (for the PTE which maps it).
3117  */
3118 int finish_fault(struct vm_fault *vmf)
3119 {
3120 	struct page *page;
3121 	int ret;
3122 
3123 	/* Did we COW the page? */
3124 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3125 	    !(vmf->vma->vm_flags & VM_SHARED))
3126 		page = vmf->cow_page;
3127 	else
3128 		page = vmf->page;
3129 	ret = alloc_set_pte(vmf, vmf->memcg, page);
3130 	if (vmf->pte)
3131 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3132 	return ret;
3133 }
3134 
3135 static unsigned long fault_around_bytes __read_mostly =
3136 	rounddown_pow_of_two(65536);
3137 
3138 #ifdef CONFIG_DEBUG_FS
3139 static int fault_around_bytes_get(void *data, u64 *val)
3140 {
3141 	*val = fault_around_bytes;
3142 	return 0;
3143 }
3144 
3145 /*
3146  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3147  * rounded down to nearest page order. It's what do_fault_around() expects to
3148  * see.
3149  */
3150 static int fault_around_bytes_set(void *data, u64 val)
3151 {
3152 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3153 		return -EINVAL;
3154 	if (val > PAGE_SIZE)
3155 		fault_around_bytes = rounddown_pow_of_two(val);
3156 	else
3157 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3158 	return 0;
3159 }
3160 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3161 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3162 
3163 static int __init fault_around_debugfs(void)
3164 {
3165 	void *ret;
3166 
3167 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3168 			&fault_around_bytes_fops);
3169 	if (!ret)
3170 		pr_warn("Failed to create fault_around_bytes in debugfs");
3171 	return 0;
3172 }
3173 late_initcall(fault_around_debugfs);
3174 #endif
3175 
3176 /*
3177  * do_fault_around() tries to map few pages around the fault address. The hope
3178  * is that the pages will be needed soon and this will lower the number of
3179  * faults to handle.
3180  *
3181  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3182  * not ready to be mapped: not up-to-date, locked, etc.
3183  *
3184  * This function is called with the page table lock taken. In the split ptlock
3185  * case the page table lock only protects only those entries which belong to
3186  * the page table corresponding to the fault address.
3187  *
3188  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3189  * only once.
3190  *
3191  * fault_around_pages() defines how many pages we'll try to map.
3192  * do_fault_around() expects it to return a power of two less than or equal to
3193  * PTRS_PER_PTE.
3194  *
3195  * The virtual address of the area that we map is naturally aligned to the
3196  * fault_around_pages() value (and therefore to page order).  This way it's
3197  * easier to guarantee that we don't cross page table boundaries.
3198  */
3199 static int do_fault_around(struct vm_fault *vmf)
3200 {
3201 	unsigned long address = vmf->address, nr_pages, mask;
3202 	pgoff_t start_pgoff = vmf->pgoff;
3203 	pgoff_t end_pgoff;
3204 	int off, ret = 0;
3205 
3206 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3207 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3208 
3209 	vmf->address = max(address & mask, vmf->vma->vm_start);
3210 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3211 	start_pgoff -= off;
3212 
3213 	/*
3214 	 *  end_pgoff is either end of page table or end of vma
3215 	 *  or fault_around_pages() from start_pgoff, depending what is nearest.
3216 	 */
3217 	end_pgoff = start_pgoff -
3218 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3219 		PTRS_PER_PTE - 1;
3220 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3221 			start_pgoff + nr_pages - 1);
3222 
3223 	if (pmd_none(*vmf->pmd)) {
3224 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3225 						  vmf->address);
3226 		if (!vmf->prealloc_pte)
3227 			goto out;
3228 		smp_wmb(); /* See comment in __pte_alloc() */
3229 	}
3230 
3231 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3232 
3233 	/* Huge page is mapped? Page fault is solved */
3234 	if (pmd_trans_huge(*vmf->pmd)) {
3235 		ret = VM_FAULT_NOPAGE;
3236 		goto out;
3237 	}
3238 
3239 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3240 	if (!vmf->pte)
3241 		goto out;
3242 
3243 	/* check if the page fault is solved */
3244 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3245 	if (!pte_none(*vmf->pte))
3246 		ret = VM_FAULT_NOPAGE;
3247 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3248 out:
3249 	vmf->address = address;
3250 	vmf->pte = NULL;
3251 	return ret;
3252 }
3253 
3254 static int do_read_fault(struct vm_fault *vmf)
3255 {
3256 	struct vm_area_struct *vma = vmf->vma;
3257 	int ret = 0;
3258 
3259 	/*
3260 	 * Let's call ->map_pages() first and use ->fault() as fallback
3261 	 * if page by the offset is not ready to be mapped (cold cache or
3262 	 * something).
3263 	 */
3264 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3265 		ret = do_fault_around(vmf);
3266 		if (ret)
3267 			return ret;
3268 	}
3269 
3270 	ret = __do_fault(vmf);
3271 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3272 		return ret;
3273 
3274 	ret |= finish_fault(vmf);
3275 	unlock_page(vmf->page);
3276 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3277 		put_page(vmf->page);
3278 	return ret;
3279 }
3280 
3281 static int do_cow_fault(struct vm_fault *vmf)
3282 {
3283 	struct vm_area_struct *vma = vmf->vma;
3284 	int ret;
3285 
3286 	if (unlikely(anon_vma_prepare(vma)))
3287 		return VM_FAULT_OOM;
3288 
3289 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3290 	if (!vmf->cow_page)
3291 		return VM_FAULT_OOM;
3292 
3293 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3294 				&vmf->memcg, false)) {
3295 		put_page(vmf->cow_page);
3296 		return VM_FAULT_OOM;
3297 	}
3298 
3299 	ret = __do_fault(vmf);
3300 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3301 		goto uncharge_out;
3302 	if (ret & VM_FAULT_DONE_COW)
3303 		return ret;
3304 
3305 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3306 	__SetPageUptodate(vmf->cow_page);
3307 
3308 	ret |= finish_fault(vmf);
3309 	unlock_page(vmf->page);
3310 	put_page(vmf->page);
3311 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3312 		goto uncharge_out;
3313 	return ret;
3314 uncharge_out:
3315 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3316 	put_page(vmf->cow_page);
3317 	return ret;
3318 }
3319 
3320 static int do_shared_fault(struct vm_fault *vmf)
3321 {
3322 	struct vm_area_struct *vma = vmf->vma;
3323 	int ret, tmp;
3324 
3325 	ret = __do_fault(vmf);
3326 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3327 		return ret;
3328 
3329 	/*
3330 	 * Check if the backing address space wants to know that the page is
3331 	 * about to become writable
3332 	 */
3333 	if (vma->vm_ops->page_mkwrite) {
3334 		unlock_page(vmf->page);
3335 		tmp = do_page_mkwrite(vmf);
3336 		if (unlikely(!tmp ||
3337 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3338 			put_page(vmf->page);
3339 			return tmp;
3340 		}
3341 	}
3342 
3343 	ret |= finish_fault(vmf);
3344 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3345 					VM_FAULT_RETRY))) {
3346 		unlock_page(vmf->page);
3347 		put_page(vmf->page);
3348 		return ret;
3349 	}
3350 
3351 	fault_dirty_shared_page(vma, vmf->page);
3352 	return ret;
3353 }
3354 
3355 /*
3356  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3357  * but allow concurrent faults).
3358  * The mmap_sem may have been released depending on flags and our
3359  * return value.  See filemap_fault() and __lock_page_or_retry().
3360  */
3361 static int do_fault(struct vm_fault *vmf)
3362 {
3363 	struct vm_area_struct *vma = vmf->vma;
3364 	int ret;
3365 
3366 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3367 	if (!vma->vm_ops->fault)
3368 		ret = VM_FAULT_SIGBUS;
3369 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3370 		ret = do_read_fault(vmf);
3371 	else if (!(vma->vm_flags & VM_SHARED))
3372 		ret = do_cow_fault(vmf);
3373 	else
3374 		ret = do_shared_fault(vmf);
3375 
3376 	/* preallocated pagetable is unused: free it */
3377 	if (vmf->prealloc_pte) {
3378 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3379 		vmf->prealloc_pte = NULL;
3380 	}
3381 	return ret;
3382 }
3383 
3384 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3385 				unsigned long addr, int page_nid,
3386 				int *flags)
3387 {
3388 	get_page(page);
3389 
3390 	count_vm_numa_event(NUMA_HINT_FAULTS);
3391 	if (page_nid == numa_node_id()) {
3392 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3393 		*flags |= TNF_FAULT_LOCAL;
3394 	}
3395 
3396 	return mpol_misplaced(page, vma, addr);
3397 }
3398 
3399 static int do_numa_page(struct vm_fault *vmf)
3400 {
3401 	struct vm_area_struct *vma = vmf->vma;
3402 	struct page *page = NULL;
3403 	int page_nid = -1;
3404 	int last_cpupid;
3405 	int target_nid;
3406 	bool migrated = false;
3407 	pte_t pte;
3408 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3409 	int flags = 0;
3410 
3411 	/*
3412 	 * The "pte" at this point cannot be used safely without
3413 	 * validation through pte_unmap_same(). It's of NUMA type but
3414 	 * the pfn may be screwed if the read is non atomic.
3415 	 */
3416 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3417 	spin_lock(vmf->ptl);
3418 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3419 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3420 		goto out;
3421 	}
3422 
3423 	/*
3424 	 * Make it present again, Depending on how arch implementes non
3425 	 * accessible ptes, some can allow access by kernel mode.
3426 	 */
3427 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3428 	pte = pte_modify(pte, vma->vm_page_prot);
3429 	pte = pte_mkyoung(pte);
3430 	if (was_writable)
3431 		pte = pte_mkwrite(pte);
3432 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3433 	update_mmu_cache(vma, vmf->address, vmf->pte);
3434 
3435 	page = vm_normal_page(vma, vmf->address, pte);
3436 	if (!page) {
3437 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3438 		return 0;
3439 	}
3440 
3441 	/* TODO: handle PTE-mapped THP */
3442 	if (PageCompound(page)) {
3443 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3444 		return 0;
3445 	}
3446 
3447 	/*
3448 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3449 	 * much anyway since they can be in shared cache state. This misses
3450 	 * the case where a mapping is writable but the process never writes
3451 	 * to it but pte_write gets cleared during protection updates and
3452 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3453 	 * background writeback, dirty balancing and application behaviour.
3454 	 */
3455 	if (!pte_write(pte))
3456 		flags |= TNF_NO_GROUP;
3457 
3458 	/*
3459 	 * Flag if the page is shared between multiple address spaces. This
3460 	 * is later used when determining whether to group tasks together
3461 	 */
3462 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3463 		flags |= TNF_SHARED;
3464 
3465 	last_cpupid = page_cpupid_last(page);
3466 	page_nid = page_to_nid(page);
3467 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3468 			&flags);
3469 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3470 	if (target_nid == -1) {
3471 		put_page(page);
3472 		goto out;
3473 	}
3474 
3475 	/* Migrate to the requested node */
3476 	migrated = migrate_misplaced_page(page, vma, target_nid);
3477 	if (migrated) {
3478 		page_nid = target_nid;
3479 		flags |= TNF_MIGRATED;
3480 	} else
3481 		flags |= TNF_MIGRATE_FAIL;
3482 
3483 out:
3484 	if (page_nid != -1)
3485 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3486 	return 0;
3487 }
3488 
3489 static int create_huge_pmd(struct vm_fault *vmf)
3490 {
3491 	if (vma_is_anonymous(vmf->vma))
3492 		return do_huge_pmd_anonymous_page(vmf);
3493 	if (vmf->vma->vm_ops->huge_fault)
3494 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3495 	return VM_FAULT_FALLBACK;
3496 }
3497 
3498 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3499 {
3500 	if (vma_is_anonymous(vmf->vma))
3501 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3502 	if (vmf->vma->vm_ops->huge_fault)
3503 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3504 
3505 	/* COW handled on pte level: split pmd */
3506 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3507 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3508 
3509 	return VM_FAULT_FALLBACK;
3510 }
3511 
3512 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3513 {
3514 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3515 }
3516 
3517 static int create_huge_pud(struct vm_fault *vmf)
3518 {
3519 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3520 	/* No support for anonymous transparent PUD pages yet */
3521 	if (vma_is_anonymous(vmf->vma))
3522 		return VM_FAULT_FALLBACK;
3523 	if (vmf->vma->vm_ops->huge_fault)
3524 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3525 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3526 	return VM_FAULT_FALLBACK;
3527 }
3528 
3529 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3530 {
3531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3532 	/* No support for anonymous transparent PUD pages yet */
3533 	if (vma_is_anonymous(vmf->vma))
3534 		return VM_FAULT_FALLBACK;
3535 	if (vmf->vma->vm_ops->huge_fault)
3536 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3537 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3538 	return VM_FAULT_FALLBACK;
3539 }
3540 
3541 /*
3542  * These routines also need to handle stuff like marking pages dirty
3543  * and/or accessed for architectures that don't do it in hardware (most
3544  * RISC architectures).  The early dirtying is also good on the i386.
3545  *
3546  * There is also a hook called "update_mmu_cache()" that architectures
3547  * with external mmu caches can use to update those (ie the Sparc or
3548  * PowerPC hashed page tables that act as extended TLBs).
3549  *
3550  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3551  * concurrent faults).
3552  *
3553  * The mmap_sem may have been released depending on flags and our return value.
3554  * See filemap_fault() and __lock_page_or_retry().
3555  */
3556 static int handle_pte_fault(struct vm_fault *vmf)
3557 {
3558 	pte_t entry;
3559 
3560 	if (unlikely(pmd_none(*vmf->pmd))) {
3561 		/*
3562 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3563 		 * want to allocate huge page, and if we expose page table
3564 		 * for an instant, it will be difficult to retract from
3565 		 * concurrent faults and from rmap lookups.
3566 		 */
3567 		vmf->pte = NULL;
3568 	} else {
3569 		/* See comment in pte_alloc_one_map() */
3570 		if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
3571 			return 0;
3572 		/*
3573 		 * A regular pmd is established and it can't morph into a huge
3574 		 * pmd from under us anymore at this point because we hold the
3575 		 * mmap_sem read mode and khugepaged takes it in write mode.
3576 		 * So now it's safe to run pte_offset_map().
3577 		 */
3578 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3579 		vmf->orig_pte = *vmf->pte;
3580 
3581 		/*
3582 		 * some architectures can have larger ptes than wordsize,
3583 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3584 		 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3585 		 * atomic accesses.  The code below just needs a consistent
3586 		 * view for the ifs and we later double check anyway with the
3587 		 * ptl lock held. So here a barrier will do.
3588 		 */
3589 		barrier();
3590 		if (pte_none(vmf->orig_pte)) {
3591 			pte_unmap(vmf->pte);
3592 			vmf->pte = NULL;
3593 		}
3594 	}
3595 
3596 	if (!vmf->pte) {
3597 		if (vma_is_anonymous(vmf->vma))
3598 			return do_anonymous_page(vmf);
3599 		else
3600 			return do_fault(vmf);
3601 	}
3602 
3603 	if (!pte_present(vmf->orig_pte))
3604 		return do_swap_page(vmf);
3605 
3606 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3607 		return do_numa_page(vmf);
3608 
3609 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3610 	spin_lock(vmf->ptl);
3611 	entry = vmf->orig_pte;
3612 	if (unlikely(!pte_same(*vmf->pte, entry)))
3613 		goto unlock;
3614 	if (vmf->flags & FAULT_FLAG_WRITE) {
3615 		if (!pte_write(entry))
3616 			return do_wp_page(vmf);
3617 		entry = pte_mkdirty(entry);
3618 	}
3619 	entry = pte_mkyoung(entry);
3620 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3621 				vmf->flags & FAULT_FLAG_WRITE)) {
3622 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3623 	} else {
3624 		/*
3625 		 * This is needed only for protection faults but the arch code
3626 		 * is not yet telling us if this is a protection fault or not.
3627 		 * This still avoids useless tlb flushes for .text page faults
3628 		 * with threads.
3629 		 */
3630 		if (vmf->flags & FAULT_FLAG_WRITE)
3631 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3632 	}
3633 unlock:
3634 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3635 	return 0;
3636 }
3637 
3638 /*
3639  * By the time we get here, we already hold the mm semaphore
3640  *
3641  * The mmap_sem may have been released depending on flags and our
3642  * return value.  See filemap_fault() and __lock_page_or_retry().
3643  */
3644 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3645 		unsigned int flags)
3646 {
3647 	struct vm_fault vmf = {
3648 		.vma = vma,
3649 		.address = address & PAGE_MASK,
3650 		.flags = flags,
3651 		.pgoff = linear_page_index(vma, address),
3652 		.gfp_mask = __get_fault_gfp_mask(vma),
3653 	};
3654 	struct mm_struct *mm = vma->vm_mm;
3655 	pgd_t *pgd;
3656 	int ret;
3657 
3658 	pgd = pgd_offset(mm, address);
3659 
3660 	vmf.pud = pud_alloc(mm, pgd, address);
3661 	if (!vmf.pud)
3662 		return VM_FAULT_OOM;
3663 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3664 		ret = create_huge_pud(&vmf);
3665 		if (!(ret & VM_FAULT_FALLBACK))
3666 			return ret;
3667 	} else {
3668 		pud_t orig_pud = *vmf.pud;
3669 
3670 		barrier();
3671 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3672 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3673 
3674 			/* NUMA case for anonymous PUDs would go here */
3675 
3676 			if (dirty && !pud_write(orig_pud)) {
3677 				ret = wp_huge_pud(&vmf, orig_pud);
3678 				if (!(ret & VM_FAULT_FALLBACK))
3679 					return ret;
3680 			} else {
3681 				huge_pud_set_accessed(&vmf, orig_pud);
3682 				return 0;
3683 			}
3684 		}
3685 	}
3686 
3687 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3688 	if (!vmf.pmd)
3689 		return VM_FAULT_OOM;
3690 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3691 		ret = create_huge_pmd(&vmf);
3692 		if (!(ret & VM_FAULT_FALLBACK))
3693 			return ret;
3694 	} else {
3695 		pmd_t orig_pmd = *vmf.pmd;
3696 
3697 		barrier();
3698 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3699 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3700 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3701 
3702 			if ((vmf.flags & FAULT_FLAG_WRITE) &&
3703 					!pmd_write(orig_pmd)) {
3704 				ret = wp_huge_pmd(&vmf, orig_pmd);
3705 				if (!(ret & VM_FAULT_FALLBACK))
3706 					return ret;
3707 			} else {
3708 				huge_pmd_set_accessed(&vmf, orig_pmd);
3709 				return 0;
3710 			}
3711 		}
3712 	}
3713 
3714 	return handle_pte_fault(&vmf);
3715 }
3716 
3717 /*
3718  * By the time we get here, we already hold the mm semaphore
3719  *
3720  * The mmap_sem may have been released depending on flags and our
3721  * return value.  See filemap_fault() and __lock_page_or_retry().
3722  */
3723 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3724 		unsigned int flags)
3725 {
3726 	int ret;
3727 
3728 	__set_current_state(TASK_RUNNING);
3729 
3730 	count_vm_event(PGFAULT);
3731 	mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3732 
3733 	/* do counter updates before entering really critical section. */
3734 	check_sync_rss_stat(current);
3735 
3736 	/*
3737 	 * Enable the memcg OOM handling for faults triggered in user
3738 	 * space.  Kernel faults are handled more gracefully.
3739 	 */
3740 	if (flags & FAULT_FLAG_USER)
3741 		mem_cgroup_oom_enable();
3742 
3743 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3744 					    flags & FAULT_FLAG_INSTRUCTION,
3745 					    flags & FAULT_FLAG_REMOTE))
3746 		return VM_FAULT_SIGSEGV;
3747 
3748 	if (unlikely(is_vm_hugetlb_page(vma)))
3749 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3750 	else
3751 		ret = __handle_mm_fault(vma, address, flags);
3752 
3753 	if (flags & FAULT_FLAG_USER) {
3754 		mem_cgroup_oom_disable();
3755 		/*
3756 		 * The task may have entered a memcg OOM situation but
3757 		 * if the allocation error was handled gracefully (no
3758 		 * VM_FAULT_OOM), there is no need to kill anything.
3759 		 * Just clean up the OOM state peacefully.
3760 		 */
3761 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3762 			mem_cgroup_oom_synchronize(false);
3763 	}
3764 
3765 	/*
3766 	 * This mm has been already reaped by the oom reaper and so the
3767 	 * refault cannot be trusted in general. Anonymous refaults would
3768 	 * lose data and give a zero page instead e.g. This is especially
3769 	 * problem for use_mm() because regular tasks will just die and
3770 	 * the corrupted data will not be visible anywhere while kthread
3771 	 * will outlive the oom victim and potentially propagate the date
3772 	 * further.
3773 	 */
3774 	if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3775 				&& test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3776 		ret = VM_FAULT_SIGBUS;
3777 
3778 	return ret;
3779 }
3780 EXPORT_SYMBOL_GPL(handle_mm_fault);
3781 
3782 #ifndef __PAGETABLE_PUD_FOLDED
3783 /*
3784  * Allocate page upper directory.
3785  * We've already handled the fast-path in-line.
3786  */
3787 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3788 {
3789 	pud_t *new = pud_alloc_one(mm, address);
3790 	if (!new)
3791 		return -ENOMEM;
3792 
3793 	smp_wmb(); /* See comment in __pte_alloc */
3794 
3795 	spin_lock(&mm->page_table_lock);
3796 	if (pgd_present(*pgd))		/* Another has populated it */
3797 		pud_free(mm, new);
3798 	else
3799 		pgd_populate(mm, pgd, new);
3800 	spin_unlock(&mm->page_table_lock);
3801 	return 0;
3802 }
3803 #endif /* __PAGETABLE_PUD_FOLDED */
3804 
3805 #ifndef __PAGETABLE_PMD_FOLDED
3806 /*
3807  * Allocate page middle directory.
3808  * We've already handled the fast-path in-line.
3809  */
3810 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3811 {
3812 	spinlock_t *ptl;
3813 	pmd_t *new = pmd_alloc_one(mm, address);
3814 	if (!new)
3815 		return -ENOMEM;
3816 
3817 	smp_wmb(); /* See comment in __pte_alloc */
3818 
3819 	ptl = pud_lock(mm, pud);
3820 #ifndef __ARCH_HAS_4LEVEL_HACK
3821 	if (!pud_present(*pud)) {
3822 		mm_inc_nr_pmds(mm);
3823 		pud_populate(mm, pud, new);
3824 	} else	/* Another has populated it */
3825 		pmd_free(mm, new);
3826 #else
3827 	if (!pgd_present(*pud)) {
3828 		mm_inc_nr_pmds(mm);
3829 		pgd_populate(mm, pud, new);
3830 	} else /* Another has populated it */
3831 		pmd_free(mm, new);
3832 #endif /* __ARCH_HAS_4LEVEL_HACK */
3833 	spin_unlock(ptl);
3834 	return 0;
3835 }
3836 #endif /* __PAGETABLE_PMD_FOLDED */
3837 
3838 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3839 		pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3840 {
3841 	pgd_t *pgd;
3842 	pud_t *pud;
3843 	pmd_t *pmd;
3844 	pte_t *ptep;
3845 
3846 	pgd = pgd_offset(mm, address);
3847 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3848 		goto out;
3849 
3850 	pud = pud_offset(pgd, address);
3851 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3852 		goto out;
3853 
3854 	pmd = pmd_offset(pud, address);
3855 	VM_BUG_ON(pmd_trans_huge(*pmd));
3856 
3857 	if (pmd_huge(*pmd)) {
3858 		if (!pmdpp)
3859 			goto out;
3860 
3861 		*ptlp = pmd_lock(mm, pmd);
3862 		if (pmd_huge(*pmd)) {
3863 			*pmdpp = pmd;
3864 			return 0;
3865 		}
3866 		spin_unlock(*ptlp);
3867 	}
3868 
3869 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3870 		goto out;
3871 
3872 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3873 	if (!ptep)
3874 		goto out;
3875 	if (!pte_present(*ptep))
3876 		goto unlock;
3877 	*ptepp = ptep;
3878 	return 0;
3879 unlock:
3880 	pte_unmap_unlock(ptep, *ptlp);
3881 out:
3882 	return -EINVAL;
3883 }
3884 
3885 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3886 			     pte_t **ptepp, spinlock_t **ptlp)
3887 {
3888 	int res;
3889 
3890 	/* (void) is needed to make gcc happy */
3891 	(void) __cond_lock(*ptlp,
3892 			   !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
3893 					   ptlp)));
3894 	return res;
3895 }
3896 
3897 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3898 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3899 {
3900 	int res;
3901 
3902 	/* (void) is needed to make gcc happy */
3903 	(void) __cond_lock(*ptlp,
3904 			   !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
3905 					   ptlp)));
3906 	return res;
3907 }
3908 EXPORT_SYMBOL(follow_pte_pmd);
3909 
3910 /**
3911  * follow_pfn - look up PFN at a user virtual address
3912  * @vma: memory mapping
3913  * @address: user virtual address
3914  * @pfn: location to store found PFN
3915  *
3916  * Only IO mappings and raw PFN mappings are allowed.
3917  *
3918  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3919  */
3920 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3921 	unsigned long *pfn)
3922 {
3923 	int ret = -EINVAL;
3924 	spinlock_t *ptl;
3925 	pte_t *ptep;
3926 
3927 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3928 		return ret;
3929 
3930 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3931 	if (ret)
3932 		return ret;
3933 	*pfn = pte_pfn(*ptep);
3934 	pte_unmap_unlock(ptep, ptl);
3935 	return 0;
3936 }
3937 EXPORT_SYMBOL(follow_pfn);
3938 
3939 #ifdef CONFIG_HAVE_IOREMAP_PROT
3940 int follow_phys(struct vm_area_struct *vma,
3941 		unsigned long address, unsigned int flags,
3942 		unsigned long *prot, resource_size_t *phys)
3943 {
3944 	int ret = -EINVAL;
3945 	pte_t *ptep, pte;
3946 	spinlock_t *ptl;
3947 
3948 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3949 		goto out;
3950 
3951 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3952 		goto out;
3953 	pte = *ptep;
3954 
3955 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3956 		goto unlock;
3957 
3958 	*prot = pgprot_val(pte_pgprot(pte));
3959 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3960 
3961 	ret = 0;
3962 unlock:
3963 	pte_unmap_unlock(ptep, ptl);
3964 out:
3965 	return ret;
3966 }
3967 
3968 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3969 			void *buf, int len, int write)
3970 {
3971 	resource_size_t phys_addr;
3972 	unsigned long prot = 0;
3973 	void __iomem *maddr;
3974 	int offset = addr & (PAGE_SIZE-1);
3975 
3976 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3977 		return -EINVAL;
3978 
3979 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3980 	if (write)
3981 		memcpy_toio(maddr + offset, buf, len);
3982 	else
3983 		memcpy_fromio(buf, maddr + offset, len);
3984 	iounmap(maddr);
3985 
3986 	return len;
3987 }
3988 EXPORT_SYMBOL_GPL(generic_access_phys);
3989 #endif
3990 
3991 /*
3992  * Access another process' address space as given in mm.  If non-NULL, use the
3993  * given task for page fault accounting.
3994  */
3995 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3996 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
3997 {
3998 	struct vm_area_struct *vma;
3999 	void *old_buf = buf;
4000 	int write = gup_flags & FOLL_WRITE;
4001 
4002 	down_read(&mm->mmap_sem);
4003 	/* ignore errors, just check how much was successfully transferred */
4004 	while (len) {
4005 		int bytes, ret, offset;
4006 		void *maddr;
4007 		struct page *page = NULL;
4008 
4009 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4010 				gup_flags, &page, &vma, NULL);
4011 		if (ret <= 0) {
4012 #ifndef CONFIG_HAVE_IOREMAP_PROT
4013 			break;
4014 #else
4015 			/*
4016 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4017 			 * we can access using slightly different code.
4018 			 */
4019 			vma = find_vma(mm, addr);
4020 			if (!vma || vma->vm_start > addr)
4021 				break;
4022 			if (vma->vm_ops && vma->vm_ops->access)
4023 				ret = vma->vm_ops->access(vma, addr, buf,
4024 							  len, write);
4025 			if (ret <= 0)
4026 				break;
4027 			bytes = ret;
4028 #endif
4029 		} else {
4030 			bytes = len;
4031 			offset = addr & (PAGE_SIZE-1);
4032 			if (bytes > PAGE_SIZE-offset)
4033 				bytes = PAGE_SIZE-offset;
4034 
4035 			maddr = kmap(page);
4036 			if (write) {
4037 				copy_to_user_page(vma, page, addr,
4038 						  maddr + offset, buf, bytes);
4039 				set_page_dirty_lock(page);
4040 			} else {
4041 				copy_from_user_page(vma, page, addr,
4042 						    buf, maddr + offset, bytes);
4043 			}
4044 			kunmap(page);
4045 			put_page(page);
4046 		}
4047 		len -= bytes;
4048 		buf += bytes;
4049 		addr += bytes;
4050 	}
4051 	up_read(&mm->mmap_sem);
4052 
4053 	return buf - old_buf;
4054 }
4055 
4056 /**
4057  * access_remote_vm - access another process' address space
4058  * @mm:		the mm_struct of the target address space
4059  * @addr:	start address to access
4060  * @buf:	source or destination buffer
4061  * @len:	number of bytes to transfer
4062  * @gup_flags:	flags modifying lookup behaviour
4063  *
4064  * The caller must hold a reference on @mm.
4065  */
4066 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4067 		void *buf, int len, unsigned int gup_flags)
4068 {
4069 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4070 }
4071 
4072 /*
4073  * Access another process' address space.
4074  * Source/target buffer must be kernel space,
4075  * Do not walk the page table directly, use get_user_pages
4076  */
4077 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4078 		void *buf, int len, unsigned int gup_flags)
4079 {
4080 	struct mm_struct *mm;
4081 	int ret;
4082 
4083 	mm = get_task_mm(tsk);
4084 	if (!mm)
4085 		return 0;
4086 
4087 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4088 
4089 	mmput(mm);
4090 
4091 	return ret;
4092 }
4093 EXPORT_SYMBOL_GPL(access_process_vm);
4094 
4095 /*
4096  * Print the name of a VMA.
4097  */
4098 void print_vma_addr(char *prefix, unsigned long ip)
4099 {
4100 	struct mm_struct *mm = current->mm;
4101 	struct vm_area_struct *vma;
4102 
4103 	/*
4104 	 * Do not print if we are in atomic
4105 	 * contexts (in exception stacks, etc.):
4106 	 */
4107 	if (preempt_count())
4108 		return;
4109 
4110 	down_read(&mm->mmap_sem);
4111 	vma = find_vma(mm, ip);
4112 	if (vma && vma->vm_file) {
4113 		struct file *f = vma->vm_file;
4114 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4115 		if (buf) {
4116 			char *p;
4117 
4118 			p = file_path(f, buf, PAGE_SIZE);
4119 			if (IS_ERR(p))
4120 				p = "?";
4121 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4122 					vma->vm_start,
4123 					vma->vm_end - vma->vm_start);
4124 			free_page((unsigned long)buf);
4125 		}
4126 	}
4127 	up_read(&mm->mmap_sem);
4128 }
4129 
4130 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4131 void __might_fault(const char *file, int line)
4132 {
4133 	/*
4134 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4135 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4136 	 * get paged out, therefore we'll never actually fault, and the
4137 	 * below annotations will generate false positives.
4138 	 */
4139 	if (segment_eq(get_fs(), KERNEL_DS))
4140 		return;
4141 	if (pagefault_disabled())
4142 		return;
4143 	__might_sleep(file, line, 0);
4144 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4145 	if (current->mm)
4146 		might_lock_read(&current->mm->mmap_sem);
4147 #endif
4148 }
4149 EXPORT_SYMBOL(__might_fault);
4150 #endif
4151 
4152 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4153 static void clear_gigantic_page(struct page *page,
4154 				unsigned long addr,
4155 				unsigned int pages_per_huge_page)
4156 {
4157 	int i;
4158 	struct page *p = page;
4159 
4160 	might_sleep();
4161 	for (i = 0; i < pages_per_huge_page;
4162 	     i++, p = mem_map_next(p, page, i)) {
4163 		cond_resched();
4164 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4165 	}
4166 }
4167 void clear_huge_page(struct page *page,
4168 		     unsigned long addr, unsigned int pages_per_huge_page)
4169 {
4170 	int i;
4171 
4172 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4173 		clear_gigantic_page(page, addr, pages_per_huge_page);
4174 		return;
4175 	}
4176 
4177 	might_sleep();
4178 	for (i = 0; i < pages_per_huge_page; i++) {
4179 		cond_resched();
4180 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4181 	}
4182 }
4183 
4184 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4185 				    unsigned long addr,
4186 				    struct vm_area_struct *vma,
4187 				    unsigned int pages_per_huge_page)
4188 {
4189 	int i;
4190 	struct page *dst_base = dst;
4191 	struct page *src_base = src;
4192 
4193 	for (i = 0; i < pages_per_huge_page; ) {
4194 		cond_resched();
4195 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4196 
4197 		i++;
4198 		dst = mem_map_next(dst, dst_base, i);
4199 		src = mem_map_next(src, src_base, i);
4200 	}
4201 }
4202 
4203 void copy_user_huge_page(struct page *dst, struct page *src,
4204 			 unsigned long addr, struct vm_area_struct *vma,
4205 			 unsigned int pages_per_huge_page)
4206 {
4207 	int i;
4208 
4209 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4210 		copy_user_gigantic_page(dst, src, addr, vma,
4211 					pages_per_huge_page);
4212 		return;
4213 	}
4214 
4215 	might_sleep();
4216 	for (i = 0; i < pages_per_huge_page; i++) {
4217 		cond_resched();
4218 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4219 	}
4220 }
4221 
4222 long copy_huge_page_from_user(struct page *dst_page,
4223 				const void __user *usr_src,
4224 				unsigned int pages_per_huge_page,
4225 				bool allow_pagefault)
4226 {
4227 	void *src = (void *)usr_src;
4228 	void *page_kaddr;
4229 	unsigned long i, rc = 0;
4230 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4231 
4232 	for (i = 0; i < pages_per_huge_page; i++) {
4233 		if (allow_pagefault)
4234 			page_kaddr = kmap(dst_page + i);
4235 		else
4236 			page_kaddr = kmap_atomic(dst_page + i);
4237 		rc = copy_from_user(page_kaddr,
4238 				(const void __user *)(src + i * PAGE_SIZE),
4239 				PAGE_SIZE);
4240 		if (allow_pagefault)
4241 			kunmap(dst_page + i);
4242 		else
4243 			kunmap_atomic(page_kaddr);
4244 
4245 		ret_val -= (PAGE_SIZE - rc);
4246 		if (rc)
4247 			break;
4248 
4249 		cond_resched();
4250 	}
4251 	return ret_val;
4252 }
4253 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4254 
4255 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4256 
4257 static struct kmem_cache *page_ptl_cachep;
4258 
4259 void __init ptlock_cache_init(void)
4260 {
4261 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4262 			SLAB_PANIC, NULL);
4263 }
4264 
4265 bool ptlock_alloc(struct page *page)
4266 {
4267 	spinlock_t *ptl;
4268 
4269 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4270 	if (!ptl)
4271 		return false;
4272 	page->ptl = ptl;
4273 	return true;
4274 }
4275 
4276 void ptlock_free(struct page *page)
4277 {
4278 	kmem_cache_free(page_ptl_cachep, page->ptl);
4279 }
4280 #endif
4281