xref: /openbmc/linux/mm/memory.c (revision bab55037)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 
81 #include <trace/events/kmem.h>
82 
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89 
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93 
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97 
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101 
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105 
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117 
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126 					1;
127 #else
128 					2;
129 #endif
130 
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134 	/*
135 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 	 * some architectures, even if it's performed in hardware. By
137 	 * default, "false" means prefaulted entries will be 'young'.
138 	 */
139 	return false;
140 }
141 #endif
142 
143 static int __init disable_randmaps(char *s)
144 {
145 	randomize_va_space = 0;
146 	return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149 
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152 
153 unsigned long highest_memmap_pfn __read_mostly;
154 
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
161 	return 0;
162 }
163 early_initcall(init_zero_pfn);
164 
165 void mm_trace_rss_stat(struct mm_struct *mm, int member)
166 {
167 	trace_rss_stat(mm, member);
168 }
169 
170 /*
171  * Note: this doesn't free the actual pages themselves. That
172  * has been handled earlier when unmapping all the memory regions.
173  */
174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
175 			   unsigned long addr)
176 {
177 	pgtable_t token = pmd_pgtable(*pmd);
178 	pmd_clear(pmd);
179 	pte_free_tlb(tlb, token, addr);
180 	mm_dec_nr_ptes(tlb->mm);
181 }
182 
183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184 				unsigned long addr, unsigned long end,
185 				unsigned long floor, unsigned long ceiling)
186 {
187 	pmd_t *pmd;
188 	unsigned long next;
189 	unsigned long start;
190 
191 	start = addr;
192 	pmd = pmd_offset(pud, addr);
193 	do {
194 		next = pmd_addr_end(addr, end);
195 		if (pmd_none_or_clear_bad(pmd))
196 			continue;
197 		free_pte_range(tlb, pmd, addr);
198 	} while (pmd++, addr = next, addr != end);
199 
200 	start &= PUD_MASK;
201 	if (start < floor)
202 		return;
203 	if (ceiling) {
204 		ceiling &= PUD_MASK;
205 		if (!ceiling)
206 			return;
207 	}
208 	if (end - 1 > ceiling - 1)
209 		return;
210 
211 	pmd = pmd_offset(pud, start);
212 	pud_clear(pud);
213 	pmd_free_tlb(tlb, pmd, start);
214 	mm_dec_nr_pmds(tlb->mm);
215 }
216 
217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
218 				unsigned long addr, unsigned long end,
219 				unsigned long floor, unsigned long ceiling)
220 {
221 	pud_t *pud;
222 	unsigned long next;
223 	unsigned long start;
224 
225 	start = addr;
226 	pud = pud_offset(p4d, addr);
227 	do {
228 		next = pud_addr_end(addr, end);
229 		if (pud_none_or_clear_bad(pud))
230 			continue;
231 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
232 	} while (pud++, addr = next, addr != end);
233 
234 	start &= P4D_MASK;
235 	if (start < floor)
236 		return;
237 	if (ceiling) {
238 		ceiling &= P4D_MASK;
239 		if (!ceiling)
240 			return;
241 	}
242 	if (end - 1 > ceiling - 1)
243 		return;
244 
245 	pud = pud_offset(p4d, start);
246 	p4d_clear(p4d);
247 	pud_free_tlb(tlb, pud, start);
248 	mm_dec_nr_puds(tlb->mm);
249 }
250 
251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252 				unsigned long addr, unsigned long end,
253 				unsigned long floor, unsigned long ceiling)
254 {
255 	p4d_t *p4d;
256 	unsigned long next;
257 	unsigned long start;
258 
259 	start = addr;
260 	p4d = p4d_offset(pgd, addr);
261 	do {
262 		next = p4d_addr_end(addr, end);
263 		if (p4d_none_or_clear_bad(p4d))
264 			continue;
265 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266 	} while (p4d++, addr = next, addr != end);
267 
268 	start &= PGDIR_MASK;
269 	if (start < floor)
270 		return;
271 	if (ceiling) {
272 		ceiling &= PGDIR_MASK;
273 		if (!ceiling)
274 			return;
275 	}
276 	if (end - 1 > ceiling - 1)
277 		return;
278 
279 	p4d = p4d_offset(pgd, start);
280 	pgd_clear(pgd);
281 	p4d_free_tlb(tlb, p4d, start);
282 }
283 
284 /*
285  * This function frees user-level page tables of a process.
286  */
287 void free_pgd_range(struct mmu_gather *tlb,
288 			unsigned long addr, unsigned long end,
289 			unsigned long floor, unsigned long ceiling)
290 {
291 	pgd_t *pgd;
292 	unsigned long next;
293 
294 	/*
295 	 * The next few lines have given us lots of grief...
296 	 *
297 	 * Why are we testing PMD* at this top level?  Because often
298 	 * there will be no work to do at all, and we'd prefer not to
299 	 * go all the way down to the bottom just to discover that.
300 	 *
301 	 * Why all these "- 1"s?  Because 0 represents both the bottom
302 	 * of the address space and the top of it (using -1 for the
303 	 * top wouldn't help much: the masks would do the wrong thing).
304 	 * The rule is that addr 0 and floor 0 refer to the bottom of
305 	 * the address space, but end 0 and ceiling 0 refer to the top
306 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
307 	 * that end 0 case should be mythical).
308 	 *
309 	 * Wherever addr is brought up or ceiling brought down, we must
310 	 * be careful to reject "the opposite 0" before it confuses the
311 	 * subsequent tests.  But what about where end is brought down
312 	 * by PMD_SIZE below? no, end can't go down to 0 there.
313 	 *
314 	 * Whereas we round start (addr) and ceiling down, by different
315 	 * masks at different levels, in order to test whether a table
316 	 * now has no other vmas using it, so can be freed, we don't
317 	 * bother to round floor or end up - the tests don't need that.
318 	 */
319 
320 	addr &= PMD_MASK;
321 	if (addr < floor) {
322 		addr += PMD_SIZE;
323 		if (!addr)
324 			return;
325 	}
326 	if (ceiling) {
327 		ceiling &= PMD_MASK;
328 		if (!ceiling)
329 			return;
330 	}
331 	if (end - 1 > ceiling - 1)
332 		end -= PMD_SIZE;
333 	if (addr > end - 1)
334 		return;
335 	/*
336 	 * We add page table cache pages with PAGE_SIZE,
337 	 * (see pte_free_tlb()), flush the tlb if we need
338 	 */
339 	tlb_change_page_size(tlb, PAGE_SIZE);
340 	pgd = pgd_offset(tlb->mm, addr);
341 	do {
342 		next = pgd_addr_end(addr, end);
343 		if (pgd_none_or_clear_bad(pgd))
344 			continue;
345 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
346 	} while (pgd++, addr = next, addr != end);
347 }
348 
349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350 		   struct vm_area_struct *vma, unsigned long floor,
351 		   unsigned long ceiling)
352 {
353 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
354 
355 	do {
356 		unsigned long addr = vma->vm_start;
357 		struct vm_area_struct *next;
358 
359 		/*
360 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361 		 * be 0.  This will underflow and is okay.
362 		 */
363 		next = mas_find(&mas, ceiling - 1);
364 
365 		/*
366 		 * Hide vma from rmap and truncate_pagecache before freeing
367 		 * pgtables
368 		 */
369 		unlink_anon_vmas(vma);
370 		unlink_file_vma(vma);
371 
372 		if (is_vm_hugetlb_page(vma)) {
373 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
374 				floor, next ? next->vm_start : ceiling);
375 		} else {
376 			/*
377 			 * Optimization: gather nearby vmas into one call down
378 			 */
379 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
380 			       && !is_vm_hugetlb_page(next)) {
381 				vma = next;
382 				next = mas_find(&mas, ceiling - 1);
383 				unlink_anon_vmas(vma);
384 				unlink_file_vma(vma);
385 			}
386 			free_pgd_range(tlb, addr, vma->vm_end,
387 				floor, next ? next->vm_start : ceiling);
388 		}
389 		vma = next;
390 	} while (vma);
391 }
392 
393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
394 {
395 	spinlock_t *ptl = pmd_lock(mm, pmd);
396 
397 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
398 		mm_inc_nr_ptes(mm);
399 		/*
400 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
401 		 * visible before the pte is made visible to other CPUs by being
402 		 * put into page tables.
403 		 *
404 		 * The other side of the story is the pointer chasing in the page
405 		 * table walking code (when walking the page table without locking;
406 		 * ie. most of the time). Fortunately, these data accesses consist
407 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
408 		 * being the notable exception) will already guarantee loads are
409 		 * seen in-order. See the alpha page table accessors for the
410 		 * smp_rmb() barriers in page table walking code.
411 		 */
412 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
413 		pmd_populate(mm, pmd, *pte);
414 		*pte = NULL;
415 	}
416 	spin_unlock(ptl);
417 }
418 
419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
420 {
421 	pgtable_t new = pte_alloc_one(mm);
422 	if (!new)
423 		return -ENOMEM;
424 
425 	pmd_install(mm, pmd, &new);
426 	if (new)
427 		pte_free(mm, new);
428 	return 0;
429 }
430 
431 int __pte_alloc_kernel(pmd_t *pmd)
432 {
433 	pte_t *new = pte_alloc_one_kernel(&init_mm);
434 	if (!new)
435 		return -ENOMEM;
436 
437 	spin_lock(&init_mm.page_table_lock);
438 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
439 		smp_wmb(); /* See comment in pmd_install() */
440 		pmd_populate_kernel(&init_mm, pmd, new);
441 		new = NULL;
442 	}
443 	spin_unlock(&init_mm.page_table_lock);
444 	if (new)
445 		pte_free_kernel(&init_mm, new);
446 	return 0;
447 }
448 
449 static inline void init_rss_vec(int *rss)
450 {
451 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452 }
453 
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
455 {
456 	int i;
457 
458 	if (current->mm == mm)
459 		sync_mm_rss(mm);
460 	for (i = 0; i < NR_MM_COUNTERS; i++)
461 		if (rss[i])
462 			add_mm_counter(mm, i, rss[i]);
463 }
464 
465 /*
466  * This function is called to print an error when a bad pte
467  * is found. For example, we might have a PFN-mapped pte in
468  * a region that doesn't allow it.
469  *
470  * The calling function must still handle the error.
471  */
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473 			  pte_t pte, struct page *page)
474 {
475 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476 	p4d_t *p4d = p4d_offset(pgd, addr);
477 	pud_t *pud = pud_offset(p4d, addr);
478 	pmd_t *pmd = pmd_offset(pud, addr);
479 	struct address_space *mapping;
480 	pgoff_t index;
481 	static unsigned long resume;
482 	static unsigned long nr_shown;
483 	static unsigned long nr_unshown;
484 
485 	/*
486 	 * Allow a burst of 60 reports, then keep quiet for that minute;
487 	 * or allow a steady drip of one report per second.
488 	 */
489 	if (nr_shown == 60) {
490 		if (time_before(jiffies, resume)) {
491 			nr_unshown++;
492 			return;
493 		}
494 		if (nr_unshown) {
495 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
496 				 nr_unshown);
497 			nr_unshown = 0;
498 		}
499 		nr_shown = 0;
500 	}
501 	if (nr_shown++ == 0)
502 		resume = jiffies + 60 * HZ;
503 
504 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505 	index = linear_page_index(vma, addr);
506 
507 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
508 		 current->comm,
509 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
510 	if (page)
511 		dump_page(page, "bad pte");
512 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
513 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
514 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
515 		 vma->vm_file,
516 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
517 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
518 		 mapping ? mapping->a_ops->read_folio : NULL);
519 	dump_stack();
520 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
521 }
522 
523 /*
524  * vm_normal_page -- This function gets the "struct page" associated with a pte.
525  *
526  * "Special" mappings do not wish to be associated with a "struct page" (either
527  * it doesn't exist, or it exists but they don't want to touch it). In this
528  * case, NULL is returned here. "Normal" mappings do have a struct page.
529  *
530  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531  * pte bit, in which case this function is trivial. Secondly, an architecture
532  * may not have a spare pte bit, which requires a more complicated scheme,
533  * described below.
534  *
535  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536  * special mapping (even if there are underlying and valid "struct pages").
537  * COWed pages of a VM_PFNMAP are always normal.
538  *
539  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
541  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542  * mapping will always honor the rule
543  *
544  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
545  *
546  * And for normal mappings this is false.
547  *
548  * This restricts such mappings to be a linear translation from virtual address
549  * to pfn. To get around this restriction, we allow arbitrary mappings so long
550  * as the vma is not a COW mapping; in that case, we know that all ptes are
551  * special (because none can have been COWed).
552  *
553  *
554  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
555  *
556  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557  * page" backing, however the difference is that _all_ pages with a struct
558  * page (that is, those where pfn_valid is true) are refcounted and considered
559  * normal pages by the VM. The disadvantage is that pages are refcounted
560  * (which can be slower and simply not an option for some PFNMAP users). The
561  * advantage is that we don't have to follow the strict linearity rule of
562  * PFNMAP mappings in order to support COWable mappings.
563  *
564  */
565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
566 			    pte_t pte)
567 {
568 	unsigned long pfn = pte_pfn(pte);
569 
570 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
571 		if (likely(!pte_special(pte)))
572 			goto check_pfn;
573 		if (vma->vm_ops && vma->vm_ops->find_special_page)
574 			return vma->vm_ops->find_special_page(vma, addr);
575 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
576 			return NULL;
577 		if (is_zero_pfn(pfn))
578 			return NULL;
579 		if (pte_devmap(pte))
580 		/*
581 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582 		 * and will have refcounts incremented on their struct pages
583 		 * when they are inserted into PTEs, thus they are safe to
584 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
586 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
587 		 */
588 			return NULL;
589 
590 		print_bad_pte(vma, addr, pte, NULL);
591 		return NULL;
592 	}
593 
594 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
595 
596 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597 		if (vma->vm_flags & VM_MIXEDMAP) {
598 			if (!pfn_valid(pfn))
599 				return NULL;
600 			goto out;
601 		} else {
602 			unsigned long off;
603 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
604 			if (pfn == vma->vm_pgoff + off)
605 				return NULL;
606 			if (!is_cow_mapping(vma->vm_flags))
607 				return NULL;
608 		}
609 	}
610 
611 	if (is_zero_pfn(pfn))
612 		return NULL;
613 
614 check_pfn:
615 	if (unlikely(pfn > highest_memmap_pfn)) {
616 		print_bad_pte(vma, addr, pte, NULL);
617 		return NULL;
618 	}
619 
620 	/*
621 	 * NOTE! We still have PageReserved() pages in the page tables.
622 	 * eg. VDSO mappings can cause them to exist.
623 	 */
624 out:
625 	return pfn_to_page(pfn);
626 }
627 
628 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
629 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
630 				pmd_t pmd)
631 {
632 	unsigned long pfn = pmd_pfn(pmd);
633 
634 	/*
635 	 * There is no pmd_special() but there may be special pmds, e.g.
636 	 * in a direct-access (dax) mapping, so let's just replicate the
637 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
638 	 */
639 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
640 		if (vma->vm_flags & VM_MIXEDMAP) {
641 			if (!pfn_valid(pfn))
642 				return NULL;
643 			goto out;
644 		} else {
645 			unsigned long off;
646 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
647 			if (pfn == vma->vm_pgoff + off)
648 				return NULL;
649 			if (!is_cow_mapping(vma->vm_flags))
650 				return NULL;
651 		}
652 	}
653 
654 	if (pmd_devmap(pmd))
655 		return NULL;
656 	if (is_huge_zero_pmd(pmd))
657 		return NULL;
658 	if (unlikely(pfn > highest_memmap_pfn))
659 		return NULL;
660 
661 	/*
662 	 * NOTE! We still have PageReserved() pages in the page tables.
663 	 * eg. VDSO mappings can cause them to exist.
664 	 */
665 out:
666 	return pfn_to_page(pfn);
667 }
668 #endif
669 
670 static void restore_exclusive_pte(struct vm_area_struct *vma,
671 				  struct page *page, unsigned long address,
672 				  pte_t *ptep)
673 {
674 	pte_t pte;
675 	swp_entry_t entry;
676 
677 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
678 	if (pte_swp_soft_dirty(*ptep))
679 		pte = pte_mksoft_dirty(pte);
680 
681 	entry = pte_to_swp_entry(*ptep);
682 	if (pte_swp_uffd_wp(*ptep))
683 		pte = pte_mkuffd_wp(pte);
684 	else if (is_writable_device_exclusive_entry(entry))
685 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
686 
687 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
688 
689 	/*
690 	 * No need to take a page reference as one was already
691 	 * created when the swap entry was made.
692 	 */
693 	if (PageAnon(page))
694 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
695 	else
696 		/*
697 		 * Currently device exclusive access only supports anonymous
698 		 * memory so the entry shouldn't point to a filebacked page.
699 		 */
700 		WARN_ON_ONCE(1);
701 
702 	set_pte_at(vma->vm_mm, address, ptep, pte);
703 
704 	/*
705 	 * No need to invalidate - it was non-present before. However
706 	 * secondary CPUs may have mappings that need invalidating.
707 	 */
708 	update_mmu_cache(vma, address, ptep);
709 }
710 
711 /*
712  * Tries to restore an exclusive pte if the page lock can be acquired without
713  * sleeping.
714  */
715 static int
716 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
717 			unsigned long addr)
718 {
719 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
720 	struct page *page = pfn_swap_entry_to_page(entry);
721 
722 	if (trylock_page(page)) {
723 		restore_exclusive_pte(vma, page, addr, src_pte);
724 		unlock_page(page);
725 		return 0;
726 	}
727 
728 	return -EBUSY;
729 }
730 
731 /*
732  * copy one vm_area from one task to the other. Assumes the page tables
733  * already present in the new task to be cleared in the whole range
734  * covered by this vma.
735  */
736 
737 static unsigned long
738 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
739 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
740 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
741 {
742 	unsigned long vm_flags = dst_vma->vm_flags;
743 	pte_t pte = *src_pte;
744 	struct page *page;
745 	swp_entry_t entry = pte_to_swp_entry(pte);
746 
747 	if (likely(!non_swap_entry(entry))) {
748 		if (swap_duplicate(entry) < 0)
749 			return -EIO;
750 
751 		/* make sure dst_mm is on swapoff's mmlist. */
752 		if (unlikely(list_empty(&dst_mm->mmlist))) {
753 			spin_lock(&mmlist_lock);
754 			if (list_empty(&dst_mm->mmlist))
755 				list_add(&dst_mm->mmlist,
756 						&src_mm->mmlist);
757 			spin_unlock(&mmlist_lock);
758 		}
759 		/* Mark the swap entry as shared. */
760 		if (pte_swp_exclusive(*src_pte)) {
761 			pte = pte_swp_clear_exclusive(*src_pte);
762 			set_pte_at(src_mm, addr, src_pte, pte);
763 		}
764 		rss[MM_SWAPENTS]++;
765 	} else if (is_migration_entry(entry)) {
766 		page = pfn_swap_entry_to_page(entry);
767 
768 		rss[mm_counter(page)]++;
769 
770 		if (!is_readable_migration_entry(entry) &&
771 				is_cow_mapping(vm_flags)) {
772 			/*
773 			 * COW mappings require pages in both parent and child
774 			 * to be set to read. A previously exclusive entry is
775 			 * now shared.
776 			 */
777 			entry = make_readable_migration_entry(
778 							swp_offset(entry));
779 			pte = swp_entry_to_pte(entry);
780 			if (pte_swp_soft_dirty(*src_pte))
781 				pte = pte_swp_mksoft_dirty(pte);
782 			if (pte_swp_uffd_wp(*src_pte))
783 				pte = pte_swp_mkuffd_wp(pte);
784 			set_pte_at(src_mm, addr, src_pte, pte);
785 		}
786 	} else if (is_device_private_entry(entry)) {
787 		page = pfn_swap_entry_to_page(entry);
788 
789 		/*
790 		 * Update rss count even for unaddressable pages, as
791 		 * they should treated just like normal pages in this
792 		 * respect.
793 		 *
794 		 * We will likely want to have some new rss counters
795 		 * for unaddressable pages, at some point. But for now
796 		 * keep things as they are.
797 		 */
798 		get_page(page);
799 		rss[mm_counter(page)]++;
800 		/* Cannot fail as these pages cannot get pinned. */
801 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
802 
803 		/*
804 		 * We do not preserve soft-dirty information, because so
805 		 * far, checkpoint/restore is the only feature that
806 		 * requires that. And checkpoint/restore does not work
807 		 * when a device driver is involved (you cannot easily
808 		 * save and restore device driver state).
809 		 */
810 		if (is_writable_device_private_entry(entry) &&
811 		    is_cow_mapping(vm_flags)) {
812 			entry = make_readable_device_private_entry(
813 							swp_offset(entry));
814 			pte = swp_entry_to_pte(entry);
815 			if (pte_swp_uffd_wp(*src_pte))
816 				pte = pte_swp_mkuffd_wp(pte);
817 			set_pte_at(src_mm, addr, src_pte, pte);
818 		}
819 	} else if (is_device_exclusive_entry(entry)) {
820 		/*
821 		 * Make device exclusive entries present by restoring the
822 		 * original entry then copying as for a present pte. Device
823 		 * exclusive entries currently only support private writable
824 		 * (ie. COW) mappings.
825 		 */
826 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
827 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
828 			return -EBUSY;
829 		return -ENOENT;
830 	} else if (is_pte_marker_entry(entry)) {
831 		/*
832 		 * We're copying the pgtable should only because dst_vma has
833 		 * uffd-wp enabled, do sanity check.
834 		 */
835 		WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
836 		set_pte_at(dst_mm, addr, dst_pte, pte);
837 		return 0;
838 	}
839 	if (!userfaultfd_wp(dst_vma))
840 		pte = pte_swp_clear_uffd_wp(pte);
841 	set_pte_at(dst_mm, addr, dst_pte, pte);
842 	return 0;
843 }
844 
845 /*
846  * Copy a present and normal page.
847  *
848  * NOTE! The usual case is that this isn't required;
849  * instead, the caller can just increase the page refcount
850  * and re-use the pte the traditional way.
851  *
852  * And if we need a pre-allocated page but don't yet have
853  * one, return a negative error to let the preallocation
854  * code know so that it can do so outside the page table
855  * lock.
856  */
857 static inline int
858 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
859 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
860 		  struct page **prealloc, struct page *page)
861 {
862 	struct page *new_page;
863 	pte_t pte;
864 
865 	new_page = *prealloc;
866 	if (!new_page)
867 		return -EAGAIN;
868 
869 	/*
870 	 * We have a prealloc page, all good!  Take it
871 	 * over and copy the page & arm it.
872 	 */
873 	*prealloc = NULL;
874 	copy_user_highpage(new_page, page, addr, src_vma);
875 	__SetPageUptodate(new_page);
876 	page_add_new_anon_rmap(new_page, dst_vma, addr);
877 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
878 	rss[mm_counter(new_page)]++;
879 
880 	/* All done, just insert the new page copy in the child */
881 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
882 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
883 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
884 		/* Uffd-wp needs to be delivered to dest pte as well */
885 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
886 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
887 	return 0;
888 }
889 
890 /*
891  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
892  * is required to copy this pte.
893  */
894 static inline int
895 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
896 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
897 		 struct page **prealloc)
898 {
899 	struct mm_struct *src_mm = src_vma->vm_mm;
900 	unsigned long vm_flags = src_vma->vm_flags;
901 	pte_t pte = *src_pte;
902 	struct page *page;
903 
904 	page = vm_normal_page(src_vma, addr, pte);
905 	if (page && PageAnon(page)) {
906 		/*
907 		 * If this page may have been pinned by the parent process,
908 		 * copy the page immediately for the child so that we'll always
909 		 * guarantee the pinned page won't be randomly replaced in the
910 		 * future.
911 		 */
912 		get_page(page);
913 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
914 			/* Page maybe pinned, we have to copy. */
915 			put_page(page);
916 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
917 						 addr, rss, prealloc, page);
918 		}
919 		rss[mm_counter(page)]++;
920 	} else if (page) {
921 		get_page(page);
922 		page_dup_file_rmap(page, false);
923 		rss[mm_counter(page)]++;
924 	}
925 
926 	/*
927 	 * If it's a COW mapping, write protect it both
928 	 * in the parent and the child
929 	 */
930 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
931 		ptep_set_wrprotect(src_mm, addr, src_pte);
932 		pte = pte_wrprotect(pte);
933 	}
934 	VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
935 
936 	/*
937 	 * If it's a shared mapping, mark it clean in
938 	 * the child
939 	 */
940 	if (vm_flags & VM_SHARED)
941 		pte = pte_mkclean(pte);
942 	pte = pte_mkold(pte);
943 
944 	if (!userfaultfd_wp(dst_vma))
945 		pte = pte_clear_uffd_wp(pte);
946 
947 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
948 	return 0;
949 }
950 
951 static inline struct page *
952 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
953 		   unsigned long addr)
954 {
955 	struct page *new_page;
956 
957 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
958 	if (!new_page)
959 		return NULL;
960 
961 	if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
962 		put_page(new_page);
963 		return NULL;
964 	}
965 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
966 
967 	return new_page;
968 }
969 
970 static int
971 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
972 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
973 	       unsigned long end)
974 {
975 	struct mm_struct *dst_mm = dst_vma->vm_mm;
976 	struct mm_struct *src_mm = src_vma->vm_mm;
977 	pte_t *orig_src_pte, *orig_dst_pte;
978 	pte_t *src_pte, *dst_pte;
979 	spinlock_t *src_ptl, *dst_ptl;
980 	int progress, ret = 0;
981 	int rss[NR_MM_COUNTERS];
982 	swp_entry_t entry = (swp_entry_t){0};
983 	struct page *prealloc = NULL;
984 
985 again:
986 	progress = 0;
987 	init_rss_vec(rss);
988 
989 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
990 	if (!dst_pte) {
991 		ret = -ENOMEM;
992 		goto out;
993 	}
994 	src_pte = pte_offset_map(src_pmd, addr);
995 	src_ptl = pte_lockptr(src_mm, src_pmd);
996 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
997 	orig_src_pte = src_pte;
998 	orig_dst_pte = dst_pte;
999 	arch_enter_lazy_mmu_mode();
1000 
1001 	do {
1002 		/*
1003 		 * We are holding two locks at this point - either of them
1004 		 * could generate latencies in another task on another CPU.
1005 		 */
1006 		if (progress >= 32) {
1007 			progress = 0;
1008 			if (need_resched() ||
1009 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1010 				break;
1011 		}
1012 		if (pte_none(*src_pte)) {
1013 			progress++;
1014 			continue;
1015 		}
1016 		if (unlikely(!pte_present(*src_pte))) {
1017 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1018 						  dst_pte, src_pte,
1019 						  dst_vma, src_vma,
1020 						  addr, rss);
1021 			if (ret == -EIO) {
1022 				entry = pte_to_swp_entry(*src_pte);
1023 				break;
1024 			} else if (ret == -EBUSY) {
1025 				break;
1026 			} else if (!ret) {
1027 				progress += 8;
1028 				continue;
1029 			}
1030 
1031 			/*
1032 			 * Device exclusive entry restored, continue by copying
1033 			 * the now present pte.
1034 			 */
1035 			WARN_ON_ONCE(ret != -ENOENT);
1036 		}
1037 		/* copy_present_pte() will clear `*prealloc' if consumed */
1038 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1039 				       addr, rss, &prealloc);
1040 		/*
1041 		 * If we need a pre-allocated page for this pte, drop the
1042 		 * locks, allocate, and try again.
1043 		 */
1044 		if (unlikely(ret == -EAGAIN))
1045 			break;
1046 		if (unlikely(prealloc)) {
1047 			/*
1048 			 * pre-alloc page cannot be reused by next time so as
1049 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1050 			 * will allocate page according to address).  This
1051 			 * could only happen if one pinned pte changed.
1052 			 */
1053 			put_page(prealloc);
1054 			prealloc = NULL;
1055 		}
1056 		progress += 8;
1057 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1058 
1059 	arch_leave_lazy_mmu_mode();
1060 	spin_unlock(src_ptl);
1061 	pte_unmap(orig_src_pte);
1062 	add_mm_rss_vec(dst_mm, rss);
1063 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1064 	cond_resched();
1065 
1066 	if (ret == -EIO) {
1067 		VM_WARN_ON_ONCE(!entry.val);
1068 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1069 			ret = -ENOMEM;
1070 			goto out;
1071 		}
1072 		entry.val = 0;
1073 	} else if (ret == -EBUSY) {
1074 		goto out;
1075 	} else if (ret ==  -EAGAIN) {
1076 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1077 		if (!prealloc)
1078 			return -ENOMEM;
1079 	} else if (ret) {
1080 		VM_WARN_ON_ONCE(1);
1081 	}
1082 
1083 	/* We've captured and resolved the error. Reset, try again. */
1084 	ret = 0;
1085 
1086 	if (addr != end)
1087 		goto again;
1088 out:
1089 	if (unlikely(prealloc))
1090 		put_page(prealloc);
1091 	return ret;
1092 }
1093 
1094 static inline int
1095 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1096 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1097 	       unsigned long end)
1098 {
1099 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1100 	struct mm_struct *src_mm = src_vma->vm_mm;
1101 	pmd_t *src_pmd, *dst_pmd;
1102 	unsigned long next;
1103 
1104 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1105 	if (!dst_pmd)
1106 		return -ENOMEM;
1107 	src_pmd = pmd_offset(src_pud, addr);
1108 	do {
1109 		next = pmd_addr_end(addr, end);
1110 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1111 			|| pmd_devmap(*src_pmd)) {
1112 			int err;
1113 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1114 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1115 					    addr, dst_vma, src_vma);
1116 			if (err == -ENOMEM)
1117 				return -ENOMEM;
1118 			if (!err)
1119 				continue;
1120 			/* fall through */
1121 		}
1122 		if (pmd_none_or_clear_bad(src_pmd))
1123 			continue;
1124 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1125 				   addr, next))
1126 			return -ENOMEM;
1127 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1128 	return 0;
1129 }
1130 
1131 static inline int
1132 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1133 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1134 	       unsigned long end)
1135 {
1136 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1137 	struct mm_struct *src_mm = src_vma->vm_mm;
1138 	pud_t *src_pud, *dst_pud;
1139 	unsigned long next;
1140 
1141 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1142 	if (!dst_pud)
1143 		return -ENOMEM;
1144 	src_pud = pud_offset(src_p4d, addr);
1145 	do {
1146 		next = pud_addr_end(addr, end);
1147 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1148 			int err;
1149 
1150 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1151 			err = copy_huge_pud(dst_mm, src_mm,
1152 					    dst_pud, src_pud, addr, src_vma);
1153 			if (err == -ENOMEM)
1154 				return -ENOMEM;
1155 			if (!err)
1156 				continue;
1157 			/* fall through */
1158 		}
1159 		if (pud_none_or_clear_bad(src_pud))
1160 			continue;
1161 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1162 				   addr, next))
1163 			return -ENOMEM;
1164 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1165 	return 0;
1166 }
1167 
1168 static inline int
1169 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1170 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1171 	       unsigned long end)
1172 {
1173 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1174 	p4d_t *src_p4d, *dst_p4d;
1175 	unsigned long next;
1176 
1177 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1178 	if (!dst_p4d)
1179 		return -ENOMEM;
1180 	src_p4d = p4d_offset(src_pgd, addr);
1181 	do {
1182 		next = p4d_addr_end(addr, end);
1183 		if (p4d_none_or_clear_bad(src_p4d))
1184 			continue;
1185 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1186 				   addr, next))
1187 			return -ENOMEM;
1188 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1189 	return 0;
1190 }
1191 
1192 /*
1193  * Return true if the vma needs to copy the pgtable during this fork().  Return
1194  * false when we can speed up fork() by allowing lazy page faults later until
1195  * when the child accesses the memory range.
1196  */
1197 static bool
1198 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1199 {
1200 	/*
1201 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1202 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1203 	 * contains uffd-wp protection information, that's something we can't
1204 	 * retrieve from page cache, and skip copying will lose those info.
1205 	 */
1206 	if (userfaultfd_wp(dst_vma))
1207 		return true;
1208 
1209 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1210 		return true;
1211 
1212 	if (src_vma->anon_vma)
1213 		return true;
1214 
1215 	/*
1216 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1217 	 * becomes much lighter when there are big shared or private readonly
1218 	 * mappings. The tradeoff is that copy_page_range is more efficient
1219 	 * than faulting.
1220 	 */
1221 	return false;
1222 }
1223 
1224 int
1225 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1226 {
1227 	pgd_t *src_pgd, *dst_pgd;
1228 	unsigned long next;
1229 	unsigned long addr = src_vma->vm_start;
1230 	unsigned long end = src_vma->vm_end;
1231 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1232 	struct mm_struct *src_mm = src_vma->vm_mm;
1233 	struct mmu_notifier_range range;
1234 	bool is_cow;
1235 	int ret;
1236 
1237 	if (!vma_needs_copy(dst_vma, src_vma))
1238 		return 0;
1239 
1240 	if (is_vm_hugetlb_page(src_vma))
1241 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1242 
1243 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1244 		/*
1245 		 * We do not free on error cases below as remove_vma
1246 		 * gets called on error from higher level routine
1247 		 */
1248 		ret = track_pfn_copy(src_vma);
1249 		if (ret)
1250 			return ret;
1251 	}
1252 
1253 	/*
1254 	 * We need to invalidate the secondary MMU mappings only when
1255 	 * there could be a permission downgrade on the ptes of the
1256 	 * parent mm. And a permission downgrade will only happen if
1257 	 * is_cow_mapping() returns true.
1258 	 */
1259 	is_cow = is_cow_mapping(src_vma->vm_flags);
1260 
1261 	if (is_cow) {
1262 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1263 					0, src_vma, src_mm, addr, end);
1264 		mmu_notifier_invalidate_range_start(&range);
1265 		/*
1266 		 * Disabling preemption is not needed for the write side, as
1267 		 * the read side doesn't spin, but goes to the mmap_lock.
1268 		 *
1269 		 * Use the raw variant of the seqcount_t write API to avoid
1270 		 * lockdep complaining about preemptibility.
1271 		 */
1272 		mmap_assert_write_locked(src_mm);
1273 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1274 	}
1275 
1276 	ret = 0;
1277 	dst_pgd = pgd_offset(dst_mm, addr);
1278 	src_pgd = pgd_offset(src_mm, addr);
1279 	do {
1280 		next = pgd_addr_end(addr, end);
1281 		if (pgd_none_or_clear_bad(src_pgd))
1282 			continue;
1283 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1284 					    addr, next))) {
1285 			ret = -ENOMEM;
1286 			break;
1287 		}
1288 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1289 
1290 	if (is_cow) {
1291 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1292 		mmu_notifier_invalidate_range_end(&range);
1293 	}
1294 	return ret;
1295 }
1296 
1297 /* Whether we should zap all COWed (private) pages too */
1298 static inline bool should_zap_cows(struct zap_details *details)
1299 {
1300 	/* By default, zap all pages */
1301 	if (!details)
1302 		return true;
1303 
1304 	/* Or, we zap COWed pages only if the caller wants to */
1305 	return details->even_cows;
1306 }
1307 
1308 /* Decides whether we should zap this page with the page pointer specified */
1309 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1310 {
1311 	/* If we can make a decision without *page.. */
1312 	if (should_zap_cows(details))
1313 		return true;
1314 
1315 	/* E.g. the caller passes NULL for the case of a zero page */
1316 	if (!page)
1317 		return true;
1318 
1319 	/* Otherwise we should only zap non-anon pages */
1320 	return !PageAnon(page);
1321 }
1322 
1323 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1324 {
1325 	if (!details)
1326 		return false;
1327 
1328 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1329 }
1330 
1331 /*
1332  * This function makes sure that we'll replace the none pte with an uffd-wp
1333  * swap special pte marker when necessary. Must be with the pgtable lock held.
1334  */
1335 static inline void
1336 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1337 			      unsigned long addr, pte_t *pte,
1338 			      struct zap_details *details, pte_t pteval)
1339 {
1340 	if (zap_drop_file_uffd_wp(details))
1341 		return;
1342 
1343 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1344 }
1345 
1346 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1347 				struct vm_area_struct *vma, pmd_t *pmd,
1348 				unsigned long addr, unsigned long end,
1349 				struct zap_details *details)
1350 {
1351 	struct mm_struct *mm = tlb->mm;
1352 	int force_flush = 0;
1353 	int rss[NR_MM_COUNTERS];
1354 	spinlock_t *ptl;
1355 	pte_t *start_pte;
1356 	pte_t *pte;
1357 	swp_entry_t entry;
1358 
1359 	tlb_change_page_size(tlb, PAGE_SIZE);
1360 again:
1361 	init_rss_vec(rss);
1362 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1363 	pte = start_pte;
1364 	flush_tlb_batched_pending(mm);
1365 	arch_enter_lazy_mmu_mode();
1366 	do {
1367 		pte_t ptent = *pte;
1368 		struct page *page;
1369 
1370 		if (pte_none(ptent))
1371 			continue;
1372 
1373 		if (need_resched())
1374 			break;
1375 
1376 		if (pte_present(ptent)) {
1377 			unsigned int delay_rmap;
1378 
1379 			page = vm_normal_page(vma, addr, ptent);
1380 			if (unlikely(!should_zap_page(details, page)))
1381 				continue;
1382 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1383 							tlb->fullmm);
1384 			tlb_remove_tlb_entry(tlb, pte, addr);
1385 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1386 						      ptent);
1387 			if (unlikely(!page))
1388 				continue;
1389 
1390 			delay_rmap = 0;
1391 			if (!PageAnon(page)) {
1392 				if (pte_dirty(ptent)) {
1393 					set_page_dirty(page);
1394 					if (tlb_delay_rmap(tlb)) {
1395 						delay_rmap = 1;
1396 						force_flush = 1;
1397 					}
1398 				}
1399 				if (pte_young(ptent) &&
1400 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1401 					mark_page_accessed(page);
1402 			}
1403 			rss[mm_counter(page)]--;
1404 			if (!delay_rmap) {
1405 				page_remove_rmap(page, vma, false);
1406 				if (unlikely(page_mapcount(page) < 0))
1407 					print_bad_pte(vma, addr, ptent, page);
1408 			}
1409 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1410 				force_flush = 1;
1411 				addr += PAGE_SIZE;
1412 				break;
1413 			}
1414 			continue;
1415 		}
1416 
1417 		entry = pte_to_swp_entry(ptent);
1418 		if (is_device_private_entry(entry) ||
1419 		    is_device_exclusive_entry(entry)) {
1420 			page = pfn_swap_entry_to_page(entry);
1421 			if (unlikely(!should_zap_page(details, page)))
1422 				continue;
1423 			/*
1424 			 * Both device private/exclusive mappings should only
1425 			 * work with anonymous page so far, so we don't need to
1426 			 * consider uffd-wp bit when zap. For more information,
1427 			 * see zap_install_uffd_wp_if_needed().
1428 			 */
1429 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1430 			rss[mm_counter(page)]--;
1431 			if (is_device_private_entry(entry))
1432 				page_remove_rmap(page, vma, false);
1433 			put_page(page);
1434 		} else if (!non_swap_entry(entry)) {
1435 			/* Genuine swap entry, hence a private anon page */
1436 			if (!should_zap_cows(details))
1437 				continue;
1438 			rss[MM_SWAPENTS]--;
1439 			if (unlikely(!free_swap_and_cache(entry)))
1440 				print_bad_pte(vma, addr, ptent, NULL);
1441 		} else if (is_migration_entry(entry)) {
1442 			page = pfn_swap_entry_to_page(entry);
1443 			if (!should_zap_page(details, page))
1444 				continue;
1445 			rss[mm_counter(page)]--;
1446 		} else if (pte_marker_entry_uffd_wp(entry)) {
1447 			/* Only drop the uffd-wp marker if explicitly requested */
1448 			if (!zap_drop_file_uffd_wp(details))
1449 				continue;
1450 		} else if (is_hwpoison_entry(entry) ||
1451 			   is_swapin_error_entry(entry)) {
1452 			if (!should_zap_cows(details))
1453 				continue;
1454 		} else {
1455 			/* We should have covered all the swap entry types */
1456 			WARN_ON_ONCE(1);
1457 		}
1458 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1459 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1460 	} while (pte++, addr += PAGE_SIZE, addr != end);
1461 
1462 	add_mm_rss_vec(mm, rss);
1463 	arch_leave_lazy_mmu_mode();
1464 
1465 	/* Do the actual TLB flush before dropping ptl */
1466 	if (force_flush) {
1467 		tlb_flush_mmu_tlbonly(tlb);
1468 		tlb_flush_rmaps(tlb, vma);
1469 	}
1470 	pte_unmap_unlock(start_pte, ptl);
1471 
1472 	/*
1473 	 * If we forced a TLB flush (either due to running out of
1474 	 * batch buffers or because we needed to flush dirty TLB
1475 	 * entries before releasing the ptl), free the batched
1476 	 * memory too. Restart if we didn't do everything.
1477 	 */
1478 	if (force_flush) {
1479 		force_flush = 0;
1480 		tlb_flush_mmu(tlb);
1481 	}
1482 
1483 	if (addr != end) {
1484 		cond_resched();
1485 		goto again;
1486 	}
1487 
1488 	return addr;
1489 }
1490 
1491 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1492 				struct vm_area_struct *vma, pud_t *pud,
1493 				unsigned long addr, unsigned long end,
1494 				struct zap_details *details)
1495 {
1496 	pmd_t *pmd;
1497 	unsigned long next;
1498 
1499 	pmd = pmd_offset(pud, addr);
1500 	do {
1501 		next = pmd_addr_end(addr, end);
1502 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1503 			if (next - addr != HPAGE_PMD_SIZE)
1504 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1505 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1506 				goto next;
1507 			/* fall through */
1508 		} else if (details && details->single_folio &&
1509 			   folio_test_pmd_mappable(details->single_folio) &&
1510 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1511 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1512 			/*
1513 			 * Take and drop THP pmd lock so that we cannot return
1514 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1515 			 * but not yet decremented compound_mapcount().
1516 			 */
1517 			spin_unlock(ptl);
1518 		}
1519 
1520 		/*
1521 		 * Here there can be other concurrent MADV_DONTNEED or
1522 		 * trans huge page faults running, and if the pmd is
1523 		 * none or trans huge it can change under us. This is
1524 		 * because MADV_DONTNEED holds the mmap_lock in read
1525 		 * mode.
1526 		 */
1527 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1528 			goto next;
1529 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1530 next:
1531 		cond_resched();
1532 	} while (pmd++, addr = next, addr != end);
1533 
1534 	return addr;
1535 }
1536 
1537 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1538 				struct vm_area_struct *vma, p4d_t *p4d,
1539 				unsigned long addr, unsigned long end,
1540 				struct zap_details *details)
1541 {
1542 	pud_t *pud;
1543 	unsigned long next;
1544 
1545 	pud = pud_offset(p4d, addr);
1546 	do {
1547 		next = pud_addr_end(addr, end);
1548 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1549 			if (next - addr != HPAGE_PUD_SIZE) {
1550 				mmap_assert_locked(tlb->mm);
1551 				split_huge_pud(vma, pud, addr);
1552 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1553 				goto next;
1554 			/* fall through */
1555 		}
1556 		if (pud_none_or_clear_bad(pud))
1557 			continue;
1558 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1559 next:
1560 		cond_resched();
1561 	} while (pud++, addr = next, addr != end);
1562 
1563 	return addr;
1564 }
1565 
1566 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1567 				struct vm_area_struct *vma, pgd_t *pgd,
1568 				unsigned long addr, unsigned long end,
1569 				struct zap_details *details)
1570 {
1571 	p4d_t *p4d;
1572 	unsigned long next;
1573 
1574 	p4d = p4d_offset(pgd, addr);
1575 	do {
1576 		next = p4d_addr_end(addr, end);
1577 		if (p4d_none_or_clear_bad(p4d))
1578 			continue;
1579 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1580 	} while (p4d++, addr = next, addr != end);
1581 
1582 	return addr;
1583 }
1584 
1585 void unmap_page_range(struct mmu_gather *tlb,
1586 			     struct vm_area_struct *vma,
1587 			     unsigned long addr, unsigned long end,
1588 			     struct zap_details *details)
1589 {
1590 	pgd_t *pgd;
1591 	unsigned long next;
1592 
1593 	BUG_ON(addr >= end);
1594 	tlb_start_vma(tlb, vma);
1595 	pgd = pgd_offset(vma->vm_mm, addr);
1596 	do {
1597 		next = pgd_addr_end(addr, end);
1598 		if (pgd_none_or_clear_bad(pgd))
1599 			continue;
1600 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1601 	} while (pgd++, addr = next, addr != end);
1602 	tlb_end_vma(tlb, vma);
1603 }
1604 
1605 
1606 static void unmap_single_vma(struct mmu_gather *tlb,
1607 		struct vm_area_struct *vma, unsigned long start_addr,
1608 		unsigned long end_addr,
1609 		struct zap_details *details)
1610 {
1611 	unsigned long start = max(vma->vm_start, start_addr);
1612 	unsigned long end;
1613 
1614 	if (start >= vma->vm_end)
1615 		return;
1616 	end = min(vma->vm_end, end_addr);
1617 	if (end <= vma->vm_start)
1618 		return;
1619 
1620 	if (vma->vm_file)
1621 		uprobe_munmap(vma, start, end);
1622 
1623 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1624 		untrack_pfn(vma, 0, 0);
1625 
1626 	if (start != end) {
1627 		if (unlikely(is_vm_hugetlb_page(vma))) {
1628 			/*
1629 			 * It is undesirable to test vma->vm_file as it
1630 			 * should be non-null for valid hugetlb area.
1631 			 * However, vm_file will be NULL in the error
1632 			 * cleanup path of mmap_region. When
1633 			 * hugetlbfs ->mmap method fails,
1634 			 * mmap_region() nullifies vma->vm_file
1635 			 * before calling this function to clean up.
1636 			 * Since no pte has actually been setup, it is
1637 			 * safe to do nothing in this case.
1638 			 */
1639 			if (vma->vm_file) {
1640 				zap_flags_t zap_flags = details ?
1641 				    details->zap_flags : 0;
1642 				__unmap_hugepage_range_final(tlb, vma, start, end,
1643 							     NULL, zap_flags);
1644 			}
1645 		} else
1646 			unmap_page_range(tlb, vma, start, end, details);
1647 	}
1648 }
1649 
1650 /**
1651  * unmap_vmas - unmap a range of memory covered by a list of vma's
1652  * @tlb: address of the caller's struct mmu_gather
1653  * @mt: the maple tree
1654  * @vma: the starting vma
1655  * @start_addr: virtual address at which to start unmapping
1656  * @end_addr: virtual address at which to end unmapping
1657  *
1658  * Unmap all pages in the vma list.
1659  *
1660  * Only addresses between `start' and `end' will be unmapped.
1661  *
1662  * The VMA list must be sorted in ascending virtual address order.
1663  *
1664  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1665  * range after unmap_vmas() returns.  So the only responsibility here is to
1666  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1667  * drops the lock and schedules.
1668  */
1669 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1670 		struct vm_area_struct *vma, unsigned long start_addr,
1671 		unsigned long end_addr)
1672 {
1673 	struct mmu_notifier_range range;
1674 	struct zap_details details = {
1675 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1676 		/* Careful - we need to zap private pages too! */
1677 		.even_cows = true,
1678 	};
1679 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1680 
1681 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1682 				start_addr, end_addr);
1683 	mmu_notifier_invalidate_range_start(&range);
1684 	do {
1685 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1686 	} while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1687 	mmu_notifier_invalidate_range_end(&range);
1688 }
1689 
1690 /**
1691  * zap_page_range - remove user pages in a given range
1692  * @vma: vm_area_struct holding the applicable pages
1693  * @start: starting address of pages to zap
1694  * @size: number of bytes to zap
1695  *
1696  * Caller must protect the VMA list
1697  */
1698 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1699 		unsigned long size)
1700 {
1701 	struct maple_tree *mt = &vma->vm_mm->mm_mt;
1702 	unsigned long end = start + size;
1703 	struct mmu_notifier_range range;
1704 	struct mmu_gather tlb;
1705 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1706 
1707 	lru_add_drain();
1708 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1709 				start, start + size);
1710 	tlb_gather_mmu(&tlb, vma->vm_mm);
1711 	update_hiwater_rss(vma->vm_mm);
1712 	mmu_notifier_invalidate_range_start(&range);
1713 	do {
1714 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1715 	} while ((vma = mas_find(&mas, end - 1)) != NULL);
1716 	mmu_notifier_invalidate_range_end(&range);
1717 	tlb_finish_mmu(&tlb);
1718 }
1719 
1720 /**
1721  * zap_page_range_single - remove user pages in a given range
1722  * @vma: vm_area_struct holding the applicable pages
1723  * @address: starting address of pages to zap
1724  * @size: number of bytes to zap
1725  * @details: details of shared cache invalidation
1726  *
1727  * The range must fit into one VMA.
1728  */
1729 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1730 		unsigned long size, struct zap_details *details)
1731 {
1732 	const unsigned long end = address + size;
1733 	struct mmu_notifier_range range;
1734 	struct mmu_gather tlb;
1735 
1736 	lru_add_drain();
1737 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1738 				address, end);
1739 	if (is_vm_hugetlb_page(vma))
1740 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1741 						     &range.end);
1742 	tlb_gather_mmu(&tlb, vma->vm_mm);
1743 	update_hiwater_rss(vma->vm_mm);
1744 	mmu_notifier_invalidate_range_start(&range);
1745 	/*
1746 	 * unmap 'address-end' not 'range.start-range.end' as range
1747 	 * could have been expanded for hugetlb pmd sharing.
1748 	 */
1749 	unmap_single_vma(&tlb, vma, address, end, details);
1750 	mmu_notifier_invalidate_range_end(&range);
1751 	tlb_finish_mmu(&tlb);
1752 }
1753 
1754 /**
1755  * zap_vma_ptes - remove ptes mapping the vma
1756  * @vma: vm_area_struct holding ptes to be zapped
1757  * @address: starting address of pages to zap
1758  * @size: number of bytes to zap
1759  *
1760  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1761  *
1762  * The entire address range must be fully contained within the vma.
1763  *
1764  */
1765 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1766 		unsigned long size)
1767 {
1768 	if (!range_in_vma(vma, address, address + size) ||
1769 	    		!(vma->vm_flags & VM_PFNMAP))
1770 		return;
1771 
1772 	zap_page_range_single(vma, address, size, NULL);
1773 }
1774 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1775 
1776 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1777 {
1778 	pgd_t *pgd;
1779 	p4d_t *p4d;
1780 	pud_t *pud;
1781 	pmd_t *pmd;
1782 
1783 	pgd = pgd_offset(mm, addr);
1784 	p4d = p4d_alloc(mm, pgd, addr);
1785 	if (!p4d)
1786 		return NULL;
1787 	pud = pud_alloc(mm, p4d, addr);
1788 	if (!pud)
1789 		return NULL;
1790 	pmd = pmd_alloc(mm, pud, addr);
1791 	if (!pmd)
1792 		return NULL;
1793 
1794 	VM_BUG_ON(pmd_trans_huge(*pmd));
1795 	return pmd;
1796 }
1797 
1798 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1799 			spinlock_t **ptl)
1800 {
1801 	pmd_t *pmd = walk_to_pmd(mm, addr);
1802 
1803 	if (!pmd)
1804 		return NULL;
1805 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1806 }
1807 
1808 static int validate_page_before_insert(struct page *page)
1809 {
1810 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1811 		return -EINVAL;
1812 	flush_dcache_page(page);
1813 	return 0;
1814 }
1815 
1816 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1817 			unsigned long addr, struct page *page, pgprot_t prot)
1818 {
1819 	if (!pte_none(*pte))
1820 		return -EBUSY;
1821 	/* Ok, finally just insert the thing.. */
1822 	get_page(page);
1823 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1824 	page_add_file_rmap(page, vma, false);
1825 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1826 	return 0;
1827 }
1828 
1829 /*
1830  * This is the old fallback for page remapping.
1831  *
1832  * For historical reasons, it only allows reserved pages. Only
1833  * old drivers should use this, and they needed to mark their
1834  * pages reserved for the old functions anyway.
1835  */
1836 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1837 			struct page *page, pgprot_t prot)
1838 {
1839 	int retval;
1840 	pte_t *pte;
1841 	spinlock_t *ptl;
1842 
1843 	retval = validate_page_before_insert(page);
1844 	if (retval)
1845 		goto out;
1846 	retval = -ENOMEM;
1847 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1848 	if (!pte)
1849 		goto out;
1850 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1851 	pte_unmap_unlock(pte, ptl);
1852 out:
1853 	return retval;
1854 }
1855 
1856 #ifdef pte_index
1857 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1858 			unsigned long addr, struct page *page, pgprot_t prot)
1859 {
1860 	int err;
1861 
1862 	if (!page_count(page))
1863 		return -EINVAL;
1864 	err = validate_page_before_insert(page);
1865 	if (err)
1866 		return err;
1867 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1868 }
1869 
1870 /* insert_pages() amortizes the cost of spinlock operations
1871  * when inserting pages in a loop. Arch *must* define pte_index.
1872  */
1873 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1874 			struct page **pages, unsigned long *num, pgprot_t prot)
1875 {
1876 	pmd_t *pmd = NULL;
1877 	pte_t *start_pte, *pte;
1878 	spinlock_t *pte_lock;
1879 	struct mm_struct *const mm = vma->vm_mm;
1880 	unsigned long curr_page_idx = 0;
1881 	unsigned long remaining_pages_total = *num;
1882 	unsigned long pages_to_write_in_pmd;
1883 	int ret;
1884 more:
1885 	ret = -EFAULT;
1886 	pmd = walk_to_pmd(mm, addr);
1887 	if (!pmd)
1888 		goto out;
1889 
1890 	pages_to_write_in_pmd = min_t(unsigned long,
1891 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1892 
1893 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1894 	ret = -ENOMEM;
1895 	if (pte_alloc(mm, pmd))
1896 		goto out;
1897 
1898 	while (pages_to_write_in_pmd) {
1899 		int pte_idx = 0;
1900 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1901 
1902 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1903 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1904 			int err = insert_page_in_batch_locked(vma, pte,
1905 				addr, pages[curr_page_idx], prot);
1906 			if (unlikely(err)) {
1907 				pte_unmap_unlock(start_pte, pte_lock);
1908 				ret = err;
1909 				remaining_pages_total -= pte_idx;
1910 				goto out;
1911 			}
1912 			addr += PAGE_SIZE;
1913 			++curr_page_idx;
1914 		}
1915 		pte_unmap_unlock(start_pte, pte_lock);
1916 		pages_to_write_in_pmd -= batch_size;
1917 		remaining_pages_total -= batch_size;
1918 	}
1919 	if (remaining_pages_total)
1920 		goto more;
1921 	ret = 0;
1922 out:
1923 	*num = remaining_pages_total;
1924 	return ret;
1925 }
1926 #endif  /* ifdef pte_index */
1927 
1928 /**
1929  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1930  * @vma: user vma to map to
1931  * @addr: target start user address of these pages
1932  * @pages: source kernel pages
1933  * @num: in: number of pages to map. out: number of pages that were *not*
1934  * mapped. (0 means all pages were successfully mapped).
1935  *
1936  * Preferred over vm_insert_page() when inserting multiple pages.
1937  *
1938  * In case of error, we may have mapped a subset of the provided
1939  * pages. It is the caller's responsibility to account for this case.
1940  *
1941  * The same restrictions apply as in vm_insert_page().
1942  */
1943 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1944 			struct page **pages, unsigned long *num)
1945 {
1946 #ifdef pte_index
1947 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1948 
1949 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1950 		return -EFAULT;
1951 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1952 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1953 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1954 		vma->vm_flags |= VM_MIXEDMAP;
1955 	}
1956 	/* Defer page refcount checking till we're about to map that page. */
1957 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1958 #else
1959 	unsigned long idx = 0, pgcount = *num;
1960 	int err = -EINVAL;
1961 
1962 	for (; idx < pgcount; ++idx) {
1963 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1964 		if (err)
1965 			break;
1966 	}
1967 	*num = pgcount - idx;
1968 	return err;
1969 #endif  /* ifdef pte_index */
1970 }
1971 EXPORT_SYMBOL(vm_insert_pages);
1972 
1973 /**
1974  * vm_insert_page - insert single page into user vma
1975  * @vma: user vma to map to
1976  * @addr: target user address of this page
1977  * @page: source kernel page
1978  *
1979  * This allows drivers to insert individual pages they've allocated
1980  * into a user vma.
1981  *
1982  * The page has to be a nice clean _individual_ kernel allocation.
1983  * If you allocate a compound page, you need to have marked it as
1984  * such (__GFP_COMP), or manually just split the page up yourself
1985  * (see split_page()).
1986  *
1987  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1988  * took an arbitrary page protection parameter. This doesn't allow
1989  * that. Your vma protection will have to be set up correctly, which
1990  * means that if you want a shared writable mapping, you'd better
1991  * ask for a shared writable mapping!
1992  *
1993  * The page does not need to be reserved.
1994  *
1995  * Usually this function is called from f_op->mmap() handler
1996  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1997  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1998  * function from other places, for example from page-fault handler.
1999  *
2000  * Return: %0 on success, negative error code otherwise.
2001  */
2002 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2003 			struct page *page)
2004 {
2005 	if (addr < vma->vm_start || addr >= vma->vm_end)
2006 		return -EFAULT;
2007 	if (!page_count(page))
2008 		return -EINVAL;
2009 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2010 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2011 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2012 		vma->vm_flags |= VM_MIXEDMAP;
2013 	}
2014 	return insert_page(vma, addr, page, vma->vm_page_prot);
2015 }
2016 EXPORT_SYMBOL(vm_insert_page);
2017 
2018 /*
2019  * __vm_map_pages - maps range of kernel pages into user vma
2020  * @vma: user vma to map to
2021  * @pages: pointer to array of source kernel pages
2022  * @num: number of pages in page array
2023  * @offset: user's requested vm_pgoff
2024  *
2025  * This allows drivers to map range of kernel pages into a user vma.
2026  *
2027  * Return: 0 on success and error code otherwise.
2028  */
2029 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2030 				unsigned long num, unsigned long offset)
2031 {
2032 	unsigned long count = vma_pages(vma);
2033 	unsigned long uaddr = vma->vm_start;
2034 	int ret, i;
2035 
2036 	/* Fail if the user requested offset is beyond the end of the object */
2037 	if (offset >= num)
2038 		return -ENXIO;
2039 
2040 	/* Fail if the user requested size exceeds available object size */
2041 	if (count > num - offset)
2042 		return -ENXIO;
2043 
2044 	for (i = 0; i < count; i++) {
2045 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2046 		if (ret < 0)
2047 			return ret;
2048 		uaddr += PAGE_SIZE;
2049 	}
2050 
2051 	return 0;
2052 }
2053 
2054 /**
2055  * vm_map_pages - maps range of kernel pages starts with non zero offset
2056  * @vma: user vma to map to
2057  * @pages: pointer to array of source kernel pages
2058  * @num: number of pages in page array
2059  *
2060  * Maps an object consisting of @num pages, catering for the user's
2061  * requested vm_pgoff
2062  *
2063  * If we fail to insert any page into the vma, the function will return
2064  * immediately leaving any previously inserted pages present.  Callers
2065  * from the mmap handler may immediately return the error as their caller
2066  * will destroy the vma, removing any successfully inserted pages. Other
2067  * callers should make their own arrangements for calling unmap_region().
2068  *
2069  * Context: Process context. Called by mmap handlers.
2070  * Return: 0 on success and error code otherwise.
2071  */
2072 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2073 				unsigned long num)
2074 {
2075 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2076 }
2077 EXPORT_SYMBOL(vm_map_pages);
2078 
2079 /**
2080  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2081  * @vma: user vma to map to
2082  * @pages: pointer to array of source kernel pages
2083  * @num: number of pages in page array
2084  *
2085  * Similar to vm_map_pages(), except that it explicitly sets the offset
2086  * to 0. This function is intended for the drivers that did not consider
2087  * vm_pgoff.
2088  *
2089  * Context: Process context. Called by mmap handlers.
2090  * Return: 0 on success and error code otherwise.
2091  */
2092 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2093 				unsigned long num)
2094 {
2095 	return __vm_map_pages(vma, pages, num, 0);
2096 }
2097 EXPORT_SYMBOL(vm_map_pages_zero);
2098 
2099 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2100 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2101 {
2102 	struct mm_struct *mm = vma->vm_mm;
2103 	pte_t *pte, entry;
2104 	spinlock_t *ptl;
2105 
2106 	pte = get_locked_pte(mm, addr, &ptl);
2107 	if (!pte)
2108 		return VM_FAULT_OOM;
2109 	if (!pte_none(*pte)) {
2110 		if (mkwrite) {
2111 			/*
2112 			 * For read faults on private mappings the PFN passed
2113 			 * in may not match the PFN we have mapped if the
2114 			 * mapped PFN is a writeable COW page.  In the mkwrite
2115 			 * case we are creating a writable PTE for a shared
2116 			 * mapping and we expect the PFNs to match. If they
2117 			 * don't match, we are likely racing with block
2118 			 * allocation and mapping invalidation so just skip the
2119 			 * update.
2120 			 */
2121 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2122 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2123 				goto out_unlock;
2124 			}
2125 			entry = pte_mkyoung(*pte);
2126 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2127 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2128 				update_mmu_cache(vma, addr, pte);
2129 		}
2130 		goto out_unlock;
2131 	}
2132 
2133 	/* Ok, finally just insert the thing.. */
2134 	if (pfn_t_devmap(pfn))
2135 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2136 	else
2137 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2138 
2139 	if (mkwrite) {
2140 		entry = pte_mkyoung(entry);
2141 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2142 	}
2143 
2144 	set_pte_at(mm, addr, pte, entry);
2145 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2146 
2147 out_unlock:
2148 	pte_unmap_unlock(pte, ptl);
2149 	return VM_FAULT_NOPAGE;
2150 }
2151 
2152 /**
2153  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2154  * @vma: user vma to map to
2155  * @addr: target user address of this page
2156  * @pfn: source kernel pfn
2157  * @pgprot: pgprot flags for the inserted page
2158  *
2159  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2160  * to override pgprot on a per-page basis.
2161  *
2162  * This only makes sense for IO mappings, and it makes no sense for
2163  * COW mappings.  In general, using multiple vmas is preferable;
2164  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2165  * impractical.
2166  *
2167  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2168  * a value of @pgprot different from that of @vma->vm_page_prot.
2169  *
2170  * Context: Process context.  May allocate using %GFP_KERNEL.
2171  * Return: vm_fault_t value.
2172  */
2173 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2174 			unsigned long pfn, pgprot_t pgprot)
2175 {
2176 	/*
2177 	 * Technically, architectures with pte_special can avoid all these
2178 	 * restrictions (same for remap_pfn_range).  However we would like
2179 	 * consistency in testing and feature parity among all, so we should
2180 	 * try to keep these invariants in place for everybody.
2181 	 */
2182 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2183 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2184 						(VM_PFNMAP|VM_MIXEDMAP));
2185 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2186 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2187 
2188 	if (addr < vma->vm_start || addr >= vma->vm_end)
2189 		return VM_FAULT_SIGBUS;
2190 
2191 	if (!pfn_modify_allowed(pfn, pgprot))
2192 		return VM_FAULT_SIGBUS;
2193 
2194 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2195 
2196 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2197 			false);
2198 }
2199 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2200 
2201 /**
2202  * vmf_insert_pfn - insert single pfn into user vma
2203  * @vma: user vma to map to
2204  * @addr: target user address of this page
2205  * @pfn: source kernel pfn
2206  *
2207  * Similar to vm_insert_page, this allows drivers to insert individual pages
2208  * they've allocated into a user vma. Same comments apply.
2209  *
2210  * This function should only be called from a vm_ops->fault handler, and
2211  * in that case the handler should return the result of this function.
2212  *
2213  * vma cannot be a COW mapping.
2214  *
2215  * As this is called only for pages that do not currently exist, we
2216  * do not need to flush old virtual caches or the TLB.
2217  *
2218  * Context: Process context.  May allocate using %GFP_KERNEL.
2219  * Return: vm_fault_t value.
2220  */
2221 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2222 			unsigned long pfn)
2223 {
2224 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2225 }
2226 EXPORT_SYMBOL(vmf_insert_pfn);
2227 
2228 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2229 {
2230 	/* these checks mirror the abort conditions in vm_normal_page */
2231 	if (vma->vm_flags & VM_MIXEDMAP)
2232 		return true;
2233 	if (pfn_t_devmap(pfn))
2234 		return true;
2235 	if (pfn_t_special(pfn))
2236 		return true;
2237 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2238 		return true;
2239 	return false;
2240 }
2241 
2242 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2243 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2244 		bool mkwrite)
2245 {
2246 	int err;
2247 
2248 	BUG_ON(!vm_mixed_ok(vma, pfn));
2249 
2250 	if (addr < vma->vm_start || addr >= vma->vm_end)
2251 		return VM_FAULT_SIGBUS;
2252 
2253 	track_pfn_insert(vma, &pgprot, pfn);
2254 
2255 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2256 		return VM_FAULT_SIGBUS;
2257 
2258 	/*
2259 	 * If we don't have pte special, then we have to use the pfn_valid()
2260 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2261 	 * refcount the page if pfn_valid is true (hence insert_page rather
2262 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2263 	 * without pte special, it would there be refcounted as a normal page.
2264 	 */
2265 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2266 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2267 		struct page *page;
2268 
2269 		/*
2270 		 * At this point we are committed to insert_page()
2271 		 * regardless of whether the caller specified flags that
2272 		 * result in pfn_t_has_page() == false.
2273 		 */
2274 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2275 		err = insert_page(vma, addr, page, pgprot);
2276 	} else {
2277 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2278 	}
2279 
2280 	if (err == -ENOMEM)
2281 		return VM_FAULT_OOM;
2282 	if (err < 0 && err != -EBUSY)
2283 		return VM_FAULT_SIGBUS;
2284 
2285 	return VM_FAULT_NOPAGE;
2286 }
2287 
2288 /**
2289  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2290  * @vma: user vma to map to
2291  * @addr: target user address of this page
2292  * @pfn: source kernel pfn
2293  * @pgprot: pgprot flags for the inserted page
2294  *
2295  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2296  * to override pgprot on a per-page basis.
2297  *
2298  * Typically this function should be used by drivers to set caching- and
2299  * encryption bits different than those of @vma->vm_page_prot, because
2300  * the caching- or encryption mode may not be known at mmap() time.
2301  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2302  * to set caching and encryption bits for those vmas (except for COW pages).
2303  * This is ensured by core vm only modifying these page table entries using
2304  * functions that don't touch caching- or encryption bits, using pte_modify()
2305  * if needed. (See for example mprotect()).
2306  * Also when new page-table entries are created, this is only done using the
2307  * fault() callback, and never using the value of vma->vm_page_prot,
2308  * except for page-table entries that point to anonymous pages as the result
2309  * of COW.
2310  *
2311  * Context: Process context.  May allocate using %GFP_KERNEL.
2312  * Return: vm_fault_t value.
2313  */
2314 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2315 				 pfn_t pfn, pgprot_t pgprot)
2316 {
2317 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2318 }
2319 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2320 
2321 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2322 		pfn_t pfn)
2323 {
2324 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2325 }
2326 EXPORT_SYMBOL(vmf_insert_mixed);
2327 
2328 /*
2329  *  If the insertion of PTE failed because someone else already added a
2330  *  different entry in the mean time, we treat that as success as we assume
2331  *  the same entry was actually inserted.
2332  */
2333 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2334 		unsigned long addr, pfn_t pfn)
2335 {
2336 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2337 }
2338 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2339 
2340 /*
2341  * maps a range of physical memory into the requested pages. the old
2342  * mappings are removed. any references to nonexistent pages results
2343  * in null mappings (currently treated as "copy-on-access")
2344  */
2345 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2346 			unsigned long addr, unsigned long end,
2347 			unsigned long pfn, pgprot_t prot)
2348 {
2349 	pte_t *pte, *mapped_pte;
2350 	spinlock_t *ptl;
2351 	int err = 0;
2352 
2353 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2354 	if (!pte)
2355 		return -ENOMEM;
2356 	arch_enter_lazy_mmu_mode();
2357 	do {
2358 		BUG_ON(!pte_none(*pte));
2359 		if (!pfn_modify_allowed(pfn, prot)) {
2360 			err = -EACCES;
2361 			break;
2362 		}
2363 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2364 		pfn++;
2365 	} while (pte++, addr += PAGE_SIZE, addr != end);
2366 	arch_leave_lazy_mmu_mode();
2367 	pte_unmap_unlock(mapped_pte, ptl);
2368 	return err;
2369 }
2370 
2371 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2372 			unsigned long addr, unsigned long end,
2373 			unsigned long pfn, pgprot_t prot)
2374 {
2375 	pmd_t *pmd;
2376 	unsigned long next;
2377 	int err;
2378 
2379 	pfn -= addr >> PAGE_SHIFT;
2380 	pmd = pmd_alloc(mm, pud, addr);
2381 	if (!pmd)
2382 		return -ENOMEM;
2383 	VM_BUG_ON(pmd_trans_huge(*pmd));
2384 	do {
2385 		next = pmd_addr_end(addr, end);
2386 		err = remap_pte_range(mm, pmd, addr, next,
2387 				pfn + (addr >> PAGE_SHIFT), prot);
2388 		if (err)
2389 			return err;
2390 	} while (pmd++, addr = next, addr != end);
2391 	return 0;
2392 }
2393 
2394 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2395 			unsigned long addr, unsigned long end,
2396 			unsigned long pfn, pgprot_t prot)
2397 {
2398 	pud_t *pud;
2399 	unsigned long next;
2400 	int err;
2401 
2402 	pfn -= addr >> PAGE_SHIFT;
2403 	pud = pud_alloc(mm, p4d, addr);
2404 	if (!pud)
2405 		return -ENOMEM;
2406 	do {
2407 		next = pud_addr_end(addr, end);
2408 		err = remap_pmd_range(mm, pud, addr, next,
2409 				pfn + (addr >> PAGE_SHIFT), prot);
2410 		if (err)
2411 			return err;
2412 	} while (pud++, addr = next, addr != end);
2413 	return 0;
2414 }
2415 
2416 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2417 			unsigned long addr, unsigned long end,
2418 			unsigned long pfn, pgprot_t prot)
2419 {
2420 	p4d_t *p4d;
2421 	unsigned long next;
2422 	int err;
2423 
2424 	pfn -= addr >> PAGE_SHIFT;
2425 	p4d = p4d_alloc(mm, pgd, addr);
2426 	if (!p4d)
2427 		return -ENOMEM;
2428 	do {
2429 		next = p4d_addr_end(addr, end);
2430 		err = remap_pud_range(mm, p4d, addr, next,
2431 				pfn + (addr >> PAGE_SHIFT), prot);
2432 		if (err)
2433 			return err;
2434 	} while (p4d++, addr = next, addr != end);
2435 	return 0;
2436 }
2437 
2438 /*
2439  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2440  * must have pre-validated the caching bits of the pgprot_t.
2441  */
2442 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2443 		unsigned long pfn, unsigned long size, pgprot_t prot)
2444 {
2445 	pgd_t *pgd;
2446 	unsigned long next;
2447 	unsigned long end = addr + PAGE_ALIGN(size);
2448 	struct mm_struct *mm = vma->vm_mm;
2449 	int err;
2450 
2451 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2452 		return -EINVAL;
2453 
2454 	/*
2455 	 * Physically remapped pages are special. Tell the
2456 	 * rest of the world about it:
2457 	 *   VM_IO tells people not to look at these pages
2458 	 *	(accesses can have side effects).
2459 	 *   VM_PFNMAP tells the core MM that the base pages are just
2460 	 *	raw PFN mappings, and do not have a "struct page" associated
2461 	 *	with them.
2462 	 *   VM_DONTEXPAND
2463 	 *      Disable vma merging and expanding with mremap().
2464 	 *   VM_DONTDUMP
2465 	 *      Omit vma from core dump, even when VM_IO turned off.
2466 	 *
2467 	 * There's a horrible special case to handle copy-on-write
2468 	 * behaviour that some programs depend on. We mark the "original"
2469 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2470 	 * See vm_normal_page() for details.
2471 	 */
2472 	if (is_cow_mapping(vma->vm_flags)) {
2473 		if (addr != vma->vm_start || end != vma->vm_end)
2474 			return -EINVAL;
2475 		vma->vm_pgoff = pfn;
2476 	}
2477 
2478 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2479 
2480 	BUG_ON(addr >= end);
2481 	pfn -= addr >> PAGE_SHIFT;
2482 	pgd = pgd_offset(mm, addr);
2483 	flush_cache_range(vma, addr, end);
2484 	do {
2485 		next = pgd_addr_end(addr, end);
2486 		err = remap_p4d_range(mm, pgd, addr, next,
2487 				pfn + (addr >> PAGE_SHIFT), prot);
2488 		if (err)
2489 			return err;
2490 	} while (pgd++, addr = next, addr != end);
2491 
2492 	return 0;
2493 }
2494 
2495 /**
2496  * remap_pfn_range - remap kernel memory to userspace
2497  * @vma: user vma to map to
2498  * @addr: target page aligned user address to start at
2499  * @pfn: page frame number of kernel physical memory address
2500  * @size: size of mapping area
2501  * @prot: page protection flags for this mapping
2502  *
2503  * Note: this is only safe if the mm semaphore is held when called.
2504  *
2505  * Return: %0 on success, negative error code otherwise.
2506  */
2507 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2508 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2509 {
2510 	int err;
2511 
2512 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2513 	if (err)
2514 		return -EINVAL;
2515 
2516 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2517 	if (err)
2518 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2519 	return err;
2520 }
2521 EXPORT_SYMBOL(remap_pfn_range);
2522 
2523 /**
2524  * vm_iomap_memory - remap memory to userspace
2525  * @vma: user vma to map to
2526  * @start: start of the physical memory to be mapped
2527  * @len: size of area
2528  *
2529  * This is a simplified io_remap_pfn_range() for common driver use. The
2530  * driver just needs to give us the physical memory range to be mapped,
2531  * we'll figure out the rest from the vma information.
2532  *
2533  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2534  * whatever write-combining details or similar.
2535  *
2536  * Return: %0 on success, negative error code otherwise.
2537  */
2538 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2539 {
2540 	unsigned long vm_len, pfn, pages;
2541 
2542 	/* Check that the physical memory area passed in looks valid */
2543 	if (start + len < start)
2544 		return -EINVAL;
2545 	/*
2546 	 * You *really* shouldn't map things that aren't page-aligned,
2547 	 * but we've historically allowed it because IO memory might
2548 	 * just have smaller alignment.
2549 	 */
2550 	len += start & ~PAGE_MASK;
2551 	pfn = start >> PAGE_SHIFT;
2552 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2553 	if (pfn + pages < pfn)
2554 		return -EINVAL;
2555 
2556 	/* We start the mapping 'vm_pgoff' pages into the area */
2557 	if (vma->vm_pgoff > pages)
2558 		return -EINVAL;
2559 	pfn += vma->vm_pgoff;
2560 	pages -= vma->vm_pgoff;
2561 
2562 	/* Can we fit all of the mapping? */
2563 	vm_len = vma->vm_end - vma->vm_start;
2564 	if (vm_len >> PAGE_SHIFT > pages)
2565 		return -EINVAL;
2566 
2567 	/* Ok, let it rip */
2568 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2569 }
2570 EXPORT_SYMBOL(vm_iomap_memory);
2571 
2572 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2573 				     unsigned long addr, unsigned long end,
2574 				     pte_fn_t fn, void *data, bool create,
2575 				     pgtbl_mod_mask *mask)
2576 {
2577 	pte_t *pte, *mapped_pte;
2578 	int err = 0;
2579 	spinlock_t *ptl;
2580 
2581 	if (create) {
2582 		mapped_pte = pte = (mm == &init_mm) ?
2583 			pte_alloc_kernel_track(pmd, addr, mask) :
2584 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2585 		if (!pte)
2586 			return -ENOMEM;
2587 	} else {
2588 		mapped_pte = pte = (mm == &init_mm) ?
2589 			pte_offset_kernel(pmd, addr) :
2590 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2591 	}
2592 
2593 	BUG_ON(pmd_huge(*pmd));
2594 
2595 	arch_enter_lazy_mmu_mode();
2596 
2597 	if (fn) {
2598 		do {
2599 			if (create || !pte_none(*pte)) {
2600 				err = fn(pte++, addr, data);
2601 				if (err)
2602 					break;
2603 			}
2604 		} while (addr += PAGE_SIZE, addr != end);
2605 	}
2606 	*mask |= PGTBL_PTE_MODIFIED;
2607 
2608 	arch_leave_lazy_mmu_mode();
2609 
2610 	if (mm != &init_mm)
2611 		pte_unmap_unlock(mapped_pte, ptl);
2612 	return err;
2613 }
2614 
2615 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2616 				     unsigned long addr, unsigned long end,
2617 				     pte_fn_t fn, void *data, bool create,
2618 				     pgtbl_mod_mask *mask)
2619 {
2620 	pmd_t *pmd;
2621 	unsigned long next;
2622 	int err = 0;
2623 
2624 	BUG_ON(pud_huge(*pud));
2625 
2626 	if (create) {
2627 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2628 		if (!pmd)
2629 			return -ENOMEM;
2630 	} else {
2631 		pmd = pmd_offset(pud, addr);
2632 	}
2633 	do {
2634 		next = pmd_addr_end(addr, end);
2635 		if (pmd_none(*pmd) && !create)
2636 			continue;
2637 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2638 			return -EINVAL;
2639 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2640 			if (!create)
2641 				continue;
2642 			pmd_clear_bad(pmd);
2643 		}
2644 		err = apply_to_pte_range(mm, pmd, addr, next,
2645 					 fn, data, create, mask);
2646 		if (err)
2647 			break;
2648 	} while (pmd++, addr = next, addr != end);
2649 
2650 	return err;
2651 }
2652 
2653 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2654 				     unsigned long addr, unsigned long end,
2655 				     pte_fn_t fn, void *data, bool create,
2656 				     pgtbl_mod_mask *mask)
2657 {
2658 	pud_t *pud;
2659 	unsigned long next;
2660 	int err = 0;
2661 
2662 	if (create) {
2663 		pud = pud_alloc_track(mm, p4d, addr, mask);
2664 		if (!pud)
2665 			return -ENOMEM;
2666 	} else {
2667 		pud = pud_offset(p4d, addr);
2668 	}
2669 	do {
2670 		next = pud_addr_end(addr, end);
2671 		if (pud_none(*pud) && !create)
2672 			continue;
2673 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2674 			return -EINVAL;
2675 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2676 			if (!create)
2677 				continue;
2678 			pud_clear_bad(pud);
2679 		}
2680 		err = apply_to_pmd_range(mm, pud, addr, next,
2681 					 fn, data, create, mask);
2682 		if (err)
2683 			break;
2684 	} while (pud++, addr = next, addr != end);
2685 
2686 	return err;
2687 }
2688 
2689 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2690 				     unsigned long addr, unsigned long end,
2691 				     pte_fn_t fn, void *data, bool create,
2692 				     pgtbl_mod_mask *mask)
2693 {
2694 	p4d_t *p4d;
2695 	unsigned long next;
2696 	int err = 0;
2697 
2698 	if (create) {
2699 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2700 		if (!p4d)
2701 			return -ENOMEM;
2702 	} else {
2703 		p4d = p4d_offset(pgd, addr);
2704 	}
2705 	do {
2706 		next = p4d_addr_end(addr, end);
2707 		if (p4d_none(*p4d) && !create)
2708 			continue;
2709 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2710 			return -EINVAL;
2711 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2712 			if (!create)
2713 				continue;
2714 			p4d_clear_bad(p4d);
2715 		}
2716 		err = apply_to_pud_range(mm, p4d, addr, next,
2717 					 fn, data, create, mask);
2718 		if (err)
2719 			break;
2720 	} while (p4d++, addr = next, addr != end);
2721 
2722 	return err;
2723 }
2724 
2725 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2726 				 unsigned long size, pte_fn_t fn,
2727 				 void *data, bool create)
2728 {
2729 	pgd_t *pgd;
2730 	unsigned long start = addr, next;
2731 	unsigned long end = addr + size;
2732 	pgtbl_mod_mask mask = 0;
2733 	int err = 0;
2734 
2735 	if (WARN_ON(addr >= end))
2736 		return -EINVAL;
2737 
2738 	pgd = pgd_offset(mm, addr);
2739 	do {
2740 		next = pgd_addr_end(addr, end);
2741 		if (pgd_none(*pgd) && !create)
2742 			continue;
2743 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2744 			return -EINVAL;
2745 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2746 			if (!create)
2747 				continue;
2748 			pgd_clear_bad(pgd);
2749 		}
2750 		err = apply_to_p4d_range(mm, pgd, addr, next,
2751 					 fn, data, create, &mask);
2752 		if (err)
2753 			break;
2754 	} while (pgd++, addr = next, addr != end);
2755 
2756 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2757 		arch_sync_kernel_mappings(start, start + size);
2758 
2759 	return err;
2760 }
2761 
2762 /*
2763  * Scan a region of virtual memory, filling in page tables as necessary
2764  * and calling a provided function on each leaf page table.
2765  */
2766 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2767 			unsigned long size, pte_fn_t fn, void *data)
2768 {
2769 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2770 }
2771 EXPORT_SYMBOL_GPL(apply_to_page_range);
2772 
2773 /*
2774  * Scan a region of virtual memory, calling a provided function on
2775  * each leaf page table where it exists.
2776  *
2777  * Unlike apply_to_page_range, this does _not_ fill in page tables
2778  * where they are absent.
2779  */
2780 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2781 				 unsigned long size, pte_fn_t fn, void *data)
2782 {
2783 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2784 }
2785 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2786 
2787 /*
2788  * handle_pte_fault chooses page fault handler according to an entry which was
2789  * read non-atomically.  Before making any commitment, on those architectures
2790  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2791  * parts, do_swap_page must check under lock before unmapping the pte and
2792  * proceeding (but do_wp_page is only called after already making such a check;
2793  * and do_anonymous_page can safely check later on).
2794  */
2795 static inline int pte_unmap_same(struct vm_fault *vmf)
2796 {
2797 	int same = 1;
2798 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2799 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2800 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2801 		spin_lock(ptl);
2802 		same = pte_same(*vmf->pte, vmf->orig_pte);
2803 		spin_unlock(ptl);
2804 	}
2805 #endif
2806 	pte_unmap(vmf->pte);
2807 	vmf->pte = NULL;
2808 	return same;
2809 }
2810 
2811 /*
2812  * Return:
2813  *	0:		copied succeeded
2814  *	-EHWPOISON:	copy failed due to hwpoison in source page
2815  *	-EAGAIN:	copied failed (some other reason)
2816  */
2817 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2818 				      struct vm_fault *vmf)
2819 {
2820 	int ret;
2821 	void *kaddr;
2822 	void __user *uaddr;
2823 	bool locked = false;
2824 	struct vm_area_struct *vma = vmf->vma;
2825 	struct mm_struct *mm = vma->vm_mm;
2826 	unsigned long addr = vmf->address;
2827 
2828 	if (likely(src)) {
2829 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2830 			memory_failure_queue(page_to_pfn(src), 0);
2831 			return -EHWPOISON;
2832 		}
2833 		return 0;
2834 	}
2835 
2836 	/*
2837 	 * If the source page was a PFN mapping, we don't have
2838 	 * a "struct page" for it. We do a best-effort copy by
2839 	 * just copying from the original user address. If that
2840 	 * fails, we just zero-fill it. Live with it.
2841 	 */
2842 	kaddr = kmap_atomic(dst);
2843 	uaddr = (void __user *)(addr & PAGE_MASK);
2844 
2845 	/*
2846 	 * On architectures with software "accessed" bits, we would
2847 	 * take a double page fault, so mark it accessed here.
2848 	 */
2849 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2850 		pte_t entry;
2851 
2852 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2853 		locked = true;
2854 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2855 			/*
2856 			 * Other thread has already handled the fault
2857 			 * and update local tlb only
2858 			 */
2859 			update_mmu_tlb(vma, addr, vmf->pte);
2860 			ret = -EAGAIN;
2861 			goto pte_unlock;
2862 		}
2863 
2864 		entry = pte_mkyoung(vmf->orig_pte);
2865 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2866 			update_mmu_cache(vma, addr, vmf->pte);
2867 	}
2868 
2869 	/*
2870 	 * This really shouldn't fail, because the page is there
2871 	 * in the page tables. But it might just be unreadable,
2872 	 * in which case we just give up and fill the result with
2873 	 * zeroes.
2874 	 */
2875 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2876 		if (locked)
2877 			goto warn;
2878 
2879 		/* Re-validate under PTL if the page is still mapped */
2880 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2881 		locked = true;
2882 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2883 			/* The PTE changed under us, update local tlb */
2884 			update_mmu_tlb(vma, addr, vmf->pte);
2885 			ret = -EAGAIN;
2886 			goto pte_unlock;
2887 		}
2888 
2889 		/*
2890 		 * The same page can be mapped back since last copy attempt.
2891 		 * Try to copy again under PTL.
2892 		 */
2893 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2894 			/*
2895 			 * Give a warn in case there can be some obscure
2896 			 * use-case
2897 			 */
2898 warn:
2899 			WARN_ON_ONCE(1);
2900 			clear_page(kaddr);
2901 		}
2902 	}
2903 
2904 	ret = 0;
2905 
2906 pte_unlock:
2907 	if (locked)
2908 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2909 	kunmap_atomic(kaddr);
2910 	flush_dcache_page(dst);
2911 
2912 	return ret;
2913 }
2914 
2915 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2916 {
2917 	struct file *vm_file = vma->vm_file;
2918 
2919 	if (vm_file)
2920 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2921 
2922 	/*
2923 	 * Special mappings (e.g. VDSO) do not have any file so fake
2924 	 * a default GFP_KERNEL for them.
2925 	 */
2926 	return GFP_KERNEL;
2927 }
2928 
2929 /*
2930  * Notify the address space that the page is about to become writable so that
2931  * it can prohibit this or wait for the page to get into an appropriate state.
2932  *
2933  * We do this without the lock held, so that it can sleep if it needs to.
2934  */
2935 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2936 {
2937 	vm_fault_t ret;
2938 	struct page *page = vmf->page;
2939 	unsigned int old_flags = vmf->flags;
2940 
2941 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2942 
2943 	if (vmf->vma->vm_file &&
2944 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2945 		return VM_FAULT_SIGBUS;
2946 
2947 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2948 	/* Restore original flags so that caller is not surprised */
2949 	vmf->flags = old_flags;
2950 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2951 		return ret;
2952 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2953 		lock_page(page);
2954 		if (!page->mapping) {
2955 			unlock_page(page);
2956 			return 0; /* retry */
2957 		}
2958 		ret |= VM_FAULT_LOCKED;
2959 	} else
2960 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2961 	return ret;
2962 }
2963 
2964 /*
2965  * Handle dirtying of a page in shared file mapping on a write fault.
2966  *
2967  * The function expects the page to be locked and unlocks it.
2968  */
2969 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2970 {
2971 	struct vm_area_struct *vma = vmf->vma;
2972 	struct address_space *mapping;
2973 	struct page *page = vmf->page;
2974 	bool dirtied;
2975 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2976 
2977 	dirtied = set_page_dirty(page);
2978 	VM_BUG_ON_PAGE(PageAnon(page), page);
2979 	/*
2980 	 * Take a local copy of the address_space - page.mapping may be zeroed
2981 	 * by truncate after unlock_page().   The address_space itself remains
2982 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2983 	 * release semantics to prevent the compiler from undoing this copying.
2984 	 */
2985 	mapping = page_rmapping(page);
2986 	unlock_page(page);
2987 
2988 	if (!page_mkwrite)
2989 		file_update_time(vma->vm_file);
2990 
2991 	/*
2992 	 * Throttle page dirtying rate down to writeback speed.
2993 	 *
2994 	 * mapping may be NULL here because some device drivers do not
2995 	 * set page.mapping but still dirty their pages
2996 	 *
2997 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2998 	 * is pinning the mapping, as per above.
2999 	 */
3000 	if ((dirtied || page_mkwrite) && mapping) {
3001 		struct file *fpin;
3002 
3003 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3004 		balance_dirty_pages_ratelimited(mapping);
3005 		if (fpin) {
3006 			fput(fpin);
3007 			return VM_FAULT_COMPLETED;
3008 		}
3009 	}
3010 
3011 	return 0;
3012 }
3013 
3014 /*
3015  * Handle write page faults for pages that can be reused in the current vma
3016  *
3017  * This can happen either due to the mapping being with the VM_SHARED flag,
3018  * or due to us being the last reference standing to the page. In either
3019  * case, all we need to do here is to mark the page as writable and update
3020  * any related book-keeping.
3021  */
3022 static inline void wp_page_reuse(struct vm_fault *vmf)
3023 	__releases(vmf->ptl)
3024 {
3025 	struct vm_area_struct *vma = vmf->vma;
3026 	struct page *page = vmf->page;
3027 	pte_t entry;
3028 
3029 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3030 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3031 
3032 	/*
3033 	 * Clear the pages cpupid information as the existing
3034 	 * information potentially belongs to a now completely
3035 	 * unrelated process.
3036 	 */
3037 	if (page)
3038 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3039 
3040 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3041 	entry = pte_mkyoung(vmf->orig_pte);
3042 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3043 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3044 		update_mmu_cache(vma, vmf->address, vmf->pte);
3045 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3046 	count_vm_event(PGREUSE);
3047 }
3048 
3049 /*
3050  * Handle the case of a page which we actually need to copy to a new page,
3051  * either due to COW or unsharing.
3052  *
3053  * Called with mmap_lock locked and the old page referenced, but
3054  * without the ptl held.
3055  *
3056  * High level logic flow:
3057  *
3058  * - Allocate a page, copy the content of the old page to the new one.
3059  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3060  * - Take the PTL. If the pte changed, bail out and release the allocated page
3061  * - If the pte is still the way we remember it, update the page table and all
3062  *   relevant references. This includes dropping the reference the page-table
3063  *   held to the old page, as well as updating the rmap.
3064  * - In any case, unlock the PTL and drop the reference we took to the old page.
3065  */
3066 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3067 {
3068 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3069 	struct vm_area_struct *vma = vmf->vma;
3070 	struct mm_struct *mm = vma->vm_mm;
3071 	struct page *old_page = vmf->page;
3072 	struct page *new_page = NULL;
3073 	pte_t entry;
3074 	int page_copied = 0;
3075 	struct mmu_notifier_range range;
3076 	int ret;
3077 
3078 	delayacct_wpcopy_start();
3079 
3080 	if (unlikely(anon_vma_prepare(vma)))
3081 		goto oom;
3082 
3083 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3084 		new_page = alloc_zeroed_user_highpage_movable(vma,
3085 							      vmf->address);
3086 		if (!new_page)
3087 			goto oom;
3088 	} else {
3089 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3090 				vmf->address);
3091 		if (!new_page)
3092 			goto oom;
3093 
3094 		ret = __wp_page_copy_user(new_page, old_page, vmf);
3095 		if (ret) {
3096 			/*
3097 			 * COW failed, if the fault was solved by other,
3098 			 * it's fine. If not, userspace would re-fault on
3099 			 * the same address and we will handle the fault
3100 			 * from the second attempt.
3101 			 * The -EHWPOISON case will not be retried.
3102 			 */
3103 			put_page(new_page);
3104 			if (old_page)
3105 				put_page(old_page);
3106 
3107 			delayacct_wpcopy_end();
3108 			return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3109 		}
3110 		kmsan_copy_page_meta(new_page, old_page);
3111 	}
3112 
3113 	if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3114 		goto oom_free_new;
3115 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3116 
3117 	__SetPageUptodate(new_page);
3118 
3119 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3120 				vmf->address & PAGE_MASK,
3121 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3122 	mmu_notifier_invalidate_range_start(&range);
3123 
3124 	/*
3125 	 * Re-check the pte - we dropped the lock
3126 	 */
3127 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3128 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3129 		if (old_page) {
3130 			if (!PageAnon(old_page)) {
3131 				dec_mm_counter(mm, mm_counter_file(old_page));
3132 				inc_mm_counter(mm, MM_ANONPAGES);
3133 			}
3134 		} else {
3135 			inc_mm_counter(mm, MM_ANONPAGES);
3136 		}
3137 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3138 		entry = mk_pte(new_page, vma->vm_page_prot);
3139 		entry = pte_sw_mkyoung(entry);
3140 		if (unlikely(unshare)) {
3141 			if (pte_soft_dirty(vmf->orig_pte))
3142 				entry = pte_mksoft_dirty(entry);
3143 			if (pte_uffd_wp(vmf->orig_pte))
3144 				entry = pte_mkuffd_wp(entry);
3145 		} else {
3146 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3147 		}
3148 
3149 		/*
3150 		 * Clear the pte entry and flush it first, before updating the
3151 		 * pte with the new entry, to keep TLBs on different CPUs in
3152 		 * sync. This code used to set the new PTE then flush TLBs, but
3153 		 * that left a window where the new PTE could be loaded into
3154 		 * some TLBs while the old PTE remains in others.
3155 		 */
3156 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3157 		page_add_new_anon_rmap(new_page, vma, vmf->address);
3158 		lru_cache_add_inactive_or_unevictable(new_page, vma);
3159 		/*
3160 		 * We call the notify macro here because, when using secondary
3161 		 * mmu page tables (such as kvm shadow page tables), we want the
3162 		 * new page to be mapped directly into the secondary page table.
3163 		 */
3164 		BUG_ON(unshare && pte_write(entry));
3165 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3166 		update_mmu_cache(vma, vmf->address, vmf->pte);
3167 		if (old_page) {
3168 			/*
3169 			 * Only after switching the pte to the new page may
3170 			 * we remove the mapcount here. Otherwise another
3171 			 * process may come and find the rmap count decremented
3172 			 * before the pte is switched to the new page, and
3173 			 * "reuse" the old page writing into it while our pte
3174 			 * here still points into it and can be read by other
3175 			 * threads.
3176 			 *
3177 			 * The critical issue is to order this
3178 			 * page_remove_rmap with the ptp_clear_flush above.
3179 			 * Those stores are ordered by (if nothing else,)
3180 			 * the barrier present in the atomic_add_negative
3181 			 * in page_remove_rmap.
3182 			 *
3183 			 * Then the TLB flush in ptep_clear_flush ensures that
3184 			 * no process can access the old page before the
3185 			 * decremented mapcount is visible. And the old page
3186 			 * cannot be reused until after the decremented
3187 			 * mapcount is visible. So transitively, TLBs to
3188 			 * old page will be flushed before it can be reused.
3189 			 */
3190 			page_remove_rmap(old_page, vma, false);
3191 		}
3192 
3193 		/* Free the old page.. */
3194 		new_page = old_page;
3195 		page_copied = 1;
3196 	} else {
3197 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3198 	}
3199 
3200 	if (new_page)
3201 		put_page(new_page);
3202 
3203 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3204 	/*
3205 	 * No need to double call mmu_notifier->invalidate_range() callback as
3206 	 * the above ptep_clear_flush_notify() did already call it.
3207 	 */
3208 	mmu_notifier_invalidate_range_only_end(&range);
3209 	if (old_page) {
3210 		if (page_copied)
3211 			free_swap_cache(old_page);
3212 		put_page(old_page);
3213 	}
3214 
3215 	delayacct_wpcopy_end();
3216 	return 0;
3217 oom_free_new:
3218 	put_page(new_page);
3219 oom:
3220 	if (old_page)
3221 		put_page(old_page);
3222 
3223 	delayacct_wpcopy_end();
3224 	return VM_FAULT_OOM;
3225 }
3226 
3227 /**
3228  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3229  *			  writeable once the page is prepared
3230  *
3231  * @vmf: structure describing the fault
3232  *
3233  * This function handles all that is needed to finish a write page fault in a
3234  * shared mapping due to PTE being read-only once the mapped page is prepared.
3235  * It handles locking of PTE and modifying it.
3236  *
3237  * The function expects the page to be locked or other protection against
3238  * concurrent faults / writeback (such as DAX radix tree locks).
3239  *
3240  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3241  * we acquired PTE lock.
3242  */
3243 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3244 {
3245 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3246 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3247 				       &vmf->ptl);
3248 	/*
3249 	 * We might have raced with another page fault while we released the
3250 	 * pte_offset_map_lock.
3251 	 */
3252 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3253 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3254 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3255 		return VM_FAULT_NOPAGE;
3256 	}
3257 	wp_page_reuse(vmf);
3258 	return 0;
3259 }
3260 
3261 /*
3262  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3263  * mapping
3264  */
3265 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3266 {
3267 	struct vm_area_struct *vma = vmf->vma;
3268 
3269 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3270 		vm_fault_t ret;
3271 
3272 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3273 		vmf->flags |= FAULT_FLAG_MKWRITE;
3274 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3275 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3276 			return ret;
3277 		return finish_mkwrite_fault(vmf);
3278 	}
3279 	wp_page_reuse(vmf);
3280 	return 0;
3281 }
3282 
3283 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3284 	__releases(vmf->ptl)
3285 {
3286 	struct vm_area_struct *vma = vmf->vma;
3287 	vm_fault_t ret = 0;
3288 
3289 	get_page(vmf->page);
3290 
3291 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3292 		vm_fault_t tmp;
3293 
3294 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3295 		tmp = do_page_mkwrite(vmf);
3296 		if (unlikely(!tmp || (tmp &
3297 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3298 			put_page(vmf->page);
3299 			return tmp;
3300 		}
3301 		tmp = finish_mkwrite_fault(vmf);
3302 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3303 			unlock_page(vmf->page);
3304 			put_page(vmf->page);
3305 			return tmp;
3306 		}
3307 	} else {
3308 		wp_page_reuse(vmf);
3309 		lock_page(vmf->page);
3310 	}
3311 	ret |= fault_dirty_shared_page(vmf);
3312 	put_page(vmf->page);
3313 
3314 	return ret;
3315 }
3316 
3317 /*
3318  * This routine handles present pages, when
3319  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3320  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3321  *   (FAULT_FLAG_UNSHARE)
3322  *
3323  * It is done by copying the page to a new address and decrementing the
3324  * shared-page counter for the old page.
3325  *
3326  * Note that this routine assumes that the protection checks have been
3327  * done by the caller (the low-level page fault routine in most cases).
3328  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3329  * done any necessary COW.
3330  *
3331  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3332  * though the page will change only once the write actually happens. This
3333  * avoids a few races, and potentially makes it more efficient.
3334  *
3335  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3336  * but allow concurrent faults), with pte both mapped and locked.
3337  * We return with mmap_lock still held, but pte unmapped and unlocked.
3338  */
3339 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3340 	__releases(vmf->ptl)
3341 {
3342 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3343 	struct vm_area_struct *vma = vmf->vma;
3344 	struct folio *folio = NULL;
3345 
3346 	if (likely(!unshare)) {
3347 		if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3348 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3349 			return handle_userfault(vmf, VM_UFFD_WP);
3350 		}
3351 
3352 		/*
3353 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3354 		 * is flushed in this case before copying.
3355 		 */
3356 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3357 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3358 			flush_tlb_page(vmf->vma, vmf->address);
3359 	}
3360 
3361 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3362 
3363 	/*
3364 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3365 	 * FAULT_FLAG_WRITE set at this point.
3366 	 */
3367 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3368 		/*
3369 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3370 		 * VM_PFNMAP VMA.
3371 		 *
3372 		 * We should not cow pages in a shared writeable mapping.
3373 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3374 		 */
3375 		if (!vmf->page)
3376 			return wp_pfn_shared(vmf);
3377 		return wp_page_shared(vmf);
3378 	}
3379 
3380 	if (vmf->page)
3381 		folio = page_folio(vmf->page);
3382 
3383 	/*
3384 	 * Private mapping: create an exclusive anonymous page copy if reuse
3385 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3386 	 */
3387 	if (folio && folio_test_anon(folio)) {
3388 		/*
3389 		 * If the page is exclusive to this process we must reuse the
3390 		 * page without further checks.
3391 		 */
3392 		if (PageAnonExclusive(vmf->page))
3393 			goto reuse;
3394 
3395 		/*
3396 		 * We have to verify under folio lock: these early checks are
3397 		 * just an optimization to avoid locking the folio and freeing
3398 		 * the swapcache if there is little hope that we can reuse.
3399 		 *
3400 		 * KSM doesn't necessarily raise the folio refcount.
3401 		 */
3402 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3403 			goto copy;
3404 		if (!folio_test_lru(folio))
3405 			/*
3406 			 * Note: We cannot easily detect+handle references from
3407 			 * remote LRU pagevecs or references to LRU folios.
3408 			 */
3409 			lru_add_drain();
3410 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3411 			goto copy;
3412 		if (!folio_trylock(folio))
3413 			goto copy;
3414 		if (folio_test_swapcache(folio))
3415 			folio_free_swap(folio);
3416 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3417 			folio_unlock(folio);
3418 			goto copy;
3419 		}
3420 		/*
3421 		 * Ok, we've got the only folio reference from our mapping
3422 		 * and the folio is locked, it's dark out, and we're wearing
3423 		 * sunglasses. Hit it.
3424 		 */
3425 		page_move_anon_rmap(vmf->page, vma);
3426 		folio_unlock(folio);
3427 reuse:
3428 		if (unlikely(unshare)) {
3429 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3430 			return 0;
3431 		}
3432 		wp_page_reuse(vmf);
3433 		return 0;
3434 	}
3435 copy:
3436 	/*
3437 	 * Ok, we need to copy. Oh, well..
3438 	 */
3439 	if (folio)
3440 		folio_get(folio);
3441 
3442 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3443 #ifdef CONFIG_KSM
3444 	if (folio && folio_test_ksm(folio))
3445 		count_vm_event(COW_KSM);
3446 #endif
3447 	return wp_page_copy(vmf);
3448 }
3449 
3450 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3451 		unsigned long start_addr, unsigned long end_addr,
3452 		struct zap_details *details)
3453 {
3454 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3455 }
3456 
3457 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3458 					    pgoff_t first_index,
3459 					    pgoff_t last_index,
3460 					    struct zap_details *details)
3461 {
3462 	struct vm_area_struct *vma;
3463 	pgoff_t vba, vea, zba, zea;
3464 
3465 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3466 		vba = vma->vm_pgoff;
3467 		vea = vba + vma_pages(vma) - 1;
3468 		zba = max(first_index, vba);
3469 		zea = min(last_index, vea);
3470 
3471 		unmap_mapping_range_vma(vma,
3472 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3473 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3474 				details);
3475 	}
3476 }
3477 
3478 /**
3479  * unmap_mapping_folio() - Unmap single folio from processes.
3480  * @folio: The locked folio to be unmapped.
3481  *
3482  * Unmap this folio from any userspace process which still has it mmaped.
3483  * Typically, for efficiency, the range of nearby pages has already been
3484  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3485  * truncation or invalidation holds the lock on a folio, it may find that
3486  * the page has been remapped again: and then uses unmap_mapping_folio()
3487  * to unmap it finally.
3488  */
3489 void unmap_mapping_folio(struct folio *folio)
3490 {
3491 	struct address_space *mapping = folio->mapping;
3492 	struct zap_details details = { };
3493 	pgoff_t	first_index;
3494 	pgoff_t	last_index;
3495 
3496 	VM_BUG_ON(!folio_test_locked(folio));
3497 
3498 	first_index = folio->index;
3499 	last_index = folio->index + folio_nr_pages(folio) - 1;
3500 
3501 	details.even_cows = false;
3502 	details.single_folio = folio;
3503 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3504 
3505 	i_mmap_lock_read(mapping);
3506 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3507 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3508 					 last_index, &details);
3509 	i_mmap_unlock_read(mapping);
3510 }
3511 
3512 /**
3513  * unmap_mapping_pages() - Unmap pages from processes.
3514  * @mapping: The address space containing pages to be unmapped.
3515  * @start: Index of first page to be unmapped.
3516  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3517  * @even_cows: Whether to unmap even private COWed pages.
3518  *
3519  * Unmap the pages in this address space from any userspace process which
3520  * has them mmaped.  Generally, you want to remove COWed pages as well when
3521  * a file is being truncated, but not when invalidating pages from the page
3522  * cache.
3523  */
3524 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3525 		pgoff_t nr, bool even_cows)
3526 {
3527 	struct zap_details details = { };
3528 	pgoff_t	first_index = start;
3529 	pgoff_t	last_index = start + nr - 1;
3530 
3531 	details.even_cows = even_cows;
3532 	if (last_index < first_index)
3533 		last_index = ULONG_MAX;
3534 
3535 	i_mmap_lock_read(mapping);
3536 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3537 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3538 					 last_index, &details);
3539 	i_mmap_unlock_read(mapping);
3540 }
3541 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3542 
3543 /**
3544  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3545  * address_space corresponding to the specified byte range in the underlying
3546  * file.
3547  *
3548  * @mapping: the address space containing mmaps to be unmapped.
3549  * @holebegin: byte in first page to unmap, relative to the start of
3550  * the underlying file.  This will be rounded down to a PAGE_SIZE
3551  * boundary.  Note that this is different from truncate_pagecache(), which
3552  * must keep the partial page.  In contrast, we must get rid of
3553  * partial pages.
3554  * @holelen: size of prospective hole in bytes.  This will be rounded
3555  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3556  * end of the file.
3557  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3558  * but 0 when invalidating pagecache, don't throw away private data.
3559  */
3560 void unmap_mapping_range(struct address_space *mapping,
3561 		loff_t const holebegin, loff_t const holelen, int even_cows)
3562 {
3563 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3564 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3565 
3566 	/* Check for overflow. */
3567 	if (sizeof(holelen) > sizeof(hlen)) {
3568 		long long holeend =
3569 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3570 		if (holeend & ~(long long)ULONG_MAX)
3571 			hlen = ULONG_MAX - hba + 1;
3572 	}
3573 
3574 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3575 }
3576 EXPORT_SYMBOL(unmap_mapping_range);
3577 
3578 /*
3579  * Restore a potential device exclusive pte to a working pte entry
3580  */
3581 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3582 {
3583 	struct folio *folio = page_folio(vmf->page);
3584 	struct vm_area_struct *vma = vmf->vma;
3585 	struct mmu_notifier_range range;
3586 
3587 	if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3588 		return VM_FAULT_RETRY;
3589 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3590 				vma->vm_mm, vmf->address & PAGE_MASK,
3591 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3592 	mmu_notifier_invalidate_range_start(&range);
3593 
3594 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3595 				&vmf->ptl);
3596 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3597 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3598 
3599 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3600 	folio_unlock(folio);
3601 
3602 	mmu_notifier_invalidate_range_end(&range);
3603 	return 0;
3604 }
3605 
3606 static inline bool should_try_to_free_swap(struct folio *folio,
3607 					   struct vm_area_struct *vma,
3608 					   unsigned int fault_flags)
3609 {
3610 	if (!folio_test_swapcache(folio))
3611 		return false;
3612 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3613 	    folio_test_mlocked(folio))
3614 		return true;
3615 	/*
3616 	 * If we want to map a page that's in the swapcache writable, we
3617 	 * have to detect via the refcount if we're really the exclusive
3618 	 * user. Try freeing the swapcache to get rid of the swapcache
3619 	 * reference only in case it's likely that we'll be the exlusive user.
3620 	 */
3621 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3622 		folio_ref_count(folio) == 2;
3623 }
3624 
3625 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3626 {
3627 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3628 				       vmf->address, &vmf->ptl);
3629 	/*
3630 	 * Be careful so that we will only recover a special uffd-wp pte into a
3631 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3632 	 */
3633 	if (is_pte_marker(*vmf->pte))
3634 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3635 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3636 	return 0;
3637 }
3638 
3639 /*
3640  * This is actually a page-missing access, but with uffd-wp special pte
3641  * installed.  It means this pte was wr-protected before being unmapped.
3642  */
3643 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3644 {
3645 	/*
3646 	 * Just in case there're leftover special ptes even after the region
3647 	 * got unregistered - we can simply clear them.  We can also do that
3648 	 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3649 	 * ranges, but it should be more efficient to be done lazily here.
3650 	 */
3651 	if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3652 		return pte_marker_clear(vmf);
3653 
3654 	/* do_fault() can handle pte markers too like none pte */
3655 	return do_fault(vmf);
3656 }
3657 
3658 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3659 {
3660 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3661 	unsigned long marker = pte_marker_get(entry);
3662 
3663 	/*
3664 	 * PTE markers should never be empty.  If anything weird happened,
3665 	 * the best thing to do is to kill the process along with its mm.
3666 	 */
3667 	if (WARN_ON_ONCE(!marker))
3668 		return VM_FAULT_SIGBUS;
3669 
3670 	/* Higher priority than uffd-wp when data corrupted */
3671 	if (marker & PTE_MARKER_SWAPIN_ERROR)
3672 		return VM_FAULT_SIGBUS;
3673 
3674 	if (pte_marker_entry_uffd_wp(entry))
3675 		return pte_marker_handle_uffd_wp(vmf);
3676 
3677 	/* This is an unknown pte marker */
3678 	return VM_FAULT_SIGBUS;
3679 }
3680 
3681 /*
3682  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3683  * but allow concurrent faults), and pte mapped but not yet locked.
3684  * We return with pte unmapped and unlocked.
3685  *
3686  * We return with the mmap_lock locked or unlocked in the same cases
3687  * as does filemap_fault().
3688  */
3689 vm_fault_t do_swap_page(struct vm_fault *vmf)
3690 {
3691 	struct vm_area_struct *vma = vmf->vma;
3692 	struct folio *swapcache, *folio = NULL;
3693 	struct page *page;
3694 	struct swap_info_struct *si = NULL;
3695 	rmap_t rmap_flags = RMAP_NONE;
3696 	bool exclusive = false;
3697 	swp_entry_t entry;
3698 	pte_t pte;
3699 	int locked;
3700 	vm_fault_t ret = 0;
3701 	void *shadow = NULL;
3702 
3703 	if (!pte_unmap_same(vmf))
3704 		goto out;
3705 
3706 	entry = pte_to_swp_entry(vmf->orig_pte);
3707 	if (unlikely(non_swap_entry(entry))) {
3708 		if (is_migration_entry(entry)) {
3709 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3710 					     vmf->address);
3711 		} else if (is_device_exclusive_entry(entry)) {
3712 			vmf->page = pfn_swap_entry_to_page(entry);
3713 			ret = remove_device_exclusive_entry(vmf);
3714 		} else if (is_device_private_entry(entry)) {
3715 			vmf->page = pfn_swap_entry_to_page(entry);
3716 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3717 					vmf->address, &vmf->ptl);
3718 			if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3719 				spin_unlock(vmf->ptl);
3720 				goto out;
3721 			}
3722 
3723 			/*
3724 			 * Get a page reference while we know the page can't be
3725 			 * freed.
3726 			 */
3727 			get_page(vmf->page);
3728 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3729 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3730 			put_page(vmf->page);
3731 		} else if (is_hwpoison_entry(entry)) {
3732 			ret = VM_FAULT_HWPOISON;
3733 		} else if (is_pte_marker_entry(entry)) {
3734 			ret = handle_pte_marker(vmf);
3735 		} else {
3736 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3737 			ret = VM_FAULT_SIGBUS;
3738 		}
3739 		goto out;
3740 	}
3741 
3742 	/* Prevent swapoff from happening to us. */
3743 	si = get_swap_device(entry);
3744 	if (unlikely(!si))
3745 		goto out;
3746 
3747 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3748 	if (folio)
3749 		page = folio_file_page(folio, swp_offset(entry));
3750 	swapcache = folio;
3751 
3752 	if (!folio) {
3753 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3754 		    __swap_count(entry) == 1) {
3755 			/* skip swapcache */
3756 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3757 						vma, vmf->address, false);
3758 			page = &folio->page;
3759 			if (folio) {
3760 				__folio_set_locked(folio);
3761 				__folio_set_swapbacked(folio);
3762 
3763 				if (mem_cgroup_swapin_charge_folio(folio,
3764 							vma->vm_mm, GFP_KERNEL,
3765 							entry)) {
3766 					ret = VM_FAULT_OOM;
3767 					goto out_page;
3768 				}
3769 				mem_cgroup_swapin_uncharge_swap(entry);
3770 
3771 				shadow = get_shadow_from_swap_cache(entry);
3772 				if (shadow)
3773 					workingset_refault(folio, shadow);
3774 
3775 				folio_add_lru(folio);
3776 
3777 				/* To provide entry to swap_readpage() */
3778 				folio_set_swap_entry(folio, entry);
3779 				swap_readpage(page, true, NULL);
3780 				folio->private = NULL;
3781 			}
3782 		} else {
3783 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3784 						vmf);
3785 			if (page)
3786 				folio = page_folio(page);
3787 			swapcache = folio;
3788 		}
3789 
3790 		if (!folio) {
3791 			/*
3792 			 * Back out if somebody else faulted in this pte
3793 			 * while we released the pte lock.
3794 			 */
3795 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3796 					vmf->address, &vmf->ptl);
3797 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3798 				ret = VM_FAULT_OOM;
3799 			goto unlock;
3800 		}
3801 
3802 		/* Had to read the page from swap area: Major fault */
3803 		ret = VM_FAULT_MAJOR;
3804 		count_vm_event(PGMAJFAULT);
3805 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3806 	} else if (PageHWPoison(page)) {
3807 		/*
3808 		 * hwpoisoned dirty swapcache pages are kept for killing
3809 		 * owner processes (which may be unknown at hwpoison time)
3810 		 */
3811 		ret = VM_FAULT_HWPOISON;
3812 		goto out_release;
3813 	}
3814 
3815 	locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3816 
3817 	if (!locked) {
3818 		ret |= VM_FAULT_RETRY;
3819 		goto out_release;
3820 	}
3821 
3822 	if (swapcache) {
3823 		/*
3824 		 * Make sure folio_free_swap() or swapoff did not release the
3825 		 * swapcache from under us.  The page pin, and pte_same test
3826 		 * below, are not enough to exclude that.  Even if it is still
3827 		 * swapcache, we need to check that the page's swap has not
3828 		 * changed.
3829 		 */
3830 		if (unlikely(!folio_test_swapcache(folio) ||
3831 			     page_private(page) != entry.val))
3832 			goto out_page;
3833 
3834 		/*
3835 		 * KSM sometimes has to copy on read faults, for example, if
3836 		 * page->index of !PageKSM() pages would be nonlinear inside the
3837 		 * anon VMA -- PageKSM() is lost on actual swapout.
3838 		 */
3839 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3840 		if (unlikely(!page)) {
3841 			ret = VM_FAULT_OOM;
3842 			goto out_page;
3843 		}
3844 		folio = page_folio(page);
3845 
3846 		/*
3847 		 * If we want to map a page that's in the swapcache writable, we
3848 		 * have to detect via the refcount if we're really the exclusive
3849 		 * owner. Try removing the extra reference from the local LRU
3850 		 * pagevecs if required.
3851 		 */
3852 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3853 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3854 			lru_add_drain();
3855 	}
3856 
3857 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3858 
3859 	/*
3860 	 * Back out if somebody else already faulted in this pte.
3861 	 */
3862 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3863 			&vmf->ptl);
3864 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3865 		goto out_nomap;
3866 
3867 	if (unlikely(!folio_test_uptodate(folio))) {
3868 		ret = VM_FAULT_SIGBUS;
3869 		goto out_nomap;
3870 	}
3871 
3872 	/*
3873 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3874 	 * must never point at an anonymous page in the swapcache that is
3875 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3876 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3877 	 * check after taking the PT lock and making sure that nobody
3878 	 * concurrently faulted in this page and set PG_anon_exclusive.
3879 	 */
3880 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3881 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3882 
3883 	/*
3884 	 * Check under PT lock (to protect against concurrent fork() sharing
3885 	 * the swap entry concurrently) for certainly exclusive pages.
3886 	 */
3887 	if (!folio_test_ksm(folio)) {
3888 		/*
3889 		 * Note that pte_swp_exclusive() == false for architectures
3890 		 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3891 		 */
3892 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3893 		if (folio != swapcache) {
3894 			/*
3895 			 * We have a fresh page that is not exposed to the
3896 			 * swapcache -> certainly exclusive.
3897 			 */
3898 			exclusive = true;
3899 		} else if (exclusive && folio_test_writeback(folio) &&
3900 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3901 			/*
3902 			 * This is tricky: not all swap backends support
3903 			 * concurrent page modifications while under writeback.
3904 			 *
3905 			 * So if we stumble over such a page in the swapcache
3906 			 * we must not set the page exclusive, otherwise we can
3907 			 * map it writable without further checks and modify it
3908 			 * while still under writeback.
3909 			 *
3910 			 * For these problematic swap backends, simply drop the
3911 			 * exclusive marker: this is perfectly fine as we start
3912 			 * writeback only if we fully unmapped the page and
3913 			 * there are no unexpected references on the page after
3914 			 * unmapping succeeded. After fully unmapped, no
3915 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3916 			 * appear, so dropping the exclusive marker and mapping
3917 			 * it only R/O is fine.
3918 			 */
3919 			exclusive = false;
3920 		}
3921 	}
3922 
3923 	/*
3924 	 * Remove the swap entry and conditionally try to free up the swapcache.
3925 	 * We're already holding a reference on the page but haven't mapped it
3926 	 * yet.
3927 	 */
3928 	swap_free(entry);
3929 	if (should_try_to_free_swap(folio, vma, vmf->flags))
3930 		folio_free_swap(folio);
3931 
3932 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3933 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3934 	pte = mk_pte(page, vma->vm_page_prot);
3935 
3936 	/*
3937 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3938 	 * certainly not shared either because we just allocated them without
3939 	 * exposing them to the swapcache or because the swap entry indicates
3940 	 * exclusivity.
3941 	 */
3942 	if (!folio_test_ksm(folio) &&
3943 	    (exclusive || folio_ref_count(folio) == 1)) {
3944 		if (vmf->flags & FAULT_FLAG_WRITE) {
3945 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3946 			vmf->flags &= ~FAULT_FLAG_WRITE;
3947 		}
3948 		rmap_flags |= RMAP_EXCLUSIVE;
3949 	}
3950 	flush_icache_page(vma, page);
3951 	if (pte_swp_soft_dirty(vmf->orig_pte))
3952 		pte = pte_mksoft_dirty(pte);
3953 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3954 		pte = pte_mkuffd_wp(pte);
3955 		pte = pte_wrprotect(pte);
3956 	}
3957 	vmf->orig_pte = pte;
3958 
3959 	/* ksm created a completely new copy */
3960 	if (unlikely(folio != swapcache && swapcache)) {
3961 		page_add_new_anon_rmap(page, vma, vmf->address);
3962 		folio_add_lru_vma(folio, vma);
3963 	} else {
3964 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3965 	}
3966 
3967 	VM_BUG_ON(!folio_test_anon(folio) ||
3968 			(pte_write(pte) && !PageAnonExclusive(page)));
3969 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3970 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3971 
3972 	folio_unlock(folio);
3973 	if (folio != swapcache && swapcache) {
3974 		/*
3975 		 * Hold the lock to avoid the swap entry to be reused
3976 		 * until we take the PT lock for the pte_same() check
3977 		 * (to avoid false positives from pte_same). For
3978 		 * further safety release the lock after the swap_free
3979 		 * so that the swap count won't change under a
3980 		 * parallel locked swapcache.
3981 		 */
3982 		folio_unlock(swapcache);
3983 		folio_put(swapcache);
3984 	}
3985 
3986 	if (vmf->flags & FAULT_FLAG_WRITE) {
3987 		ret |= do_wp_page(vmf);
3988 		if (ret & VM_FAULT_ERROR)
3989 			ret &= VM_FAULT_ERROR;
3990 		goto out;
3991 	}
3992 
3993 	/* No need to invalidate - it was non-present before */
3994 	update_mmu_cache(vma, vmf->address, vmf->pte);
3995 unlock:
3996 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3997 out:
3998 	if (si)
3999 		put_swap_device(si);
4000 	return ret;
4001 out_nomap:
4002 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4003 out_page:
4004 	folio_unlock(folio);
4005 out_release:
4006 	folio_put(folio);
4007 	if (folio != swapcache && swapcache) {
4008 		folio_unlock(swapcache);
4009 		folio_put(swapcache);
4010 	}
4011 	if (si)
4012 		put_swap_device(si);
4013 	return ret;
4014 }
4015 
4016 /*
4017  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4018  * but allow concurrent faults), and pte mapped but not yet locked.
4019  * We return with mmap_lock still held, but pte unmapped and unlocked.
4020  */
4021 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4022 {
4023 	struct vm_area_struct *vma = vmf->vma;
4024 	struct page *page;
4025 	vm_fault_t ret = 0;
4026 	pte_t entry;
4027 
4028 	/* File mapping without ->vm_ops ? */
4029 	if (vma->vm_flags & VM_SHARED)
4030 		return VM_FAULT_SIGBUS;
4031 
4032 	/*
4033 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
4034 	 * pte_offset_map() on pmds where a huge pmd might be created
4035 	 * from a different thread.
4036 	 *
4037 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4038 	 * parallel threads are excluded by other means.
4039 	 *
4040 	 * Here we only have mmap_read_lock(mm).
4041 	 */
4042 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4043 		return VM_FAULT_OOM;
4044 
4045 	/* See comment in handle_pte_fault() */
4046 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
4047 		return 0;
4048 
4049 	/* Use the zero-page for reads */
4050 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4051 			!mm_forbids_zeropage(vma->vm_mm)) {
4052 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4053 						vma->vm_page_prot));
4054 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4055 				vmf->address, &vmf->ptl);
4056 		if (!pte_none(*vmf->pte)) {
4057 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4058 			goto unlock;
4059 		}
4060 		ret = check_stable_address_space(vma->vm_mm);
4061 		if (ret)
4062 			goto unlock;
4063 		/* Deliver the page fault to userland, check inside PT lock */
4064 		if (userfaultfd_missing(vma)) {
4065 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4066 			return handle_userfault(vmf, VM_UFFD_MISSING);
4067 		}
4068 		goto setpte;
4069 	}
4070 
4071 	/* Allocate our own private page. */
4072 	if (unlikely(anon_vma_prepare(vma)))
4073 		goto oom;
4074 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4075 	if (!page)
4076 		goto oom;
4077 
4078 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4079 		goto oom_free_page;
4080 	cgroup_throttle_swaprate(page, GFP_KERNEL);
4081 
4082 	/*
4083 	 * The memory barrier inside __SetPageUptodate makes sure that
4084 	 * preceding stores to the page contents become visible before
4085 	 * the set_pte_at() write.
4086 	 */
4087 	__SetPageUptodate(page);
4088 
4089 	entry = mk_pte(page, vma->vm_page_prot);
4090 	entry = pte_sw_mkyoung(entry);
4091 	if (vma->vm_flags & VM_WRITE)
4092 		entry = pte_mkwrite(pte_mkdirty(entry));
4093 
4094 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4095 			&vmf->ptl);
4096 	if (!pte_none(*vmf->pte)) {
4097 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4098 		goto release;
4099 	}
4100 
4101 	ret = check_stable_address_space(vma->vm_mm);
4102 	if (ret)
4103 		goto release;
4104 
4105 	/* Deliver the page fault to userland, check inside PT lock */
4106 	if (userfaultfd_missing(vma)) {
4107 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4108 		put_page(page);
4109 		return handle_userfault(vmf, VM_UFFD_MISSING);
4110 	}
4111 
4112 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4113 	page_add_new_anon_rmap(page, vma, vmf->address);
4114 	lru_cache_add_inactive_or_unevictable(page, vma);
4115 setpte:
4116 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4117 
4118 	/* No need to invalidate - it was non-present before */
4119 	update_mmu_cache(vma, vmf->address, vmf->pte);
4120 unlock:
4121 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4122 	return ret;
4123 release:
4124 	put_page(page);
4125 	goto unlock;
4126 oom_free_page:
4127 	put_page(page);
4128 oom:
4129 	return VM_FAULT_OOM;
4130 }
4131 
4132 /*
4133  * The mmap_lock must have been held on entry, and may have been
4134  * released depending on flags and vma->vm_ops->fault() return value.
4135  * See filemap_fault() and __lock_page_retry().
4136  */
4137 static vm_fault_t __do_fault(struct vm_fault *vmf)
4138 {
4139 	struct vm_area_struct *vma = vmf->vma;
4140 	vm_fault_t ret;
4141 
4142 	/*
4143 	 * Preallocate pte before we take page_lock because this might lead to
4144 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4145 	 *				lock_page(A)
4146 	 *				SetPageWriteback(A)
4147 	 *				unlock_page(A)
4148 	 * lock_page(B)
4149 	 *				lock_page(B)
4150 	 * pte_alloc_one
4151 	 *   shrink_page_list
4152 	 *     wait_on_page_writeback(A)
4153 	 *				SetPageWriteback(B)
4154 	 *				unlock_page(B)
4155 	 *				# flush A, B to clear the writeback
4156 	 */
4157 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4158 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4159 		if (!vmf->prealloc_pte)
4160 			return VM_FAULT_OOM;
4161 	}
4162 
4163 	ret = vma->vm_ops->fault(vmf);
4164 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4165 			    VM_FAULT_DONE_COW)))
4166 		return ret;
4167 
4168 	if (unlikely(PageHWPoison(vmf->page))) {
4169 		struct page *page = vmf->page;
4170 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4171 		if (ret & VM_FAULT_LOCKED) {
4172 			if (page_mapped(page))
4173 				unmap_mapping_pages(page_mapping(page),
4174 						    page->index, 1, false);
4175 			/* Retry if a clean page was removed from the cache. */
4176 			if (invalidate_inode_page(page))
4177 				poisonret = VM_FAULT_NOPAGE;
4178 			unlock_page(page);
4179 		}
4180 		put_page(page);
4181 		vmf->page = NULL;
4182 		return poisonret;
4183 	}
4184 
4185 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4186 		lock_page(vmf->page);
4187 	else
4188 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4189 
4190 	return ret;
4191 }
4192 
4193 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4194 static void deposit_prealloc_pte(struct vm_fault *vmf)
4195 {
4196 	struct vm_area_struct *vma = vmf->vma;
4197 
4198 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4199 	/*
4200 	 * We are going to consume the prealloc table,
4201 	 * count that as nr_ptes.
4202 	 */
4203 	mm_inc_nr_ptes(vma->vm_mm);
4204 	vmf->prealloc_pte = NULL;
4205 }
4206 
4207 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4208 {
4209 	struct vm_area_struct *vma = vmf->vma;
4210 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4211 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4212 	pmd_t entry;
4213 	int i;
4214 	vm_fault_t ret = VM_FAULT_FALLBACK;
4215 
4216 	if (!transhuge_vma_suitable(vma, haddr))
4217 		return ret;
4218 
4219 	page = compound_head(page);
4220 	if (compound_order(page) != HPAGE_PMD_ORDER)
4221 		return ret;
4222 
4223 	/*
4224 	 * Just backoff if any subpage of a THP is corrupted otherwise
4225 	 * the corrupted page may mapped by PMD silently to escape the
4226 	 * check.  This kind of THP just can be PTE mapped.  Access to
4227 	 * the corrupted subpage should trigger SIGBUS as expected.
4228 	 */
4229 	if (unlikely(PageHasHWPoisoned(page)))
4230 		return ret;
4231 
4232 	/*
4233 	 * Archs like ppc64 need additional space to store information
4234 	 * related to pte entry. Use the preallocated table for that.
4235 	 */
4236 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4237 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4238 		if (!vmf->prealloc_pte)
4239 			return VM_FAULT_OOM;
4240 	}
4241 
4242 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4243 	if (unlikely(!pmd_none(*vmf->pmd)))
4244 		goto out;
4245 
4246 	for (i = 0; i < HPAGE_PMD_NR; i++)
4247 		flush_icache_page(vma, page + i);
4248 
4249 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4250 	if (write)
4251 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4252 
4253 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4254 	page_add_file_rmap(page, vma, true);
4255 
4256 	/*
4257 	 * deposit and withdraw with pmd lock held
4258 	 */
4259 	if (arch_needs_pgtable_deposit())
4260 		deposit_prealloc_pte(vmf);
4261 
4262 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4263 
4264 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4265 
4266 	/* fault is handled */
4267 	ret = 0;
4268 	count_vm_event(THP_FILE_MAPPED);
4269 out:
4270 	spin_unlock(vmf->ptl);
4271 	return ret;
4272 }
4273 #else
4274 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4275 {
4276 	return VM_FAULT_FALLBACK;
4277 }
4278 #endif
4279 
4280 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4281 {
4282 	struct vm_area_struct *vma = vmf->vma;
4283 	bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4284 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4285 	bool prefault = vmf->address != addr;
4286 	pte_t entry;
4287 
4288 	flush_icache_page(vma, page);
4289 	entry = mk_pte(page, vma->vm_page_prot);
4290 
4291 	if (prefault && arch_wants_old_prefaulted_pte())
4292 		entry = pte_mkold(entry);
4293 	else
4294 		entry = pte_sw_mkyoung(entry);
4295 
4296 	if (write)
4297 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4298 	if (unlikely(uffd_wp))
4299 		entry = pte_mkuffd_wp(pte_wrprotect(entry));
4300 	/* copy-on-write page */
4301 	if (write && !(vma->vm_flags & VM_SHARED)) {
4302 		inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4303 		page_add_new_anon_rmap(page, vma, addr);
4304 		lru_cache_add_inactive_or_unevictable(page, vma);
4305 	} else {
4306 		inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4307 		page_add_file_rmap(page, vma, false);
4308 	}
4309 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4310 }
4311 
4312 static bool vmf_pte_changed(struct vm_fault *vmf)
4313 {
4314 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4315 		return !pte_same(*vmf->pte, vmf->orig_pte);
4316 
4317 	return !pte_none(*vmf->pte);
4318 }
4319 
4320 /**
4321  * finish_fault - finish page fault once we have prepared the page to fault
4322  *
4323  * @vmf: structure describing the fault
4324  *
4325  * This function handles all that is needed to finish a page fault once the
4326  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4327  * given page, adds reverse page mapping, handles memcg charges and LRU
4328  * addition.
4329  *
4330  * The function expects the page to be locked and on success it consumes a
4331  * reference of a page being mapped (for the PTE which maps it).
4332  *
4333  * Return: %0 on success, %VM_FAULT_ code in case of error.
4334  */
4335 vm_fault_t finish_fault(struct vm_fault *vmf)
4336 {
4337 	struct vm_area_struct *vma = vmf->vma;
4338 	struct page *page;
4339 	vm_fault_t ret;
4340 
4341 	/* Did we COW the page? */
4342 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4343 		page = vmf->cow_page;
4344 	else
4345 		page = vmf->page;
4346 
4347 	/*
4348 	 * check even for read faults because we might have lost our CoWed
4349 	 * page
4350 	 */
4351 	if (!(vma->vm_flags & VM_SHARED)) {
4352 		ret = check_stable_address_space(vma->vm_mm);
4353 		if (ret)
4354 			return ret;
4355 	}
4356 
4357 	if (pmd_none(*vmf->pmd)) {
4358 		if (PageTransCompound(page)) {
4359 			ret = do_set_pmd(vmf, page);
4360 			if (ret != VM_FAULT_FALLBACK)
4361 				return ret;
4362 		}
4363 
4364 		if (vmf->prealloc_pte)
4365 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4366 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4367 			return VM_FAULT_OOM;
4368 	}
4369 
4370 	/*
4371 	 * See comment in handle_pte_fault() for how this scenario happens, we
4372 	 * need to return NOPAGE so that we drop this page.
4373 	 */
4374 	if (pmd_devmap_trans_unstable(vmf->pmd))
4375 		return VM_FAULT_NOPAGE;
4376 
4377 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4378 				      vmf->address, &vmf->ptl);
4379 
4380 	/* Re-check under ptl */
4381 	if (likely(!vmf_pte_changed(vmf))) {
4382 		do_set_pte(vmf, page, vmf->address);
4383 
4384 		/* no need to invalidate: a not-present page won't be cached */
4385 		update_mmu_cache(vma, vmf->address, vmf->pte);
4386 
4387 		ret = 0;
4388 	} else {
4389 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4390 		ret = VM_FAULT_NOPAGE;
4391 	}
4392 
4393 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4394 	return ret;
4395 }
4396 
4397 static unsigned long fault_around_bytes __read_mostly =
4398 	rounddown_pow_of_two(65536);
4399 
4400 #ifdef CONFIG_DEBUG_FS
4401 static int fault_around_bytes_get(void *data, u64 *val)
4402 {
4403 	*val = fault_around_bytes;
4404 	return 0;
4405 }
4406 
4407 /*
4408  * fault_around_bytes must be rounded down to the nearest page order as it's
4409  * what do_fault_around() expects to see.
4410  */
4411 static int fault_around_bytes_set(void *data, u64 val)
4412 {
4413 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4414 		return -EINVAL;
4415 	if (val > PAGE_SIZE)
4416 		fault_around_bytes = rounddown_pow_of_two(val);
4417 	else
4418 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4419 	return 0;
4420 }
4421 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4422 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4423 
4424 static int __init fault_around_debugfs(void)
4425 {
4426 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4427 				   &fault_around_bytes_fops);
4428 	return 0;
4429 }
4430 late_initcall(fault_around_debugfs);
4431 #endif
4432 
4433 /*
4434  * do_fault_around() tries to map few pages around the fault address. The hope
4435  * is that the pages will be needed soon and this will lower the number of
4436  * faults to handle.
4437  *
4438  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4439  * not ready to be mapped: not up-to-date, locked, etc.
4440  *
4441  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4442  * only once.
4443  *
4444  * fault_around_bytes defines how many bytes we'll try to map.
4445  * do_fault_around() expects it to be set to a power of two less than or equal
4446  * to PTRS_PER_PTE.
4447  *
4448  * The virtual address of the area that we map is naturally aligned to
4449  * fault_around_bytes rounded down to the machine page size
4450  * (and therefore to page order).  This way it's easier to guarantee
4451  * that we don't cross page table boundaries.
4452  */
4453 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4454 {
4455 	unsigned long address = vmf->address, nr_pages, mask;
4456 	pgoff_t start_pgoff = vmf->pgoff;
4457 	pgoff_t end_pgoff;
4458 	int off;
4459 
4460 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4461 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4462 
4463 	address = max(address & mask, vmf->vma->vm_start);
4464 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4465 	start_pgoff -= off;
4466 
4467 	/*
4468 	 *  end_pgoff is either the end of the page table, the end of
4469 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4470 	 */
4471 	end_pgoff = start_pgoff -
4472 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4473 		PTRS_PER_PTE - 1;
4474 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4475 			start_pgoff + nr_pages - 1);
4476 
4477 	if (pmd_none(*vmf->pmd)) {
4478 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4479 		if (!vmf->prealloc_pte)
4480 			return VM_FAULT_OOM;
4481 	}
4482 
4483 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4484 }
4485 
4486 /* Return true if we should do read fault-around, false otherwise */
4487 static inline bool should_fault_around(struct vm_fault *vmf)
4488 {
4489 	/* No ->map_pages?  No way to fault around... */
4490 	if (!vmf->vma->vm_ops->map_pages)
4491 		return false;
4492 
4493 	if (uffd_disable_fault_around(vmf->vma))
4494 		return false;
4495 
4496 	return fault_around_bytes >> PAGE_SHIFT > 1;
4497 }
4498 
4499 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4500 {
4501 	vm_fault_t ret = 0;
4502 
4503 	/*
4504 	 * Let's call ->map_pages() first and use ->fault() as fallback
4505 	 * if page by the offset is not ready to be mapped (cold cache or
4506 	 * something).
4507 	 */
4508 	if (should_fault_around(vmf)) {
4509 		ret = do_fault_around(vmf);
4510 		if (ret)
4511 			return ret;
4512 	}
4513 
4514 	ret = __do_fault(vmf);
4515 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4516 		return ret;
4517 
4518 	ret |= finish_fault(vmf);
4519 	unlock_page(vmf->page);
4520 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4521 		put_page(vmf->page);
4522 	return ret;
4523 }
4524 
4525 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4526 {
4527 	struct vm_area_struct *vma = vmf->vma;
4528 	vm_fault_t ret;
4529 
4530 	if (unlikely(anon_vma_prepare(vma)))
4531 		return VM_FAULT_OOM;
4532 
4533 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4534 	if (!vmf->cow_page)
4535 		return VM_FAULT_OOM;
4536 
4537 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4538 				GFP_KERNEL)) {
4539 		put_page(vmf->cow_page);
4540 		return VM_FAULT_OOM;
4541 	}
4542 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4543 
4544 	ret = __do_fault(vmf);
4545 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4546 		goto uncharge_out;
4547 	if (ret & VM_FAULT_DONE_COW)
4548 		return ret;
4549 
4550 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4551 	__SetPageUptodate(vmf->cow_page);
4552 
4553 	ret |= finish_fault(vmf);
4554 	unlock_page(vmf->page);
4555 	put_page(vmf->page);
4556 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4557 		goto uncharge_out;
4558 	return ret;
4559 uncharge_out:
4560 	put_page(vmf->cow_page);
4561 	return ret;
4562 }
4563 
4564 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4565 {
4566 	struct vm_area_struct *vma = vmf->vma;
4567 	vm_fault_t ret, tmp;
4568 
4569 	ret = __do_fault(vmf);
4570 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4571 		return ret;
4572 
4573 	/*
4574 	 * Check if the backing address space wants to know that the page is
4575 	 * about to become writable
4576 	 */
4577 	if (vma->vm_ops->page_mkwrite) {
4578 		unlock_page(vmf->page);
4579 		tmp = do_page_mkwrite(vmf);
4580 		if (unlikely(!tmp ||
4581 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4582 			put_page(vmf->page);
4583 			return tmp;
4584 		}
4585 	}
4586 
4587 	ret |= finish_fault(vmf);
4588 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4589 					VM_FAULT_RETRY))) {
4590 		unlock_page(vmf->page);
4591 		put_page(vmf->page);
4592 		return ret;
4593 	}
4594 
4595 	ret |= fault_dirty_shared_page(vmf);
4596 	return ret;
4597 }
4598 
4599 /*
4600  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4601  * but allow concurrent faults).
4602  * The mmap_lock may have been released depending on flags and our
4603  * return value.  See filemap_fault() and __folio_lock_or_retry().
4604  * If mmap_lock is released, vma may become invalid (for example
4605  * by other thread calling munmap()).
4606  */
4607 static vm_fault_t do_fault(struct vm_fault *vmf)
4608 {
4609 	struct vm_area_struct *vma = vmf->vma;
4610 	struct mm_struct *vm_mm = vma->vm_mm;
4611 	vm_fault_t ret;
4612 
4613 	/*
4614 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4615 	 */
4616 	if (!vma->vm_ops->fault) {
4617 		/*
4618 		 * If we find a migration pmd entry or a none pmd entry, which
4619 		 * should never happen, return SIGBUS
4620 		 */
4621 		if (unlikely(!pmd_present(*vmf->pmd)))
4622 			ret = VM_FAULT_SIGBUS;
4623 		else {
4624 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4625 						       vmf->pmd,
4626 						       vmf->address,
4627 						       &vmf->ptl);
4628 			/*
4629 			 * Make sure this is not a temporary clearing of pte
4630 			 * by holding ptl and checking again. A R/M/W update
4631 			 * of pte involves: take ptl, clearing the pte so that
4632 			 * we don't have concurrent modification by hardware
4633 			 * followed by an update.
4634 			 */
4635 			if (unlikely(pte_none(*vmf->pte)))
4636 				ret = VM_FAULT_SIGBUS;
4637 			else
4638 				ret = VM_FAULT_NOPAGE;
4639 
4640 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4641 		}
4642 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4643 		ret = do_read_fault(vmf);
4644 	else if (!(vma->vm_flags & VM_SHARED))
4645 		ret = do_cow_fault(vmf);
4646 	else
4647 		ret = do_shared_fault(vmf);
4648 
4649 	/* preallocated pagetable is unused: free it */
4650 	if (vmf->prealloc_pte) {
4651 		pte_free(vm_mm, vmf->prealloc_pte);
4652 		vmf->prealloc_pte = NULL;
4653 	}
4654 	return ret;
4655 }
4656 
4657 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4658 		      unsigned long addr, int page_nid, int *flags)
4659 {
4660 	get_page(page);
4661 
4662 	count_vm_numa_event(NUMA_HINT_FAULTS);
4663 	if (page_nid == numa_node_id()) {
4664 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4665 		*flags |= TNF_FAULT_LOCAL;
4666 	}
4667 
4668 	return mpol_misplaced(page, vma, addr);
4669 }
4670 
4671 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4672 {
4673 	struct vm_area_struct *vma = vmf->vma;
4674 	struct page *page = NULL;
4675 	int page_nid = NUMA_NO_NODE;
4676 	bool writable = false;
4677 	int last_cpupid;
4678 	int target_nid;
4679 	pte_t pte, old_pte;
4680 	int flags = 0;
4681 
4682 	/*
4683 	 * The "pte" at this point cannot be used safely without
4684 	 * validation through pte_unmap_same(). It's of NUMA type but
4685 	 * the pfn may be screwed if the read is non atomic.
4686 	 */
4687 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4688 	spin_lock(vmf->ptl);
4689 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4690 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4691 		goto out;
4692 	}
4693 
4694 	/* Get the normal PTE  */
4695 	old_pte = ptep_get(vmf->pte);
4696 	pte = pte_modify(old_pte, vma->vm_page_prot);
4697 
4698 	/*
4699 	 * Detect now whether the PTE could be writable; this information
4700 	 * is only valid while holding the PT lock.
4701 	 */
4702 	writable = pte_write(pte);
4703 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4704 	    can_change_pte_writable(vma, vmf->address, pte))
4705 		writable = true;
4706 
4707 	page = vm_normal_page(vma, vmf->address, pte);
4708 	if (!page || is_zone_device_page(page))
4709 		goto out_map;
4710 
4711 	/* TODO: handle PTE-mapped THP */
4712 	if (PageCompound(page))
4713 		goto out_map;
4714 
4715 	/*
4716 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4717 	 * much anyway since they can be in shared cache state. This misses
4718 	 * the case where a mapping is writable but the process never writes
4719 	 * to it but pte_write gets cleared during protection updates and
4720 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4721 	 * background writeback, dirty balancing and application behaviour.
4722 	 */
4723 	if (!writable)
4724 		flags |= TNF_NO_GROUP;
4725 
4726 	/*
4727 	 * Flag if the page is shared between multiple address spaces. This
4728 	 * is later used when determining whether to group tasks together
4729 	 */
4730 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4731 		flags |= TNF_SHARED;
4732 
4733 	page_nid = page_to_nid(page);
4734 	/*
4735 	 * For memory tiering mode, cpupid of slow memory page is used
4736 	 * to record page access time.  So use default value.
4737 	 */
4738 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4739 	    !node_is_toptier(page_nid))
4740 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4741 	else
4742 		last_cpupid = page_cpupid_last(page);
4743 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4744 			&flags);
4745 	if (target_nid == NUMA_NO_NODE) {
4746 		put_page(page);
4747 		goto out_map;
4748 	}
4749 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4750 	writable = false;
4751 
4752 	/* Migrate to the requested node */
4753 	if (migrate_misplaced_page(page, vma, target_nid)) {
4754 		page_nid = target_nid;
4755 		flags |= TNF_MIGRATED;
4756 	} else {
4757 		flags |= TNF_MIGRATE_FAIL;
4758 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4759 		spin_lock(vmf->ptl);
4760 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4761 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4762 			goto out;
4763 		}
4764 		goto out_map;
4765 	}
4766 
4767 out:
4768 	if (page_nid != NUMA_NO_NODE)
4769 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4770 	return 0;
4771 out_map:
4772 	/*
4773 	 * Make it present again, depending on how arch implements
4774 	 * non-accessible ptes, some can allow access by kernel mode.
4775 	 */
4776 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4777 	pte = pte_modify(old_pte, vma->vm_page_prot);
4778 	pte = pte_mkyoung(pte);
4779 	if (writable)
4780 		pte = pte_mkwrite(pte);
4781 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4782 	update_mmu_cache(vma, vmf->address, vmf->pte);
4783 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4784 	goto out;
4785 }
4786 
4787 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4788 {
4789 	if (vma_is_anonymous(vmf->vma))
4790 		return do_huge_pmd_anonymous_page(vmf);
4791 	if (vmf->vma->vm_ops->huge_fault)
4792 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4793 	return VM_FAULT_FALLBACK;
4794 }
4795 
4796 /* `inline' is required to avoid gcc 4.1.2 build error */
4797 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4798 {
4799 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4800 	vm_fault_t ret;
4801 
4802 	if (vma_is_anonymous(vmf->vma)) {
4803 		if (likely(!unshare) &&
4804 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4805 			return handle_userfault(vmf, VM_UFFD_WP);
4806 		return do_huge_pmd_wp_page(vmf);
4807 	}
4808 
4809 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4810 		if (vmf->vma->vm_ops->huge_fault) {
4811 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4812 			if (!(ret & VM_FAULT_FALLBACK))
4813 				return ret;
4814 		}
4815 	}
4816 
4817 	/* COW or write-notify handled on pte level: split pmd. */
4818 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4819 
4820 	return VM_FAULT_FALLBACK;
4821 }
4822 
4823 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4824 {
4825 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4826 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4827 	/* No support for anonymous transparent PUD pages yet */
4828 	if (vma_is_anonymous(vmf->vma))
4829 		return VM_FAULT_FALLBACK;
4830 	if (vmf->vma->vm_ops->huge_fault)
4831 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4832 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4833 	return VM_FAULT_FALLBACK;
4834 }
4835 
4836 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4837 {
4838 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4839 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4840 	vm_fault_t ret;
4841 
4842 	/* No support for anonymous transparent PUD pages yet */
4843 	if (vma_is_anonymous(vmf->vma))
4844 		goto split;
4845 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4846 		if (vmf->vma->vm_ops->huge_fault) {
4847 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4848 			if (!(ret & VM_FAULT_FALLBACK))
4849 				return ret;
4850 		}
4851 	}
4852 split:
4853 	/* COW or write-notify not handled on PUD level: split pud.*/
4854 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4855 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4856 	return VM_FAULT_FALLBACK;
4857 }
4858 
4859 /*
4860  * These routines also need to handle stuff like marking pages dirty
4861  * and/or accessed for architectures that don't do it in hardware (most
4862  * RISC architectures).  The early dirtying is also good on the i386.
4863  *
4864  * There is also a hook called "update_mmu_cache()" that architectures
4865  * with external mmu caches can use to update those (ie the Sparc or
4866  * PowerPC hashed page tables that act as extended TLBs).
4867  *
4868  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4869  * concurrent faults).
4870  *
4871  * The mmap_lock may have been released depending on flags and our return value.
4872  * See filemap_fault() and __folio_lock_or_retry().
4873  */
4874 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4875 {
4876 	pte_t entry;
4877 
4878 	if (unlikely(pmd_none(*vmf->pmd))) {
4879 		/*
4880 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4881 		 * want to allocate huge page, and if we expose page table
4882 		 * for an instant, it will be difficult to retract from
4883 		 * concurrent faults and from rmap lookups.
4884 		 */
4885 		vmf->pte = NULL;
4886 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4887 	} else {
4888 		/*
4889 		 * If a huge pmd materialized under us just retry later.  Use
4890 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4891 		 * of pmd_trans_huge() to ensure the pmd didn't become
4892 		 * pmd_trans_huge under us and then back to pmd_none, as a
4893 		 * result of MADV_DONTNEED running immediately after a huge pmd
4894 		 * fault in a different thread of this mm, in turn leading to a
4895 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4896 		 * that it is a regular pmd that we can walk with
4897 		 * pte_offset_map() and we can do that through an atomic read
4898 		 * in C, which is what pmd_trans_unstable() provides.
4899 		 */
4900 		if (pmd_devmap_trans_unstable(vmf->pmd))
4901 			return 0;
4902 		/*
4903 		 * A regular pmd is established and it can't morph into a huge
4904 		 * pmd from under us anymore at this point because we hold the
4905 		 * mmap_lock read mode and khugepaged takes it in write mode.
4906 		 * So now it's safe to run pte_offset_map().
4907 		 */
4908 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4909 		vmf->orig_pte = *vmf->pte;
4910 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4911 
4912 		/*
4913 		 * some architectures can have larger ptes than wordsize,
4914 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4915 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4916 		 * accesses.  The code below just needs a consistent view
4917 		 * for the ifs and we later double check anyway with the
4918 		 * ptl lock held. So here a barrier will do.
4919 		 */
4920 		barrier();
4921 		if (pte_none(vmf->orig_pte)) {
4922 			pte_unmap(vmf->pte);
4923 			vmf->pte = NULL;
4924 		}
4925 	}
4926 
4927 	if (!vmf->pte) {
4928 		if (vma_is_anonymous(vmf->vma))
4929 			return do_anonymous_page(vmf);
4930 		else
4931 			return do_fault(vmf);
4932 	}
4933 
4934 	if (!pte_present(vmf->orig_pte))
4935 		return do_swap_page(vmf);
4936 
4937 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4938 		return do_numa_page(vmf);
4939 
4940 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4941 	spin_lock(vmf->ptl);
4942 	entry = vmf->orig_pte;
4943 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4944 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4945 		goto unlock;
4946 	}
4947 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4948 		if (!pte_write(entry))
4949 			return do_wp_page(vmf);
4950 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4951 			entry = pte_mkdirty(entry);
4952 	}
4953 	entry = pte_mkyoung(entry);
4954 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4955 				vmf->flags & FAULT_FLAG_WRITE)) {
4956 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4957 	} else {
4958 		/* Skip spurious TLB flush for retried page fault */
4959 		if (vmf->flags & FAULT_FLAG_TRIED)
4960 			goto unlock;
4961 		/*
4962 		 * This is needed only for protection faults but the arch code
4963 		 * is not yet telling us if this is a protection fault or not.
4964 		 * This still avoids useless tlb flushes for .text page faults
4965 		 * with threads.
4966 		 */
4967 		if (vmf->flags & FAULT_FLAG_WRITE)
4968 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4969 	}
4970 unlock:
4971 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4972 	return 0;
4973 }
4974 
4975 /*
4976  * By the time we get here, we already hold the mm semaphore
4977  *
4978  * The mmap_lock may have been released depending on flags and our
4979  * return value.  See filemap_fault() and __folio_lock_or_retry().
4980  */
4981 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4982 		unsigned long address, unsigned int flags)
4983 {
4984 	struct vm_fault vmf = {
4985 		.vma = vma,
4986 		.address = address & PAGE_MASK,
4987 		.real_address = address,
4988 		.flags = flags,
4989 		.pgoff = linear_page_index(vma, address),
4990 		.gfp_mask = __get_fault_gfp_mask(vma),
4991 	};
4992 	struct mm_struct *mm = vma->vm_mm;
4993 	unsigned long vm_flags = vma->vm_flags;
4994 	pgd_t *pgd;
4995 	p4d_t *p4d;
4996 	vm_fault_t ret;
4997 
4998 	pgd = pgd_offset(mm, address);
4999 	p4d = p4d_alloc(mm, pgd, address);
5000 	if (!p4d)
5001 		return VM_FAULT_OOM;
5002 
5003 	vmf.pud = pud_alloc(mm, p4d, address);
5004 	if (!vmf.pud)
5005 		return VM_FAULT_OOM;
5006 retry_pud:
5007 	if (pud_none(*vmf.pud) &&
5008 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5009 		ret = create_huge_pud(&vmf);
5010 		if (!(ret & VM_FAULT_FALLBACK))
5011 			return ret;
5012 	} else {
5013 		pud_t orig_pud = *vmf.pud;
5014 
5015 		barrier();
5016 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5017 
5018 			/*
5019 			 * TODO once we support anonymous PUDs: NUMA case and
5020 			 * FAULT_FLAG_UNSHARE handling.
5021 			 */
5022 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5023 				ret = wp_huge_pud(&vmf, orig_pud);
5024 				if (!(ret & VM_FAULT_FALLBACK))
5025 					return ret;
5026 			} else {
5027 				huge_pud_set_accessed(&vmf, orig_pud);
5028 				return 0;
5029 			}
5030 		}
5031 	}
5032 
5033 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5034 	if (!vmf.pmd)
5035 		return VM_FAULT_OOM;
5036 
5037 	/* Huge pud page fault raced with pmd_alloc? */
5038 	if (pud_trans_unstable(vmf.pud))
5039 		goto retry_pud;
5040 
5041 	if (pmd_none(*vmf.pmd) &&
5042 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5043 		ret = create_huge_pmd(&vmf);
5044 		if (!(ret & VM_FAULT_FALLBACK))
5045 			return ret;
5046 	} else {
5047 		vmf.orig_pmd = *vmf.pmd;
5048 
5049 		barrier();
5050 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5051 			VM_BUG_ON(thp_migration_supported() &&
5052 					  !is_pmd_migration_entry(vmf.orig_pmd));
5053 			if (is_pmd_migration_entry(vmf.orig_pmd))
5054 				pmd_migration_entry_wait(mm, vmf.pmd);
5055 			return 0;
5056 		}
5057 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5058 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5059 				return do_huge_pmd_numa_page(&vmf);
5060 
5061 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5062 			    !pmd_write(vmf.orig_pmd)) {
5063 				ret = wp_huge_pmd(&vmf);
5064 				if (!(ret & VM_FAULT_FALLBACK))
5065 					return ret;
5066 			} else {
5067 				huge_pmd_set_accessed(&vmf);
5068 				return 0;
5069 			}
5070 		}
5071 	}
5072 
5073 	return handle_pte_fault(&vmf);
5074 }
5075 
5076 /**
5077  * mm_account_fault - Do page fault accounting
5078  *
5079  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5080  *        of perf event counters, but we'll still do the per-task accounting to
5081  *        the task who triggered this page fault.
5082  * @address: the faulted address.
5083  * @flags: the fault flags.
5084  * @ret: the fault retcode.
5085  *
5086  * This will take care of most of the page fault accounting.  Meanwhile, it
5087  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5088  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5089  * still be in per-arch page fault handlers at the entry of page fault.
5090  */
5091 static inline void mm_account_fault(struct pt_regs *regs,
5092 				    unsigned long address, unsigned int flags,
5093 				    vm_fault_t ret)
5094 {
5095 	bool major;
5096 
5097 	/*
5098 	 * We don't do accounting for some specific faults:
5099 	 *
5100 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5101 	 *   includes arch_vma_access_permitted() failing before reaching here.
5102 	 *   So this is not a "this many hardware page faults" counter.  We
5103 	 *   should use the hw profiling for that.
5104 	 *
5105 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5106 	 *   once they're completed.
5107 	 */
5108 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5109 		return;
5110 
5111 	/*
5112 	 * We define the fault as a major fault when the final successful fault
5113 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5114 	 * handle it immediately previously).
5115 	 */
5116 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5117 
5118 	if (major)
5119 		current->maj_flt++;
5120 	else
5121 		current->min_flt++;
5122 
5123 	/*
5124 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5125 	 * accounting for the per thread fault counters who triggered the
5126 	 * fault, and we skip the perf event updates.
5127 	 */
5128 	if (!regs)
5129 		return;
5130 
5131 	if (major)
5132 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5133 	else
5134 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5135 }
5136 
5137 #ifdef CONFIG_LRU_GEN
5138 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5139 {
5140 	/* the LRU algorithm doesn't apply to sequential or random reads */
5141 	current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5142 }
5143 
5144 static void lru_gen_exit_fault(void)
5145 {
5146 	current->in_lru_fault = false;
5147 }
5148 #else
5149 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5150 {
5151 }
5152 
5153 static void lru_gen_exit_fault(void)
5154 {
5155 }
5156 #endif /* CONFIG_LRU_GEN */
5157 
5158 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5159 				       unsigned int *flags)
5160 {
5161 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5162 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5163 			return VM_FAULT_SIGSEGV;
5164 		/*
5165 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5166 		 * just treat it like an ordinary read-fault otherwise.
5167 		 */
5168 		if (!is_cow_mapping(vma->vm_flags))
5169 			*flags &= ~FAULT_FLAG_UNSHARE;
5170 	} else if (*flags & FAULT_FLAG_WRITE) {
5171 		/* Write faults on read-only mappings are impossible ... */
5172 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5173 			return VM_FAULT_SIGSEGV;
5174 		/* ... and FOLL_FORCE only applies to COW mappings. */
5175 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5176 				 !is_cow_mapping(vma->vm_flags)))
5177 			return VM_FAULT_SIGSEGV;
5178 	}
5179 	return 0;
5180 }
5181 
5182 /*
5183  * By the time we get here, we already hold the mm semaphore
5184  *
5185  * The mmap_lock may have been released depending on flags and our
5186  * return value.  See filemap_fault() and __folio_lock_or_retry().
5187  */
5188 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5189 			   unsigned int flags, struct pt_regs *regs)
5190 {
5191 	vm_fault_t ret;
5192 
5193 	__set_current_state(TASK_RUNNING);
5194 
5195 	count_vm_event(PGFAULT);
5196 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
5197 
5198 	ret = sanitize_fault_flags(vma, &flags);
5199 	if (ret)
5200 		return ret;
5201 
5202 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5203 					    flags & FAULT_FLAG_INSTRUCTION,
5204 					    flags & FAULT_FLAG_REMOTE))
5205 		return VM_FAULT_SIGSEGV;
5206 
5207 	/*
5208 	 * Enable the memcg OOM handling for faults triggered in user
5209 	 * space.  Kernel faults are handled more gracefully.
5210 	 */
5211 	if (flags & FAULT_FLAG_USER)
5212 		mem_cgroup_enter_user_fault();
5213 
5214 	lru_gen_enter_fault(vma);
5215 
5216 	if (unlikely(is_vm_hugetlb_page(vma)))
5217 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5218 	else
5219 		ret = __handle_mm_fault(vma, address, flags);
5220 
5221 	lru_gen_exit_fault();
5222 
5223 	if (flags & FAULT_FLAG_USER) {
5224 		mem_cgroup_exit_user_fault();
5225 		/*
5226 		 * The task may have entered a memcg OOM situation but
5227 		 * if the allocation error was handled gracefully (no
5228 		 * VM_FAULT_OOM), there is no need to kill anything.
5229 		 * Just clean up the OOM state peacefully.
5230 		 */
5231 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5232 			mem_cgroup_oom_synchronize(false);
5233 	}
5234 
5235 	mm_account_fault(regs, address, flags, ret);
5236 
5237 	return ret;
5238 }
5239 EXPORT_SYMBOL_GPL(handle_mm_fault);
5240 
5241 #ifndef __PAGETABLE_P4D_FOLDED
5242 /*
5243  * Allocate p4d page table.
5244  * We've already handled the fast-path in-line.
5245  */
5246 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5247 {
5248 	p4d_t *new = p4d_alloc_one(mm, address);
5249 	if (!new)
5250 		return -ENOMEM;
5251 
5252 	spin_lock(&mm->page_table_lock);
5253 	if (pgd_present(*pgd)) {	/* Another has populated it */
5254 		p4d_free(mm, new);
5255 	} else {
5256 		smp_wmb(); /* See comment in pmd_install() */
5257 		pgd_populate(mm, pgd, new);
5258 	}
5259 	spin_unlock(&mm->page_table_lock);
5260 	return 0;
5261 }
5262 #endif /* __PAGETABLE_P4D_FOLDED */
5263 
5264 #ifndef __PAGETABLE_PUD_FOLDED
5265 /*
5266  * Allocate page upper directory.
5267  * We've already handled the fast-path in-line.
5268  */
5269 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5270 {
5271 	pud_t *new = pud_alloc_one(mm, address);
5272 	if (!new)
5273 		return -ENOMEM;
5274 
5275 	spin_lock(&mm->page_table_lock);
5276 	if (!p4d_present(*p4d)) {
5277 		mm_inc_nr_puds(mm);
5278 		smp_wmb(); /* See comment in pmd_install() */
5279 		p4d_populate(mm, p4d, new);
5280 	} else	/* Another has populated it */
5281 		pud_free(mm, new);
5282 	spin_unlock(&mm->page_table_lock);
5283 	return 0;
5284 }
5285 #endif /* __PAGETABLE_PUD_FOLDED */
5286 
5287 #ifndef __PAGETABLE_PMD_FOLDED
5288 /*
5289  * Allocate page middle directory.
5290  * We've already handled the fast-path in-line.
5291  */
5292 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5293 {
5294 	spinlock_t *ptl;
5295 	pmd_t *new = pmd_alloc_one(mm, address);
5296 	if (!new)
5297 		return -ENOMEM;
5298 
5299 	ptl = pud_lock(mm, pud);
5300 	if (!pud_present(*pud)) {
5301 		mm_inc_nr_pmds(mm);
5302 		smp_wmb(); /* See comment in pmd_install() */
5303 		pud_populate(mm, pud, new);
5304 	} else {	/* Another has populated it */
5305 		pmd_free(mm, new);
5306 	}
5307 	spin_unlock(ptl);
5308 	return 0;
5309 }
5310 #endif /* __PAGETABLE_PMD_FOLDED */
5311 
5312 /**
5313  * follow_pte - look up PTE at a user virtual address
5314  * @mm: the mm_struct of the target address space
5315  * @address: user virtual address
5316  * @ptepp: location to store found PTE
5317  * @ptlp: location to store the lock for the PTE
5318  *
5319  * On a successful return, the pointer to the PTE is stored in @ptepp;
5320  * the corresponding lock is taken and its location is stored in @ptlp.
5321  * The contents of the PTE are only stable until @ptlp is released;
5322  * any further use, if any, must be protected against invalidation
5323  * with MMU notifiers.
5324  *
5325  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5326  * should be taken for read.
5327  *
5328  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5329  * it is not a good general-purpose API.
5330  *
5331  * Return: zero on success, -ve otherwise.
5332  */
5333 int follow_pte(struct mm_struct *mm, unsigned long address,
5334 	       pte_t **ptepp, spinlock_t **ptlp)
5335 {
5336 	pgd_t *pgd;
5337 	p4d_t *p4d;
5338 	pud_t *pud;
5339 	pmd_t *pmd;
5340 	pte_t *ptep;
5341 
5342 	pgd = pgd_offset(mm, address);
5343 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5344 		goto out;
5345 
5346 	p4d = p4d_offset(pgd, address);
5347 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5348 		goto out;
5349 
5350 	pud = pud_offset(p4d, address);
5351 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5352 		goto out;
5353 
5354 	pmd = pmd_offset(pud, address);
5355 	VM_BUG_ON(pmd_trans_huge(*pmd));
5356 
5357 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5358 		goto out;
5359 
5360 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5361 	if (!pte_present(*ptep))
5362 		goto unlock;
5363 	*ptepp = ptep;
5364 	return 0;
5365 unlock:
5366 	pte_unmap_unlock(ptep, *ptlp);
5367 out:
5368 	return -EINVAL;
5369 }
5370 EXPORT_SYMBOL_GPL(follow_pte);
5371 
5372 /**
5373  * follow_pfn - look up PFN at a user virtual address
5374  * @vma: memory mapping
5375  * @address: user virtual address
5376  * @pfn: location to store found PFN
5377  *
5378  * Only IO mappings and raw PFN mappings are allowed.
5379  *
5380  * This function does not allow the caller to read the permissions
5381  * of the PTE.  Do not use it.
5382  *
5383  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5384  */
5385 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5386 	unsigned long *pfn)
5387 {
5388 	int ret = -EINVAL;
5389 	spinlock_t *ptl;
5390 	pte_t *ptep;
5391 
5392 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5393 		return ret;
5394 
5395 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5396 	if (ret)
5397 		return ret;
5398 	*pfn = pte_pfn(*ptep);
5399 	pte_unmap_unlock(ptep, ptl);
5400 	return 0;
5401 }
5402 EXPORT_SYMBOL(follow_pfn);
5403 
5404 #ifdef CONFIG_HAVE_IOREMAP_PROT
5405 int follow_phys(struct vm_area_struct *vma,
5406 		unsigned long address, unsigned int flags,
5407 		unsigned long *prot, resource_size_t *phys)
5408 {
5409 	int ret = -EINVAL;
5410 	pte_t *ptep, pte;
5411 	spinlock_t *ptl;
5412 
5413 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5414 		goto out;
5415 
5416 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5417 		goto out;
5418 	pte = *ptep;
5419 
5420 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5421 		goto unlock;
5422 
5423 	*prot = pgprot_val(pte_pgprot(pte));
5424 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5425 
5426 	ret = 0;
5427 unlock:
5428 	pte_unmap_unlock(ptep, ptl);
5429 out:
5430 	return ret;
5431 }
5432 
5433 /**
5434  * generic_access_phys - generic implementation for iomem mmap access
5435  * @vma: the vma to access
5436  * @addr: userspace address, not relative offset within @vma
5437  * @buf: buffer to read/write
5438  * @len: length of transfer
5439  * @write: set to FOLL_WRITE when writing, otherwise reading
5440  *
5441  * This is a generic implementation for &vm_operations_struct.access for an
5442  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5443  * not page based.
5444  */
5445 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5446 			void *buf, int len, int write)
5447 {
5448 	resource_size_t phys_addr;
5449 	unsigned long prot = 0;
5450 	void __iomem *maddr;
5451 	pte_t *ptep, pte;
5452 	spinlock_t *ptl;
5453 	int offset = offset_in_page(addr);
5454 	int ret = -EINVAL;
5455 
5456 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5457 		return -EINVAL;
5458 
5459 retry:
5460 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5461 		return -EINVAL;
5462 	pte = *ptep;
5463 	pte_unmap_unlock(ptep, ptl);
5464 
5465 	prot = pgprot_val(pte_pgprot(pte));
5466 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5467 
5468 	if ((write & FOLL_WRITE) && !pte_write(pte))
5469 		return -EINVAL;
5470 
5471 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5472 	if (!maddr)
5473 		return -ENOMEM;
5474 
5475 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5476 		goto out_unmap;
5477 
5478 	if (!pte_same(pte, *ptep)) {
5479 		pte_unmap_unlock(ptep, ptl);
5480 		iounmap(maddr);
5481 
5482 		goto retry;
5483 	}
5484 
5485 	if (write)
5486 		memcpy_toio(maddr + offset, buf, len);
5487 	else
5488 		memcpy_fromio(buf, maddr + offset, len);
5489 	ret = len;
5490 	pte_unmap_unlock(ptep, ptl);
5491 out_unmap:
5492 	iounmap(maddr);
5493 
5494 	return ret;
5495 }
5496 EXPORT_SYMBOL_GPL(generic_access_phys);
5497 #endif
5498 
5499 /*
5500  * Access another process' address space as given in mm.
5501  */
5502 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5503 		       int len, unsigned int gup_flags)
5504 {
5505 	struct vm_area_struct *vma;
5506 	void *old_buf = buf;
5507 	int write = gup_flags & FOLL_WRITE;
5508 
5509 	if (mmap_read_lock_killable(mm))
5510 		return 0;
5511 
5512 	/* ignore errors, just check how much was successfully transferred */
5513 	while (len) {
5514 		int bytes, ret, offset;
5515 		void *maddr;
5516 		struct page *page = NULL;
5517 
5518 		ret = get_user_pages_remote(mm, addr, 1,
5519 				gup_flags, &page, &vma, NULL);
5520 		if (ret <= 0) {
5521 #ifndef CONFIG_HAVE_IOREMAP_PROT
5522 			break;
5523 #else
5524 			/*
5525 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5526 			 * we can access using slightly different code.
5527 			 */
5528 			vma = vma_lookup(mm, addr);
5529 			if (!vma)
5530 				break;
5531 			if (vma->vm_ops && vma->vm_ops->access)
5532 				ret = vma->vm_ops->access(vma, addr, buf,
5533 							  len, write);
5534 			if (ret <= 0)
5535 				break;
5536 			bytes = ret;
5537 #endif
5538 		} else {
5539 			bytes = len;
5540 			offset = addr & (PAGE_SIZE-1);
5541 			if (bytes > PAGE_SIZE-offset)
5542 				bytes = PAGE_SIZE-offset;
5543 
5544 			maddr = kmap(page);
5545 			if (write) {
5546 				copy_to_user_page(vma, page, addr,
5547 						  maddr + offset, buf, bytes);
5548 				set_page_dirty_lock(page);
5549 			} else {
5550 				copy_from_user_page(vma, page, addr,
5551 						    buf, maddr + offset, bytes);
5552 			}
5553 			kunmap(page);
5554 			put_page(page);
5555 		}
5556 		len -= bytes;
5557 		buf += bytes;
5558 		addr += bytes;
5559 	}
5560 	mmap_read_unlock(mm);
5561 
5562 	return buf - old_buf;
5563 }
5564 
5565 /**
5566  * access_remote_vm - access another process' address space
5567  * @mm:		the mm_struct of the target address space
5568  * @addr:	start address to access
5569  * @buf:	source or destination buffer
5570  * @len:	number of bytes to transfer
5571  * @gup_flags:	flags modifying lookup behaviour
5572  *
5573  * The caller must hold a reference on @mm.
5574  *
5575  * Return: number of bytes copied from source to destination.
5576  */
5577 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5578 		void *buf, int len, unsigned int gup_flags)
5579 {
5580 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5581 }
5582 
5583 /*
5584  * Access another process' address space.
5585  * Source/target buffer must be kernel space,
5586  * Do not walk the page table directly, use get_user_pages
5587  */
5588 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5589 		void *buf, int len, unsigned int gup_flags)
5590 {
5591 	struct mm_struct *mm;
5592 	int ret;
5593 
5594 	mm = get_task_mm(tsk);
5595 	if (!mm)
5596 		return 0;
5597 
5598 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5599 
5600 	mmput(mm);
5601 
5602 	return ret;
5603 }
5604 EXPORT_SYMBOL_GPL(access_process_vm);
5605 
5606 /*
5607  * Print the name of a VMA.
5608  */
5609 void print_vma_addr(char *prefix, unsigned long ip)
5610 {
5611 	struct mm_struct *mm = current->mm;
5612 	struct vm_area_struct *vma;
5613 
5614 	/*
5615 	 * we might be running from an atomic context so we cannot sleep
5616 	 */
5617 	if (!mmap_read_trylock(mm))
5618 		return;
5619 
5620 	vma = find_vma(mm, ip);
5621 	if (vma && vma->vm_file) {
5622 		struct file *f = vma->vm_file;
5623 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5624 		if (buf) {
5625 			char *p;
5626 
5627 			p = file_path(f, buf, PAGE_SIZE);
5628 			if (IS_ERR(p))
5629 				p = "?";
5630 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5631 					vma->vm_start,
5632 					vma->vm_end - vma->vm_start);
5633 			free_page((unsigned long)buf);
5634 		}
5635 	}
5636 	mmap_read_unlock(mm);
5637 }
5638 
5639 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5640 void __might_fault(const char *file, int line)
5641 {
5642 	if (pagefault_disabled())
5643 		return;
5644 	__might_sleep(file, line);
5645 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5646 	if (current->mm)
5647 		might_lock_read(&current->mm->mmap_lock);
5648 #endif
5649 }
5650 EXPORT_SYMBOL(__might_fault);
5651 #endif
5652 
5653 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5654 /*
5655  * Process all subpages of the specified huge page with the specified
5656  * operation.  The target subpage will be processed last to keep its
5657  * cache lines hot.
5658  */
5659 static inline void process_huge_page(
5660 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5661 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5662 	void *arg)
5663 {
5664 	int i, n, base, l;
5665 	unsigned long addr = addr_hint &
5666 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5667 
5668 	/* Process target subpage last to keep its cache lines hot */
5669 	might_sleep();
5670 	n = (addr_hint - addr) / PAGE_SIZE;
5671 	if (2 * n <= pages_per_huge_page) {
5672 		/* If target subpage in first half of huge page */
5673 		base = 0;
5674 		l = n;
5675 		/* Process subpages at the end of huge page */
5676 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5677 			cond_resched();
5678 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5679 		}
5680 	} else {
5681 		/* If target subpage in second half of huge page */
5682 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5683 		l = pages_per_huge_page - n;
5684 		/* Process subpages at the begin of huge page */
5685 		for (i = 0; i < base; i++) {
5686 			cond_resched();
5687 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5688 		}
5689 	}
5690 	/*
5691 	 * Process remaining subpages in left-right-left-right pattern
5692 	 * towards the target subpage
5693 	 */
5694 	for (i = 0; i < l; i++) {
5695 		int left_idx = base + i;
5696 		int right_idx = base + 2 * l - 1 - i;
5697 
5698 		cond_resched();
5699 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5700 		cond_resched();
5701 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5702 	}
5703 }
5704 
5705 static void clear_gigantic_page(struct page *page,
5706 				unsigned long addr,
5707 				unsigned int pages_per_huge_page)
5708 {
5709 	int i;
5710 	struct page *p;
5711 
5712 	might_sleep();
5713 	for (i = 0; i < pages_per_huge_page; i++) {
5714 		p = nth_page(page, i);
5715 		cond_resched();
5716 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5717 	}
5718 }
5719 
5720 static void clear_subpage(unsigned long addr, int idx, void *arg)
5721 {
5722 	struct page *page = arg;
5723 
5724 	clear_user_highpage(page + idx, addr);
5725 }
5726 
5727 void clear_huge_page(struct page *page,
5728 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5729 {
5730 	unsigned long addr = addr_hint &
5731 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5732 
5733 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5734 		clear_gigantic_page(page, addr, pages_per_huge_page);
5735 		return;
5736 	}
5737 
5738 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5739 }
5740 
5741 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5742 				    unsigned long addr,
5743 				    struct vm_area_struct *vma,
5744 				    unsigned int pages_per_huge_page)
5745 {
5746 	int i;
5747 	struct page *dst_base = dst;
5748 	struct page *src_base = src;
5749 
5750 	for (i = 0; i < pages_per_huge_page; i++) {
5751 		dst = nth_page(dst_base, i);
5752 		src = nth_page(src_base, i);
5753 
5754 		cond_resched();
5755 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5756 	}
5757 }
5758 
5759 struct copy_subpage_arg {
5760 	struct page *dst;
5761 	struct page *src;
5762 	struct vm_area_struct *vma;
5763 };
5764 
5765 static void copy_subpage(unsigned long addr, int idx, void *arg)
5766 {
5767 	struct copy_subpage_arg *copy_arg = arg;
5768 
5769 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5770 			   addr, copy_arg->vma);
5771 }
5772 
5773 void copy_user_huge_page(struct page *dst, struct page *src,
5774 			 unsigned long addr_hint, struct vm_area_struct *vma,
5775 			 unsigned int pages_per_huge_page)
5776 {
5777 	unsigned long addr = addr_hint &
5778 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5779 	struct copy_subpage_arg arg = {
5780 		.dst = dst,
5781 		.src = src,
5782 		.vma = vma,
5783 	};
5784 
5785 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5786 		copy_user_gigantic_page(dst, src, addr, vma,
5787 					pages_per_huge_page);
5788 		return;
5789 	}
5790 
5791 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5792 }
5793 
5794 long copy_huge_page_from_user(struct page *dst_page,
5795 				const void __user *usr_src,
5796 				unsigned int pages_per_huge_page,
5797 				bool allow_pagefault)
5798 {
5799 	void *page_kaddr;
5800 	unsigned long i, rc = 0;
5801 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5802 	struct page *subpage;
5803 
5804 	for (i = 0; i < pages_per_huge_page; i++) {
5805 		subpage = nth_page(dst_page, i);
5806 		if (allow_pagefault)
5807 			page_kaddr = kmap(subpage);
5808 		else
5809 			page_kaddr = kmap_atomic(subpage);
5810 		rc = copy_from_user(page_kaddr,
5811 				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5812 		if (allow_pagefault)
5813 			kunmap(subpage);
5814 		else
5815 			kunmap_atomic(page_kaddr);
5816 
5817 		ret_val -= (PAGE_SIZE - rc);
5818 		if (rc)
5819 			break;
5820 
5821 		flush_dcache_page(subpage);
5822 
5823 		cond_resched();
5824 	}
5825 	return ret_val;
5826 }
5827 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5828 
5829 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5830 
5831 static struct kmem_cache *page_ptl_cachep;
5832 
5833 void __init ptlock_cache_init(void)
5834 {
5835 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5836 			SLAB_PANIC, NULL);
5837 }
5838 
5839 bool ptlock_alloc(struct page *page)
5840 {
5841 	spinlock_t *ptl;
5842 
5843 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5844 	if (!ptl)
5845 		return false;
5846 	page->ptl = ptl;
5847 	return true;
5848 }
5849 
5850 void ptlock_free(struct page *page)
5851 {
5852 	kmem_cache_free(page_ptl_cachep, page->ptl);
5853 }
5854 #endif
5855