xref: /openbmc/linux/mm/memory.c (revision bbb774d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77 
78 #include <trace/events/kmem.h>
79 
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86 
87 #include "pgalloc-track.h"
88 #include "internal.h"
89 #include "swap.h"
90 
91 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
92 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
93 #endif
94 
95 #ifndef CONFIG_NUMA
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98 
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102 
103 static vm_fault_t do_fault(struct vm_fault *vmf);
104 
105 /*
106  * A number of key systems in x86 including ioremap() rely on the assumption
107  * that high_memory defines the upper bound on direct map memory, then end
108  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
109  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
110  * and ZONE_HIGHMEM.
111  */
112 void *high_memory;
113 EXPORT_SYMBOL(high_memory);
114 
115 /*
116  * Randomize the address space (stacks, mmaps, brk, etc.).
117  *
118  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119  *   as ancient (libc5 based) binaries can segfault. )
120  */
121 int randomize_va_space __read_mostly =
122 #ifdef CONFIG_COMPAT_BRK
123 					1;
124 #else
125 					2;
126 #endif
127 
128 #ifndef arch_faults_on_old_pte
129 static inline bool arch_faults_on_old_pte(void)
130 {
131 	/*
132 	 * Those arches which don't have hw access flag feature need to
133 	 * implement their own helper. By default, "true" means pagefault
134 	 * will be hit on old pte.
135 	 */
136 	return true;
137 }
138 #endif
139 
140 #ifndef arch_wants_old_prefaulted_pte
141 static inline bool arch_wants_old_prefaulted_pte(void)
142 {
143 	/*
144 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
145 	 * some architectures, even if it's performed in hardware. By
146 	 * default, "false" means prefaulted entries will be 'young'.
147 	 */
148 	return false;
149 }
150 #endif
151 
152 static int __init disable_randmaps(char *s)
153 {
154 	randomize_va_space = 0;
155 	return 1;
156 }
157 __setup("norandmaps", disable_randmaps);
158 
159 unsigned long zero_pfn __read_mostly;
160 EXPORT_SYMBOL(zero_pfn);
161 
162 unsigned long highest_memmap_pfn __read_mostly;
163 
164 /*
165  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
166  */
167 static int __init init_zero_pfn(void)
168 {
169 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
170 	return 0;
171 }
172 early_initcall(init_zero_pfn);
173 
174 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
175 {
176 	trace_rss_stat(mm, member, count);
177 }
178 
179 #if defined(SPLIT_RSS_COUNTING)
180 
181 void sync_mm_rss(struct mm_struct *mm)
182 {
183 	int i;
184 
185 	for (i = 0; i < NR_MM_COUNTERS; i++) {
186 		if (current->rss_stat.count[i]) {
187 			add_mm_counter(mm, i, current->rss_stat.count[i]);
188 			current->rss_stat.count[i] = 0;
189 		}
190 	}
191 	current->rss_stat.events = 0;
192 }
193 
194 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
195 {
196 	struct task_struct *task = current;
197 
198 	if (likely(task->mm == mm))
199 		task->rss_stat.count[member] += val;
200 	else
201 		add_mm_counter(mm, member, val);
202 }
203 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
204 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
205 
206 /* sync counter once per 64 page faults */
207 #define TASK_RSS_EVENTS_THRESH	(64)
208 static void check_sync_rss_stat(struct task_struct *task)
209 {
210 	if (unlikely(task != current))
211 		return;
212 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
213 		sync_mm_rss(task->mm);
214 }
215 #else /* SPLIT_RSS_COUNTING */
216 
217 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
218 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
219 
220 static void check_sync_rss_stat(struct task_struct *task)
221 {
222 }
223 
224 #endif /* SPLIT_RSS_COUNTING */
225 
226 /*
227  * Note: this doesn't free the actual pages themselves. That
228  * has been handled earlier when unmapping all the memory regions.
229  */
230 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
231 			   unsigned long addr)
232 {
233 	pgtable_t token = pmd_pgtable(*pmd);
234 	pmd_clear(pmd);
235 	pte_free_tlb(tlb, token, addr);
236 	mm_dec_nr_ptes(tlb->mm);
237 }
238 
239 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
240 				unsigned long addr, unsigned long end,
241 				unsigned long floor, unsigned long ceiling)
242 {
243 	pmd_t *pmd;
244 	unsigned long next;
245 	unsigned long start;
246 
247 	start = addr;
248 	pmd = pmd_offset(pud, addr);
249 	do {
250 		next = pmd_addr_end(addr, end);
251 		if (pmd_none_or_clear_bad(pmd))
252 			continue;
253 		free_pte_range(tlb, pmd, addr);
254 	} while (pmd++, addr = next, addr != end);
255 
256 	start &= PUD_MASK;
257 	if (start < floor)
258 		return;
259 	if (ceiling) {
260 		ceiling &= PUD_MASK;
261 		if (!ceiling)
262 			return;
263 	}
264 	if (end - 1 > ceiling - 1)
265 		return;
266 
267 	pmd = pmd_offset(pud, start);
268 	pud_clear(pud);
269 	pmd_free_tlb(tlb, pmd, start);
270 	mm_dec_nr_pmds(tlb->mm);
271 }
272 
273 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
274 				unsigned long addr, unsigned long end,
275 				unsigned long floor, unsigned long ceiling)
276 {
277 	pud_t *pud;
278 	unsigned long next;
279 	unsigned long start;
280 
281 	start = addr;
282 	pud = pud_offset(p4d, addr);
283 	do {
284 		next = pud_addr_end(addr, end);
285 		if (pud_none_or_clear_bad(pud))
286 			continue;
287 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
288 	} while (pud++, addr = next, addr != end);
289 
290 	start &= P4D_MASK;
291 	if (start < floor)
292 		return;
293 	if (ceiling) {
294 		ceiling &= P4D_MASK;
295 		if (!ceiling)
296 			return;
297 	}
298 	if (end - 1 > ceiling - 1)
299 		return;
300 
301 	pud = pud_offset(p4d, start);
302 	p4d_clear(p4d);
303 	pud_free_tlb(tlb, pud, start);
304 	mm_dec_nr_puds(tlb->mm);
305 }
306 
307 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
308 				unsigned long addr, unsigned long end,
309 				unsigned long floor, unsigned long ceiling)
310 {
311 	p4d_t *p4d;
312 	unsigned long next;
313 	unsigned long start;
314 
315 	start = addr;
316 	p4d = p4d_offset(pgd, addr);
317 	do {
318 		next = p4d_addr_end(addr, end);
319 		if (p4d_none_or_clear_bad(p4d))
320 			continue;
321 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
322 	} while (p4d++, addr = next, addr != end);
323 
324 	start &= PGDIR_MASK;
325 	if (start < floor)
326 		return;
327 	if (ceiling) {
328 		ceiling &= PGDIR_MASK;
329 		if (!ceiling)
330 			return;
331 	}
332 	if (end - 1 > ceiling - 1)
333 		return;
334 
335 	p4d = p4d_offset(pgd, start);
336 	pgd_clear(pgd);
337 	p4d_free_tlb(tlb, p4d, start);
338 }
339 
340 /*
341  * This function frees user-level page tables of a process.
342  */
343 void free_pgd_range(struct mmu_gather *tlb,
344 			unsigned long addr, unsigned long end,
345 			unsigned long floor, unsigned long ceiling)
346 {
347 	pgd_t *pgd;
348 	unsigned long next;
349 
350 	/*
351 	 * The next few lines have given us lots of grief...
352 	 *
353 	 * Why are we testing PMD* at this top level?  Because often
354 	 * there will be no work to do at all, and we'd prefer not to
355 	 * go all the way down to the bottom just to discover that.
356 	 *
357 	 * Why all these "- 1"s?  Because 0 represents both the bottom
358 	 * of the address space and the top of it (using -1 for the
359 	 * top wouldn't help much: the masks would do the wrong thing).
360 	 * The rule is that addr 0 and floor 0 refer to the bottom of
361 	 * the address space, but end 0 and ceiling 0 refer to the top
362 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
363 	 * that end 0 case should be mythical).
364 	 *
365 	 * Wherever addr is brought up or ceiling brought down, we must
366 	 * be careful to reject "the opposite 0" before it confuses the
367 	 * subsequent tests.  But what about where end is brought down
368 	 * by PMD_SIZE below? no, end can't go down to 0 there.
369 	 *
370 	 * Whereas we round start (addr) and ceiling down, by different
371 	 * masks at different levels, in order to test whether a table
372 	 * now has no other vmas using it, so can be freed, we don't
373 	 * bother to round floor or end up - the tests don't need that.
374 	 */
375 
376 	addr &= PMD_MASK;
377 	if (addr < floor) {
378 		addr += PMD_SIZE;
379 		if (!addr)
380 			return;
381 	}
382 	if (ceiling) {
383 		ceiling &= PMD_MASK;
384 		if (!ceiling)
385 			return;
386 	}
387 	if (end - 1 > ceiling - 1)
388 		end -= PMD_SIZE;
389 	if (addr > end - 1)
390 		return;
391 	/*
392 	 * We add page table cache pages with PAGE_SIZE,
393 	 * (see pte_free_tlb()), flush the tlb if we need
394 	 */
395 	tlb_change_page_size(tlb, PAGE_SIZE);
396 	pgd = pgd_offset(tlb->mm, addr);
397 	do {
398 		next = pgd_addr_end(addr, end);
399 		if (pgd_none_or_clear_bad(pgd))
400 			continue;
401 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
402 	} while (pgd++, addr = next, addr != end);
403 }
404 
405 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
406 		unsigned long floor, unsigned long ceiling)
407 {
408 	while (vma) {
409 		struct vm_area_struct *next = vma->vm_next;
410 		unsigned long addr = vma->vm_start;
411 
412 		/*
413 		 * Hide vma from rmap and truncate_pagecache before freeing
414 		 * pgtables
415 		 */
416 		unlink_anon_vmas(vma);
417 		unlink_file_vma(vma);
418 
419 		if (is_vm_hugetlb_page(vma)) {
420 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
421 				floor, next ? next->vm_start : ceiling);
422 		} else {
423 			/*
424 			 * Optimization: gather nearby vmas into one call down
425 			 */
426 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
427 			       && !is_vm_hugetlb_page(next)) {
428 				vma = next;
429 				next = vma->vm_next;
430 				unlink_anon_vmas(vma);
431 				unlink_file_vma(vma);
432 			}
433 			free_pgd_range(tlb, addr, vma->vm_end,
434 				floor, next ? next->vm_start : ceiling);
435 		}
436 		vma = next;
437 	}
438 }
439 
440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
441 {
442 	spinlock_t *ptl = pmd_lock(mm, pmd);
443 
444 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
445 		mm_inc_nr_ptes(mm);
446 		/*
447 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
448 		 * visible before the pte is made visible to other CPUs by being
449 		 * put into page tables.
450 		 *
451 		 * The other side of the story is the pointer chasing in the page
452 		 * table walking code (when walking the page table without locking;
453 		 * ie. most of the time). Fortunately, these data accesses consist
454 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
455 		 * being the notable exception) will already guarantee loads are
456 		 * seen in-order. See the alpha page table accessors for the
457 		 * smp_rmb() barriers in page table walking code.
458 		 */
459 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
460 		pmd_populate(mm, pmd, *pte);
461 		*pte = NULL;
462 	}
463 	spin_unlock(ptl);
464 }
465 
466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
467 {
468 	pgtable_t new = pte_alloc_one(mm);
469 	if (!new)
470 		return -ENOMEM;
471 
472 	pmd_install(mm, pmd, &new);
473 	if (new)
474 		pte_free(mm, new);
475 	return 0;
476 }
477 
478 int __pte_alloc_kernel(pmd_t *pmd)
479 {
480 	pte_t *new = pte_alloc_one_kernel(&init_mm);
481 	if (!new)
482 		return -ENOMEM;
483 
484 	spin_lock(&init_mm.page_table_lock);
485 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
486 		smp_wmb(); /* See comment in pmd_install() */
487 		pmd_populate_kernel(&init_mm, pmd, new);
488 		new = NULL;
489 	}
490 	spin_unlock(&init_mm.page_table_lock);
491 	if (new)
492 		pte_free_kernel(&init_mm, new);
493 	return 0;
494 }
495 
496 static inline void init_rss_vec(int *rss)
497 {
498 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499 }
500 
501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502 {
503 	int i;
504 
505 	if (current->mm == mm)
506 		sync_mm_rss(mm);
507 	for (i = 0; i < NR_MM_COUNTERS; i++)
508 		if (rss[i])
509 			add_mm_counter(mm, i, rss[i]);
510 }
511 
512 /*
513  * This function is called to print an error when a bad pte
514  * is found. For example, we might have a PFN-mapped pte in
515  * a region that doesn't allow it.
516  *
517  * The calling function must still handle the error.
518  */
519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520 			  pte_t pte, struct page *page)
521 {
522 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
523 	p4d_t *p4d = p4d_offset(pgd, addr);
524 	pud_t *pud = pud_offset(p4d, addr);
525 	pmd_t *pmd = pmd_offset(pud, addr);
526 	struct address_space *mapping;
527 	pgoff_t index;
528 	static unsigned long resume;
529 	static unsigned long nr_shown;
530 	static unsigned long nr_unshown;
531 
532 	/*
533 	 * Allow a burst of 60 reports, then keep quiet for that minute;
534 	 * or allow a steady drip of one report per second.
535 	 */
536 	if (nr_shown == 60) {
537 		if (time_before(jiffies, resume)) {
538 			nr_unshown++;
539 			return;
540 		}
541 		if (nr_unshown) {
542 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543 				 nr_unshown);
544 			nr_unshown = 0;
545 		}
546 		nr_shown = 0;
547 	}
548 	if (nr_shown++ == 0)
549 		resume = jiffies + 60 * HZ;
550 
551 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552 	index = linear_page_index(vma, addr);
553 
554 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
555 		 current->comm,
556 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
557 	if (page)
558 		dump_page(page, "bad pte");
559 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
560 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
561 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
562 		 vma->vm_file,
563 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
564 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
565 		 mapping ? mapping->a_ops->read_folio : NULL);
566 	dump_stack();
567 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568 }
569 
570 /*
571  * vm_normal_page -- This function gets the "struct page" associated with a pte.
572  *
573  * "Special" mappings do not wish to be associated with a "struct page" (either
574  * it doesn't exist, or it exists but they don't want to touch it). In this
575  * case, NULL is returned here. "Normal" mappings do have a struct page.
576  *
577  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578  * pte bit, in which case this function is trivial. Secondly, an architecture
579  * may not have a spare pte bit, which requires a more complicated scheme,
580  * described below.
581  *
582  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583  * special mapping (even if there are underlying and valid "struct pages").
584  * COWed pages of a VM_PFNMAP are always normal.
585  *
586  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
588  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589  * mapping will always honor the rule
590  *
591  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592  *
593  * And for normal mappings this is false.
594  *
595  * This restricts such mappings to be a linear translation from virtual address
596  * to pfn. To get around this restriction, we allow arbitrary mappings so long
597  * as the vma is not a COW mapping; in that case, we know that all ptes are
598  * special (because none can have been COWed).
599  *
600  *
601  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
602  *
603  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604  * page" backing, however the difference is that _all_ pages with a struct
605  * page (that is, those where pfn_valid is true) are refcounted and considered
606  * normal pages by the VM. The disadvantage is that pages are refcounted
607  * (which can be slower and simply not an option for some PFNMAP users). The
608  * advantage is that we don't have to follow the strict linearity rule of
609  * PFNMAP mappings in order to support COWable mappings.
610  *
611  */
612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613 			    pte_t pte)
614 {
615 	unsigned long pfn = pte_pfn(pte);
616 
617 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
618 		if (likely(!pte_special(pte)))
619 			goto check_pfn;
620 		if (vma->vm_ops && vma->vm_ops->find_special_page)
621 			return vma->vm_ops->find_special_page(vma, addr);
622 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623 			return NULL;
624 		if (is_zero_pfn(pfn))
625 			return NULL;
626 		if (pte_devmap(pte))
627 		/*
628 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
629 		 * and will have refcounts incremented on their struct pages
630 		 * when they are inserted into PTEs, thus they are safe to
631 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
632 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
633 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
634 		 */
635 			return NULL;
636 
637 		print_bad_pte(vma, addr, pte, NULL);
638 		return NULL;
639 	}
640 
641 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
642 
643 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
644 		if (vma->vm_flags & VM_MIXEDMAP) {
645 			if (!pfn_valid(pfn))
646 				return NULL;
647 			goto out;
648 		} else {
649 			unsigned long off;
650 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
651 			if (pfn == vma->vm_pgoff + off)
652 				return NULL;
653 			if (!is_cow_mapping(vma->vm_flags))
654 				return NULL;
655 		}
656 	}
657 
658 	if (is_zero_pfn(pfn))
659 		return NULL;
660 
661 check_pfn:
662 	if (unlikely(pfn > highest_memmap_pfn)) {
663 		print_bad_pte(vma, addr, pte, NULL);
664 		return NULL;
665 	}
666 
667 	/*
668 	 * NOTE! We still have PageReserved() pages in the page tables.
669 	 * eg. VDSO mappings can cause them to exist.
670 	 */
671 out:
672 	return pfn_to_page(pfn);
673 }
674 
675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
676 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
677 				pmd_t pmd)
678 {
679 	unsigned long pfn = pmd_pfn(pmd);
680 
681 	/*
682 	 * There is no pmd_special() but there may be special pmds, e.g.
683 	 * in a direct-access (dax) mapping, so let's just replicate the
684 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
685 	 */
686 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
687 		if (vma->vm_flags & VM_MIXEDMAP) {
688 			if (!pfn_valid(pfn))
689 				return NULL;
690 			goto out;
691 		} else {
692 			unsigned long off;
693 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
694 			if (pfn == vma->vm_pgoff + off)
695 				return NULL;
696 			if (!is_cow_mapping(vma->vm_flags))
697 				return NULL;
698 		}
699 	}
700 
701 	if (pmd_devmap(pmd))
702 		return NULL;
703 	if (is_huge_zero_pmd(pmd))
704 		return NULL;
705 	if (unlikely(pfn > highest_memmap_pfn))
706 		return NULL;
707 
708 	/*
709 	 * NOTE! We still have PageReserved() pages in the page tables.
710 	 * eg. VDSO mappings can cause them to exist.
711 	 */
712 out:
713 	return pfn_to_page(pfn);
714 }
715 #endif
716 
717 static void restore_exclusive_pte(struct vm_area_struct *vma,
718 				  struct page *page, unsigned long address,
719 				  pte_t *ptep)
720 {
721 	pte_t pte;
722 	swp_entry_t entry;
723 
724 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
725 	if (pte_swp_soft_dirty(*ptep))
726 		pte = pte_mksoft_dirty(pte);
727 
728 	entry = pte_to_swp_entry(*ptep);
729 	if (pte_swp_uffd_wp(*ptep))
730 		pte = pte_mkuffd_wp(pte);
731 	else if (is_writable_device_exclusive_entry(entry))
732 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
733 
734 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
735 
736 	/*
737 	 * No need to take a page reference as one was already
738 	 * created when the swap entry was made.
739 	 */
740 	if (PageAnon(page))
741 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
742 	else
743 		/*
744 		 * Currently device exclusive access only supports anonymous
745 		 * memory so the entry shouldn't point to a filebacked page.
746 		 */
747 		WARN_ON_ONCE(1);
748 
749 	set_pte_at(vma->vm_mm, address, ptep, pte);
750 
751 	/*
752 	 * No need to invalidate - it was non-present before. However
753 	 * secondary CPUs may have mappings that need invalidating.
754 	 */
755 	update_mmu_cache(vma, address, ptep);
756 }
757 
758 /*
759  * Tries to restore an exclusive pte if the page lock can be acquired without
760  * sleeping.
761  */
762 static int
763 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
764 			unsigned long addr)
765 {
766 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
767 	struct page *page = pfn_swap_entry_to_page(entry);
768 
769 	if (trylock_page(page)) {
770 		restore_exclusive_pte(vma, page, addr, src_pte);
771 		unlock_page(page);
772 		return 0;
773 	}
774 
775 	return -EBUSY;
776 }
777 
778 /*
779  * copy one vm_area from one task to the other. Assumes the page tables
780  * already present in the new task to be cleared in the whole range
781  * covered by this vma.
782  */
783 
784 static unsigned long
785 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
786 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
787 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
788 {
789 	unsigned long vm_flags = dst_vma->vm_flags;
790 	pte_t pte = *src_pte;
791 	struct page *page;
792 	swp_entry_t entry = pte_to_swp_entry(pte);
793 
794 	if (likely(!non_swap_entry(entry))) {
795 		if (swap_duplicate(entry) < 0)
796 			return -EIO;
797 
798 		/* make sure dst_mm is on swapoff's mmlist. */
799 		if (unlikely(list_empty(&dst_mm->mmlist))) {
800 			spin_lock(&mmlist_lock);
801 			if (list_empty(&dst_mm->mmlist))
802 				list_add(&dst_mm->mmlist,
803 						&src_mm->mmlist);
804 			spin_unlock(&mmlist_lock);
805 		}
806 		/* Mark the swap entry as shared. */
807 		if (pte_swp_exclusive(*src_pte)) {
808 			pte = pte_swp_clear_exclusive(*src_pte);
809 			set_pte_at(src_mm, addr, src_pte, pte);
810 		}
811 		rss[MM_SWAPENTS]++;
812 	} else if (is_migration_entry(entry)) {
813 		page = pfn_swap_entry_to_page(entry);
814 
815 		rss[mm_counter(page)]++;
816 
817 		if (!is_readable_migration_entry(entry) &&
818 				is_cow_mapping(vm_flags)) {
819 			/*
820 			 * COW mappings require pages in both parent and child
821 			 * to be set to read. A previously exclusive entry is
822 			 * now shared.
823 			 */
824 			entry = make_readable_migration_entry(
825 							swp_offset(entry));
826 			pte = swp_entry_to_pte(entry);
827 			if (pte_swp_soft_dirty(*src_pte))
828 				pte = pte_swp_mksoft_dirty(pte);
829 			if (pte_swp_uffd_wp(*src_pte))
830 				pte = pte_swp_mkuffd_wp(pte);
831 			set_pte_at(src_mm, addr, src_pte, pte);
832 		}
833 	} else if (is_device_private_entry(entry)) {
834 		page = pfn_swap_entry_to_page(entry);
835 
836 		/*
837 		 * Update rss count even for unaddressable pages, as
838 		 * they should treated just like normal pages in this
839 		 * respect.
840 		 *
841 		 * We will likely want to have some new rss counters
842 		 * for unaddressable pages, at some point. But for now
843 		 * keep things as they are.
844 		 */
845 		get_page(page);
846 		rss[mm_counter(page)]++;
847 		/* Cannot fail as these pages cannot get pinned. */
848 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
849 
850 		/*
851 		 * We do not preserve soft-dirty information, because so
852 		 * far, checkpoint/restore is the only feature that
853 		 * requires that. And checkpoint/restore does not work
854 		 * when a device driver is involved (you cannot easily
855 		 * save and restore device driver state).
856 		 */
857 		if (is_writable_device_private_entry(entry) &&
858 		    is_cow_mapping(vm_flags)) {
859 			entry = make_readable_device_private_entry(
860 							swp_offset(entry));
861 			pte = swp_entry_to_pte(entry);
862 			if (pte_swp_uffd_wp(*src_pte))
863 				pte = pte_swp_mkuffd_wp(pte);
864 			set_pte_at(src_mm, addr, src_pte, pte);
865 		}
866 	} else if (is_device_exclusive_entry(entry)) {
867 		/*
868 		 * Make device exclusive entries present by restoring the
869 		 * original entry then copying as for a present pte. Device
870 		 * exclusive entries currently only support private writable
871 		 * (ie. COW) mappings.
872 		 */
873 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
874 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
875 			return -EBUSY;
876 		return -ENOENT;
877 	} else if (is_pte_marker_entry(entry)) {
878 		/*
879 		 * We're copying the pgtable should only because dst_vma has
880 		 * uffd-wp enabled, do sanity check.
881 		 */
882 		WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
883 		set_pte_at(dst_mm, addr, dst_pte, pte);
884 		return 0;
885 	}
886 	if (!userfaultfd_wp(dst_vma))
887 		pte = pte_swp_clear_uffd_wp(pte);
888 	set_pte_at(dst_mm, addr, dst_pte, pte);
889 	return 0;
890 }
891 
892 /*
893  * Copy a present and normal page.
894  *
895  * NOTE! The usual case is that this isn't required;
896  * instead, the caller can just increase the page refcount
897  * and re-use the pte the traditional way.
898  *
899  * And if we need a pre-allocated page but don't yet have
900  * one, return a negative error to let the preallocation
901  * code know so that it can do so outside the page table
902  * lock.
903  */
904 static inline int
905 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
906 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
907 		  struct page **prealloc, struct page *page)
908 {
909 	struct page *new_page;
910 	pte_t pte;
911 
912 	new_page = *prealloc;
913 	if (!new_page)
914 		return -EAGAIN;
915 
916 	/*
917 	 * We have a prealloc page, all good!  Take it
918 	 * over and copy the page & arm it.
919 	 */
920 	*prealloc = NULL;
921 	copy_user_highpage(new_page, page, addr, src_vma);
922 	__SetPageUptodate(new_page);
923 	page_add_new_anon_rmap(new_page, dst_vma, addr);
924 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
925 	rss[mm_counter(new_page)]++;
926 
927 	/* All done, just insert the new page copy in the child */
928 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
929 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
930 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
931 		/* Uffd-wp needs to be delivered to dest pte as well */
932 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
933 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
934 	return 0;
935 }
936 
937 /*
938  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
939  * is required to copy this pte.
940  */
941 static inline int
942 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
943 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
944 		 struct page **prealloc)
945 {
946 	struct mm_struct *src_mm = src_vma->vm_mm;
947 	unsigned long vm_flags = src_vma->vm_flags;
948 	pte_t pte = *src_pte;
949 	struct page *page;
950 
951 	page = vm_normal_page(src_vma, addr, pte);
952 	if (page && PageAnon(page)) {
953 		/*
954 		 * If this page may have been pinned by the parent process,
955 		 * copy the page immediately for the child so that we'll always
956 		 * guarantee the pinned page won't be randomly replaced in the
957 		 * future.
958 		 */
959 		get_page(page);
960 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
961 			/* Page maybe pinned, we have to copy. */
962 			put_page(page);
963 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
964 						 addr, rss, prealloc, page);
965 		}
966 		rss[mm_counter(page)]++;
967 	} else if (page) {
968 		get_page(page);
969 		page_dup_file_rmap(page, false);
970 		rss[mm_counter(page)]++;
971 	}
972 
973 	/*
974 	 * If it's a COW mapping, write protect it both
975 	 * in the parent and the child
976 	 */
977 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
978 		ptep_set_wrprotect(src_mm, addr, src_pte);
979 		pte = pte_wrprotect(pte);
980 	}
981 	VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
982 
983 	/*
984 	 * If it's a shared mapping, mark it clean in
985 	 * the child
986 	 */
987 	if (vm_flags & VM_SHARED)
988 		pte = pte_mkclean(pte);
989 	pte = pte_mkold(pte);
990 
991 	if (!userfaultfd_wp(dst_vma))
992 		pte = pte_clear_uffd_wp(pte);
993 
994 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
995 	return 0;
996 }
997 
998 static inline struct page *
999 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
1000 		   unsigned long addr)
1001 {
1002 	struct page *new_page;
1003 
1004 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
1005 	if (!new_page)
1006 		return NULL;
1007 
1008 	if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1009 		put_page(new_page);
1010 		return NULL;
1011 	}
1012 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1013 
1014 	return new_page;
1015 }
1016 
1017 static int
1018 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1019 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1020 	       unsigned long end)
1021 {
1022 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1023 	struct mm_struct *src_mm = src_vma->vm_mm;
1024 	pte_t *orig_src_pte, *orig_dst_pte;
1025 	pte_t *src_pte, *dst_pte;
1026 	spinlock_t *src_ptl, *dst_ptl;
1027 	int progress, ret = 0;
1028 	int rss[NR_MM_COUNTERS];
1029 	swp_entry_t entry = (swp_entry_t){0};
1030 	struct page *prealloc = NULL;
1031 
1032 again:
1033 	progress = 0;
1034 	init_rss_vec(rss);
1035 
1036 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1037 	if (!dst_pte) {
1038 		ret = -ENOMEM;
1039 		goto out;
1040 	}
1041 	src_pte = pte_offset_map(src_pmd, addr);
1042 	src_ptl = pte_lockptr(src_mm, src_pmd);
1043 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1044 	orig_src_pte = src_pte;
1045 	orig_dst_pte = dst_pte;
1046 	arch_enter_lazy_mmu_mode();
1047 
1048 	do {
1049 		/*
1050 		 * We are holding two locks at this point - either of them
1051 		 * could generate latencies in another task on another CPU.
1052 		 */
1053 		if (progress >= 32) {
1054 			progress = 0;
1055 			if (need_resched() ||
1056 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1057 				break;
1058 		}
1059 		if (pte_none(*src_pte)) {
1060 			progress++;
1061 			continue;
1062 		}
1063 		if (unlikely(!pte_present(*src_pte))) {
1064 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1065 						  dst_pte, src_pte,
1066 						  dst_vma, src_vma,
1067 						  addr, rss);
1068 			if (ret == -EIO) {
1069 				entry = pte_to_swp_entry(*src_pte);
1070 				break;
1071 			} else if (ret == -EBUSY) {
1072 				break;
1073 			} else if (!ret) {
1074 				progress += 8;
1075 				continue;
1076 			}
1077 
1078 			/*
1079 			 * Device exclusive entry restored, continue by copying
1080 			 * the now present pte.
1081 			 */
1082 			WARN_ON_ONCE(ret != -ENOENT);
1083 		}
1084 		/* copy_present_pte() will clear `*prealloc' if consumed */
1085 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1086 				       addr, rss, &prealloc);
1087 		/*
1088 		 * If we need a pre-allocated page for this pte, drop the
1089 		 * locks, allocate, and try again.
1090 		 */
1091 		if (unlikely(ret == -EAGAIN))
1092 			break;
1093 		if (unlikely(prealloc)) {
1094 			/*
1095 			 * pre-alloc page cannot be reused by next time so as
1096 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1097 			 * will allocate page according to address).  This
1098 			 * could only happen if one pinned pte changed.
1099 			 */
1100 			put_page(prealloc);
1101 			prealloc = NULL;
1102 		}
1103 		progress += 8;
1104 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1105 
1106 	arch_leave_lazy_mmu_mode();
1107 	spin_unlock(src_ptl);
1108 	pte_unmap(orig_src_pte);
1109 	add_mm_rss_vec(dst_mm, rss);
1110 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1111 	cond_resched();
1112 
1113 	if (ret == -EIO) {
1114 		VM_WARN_ON_ONCE(!entry.val);
1115 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1116 			ret = -ENOMEM;
1117 			goto out;
1118 		}
1119 		entry.val = 0;
1120 	} else if (ret == -EBUSY) {
1121 		goto out;
1122 	} else if (ret ==  -EAGAIN) {
1123 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1124 		if (!prealloc)
1125 			return -ENOMEM;
1126 	} else if (ret) {
1127 		VM_WARN_ON_ONCE(1);
1128 	}
1129 
1130 	/* We've captured and resolved the error. Reset, try again. */
1131 	ret = 0;
1132 
1133 	if (addr != end)
1134 		goto again;
1135 out:
1136 	if (unlikely(prealloc))
1137 		put_page(prealloc);
1138 	return ret;
1139 }
1140 
1141 static inline int
1142 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1143 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1144 	       unsigned long end)
1145 {
1146 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1147 	struct mm_struct *src_mm = src_vma->vm_mm;
1148 	pmd_t *src_pmd, *dst_pmd;
1149 	unsigned long next;
1150 
1151 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1152 	if (!dst_pmd)
1153 		return -ENOMEM;
1154 	src_pmd = pmd_offset(src_pud, addr);
1155 	do {
1156 		next = pmd_addr_end(addr, end);
1157 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1158 			|| pmd_devmap(*src_pmd)) {
1159 			int err;
1160 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1161 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1162 					    addr, dst_vma, src_vma);
1163 			if (err == -ENOMEM)
1164 				return -ENOMEM;
1165 			if (!err)
1166 				continue;
1167 			/* fall through */
1168 		}
1169 		if (pmd_none_or_clear_bad(src_pmd))
1170 			continue;
1171 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1172 				   addr, next))
1173 			return -ENOMEM;
1174 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1175 	return 0;
1176 }
1177 
1178 static inline int
1179 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1180 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1181 	       unsigned long end)
1182 {
1183 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1184 	struct mm_struct *src_mm = src_vma->vm_mm;
1185 	pud_t *src_pud, *dst_pud;
1186 	unsigned long next;
1187 
1188 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1189 	if (!dst_pud)
1190 		return -ENOMEM;
1191 	src_pud = pud_offset(src_p4d, addr);
1192 	do {
1193 		next = pud_addr_end(addr, end);
1194 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1195 			int err;
1196 
1197 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1198 			err = copy_huge_pud(dst_mm, src_mm,
1199 					    dst_pud, src_pud, addr, src_vma);
1200 			if (err == -ENOMEM)
1201 				return -ENOMEM;
1202 			if (!err)
1203 				continue;
1204 			/* fall through */
1205 		}
1206 		if (pud_none_or_clear_bad(src_pud))
1207 			continue;
1208 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1209 				   addr, next))
1210 			return -ENOMEM;
1211 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1212 	return 0;
1213 }
1214 
1215 static inline int
1216 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1217 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1218 	       unsigned long end)
1219 {
1220 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1221 	p4d_t *src_p4d, *dst_p4d;
1222 	unsigned long next;
1223 
1224 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1225 	if (!dst_p4d)
1226 		return -ENOMEM;
1227 	src_p4d = p4d_offset(src_pgd, addr);
1228 	do {
1229 		next = p4d_addr_end(addr, end);
1230 		if (p4d_none_or_clear_bad(src_p4d))
1231 			continue;
1232 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1233 				   addr, next))
1234 			return -ENOMEM;
1235 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1236 	return 0;
1237 }
1238 
1239 /*
1240  * Return true if the vma needs to copy the pgtable during this fork().  Return
1241  * false when we can speed up fork() by allowing lazy page faults later until
1242  * when the child accesses the memory range.
1243  */
1244 static bool
1245 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1246 {
1247 	/*
1248 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1249 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1250 	 * contains uffd-wp protection information, that's something we can't
1251 	 * retrieve from page cache, and skip copying will lose those info.
1252 	 */
1253 	if (userfaultfd_wp(dst_vma))
1254 		return true;
1255 
1256 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1257 		return true;
1258 
1259 	if (src_vma->anon_vma)
1260 		return true;
1261 
1262 	/*
1263 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1264 	 * becomes much lighter when there are big shared or private readonly
1265 	 * mappings. The tradeoff is that copy_page_range is more efficient
1266 	 * than faulting.
1267 	 */
1268 	return false;
1269 }
1270 
1271 int
1272 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1273 {
1274 	pgd_t *src_pgd, *dst_pgd;
1275 	unsigned long next;
1276 	unsigned long addr = src_vma->vm_start;
1277 	unsigned long end = src_vma->vm_end;
1278 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1279 	struct mm_struct *src_mm = src_vma->vm_mm;
1280 	struct mmu_notifier_range range;
1281 	bool is_cow;
1282 	int ret;
1283 
1284 	if (!vma_needs_copy(dst_vma, src_vma))
1285 		return 0;
1286 
1287 	if (is_vm_hugetlb_page(src_vma))
1288 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1289 
1290 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1291 		/*
1292 		 * We do not free on error cases below as remove_vma
1293 		 * gets called on error from higher level routine
1294 		 */
1295 		ret = track_pfn_copy(src_vma);
1296 		if (ret)
1297 			return ret;
1298 	}
1299 
1300 	/*
1301 	 * We need to invalidate the secondary MMU mappings only when
1302 	 * there could be a permission downgrade on the ptes of the
1303 	 * parent mm. And a permission downgrade will only happen if
1304 	 * is_cow_mapping() returns true.
1305 	 */
1306 	is_cow = is_cow_mapping(src_vma->vm_flags);
1307 
1308 	if (is_cow) {
1309 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1310 					0, src_vma, src_mm, addr, end);
1311 		mmu_notifier_invalidate_range_start(&range);
1312 		/*
1313 		 * Disabling preemption is not needed for the write side, as
1314 		 * the read side doesn't spin, but goes to the mmap_lock.
1315 		 *
1316 		 * Use the raw variant of the seqcount_t write API to avoid
1317 		 * lockdep complaining about preemptibility.
1318 		 */
1319 		mmap_assert_write_locked(src_mm);
1320 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1321 	}
1322 
1323 	ret = 0;
1324 	dst_pgd = pgd_offset(dst_mm, addr);
1325 	src_pgd = pgd_offset(src_mm, addr);
1326 	do {
1327 		next = pgd_addr_end(addr, end);
1328 		if (pgd_none_or_clear_bad(src_pgd))
1329 			continue;
1330 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1331 					    addr, next))) {
1332 			ret = -ENOMEM;
1333 			break;
1334 		}
1335 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1336 
1337 	if (is_cow) {
1338 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1339 		mmu_notifier_invalidate_range_end(&range);
1340 	}
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Parameter block passed down to zap_pte_range in exceptional cases.
1346  */
1347 struct zap_details {
1348 	struct folio *single_folio;	/* Locked folio to be unmapped */
1349 	bool even_cows;			/* Zap COWed private pages too? */
1350 	zap_flags_t zap_flags;		/* Extra flags for zapping */
1351 };
1352 
1353 /* Whether we should zap all COWed (private) pages too */
1354 static inline bool should_zap_cows(struct zap_details *details)
1355 {
1356 	/* By default, zap all pages */
1357 	if (!details)
1358 		return true;
1359 
1360 	/* Or, we zap COWed pages only if the caller wants to */
1361 	return details->even_cows;
1362 }
1363 
1364 /* Decides whether we should zap this page with the page pointer specified */
1365 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1366 {
1367 	/* If we can make a decision without *page.. */
1368 	if (should_zap_cows(details))
1369 		return true;
1370 
1371 	/* E.g. the caller passes NULL for the case of a zero page */
1372 	if (!page)
1373 		return true;
1374 
1375 	/* Otherwise we should only zap non-anon pages */
1376 	return !PageAnon(page);
1377 }
1378 
1379 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1380 {
1381 	if (!details)
1382 		return false;
1383 
1384 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1385 }
1386 
1387 /*
1388  * This function makes sure that we'll replace the none pte with an uffd-wp
1389  * swap special pte marker when necessary. Must be with the pgtable lock held.
1390  */
1391 static inline void
1392 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1393 			      unsigned long addr, pte_t *pte,
1394 			      struct zap_details *details, pte_t pteval)
1395 {
1396 	if (zap_drop_file_uffd_wp(details))
1397 		return;
1398 
1399 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1400 }
1401 
1402 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1403 				struct vm_area_struct *vma, pmd_t *pmd,
1404 				unsigned long addr, unsigned long end,
1405 				struct zap_details *details)
1406 {
1407 	struct mm_struct *mm = tlb->mm;
1408 	int force_flush = 0;
1409 	int rss[NR_MM_COUNTERS];
1410 	spinlock_t *ptl;
1411 	pte_t *start_pte;
1412 	pte_t *pte;
1413 	swp_entry_t entry;
1414 
1415 	tlb_change_page_size(tlb, PAGE_SIZE);
1416 again:
1417 	init_rss_vec(rss);
1418 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1419 	pte = start_pte;
1420 	flush_tlb_batched_pending(mm);
1421 	arch_enter_lazy_mmu_mode();
1422 	do {
1423 		pte_t ptent = *pte;
1424 		struct page *page;
1425 
1426 		if (pte_none(ptent))
1427 			continue;
1428 
1429 		if (need_resched())
1430 			break;
1431 
1432 		if (pte_present(ptent)) {
1433 			page = vm_normal_page(vma, addr, ptent);
1434 			if (unlikely(!should_zap_page(details, page)))
1435 				continue;
1436 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1437 							tlb->fullmm);
1438 			tlb_remove_tlb_entry(tlb, pte, addr);
1439 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1440 						      ptent);
1441 			if (unlikely(!page))
1442 				continue;
1443 
1444 			if (!PageAnon(page)) {
1445 				if (pte_dirty(ptent)) {
1446 					force_flush = 1;
1447 					set_page_dirty(page);
1448 				}
1449 				if (pte_young(ptent) &&
1450 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1451 					mark_page_accessed(page);
1452 			}
1453 			rss[mm_counter(page)]--;
1454 			page_remove_rmap(page, vma, false);
1455 			if (unlikely(page_mapcount(page) < 0))
1456 				print_bad_pte(vma, addr, ptent, page);
1457 			if (unlikely(__tlb_remove_page(tlb, page))) {
1458 				force_flush = 1;
1459 				addr += PAGE_SIZE;
1460 				break;
1461 			}
1462 			continue;
1463 		}
1464 
1465 		entry = pte_to_swp_entry(ptent);
1466 		if (is_device_private_entry(entry) ||
1467 		    is_device_exclusive_entry(entry)) {
1468 			page = pfn_swap_entry_to_page(entry);
1469 			if (unlikely(!should_zap_page(details, page)))
1470 				continue;
1471 			/*
1472 			 * Both device private/exclusive mappings should only
1473 			 * work with anonymous page so far, so we don't need to
1474 			 * consider uffd-wp bit when zap. For more information,
1475 			 * see zap_install_uffd_wp_if_needed().
1476 			 */
1477 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1478 			rss[mm_counter(page)]--;
1479 			if (is_device_private_entry(entry))
1480 				page_remove_rmap(page, vma, false);
1481 			put_page(page);
1482 		} else if (!non_swap_entry(entry)) {
1483 			/* Genuine swap entry, hence a private anon page */
1484 			if (!should_zap_cows(details))
1485 				continue;
1486 			rss[MM_SWAPENTS]--;
1487 			if (unlikely(!free_swap_and_cache(entry)))
1488 				print_bad_pte(vma, addr, ptent, NULL);
1489 		} else if (is_migration_entry(entry)) {
1490 			page = pfn_swap_entry_to_page(entry);
1491 			if (!should_zap_page(details, page))
1492 				continue;
1493 			rss[mm_counter(page)]--;
1494 		} else if (pte_marker_entry_uffd_wp(entry)) {
1495 			/* Only drop the uffd-wp marker if explicitly requested */
1496 			if (!zap_drop_file_uffd_wp(details))
1497 				continue;
1498 		} else if (is_hwpoison_entry(entry) ||
1499 			   is_swapin_error_entry(entry)) {
1500 			if (!should_zap_cows(details))
1501 				continue;
1502 		} else {
1503 			/* We should have covered all the swap entry types */
1504 			WARN_ON_ONCE(1);
1505 		}
1506 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1507 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1508 	} while (pte++, addr += PAGE_SIZE, addr != end);
1509 
1510 	add_mm_rss_vec(mm, rss);
1511 	arch_leave_lazy_mmu_mode();
1512 
1513 	/* Do the actual TLB flush before dropping ptl */
1514 	if (force_flush)
1515 		tlb_flush_mmu_tlbonly(tlb);
1516 	pte_unmap_unlock(start_pte, ptl);
1517 
1518 	/*
1519 	 * If we forced a TLB flush (either due to running out of
1520 	 * batch buffers or because we needed to flush dirty TLB
1521 	 * entries before releasing the ptl), free the batched
1522 	 * memory too. Restart if we didn't do everything.
1523 	 */
1524 	if (force_flush) {
1525 		force_flush = 0;
1526 		tlb_flush_mmu(tlb);
1527 	}
1528 
1529 	if (addr != end) {
1530 		cond_resched();
1531 		goto again;
1532 	}
1533 
1534 	return addr;
1535 }
1536 
1537 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1538 				struct vm_area_struct *vma, pud_t *pud,
1539 				unsigned long addr, unsigned long end,
1540 				struct zap_details *details)
1541 {
1542 	pmd_t *pmd;
1543 	unsigned long next;
1544 
1545 	pmd = pmd_offset(pud, addr);
1546 	do {
1547 		next = pmd_addr_end(addr, end);
1548 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1549 			if (next - addr != HPAGE_PMD_SIZE)
1550 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1551 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1552 				goto next;
1553 			/* fall through */
1554 		} else if (details && details->single_folio &&
1555 			   folio_test_pmd_mappable(details->single_folio) &&
1556 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1557 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1558 			/*
1559 			 * Take and drop THP pmd lock so that we cannot return
1560 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1561 			 * but not yet decremented compound_mapcount().
1562 			 */
1563 			spin_unlock(ptl);
1564 		}
1565 
1566 		/*
1567 		 * Here there can be other concurrent MADV_DONTNEED or
1568 		 * trans huge page faults running, and if the pmd is
1569 		 * none or trans huge it can change under us. This is
1570 		 * because MADV_DONTNEED holds the mmap_lock in read
1571 		 * mode.
1572 		 */
1573 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1574 			goto next;
1575 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1576 next:
1577 		cond_resched();
1578 	} while (pmd++, addr = next, addr != end);
1579 
1580 	return addr;
1581 }
1582 
1583 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1584 				struct vm_area_struct *vma, p4d_t *p4d,
1585 				unsigned long addr, unsigned long end,
1586 				struct zap_details *details)
1587 {
1588 	pud_t *pud;
1589 	unsigned long next;
1590 
1591 	pud = pud_offset(p4d, addr);
1592 	do {
1593 		next = pud_addr_end(addr, end);
1594 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1595 			if (next - addr != HPAGE_PUD_SIZE) {
1596 				mmap_assert_locked(tlb->mm);
1597 				split_huge_pud(vma, pud, addr);
1598 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1599 				goto next;
1600 			/* fall through */
1601 		}
1602 		if (pud_none_or_clear_bad(pud))
1603 			continue;
1604 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1605 next:
1606 		cond_resched();
1607 	} while (pud++, addr = next, addr != end);
1608 
1609 	return addr;
1610 }
1611 
1612 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1613 				struct vm_area_struct *vma, pgd_t *pgd,
1614 				unsigned long addr, unsigned long end,
1615 				struct zap_details *details)
1616 {
1617 	p4d_t *p4d;
1618 	unsigned long next;
1619 
1620 	p4d = p4d_offset(pgd, addr);
1621 	do {
1622 		next = p4d_addr_end(addr, end);
1623 		if (p4d_none_or_clear_bad(p4d))
1624 			continue;
1625 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1626 	} while (p4d++, addr = next, addr != end);
1627 
1628 	return addr;
1629 }
1630 
1631 void unmap_page_range(struct mmu_gather *tlb,
1632 			     struct vm_area_struct *vma,
1633 			     unsigned long addr, unsigned long end,
1634 			     struct zap_details *details)
1635 {
1636 	pgd_t *pgd;
1637 	unsigned long next;
1638 
1639 	BUG_ON(addr >= end);
1640 	tlb_start_vma(tlb, vma);
1641 	pgd = pgd_offset(vma->vm_mm, addr);
1642 	do {
1643 		next = pgd_addr_end(addr, end);
1644 		if (pgd_none_or_clear_bad(pgd))
1645 			continue;
1646 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1647 	} while (pgd++, addr = next, addr != end);
1648 	tlb_end_vma(tlb, vma);
1649 }
1650 
1651 
1652 static void unmap_single_vma(struct mmu_gather *tlb,
1653 		struct vm_area_struct *vma, unsigned long start_addr,
1654 		unsigned long end_addr,
1655 		struct zap_details *details)
1656 {
1657 	unsigned long start = max(vma->vm_start, start_addr);
1658 	unsigned long end;
1659 
1660 	if (start >= vma->vm_end)
1661 		return;
1662 	end = min(vma->vm_end, end_addr);
1663 	if (end <= vma->vm_start)
1664 		return;
1665 
1666 	if (vma->vm_file)
1667 		uprobe_munmap(vma, start, end);
1668 
1669 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1670 		untrack_pfn(vma, 0, 0);
1671 
1672 	if (start != end) {
1673 		if (unlikely(is_vm_hugetlb_page(vma))) {
1674 			/*
1675 			 * It is undesirable to test vma->vm_file as it
1676 			 * should be non-null for valid hugetlb area.
1677 			 * However, vm_file will be NULL in the error
1678 			 * cleanup path of mmap_region. When
1679 			 * hugetlbfs ->mmap method fails,
1680 			 * mmap_region() nullifies vma->vm_file
1681 			 * before calling this function to clean up.
1682 			 * Since no pte has actually been setup, it is
1683 			 * safe to do nothing in this case.
1684 			 */
1685 			if (vma->vm_file) {
1686 				zap_flags_t zap_flags = details ?
1687 				    details->zap_flags : 0;
1688 				i_mmap_lock_write(vma->vm_file->f_mapping);
1689 				__unmap_hugepage_range_final(tlb, vma, start, end,
1690 							     NULL, zap_flags);
1691 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1692 			}
1693 		} else
1694 			unmap_page_range(tlb, vma, start, end, details);
1695 	}
1696 }
1697 
1698 /**
1699  * unmap_vmas - unmap a range of memory covered by a list of vma's
1700  * @tlb: address of the caller's struct mmu_gather
1701  * @vma: the starting vma
1702  * @start_addr: virtual address at which to start unmapping
1703  * @end_addr: virtual address at which to end unmapping
1704  *
1705  * Unmap all pages in the vma list.
1706  *
1707  * Only addresses between `start' and `end' will be unmapped.
1708  *
1709  * The VMA list must be sorted in ascending virtual address order.
1710  *
1711  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1712  * range after unmap_vmas() returns.  So the only responsibility here is to
1713  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1714  * drops the lock and schedules.
1715  */
1716 void unmap_vmas(struct mmu_gather *tlb,
1717 		struct vm_area_struct *vma, unsigned long start_addr,
1718 		unsigned long end_addr)
1719 {
1720 	struct mmu_notifier_range range;
1721 	struct zap_details details = {
1722 		.zap_flags = ZAP_FLAG_DROP_MARKER,
1723 		/* Careful - we need to zap private pages too! */
1724 		.even_cows = true,
1725 	};
1726 
1727 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1728 				start_addr, end_addr);
1729 	mmu_notifier_invalidate_range_start(&range);
1730 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1731 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1732 	mmu_notifier_invalidate_range_end(&range);
1733 }
1734 
1735 /**
1736  * zap_page_range - remove user pages in a given range
1737  * @vma: vm_area_struct holding the applicable pages
1738  * @start: starting address of pages to zap
1739  * @size: number of bytes to zap
1740  *
1741  * Caller must protect the VMA list
1742  */
1743 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1744 		unsigned long size)
1745 {
1746 	struct mmu_notifier_range range;
1747 	struct mmu_gather tlb;
1748 
1749 	lru_add_drain();
1750 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1751 				start, start + size);
1752 	tlb_gather_mmu(&tlb, vma->vm_mm);
1753 	update_hiwater_rss(vma->vm_mm);
1754 	mmu_notifier_invalidate_range_start(&range);
1755 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1756 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1757 	mmu_notifier_invalidate_range_end(&range);
1758 	tlb_finish_mmu(&tlb);
1759 }
1760 
1761 /**
1762  * zap_page_range_single - remove user pages in a given range
1763  * @vma: vm_area_struct holding the applicable pages
1764  * @address: starting address of pages to zap
1765  * @size: number of bytes to zap
1766  * @details: details of shared cache invalidation
1767  *
1768  * The range must fit into one VMA.
1769  */
1770 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1771 		unsigned long size, struct zap_details *details)
1772 {
1773 	struct mmu_notifier_range range;
1774 	struct mmu_gather tlb;
1775 
1776 	lru_add_drain();
1777 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1778 				address, address + size);
1779 	tlb_gather_mmu(&tlb, vma->vm_mm);
1780 	update_hiwater_rss(vma->vm_mm);
1781 	mmu_notifier_invalidate_range_start(&range);
1782 	unmap_single_vma(&tlb, vma, address, range.end, details);
1783 	mmu_notifier_invalidate_range_end(&range);
1784 	tlb_finish_mmu(&tlb);
1785 }
1786 
1787 /**
1788  * zap_vma_ptes - remove ptes mapping the vma
1789  * @vma: vm_area_struct holding ptes to be zapped
1790  * @address: starting address of pages to zap
1791  * @size: number of bytes to zap
1792  *
1793  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1794  *
1795  * The entire address range must be fully contained within the vma.
1796  *
1797  */
1798 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1799 		unsigned long size)
1800 {
1801 	if (!range_in_vma(vma, address, address + size) ||
1802 	    		!(vma->vm_flags & VM_PFNMAP))
1803 		return;
1804 
1805 	zap_page_range_single(vma, address, size, NULL);
1806 }
1807 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1808 
1809 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1810 {
1811 	pgd_t *pgd;
1812 	p4d_t *p4d;
1813 	pud_t *pud;
1814 	pmd_t *pmd;
1815 
1816 	pgd = pgd_offset(mm, addr);
1817 	p4d = p4d_alloc(mm, pgd, addr);
1818 	if (!p4d)
1819 		return NULL;
1820 	pud = pud_alloc(mm, p4d, addr);
1821 	if (!pud)
1822 		return NULL;
1823 	pmd = pmd_alloc(mm, pud, addr);
1824 	if (!pmd)
1825 		return NULL;
1826 
1827 	VM_BUG_ON(pmd_trans_huge(*pmd));
1828 	return pmd;
1829 }
1830 
1831 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1832 			spinlock_t **ptl)
1833 {
1834 	pmd_t *pmd = walk_to_pmd(mm, addr);
1835 
1836 	if (!pmd)
1837 		return NULL;
1838 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1839 }
1840 
1841 static int validate_page_before_insert(struct page *page)
1842 {
1843 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1844 		return -EINVAL;
1845 	flush_dcache_page(page);
1846 	return 0;
1847 }
1848 
1849 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1850 			unsigned long addr, struct page *page, pgprot_t prot)
1851 {
1852 	if (!pte_none(*pte))
1853 		return -EBUSY;
1854 	/* Ok, finally just insert the thing.. */
1855 	get_page(page);
1856 	inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1857 	page_add_file_rmap(page, vma, false);
1858 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1859 	return 0;
1860 }
1861 
1862 /*
1863  * This is the old fallback for page remapping.
1864  *
1865  * For historical reasons, it only allows reserved pages. Only
1866  * old drivers should use this, and they needed to mark their
1867  * pages reserved for the old functions anyway.
1868  */
1869 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1870 			struct page *page, pgprot_t prot)
1871 {
1872 	int retval;
1873 	pte_t *pte;
1874 	spinlock_t *ptl;
1875 
1876 	retval = validate_page_before_insert(page);
1877 	if (retval)
1878 		goto out;
1879 	retval = -ENOMEM;
1880 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1881 	if (!pte)
1882 		goto out;
1883 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1884 	pte_unmap_unlock(pte, ptl);
1885 out:
1886 	return retval;
1887 }
1888 
1889 #ifdef pte_index
1890 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1891 			unsigned long addr, struct page *page, pgprot_t prot)
1892 {
1893 	int err;
1894 
1895 	if (!page_count(page))
1896 		return -EINVAL;
1897 	err = validate_page_before_insert(page);
1898 	if (err)
1899 		return err;
1900 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1901 }
1902 
1903 /* insert_pages() amortizes the cost of spinlock operations
1904  * when inserting pages in a loop. Arch *must* define pte_index.
1905  */
1906 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1907 			struct page **pages, unsigned long *num, pgprot_t prot)
1908 {
1909 	pmd_t *pmd = NULL;
1910 	pte_t *start_pte, *pte;
1911 	spinlock_t *pte_lock;
1912 	struct mm_struct *const mm = vma->vm_mm;
1913 	unsigned long curr_page_idx = 0;
1914 	unsigned long remaining_pages_total = *num;
1915 	unsigned long pages_to_write_in_pmd;
1916 	int ret;
1917 more:
1918 	ret = -EFAULT;
1919 	pmd = walk_to_pmd(mm, addr);
1920 	if (!pmd)
1921 		goto out;
1922 
1923 	pages_to_write_in_pmd = min_t(unsigned long,
1924 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1925 
1926 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1927 	ret = -ENOMEM;
1928 	if (pte_alloc(mm, pmd))
1929 		goto out;
1930 
1931 	while (pages_to_write_in_pmd) {
1932 		int pte_idx = 0;
1933 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1934 
1935 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1936 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1937 			int err = insert_page_in_batch_locked(vma, pte,
1938 				addr, pages[curr_page_idx], prot);
1939 			if (unlikely(err)) {
1940 				pte_unmap_unlock(start_pte, pte_lock);
1941 				ret = err;
1942 				remaining_pages_total -= pte_idx;
1943 				goto out;
1944 			}
1945 			addr += PAGE_SIZE;
1946 			++curr_page_idx;
1947 		}
1948 		pte_unmap_unlock(start_pte, pte_lock);
1949 		pages_to_write_in_pmd -= batch_size;
1950 		remaining_pages_total -= batch_size;
1951 	}
1952 	if (remaining_pages_total)
1953 		goto more;
1954 	ret = 0;
1955 out:
1956 	*num = remaining_pages_total;
1957 	return ret;
1958 }
1959 #endif  /* ifdef pte_index */
1960 
1961 /**
1962  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1963  * @vma: user vma to map to
1964  * @addr: target start user address of these pages
1965  * @pages: source kernel pages
1966  * @num: in: number of pages to map. out: number of pages that were *not*
1967  * mapped. (0 means all pages were successfully mapped).
1968  *
1969  * Preferred over vm_insert_page() when inserting multiple pages.
1970  *
1971  * In case of error, we may have mapped a subset of the provided
1972  * pages. It is the caller's responsibility to account for this case.
1973  *
1974  * The same restrictions apply as in vm_insert_page().
1975  */
1976 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1977 			struct page **pages, unsigned long *num)
1978 {
1979 #ifdef pte_index
1980 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1981 
1982 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1983 		return -EFAULT;
1984 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1985 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1986 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1987 		vma->vm_flags |= VM_MIXEDMAP;
1988 	}
1989 	/* Defer page refcount checking till we're about to map that page. */
1990 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1991 #else
1992 	unsigned long idx = 0, pgcount = *num;
1993 	int err = -EINVAL;
1994 
1995 	for (; idx < pgcount; ++idx) {
1996 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1997 		if (err)
1998 			break;
1999 	}
2000 	*num = pgcount - idx;
2001 	return err;
2002 #endif  /* ifdef pte_index */
2003 }
2004 EXPORT_SYMBOL(vm_insert_pages);
2005 
2006 /**
2007  * vm_insert_page - insert single page into user vma
2008  * @vma: user vma to map to
2009  * @addr: target user address of this page
2010  * @page: source kernel page
2011  *
2012  * This allows drivers to insert individual pages they've allocated
2013  * into a user vma.
2014  *
2015  * The page has to be a nice clean _individual_ kernel allocation.
2016  * If you allocate a compound page, you need to have marked it as
2017  * such (__GFP_COMP), or manually just split the page up yourself
2018  * (see split_page()).
2019  *
2020  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2021  * took an arbitrary page protection parameter. This doesn't allow
2022  * that. Your vma protection will have to be set up correctly, which
2023  * means that if you want a shared writable mapping, you'd better
2024  * ask for a shared writable mapping!
2025  *
2026  * The page does not need to be reserved.
2027  *
2028  * Usually this function is called from f_op->mmap() handler
2029  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2030  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2031  * function from other places, for example from page-fault handler.
2032  *
2033  * Return: %0 on success, negative error code otherwise.
2034  */
2035 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2036 			struct page *page)
2037 {
2038 	if (addr < vma->vm_start || addr >= vma->vm_end)
2039 		return -EFAULT;
2040 	if (!page_count(page))
2041 		return -EINVAL;
2042 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2043 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2044 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2045 		vma->vm_flags |= VM_MIXEDMAP;
2046 	}
2047 	return insert_page(vma, addr, page, vma->vm_page_prot);
2048 }
2049 EXPORT_SYMBOL(vm_insert_page);
2050 
2051 /*
2052  * __vm_map_pages - maps range of kernel pages into user vma
2053  * @vma: user vma to map to
2054  * @pages: pointer to array of source kernel pages
2055  * @num: number of pages in page array
2056  * @offset: user's requested vm_pgoff
2057  *
2058  * This allows drivers to map range of kernel pages into a user vma.
2059  *
2060  * Return: 0 on success and error code otherwise.
2061  */
2062 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2063 				unsigned long num, unsigned long offset)
2064 {
2065 	unsigned long count = vma_pages(vma);
2066 	unsigned long uaddr = vma->vm_start;
2067 	int ret, i;
2068 
2069 	/* Fail if the user requested offset is beyond the end of the object */
2070 	if (offset >= num)
2071 		return -ENXIO;
2072 
2073 	/* Fail if the user requested size exceeds available object size */
2074 	if (count > num - offset)
2075 		return -ENXIO;
2076 
2077 	for (i = 0; i < count; i++) {
2078 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2079 		if (ret < 0)
2080 			return ret;
2081 		uaddr += PAGE_SIZE;
2082 	}
2083 
2084 	return 0;
2085 }
2086 
2087 /**
2088  * vm_map_pages - maps range of kernel pages starts with non zero offset
2089  * @vma: user vma to map to
2090  * @pages: pointer to array of source kernel pages
2091  * @num: number of pages in page array
2092  *
2093  * Maps an object consisting of @num pages, catering for the user's
2094  * requested vm_pgoff
2095  *
2096  * If we fail to insert any page into the vma, the function will return
2097  * immediately leaving any previously inserted pages present.  Callers
2098  * from the mmap handler may immediately return the error as their caller
2099  * will destroy the vma, removing any successfully inserted pages. Other
2100  * callers should make their own arrangements for calling unmap_region().
2101  *
2102  * Context: Process context. Called by mmap handlers.
2103  * Return: 0 on success and error code otherwise.
2104  */
2105 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2106 				unsigned long num)
2107 {
2108 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2109 }
2110 EXPORT_SYMBOL(vm_map_pages);
2111 
2112 /**
2113  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2114  * @vma: user vma to map to
2115  * @pages: pointer to array of source kernel pages
2116  * @num: number of pages in page array
2117  *
2118  * Similar to vm_map_pages(), except that it explicitly sets the offset
2119  * to 0. This function is intended for the drivers that did not consider
2120  * vm_pgoff.
2121  *
2122  * Context: Process context. Called by mmap handlers.
2123  * Return: 0 on success and error code otherwise.
2124  */
2125 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2126 				unsigned long num)
2127 {
2128 	return __vm_map_pages(vma, pages, num, 0);
2129 }
2130 EXPORT_SYMBOL(vm_map_pages_zero);
2131 
2132 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2133 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2134 {
2135 	struct mm_struct *mm = vma->vm_mm;
2136 	pte_t *pte, entry;
2137 	spinlock_t *ptl;
2138 
2139 	pte = get_locked_pte(mm, addr, &ptl);
2140 	if (!pte)
2141 		return VM_FAULT_OOM;
2142 	if (!pte_none(*pte)) {
2143 		if (mkwrite) {
2144 			/*
2145 			 * For read faults on private mappings the PFN passed
2146 			 * in may not match the PFN we have mapped if the
2147 			 * mapped PFN is a writeable COW page.  In the mkwrite
2148 			 * case we are creating a writable PTE for a shared
2149 			 * mapping and we expect the PFNs to match. If they
2150 			 * don't match, we are likely racing with block
2151 			 * allocation and mapping invalidation so just skip the
2152 			 * update.
2153 			 */
2154 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2155 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2156 				goto out_unlock;
2157 			}
2158 			entry = pte_mkyoung(*pte);
2159 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2160 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2161 				update_mmu_cache(vma, addr, pte);
2162 		}
2163 		goto out_unlock;
2164 	}
2165 
2166 	/* Ok, finally just insert the thing.. */
2167 	if (pfn_t_devmap(pfn))
2168 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2169 	else
2170 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2171 
2172 	if (mkwrite) {
2173 		entry = pte_mkyoung(entry);
2174 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2175 	}
2176 
2177 	set_pte_at(mm, addr, pte, entry);
2178 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2179 
2180 out_unlock:
2181 	pte_unmap_unlock(pte, ptl);
2182 	return VM_FAULT_NOPAGE;
2183 }
2184 
2185 /**
2186  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2187  * @vma: user vma to map to
2188  * @addr: target user address of this page
2189  * @pfn: source kernel pfn
2190  * @pgprot: pgprot flags for the inserted page
2191  *
2192  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2193  * to override pgprot on a per-page basis.
2194  *
2195  * This only makes sense for IO mappings, and it makes no sense for
2196  * COW mappings.  In general, using multiple vmas is preferable;
2197  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2198  * impractical.
2199  *
2200  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2201  * a value of @pgprot different from that of @vma->vm_page_prot.
2202  *
2203  * Context: Process context.  May allocate using %GFP_KERNEL.
2204  * Return: vm_fault_t value.
2205  */
2206 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2207 			unsigned long pfn, pgprot_t pgprot)
2208 {
2209 	/*
2210 	 * Technically, architectures with pte_special can avoid all these
2211 	 * restrictions (same for remap_pfn_range).  However we would like
2212 	 * consistency in testing and feature parity among all, so we should
2213 	 * try to keep these invariants in place for everybody.
2214 	 */
2215 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2216 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2217 						(VM_PFNMAP|VM_MIXEDMAP));
2218 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2219 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2220 
2221 	if (addr < vma->vm_start || addr >= vma->vm_end)
2222 		return VM_FAULT_SIGBUS;
2223 
2224 	if (!pfn_modify_allowed(pfn, pgprot))
2225 		return VM_FAULT_SIGBUS;
2226 
2227 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2228 
2229 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2230 			false);
2231 }
2232 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2233 
2234 /**
2235  * vmf_insert_pfn - insert single pfn into user vma
2236  * @vma: user vma to map to
2237  * @addr: target user address of this page
2238  * @pfn: source kernel pfn
2239  *
2240  * Similar to vm_insert_page, this allows drivers to insert individual pages
2241  * they've allocated into a user vma. Same comments apply.
2242  *
2243  * This function should only be called from a vm_ops->fault handler, and
2244  * in that case the handler should return the result of this function.
2245  *
2246  * vma cannot be a COW mapping.
2247  *
2248  * As this is called only for pages that do not currently exist, we
2249  * do not need to flush old virtual caches or the TLB.
2250  *
2251  * Context: Process context.  May allocate using %GFP_KERNEL.
2252  * Return: vm_fault_t value.
2253  */
2254 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2255 			unsigned long pfn)
2256 {
2257 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2258 }
2259 EXPORT_SYMBOL(vmf_insert_pfn);
2260 
2261 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2262 {
2263 	/* these checks mirror the abort conditions in vm_normal_page */
2264 	if (vma->vm_flags & VM_MIXEDMAP)
2265 		return true;
2266 	if (pfn_t_devmap(pfn))
2267 		return true;
2268 	if (pfn_t_special(pfn))
2269 		return true;
2270 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2271 		return true;
2272 	return false;
2273 }
2274 
2275 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2276 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2277 		bool mkwrite)
2278 {
2279 	int err;
2280 
2281 	BUG_ON(!vm_mixed_ok(vma, pfn));
2282 
2283 	if (addr < vma->vm_start || addr >= vma->vm_end)
2284 		return VM_FAULT_SIGBUS;
2285 
2286 	track_pfn_insert(vma, &pgprot, pfn);
2287 
2288 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2289 		return VM_FAULT_SIGBUS;
2290 
2291 	/*
2292 	 * If we don't have pte special, then we have to use the pfn_valid()
2293 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2294 	 * refcount the page if pfn_valid is true (hence insert_page rather
2295 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2296 	 * without pte special, it would there be refcounted as a normal page.
2297 	 */
2298 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2299 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2300 		struct page *page;
2301 
2302 		/*
2303 		 * At this point we are committed to insert_page()
2304 		 * regardless of whether the caller specified flags that
2305 		 * result in pfn_t_has_page() == false.
2306 		 */
2307 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2308 		err = insert_page(vma, addr, page, pgprot);
2309 	} else {
2310 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2311 	}
2312 
2313 	if (err == -ENOMEM)
2314 		return VM_FAULT_OOM;
2315 	if (err < 0 && err != -EBUSY)
2316 		return VM_FAULT_SIGBUS;
2317 
2318 	return VM_FAULT_NOPAGE;
2319 }
2320 
2321 /**
2322  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2323  * @vma: user vma to map to
2324  * @addr: target user address of this page
2325  * @pfn: source kernel pfn
2326  * @pgprot: pgprot flags for the inserted page
2327  *
2328  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2329  * to override pgprot on a per-page basis.
2330  *
2331  * Typically this function should be used by drivers to set caching- and
2332  * encryption bits different than those of @vma->vm_page_prot, because
2333  * the caching- or encryption mode may not be known at mmap() time.
2334  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2335  * to set caching and encryption bits for those vmas (except for COW pages).
2336  * This is ensured by core vm only modifying these page table entries using
2337  * functions that don't touch caching- or encryption bits, using pte_modify()
2338  * if needed. (See for example mprotect()).
2339  * Also when new page-table entries are created, this is only done using the
2340  * fault() callback, and never using the value of vma->vm_page_prot,
2341  * except for page-table entries that point to anonymous pages as the result
2342  * of COW.
2343  *
2344  * Context: Process context.  May allocate using %GFP_KERNEL.
2345  * Return: vm_fault_t value.
2346  */
2347 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2348 				 pfn_t pfn, pgprot_t pgprot)
2349 {
2350 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2351 }
2352 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2353 
2354 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2355 		pfn_t pfn)
2356 {
2357 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2358 }
2359 EXPORT_SYMBOL(vmf_insert_mixed);
2360 
2361 /*
2362  *  If the insertion of PTE failed because someone else already added a
2363  *  different entry in the mean time, we treat that as success as we assume
2364  *  the same entry was actually inserted.
2365  */
2366 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2367 		unsigned long addr, pfn_t pfn)
2368 {
2369 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2370 }
2371 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2372 
2373 /*
2374  * maps a range of physical memory into the requested pages. the old
2375  * mappings are removed. any references to nonexistent pages results
2376  * in null mappings (currently treated as "copy-on-access")
2377  */
2378 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2379 			unsigned long addr, unsigned long end,
2380 			unsigned long pfn, pgprot_t prot)
2381 {
2382 	pte_t *pte, *mapped_pte;
2383 	spinlock_t *ptl;
2384 	int err = 0;
2385 
2386 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2387 	if (!pte)
2388 		return -ENOMEM;
2389 	arch_enter_lazy_mmu_mode();
2390 	do {
2391 		BUG_ON(!pte_none(*pte));
2392 		if (!pfn_modify_allowed(pfn, prot)) {
2393 			err = -EACCES;
2394 			break;
2395 		}
2396 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2397 		pfn++;
2398 	} while (pte++, addr += PAGE_SIZE, addr != end);
2399 	arch_leave_lazy_mmu_mode();
2400 	pte_unmap_unlock(mapped_pte, ptl);
2401 	return err;
2402 }
2403 
2404 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2405 			unsigned long addr, unsigned long end,
2406 			unsigned long pfn, pgprot_t prot)
2407 {
2408 	pmd_t *pmd;
2409 	unsigned long next;
2410 	int err;
2411 
2412 	pfn -= addr >> PAGE_SHIFT;
2413 	pmd = pmd_alloc(mm, pud, addr);
2414 	if (!pmd)
2415 		return -ENOMEM;
2416 	VM_BUG_ON(pmd_trans_huge(*pmd));
2417 	do {
2418 		next = pmd_addr_end(addr, end);
2419 		err = remap_pte_range(mm, pmd, addr, next,
2420 				pfn + (addr >> PAGE_SHIFT), prot);
2421 		if (err)
2422 			return err;
2423 	} while (pmd++, addr = next, addr != end);
2424 	return 0;
2425 }
2426 
2427 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2428 			unsigned long addr, unsigned long end,
2429 			unsigned long pfn, pgprot_t prot)
2430 {
2431 	pud_t *pud;
2432 	unsigned long next;
2433 	int err;
2434 
2435 	pfn -= addr >> PAGE_SHIFT;
2436 	pud = pud_alloc(mm, p4d, addr);
2437 	if (!pud)
2438 		return -ENOMEM;
2439 	do {
2440 		next = pud_addr_end(addr, end);
2441 		err = remap_pmd_range(mm, pud, addr, next,
2442 				pfn + (addr >> PAGE_SHIFT), prot);
2443 		if (err)
2444 			return err;
2445 	} while (pud++, addr = next, addr != end);
2446 	return 0;
2447 }
2448 
2449 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2450 			unsigned long addr, unsigned long end,
2451 			unsigned long pfn, pgprot_t prot)
2452 {
2453 	p4d_t *p4d;
2454 	unsigned long next;
2455 	int err;
2456 
2457 	pfn -= addr >> PAGE_SHIFT;
2458 	p4d = p4d_alloc(mm, pgd, addr);
2459 	if (!p4d)
2460 		return -ENOMEM;
2461 	do {
2462 		next = p4d_addr_end(addr, end);
2463 		err = remap_pud_range(mm, p4d, addr, next,
2464 				pfn + (addr >> PAGE_SHIFT), prot);
2465 		if (err)
2466 			return err;
2467 	} while (p4d++, addr = next, addr != end);
2468 	return 0;
2469 }
2470 
2471 /*
2472  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2473  * must have pre-validated the caching bits of the pgprot_t.
2474  */
2475 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2476 		unsigned long pfn, unsigned long size, pgprot_t prot)
2477 {
2478 	pgd_t *pgd;
2479 	unsigned long next;
2480 	unsigned long end = addr + PAGE_ALIGN(size);
2481 	struct mm_struct *mm = vma->vm_mm;
2482 	int err;
2483 
2484 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2485 		return -EINVAL;
2486 
2487 	/*
2488 	 * Physically remapped pages are special. Tell the
2489 	 * rest of the world about it:
2490 	 *   VM_IO tells people not to look at these pages
2491 	 *	(accesses can have side effects).
2492 	 *   VM_PFNMAP tells the core MM that the base pages are just
2493 	 *	raw PFN mappings, and do not have a "struct page" associated
2494 	 *	with them.
2495 	 *   VM_DONTEXPAND
2496 	 *      Disable vma merging and expanding with mremap().
2497 	 *   VM_DONTDUMP
2498 	 *      Omit vma from core dump, even when VM_IO turned off.
2499 	 *
2500 	 * There's a horrible special case to handle copy-on-write
2501 	 * behaviour that some programs depend on. We mark the "original"
2502 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2503 	 * See vm_normal_page() for details.
2504 	 */
2505 	if (is_cow_mapping(vma->vm_flags)) {
2506 		if (addr != vma->vm_start || end != vma->vm_end)
2507 			return -EINVAL;
2508 		vma->vm_pgoff = pfn;
2509 	}
2510 
2511 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2512 
2513 	BUG_ON(addr >= end);
2514 	pfn -= addr >> PAGE_SHIFT;
2515 	pgd = pgd_offset(mm, addr);
2516 	flush_cache_range(vma, addr, end);
2517 	do {
2518 		next = pgd_addr_end(addr, end);
2519 		err = remap_p4d_range(mm, pgd, addr, next,
2520 				pfn + (addr >> PAGE_SHIFT), prot);
2521 		if (err)
2522 			return err;
2523 	} while (pgd++, addr = next, addr != end);
2524 
2525 	return 0;
2526 }
2527 
2528 /**
2529  * remap_pfn_range - remap kernel memory to userspace
2530  * @vma: user vma to map to
2531  * @addr: target page aligned user address to start at
2532  * @pfn: page frame number of kernel physical memory address
2533  * @size: size of mapping area
2534  * @prot: page protection flags for this mapping
2535  *
2536  * Note: this is only safe if the mm semaphore is held when called.
2537  *
2538  * Return: %0 on success, negative error code otherwise.
2539  */
2540 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2541 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2542 {
2543 	int err;
2544 
2545 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2546 	if (err)
2547 		return -EINVAL;
2548 
2549 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2550 	if (err)
2551 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2552 	return err;
2553 }
2554 EXPORT_SYMBOL(remap_pfn_range);
2555 
2556 /**
2557  * vm_iomap_memory - remap memory to userspace
2558  * @vma: user vma to map to
2559  * @start: start of the physical memory to be mapped
2560  * @len: size of area
2561  *
2562  * This is a simplified io_remap_pfn_range() for common driver use. The
2563  * driver just needs to give us the physical memory range to be mapped,
2564  * we'll figure out the rest from the vma information.
2565  *
2566  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2567  * whatever write-combining details or similar.
2568  *
2569  * Return: %0 on success, negative error code otherwise.
2570  */
2571 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2572 {
2573 	unsigned long vm_len, pfn, pages;
2574 
2575 	/* Check that the physical memory area passed in looks valid */
2576 	if (start + len < start)
2577 		return -EINVAL;
2578 	/*
2579 	 * You *really* shouldn't map things that aren't page-aligned,
2580 	 * but we've historically allowed it because IO memory might
2581 	 * just have smaller alignment.
2582 	 */
2583 	len += start & ~PAGE_MASK;
2584 	pfn = start >> PAGE_SHIFT;
2585 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2586 	if (pfn + pages < pfn)
2587 		return -EINVAL;
2588 
2589 	/* We start the mapping 'vm_pgoff' pages into the area */
2590 	if (vma->vm_pgoff > pages)
2591 		return -EINVAL;
2592 	pfn += vma->vm_pgoff;
2593 	pages -= vma->vm_pgoff;
2594 
2595 	/* Can we fit all of the mapping? */
2596 	vm_len = vma->vm_end - vma->vm_start;
2597 	if (vm_len >> PAGE_SHIFT > pages)
2598 		return -EINVAL;
2599 
2600 	/* Ok, let it rip */
2601 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2602 }
2603 EXPORT_SYMBOL(vm_iomap_memory);
2604 
2605 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2606 				     unsigned long addr, unsigned long end,
2607 				     pte_fn_t fn, void *data, bool create,
2608 				     pgtbl_mod_mask *mask)
2609 {
2610 	pte_t *pte, *mapped_pte;
2611 	int err = 0;
2612 	spinlock_t *ptl;
2613 
2614 	if (create) {
2615 		mapped_pte = pte = (mm == &init_mm) ?
2616 			pte_alloc_kernel_track(pmd, addr, mask) :
2617 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2618 		if (!pte)
2619 			return -ENOMEM;
2620 	} else {
2621 		mapped_pte = pte = (mm == &init_mm) ?
2622 			pte_offset_kernel(pmd, addr) :
2623 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2624 	}
2625 
2626 	BUG_ON(pmd_huge(*pmd));
2627 
2628 	arch_enter_lazy_mmu_mode();
2629 
2630 	if (fn) {
2631 		do {
2632 			if (create || !pte_none(*pte)) {
2633 				err = fn(pte++, addr, data);
2634 				if (err)
2635 					break;
2636 			}
2637 		} while (addr += PAGE_SIZE, addr != end);
2638 	}
2639 	*mask |= PGTBL_PTE_MODIFIED;
2640 
2641 	arch_leave_lazy_mmu_mode();
2642 
2643 	if (mm != &init_mm)
2644 		pte_unmap_unlock(mapped_pte, ptl);
2645 	return err;
2646 }
2647 
2648 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2649 				     unsigned long addr, unsigned long end,
2650 				     pte_fn_t fn, void *data, bool create,
2651 				     pgtbl_mod_mask *mask)
2652 {
2653 	pmd_t *pmd;
2654 	unsigned long next;
2655 	int err = 0;
2656 
2657 	BUG_ON(pud_huge(*pud));
2658 
2659 	if (create) {
2660 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2661 		if (!pmd)
2662 			return -ENOMEM;
2663 	} else {
2664 		pmd = pmd_offset(pud, addr);
2665 	}
2666 	do {
2667 		next = pmd_addr_end(addr, end);
2668 		if (pmd_none(*pmd) && !create)
2669 			continue;
2670 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2671 			return -EINVAL;
2672 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2673 			if (!create)
2674 				continue;
2675 			pmd_clear_bad(pmd);
2676 		}
2677 		err = apply_to_pte_range(mm, pmd, addr, next,
2678 					 fn, data, create, mask);
2679 		if (err)
2680 			break;
2681 	} while (pmd++, addr = next, addr != end);
2682 
2683 	return err;
2684 }
2685 
2686 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2687 				     unsigned long addr, unsigned long end,
2688 				     pte_fn_t fn, void *data, bool create,
2689 				     pgtbl_mod_mask *mask)
2690 {
2691 	pud_t *pud;
2692 	unsigned long next;
2693 	int err = 0;
2694 
2695 	if (create) {
2696 		pud = pud_alloc_track(mm, p4d, addr, mask);
2697 		if (!pud)
2698 			return -ENOMEM;
2699 	} else {
2700 		pud = pud_offset(p4d, addr);
2701 	}
2702 	do {
2703 		next = pud_addr_end(addr, end);
2704 		if (pud_none(*pud) && !create)
2705 			continue;
2706 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2707 			return -EINVAL;
2708 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2709 			if (!create)
2710 				continue;
2711 			pud_clear_bad(pud);
2712 		}
2713 		err = apply_to_pmd_range(mm, pud, addr, next,
2714 					 fn, data, create, mask);
2715 		if (err)
2716 			break;
2717 	} while (pud++, addr = next, addr != end);
2718 
2719 	return err;
2720 }
2721 
2722 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2723 				     unsigned long addr, unsigned long end,
2724 				     pte_fn_t fn, void *data, bool create,
2725 				     pgtbl_mod_mask *mask)
2726 {
2727 	p4d_t *p4d;
2728 	unsigned long next;
2729 	int err = 0;
2730 
2731 	if (create) {
2732 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2733 		if (!p4d)
2734 			return -ENOMEM;
2735 	} else {
2736 		p4d = p4d_offset(pgd, addr);
2737 	}
2738 	do {
2739 		next = p4d_addr_end(addr, end);
2740 		if (p4d_none(*p4d) && !create)
2741 			continue;
2742 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2743 			return -EINVAL;
2744 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2745 			if (!create)
2746 				continue;
2747 			p4d_clear_bad(p4d);
2748 		}
2749 		err = apply_to_pud_range(mm, p4d, addr, next,
2750 					 fn, data, create, mask);
2751 		if (err)
2752 			break;
2753 	} while (p4d++, addr = next, addr != end);
2754 
2755 	return err;
2756 }
2757 
2758 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2759 				 unsigned long size, pte_fn_t fn,
2760 				 void *data, bool create)
2761 {
2762 	pgd_t *pgd;
2763 	unsigned long start = addr, next;
2764 	unsigned long end = addr + size;
2765 	pgtbl_mod_mask mask = 0;
2766 	int err = 0;
2767 
2768 	if (WARN_ON(addr >= end))
2769 		return -EINVAL;
2770 
2771 	pgd = pgd_offset(mm, addr);
2772 	do {
2773 		next = pgd_addr_end(addr, end);
2774 		if (pgd_none(*pgd) && !create)
2775 			continue;
2776 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2777 			return -EINVAL;
2778 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2779 			if (!create)
2780 				continue;
2781 			pgd_clear_bad(pgd);
2782 		}
2783 		err = apply_to_p4d_range(mm, pgd, addr, next,
2784 					 fn, data, create, &mask);
2785 		if (err)
2786 			break;
2787 	} while (pgd++, addr = next, addr != end);
2788 
2789 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2790 		arch_sync_kernel_mappings(start, start + size);
2791 
2792 	return err;
2793 }
2794 
2795 /*
2796  * Scan a region of virtual memory, filling in page tables as necessary
2797  * and calling a provided function on each leaf page table.
2798  */
2799 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2800 			unsigned long size, pte_fn_t fn, void *data)
2801 {
2802 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2803 }
2804 EXPORT_SYMBOL_GPL(apply_to_page_range);
2805 
2806 /*
2807  * Scan a region of virtual memory, calling a provided function on
2808  * each leaf page table where it exists.
2809  *
2810  * Unlike apply_to_page_range, this does _not_ fill in page tables
2811  * where they are absent.
2812  */
2813 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2814 				 unsigned long size, pte_fn_t fn, void *data)
2815 {
2816 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2817 }
2818 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2819 
2820 /*
2821  * handle_pte_fault chooses page fault handler according to an entry which was
2822  * read non-atomically.  Before making any commitment, on those architectures
2823  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2824  * parts, do_swap_page must check under lock before unmapping the pte and
2825  * proceeding (but do_wp_page is only called after already making such a check;
2826  * and do_anonymous_page can safely check later on).
2827  */
2828 static inline int pte_unmap_same(struct vm_fault *vmf)
2829 {
2830 	int same = 1;
2831 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2832 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2833 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2834 		spin_lock(ptl);
2835 		same = pte_same(*vmf->pte, vmf->orig_pte);
2836 		spin_unlock(ptl);
2837 	}
2838 #endif
2839 	pte_unmap(vmf->pte);
2840 	vmf->pte = NULL;
2841 	return same;
2842 }
2843 
2844 static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2845 				       struct vm_fault *vmf)
2846 {
2847 	bool ret;
2848 	void *kaddr;
2849 	void __user *uaddr;
2850 	bool locked = false;
2851 	struct vm_area_struct *vma = vmf->vma;
2852 	struct mm_struct *mm = vma->vm_mm;
2853 	unsigned long addr = vmf->address;
2854 
2855 	if (likely(src)) {
2856 		copy_user_highpage(dst, src, addr, vma);
2857 		return true;
2858 	}
2859 
2860 	/*
2861 	 * If the source page was a PFN mapping, we don't have
2862 	 * a "struct page" for it. We do a best-effort copy by
2863 	 * just copying from the original user address. If that
2864 	 * fails, we just zero-fill it. Live with it.
2865 	 */
2866 	kaddr = kmap_atomic(dst);
2867 	uaddr = (void __user *)(addr & PAGE_MASK);
2868 
2869 	/*
2870 	 * On architectures with software "accessed" bits, we would
2871 	 * take a double page fault, so mark it accessed here.
2872 	 */
2873 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2874 		pte_t entry;
2875 
2876 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2877 		locked = true;
2878 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2879 			/*
2880 			 * Other thread has already handled the fault
2881 			 * and update local tlb only
2882 			 */
2883 			update_mmu_tlb(vma, addr, vmf->pte);
2884 			ret = false;
2885 			goto pte_unlock;
2886 		}
2887 
2888 		entry = pte_mkyoung(vmf->orig_pte);
2889 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2890 			update_mmu_cache(vma, addr, vmf->pte);
2891 	}
2892 
2893 	/*
2894 	 * This really shouldn't fail, because the page is there
2895 	 * in the page tables. But it might just be unreadable,
2896 	 * in which case we just give up and fill the result with
2897 	 * zeroes.
2898 	 */
2899 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2900 		if (locked)
2901 			goto warn;
2902 
2903 		/* Re-validate under PTL if the page is still mapped */
2904 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2905 		locked = true;
2906 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2907 			/* The PTE changed under us, update local tlb */
2908 			update_mmu_tlb(vma, addr, vmf->pte);
2909 			ret = false;
2910 			goto pte_unlock;
2911 		}
2912 
2913 		/*
2914 		 * The same page can be mapped back since last copy attempt.
2915 		 * Try to copy again under PTL.
2916 		 */
2917 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2918 			/*
2919 			 * Give a warn in case there can be some obscure
2920 			 * use-case
2921 			 */
2922 warn:
2923 			WARN_ON_ONCE(1);
2924 			clear_page(kaddr);
2925 		}
2926 	}
2927 
2928 	ret = true;
2929 
2930 pte_unlock:
2931 	if (locked)
2932 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2933 	kunmap_atomic(kaddr);
2934 	flush_dcache_page(dst);
2935 
2936 	return ret;
2937 }
2938 
2939 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2940 {
2941 	struct file *vm_file = vma->vm_file;
2942 
2943 	if (vm_file)
2944 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2945 
2946 	/*
2947 	 * Special mappings (e.g. VDSO) do not have any file so fake
2948 	 * a default GFP_KERNEL for them.
2949 	 */
2950 	return GFP_KERNEL;
2951 }
2952 
2953 /*
2954  * Notify the address space that the page is about to become writable so that
2955  * it can prohibit this or wait for the page to get into an appropriate state.
2956  *
2957  * We do this without the lock held, so that it can sleep if it needs to.
2958  */
2959 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2960 {
2961 	vm_fault_t ret;
2962 	struct page *page = vmf->page;
2963 	unsigned int old_flags = vmf->flags;
2964 
2965 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2966 
2967 	if (vmf->vma->vm_file &&
2968 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2969 		return VM_FAULT_SIGBUS;
2970 
2971 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2972 	/* Restore original flags so that caller is not surprised */
2973 	vmf->flags = old_flags;
2974 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2975 		return ret;
2976 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2977 		lock_page(page);
2978 		if (!page->mapping) {
2979 			unlock_page(page);
2980 			return 0; /* retry */
2981 		}
2982 		ret |= VM_FAULT_LOCKED;
2983 	} else
2984 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2985 	return ret;
2986 }
2987 
2988 /*
2989  * Handle dirtying of a page in shared file mapping on a write fault.
2990  *
2991  * The function expects the page to be locked and unlocks it.
2992  */
2993 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2994 {
2995 	struct vm_area_struct *vma = vmf->vma;
2996 	struct address_space *mapping;
2997 	struct page *page = vmf->page;
2998 	bool dirtied;
2999 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3000 
3001 	dirtied = set_page_dirty(page);
3002 	VM_BUG_ON_PAGE(PageAnon(page), page);
3003 	/*
3004 	 * Take a local copy of the address_space - page.mapping may be zeroed
3005 	 * by truncate after unlock_page().   The address_space itself remains
3006 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3007 	 * release semantics to prevent the compiler from undoing this copying.
3008 	 */
3009 	mapping = page_rmapping(page);
3010 	unlock_page(page);
3011 
3012 	if (!page_mkwrite)
3013 		file_update_time(vma->vm_file);
3014 
3015 	/*
3016 	 * Throttle page dirtying rate down to writeback speed.
3017 	 *
3018 	 * mapping may be NULL here because some device drivers do not
3019 	 * set page.mapping but still dirty their pages
3020 	 *
3021 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3022 	 * is pinning the mapping, as per above.
3023 	 */
3024 	if ((dirtied || page_mkwrite) && mapping) {
3025 		struct file *fpin;
3026 
3027 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3028 		balance_dirty_pages_ratelimited(mapping);
3029 		if (fpin) {
3030 			fput(fpin);
3031 			return VM_FAULT_COMPLETED;
3032 		}
3033 	}
3034 
3035 	return 0;
3036 }
3037 
3038 /*
3039  * Handle write page faults for pages that can be reused in the current vma
3040  *
3041  * This can happen either due to the mapping being with the VM_SHARED flag,
3042  * or due to us being the last reference standing to the page. In either
3043  * case, all we need to do here is to mark the page as writable and update
3044  * any related book-keeping.
3045  */
3046 static inline void wp_page_reuse(struct vm_fault *vmf)
3047 	__releases(vmf->ptl)
3048 {
3049 	struct vm_area_struct *vma = vmf->vma;
3050 	struct page *page = vmf->page;
3051 	pte_t entry;
3052 
3053 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3054 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3055 
3056 	/*
3057 	 * Clear the pages cpupid information as the existing
3058 	 * information potentially belongs to a now completely
3059 	 * unrelated process.
3060 	 */
3061 	if (page)
3062 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3063 
3064 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3065 	entry = pte_mkyoung(vmf->orig_pte);
3066 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3067 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3068 		update_mmu_cache(vma, vmf->address, vmf->pte);
3069 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3070 	count_vm_event(PGREUSE);
3071 }
3072 
3073 /*
3074  * Handle the case of a page which we actually need to copy to a new page,
3075  * either due to COW or unsharing.
3076  *
3077  * Called with mmap_lock locked and the old page referenced, but
3078  * without the ptl held.
3079  *
3080  * High level logic flow:
3081  *
3082  * - Allocate a page, copy the content of the old page to the new one.
3083  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3084  * - Take the PTL. If the pte changed, bail out and release the allocated page
3085  * - If the pte is still the way we remember it, update the page table and all
3086  *   relevant references. This includes dropping the reference the page-table
3087  *   held to the old page, as well as updating the rmap.
3088  * - In any case, unlock the PTL and drop the reference we took to the old page.
3089  */
3090 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3091 {
3092 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3093 	struct vm_area_struct *vma = vmf->vma;
3094 	struct mm_struct *mm = vma->vm_mm;
3095 	struct page *old_page = vmf->page;
3096 	struct page *new_page = NULL;
3097 	pte_t entry;
3098 	int page_copied = 0;
3099 	struct mmu_notifier_range range;
3100 
3101 	delayacct_wpcopy_start();
3102 
3103 	if (unlikely(anon_vma_prepare(vma)))
3104 		goto oom;
3105 
3106 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3107 		new_page = alloc_zeroed_user_highpage_movable(vma,
3108 							      vmf->address);
3109 		if (!new_page)
3110 			goto oom;
3111 	} else {
3112 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3113 				vmf->address);
3114 		if (!new_page)
3115 			goto oom;
3116 
3117 		if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3118 			/*
3119 			 * COW failed, if the fault was solved by other,
3120 			 * it's fine. If not, userspace would re-fault on
3121 			 * the same address and we will handle the fault
3122 			 * from the second attempt.
3123 			 */
3124 			put_page(new_page);
3125 			if (old_page)
3126 				put_page(old_page);
3127 
3128 			delayacct_wpcopy_end();
3129 			return 0;
3130 		}
3131 	}
3132 
3133 	if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3134 		goto oom_free_new;
3135 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3136 
3137 	__SetPageUptodate(new_page);
3138 
3139 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3140 				vmf->address & PAGE_MASK,
3141 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3142 	mmu_notifier_invalidate_range_start(&range);
3143 
3144 	/*
3145 	 * Re-check the pte - we dropped the lock
3146 	 */
3147 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3148 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3149 		if (old_page) {
3150 			if (!PageAnon(old_page)) {
3151 				dec_mm_counter_fast(mm,
3152 						mm_counter_file(old_page));
3153 				inc_mm_counter_fast(mm, MM_ANONPAGES);
3154 			}
3155 		} else {
3156 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3157 		}
3158 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3159 		entry = mk_pte(new_page, vma->vm_page_prot);
3160 		entry = pte_sw_mkyoung(entry);
3161 		if (unlikely(unshare)) {
3162 			if (pte_soft_dirty(vmf->orig_pte))
3163 				entry = pte_mksoft_dirty(entry);
3164 			if (pte_uffd_wp(vmf->orig_pte))
3165 				entry = pte_mkuffd_wp(entry);
3166 		} else {
3167 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3168 		}
3169 
3170 		/*
3171 		 * Clear the pte entry and flush it first, before updating the
3172 		 * pte with the new entry, to keep TLBs on different CPUs in
3173 		 * sync. This code used to set the new PTE then flush TLBs, but
3174 		 * that left a window where the new PTE could be loaded into
3175 		 * some TLBs while the old PTE remains in others.
3176 		 */
3177 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3178 		page_add_new_anon_rmap(new_page, vma, vmf->address);
3179 		lru_cache_add_inactive_or_unevictable(new_page, vma);
3180 		/*
3181 		 * We call the notify macro here because, when using secondary
3182 		 * mmu page tables (such as kvm shadow page tables), we want the
3183 		 * new page to be mapped directly into the secondary page table.
3184 		 */
3185 		BUG_ON(unshare && pte_write(entry));
3186 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3187 		update_mmu_cache(vma, vmf->address, vmf->pte);
3188 		if (old_page) {
3189 			/*
3190 			 * Only after switching the pte to the new page may
3191 			 * we remove the mapcount here. Otherwise another
3192 			 * process may come and find the rmap count decremented
3193 			 * before the pte is switched to the new page, and
3194 			 * "reuse" the old page writing into it while our pte
3195 			 * here still points into it and can be read by other
3196 			 * threads.
3197 			 *
3198 			 * The critical issue is to order this
3199 			 * page_remove_rmap with the ptp_clear_flush above.
3200 			 * Those stores are ordered by (if nothing else,)
3201 			 * the barrier present in the atomic_add_negative
3202 			 * in page_remove_rmap.
3203 			 *
3204 			 * Then the TLB flush in ptep_clear_flush ensures that
3205 			 * no process can access the old page before the
3206 			 * decremented mapcount is visible. And the old page
3207 			 * cannot be reused until after the decremented
3208 			 * mapcount is visible. So transitively, TLBs to
3209 			 * old page will be flushed before it can be reused.
3210 			 */
3211 			page_remove_rmap(old_page, vma, false);
3212 		}
3213 
3214 		/* Free the old page.. */
3215 		new_page = old_page;
3216 		page_copied = 1;
3217 	} else {
3218 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3219 	}
3220 
3221 	if (new_page)
3222 		put_page(new_page);
3223 
3224 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3225 	/*
3226 	 * No need to double call mmu_notifier->invalidate_range() callback as
3227 	 * the above ptep_clear_flush_notify() did already call it.
3228 	 */
3229 	mmu_notifier_invalidate_range_only_end(&range);
3230 	if (old_page) {
3231 		if (page_copied)
3232 			free_swap_cache(old_page);
3233 		put_page(old_page);
3234 	}
3235 
3236 	delayacct_wpcopy_end();
3237 	return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3238 oom_free_new:
3239 	put_page(new_page);
3240 oom:
3241 	if (old_page)
3242 		put_page(old_page);
3243 
3244 	delayacct_wpcopy_end();
3245 	return VM_FAULT_OOM;
3246 }
3247 
3248 /**
3249  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3250  *			  writeable once the page is prepared
3251  *
3252  * @vmf: structure describing the fault
3253  *
3254  * This function handles all that is needed to finish a write page fault in a
3255  * shared mapping due to PTE being read-only once the mapped page is prepared.
3256  * It handles locking of PTE and modifying it.
3257  *
3258  * The function expects the page to be locked or other protection against
3259  * concurrent faults / writeback (such as DAX radix tree locks).
3260  *
3261  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3262  * we acquired PTE lock.
3263  */
3264 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3265 {
3266 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3267 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3268 				       &vmf->ptl);
3269 	/*
3270 	 * We might have raced with another page fault while we released the
3271 	 * pte_offset_map_lock.
3272 	 */
3273 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3274 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3275 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3276 		return VM_FAULT_NOPAGE;
3277 	}
3278 	wp_page_reuse(vmf);
3279 	return 0;
3280 }
3281 
3282 /*
3283  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3284  * mapping
3285  */
3286 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3287 {
3288 	struct vm_area_struct *vma = vmf->vma;
3289 
3290 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3291 		vm_fault_t ret;
3292 
3293 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3294 		vmf->flags |= FAULT_FLAG_MKWRITE;
3295 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3296 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3297 			return ret;
3298 		return finish_mkwrite_fault(vmf);
3299 	}
3300 	wp_page_reuse(vmf);
3301 	return VM_FAULT_WRITE;
3302 }
3303 
3304 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3305 	__releases(vmf->ptl)
3306 {
3307 	struct vm_area_struct *vma = vmf->vma;
3308 	vm_fault_t ret = VM_FAULT_WRITE;
3309 
3310 	get_page(vmf->page);
3311 
3312 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3313 		vm_fault_t tmp;
3314 
3315 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3316 		tmp = do_page_mkwrite(vmf);
3317 		if (unlikely(!tmp || (tmp &
3318 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3319 			put_page(vmf->page);
3320 			return tmp;
3321 		}
3322 		tmp = finish_mkwrite_fault(vmf);
3323 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3324 			unlock_page(vmf->page);
3325 			put_page(vmf->page);
3326 			return tmp;
3327 		}
3328 	} else {
3329 		wp_page_reuse(vmf);
3330 		lock_page(vmf->page);
3331 	}
3332 	ret |= fault_dirty_shared_page(vmf);
3333 	put_page(vmf->page);
3334 
3335 	return ret;
3336 }
3337 
3338 /*
3339  * This routine handles present pages, when
3340  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3341  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3342  *   (FAULT_FLAG_UNSHARE)
3343  *
3344  * It is done by copying the page to a new address and decrementing the
3345  * shared-page counter for the old page.
3346  *
3347  * Note that this routine assumes that the protection checks have been
3348  * done by the caller (the low-level page fault routine in most cases).
3349  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3350  * done any necessary COW.
3351  *
3352  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3353  * though the page will change only once the write actually happens. This
3354  * avoids a few races, and potentially makes it more efficient.
3355  *
3356  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3357  * but allow concurrent faults), with pte both mapped and locked.
3358  * We return with mmap_lock still held, but pte unmapped and unlocked.
3359  */
3360 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3361 	__releases(vmf->ptl)
3362 {
3363 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3364 	struct vm_area_struct *vma = vmf->vma;
3365 
3366 	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3367 	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3368 
3369 	if (likely(!unshare)) {
3370 		if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3371 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3372 			return handle_userfault(vmf, VM_UFFD_WP);
3373 		}
3374 
3375 		/*
3376 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3377 		 * is flushed in this case before copying.
3378 		 */
3379 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3380 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3381 			flush_tlb_page(vmf->vma, vmf->address);
3382 	}
3383 
3384 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3385 	if (!vmf->page) {
3386 		if (unlikely(unshare)) {
3387 			/* No anonymous page -> nothing to do. */
3388 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3389 			return 0;
3390 		}
3391 
3392 		/*
3393 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3394 		 * VM_PFNMAP VMA.
3395 		 *
3396 		 * We should not cow pages in a shared writeable mapping.
3397 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3398 		 */
3399 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3400 				     (VM_WRITE|VM_SHARED))
3401 			return wp_pfn_shared(vmf);
3402 
3403 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3404 		return wp_page_copy(vmf);
3405 	}
3406 
3407 	/*
3408 	 * Take out anonymous pages first, anonymous shared vmas are
3409 	 * not dirty accountable.
3410 	 */
3411 	if (PageAnon(vmf->page)) {
3412 		struct page *page = vmf->page;
3413 
3414 		/*
3415 		 * If the page is exclusive to this process we must reuse the
3416 		 * page without further checks.
3417 		 */
3418 		if (PageAnonExclusive(page))
3419 			goto reuse;
3420 
3421 		/*
3422 		 * We have to verify under page lock: these early checks are
3423 		 * just an optimization to avoid locking the page and freeing
3424 		 * the swapcache if there is little hope that we can reuse.
3425 		 *
3426 		 * PageKsm() doesn't necessarily raise the page refcount.
3427 		 */
3428 		if (PageKsm(page) || page_count(page) > 3)
3429 			goto copy;
3430 		if (!PageLRU(page))
3431 			/*
3432 			 * Note: We cannot easily detect+handle references from
3433 			 * remote LRU pagevecs or references to PageLRU() pages.
3434 			 */
3435 			lru_add_drain();
3436 		if (page_count(page) > 1 + PageSwapCache(page))
3437 			goto copy;
3438 		if (!trylock_page(page))
3439 			goto copy;
3440 		if (PageSwapCache(page))
3441 			try_to_free_swap(page);
3442 		if (PageKsm(page) || page_count(page) != 1) {
3443 			unlock_page(page);
3444 			goto copy;
3445 		}
3446 		/*
3447 		 * Ok, we've got the only page reference from our mapping
3448 		 * and the page is locked, it's dark out, and we're wearing
3449 		 * sunglasses. Hit it.
3450 		 */
3451 		page_move_anon_rmap(page, vma);
3452 		unlock_page(page);
3453 reuse:
3454 		if (unlikely(unshare)) {
3455 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3456 			return 0;
3457 		}
3458 		wp_page_reuse(vmf);
3459 		return VM_FAULT_WRITE;
3460 	} else if (unshare) {
3461 		/* No anonymous page -> nothing to do. */
3462 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3463 		return 0;
3464 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3465 					(VM_WRITE|VM_SHARED))) {
3466 		return wp_page_shared(vmf);
3467 	}
3468 copy:
3469 	/*
3470 	 * Ok, we need to copy. Oh, well..
3471 	 */
3472 	get_page(vmf->page);
3473 
3474 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3475 #ifdef CONFIG_KSM
3476 	if (PageKsm(vmf->page))
3477 		count_vm_event(COW_KSM);
3478 #endif
3479 	return wp_page_copy(vmf);
3480 }
3481 
3482 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3483 		unsigned long start_addr, unsigned long end_addr,
3484 		struct zap_details *details)
3485 {
3486 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3487 }
3488 
3489 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3490 					    pgoff_t first_index,
3491 					    pgoff_t last_index,
3492 					    struct zap_details *details)
3493 {
3494 	struct vm_area_struct *vma;
3495 	pgoff_t vba, vea, zba, zea;
3496 
3497 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3498 		vba = vma->vm_pgoff;
3499 		vea = vba + vma_pages(vma) - 1;
3500 		zba = max(first_index, vba);
3501 		zea = min(last_index, vea);
3502 
3503 		unmap_mapping_range_vma(vma,
3504 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3505 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3506 				details);
3507 	}
3508 }
3509 
3510 /**
3511  * unmap_mapping_folio() - Unmap single folio from processes.
3512  * @folio: The locked folio to be unmapped.
3513  *
3514  * Unmap this folio from any userspace process which still has it mmaped.
3515  * Typically, for efficiency, the range of nearby pages has already been
3516  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3517  * truncation or invalidation holds the lock on a folio, it may find that
3518  * the page has been remapped again: and then uses unmap_mapping_folio()
3519  * to unmap it finally.
3520  */
3521 void unmap_mapping_folio(struct folio *folio)
3522 {
3523 	struct address_space *mapping = folio->mapping;
3524 	struct zap_details details = { };
3525 	pgoff_t	first_index;
3526 	pgoff_t	last_index;
3527 
3528 	VM_BUG_ON(!folio_test_locked(folio));
3529 
3530 	first_index = folio->index;
3531 	last_index = folio->index + folio_nr_pages(folio) - 1;
3532 
3533 	details.even_cows = false;
3534 	details.single_folio = folio;
3535 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3536 
3537 	i_mmap_lock_read(mapping);
3538 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3539 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3540 					 last_index, &details);
3541 	i_mmap_unlock_read(mapping);
3542 }
3543 
3544 /**
3545  * unmap_mapping_pages() - Unmap pages from processes.
3546  * @mapping: The address space containing pages to be unmapped.
3547  * @start: Index of first page to be unmapped.
3548  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3549  * @even_cows: Whether to unmap even private COWed pages.
3550  *
3551  * Unmap the pages in this address space from any userspace process which
3552  * has them mmaped.  Generally, you want to remove COWed pages as well when
3553  * a file is being truncated, but not when invalidating pages from the page
3554  * cache.
3555  */
3556 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3557 		pgoff_t nr, bool even_cows)
3558 {
3559 	struct zap_details details = { };
3560 	pgoff_t	first_index = start;
3561 	pgoff_t	last_index = start + nr - 1;
3562 
3563 	details.even_cows = even_cows;
3564 	if (last_index < first_index)
3565 		last_index = ULONG_MAX;
3566 
3567 	i_mmap_lock_read(mapping);
3568 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3569 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3570 					 last_index, &details);
3571 	i_mmap_unlock_read(mapping);
3572 }
3573 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3574 
3575 /**
3576  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3577  * address_space corresponding to the specified byte range in the underlying
3578  * file.
3579  *
3580  * @mapping: the address space containing mmaps to be unmapped.
3581  * @holebegin: byte in first page to unmap, relative to the start of
3582  * the underlying file.  This will be rounded down to a PAGE_SIZE
3583  * boundary.  Note that this is different from truncate_pagecache(), which
3584  * must keep the partial page.  In contrast, we must get rid of
3585  * partial pages.
3586  * @holelen: size of prospective hole in bytes.  This will be rounded
3587  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3588  * end of the file.
3589  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3590  * but 0 when invalidating pagecache, don't throw away private data.
3591  */
3592 void unmap_mapping_range(struct address_space *mapping,
3593 		loff_t const holebegin, loff_t const holelen, int even_cows)
3594 {
3595 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3596 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3597 
3598 	/* Check for overflow. */
3599 	if (sizeof(holelen) > sizeof(hlen)) {
3600 		long long holeend =
3601 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3602 		if (holeend & ~(long long)ULONG_MAX)
3603 			hlen = ULONG_MAX - hba + 1;
3604 	}
3605 
3606 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3607 }
3608 EXPORT_SYMBOL(unmap_mapping_range);
3609 
3610 /*
3611  * Restore a potential device exclusive pte to a working pte entry
3612  */
3613 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3614 {
3615 	struct page *page = vmf->page;
3616 	struct vm_area_struct *vma = vmf->vma;
3617 	struct mmu_notifier_range range;
3618 
3619 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3620 		return VM_FAULT_RETRY;
3621 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3622 				vma->vm_mm, vmf->address & PAGE_MASK,
3623 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3624 	mmu_notifier_invalidate_range_start(&range);
3625 
3626 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3627 				&vmf->ptl);
3628 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3629 		restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3630 
3631 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3632 	unlock_page(page);
3633 
3634 	mmu_notifier_invalidate_range_end(&range);
3635 	return 0;
3636 }
3637 
3638 static inline bool should_try_to_free_swap(struct page *page,
3639 					   struct vm_area_struct *vma,
3640 					   unsigned int fault_flags)
3641 {
3642 	if (!PageSwapCache(page))
3643 		return false;
3644 	if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3645 	    PageMlocked(page))
3646 		return true;
3647 	/*
3648 	 * If we want to map a page that's in the swapcache writable, we
3649 	 * have to detect via the refcount if we're really the exclusive
3650 	 * user. Try freeing the swapcache to get rid of the swapcache
3651 	 * reference only in case it's likely that we'll be the exlusive user.
3652 	 */
3653 	return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3654 		page_count(page) == 2;
3655 }
3656 
3657 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3658 {
3659 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3660 				       vmf->address, &vmf->ptl);
3661 	/*
3662 	 * Be careful so that we will only recover a special uffd-wp pte into a
3663 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3664 	 */
3665 	if (is_pte_marker(*vmf->pte))
3666 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3667 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3668 	return 0;
3669 }
3670 
3671 /*
3672  * This is actually a page-missing access, but with uffd-wp special pte
3673  * installed.  It means this pte was wr-protected before being unmapped.
3674  */
3675 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3676 {
3677 	/*
3678 	 * Just in case there're leftover special ptes even after the region
3679 	 * got unregistered - we can simply clear them.  We can also do that
3680 	 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3681 	 * ranges, but it should be more efficient to be done lazily here.
3682 	 */
3683 	if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3684 		return pte_marker_clear(vmf);
3685 
3686 	/* do_fault() can handle pte markers too like none pte */
3687 	return do_fault(vmf);
3688 }
3689 
3690 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3691 {
3692 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3693 	unsigned long marker = pte_marker_get(entry);
3694 
3695 	/*
3696 	 * PTE markers should always be with file-backed memories, and the
3697 	 * marker should never be empty.  If anything weird happened, the best
3698 	 * thing to do is to kill the process along with its mm.
3699 	 */
3700 	if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3701 		return VM_FAULT_SIGBUS;
3702 
3703 	if (pte_marker_entry_uffd_wp(entry))
3704 		return pte_marker_handle_uffd_wp(vmf);
3705 
3706 	/* This is an unknown pte marker */
3707 	return VM_FAULT_SIGBUS;
3708 }
3709 
3710 /*
3711  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3712  * but allow concurrent faults), and pte mapped but not yet locked.
3713  * We return with pte unmapped and unlocked.
3714  *
3715  * We return with the mmap_lock locked or unlocked in the same cases
3716  * as does filemap_fault().
3717  */
3718 vm_fault_t do_swap_page(struct vm_fault *vmf)
3719 {
3720 	struct vm_area_struct *vma = vmf->vma;
3721 	struct page *page = NULL, *swapcache;
3722 	struct swap_info_struct *si = NULL;
3723 	rmap_t rmap_flags = RMAP_NONE;
3724 	bool exclusive = false;
3725 	swp_entry_t entry;
3726 	pte_t pte;
3727 	int locked;
3728 	vm_fault_t ret = 0;
3729 	void *shadow = NULL;
3730 
3731 	if (!pte_unmap_same(vmf))
3732 		goto out;
3733 
3734 	entry = pte_to_swp_entry(vmf->orig_pte);
3735 	if (unlikely(non_swap_entry(entry))) {
3736 		if (is_migration_entry(entry)) {
3737 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3738 					     vmf->address);
3739 		} else if (is_device_exclusive_entry(entry)) {
3740 			vmf->page = pfn_swap_entry_to_page(entry);
3741 			ret = remove_device_exclusive_entry(vmf);
3742 		} else if (is_device_private_entry(entry)) {
3743 			vmf->page = pfn_swap_entry_to_page(entry);
3744 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3745 		} else if (is_hwpoison_entry(entry)) {
3746 			ret = VM_FAULT_HWPOISON;
3747 		} else if (is_swapin_error_entry(entry)) {
3748 			ret = VM_FAULT_SIGBUS;
3749 		} else if (is_pte_marker_entry(entry)) {
3750 			ret = handle_pte_marker(vmf);
3751 		} else {
3752 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3753 			ret = VM_FAULT_SIGBUS;
3754 		}
3755 		goto out;
3756 	}
3757 
3758 	/* Prevent swapoff from happening to us. */
3759 	si = get_swap_device(entry);
3760 	if (unlikely(!si))
3761 		goto out;
3762 
3763 	page = lookup_swap_cache(entry, vma, vmf->address);
3764 	swapcache = page;
3765 
3766 	if (!page) {
3767 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3768 		    __swap_count(entry) == 1) {
3769 			/* skip swapcache */
3770 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3771 							vmf->address);
3772 			if (page) {
3773 				__SetPageLocked(page);
3774 				__SetPageSwapBacked(page);
3775 
3776 				if (mem_cgroup_swapin_charge_page(page,
3777 					vma->vm_mm, GFP_KERNEL, entry)) {
3778 					ret = VM_FAULT_OOM;
3779 					goto out_page;
3780 				}
3781 				mem_cgroup_swapin_uncharge_swap(entry);
3782 
3783 				shadow = get_shadow_from_swap_cache(entry);
3784 				if (shadow)
3785 					workingset_refault(page_folio(page),
3786 								shadow);
3787 
3788 				lru_cache_add(page);
3789 
3790 				/* To provide entry to swap_readpage() */
3791 				set_page_private(page, entry.val);
3792 				swap_readpage(page, true, NULL);
3793 				set_page_private(page, 0);
3794 			}
3795 		} else {
3796 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3797 						vmf);
3798 			swapcache = page;
3799 		}
3800 
3801 		if (!page) {
3802 			/*
3803 			 * Back out if somebody else faulted in this pte
3804 			 * while we released the pte lock.
3805 			 */
3806 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3807 					vmf->address, &vmf->ptl);
3808 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3809 				ret = VM_FAULT_OOM;
3810 			goto unlock;
3811 		}
3812 
3813 		/* Had to read the page from swap area: Major fault */
3814 		ret = VM_FAULT_MAJOR;
3815 		count_vm_event(PGMAJFAULT);
3816 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3817 	} else if (PageHWPoison(page)) {
3818 		/*
3819 		 * hwpoisoned dirty swapcache pages are kept for killing
3820 		 * owner processes (which may be unknown at hwpoison time)
3821 		 */
3822 		ret = VM_FAULT_HWPOISON;
3823 		goto out_release;
3824 	}
3825 
3826 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3827 
3828 	if (!locked) {
3829 		ret |= VM_FAULT_RETRY;
3830 		goto out_release;
3831 	}
3832 
3833 	if (swapcache) {
3834 		/*
3835 		 * Make sure try_to_free_swap or swapoff did not release the
3836 		 * swapcache from under us.  The page pin, and pte_same test
3837 		 * below, are not enough to exclude that.  Even if it is still
3838 		 * swapcache, we need to check that the page's swap has not
3839 		 * changed.
3840 		 */
3841 		if (unlikely(!PageSwapCache(page) ||
3842 			     page_private(page) != entry.val))
3843 			goto out_page;
3844 
3845 		/*
3846 		 * KSM sometimes has to copy on read faults, for example, if
3847 		 * page->index of !PageKSM() pages would be nonlinear inside the
3848 		 * anon VMA -- PageKSM() is lost on actual swapout.
3849 		 */
3850 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3851 		if (unlikely(!page)) {
3852 			ret = VM_FAULT_OOM;
3853 			page = swapcache;
3854 			goto out_page;
3855 		}
3856 
3857 		/*
3858 		 * If we want to map a page that's in the swapcache writable, we
3859 		 * have to detect via the refcount if we're really the exclusive
3860 		 * owner. Try removing the extra reference from the local LRU
3861 		 * pagevecs if required.
3862 		 */
3863 		if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3864 		    !PageKsm(page) && !PageLRU(page))
3865 			lru_add_drain();
3866 	}
3867 
3868 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3869 
3870 	/*
3871 	 * Back out if somebody else already faulted in this pte.
3872 	 */
3873 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3874 			&vmf->ptl);
3875 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3876 		goto out_nomap;
3877 
3878 	if (unlikely(!PageUptodate(page))) {
3879 		ret = VM_FAULT_SIGBUS;
3880 		goto out_nomap;
3881 	}
3882 
3883 	/*
3884 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3885 	 * must never point at an anonymous page in the swapcache that is
3886 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3887 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3888 	 * check after taking the PT lock and making sure that nobody
3889 	 * concurrently faulted in this page and set PG_anon_exclusive.
3890 	 */
3891 	BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
3892 	BUG_ON(PageAnon(page) && PageAnonExclusive(page));
3893 
3894 	/*
3895 	 * Check under PT lock (to protect against concurrent fork() sharing
3896 	 * the swap entry concurrently) for certainly exclusive pages.
3897 	 */
3898 	if (!PageKsm(page)) {
3899 		/*
3900 		 * Note that pte_swp_exclusive() == false for architectures
3901 		 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3902 		 */
3903 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3904 		if (page != swapcache) {
3905 			/*
3906 			 * We have a fresh page that is not exposed to the
3907 			 * swapcache -> certainly exclusive.
3908 			 */
3909 			exclusive = true;
3910 		} else if (exclusive && PageWriteback(page) &&
3911 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3912 			/*
3913 			 * This is tricky: not all swap backends support
3914 			 * concurrent page modifications while under writeback.
3915 			 *
3916 			 * So if we stumble over such a page in the swapcache
3917 			 * we must not set the page exclusive, otherwise we can
3918 			 * map it writable without further checks and modify it
3919 			 * while still under writeback.
3920 			 *
3921 			 * For these problematic swap backends, simply drop the
3922 			 * exclusive marker: this is perfectly fine as we start
3923 			 * writeback only if we fully unmapped the page and
3924 			 * there are no unexpected references on the page after
3925 			 * unmapping succeeded. After fully unmapped, no
3926 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3927 			 * appear, so dropping the exclusive marker and mapping
3928 			 * it only R/O is fine.
3929 			 */
3930 			exclusive = false;
3931 		}
3932 	}
3933 
3934 	/*
3935 	 * Remove the swap entry and conditionally try to free up the swapcache.
3936 	 * We're already holding a reference on the page but haven't mapped it
3937 	 * yet.
3938 	 */
3939 	swap_free(entry);
3940 	if (should_try_to_free_swap(page, vma, vmf->flags))
3941 		try_to_free_swap(page);
3942 
3943 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3944 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3945 	pte = mk_pte(page, vma->vm_page_prot);
3946 
3947 	/*
3948 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3949 	 * certainly not shared either because we just allocated them without
3950 	 * exposing them to the swapcache or because the swap entry indicates
3951 	 * exclusivity.
3952 	 */
3953 	if (!PageKsm(page) && (exclusive || page_count(page) == 1)) {
3954 		if (vmf->flags & FAULT_FLAG_WRITE) {
3955 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3956 			vmf->flags &= ~FAULT_FLAG_WRITE;
3957 			ret |= VM_FAULT_WRITE;
3958 		}
3959 		rmap_flags |= RMAP_EXCLUSIVE;
3960 	}
3961 	flush_icache_page(vma, page);
3962 	if (pte_swp_soft_dirty(vmf->orig_pte))
3963 		pte = pte_mksoft_dirty(pte);
3964 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3965 		pte = pte_mkuffd_wp(pte);
3966 		pte = pte_wrprotect(pte);
3967 	}
3968 	vmf->orig_pte = pte;
3969 
3970 	/* ksm created a completely new copy */
3971 	if (unlikely(page != swapcache && swapcache)) {
3972 		page_add_new_anon_rmap(page, vma, vmf->address);
3973 		lru_cache_add_inactive_or_unevictable(page, vma);
3974 	} else {
3975 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3976 	}
3977 
3978 	VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page)));
3979 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3980 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3981 
3982 	unlock_page(page);
3983 	if (page != swapcache && swapcache) {
3984 		/*
3985 		 * Hold the lock to avoid the swap entry to be reused
3986 		 * until we take the PT lock for the pte_same() check
3987 		 * (to avoid false positives from pte_same). For
3988 		 * further safety release the lock after the swap_free
3989 		 * so that the swap count won't change under a
3990 		 * parallel locked swapcache.
3991 		 */
3992 		unlock_page(swapcache);
3993 		put_page(swapcache);
3994 	}
3995 
3996 	if (vmf->flags & FAULT_FLAG_WRITE) {
3997 		ret |= do_wp_page(vmf);
3998 		if (ret & VM_FAULT_ERROR)
3999 			ret &= VM_FAULT_ERROR;
4000 		goto out;
4001 	}
4002 
4003 	/* No need to invalidate - it was non-present before */
4004 	update_mmu_cache(vma, vmf->address, vmf->pte);
4005 unlock:
4006 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4007 out:
4008 	if (si)
4009 		put_swap_device(si);
4010 	return ret;
4011 out_nomap:
4012 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4013 out_page:
4014 	unlock_page(page);
4015 out_release:
4016 	put_page(page);
4017 	if (page != swapcache && swapcache) {
4018 		unlock_page(swapcache);
4019 		put_page(swapcache);
4020 	}
4021 	if (si)
4022 		put_swap_device(si);
4023 	return ret;
4024 }
4025 
4026 /*
4027  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4028  * but allow concurrent faults), and pte mapped but not yet locked.
4029  * We return with mmap_lock still held, but pte unmapped and unlocked.
4030  */
4031 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4032 {
4033 	struct vm_area_struct *vma = vmf->vma;
4034 	struct page *page;
4035 	vm_fault_t ret = 0;
4036 	pte_t entry;
4037 
4038 	/* File mapping without ->vm_ops ? */
4039 	if (vma->vm_flags & VM_SHARED)
4040 		return VM_FAULT_SIGBUS;
4041 
4042 	/*
4043 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
4044 	 * pte_offset_map() on pmds where a huge pmd might be created
4045 	 * from a different thread.
4046 	 *
4047 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4048 	 * parallel threads are excluded by other means.
4049 	 *
4050 	 * Here we only have mmap_read_lock(mm).
4051 	 */
4052 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4053 		return VM_FAULT_OOM;
4054 
4055 	/* See comment in handle_pte_fault() */
4056 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
4057 		return 0;
4058 
4059 	/* Use the zero-page for reads */
4060 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4061 			!mm_forbids_zeropage(vma->vm_mm)) {
4062 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4063 						vma->vm_page_prot));
4064 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4065 				vmf->address, &vmf->ptl);
4066 		if (!pte_none(*vmf->pte)) {
4067 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4068 			goto unlock;
4069 		}
4070 		ret = check_stable_address_space(vma->vm_mm);
4071 		if (ret)
4072 			goto unlock;
4073 		/* Deliver the page fault to userland, check inside PT lock */
4074 		if (userfaultfd_missing(vma)) {
4075 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4076 			return handle_userfault(vmf, VM_UFFD_MISSING);
4077 		}
4078 		goto setpte;
4079 	}
4080 
4081 	/* Allocate our own private page. */
4082 	if (unlikely(anon_vma_prepare(vma)))
4083 		goto oom;
4084 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4085 	if (!page)
4086 		goto oom;
4087 
4088 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4089 		goto oom_free_page;
4090 	cgroup_throttle_swaprate(page, GFP_KERNEL);
4091 
4092 	/*
4093 	 * The memory barrier inside __SetPageUptodate makes sure that
4094 	 * preceding stores to the page contents become visible before
4095 	 * the set_pte_at() write.
4096 	 */
4097 	__SetPageUptodate(page);
4098 
4099 	entry = mk_pte(page, vma->vm_page_prot);
4100 	entry = pte_sw_mkyoung(entry);
4101 	if (vma->vm_flags & VM_WRITE)
4102 		entry = pte_mkwrite(pte_mkdirty(entry));
4103 
4104 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4105 			&vmf->ptl);
4106 	if (!pte_none(*vmf->pte)) {
4107 		update_mmu_cache(vma, vmf->address, vmf->pte);
4108 		goto release;
4109 	}
4110 
4111 	ret = check_stable_address_space(vma->vm_mm);
4112 	if (ret)
4113 		goto release;
4114 
4115 	/* Deliver the page fault to userland, check inside PT lock */
4116 	if (userfaultfd_missing(vma)) {
4117 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4118 		put_page(page);
4119 		return handle_userfault(vmf, VM_UFFD_MISSING);
4120 	}
4121 
4122 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4123 	page_add_new_anon_rmap(page, vma, vmf->address);
4124 	lru_cache_add_inactive_or_unevictable(page, vma);
4125 setpte:
4126 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4127 
4128 	/* No need to invalidate - it was non-present before */
4129 	update_mmu_cache(vma, vmf->address, vmf->pte);
4130 unlock:
4131 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4132 	return ret;
4133 release:
4134 	put_page(page);
4135 	goto unlock;
4136 oom_free_page:
4137 	put_page(page);
4138 oom:
4139 	return VM_FAULT_OOM;
4140 }
4141 
4142 /*
4143  * The mmap_lock must have been held on entry, and may have been
4144  * released depending on flags and vma->vm_ops->fault() return value.
4145  * See filemap_fault() and __lock_page_retry().
4146  */
4147 static vm_fault_t __do_fault(struct vm_fault *vmf)
4148 {
4149 	struct vm_area_struct *vma = vmf->vma;
4150 	vm_fault_t ret;
4151 
4152 	/*
4153 	 * Preallocate pte before we take page_lock because this might lead to
4154 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4155 	 *				lock_page(A)
4156 	 *				SetPageWriteback(A)
4157 	 *				unlock_page(A)
4158 	 * lock_page(B)
4159 	 *				lock_page(B)
4160 	 * pte_alloc_one
4161 	 *   shrink_page_list
4162 	 *     wait_on_page_writeback(A)
4163 	 *				SetPageWriteback(B)
4164 	 *				unlock_page(B)
4165 	 *				# flush A, B to clear the writeback
4166 	 */
4167 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4168 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4169 		if (!vmf->prealloc_pte)
4170 			return VM_FAULT_OOM;
4171 	}
4172 
4173 	ret = vma->vm_ops->fault(vmf);
4174 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4175 			    VM_FAULT_DONE_COW)))
4176 		return ret;
4177 
4178 	if (unlikely(PageHWPoison(vmf->page))) {
4179 		struct page *page = vmf->page;
4180 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4181 		if (ret & VM_FAULT_LOCKED) {
4182 			if (page_mapped(page))
4183 				unmap_mapping_pages(page_mapping(page),
4184 						    page->index, 1, false);
4185 			/* Retry if a clean page was removed from the cache. */
4186 			if (invalidate_inode_page(page))
4187 				poisonret = VM_FAULT_NOPAGE;
4188 			unlock_page(page);
4189 		}
4190 		put_page(page);
4191 		vmf->page = NULL;
4192 		return poisonret;
4193 	}
4194 
4195 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4196 		lock_page(vmf->page);
4197 	else
4198 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4199 
4200 	return ret;
4201 }
4202 
4203 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4204 static void deposit_prealloc_pte(struct vm_fault *vmf)
4205 {
4206 	struct vm_area_struct *vma = vmf->vma;
4207 
4208 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4209 	/*
4210 	 * We are going to consume the prealloc table,
4211 	 * count that as nr_ptes.
4212 	 */
4213 	mm_inc_nr_ptes(vma->vm_mm);
4214 	vmf->prealloc_pte = NULL;
4215 }
4216 
4217 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4218 {
4219 	struct vm_area_struct *vma = vmf->vma;
4220 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4221 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4222 	pmd_t entry;
4223 	int i;
4224 	vm_fault_t ret = VM_FAULT_FALLBACK;
4225 
4226 	if (!transhuge_vma_suitable(vma, haddr))
4227 		return ret;
4228 
4229 	page = compound_head(page);
4230 	if (compound_order(page) != HPAGE_PMD_ORDER)
4231 		return ret;
4232 
4233 	/*
4234 	 * Just backoff if any subpage of a THP is corrupted otherwise
4235 	 * the corrupted page may mapped by PMD silently to escape the
4236 	 * check.  This kind of THP just can be PTE mapped.  Access to
4237 	 * the corrupted subpage should trigger SIGBUS as expected.
4238 	 */
4239 	if (unlikely(PageHasHWPoisoned(page)))
4240 		return ret;
4241 
4242 	/*
4243 	 * Archs like ppc64 need additional space to store information
4244 	 * related to pte entry. Use the preallocated table for that.
4245 	 */
4246 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4247 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4248 		if (!vmf->prealloc_pte)
4249 			return VM_FAULT_OOM;
4250 	}
4251 
4252 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4253 	if (unlikely(!pmd_none(*vmf->pmd)))
4254 		goto out;
4255 
4256 	for (i = 0; i < HPAGE_PMD_NR; i++)
4257 		flush_icache_page(vma, page + i);
4258 
4259 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4260 	if (write)
4261 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4262 
4263 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4264 	page_add_file_rmap(page, vma, true);
4265 
4266 	/*
4267 	 * deposit and withdraw with pmd lock held
4268 	 */
4269 	if (arch_needs_pgtable_deposit())
4270 		deposit_prealloc_pte(vmf);
4271 
4272 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4273 
4274 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4275 
4276 	/* fault is handled */
4277 	ret = 0;
4278 	count_vm_event(THP_FILE_MAPPED);
4279 out:
4280 	spin_unlock(vmf->ptl);
4281 	return ret;
4282 }
4283 #else
4284 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4285 {
4286 	return VM_FAULT_FALLBACK;
4287 }
4288 #endif
4289 
4290 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4291 {
4292 	struct vm_area_struct *vma = vmf->vma;
4293 	bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4294 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4295 	bool prefault = vmf->address != addr;
4296 	pte_t entry;
4297 
4298 	flush_icache_page(vma, page);
4299 	entry = mk_pte(page, vma->vm_page_prot);
4300 
4301 	if (prefault && arch_wants_old_prefaulted_pte())
4302 		entry = pte_mkold(entry);
4303 	else
4304 		entry = pte_sw_mkyoung(entry);
4305 
4306 	if (write)
4307 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4308 	if (unlikely(uffd_wp))
4309 		entry = pte_mkuffd_wp(pte_wrprotect(entry));
4310 	/* copy-on-write page */
4311 	if (write && !(vma->vm_flags & VM_SHARED)) {
4312 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4313 		page_add_new_anon_rmap(page, vma, addr);
4314 		lru_cache_add_inactive_or_unevictable(page, vma);
4315 	} else {
4316 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4317 		page_add_file_rmap(page, vma, false);
4318 	}
4319 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4320 }
4321 
4322 static bool vmf_pte_changed(struct vm_fault *vmf)
4323 {
4324 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4325 		return !pte_same(*vmf->pte, vmf->orig_pte);
4326 
4327 	return !pte_none(*vmf->pte);
4328 }
4329 
4330 /**
4331  * finish_fault - finish page fault once we have prepared the page to fault
4332  *
4333  * @vmf: structure describing the fault
4334  *
4335  * This function handles all that is needed to finish a page fault once the
4336  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4337  * given page, adds reverse page mapping, handles memcg charges and LRU
4338  * addition.
4339  *
4340  * The function expects the page to be locked and on success it consumes a
4341  * reference of a page being mapped (for the PTE which maps it).
4342  *
4343  * Return: %0 on success, %VM_FAULT_ code in case of error.
4344  */
4345 vm_fault_t finish_fault(struct vm_fault *vmf)
4346 {
4347 	struct vm_area_struct *vma = vmf->vma;
4348 	struct page *page;
4349 	vm_fault_t ret;
4350 
4351 	/* Did we COW the page? */
4352 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4353 		page = vmf->cow_page;
4354 	else
4355 		page = vmf->page;
4356 
4357 	/*
4358 	 * check even for read faults because we might have lost our CoWed
4359 	 * page
4360 	 */
4361 	if (!(vma->vm_flags & VM_SHARED)) {
4362 		ret = check_stable_address_space(vma->vm_mm);
4363 		if (ret)
4364 			return ret;
4365 	}
4366 
4367 	if (pmd_none(*vmf->pmd)) {
4368 		if (PageTransCompound(page)) {
4369 			ret = do_set_pmd(vmf, page);
4370 			if (ret != VM_FAULT_FALLBACK)
4371 				return ret;
4372 		}
4373 
4374 		if (vmf->prealloc_pte)
4375 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4376 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4377 			return VM_FAULT_OOM;
4378 	}
4379 
4380 	/*
4381 	 * See comment in handle_pte_fault() for how this scenario happens, we
4382 	 * need to return NOPAGE so that we drop this page.
4383 	 */
4384 	if (pmd_devmap_trans_unstable(vmf->pmd))
4385 		return VM_FAULT_NOPAGE;
4386 
4387 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4388 				      vmf->address, &vmf->ptl);
4389 	ret = 0;
4390 	/* Re-check under ptl */
4391 	if (likely(!vmf_pte_changed(vmf)))
4392 		do_set_pte(vmf, page, vmf->address);
4393 	else
4394 		ret = VM_FAULT_NOPAGE;
4395 
4396 	update_mmu_tlb(vma, vmf->address, vmf->pte);
4397 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4398 	return ret;
4399 }
4400 
4401 static unsigned long fault_around_bytes __read_mostly =
4402 	rounddown_pow_of_two(65536);
4403 
4404 #ifdef CONFIG_DEBUG_FS
4405 static int fault_around_bytes_get(void *data, u64 *val)
4406 {
4407 	*val = fault_around_bytes;
4408 	return 0;
4409 }
4410 
4411 /*
4412  * fault_around_bytes must be rounded down to the nearest page order as it's
4413  * what do_fault_around() expects to see.
4414  */
4415 static int fault_around_bytes_set(void *data, u64 val)
4416 {
4417 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4418 		return -EINVAL;
4419 	if (val > PAGE_SIZE)
4420 		fault_around_bytes = rounddown_pow_of_two(val);
4421 	else
4422 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4423 	return 0;
4424 }
4425 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4426 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4427 
4428 static int __init fault_around_debugfs(void)
4429 {
4430 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4431 				   &fault_around_bytes_fops);
4432 	return 0;
4433 }
4434 late_initcall(fault_around_debugfs);
4435 #endif
4436 
4437 /*
4438  * do_fault_around() tries to map few pages around the fault address. The hope
4439  * is that the pages will be needed soon and this will lower the number of
4440  * faults to handle.
4441  *
4442  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4443  * not ready to be mapped: not up-to-date, locked, etc.
4444  *
4445  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4446  * only once.
4447  *
4448  * fault_around_bytes defines how many bytes we'll try to map.
4449  * do_fault_around() expects it to be set to a power of two less than or equal
4450  * to PTRS_PER_PTE.
4451  *
4452  * The virtual address of the area that we map is naturally aligned to
4453  * fault_around_bytes rounded down to the machine page size
4454  * (and therefore to page order).  This way it's easier to guarantee
4455  * that we don't cross page table boundaries.
4456  */
4457 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4458 {
4459 	unsigned long address = vmf->address, nr_pages, mask;
4460 	pgoff_t start_pgoff = vmf->pgoff;
4461 	pgoff_t end_pgoff;
4462 	int off;
4463 
4464 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4465 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4466 
4467 	address = max(address & mask, vmf->vma->vm_start);
4468 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4469 	start_pgoff -= off;
4470 
4471 	/*
4472 	 *  end_pgoff is either the end of the page table, the end of
4473 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4474 	 */
4475 	end_pgoff = start_pgoff -
4476 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4477 		PTRS_PER_PTE - 1;
4478 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4479 			start_pgoff + nr_pages - 1);
4480 
4481 	if (pmd_none(*vmf->pmd)) {
4482 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4483 		if (!vmf->prealloc_pte)
4484 			return VM_FAULT_OOM;
4485 	}
4486 
4487 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4488 }
4489 
4490 /* Return true if we should do read fault-around, false otherwise */
4491 static inline bool should_fault_around(struct vm_fault *vmf)
4492 {
4493 	/* No ->map_pages?  No way to fault around... */
4494 	if (!vmf->vma->vm_ops->map_pages)
4495 		return false;
4496 
4497 	if (uffd_disable_fault_around(vmf->vma))
4498 		return false;
4499 
4500 	return fault_around_bytes >> PAGE_SHIFT > 1;
4501 }
4502 
4503 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4504 {
4505 	vm_fault_t ret = 0;
4506 
4507 	/*
4508 	 * Let's call ->map_pages() first and use ->fault() as fallback
4509 	 * if page by the offset is not ready to be mapped (cold cache or
4510 	 * something).
4511 	 */
4512 	if (should_fault_around(vmf)) {
4513 		ret = do_fault_around(vmf);
4514 		if (ret)
4515 			return ret;
4516 	}
4517 
4518 	ret = __do_fault(vmf);
4519 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4520 		return ret;
4521 
4522 	ret |= finish_fault(vmf);
4523 	unlock_page(vmf->page);
4524 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4525 		put_page(vmf->page);
4526 	return ret;
4527 }
4528 
4529 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4530 {
4531 	struct vm_area_struct *vma = vmf->vma;
4532 	vm_fault_t ret;
4533 
4534 	if (unlikely(anon_vma_prepare(vma)))
4535 		return VM_FAULT_OOM;
4536 
4537 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4538 	if (!vmf->cow_page)
4539 		return VM_FAULT_OOM;
4540 
4541 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4542 				GFP_KERNEL)) {
4543 		put_page(vmf->cow_page);
4544 		return VM_FAULT_OOM;
4545 	}
4546 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4547 
4548 	ret = __do_fault(vmf);
4549 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4550 		goto uncharge_out;
4551 	if (ret & VM_FAULT_DONE_COW)
4552 		return ret;
4553 
4554 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4555 	__SetPageUptodate(vmf->cow_page);
4556 
4557 	ret |= finish_fault(vmf);
4558 	unlock_page(vmf->page);
4559 	put_page(vmf->page);
4560 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4561 		goto uncharge_out;
4562 	return ret;
4563 uncharge_out:
4564 	put_page(vmf->cow_page);
4565 	return ret;
4566 }
4567 
4568 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4569 {
4570 	struct vm_area_struct *vma = vmf->vma;
4571 	vm_fault_t ret, tmp;
4572 
4573 	ret = __do_fault(vmf);
4574 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4575 		return ret;
4576 
4577 	/*
4578 	 * Check if the backing address space wants to know that the page is
4579 	 * about to become writable
4580 	 */
4581 	if (vma->vm_ops->page_mkwrite) {
4582 		unlock_page(vmf->page);
4583 		tmp = do_page_mkwrite(vmf);
4584 		if (unlikely(!tmp ||
4585 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4586 			put_page(vmf->page);
4587 			return tmp;
4588 		}
4589 	}
4590 
4591 	ret |= finish_fault(vmf);
4592 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4593 					VM_FAULT_RETRY))) {
4594 		unlock_page(vmf->page);
4595 		put_page(vmf->page);
4596 		return ret;
4597 	}
4598 
4599 	ret |= fault_dirty_shared_page(vmf);
4600 	return ret;
4601 }
4602 
4603 /*
4604  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4605  * but allow concurrent faults).
4606  * The mmap_lock may have been released depending on flags and our
4607  * return value.  See filemap_fault() and __folio_lock_or_retry().
4608  * If mmap_lock is released, vma may become invalid (for example
4609  * by other thread calling munmap()).
4610  */
4611 static vm_fault_t do_fault(struct vm_fault *vmf)
4612 {
4613 	struct vm_area_struct *vma = vmf->vma;
4614 	struct mm_struct *vm_mm = vma->vm_mm;
4615 	vm_fault_t ret;
4616 
4617 	/*
4618 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4619 	 */
4620 	if (!vma->vm_ops->fault) {
4621 		/*
4622 		 * If we find a migration pmd entry or a none pmd entry, which
4623 		 * should never happen, return SIGBUS
4624 		 */
4625 		if (unlikely(!pmd_present(*vmf->pmd)))
4626 			ret = VM_FAULT_SIGBUS;
4627 		else {
4628 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4629 						       vmf->pmd,
4630 						       vmf->address,
4631 						       &vmf->ptl);
4632 			/*
4633 			 * Make sure this is not a temporary clearing of pte
4634 			 * by holding ptl and checking again. A R/M/W update
4635 			 * of pte involves: take ptl, clearing the pte so that
4636 			 * we don't have concurrent modification by hardware
4637 			 * followed by an update.
4638 			 */
4639 			if (unlikely(pte_none(*vmf->pte)))
4640 				ret = VM_FAULT_SIGBUS;
4641 			else
4642 				ret = VM_FAULT_NOPAGE;
4643 
4644 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4645 		}
4646 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4647 		ret = do_read_fault(vmf);
4648 	else if (!(vma->vm_flags & VM_SHARED))
4649 		ret = do_cow_fault(vmf);
4650 	else
4651 		ret = do_shared_fault(vmf);
4652 
4653 	/* preallocated pagetable is unused: free it */
4654 	if (vmf->prealloc_pte) {
4655 		pte_free(vm_mm, vmf->prealloc_pte);
4656 		vmf->prealloc_pte = NULL;
4657 	}
4658 	return ret;
4659 }
4660 
4661 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4662 		      unsigned long addr, int page_nid, int *flags)
4663 {
4664 	get_page(page);
4665 
4666 	count_vm_numa_event(NUMA_HINT_FAULTS);
4667 	if (page_nid == numa_node_id()) {
4668 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4669 		*flags |= TNF_FAULT_LOCAL;
4670 	}
4671 
4672 	return mpol_misplaced(page, vma, addr);
4673 }
4674 
4675 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4676 {
4677 	struct vm_area_struct *vma = vmf->vma;
4678 	struct page *page = NULL;
4679 	int page_nid = NUMA_NO_NODE;
4680 	int last_cpupid;
4681 	int target_nid;
4682 	pte_t pte, old_pte;
4683 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4684 	int flags = 0;
4685 
4686 	/*
4687 	 * The "pte" at this point cannot be used safely without
4688 	 * validation through pte_unmap_same(). It's of NUMA type but
4689 	 * the pfn may be screwed if the read is non atomic.
4690 	 */
4691 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4692 	spin_lock(vmf->ptl);
4693 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4694 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4695 		goto out;
4696 	}
4697 
4698 	/* Get the normal PTE  */
4699 	old_pte = ptep_get(vmf->pte);
4700 	pte = pte_modify(old_pte, vma->vm_page_prot);
4701 
4702 	page = vm_normal_page(vma, vmf->address, pte);
4703 	if (!page || is_zone_device_page(page))
4704 		goto out_map;
4705 
4706 	/* TODO: handle PTE-mapped THP */
4707 	if (PageCompound(page))
4708 		goto out_map;
4709 
4710 	/*
4711 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4712 	 * much anyway since they can be in shared cache state. This misses
4713 	 * the case where a mapping is writable but the process never writes
4714 	 * to it but pte_write gets cleared during protection updates and
4715 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4716 	 * background writeback, dirty balancing and application behaviour.
4717 	 */
4718 	if (!was_writable)
4719 		flags |= TNF_NO_GROUP;
4720 
4721 	/*
4722 	 * Flag if the page is shared between multiple address spaces. This
4723 	 * is later used when determining whether to group tasks together
4724 	 */
4725 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4726 		flags |= TNF_SHARED;
4727 
4728 	last_cpupid = page_cpupid_last(page);
4729 	page_nid = page_to_nid(page);
4730 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4731 			&flags);
4732 	if (target_nid == NUMA_NO_NODE) {
4733 		put_page(page);
4734 		goto out_map;
4735 	}
4736 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4737 
4738 	/* Migrate to the requested node */
4739 	if (migrate_misplaced_page(page, vma, target_nid)) {
4740 		page_nid = target_nid;
4741 		flags |= TNF_MIGRATED;
4742 	} else {
4743 		flags |= TNF_MIGRATE_FAIL;
4744 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4745 		spin_lock(vmf->ptl);
4746 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4747 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4748 			goto out;
4749 		}
4750 		goto out_map;
4751 	}
4752 
4753 out:
4754 	if (page_nid != NUMA_NO_NODE)
4755 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4756 	return 0;
4757 out_map:
4758 	/*
4759 	 * Make it present again, depending on how arch implements
4760 	 * non-accessible ptes, some can allow access by kernel mode.
4761 	 */
4762 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4763 	pte = pte_modify(old_pte, vma->vm_page_prot);
4764 	pte = pte_mkyoung(pte);
4765 	if (was_writable)
4766 		pte = pte_mkwrite(pte);
4767 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4768 	update_mmu_cache(vma, vmf->address, vmf->pte);
4769 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4770 	goto out;
4771 }
4772 
4773 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4774 {
4775 	if (vma_is_anonymous(vmf->vma))
4776 		return do_huge_pmd_anonymous_page(vmf);
4777 	if (vmf->vma->vm_ops->huge_fault)
4778 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4779 	return VM_FAULT_FALLBACK;
4780 }
4781 
4782 /* `inline' is required to avoid gcc 4.1.2 build error */
4783 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4784 {
4785 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4786 
4787 	if (vma_is_anonymous(vmf->vma)) {
4788 		if (likely(!unshare) &&
4789 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4790 			return handle_userfault(vmf, VM_UFFD_WP);
4791 		return do_huge_pmd_wp_page(vmf);
4792 	}
4793 	if (vmf->vma->vm_ops->huge_fault) {
4794 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4795 
4796 		if (!(ret & VM_FAULT_FALLBACK))
4797 			return ret;
4798 	}
4799 
4800 	/* COW or write-notify handled on pte level: split pmd. */
4801 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4802 
4803 	return VM_FAULT_FALLBACK;
4804 }
4805 
4806 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4807 {
4808 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4809 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4810 	/* No support for anonymous transparent PUD pages yet */
4811 	if (vma_is_anonymous(vmf->vma))
4812 		return VM_FAULT_FALLBACK;
4813 	if (vmf->vma->vm_ops->huge_fault)
4814 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4815 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4816 	return VM_FAULT_FALLBACK;
4817 }
4818 
4819 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4820 {
4821 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4822 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4823 	/* No support for anonymous transparent PUD pages yet */
4824 	if (vma_is_anonymous(vmf->vma))
4825 		goto split;
4826 	if (vmf->vma->vm_ops->huge_fault) {
4827 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4828 
4829 		if (!(ret & VM_FAULT_FALLBACK))
4830 			return ret;
4831 	}
4832 split:
4833 	/* COW or write-notify not handled on PUD level: split pud.*/
4834 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4835 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4836 	return VM_FAULT_FALLBACK;
4837 }
4838 
4839 /*
4840  * These routines also need to handle stuff like marking pages dirty
4841  * and/or accessed for architectures that don't do it in hardware (most
4842  * RISC architectures).  The early dirtying is also good on the i386.
4843  *
4844  * There is also a hook called "update_mmu_cache()" that architectures
4845  * with external mmu caches can use to update those (ie the Sparc or
4846  * PowerPC hashed page tables that act as extended TLBs).
4847  *
4848  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4849  * concurrent faults).
4850  *
4851  * The mmap_lock may have been released depending on flags and our return value.
4852  * See filemap_fault() and __folio_lock_or_retry().
4853  */
4854 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4855 {
4856 	pte_t entry;
4857 
4858 	if (unlikely(pmd_none(*vmf->pmd))) {
4859 		/*
4860 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4861 		 * want to allocate huge page, and if we expose page table
4862 		 * for an instant, it will be difficult to retract from
4863 		 * concurrent faults and from rmap lookups.
4864 		 */
4865 		vmf->pte = NULL;
4866 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4867 	} else {
4868 		/*
4869 		 * If a huge pmd materialized under us just retry later.  Use
4870 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4871 		 * of pmd_trans_huge() to ensure the pmd didn't become
4872 		 * pmd_trans_huge under us and then back to pmd_none, as a
4873 		 * result of MADV_DONTNEED running immediately after a huge pmd
4874 		 * fault in a different thread of this mm, in turn leading to a
4875 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4876 		 * that it is a regular pmd that we can walk with
4877 		 * pte_offset_map() and we can do that through an atomic read
4878 		 * in C, which is what pmd_trans_unstable() provides.
4879 		 */
4880 		if (pmd_devmap_trans_unstable(vmf->pmd))
4881 			return 0;
4882 		/*
4883 		 * A regular pmd is established and it can't morph into a huge
4884 		 * pmd from under us anymore at this point because we hold the
4885 		 * mmap_lock read mode and khugepaged takes it in write mode.
4886 		 * So now it's safe to run pte_offset_map().
4887 		 */
4888 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4889 		vmf->orig_pte = *vmf->pte;
4890 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4891 
4892 		/*
4893 		 * some architectures can have larger ptes than wordsize,
4894 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4895 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4896 		 * accesses.  The code below just needs a consistent view
4897 		 * for the ifs and we later double check anyway with the
4898 		 * ptl lock held. So here a barrier will do.
4899 		 */
4900 		barrier();
4901 		if (pte_none(vmf->orig_pte)) {
4902 			pte_unmap(vmf->pte);
4903 			vmf->pte = NULL;
4904 		}
4905 	}
4906 
4907 	if (!vmf->pte) {
4908 		if (vma_is_anonymous(vmf->vma))
4909 			return do_anonymous_page(vmf);
4910 		else
4911 			return do_fault(vmf);
4912 	}
4913 
4914 	if (!pte_present(vmf->orig_pte))
4915 		return do_swap_page(vmf);
4916 
4917 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4918 		return do_numa_page(vmf);
4919 
4920 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4921 	spin_lock(vmf->ptl);
4922 	entry = vmf->orig_pte;
4923 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4924 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4925 		goto unlock;
4926 	}
4927 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4928 		if (!pte_write(entry))
4929 			return do_wp_page(vmf);
4930 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4931 			entry = pte_mkdirty(entry);
4932 	}
4933 	entry = pte_mkyoung(entry);
4934 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4935 				vmf->flags & FAULT_FLAG_WRITE)) {
4936 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4937 	} else {
4938 		/* Skip spurious TLB flush for retried page fault */
4939 		if (vmf->flags & FAULT_FLAG_TRIED)
4940 			goto unlock;
4941 		/*
4942 		 * This is needed only for protection faults but the arch code
4943 		 * is not yet telling us if this is a protection fault or not.
4944 		 * This still avoids useless tlb flushes for .text page faults
4945 		 * with threads.
4946 		 */
4947 		if (vmf->flags & FAULT_FLAG_WRITE)
4948 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4949 	}
4950 unlock:
4951 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4952 	return 0;
4953 }
4954 
4955 /*
4956  * By the time we get here, we already hold the mm semaphore
4957  *
4958  * The mmap_lock may have been released depending on flags and our
4959  * return value.  See filemap_fault() and __folio_lock_or_retry().
4960  */
4961 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4962 		unsigned long address, unsigned int flags)
4963 {
4964 	struct vm_fault vmf = {
4965 		.vma = vma,
4966 		.address = address & PAGE_MASK,
4967 		.real_address = address,
4968 		.flags = flags,
4969 		.pgoff = linear_page_index(vma, address),
4970 		.gfp_mask = __get_fault_gfp_mask(vma),
4971 	};
4972 	struct mm_struct *mm = vma->vm_mm;
4973 	unsigned long vm_flags = vma->vm_flags;
4974 	pgd_t *pgd;
4975 	p4d_t *p4d;
4976 	vm_fault_t ret;
4977 
4978 	pgd = pgd_offset(mm, address);
4979 	p4d = p4d_alloc(mm, pgd, address);
4980 	if (!p4d)
4981 		return VM_FAULT_OOM;
4982 
4983 	vmf.pud = pud_alloc(mm, p4d, address);
4984 	if (!vmf.pud)
4985 		return VM_FAULT_OOM;
4986 retry_pud:
4987 	if (pud_none(*vmf.pud) &&
4988 	    hugepage_vma_check(vma, vm_flags, false, true)) {
4989 		ret = create_huge_pud(&vmf);
4990 		if (!(ret & VM_FAULT_FALLBACK))
4991 			return ret;
4992 	} else {
4993 		pud_t orig_pud = *vmf.pud;
4994 
4995 		barrier();
4996 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4997 
4998 			/*
4999 			 * TODO once we support anonymous PUDs: NUMA case and
5000 			 * FAULT_FLAG_UNSHARE handling.
5001 			 */
5002 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5003 				ret = wp_huge_pud(&vmf, orig_pud);
5004 				if (!(ret & VM_FAULT_FALLBACK))
5005 					return ret;
5006 			} else {
5007 				huge_pud_set_accessed(&vmf, orig_pud);
5008 				return 0;
5009 			}
5010 		}
5011 	}
5012 
5013 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5014 	if (!vmf.pmd)
5015 		return VM_FAULT_OOM;
5016 
5017 	/* Huge pud page fault raced with pmd_alloc? */
5018 	if (pud_trans_unstable(vmf.pud))
5019 		goto retry_pud;
5020 
5021 	if (pmd_none(*vmf.pmd) &&
5022 	    hugepage_vma_check(vma, vm_flags, false, true)) {
5023 		ret = create_huge_pmd(&vmf);
5024 		if (!(ret & VM_FAULT_FALLBACK))
5025 			return ret;
5026 	} else {
5027 		vmf.orig_pmd = *vmf.pmd;
5028 
5029 		barrier();
5030 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5031 			VM_BUG_ON(thp_migration_supported() &&
5032 					  !is_pmd_migration_entry(vmf.orig_pmd));
5033 			if (is_pmd_migration_entry(vmf.orig_pmd))
5034 				pmd_migration_entry_wait(mm, vmf.pmd);
5035 			return 0;
5036 		}
5037 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5038 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5039 				return do_huge_pmd_numa_page(&vmf);
5040 
5041 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5042 			    !pmd_write(vmf.orig_pmd)) {
5043 				ret = wp_huge_pmd(&vmf);
5044 				if (!(ret & VM_FAULT_FALLBACK))
5045 					return ret;
5046 			} else {
5047 				huge_pmd_set_accessed(&vmf);
5048 				return 0;
5049 			}
5050 		}
5051 	}
5052 
5053 	return handle_pte_fault(&vmf);
5054 }
5055 
5056 /**
5057  * mm_account_fault - Do page fault accounting
5058  *
5059  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5060  *        of perf event counters, but we'll still do the per-task accounting to
5061  *        the task who triggered this page fault.
5062  * @address: the faulted address.
5063  * @flags: the fault flags.
5064  * @ret: the fault retcode.
5065  *
5066  * This will take care of most of the page fault accounting.  Meanwhile, it
5067  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5068  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5069  * still be in per-arch page fault handlers at the entry of page fault.
5070  */
5071 static inline void mm_account_fault(struct pt_regs *regs,
5072 				    unsigned long address, unsigned int flags,
5073 				    vm_fault_t ret)
5074 {
5075 	bool major;
5076 
5077 	/*
5078 	 * We don't do accounting for some specific faults:
5079 	 *
5080 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5081 	 *   includes arch_vma_access_permitted() failing before reaching here.
5082 	 *   So this is not a "this many hardware page faults" counter.  We
5083 	 *   should use the hw profiling for that.
5084 	 *
5085 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5086 	 *   once they're completed.
5087 	 */
5088 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5089 		return;
5090 
5091 	/*
5092 	 * We define the fault as a major fault when the final successful fault
5093 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5094 	 * handle it immediately previously).
5095 	 */
5096 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5097 
5098 	if (major)
5099 		current->maj_flt++;
5100 	else
5101 		current->min_flt++;
5102 
5103 	/*
5104 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5105 	 * accounting for the per thread fault counters who triggered the
5106 	 * fault, and we skip the perf event updates.
5107 	 */
5108 	if (!regs)
5109 		return;
5110 
5111 	if (major)
5112 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5113 	else
5114 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5115 }
5116 
5117 /*
5118  * By the time we get here, we already hold the mm semaphore
5119  *
5120  * The mmap_lock may have been released depending on flags and our
5121  * return value.  See filemap_fault() and __folio_lock_or_retry().
5122  */
5123 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5124 			   unsigned int flags, struct pt_regs *regs)
5125 {
5126 	vm_fault_t ret;
5127 
5128 	__set_current_state(TASK_RUNNING);
5129 
5130 	count_vm_event(PGFAULT);
5131 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
5132 
5133 	/* do counter updates before entering really critical section. */
5134 	check_sync_rss_stat(current);
5135 
5136 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5137 					    flags & FAULT_FLAG_INSTRUCTION,
5138 					    flags & FAULT_FLAG_REMOTE))
5139 		return VM_FAULT_SIGSEGV;
5140 
5141 	/*
5142 	 * Enable the memcg OOM handling for faults triggered in user
5143 	 * space.  Kernel faults are handled more gracefully.
5144 	 */
5145 	if (flags & FAULT_FLAG_USER)
5146 		mem_cgroup_enter_user_fault();
5147 
5148 	if (unlikely(is_vm_hugetlb_page(vma)))
5149 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5150 	else
5151 		ret = __handle_mm_fault(vma, address, flags);
5152 
5153 	if (flags & FAULT_FLAG_USER) {
5154 		mem_cgroup_exit_user_fault();
5155 		/*
5156 		 * The task may have entered a memcg OOM situation but
5157 		 * if the allocation error was handled gracefully (no
5158 		 * VM_FAULT_OOM), there is no need to kill anything.
5159 		 * Just clean up the OOM state peacefully.
5160 		 */
5161 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5162 			mem_cgroup_oom_synchronize(false);
5163 	}
5164 
5165 	mm_account_fault(regs, address, flags, ret);
5166 
5167 	return ret;
5168 }
5169 EXPORT_SYMBOL_GPL(handle_mm_fault);
5170 
5171 #ifndef __PAGETABLE_P4D_FOLDED
5172 /*
5173  * Allocate p4d page table.
5174  * We've already handled the fast-path in-line.
5175  */
5176 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5177 {
5178 	p4d_t *new = p4d_alloc_one(mm, address);
5179 	if (!new)
5180 		return -ENOMEM;
5181 
5182 	spin_lock(&mm->page_table_lock);
5183 	if (pgd_present(*pgd)) {	/* Another has populated it */
5184 		p4d_free(mm, new);
5185 	} else {
5186 		smp_wmb(); /* See comment in pmd_install() */
5187 		pgd_populate(mm, pgd, new);
5188 	}
5189 	spin_unlock(&mm->page_table_lock);
5190 	return 0;
5191 }
5192 #endif /* __PAGETABLE_P4D_FOLDED */
5193 
5194 #ifndef __PAGETABLE_PUD_FOLDED
5195 /*
5196  * Allocate page upper directory.
5197  * We've already handled the fast-path in-line.
5198  */
5199 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5200 {
5201 	pud_t *new = pud_alloc_one(mm, address);
5202 	if (!new)
5203 		return -ENOMEM;
5204 
5205 	spin_lock(&mm->page_table_lock);
5206 	if (!p4d_present(*p4d)) {
5207 		mm_inc_nr_puds(mm);
5208 		smp_wmb(); /* See comment in pmd_install() */
5209 		p4d_populate(mm, p4d, new);
5210 	} else	/* Another has populated it */
5211 		pud_free(mm, new);
5212 	spin_unlock(&mm->page_table_lock);
5213 	return 0;
5214 }
5215 #endif /* __PAGETABLE_PUD_FOLDED */
5216 
5217 #ifndef __PAGETABLE_PMD_FOLDED
5218 /*
5219  * Allocate page middle directory.
5220  * We've already handled the fast-path in-line.
5221  */
5222 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5223 {
5224 	spinlock_t *ptl;
5225 	pmd_t *new = pmd_alloc_one(mm, address);
5226 	if (!new)
5227 		return -ENOMEM;
5228 
5229 	ptl = pud_lock(mm, pud);
5230 	if (!pud_present(*pud)) {
5231 		mm_inc_nr_pmds(mm);
5232 		smp_wmb(); /* See comment in pmd_install() */
5233 		pud_populate(mm, pud, new);
5234 	} else {	/* Another has populated it */
5235 		pmd_free(mm, new);
5236 	}
5237 	spin_unlock(ptl);
5238 	return 0;
5239 }
5240 #endif /* __PAGETABLE_PMD_FOLDED */
5241 
5242 /**
5243  * follow_pte - look up PTE at a user virtual address
5244  * @mm: the mm_struct of the target address space
5245  * @address: user virtual address
5246  * @ptepp: location to store found PTE
5247  * @ptlp: location to store the lock for the PTE
5248  *
5249  * On a successful return, the pointer to the PTE is stored in @ptepp;
5250  * the corresponding lock is taken and its location is stored in @ptlp.
5251  * The contents of the PTE are only stable until @ptlp is released;
5252  * any further use, if any, must be protected against invalidation
5253  * with MMU notifiers.
5254  *
5255  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5256  * should be taken for read.
5257  *
5258  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5259  * it is not a good general-purpose API.
5260  *
5261  * Return: zero on success, -ve otherwise.
5262  */
5263 int follow_pte(struct mm_struct *mm, unsigned long address,
5264 	       pte_t **ptepp, spinlock_t **ptlp)
5265 {
5266 	pgd_t *pgd;
5267 	p4d_t *p4d;
5268 	pud_t *pud;
5269 	pmd_t *pmd;
5270 	pte_t *ptep;
5271 
5272 	pgd = pgd_offset(mm, address);
5273 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5274 		goto out;
5275 
5276 	p4d = p4d_offset(pgd, address);
5277 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5278 		goto out;
5279 
5280 	pud = pud_offset(p4d, address);
5281 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5282 		goto out;
5283 
5284 	pmd = pmd_offset(pud, address);
5285 	VM_BUG_ON(pmd_trans_huge(*pmd));
5286 
5287 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5288 		goto out;
5289 
5290 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5291 	if (!pte_present(*ptep))
5292 		goto unlock;
5293 	*ptepp = ptep;
5294 	return 0;
5295 unlock:
5296 	pte_unmap_unlock(ptep, *ptlp);
5297 out:
5298 	return -EINVAL;
5299 }
5300 EXPORT_SYMBOL_GPL(follow_pte);
5301 
5302 /**
5303  * follow_pfn - look up PFN at a user virtual address
5304  * @vma: memory mapping
5305  * @address: user virtual address
5306  * @pfn: location to store found PFN
5307  *
5308  * Only IO mappings and raw PFN mappings are allowed.
5309  *
5310  * This function does not allow the caller to read the permissions
5311  * of the PTE.  Do not use it.
5312  *
5313  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5314  */
5315 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5316 	unsigned long *pfn)
5317 {
5318 	int ret = -EINVAL;
5319 	spinlock_t *ptl;
5320 	pte_t *ptep;
5321 
5322 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5323 		return ret;
5324 
5325 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5326 	if (ret)
5327 		return ret;
5328 	*pfn = pte_pfn(*ptep);
5329 	pte_unmap_unlock(ptep, ptl);
5330 	return 0;
5331 }
5332 EXPORT_SYMBOL(follow_pfn);
5333 
5334 #ifdef CONFIG_HAVE_IOREMAP_PROT
5335 int follow_phys(struct vm_area_struct *vma,
5336 		unsigned long address, unsigned int flags,
5337 		unsigned long *prot, resource_size_t *phys)
5338 {
5339 	int ret = -EINVAL;
5340 	pte_t *ptep, pte;
5341 	spinlock_t *ptl;
5342 
5343 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5344 		goto out;
5345 
5346 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5347 		goto out;
5348 	pte = *ptep;
5349 
5350 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5351 		goto unlock;
5352 
5353 	*prot = pgprot_val(pte_pgprot(pte));
5354 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5355 
5356 	ret = 0;
5357 unlock:
5358 	pte_unmap_unlock(ptep, ptl);
5359 out:
5360 	return ret;
5361 }
5362 
5363 /**
5364  * generic_access_phys - generic implementation for iomem mmap access
5365  * @vma: the vma to access
5366  * @addr: userspace address, not relative offset within @vma
5367  * @buf: buffer to read/write
5368  * @len: length of transfer
5369  * @write: set to FOLL_WRITE when writing, otherwise reading
5370  *
5371  * This is a generic implementation for &vm_operations_struct.access for an
5372  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5373  * not page based.
5374  */
5375 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5376 			void *buf, int len, int write)
5377 {
5378 	resource_size_t phys_addr;
5379 	unsigned long prot = 0;
5380 	void __iomem *maddr;
5381 	pte_t *ptep, pte;
5382 	spinlock_t *ptl;
5383 	int offset = offset_in_page(addr);
5384 	int ret = -EINVAL;
5385 
5386 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5387 		return -EINVAL;
5388 
5389 retry:
5390 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5391 		return -EINVAL;
5392 	pte = *ptep;
5393 	pte_unmap_unlock(ptep, ptl);
5394 
5395 	prot = pgprot_val(pte_pgprot(pte));
5396 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5397 
5398 	if ((write & FOLL_WRITE) && !pte_write(pte))
5399 		return -EINVAL;
5400 
5401 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5402 	if (!maddr)
5403 		return -ENOMEM;
5404 
5405 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5406 		goto out_unmap;
5407 
5408 	if (!pte_same(pte, *ptep)) {
5409 		pte_unmap_unlock(ptep, ptl);
5410 		iounmap(maddr);
5411 
5412 		goto retry;
5413 	}
5414 
5415 	if (write)
5416 		memcpy_toio(maddr + offset, buf, len);
5417 	else
5418 		memcpy_fromio(buf, maddr + offset, len);
5419 	ret = len;
5420 	pte_unmap_unlock(ptep, ptl);
5421 out_unmap:
5422 	iounmap(maddr);
5423 
5424 	return ret;
5425 }
5426 EXPORT_SYMBOL_GPL(generic_access_phys);
5427 #endif
5428 
5429 /*
5430  * Access another process' address space as given in mm.
5431  */
5432 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5433 		       int len, unsigned int gup_flags)
5434 {
5435 	struct vm_area_struct *vma;
5436 	void *old_buf = buf;
5437 	int write = gup_flags & FOLL_WRITE;
5438 
5439 	if (mmap_read_lock_killable(mm))
5440 		return 0;
5441 
5442 	/* ignore errors, just check how much was successfully transferred */
5443 	while (len) {
5444 		int bytes, ret, offset;
5445 		void *maddr;
5446 		struct page *page = NULL;
5447 
5448 		ret = get_user_pages_remote(mm, addr, 1,
5449 				gup_flags, &page, &vma, NULL);
5450 		if (ret <= 0) {
5451 #ifndef CONFIG_HAVE_IOREMAP_PROT
5452 			break;
5453 #else
5454 			/*
5455 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5456 			 * we can access using slightly different code.
5457 			 */
5458 			vma = vma_lookup(mm, addr);
5459 			if (!vma)
5460 				break;
5461 			if (vma->vm_ops && vma->vm_ops->access)
5462 				ret = vma->vm_ops->access(vma, addr, buf,
5463 							  len, write);
5464 			if (ret <= 0)
5465 				break;
5466 			bytes = ret;
5467 #endif
5468 		} else {
5469 			bytes = len;
5470 			offset = addr & (PAGE_SIZE-1);
5471 			if (bytes > PAGE_SIZE-offset)
5472 				bytes = PAGE_SIZE-offset;
5473 
5474 			maddr = kmap(page);
5475 			if (write) {
5476 				copy_to_user_page(vma, page, addr,
5477 						  maddr + offset, buf, bytes);
5478 				set_page_dirty_lock(page);
5479 			} else {
5480 				copy_from_user_page(vma, page, addr,
5481 						    buf, maddr + offset, bytes);
5482 			}
5483 			kunmap(page);
5484 			put_page(page);
5485 		}
5486 		len -= bytes;
5487 		buf += bytes;
5488 		addr += bytes;
5489 	}
5490 	mmap_read_unlock(mm);
5491 
5492 	return buf - old_buf;
5493 }
5494 
5495 /**
5496  * access_remote_vm - access another process' address space
5497  * @mm:		the mm_struct of the target address space
5498  * @addr:	start address to access
5499  * @buf:	source or destination buffer
5500  * @len:	number of bytes to transfer
5501  * @gup_flags:	flags modifying lookup behaviour
5502  *
5503  * The caller must hold a reference on @mm.
5504  *
5505  * Return: number of bytes copied from source to destination.
5506  */
5507 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5508 		void *buf, int len, unsigned int gup_flags)
5509 {
5510 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5511 }
5512 
5513 /*
5514  * Access another process' address space.
5515  * Source/target buffer must be kernel space,
5516  * Do not walk the page table directly, use get_user_pages
5517  */
5518 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5519 		void *buf, int len, unsigned int gup_flags)
5520 {
5521 	struct mm_struct *mm;
5522 	int ret;
5523 
5524 	mm = get_task_mm(tsk);
5525 	if (!mm)
5526 		return 0;
5527 
5528 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5529 
5530 	mmput(mm);
5531 
5532 	return ret;
5533 }
5534 EXPORT_SYMBOL_GPL(access_process_vm);
5535 
5536 /*
5537  * Print the name of a VMA.
5538  */
5539 void print_vma_addr(char *prefix, unsigned long ip)
5540 {
5541 	struct mm_struct *mm = current->mm;
5542 	struct vm_area_struct *vma;
5543 
5544 	/*
5545 	 * we might be running from an atomic context so we cannot sleep
5546 	 */
5547 	if (!mmap_read_trylock(mm))
5548 		return;
5549 
5550 	vma = find_vma(mm, ip);
5551 	if (vma && vma->vm_file) {
5552 		struct file *f = vma->vm_file;
5553 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5554 		if (buf) {
5555 			char *p;
5556 
5557 			p = file_path(f, buf, PAGE_SIZE);
5558 			if (IS_ERR(p))
5559 				p = "?";
5560 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5561 					vma->vm_start,
5562 					vma->vm_end - vma->vm_start);
5563 			free_page((unsigned long)buf);
5564 		}
5565 	}
5566 	mmap_read_unlock(mm);
5567 }
5568 
5569 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5570 void __might_fault(const char *file, int line)
5571 {
5572 	if (pagefault_disabled())
5573 		return;
5574 	__might_sleep(file, line);
5575 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5576 	if (current->mm)
5577 		might_lock_read(&current->mm->mmap_lock);
5578 #endif
5579 }
5580 EXPORT_SYMBOL(__might_fault);
5581 #endif
5582 
5583 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5584 /*
5585  * Process all subpages of the specified huge page with the specified
5586  * operation.  The target subpage will be processed last to keep its
5587  * cache lines hot.
5588  */
5589 static inline void process_huge_page(
5590 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5591 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5592 	void *arg)
5593 {
5594 	int i, n, base, l;
5595 	unsigned long addr = addr_hint &
5596 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5597 
5598 	/* Process target subpage last to keep its cache lines hot */
5599 	might_sleep();
5600 	n = (addr_hint - addr) / PAGE_SIZE;
5601 	if (2 * n <= pages_per_huge_page) {
5602 		/* If target subpage in first half of huge page */
5603 		base = 0;
5604 		l = n;
5605 		/* Process subpages at the end of huge page */
5606 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5607 			cond_resched();
5608 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5609 		}
5610 	} else {
5611 		/* If target subpage in second half of huge page */
5612 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5613 		l = pages_per_huge_page - n;
5614 		/* Process subpages at the begin of huge page */
5615 		for (i = 0; i < base; i++) {
5616 			cond_resched();
5617 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5618 		}
5619 	}
5620 	/*
5621 	 * Process remaining subpages in left-right-left-right pattern
5622 	 * towards the target subpage
5623 	 */
5624 	for (i = 0; i < l; i++) {
5625 		int left_idx = base + i;
5626 		int right_idx = base + 2 * l - 1 - i;
5627 
5628 		cond_resched();
5629 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5630 		cond_resched();
5631 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5632 	}
5633 }
5634 
5635 static void clear_gigantic_page(struct page *page,
5636 				unsigned long addr,
5637 				unsigned int pages_per_huge_page)
5638 {
5639 	int i;
5640 	struct page *p = page;
5641 
5642 	might_sleep();
5643 	for (i = 0; i < pages_per_huge_page;
5644 	     i++, p = mem_map_next(p, page, i)) {
5645 		cond_resched();
5646 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5647 	}
5648 }
5649 
5650 static void clear_subpage(unsigned long addr, int idx, void *arg)
5651 {
5652 	struct page *page = arg;
5653 
5654 	clear_user_highpage(page + idx, addr);
5655 }
5656 
5657 void clear_huge_page(struct page *page,
5658 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5659 {
5660 	unsigned long addr = addr_hint &
5661 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5662 
5663 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5664 		clear_gigantic_page(page, addr, pages_per_huge_page);
5665 		return;
5666 	}
5667 
5668 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5669 }
5670 
5671 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5672 				    unsigned long addr,
5673 				    struct vm_area_struct *vma,
5674 				    unsigned int pages_per_huge_page)
5675 {
5676 	int i;
5677 	struct page *dst_base = dst;
5678 	struct page *src_base = src;
5679 
5680 	for (i = 0; i < pages_per_huge_page; ) {
5681 		cond_resched();
5682 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5683 
5684 		i++;
5685 		dst = mem_map_next(dst, dst_base, i);
5686 		src = mem_map_next(src, src_base, i);
5687 	}
5688 }
5689 
5690 struct copy_subpage_arg {
5691 	struct page *dst;
5692 	struct page *src;
5693 	struct vm_area_struct *vma;
5694 };
5695 
5696 static void copy_subpage(unsigned long addr, int idx, void *arg)
5697 {
5698 	struct copy_subpage_arg *copy_arg = arg;
5699 
5700 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5701 			   addr, copy_arg->vma);
5702 }
5703 
5704 void copy_user_huge_page(struct page *dst, struct page *src,
5705 			 unsigned long addr_hint, struct vm_area_struct *vma,
5706 			 unsigned int pages_per_huge_page)
5707 {
5708 	unsigned long addr = addr_hint &
5709 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5710 	struct copy_subpage_arg arg = {
5711 		.dst = dst,
5712 		.src = src,
5713 		.vma = vma,
5714 	};
5715 
5716 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5717 		copy_user_gigantic_page(dst, src, addr, vma,
5718 					pages_per_huge_page);
5719 		return;
5720 	}
5721 
5722 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5723 }
5724 
5725 long copy_huge_page_from_user(struct page *dst_page,
5726 				const void __user *usr_src,
5727 				unsigned int pages_per_huge_page,
5728 				bool allow_pagefault)
5729 {
5730 	void *page_kaddr;
5731 	unsigned long i, rc = 0;
5732 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5733 	struct page *subpage = dst_page;
5734 
5735 	for (i = 0; i < pages_per_huge_page;
5736 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5737 		if (allow_pagefault)
5738 			page_kaddr = kmap(subpage);
5739 		else
5740 			page_kaddr = kmap_atomic(subpage);
5741 		rc = copy_from_user(page_kaddr,
5742 				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5743 		if (allow_pagefault)
5744 			kunmap(subpage);
5745 		else
5746 			kunmap_atomic(page_kaddr);
5747 
5748 		ret_val -= (PAGE_SIZE - rc);
5749 		if (rc)
5750 			break;
5751 
5752 		flush_dcache_page(subpage);
5753 
5754 		cond_resched();
5755 	}
5756 	return ret_val;
5757 }
5758 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5759 
5760 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5761 
5762 static struct kmem_cache *page_ptl_cachep;
5763 
5764 void __init ptlock_cache_init(void)
5765 {
5766 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5767 			SLAB_PANIC, NULL);
5768 }
5769 
5770 bool ptlock_alloc(struct page *page)
5771 {
5772 	spinlock_t *ptl;
5773 
5774 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5775 	if (!ptl)
5776 		return false;
5777 	page->ptl = ptl;
5778 	return true;
5779 }
5780 
5781 void ptlock_free(struct page *page)
5782 {
5783 	kmem_cache_free(page_ptl_cachep, page->ptl);
5784 }
5785 #endif
5786