xref: /openbmc/linux/mm/memory.c (revision babbdf5b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76 
77 #include <trace/events/kmem.h>
78 
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85 
86 #include "pgalloc-track.h"
87 #include "internal.h"
88 
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92 
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97 
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101 
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111 
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120 					1;
121 #else
122 					2;
123 #endif
124 
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128 	/*
129 	 * Those arches which don't have hw access flag feature need to
130 	 * implement their own helper. By default, "true" means pagefault
131 	 * will be hit on old pte.
132 	 */
133 	return true;
134 }
135 #endif
136 
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
139 {
140 	/*
141 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 	 * some architectures, even if it's performed in hardware. By
143 	 * default, "false" means prefaulted entries will be 'young'.
144 	 */
145 	return false;
146 }
147 #endif
148 
149 static int __init disable_randmaps(char *s)
150 {
151 	randomize_va_space = 0;
152 	return 1;
153 }
154 __setup("norandmaps", disable_randmaps);
155 
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
158 
159 unsigned long highest_memmap_pfn __read_mostly;
160 
161 /*
162  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163  */
164 static int __init init_zero_pfn(void)
165 {
166 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 	return 0;
168 }
169 early_initcall(init_zero_pfn);
170 
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 {
173 	trace_rss_stat(mm, member, count);
174 }
175 
176 #if defined(SPLIT_RSS_COUNTING)
177 
178 void sync_mm_rss(struct mm_struct *mm)
179 {
180 	int i;
181 
182 	for (i = 0; i < NR_MM_COUNTERS; i++) {
183 		if (current->rss_stat.count[i]) {
184 			add_mm_counter(mm, i, current->rss_stat.count[i]);
185 			current->rss_stat.count[i] = 0;
186 		}
187 	}
188 	current->rss_stat.events = 0;
189 }
190 
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 {
193 	struct task_struct *task = current;
194 
195 	if (likely(task->mm == mm))
196 		task->rss_stat.count[member] += val;
197 	else
198 		add_mm_counter(mm, member, val);
199 }
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202 
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH	(64)
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 	if (unlikely(task != current))
208 		return;
209 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210 		sync_mm_rss(task->mm);
211 }
212 #else /* SPLIT_RSS_COUNTING */
213 
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216 
217 static void check_sync_rss_stat(struct task_struct *task)
218 {
219 }
220 
221 #endif /* SPLIT_RSS_COUNTING */
222 
223 /*
224  * Note: this doesn't free the actual pages themselves. That
225  * has been handled earlier when unmapping all the memory regions.
226  */
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 			   unsigned long addr)
229 {
230 	pgtable_t token = pmd_pgtable(*pmd);
231 	pmd_clear(pmd);
232 	pte_free_tlb(tlb, token, addr);
233 	mm_dec_nr_ptes(tlb->mm);
234 }
235 
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 				unsigned long addr, unsigned long end,
238 				unsigned long floor, unsigned long ceiling)
239 {
240 	pmd_t *pmd;
241 	unsigned long next;
242 	unsigned long start;
243 
244 	start = addr;
245 	pmd = pmd_offset(pud, addr);
246 	do {
247 		next = pmd_addr_end(addr, end);
248 		if (pmd_none_or_clear_bad(pmd))
249 			continue;
250 		free_pte_range(tlb, pmd, addr);
251 	} while (pmd++, addr = next, addr != end);
252 
253 	start &= PUD_MASK;
254 	if (start < floor)
255 		return;
256 	if (ceiling) {
257 		ceiling &= PUD_MASK;
258 		if (!ceiling)
259 			return;
260 	}
261 	if (end - 1 > ceiling - 1)
262 		return;
263 
264 	pmd = pmd_offset(pud, start);
265 	pud_clear(pud);
266 	pmd_free_tlb(tlb, pmd, start);
267 	mm_dec_nr_pmds(tlb->mm);
268 }
269 
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271 				unsigned long addr, unsigned long end,
272 				unsigned long floor, unsigned long ceiling)
273 {
274 	pud_t *pud;
275 	unsigned long next;
276 	unsigned long start;
277 
278 	start = addr;
279 	pud = pud_offset(p4d, addr);
280 	do {
281 		next = pud_addr_end(addr, end);
282 		if (pud_none_or_clear_bad(pud))
283 			continue;
284 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285 	} while (pud++, addr = next, addr != end);
286 
287 	start &= P4D_MASK;
288 	if (start < floor)
289 		return;
290 	if (ceiling) {
291 		ceiling &= P4D_MASK;
292 		if (!ceiling)
293 			return;
294 	}
295 	if (end - 1 > ceiling - 1)
296 		return;
297 
298 	pud = pud_offset(p4d, start);
299 	p4d_clear(p4d);
300 	pud_free_tlb(tlb, pud, start);
301 	mm_dec_nr_puds(tlb->mm);
302 }
303 
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 				unsigned long addr, unsigned long end,
306 				unsigned long floor, unsigned long ceiling)
307 {
308 	p4d_t *p4d;
309 	unsigned long next;
310 	unsigned long start;
311 
312 	start = addr;
313 	p4d = p4d_offset(pgd, addr);
314 	do {
315 		next = p4d_addr_end(addr, end);
316 		if (p4d_none_or_clear_bad(p4d))
317 			continue;
318 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 	} while (p4d++, addr = next, addr != end);
320 
321 	start &= PGDIR_MASK;
322 	if (start < floor)
323 		return;
324 	if (ceiling) {
325 		ceiling &= PGDIR_MASK;
326 		if (!ceiling)
327 			return;
328 	}
329 	if (end - 1 > ceiling - 1)
330 		return;
331 
332 	p4d = p4d_offset(pgd, start);
333 	pgd_clear(pgd);
334 	p4d_free_tlb(tlb, p4d, start);
335 }
336 
337 /*
338  * This function frees user-level page tables of a process.
339  */
340 void free_pgd_range(struct mmu_gather *tlb,
341 			unsigned long addr, unsigned long end,
342 			unsigned long floor, unsigned long ceiling)
343 {
344 	pgd_t *pgd;
345 	unsigned long next;
346 
347 	/*
348 	 * The next few lines have given us lots of grief...
349 	 *
350 	 * Why are we testing PMD* at this top level?  Because often
351 	 * there will be no work to do at all, and we'd prefer not to
352 	 * go all the way down to the bottom just to discover that.
353 	 *
354 	 * Why all these "- 1"s?  Because 0 represents both the bottom
355 	 * of the address space and the top of it (using -1 for the
356 	 * top wouldn't help much: the masks would do the wrong thing).
357 	 * The rule is that addr 0 and floor 0 refer to the bottom of
358 	 * the address space, but end 0 and ceiling 0 refer to the top
359 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 	 * that end 0 case should be mythical).
361 	 *
362 	 * Wherever addr is brought up or ceiling brought down, we must
363 	 * be careful to reject "the opposite 0" before it confuses the
364 	 * subsequent tests.  But what about where end is brought down
365 	 * by PMD_SIZE below? no, end can't go down to 0 there.
366 	 *
367 	 * Whereas we round start (addr) and ceiling down, by different
368 	 * masks at different levels, in order to test whether a table
369 	 * now has no other vmas using it, so can be freed, we don't
370 	 * bother to round floor or end up - the tests don't need that.
371 	 */
372 
373 	addr &= PMD_MASK;
374 	if (addr < floor) {
375 		addr += PMD_SIZE;
376 		if (!addr)
377 			return;
378 	}
379 	if (ceiling) {
380 		ceiling &= PMD_MASK;
381 		if (!ceiling)
382 			return;
383 	}
384 	if (end - 1 > ceiling - 1)
385 		end -= PMD_SIZE;
386 	if (addr > end - 1)
387 		return;
388 	/*
389 	 * We add page table cache pages with PAGE_SIZE,
390 	 * (see pte_free_tlb()), flush the tlb if we need
391 	 */
392 	tlb_change_page_size(tlb, PAGE_SIZE);
393 	pgd = pgd_offset(tlb->mm, addr);
394 	do {
395 		next = pgd_addr_end(addr, end);
396 		if (pgd_none_or_clear_bad(pgd))
397 			continue;
398 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399 	} while (pgd++, addr = next, addr != end);
400 }
401 
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403 		unsigned long floor, unsigned long ceiling)
404 {
405 	while (vma) {
406 		struct vm_area_struct *next = vma->vm_next;
407 		unsigned long addr = vma->vm_start;
408 
409 		/*
410 		 * Hide vma from rmap and truncate_pagecache before freeing
411 		 * pgtables
412 		 */
413 		unlink_anon_vmas(vma);
414 		unlink_file_vma(vma);
415 
416 		if (is_vm_hugetlb_page(vma)) {
417 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418 				floor, next ? next->vm_start : ceiling);
419 		} else {
420 			/*
421 			 * Optimization: gather nearby vmas into one call down
422 			 */
423 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424 			       && !is_vm_hugetlb_page(next)) {
425 				vma = next;
426 				next = vma->vm_next;
427 				unlink_anon_vmas(vma);
428 				unlink_file_vma(vma);
429 			}
430 			free_pgd_range(tlb, addr, vma->vm_end,
431 				floor, next ? next->vm_start : ceiling);
432 		}
433 		vma = next;
434 	}
435 }
436 
437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 {
439 	spinlock_t *ptl;
440 	pgtable_t new = pte_alloc_one(mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	/*
445 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
446 	 * visible before the pte is made visible to other CPUs by being
447 	 * put into page tables.
448 	 *
449 	 * The other side of the story is the pointer chasing in the page
450 	 * table walking code (when walking the page table without locking;
451 	 * ie. most of the time). Fortunately, these data accesses consist
452 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
453 	 * being the notable exception) will already guarantee loads are
454 	 * seen in-order. See the alpha page table accessors for the
455 	 * smp_rmb() barriers in page table walking code.
456 	 */
457 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
458 
459 	ptl = pmd_lock(mm, pmd);
460 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
461 		mm_inc_nr_ptes(mm);
462 		pmd_populate(mm, pmd, new);
463 		new = NULL;
464 	}
465 	spin_unlock(ptl);
466 	if (new)
467 		pte_free(mm, new);
468 	return 0;
469 }
470 
471 int __pte_alloc_kernel(pmd_t *pmd)
472 {
473 	pte_t *new = pte_alloc_one_kernel(&init_mm);
474 	if (!new)
475 		return -ENOMEM;
476 
477 	smp_wmb(); /* See comment in __pte_alloc */
478 
479 	spin_lock(&init_mm.page_table_lock);
480 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
481 		pmd_populate_kernel(&init_mm, pmd, new);
482 		new = NULL;
483 	}
484 	spin_unlock(&init_mm.page_table_lock);
485 	if (new)
486 		pte_free_kernel(&init_mm, new);
487 	return 0;
488 }
489 
490 static inline void init_rss_vec(int *rss)
491 {
492 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
493 }
494 
495 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
496 {
497 	int i;
498 
499 	if (current->mm == mm)
500 		sync_mm_rss(mm);
501 	for (i = 0; i < NR_MM_COUNTERS; i++)
502 		if (rss[i])
503 			add_mm_counter(mm, i, rss[i]);
504 }
505 
506 /*
507  * This function is called to print an error when a bad pte
508  * is found. For example, we might have a PFN-mapped pte in
509  * a region that doesn't allow it.
510  *
511  * The calling function must still handle the error.
512  */
513 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
514 			  pte_t pte, struct page *page)
515 {
516 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
517 	p4d_t *p4d = p4d_offset(pgd, addr);
518 	pud_t *pud = pud_offset(p4d, addr);
519 	pmd_t *pmd = pmd_offset(pud, addr);
520 	struct address_space *mapping;
521 	pgoff_t index;
522 	static unsigned long resume;
523 	static unsigned long nr_shown;
524 	static unsigned long nr_unshown;
525 
526 	/*
527 	 * Allow a burst of 60 reports, then keep quiet for that minute;
528 	 * or allow a steady drip of one report per second.
529 	 */
530 	if (nr_shown == 60) {
531 		if (time_before(jiffies, resume)) {
532 			nr_unshown++;
533 			return;
534 		}
535 		if (nr_unshown) {
536 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
537 				 nr_unshown);
538 			nr_unshown = 0;
539 		}
540 		nr_shown = 0;
541 	}
542 	if (nr_shown++ == 0)
543 		resume = jiffies + 60 * HZ;
544 
545 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
546 	index = linear_page_index(vma, addr);
547 
548 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
549 		 current->comm,
550 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
551 	if (page)
552 		dump_page(page, "bad pte");
553 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
554 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
555 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
556 		 vma->vm_file,
557 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
558 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
559 		 mapping ? mapping->a_ops->readpage : NULL);
560 	dump_stack();
561 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
562 }
563 
564 /*
565  * vm_normal_page -- This function gets the "struct page" associated with a pte.
566  *
567  * "Special" mappings do not wish to be associated with a "struct page" (either
568  * it doesn't exist, or it exists but they don't want to touch it). In this
569  * case, NULL is returned here. "Normal" mappings do have a struct page.
570  *
571  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
572  * pte bit, in which case this function is trivial. Secondly, an architecture
573  * may not have a spare pte bit, which requires a more complicated scheme,
574  * described below.
575  *
576  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
577  * special mapping (even if there are underlying and valid "struct pages").
578  * COWed pages of a VM_PFNMAP are always normal.
579  *
580  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
581  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
582  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
583  * mapping will always honor the rule
584  *
585  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
586  *
587  * And for normal mappings this is false.
588  *
589  * This restricts such mappings to be a linear translation from virtual address
590  * to pfn. To get around this restriction, we allow arbitrary mappings so long
591  * as the vma is not a COW mapping; in that case, we know that all ptes are
592  * special (because none can have been COWed).
593  *
594  *
595  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
596  *
597  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
598  * page" backing, however the difference is that _all_ pages with a struct
599  * page (that is, those where pfn_valid is true) are refcounted and considered
600  * normal pages by the VM. The disadvantage is that pages are refcounted
601  * (which can be slower and simply not an option for some PFNMAP users). The
602  * advantage is that we don't have to follow the strict linearity rule of
603  * PFNMAP mappings in order to support COWable mappings.
604  *
605  */
606 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
607 			    pte_t pte)
608 {
609 	unsigned long pfn = pte_pfn(pte);
610 
611 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
612 		if (likely(!pte_special(pte)))
613 			goto check_pfn;
614 		if (vma->vm_ops && vma->vm_ops->find_special_page)
615 			return vma->vm_ops->find_special_page(vma, addr);
616 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
617 			return NULL;
618 		if (is_zero_pfn(pfn))
619 			return NULL;
620 		if (pte_devmap(pte))
621 			return NULL;
622 
623 		print_bad_pte(vma, addr, pte, NULL);
624 		return NULL;
625 	}
626 
627 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
628 
629 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
630 		if (vma->vm_flags & VM_MIXEDMAP) {
631 			if (!pfn_valid(pfn))
632 				return NULL;
633 			goto out;
634 		} else {
635 			unsigned long off;
636 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
637 			if (pfn == vma->vm_pgoff + off)
638 				return NULL;
639 			if (!is_cow_mapping(vma->vm_flags))
640 				return NULL;
641 		}
642 	}
643 
644 	if (is_zero_pfn(pfn))
645 		return NULL;
646 
647 check_pfn:
648 	if (unlikely(pfn > highest_memmap_pfn)) {
649 		print_bad_pte(vma, addr, pte, NULL);
650 		return NULL;
651 	}
652 
653 	/*
654 	 * NOTE! We still have PageReserved() pages in the page tables.
655 	 * eg. VDSO mappings can cause them to exist.
656 	 */
657 out:
658 	return pfn_to_page(pfn);
659 }
660 
661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
662 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
663 				pmd_t pmd)
664 {
665 	unsigned long pfn = pmd_pfn(pmd);
666 
667 	/*
668 	 * There is no pmd_special() but there may be special pmds, e.g.
669 	 * in a direct-access (dax) mapping, so let's just replicate the
670 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
671 	 */
672 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
673 		if (vma->vm_flags & VM_MIXEDMAP) {
674 			if (!pfn_valid(pfn))
675 				return NULL;
676 			goto out;
677 		} else {
678 			unsigned long off;
679 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
680 			if (pfn == vma->vm_pgoff + off)
681 				return NULL;
682 			if (!is_cow_mapping(vma->vm_flags))
683 				return NULL;
684 		}
685 	}
686 
687 	if (pmd_devmap(pmd))
688 		return NULL;
689 	if (is_huge_zero_pmd(pmd))
690 		return NULL;
691 	if (unlikely(pfn > highest_memmap_pfn))
692 		return NULL;
693 
694 	/*
695 	 * NOTE! We still have PageReserved() pages in the page tables.
696 	 * eg. VDSO mappings can cause them to exist.
697 	 */
698 out:
699 	return pfn_to_page(pfn);
700 }
701 #endif
702 
703 /*
704  * copy one vm_area from one task to the other. Assumes the page tables
705  * already present in the new task to be cleared in the whole range
706  * covered by this vma.
707  */
708 
709 static unsigned long
710 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
711 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
712 		unsigned long addr, int *rss)
713 {
714 	unsigned long vm_flags = vma->vm_flags;
715 	pte_t pte = *src_pte;
716 	struct page *page;
717 	swp_entry_t entry = pte_to_swp_entry(pte);
718 
719 	if (likely(!non_swap_entry(entry))) {
720 		if (swap_duplicate(entry) < 0)
721 			return entry.val;
722 
723 		/* make sure dst_mm is on swapoff's mmlist. */
724 		if (unlikely(list_empty(&dst_mm->mmlist))) {
725 			spin_lock(&mmlist_lock);
726 			if (list_empty(&dst_mm->mmlist))
727 				list_add(&dst_mm->mmlist,
728 						&src_mm->mmlist);
729 			spin_unlock(&mmlist_lock);
730 		}
731 		rss[MM_SWAPENTS]++;
732 	} else if (is_migration_entry(entry)) {
733 		page = migration_entry_to_page(entry);
734 
735 		rss[mm_counter(page)]++;
736 
737 		if (is_write_migration_entry(entry) &&
738 				is_cow_mapping(vm_flags)) {
739 			/*
740 			 * COW mappings require pages in both
741 			 * parent and child to be set to read.
742 			 */
743 			make_migration_entry_read(&entry);
744 			pte = swp_entry_to_pte(entry);
745 			if (pte_swp_soft_dirty(*src_pte))
746 				pte = pte_swp_mksoft_dirty(pte);
747 			if (pte_swp_uffd_wp(*src_pte))
748 				pte = pte_swp_mkuffd_wp(pte);
749 			set_pte_at(src_mm, addr, src_pte, pte);
750 		}
751 	} else if (is_device_private_entry(entry)) {
752 		page = device_private_entry_to_page(entry);
753 
754 		/*
755 		 * Update rss count even for unaddressable pages, as
756 		 * they should treated just like normal pages in this
757 		 * respect.
758 		 *
759 		 * We will likely want to have some new rss counters
760 		 * for unaddressable pages, at some point. But for now
761 		 * keep things as they are.
762 		 */
763 		get_page(page);
764 		rss[mm_counter(page)]++;
765 		page_dup_rmap(page, false);
766 
767 		/*
768 		 * We do not preserve soft-dirty information, because so
769 		 * far, checkpoint/restore is the only feature that
770 		 * requires that. And checkpoint/restore does not work
771 		 * when a device driver is involved (you cannot easily
772 		 * save and restore device driver state).
773 		 */
774 		if (is_write_device_private_entry(entry) &&
775 		    is_cow_mapping(vm_flags)) {
776 			make_device_private_entry_read(&entry);
777 			pte = swp_entry_to_pte(entry);
778 			if (pte_swp_uffd_wp(*src_pte))
779 				pte = pte_swp_mkuffd_wp(pte);
780 			set_pte_at(src_mm, addr, src_pte, pte);
781 		}
782 	}
783 	set_pte_at(dst_mm, addr, dst_pte, pte);
784 	return 0;
785 }
786 
787 /*
788  * Copy a present and normal page if necessary.
789  *
790  * NOTE! The usual case is that this doesn't need to do
791  * anything, and can just return a positive value. That
792  * will let the caller know that it can just increase
793  * the page refcount and re-use the pte the traditional
794  * way.
795  *
796  * But _if_ we need to copy it because it needs to be
797  * pinned in the parent (and the child should get its own
798  * copy rather than just a reference to the same page),
799  * we'll do that here and return zero to let the caller
800  * know we're done.
801  *
802  * And if we need a pre-allocated page but don't yet have
803  * one, return a negative error to let the preallocation
804  * code know so that it can do so outside the page table
805  * lock.
806  */
807 static inline int
808 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
809 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
810 		  struct page **prealloc, pte_t pte, struct page *page)
811 {
812 	struct page *new_page;
813 
814 	/*
815 	 * What we want to do is to check whether this page may
816 	 * have been pinned by the parent process.  If so,
817 	 * instead of wrprotect the pte on both sides, we copy
818 	 * the page immediately so that we'll always guarantee
819 	 * the pinned page won't be randomly replaced in the
820 	 * future.
821 	 *
822 	 * The page pinning checks are just "has this mm ever
823 	 * seen pinning", along with the (inexact) check of
824 	 * the page count. That might give false positives for
825 	 * for pinning, but it will work correctly.
826 	 */
827 	if (likely(!page_needs_cow_for_dma(src_vma, page)))
828 		return 1;
829 
830 	new_page = *prealloc;
831 	if (!new_page)
832 		return -EAGAIN;
833 
834 	/*
835 	 * We have a prealloc page, all good!  Take it
836 	 * over and copy the page & arm it.
837 	 */
838 	*prealloc = NULL;
839 	copy_user_highpage(new_page, page, addr, src_vma);
840 	__SetPageUptodate(new_page);
841 	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
842 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
843 	rss[mm_counter(new_page)]++;
844 
845 	/* All done, just insert the new page copy in the child */
846 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
847 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
848 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
849 	return 0;
850 }
851 
852 /*
853  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
854  * is required to copy this pte.
855  */
856 static inline int
857 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
858 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
859 		 struct page **prealloc)
860 {
861 	struct mm_struct *src_mm = src_vma->vm_mm;
862 	unsigned long vm_flags = src_vma->vm_flags;
863 	pte_t pte = *src_pte;
864 	struct page *page;
865 
866 	page = vm_normal_page(src_vma, addr, pte);
867 	if (page) {
868 		int retval;
869 
870 		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
871 					   addr, rss, prealloc, pte, page);
872 		if (retval <= 0)
873 			return retval;
874 
875 		get_page(page);
876 		page_dup_rmap(page, false);
877 		rss[mm_counter(page)]++;
878 	}
879 
880 	/*
881 	 * If it's a COW mapping, write protect it both
882 	 * in the parent and the child
883 	 */
884 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
885 		ptep_set_wrprotect(src_mm, addr, src_pte);
886 		pte = pte_wrprotect(pte);
887 	}
888 
889 	/*
890 	 * If it's a shared mapping, mark it clean in
891 	 * the child
892 	 */
893 	if (vm_flags & VM_SHARED)
894 		pte = pte_mkclean(pte);
895 	pte = pte_mkold(pte);
896 
897 	/*
898 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
899 	 * does not have the VM_UFFD_WP, which means that the uffd
900 	 * fork event is not enabled.
901 	 */
902 	if (!(vm_flags & VM_UFFD_WP))
903 		pte = pte_clear_uffd_wp(pte);
904 
905 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
906 	return 0;
907 }
908 
909 static inline struct page *
910 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
911 		   unsigned long addr)
912 {
913 	struct page *new_page;
914 
915 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
916 	if (!new_page)
917 		return NULL;
918 
919 	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
920 		put_page(new_page);
921 		return NULL;
922 	}
923 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
924 
925 	return new_page;
926 }
927 
928 static int
929 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
930 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
931 	       unsigned long end)
932 {
933 	struct mm_struct *dst_mm = dst_vma->vm_mm;
934 	struct mm_struct *src_mm = src_vma->vm_mm;
935 	pte_t *orig_src_pte, *orig_dst_pte;
936 	pte_t *src_pte, *dst_pte;
937 	spinlock_t *src_ptl, *dst_ptl;
938 	int progress, ret = 0;
939 	int rss[NR_MM_COUNTERS];
940 	swp_entry_t entry = (swp_entry_t){0};
941 	struct page *prealloc = NULL;
942 
943 again:
944 	progress = 0;
945 	init_rss_vec(rss);
946 
947 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
948 	if (!dst_pte) {
949 		ret = -ENOMEM;
950 		goto out;
951 	}
952 	src_pte = pte_offset_map(src_pmd, addr);
953 	src_ptl = pte_lockptr(src_mm, src_pmd);
954 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
955 	orig_src_pte = src_pte;
956 	orig_dst_pte = dst_pte;
957 	arch_enter_lazy_mmu_mode();
958 
959 	do {
960 		/*
961 		 * We are holding two locks at this point - either of them
962 		 * could generate latencies in another task on another CPU.
963 		 */
964 		if (progress >= 32) {
965 			progress = 0;
966 			if (need_resched() ||
967 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
968 				break;
969 		}
970 		if (pte_none(*src_pte)) {
971 			progress++;
972 			continue;
973 		}
974 		if (unlikely(!pte_present(*src_pte))) {
975 			entry.val = copy_nonpresent_pte(dst_mm, src_mm,
976 							dst_pte, src_pte,
977 							src_vma, addr, rss);
978 			if (entry.val)
979 				break;
980 			progress += 8;
981 			continue;
982 		}
983 		/* copy_present_pte() will clear `*prealloc' if consumed */
984 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
985 				       addr, rss, &prealloc);
986 		/*
987 		 * If we need a pre-allocated page for this pte, drop the
988 		 * locks, allocate, and try again.
989 		 */
990 		if (unlikely(ret == -EAGAIN))
991 			break;
992 		if (unlikely(prealloc)) {
993 			/*
994 			 * pre-alloc page cannot be reused by next time so as
995 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
996 			 * will allocate page according to address).  This
997 			 * could only happen if one pinned pte changed.
998 			 */
999 			put_page(prealloc);
1000 			prealloc = NULL;
1001 		}
1002 		progress += 8;
1003 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1004 
1005 	arch_leave_lazy_mmu_mode();
1006 	spin_unlock(src_ptl);
1007 	pte_unmap(orig_src_pte);
1008 	add_mm_rss_vec(dst_mm, rss);
1009 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1010 	cond_resched();
1011 
1012 	if (entry.val) {
1013 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1014 			ret = -ENOMEM;
1015 			goto out;
1016 		}
1017 		entry.val = 0;
1018 	} else if (ret) {
1019 		WARN_ON_ONCE(ret != -EAGAIN);
1020 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1021 		if (!prealloc)
1022 			return -ENOMEM;
1023 		/* We've captured and resolved the error. Reset, try again. */
1024 		ret = 0;
1025 	}
1026 	if (addr != end)
1027 		goto again;
1028 out:
1029 	if (unlikely(prealloc))
1030 		put_page(prealloc);
1031 	return ret;
1032 }
1033 
1034 static inline int
1035 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1036 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1037 	       unsigned long end)
1038 {
1039 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1040 	struct mm_struct *src_mm = src_vma->vm_mm;
1041 	pmd_t *src_pmd, *dst_pmd;
1042 	unsigned long next;
1043 
1044 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1045 	if (!dst_pmd)
1046 		return -ENOMEM;
1047 	src_pmd = pmd_offset(src_pud, addr);
1048 	do {
1049 		next = pmd_addr_end(addr, end);
1050 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1051 			|| pmd_devmap(*src_pmd)) {
1052 			int err;
1053 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1054 			err = copy_huge_pmd(dst_mm, src_mm,
1055 					    dst_pmd, src_pmd, addr, src_vma);
1056 			if (err == -ENOMEM)
1057 				return -ENOMEM;
1058 			if (!err)
1059 				continue;
1060 			/* fall through */
1061 		}
1062 		if (pmd_none_or_clear_bad(src_pmd))
1063 			continue;
1064 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1065 				   addr, next))
1066 			return -ENOMEM;
1067 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1068 	return 0;
1069 }
1070 
1071 static inline int
1072 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1073 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1074 	       unsigned long end)
1075 {
1076 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1077 	struct mm_struct *src_mm = src_vma->vm_mm;
1078 	pud_t *src_pud, *dst_pud;
1079 	unsigned long next;
1080 
1081 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1082 	if (!dst_pud)
1083 		return -ENOMEM;
1084 	src_pud = pud_offset(src_p4d, addr);
1085 	do {
1086 		next = pud_addr_end(addr, end);
1087 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1088 			int err;
1089 
1090 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1091 			err = copy_huge_pud(dst_mm, src_mm,
1092 					    dst_pud, src_pud, addr, src_vma);
1093 			if (err == -ENOMEM)
1094 				return -ENOMEM;
1095 			if (!err)
1096 				continue;
1097 			/* fall through */
1098 		}
1099 		if (pud_none_or_clear_bad(src_pud))
1100 			continue;
1101 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1102 				   addr, next))
1103 			return -ENOMEM;
1104 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1105 	return 0;
1106 }
1107 
1108 static inline int
1109 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1110 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1111 	       unsigned long end)
1112 {
1113 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1114 	p4d_t *src_p4d, *dst_p4d;
1115 	unsigned long next;
1116 
1117 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1118 	if (!dst_p4d)
1119 		return -ENOMEM;
1120 	src_p4d = p4d_offset(src_pgd, addr);
1121 	do {
1122 		next = p4d_addr_end(addr, end);
1123 		if (p4d_none_or_clear_bad(src_p4d))
1124 			continue;
1125 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1126 				   addr, next))
1127 			return -ENOMEM;
1128 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1129 	return 0;
1130 }
1131 
1132 int
1133 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1134 {
1135 	pgd_t *src_pgd, *dst_pgd;
1136 	unsigned long next;
1137 	unsigned long addr = src_vma->vm_start;
1138 	unsigned long end = src_vma->vm_end;
1139 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1140 	struct mm_struct *src_mm = src_vma->vm_mm;
1141 	struct mmu_notifier_range range;
1142 	bool is_cow;
1143 	int ret;
1144 
1145 	/*
1146 	 * Don't copy ptes where a page fault will fill them correctly.
1147 	 * Fork becomes much lighter when there are big shared or private
1148 	 * readonly mappings. The tradeoff is that copy_page_range is more
1149 	 * efficient than faulting.
1150 	 */
1151 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1152 	    !src_vma->anon_vma)
1153 		return 0;
1154 
1155 	if (is_vm_hugetlb_page(src_vma))
1156 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1157 
1158 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1159 		/*
1160 		 * We do not free on error cases below as remove_vma
1161 		 * gets called on error from higher level routine
1162 		 */
1163 		ret = track_pfn_copy(src_vma);
1164 		if (ret)
1165 			return ret;
1166 	}
1167 
1168 	/*
1169 	 * We need to invalidate the secondary MMU mappings only when
1170 	 * there could be a permission downgrade on the ptes of the
1171 	 * parent mm. And a permission downgrade will only happen if
1172 	 * is_cow_mapping() returns true.
1173 	 */
1174 	is_cow = is_cow_mapping(src_vma->vm_flags);
1175 
1176 	if (is_cow) {
1177 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1178 					0, src_vma, src_mm, addr, end);
1179 		mmu_notifier_invalidate_range_start(&range);
1180 		/*
1181 		 * Disabling preemption is not needed for the write side, as
1182 		 * the read side doesn't spin, but goes to the mmap_lock.
1183 		 *
1184 		 * Use the raw variant of the seqcount_t write API to avoid
1185 		 * lockdep complaining about preemptibility.
1186 		 */
1187 		mmap_assert_write_locked(src_mm);
1188 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1189 	}
1190 
1191 	ret = 0;
1192 	dst_pgd = pgd_offset(dst_mm, addr);
1193 	src_pgd = pgd_offset(src_mm, addr);
1194 	do {
1195 		next = pgd_addr_end(addr, end);
1196 		if (pgd_none_or_clear_bad(src_pgd))
1197 			continue;
1198 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1199 					    addr, next))) {
1200 			ret = -ENOMEM;
1201 			break;
1202 		}
1203 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1204 
1205 	if (is_cow) {
1206 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1207 		mmu_notifier_invalidate_range_end(&range);
1208 	}
1209 	return ret;
1210 }
1211 
1212 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1213 				struct vm_area_struct *vma, pmd_t *pmd,
1214 				unsigned long addr, unsigned long end,
1215 				struct zap_details *details)
1216 {
1217 	struct mm_struct *mm = tlb->mm;
1218 	int force_flush = 0;
1219 	int rss[NR_MM_COUNTERS];
1220 	spinlock_t *ptl;
1221 	pte_t *start_pte;
1222 	pte_t *pte;
1223 	swp_entry_t entry;
1224 
1225 	tlb_change_page_size(tlb, PAGE_SIZE);
1226 again:
1227 	init_rss_vec(rss);
1228 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1229 	pte = start_pte;
1230 	flush_tlb_batched_pending(mm);
1231 	arch_enter_lazy_mmu_mode();
1232 	do {
1233 		pte_t ptent = *pte;
1234 		if (pte_none(ptent))
1235 			continue;
1236 
1237 		if (need_resched())
1238 			break;
1239 
1240 		if (pte_present(ptent)) {
1241 			struct page *page;
1242 
1243 			page = vm_normal_page(vma, addr, ptent);
1244 			if (unlikely(details) && page) {
1245 				/*
1246 				 * unmap_shared_mapping_pages() wants to
1247 				 * invalidate cache without truncating:
1248 				 * unmap shared but keep private pages.
1249 				 */
1250 				if (details->check_mapping &&
1251 				    details->check_mapping != page_rmapping(page))
1252 					continue;
1253 			}
1254 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1255 							tlb->fullmm);
1256 			tlb_remove_tlb_entry(tlb, pte, addr);
1257 			if (unlikely(!page))
1258 				continue;
1259 
1260 			if (!PageAnon(page)) {
1261 				if (pte_dirty(ptent)) {
1262 					force_flush = 1;
1263 					set_page_dirty(page);
1264 				}
1265 				if (pte_young(ptent) &&
1266 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1267 					mark_page_accessed(page);
1268 			}
1269 			rss[mm_counter(page)]--;
1270 			page_remove_rmap(page, false);
1271 			if (unlikely(page_mapcount(page) < 0))
1272 				print_bad_pte(vma, addr, ptent, page);
1273 			if (unlikely(__tlb_remove_page(tlb, page))) {
1274 				force_flush = 1;
1275 				addr += PAGE_SIZE;
1276 				break;
1277 			}
1278 			continue;
1279 		}
1280 
1281 		entry = pte_to_swp_entry(ptent);
1282 		if (is_device_private_entry(entry)) {
1283 			struct page *page = device_private_entry_to_page(entry);
1284 
1285 			if (unlikely(details && details->check_mapping)) {
1286 				/*
1287 				 * unmap_shared_mapping_pages() wants to
1288 				 * invalidate cache without truncating:
1289 				 * unmap shared but keep private pages.
1290 				 */
1291 				if (details->check_mapping !=
1292 				    page_rmapping(page))
1293 					continue;
1294 			}
1295 
1296 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1297 			rss[mm_counter(page)]--;
1298 			page_remove_rmap(page, false);
1299 			put_page(page);
1300 			continue;
1301 		}
1302 
1303 		/* If details->check_mapping, we leave swap entries. */
1304 		if (unlikely(details))
1305 			continue;
1306 
1307 		if (!non_swap_entry(entry))
1308 			rss[MM_SWAPENTS]--;
1309 		else if (is_migration_entry(entry)) {
1310 			struct page *page;
1311 
1312 			page = migration_entry_to_page(entry);
1313 			rss[mm_counter(page)]--;
1314 		}
1315 		if (unlikely(!free_swap_and_cache(entry)))
1316 			print_bad_pte(vma, addr, ptent, NULL);
1317 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1318 	} while (pte++, addr += PAGE_SIZE, addr != end);
1319 
1320 	add_mm_rss_vec(mm, rss);
1321 	arch_leave_lazy_mmu_mode();
1322 
1323 	/* Do the actual TLB flush before dropping ptl */
1324 	if (force_flush)
1325 		tlb_flush_mmu_tlbonly(tlb);
1326 	pte_unmap_unlock(start_pte, ptl);
1327 
1328 	/*
1329 	 * If we forced a TLB flush (either due to running out of
1330 	 * batch buffers or because we needed to flush dirty TLB
1331 	 * entries before releasing the ptl), free the batched
1332 	 * memory too. Restart if we didn't do everything.
1333 	 */
1334 	if (force_flush) {
1335 		force_flush = 0;
1336 		tlb_flush_mmu(tlb);
1337 	}
1338 
1339 	if (addr != end) {
1340 		cond_resched();
1341 		goto again;
1342 	}
1343 
1344 	return addr;
1345 }
1346 
1347 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1348 				struct vm_area_struct *vma, pud_t *pud,
1349 				unsigned long addr, unsigned long end,
1350 				struct zap_details *details)
1351 {
1352 	pmd_t *pmd;
1353 	unsigned long next;
1354 
1355 	pmd = pmd_offset(pud, addr);
1356 	do {
1357 		next = pmd_addr_end(addr, end);
1358 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1359 			if (next - addr != HPAGE_PMD_SIZE)
1360 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1361 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1362 				goto next;
1363 			/* fall through */
1364 		} else if (details && details->single_page &&
1365 			   PageTransCompound(details->single_page) &&
1366 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1367 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1368 			/*
1369 			 * Take and drop THP pmd lock so that we cannot return
1370 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1371 			 * but not yet decremented compound_mapcount().
1372 			 */
1373 			spin_unlock(ptl);
1374 		}
1375 
1376 		/*
1377 		 * Here there can be other concurrent MADV_DONTNEED or
1378 		 * trans huge page faults running, and if the pmd is
1379 		 * none or trans huge it can change under us. This is
1380 		 * because MADV_DONTNEED holds the mmap_lock in read
1381 		 * mode.
1382 		 */
1383 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1384 			goto next;
1385 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1386 next:
1387 		cond_resched();
1388 	} while (pmd++, addr = next, addr != end);
1389 
1390 	return addr;
1391 }
1392 
1393 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1394 				struct vm_area_struct *vma, p4d_t *p4d,
1395 				unsigned long addr, unsigned long end,
1396 				struct zap_details *details)
1397 {
1398 	pud_t *pud;
1399 	unsigned long next;
1400 
1401 	pud = pud_offset(p4d, addr);
1402 	do {
1403 		next = pud_addr_end(addr, end);
1404 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1405 			if (next - addr != HPAGE_PUD_SIZE) {
1406 				mmap_assert_locked(tlb->mm);
1407 				split_huge_pud(vma, pud, addr);
1408 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1409 				goto next;
1410 			/* fall through */
1411 		}
1412 		if (pud_none_or_clear_bad(pud))
1413 			continue;
1414 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1415 next:
1416 		cond_resched();
1417 	} while (pud++, addr = next, addr != end);
1418 
1419 	return addr;
1420 }
1421 
1422 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1423 				struct vm_area_struct *vma, pgd_t *pgd,
1424 				unsigned long addr, unsigned long end,
1425 				struct zap_details *details)
1426 {
1427 	p4d_t *p4d;
1428 	unsigned long next;
1429 
1430 	p4d = p4d_offset(pgd, addr);
1431 	do {
1432 		next = p4d_addr_end(addr, end);
1433 		if (p4d_none_or_clear_bad(p4d))
1434 			continue;
1435 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1436 	} while (p4d++, addr = next, addr != end);
1437 
1438 	return addr;
1439 }
1440 
1441 void unmap_page_range(struct mmu_gather *tlb,
1442 			     struct vm_area_struct *vma,
1443 			     unsigned long addr, unsigned long end,
1444 			     struct zap_details *details)
1445 {
1446 	pgd_t *pgd;
1447 	unsigned long next;
1448 
1449 	BUG_ON(addr >= end);
1450 	tlb_start_vma(tlb, vma);
1451 	pgd = pgd_offset(vma->vm_mm, addr);
1452 	do {
1453 		next = pgd_addr_end(addr, end);
1454 		if (pgd_none_or_clear_bad(pgd))
1455 			continue;
1456 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1457 	} while (pgd++, addr = next, addr != end);
1458 	tlb_end_vma(tlb, vma);
1459 }
1460 
1461 
1462 static void unmap_single_vma(struct mmu_gather *tlb,
1463 		struct vm_area_struct *vma, unsigned long start_addr,
1464 		unsigned long end_addr,
1465 		struct zap_details *details)
1466 {
1467 	unsigned long start = max(vma->vm_start, start_addr);
1468 	unsigned long end;
1469 
1470 	if (start >= vma->vm_end)
1471 		return;
1472 	end = min(vma->vm_end, end_addr);
1473 	if (end <= vma->vm_start)
1474 		return;
1475 
1476 	if (vma->vm_file)
1477 		uprobe_munmap(vma, start, end);
1478 
1479 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1480 		untrack_pfn(vma, 0, 0);
1481 
1482 	if (start != end) {
1483 		if (unlikely(is_vm_hugetlb_page(vma))) {
1484 			/*
1485 			 * It is undesirable to test vma->vm_file as it
1486 			 * should be non-null for valid hugetlb area.
1487 			 * However, vm_file will be NULL in the error
1488 			 * cleanup path of mmap_region. When
1489 			 * hugetlbfs ->mmap method fails,
1490 			 * mmap_region() nullifies vma->vm_file
1491 			 * before calling this function to clean up.
1492 			 * Since no pte has actually been setup, it is
1493 			 * safe to do nothing in this case.
1494 			 */
1495 			if (vma->vm_file) {
1496 				i_mmap_lock_write(vma->vm_file->f_mapping);
1497 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1498 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1499 			}
1500 		} else
1501 			unmap_page_range(tlb, vma, start, end, details);
1502 	}
1503 }
1504 
1505 /**
1506  * unmap_vmas - unmap a range of memory covered by a list of vma's
1507  * @tlb: address of the caller's struct mmu_gather
1508  * @vma: the starting vma
1509  * @start_addr: virtual address at which to start unmapping
1510  * @end_addr: virtual address at which to end unmapping
1511  *
1512  * Unmap all pages in the vma list.
1513  *
1514  * Only addresses between `start' and `end' will be unmapped.
1515  *
1516  * The VMA list must be sorted in ascending virtual address order.
1517  *
1518  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1519  * range after unmap_vmas() returns.  So the only responsibility here is to
1520  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1521  * drops the lock and schedules.
1522  */
1523 void unmap_vmas(struct mmu_gather *tlb,
1524 		struct vm_area_struct *vma, unsigned long start_addr,
1525 		unsigned long end_addr)
1526 {
1527 	struct mmu_notifier_range range;
1528 
1529 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1530 				start_addr, end_addr);
1531 	mmu_notifier_invalidate_range_start(&range);
1532 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1533 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1534 	mmu_notifier_invalidate_range_end(&range);
1535 }
1536 
1537 /**
1538  * zap_page_range - remove user pages in a given range
1539  * @vma: vm_area_struct holding the applicable pages
1540  * @start: starting address of pages to zap
1541  * @size: number of bytes to zap
1542  *
1543  * Caller must protect the VMA list
1544  */
1545 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1546 		unsigned long size)
1547 {
1548 	struct mmu_notifier_range range;
1549 	struct mmu_gather tlb;
1550 
1551 	lru_add_drain();
1552 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1553 				start, start + size);
1554 	tlb_gather_mmu(&tlb, vma->vm_mm);
1555 	update_hiwater_rss(vma->vm_mm);
1556 	mmu_notifier_invalidate_range_start(&range);
1557 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1558 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1559 	mmu_notifier_invalidate_range_end(&range);
1560 	tlb_finish_mmu(&tlb);
1561 }
1562 
1563 /**
1564  * zap_page_range_single - remove user pages in a given range
1565  * @vma: vm_area_struct holding the applicable pages
1566  * @address: starting address of pages to zap
1567  * @size: number of bytes to zap
1568  * @details: details of shared cache invalidation
1569  *
1570  * The range must fit into one VMA.
1571  */
1572 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1573 		unsigned long size, struct zap_details *details)
1574 {
1575 	struct mmu_notifier_range range;
1576 	struct mmu_gather tlb;
1577 
1578 	lru_add_drain();
1579 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1580 				address, address + size);
1581 	tlb_gather_mmu(&tlb, vma->vm_mm);
1582 	update_hiwater_rss(vma->vm_mm);
1583 	mmu_notifier_invalidate_range_start(&range);
1584 	unmap_single_vma(&tlb, vma, address, range.end, details);
1585 	mmu_notifier_invalidate_range_end(&range);
1586 	tlb_finish_mmu(&tlb);
1587 }
1588 
1589 /**
1590  * zap_vma_ptes - remove ptes mapping the vma
1591  * @vma: vm_area_struct holding ptes to be zapped
1592  * @address: starting address of pages to zap
1593  * @size: number of bytes to zap
1594  *
1595  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1596  *
1597  * The entire address range must be fully contained within the vma.
1598  *
1599  */
1600 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1601 		unsigned long size)
1602 {
1603 	if (address < vma->vm_start || address + size > vma->vm_end ||
1604 	    		!(vma->vm_flags & VM_PFNMAP))
1605 		return;
1606 
1607 	zap_page_range_single(vma, address, size, NULL);
1608 }
1609 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1610 
1611 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1612 {
1613 	pgd_t *pgd;
1614 	p4d_t *p4d;
1615 	pud_t *pud;
1616 	pmd_t *pmd;
1617 
1618 	pgd = pgd_offset(mm, addr);
1619 	p4d = p4d_alloc(mm, pgd, addr);
1620 	if (!p4d)
1621 		return NULL;
1622 	pud = pud_alloc(mm, p4d, addr);
1623 	if (!pud)
1624 		return NULL;
1625 	pmd = pmd_alloc(mm, pud, addr);
1626 	if (!pmd)
1627 		return NULL;
1628 
1629 	VM_BUG_ON(pmd_trans_huge(*pmd));
1630 	return pmd;
1631 }
1632 
1633 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1634 			spinlock_t **ptl)
1635 {
1636 	pmd_t *pmd = walk_to_pmd(mm, addr);
1637 
1638 	if (!pmd)
1639 		return NULL;
1640 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1641 }
1642 
1643 static int validate_page_before_insert(struct page *page)
1644 {
1645 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1646 		return -EINVAL;
1647 	flush_dcache_page(page);
1648 	return 0;
1649 }
1650 
1651 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1652 			unsigned long addr, struct page *page, pgprot_t prot)
1653 {
1654 	if (!pte_none(*pte))
1655 		return -EBUSY;
1656 	/* Ok, finally just insert the thing.. */
1657 	get_page(page);
1658 	inc_mm_counter_fast(mm, mm_counter_file(page));
1659 	page_add_file_rmap(page, false);
1660 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1661 	return 0;
1662 }
1663 
1664 /*
1665  * This is the old fallback for page remapping.
1666  *
1667  * For historical reasons, it only allows reserved pages. Only
1668  * old drivers should use this, and they needed to mark their
1669  * pages reserved for the old functions anyway.
1670  */
1671 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1672 			struct page *page, pgprot_t prot)
1673 {
1674 	struct mm_struct *mm = vma->vm_mm;
1675 	int retval;
1676 	pte_t *pte;
1677 	spinlock_t *ptl;
1678 
1679 	retval = validate_page_before_insert(page);
1680 	if (retval)
1681 		goto out;
1682 	retval = -ENOMEM;
1683 	pte = get_locked_pte(mm, addr, &ptl);
1684 	if (!pte)
1685 		goto out;
1686 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1687 	pte_unmap_unlock(pte, ptl);
1688 out:
1689 	return retval;
1690 }
1691 
1692 #ifdef pte_index
1693 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1694 			unsigned long addr, struct page *page, pgprot_t prot)
1695 {
1696 	int err;
1697 
1698 	if (!page_count(page))
1699 		return -EINVAL;
1700 	err = validate_page_before_insert(page);
1701 	if (err)
1702 		return err;
1703 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1704 }
1705 
1706 /* insert_pages() amortizes the cost of spinlock operations
1707  * when inserting pages in a loop. Arch *must* define pte_index.
1708  */
1709 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1710 			struct page **pages, unsigned long *num, pgprot_t prot)
1711 {
1712 	pmd_t *pmd = NULL;
1713 	pte_t *start_pte, *pte;
1714 	spinlock_t *pte_lock;
1715 	struct mm_struct *const mm = vma->vm_mm;
1716 	unsigned long curr_page_idx = 0;
1717 	unsigned long remaining_pages_total = *num;
1718 	unsigned long pages_to_write_in_pmd;
1719 	int ret;
1720 more:
1721 	ret = -EFAULT;
1722 	pmd = walk_to_pmd(mm, addr);
1723 	if (!pmd)
1724 		goto out;
1725 
1726 	pages_to_write_in_pmd = min_t(unsigned long,
1727 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1728 
1729 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1730 	ret = -ENOMEM;
1731 	if (pte_alloc(mm, pmd))
1732 		goto out;
1733 
1734 	while (pages_to_write_in_pmd) {
1735 		int pte_idx = 0;
1736 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1737 
1738 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1739 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1740 			int err = insert_page_in_batch_locked(mm, pte,
1741 				addr, pages[curr_page_idx], prot);
1742 			if (unlikely(err)) {
1743 				pte_unmap_unlock(start_pte, pte_lock);
1744 				ret = err;
1745 				remaining_pages_total -= pte_idx;
1746 				goto out;
1747 			}
1748 			addr += PAGE_SIZE;
1749 			++curr_page_idx;
1750 		}
1751 		pte_unmap_unlock(start_pte, pte_lock);
1752 		pages_to_write_in_pmd -= batch_size;
1753 		remaining_pages_total -= batch_size;
1754 	}
1755 	if (remaining_pages_total)
1756 		goto more;
1757 	ret = 0;
1758 out:
1759 	*num = remaining_pages_total;
1760 	return ret;
1761 }
1762 #endif  /* ifdef pte_index */
1763 
1764 /**
1765  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1766  * @vma: user vma to map to
1767  * @addr: target start user address of these pages
1768  * @pages: source kernel pages
1769  * @num: in: number of pages to map. out: number of pages that were *not*
1770  * mapped. (0 means all pages were successfully mapped).
1771  *
1772  * Preferred over vm_insert_page() when inserting multiple pages.
1773  *
1774  * In case of error, we may have mapped a subset of the provided
1775  * pages. It is the caller's responsibility to account for this case.
1776  *
1777  * The same restrictions apply as in vm_insert_page().
1778  */
1779 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1780 			struct page **pages, unsigned long *num)
1781 {
1782 #ifdef pte_index
1783 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1784 
1785 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1786 		return -EFAULT;
1787 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1788 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1789 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1790 		vma->vm_flags |= VM_MIXEDMAP;
1791 	}
1792 	/* Defer page refcount checking till we're about to map that page. */
1793 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1794 #else
1795 	unsigned long idx = 0, pgcount = *num;
1796 	int err = -EINVAL;
1797 
1798 	for (; idx < pgcount; ++idx) {
1799 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1800 		if (err)
1801 			break;
1802 	}
1803 	*num = pgcount - idx;
1804 	return err;
1805 #endif  /* ifdef pte_index */
1806 }
1807 EXPORT_SYMBOL(vm_insert_pages);
1808 
1809 /**
1810  * vm_insert_page - insert single page into user vma
1811  * @vma: user vma to map to
1812  * @addr: target user address of this page
1813  * @page: source kernel page
1814  *
1815  * This allows drivers to insert individual pages they've allocated
1816  * into a user vma.
1817  *
1818  * The page has to be a nice clean _individual_ kernel allocation.
1819  * If you allocate a compound page, you need to have marked it as
1820  * such (__GFP_COMP), or manually just split the page up yourself
1821  * (see split_page()).
1822  *
1823  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1824  * took an arbitrary page protection parameter. This doesn't allow
1825  * that. Your vma protection will have to be set up correctly, which
1826  * means that if you want a shared writable mapping, you'd better
1827  * ask for a shared writable mapping!
1828  *
1829  * The page does not need to be reserved.
1830  *
1831  * Usually this function is called from f_op->mmap() handler
1832  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1833  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1834  * function from other places, for example from page-fault handler.
1835  *
1836  * Return: %0 on success, negative error code otherwise.
1837  */
1838 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1839 			struct page *page)
1840 {
1841 	if (addr < vma->vm_start || addr >= vma->vm_end)
1842 		return -EFAULT;
1843 	if (!page_count(page))
1844 		return -EINVAL;
1845 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1846 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1847 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1848 		vma->vm_flags |= VM_MIXEDMAP;
1849 	}
1850 	return insert_page(vma, addr, page, vma->vm_page_prot);
1851 }
1852 EXPORT_SYMBOL(vm_insert_page);
1853 
1854 /*
1855  * __vm_map_pages - maps range of kernel pages into user vma
1856  * @vma: user vma to map to
1857  * @pages: pointer to array of source kernel pages
1858  * @num: number of pages in page array
1859  * @offset: user's requested vm_pgoff
1860  *
1861  * This allows drivers to map range of kernel pages into a user vma.
1862  *
1863  * Return: 0 on success and error code otherwise.
1864  */
1865 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1866 				unsigned long num, unsigned long offset)
1867 {
1868 	unsigned long count = vma_pages(vma);
1869 	unsigned long uaddr = vma->vm_start;
1870 	int ret, i;
1871 
1872 	/* Fail if the user requested offset is beyond the end of the object */
1873 	if (offset >= num)
1874 		return -ENXIO;
1875 
1876 	/* Fail if the user requested size exceeds available object size */
1877 	if (count > num - offset)
1878 		return -ENXIO;
1879 
1880 	for (i = 0; i < count; i++) {
1881 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1882 		if (ret < 0)
1883 			return ret;
1884 		uaddr += PAGE_SIZE;
1885 	}
1886 
1887 	return 0;
1888 }
1889 
1890 /**
1891  * vm_map_pages - maps range of kernel pages starts with non zero offset
1892  * @vma: user vma to map to
1893  * @pages: pointer to array of source kernel pages
1894  * @num: number of pages in page array
1895  *
1896  * Maps an object consisting of @num pages, catering for the user's
1897  * requested vm_pgoff
1898  *
1899  * If we fail to insert any page into the vma, the function will return
1900  * immediately leaving any previously inserted pages present.  Callers
1901  * from the mmap handler may immediately return the error as their caller
1902  * will destroy the vma, removing any successfully inserted pages. Other
1903  * callers should make their own arrangements for calling unmap_region().
1904  *
1905  * Context: Process context. Called by mmap handlers.
1906  * Return: 0 on success and error code otherwise.
1907  */
1908 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1909 				unsigned long num)
1910 {
1911 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1912 }
1913 EXPORT_SYMBOL(vm_map_pages);
1914 
1915 /**
1916  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1917  * @vma: user vma to map to
1918  * @pages: pointer to array of source kernel pages
1919  * @num: number of pages in page array
1920  *
1921  * Similar to vm_map_pages(), except that it explicitly sets the offset
1922  * to 0. This function is intended for the drivers that did not consider
1923  * vm_pgoff.
1924  *
1925  * Context: Process context. Called by mmap handlers.
1926  * Return: 0 on success and error code otherwise.
1927  */
1928 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1929 				unsigned long num)
1930 {
1931 	return __vm_map_pages(vma, pages, num, 0);
1932 }
1933 EXPORT_SYMBOL(vm_map_pages_zero);
1934 
1935 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1936 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1937 {
1938 	struct mm_struct *mm = vma->vm_mm;
1939 	pte_t *pte, entry;
1940 	spinlock_t *ptl;
1941 
1942 	pte = get_locked_pte(mm, addr, &ptl);
1943 	if (!pte)
1944 		return VM_FAULT_OOM;
1945 	if (!pte_none(*pte)) {
1946 		if (mkwrite) {
1947 			/*
1948 			 * For read faults on private mappings the PFN passed
1949 			 * in may not match the PFN we have mapped if the
1950 			 * mapped PFN is a writeable COW page.  In the mkwrite
1951 			 * case we are creating a writable PTE for a shared
1952 			 * mapping and we expect the PFNs to match. If they
1953 			 * don't match, we are likely racing with block
1954 			 * allocation and mapping invalidation so just skip the
1955 			 * update.
1956 			 */
1957 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1958 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1959 				goto out_unlock;
1960 			}
1961 			entry = pte_mkyoung(*pte);
1962 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1963 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1964 				update_mmu_cache(vma, addr, pte);
1965 		}
1966 		goto out_unlock;
1967 	}
1968 
1969 	/* Ok, finally just insert the thing.. */
1970 	if (pfn_t_devmap(pfn))
1971 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1972 	else
1973 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1974 
1975 	if (mkwrite) {
1976 		entry = pte_mkyoung(entry);
1977 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1978 	}
1979 
1980 	set_pte_at(mm, addr, pte, entry);
1981 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1982 
1983 out_unlock:
1984 	pte_unmap_unlock(pte, ptl);
1985 	return VM_FAULT_NOPAGE;
1986 }
1987 
1988 /**
1989  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1990  * @vma: user vma to map to
1991  * @addr: target user address of this page
1992  * @pfn: source kernel pfn
1993  * @pgprot: pgprot flags for the inserted page
1994  *
1995  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1996  * to override pgprot on a per-page basis.
1997  *
1998  * This only makes sense for IO mappings, and it makes no sense for
1999  * COW mappings.  In general, using multiple vmas is preferable;
2000  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2001  * impractical.
2002  *
2003  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2004  * a value of @pgprot different from that of @vma->vm_page_prot.
2005  *
2006  * Context: Process context.  May allocate using %GFP_KERNEL.
2007  * Return: vm_fault_t value.
2008  */
2009 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2010 			unsigned long pfn, pgprot_t pgprot)
2011 {
2012 	/*
2013 	 * Technically, architectures with pte_special can avoid all these
2014 	 * restrictions (same for remap_pfn_range).  However we would like
2015 	 * consistency in testing and feature parity among all, so we should
2016 	 * try to keep these invariants in place for everybody.
2017 	 */
2018 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2019 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2020 						(VM_PFNMAP|VM_MIXEDMAP));
2021 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2022 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2023 
2024 	if (addr < vma->vm_start || addr >= vma->vm_end)
2025 		return VM_FAULT_SIGBUS;
2026 
2027 	if (!pfn_modify_allowed(pfn, pgprot))
2028 		return VM_FAULT_SIGBUS;
2029 
2030 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2031 
2032 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2033 			false);
2034 }
2035 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2036 
2037 /**
2038  * vmf_insert_pfn - insert single pfn into user vma
2039  * @vma: user vma to map to
2040  * @addr: target user address of this page
2041  * @pfn: source kernel pfn
2042  *
2043  * Similar to vm_insert_page, this allows drivers to insert individual pages
2044  * they've allocated into a user vma. Same comments apply.
2045  *
2046  * This function should only be called from a vm_ops->fault handler, and
2047  * in that case the handler should return the result of this function.
2048  *
2049  * vma cannot be a COW mapping.
2050  *
2051  * As this is called only for pages that do not currently exist, we
2052  * do not need to flush old virtual caches or the TLB.
2053  *
2054  * Context: Process context.  May allocate using %GFP_KERNEL.
2055  * Return: vm_fault_t value.
2056  */
2057 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2058 			unsigned long pfn)
2059 {
2060 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2061 }
2062 EXPORT_SYMBOL(vmf_insert_pfn);
2063 
2064 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2065 {
2066 	/* these checks mirror the abort conditions in vm_normal_page */
2067 	if (vma->vm_flags & VM_MIXEDMAP)
2068 		return true;
2069 	if (pfn_t_devmap(pfn))
2070 		return true;
2071 	if (pfn_t_special(pfn))
2072 		return true;
2073 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2074 		return true;
2075 	return false;
2076 }
2077 
2078 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2079 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2080 		bool mkwrite)
2081 {
2082 	int err;
2083 
2084 	BUG_ON(!vm_mixed_ok(vma, pfn));
2085 
2086 	if (addr < vma->vm_start || addr >= vma->vm_end)
2087 		return VM_FAULT_SIGBUS;
2088 
2089 	track_pfn_insert(vma, &pgprot, pfn);
2090 
2091 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2092 		return VM_FAULT_SIGBUS;
2093 
2094 	/*
2095 	 * If we don't have pte special, then we have to use the pfn_valid()
2096 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2097 	 * refcount the page if pfn_valid is true (hence insert_page rather
2098 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2099 	 * without pte special, it would there be refcounted as a normal page.
2100 	 */
2101 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2102 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2103 		struct page *page;
2104 
2105 		/*
2106 		 * At this point we are committed to insert_page()
2107 		 * regardless of whether the caller specified flags that
2108 		 * result in pfn_t_has_page() == false.
2109 		 */
2110 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2111 		err = insert_page(vma, addr, page, pgprot);
2112 	} else {
2113 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2114 	}
2115 
2116 	if (err == -ENOMEM)
2117 		return VM_FAULT_OOM;
2118 	if (err < 0 && err != -EBUSY)
2119 		return VM_FAULT_SIGBUS;
2120 
2121 	return VM_FAULT_NOPAGE;
2122 }
2123 
2124 /**
2125  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2126  * @vma: user vma to map to
2127  * @addr: target user address of this page
2128  * @pfn: source kernel pfn
2129  * @pgprot: pgprot flags for the inserted page
2130  *
2131  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2132  * to override pgprot on a per-page basis.
2133  *
2134  * Typically this function should be used by drivers to set caching- and
2135  * encryption bits different than those of @vma->vm_page_prot, because
2136  * the caching- or encryption mode may not be known at mmap() time.
2137  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2138  * to set caching and encryption bits for those vmas (except for COW pages).
2139  * This is ensured by core vm only modifying these page table entries using
2140  * functions that don't touch caching- or encryption bits, using pte_modify()
2141  * if needed. (See for example mprotect()).
2142  * Also when new page-table entries are created, this is only done using the
2143  * fault() callback, and never using the value of vma->vm_page_prot,
2144  * except for page-table entries that point to anonymous pages as the result
2145  * of COW.
2146  *
2147  * Context: Process context.  May allocate using %GFP_KERNEL.
2148  * Return: vm_fault_t value.
2149  */
2150 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2151 				 pfn_t pfn, pgprot_t pgprot)
2152 {
2153 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2154 }
2155 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2156 
2157 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2158 		pfn_t pfn)
2159 {
2160 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2161 }
2162 EXPORT_SYMBOL(vmf_insert_mixed);
2163 
2164 /*
2165  *  If the insertion of PTE failed because someone else already added a
2166  *  different entry in the mean time, we treat that as success as we assume
2167  *  the same entry was actually inserted.
2168  */
2169 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2170 		unsigned long addr, pfn_t pfn)
2171 {
2172 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2173 }
2174 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2175 
2176 /*
2177  * maps a range of physical memory into the requested pages. the old
2178  * mappings are removed. any references to nonexistent pages results
2179  * in null mappings (currently treated as "copy-on-access")
2180  */
2181 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2182 			unsigned long addr, unsigned long end,
2183 			unsigned long pfn, pgprot_t prot)
2184 {
2185 	pte_t *pte, *mapped_pte;
2186 	spinlock_t *ptl;
2187 	int err = 0;
2188 
2189 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2190 	if (!pte)
2191 		return -ENOMEM;
2192 	arch_enter_lazy_mmu_mode();
2193 	do {
2194 		BUG_ON(!pte_none(*pte));
2195 		if (!pfn_modify_allowed(pfn, prot)) {
2196 			err = -EACCES;
2197 			break;
2198 		}
2199 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2200 		pfn++;
2201 	} while (pte++, addr += PAGE_SIZE, addr != end);
2202 	arch_leave_lazy_mmu_mode();
2203 	pte_unmap_unlock(mapped_pte, ptl);
2204 	return err;
2205 }
2206 
2207 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2208 			unsigned long addr, unsigned long end,
2209 			unsigned long pfn, pgprot_t prot)
2210 {
2211 	pmd_t *pmd;
2212 	unsigned long next;
2213 	int err;
2214 
2215 	pfn -= addr >> PAGE_SHIFT;
2216 	pmd = pmd_alloc(mm, pud, addr);
2217 	if (!pmd)
2218 		return -ENOMEM;
2219 	VM_BUG_ON(pmd_trans_huge(*pmd));
2220 	do {
2221 		next = pmd_addr_end(addr, end);
2222 		err = remap_pte_range(mm, pmd, addr, next,
2223 				pfn + (addr >> PAGE_SHIFT), prot);
2224 		if (err)
2225 			return err;
2226 	} while (pmd++, addr = next, addr != end);
2227 	return 0;
2228 }
2229 
2230 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2231 			unsigned long addr, unsigned long end,
2232 			unsigned long pfn, pgprot_t prot)
2233 {
2234 	pud_t *pud;
2235 	unsigned long next;
2236 	int err;
2237 
2238 	pfn -= addr >> PAGE_SHIFT;
2239 	pud = pud_alloc(mm, p4d, addr);
2240 	if (!pud)
2241 		return -ENOMEM;
2242 	do {
2243 		next = pud_addr_end(addr, end);
2244 		err = remap_pmd_range(mm, pud, addr, next,
2245 				pfn + (addr >> PAGE_SHIFT), prot);
2246 		if (err)
2247 			return err;
2248 	} while (pud++, addr = next, addr != end);
2249 	return 0;
2250 }
2251 
2252 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2253 			unsigned long addr, unsigned long end,
2254 			unsigned long pfn, pgprot_t prot)
2255 {
2256 	p4d_t *p4d;
2257 	unsigned long next;
2258 	int err;
2259 
2260 	pfn -= addr >> PAGE_SHIFT;
2261 	p4d = p4d_alloc(mm, pgd, addr);
2262 	if (!p4d)
2263 		return -ENOMEM;
2264 	do {
2265 		next = p4d_addr_end(addr, end);
2266 		err = remap_pud_range(mm, p4d, addr, next,
2267 				pfn + (addr >> PAGE_SHIFT), prot);
2268 		if (err)
2269 			return err;
2270 	} while (p4d++, addr = next, addr != end);
2271 	return 0;
2272 }
2273 
2274 /*
2275  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2276  * must have pre-validated the caching bits of the pgprot_t.
2277  */
2278 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2279 		unsigned long pfn, unsigned long size, pgprot_t prot)
2280 {
2281 	pgd_t *pgd;
2282 	unsigned long next;
2283 	unsigned long end = addr + PAGE_ALIGN(size);
2284 	struct mm_struct *mm = vma->vm_mm;
2285 	int err;
2286 
2287 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2288 		return -EINVAL;
2289 
2290 	/*
2291 	 * Physically remapped pages are special. Tell the
2292 	 * rest of the world about it:
2293 	 *   VM_IO tells people not to look at these pages
2294 	 *	(accesses can have side effects).
2295 	 *   VM_PFNMAP tells the core MM that the base pages are just
2296 	 *	raw PFN mappings, and do not have a "struct page" associated
2297 	 *	with them.
2298 	 *   VM_DONTEXPAND
2299 	 *      Disable vma merging and expanding with mremap().
2300 	 *   VM_DONTDUMP
2301 	 *      Omit vma from core dump, even when VM_IO turned off.
2302 	 *
2303 	 * There's a horrible special case to handle copy-on-write
2304 	 * behaviour that some programs depend on. We mark the "original"
2305 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2306 	 * See vm_normal_page() for details.
2307 	 */
2308 	if (is_cow_mapping(vma->vm_flags)) {
2309 		if (addr != vma->vm_start || end != vma->vm_end)
2310 			return -EINVAL;
2311 		vma->vm_pgoff = pfn;
2312 	}
2313 
2314 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2315 
2316 	BUG_ON(addr >= end);
2317 	pfn -= addr >> PAGE_SHIFT;
2318 	pgd = pgd_offset(mm, addr);
2319 	flush_cache_range(vma, addr, end);
2320 	do {
2321 		next = pgd_addr_end(addr, end);
2322 		err = remap_p4d_range(mm, pgd, addr, next,
2323 				pfn + (addr >> PAGE_SHIFT), prot);
2324 		if (err)
2325 			return err;
2326 	} while (pgd++, addr = next, addr != end);
2327 
2328 	return 0;
2329 }
2330 
2331 /**
2332  * remap_pfn_range - remap kernel memory to userspace
2333  * @vma: user vma to map to
2334  * @addr: target page aligned user address to start at
2335  * @pfn: page frame number of kernel physical memory address
2336  * @size: size of mapping area
2337  * @prot: page protection flags for this mapping
2338  *
2339  * Note: this is only safe if the mm semaphore is held when called.
2340  *
2341  * Return: %0 on success, negative error code otherwise.
2342  */
2343 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2344 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2345 {
2346 	int err;
2347 
2348 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2349 	if (err)
2350 		return -EINVAL;
2351 
2352 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2353 	if (err)
2354 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2355 	return err;
2356 }
2357 EXPORT_SYMBOL(remap_pfn_range);
2358 
2359 /**
2360  * vm_iomap_memory - remap memory to userspace
2361  * @vma: user vma to map to
2362  * @start: start of the physical memory to be mapped
2363  * @len: size of area
2364  *
2365  * This is a simplified io_remap_pfn_range() for common driver use. The
2366  * driver just needs to give us the physical memory range to be mapped,
2367  * we'll figure out the rest from the vma information.
2368  *
2369  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2370  * whatever write-combining details or similar.
2371  *
2372  * Return: %0 on success, negative error code otherwise.
2373  */
2374 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2375 {
2376 	unsigned long vm_len, pfn, pages;
2377 
2378 	/* Check that the physical memory area passed in looks valid */
2379 	if (start + len < start)
2380 		return -EINVAL;
2381 	/*
2382 	 * You *really* shouldn't map things that aren't page-aligned,
2383 	 * but we've historically allowed it because IO memory might
2384 	 * just have smaller alignment.
2385 	 */
2386 	len += start & ~PAGE_MASK;
2387 	pfn = start >> PAGE_SHIFT;
2388 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2389 	if (pfn + pages < pfn)
2390 		return -EINVAL;
2391 
2392 	/* We start the mapping 'vm_pgoff' pages into the area */
2393 	if (vma->vm_pgoff > pages)
2394 		return -EINVAL;
2395 	pfn += vma->vm_pgoff;
2396 	pages -= vma->vm_pgoff;
2397 
2398 	/* Can we fit all of the mapping? */
2399 	vm_len = vma->vm_end - vma->vm_start;
2400 	if (vm_len >> PAGE_SHIFT > pages)
2401 		return -EINVAL;
2402 
2403 	/* Ok, let it rip */
2404 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2405 }
2406 EXPORT_SYMBOL(vm_iomap_memory);
2407 
2408 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2409 				     unsigned long addr, unsigned long end,
2410 				     pte_fn_t fn, void *data, bool create,
2411 				     pgtbl_mod_mask *mask)
2412 {
2413 	pte_t *pte, *mapped_pte;
2414 	int err = 0;
2415 	spinlock_t *ptl;
2416 
2417 	if (create) {
2418 		mapped_pte = pte = (mm == &init_mm) ?
2419 			pte_alloc_kernel_track(pmd, addr, mask) :
2420 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2421 		if (!pte)
2422 			return -ENOMEM;
2423 	} else {
2424 		mapped_pte = pte = (mm == &init_mm) ?
2425 			pte_offset_kernel(pmd, addr) :
2426 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2427 	}
2428 
2429 	BUG_ON(pmd_huge(*pmd));
2430 
2431 	arch_enter_lazy_mmu_mode();
2432 
2433 	if (fn) {
2434 		do {
2435 			if (create || !pte_none(*pte)) {
2436 				err = fn(pte++, addr, data);
2437 				if (err)
2438 					break;
2439 			}
2440 		} while (addr += PAGE_SIZE, addr != end);
2441 	}
2442 	*mask |= PGTBL_PTE_MODIFIED;
2443 
2444 	arch_leave_lazy_mmu_mode();
2445 
2446 	if (mm != &init_mm)
2447 		pte_unmap_unlock(mapped_pte, ptl);
2448 	return err;
2449 }
2450 
2451 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2452 				     unsigned long addr, unsigned long end,
2453 				     pte_fn_t fn, void *data, bool create,
2454 				     pgtbl_mod_mask *mask)
2455 {
2456 	pmd_t *pmd;
2457 	unsigned long next;
2458 	int err = 0;
2459 
2460 	BUG_ON(pud_huge(*pud));
2461 
2462 	if (create) {
2463 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2464 		if (!pmd)
2465 			return -ENOMEM;
2466 	} else {
2467 		pmd = pmd_offset(pud, addr);
2468 	}
2469 	do {
2470 		next = pmd_addr_end(addr, end);
2471 		if (pmd_none(*pmd) && !create)
2472 			continue;
2473 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2474 			return -EINVAL;
2475 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2476 			if (!create)
2477 				continue;
2478 			pmd_clear_bad(pmd);
2479 		}
2480 		err = apply_to_pte_range(mm, pmd, addr, next,
2481 					 fn, data, create, mask);
2482 		if (err)
2483 			break;
2484 	} while (pmd++, addr = next, addr != end);
2485 
2486 	return err;
2487 }
2488 
2489 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2490 				     unsigned long addr, unsigned long end,
2491 				     pte_fn_t fn, void *data, bool create,
2492 				     pgtbl_mod_mask *mask)
2493 {
2494 	pud_t *pud;
2495 	unsigned long next;
2496 	int err = 0;
2497 
2498 	if (create) {
2499 		pud = pud_alloc_track(mm, p4d, addr, mask);
2500 		if (!pud)
2501 			return -ENOMEM;
2502 	} else {
2503 		pud = pud_offset(p4d, addr);
2504 	}
2505 	do {
2506 		next = pud_addr_end(addr, end);
2507 		if (pud_none(*pud) && !create)
2508 			continue;
2509 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2510 			return -EINVAL;
2511 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2512 			if (!create)
2513 				continue;
2514 			pud_clear_bad(pud);
2515 		}
2516 		err = apply_to_pmd_range(mm, pud, addr, next,
2517 					 fn, data, create, mask);
2518 		if (err)
2519 			break;
2520 	} while (pud++, addr = next, addr != end);
2521 
2522 	return err;
2523 }
2524 
2525 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2526 				     unsigned long addr, unsigned long end,
2527 				     pte_fn_t fn, void *data, bool create,
2528 				     pgtbl_mod_mask *mask)
2529 {
2530 	p4d_t *p4d;
2531 	unsigned long next;
2532 	int err = 0;
2533 
2534 	if (create) {
2535 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2536 		if (!p4d)
2537 			return -ENOMEM;
2538 	} else {
2539 		p4d = p4d_offset(pgd, addr);
2540 	}
2541 	do {
2542 		next = p4d_addr_end(addr, end);
2543 		if (p4d_none(*p4d) && !create)
2544 			continue;
2545 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2546 			return -EINVAL;
2547 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2548 			if (!create)
2549 				continue;
2550 			p4d_clear_bad(p4d);
2551 		}
2552 		err = apply_to_pud_range(mm, p4d, addr, next,
2553 					 fn, data, create, mask);
2554 		if (err)
2555 			break;
2556 	} while (p4d++, addr = next, addr != end);
2557 
2558 	return err;
2559 }
2560 
2561 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2562 				 unsigned long size, pte_fn_t fn,
2563 				 void *data, bool create)
2564 {
2565 	pgd_t *pgd;
2566 	unsigned long start = addr, next;
2567 	unsigned long end = addr + size;
2568 	pgtbl_mod_mask mask = 0;
2569 	int err = 0;
2570 
2571 	if (WARN_ON(addr >= end))
2572 		return -EINVAL;
2573 
2574 	pgd = pgd_offset(mm, addr);
2575 	do {
2576 		next = pgd_addr_end(addr, end);
2577 		if (pgd_none(*pgd) && !create)
2578 			continue;
2579 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2580 			return -EINVAL;
2581 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2582 			if (!create)
2583 				continue;
2584 			pgd_clear_bad(pgd);
2585 		}
2586 		err = apply_to_p4d_range(mm, pgd, addr, next,
2587 					 fn, data, create, &mask);
2588 		if (err)
2589 			break;
2590 	} while (pgd++, addr = next, addr != end);
2591 
2592 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2593 		arch_sync_kernel_mappings(start, start + size);
2594 
2595 	return err;
2596 }
2597 
2598 /*
2599  * Scan a region of virtual memory, filling in page tables as necessary
2600  * and calling a provided function on each leaf page table.
2601  */
2602 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2603 			unsigned long size, pte_fn_t fn, void *data)
2604 {
2605 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2606 }
2607 EXPORT_SYMBOL_GPL(apply_to_page_range);
2608 
2609 /*
2610  * Scan a region of virtual memory, calling a provided function on
2611  * each leaf page table where it exists.
2612  *
2613  * Unlike apply_to_page_range, this does _not_ fill in page tables
2614  * where they are absent.
2615  */
2616 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2617 				 unsigned long size, pte_fn_t fn, void *data)
2618 {
2619 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2620 }
2621 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2622 
2623 /*
2624  * handle_pte_fault chooses page fault handler according to an entry which was
2625  * read non-atomically.  Before making any commitment, on those architectures
2626  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2627  * parts, do_swap_page must check under lock before unmapping the pte and
2628  * proceeding (but do_wp_page is only called after already making such a check;
2629  * and do_anonymous_page can safely check later on).
2630  */
2631 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2632 				pte_t *page_table, pte_t orig_pte)
2633 {
2634 	int same = 1;
2635 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2636 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2637 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2638 		spin_lock(ptl);
2639 		same = pte_same(*page_table, orig_pte);
2640 		spin_unlock(ptl);
2641 	}
2642 #endif
2643 	pte_unmap(page_table);
2644 	return same;
2645 }
2646 
2647 static inline bool cow_user_page(struct page *dst, struct page *src,
2648 				 struct vm_fault *vmf)
2649 {
2650 	bool ret;
2651 	void *kaddr;
2652 	void __user *uaddr;
2653 	bool locked = false;
2654 	struct vm_area_struct *vma = vmf->vma;
2655 	struct mm_struct *mm = vma->vm_mm;
2656 	unsigned long addr = vmf->address;
2657 
2658 	if (likely(src)) {
2659 		copy_user_highpage(dst, src, addr, vma);
2660 		return true;
2661 	}
2662 
2663 	/*
2664 	 * If the source page was a PFN mapping, we don't have
2665 	 * a "struct page" for it. We do a best-effort copy by
2666 	 * just copying from the original user address. If that
2667 	 * fails, we just zero-fill it. Live with it.
2668 	 */
2669 	kaddr = kmap_atomic(dst);
2670 	uaddr = (void __user *)(addr & PAGE_MASK);
2671 
2672 	/*
2673 	 * On architectures with software "accessed" bits, we would
2674 	 * take a double page fault, so mark it accessed here.
2675 	 */
2676 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2677 		pte_t entry;
2678 
2679 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2680 		locked = true;
2681 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2682 			/*
2683 			 * Other thread has already handled the fault
2684 			 * and update local tlb only
2685 			 */
2686 			update_mmu_tlb(vma, addr, vmf->pte);
2687 			ret = false;
2688 			goto pte_unlock;
2689 		}
2690 
2691 		entry = pte_mkyoung(vmf->orig_pte);
2692 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2693 			update_mmu_cache(vma, addr, vmf->pte);
2694 	}
2695 
2696 	/*
2697 	 * This really shouldn't fail, because the page is there
2698 	 * in the page tables. But it might just be unreadable,
2699 	 * in which case we just give up and fill the result with
2700 	 * zeroes.
2701 	 */
2702 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2703 		if (locked)
2704 			goto warn;
2705 
2706 		/* Re-validate under PTL if the page is still mapped */
2707 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2708 		locked = true;
2709 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2710 			/* The PTE changed under us, update local tlb */
2711 			update_mmu_tlb(vma, addr, vmf->pte);
2712 			ret = false;
2713 			goto pte_unlock;
2714 		}
2715 
2716 		/*
2717 		 * The same page can be mapped back since last copy attempt.
2718 		 * Try to copy again under PTL.
2719 		 */
2720 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2721 			/*
2722 			 * Give a warn in case there can be some obscure
2723 			 * use-case
2724 			 */
2725 warn:
2726 			WARN_ON_ONCE(1);
2727 			clear_page(kaddr);
2728 		}
2729 	}
2730 
2731 	ret = true;
2732 
2733 pte_unlock:
2734 	if (locked)
2735 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2736 	kunmap_atomic(kaddr);
2737 	flush_dcache_page(dst);
2738 
2739 	return ret;
2740 }
2741 
2742 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2743 {
2744 	struct file *vm_file = vma->vm_file;
2745 
2746 	if (vm_file)
2747 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2748 
2749 	/*
2750 	 * Special mappings (e.g. VDSO) do not have any file so fake
2751 	 * a default GFP_KERNEL for them.
2752 	 */
2753 	return GFP_KERNEL;
2754 }
2755 
2756 /*
2757  * Notify the address space that the page is about to become writable so that
2758  * it can prohibit this or wait for the page to get into an appropriate state.
2759  *
2760  * We do this without the lock held, so that it can sleep if it needs to.
2761  */
2762 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2763 {
2764 	vm_fault_t ret;
2765 	struct page *page = vmf->page;
2766 	unsigned int old_flags = vmf->flags;
2767 
2768 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2769 
2770 	if (vmf->vma->vm_file &&
2771 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2772 		return VM_FAULT_SIGBUS;
2773 
2774 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2775 	/* Restore original flags so that caller is not surprised */
2776 	vmf->flags = old_flags;
2777 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2778 		return ret;
2779 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2780 		lock_page(page);
2781 		if (!page->mapping) {
2782 			unlock_page(page);
2783 			return 0; /* retry */
2784 		}
2785 		ret |= VM_FAULT_LOCKED;
2786 	} else
2787 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2788 	return ret;
2789 }
2790 
2791 /*
2792  * Handle dirtying of a page in shared file mapping on a write fault.
2793  *
2794  * The function expects the page to be locked and unlocks it.
2795  */
2796 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2797 {
2798 	struct vm_area_struct *vma = vmf->vma;
2799 	struct address_space *mapping;
2800 	struct page *page = vmf->page;
2801 	bool dirtied;
2802 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2803 
2804 	dirtied = set_page_dirty(page);
2805 	VM_BUG_ON_PAGE(PageAnon(page), page);
2806 	/*
2807 	 * Take a local copy of the address_space - page.mapping may be zeroed
2808 	 * by truncate after unlock_page().   The address_space itself remains
2809 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2810 	 * release semantics to prevent the compiler from undoing this copying.
2811 	 */
2812 	mapping = page_rmapping(page);
2813 	unlock_page(page);
2814 
2815 	if (!page_mkwrite)
2816 		file_update_time(vma->vm_file);
2817 
2818 	/*
2819 	 * Throttle page dirtying rate down to writeback speed.
2820 	 *
2821 	 * mapping may be NULL here because some device drivers do not
2822 	 * set page.mapping but still dirty their pages
2823 	 *
2824 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2825 	 * is pinning the mapping, as per above.
2826 	 */
2827 	if ((dirtied || page_mkwrite) && mapping) {
2828 		struct file *fpin;
2829 
2830 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2831 		balance_dirty_pages_ratelimited(mapping);
2832 		if (fpin) {
2833 			fput(fpin);
2834 			return VM_FAULT_RETRY;
2835 		}
2836 	}
2837 
2838 	return 0;
2839 }
2840 
2841 /*
2842  * Handle write page faults for pages that can be reused in the current vma
2843  *
2844  * This can happen either due to the mapping being with the VM_SHARED flag,
2845  * or due to us being the last reference standing to the page. In either
2846  * case, all we need to do here is to mark the page as writable and update
2847  * any related book-keeping.
2848  */
2849 static inline void wp_page_reuse(struct vm_fault *vmf)
2850 	__releases(vmf->ptl)
2851 {
2852 	struct vm_area_struct *vma = vmf->vma;
2853 	struct page *page = vmf->page;
2854 	pte_t entry;
2855 	/*
2856 	 * Clear the pages cpupid information as the existing
2857 	 * information potentially belongs to a now completely
2858 	 * unrelated process.
2859 	 */
2860 	if (page)
2861 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2862 
2863 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2864 	entry = pte_mkyoung(vmf->orig_pte);
2865 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2866 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2867 		update_mmu_cache(vma, vmf->address, vmf->pte);
2868 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2869 	count_vm_event(PGREUSE);
2870 }
2871 
2872 /*
2873  * Handle the case of a page which we actually need to copy to a new page.
2874  *
2875  * Called with mmap_lock locked and the old page referenced, but
2876  * without the ptl held.
2877  *
2878  * High level logic flow:
2879  *
2880  * - Allocate a page, copy the content of the old page to the new one.
2881  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2882  * - Take the PTL. If the pte changed, bail out and release the allocated page
2883  * - If the pte is still the way we remember it, update the page table and all
2884  *   relevant references. This includes dropping the reference the page-table
2885  *   held to the old page, as well as updating the rmap.
2886  * - In any case, unlock the PTL and drop the reference we took to the old page.
2887  */
2888 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2889 {
2890 	struct vm_area_struct *vma = vmf->vma;
2891 	struct mm_struct *mm = vma->vm_mm;
2892 	struct page *old_page = vmf->page;
2893 	struct page *new_page = NULL;
2894 	pte_t entry;
2895 	int page_copied = 0;
2896 	struct mmu_notifier_range range;
2897 
2898 	if (unlikely(anon_vma_prepare(vma)))
2899 		goto oom;
2900 
2901 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2902 		new_page = alloc_zeroed_user_highpage_movable(vma,
2903 							      vmf->address);
2904 		if (!new_page)
2905 			goto oom;
2906 	} else {
2907 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2908 				vmf->address);
2909 		if (!new_page)
2910 			goto oom;
2911 
2912 		if (!cow_user_page(new_page, old_page, vmf)) {
2913 			/*
2914 			 * COW failed, if the fault was solved by other,
2915 			 * it's fine. If not, userspace would re-fault on
2916 			 * the same address and we will handle the fault
2917 			 * from the second attempt.
2918 			 */
2919 			put_page(new_page);
2920 			if (old_page)
2921 				put_page(old_page);
2922 			return 0;
2923 		}
2924 	}
2925 
2926 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2927 		goto oom_free_new;
2928 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2929 
2930 	__SetPageUptodate(new_page);
2931 
2932 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2933 				vmf->address & PAGE_MASK,
2934 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2935 	mmu_notifier_invalidate_range_start(&range);
2936 
2937 	/*
2938 	 * Re-check the pte - we dropped the lock
2939 	 */
2940 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2941 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2942 		if (old_page) {
2943 			if (!PageAnon(old_page)) {
2944 				dec_mm_counter_fast(mm,
2945 						mm_counter_file(old_page));
2946 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2947 			}
2948 		} else {
2949 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2950 		}
2951 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2952 		entry = mk_pte(new_page, vma->vm_page_prot);
2953 		entry = pte_sw_mkyoung(entry);
2954 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2955 
2956 		/*
2957 		 * Clear the pte entry and flush it first, before updating the
2958 		 * pte with the new entry, to keep TLBs on different CPUs in
2959 		 * sync. This code used to set the new PTE then flush TLBs, but
2960 		 * that left a window where the new PTE could be loaded into
2961 		 * some TLBs while the old PTE remains in others.
2962 		 */
2963 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2964 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2965 		lru_cache_add_inactive_or_unevictable(new_page, vma);
2966 		/*
2967 		 * We call the notify macro here because, when using secondary
2968 		 * mmu page tables (such as kvm shadow page tables), we want the
2969 		 * new page to be mapped directly into the secondary page table.
2970 		 */
2971 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2972 		update_mmu_cache(vma, vmf->address, vmf->pte);
2973 		if (old_page) {
2974 			/*
2975 			 * Only after switching the pte to the new page may
2976 			 * we remove the mapcount here. Otherwise another
2977 			 * process may come and find the rmap count decremented
2978 			 * before the pte is switched to the new page, and
2979 			 * "reuse" the old page writing into it while our pte
2980 			 * here still points into it and can be read by other
2981 			 * threads.
2982 			 *
2983 			 * The critical issue is to order this
2984 			 * page_remove_rmap with the ptp_clear_flush above.
2985 			 * Those stores are ordered by (if nothing else,)
2986 			 * the barrier present in the atomic_add_negative
2987 			 * in page_remove_rmap.
2988 			 *
2989 			 * Then the TLB flush in ptep_clear_flush ensures that
2990 			 * no process can access the old page before the
2991 			 * decremented mapcount is visible. And the old page
2992 			 * cannot be reused until after the decremented
2993 			 * mapcount is visible. So transitively, TLBs to
2994 			 * old page will be flushed before it can be reused.
2995 			 */
2996 			page_remove_rmap(old_page, false);
2997 		}
2998 
2999 		/* Free the old page.. */
3000 		new_page = old_page;
3001 		page_copied = 1;
3002 	} else {
3003 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3004 	}
3005 
3006 	if (new_page)
3007 		put_page(new_page);
3008 
3009 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3010 	/*
3011 	 * No need to double call mmu_notifier->invalidate_range() callback as
3012 	 * the above ptep_clear_flush_notify() did already call it.
3013 	 */
3014 	mmu_notifier_invalidate_range_only_end(&range);
3015 	if (old_page) {
3016 		/*
3017 		 * Don't let another task, with possibly unlocked vma,
3018 		 * keep the mlocked page.
3019 		 */
3020 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3021 			lock_page(old_page);	/* LRU manipulation */
3022 			if (PageMlocked(old_page))
3023 				munlock_vma_page(old_page);
3024 			unlock_page(old_page);
3025 		}
3026 		put_page(old_page);
3027 	}
3028 	return page_copied ? VM_FAULT_WRITE : 0;
3029 oom_free_new:
3030 	put_page(new_page);
3031 oom:
3032 	if (old_page)
3033 		put_page(old_page);
3034 	return VM_FAULT_OOM;
3035 }
3036 
3037 /**
3038  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3039  *			  writeable once the page is prepared
3040  *
3041  * @vmf: structure describing the fault
3042  *
3043  * This function handles all that is needed to finish a write page fault in a
3044  * shared mapping due to PTE being read-only once the mapped page is prepared.
3045  * It handles locking of PTE and modifying it.
3046  *
3047  * The function expects the page to be locked or other protection against
3048  * concurrent faults / writeback (such as DAX radix tree locks).
3049  *
3050  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3051  * we acquired PTE lock.
3052  */
3053 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3054 {
3055 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3056 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3057 				       &vmf->ptl);
3058 	/*
3059 	 * We might have raced with another page fault while we released the
3060 	 * pte_offset_map_lock.
3061 	 */
3062 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3063 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3064 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3065 		return VM_FAULT_NOPAGE;
3066 	}
3067 	wp_page_reuse(vmf);
3068 	return 0;
3069 }
3070 
3071 /*
3072  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3073  * mapping
3074  */
3075 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3076 {
3077 	struct vm_area_struct *vma = vmf->vma;
3078 
3079 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3080 		vm_fault_t ret;
3081 
3082 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3083 		vmf->flags |= FAULT_FLAG_MKWRITE;
3084 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3085 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3086 			return ret;
3087 		return finish_mkwrite_fault(vmf);
3088 	}
3089 	wp_page_reuse(vmf);
3090 	return VM_FAULT_WRITE;
3091 }
3092 
3093 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3094 	__releases(vmf->ptl)
3095 {
3096 	struct vm_area_struct *vma = vmf->vma;
3097 	vm_fault_t ret = VM_FAULT_WRITE;
3098 
3099 	get_page(vmf->page);
3100 
3101 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3102 		vm_fault_t tmp;
3103 
3104 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3105 		tmp = do_page_mkwrite(vmf);
3106 		if (unlikely(!tmp || (tmp &
3107 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3108 			put_page(vmf->page);
3109 			return tmp;
3110 		}
3111 		tmp = finish_mkwrite_fault(vmf);
3112 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3113 			unlock_page(vmf->page);
3114 			put_page(vmf->page);
3115 			return tmp;
3116 		}
3117 	} else {
3118 		wp_page_reuse(vmf);
3119 		lock_page(vmf->page);
3120 	}
3121 	ret |= fault_dirty_shared_page(vmf);
3122 	put_page(vmf->page);
3123 
3124 	return ret;
3125 }
3126 
3127 /*
3128  * This routine handles present pages, when users try to write
3129  * to a shared page. It is done by copying the page to a new address
3130  * and decrementing the shared-page counter for the old page.
3131  *
3132  * Note that this routine assumes that the protection checks have been
3133  * done by the caller (the low-level page fault routine in most cases).
3134  * Thus we can safely just mark it writable once we've done any necessary
3135  * COW.
3136  *
3137  * We also mark the page dirty at this point even though the page will
3138  * change only once the write actually happens. This avoids a few races,
3139  * and potentially makes it more efficient.
3140  *
3141  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3142  * but allow concurrent faults), with pte both mapped and locked.
3143  * We return with mmap_lock still held, but pte unmapped and unlocked.
3144  */
3145 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3146 	__releases(vmf->ptl)
3147 {
3148 	struct vm_area_struct *vma = vmf->vma;
3149 
3150 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3151 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3152 		return handle_userfault(vmf, VM_UFFD_WP);
3153 	}
3154 
3155 	/*
3156 	 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3157 	 * is flushed in this case before copying.
3158 	 */
3159 	if (unlikely(userfaultfd_wp(vmf->vma) &&
3160 		     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3161 		flush_tlb_page(vmf->vma, vmf->address);
3162 
3163 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3164 	if (!vmf->page) {
3165 		/*
3166 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3167 		 * VM_PFNMAP VMA.
3168 		 *
3169 		 * We should not cow pages in a shared writeable mapping.
3170 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3171 		 */
3172 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3173 				     (VM_WRITE|VM_SHARED))
3174 			return wp_pfn_shared(vmf);
3175 
3176 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3177 		return wp_page_copy(vmf);
3178 	}
3179 
3180 	/*
3181 	 * Take out anonymous pages first, anonymous shared vmas are
3182 	 * not dirty accountable.
3183 	 */
3184 	if (PageAnon(vmf->page)) {
3185 		struct page *page = vmf->page;
3186 
3187 		/* PageKsm() doesn't necessarily raise the page refcount */
3188 		if (PageKsm(page) || page_count(page) != 1)
3189 			goto copy;
3190 		if (!trylock_page(page))
3191 			goto copy;
3192 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3193 			unlock_page(page);
3194 			goto copy;
3195 		}
3196 		/*
3197 		 * Ok, we've got the only map reference, and the only
3198 		 * page count reference, and the page is locked,
3199 		 * it's dark out, and we're wearing sunglasses. Hit it.
3200 		 */
3201 		unlock_page(page);
3202 		wp_page_reuse(vmf);
3203 		return VM_FAULT_WRITE;
3204 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3205 					(VM_WRITE|VM_SHARED))) {
3206 		return wp_page_shared(vmf);
3207 	}
3208 copy:
3209 	/*
3210 	 * Ok, we need to copy. Oh, well..
3211 	 */
3212 	get_page(vmf->page);
3213 
3214 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3215 	return wp_page_copy(vmf);
3216 }
3217 
3218 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3219 		unsigned long start_addr, unsigned long end_addr,
3220 		struct zap_details *details)
3221 {
3222 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3223 }
3224 
3225 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3226 					    struct zap_details *details)
3227 {
3228 	struct vm_area_struct *vma;
3229 	pgoff_t vba, vea, zba, zea;
3230 
3231 	vma_interval_tree_foreach(vma, root,
3232 			details->first_index, details->last_index) {
3233 
3234 		vba = vma->vm_pgoff;
3235 		vea = vba + vma_pages(vma) - 1;
3236 		zba = details->first_index;
3237 		if (zba < vba)
3238 			zba = vba;
3239 		zea = details->last_index;
3240 		if (zea > vea)
3241 			zea = vea;
3242 
3243 		unmap_mapping_range_vma(vma,
3244 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3245 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3246 				details);
3247 	}
3248 }
3249 
3250 /**
3251  * unmap_mapping_page() - Unmap single page from processes.
3252  * @page: The locked page to be unmapped.
3253  *
3254  * Unmap this page from any userspace process which still has it mmaped.
3255  * Typically, for efficiency, the range of nearby pages has already been
3256  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3257  * truncation or invalidation holds the lock on a page, it may find that
3258  * the page has been remapped again: and then uses unmap_mapping_page()
3259  * to unmap it finally.
3260  */
3261 void unmap_mapping_page(struct page *page)
3262 {
3263 	struct address_space *mapping = page->mapping;
3264 	struct zap_details details = { };
3265 
3266 	VM_BUG_ON(!PageLocked(page));
3267 	VM_BUG_ON(PageTail(page));
3268 
3269 	details.check_mapping = mapping;
3270 	details.first_index = page->index;
3271 	details.last_index = page->index + thp_nr_pages(page) - 1;
3272 	details.single_page = page;
3273 
3274 	i_mmap_lock_write(mapping);
3275 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3276 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3277 	i_mmap_unlock_write(mapping);
3278 }
3279 
3280 /**
3281  * unmap_mapping_pages() - Unmap pages from processes.
3282  * @mapping: The address space containing pages to be unmapped.
3283  * @start: Index of first page to be unmapped.
3284  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3285  * @even_cows: Whether to unmap even private COWed pages.
3286  *
3287  * Unmap the pages in this address space from any userspace process which
3288  * has them mmaped.  Generally, you want to remove COWed pages as well when
3289  * a file is being truncated, but not when invalidating pages from the page
3290  * cache.
3291  */
3292 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3293 		pgoff_t nr, bool even_cows)
3294 {
3295 	struct zap_details details = { };
3296 
3297 	details.check_mapping = even_cows ? NULL : mapping;
3298 	details.first_index = start;
3299 	details.last_index = start + nr - 1;
3300 	if (details.last_index < details.first_index)
3301 		details.last_index = ULONG_MAX;
3302 
3303 	i_mmap_lock_write(mapping);
3304 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3305 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3306 	i_mmap_unlock_write(mapping);
3307 }
3308 
3309 /**
3310  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3311  * address_space corresponding to the specified byte range in the underlying
3312  * file.
3313  *
3314  * @mapping: the address space containing mmaps to be unmapped.
3315  * @holebegin: byte in first page to unmap, relative to the start of
3316  * the underlying file.  This will be rounded down to a PAGE_SIZE
3317  * boundary.  Note that this is different from truncate_pagecache(), which
3318  * must keep the partial page.  In contrast, we must get rid of
3319  * partial pages.
3320  * @holelen: size of prospective hole in bytes.  This will be rounded
3321  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3322  * end of the file.
3323  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3324  * but 0 when invalidating pagecache, don't throw away private data.
3325  */
3326 void unmap_mapping_range(struct address_space *mapping,
3327 		loff_t const holebegin, loff_t const holelen, int even_cows)
3328 {
3329 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3330 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3331 
3332 	/* Check for overflow. */
3333 	if (sizeof(holelen) > sizeof(hlen)) {
3334 		long long holeend =
3335 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3336 		if (holeend & ~(long long)ULONG_MAX)
3337 			hlen = ULONG_MAX - hba + 1;
3338 	}
3339 
3340 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3341 }
3342 EXPORT_SYMBOL(unmap_mapping_range);
3343 
3344 /*
3345  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3346  * but allow concurrent faults), and pte mapped but not yet locked.
3347  * We return with pte unmapped and unlocked.
3348  *
3349  * We return with the mmap_lock locked or unlocked in the same cases
3350  * as does filemap_fault().
3351  */
3352 vm_fault_t do_swap_page(struct vm_fault *vmf)
3353 {
3354 	struct vm_area_struct *vma = vmf->vma;
3355 	struct page *page = NULL, *swapcache;
3356 	swp_entry_t entry;
3357 	pte_t pte;
3358 	int locked;
3359 	int exclusive = 0;
3360 	vm_fault_t ret = 0;
3361 	void *shadow = NULL;
3362 
3363 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3364 		goto out;
3365 
3366 	entry = pte_to_swp_entry(vmf->orig_pte);
3367 	if (unlikely(non_swap_entry(entry))) {
3368 		if (is_migration_entry(entry)) {
3369 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3370 					     vmf->address);
3371 		} else if (is_device_private_entry(entry)) {
3372 			vmf->page = device_private_entry_to_page(entry);
3373 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3374 		} else if (is_hwpoison_entry(entry)) {
3375 			ret = VM_FAULT_HWPOISON;
3376 		} else {
3377 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3378 			ret = VM_FAULT_SIGBUS;
3379 		}
3380 		goto out;
3381 	}
3382 
3383 
3384 	delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3385 	page = lookup_swap_cache(entry, vma, vmf->address);
3386 	swapcache = page;
3387 
3388 	if (!page) {
3389 		struct swap_info_struct *si = swp_swap_info(entry);
3390 
3391 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3392 		    __swap_count(entry) == 1) {
3393 			/* skip swapcache */
3394 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3395 							vmf->address);
3396 			if (page) {
3397 				__SetPageLocked(page);
3398 				__SetPageSwapBacked(page);
3399 
3400 				if (mem_cgroup_swapin_charge_page(page,
3401 					vma->vm_mm, GFP_KERNEL, entry)) {
3402 					ret = VM_FAULT_OOM;
3403 					goto out_page;
3404 				}
3405 				mem_cgroup_swapin_uncharge_swap(entry);
3406 
3407 				shadow = get_shadow_from_swap_cache(entry);
3408 				if (shadow)
3409 					workingset_refault(page, shadow);
3410 
3411 				lru_cache_add(page);
3412 
3413 				/* To provide entry to swap_readpage() */
3414 				set_page_private(page, entry.val);
3415 				swap_readpage(page, true);
3416 				set_page_private(page, 0);
3417 			}
3418 		} else {
3419 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3420 						vmf);
3421 			swapcache = page;
3422 		}
3423 
3424 		if (!page) {
3425 			/*
3426 			 * Back out if somebody else faulted in this pte
3427 			 * while we released the pte lock.
3428 			 */
3429 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3430 					vmf->address, &vmf->ptl);
3431 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3432 				ret = VM_FAULT_OOM;
3433 			delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3434 			goto unlock;
3435 		}
3436 
3437 		/* Had to read the page from swap area: Major fault */
3438 		ret = VM_FAULT_MAJOR;
3439 		count_vm_event(PGMAJFAULT);
3440 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3441 	} else if (PageHWPoison(page)) {
3442 		/*
3443 		 * hwpoisoned dirty swapcache pages are kept for killing
3444 		 * owner processes (which may be unknown at hwpoison time)
3445 		 */
3446 		ret = VM_FAULT_HWPOISON;
3447 		delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3448 		goto out_release;
3449 	}
3450 
3451 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3452 
3453 	delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3454 	if (!locked) {
3455 		ret |= VM_FAULT_RETRY;
3456 		goto out_release;
3457 	}
3458 
3459 	/*
3460 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3461 	 * release the swapcache from under us.  The page pin, and pte_same
3462 	 * test below, are not enough to exclude that.  Even if it is still
3463 	 * swapcache, we need to check that the page's swap has not changed.
3464 	 */
3465 	if (unlikely((!PageSwapCache(page) ||
3466 			page_private(page) != entry.val)) && swapcache)
3467 		goto out_page;
3468 
3469 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3470 	if (unlikely(!page)) {
3471 		ret = VM_FAULT_OOM;
3472 		page = swapcache;
3473 		goto out_page;
3474 	}
3475 
3476 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3477 
3478 	/*
3479 	 * Back out if somebody else already faulted in this pte.
3480 	 */
3481 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3482 			&vmf->ptl);
3483 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3484 		goto out_nomap;
3485 
3486 	if (unlikely(!PageUptodate(page))) {
3487 		ret = VM_FAULT_SIGBUS;
3488 		goto out_nomap;
3489 	}
3490 
3491 	/*
3492 	 * The page isn't present yet, go ahead with the fault.
3493 	 *
3494 	 * Be careful about the sequence of operations here.
3495 	 * To get its accounting right, reuse_swap_page() must be called
3496 	 * while the page is counted on swap but not yet in mapcount i.e.
3497 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3498 	 * must be called after the swap_free(), or it will never succeed.
3499 	 */
3500 
3501 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3502 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3503 	pte = mk_pte(page, vma->vm_page_prot);
3504 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3505 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3506 		vmf->flags &= ~FAULT_FLAG_WRITE;
3507 		ret |= VM_FAULT_WRITE;
3508 		exclusive = RMAP_EXCLUSIVE;
3509 	}
3510 	flush_icache_page(vma, page);
3511 	if (pte_swp_soft_dirty(vmf->orig_pte))
3512 		pte = pte_mksoft_dirty(pte);
3513 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3514 		pte = pte_mkuffd_wp(pte);
3515 		pte = pte_wrprotect(pte);
3516 	}
3517 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3518 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3519 	vmf->orig_pte = pte;
3520 
3521 	/* ksm created a completely new copy */
3522 	if (unlikely(page != swapcache && swapcache)) {
3523 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3524 		lru_cache_add_inactive_or_unevictable(page, vma);
3525 	} else {
3526 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3527 	}
3528 
3529 	swap_free(entry);
3530 	if (mem_cgroup_swap_full(page) ||
3531 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3532 		try_to_free_swap(page);
3533 	unlock_page(page);
3534 	if (page != swapcache && swapcache) {
3535 		/*
3536 		 * Hold the lock to avoid the swap entry to be reused
3537 		 * until we take the PT lock for the pte_same() check
3538 		 * (to avoid false positives from pte_same). For
3539 		 * further safety release the lock after the swap_free
3540 		 * so that the swap count won't change under a
3541 		 * parallel locked swapcache.
3542 		 */
3543 		unlock_page(swapcache);
3544 		put_page(swapcache);
3545 	}
3546 
3547 	if (vmf->flags & FAULT_FLAG_WRITE) {
3548 		ret |= do_wp_page(vmf);
3549 		if (ret & VM_FAULT_ERROR)
3550 			ret &= VM_FAULT_ERROR;
3551 		goto out;
3552 	}
3553 
3554 	/* No need to invalidate - it was non-present before */
3555 	update_mmu_cache(vma, vmf->address, vmf->pte);
3556 unlock:
3557 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3558 out:
3559 	return ret;
3560 out_nomap:
3561 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3562 out_page:
3563 	unlock_page(page);
3564 out_release:
3565 	put_page(page);
3566 	if (page != swapcache && swapcache) {
3567 		unlock_page(swapcache);
3568 		put_page(swapcache);
3569 	}
3570 	return ret;
3571 }
3572 
3573 /*
3574  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3575  * but allow concurrent faults), and pte mapped but not yet locked.
3576  * We return with mmap_lock still held, but pte unmapped and unlocked.
3577  */
3578 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3579 {
3580 	struct vm_area_struct *vma = vmf->vma;
3581 	struct page *page;
3582 	vm_fault_t ret = 0;
3583 	pte_t entry;
3584 
3585 	/* File mapping without ->vm_ops ? */
3586 	if (vma->vm_flags & VM_SHARED)
3587 		return VM_FAULT_SIGBUS;
3588 
3589 	/*
3590 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3591 	 * pte_offset_map() on pmds where a huge pmd might be created
3592 	 * from a different thread.
3593 	 *
3594 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3595 	 * parallel threads are excluded by other means.
3596 	 *
3597 	 * Here we only have mmap_read_lock(mm).
3598 	 */
3599 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3600 		return VM_FAULT_OOM;
3601 
3602 	/* See comment in handle_pte_fault() */
3603 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3604 		return 0;
3605 
3606 	/* Use the zero-page for reads */
3607 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3608 			!mm_forbids_zeropage(vma->vm_mm)) {
3609 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3610 						vma->vm_page_prot));
3611 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3612 				vmf->address, &vmf->ptl);
3613 		if (!pte_none(*vmf->pte)) {
3614 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3615 			goto unlock;
3616 		}
3617 		ret = check_stable_address_space(vma->vm_mm);
3618 		if (ret)
3619 			goto unlock;
3620 		/* Deliver the page fault to userland, check inside PT lock */
3621 		if (userfaultfd_missing(vma)) {
3622 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3623 			return handle_userfault(vmf, VM_UFFD_MISSING);
3624 		}
3625 		goto setpte;
3626 	}
3627 
3628 	/* Allocate our own private page. */
3629 	if (unlikely(anon_vma_prepare(vma)))
3630 		goto oom;
3631 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3632 	if (!page)
3633 		goto oom;
3634 
3635 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3636 		goto oom_free_page;
3637 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3638 
3639 	/*
3640 	 * The memory barrier inside __SetPageUptodate makes sure that
3641 	 * preceding stores to the page contents become visible before
3642 	 * the set_pte_at() write.
3643 	 */
3644 	__SetPageUptodate(page);
3645 
3646 	entry = mk_pte(page, vma->vm_page_prot);
3647 	entry = pte_sw_mkyoung(entry);
3648 	if (vma->vm_flags & VM_WRITE)
3649 		entry = pte_mkwrite(pte_mkdirty(entry));
3650 
3651 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3652 			&vmf->ptl);
3653 	if (!pte_none(*vmf->pte)) {
3654 		update_mmu_cache(vma, vmf->address, vmf->pte);
3655 		goto release;
3656 	}
3657 
3658 	ret = check_stable_address_space(vma->vm_mm);
3659 	if (ret)
3660 		goto release;
3661 
3662 	/* Deliver the page fault to userland, check inside PT lock */
3663 	if (userfaultfd_missing(vma)) {
3664 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3665 		put_page(page);
3666 		return handle_userfault(vmf, VM_UFFD_MISSING);
3667 	}
3668 
3669 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3670 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3671 	lru_cache_add_inactive_or_unevictable(page, vma);
3672 setpte:
3673 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3674 
3675 	/* No need to invalidate - it was non-present before */
3676 	update_mmu_cache(vma, vmf->address, vmf->pte);
3677 unlock:
3678 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3679 	return ret;
3680 release:
3681 	put_page(page);
3682 	goto unlock;
3683 oom_free_page:
3684 	put_page(page);
3685 oom:
3686 	return VM_FAULT_OOM;
3687 }
3688 
3689 /*
3690  * The mmap_lock must have been held on entry, and may have been
3691  * released depending on flags and vma->vm_ops->fault() return value.
3692  * See filemap_fault() and __lock_page_retry().
3693  */
3694 static vm_fault_t __do_fault(struct vm_fault *vmf)
3695 {
3696 	struct vm_area_struct *vma = vmf->vma;
3697 	vm_fault_t ret;
3698 
3699 	/*
3700 	 * Preallocate pte before we take page_lock because this might lead to
3701 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3702 	 *				lock_page(A)
3703 	 *				SetPageWriteback(A)
3704 	 *				unlock_page(A)
3705 	 * lock_page(B)
3706 	 *				lock_page(B)
3707 	 * pte_alloc_one
3708 	 *   shrink_page_list
3709 	 *     wait_on_page_writeback(A)
3710 	 *				SetPageWriteback(B)
3711 	 *				unlock_page(B)
3712 	 *				# flush A, B to clear the writeback
3713 	 */
3714 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3715 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3716 		if (!vmf->prealloc_pte)
3717 			return VM_FAULT_OOM;
3718 		smp_wmb(); /* See comment in __pte_alloc() */
3719 	}
3720 
3721 	ret = vma->vm_ops->fault(vmf);
3722 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3723 			    VM_FAULT_DONE_COW)))
3724 		return ret;
3725 
3726 	if (unlikely(PageHWPoison(vmf->page))) {
3727 		if (ret & VM_FAULT_LOCKED)
3728 			unlock_page(vmf->page);
3729 		put_page(vmf->page);
3730 		vmf->page = NULL;
3731 		return VM_FAULT_HWPOISON;
3732 	}
3733 
3734 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3735 		lock_page(vmf->page);
3736 	else
3737 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3738 
3739 	return ret;
3740 }
3741 
3742 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3743 static void deposit_prealloc_pte(struct vm_fault *vmf)
3744 {
3745 	struct vm_area_struct *vma = vmf->vma;
3746 
3747 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3748 	/*
3749 	 * We are going to consume the prealloc table,
3750 	 * count that as nr_ptes.
3751 	 */
3752 	mm_inc_nr_ptes(vma->vm_mm);
3753 	vmf->prealloc_pte = NULL;
3754 }
3755 
3756 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3757 {
3758 	struct vm_area_struct *vma = vmf->vma;
3759 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3760 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3761 	pmd_t entry;
3762 	int i;
3763 	vm_fault_t ret = VM_FAULT_FALLBACK;
3764 
3765 	if (!transhuge_vma_suitable(vma, haddr))
3766 		return ret;
3767 
3768 	page = compound_head(page);
3769 	if (compound_order(page) != HPAGE_PMD_ORDER)
3770 		return ret;
3771 
3772 	/*
3773 	 * Archs like ppc64 need additional space to store information
3774 	 * related to pte entry. Use the preallocated table for that.
3775 	 */
3776 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3777 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3778 		if (!vmf->prealloc_pte)
3779 			return VM_FAULT_OOM;
3780 		smp_wmb(); /* See comment in __pte_alloc() */
3781 	}
3782 
3783 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3784 	if (unlikely(!pmd_none(*vmf->pmd)))
3785 		goto out;
3786 
3787 	for (i = 0; i < HPAGE_PMD_NR; i++)
3788 		flush_icache_page(vma, page + i);
3789 
3790 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3791 	if (write)
3792 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3793 
3794 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3795 	page_add_file_rmap(page, true);
3796 	/*
3797 	 * deposit and withdraw with pmd lock held
3798 	 */
3799 	if (arch_needs_pgtable_deposit())
3800 		deposit_prealloc_pte(vmf);
3801 
3802 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3803 
3804 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3805 
3806 	/* fault is handled */
3807 	ret = 0;
3808 	count_vm_event(THP_FILE_MAPPED);
3809 out:
3810 	spin_unlock(vmf->ptl);
3811 	return ret;
3812 }
3813 #else
3814 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3815 {
3816 	return VM_FAULT_FALLBACK;
3817 }
3818 #endif
3819 
3820 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3821 {
3822 	struct vm_area_struct *vma = vmf->vma;
3823 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3824 	bool prefault = vmf->address != addr;
3825 	pte_t entry;
3826 
3827 	flush_icache_page(vma, page);
3828 	entry = mk_pte(page, vma->vm_page_prot);
3829 
3830 	if (prefault && arch_wants_old_prefaulted_pte())
3831 		entry = pte_mkold(entry);
3832 	else
3833 		entry = pte_sw_mkyoung(entry);
3834 
3835 	if (write)
3836 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3837 	/* copy-on-write page */
3838 	if (write && !(vma->vm_flags & VM_SHARED)) {
3839 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3840 		page_add_new_anon_rmap(page, vma, addr, false);
3841 		lru_cache_add_inactive_or_unevictable(page, vma);
3842 	} else {
3843 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3844 		page_add_file_rmap(page, false);
3845 	}
3846 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3847 }
3848 
3849 /**
3850  * finish_fault - finish page fault once we have prepared the page to fault
3851  *
3852  * @vmf: structure describing the fault
3853  *
3854  * This function handles all that is needed to finish a page fault once the
3855  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3856  * given page, adds reverse page mapping, handles memcg charges and LRU
3857  * addition.
3858  *
3859  * The function expects the page to be locked and on success it consumes a
3860  * reference of a page being mapped (for the PTE which maps it).
3861  *
3862  * Return: %0 on success, %VM_FAULT_ code in case of error.
3863  */
3864 vm_fault_t finish_fault(struct vm_fault *vmf)
3865 {
3866 	struct vm_area_struct *vma = vmf->vma;
3867 	struct page *page;
3868 	vm_fault_t ret;
3869 
3870 	/* Did we COW the page? */
3871 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3872 		page = vmf->cow_page;
3873 	else
3874 		page = vmf->page;
3875 
3876 	/*
3877 	 * check even for read faults because we might have lost our CoWed
3878 	 * page
3879 	 */
3880 	if (!(vma->vm_flags & VM_SHARED)) {
3881 		ret = check_stable_address_space(vma->vm_mm);
3882 		if (ret)
3883 			return ret;
3884 	}
3885 
3886 	if (pmd_none(*vmf->pmd)) {
3887 		if (PageTransCompound(page)) {
3888 			ret = do_set_pmd(vmf, page);
3889 			if (ret != VM_FAULT_FALLBACK)
3890 				return ret;
3891 		}
3892 
3893 		if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3894 			return VM_FAULT_OOM;
3895 	}
3896 
3897 	/* See comment in handle_pte_fault() */
3898 	if (pmd_devmap_trans_unstable(vmf->pmd))
3899 		return 0;
3900 
3901 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3902 				      vmf->address, &vmf->ptl);
3903 	ret = 0;
3904 	/* Re-check under ptl */
3905 	if (likely(pte_none(*vmf->pte)))
3906 		do_set_pte(vmf, page, vmf->address);
3907 	else
3908 		ret = VM_FAULT_NOPAGE;
3909 
3910 	update_mmu_tlb(vma, vmf->address, vmf->pte);
3911 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3912 	return ret;
3913 }
3914 
3915 static unsigned long fault_around_bytes __read_mostly =
3916 	rounddown_pow_of_two(65536);
3917 
3918 #ifdef CONFIG_DEBUG_FS
3919 static int fault_around_bytes_get(void *data, u64 *val)
3920 {
3921 	*val = fault_around_bytes;
3922 	return 0;
3923 }
3924 
3925 /*
3926  * fault_around_bytes must be rounded down to the nearest page order as it's
3927  * what do_fault_around() expects to see.
3928  */
3929 static int fault_around_bytes_set(void *data, u64 val)
3930 {
3931 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3932 		return -EINVAL;
3933 	if (val > PAGE_SIZE)
3934 		fault_around_bytes = rounddown_pow_of_two(val);
3935 	else
3936 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3937 	return 0;
3938 }
3939 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3940 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3941 
3942 static int __init fault_around_debugfs(void)
3943 {
3944 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3945 				   &fault_around_bytes_fops);
3946 	return 0;
3947 }
3948 late_initcall(fault_around_debugfs);
3949 #endif
3950 
3951 /*
3952  * do_fault_around() tries to map few pages around the fault address. The hope
3953  * is that the pages will be needed soon and this will lower the number of
3954  * faults to handle.
3955  *
3956  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3957  * not ready to be mapped: not up-to-date, locked, etc.
3958  *
3959  * This function is called with the page table lock taken. In the split ptlock
3960  * case the page table lock only protects only those entries which belong to
3961  * the page table corresponding to the fault address.
3962  *
3963  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3964  * only once.
3965  *
3966  * fault_around_bytes defines how many bytes we'll try to map.
3967  * do_fault_around() expects it to be set to a power of two less than or equal
3968  * to PTRS_PER_PTE.
3969  *
3970  * The virtual address of the area that we map is naturally aligned to
3971  * fault_around_bytes rounded down to the machine page size
3972  * (and therefore to page order).  This way it's easier to guarantee
3973  * that we don't cross page table boundaries.
3974  */
3975 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3976 {
3977 	unsigned long address = vmf->address, nr_pages, mask;
3978 	pgoff_t start_pgoff = vmf->pgoff;
3979 	pgoff_t end_pgoff;
3980 	int off;
3981 
3982 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3983 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3984 
3985 	address = max(address & mask, vmf->vma->vm_start);
3986 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3987 	start_pgoff -= off;
3988 
3989 	/*
3990 	 *  end_pgoff is either the end of the page table, the end of
3991 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3992 	 */
3993 	end_pgoff = start_pgoff -
3994 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3995 		PTRS_PER_PTE - 1;
3996 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3997 			start_pgoff + nr_pages - 1);
3998 
3999 	if (pmd_none(*vmf->pmd)) {
4000 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4001 		if (!vmf->prealloc_pte)
4002 			return VM_FAULT_OOM;
4003 		smp_wmb(); /* See comment in __pte_alloc() */
4004 	}
4005 
4006 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4007 }
4008 
4009 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4010 {
4011 	struct vm_area_struct *vma = vmf->vma;
4012 	vm_fault_t ret = 0;
4013 
4014 	/*
4015 	 * Let's call ->map_pages() first and use ->fault() as fallback
4016 	 * if page by the offset is not ready to be mapped (cold cache or
4017 	 * something).
4018 	 */
4019 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4020 		ret = do_fault_around(vmf);
4021 		if (ret)
4022 			return ret;
4023 	}
4024 
4025 	ret = __do_fault(vmf);
4026 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4027 		return ret;
4028 
4029 	ret |= finish_fault(vmf);
4030 	unlock_page(vmf->page);
4031 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4032 		put_page(vmf->page);
4033 	return ret;
4034 }
4035 
4036 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4037 {
4038 	struct vm_area_struct *vma = vmf->vma;
4039 	vm_fault_t ret;
4040 
4041 	if (unlikely(anon_vma_prepare(vma)))
4042 		return VM_FAULT_OOM;
4043 
4044 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4045 	if (!vmf->cow_page)
4046 		return VM_FAULT_OOM;
4047 
4048 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4049 		put_page(vmf->cow_page);
4050 		return VM_FAULT_OOM;
4051 	}
4052 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4053 
4054 	ret = __do_fault(vmf);
4055 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4056 		goto uncharge_out;
4057 	if (ret & VM_FAULT_DONE_COW)
4058 		return ret;
4059 
4060 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4061 	__SetPageUptodate(vmf->cow_page);
4062 
4063 	ret |= finish_fault(vmf);
4064 	unlock_page(vmf->page);
4065 	put_page(vmf->page);
4066 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4067 		goto uncharge_out;
4068 	return ret;
4069 uncharge_out:
4070 	put_page(vmf->cow_page);
4071 	return ret;
4072 }
4073 
4074 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4075 {
4076 	struct vm_area_struct *vma = vmf->vma;
4077 	vm_fault_t ret, tmp;
4078 
4079 	ret = __do_fault(vmf);
4080 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4081 		return ret;
4082 
4083 	/*
4084 	 * Check if the backing address space wants to know that the page is
4085 	 * about to become writable
4086 	 */
4087 	if (vma->vm_ops->page_mkwrite) {
4088 		unlock_page(vmf->page);
4089 		tmp = do_page_mkwrite(vmf);
4090 		if (unlikely(!tmp ||
4091 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4092 			put_page(vmf->page);
4093 			return tmp;
4094 		}
4095 	}
4096 
4097 	ret |= finish_fault(vmf);
4098 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4099 					VM_FAULT_RETRY))) {
4100 		unlock_page(vmf->page);
4101 		put_page(vmf->page);
4102 		return ret;
4103 	}
4104 
4105 	ret |= fault_dirty_shared_page(vmf);
4106 	return ret;
4107 }
4108 
4109 /*
4110  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4111  * but allow concurrent faults).
4112  * The mmap_lock may have been released depending on flags and our
4113  * return value.  See filemap_fault() and __lock_page_or_retry().
4114  * If mmap_lock is released, vma may become invalid (for example
4115  * by other thread calling munmap()).
4116  */
4117 static vm_fault_t do_fault(struct vm_fault *vmf)
4118 {
4119 	struct vm_area_struct *vma = vmf->vma;
4120 	struct mm_struct *vm_mm = vma->vm_mm;
4121 	vm_fault_t ret;
4122 
4123 	/*
4124 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4125 	 */
4126 	if (!vma->vm_ops->fault) {
4127 		/*
4128 		 * If we find a migration pmd entry or a none pmd entry, which
4129 		 * should never happen, return SIGBUS
4130 		 */
4131 		if (unlikely(!pmd_present(*vmf->pmd)))
4132 			ret = VM_FAULT_SIGBUS;
4133 		else {
4134 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4135 						       vmf->pmd,
4136 						       vmf->address,
4137 						       &vmf->ptl);
4138 			/*
4139 			 * Make sure this is not a temporary clearing of pte
4140 			 * by holding ptl and checking again. A R/M/W update
4141 			 * of pte involves: take ptl, clearing the pte so that
4142 			 * we don't have concurrent modification by hardware
4143 			 * followed by an update.
4144 			 */
4145 			if (unlikely(pte_none(*vmf->pte)))
4146 				ret = VM_FAULT_SIGBUS;
4147 			else
4148 				ret = VM_FAULT_NOPAGE;
4149 
4150 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4151 		}
4152 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4153 		ret = do_read_fault(vmf);
4154 	else if (!(vma->vm_flags & VM_SHARED))
4155 		ret = do_cow_fault(vmf);
4156 	else
4157 		ret = do_shared_fault(vmf);
4158 
4159 	/* preallocated pagetable is unused: free it */
4160 	if (vmf->prealloc_pte) {
4161 		pte_free(vm_mm, vmf->prealloc_pte);
4162 		vmf->prealloc_pte = NULL;
4163 	}
4164 	return ret;
4165 }
4166 
4167 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4168 				unsigned long addr, int page_nid,
4169 				int *flags)
4170 {
4171 	get_page(page);
4172 
4173 	count_vm_numa_event(NUMA_HINT_FAULTS);
4174 	if (page_nid == numa_node_id()) {
4175 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4176 		*flags |= TNF_FAULT_LOCAL;
4177 	}
4178 
4179 	return mpol_misplaced(page, vma, addr);
4180 }
4181 
4182 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4183 {
4184 	struct vm_area_struct *vma = vmf->vma;
4185 	struct page *page = NULL;
4186 	int page_nid = NUMA_NO_NODE;
4187 	int last_cpupid;
4188 	int target_nid;
4189 	pte_t pte, old_pte;
4190 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4191 	int flags = 0;
4192 
4193 	/*
4194 	 * The "pte" at this point cannot be used safely without
4195 	 * validation through pte_unmap_same(). It's of NUMA type but
4196 	 * the pfn may be screwed if the read is non atomic.
4197 	 */
4198 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4199 	spin_lock(vmf->ptl);
4200 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4201 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4202 		goto out;
4203 	}
4204 
4205 	/* Get the normal PTE  */
4206 	old_pte = ptep_get(vmf->pte);
4207 	pte = pte_modify(old_pte, vma->vm_page_prot);
4208 
4209 	page = vm_normal_page(vma, vmf->address, pte);
4210 	if (!page)
4211 		goto out_map;
4212 
4213 	/* TODO: handle PTE-mapped THP */
4214 	if (PageCompound(page))
4215 		goto out_map;
4216 
4217 	/*
4218 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4219 	 * much anyway since they can be in shared cache state. This misses
4220 	 * the case where a mapping is writable but the process never writes
4221 	 * to it but pte_write gets cleared during protection updates and
4222 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4223 	 * background writeback, dirty balancing and application behaviour.
4224 	 */
4225 	if (!was_writable)
4226 		flags |= TNF_NO_GROUP;
4227 
4228 	/*
4229 	 * Flag if the page is shared between multiple address spaces. This
4230 	 * is later used when determining whether to group tasks together
4231 	 */
4232 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4233 		flags |= TNF_SHARED;
4234 
4235 	last_cpupid = page_cpupid_last(page);
4236 	page_nid = page_to_nid(page);
4237 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4238 			&flags);
4239 	if (target_nid == NUMA_NO_NODE) {
4240 		put_page(page);
4241 		goto out_map;
4242 	}
4243 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4244 
4245 	/* Migrate to the requested node */
4246 	if (migrate_misplaced_page(page, vma, target_nid)) {
4247 		page_nid = target_nid;
4248 		flags |= TNF_MIGRATED;
4249 	} else {
4250 		flags |= TNF_MIGRATE_FAIL;
4251 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4252 		spin_lock(vmf->ptl);
4253 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4254 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4255 			goto out;
4256 		}
4257 		goto out_map;
4258 	}
4259 
4260 out:
4261 	if (page_nid != NUMA_NO_NODE)
4262 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4263 	return 0;
4264 out_map:
4265 	/*
4266 	 * Make it present again, depending on how arch implements
4267 	 * non-accessible ptes, some can allow access by kernel mode.
4268 	 */
4269 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4270 	pte = pte_modify(old_pte, vma->vm_page_prot);
4271 	pte = pte_mkyoung(pte);
4272 	if (was_writable)
4273 		pte = pte_mkwrite(pte);
4274 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4275 	update_mmu_cache(vma, vmf->address, vmf->pte);
4276 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4277 	goto out;
4278 }
4279 
4280 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4281 {
4282 	if (vma_is_anonymous(vmf->vma))
4283 		return do_huge_pmd_anonymous_page(vmf);
4284 	if (vmf->vma->vm_ops->huge_fault)
4285 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4286 	return VM_FAULT_FALLBACK;
4287 }
4288 
4289 /* `inline' is required to avoid gcc 4.1.2 build error */
4290 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4291 {
4292 	if (vma_is_anonymous(vmf->vma)) {
4293 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4294 			return handle_userfault(vmf, VM_UFFD_WP);
4295 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4296 	}
4297 	if (vmf->vma->vm_ops->huge_fault) {
4298 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4299 
4300 		if (!(ret & VM_FAULT_FALLBACK))
4301 			return ret;
4302 	}
4303 
4304 	/* COW or write-notify handled on pte level: split pmd. */
4305 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4306 
4307 	return VM_FAULT_FALLBACK;
4308 }
4309 
4310 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4311 {
4312 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4313 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4314 	/* No support for anonymous transparent PUD pages yet */
4315 	if (vma_is_anonymous(vmf->vma))
4316 		goto split;
4317 	if (vmf->vma->vm_ops->huge_fault) {
4318 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4319 
4320 		if (!(ret & VM_FAULT_FALLBACK))
4321 			return ret;
4322 	}
4323 split:
4324 	/* COW or write-notify not handled on PUD level: split pud.*/
4325 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4326 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4327 	return VM_FAULT_FALLBACK;
4328 }
4329 
4330 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4331 {
4332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4333 	/* No support for anonymous transparent PUD pages yet */
4334 	if (vma_is_anonymous(vmf->vma))
4335 		return VM_FAULT_FALLBACK;
4336 	if (vmf->vma->vm_ops->huge_fault)
4337 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4338 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4339 	return VM_FAULT_FALLBACK;
4340 }
4341 
4342 /*
4343  * These routines also need to handle stuff like marking pages dirty
4344  * and/or accessed for architectures that don't do it in hardware (most
4345  * RISC architectures).  The early dirtying is also good on the i386.
4346  *
4347  * There is also a hook called "update_mmu_cache()" that architectures
4348  * with external mmu caches can use to update those (ie the Sparc or
4349  * PowerPC hashed page tables that act as extended TLBs).
4350  *
4351  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4352  * concurrent faults).
4353  *
4354  * The mmap_lock may have been released depending on flags and our return value.
4355  * See filemap_fault() and __lock_page_or_retry().
4356  */
4357 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4358 {
4359 	pte_t entry;
4360 
4361 	if (unlikely(pmd_none(*vmf->pmd))) {
4362 		/*
4363 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4364 		 * want to allocate huge page, and if we expose page table
4365 		 * for an instant, it will be difficult to retract from
4366 		 * concurrent faults and from rmap lookups.
4367 		 */
4368 		vmf->pte = NULL;
4369 	} else {
4370 		/*
4371 		 * If a huge pmd materialized under us just retry later.  Use
4372 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4373 		 * of pmd_trans_huge() to ensure the pmd didn't become
4374 		 * pmd_trans_huge under us and then back to pmd_none, as a
4375 		 * result of MADV_DONTNEED running immediately after a huge pmd
4376 		 * fault in a different thread of this mm, in turn leading to a
4377 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4378 		 * that it is a regular pmd that we can walk with
4379 		 * pte_offset_map() and we can do that through an atomic read
4380 		 * in C, which is what pmd_trans_unstable() provides.
4381 		 */
4382 		if (pmd_devmap_trans_unstable(vmf->pmd))
4383 			return 0;
4384 		/*
4385 		 * A regular pmd is established and it can't morph into a huge
4386 		 * pmd from under us anymore at this point because we hold the
4387 		 * mmap_lock read mode and khugepaged takes it in write mode.
4388 		 * So now it's safe to run pte_offset_map().
4389 		 */
4390 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4391 		vmf->orig_pte = *vmf->pte;
4392 
4393 		/*
4394 		 * some architectures can have larger ptes than wordsize,
4395 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4396 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4397 		 * accesses.  The code below just needs a consistent view
4398 		 * for the ifs and we later double check anyway with the
4399 		 * ptl lock held. So here a barrier will do.
4400 		 */
4401 		barrier();
4402 		if (pte_none(vmf->orig_pte)) {
4403 			pte_unmap(vmf->pte);
4404 			vmf->pte = NULL;
4405 		}
4406 	}
4407 
4408 	if (!vmf->pte) {
4409 		if (vma_is_anonymous(vmf->vma))
4410 			return do_anonymous_page(vmf);
4411 		else
4412 			return do_fault(vmf);
4413 	}
4414 
4415 	if (!pte_present(vmf->orig_pte))
4416 		return do_swap_page(vmf);
4417 
4418 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4419 		return do_numa_page(vmf);
4420 
4421 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4422 	spin_lock(vmf->ptl);
4423 	entry = vmf->orig_pte;
4424 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4425 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4426 		goto unlock;
4427 	}
4428 	if (vmf->flags & FAULT_FLAG_WRITE) {
4429 		if (!pte_write(entry))
4430 			return do_wp_page(vmf);
4431 		entry = pte_mkdirty(entry);
4432 	}
4433 	entry = pte_mkyoung(entry);
4434 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4435 				vmf->flags & FAULT_FLAG_WRITE)) {
4436 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4437 	} else {
4438 		/* Skip spurious TLB flush for retried page fault */
4439 		if (vmf->flags & FAULT_FLAG_TRIED)
4440 			goto unlock;
4441 		/*
4442 		 * This is needed only for protection faults but the arch code
4443 		 * is not yet telling us if this is a protection fault or not.
4444 		 * This still avoids useless tlb flushes for .text page faults
4445 		 * with threads.
4446 		 */
4447 		if (vmf->flags & FAULT_FLAG_WRITE)
4448 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4449 	}
4450 unlock:
4451 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4452 	return 0;
4453 }
4454 
4455 /*
4456  * By the time we get here, we already hold the mm semaphore
4457  *
4458  * The mmap_lock may have been released depending on flags and our
4459  * return value.  See filemap_fault() and __lock_page_or_retry().
4460  */
4461 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4462 		unsigned long address, unsigned int flags)
4463 {
4464 	struct vm_fault vmf = {
4465 		.vma = vma,
4466 		.address = address & PAGE_MASK,
4467 		.flags = flags,
4468 		.pgoff = linear_page_index(vma, address),
4469 		.gfp_mask = __get_fault_gfp_mask(vma),
4470 	};
4471 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4472 	struct mm_struct *mm = vma->vm_mm;
4473 	pgd_t *pgd;
4474 	p4d_t *p4d;
4475 	vm_fault_t ret;
4476 
4477 	pgd = pgd_offset(mm, address);
4478 	p4d = p4d_alloc(mm, pgd, address);
4479 	if (!p4d)
4480 		return VM_FAULT_OOM;
4481 
4482 	vmf.pud = pud_alloc(mm, p4d, address);
4483 	if (!vmf.pud)
4484 		return VM_FAULT_OOM;
4485 retry_pud:
4486 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4487 		ret = create_huge_pud(&vmf);
4488 		if (!(ret & VM_FAULT_FALLBACK))
4489 			return ret;
4490 	} else {
4491 		pud_t orig_pud = *vmf.pud;
4492 
4493 		barrier();
4494 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4495 
4496 			/* NUMA case for anonymous PUDs would go here */
4497 
4498 			if (dirty && !pud_write(orig_pud)) {
4499 				ret = wp_huge_pud(&vmf, orig_pud);
4500 				if (!(ret & VM_FAULT_FALLBACK))
4501 					return ret;
4502 			} else {
4503 				huge_pud_set_accessed(&vmf, orig_pud);
4504 				return 0;
4505 			}
4506 		}
4507 	}
4508 
4509 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4510 	if (!vmf.pmd)
4511 		return VM_FAULT_OOM;
4512 
4513 	/* Huge pud page fault raced with pmd_alloc? */
4514 	if (pud_trans_unstable(vmf.pud))
4515 		goto retry_pud;
4516 
4517 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4518 		ret = create_huge_pmd(&vmf);
4519 		if (!(ret & VM_FAULT_FALLBACK))
4520 			return ret;
4521 	} else {
4522 		pmd_t orig_pmd = *vmf.pmd;
4523 
4524 		barrier();
4525 		if (unlikely(is_swap_pmd(orig_pmd))) {
4526 			VM_BUG_ON(thp_migration_supported() &&
4527 					  !is_pmd_migration_entry(orig_pmd));
4528 			if (is_pmd_migration_entry(orig_pmd))
4529 				pmd_migration_entry_wait(mm, vmf.pmd);
4530 			return 0;
4531 		}
4532 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4533 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4534 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4535 
4536 			if (dirty && !pmd_write(orig_pmd)) {
4537 				ret = wp_huge_pmd(&vmf, orig_pmd);
4538 				if (!(ret & VM_FAULT_FALLBACK))
4539 					return ret;
4540 			} else {
4541 				huge_pmd_set_accessed(&vmf, orig_pmd);
4542 				return 0;
4543 			}
4544 		}
4545 	}
4546 
4547 	return handle_pte_fault(&vmf);
4548 }
4549 
4550 /**
4551  * mm_account_fault - Do page fault accounting
4552  *
4553  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4554  *        of perf event counters, but we'll still do the per-task accounting to
4555  *        the task who triggered this page fault.
4556  * @address: the faulted address.
4557  * @flags: the fault flags.
4558  * @ret: the fault retcode.
4559  *
4560  * This will take care of most of the page fault accounting.  Meanwhile, it
4561  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4562  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4563  * still be in per-arch page fault handlers at the entry of page fault.
4564  */
4565 static inline void mm_account_fault(struct pt_regs *regs,
4566 				    unsigned long address, unsigned int flags,
4567 				    vm_fault_t ret)
4568 {
4569 	bool major;
4570 
4571 	/*
4572 	 * We don't do accounting for some specific faults:
4573 	 *
4574 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4575 	 *   includes arch_vma_access_permitted() failing before reaching here.
4576 	 *   So this is not a "this many hardware page faults" counter.  We
4577 	 *   should use the hw profiling for that.
4578 	 *
4579 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4580 	 *   once they're completed.
4581 	 */
4582 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4583 		return;
4584 
4585 	/*
4586 	 * We define the fault as a major fault when the final successful fault
4587 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4588 	 * handle it immediately previously).
4589 	 */
4590 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4591 
4592 	if (major)
4593 		current->maj_flt++;
4594 	else
4595 		current->min_flt++;
4596 
4597 	/*
4598 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4599 	 * accounting for the per thread fault counters who triggered the
4600 	 * fault, and we skip the perf event updates.
4601 	 */
4602 	if (!regs)
4603 		return;
4604 
4605 	if (major)
4606 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4607 	else
4608 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4609 }
4610 
4611 /*
4612  * By the time we get here, we already hold the mm semaphore
4613  *
4614  * The mmap_lock may have been released depending on flags and our
4615  * return value.  See filemap_fault() and __lock_page_or_retry().
4616  */
4617 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4618 			   unsigned int flags, struct pt_regs *regs)
4619 {
4620 	vm_fault_t ret;
4621 
4622 	__set_current_state(TASK_RUNNING);
4623 
4624 	count_vm_event(PGFAULT);
4625 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4626 
4627 	/* do counter updates before entering really critical section. */
4628 	check_sync_rss_stat(current);
4629 
4630 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4631 					    flags & FAULT_FLAG_INSTRUCTION,
4632 					    flags & FAULT_FLAG_REMOTE))
4633 		return VM_FAULT_SIGSEGV;
4634 
4635 	/*
4636 	 * Enable the memcg OOM handling for faults triggered in user
4637 	 * space.  Kernel faults are handled more gracefully.
4638 	 */
4639 	if (flags & FAULT_FLAG_USER)
4640 		mem_cgroup_enter_user_fault();
4641 
4642 	if (unlikely(is_vm_hugetlb_page(vma)))
4643 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4644 	else
4645 		ret = __handle_mm_fault(vma, address, flags);
4646 
4647 	if (flags & FAULT_FLAG_USER) {
4648 		mem_cgroup_exit_user_fault();
4649 		/*
4650 		 * The task may have entered a memcg OOM situation but
4651 		 * if the allocation error was handled gracefully (no
4652 		 * VM_FAULT_OOM), there is no need to kill anything.
4653 		 * Just clean up the OOM state peacefully.
4654 		 */
4655 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4656 			mem_cgroup_oom_synchronize(false);
4657 	}
4658 
4659 	mm_account_fault(regs, address, flags, ret);
4660 
4661 	return ret;
4662 }
4663 EXPORT_SYMBOL_GPL(handle_mm_fault);
4664 
4665 #ifndef __PAGETABLE_P4D_FOLDED
4666 /*
4667  * Allocate p4d page table.
4668  * We've already handled the fast-path in-line.
4669  */
4670 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4671 {
4672 	p4d_t *new = p4d_alloc_one(mm, address);
4673 	if (!new)
4674 		return -ENOMEM;
4675 
4676 	smp_wmb(); /* See comment in __pte_alloc */
4677 
4678 	spin_lock(&mm->page_table_lock);
4679 	if (pgd_present(*pgd))		/* Another has populated it */
4680 		p4d_free(mm, new);
4681 	else
4682 		pgd_populate(mm, pgd, new);
4683 	spin_unlock(&mm->page_table_lock);
4684 	return 0;
4685 }
4686 #endif /* __PAGETABLE_P4D_FOLDED */
4687 
4688 #ifndef __PAGETABLE_PUD_FOLDED
4689 /*
4690  * Allocate page upper directory.
4691  * We've already handled the fast-path in-line.
4692  */
4693 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4694 {
4695 	pud_t *new = pud_alloc_one(mm, address);
4696 	if (!new)
4697 		return -ENOMEM;
4698 
4699 	smp_wmb(); /* See comment in __pte_alloc */
4700 
4701 	spin_lock(&mm->page_table_lock);
4702 	if (!p4d_present(*p4d)) {
4703 		mm_inc_nr_puds(mm);
4704 		p4d_populate(mm, p4d, new);
4705 	} else	/* Another has populated it */
4706 		pud_free(mm, new);
4707 	spin_unlock(&mm->page_table_lock);
4708 	return 0;
4709 }
4710 #endif /* __PAGETABLE_PUD_FOLDED */
4711 
4712 #ifndef __PAGETABLE_PMD_FOLDED
4713 /*
4714  * Allocate page middle directory.
4715  * We've already handled the fast-path in-line.
4716  */
4717 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4718 {
4719 	spinlock_t *ptl;
4720 	pmd_t *new = pmd_alloc_one(mm, address);
4721 	if (!new)
4722 		return -ENOMEM;
4723 
4724 	smp_wmb(); /* See comment in __pte_alloc */
4725 
4726 	ptl = pud_lock(mm, pud);
4727 	if (!pud_present(*pud)) {
4728 		mm_inc_nr_pmds(mm);
4729 		pud_populate(mm, pud, new);
4730 	} else	/* Another has populated it */
4731 		pmd_free(mm, new);
4732 	spin_unlock(ptl);
4733 	return 0;
4734 }
4735 #endif /* __PAGETABLE_PMD_FOLDED */
4736 
4737 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4738 			  struct mmu_notifier_range *range, pte_t **ptepp,
4739 			  pmd_t **pmdpp, spinlock_t **ptlp)
4740 {
4741 	pgd_t *pgd;
4742 	p4d_t *p4d;
4743 	pud_t *pud;
4744 	pmd_t *pmd;
4745 	pte_t *ptep;
4746 
4747 	pgd = pgd_offset(mm, address);
4748 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4749 		goto out;
4750 
4751 	p4d = p4d_offset(pgd, address);
4752 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4753 		goto out;
4754 
4755 	pud = pud_offset(p4d, address);
4756 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4757 		goto out;
4758 
4759 	pmd = pmd_offset(pud, address);
4760 	VM_BUG_ON(pmd_trans_huge(*pmd));
4761 
4762 	if (pmd_huge(*pmd)) {
4763 		if (!pmdpp)
4764 			goto out;
4765 
4766 		if (range) {
4767 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4768 						NULL, mm, address & PMD_MASK,
4769 						(address & PMD_MASK) + PMD_SIZE);
4770 			mmu_notifier_invalidate_range_start(range);
4771 		}
4772 		*ptlp = pmd_lock(mm, pmd);
4773 		if (pmd_huge(*pmd)) {
4774 			*pmdpp = pmd;
4775 			return 0;
4776 		}
4777 		spin_unlock(*ptlp);
4778 		if (range)
4779 			mmu_notifier_invalidate_range_end(range);
4780 	}
4781 
4782 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4783 		goto out;
4784 
4785 	if (range) {
4786 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4787 					address & PAGE_MASK,
4788 					(address & PAGE_MASK) + PAGE_SIZE);
4789 		mmu_notifier_invalidate_range_start(range);
4790 	}
4791 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4792 	if (!pte_present(*ptep))
4793 		goto unlock;
4794 	*ptepp = ptep;
4795 	return 0;
4796 unlock:
4797 	pte_unmap_unlock(ptep, *ptlp);
4798 	if (range)
4799 		mmu_notifier_invalidate_range_end(range);
4800 out:
4801 	return -EINVAL;
4802 }
4803 
4804 /**
4805  * follow_pte - look up PTE at a user virtual address
4806  * @mm: the mm_struct of the target address space
4807  * @address: user virtual address
4808  * @ptepp: location to store found PTE
4809  * @ptlp: location to store the lock for the PTE
4810  *
4811  * On a successful return, the pointer to the PTE is stored in @ptepp;
4812  * the corresponding lock is taken and its location is stored in @ptlp.
4813  * The contents of the PTE are only stable until @ptlp is released;
4814  * any further use, if any, must be protected against invalidation
4815  * with MMU notifiers.
4816  *
4817  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4818  * should be taken for read.
4819  *
4820  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4821  * it is not a good general-purpose API.
4822  *
4823  * Return: zero on success, -ve otherwise.
4824  */
4825 int follow_pte(struct mm_struct *mm, unsigned long address,
4826 	       pte_t **ptepp, spinlock_t **ptlp)
4827 {
4828 	return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4829 }
4830 EXPORT_SYMBOL_GPL(follow_pte);
4831 
4832 /**
4833  * follow_pfn - look up PFN at a user virtual address
4834  * @vma: memory mapping
4835  * @address: user virtual address
4836  * @pfn: location to store found PFN
4837  *
4838  * Only IO mappings and raw PFN mappings are allowed.
4839  *
4840  * This function does not allow the caller to read the permissions
4841  * of the PTE.  Do not use it.
4842  *
4843  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4844  */
4845 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4846 	unsigned long *pfn)
4847 {
4848 	int ret = -EINVAL;
4849 	spinlock_t *ptl;
4850 	pte_t *ptep;
4851 
4852 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4853 		return ret;
4854 
4855 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4856 	if (ret)
4857 		return ret;
4858 	*pfn = pte_pfn(*ptep);
4859 	pte_unmap_unlock(ptep, ptl);
4860 	return 0;
4861 }
4862 EXPORT_SYMBOL(follow_pfn);
4863 
4864 #ifdef CONFIG_HAVE_IOREMAP_PROT
4865 int follow_phys(struct vm_area_struct *vma,
4866 		unsigned long address, unsigned int flags,
4867 		unsigned long *prot, resource_size_t *phys)
4868 {
4869 	int ret = -EINVAL;
4870 	pte_t *ptep, pte;
4871 	spinlock_t *ptl;
4872 
4873 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4874 		goto out;
4875 
4876 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4877 		goto out;
4878 	pte = *ptep;
4879 
4880 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4881 		goto unlock;
4882 
4883 	*prot = pgprot_val(pte_pgprot(pte));
4884 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4885 
4886 	ret = 0;
4887 unlock:
4888 	pte_unmap_unlock(ptep, ptl);
4889 out:
4890 	return ret;
4891 }
4892 
4893 /**
4894  * generic_access_phys - generic implementation for iomem mmap access
4895  * @vma: the vma to access
4896  * @addr: userspace address, not relative offset within @vma
4897  * @buf: buffer to read/write
4898  * @len: length of transfer
4899  * @write: set to FOLL_WRITE when writing, otherwise reading
4900  *
4901  * This is a generic implementation for &vm_operations_struct.access for an
4902  * iomem mapping. This callback is used by access_process_vm() when the @vma is
4903  * not page based.
4904  */
4905 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4906 			void *buf, int len, int write)
4907 {
4908 	resource_size_t phys_addr;
4909 	unsigned long prot = 0;
4910 	void __iomem *maddr;
4911 	pte_t *ptep, pte;
4912 	spinlock_t *ptl;
4913 	int offset = offset_in_page(addr);
4914 	int ret = -EINVAL;
4915 
4916 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4917 		return -EINVAL;
4918 
4919 retry:
4920 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4921 		return -EINVAL;
4922 	pte = *ptep;
4923 	pte_unmap_unlock(ptep, ptl);
4924 
4925 	prot = pgprot_val(pte_pgprot(pte));
4926 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4927 
4928 	if ((write & FOLL_WRITE) && !pte_write(pte))
4929 		return -EINVAL;
4930 
4931 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4932 	if (!maddr)
4933 		return -ENOMEM;
4934 
4935 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4936 		goto out_unmap;
4937 
4938 	if (!pte_same(pte, *ptep)) {
4939 		pte_unmap_unlock(ptep, ptl);
4940 		iounmap(maddr);
4941 
4942 		goto retry;
4943 	}
4944 
4945 	if (write)
4946 		memcpy_toio(maddr + offset, buf, len);
4947 	else
4948 		memcpy_fromio(buf, maddr + offset, len);
4949 	ret = len;
4950 	pte_unmap_unlock(ptep, ptl);
4951 out_unmap:
4952 	iounmap(maddr);
4953 
4954 	return ret;
4955 }
4956 EXPORT_SYMBOL_GPL(generic_access_phys);
4957 #endif
4958 
4959 /*
4960  * Access another process' address space as given in mm.
4961  */
4962 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4963 		       int len, unsigned int gup_flags)
4964 {
4965 	struct vm_area_struct *vma;
4966 	void *old_buf = buf;
4967 	int write = gup_flags & FOLL_WRITE;
4968 
4969 	if (mmap_read_lock_killable(mm))
4970 		return 0;
4971 
4972 	/* ignore errors, just check how much was successfully transferred */
4973 	while (len) {
4974 		int bytes, ret, offset;
4975 		void *maddr;
4976 		struct page *page = NULL;
4977 
4978 		ret = get_user_pages_remote(mm, addr, 1,
4979 				gup_flags, &page, &vma, NULL);
4980 		if (ret <= 0) {
4981 #ifndef CONFIG_HAVE_IOREMAP_PROT
4982 			break;
4983 #else
4984 			/*
4985 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4986 			 * we can access using slightly different code.
4987 			 */
4988 			vma = find_vma(mm, addr);
4989 			if (!vma || vma->vm_start > addr)
4990 				break;
4991 			if (vma->vm_ops && vma->vm_ops->access)
4992 				ret = vma->vm_ops->access(vma, addr, buf,
4993 							  len, write);
4994 			if (ret <= 0)
4995 				break;
4996 			bytes = ret;
4997 #endif
4998 		} else {
4999 			bytes = len;
5000 			offset = addr & (PAGE_SIZE-1);
5001 			if (bytes > PAGE_SIZE-offset)
5002 				bytes = PAGE_SIZE-offset;
5003 
5004 			maddr = kmap(page);
5005 			if (write) {
5006 				copy_to_user_page(vma, page, addr,
5007 						  maddr + offset, buf, bytes);
5008 				set_page_dirty_lock(page);
5009 			} else {
5010 				copy_from_user_page(vma, page, addr,
5011 						    buf, maddr + offset, bytes);
5012 			}
5013 			kunmap(page);
5014 			put_page(page);
5015 		}
5016 		len -= bytes;
5017 		buf += bytes;
5018 		addr += bytes;
5019 	}
5020 	mmap_read_unlock(mm);
5021 
5022 	return buf - old_buf;
5023 }
5024 
5025 /**
5026  * access_remote_vm - access another process' address space
5027  * @mm:		the mm_struct of the target address space
5028  * @addr:	start address to access
5029  * @buf:	source or destination buffer
5030  * @len:	number of bytes to transfer
5031  * @gup_flags:	flags modifying lookup behaviour
5032  *
5033  * The caller must hold a reference on @mm.
5034  *
5035  * Return: number of bytes copied from source to destination.
5036  */
5037 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5038 		void *buf, int len, unsigned int gup_flags)
5039 {
5040 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5041 }
5042 
5043 /*
5044  * Access another process' address space.
5045  * Source/target buffer must be kernel space,
5046  * Do not walk the page table directly, use get_user_pages
5047  */
5048 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5049 		void *buf, int len, unsigned int gup_flags)
5050 {
5051 	struct mm_struct *mm;
5052 	int ret;
5053 
5054 	mm = get_task_mm(tsk);
5055 	if (!mm)
5056 		return 0;
5057 
5058 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5059 
5060 	mmput(mm);
5061 
5062 	return ret;
5063 }
5064 EXPORT_SYMBOL_GPL(access_process_vm);
5065 
5066 /*
5067  * Print the name of a VMA.
5068  */
5069 void print_vma_addr(char *prefix, unsigned long ip)
5070 {
5071 	struct mm_struct *mm = current->mm;
5072 	struct vm_area_struct *vma;
5073 
5074 	/*
5075 	 * we might be running from an atomic context so we cannot sleep
5076 	 */
5077 	if (!mmap_read_trylock(mm))
5078 		return;
5079 
5080 	vma = find_vma(mm, ip);
5081 	if (vma && vma->vm_file) {
5082 		struct file *f = vma->vm_file;
5083 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5084 		if (buf) {
5085 			char *p;
5086 
5087 			p = file_path(f, buf, PAGE_SIZE);
5088 			if (IS_ERR(p))
5089 				p = "?";
5090 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5091 					vma->vm_start,
5092 					vma->vm_end - vma->vm_start);
5093 			free_page((unsigned long)buf);
5094 		}
5095 	}
5096 	mmap_read_unlock(mm);
5097 }
5098 
5099 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5100 void __might_fault(const char *file, int line)
5101 {
5102 	/*
5103 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5104 	 * holding the mmap_lock, this is safe because kernel memory doesn't
5105 	 * get paged out, therefore we'll never actually fault, and the
5106 	 * below annotations will generate false positives.
5107 	 */
5108 	if (uaccess_kernel())
5109 		return;
5110 	if (pagefault_disabled())
5111 		return;
5112 	__might_sleep(file, line, 0);
5113 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5114 	if (current->mm)
5115 		might_lock_read(&current->mm->mmap_lock);
5116 #endif
5117 }
5118 EXPORT_SYMBOL(__might_fault);
5119 #endif
5120 
5121 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5122 /*
5123  * Process all subpages of the specified huge page with the specified
5124  * operation.  The target subpage will be processed last to keep its
5125  * cache lines hot.
5126  */
5127 static inline void process_huge_page(
5128 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5129 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5130 	void *arg)
5131 {
5132 	int i, n, base, l;
5133 	unsigned long addr = addr_hint &
5134 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5135 
5136 	/* Process target subpage last to keep its cache lines hot */
5137 	might_sleep();
5138 	n = (addr_hint - addr) / PAGE_SIZE;
5139 	if (2 * n <= pages_per_huge_page) {
5140 		/* If target subpage in first half of huge page */
5141 		base = 0;
5142 		l = n;
5143 		/* Process subpages at the end of huge page */
5144 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5145 			cond_resched();
5146 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5147 		}
5148 	} else {
5149 		/* If target subpage in second half of huge page */
5150 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5151 		l = pages_per_huge_page - n;
5152 		/* Process subpages at the begin of huge page */
5153 		for (i = 0; i < base; i++) {
5154 			cond_resched();
5155 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5156 		}
5157 	}
5158 	/*
5159 	 * Process remaining subpages in left-right-left-right pattern
5160 	 * towards the target subpage
5161 	 */
5162 	for (i = 0; i < l; i++) {
5163 		int left_idx = base + i;
5164 		int right_idx = base + 2 * l - 1 - i;
5165 
5166 		cond_resched();
5167 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5168 		cond_resched();
5169 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5170 	}
5171 }
5172 
5173 static void clear_gigantic_page(struct page *page,
5174 				unsigned long addr,
5175 				unsigned int pages_per_huge_page)
5176 {
5177 	int i;
5178 	struct page *p = page;
5179 
5180 	might_sleep();
5181 	for (i = 0; i < pages_per_huge_page;
5182 	     i++, p = mem_map_next(p, page, i)) {
5183 		cond_resched();
5184 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5185 	}
5186 }
5187 
5188 static void clear_subpage(unsigned long addr, int idx, void *arg)
5189 {
5190 	struct page *page = arg;
5191 
5192 	clear_user_highpage(page + idx, addr);
5193 }
5194 
5195 void clear_huge_page(struct page *page,
5196 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5197 {
5198 	unsigned long addr = addr_hint &
5199 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5200 
5201 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5202 		clear_gigantic_page(page, addr, pages_per_huge_page);
5203 		return;
5204 	}
5205 
5206 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5207 }
5208 
5209 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5210 				    unsigned long addr,
5211 				    struct vm_area_struct *vma,
5212 				    unsigned int pages_per_huge_page)
5213 {
5214 	int i;
5215 	struct page *dst_base = dst;
5216 	struct page *src_base = src;
5217 
5218 	for (i = 0; i < pages_per_huge_page; ) {
5219 		cond_resched();
5220 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5221 
5222 		i++;
5223 		dst = mem_map_next(dst, dst_base, i);
5224 		src = mem_map_next(src, src_base, i);
5225 	}
5226 }
5227 
5228 struct copy_subpage_arg {
5229 	struct page *dst;
5230 	struct page *src;
5231 	struct vm_area_struct *vma;
5232 };
5233 
5234 static void copy_subpage(unsigned long addr, int idx, void *arg)
5235 {
5236 	struct copy_subpage_arg *copy_arg = arg;
5237 
5238 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5239 			   addr, copy_arg->vma);
5240 }
5241 
5242 void copy_user_huge_page(struct page *dst, struct page *src,
5243 			 unsigned long addr_hint, struct vm_area_struct *vma,
5244 			 unsigned int pages_per_huge_page)
5245 {
5246 	unsigned long addr = addr_hint &
5247 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5248 	struct copy_subpage_arg arg = {
5249 		.dst = dst,
5250 		.src = src,
5251 		.vma = vma,
5252 	};
5253 
5254 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5255 		copy_user_gigantic_page(dst, src, addr, vma,
5256 					pages_per_huge_page);
5257 		return;
5258 	}
5259 
5260 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5261 }
5262 
5263 long copy_huge_page_from_user(struct page *dst_page,
5264 				const void __user *usr_src,
5265 				unsigned int pages_per_huge_page,
5266 				bool allow_pagefault)
5267 {
5268 	void *src = (void *)usr_src;
5269 	void *page_kaddr;
5270 	unsigned long i, rc = 0;
5271 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5272 	struct page *subpage = dst_page;
5273 
5274 	for (i = 0; i < pages_per_huge_page;
5275 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5276 		if (allow_pagefault)
5277 			page_kaddr = kmap(subpage);
5278 		else
5279 			page_kaddr = kmap_atomic(subpage);
5280 		rc = copy_from_user(page_kaddr,
5281 				(const void __user *)(src + i * PAGE_SIZE),
5282 				PAGE_SIZE);
5283 		if (allow_pagefault)
5284 			kunmap(subpage);
5285 		else
5286 			kunmap_atomic(page_kaddr);
5287 
5288 		ret_val -= (PAGE_SIZE - rc);
5289 		if (rc)
5290 			break;
5291 
5292 		cond_resched();
5293 	}
5294 	return ret_val;
5295 }
5296 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5297 
5298 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5299 
5300 static struct kmem_cache *page_ptl_cachep;
5301 
5302 void __init ptlock_cache_init(void)
5303 {
5304 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5305 			SLAB_PANIC, NULL);
5306 }
5307 
5308 bool ptlock_alloc(struct page *page)
5309 {
5310 	spinlock_t *ptl;
5311 
5312 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5313 	if (!ptl)
5314 		return false;
5315 	page->ptl = ptl;
5316 	return true;
5317 }
5318 
5319 void ptlock_free(struct page *page)
5320 {
5321 	kmem_cache_free(page_ptl_cachep, page->ptl);
5322 }
5323 #endif
5324