1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 #include <linux/numa.h> 73 #include <linux/perf_event.h> 74 #include <linux/ptrace.h> 75 #include <linux/vmalloc.h> 76 77 #include <trace/events/kmem.h> 78 79 #include <asm/io.h> 80 #include <asm/mmu_context.h> 81 #include <asm/pgalloc.h> 82 #include <linux/uaccess.h> 83 #include <asm/tlb.h> 84 #include <asm/tlbflush.h> 85 86 #include "pgalloc-track.h" 87 #include "internal.h" 88 89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 91 #endif 92 93 #ifndef CONFIG_NEED_MULTIPLE_NODES 94 /* use the per-pgdat data instead for discontigmem - mbligh */ 95 unsigned long max_mapnr; 96 EXPORT_SYMBOL(max_mapnr); 97 98 struct page *mem_map; 99 EXPORT_SYMBOL(mem_map); 100 #endif 101 102 /* 103 * A number of key systems in x86 including ioremap() rely on the assumption 104 * that high_memory defines the upper bound on direct map memory, then end 105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 107 * and ZONE_HIGHMEM. 108 */ 109 void *high_memory; 110 EXPORT_SYMBOL(high_memory); 111 112 /* 113 * Randomize the address space (stacks, mmaps, brk, etc.). 114 * 115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 116 * as ancient (libc5 based) binaries can segfault. ) 117 */ 118 int randomize_va_space __read_mostly = 119 #ifdef CONFIG_COMPAT_BRK 120 1; 121 #else 122 2; 123 #endif 124 125 #ifndef arch_faults_on_old_pte 126 static inline bool arch_faults_on_old_pte(void) 127 { 128 /* 129 * Those arches which don't have hw access flag feature need to 130 * implement their own helper. By default, "true" means pagefault 131 * will be hit on old pte. 132 */ 133 return true; 134 } 135 #endif 136 137 #ifndef arch_wants_old_prefaulted_pte 138 static inline bool arch_wants_old_prefaulted_pte(void) 139 { 140 /* 141 * Transitioning a PTE from 'old' to 'young' can be expensive on 142 * some architectures, even if it's performed in hardware. By 143 * default, "false" means prefaulted entries will be 'young'. 144 */ 145 return false; 146 } 147 #endif 148 149 static int __init disable_randmaps(char *s) 150 { 151 randomize_va_space = 0; 152 return 1; 153 } 154 __setup("norandmaps", disable_randmaps); 155 156 unsigned long zero_pfn __read_mostly; 157 EXPORT_SYMBOL(zero_pfn); 158 159 unsigned long highest_memmap_pfn __read_mostly; 160 161 /* 162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 163 */ 164 static int __init init_zero_pfn(void) 165 { 166 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 167 return 0; 168 } 169 early_initcall(init_zero_pfn); 170 171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 172 { 173 trace_rss_stat(mm, member, count); 174 } 175 176 #if defined(SPLIT_RSS_COUNTING) 177 178 void sync_mm_rss(struct mm_struct *mm) 179 { 180 int i; 181 182 for (i = 0; i < NR_MM_COUNTERS; i++) { 183 if (current->rss_stat.count[i]) { 184 add_mm_counter(mm, i, current->rss_stat.count[i]); 185 current->rss_stat.count[i] = 0; 186 } 187 } 188 current->rss_stat.events = 0; 189 } 190 191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 192 { 193 struct task_struct *task = current; 194 195 if (likely(task->mm == mm)) 196 task->rss_stat.count[member] += val; 197 else 198 add_mm_counter(mm, member, val); 199 } 200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 202 203 /* sync counter once per 64 page faults */ 204 #define TASK_RSS_EVENTS_THRESH (64) 205 static void check_sync_rss_stat(struct task_struct *task) 206 { 207 if (unlikely(task != current)) 208 return; 209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 210 sync_mm_rss(task->mm); 211 } 212 #else /* SPLIT_RSS_COUNTING */ 213 214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 216 217 static void check_sync_rss_stat(struct task_struct *task) 218 { 219 } 220 221 #endif /* SPLIT_RSS_COUNTING */ 222 223 /* 224 * Note: this doesn't free the actual pages themselves. That 225 * has been handled earlier when unmapping all the memory regions. 226 */ 227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 228 unsigned long addr) 229 { 230 pgtable_t token = pmd_pgtable(*pmd); 231 pmd_clear(pmd); 232 pte_free_tlb(tlb, token, addr); 233 mm_dec_nr_ptes(tlb->mm); 234 } 235 236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 237 unsigned long addr, unsigned long end, 238 unsigned long floor, unsigned long ceiling) 239 { 240 pmd_t *pmd; 241 unsigned long next; 242 unsigned long start; 243 244 start = addr; 245 pmd = pmd_offset(pud, addr); 246 do { 247 next = pmd_addr_end(addr, end); 248 if (pmd_none_or_clear_bad(pmd)) 249 continue; 250 free_pte_range(tlb, pmd, addr); 251 } while (pmd++, addr = next, addr != end); 252 253 start &= PUD_MASK; 254 if (start < floor) 255 return; 256 if (ceiling) { 257 ceiling &= PUD_MASK; 258 if (!ceiling) 259 return; 260 } 261 if (end - 1 > ceiling - 1) 262 return; 263 264 pmd = pmd_offset(pud, start); 265 pud_clear(pud); 266 pmd_free_tlb(tlb, pmd, start); 267 mm_dec_nr_pmds(tlb->mm); 268 } 269 270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 271 unsigned long addr, unsigned long end, 272 unsigned long floor, unsigned long ceiling) 273 { 274 pud_t *pud; 275 unsigned long next; 276 unsigned long start; 277 278 start = addr; 279 pud = pud_offset(p4d, addr); 280 do { 281 next = pud_addr_end(addr, end); 282 if (pud_none_or_clear_bad(pud)) 283 continue; 284 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 285 } while (pud++, addr = next, addr != end); 286 287 start &= P4D_MASK; 288 if (start < floor) 289 return; 290 if (ceiling) { 291 ceiling &= P4D_MASK; 292 if (!ceiling) 293 return; 294 } 295 if (end - 1 > ceiling - 1) 296 return; 297 298 pud = pud_offset(p4d, start); 299 p4d_clear(p4d); 300 pud_free_tlb(tlb, pud, start); 301 mm_dec_nr_puds(tlb->mm); 302 } 303 304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 305 unsigned long addr, unsigned long end, 306 unsigned long floor, unsigned long ceiling) 307 { 308 p4d_t *p4d; 309 unsigned long next; 310 unsigned long start; 311 312 start = addr; 313 p4d = p4d_offset(pgd, addr); 314 do { 315 next = p4d_addr_end(addr, end); 316 if (p4d_none_or_clear_bad(p4d)) 317 continue; 318 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 319 } while (p4d++, addr = next, addr != end); 320 321 start &= PGDIR_MASK; 322 if (start < floor) 323 return; 324 if (ceiling) { 325 ceiling &= PGDIR_MASK; 326 if (!ceiling) 327 return; 328 } 329 if (end - 1 > ceiling - 1) 330 return; 331 332 p4d = p4d_offset(pgd, start); 333 pgd_clear(pgd); 334 p4d_free_tlb(tlb, p4d, start); 335 } 336 337 /* 338 * This function frees user-level page tables of a process. 339 */ 340 void free_pgd_range(struct mmu_gather *tlb, 341 unsigned long addr, unsigned long end, 342 unsigned long floor, unsigned long ceiling) 343 { 344 pgd_t *pgd; 345 unsigned long next; 346 347 /* 348 * The next few lines have given us lots of grief... 349 * 350 * Why are we testing PMD* at this top level? Because often 351 * there will be no work to do at all, and we'd prefer not to 352 * go all the way down to the bottom just to discover that. 353 * 354 * Why all these "- 1"s? Because 0 represents both the bottom 355 * of the address space and the top of it (using -1 for the 356 * top wouldn't help much: the masks would do the wrong thing). 357 * The rule is that addr 0 and floor 0 refer to the bottom of 358 * the address space, but end 0 and ceiling 0 refer to the top 359 * Comparisons need to use "end - 1" and "ceiling - 1" (though 360 * that end 0 case should be mythical). 361 * 362 * Wherever addr is brought up or ceiling brought down, we must 363 * be careful to reject "the opposite 0" before it confuses the 364 * subsequent tests. But what about where end is brought down 365 * by PMD_SIZE below? no, end can't go down to 0 there. 366 * 367 * Whereas we round start (addr) and ceiling down, by different 368 * masks at different levels, in order to test whether a table 369 * now has no other vmas using it, so can be freed, we don't 370 * bother to round floor or end up - the tests don't need that. 371 */ 372 373 addr &= PMD_MASK; 374 if (addr < floor) { 375 addr += PMD_SIZE; 376 if (!addr) 377 return; 378 } 379 if (ceiling) { 380 ceiling &= PMD_MASK; 381 if (!ceiling) 382 return; 383 } 384 if (end - 1 > ceiling - 1) 385 end -= PMD_SIZE; 386 if (addr > end - 1) 387 return; 388 /* 389 * We add page table cache pages with PAGE_SIZE, 390 * (see pte_free_tlb()), flush the tlb if we need 391 */ 392 tlb_change_page_size(tlb, PAGE_SIZE); 393 pgd = pgd_offset(tlb->mm, addr); 394 do { 395 next = pgd_addr_end(addr, end); 396 if (pgd_none_or_clear_bad(pgd)) 397 continue; 398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 399 } while (pgd++, addr = next, addr != end); 400 } 401 402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 403 unsigned long floor, unsigned long ceiling) 404 { 405 while (vma) { 406 struct vm_area_struct *next = vma->vm_next; 407 unsigned long addr = vma->vm_start; 408 409 /* 410 * Hide vma from rmap and truncate_pagecache before freeing 411 * pgtables 412 */ 413 unlink_anon_vmas(vma); 414 unlink_file_vma(vma); 415 416 if (is_vm_hugetlb_page(vma)) { 417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 418 floor, next ? next->vm_start : ceiling); 419 } else { 420 /* 421 * Optimization: gather nearby vmas into one call down 422 */ 423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 424 && !is_vm_hugetlb_page(next)) { 425 vma = next; 426 next = vma->vm_next; 427 unlink_anon_vmas(vma); 428 unlink_file_vma(vma); 429 } 430 free_pgd_range(tlb, addr, vma->vm_end, 431 floor, next ? next->vm_start : ceiling); 432 } 433 vma = next; 434 } 435 } 436 437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 438 { 439 spinlock_t *ptl; 440 pgtable_t new = pte_alloc_one(mm); 441 if (!new) 442 return -ENOMEM; 443 444 /* 445 * Ensure all pte setup (eg. pte page lock and page clearing) are 446 * visible before the pte is made visible to other CPUs by being 447 * put into page tables. 448 * 449 * The other side of the story is the pointer chasing in the page 450 * table walking code (when walking the page table without locking; 451 * ie. most of the time). Fortunately, these data accesses consist 452 * of a chain of data-dependent loads, meaning most CPUs (alpha 453 * being the notable exception) will already guarantee loads are 454 * seen in-order. See the alpha page table accessors for the 455 * smp_rmb() barriers in page table walking code. 456 */ 457 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 458 459 ptl = pmd_lock(mm, pmd); 460 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 461 mm_inc_nr_ptes(mm); 462 pmd_populate(mm, pmd, new); 463 new = NULL; 464 } 465 spin_unlock(ptl); 466 if (new) 467 pte_free(mm, new); 468 return 0; 469 } 470 471 int __pte_alloc_kernel(pmd_t *pmd) 472 { 473 pte_t *new = pte_alloc_one_kernel(&init_mm); 474 if (!new) 475 return -ENOMEM; 476 477 smp_wmb(); /* See comment in __pte_alloc */ 478 479 spin_lock(&init_mm.page_table_lock); 480 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 481 pmd_populate_kernel(&init_mm, pmd, new); 482 new = NULL; 483 } 484 spin_unlock(&init_mm.page_table_lock); 485 if (new) 486 pte_free_kernel(&init_mm, new); 487 return 0; 488 } 489 490 static inline void init_rss_vec(int *rss) 491 { 492 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 493 } 494 495 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 496 { 497 int i; 498 499 if (current->mm == mm) 500 sync_mm_rss(mm); 501 for (i = 0; i < NR_MM_COUNTERS; i++) 502 if (rss[i]) 503 add_mm_counter(mm, i, rss[i]); 504 } 505 506 /* 507 * This function is called to print an error when a bad pte 508 * is found. For example, we might have a PFN-mapped pte in 509 * a region that doesn't allow it. 510 * 511 * The calling function must still handle the error. 512 */ 513 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 514 pte_t pte, struct page *page) 515 { 516 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 517 p4d_t *p4d = p4d_offset(pgd, addr); 518 pud_t *pud = pud_offset(p4d, addr); 519 pmd_t *pmd = pmd_offset(pud, addr); 520 struct address_space *mapping; 521 pgoff_t index; 522 static unsigned long resume; 523 static unsigned long nr_shown; 524 static unsigned long nr_unshown; 525 526 /* 527 * Allow a burst of 60 reports, then keep quiet for that minute; 528 * or allow a steady drip of one report per second. 529 */ 530 if (nr_shown == 60) { 531 if (time_before(jiffies, resume)) { 532 nr_unshown++; 533 return; 534 } 535 if (nr_unshown) { 536 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 537 nr_unshown); 538 nr_unshown = 0; 539 } 540 nr_shown = 0; 541 } 542 if (nr_shown++ == 0) 543 resume = jiffies + 60 * HZ; 544 545 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 546 index = linear_page_index(vma, addr); 547 548 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 549 current->comm, 550 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 551 if (page) 552 dump_page(page, "bad pte"); 553 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 554 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 555 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 556 vma->vm_file, 557 vma->vm_ops ? vma->vm_ops->fault : NULL, 558 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 559 mapping ? mapping->a_ops->readpage : NULL); 560 dump_stack(); 561 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 562 } 563 564 /* 565 * vm_normal_page -- This function gets the "struct page" associated with a pte. 566 * 567 * "Special" mappings do not wish to be associated with a "struct page" (either 568 * it doesn't exist, or it exists but they don't want to touch it). In this 569 * case, NULL is returned here. "Normal" mappings do have a struct page. 570 * 571 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 572 * pte bit, in which case this function is trivial. Secondly, an architecture 573 * may not have a spare pte bit, which requires a more complicated scheme, 574 * described below. 575 * 576 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 577 * special mapping (even if there are underlying and valid "struct pages"). 578 * COWed pages of a VM_PFNMAP are always normal. 579 * 580 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 581 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 582 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 583 * mapping will always honor the rule 584 * 585 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 586 * 587 * And for normal mappings this is false. 588 * 589 * This restricts such mappings to be a linear translation from virtual address 590 * to pfn. To get around this restriction, we allow arbitrary mappings so long 591 * as the vma is not a COW mapping; in that case, we know that all ptes are 592 * special (because none can have been COWed). 593 * 594 * 595 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 596 * 597 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 598 * page" backing, however the difference is that _all_ pages with a struct 599 * page (that is, those where pfn_valid is true) are refcounted and considered 600 * normal pages by the VM. The disadvantage is that pages are refcounted 601 * (which can be slower and simply not an option for some PFNMAP users). The 602 * advantage is that we don't have to follow the strict linearity rule of 603 * PFNMAP mappings in order to support COWable mappings. 604 * 605 */ 606 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 607 pte_t pte) 608 { 609 unsigned long pfn = pte_pfn(pte); 610 611 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 612 if (likely(!pte_special(pte))) 613 goto check_pfn; 614 if (vma->vm_ops && vma->vm_ops->find_special_page) 615 return vma->vm_ops->find_special_page(vma, addr); 616 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 617 return NULL; 618 if (is_zero_pfn(pfn)) 619 return NULL; 620 if (pte_devmap(pte)) 621 return NULL; 622 623 print_bad_pte(vma, addr, pte, NULL); 624 return NULL; 625 } 626 627 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 628 629 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 630 if (vma->vm_flags & VM_MIXEDMAP) { 631 if (!pfn_valid(pfn)) 632 return NULL; 633 goto out; 634 } else { 635 unsigned long off; 636 off = (addr - vma->vm_start) >> PAGE_SHIFT; 637 if (pfn == vma->vm_pgoff + off) 638 return NULL; 639 if (!is_cow_mapping(vma->vm_flags)) 640 return NULL; 641 } 642 } 643 644 if (is_zero_pfn(pfn)) 645 return NULL; 646 647 check_pfn: 648 if (unlikely(pfn > highest_memmap_pfn)) { 649 print_bad_pte(vma, addr, pte, NULL); 650 return NULL; 651 } 652 653 /* 654 * NOTE! We still have PageReserved() pages in the page tables. 655 * eg. VDSO mappings can cause them to exist. 656 */ 657 out: 658 return pfn_to_page(pfn); 659 } 660 661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 662 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 663 pmd_t pmd) 664 { 665 unsigned long pfn = pmd_pfn(pmd); 666 667 /* 668 * There is no pmd_special() but there may be special pmds, e.g. 669 * in a direct-access (dax) mapping, so let's just replicate the 670 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 671 */ 672 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 673 if (vma->vm_flags & VM_MIXEDMAP) { 674 if (!pfn_valid(pfn)) 675 return NULL; 676 goto out; 677 } else { 678 unsigned long off; 679 off = (addr - vma->vm_start) >> PAGE_SHIFT; 680 if (pfn == vma->vm_pgoff + off) 681 return NULL; 682 if (!is_cow_mapping(vma->vm_flags)) 683 return NULL; 684 } 685 } 686 687 if (pmd_devmap(pmd)) 688 return NULL; 689 if (is_huge_zero_pmd(pmd)) 690 return NULL; 691 if (unlikely(pfn > highest_memmap_pfn)) 692 return NULL; 693 694 /* 695 * NOTE! We still have PageReserved() pages in the page tables. 696 * eg. VDSO mappings can cause them to exist. 697 */ 698 out: 699 return pfn_to_page(pfn); 700 } 701 #endif 702 703 /* 704 * copy one vm_area from one task to the other. Assumes the page tables 705 * already present in the new task to be cleared in the whole range 706 * covered by this vma. 707 */ 708 709 static unsigned long 710 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 711 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 712 unsigned long addr, int *rss) 713 { 714 unsigned long vm_flags = vma->vm_flags; 715 pte_t pte = *src_pte; 716 struct page *page; 717 swp_entry_t entry = pte_to_swp_entry(pte); 718 719 if (likely(!non_swap_entry(entry))) { 720 if (swap_duplicate(entry) < 0) 721 return entry.val; 722 723 /* make sure dst_mm is on swapoff's mmlist. */ 724 if (unlikely(list_empty(&dst_mm->mmlist))) { 725 spin_lock(&mmlist_lock); 726 if (list_empty(&dst_mm->mmlist)) 727 list_add(&dst_mm->mmlist, 728 &src_mm->mmlist); 729 spin_unlock(&mmlist_lock); 730 } 731 rss[MM_SWAPENTS]++; 732 } else if (is_migration_entry(entry)) { 733 page = migration_entry_to_page(entry); 734 735 rss[mm_counter(page)]++; 736 737 if (is_write_migration_entry(entry) && 738 is_cow_mapping(vm_flags)) { 739 /* 740 * COW mappings require pages in both 741 * parent and child to be set to read. 742 */ 743 make_migration_entry_read(&entry); 744 pte = swp_entry_to_pte(entry); 745 if (pte_swp_soft_dirty(*src_pte)) 746 pte = pte_swp_mksoft_dirty(pte); 747 if (pte_swp_uffd_wp(*src_pte)) 748 pte = pte_swp_mkuffd_wp(pte); 749 set_pte_at(src_mm, addr, src_pte, pte); 750 } 751 } else if (is_device_private_entry(entry)) { 752 page = device_private_entry_to_page(entry); 753 754 /* 755 * Update rss count even for unaddressable pages, as 756 * they should treated just like normal pages in this 757 * respect. 758 * 759 * We will likely want to have some new rss counters 760 * for unaddressable pages, at some point. But for now 761 * keep things as they are. 762 */ 763 get_page(page); 764 rss[mm_counter(page)]++; 765 page_dup_rmap(page, false); 766 767 /* 768 * We do not preserve soft-dirty information, because so 769 * far, checkpoint/restore is the only feature that 770 * requires that. And checkpoint/restore does not work 771 * when a device driver is involved (you cannot easily 772 * save and restore device driver state). 773 */ 774 if (is_write_device_private_entry(entry) && 775 is_cow_mapping(vm_flags)) { 776 make_device_private_entry_read(&entry); 777 pte = swp_entry_to_pte(entry); 778 if (pte_swp_uffd_wp(*src_pte)) 779 pte = pte_swp_mkuffd_wp(pte); 780 set_pte_at(src_mm, addr, src_pte, pte); 781 } 782 } 783 set_pte_at(dst_mm, addr, dst_pte, pte); 784 return 0; 785 } 786 787 /* 788 * Copy a present and normal page if necessary. 789 * 790 * NOTE! The usual case is that this doesn't need to do 791 * anything, and can just return a positive value. That 792 * will let the caller know that it can just increase 793 * the page refcount and re-use the pte the traditional 794 * way. 795 * 796 * But _if_ we need to copy it because it needs to be 797 * pinned in the parent (and the child should get its own 798 * copy rather than just a reference to the same page), 799 * we'll do that here and return zero to let the caller 800 * know we're done. 801 * 802 * And if we need a pre-allocated page but don't yet have 803 * one, return a negative error to let the preallocation 804 * code know so that it can do so outside the page table 805 * lock. 806 */ 807 static inline int 808 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 809 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 810 struct page **prealloc, pte_t pte, struct page *page) 811 { 812 struct page *new_page; 813 814 /* 815 * What we want to do is to check whether this page may 816 * have been pinned by the parent process. If so, 817 * instead of wrprotect the pte on both sides, we copy 818 * the page immediately so that we'll always guarantee 819 * the pinned page won't be randomly replaced in the 820 * future. 821 * 822 * The page pinning checks are just "has this mm ever 823 * seen pinning", along with the (inexact) check of 824 * the page count. That might give false positives for 825 * for pinning, but it will work correctly. 826 */ 827 if (likely(!page_needs_cow_for_dma(src_vma, page))) 828 return 1; 829 830 new_page = *prealloc; 831 if (!new_page) 832 return -EAGAIN; 833 834 /* 835 * We have a prealloc page, all good! Take it 836 * over and copy the page & arm it. 837 */ 838 *prealloc = NULL; 839 copy_user_highpage(new_page, page, addr, src_vma); 840 __SetPageUptodate(new_page); 841 page_add_new_anon_rmap(new_page, dst_vma, addr, false); 842 lru_cache_add_inactive_or_unevictable(new_page, dst_vma); 843 rss[mm_counter(new_page)]++; 844 845 /* All done, just insert the new page copy in the child */ 846 pte = mk_pte(new_page, dst_vma->vm_page_prot); 847 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 848 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 849 return 0; 850 } 851 852 /* 853 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 854 * is required to copy this pte. 855 */ 856 static inline int 857 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 858 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 859 struct page **prealloc) 860 { 861 struct mm_struct *src_mm = src_vma->vm_mm; 862 unsigned long vm_flags = src_vma->vm_flags; 863 pte_t pte = *src_pte; 864 struct page *page; 865 866 page = vm_normal_page(src_vma, addr, pte); 867 if (page) { 868 int retval; 869 870 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 871 addr, rss, prealloc, pte, page); 872 if (retval <= 0) 873 return retval; 874 875 get_page(page); 876 page_dup_rmap(page, false); 877 rss[mm_counter(page)]++; 878 } 879 880 /* 881 * If it's a COW mapping, write protect it both 882 * in the parent and the child 883 */ 884 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 885 ptep_set_wrprotect(src_mm, addr, src_pte); 886 pte = pte_wrprotect(pte); 887 } 888 889 /* 890 * If it's a shared mapping, mark it clean in 891 * the child 892 */ 893 if (vm_flags & VM_SHARED) 894 pte = pte_mkclean(pte); 895 pte = pte_mkold(pte); 896 897 /* 898 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 899 * does not have the VM_UFFD_WP, which means that the uffd 900 * fork event is not enabled. 901 */ 902 if (!(vm_flags & VM_UFFD_WP)) 903 pte = pte_clear_uffd_wp(pte); 904 905 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 906 return 0; 907 } 908 909 static inline struct page * 910 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, 911 unsigned long addr) 912 { 913 struct page *new_page; 914 915 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); 916 if (!new_page) 917 return NULL; 918 919 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) { 920 put_page(new_page); 921 return NULL; 922 } 923 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 924 925 return new_page; 926 } 927 928 static int 929 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 930 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 931 unsigned long end) 932 { 933 struct mm_struct *dst_mm = dst_vma->vm_mm; 934 struct mm_struct *src_mm = src_vma->vm_mm; 935 pte_t *orig_src_pte, *orig_dst_pte; 936 pte_t *src_pte, *dst_pte; 937 spinlock_t *src_ptl, *dst_ptl; 938 int progress, ret = 0; 939 int rss[NR_MM_COUNTERS]; 940 swp_entry_t entry = (swp_entry_t){0}; 941 struct page *prealloc = NULL; 942 943 again: 944 progress = 0; 945 init_rss_vec(rss); 946 947 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 948 if (!dst_pte) { 949 ret = -ENOMEM; 950 goto out; 951 } 952 src_pte = pte_offset_map(src_pmd, addr); 953 src_ptl = pte_lockptr(src_mm, src_pmd); 954 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 955 orig_src_pte = src_pte; 956 orig_dst_pte = dst_pte; 957 arch_enter_lazy_mmu_mode(); 958 959 do { 960 /* 961 * We are holding two locks at this point - either of them 962 * could generate latencies in another task on another CPU. 963 */ 964 if (progress >= 32) { 965 progress = 0; 966 if (need_resched() || 967 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 968 break; 969 } 970 if (pte_none(*src_pte)) { 971 progress++; 972 continue; 973 } 974 if (unlikely(!pte_present(*src_pte))) { 975 entry.val = copy_nonpresent_pte(dst_mm, src_mm, 976 dst_pte, src_pte, 977 src_vma, addr, rss); 978 if (entry.val) 979 break; 980 progress += 8; 981 continue; 982 } 983 /* copy_present_pte() will clear `*prealloc' if consumed */ 984 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 985 addr, rss, &prealloc); 986 /* 987 * If we need a pre-allocated page for this pte, drop the 988 * locks, allocate, and try again. 989 */ 990 if (unlikely(ret == -EAGAIN)) 991 break; 992 if (unlikely(prealloc)) { 993 /* 994 * pre-alloc page cannot be reused by next time so as 995 * to strictly follow mempolicy (e.g., alloc_page_vma() 996 * will allocate page according to address). This 997 * could only happen if one pinned pte changed. 998 */ 999 put_page(prealloc); 1000 prealloc = NULL; 1001 } 1002 progress += 8; 1003 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1004 1005 arch_leave_lazy_mmu_mode(); 1006 spin_unlock(src_ptl); 1007 pte_unmap(orig_src_pte); 1008 add_mm_rss_vec(dst_mm, rss); 1009 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1010 cond_resched(); 1011 1012 if (entry.val) { 1013 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1014 ret = -ENOMEM; 1015 goto out; 1016 } 1017 entry.val = 0; 1018 } else if (ret) { 1019 WARN_ON_ONCE(ret != -EAGAIN); 1020 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1021 if (!prealloc) 1022 return -ENOMEM; 1023 /* We've captured and resolved the error. Reset, try again. */ 1024 ret = 0; 1025 } 1026 if (addr != end) 1027 goto again; 1028 out: 1029 if (unlikely(prealloc)) 1030 put_page(prealloc); 1031 return ret; 1032 } 1033 1034 static inline int 1035 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1036 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1037 unsigned long end) 1038 { 1039 struct mm_struct *dst_mm = dst_vma->vm_mm; 1040 struct mm_struct *src_mm = src_vma->vm_mm; 1041 pmd_t *src_pmd, *dst_pmd; 1042 unsigned long next; 1043 1044 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1045 if (!dst_pmd) 1046 return -ENOMEM; 1047 src_pmd = pmd_offset(src_pud, addr); 1048 do { 1049 next = pmd_addr_end(addr, end); 1050 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1051 || pmd_devmap(*src_pmd)) { 1052 int err; 1053 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1054 err = copy_huge_pmd(dst_mm, src_mm, 1055 dst_pmd, src_pmd, addr, src_vma); 1056 if (err == -ENOMEM) 1057 return -ENOMEM; 1058 if (!err) 1059 continue; 1060 /* fall through */ 1061 } 1062 if (pmd_none_or_clear_bad(src_pmd)) 1063 continue; 1064 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1065 addr, next)) 1066 return -ENOMEM; 1067 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1068 return 0; 1069 } 1070 1071 static inline int 1072 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1073 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1074 unsigned long end) 1075 { 1076 struct mm_struct *dst_mm = dst_vma->vm_mm; 1077 struct mm_struct *src_mm = src_vma->vm_mm; 1078 pud_t *src_pud, *dst_pud; 1079 unsigned long next; 1080 1081 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1082 if (!dst_pud) 1083 return -ENOMEM; 1084 src_pud = pud_offset(src_p4d, addr); 1085 do { 1086 next = pud_addr_end(addr, end); 1087 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1088 int err; 1089 1090 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1091 err = copy_huge_pud(dst_mm, src_mm, 1092 dst_pud, src_pud, addr, src_vma); 1093 if (err == -ENOMEM) 1094 return -ENOMEM; 1095 if (!err) 1096 continue; 1097 /* fall through */ 1098 } 1099 if (pud_none_or_clear_bad(src_pud)) 1100 continue; 1101 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1102 addr, next)) 1103 return -ENOMEM; 1104 } while (dst_pud++, src_pud++, addr = next, addr != end); 1105 return 0; 1106 } 1107 1108 static inline int 1109 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1110 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1111 unsigned long end) 1112 { 1113 struct mm_struct *dst_mm = dst_vma->vm_mm; 1114 p4d_t *src_p4d, *dst_p4d; 1115 unsigned long next; 1116 1117 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1118 if (!dst_p4d) 1119 return -ENOMEM; 1120 src_p4d = p4d_offset(src_pgd, addr); 1121 do { 1122 next = p4d_addr_end(addr, end); 1123 if (p4d_none_or_clear_bad(src_p4d)) 1124 continue; 1125 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1126 addr, next)) 1127 return -ENOMEM; 1128 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1129 return 0; 1130 } 1131 1132 int 1133 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1134 { 1135 pgd_t *src_pgd, *dst_pgd; 1136 unsigned long next; 1137 unsigned long addr = src_vma->vm_start; 1138 unsigned long end = src_vma->vm_end; 1139 struct mm_struct *dst_mm = dst_vma->vm_mm; 1140 struct mm_struct *src_mm = src_vma->vm_mm; 1141 struct mmu_notifier_range range; 1142 bool is_cow; 1143 int ret; 1144 1145 /* 1146 * Don't copy ptes where a page fault will fill them correctly. 1147 * Fork becomes much lighter when there are big shared or private 1148 * readonly mappings. The tradeoff is that copy_page_range is more 1149 * efficient than faulting. 1150 */ 1151 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1152 !src_vma->anon_vma) 1153 return 0; 1154 1155 if (is_vm_hugetlb_page(src_vma)) 1156 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); 1157 1158 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1159 /* 1160 * We do not free on error cases below as remove_vma 1161 * gets called on error from higher level routine 1162 */ 1163 ret = track_pfn_copy(src_vma); 1164 if (ret) 1165 return ret; 1166 } 1167 1168 /* 1169 * We need to invalidate the secondary MMU mappings only when 1170 * there could be a permission downgrade on the ptes of the 1171 * parent mm. And a permission downgrade will only happen if 1172 * is_cow_mapping() returns true. 1173 */ 1174 is_cow = is_cow_mapping(src_vma->vm_flags); 1175 1176 if (is_cow) { 1177 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1178 0, src_vma, src_mm, addr, end); 1179 mmu_notifier_invalidate_range_start(&range); 1180 /* 1181 * Disabling preemption is not needed for the write side, as 1182 * the read side doesn't spin, but goes to the mmap_lock. 1183 * 1184 * Use the raw variant of the seqcount_t write API to avoid 1185 * lockdep complaining about preemptibility. 1186 */ 1187 mmap_assert_write_locked(src_mm); 1188 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1189 } 1190 1191 ret = 0; 1192 dst_pgd = pgd_offset(dst_mm, addr); 1193 src_pgd = pgd_offset(src_mm, addr); 1194 do { 1195 next = pgd_addr_end(addr, end); 1196 if (pgd_none_or_clear_bad(src_pgd)) 1197 continue; 1198 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1199 addr, next))) { 1200 ret = -ENOMEM; 1201 break; 1202 } 1203 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1204 1205 if (is_cow) { 1206 raw_write_seqcount_end(&src_mm->write_protect_seq); 1207 mmu_notifier_invalidate_range_end(&range); 1208 } 1209 return ret; 1210 } 1211 1212 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1213 struct vm_area_struct *vma, pmd_t *pmd, 1214 unsigned long addr, unsigned long end, 1215 struct zap_details *details) 1216 { 1217 struct mm_struct *mm = tlb->mm; 1218 int force_flush = 0; 1219 int rss[NR_MM_COUNTERS]; 1220 spinlock_t *ptl; 1221 pte_t *start_pte; 1222 pte_t *pte; 1223 swp_entry_t entry; 1224 1225 tlb_change_page_size(tlb, PAGE_SIZE); 1226 again: 1227 init_rss_vec(rss); 1228 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1229 pte = start_pte; 1230 flush_tlb_batched_pending(mm); 1231 arch_enter_lazy_mmu_mode(); 1232 do { 1233 pte_t ptent = *pte; 1234 if (pte_none(ptent)) 1235 continue; 1236 1237 if (need_resched()) 1238 break; 1239 1240 if (pte_present(ptent)) { 1241 struct page *page; 1242 1243 page = vm_normal_page(vma, addr, ptent); 1244 if (unlikely(details) && page) { 1245 /* 1246 * unmap_shared_mapping_pages() wants to 1247 * invalidate cache without truncating: 1248 * unmap shared but keep private pages. 1249 */ 1250 if (details->check_mapping && 1251 details->check_mapping != page_rmapping(page)) 1252 continue; 1253 } 1254 ptent = ptep_get_and_clear_full(mm, addr, pte, 1255 tlb->fullmm); 1256 tlb_remove_tlb_entry(tlb, pte, addr); 1257 if (unlikely(!page)) 1258 continue; 1259 1260 if (!PageAnon(page)) { 1261 if (pte_dirty(ptent)) { 1262 force_flush = 1; 1263 set_page_dirty(page); 1264 } 1265 if (pte_young(ptent) && 1266 likely(!(vma->vm_flags & VM_SEQ_READ))) 1267 mark_page_accessed(page); 1268 } 1269 rss[mm_counter(page)]--; 1270 page_remove_rmap(page, false); 1271 if (unlikely(page_mapcount(page) < 0)) 1272 print_bad_pte(vma, addr, ptent, page); 1273 if (unlikely(__tlb_remove_page(tlb, page))) { 1274 force_flush = 1; 1275 addr += PAGE_SIZE; 1276 break; 1277 } 1278 continue; 1279 } 1280 1281 entry = pte_to_swp_entry(ptent); 1282 if (is_device_private_entry(entry)) { 1283 struct page *page = device_private_entry_to_page(entry); 1284 1285 if (unlikely(details && details->check_mapping)) { 1286 /* 1287 * unmap_shared_mapping_pages() wants to 1288 * invalidate cache without truncating: 1289 * unmap shared but keep private pages. 1290 */ 1291 if (details->check_mapping != 1292 page_rmapping(page)) 1293 continue; 1294 } 1295 1296 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1297 rss[mm_counter(page)]--; 1298 page_remove_rmap(page, false); 1299 put_page(page); 1300 continue; 1301 } 1302 1303 /* If details->check_mapping, we leave swap entries. */ 1304 if (unlikely(details)) 1305 continue; 1306 1307 if (!non_swap_entry(entry)) 1308 rss[MM_SWAPENTS]--; 1309 else if (is_migration_entry(entry)) { 1310 struct page *page; 1311 1312 page = migration_entry_to_page(entry); 1313 rss[mm_counter(page)]--; 1314 } 1315 if (unlikely(!free_swap_and_cache(entry))) 1316 print_bad_pte(vma, addr, ptent, NULL); 1317 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1318 } while (pte++, addr += PAGE_SIZE, addr != end); 1319 1320 add_mm_rss_vec(mm, rss); 1321 arch_leave_lazy_mmu_mode(); 1322 1323 /* Do the actual TLB flush before dropping ptl */ 1324 if (force_flush) 1325 tlb_flush_mmu_tlbonly(tlb); 1326 pte_unmap_unlock(start_pte, ptl); 1327 1328 /* 1329 * If we forced a TLB flush (either due to running out of 1330 * batch buffers or because we needed to flush dirty TLB 1331 * entries before releasing the ptl), free the batched 1332 * memory too. Restart if we didn't do everything. 1333 */ 1334 if (force_flush) { 1335 force_flush = 0; 1336 tlb_flush_mmu(tlb); 1337 } 1338 1339 if (addr != end) { 1340 cond_resched(); 1341 goto again; 1342 } 1343 1344 return addr; 1345 } 1346 1347 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1348 struct vm_area_struct *vma, pud_t *pud, 1349 unsigned long addr, unsigned long end, 1350 struct zap_details *details) 1351 { 1352 pmd_t *pmd; 1353 unsigned long next; 1354 1355 pmd = pmd_offset(pud, addr); 1356 do { 1357 next = pmd_addr_end(addr, end); 1358 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1359 if (next - addr != HPAGE_PMD_SIZE) 1360 __split_huge_pmd(vma, pmd, addr, false, NULL); 1361 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1362 goto next; 1363 /* fall through */ 1364 } else if (details && details->single_page && 1365 PageTransCompound(details->single_page) && 1366 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1367 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1368 /* 1369 * Take and drop THP pmd lock so that we cannot return 1370 * prematurely, while zap_huge_pmd() has cleared *pmd, 1371 * but not yet decremented compound_mapcount(). 1372 */ 1373 spin_unlock(ptl); 1374 } 1375 1376 /* 1377 * Here there can be other concurrent MADV_DONTNEED or 1378 * trans huge page faults running, and if the pmd is 1379 * none or trans huge it can change under us. This is 1380 * because MADV_DONTNEED holds the mmap_lock in read 1381 * mode. 1382 */ 1383 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1384 goto next; 1385 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1386 next: 1387 cond_resched(); 1388 } while (pmd++, addr = next, addr != end); 1389 1390 return addr; 1391 } 1392 1393 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1394 struct vm_area_struct *vma, p4d_t *p4d, 1395 unsigned long addr, unsigned long end, 1396 struct zap_details *details) 1397 { 1398 pud_t *pud; 1399 unsigned long next; 1400 1401 pud = pud_offset(p4d, addr); 1402 do { 1403 next = pud_addr_end(addr, end); 1404 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1405 if (next - addr != HPAGE_PUD_SIZE) { 1406 mmap_assert_locked(tlb->mm); 1407 split_huge_pud(vma, pud, addr); 1408 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1409 goto next; 1410 /* fall through */ 1411 } 1412 if (pud_none_or_clear_bad(pud)) 1413 continue; 1414 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1415 next: 1416 cond_resched(); 1417 } while (pud++, addr = next, addr != end); 1418 1419 return addr; 1420 } 1421 1422 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1423 struct vm_area_struct *vma, pgd_t *pgd, 1424 unsigned long addr, unsigned long end, 1425 struct zap_details *details) 1426 { 1427 p4d_t *p4d; 1428 unsigned long next; 1429 1430 p4d = p4d_offset(pgd, addr); 1431 do { 1432 next = p4d_addr_end(addr, end); 1433 if (p4d_none_or_clear_bad(p4d)) 1434 continue; 1435 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1436 } while (p4d++, addr = next, addr != end); 1437 1438 return addr; 1439 } 1440 1441 void unmap_page_range(struct mmu_gather *tlb, 1442 struct vm_area_struct *vma, 1443 unsigned long addr, unsigned long end, 1444 struct zap_details *details) 1445 { 1446 pgd_t *pgd; 1447 unsigned long next; 1448 1449 BUG_ON(addr >= end); 1450 tlb_start_vma(tlb, vma); 1451 pgd = pgd_offset(vma->vm_mm, addr); 1452 do { 1453 next = pgd_addr_end(addr, end); 1454 if (pgd_none_or_clear_bad(pgd)) 1455 continue; 1456 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1457 } while (pgd++, addr = next, addr != end); 1458 tlb_end_vma(tlb, vma); 1459 } 1460 1461 1462 static void unmap_single_vma(struct mmu_gather *tlb, 1463 struct vm_area_struct *vma, unsigned long start_addr, 1464 unsigned long end_addr, 1465 struct zap_details *details) 1466 { 1467 unsigned long start = max(vma->vm_start, start_addr); 1468 unsigned long end; 1469 1470 if (start >= vma->vm_end) 1471 return; 1472 end = min(vma->vm_end, end_addr); 1473 if (end <= vma->vm_start) 1474 return; 1475 1476 if (vma->vm_file) 1477 uprobe_munmap(vma, start, end); 1478 1479 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1480 untrack_pfn(vma, 0, 0); 1481 1482 if (start != end) { 1483 if (unlikely(is_vm_hugetlb_page(vma))) { 1484 /* 1485 * It is undesirable to test vma->vm_file as it 1486 * should be non-null for valid hugetlb area. 1487 * However, vm_file will be NULL in the error 1488 * cleanup path of mmap_region. When 1489 * hugetlbfs ->mmap method fails, 1490 * mmap_region() nullifies vma->vm_file 1491 * before calling this function to clean up. 1492 * Since no pte has actually been setup, it is 1493 * safe to do nothing in this case. 1494 */ 1495 if (vma->vm_file) { 1496 i_mmap_lock_write(vma->vm_file->f_mapping); 1497 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1498 i_mmap_unlock_write(vma->vm_file->f_mapping); 1499 } 1500 } else 1501 unmap_page_range(tlb, vma, start, end, details); 1502 } 1503 } 1504 1505 /** 1506 * unmap_vmas - unmap a range of memory covered by a list of vma's 1507 * @tlb: address of the caller's struct mmu_gather 1508 * @vma: the starting vma 1509 * @start_addr: virtual address at which to start unmapping 1510 * @end_addr: virtual address at which to end unmapping 1511 * 1512 * Unmap all pages in the vma list. 1513 * 1514 * Only addresses between `start' and `end' will be unmapped. 1515 * 1516 * The VMA list must be sorted in ascending virtual address order. 1517 * 1518 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1519 * range after unmap_vmas() returns. So the only responsibility here is to 1520 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1521 * drops the lock and schedules. 1522 */ 1523 void unmap_vmas(struct mmu_gather *tlb, 1524 struct vm_area_struct *vma, unsigned long start_addr, 1525 unsigned long end_addr) 1526 { 1527 struct mmu_notifier_range range; 1528 1529 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1530 start_addr, end_addr); 1531 mmu_notifier_invalidate_range_start(&range); 1532 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1533 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1534 mmu_notifier_invalidate_range_end(&range); 1535 } 1536 1537 /** 1538 * zap_page_range - remove user pages in a given range 1539 * @vma: vm_area_struct holding the applicable pages 1540 * @start: starting address of pages to zap 1541 * @size: number of bytes to zap 1542 * 1543 * Caller must protect the VMA list 1544 */ 1545 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1546 unsigned long size) 1547 { 1548 struct mmu_notifier_range range; 1549 struct mmu_gather tlb; 1550 1551 lru_add_drain(); 1552 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1553 start, start + size); 1554 tlb_gather_mmu(&tlb, vma->vm_mm); 1555 update_hiwater_rss(vma->vm_mm); 1556 mmu_notifier_invalidate_range_start(&range); 1557 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1558 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1559 mmu_notifier_invalidate_range_end(&range); 1560 tlb_finish_mmu(&tlb); 1561 } 1562 1563 /** 1564 * zap_page_range_single - remove user pages in a given range 1565 * @vma: vm_area_struct holding the applicable pages 1566 * @address: starting address of pages to zap 1567 * @size: number of bytes to zap 1568 * @details: details of shared cache invalidation 1569 * 1570 * The range must fit into one VMA. 1571 */ 1572 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1573 unsigned long size, struct zap_details *details) 1574 { 1575 struct mmu_notifier_range range; 1576 struct mmu_gather tlb; 1577 1578 lru_add_drain(); 1579 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1580 address, address + size); 1581 tlb_gather_mmu(&tlb, vma->vm_mm); 1582 update_hiwater_rss(vma->vm_mm); 1583 mmu_notifier_invalidate_range_start(&range); 1584 unmap_single_vma(&tlb, vma, address, range.end, details); 1585 mmu_notifier_invalidate_range_end(&range); 1586 tlb_finish_mmu(&tlb); 1587 } 1588 1589 /** 1590 * zap_vma_ptes - remove ptes mapping the vma 1591 * @vma: vm_area_struct holding ptes to be zapped 1592 * @address: starting address of pages to zap 1593 * @size: number of bytes to zap 1594 * 1595 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1596 * 1597 * The entire address range must be fully contained within the vma. 1598 * 1599 */ 1600 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1601 unsigned long size) 1602 { 1603 if (address < vma->vm_start || address + size > vma->vm_end || 1604 !(vma->vm_flags & VM_PFNMAP)) 1605 return; 1606 1607 zap_page_range_single(vma, address, size, NULL); 1608 } 1609 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1610 1611 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1612 { 1613 pgd_t *pgd; 1614 p4d_t *p4d; 1615 pud_t *pud; 1616 pmd_t *pmd; 1617 1618 pgd = pgd_offset(mm, addr); 1619 p4d = p4d_alloc(mm, pgd, addr); 1620 if (!p4d) 1621 return NULL; 1622 pud = pud_alloc(mm, p4d, addr); 1623 if (!pud) 1624 return NULL; 1625 pmd = pmd_alloc(mm, pud, addr); 1626 if (!pmd) 1627 return NULL; 1628 1629 VM_BUG_ON(pmd_trans_huge(*pmd)); 1630 return pmd; 1631 } 1632 1633 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1634 spinlock_t **ptl) 1635 { 1636 pmd_t *pmd = walk_to_pmd(mm, addr); 1637 1638 if (!pmd) 1639 return NULL; 1640 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1641 } 1642 1643 static int validate_page_before_insert(struct page *page) 1644 { 1645 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1646 return -EINVAL; 1647 flush_dcache_page(page); 1648 return 0; 1649 } 1650 1651 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1652 unsigned long addr, struct page *page, pgprot_t prot) 1653 { 1654 if (!pte_none(*pte)) 1655 return -EBUSY; 1656 /* Ok, finally just insert the thing.. */ 1657 get_page(page); 1658 inc_mm_counter_fast(mm, mm_counter_file(page)); 1659 page_add_file_rmap(page, false); 1660 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1661 return 0; 1662 } 1663 1664 /* 1665 * This is the old fallback for page remapping. 1666 * 1667 * For historical reasons, it only allows reserved pages. Only 1668 * old drivers should use this, and they needed to mark their 1669 * pages reserved for the old functions anyway. 1670 */ 1671 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1672 struct page *page, pgprot_t prot) 1673 { 1674 struct mm_struct *mm = vma->vm_mm; 1675 int retval; 1676 pte_t *pte; 1677 spinlock_t *ptl; 1678 1679 retval = validate_page_before_insert(page); 1680 if (retval) 1681 goto out; 1682 retval = -ENOMEM; 1683 pte = get_locked_pte(mm, addr, &ptl); 1684 if (!pte) 1685 goto out; 1686 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1687 pte_unmap_unlock(pte, ptl); 1688 out: 1689 return retval; 1690 } 1691 1692 #ifdef pte_index 1693 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, 1694 unsigned long addr, struct page *page, pgprot_t prot) 1695 { 1696 int err; 1697 1698 if (!page_count(page)) 1699 return -EINVAL; 1700 err = validate_page_before_insert(page); 1701 if (err) 1702 return err; 1703 return insert_page_into_pte_locked(mm, pte, addr, page, prot); 1704 } 1705 1706 /* insert_pages() amortizes the cost of spinlock operations 1707 * when inserting pages in a loop. Arch *must* define pte_index. 1708 */ 1709 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1710 struct page **pages, unsigned long *num, pgprot_t prot) 1711 { 1712 pmd_t *pmd = NULL; 1713 pte_t *start_pte, *pte; 1714 spinlock_t *pte_lock; 1715 struct mm_struct *const mm = vma->vm_mm; 1716 unsigned long curr_page_idx = 0; 1717 unsigned long remaining_pages_total = *num; 1718 unsigned long pages_to_write_in_pmd; 1719 int ret; 1720 more: 1721 ret = -EFAULT; 1722 pmd = walk_to_pmd(mm, addr); 1723 if (!pmd) 1724 goto out; 1725 1726 pages_to_write_in_pmd = min_t(unsigned long, 1727 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1728 1729 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1730 ret = -ENOMEM; 1731 if (pte_alloc(mm, pmd)) 1732 goto out; 1733 1734 while (pages_to_write_in_pmd) { 1735 int pte_idx = 0; 1736 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1737 1738 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1739 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1740 int err = insert_page_in_batch_locked(mm, pte, 1741 addr, pages[curr_page_idx], prot); 1742 if (unlikely(err)) { 1743 pte_unmap_unlock(start_pte, pte_lock); 1744 ret = err; 1745 remaining_pages_total -= pte_idx; 1746 goto out; 1747 } 1748 addr += PAGE_SIZE; 1749 ++curr_page_idx; 1750 } 1751 pte_unmap_unlock(start_pte, pte_lock); 1752 pages_to_write_in_pmd -= batch_size; 1753 remaining_pages_total -= batch_size; 1754 } 1755 if (remaining_pages_total) 1756 goto more; 1757 ret = 0; 1758 out: 1759 *num = remaining_pages_total; 1760 return ret; 1761 } 1762 #endif /* ifdef pte_index */ 1763 1764 /** 1765 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1766 * @vma: user vma to map to 1767 * @addr: target start user address of these pages 1768 * @pages: source kernel pages 1769 * @num: in: number of pages to map. out: number of pages that were *not* 1770 * mapped. (0 means all pages were successfully mapped). 1771 * 1772 * Preferred over vm_insert_page() when inserting multiple pages. 1773 * 1774 * In case of error, we may have mapped a subset of the provided 1775 * pages. It is the caller's responsibility to account for this case. 1776 * 1777 * The same restrictions apply as in vm_insert_page(). 1778 */ 1779 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1780 struct page **pages, unsigned long *num) 1781 { 1782 #ifdef pte_index 1783 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1784 1785 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1786 return -EFAULT; 1787 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1788 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1789 BUG_ON(vma->vm_flags & VM_PFNMAP); 1790 vma->vm_flags |= VM_MIXEDMAP; 1791 } 1792 /* Defer page refcount checking till we're about to map that page. */ 1793 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1794 #else 1795 unsigned long idx = 0, pgcount = *num; 1796 int err = -EINVAL; 1797 1798 for (; idx < pgcount; ++idx) { 1799 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1800 if (err) 1801 break; 1802 } 1803 *num = pgcount - idx; 1804 return err; 1805 #endif /* ifdef pte_index */ 1806 } 1807 EXPORT_SYMBOL(vm_insert_pages); 1808 1809 /** 1810 * vm_insert_page - insert single page into user vma 1811 * @vma: user vma to map to 1812 * @addr: target user address of this page 1813 * @page: source kernel page 1814 * 1815 * This allows drivers to insert individual pages they've allocated 1816 * into a user vma. 1817 * 1818 * The page has to be a nice clean _individual_ kernel allocation. 1819 * If you allocate a compound page, you need to have marked it as 1820 * such (__GFP_COMP), or manually just split the page up yourself 1821 * (see split_page()). 1822 * 1823 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1824 * took an arbitrary page protection parameter. This doesn't allow 1825 * that. Your vma protection will have to be set up correctly, which 1826 * means that if you want a shared writable mapping, you'd better 1827 * ask for a shared writable mapping! 1828 * 1829 * The page does not need to be reserved. 1830 * 1831 * Usually this function is called from f_op->mmap() handler 1832 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1833 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1834 * function from other places, for example from page-fault handler. 1835 * 1836 * Return: %0 on success, negative error code otherwise. 1837 */ 1838 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1839 struct page *page) 1840 { 1841 if (addr < vma->vm_start || addr >= vma->vm_end) 1842 return -EFAULT; 1843 if (!page_count(page)) 1844 return -EINVAL; 1845 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1846 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1847 BUG_ON(vma->vm_flags & VM_PFNMAP); 1848 vma->vm_flags |= VM_MIXEDMAP; 1849 } 1850 return insert_page(vma, addr, page, vma->vm_page_prot); 1851 } 1852 EXPORT_SYMBOL(vm_insert_page); 1853 1854 /* 1855 * __vm_map_pages - maps range of kernel pages into user vma 1856 * @vma: user vma to map to 1857 * @pages: pointer to array of source kernel pages 1858 * @num: number of pages in page array 1859 * @offset: user's requested vm_pgoff 1860 * 1861 * This allows drivers to map range of kernel pages into a user vma. 1862 * 1863 * Return: 0 on success and error code otherwise. 1864 */ 1865 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1866 unsigned long num, unsigned long offset) 1867 { 1868 unsigned long count = vma_pages(vma); 1869 unsigned long uaddr = vma->vm_start; 1870 int ret, i; 1871 1872 /* Fail if the user requested offset is beyond the end of the object */ 1873 if (offset >= num) 1874 return -ENXIO; 1875 1876 /* Fail if the user requested size exceeds available object size */ 1877 if (count > num - offset) 1878 return -ENXIO; 1879 1880 for (i = 0; i < count; i++) { 1881 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1882 if (ret < 0) 1883 return ret; 1884 uaddr += PAGE_SIZE; 1885 } 1886 1887 return 0; 1888 } 1889 1890 /** 1891 * vm_map_pages - maps range of kernel pages starts with non zero offset 1892 * @vma: user vma to map to 1893 * @pages: pointer to array of source kernel pages 1894 * @num: number of pages in page array 1895 * 1896 * Maps an object consisting of @num pages, catering for the user's 1897 * requested vm_pgoff 1898 * 1899 * If we fail to insert any page into the vma, the function will return 1900 * immediately leaving any previously inserted pages present. Callers 1901 * from the mmap handler may immediately return the error as their caller 1902 * will destroy the vma, removing any successfully inserted pages. Other 1903 * callers should make their own arrangements for calling unmap_region(). 1904 * 1905 * Context: Process context. Called by mmap handlers. 1906 * Return: 0 on success and error code otherwise. 1907 */ 1908 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1909 unsigned long num) 1910 { 1911 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1912 } 1913 EXPORT_SYMBOL(vm_map_pages); 1914 1915 /** 1916 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1917 * @vma: user vma to map to 1918 * @pages: pointer to array of source kernel pages 1919 * @num: number of pages in page array 1920 * 1921 * Similar to vm_map_pages(), except that it explicitly sets the offset 1922 * to 0. This function is intended for the drivers that did not consider 1923 * vm_pgoff. 1924 * 1925 * Context: Process context. Called by mmap handlers. 1926 * Return: 0 on success and error code otherwise. 1927 */ 1928 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1929 unsigned long num) 1930 { 1931 return __vm_map_pages(vma, pages, num, 0); 1932 } 1933 EXPORT_SYMBOL(vm_map_pages_zero); 1934 1935 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1936 pfn_t pfn, pgprot_t prot, bool mkwrite) 1937 { 1938 struct mm_struct *mm = vma->vm_mm; 1939 pte_t *pte, entry; 1940 spinlock_t *ptl; 1941 1942 pte = get_locked_pte(mm, addr, &ptl); 1943 if (!pte) 1944 return VM_FAULT_OOM; 1945 if (!pte_none(*pte)) { 1946 if (mkwrite) { 1947 /* 1948 * For read faults on private mappings the PFN passed 1949 * in may not match the PFN we have mapped if the 1950 * mapped PFN is a writeable COW page. In the mkwrite 1951 * case we are creating a writable PTE for a shared 1952 * mapping and we expect the PFNs to match. If they 1953 * don't match, we are likely racing with block 1954 * allocation and mapping invalidation so just skip the 1955 * update. 1956 */ 1957 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1958 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1959 goto out_unlock; 1960 } 1961 entry = pte_mkyoung(*pte); 1962 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1963 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1964 update_mmu_cache(vma, addr, pte); 1965 } 1966 goto out_unlock; 1967 } 1968 1969 /* Ok, finally just insert the thing.. */ 1970 if (pfn_t_devmap(pfn)) 1971 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1972 else 1973 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1974 1975 if (mkwrite) { 1976 entry = pte_mkyoung(entry); 1977 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1978 } 1979 1980 set_pte_at(mm, addr, pte, entry); 1981 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1982 1983 out_unlock: 1984 pte_unmap_unlock(pte, ptl); 1985 return VM_FAULT_NOPAGE; 1986 } 1987 1988 /** 1989 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1990 * @vma: user vma to map to 1991 * @addr: target user address of this page 1992 * @pfn: source kernel pfn 1993 * @pgprot: pgprot flags for the inserted page 1994 * 1995 * This is exactly like vmf_insert_pfn(), except that it allows drivers 1996 * to override pgprot on a per-page basis. 1997 * 1998 * This only makes sense for IO mappings, and it makes no sense for 1999 * COW mappings. In general, using multiple vmas is preferable; 2000 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2001 * impractical. 2002 * 2003 * See vmf_insert_mixed_prot() for a discussion of the implication of using 2004 * a value of @pgprot different from that of @vma->vm_page_prot. 2005 * 2006 * Context: Process context. May allocate using %GFP_KERNEL. 2007 * Return: vm_fault_t value. 2008 */ 2009 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2010 unsigned long pfn, pgprot_t pgprot) 2011 { 2012 /* 2013 * Technically, architectures with pte_special can avoid all these 2014 * restrictions (same for remap_pfn_range). However we would like 2015 * consistency in testing and feature parity among all, so we should 2016 * try to keep these invariants in place for everybody. 2017 */ 2018 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2019 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2020 (VM_PFNMAP|VM_MIXEDMAP)); 2021 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2022 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2023 2024 if (addr < vma->vm_start || addr >= vma->vm_end) 2025 return VM_FAULT_SIGBUS; 2026 2027 if (!pfn_modify_allowed(pfn, pgprot)) 2028 return VM_FAULT_SIGBUS; 2029 2030 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2031 2032 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2033 false); 2034 } 2035 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2036 2037 /** 2038 * vmf_insert_pfn - insert single pfn into user vma 2039 * @vma: user vma to map to 2040 * @addr: target user address of this page 2041 * @pfn: source kernel pfn 2042 * 2043 * Similar to vm_insert_page, this allows drivers to insert individual pages 2044 * they've allocated into a user vma. Same comments apply. 2045 * 2046 * This function should only be called from a vm_ops->fault handler, and 2047 * in that case the handler should return the result of this function. 2048 * 2049 * vma cannot be a COW mapping. 2050 * 2051 * As this is called only for pages that do not currently exist, we 2052 * do not need to flush old virtual caches or the TLB. 2053 * 2054 * Context: Process context. May allocate using %GFP_KERNEL. 2055 * Return: vm_fault_t value. 2056 */ 2057 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2058 unsigned long pfn) 2059 { 2060 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2061 } 2062 EXPORT_SYMBOL(vmf_insert_pfn); 2063 2064 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2065 { 2066 /* these checks mirror the abort conditions in vm_normal_page */ 2067 if (vma->vm_flags & VM_MIXEDMAP) 2068 return true; 2069 if (pfn_t_devmap(pfn)) 2070 return true; 2071 if (pfn_t_special(pfn)) 2072 return true; 2073 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2074 return true; 2075 return false; 2076 } 2077 2078 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2079 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2080 bool mkwrite) 2081 { 2082 int err; 2083 2084 BUG_ON(!vm_mixed_ok(vma, pfn)); 2085 2086 if (addr < vma->vm_start || addr >= vma->vm_end) 2087 return VM_FAULT_SIGBUS; 2088 2089 track_pfn_insert(vma, &pgprot, pfn); 2090 2091 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2092 return VM_FAULT_SIGBUS; 2093 2094 /* 2095 * If we don't have pte special, then we have to use the pfn_valid() 2096 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2097 * refcount the page if pfn_valid is true (hence insert_page rather 2098 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2099 * without pte special, it would there be refcounted as a normal page. 2100 */ 2101 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2102 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2103 struct page *page; 2104 2105 /* 2106 * At this point we are committed to insert_page() 2107 * regardless of whether the caller specified flags that 2108 * result in pfn_t_has_page() == false. 2109 */ 2110 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2111 err = insert_page(vma, addr, page, pgprot); 2112 } else { 2113 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2114 } 2115 2116 if (err == -ENOMEM) 2117 return VM_FAULT_OOM; 2118 if (err < 0 && err != -EBUSY) 2119 return VM_FAULT_SIGBUS; 2120 2121 return VM_FAULT_NOPAGE; 2122 } 2123 2124 /** 2125 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2126 * @vma: user vma to map to 2127 * @addr: target user address of this page 2128 * @pfn: source kernel pfn 2129 * @pgprot: pgprot flags for the inserted page 2130 * 2131 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2132 * to override pgprot on a per-page basis. 2133 * 2134 * Typically this function should be used by drivers to set caching- and 2135 * encryption bits different than those of @vma->vm_page_prot, because 2136 * the caching- or encryption mode may not be known at mmap() time. 2137 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2138 * to set caching and encryption bits for those vmas (except for COW pages). 2139 * This is ensured by core vm only modifying these page table entries using 2140 * functions that don't touch caching- or encryption bits, using pte_modify() 2141 * if needed. (See for example mprotect()). 2142 * Also when new page-table entries are created, this is only done using the 2143 * fault() callback, and never using the value of vma->vm_page_prot, 2144 * except for page-table entries that point to anonymous pages as the result 2145 * of COW. 2146 * 2147 * Context: Process context. May allocate using %GFP_KERNEL. 2148 * Return: vm_fault_t value. 2149 */ 2150 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2151 pfn_t pfn, pgprot_t pgprot) 2152 { 2153 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2154 } 2155 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2156 2157 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2158 pfn_t pfn) 2159 { 2160 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2161 } 2162 EXPORT_SYMBOL(vmf_insert_mixed); 2163 2164 /* 2165 * If the insertion of PTE failed because someone else already added a 2166 * different entry in the mean time, we treat that as success as we assume 2167 * the same entry was actually inserted. 2168 */ 2169 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2170 unsigned long addr, pfn_t pfn) 2171 { 2172 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2173 } 2174 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2175 2176 /* 2177 * maps a range of physical memory into the requested pages. the old 2178 * mappings are removed. any references to nonexistent pages results 2179 * in null mappings (currently treated as "copy-on-access") 2180 */ 2181 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2182 unsigned long addr, unsigned long end, 2183 unsigned long pfn, pgprot_t prot) 2184 { 2185 pte_t *pte, *mapped_pte; 2186 spinlock_t *ptl; 2187 int err = 0; 2188 2189 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2190 if (!pte) 2191 return -ENOMEM; 2192 arch_enter_lazy_mmu_mode(); 2193 do { 2194 BUG_ON(!pte_none(*pte)); 2195 if (!pfn_modify_allowed(pfn, prot)) { 2196 err = -EACCES; 2197 break; 2198 } 2199 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2200 pfn++; 2201 } while (pte++, addr += PAGE_SIZE, addr != end); 2202 arch_leave_lazy_mmu_mode(); 2203 pte_unmap_unlock(mapped_pte, ptl); 2204 return err; 2205 } 2206 2207 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2208 unsigned long addr, unsigned long end, 2209 unsigned long pfn, pgprot_t prot) 2210 { 2211 pmd_t *pmd; 2212 unsigned long next; 2213 int err; 2214 2215 pfn -= addr >> PAGE_SHIFT; 2216 pmd = pmd_alloc(mm, pud, addr); 2217 if (!pmd) 2218 return -ENOMEM; 2219 VM_BUG_ON(pmd_trans_huge(*pmd)); 2220 do { 2221 next = pmd_addr_end(addr, end); 2222 err = remap_pte_range(mm, pmd, addr, next, 2223 pfn + (addr >> PAGE_SHIFT), prot); 2224 if (err) 2225 return err; 2226 } while (pmd++, addr = next, addr != end); 2227 return 0; 2228 } 2229 2230 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2231 unsigned long addr, unsigned long end, 2232 unsigned long pfn, pgprot_t prot) 2233 { 2234 pud_t *pud; 2235 unsigned long next; 2236 int err; 2237 2238 pfn -= addr >> PAGE_SHIFT; 2239 pud = pud_alloc(mm, p4d, addr); 2240 if (!pud) 2241 return -ENOMEM; 2242 do { 2243 next = pud_addr_end(addr, end); 2244 err = remap_pmd_range(mm, pud, addr, next, 2245 pfn + (addr >> PAGE_SHIFT), prot); 2246 if (err) 2247 return err; 2248 } while (pud++, addr = next, addr != end); 2249 return 0; 2250 } 2251 2252 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2253 unsigned long addr, unsigned long end, 2254 unsigned long pfn, pgprot_t prot) 2255 { 2256 p4d_t *p4d; 2257 unsigned long next; 2258 int err; 2259 2260 pfn -= addr >> PAGE_SHIFT; 2261 p4d = p4d_alloc(mm, pgd, addr); 2262 if (!p4d) 2263 return -ENOMEM; 2264 do { 2265 next = p4d_addr_end(addr, end); 2266 err = remap_pud_range(mm, p4d, addr, next, 2267 pfn + (addr >> PAGE_SHIFT), prot); 2268 if (err) 2269 return err; 2270 } while (p4d++, addr = next, addr != end); 2271 return 0; 2272 } 2273 2274 /* 2275 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2276 * must have pre-validated the caching bits of the pgprot_t. 2277 */ 2278 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2279 unsigned long pfn, unsigned long size, pgprot_t prot) 2280 { 2281 pgd_t *pgd; 2282 unsigned long next; 2283 unsigned long end = addr + PAGE_ALIGN(size); 2284 struct mm_struct *mm = vma->vm_mm; 2285 int err; 2286 2287 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2288 return -EINVAL; 2289 2290 /* 2291 * Physically remapped pages are special. Tell the 2292 * rest of the world about it: 2293 * VM_IO tells people not to look at these pages 2294 * (accesses can have side effects). 2295 * VM_PFNMAP tells the core MM that the base pages are just 2296 * raw PFN mappings, and do not have a "struct page" associated 2297 * with them. 2298 * VM_DONTEXPAND 2299 * Disable vma merging and expanding with mremap(). 2300 * VM_DONTDUMP 2301 * Omit vma from core dump, even when VM_IO turned off. 2302 * 2303 * There's a horrible special case to handle copy-on-write 2304 * behaviour that some programs depend on. We mark the "original" 2305 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2306 * See vm_normal_page() for details. 2307 */ 2308 if (is_cow_mapping(vma->vm_flags)) { 2309 if (addr != vma->vm_start || end != vma->vm_end) 2310 return -EINVAL; 2311 vma->vm_pgoff = pfn; 2312 } 2313 2314 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2315 2316 BUG_ON(addr >= end); 2317 pfn -= addr >> PAGE_SHIFT; 2318 pgd = pgd_offset(mm, addr); 2319 flush_cache_range(vma, addr, end); 2320 do { 2321 next = pgd_addr_end(addr, end); 2322 err = remap_p4d_range(mm, pgd, addr, next, 2323 pfn + (addr >> PAGE_SHIFT), prot); 2324 if (err) 2325 return err; 2326 } while (pgd++, addr = next, addr != end); 2327 2328 return 0; 2329 } 2330 2331 /** 2332 * remap_pfn_range - remap kernel memory to userspace 2333 * @vma: user vma to map to 2334 * @addr: target page aligned user address to start at 2335 * @pfn: page frame number of kernel physical memory address 2336 * @size: size of mapping area 2337 * @prot: page protection flags for this mapping 2338 * 2339 * Note: this is only safe if the mm semaphore is held when called. 2340 * 2341 * Return: %0 on success, negative error code otherwise. 2342 */ 2343 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2344 unsigned long pfn, unsigned long size, pgprot_t prot) 2345 { 2346 int err; 2347 2348 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2349 if (err) 2350 return -EINVAL; 2351 2352 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2353 if (err) 2354 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2355 return err; 2356 } 2357 EXPORT_SYMBOL(remap_pfn_range); 2358 2359 /** 2360 * vm_iomap_memory - remap memory to userspace 2361 * @vma: user vma to map to 2362 * @start: start of the physical memory to be mapped 2363 * @len: size of area 2364 * 2365 * This is a simplified io_remap_pfn_range() for common driver use. The 2366 * driver just needs to give us the physical memory range to be mapped, 2367 * we'll figure out the rest from the vma information. 2368 * 2369 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2370 * whatever write-combining details or similar. 2371 * 2372 * Return: %0 on success, negative error code otherwise. 2373 */ 2374 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2375 { 2376 unsigned long vm_len, pfn, pages; 2377 2378 /* Check that the physical memory area passed in looks valid */ 2379 if (start + len < start) 2380 return -EINVAL; 2381 /* 2382 * You *really* shouldn't map things that aren't page-aligned, 2383 * but we've historically allowed it because IO memory might 2384 * just have smaller alignment. 2385 */ 2386 len += start & ~PAGE_MASK; 2387 pfn = start >> PAGE_SHIFT; 2388 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2389 if (pfn + pages < pfn) 2390 return -EINVAL; 2391 2392 /* We start the mapping 'vm_pgoff' pages into the area */ 2393 if (vma->vm_pgoff > pages) 2394 return -EINVAL; 2395 pfn += vma->vm_pgoff; 2396 pages -= vma->vm_pgoff; 2397 2398 /* Can we fit all of the mapping? */ 2399 vm_len = vma->vm_end - vma->vm_start; 2400 if (vm_len >> PAGE_SHIFT > pages) 2401 return -EINVAL; 2402 2403 /* Ok, let it rip */ 2404 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2405 } 2406 EXPORT_SYMBOL(vm_iomap_memory); 2407 2408 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2409 unsigned long addr, unsigned long end, 2410 pte_fn_t fn, void *data, bool create, 2411 pgtbl_mod_mask *mask) 2412 { 2413 pte_t *pte, *mapped_pte; 2414 int err = 0; 2415 spinlock_t *ptl; 2416 2417 if (create) { 2418 mapped_pte = pte = (mm == &init_mm) ? 2419 pte_alloc_kernel_track(pmd, addr, mask) : 2420 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2421 if (!pte) 2422 return -ENOMEM; 2423 } else { 2424 mapped_pte = pte = (mm == &init_mm) ? 2425 pte_offset_kernel(pmd, addr) : 2426 pte_offset_map_lock(mm, pmd, addr, &ptl); 2427 } 2428 2429 BUG_ON(pmd_huge(*pmd)); 2430 2431 arch_enter_lazy_mmu_mode(); 2432 2433 if (fn) { 2434 do { 2435 if (create || !pte_none(*pte)) { 2436 err = fn(pte++, addr, data); 2437 if (err) 2438 break; 2439 } 2440 } while (addr += PAGE_SIZE, addr != end); 2441 } 2442 *mask |= PGTBL_PTE_MODIFIED; 2443 2444 arch_leave_lazy_mmu_mode(); 2445 2446 if (mm != &init_mm) 2447 pte_unmap_unlock(mapped_pte, ptl); 2448 return err; 2449 } 2450 2451 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2452 unsigned long addr, unsigned long end, 2453 pte_fn_t fn, void *data, bool create, 2454 pgtbl_mod_mask *mask) 2455 { 2456 pmd_t *pmd; 2457 unsigned long next; 2458 int err = 0; 2459 2460 BUG_ON(pud_huge(*pud)); 2461 2462 if (create) { 2463 pmd = pmd_alloc_track(mm, pud, addr, mask); 2464 if (!pmd) 2465 return -ENOMEM; 2466 } else { 2467 pmd = pmd_offset(pud, addr); 2468 } 2469 do { 2470 next = pmd_addr_end(addr, end); 2471 if (pmd_none(*pmd) && !create) 2472 continue; 2473 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2474 return -EINVAL; 2475 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2476 if (!create) 2477 continue; 2478 pmd_clear_bad(pmd); 2479 } 2480 err = apply_to_pte_range(mm, pmd, addr, next, 2481 fn, data, create, mask); 2482 if (err) 2483 break; 2484 } while (pmd++, addr = next, addr != end); 2485 2486 return err; 2487 } 2488 2489 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2490 unsigned long addr, unsigned long end, 2491 pte_fn_t fn, void *data, bool create, 2492 pgtbl_mod_mask *mask) 2493 { 2494 pud_t *pud; 2495 unsigned long next; 2496 int err = 0; 2497 2498 if (create) { 2499 pud = pud_alloc_track(mm, p4d, addr, mask); 2500 if (!pud) 2501 return -ENOMEM; 2502 } else { 2503 pud = pud_offset(p4d, addr); 2504 } 2505 do { 2506 next = pud_addr_end(addr, end); 2507 if (pud_none(*pud) && !create) 2508 continue; 2509 if (WARN_ON_ONCE(pud_leaf(*pud))) 2510 return -EINVAL; 2511 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2512 if (!create) 2513 continue; 2514 pud_clear_bad(pud); 2515 } 2516 err = apply_to_pmd_range(mm, pud, addr, next, 2517 fn, data, create, mask); 2518 if (err) 2519 break; 2520 } while (pud++, addr = next, addr != end); 2521 2522 return err; 2523 } 2524 2525 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2526 unsigned long addr, unsigned long end, 2527 pte_fn_t fn, void *data, bool create, 2528 pgtbl_mod_mask *mask) 2529 { 2530 p4d_t *p4d; 2531 unsigned long next; 2532 int err = 0; 2533 2534 if (create) { 2535 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2536 if (!p4d) 2537 return -ENOMEM; 2538 } else { 2539 p4d = p4d_offset(pgd, addr); 2540 } 2541 do { 2542 next = p4d_addr_end(addr, end); 2543 if (p4d_none(*p4d) && !create) 2544 continue; 2545 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2546 return -EINVAL; 2547 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2548 if (!create) 2549 continue; 2550 p4d_clear_bad(p4d); 2551 } 2552 err = apply_to_pud_range(mm, p4d, addr, next, 2553 fn, data, create, mask); 2554 if (err) 2555 break; 2556 } while (p4d++, addr = next, addr != end); 2557 2558 return err; 2559 } 2560 2561 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2562 unsigned long size, pte_fn_t fn, 2563 void *data, bool create) 2564 { 2565 pgd_t *pgd; 2566 unsigned long start = addr, next; 2567 unsigned long end = addr + size; 2568 pgtbl_mod_mask mask = 0; 2569 int err = 0; 2570 2571 if (WARN_ON(addr >= end)) 2572 return -EINVAL; 2573 2574 pgd = pgd_offset(mm, addr); 2575 do { 2576 next = pgd_addr_end(addr, end); 2577 if (pgd_none(*pgd) && !create) 2578 continue; 2579 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2580 return -EINVAL; 2581 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2582 if (!create) 2583 continue; 2584 pgd_clear_bad(pgd); 2585 } 2586 err = apply_to_p4d_range(mm, pgd, addr, next, 2587 fn, data, create, &mask); 2588 if (err) 2589 break; 2590 } while (pgd++, addr = next, addr != end); 2591 2592 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2593 arch_sync_kernel_mappings(start, start + size); 2594 2595 return err; 2596 } 2597 2598 /* 2599 * Scan a region of virtual memory, filling in page tables as necessary 2600 * and calling a provided function on each leaf page table. 2601 */ 2602 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2603 unsigned long size, pte_fn_t fn, void *data) 2604 { 2605 return __apply_to_page_range(mm, addr, size, fn, data, true); 2606 } 2607 EXPORT_SYMBOL_GPL(apply_to_page_range); 2608 2609 /* 2610 * Scan a region of virtual memory, calling a provided function on 2611 * each leaf page table where it exists. 2612 * 2613 * Unlike apply_to_page_range, this does _not_ fill in page tables 2614 * where they are absent. 2615 */ 2616 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2617 unsigned long size, pte_fn_t fn, void *data) 2618 { 2619 return __apply_to_page_range(mm, addr, size, fn, data, false); 2620 } 2621 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2622 2623 /* 2624 * handle_pte_fault chooses page fault handler according to an entry which was 2625 * read non-atomically. Before making any commitment, on those architectures 2626 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2627 * parts, do_swap_page must check under lock before unmapping the pte and 2628 * proceeding (but do_wp_page is only called after already making such a check; 2629 * and do_anonymous_page can safely check later on). 2630 */ 2631 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2632 pte_t *page_table, pte_t orig_pte) 2633 { 2634 int same = 1; 2635 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2636 if (sizeof(pte_t) > sizeof(unsigned long)) { 2637 spinlock_t *ptl = pte_lockptr(mm, pmd); 2638 spin_lock(ptl); 2639 same = pte_same(*page_table, orig_pte); 2640 spin_unlock(ptl); 2641 } 2642 #endif 2643 pte_unmap(page_table); 2644 return same; 2645 } 2646 2647 static inline bool cow_user_page(struct page *dst, struct page *src, 2648 struct vm_fault *vmf) 2649 { 2650 bool ret; 2651 void *kaddr; 2652 void __user *uaddr; 2653 bool locked = false; 2654 struct vm_area_struct *vma = vmf->vma; 2655 struct mm_struct *mm = vma->vm_mm; 2656 unsigned long addr = vmf->address; 2657 2658 if (likely(src)) { 2659 copy_user_highpage(dst, src, addr, vma); 2660 return true; 2661 } 2662 2663 /* 2664 * If the source page was a PFN mapping, we don't have 2665 * a "struct page" for it. We do a best-effort copy by 2666 * just copying from the original user address. If that 2667 * fails, we just zero-fill it. Live with it. 2668 */ 2669 kaddr = kmap_atomic(dst); 2670 uaddr = (void __user *)(addr & PAGE_MASK); 2671 2672 /* 2673 * On architectures with software "accessed" bits, we would 2674 * take a double page fault, so mark it accessed here. 2675 */ 2676 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2677 pte_t entry; 2678 2679 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2680 locked = true; 2681 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2682 /* 2683 * Other thread has already handled the fault 2684 * and update local tlb only 2685 */ 2686 update_mmu_tlb(vma, addr, vmf->pte); 2687 ret = false; 2688 goto pte_unlock; 2689 } 2690 2691 entry = pte_mkyoung(vmf->orig_pte); 2692 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2693 update_mmu_cache(vma, addr, vmf->pte); 2694 } 2695 2696 /* 2697 * This really shouldn't fail, because the page is there 2698 * in the page tables. But it might just be unreadable, 2699 * in which case we just give up and fill the result with 2700 * zeroes. 2701 */ 2702 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2703 if (locked) 2704 goto warn; 2705 2706 /* Re-validate under PTL if the page is still mapped */ 2707 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2708 locked = true; 2709 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2710 /* The PTE changed under us, update local tlb */ 2711 update_mmu_tlb(vma, addr, vmf->pte); 2712 ret = false; 2713 goto pte_unlock; 2714 } 2715 2716 /* 2717 * The same page can be mapped back since last copy attempt. 2718 * Try to copy again under PTL. 2719 */ 2720 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2721 /* 2722 * Give a warn in case there can be some obscure 2723 * use-case 2724 */ 2725 warn: 2726 WARN_ON_ONCE(1); 2727 clear_page(kaddr); 2728 } 2729 } 2730 2731 ret = true; 2732 2733 pte_unlock: 2734 if (locked) 2735 pte_unmap_unlock(vmf->pte, vmf->ptl); 2736 kunmap_atomic(kaddr); 2737 flush_dcache_page(dst); 2738 2739 return ret; 2740 } 2741 2742 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2743 { 2744 struct file *vm_file = vma->vm_file; 2745 2746 if (vm_file) 2747 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2748 2749 /* 2750 * Special mappings (e.g. VDSO) do not have any file so fake 2751 * a default GFP_KERNEL for them. 2752 */ 2753 return GFP_KERNEL; 2754 } 2755 2756 /* 2757 * Notify the address space that the page is about to become writable so that 2758 * it can prohibit this or wait for the page to get into an appropriate state. 2759 * 2760 * We do this without the lock held, so that it can sleep if it needs to. 2761 */ 2762 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2763 { 2764 vm_fault_t ret; 2765 struct page *page = vmf->page; 2766 unsigned int old_flags = vmf->flags; 2767 2768 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2769 2770 if (vmf->vma->vm_file && 2771 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2772 return VM_FAULT_SIGBUS; 2773 2774 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2775 /* Restore original flags so that caller is not surprised */ 2776 vmf->flags = old_flags; 2777 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2778 return ret; 2779 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2780 lock_page(page); 2781 if (!page->mapping) { 2782 unlock_page(page); 2783 return 0; /* retry */ 2784 } 2785 ret |= VM_FAULT_LOCKED; 2786 } else 2787 VM_BUG_ON_PAGE(!PageLocked(page), page); 2788 return ret; 2789 } 2790 2791 /* 2792 * Handle dirtying of a page in shared file mapping on a write fault. 2793 * 2794 * The function expects the page to be locked and unlocks it. 2795 */ 2796 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2797 { 2798 struct vm_area_struct *vma = vmf->vma; 2799 struct address_space *mapping; 2800 struct page *page = vmf->page; 2801 bool dirtied; 2802 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2803 2804 dirtied = set_page_dirty(page); 2805 VM_BUG_ON_PAGE(PageAnon(page), page); 2806 /* 2807 * Take a local copy of the address_space - page.mapping may be zeroed 2808 * by truncate after unlock_page(). The address_space itself remains 2809 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2810 * release semantics to prevent the compiler from undoing this copying. 2811 */ 2812 mapping = page_rmapping(page); 2813 unlock_page(page); 2814 2815 if (!page_mkwrite) 2816 file_update_time(vma->vm_file); 2817 2818 /* 2819 * Throttle page dirtying rate down to writeback speed. 2820 * 2821 * mapping may be NULL here because some device drivers do not 2822 * set page.mapping but still dirty their pages 2823 * 2824 * Drop the mmap_lock before waiting on IO, if we can. The file 2825 * is pinning the mapping, as per above. 2826 */ 2827 if ((dirtied || page_mkwrite) && mapping) { 2828 struct file *fpin; 2829 2830 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2831 balance_dirty_pages_ratelimited(mapping); 2832 if (fpin) { 2833 fput(fpin); 2834 return VM_FAULT_RETRY; 2835 } 2836 } 2837 2838 return 0; 2839 } 2840 2841 /* 2842 * Handle write page faults for pages that can be reused in the current vma 2843 * 2844 * This can happen either due to the mapping being with the VM_SHARED flag, 2845 * or due to us being the last reference standing to the page. In either 2846 * case, all we need to do here is to mark the page as writable and update 2847 * any related book-keeping. 2848 */ 2849 static inline void wp_page_reuse(struct vm_fault *vmf) 2850 __releases(vmf->ptl) 2851 { 2852 struct vm_area_struct *vma = vmf->vma; 2853 struct page *page = vmf->page; 2854 pte_t entry; 2855 /* 2856 * Clear the pages cpupid information as the existing 2857 * information potentially belongs to a now completely 2858 * unrelated process. 2859 */ 2860 if (page) 2861 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2862 2863 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2864 entry = pte_mkyoung(vmf->orig_pte); 2865 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2866 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2867 update_mmu_cache(vma, vmf->address, vmf->pte); 2868 pte_unmap_unlock(vmf->pte, vmf->ptl); 2869 count_vm_event(PGREUSE); 2870 } 2871 2872 /* 2873 * Handle the case of a page which we actually need to copy to a new page. 2874 * 2875 * Called with mmap_lock locked and the old page referenced, but 2876 * without the ptl held. 2877 * 2878 * High level logic flow: 2879 * 2880 * - Allocate a page, copy the content of the old page to the new one. 2881 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2882 * - Take the PTL. If the pte changed, bail out and release the allocated page 2883 * - If the pte is still the way we remember it, update the page table and all 2884 * relevant references. This includes dropping the reference the page-table 2885 * held to the old page, as well as updating the rmap. 2886 * - In any case, unlock the PTL and drop the reference we took to the old page. 2887 */ 2888 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2889 { 2890 struct vm_area_struct *vma = vmf->vma; 2891 struct mm_struct *mm = vma->vm_mm; 2892 struct page *old_page = vmf->page; 2893 struct page *new_page = NULL; 2894 pte_t entry; 2895 int page_copied = 0; 2896 struct mmu_notifier_range range; 2897 2898 if (unlikely(anon_vma_prepare(vma))) 2899 goto oom; 2900 2901 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2902 new_page = alloc_zeroed_user_highpage_movable(vma, 2903 vmf->address); 2904 if (!new_page) 2905 goto oom; 2906 } else { 2907 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2908 vmf->address); 2909 if (!new_page) 2910 goto oom; 2911 2912 if (!cow_user_page(new_page, old_page, vmf)) { 2913 /* 2914 * COW failed, if the fault was solved by other, 2915 * it's fine. If not, userspace would re-fault on 2916 * the same address and we will handle the fault 2917 * from the second attempt. 2918 */ 2919 put_page(new_page); 2920 if (old_page) 2921 put_page(old_page); 2922 return 0; 2923 } 2924 } 2925 2926 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 2927 goto oom_free_new; 2928 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 2929 2930 __SetPageUptodate(new_page); 2931 2932 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2933 vmf->address & PAGE_MASK, 2934 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2935 mmu_notifier_invalidate_range_start(&range); 2936 2937 /* 2938 * Re-check the pte - we dropped the lock 2939 */ 2940 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2941 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2942 if (old_page) { 2943 if (!PageAnon(old_page)) { 2944 dec_mm_counter_fast(mm, 2945 mm_counter_file(old_page)); 2946 inc_mm_counter_fast(mm, MM_ANONPAGES); 2947 } 2948 } else { 2949 inc_mm_counter_fast(mm, MM_ANONPAGES); 2950 } 2951 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2952 entry = mk_pte(new_page, vma->vm_page_prot); 2953 entry = pte_sw_mkyoung(entry); 2954 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2955 2956 /* 2957 * Clear the pte entry and flush it first, before updating the 2958 * pte with the new entry, to keep TLBs on different CPUs in 2959 * sync. This code used to set the new PTE then flush TLBs, but 2960 * that left a window where the new PTE could be loaded into 2961 * some TLBs while the old PTE remains in others. 2962 */ 2963 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2964 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2965 lru_cache_add_inactive_or_unevictable(new_page, vma); 2966 /* 2967 * We call the notify macro here because, when using secondary 2968 * mmu page tables (such as kvm shadow page tables), we want the 2969 * new page to be mapped directly into the secondary page table. 2970 */ 2971 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2972 update_mmu_cache(vma, vmf->address, vmf->pte); 2973 if (old_page) { 2974 /* 2975 * Only after switching the pte to the new page may 2976 * we remove the mapcount here. Otherwise another 2977 * process may come and find the rmap count decremented 2978 * before the pte is switched to the new page, and 2979 * "reuse" the old page writing into it while our pte 2980 * here still points into it and can be read by other 2981 * threads. 2982 * 2983 * The critical issue is to order this 2984 * page_remove_rmap with the ptp_clear_flush above. 2985 * Those stores are ordered by (if nothing else,) 2986 * the barrier present in the atomic_add_negative 2987 * in page_remove_rmap. 2988 * 2989 * Then the TLB flush in ptep_clear_flush ensures that 2990 * no process can access the old page before the 2991 * decremented mapcount is visible. And the old page 2992 * cannot be reused until after the decremented 2993 * mapcount is visible. So transitively, TLBs to 2994 * old page will be flushed before it can be reused. 2995 */ 2996 page_remove_rmap(old_page, false); 2997 } 2998 2999 /* Free the old page.. */ 3000 new_page = old_page; 3001 page_copied = 1; 3002 } else { 3003 update_mmu_tlb(vma, vmf->address, vmf->pte); 3004 } 3005 3006 if (new_page) 3007 put_page(new_page); 3008 3009 pte_unmap_unlock(vmf->pte, vmf->ptl); 3010 /* 3011 * No need to double call mmu_notifier->invalidate_range() callback as 3012 * the above ptep_clear_flush_notify() did already call it. 3013 */ 3014 mmu_notifier_invalidate_range_only_end(&range); 3015 if (old_page) { 3016 /* 3017 * Don't let another task, with possibly unlocked vma, 3018 * keep the mlocked page. 3019 */ 3020 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 3021 lock_page(old_page); /* LRU manipulation */ 3022 if (PageMlocked(old_page)) 3023 munlock_vma_page(old_page); 3024 unlock_page(old_page); 3025 } 3026 put_page(old_page); 3027 } 3028 return page_copied ? VM_FAULT_WRITE : 0; 3029 oom_free_new: 3030 put_page(new_page); 3031 oom: 3032 if (old_page) 3033 put_page(old_page); 3034 return VM_FAULT_OOM; 3035 } 3036 3037 /** 3038 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3039 * writeable once the page is prepared 3040 * 3041 * @vmf: structure describing the fault 3042 * 3043 * This function handles all that is needed to finish a write page fault in a 3044 * shared mapping due to PTE being read-only once the mapped page is prepared. 3045 * It handles locking of PTE and modifying it. 3046 * 3047 * The function expects the page to be locked or other protection against 3048 * concurrent faults / writeback (such as DAX radix tree locks). 3049 * 3050 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 3051 * we acquired PTE lock. 3052 */ 3053 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3054 { 3055 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3056 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3057 &vmf->ptl); 3058 /* 3059 * We might have raced with another page fault while we released the 3060 * pte_offset_map_lock. 3061 */ 3062 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3063 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3064 pte_unmap_unlock(vmf->pte, vmf->ptl); 3065 return VM_FAULT_NOPAGE; 3066 } 3067 wp_page_reuse(vmf); 3068 return 0; 3069 } 3070 3071 /* 3072 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3073 * mapping 3074 */ 3075 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3076 { 3077 struct vm_area_struct *vma = vmf->vma; 3078 3079 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3080 vm_fault_t ret; 3081 3082 pte_unmap_unlock(vmf->pte, vmf->ptl); 3083 vmf->flags |= FAULT_FLAG_MKWRITE; 3084 ret = vma->vm_ops->pfn_mkwrite(vmf); 3085 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3086 return ret; 3087 return finish_mkwrite_fault(vmf); 3088 } 3089 wp_page_reuse(vmf); 3090 return VM_FAULT_WRITE; 3091 } 3092 3093 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3094 __releases(vmf->ptl) 3095 { 3096 struct vm_area_struct *vma = vmf->vma; 3097 vm_fault_t ret = VM_FAULT_WRITE; 3098 3099 get_page(vmf->page); 3100 3101 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3102 vm_fault_t tmp; 3103 3104 pte_unmap_unlock(vmf->pte, vmf->ptl); 3105 tmp = do_page_mkwrite(vmf); 3106 if (unlikely(!tmp || (tmp & 3107 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3108 put_page(vmf->page); 3109 return tmp; 3110 } 3111 tmp = finish_mkwrite_fault(vmf); 3112 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3113 unlock_page(vmf->page); 3114 put_page(vmf->page); 3115 return tmp; 3116 } 3117 } else { 3118 wp_page_reuse(vmf); 3119 lock_page(vmf->page); 3120 } 3121 ret |= fault_dirty_shared_page(vmf); 3122 put_page(vmf->page); 3123 3124 return ret; 3125 } 3126 3127 /* 3128 * This routine handles present pages, when users try to write 3129 * to a shared page. It is done by copying the page to a new address 3130 * and decrementing the shared-page counter for the old page. 3131 * 3132 * Note that this routine assumes that the protection checks have been 3133 * done by the caller (the low-level page fault routine in most cases). 3134 * Thus we can safely just mark it writable once we've done any necessary 3135 * COW. 3136 * 3137 * We also mark the page dirty at this point even though the page will 3138 * change only once the write actually happens. This avoids a few races, 3139 * and potentially makes it more efficient. 3140 * 3141 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3142 * but allow concurrent faults), with pte both mapped and locked. 3143 * We return with mmap_lock still held, but pte unmapped and unlocked. 3144 */ 3145 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3146 __releases(vmf->ptl) 3147 { 3148 struct vm_area_struct *vma = vmf->vma; 3149 3150 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3151 pte_unmap_unlock(vmf->pte, vmf->ptl); 3152 return handle_userfault(vmf, VM_UFFD_WP); 3153 } 3154 3155 /* 3156 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3157 * is flushed in this case before copying. 3158 */ 3159 if (unlikely(userfaultfd_wp(vmf->vma) && 3160 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3161 flush_tlb_page(vmf->vma, vmf->address); 3162 3163 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3164 if (!vmf->page) { 3165 /* 3166 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3167 * VM_PFNMAP VMA. 3168 * 3169 * We should not cow pages in a shared writeable mapping. 3170 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3171 */ 3172 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3173 (VM_WRITE|VM_SHARED)) 3174 return wp_pfn_shared(vmf); 3175 3176 pte_unmap_unlock(vmf->pte, vmf->ptl); 3177 return wp_page_copy(vmf); 3178 } 3179 3180 /* 3181 * Take out anonymous pages first, anonymous shared vmas are 3182 * not dirty accountable. 3183 */ 3184 if (PageAnon(vmf->page)) { 3185 struct page *page = vmf->page; 3186 3187 /* PageKsm() doesn't necessarily raise the page refcount */ 3188 if (PageKsm(page) || page_count(page) != 1) 3189 goto copy; 3190 if (!trylock_page(page)) 3191 goto copy; 3192 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { 3193 unlock_page(page); 3194 goto copy; 3195 } 3196 /* 3197 * Ok, we've got the only map reference, and the only 3198 * page count reference, and the page is locked, 3199 * it's dark out, and we're wearing sunglasses. Hit it. 3200 */ 3201 unlock_page(page); 3202 wp_page_reuse(vmf); 3203 return VM_FAULT_WRITE; 3204 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3205 (VM_WRITE|VM_SHARED))) { 3206 return wp_page_shared(vmf); 3207 } 3208 copy: 3209 /* 3210 * Ok, we need to copy. Oh, well.. 3211 */ 3212 get_page(vmf->page); 3213 3214 pte_unmap_unlock(vmf->pte, vmf->ptl); 3215 return wp_page_copy(vmf); 3216 } 3217 3218 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3219 unsigned long start_addr, unsigned long end_addr, 3220 struct zap_details *details) 3221 { 3222 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3223 } 3224 3225 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3226 struct zap_details *details) 3227 { 3228 struct vm_area_struct *vma; 3229 pgoff_t vba, vea, zba, zea; 3230 3231 vma_interval_tree_foreach(vma, root, 3232 details->first_index, details->last_index) { 3233 3234 vba = vma->vm_pgoff; 3235 vea = vba + vma_pages(vma) - 1; 3236 zba = details->first_index; 3237 if (zba < vba) 3238 zba = vba; 3239 zea = details->last_index; 3240 if (zea > vea) 3241 zea = vea; 3242 3243 unmap_mapping_range_vma(vma, 3244 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3245 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3246 details); 3247 } 3248 } 3249 3250 /** 3251 * unmap_mapping_page() - Unmap single page from processes. 3252 * @page: The locked page to be unmapped. 3253 * 3254 * Unmap this page from any userspace process which still has it mmaped. 3255 * Typically, for efficiency, the range of nearby pages has already been 3256 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3257 * truncation or invalidation holds the lock on a page, it may find that 3258 * the page has been remapped again: and then uses unmap_mapping_page() 3259 * to unmap it finally. 3260 */ 3261 void unmap_mapping_page(struct page *page) 3262 { 3263 struct address_space *mapping = page->mapping; 3264 struct zap_details details = { }; 3265 3266 VM_BUG_ON(!PageLocked(page)); 3267 VM_BUG_ON(PageTail(page)); 3268 3269 details.check_mapping = mapping; 3270 details.first_index = page->index; 3271 details.last_index = page->index + thp_nr_pages(page) - 1; 3272 details.single_page = page; 3273 3274 i_mmap_lock_write(mapping); 3275 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3276 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3277 i_mmap_unlock_write(mapping); 3278 } 3279 3280 /** 3281 * unmap_mapping_pages() - Unmap pages from processes. 3282 * @mapping: The address space containing pages to be unmapped. 3283 * @start: Index of first page to be unmapped. 3284 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3285 * @even_cows: Whether to unmap even private COWed pages. 3286 * 3287 * Unmap the pages in this address space from any userspace process which 3288 * has them mmaped. Generally, you want to remove COWed pages as well when 3289 * a file is being truncated, but not when invalidating pages from the page 3290 * cache. 3291 */ 3292 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3293 pgoff_t nr, bool even_cows) 3294 { 3295 struct zap_details details = { }; 3296 3297 details.check_mapping = even_cows ? NULL : mapping; 3298 details.first_index = start; 3299 details.last_index = start + nr - 1; 3300 if (details.last_index < details.first_index) 3301 details.last_index = ULONG_MAX; 3302 3303 i_mmap_lock_write(mapping); 3304 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3305 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3306 i_mmap_unlock_write(mapping); 3307 } 3308 3309 /** 3310 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3311 * address_space corresponding to the specified byte range in the underlying 3312 * file. 3313 * 3314 * @mapping: the address space containing mmaps to be unmapped. 3315 * @holebegin: byte in first page to unmap, relative to the start of 3316 * the underlying file. This will be rounded down to a PAGE_SIZE 3317 * boundary. Note that this is different from truncate_pagecache(), which 3318 * must keep the partial page. In contrast, we must get rid of 3319 * partial pages. 3320 * @holelen: size of prospective hole in bytes. This will be rounded 3321 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3322 * end of the file. 3323 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3324 * but 0 when invalidating pagecache, don't throw away private data. 3325 */ 3326 void unmap_mapping_range(struct address_space *mapping, 3327 loff_t const holebegin, loff_t const holelen, int even_cows) 3328 { 3329 pgoff_t hba = holebegin >> PAGE_SHIFT; 3330 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3331 3332 /* Check for overflow. */ 3333 if (sizeof(holelen) > sizeof(hlen)) { 3334 long long holeend = 3335 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3336 if (holeend & ~(long long)ULONG_MAX) 3337 hlen = ULONG_MAX - hba + 1; 3338 } 3339 3340 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3341 } 3342 EXPORT_SYMBOL(unmap_mapping_range); 3343 3344 /* 3345 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3346 * but allow concurrent faults), and pte mapped but not yet locked. 3347 * We return with pte unmapped and unlocked. 3348 * 3349 * We return with the mmap_lock locked or unlocked in the same cases 3350 * as does filemap_fault(). 3351 */ 3352 vm_fault_t do_swap_page(struct vm_fault *vmf) 3353 { 3354 struct vm_area_struct *vma = vmf->vma; 3355 struct page *page = NULL, *swapcache; 3356 swp_entry_t entry; 3357 pte_t pte; 3358 int locked; 3359 int exclusive = 0; 3360 vm_fault_t ret = 0; 3361 void *shadow = NULL; 3362 3363 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 3364 goto out; 3365 3366 entry = pte_to_swp_entry(vmf->orig_pte); 3367 if (unlikely(non_swap_entry(entry))) { 3368 if (is_migration_entry(entry)) { 3369 migration_entry_wait(vma->vm_mm, vmf->pmd, 3370 vmf->address); 3371 } else if (is_device_private_entry(entry)) { 3372 vmf->page = device_private_entry_to_page(entry); 3373 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3374 } else if (is_hwpoison_entry(entry)) { 3375 ret = VM_FAULT_HWPOISON; 3376 } else { 3377 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3378 ret = VM_FAULT_SIGBUS; 3379 } 3380 goto out; 3381 } 3382 3383 3384 delayacct_set_flag(current, DELAYACCT_PF_SWAPIN); 3385 page = lookup_swap_cache(entry, vma, vmf->address); 3386 swapcache = page; 3387 3388 if (!page) { 3389 struct swap_info_struct *si = swp_swap_info(entry); 3390 3391 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3392 __swap_count(entry) == 1) { 3393 /* skip swapcache */ 3394 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3395 vmf->address); 3396 if (page) { 3397 __SetPageLocked(page); 3398 __SetPageSwapBacked(page); 3399 3400 if (mem_cgroup_swapin_charge_page(page, 3401 vma->vm_mm, GFP_KERNEL, entry)) { 3402 ret = VM_FAULT_OOM; 3403 goto out_page; 3404 } 3405 mem_cgroup_swapin_uncharge_swap(entry); 3406 3407 shadow = get_shadow_from_swap_cache(entry); 3408 if (shadow) 3409 workingset_refault(page, shadow); 3410 3411 lru_cache_add(page); 3412 3413 /* To provide entry to swap_readpage() */ 3414 set_page_private(page, entry.val); 3415 swap_readpage(page, true); 3416 set_page_private(page, 0); 3417 } 3418 } else { 3419 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3420 vmf); 3421 swapcache = page; 3422 } 3423 3424 if (!page) { 3425 /* 3426 * Back out if somebody else faulted in this pte 3427 * while we released the pte lock. 3428 */ 3429 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3430 vmf->address, &vmf->ptl); 3431 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3432 ret = VM_FAULT_OOM; 3433 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN); 3434 goto unlock; 3435 } 3436 3437 /* Had to read the page from swap area: Major fault */ 3438 ret = VM_FAULT_MAJOR; 3439 count_vm_event(PGMAJFAULT); 3440 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3441 } else if (PageHWPoison(page)) { 3442 /* 3443 * hwpoisoned dirty swapcache pages are kept for killing 3444 * owner processes (which may be unknown at hwpoison time) 3445 */ 3446 ret = VM_FAULT_HWPOISON; 3447 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN); 3448 goto out_release; 3449 } 3450 3451 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3452 3453 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN); 3454 if (!locked) { 3455 ret |= VM_FAULT_RETRY; 3456 goto out_release; 3457 } 3458 3459 /* 3460 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3461 * release the swapcache from under us. The page pin, and pte_same 3462 * test below, are not enough to exclude that. Even if it is still 3463 * swapcache, we need to check that the page's swap has not changed. 3464 */ 3465 if (unlikely((!PageSwapCache(page) || 3466 page_private(page) != entry.val)) && swapcache) 3467 goto out_page; 3468 3469 page = ksm_might_need_to_copy(page, vma, vmf->address); 3470 if (unlikely(!page)) { 3471 ret = VM_FAULT_OOM; 3472 page = swapcache; 3473 goto out_page; 3474 } 3475 3476 cgroup_throttle_swaprate(page, GFP_KERNEL); 3477 3478 /* 3479 * Back out if somebody else already faulted in this pte. 3480 */ 3481 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3482 &vmf->ptl); 3483 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3484 goto out_nomap; 3485 3486 if (unlikely(!PageUptodate(page))) { 3487 ret = VM_FAULT_SIGBUS; 3488 goto out_nomap; 3489 } 3490 3491 /* 3492 * The page isn't present yet, go ahead with the fault. 3493 * 3494 * Be careful about the sequence of operations here. 3495 * To get its accounting right, reuse_swap_page() must be called 3496 * while the page is counted on swap but not yet in mapcount i.e. 3497 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3498 * must be called after the swap_free(), or it will never succeed. 3499 */ 3500 3501 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3502 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3503 pte = mk_pte(page, vma->vm_page_prot); 3504 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3505 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3506 vmf->flags &= ~FAULT_FLAG_WRITE; 3507 ret |= VM_FAULT_WRITE; 3508 exclusive = RMAP_EXCLUSIVE; 3509 } 3510 flush_icache_page(vma, page); 3511 if (pte_swp_soft_dirty(vmf->orig_pte)) 3512 pte = pte_mksoft_dirty(pte); 3513 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3514 pte = pte_mkuffd_wp(pte); 3515 pte = pte_wrprotect(pte); 3516 } 3517 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3518 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3519 vmf->orig_pte = pte; 3520 3521 /* ksm created a completely new copy */ 3522 if (unlikely(page != swapcache && swapcache)) { 3523 page_add_new_anon_rmap(page, vma, vmf->address, false); 3524 lru_cache_add_inactive_or_unevictable(page, vma); 3525 } else { 3526 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3527 } 3528 3529 swap_free(entry); 3530 if (mem_cgroup_swap_full(page) || 3531 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3532 try_to_free_swap(page); 3533 unlock_page(page); 3534 if (page != swapcache && swapcache) { 3535 /* 3536 * Hold the lock to avoid the swap entry to be reused 3537 * until we take the PT lock for the pte_same() check 3538 * (to avoid false positives from pte_same). For 3539 * further safety release the lock after the swap_free 3540 * so that the swap count won't change under a 3541 * parallel locked swapcache. 3542 */ 3543 unlock_page(swapcache); 3544 put_page(swapcache); 3545 } 3546 3547 if (vmf->flags & FAULT_FLAG_WRITE) { 3548 ret |= do_wp_page(vmf); 3549 if (ret & VM_FAULT_ERROR) 3550 ret &= VM_FAULT_ERROR; 3551 goto out; 3552 } 3553 3554 /* No need to invalidate - it was non-present before */ 3555 update_mmu_cache(vma, vmf->address, vmf->pte); 3556 unlock: 3557 pte_unmap_unlock(vmf->pte, vmf->ptl); 3558 out: 3559 return ret; 3560 out_nomap: 3561 pte_unmap_unlock(vmf->pte, vmf->ptl); 3562 out_page: 3563 unlock_page(page); 3564 out_release: 3565 put_page(page); 3566 if (page != swapcache && swapcache) { 3567 unlock_page(swapcache); 3568 put_page(swapcache); 3569 } 3570 return ret; 3571 } 3572 3573 /* 3574 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3575 * but allow concurrent faults), and pte mapped but not yet locked. 3576 * We return with mmap_lock still held, but pte unmapped and unlocked. 3577 */ 3578 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3579 { 3580 struct vm_area_struct *vma = vmf->vma; 3581 struct page *page; 3582 vm_fault_t ret = 0; 3583 pte_t entry; 3584 3585 /* File mapping without ->vm_ops ? */ 3586 if (vma->vm_flags & VM_SHARED) 3587 return VM_FAULT_SIGBUS; 3588 3589 /* 3590 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3591 * pte_offset_map() on pmds where a huge pmd might be created 3592 * from a different thread. 3593 * 3594 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 3595 * parallel threads are excluded by other means. 3596 * 3597 * Here we only have mmap_read_lock(mm). 3598 */ 3599 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3600 return VM_FAULT_OOM; 3601 3602 /* See comment in handle_pte_fault() */ 3603 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3604 return 0; 3605 3606 /* Use the zero-page for reads */ 3607 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3608 !mm_forbids_zeropage(vma->vm_mm)) { 3609 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3610 vma->vm_page_prot)); 3611 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3612 vmf->address, &vmf->ptl); 3613 if (!pte_none(*vmf->pte)) { 3614 update_mmu_tlb(vma, vmf->address, vmf->pte); 3615 goto unlock; 3616 } 3617 ret = check_stable_address_space(vma->vm_mm); 3618 if (ret) 3619 goto unlock; 3620 /* Deliver the page fault to userland, check inside PT lock */ 3621 if (userfaultfd_missing(vma)) { 3622 pte_unmap_unlock(vmf->pte, vmf->ptl); 3623 return handle_userfault(vmf, VM_UFFD_MISSING); 3624 } 3625 goto setpte; 3626 } 3627 3628 /* Allocate our own private page. */ 3629 if (unlikely(anon_vma_prepare(vma))) 3630 goto oom; 3631 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3632 if (!page) 3633 goto oom; 3634 3635 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 3636 goto oom_free_page; 3637 cgroup_throttle_swaprate(page, GFP_KERNEL); 3638 3639 /* 3640 * The memory barrier inside __SetPageUptodate makes sure that 3641 * preceding stores to the page contents become visible before 3642 * the set_pte_at() write. 3643 */ 3644 __SetPageUptodate(page); 3645 3646 entry = mk_pte(page, vma->vm_page_prot); 3647 entry = pte_sw_mkyoung(entry); 3648 if (vma->vm_flags & VM_WRITE) 3649 entry = pte_mkwrite(pte_mkdirty(entry)); 3650 3651 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3652 &vmf->ptl); 3653 if (!pte_none(*vmf->pte)) { 3654 update_mmu_cache(vma, vmf->address, vmf->pte); 3655 goto release; 3656 } 3657 3658 ret = check_stable_address_space(vma->vm_mm); 3659 if (ret) 3660 goto release; 3661 3662 /* Deliver the page fault to userland, check inside PT lock */ 3663 if (userfaultfd_missing(vma)) { 3664 pte_unmap_unlock(vmf->pte, vmf->ptl); 3665 put_page(page); 3666 return handle_userfault(vmf, VM_UFFD_MISSING); 3667 } 3668 3669 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3670 page_add_new_anon_rmap(page, vma, vmf->address, false); 3671 lru_cache_add_inactive_or_unevictable(page, vma); 3672 setpte: 3673 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3674 3675 /* No need to invalidate - it was non-present before */ 3676 update_mmu_cache(vma, vmf->address, vmf->pte); 3677 unlock: 3678 pte_unmap_unlock(vmf->pte, vmf->ptl); 3679 return ret; 3680 release: 3681 put_page(page); 3682 goto unlock; 3683 oom_free_page: 3684 put_page(page); 3685 oom: 3686 return VM_FAULT_OOM; 3687 } 3688 3689 /* 3690 * The mmap_lock must have been held on entry, and may have been 3691 * released depending on flags and vma->vm_ops->fault() return value. 3692 * See filemap_fault() and __lock_page_retry(). 3693 */ 3694 static vm_fault_t __do_fault(struct vm_fault *vmf) 3695 { 3696 struct vm_area_struct *vma = vmf->vma; 3697 vm_fault_t ret; 3698 3699 /* 3700 * Preallocate pte before we take page_lock because this might lead to 3701 * deadlocks for memcg reclaim which waits for pages under writeback: 3702 * lock_page(A) 3703 * SetPageWriteback(A) 3704 * unlock_page(A) 3705 * lock_page(B) 3706 * lock_page(B) 3707 * pte_alloc_one 3708 * shrink_page_list 3709 * wait_on_page_writeback(A) 3710 * SetPageWriteback(B) 3711 * unlock_page(B) 3712 * # flush A, B to clear the writeback 3713 */ 3714 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3715 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3716 if (!vmf->prealloc_pte) 3717 return VM_FAULT_OOM; 3718 smp_wmb(); /* See comment in __pte_alloc() */ 3719 } 3720 3721 ret = vma->vm_ops->fault(vmf); 3722 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3723 VM_FAULT_DONE_COW))) 3724 return ret; 3725 3726 if (unlikely(PageHWPoison(vmf->page))) { 3727 if (ret & VM_FAULT_LOCKED) 3728 unlock_page(vmf->page); 3729 put_page(vmf->page); 3730 vmf->page = NULL; 3731 return VM_FAULT_HWPOISON; 3732 } 3733 3734 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3735 lock_page(vmf->page); 3736 else 3737 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3738 3739 return ret; 3740 } 3741 3742 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3743 static void deposit_prealloc_pte(struct vm_fault *vmf) 3744 { 3745 struct vm_area_struct *vma = vmf->vma; 3746 3747 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3748 /* 3749 * We are going to consume the prealloc table, 3750 * count that as nr_ptes. 3751 */ 3752 mm_inc_nr_ptes(vma->vm_mm); 3753 vmf->prealloc_pte = NULL; 3754 } 3755 3756 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3757 { 3758 struct vm_area_struct *vma = vmf->vma; 3759 bool write = vmf->flags & FAULT_FLAG_WRITE; 3760 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3761 pmd_t entry; 3762 int i; 3763 vm_fault_t ret = VM_FAULT_FALLBACK; 3764 3765 if (!transhuge_vma_suitable(vma, haddr)) 3766 return ret; 3767 3768 page = compound_head(page); 3769 if (compound_order(page) != HPAGE_PMD_ORDER) 3770 return ret; 3771 3772 /* 3773 * Archs like ppc64 need additional space to store information 3774 * related to pte entry. Use the preallocated table for that. 3775 */ 3776 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3777 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3778 if (!vmf->prealloc_pte) 3779 return VM_FAULT_OOM; 3780 smp_wmb(); /* See comment in __pte_alloc() */ 3781 } 3782 3783 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3784 if (unlikely(!pmd_none(*vmf->pmd))) 3785 goto out; 3786 3787 for (i = 0; i < HPAGE_PMD_NR; i++) 3788 flush_icache_page(vma, page + i); 3789 3790 entry = mk_huge_pmd(page, vma->vm_page_prot); 3791 if (write) 3792 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3793 3794 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3795 page_add_file_rmap(page, true); 3796 /* 3797 * deposit and withdraw with pmd lock held 3798 */ 3799 if (arch_needs_pgtable_deposit()) 3800 deposit_prealloc_pte(vmf); 3801 3802 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3803 3804 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3805 3806 /* fault is handled */ 3807 ret = 0; 3808 count_vm_event(THP_FILE_MAPPED); 3809 out: 3810 spin_unlock(vmf->ptl); 3811 return ret; 3812 } 3813 #else 3814 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3815 { 3816 return VM_FAULT_FALLBACK; 3817 } 3818 #endif 3819 3820 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 3821 { 3822 struct vm_area_struct *vma = vmf->vma; 3823 bool write = vmf->flags & FAULT_FLAG_WRITE; 3824 bool prefault = vmf->address != addr; 3825 pte_t entry; 3826 3827 flush_icache_page(vma, page); 3828 entry = mk_pte(page, vma->vm_page_prot); 3829 3830 if (prefault && arch_wants_old_prefaulted_pte()) 3831 entry = pte_mkold(entry); 3832 else 3833 entry = pte_sw_mkyoung(entry); 3834 3835 if (write) 3836 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3837 /* copy-on-write page */ 3838 if (write && !(vma->vm_flags & VM_SHARED)) { 3839 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3840 page_add_new_anon_rmap(page, vma, addr, false); 3841 lru_cache_add_inactive_or_unevictable(page, vma); 3842 } else { 3843 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3844 page_add_file_rmap(page, false); 3845 } 3846 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 3847 } 3848 3849 /** 3850 * finish_fault - finish page fault once we have prepared the page to fault 3851 * 3852 * @vmf: structure describing the fault 3853 * 3854 * This function handles all that is needed to finish a page fault once the 3855 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3856 * given page, adds reverse page mapping, handles memcg charges and LRU 3857 * addition. 3858 * 3859 * The function expects the page to be locked and on success it consumes a 3860 * reference of a page being mapped (for the PTE which maps it). 3861 * 3862 * Return: %0 on success, %VM_FAULT_ code in case of error. 3863 */ 3864 vm_fault_t finish_fault(struct vm_fault *vmf) 3865 { 3866 struct vm_area_struct *vma = vmf->vma; 3867 struct page *page; 3868 vm_fault_t ret; 3869 3870 /* Did we COW the page? */ 3871 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 3872 page = vmf->cow_page; 3873 else 3874 page = vmf->page; 3875 3876 /* 3877 * check even for read faults because we might have lost our CoWed 3878 * page 3879 */ 3880 if (!(vma->vm_flags & VM_SHARED)) { 3881 ret = check_stable_address_space(vma->vm_mm); 3882 if (ret) 3883 return ret; 3884 } 3885 3886 if (pmd_none(*vmf->pmd)) { 3887 if (PageTransCompound(page)) { 3888 ret = do_set_pmd(vmf, page); 3889 if (ret != VM_FAULT_FALLBACK) 3890 return ret; 3891 } 3892 3893 if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 3894 return VM_FAULT_OOM; 3895 } 3896 3897 /* See comment in handle_pte_fault() */ 3898 if (pmd_devmap_trans_unstable(vmf->pmd)) 3899 return 0; 3900 3901 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3902 vmf->address, &vmf->ptl); 3903 ret = 0; 3904 /* Re-check under ptl */ 3905 if (likely(pte_none(*vmf->pte))) 3906 do_set_pte(vmf, page, vmf->address); 3907 else 3908 ret = VM_FAULT_NOPAGE; 3909 3910 update_mmu_tlb(vma, vmf->address, vmf->pte); 3911 pte_unmap_unlock(vmf->pte, vmf->ptl); 3912 return ret; 3913 } 3914 3915 static unsigned long fault_around_bytes __read_mostly = 3916 rounddown_pow_of_two(65536); 3917 3918 #ifdef CONFIG_DEBUG_FS 3919 static int fault_around_bytes_get(void *data, u64 *val) 3920 { 3921 *val = fault_around_bytes; 3922 return 0; 3923 } 3924 3925 /* 3926 * fault_around_bytes must be rounded down to the nearest page order as it's 3927 * what do_fault_around() expects to see. 3928 */ 3929 static int fault_around_bytes_set(void *data, u64 val) 3930 { 3931 if (val / PAGE_SIZE > PTRS_PER_PTE) 3932 return -EINVAL; 3933 if (val > PAGE_SIZE) 3934 fault_around_bytes = rounddown_pow_of_two(val); 3935 else 3936 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3937 return 0; 3938 } 3939 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3940 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3941 3942 static int __init fault_around_debugfs(void) 3943 { 3944 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3945 &fault_around_bytes_fops); 3946 return 0; 3947 } 3948 late_initcall(fault_around_debugfs); 3949 #endif 3950 3951 /* 3952 * do_fault_around() tries to map few pages around the fault address. The hope 3953 * is that the pages will be needed soon and this will lower the number of 3954 * faults to handle. 3955 * 3956 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3957 * not ready to be mapped: not up-to-date, locked, etc. 3958 * 3959 * This function is called with the page table lock taken. In the split ptlock 3960 * case the page table lock only protects only those entries which belong to 3961 * the page table corresponding to the fault address. 3962 * 3963 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3964 * only once. 3965 * 3966 * fault_around_bytes defines how many bytes we'll try to map. 3967 * do_fault_around() expects it to be set to a power of two less than or equal 3968 * to PTRS_PER_PTE. 3969 * 3970 * The virtual address of the area that we map is naturally aligned to 3971 * fault_around_bytes rounded down to the machine page size 3972 * (and therefore to page order). This way it's easier to guarantee 3973 * that we don't cross page table boundaries. 3974 */ 3975 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3976 { 3977 unsigned long address = vmf->address, nr_pages, mask; 3978 pgoff_t start_pgoff = vmf->pgoff; 3979 pgoff_t end_pgoff; 3980 int off; 3981 3982 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3983 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3984 3985 address = max(address & mask, vmf->vma->vm_start); 3986 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3987 start_pgoff -= off; 3988 3989 /* 3990 * end_pgoff is either the end of the page table, the end of 3991 * the vma or nr_pages from start_pgoff, depending what is nearest. 3992 */ 3993 end_pgoff = start_pgoff - 3994 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3995 PTRS_PER_PTE - 1; 3996 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3997 start_pgoff + nr_pages - 1); 3998 3999 if (pmd_none(*vmf->pmd)) { 4000 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4001 if (!vmf->prealloc_pte) 4002 return VM_FAULT_OOM; 4003 smp_wmb(); /* See comment in __pte_alloc() */ 4004 } 4005 4006 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 4007 } 4008 4009 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4010 { 4011 struct vm_area_struct *vma = vmf->vma; 4012 vm_fault_t ret = 0; 4013 4014 /* 4015 * Let's call ->map_pages() first and use ->fault() as fallback 4016 * if page by the offset is not ready to be mapped (cold cache or 4017 * something). 4018 */ 4019 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 4020 ret = do_fault_around(vmf); 4021 if (ret) 4022 return ret; 4023 } 4024 4025 ret = __do_fault(vmf); 4026 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4027 return ret; 4028 4029 ret |= finish_fault(vmf); 4030 unlock_page(vmf->page); 4031 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4032 put_page(vmf->page); 4033 return ret; 4034 } 4035 4036 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4037 { 4038 struct vm_area_struct *vma = vmf->vma; 4039 vm_fault_t ret; 4040 4041 if (unlikely(anon_vma_prepare(vma))) 4042 return VM_FAULT_OOM; 4043 4044 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4045 if (!vmf->cow_page) 4046 return VM_FAULT_OOM; 4047 4048 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { 4049 put_page(vmf->cow_page); 4050 return VM_FAULT_OOM; 4051 } 4052 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4053 4054 ret = __do_fault(vmf); 4055 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4056 goto uncharge_out; 4057 if (ret & VM_FAULT_DONE_COW) 4058 return ret; 4059 4060 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4061 __SetPageUptodate(vmf->cow_page); 4062 4063 ret |= finish_fault(vmf); 4064 unlock_page(vmf->page); 4065 put_page(vmf->page); 4066 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4067 goto uncharge_out; 4068 return ret; 4069 uncharge_out: 4070 put_page(vmf->cow_page); 4071 return ret; 4072 } 4073 4074 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4075 { 4076 struct vm_area_struct *vma = vmf->vma; 4077 vm_fault_t ret, tmp; 4078 4079 ret = __do_fault(vmf); 4080 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4081 return ret; 4082 4083 /* 4084 * Check if the backing address space wants to know that the page is 4085 * about to become writable 4086 */ 4087 if (vma->vm_ops->page_mkwrite) { 4088 unlock_page(vmf->page); 4089 tmp = do_page_mkwrite(vmf); 4090 if (unlikely(!tmp || 4091 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4092 put_page(vmf->page); 4093 return tmp; 4094 } 4095 } 4096 4097 ret |= finish_fault(vmf); 4098 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4099 VM_FAULT_RETRY))) { 4100 unlock_page(vmf->page); 4101 put_page(vmf->page); 4102 return ret; 4103 } 4104 4105 ret |= fault_dirty_shared_page(vmf); 4106 return ret; 4107 } 4108 4109 /* 4110 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4111 * but allow concurrent faults). 4112 * The mmap_lock may have been released depending on flags and our 4113 * return value. See filemap_fault() and __lock_page_or_retry(). 4114 * If mmap_lock is released, vma may become invalid (for example 4115 * by other thread calling munmap()). 4116 */ 4117 static vm_fault_t do_fault(struct vm_fault *vmf) 4118 { 4119 struct vm_area_struct *vma = vmf->vma; 4120 struct mm_struct *vm_mm = vma->vm_mm; 4121 vm_fault_t ret; 4122 4123 /* 4124 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4125 */ 4126 if (!vma->vm_ops->fault) { 4127 /* 4128 * If we find a migration pmd entry or a none pmd entry, which 4129 * should never happen, return SIGBUS 4130 */ 4131 if (unlikely(!pmd_present(*vmf->pmd))) 4132 ret = VM_FAULT_SIGBUS; 4133 else { 4134 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4135 vmf->pmd, 4136 vmf->address, 4137 &vmf->ptl); 4138 /* 4139 * Make sure this is not a temporary clearing of pte 4140 * by holding ptl and checking again. A R/M/W update 4141 * of pte involves: take ptl, clearing the pte so that 4142 * we don't have concurrent modification by hardware 4143 * followed by an update. 4144 */ 4145 if (unlikely(pte_none(*vmf->pte))) 4146 ret = VM_FAULT_SIGBUS; 4147 else 4148 ret = VM_FAULT_NOPAGE; 4149 4150 pte_unmap_unlock(vmf->pte, vmf->ptl); 4151 } 4152 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4153 ret = do_read_fault(vmf); 4154 else if (!(vma->vm_flags & VM_SHARED)) 4155 ret = do_cow_fault(vmf); 4156 else 4157 ret = do_shared_fault(vmf); 4158 4159 /* preallocated pagetable is unused: free it */ 4160 if (vmf->prealloc_pte) { 4161 pte_free(vm_mm, vmf->prealloc_pte); 4162 vmf->prealloc_pte = NULL; 4163 } 4164 return ret; 4165 } 4166 4167 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4168 unsigned long addr, int page_nid, 4169 int *flags) 4170 { 4171 get_page(page); 4172 4173 count_vm_numa_event(NUMA_HINT_FAULTS); 4174 if (page_nid == numa_node_id()) { 4175 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4176 *flags |= TNF_FAULT_LOCAL; 4177 } 4178 4179 return mpol_misplaced(page, vma, addr); 4180 } 4181 4182 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4183 { 4184 struct vm_area_struct *vma = vmf->vma; 4185 struct page *page = NULL; 4186 int page_nid = NUMA_NO_NODE; 4187 int last_cpupid; 4188 int target_nid; 4189 pte_t pte, old_pte; 4190 bool was_writable = pte_savedwrite(vmf->orig_pte); 4191 int flags = 0; 4192 4193 /* 4194 * The "pte" at this point cannot be used safely without 4195 * validation through pte_unmap_same(). It's of NUMA type but 4196 * the pfn may be screwed if the read is non atomic. 4197 */ 4198 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4199 spin_lock(vmf->ptl); 4200 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4201 pte_unmap_unlock(vmf->pte, vmf->ptl); 4202 goto out; 4203 } 4204 4205 /* Get the normal PTE */ 4206 old_pte = ptep_get(vmf->pte); 4207 pte = pte_modify(old_pte, vma->vm_page_prot); 4208 4209 page = vm_normal_page(vma, vmf->address, pte); 4210 if (!page) 4211 goto out_map; 4212 4213 /* TODO: handle PTE-mapped THP */ 4214 if (PageCompound(page)) 4215 goto out_map; 4216 4217 /* 4218 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4219 * much anyway since they can be in shared cache state. This misses 4220 * the case where a mapping is writable but the process never writes 4221 * to it but pte_write gets cleared during protection updates and 4222 * pte_dirty has unpredictable behaviour between PTE scan updates, 4223 * background writeback, dirty balancing and application behaviour. 4224 */ 4225 if (!was_writable) 4226 flags |= TNF_NO_GROUP; 4227 4228 /* 4229 * Flag if the page is shared between multiple address spaces. This 4230 * is later used when determining whether to group tasks together 4231 */ 4232 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4233 flags |= TNF_SHARED; 4234 4235 last_cpupid = page_cpupid_last(page); 4236 page_nid = page_to_nid(page); 4237 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4238 &flags); 4239 if (target_nid == NUMA_NO_NODE) { 4240 put_page(page); 4241 goto out_map; 4242 } 4243 pte_unmap_unlock(vmf->pte, vmf->ptl); 4244 4245 /* Migrate to the requested node */ 4246 if (migrate_misplaced_page(page, vma, target_nid)) { 4247 page_nid = target_nid; 4248 flags |= TNF_MIGRATED; 4249 } else { 4250 flags |= TNF_MIGRATE_FAIL; 4251 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4252 spin_lock(vmf->ptl); 4253 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4254 pte_unmap_unlock(vmf->pte, vmf->ptl); 4255 goto out; 4256 } 4257 goto out_map; 4258 } 4259 4260 out: 4261 if (page_nid != NUMA_NO_NODE) 4262 task_numa_fault(last_cpupid, page_nid, 1, flags); 4263 return 0; 4264 out_map: 4265 /* 4266 * Make it present again, depending on how arch implements 4267 * non-accessible ptes, some can allow access by kernel mode. 4268 */ 4269 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4270 pte = pte_modify(old_pte, vma->vm_page_prot); 4271 pte = pte_mkyoung(pte); 4272 if (was_writable) 4273 pte = pte_mkwrite(pte); 4274 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4275 update_mmu_cache(vma, vmf->address, vmf->pte); 4276 pte_unmap_unlock(vmf->pte, vmf->ptl); 4277 goto out; 4278 } 4279 4280 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4281 { 4282 if (vma_is_anonymous(vmf->vma)) 4283 return do_huge_pmd_anonymous_page(vmf); 4284 if (vmf->vma->vm_ops->huge_fault) 4285 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4286 return VM_FAULT_FALLBACK; 4287 } 4288 4289 /* `inline' is required to avoid gcc 4.1.2 build error */ 4290 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 4291 { 4292 if (vma_is_anonymous(vmf->vma)) { 4293 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) 4294 return handle_userfault(vmf, VM_UFFD_WP); 4295 return do_huge_pmd_wp_page(vmf, orig_pmd); 4296 } 4297 if (vmf->vma->vm_ops->huge_fault) { 4298 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4299 4300 if (!(ret & VM_FAULT_FALLBACK)) 4301 return ret; 4302 } 4303 4304 /* COW or write-notify handled on pte level: split pmd. */ 4305 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4306 4307 return VM_FAULT_FALLBACK; 4308 } 4309 4310 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4311 { 4312 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4313 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4314 /* No support for anonymous transparent PUD pages yet */ 4315 if (vma_is_anonymous(vmf->vma)) 4316 goto split; 4317 if (vmf->vma->vm_ops->huge_fault) { 4318 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4319 4320 if (!(ret & VM_FAULT_FALLBACK)) 4321 return ret; 4322 } 4323 split: 4324 /* COW or write-notify not handled on PUD level: split pud.*/ 4325 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4326 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4327 return VM_FAULT_FALLBACK; 4328 } 4329 4330 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4331 { 4332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4333 /* No support for anonymous transparent PUD pages yet */ 4334 if (vma_is_anonymous(vmf->vma)) 4335 return VM_FAULT_FALLBACK; 4336 if (vmf->vma->vm_ops->huge_fault) 4337 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4338 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4339 return VM_FAULT_FALLBACK; 4340 } 4341 4342 /* 4343 * These routines also need to handle stuff like marking pages dirty 4344 * and/or accessed for architectures that don't do it in hardware (most 4345 * RISC architectures). The early dirtying is also good on the i386. 4346 * 4347 * There is also a hook called "update_mmu_cache()" that architectures 4348 * with external mmu caches can use to update those (ie the Sparc or 4349 * PowerPC hashed page tables that act as extended TLBs). 4350 * 4351 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4352 * concurrent faults). 4353 * 4354 * The mmap_lock may have been released depending on flags and our return value. 4355 * See filemap_fault() and __lock_page_or_retry(). 4356 */ 4357 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4358 { 4359 pte_t entry; 4360 4361 if (unlikely(pmd_none(*vmf->pmd))) { 4362 /* 4363 * Leave __pte_alloc() until later: because vm_ops->fault may 4364 * want to allocate huge page, and if we expose page table 4365 * for an instant, it will be difficult to retract from 4366 * concurrent faults and from rmap lookups. 4367 */ 4368 vmf->pte = NULL; 4369 } else { 4370 /* 4371 * If a huge pmd materialized under us just retry later. Use 4372 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead 4373 * of pmd_trans_huge() to ensure the pmd didn't become 4374 * pmd_trans_huge under us and then back to pmd_none, as a 4375 * result of MADV_DONTNEED running immediately after a huge pmd 4376 * fault in a different thread of this mm, in turn leading to a 4377 * misleading pmd_trans_huge() retval. All we have to ensure is 4378 * that it is a regular pmd that we can walk with 4379 * pte_offset_map() and we can do that through an atomic read 4380 * in C, which is what pmd_trans_unstable() provides. 4381 */ 4382 if (pmd_devmap_trans_unstable(vmf->pmd)) 4383 return 0; 4384 /* 4385 * A regular pmd is established and it can't morph into a huge 4386 * pmd from under us anymore at this point because we hold the 4387 * mmap_lock read mode and khugepaged takes it in write mode. 4388 * So now it's safe to run pte_offset_map(). 4389 */ 4390 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4391 vmf->orig_pte = *vmf->pte; 4392 4393 /* 4394 * some architectures can have larger ptes than wordsize, 4395 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4396 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4397 * accesses. The code below just needs a consistent view 4398 * for the ifs and we later double check anyway with the 4399 * ptl lock held. So here a barrier will do. 4400 */ 4401 barrier(); 4402 if (pte_none(vmf->orig_pte)) { 4403 pte_unmap(vmf->pte); 4404 vmf->pte = NULL; 4405 } 4406 } 4407 4408 if (!vmf->pte) { 4409 if (vma_is_anonymous(vmf->vma)) 4410 return do_anonymous_page(vmf); 4411 else 4412 return do_fault(vmf); 4413 } 4414 4415 if (!pte_present(vmf->orig_pte)) 4416 return do_swap_page(vmf); 4417 4418 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4419 return do_numa_page(vmf); 4420 4421 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4422 spin_lock(vmf->ptl); 4423 entry = vmf->orig_pte; 4424 if (unlikely(!pte_same(*vmf->pte, entry))) { 4425 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4426 goto unlock; 4427 } 4428 if (vmf->flags & FAULT_FLAG_WRITE) { 4429 if (!pte_write(entry)) 4430 return do_wp_page(vmf); 4431 entry = pte_mkdirty(entry); 4432 } 4433 entry = pte_mkyoung(entry); 4434 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4435 vmf->flags & FAULT_FLAG_WRITE)) { 4436 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4437 } else { 4438 /* Skip spurious TLB flush for retried page fault */ 4439 if (vmf->flags & FAULT_FLAG_TRIED) 4440 goto unlock; 4441 /* 4442 * This is needed only for protection faults but the arch code 4443 * is not yet telling us if this is a protection fault or not. 4444 * This still avoids useless tlb flushes for .text page faults 4445 * with threads. 4446 */ 4447 if (vmf->flags & FAULT_FLAG_WRITE) 4448 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4449 } 4450 unlock: 4451 pte_unmap_unlock(vmf->pte, vmf->ptl); 4452 return 0; 4453 } 4454 4455 /* 4456 * By the time we get here, we already hold the mm semaphore 4457 * 4458 * The mmap_lock may have been released depending on flags and our 4459 * return value. See filemap_fault() and __lock_page_or_retry(). 4460 */ 4461 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4462 unsigned long address, unsigned int flags) 4463 { 4464 struct vm_fault vmf = { 4465 .vma = vma, 4466 .address = address & PAGE_MASK, 4467 .flags = flags, 4468 .pgoff = linear_page_index(vma, address), 4469 .gfp_mask = __get_fault_gfp_mask(vma), 4470 }; 4471 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4472 struct mm_struct *mm = vma->vm_mm; 4473 pgd_t *pgd; 4474 p4d_t *p4d; 4475 vm_fault_t ret; 4476 4477 pgd = pgd_offset(mm, address); 4478 p4d = p4d_alloc(mm, pgd, address); 4479 if (!p4d) 4480 return VM_FAULT_OOM; 4481 4482 vmf.pud = pud_alloc(mm, p4d, address); 4483 if (!vmf.pud) 4484 return VM_FAULT_OOM; 4485 retry_pud: 4486 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4487 ret = create_huge_pud(&vmf); 4488 if (!(ret & VM_FAULT_FALLBACK)) 4489 return ret; 4490 } else { 4491 pud_t orig_pud = *vmf.pud; 4492 4493 barrier(); 4494 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4495 4496 /* NUMA case for anonymous PUDs would go here */ 4497 4498 if (dirty && !pud_write(orig_pud)) { 4499 ret = wp_huge_pud(&vmf, orig_pud); 4500 if (!(ret & VM_FAULT_FALLBACK)) 4501 return ret; 4502 } else { 4503 huge_pud_set_accessed(&vmf, orig_pud); 4504 return 0; 4505 } 4506 } 4507 } 4508 4509 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4510 if (!vmf.pmd) 4511 return VM_FAULT_OOM; 4512 4513 /* Huge pud page fault raced with pmd_alloc? */ 4514 if (pud_trans_unstable(vmf.pud)) 4515 goto retry_pud; 4516 4517 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4518 ret = create_huge_pmd(&vmf); 4519 if (!(ret & VM_FAULT_FALLBACK)) 4520 return ret; 4521 } else { 4522 pmd_t orig_pmd = *vmf.pmd; 4523 4524 barrier(); 4525 if (unlikely(is_swap_pmd(orig_pmd))) { 4526 VM_BUG_ON(thp_migration_supported() && 4527 !is_pmd_migration_entry(orig_pmd)); 4528 if (is_pmd_migration_entry(orig_pmd)) 4529 pmd_migration_entry_wait(mm, vmf.pmd); 4530 return 0; 4531 } 4532 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4533 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4534 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4535 4536 if (dirty && !pmd_write(orig_pmd)) { 4537 ret = wp_huge_pmd(&vmf, orig_pmd); 4538 if (!(ret & VM_FAULT_FALLBACK)) 4539 return ret; 4540 } else { 4541 huge_pmd_set_accessed(&vmf, orig_pmd); 4542 return 0; 4543 } 4544 } 4545 } 4546 4547 return handle_pte_fault(&vmf); 4548 } 4549 4550 /** 4551 * mm_account_fault - Do page fault accounting 4552 * 4553 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 4554 * of perf event counters, but we'll still do the per-task accounting to 4555 * the task who triggered this page fault. 4556 * @address: the faulted address. 4557 * @flags: the fault flags. 4558 * @ret: the fault retcode. 4559 * 4560 * This will take care of most of the page fault accounting. Meanwhile, it 4561 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 4562 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 4563 * still be in per-arch page fault handlers at the entry of page fault. 4564 */ 4565 static inline void mm_account_fault(struct pt_regs *regs, 4566 unsigned long address, unsigned int flags, 4567 vm_fault_t ret) 4568 { 4569 bool major; 4570 4571 /* 4572 * We don't do accounting for some specific faults: 4573 * 4574 * - Unsuccessful faults (e.g. when the address wasn't valid). That 4575 * includes arch_vma_access_permitted() failing before reaching here. 4576 * So this is not a "this many hardware page faults" counter. We 4577 * should use the hw profiling for that. 4578 * 4579 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 4580 * once they're completed. 4581 */ 4582 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 4583 return; 4584 4585 /* 4586 * We define the fault as a major fault when the final successful fault 4587 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 4588 * handle it immediately previously). 4589 */ 4590 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 4591 4592 if (major) 4593 current->maj_flt++; 4594 else 4595 current->min_flt++; 4596 4597 /* 4598 * If the fault is done for GUP, regs will be NULL. We only do the 4599 * accounting for the per thread fault counters who triggered the 4600 * fault, and we skip the perf event updates. 4601 */ 4602 if (!regs) 4603 return; 4604 4605 if (major) 4606 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 4607 else 4608 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 4609 } 4610 4611 /* 4612 * By the time we get here, we already hold the mm semaphore 4613 * 4614 * The mmap_lock may have been released depending on flags and our 4615 * return value. See filemap_fault() and __lock_page_or_retry(). 4616 */ 4617 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4618 unsigned int flags, struct pt_regs *regs) 4619 { 4620 vm_fault_t ret; 4621 4622 __set_current_state(TASK_RUNNING); 4623 4624 count_vm_event(PGFAULT); 4625 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4626 4627 /* do counter updates before entering really critical section. */ 4628 check_sync_rss_stat(current); 4629 4630 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4631 flags & FAULT_FLAG_INSTRUCTION, 4632 flags & FAULT_FLAG_REMOTE)) 4633 return VM_FAULT_SIGSEGV; 4634 4635 /* 4636 * Enable the memcg OOM handling for faults triggered in user 4637 * space. Kernel faults are handled more gracefully. 4638 */ 4639 if (flags & FAULT_FLAG_USER) 4640 mem_cgroup_enter_user_fault(); 4641 4642 if (unlikely(is_vm_hugetlb_page(vma))) 4643 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4644 else 4645 ret = __handle_mm_fault(vma, address, flags); 4646 4647 if (flags & FAULT_FLAG_USER) { 4648 mem_cgroup_exit_user_fault(); 4649 /* 4650 * The task may have entered a memcg OOM situation but 4651 * if the allocation error was handled gracefully (no 4652 * VM_FAULT_OOM), there is no need to kill anything. 4653 * Just clean up the OOM state peacefully. 4654 */ 4655 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4656 mem_cgroup_oom_synchronize(false); 4657 } 4658 4659 mm_account_fault(regs, address, flags, ret); 4660 4661 return ret; 4662 } 4663 EXPORT_SYMBOL_GPL(handle_mm_fault); 4664 4665 #ifndef __PAGETABLE_P4D_FOLDED 4666 /* 4667 * Allocate p4d page table. 4668 * We've already handled the fast-path in-line. 4669 */ 4670 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4671 { 4672 p4d_t *new = p4d_alloc_one(mm, address); 4673 if (!new) 4674 return -ENOMEM; 4675 4676 smp_wmb(); /* See comment in __pte_alloc */ 4677 4678 spin_lock(&mm->page_table_lock); 4679 if (pgd_present(*pgd)) /* Another has populated it */ 4680 p4d_free(mm, new); 4681 else 4682 pgd_populate(mm, pgd, new); 4683 spin_unlock(&mm->page_table_lock); 4684 return 0; 4685 } 4686 #endif /* __PAGETABLE_P4D_FOLDED */ 4687 4688 #ifndef __PAGETABLE_PUD_FOLDED 4689 /* 4690 * Allocate page upper directory. 4691 * We've already handled the fast-path in-line. 4692 */ 4693 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4694 { 4695 pud_t *new = pud_alloc_one(mm, address); 4696 if (!new) 4697 return -ENOMEM; 4698 4699 smp_wmb(); /* See comment in __pte_alloc */ 4700 4701 spin_lock(&mm->page_table_lock); 4702 if (!p4d_present(*p4d)) { 4703 mm_inc_nr_puds(mm); 4704 p4d_populate(mm, p4d, new); 4705 } else /* Another has populated it */ 4706 pud_free(mm, new); 4707 spin_unlock(&mm->page_table_lock); 4708 return 0; 4709 } 4710 #endif /* __PAGETABLE_PUD_FOLDED */ 4711 4712 #ifndef __PAGETABLE_PMD_FOLDED 4713 /* 4714 * Allocate page middle directory. 4715 * We've already handled the fast-path in-line. 4716 */ 4717 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4718 { 4719 spinlock_t *ptl; 4720 pmd_t *new = pmd_alloc_one(mm, address); 4721 if (!new) 4722 return -ENOMEM; 4723 4724 smp_wmb(); /* See comment in __pte_alloc */ 4725 4726 ptl = pud_lock(mm, pud); 4727 if (!pud_present(*pud)) { 4728 mm_inc_nr_pmds(mm); 4729 pud_populate(mm, pud, new); 4730 } else /* Another has populated it */ 4731 pmd_free(mm, new); 4732 spin_unlock(ptl); 4733 return 0; 4734 } 4735 #endif /* __PAGETABLE_PMD_FOLDED */ 4736 4737 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 4738 struct mmu_notifier_range *range, pte_t **ptepp, 4739 pmd_t **pmdpp, spinlock_t **ptlp) 4740 { 4741 pgd_t *pgd; 4742 p4d_t *p4d; 4743 pud_t *pud; 4744 pmd_t *pmd; 4745 pte_t *ptep; 4746 4747 pgd = pgd_offset(mm, address); 4748 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4749 goto out; 4750 4751 p4d = p4d_offset(pgd, address); 4752 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4753 goto out; 4754 4755 pud = pud_offset(p4d, address); 4756 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4757 goto out; 4758 4759 pmd = pmd_offset(pud, address); 4760 VM_BUG_ON(pmd_trans_huge(*pmd)); 4761 4762 if (pmd_huge(*pmd)) { 4763 if (!pmdpp) 4764 goto out; 4765 4766 if (range) { 4767 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4768 NULL, mm, address & PMD_MASK, 4769 (address & PMD_MASK) + PMD_SIZE); 4770 mmu_notifier_invalidate_range_start(range); 4771 } 4772 *ptlp = pmd_lock(mm, pmd); 4773 if (pmd_huge(*pmd)) { 4774 *pmdpp = pmd; 4775 return 0; 4776 } 4777 spin_unlock(*ptlp); 4778 if (range) 4779 mmu_notifier_invalidate_range_end(range); 4780 } 4781 4782 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4783 goto out; 4784 4785 if (range) { 4786 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4787 address & PAGE_MASK, 4788 (address & PAGE_MASK) + PAGE_SIZE); 4789 mmu_notifier_invalidate_range_start(range); 4790 } 4791 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4792 if (!pte_present(*ptep)) 4793 goto unlock; 4794 *ptepp = ptep; 4795 return 0; 4796 unlock: 4797 pte_unmap_unlock(ptep, *ptlp); 4798 if (range) 4799 mmu_notifier_invalidate_range_end(range); 4800 out: 4801 return -EINVAL; 4802 } 4803 4804 /** 4805 * follow_pte - look up PTE at a user virtual address 4806 * @mm: the mm_struct of the target address space 4807 * @address: user virtual address 4808 * @ptepp: location to store found PTE 4809 * @ptlp: location to store the lock for the PTE 4810 * 4811 * On a successful return, the pointer to the PTE is stored in @ptepp; 4812 * the corresponding lock is taken and its location is stored in @ptlp. 4813 * The contents of the PTE are only stable until @ptlp is released; 4814 * any further use, if any, must be protected against invalidation 4815 * with MMU notifiers. 4816 * 4817 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 4818 * should be taken for read. 4819 * 4820 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 4821 * it is not a good general-purpose API. 4822 * 4823 * Return: zero on success, -ve otherwise. 4824 */ 4825 int follow_pte(struct mm_struct *mm, unsigned long address, 4826 pte_t **ptepp, spinlock_t **ptlp) 4827 { 4828 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp); 4829 } 4830 EXPORT_SYMBOL_GPL(follow_pte); 4831 4832 /** 4833 * follow_pfn - look up PFN at a user virtual address 4834 * @vma: memory mapping 4835 * @address: user virtual address 4836 * @pfn: location to store found PFN 4837 * 4838 * Only IO mappings and raw PFN mappings are allowed. 4839 * 4840 * This function does not allow the caller to read the permissions 4841 * of the PTE. Do not use it. 4842 * 4843 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4844 */ 4845 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4846 unsigned long *pfn) 4847 { 4848 int ret = -EINVAL; 4849 spinlock_t *ptl; 4850 pte_t *ptep; 4851 4852 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4853 return ret; 4854 4855 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4856 if (ret) 4857 return ret; 4858 *pfn = pte_pfn(*ptep); 4859 pte_unmap_unlock(ptep, ptl); 4860 return 0; 4861 } 4862 EXPORT_SYMBOL(follow_pfn); 4863 4864 #ifdef CONFIG_HAVE_IOREMAP_PROT 4865 int follow_phys(struct vm_area_struct *vma, 4866 unsigned long address, unsigned int flags, 4867 unsigned long *prot, resource_size_t *phys) 4868 { 4869 int ret = -EINVAL; 4870 pte_t *ptep, pte; 4871 spinlock_t *ptl; 4872 4873 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4874 goto out; 4875 4876 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4877 goto out; 4878 pte = *ptep; 4879 4880 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4881 goto unlock; 4882 4883 *prot = pgprot_val(pte_pgprot(pte)); 4884 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4885 4886 ret = 0; 4887 unlock: 4888 pte_unmap_unlock(ptep, ptl); 4889 out: 4890 return ret; 4891 } 4892 4893 /** 4894 * generic_access_phys - generic implementation for iomem mmap access 4895 * @vma: the vma to access 4896 * @addr: userspace address, not relative offset within @vma 4897 * @buf: buffer to read/write 4898 * @len: length of transfer 4899 * @write: set to FOLL_WRITE when writing, otherwise reading 4900 * 4901 * This is a generic implementation for &vm_operations_struct.access for an 4902 * iomem mapping. This callback is used by access_process_vm() when the @vma is 4903 * not page based. 4904 */ 4905 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4906 void *buf, int len, int write) 4907 { 4908 resource_size_t phys_addr; 4909 unsigned long prot = 0; 4910 void __iomem *maddr; 4911 pte_t *ptep, pte; 4912 spinlock_t *ptl; 4913 int offset = offset_in_page(addr); 4914 int ret = -EINVAL; 4915 4916 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4917 return -EINVAL; 4918 4919 retry: 4920 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 4921 return -EINVAL; 4922 pte = *ptep; 4923 pte_unmap_unlock(ptep, ptl); 4924 4925 prot = pgprot_val(pte_pgprot(pte)); 4926 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4927 4928 if ((write & FOLL_WRITE) && !pte_write(pte)) 4929 return -EINVAL; 4930 4931 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4932 if (!maddr) 4933 return -ENOMEM; 4934 4935 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 4936 goto out_unmap; 4937 4938 if (!pte_same(pte, *ptep)) { 4939 pte_unmap_unlock(ptep, ptl); 4940 iounmap(maddr); 4941 4942 goto retry; 4943 } 4944 4945 if (write) 4946 memcpy_toio(maddr + offset, buf, len); 4947 else 4948 memcpy_fromio(buf, maddr + offset, len); 4949 ret = len; 4950 pte_unmap_unlock(ptep, ptl); 4951 out_unmap: 4952 iounmap(maddr); 4953 4954 return ret; 4955 } 4956 EXPORT_SYMBOL_GPL(generic_access_phys); 4957 #endif 4958 4959 /* 4960 * Access another process' address space as given in mm. 4961 */ 4962 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 4963 int len, unsigned int gup_flags) 4964 { 4965 struct vm_area_struct *vma; 4966 void *old_buf = buf; 4967 int write = gup_flags & FOLL_WRITE; 4968 4969 if (mmap_read_lock_killable(mm)) 4970 return 0; 4971 4972 /* ignore errors, just check how much was successfully transferred */ 4973 while (len) { 4974 int bytes, ret, offset; 4975 void *maddr; 4976 struct page *page = NULL; 4977 4978 ret = get_user_pages_remote(mm, addr, 1, 4979 gup_flags, &page, &vma, NULL); 4980 if (ret <= 0) { 4981 #ifndef CONFIG_HAVE_IOREMAP_PROT 4982 break; 4983 #else 4984 /* 4985 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4986 * we can access using slightly different code. 4987 */ 4988 vma = find_vma(mm, addr); 4989 if (!vma || vma->vm_start > addr) 4990 break; 4991 if (vma->vm_ops && vma->vm_ops->access) 4992 ret = vma->vm_ops->access(vma, addr, buf, 4993 len, write); 4994 if (ret <= 0) 4995 break; 4996 bytes = ret; 4997 #endif 4998 } else { 4999 bytes = len; 5000 offset = addr & (PAGE_SIZE-1); 5001 if (bytes > PAGE_SIZE-offset) 5002 bytes = PAGE_SIZE-offset; 5003 5004 maddr = kmap(page); 5005 if (write) { 5006 copy_to_user_page(vma, page, addr, 5007 maddr + offset, buf, bytes); 5008 set_page_dirty_lock(page); 5009 } else { 5010 copy_from_user_page(vma, page, addr, 5011 buf, maddr + offset, bytes); 5012 } 5013 kunmap(page); 5014 put_page(page); 5015 } 5016 len -= bytes; 5017 buf += bytes; 5018 addr += bytes; 5019 } 5020 mmap_read_unlock(mm); 5021 5022 return buf - old_buf; 5023 } 5024 5025 /** 5026 * access_remote_vm - access another process' address space 5027 * @mm: the mm_struct of the target address space 5028 * @addr: start address to access 5029 * @buf: source or destination buffer 5030 * @len: number of bytes to transfer 5031 * @gup_flags: flags modifying lookup behaviour 5032 * 5033 * The caller must hold a reference on @mm. 5034 * 5035 * Return: number of bytes copied from source to destination. 5036 */ 5037 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5038 void *buf, int len, unsigned int gup_flags) 5039 { 5040 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5041 } 5042 5043 /* 5044 * Access another process' address space. 5045 * Source/target buffer must be kernel space, 5046 * Do not walk the page table directly, use get_user_pages 5047 */ 5048 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5049 void *buf, int len, unsigned int gup_flags) 5050 { 5051 struct mm_struct *mm; 5052 int ret; 5053 5054 mm = get_task_mm(tsk); 5055 if (!mm) 5056 return 0; 5057 5058 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5059 5060 mmput(mm); 5061 5062 return ret; 5063 } 5064 EXPORT_SYMBOL_GPL(access_process_vm); 5065 5066 /* 5067 * Print the name of a VMA. 5068 */ 5069 void print_vma_addr(char *prefix, unsigned long ip) 5070 { 5071 struct mm_struct *mm = current->mm; 5072 struct vm_area_struct *vma; 5073 5074 /* 5075 * we might be running from an atomic context so we cannot sleep 5076 */ 5077 if (!mmap_read_trylock(mm)) 5078 return; 5079 5080 vma = find_vma(mm, ip); 5081 if (vma && vma->vm_file) { 5082 struct file *f = vma->vm_file; 5083 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5084 if (buf) { 5085 char *p; 5086 5087 p = file_path(f, buf, PAGE_SIZE); 5088 if (IS_ERR(p)) 5089 p = "?"; 5090 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5091 vma->vm_start, 5092 vma->vm_end - vma->vm_start); 5093 free_page((unsigned long)buf); 5094 } 5095 } 5096 mmap_read_unlock(mm); 5097 } 5098 5099 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5100 void __might_fault(const char *file, int line) 5101 { 5102 /* 5103 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 5104 * holding the mmap_lock, this is safe because kernel memory doesn't 5105 * get paged out, therefore we'll never actually fault, and the 5106 * below annotations will generate false positives. 5107 */ 5108 if (uaccess_kernel()) 5109 return; 5110 if (pagefault_disabled()) 5111 return; 5112 __might_sleep(file, line, 0); 5113 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5114 if (current->mm) 5115 might_lock_read(¤t->mm->mmap_lock); 5116 #endif 5117 } 5118 EXPORT_SYMBOL(__might_fault); 5119 #endif 5120 5121 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5122 /* 5123 * Process all subpages of the specified huge page with the specified 5124 * operation. The target subpage will be processed last to keep its 5125 * cache lines hot. 5126 */ 5127 static inline void process_huge_page( 5128 unsigned long addr_hint, unsigned int pages_per_huge_page, 5129 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5130 void *arg) 5131 { 5132 int i, n, base, l; 5133 unsigned long addr = addr_hint & 5134 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5135 5136 /* Process target subpage last to keep its cache lines hot */ 5137 might_sleep(); 5138 n = (addr_hint - addr) / PAGE_SIZE; 5139 if (2 * n <= pages_per_huge_page) { 5140 /* If target subpage in first half of huge page */ 5141 base = 0; 5142 l = n; 5143 /* Process subpages at the end of huge page */ 5144 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5145 cond_resched(); 5146 process_subpage(addr + i * PAGE_SIZE, i, arg); 5147 } 5148 } else { 5149 /* If target subpage in second half of huge page */ 5150 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5151 l = pages_per_huge_page - n; 5152 /* Process subpages at the begin of huge page */ 5153 for (i = 0; i < base; i++) { 5154 cond_resched(); 5155 process_subpage(addr + i * PAGE_SIZE, i, arg); 5156 } 5157 } 5158 /* 5159 * Process remaining subpages in left-right-left-right pattern 5160 * towards the target subpage 5161 */ 5162 for (i = 0; i < l; i++) { 5163 int left_idx = base + i; 5164 int right_idx = base + 2 * l - 1 - i; 5165 5166 cond_resched(); 5167 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5168 cond_resched(); 5169 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5170 } 5171 } 5172 5173 static void clear_gigantic_page(struct page *page, 5174 unsigned long addr, 5175 unsigned int pages_per_huge_page) 5176 { 5177 int i; 5178 struct page *p = page; 5179 5180 might_sleep(); 5181 for (i = 0; i < pages_per_huge_page; 5182 i++, p = mem_map_next(p, page, i)) { 5183 cond_resched(); 5184 clear_user_highpage(p, addr + i * PAGE_SIZE); 5185 } 5186 } 5187 5188 static void clear_subpage(unsigned long addr, int idx, void *arg) 5189 { 5190 struct page *page = arg; 5191 5192 clear_user_highpage(page + idx, addr); 5193 } 5194 5195 void clear_huge_page(struct page *page, 5196 unsigned long addr_hint, unsigned int pages_per_huge_page) 5197 { 5198 unsigned long addr = addr_hint & 5199 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5200 5201 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5202 clear_gigantic_page(page, addr, pages_per_huge_page); 5203 return; 5204 } 5205 5206 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5207 } 5208 5209 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5210 unsigned long addr, 5211 struct vm_area_struct *vma, 5212 unsigned int pages_per_huge_page) 5213 { 5214 int i; 5215 struct page *dst_base = dst; 5216 struct page *src_base = src; 5217 5218 for (i = 0; i < pages_per_huge_page; ) { 5219 cond_resched(); 5220 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5221 5222 i++; 5223 dst = mem_map_next(dst, dst_base, i); 5224 src = mem_map_next(src, src_base, i); 5225 } 5226 } 5227 5228 struct copy_subpage_arg { 5229 struct page *dst; 5230 struct page *src; 5231 struct vm_area_struct *vma; 5232 }; 5233 5234 static void copy_subpage(unsigned long addr, int idx, void *arg) 5235 { 5236 struct copy_subpage_arg *copy_arg = arg; 5237 5238 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5239 addr, copy_arg->vma); 5240 } 5241 5242 void copy_user_huge_page(struct page *dst, struct page *src, 5243 unsigned long addr_hint, struct vm_area_struct *vma, 5244 unsigned int pages_per_huge_page) 5245 { 5246 unsigned long addr = addr_hint & 5247 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5248 struct copy_subpage_arg arg = { 5249 .dst = dst, 5250 .src = src, 5251 .vma = vma, 5252 }; 5253 5254 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5255 copy_user_gigantic_page(dst, src, addr, vma, 5256 pages_per_huge_page); 5257 return; 5258 } 5259 5260 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5261 } 5262 5263 long copy_huge_page_from_user(struct page *dst_page, 5264 const void __user *usr_src, 5265 unsigned int pages_per_huge_page, 5266 bool allow_pagefault) 5267 { 5268 void *src = (void *)usr_src; 5269 void *page_kaddr; 5270 unsigned long i, rc = 0; 5271 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5272 struct page *subpage = dst_page; 5273 5274 for (i = 0; i < pages_per_huge_page; 5275 i++, subpage = mem_map_next(subpage, dst_page, i)) { 5276 if (allow_pagefault) 5277 page_kaddr = kmap(subpage); 5278 else 5279 page_kaddr = kmap_atomic(subpage); 5280 rc = copy_from_user(page_kaddr, 5281 (const void __user *)(src + i * PAGE_SIZE), 5282 PAGE_SIZE); 5283 if (allow_pagefault) 5284 kunmap(subpage); 5285 else 5286 kunmap_atomic(page_kaddr); 5287 5288 ret_val -= (PAGE_SIZE - rc); 5289 if (rc) 5290 break; 5291 5292 cond_resched(); 5293 } 5294 return ret_val; 5295 } 5296 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5297 5298 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5299 5300 static struct kmem_cache *page_ptl_cachep; 5301 5302 void __init ptlock_cache_init(void) 5303 { 5304 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5305 SLAB_PANIC, NULL); 5306 } 5307 5308 bool ptlock_alloc(struct page *page) 5309 { 5310 spinlock_t *ptl; 5311 5312 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5313 if (!ptl) 5314 return false; 5315 page->ptl = ptl; 5316 return true; 5317 } 5318 5319 void ptlock_free(struct page *page) 5320 { 5321 kmem_cache_free(page_ptl_cachep, page->ptl); 5322 } 5323 #endif 5324