xref: /openbmc/linux/mm/memory.c (revision b96c0546)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76 
77 #include <trace/events/kmem.h>
78 
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85 
86 #include "pgalloc-track.h"
87 #include "internal.h"
88 
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92 
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97 
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101 
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111 
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120 					1;
121 #else
122 					2;
123 #endif
124 
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128 	/*
129 	 * Those arches which don't have hw access flag feature need to
130 	 * implement their own helper. By default, "true" means pagefault
131 	 * will be hit on old pte.
132 	 */
133 	return true;
134 }
135 #endif
136 
137 static int __init disable_randmaps(char *s)
138 {
139 	randomize_va_space = 0;
140 	return 1;
141 }
142 __setup("norandmaps", disable_randmaps);
143 
144 unsigned long zero_pfn __read_mostly;
145 EXPORT_SYMBOL(zero_pfn);
146 
147 unsigned long highest_memmap_pfn __read_mostly;
148 
149 /*
150  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151  */
152 static int __init init_zero_pfn(void)
153 {
154 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
155 	return 0;
156 }
157 core_initcall(init_zero_pfn);
158 
159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
160 {
161 	trace_rss_stat(mm, member, count);
162 }
163 
164 #if defined(SPLIT_RSS_COUNTING)
165 
166 void sync_mm_rss(struct mm_struct *mm)
167 {
168 	int i;
169 
170 	for (i = 0; i < NR_MM_COUNTERS; i++) {
171 		if (current->rss_stat.count[i]) {
172 			add_mm_counter(mm, i, current->rss_stat.count[i]);
173 			current->rss_stat.count[i] = 0;
174 		}
175 	}
176 	current->rss_stat.events = 0;
177 }
178 
179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180 {
181 	struct task_struct *task = current;
182 
183 	if (likely(task->mm == mm))
184 		task->rss_stat.count[member] += val;
185 	else
186 		add_mm_counter(mm, member, val);
187 }
188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190 
191 /* sync counter once per 64 page faults */
192 #define TASK_RSS_EVENTS_THRESH	(64)
193 static void check_sync_rss_stat(struct task_struct *task)
194 {
195 	if (unlikely(task != current))
196 		return;
197 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
198 		sync_mm_rss(task->mm);
199 }
200 #else /* SPLIT_RSS_COUNTING */
201 
202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204 
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 }
208 
209 #endif /* SPLIT_RSS_COUNTING */
210 
211 /*
212  * Note: this doesn't free the actual pages themselves. That
213  * has been handled earlier when unmapping all the memory regions.
214  */
215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216 			   unsigned long addr)
217 {
218 	pgtable_t token = pmd_pgtable(*pmd);
219 	pmd_clear(pmd);
220 	pte_free_tlb(tlb, token, addr);
221 	mm_dec_nr_ptes(tlb->mm);
222 }
223 
224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225 				unsigned long addr, unsigned long end,
226 				unsigned long floor, unsigned long ceiling)
227 {
228 	pmd_t *pmd;
229 	unsigned long next;
230 	unsigned long start;
231 
232 	start = addr;
233 	pmd = pmd_offset(pud, addr);
234 	do {
235 		next = pmd_addr_end(addr, end);
236 		if (pmd_none_or_clear_bad(pmd))
237 			continue;
238 		free_pte_range(tlb, pmd, addr);
239 	} while (pmd++, addr = next, addr != end);
240 
241 	start &= PUD_MASK;
242 	if (start < floor)
243 		return;
244 	if (ceiling) {
245 		ceiling &= PUD_MASK;
246 		if (!ceiling)
247 			return;
248 	}
249 	if (end - 1 > ceiling - 1)
250 		return;
251 
252 	pmd = pmd_offset(pud, start);
253 	pud_clear(pud);
254 	pmd_free_tlb(tlb, pmd, start);
255 	mm_dec_nr_pmds(tlb->mm);
256 }
257 
258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
259 				unsigned long addr, unsigned long end,
260 				unsigned long floor, unsigned long ceiling)
261 {
262 	pud_t *pud;
263 	unsigned long next;
264 	unsigned long start;
265 
266 	start = addr;
267 	pud = pud_offset(p4d, addr);
268 	do {
269 		next = pud_addr_end(addr, end);
270 		if (pud_none_or_clear_bad(pud))
271 			continue;
272 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
273 	} while (pud++, addr = next, addr != end);
274 
275 	start &= P4D_MASK;
276 	if (start < floor)
277 		return;
278 	if (ceiling) {
279 		ceiling &= P4D_MASK;
280 		if (!ceiling)
281 			return;
282 	}
283 	if (end - 1 > ceiling - 1)
284 		return;
285 
286 	pud = pud_offset(p4d, start);
287 	p4d_clear(p4d);
288 	pud_free_tlb(tlb, pud, start);
289 	mm_dec_nr_puds(tlb->mm);
290 }
291 
292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293 				unsigned long addr, unsigned long end,
294 				unsigned long floor, unsigned long ceiling)
295 {
296 	p4d_t *p4d;
297 	unsigned long next;
298 	unsigned long start;
299 
300 	start = addr;
301 	p4d = p4d_offset(pgd, addr);
302 	do {
303 		next = p4d_addr_end(addr, end);
304 		if (p4d_none_or_clear_bad(p4d))
305 			continue;
306 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307 	} while (p4d++, addr = next, addr != end);
308 
309 	start &= PGDIR_MASK;
310 	if (start < floor)
311 		return;
312 	if (ceiling) {
313 		ceiling &= PGDIR_MASK;
314 		if (!ceiling)
315 			return;
316 	}
317 	if (end - 1 > ceiling - 1)
318 		return;
319 
320 	p4d = p4d_offset(pgd, start);
321 	pgd_clear(pgd);
322 	p4d_free_tlb(tlb, p4d, start);
323 }
324 
325 /*
326  * This function frees user-level page tables of a process.
327  */
328 void free_pgd_range(struct mmu_gather *tlb,
329 			unsigned long addr, unsigned long end,
330 			unsigned long floor, unsigned long ceiling)
331 {
332 	pgd_t *pgd;
333 	unsigned long next;
334 
335 	/*
336 	 * The next few lines have given us lots of grief...
337 	 *
338 	 * Why are we testing PMD* at this top level?  Because often
339 	 * there will be no work to do at all, and we'd prefer not to
340 	 * go all the way down to the bottom just to discover that.
341 	 *
342 	 * Why all these "- 1"s?  Because 0 represents both the bottom
343 	 * of the address space and the top of it (using -1 for the
344 	 * top wouldn't help much: the masks would do the wrong thing).
345 	 * The rule is that addr 0 and floor 0 refer to the bottom of
346 	 * the address space, but end 0 and ceiling 0 refer to the top
347 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
348 	 * that end 0 case should be mythical).
349 	 *
350 	 * Wherever addr is brought up or ceiling brought down, we must
351 	 * be careful to reject "the opposite 0" before it confuses the
352 	 * subsequent tests.  But what about where end is brought down
353 	 * by PMD_SIZE below? no, end can't go down to 0 there.
354 	 *
355 	 * Whereas we round start (addr) and ceiling down, by different
356 	 * masks at different levels, in order to test whether a table
357 	 * now has no other vmas using it, so can be freed, we don't
358 	 * bother to round floor or end up - the tests don't need that.
359 	 */
360 
361 	addr &= PMD_MASK;
362 	if (addr < floor) {
363 		addr += PMD_SIZE;
364 		if (!addr)
365 			return;
366 	}
367 	if (ceiling) {
368 		ceiling &= PMD_MASK;
369 		if (!ceiling)
370 			return;
371 	}
372 	if (end - 1 > ceiling - 1)
373 		end -= PMD_SIZE;
374 	if (addr > end - 1)
375 		return;
376 	/*
377 	 * We add page table cache pages with PAGE_SIZE,
378 	 * (see pte_free_tlb()), flush the tlb if we need
379 	 */
380 	tlb_change_page_size(tlb, PAGE_SIZE);
381 	pgd = pgd_offset(tlb->mm, addr);
382 	do {
383 		next = pgd_addr_end(addr, end);
384 		if (pgd_none_or_clear_bad(pgd))
385 			continue;
386 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
387 	} while (pgd++, addr = next, addr != end);
388 }
389 
390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
391 		unsigned long floor, unsigned long ceiling)
392 {
393 	while (vma) {
394 		struct vm_area_struct *next = vma->vm_next;
395 		unsigned long addr = vma->vm_start;
396 
397 		/*
398 		 * Hide vma from rmap and truncate_pagecache before freeing
399 		 * pgtables
400 		 */
401 		unlink_anon_vmas(vma);
402 		unlink_file_vma(vma);
403 
404 		if (is_vm_hugetlb_page(vma)) {
405 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
406 				floor, next ? next->vm_start : ceiling);
407 		} else {
408 			/*
409 			 * Optimization: gather nearby vmas into one call down
410 			 */
411 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
412 			       && !is_vm_hugetlb_page(next)) {
413 				vma = next;
414 				next = vma->vm_next;
415 				unlink_anon_vmas(vma);
416 				unlink_file_vma(vma);
417 			}
418 			free_pgd_range(tlb, addr, vma->vm_end,
419 				floor, next ? next->vm_start : ceiling);
420 		}
421 		vma = next;
422 	}
423 }
424 
425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
426 {
427 	spinlock_t *ptl;
428 	pgtable_t new = pte_alloc_one(mm);
429 	if (!new)
430 		return -ENOMEM;
431 
432 	/*
433 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
434 	 * visible before the pte is made visible to other CPUs by being
435 	 * put into page tables.
436 	 *
437 	 * The other side of the story is the pointer chasing in the page
438 	 * table walking code (when walking the page table without locking;
439 	 * ie. most of the time). Fortunately, these data accesses consist
440 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
441 	 * being the notable exception) will already guarantee loads are
442 	 * seen in-order. See the alpha page table accessors for the
443 	 * smp_rmb() barriers in page table walking code.
444 	 */
445 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446 
447 	ptl = pmd_lock(mm, pmd);
448 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
449 		mm_inc_nr_ptes(mm);
450 		pmd_populate(mm, pmd, new);
451 		new = NULL;
452 	}
453 	spin_unlock(ptl);
454 	if (new)
455 		pte_free(mm, new);
456 	return 0;
457 }
458 
459 int __pte_alloc_kernel(pmd_t *pmd)
460 {
461 	pte_t *new = pte_alloc_one_kernel(&init_mm);
462 	if (!new)
463 		return -ENOMEM;
464 
465 	smp_wmb(); /* See comment in __pte_alloc */
466 
467 	spin_lock(&init_mm.page_table_lock);
468 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
469 		pmd_populate_kernel(&init_mm, pmd, new);
470 		new = NULL;
471 	}
472 	spin_unlock(&init_mm.page_table_lock);
473 	if (new)
474 		pte_free_kernel(&init_mm, new);
475 	return 0;
476 }
477 
478 static inline void init_rss_vec(int *rss)
479 {
480 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 }
482 
483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
484 {
485 	int i;
486 
487 	if (current->mm == mm)
488 		sync_mm_rss(mm);
489 	for (i = 0; i < NR_MM_COUNTERS; i++)
490 		if (rss[i])
491 			add_mm_counter(mm, i, rss[i]);
492 }
493 
494 /*
495  * This function is called to print an error when a bad pte
496  * is found. For example, we might have a PFN-mapped pte in
497  * a region that doesn't allow it.
498  *
499  * The calling function must still handle the error.
500  */
501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502 			  pte_t pte, struct page *page)
503 {
504 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
505 	p4d_t *p4d = p4d_offset(pgd, addr);
506 	pud_t *pud = pud_offset(p4d, addr);
507 	pmd_t *pmd = pmd_offset(pud, addr);
508 	struct address_space *mapping;
509 	pgoff_t index;
510 	static unsigned long resume;
511 	static unsigned long nr_shown;
512 	static unsigned long nr_unshown;
513 
514 	/*
515 	 * Allow a burst of 60 reports, then keep quiet for that minute;
516 	 * or allow a steady drip of one report per second.
517 	 */
518 	if (nr_shown == 60) {
519 		if (time_before(jiffies, resume)) {
520 			nr_unshown++;
521 			return;
522 		}
523 		if (nr_unshown) {
524 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525 				 nr_unshown);
526 			nr_unshown = 0;
527 		}
528 		nr_shown = 0;
529 	}
530 	if (nr_shown++ == 0)
531 		resume = jiffies + 60 * HZ;
532 
533 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534 	index = linear_page_index(vma, addr);
535 
536 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
537 		 current->comm,
538 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
539 	if (page)
540 		dump_page(page, "bad pte");
541 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
542 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
543 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544 		 vma->vm_file,
545 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
546 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547 		 mapping ? mapping->a_ops->readpage : NULL);
548 	dump_stack();
549 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551 
552 /*
553  * vm_normal_page -- This function gets the "struct page" associated with a pte.
554  *
555  * "Special" mappings do not wish to be associated with a "struct page" (either
556  * it doesn't exist, or it exists but they don't want to touch it). In this
557  * case, NULL is returned here. "Normal" mappings do have a struct page.
558  *
559  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560  * pte bit, in which case this function is trivial. Secondly, an architecture
561  * may not have a spare pte bit, which requires a more complicated scheme,
562  * described below.
563  *
564  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565  * special mapping (even if there are underlying and valid "struct pages").
566  * COWed pages of a VM_PFNMAP are always normal.
567  *
568  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
570  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571  * mapping will always honor the rule
572  *
573  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574  *
575  * And for normal mappings this is false.
576  *
577  * This restricts such mappings to be a linear translation from virtual address
578  * to pfn. To get around this restriction, we allow arbitrary mappings so long
579  * as the vma is not a COW mapping; in that case, we know that all ptes are
580  * special (because none can have been COWed).
581  *
582  *
583  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584  *
585  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586  * page" backing, however the difference is that _all_ pages with a struct
587  * page (that is, those where pfn_valid is true) are refcounted and considered
588  * normal pages by the VM. The disadvantage is that pages are refcounted
589  * (which can be slower and simply not an option for some PFNMAP users). The
590  * advantage is that we don't have to follow the strict linearity rule of
591  * PFNMAP mappings in order to support COWable mappings.
592  *
593  */
594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595 			    pte_t pte)
596 {
597 	unsigned long pfn = pte_pfn(pte);
598 
599 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
600 		if (likely(!pte_special(pte)))
601 			goto check_pfn;
602 		if (vma->vm_ops && vma->vm_ops->find_special_page)
603 			return vma->vm_ops->find_special_page(vma, addr);
604 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605 			return NULL;
606 		if (is_zero_pfn(pfn))
607 			return NULL;
608 		if (pte_devmap(pte))
609 			return NULL;
610 
611 		print_bad_pte(vma, addr, pte, NULL);
612 		return NULL;
613 	}
614 
615 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616 
617 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618 		if (vma->vm_flags & VM_MIXEDMAP) {
619 			if (!pfn_valid(pfn))
620 				return NULL;
621 			goto out;
622 		} else {
623 			unsigned long off;
624 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
625 			if (pfn == vma->vm_pgoff + off)
626 				return NULL;
627 			if (!is_cow_mapping(vma->vm_flags))
628 				return NULL;
629 		}
630 	}
631 
632 	if (is_zero_pfn(pfn))
633 		return NULL;
634 
635 check_pfn:
636 	if (unlikely(pfn > highest_memmap_pfn)) {
637 		print_bad_pte(vma, addr, pte, NULL);
638 		return NULL;
639 	}
640 
641 	/*
642 	 * NOTE! We still have PageReserved() pages in the page tables.
643 	 * eg. VDSO mappings can cause them to exist.
644 	 */
645 out:
646 	return pfn_to_page(pfn);
647 }
648 
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651 				pmd_t pmd)
652 {
653 	unsigned long pfn = pmd_pfn(pmd);
654 
655 	/*
656 	 * There is no pmd_special() but there may be special pmds, e.g.
657 	 * in a direct-access (dax) mapping, so let's just replicate the
658 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659 	 */
660 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661 		if (vma->vm_flags & VM_MIXEDMAP) {
662 			if (!pfn_valid(pfn))
663 				return NULL;
664 			goto out;
665 		} else {
666 			unsigned long off;
667 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
668 			if (pfn == vma->vm_pgoff + off)
669 				return NULL;
670 			if (!is_cow_mapping(vma->vm_flags))
671 				return NULL;
672 		}
673 	}
674 
675 	if (pmd_devmap(pmd))
676 		return NULL;
677 	if (is_huge_zero_pmd(pmd))
678 		return NULL;
679 	if (unlikely(pfn > highest_memmap_pfn))
680 		return NULL;
681 
682 	/*
683 	 * NOTE! We still have PageReserved() pages in the page tables.
684 	 * eg. VDSO mappings can cause them to exist.
685 	 */
686 out:
687 	return pfn_to_page(pfn);
688 }
689 #endif
690 
691 /*
692  * copy one vm_area from one task to the other. Assumes the page tables
693  * already present in the new task to be cleared in the whole range
694  * covered by this vma.
695  */
696 
697 static unsigned long
698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
700 		unsigned long addr, int *rss)
701 {
702 	unsigned long vm_flags = vma->vm_flags;
703 	pte_t pte = *src_pte;
704 	struct page *page;
705 	swp_entry_t entry = pte_to_swp_entry(pte);
706 
707 	if (likely(!non_swap_entry(entry))) {
708 		if (swap_duplicate(entry) < 0)
709 			return entry.val;
710 
711 		/* make sure dst_mm is on swapoff's mmlist. */
712 		if (unlikely(list_empty(&dst_mm->mmlist))) {
713 			spin_lock(&mmlist_lock);
714 			if (list_empty(&dst_mm->mmlist))
715 				list_add(&dst_mm->mmlist,
716 						&src_mm->mmlist);
717 			spin_unlock(&mmlist_lock);
718 		}
719 		rss[MM_SWAPENTS]++;
720 	} else if (is_migration_entry(entry)) {
721 		page = migration_entry_to_page(entry);
722 
723 		rss[mm_counter(page)]++;
724 
725 		if (is_write_migration_entry(entry) &&
726 				is_cow_mapping(vm_flags)) {
727 			/*
728 			 * COW mappings require pages in both
729 			 * parent and child to be set to read.
730 			 */
731 			make_migration_entry_read(&entry);
732 			pte = swp_entry_to_pte(entry);
733 			if (pte_swp_soft_dirty(*src_pte))
734 				pte = pte_swp_mksoft_dirty(pte);
735 			if (pte_swp_uffd_wp(*src_pte))
736 				pte = pte_swp_mkuffd_wp(pte);
737 			set_pte_at(src_mm, addr, src_pte, pte);
738 		}
739 	} else if (is_device_private_entry(entry)) {
740 		page = device_private_entry_to_page(entry);
741 
742 		/*
743 		 * Update rss count even for unaddressable pages, as
744 		 * they should treated just like normal pages in this
745 		 * respect.
746 		 *
747 		 * We will likely want to have some new rss counters
748 		 * for unaddressable pages, at some point. But for now
749 		 * keep things as they are.
750 		 */
751 		get_page(page);
752 		rss[mm_counter(page)]++;
753 		page_dup_rmap(page, false);
754 
755 		/*
756 		 * We do not preserve soft-dirty information, because so
757 		 * far, checkpoint/restore is the only feature that
758 		 * requires that. And checkpoint/restore does not work
759 		 * when a device driver is involved (you cannot easily
760 		 * save and restore device driver state).
761 		 */
762 		if (is_write_device_private_entry(entry) &&
763 		    is_cow_mapping(vm_flags)) {
764 			make_device_private_entry_read(&entry);
765 			pte = swp_entry_to_pte(entry);
766 			if (pte_swp_uffd_wp(*src_pte))
767 				pte = pte_swp_mkuffd_wp(pte);
768 			set_pte_at(src_mm, addr, src_pte, pte);
769 		}
770 	}
771 	set_pte_at(dst_mm, addr, dst_pte, pte);
772 	return 0;
773 }
774 
775 /*
776  * Copy a present and normal page if necessary.
777  *
778  * NOTE! The usual case is that this doesn't need to do
779  * anything, and can just return a positive value. That
780  * will let the caller know that it can just increase
781  * the page refcount and re-use the pte the traditional
782  * way.
783  *
784  * But _if_ we need to copy it because it needs to be
785  * pinned in the parent (and the child should get its own
786  * copy rather than just a reference to the same page),
787  * we'll do that here and return zero to let the caller
788  * know we're done.
789  *
790  * And if we need a pre-allocated page but don't yet have
791  * one, return a negative error to let the preallocation
792  * code know so that it can do so outside the page table
793  * lock.
794  */
795 static inline int
796 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
797 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
798 		  struct page **prealloc, pte_t pte, struct page *page)
799 {
800 	struct mm_struct *src_mm = src_vma->vm_mm;
801 	struct page *new_page;
802 
803 	if (!is_cow_mapping(src_vma->vm_flags))
804 		return 1;
805 
806 	/*
807 	 * What we want to do is to check whether this page may
808 	 * have been pinned by the parent process.  If so,
809 	 * instead of wrprotect the pte on both sides, we copy
810 	 * the page immediately so that we'll always guarantee
811 	 * the pinned page won't be randomly replaced in the
812 	 * future.
813 	 *
814 	 * The page pinning checks are just "has this mm ever
815 	 * seen pinning", along with the (inexact) check of
816 	 * the page count. That might give false positives for
817 	 * for pinning, but it will work correctly.
818 	 */
819 	if (likely(!atomic_read(&src_mm->has_pinned)))
820 		return 1;
821 	if (likely(!page_maybe_dma_pinned(page)))
822 		return 1;
823 
824 	new_page = *prealloc;
825 	if (!new_page)
826 		return -EAGAIN;
827 
828 	/*
829 	 * We have a prealloc page, all good!  Take it
830 	 * over and copy the page & arm it.
831 	 */
832 	*prealloc = NULL;
833 	copy_user_highpage(new_page, page, addr, src_vma);
834 	__SetPageUptodate(new_page);
835 	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
836 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
837 	rss[mm_counter(new_page)]++;
838 
839 	/* All done, just insert the new page copy in the child */
840 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
841 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
842 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
843 	return 0;
844 }
845 
846 /*
847  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
848  * is required to copy this pte.
849  */
850 static inline int
851 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
852 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
853 		 struct page **prealloc)
854 {
855 	struct mm_struct *src_mm = src_vma->vm_mm;
856 	unsigned long vm_flags = src_vma->vm_flags;
857 	pte_t pte = *src_pte;
858 	struct page *page;
859 
860 	page = vm_normal_page(src_vma, addr, pte);
861 	if (page) {
862 		int retval;
863 
864 		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
865 					   addr, rss, prealloc, pte, page);
866 		if (retval <= 0)
867 			return retval;
868 
869 		get_page(page);
870 		page_dup_rmap(page, false);
871 		rss[mm_counter(page)]++;
872 	}
873 
874 	/*
875 	 * If it's a COW mapping, write protect it both
876 	 * in the parent and the child
877 	 */
878 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
879 		ptep_set_wrprotect(src_mm, addr, src_pte);
880 		pte = pte_wrprotect(pte);
881 	}
882 
883 	/*
884 	 * If it's a shared mapping, mark it clean in
885 	 * the child
886 	 */
887 	if (vm_flags & VM_SHARED)
888 		pte = pte_mkclean(pte);
889 	pte = pte_mkold(pte);
890 
891 	/*
892 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
893 	 * does not have the VM_UFFD_WP, which means that the uffd
894 	 * fork event is not enabled.
895 	 */
896 	if (!(vm_flags & VM_UFFD_WP))
897 		pte = pte_clear_uffd_wp(pte);
898 
899 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
900 	return 0;
901 }
902 
903 static inline struct page *
904 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
905 		   unsigned long addr)
906 {
907 	struct page *new_page;
908 
909 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
910 	if (!new_page)
911 		return NULL;
912 
913 	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
914 		put_page(new_page);
915 		return NULL;
916 	}
917 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
918 
919 	return new_page;
920 }
921 
922 static int
923 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
925 	       unsigned long end)
926 {
927 	struct mm_struct *dst_mm = dst_vma->vm_mm;
928 	struct mm_struct *src_mm = src_vma->vm_mm;
929 	pte_t *orig_src_pte, *orig_dst_pte;
930 	pte_t *src_pte, *dst_pte;
931 	spinlock_t *src_ptl, *dst_ptl;
932 	int progress, ret = 0;
933 	int rss[NR_MM_COUNTERS];
934 	swp_entry_t entry = (swp_entry_t){0};
935 	struct page *prealloc = NULL;
936 
937 again:
938 	progress = 0;
939 	init_rss_vec(rss);
940 
941 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942 	if (!dst_pte) {
943 		ret = -ENOMEM;
944 		goto out;
945 	}
946 	src_pte = pte_offset_map(src_pmd, addr);
947 	src_ptl = pte_lockptr(src_mm, src_pmd);
948 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
949 	orig_src_pte = src_pte;
950 	orig_dst_pte = dst_pte;
951 	arch_enter_lazy_mmu_mode();
952 
953 	do {
954 		/*
955 		 * We are holding two locks at this point - either of them
956 		 * could generate latencies in another task on another CPU.
957 		 */
958 		if (progress >= 32) {
959 			progress = 0;
960 			if (need_resched() ||
961 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
962 				break;
963 		}
964 		if (pte_none(*src_pte)) {
965 			progress++;
966 			continue;
967 		}
968 		if (unlikely(!pte_present(*src_pte))) {
969 			entry.val = copy_nonpresent_pte(dst_mm, src_mm,
970 							dst_pte, src_pte,
971 							src_vma, addr, rss);
972 			if (entry.val)
973 				break;
974 			progress += 8;
975 			continue;
976 		}
977 		/* copy_present_pte() will clear `*prealloc' if consumed */
978 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
979 				       addr, rss, &prealloc);
980 		/*
981 		 * If we need a pre-allocated page for this pte, drop the
982 		 * locks, allocate, and try again.
983 		 */
984 		if (unlikely(ret == -EAGAIN))
985 			break;
986 		if (unlikely(prealloc)) {
987 			/*
988 			 * pre-alloc page cannot be reused by next time so as
989 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
990 			 * will allocate page according to address).  This
991 			 * could only happen if one pinned pte changed.
992 			 */
993 			put_page(prealloc);
994 			prealloc = NULL;
995 		}
996 		progress += 8;
997 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
998 
999 	arch_leave_lazy_mmu_mode();
1000 	spin_unlock(src_ptl);
1001 	pte_unmap(orig_src_pte);
1002 	add_mm_rss_vec(dst_mm, rss);
1003 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1004 	cond_resched();
1005 
1006 	if (entry.val) {
1007 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1008 			ret = -ENOMEM;
1009 			goto out;
1010 		}
1011 		entry.val = 0;
1012 	} else if (ret) {
1013 		WARN_ON_ONCE(ret != -EAGAIN);
1014 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1015 		if (!prealloc)
1016 			return -ENOMEM;
1017 		/* We've captured and resolved the error. Reset, try again. */
1018 		ret = 0;
1019 	}
1020 	if (addr != end)
1021 		goto again;
1022 out:
1023 	if (unlikely(prealloc))
1024 		put_page(prealloc);
1025 	return ret;
1026 }
1027 
1028 static inline int
1029 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1030 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1031 	       unsigned long end)
1032 {
1033 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1034 	struct mm_struct *src_mm = src_vma->vm_mm;
1035 	pmd_t *src_pmd, *dst_pmd;
1036 	unsigned long next;
1037 
1038 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1039 	if (!dst_pmd)
1040 		return -ENOMEM;
1041 	src_pmd = pmd_offset(src_pud, addr);
1042 	do {
1043 		next = pmd_addr_end(addr, end);
1044 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1045 			|| pmd_devmap(*src_pmd)) {
1046 			int err;
1047 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1048 			err = copy_huge_pmd(dst_mm, src_mm,
1049 					    dst_pmd, src_pmd, addr, src_vma);
1050 			if (err == -ENOMEM)
1051 				return -ENOMEM;
1052 			if (!err)
1053 				continue;
1054 			/* fall through */
1055 		}
1056 		if (pmd_none_or_clear_bad(src_pmd))
1057 			continue;
1058 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1059 				   addr, next))
1060 			return -ENOMEM;
1061 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1062 	return 0;
1063 }
1064 
1065 static inline int
1066 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1068 	       unsigned long end)
1069 {
1070 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1071 	struct mm_struct *src_mm = src_vma->vm_mm;
1072 	pud_t *src_pud, *dst_pud;
1073 	unsigned long next;
1074 
1075 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1076 	if (!dst_pud)
1077 		return -ENOMEM;
1078 	src_pud = pud_offset(src_p4d, addr);
1079 	do {
1080 		next = pud_addr_end(addr, end);
1081 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1082 			int err;
1083 
1084 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1085 			err = copy_huge_pud(dst_mm, src_mm,
1086 					    dst_pud, src_pud, addr, src_vma);
1087 			if (err == -ENOMEM)
1088 				return -ENOMEM;
1089 			if (!err)
1090 				continue;
1091 			/* fall through */
1092 		}
1093 		if (pud_none_or_clear_bad(src_pud))
1094 			continue;
1095 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1096 				   addr, next))
1097 			return -ENOMEM;
1098 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1099 	return 0;
1100 }
1101 
1102 static inline int
1103 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1105 	       unsigned long end)
1106 {
1107 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1108 	p4d_t *src_p4d, *dst_p4d;
1109 	unsigned long next;
1110 
1111 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1112 	if (!dst_p4d)
1113 		return -ENOMEM;
1114 	src_p4d = p4d_offset(src_pgd, addr);
1115 	do {
1116 		next = p4d_addr_end(addr, end);
1117 		if (p4d_none_or_clear_bad(src_p4d))
1118 			continue;
1119 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1120 				   addr, next))
1121 			return -ENOMEM;
1122 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1123 	return 0;
1124 }
1125 
1126 int
1127 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1128 {
1129 	pgd_t *src_pgd, *dst_pgd;
1130 	unsigned long next;
1131 	unsigned long addr = src_vma->vm_start;
1132 	unsigned long end = src_vma->vm_end;
1133 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1134 	struct mm_struct *src_mm = src_vma->vm_mm;
1135 	struct mmu_notifier_range range;
1136 	bool is_cow;
1137 	int ret;
1138 
1139 	/*
1140 	 * Don't copy ptes where a page fault will fill them correctly.
1141 	 * Fork becomes much lighter when there are big shared or private
1142 	 * readonly mappings. The tradeoff is that copy_page_range is more
1143 	 * efficient than faulting.
1144 	 */
1145 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1146 	    !src_vma->anon_vma)
1147 		return 0;
1148 
1149 	if (is_vm_hugetlb_page(src_vma))
1150 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1151 
1152 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1153 		/*
1154 		 * We do not free on error cases below as remove_vma
1155 		 * gets called on error from higher level routine
1156 		 */
1157 		ret = track_pfn_copy(src_vma);
1158 		if (ret)
1159 			return ret;
1160 	}
1161 
1162 	/*
1163 	 * We need to invalidate the secondary MMU mappings only when
1164 	 * there could be a permission downgrade on the ptes of the
1165 	 * parent mm. And a permission downgrade will only happen if
1166 	 * is_cow_mapping() returns true.
1167 	 */
1168 	is_cow = is_cow_mapping(src_vma->vm_flags);
1169 
1170 	if (is_cow) {
1171 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1172 					0, src_vma, src_mm, addr, end);
1173 		mmu_notifier_invalidate_range_start(&range);
1174 	}
1175 
1176 	ret = 0;
1177 	dst_pgd = pgd_offset(dst_mm, addr);
1178 	src_pgd = pgd_offset(src_mm, addr);
1179 	do {
1180 		next = pgd_addr_end(addr, end);
1181 		if (pgd_none_or_clear_bad(src_pgd))
1182 			continue;
1183 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1184 					    addr, next))) {
1185 			ret = -ENOMEM;
1186 			break;
1187 		}
1188 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1189 
1190 	if (is_cow)
1191 		mmu_notifier_invalidate_range_end(&range);
1192 	return ret;
1193 }
1194 
1195 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1196 				struct vm_area_struct *vma, pmd_t *pmd,
1197 				unsigned long addr, unsigned long end,
1198 				struct zap_details *details)
1199 {
1200 	struct mm_struct *mm = tlb->mm;
1201 	int force_flush = 0;
1202 	int rss[NR_MM_COUNTERS];
1203 	spinlock_t *ptl;
1204 	pte_t *start_pte;
1205 	pte_t *pte;
1206 	swp_entry_t entry;
1207 
1208 	tlb_change_page_size(tlb, PAGE_SIZE);
1209 again:
1210 	init_rss_vec(rss);
1211 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1212 	pte = start_pte;
1213 	flush_tlb_batched_pending(mm);
1214 	arch_enter_lazy_mmu_mode();
1215 	do {
1216 		pte_t ptent = *pte;
1217 		if (pte_none(ptent))
1218 			continue;
1219 
1220 		if (need_resched())
1221 			break;
1222 
1223 		if (pte_present(ptent)) {
1224 			struct page *page;
1225 
1226 			page = vm_normal_page(vma, addr, ptent);
1227 			if (unlikely(details) && page) {
1228 				/*
1229 				 * unmap_shared_mapping_pages() wants to
1230 				 * invalidate cache without truncating:
1231 				 * unmap shared but keep private pages.
1232 				 */
1233 				if (details->check_mapping &&
1234 				    details->check_mapping != page_rmapping(page))
1235 					continue;
1236 			}
1237 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1238 							tlb->fullmm);
1239 			tlb_remove_tlb_entry(tlb, pte, addr);
1240 			if (unlikely(!page))
1241 				continue;
1242 
1243 			if (!PageAnon(page)) {
1244 				if (pte_dirty(ptent)) {
1245 					force_flush = 1;
1246 					set_page_dirty(page);
1247 				}
1248 				if (pte_young(ptent) &&
1249 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1250 					mark_page_accessed(page);
1251 			}
1252 			rss[mm_counter(page)]--;
1253 			page_remove_rmap(page, false);
1254 			if (unlikely(page_mapcount(page) < 0))
1255 				print_bad_pte(vma, addr, ptent, page);
1256 			if (unlikely(__tlb_remove_page(tlb, page))) {
1257 				force_flush = 1;
1258 				addr += PAGE_SIZE;
1259 				break;
1260 			}
1261 			continue;
1262 		}
1263 
1264 		entry = pte_to_swp_entry(ptent);
1265 		if (is_device_private_entry(entry)) {
1266 			struct page *page = device_private_entry_to_page(entry);
1267 
1268 			if (unlikely(details && details->check_mapping)) {
1269 				/*
1270 				 * unmap_shared_mapping_pages() wants to
1271 				 * invalidate cache without truncating:
1272 				 * unmap shared but keep private pages.
1273 				 */
1274 				if (details->check_mapping !=
1275 				    page_rmapping(page))
1276 					continue;
1277 			}
1278 
1279 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1280 			rss[mm_counter(page)]--;
1281 			page_remove_rmap(page, false);
1282 			put_page(page);
1283 			continue;
1284 		}
1285 
1286 		/* If details->check_mapping, we leave swap entries. */
1287 		if (unlikely(details))
1288 			continue;
1289 
1290 		if (!non_swap_entry(entry))
1291 			rss[MM_SWAPENTS]--;
1292 		else if (is_migration_entry(entry)) {
1293 			struct page *page;
1294 
1295 			page = migration_entry_to_page(entry);
1296 			rss[mm_counter(page)]--;
1297 		}
1298 		if (unlikely(!free_swap_and_cache(entry)))
1299 			print_bad_pte(vma, addr, ptent, NULL);
1300 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1301 	} while (pte++, addr += PAGE_SIZE, addr != end);
1302 
1303 	add_mm_rss_vec(mm, rss);
1304 	arch_leave_lazy_mmu_mode();
1305 
1306 	/* Do the actual TLB flush before dropping ptl */
1307 	if (force_flush)
1308 		tlb_flush_mmu_tlbonly(tlb);
1309 	pte_unmap_unlock(start_pte, ptl);
1310 
1311 	/*
1312 	 * If we forced a TLB flush (either due to running out of
1313 	 * batch buffers or because we needed to flush dirty TLB
1314 	 * entries before releasing the ptl), free the batched
1315 	 * memory too. Restart if we didn't do everything.
1316 	 */
1317 	if (force_flush) {
1318 		force_flush = 0;
1319 		tlb_flush_mmu(tlb);
1320 	}
1321 
1322 	if (addr != end) {
1323 		cond_resched();
1324 		goto again;
1325 	}
1326 
1327 	return addr;
1328 }
1329 
1330 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1331 				struct vm_area_struct *vma, pud_t *pud,
1332 				unsigned long addr, unsigned long end,
1333 				struct zap_details *details)
1334 {
1335 	pmd_t *pmd;
1336 	unsigned long next;
1337 
1338 	pmd = pmd_offset(pud, addr);
1339 	do {
1340 		next = pmd_addr_end(addr, end);
1341 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1342 			if (next - addr != HPAGE_PMD_SIZE)
1343 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1344 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1345 				goto next;
1346 			/* fall through */
1347 		}
1348 		/*
1349 		 * Here there can be other concurrent MADV_DONTNEED or
1350 		 * trans huge page faults running, and if the pmd is
1351 		 * none or trans huge it can change under us. This is
1352 		 * because MADV_DONTNEED holds the mmap_lock in read
1353 		 * mode.
1354 		 */
1355 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1356 			goto next;
1357 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1358 next:
1359 		cond_resched();
1360 	} while (pmd++, addr = next, addr != end);
1361 
1362 	return addr;
1363 }
1364 
1365 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1366 				struct vm_area_struct *vma, p4d_t *p4d,
1367 				unsigned long addr, unsigned long end,
1368 				struct zap_details *details)
1369 {
1370 	pud_t *pud;
1371 	unsigned long next;
1372 
1373 	pud = pud_offset(p4d, addr);
1374 	do {
1375 		next = pud_addr_end(addr, end);
1376 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1377 			if (next - addr != HPAGE_PUD_SIZE) {
1378 				mmap_assert_locked(tlb->mm);
1379 				split_huge_pud(vma, pud, addr);
1380 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1381 				goto next;
1382 			/* fall through */
1383 		}
1384 		if (pud_none_or_clear_bad(pud))
1385 			continue;
1386 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1387 next:
1388 		cond_resched();
1389 	} while (pud++, addr = next, addr != end);
1390 
1391 	return addr;
1392 }
1393 
1394 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1395 				struct vm_area_struct *vma, pgd_t *pgd,
1396 				unsigned long addr, unsigned long end,
1397 				struct zap_details *details)
1398 {
1399 	p4d_t *p4d;
1400 	unsigned long next;
1401 
1402 	p4d = p4d_offset(pgd, addr);
1403 	do {
1404 		next = p4d_addr_end(addr, end);
1405 		if (p4d_none_or_clear_bad(p4d))
1406 			continue;
1407 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1408 	} while (p4d++, addr = next, addr != end);
1409 
1410 	return addr;
1411 }
1412 
1413 void unmap_page_range(struct mmu_gather *tlb,
1414 			     struct vm_area_struct *vma,
1415 			     unsigned long addr, unsigned long end,
1416 			     struct zap_details *details)
1417 {
1418 	pgd_t *pgd;
1419 	unsigned long next;
1420 
1421 	BUG_ON(addr >= end);
1422 	tlb_start_vma(tlb, vma);
1423 	pgd = pgd_offset(vma->vm_mm, addr);
1424 	do {
1425 		next = pgd_addr_end(addr, end);
1426 		if (pgd_none_or_clear_bad(pgd))
1427 			continue;
1428 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1429 	} while (pgd++, addr = next, addr != end);
1430 	tlb_end_vma(tlb, vma);
1431 }
1432 
1433 
1434 static void unmap_single_vma(struct mmu_gather *tlb,
1435 		struct vm_area_struct *vma, unsigned long start_addr,
1436 		unsigned long end_addr,
1437 		struct zap_details *details)
1438 {
1439 	unsigned long start = max(vma->vm_start, start_addr);
1440 	unsigned long end;
1441 
1442 	if (start >= vma->vm_end)
1443 		return;
1444 	end = min(vma->vm_end, end_addr);
1445 	if (end <= vma->vm_start)
1446 		return;
1447 
1448 	if (vma->vm_file)
1449 		uprobe_munmap(vma, start, end);
1450 
1451 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1452 		untrack_pfn(vma, 0, 0);
1453 
1454 	if (start != end) {
1455 		if (unlikely(is_vm_hugetlb_page(vma))) {
1456 			/*
1457 			 * It is undesirable to test vma->vm_file as it
1458 			 * should be non-null for valid hugetlb area.
1459 			 * However, vm_file will be NULL in the error
1460 			 * cleanup path of mmap_region. When
1461 			 * hugetlbfs ->mmap method fails,
1462 			 * mmap_region() nullifies vma->vm_file
1463 			 * before calling this function to clean up.
1464 			 * Since no pte has actually been setup, it is
1465 			 * safe to do nothing in this case.
1466 			 */
1467 			if (vma->vm_file) {
1468 				i_mmap_lock_write(vma->vm_file->f_mapping);
1469 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1470 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1471 			}
1472 		} else
1473 			unmap_page_range(tlb, vma, start, end, details);
1474 	}
1475 }
1476 
1477 /**
1478  * unmap_vmas - unmap a range of memory covered by a list of vma's
1479  * @tlb: address of the caller's struct mmu_gather
1480  * @vma: the starting vma
1481  * @start_addr: virtual address at which to start unmapping
1482  * @end_addr: virtual address at which to end unmapping
1483  *
1484  * Unmap all pages in the vma list.
1485  *
1486  * Only addresses between `start' and `end' will be unmapped.
1487  *
1488  * The VMA list must be sorted in ascending virtual address order.
1489  *
1490  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1491  * range after unmap_vmas() returns.  So the only responsibility here is to
1492  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1493  * drops the lock and schedules.
1494  */
1495 void unmap_vmas(struct mmu_gather *tlb,
1496 		struct vm_area_struct *vma, unsigned long start_addr,
1497 		unsigned long end_addr)
1498 {
1499 	struct mmu_notifier_range range;
1500 
1501 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1502 				start_addr, end_addr);
1503 	mmu_notifier_invalidate_range_start(&range);
1504 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1505 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1506 	mmu_notifier_invalidate_range_end(&range);
1507 }
1508 
1509 /**
1510  * zap_page_range - remove user pages in a given range
1511  * @vma: vm_area_struct holding the applicable pages
1512  * @start: starting address of pages to zap
1513  * @size: number of bytes to zap
1514  *
1515  * Caller must protect the VMA list
1516  */
1517 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1518 		unsigned long size)
1519 {
1520 	struct mmu_notifier_range range;
1521 	struct mmu_gather tlb;
1522 
1523 	lru_add_drain();
1524 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1525 				start, start + size);
1526 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1527 	update_hiwater_rss(vma->vm_mm);
1528 	mmu_notifier_invalidate_range_start(&range);
1529 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1530 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1531 	mmu_notifier_invalidate_range_end(&range);
1532 	tlb_finish_mmu(&tlb, start, range.end);
1533 }
1534 
1535 /**
1536  * zap_page_range_single - remove user pages in a given range
1537  * @vma: vm_area_struct holding the applicable pages
1538  * @address: starting address of pages to zap
1539  * @size: number of bytes to zap
1540  * @details: details of shared cache invalidation
1541  *
1542  * The range must fit into one VMA.
1543  */
1544 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1545 		unsigned long size, struct zap_details *details)
1546 {
1547 	struct mmu_notifier_range range;
1548 	struct mmu_gather tlb;
1549 
1550 	lru_add_drain();
1551 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1552 				address, address + size);
1553 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1554 	update_hiwater_rss(vma->vm_mm);
1555 	mmu_notifier_invalidate_range_start(&range);
1556 	unmap_single_vma(&tlb, vma, address, range.end, details);
1557 	mmu_notifier_invalidate_range_end(&range);
1558 	tlb_finish_mmu(&tlb, address, range.end);
1559 }
1560 
1561 /**
1562  * zap_vma_ptes - remove ptes mapping the vma
1563  * @vma: vm_area_struct holding ptes to be zapped
1564  * @address: starting address of pages to zap
1565  * @size: number of bytes to zap
1566  *
1567  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1568  *
1569  * The entire address range must be fully contained within the vma.
1570  *
1571  */
1572 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1573 		unsigned long size)
1574 {
1575 	if (address < vma->vm_start || address + size > vma->vm_end ||
1576 	    		!(vma->vm_flags & VM_PFNMAP))
1577 		return;
1578 
1579 	zap_page_range_single(vma, address, size, NULL);
1580 }
1581 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1582 
1583 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1584 {
1585 	pgd_t *pgd;
1586 	p4d_t *p4d;
1587 	pud_t *pud;
1588 	pmd_t *pmd;
1589 
1590 	pgd = pgd_offset(mm, addr);
1591 	p4d = p4d_alloc(mm, pgd, addr);
1592 	if (!p4d)
1593 		return NULL;
1594 	pud = pud_alloc(mm, p4d, addr);
1595 	if (!pud)
1596 		return NULL;
1597 	pmd = pmd_alloc(mm, pud, addr);
1598 	if (!pmd)
1599 		return NULL;
1600 
1601 	VM_BUG_ON(pmd_trans_huge(*pmd));
1602 	return pmd;
1603 }
1604 
1605 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1606 			spinlock_t **ptl)
1607 {
1608 	pmd_t *pmd = walk_to_pmd(mm, addr);
1609 
1610 	if (!pmd)
1611 		return NULL;
1612 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1613 }
1614 
1615 static int validate_page_before_insert(struct page *page)
1616 {
1617 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1618 		return -EINVAL;
1619 	flush_dcache_page(page);
1620 	return 0;
1621 }
1622 
1623 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1624 			unsigned long addr, struct page *page, pgprot_t prot)
1625 {
1626 	if (!pte_none(*pte))
1627 		return -EBUSY;
1628 	/* Ok, finally just insert the thing.. */
1629 	get_page(page);
1630 	inc_mm_counter_fast(mm, mm_counter_file(page));
1631 	page_add_file_rmap(page, false);
1632 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1633 	return 0;
1634 }
1635 
1636 /*
1637  * This is the old fallback for page remapping.
1638  *
1639  * For historical reasons, it only allows reserved pages. Only
1640  * old drivers should use this, and they needed to mark their
1641  * pages reserved for the old functions anyway.
1642  */
1643 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1644 			struct page *page, pgprot_t prot)
1645 {
1646 	struct mm_struct *mm = vma->vm_mm;
1647 	int retval;
1648 	pte_t *pte;
1649 	spinlock_t *ptl;
1650 
1651 	retval = validate_page_before_insert(page);
1652 	if (retval)
1653 		goto out;
1654 	retval = -ENOMEM;
1655 	pte = get_locked_pte(mm, addr, &ptl);
1656 	if (!pte)
1657 		goto out;
1658 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1659 	pte_unmap_unlock(pte, ptl);
1660 out:
1661 	return retval;
1662 }
1663 
1664 #ifdef pte_index
1665 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1666 			unsigned long addr, struct page *page, pgprot_t prot)
1667 {
1668 	int err;
1669 
1670 	if (!page_count(page))
1671 		return -EINVAL;
1672 	err = validate_page_before_insert(page);
1673 	if (err)
1674 		return err;
1675 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1676 }
1677 
1678 /* insert_pages() amortizes the cost of spinlock operations
1679  * when inserting pages in a loop. Arch *must* define pte_index.
1680  */
1681 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1682 			struct page **pages, unsigned long *num, pgprot_t prot)
1683 {
1684 	pmd_t *pmd = NULL;
1685 	pte_t *start_pte, *pte;
1686 	spinlock_t *pte_lock;
1687 	struct mm_struct *const mm = vma->vm_mm;
1688 	unsigned long curr_page_idx = 0;
1689 	unsigned long remaining_pages_total = *num;
1690 	unsigned long pages_to_write_in_pmd;
1691 	int ret;
1692 more:
1693 	ret = -EFAULT;
1694 	pmd = walk_to_pmd(mm, addr);
1695 	if (!pmd)
1696 		goto out;
1697 
1698 	pages_to_write_in_pmd = min_t(unsigned long,
1699 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1700 
1701 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1702 	ret = -ENOMEM;
1703 	if (pte_alloc(mm, pmd))
1704 		goto out;
1705 
1706 	while (pages_to_write_in_pmd) {
1707 		int pte_idx = 0;
1708 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1709 
1710 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1711 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1712 			int err = insert_page_in_batch_locked(mm, pte,
1713 				addr, pages[curr_page_idx], prot);
1714 			if (unlikely(err)) {
1715 				pte_unmap_unlock(start_pte, pte_lock);
1716 				ret = err;
1717 				remaining_pages_total -= pte_idx;
1718 				goto out;
1719 			}
1720 			addr += PAGE_SIZE;
1721 			++curr_page_idx;
1722 		}
1723 		pte_unmap_unlock(start_pte, pte_lock);
1724 		pages_to_write_in_pmd -= batch_size;
1725 		remaining_pages_total -= batch_size;
1726 	}
1727 	if (remaining_pages_total)
1728 		goto more;
1729 	ret = 0;
1730 out:
1731 	*num = remaining_pages_total;
1732 	return ret;
1733 }
1734 #endif  /* ifdef pte_index */
1735 
1736 /**
1737  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1738  * @vma: user vma to map to
1739  * @addr: target start user address of these pages
1740  * @pages: source kernel pages
1741  * @num: in: number of pages to map. out: number of pages that were *not*
1742  * mapped. (0 means all pages were successfully mapped).
1743  *
1744  * Preferred over vm_insert_page() when inserting multiple pages.
1745  *
1746  * In case of error, we may have mapped a subset of the provided
1747  * pages. It is the caller's responsibility to account for this case.
1748  *
1749  * The same restrictions apply as in vm_insert_page().
1750  */
1751 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1752 			struct page **pages, unsigned long *num)
1753 {
1754 #ifdef pte_index
1755 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1756 
1757 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1758 		return -EFAULT;
1759 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1760 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1761 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1762 		vma->vm_flags |= VM_MIXEDMAP;
1763 	}
1764 	/* Defer page refcount checking till we're about to map that page. */
1765 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1766 #else
1767 	unsigned long idx = 0, pgcount = *num;
1768 	int err = -EINVAL;
1769 
1770 	for (; idx < pgcount; ++idx) {
1771 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1772 		if (err)
1773 			break;
1774 	}
1775 	*num = pgcount - idx;
1776 	return err;
1777 #endif  /* ifdef pte_index */
1778 }
1779 EXPORT_SYMBOL(vm_insert_pages);
1780 
1781 /**
1782  * vm_insert_page - insert single page into user vma
1783  * @vma: user vma to map to
1784  * @addr: target user address of this page
1785  * @page: source kernel page
1786  *
1787  * This allows drivers to insert individual pages they've allocated
1788  * into a user vma.
1789  *
1790  * The page has to be a nice clean _individual_ kernel allocation.
1791  * If you allocate a compound page, you need to have marked it as
1792  * such (__GFP_COMP), or manually just split the page up yourself
1793  * (see split_page()).
1794  *
1795  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1796  * took an arbitrary page protection parameter. This doesn't allow
1797  * that. Your vma protection will have to be set up correctly, which
1798  * means that if you want a shared writable mapping, you'd better
1799  * ask for a shared writable mapping!
1800  *
1801  * The page does not need to be reserved.
1802  *
1803  * Usually this function is called from f_op->mmap() handler
1804  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1805  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1806  * function from other places, for example from page-fault handler.
1807  *
1808  * Return: %0 on success, negative error code otherwise.
1809  */
1810 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1811 			struct page *page)
1812 {
1813 	if (addr < vma->vm_start || addr >= vma->vm_end)
1814 		return -EFAULT;
1815 	if (!page_count(page))
1816 		return -EINVAL;
1817 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1818 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1819 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1820 		vma->vm_flags |= VM_MIXEDMAP;
1821 	}
1822 	return insert_page(vma, addr, page, vma->vm_page_prot);
1823 }
1824 EXPORT_SYMBOL(vm_insert_page);
1825 
1826 /*
1827  * __vm_map_pages - maps range of kernel pages into user vma
1828  * @vma: user vma to map to
1829  * @pages: pointer to array of source kernel pages
1830  * @num: number of pages in page array
1831  * @offset: user's requested vm_pgoff
1832  *
1833  * This allows drivers to map range of kernel pages into a user vma.
1834  *
1835  * Return: 0 on success and error code otherwise.
1836  */
1837 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1838 				unsigned long num, unsigned long offset)
1839 {
1840 	unsigned long count = vma_pages(vma);
1841 	unsigned long uaddr = vma->vm_start;
1842 	int ret, i;
1843 
1844 	/* Fail if the user requested offset is beyond the end of the object */
1845 	if (offset >= num)
1846 		return -ENXIO;
1847 
1848 	/* Fail if the user requested size exceeds available object size */
1849 	if (count > num - offset)
1850 		return -ENXIO;
1851 
1852 	for (i = 0; i < count; i++) {
1853 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1854 		if (ret < 0)
1855 			return ret;
1856 		uaddr += PAGE_SIZE;
1857 	}
1858 
1859 	return 0;
1860 }
1861 
1862 /**
1863  * vm_map_pages - maps range of kernel pages starts with non zero offset
1864  * @vma: user vma to map to
1865  * @pages: pointer to array of source kernel pages
1866  * @num: number of pages in page array
1867  *
1868  * Maps an object consisting of @num pages, catering for the user's
1869  * requested vm_pgoff
1870  *
1871  * If we fail to insert any page into the vma, the function will return
1872  * immediately leaving any previously inserted pages present.  Callers
1873  * from the mmap handler may immediately return the error as their caller
1874  * will destroy the vma, removing any successfully inserted pages. Other
1875  * callers should make their own arrangements for calling unmap_region().
1876  *
1877  * Context: Process context. Called by mmap handlers.
1878  * Return: 0 on success and error code otherwise.
1879  */
1880 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1881 				unsigned long num)
1882 {
1883 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1884 }
1885 EXPORT_SYMBOL(vm_map_pages);
1886 
1887 /**
1888  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1889  * @vma: user vma to map to
1890  * @pages: pointer to array of source kernel pages
1891  * @num: number of pages in page array
1892  *
1893  * Similar to vm_map_pages(), except that it explicitly sets the offset
1894  * to 0. This function is intended for the drivers that did not consider
1895  * vm_pgoff.
1896  *
1897  * Context: Process context. Called by mmap handlers.
1898  * Return: 0 on success and error code otherwise.
1899  */
1900 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1901 				unsigned long num)
1902 {
1903 	return __vm_map_pages(vma, pages, num, 0);
1904 }
1905 EXPORT_SYMBOL(vm_map_pages_zero);
1906 
1907 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1908 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1909 {
1910 	struct mm_struct *mm = vma->vm_mm;
1911 	pte_t *pte, entry;
1912 	spinlock_t *ptl;
1913 
1914 	pte = get_locked_pte(mm, addr, &ptl);
1915 	if (!pte)
1916 		return VM_FAULT_OOM;
1917 	if (!pte_none(*pte)) {
1918 		if (mkwrite) {
1919 			/*
1920 			 * For read faults on private mappings the PFN passed
1921 			 * in may not match the PFN we have mapped if the
1922 			 * mapped PFN is a writeable COW page.  In the mkwrite
1923 			 * case we are creating a writable PTE for a shared
1924 			 * mapping and we expect the PFNs to match. If they
1925 			 * don't match, we are likely racing with block
1926 			 * allocation and mapping invalidation so just skip the
1927 			 * update.
1928 			 */
1929 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1930 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1931 				goto out_unlock;
1932 			}
1933 			entry = pte_mkyoung(*pte);
1934 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1935 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1936 				update_mmu_cache(vma, addr, pte);
1937 		}
1938 		goto out_unlock;
1939 	}
1940 
1941 	/* Ok, finally just insert the thing.. */
1942 	if (pfn_t_devmap(pfn))
1943 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1944 	else
1945 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1946 
1947 	if (mkwrite) {
1948 		entry = pte_mkyoung(entry);
1949 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1950 	}
1951 
1952 	set_pte_at(mm, addr, pte, entry);
1953 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1954 
1955 out_unlock:
1956 	pte_unmap_unlock(pte, ptl);
1957 	return VM_FAULT_NOPAGE;
1958 }
1959 
1960 /**
1961  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1962  * @vma: user vma to map to
1963  * @addr: target user address of this page
1964  * @pfn: source kernel pfn
1965  * @pgprot: pgprot flags for the inserted page
1966  *
1967  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1968  * to override pgprot on a per-page basis.
1969  *
1970  * This only makes sense for IO mappings, and it makes no sense for
1971  * COW mappings.  In general, using multiple vmas is preferable;
1972  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1973  * impractical.
1974  *
1975  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1976  * a value of @pgprot different from that of @vma->vm_page_prot.
1977  *
1978  * Context: Process context.  May allocate using %GFP_KERNEL.
1979  * Return: vm_fault_t value.
1980  */
1981 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1982 			unsigned long pfn, pgprot_t pgprot)
1983 {
1984 	/*
1985 	 * Technically, architectures with pte_special can avoid all these
1986 	 * restrictions (same for remap_pfn_range).  However we would like
1987 	 * consistency in testing and feature parity among all, so we should
1988 	 * try to keep these invariants in place for everybody.
1989 	 */
1990 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1991 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1992 						(VM_PFNMAP|VM_MIXEDMAP));
1993 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1994 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1995 
1996 	if (addr < vma->vm_start || addr >= vma->vm_end)
1997 		return VM_FAULT_SIGBUS;
1998 
1999 	if (!pfn_modify_allowed(pfn, pgprot))
2000 		return VM_FAULT_SIGBUS;
2001 
2002 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2003 
2004 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2005 			false);
2006 }
2007 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2008 
2009 /**
2010  * vmf_insert_pfn - insert single pfn into user vma
2011  * @vma: user vma to map to
2012  * @addr: target user address of this page
2013  * @pfn: source kernel pfn
2014  *
2015  * Similar to vm_insert_page, this allows drivers to insert individual pages
2016  * they've allocated into a user vma. Same comments apply.
2017  *
2018  * This function should only be called from a vm_ops->fault handler, and
2019  * in that case the handler should return the result of this function.
2020  *
2021  * vma cannot be a COW mapping.
2022  *
2023  * As this is called only for pages that do not currently exist, we
2024  * do not need to flush old virtual caches or the TLB.
2025  *
2026  * Context: Process context.  May allocate using %GFP_KERNEL.
2027  * Return: vm_fault_t value.
2028  */
2029 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2030 			unsigned long pfn)
2031 {
2032 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2033 }
2034 EXPORT_SYMBOL(vmf_insert_pfn);
2035 
2036 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2037 {
2038 	/* these checks mirror the abort conditions in vm_normal_page */
2039 	if (vma->vm_flags & VM_MIXEDMAP)
2040 		return true;
2041 	if (pfn_t_devmap(pfn))
2042 		return true;
2043 	if (pfn_t_special(pfn))
2044 		return true;
2045 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2046 		return true;
2047 	return false;
2048 }
2049 
2050 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2051 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2052 		bool mkwrite)
2053 {
2054 	int err;
2055 
2056 	BUG_ON(!vm_mixed_ok(vma, pfn));
2057 
2058 	if (addr < vma->vm_start || addr >= vma->vm_end)
2059 		return VM_FAULT_SIGBUS;
2060 
2061 	track_pfn_insert(vma, &pgprot, pfn);
2062 
2063 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2064 		return VM_FAULT_SIGBUS;
2065 
2066 	/*
2067 	 * If we don't have pte special, then we have to use the pfn_valid()
2068 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2069 	 * refcount the page if pfn_valid is true (hence insert_page rather
2070 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2071 	 * without pte special, it would there be refcounted as a normal page.
2072 	 */
2073 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2074 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2075 		struct page *page;
2076 
2077 		/*
2078 		 * At this point we are committed to insert_page()
2079 		 * regardless of whether the caller specified flags that
2080 		 * result in pfn_t_has_page() == false.
2081 		 */
2082 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2083 		err = insert_page(vma, addr, page, pgprot);
2084 	} else {
2085 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2086 	}
2087 
2088 	if (err == -ENOMEM)
2089 		return VM_FAULT_OOM;
2090 	if (err < 0 && err != -EBUSY)
2091 		return VM_FAULT_SIGBUS;
2092 
2093 	return VM_FAULT_NOPAGE;
2094 }
2095 
2096 /**
2097  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2098  * @vma: user vma to map to
2099  * @addr: target user address of this page
2100  * @pfn: source kernel pfn
2101  * @pgprot: pgprot flags for the inserted page
2102  *
2103  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2104  * to override pgprot on a per-page basis.
2105  *
2106  * Typically this function should be used by drivers to set caching- and
2107  * encryption bits different than those of @vma->vm_page_prot, because
2108  * the caching- or encryption mode may not be known at mmap() time.
2109  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2110  * to set caching and encryption bits for those vmas (except for COW pages).
2111  * This is ensured by core vm only modifying these page table entries using
2112  * functions that don't touch caching- or encryption bits, using pte_modify()
2113  * if needed. (See for example mprotect()).
2114  * Also when new page-table entries are created, this is only done using the
2115  * fault() callback, and never using the value of vma->vm_page_prot,
2116  * except for page-table entries that point to anonymous pages as the result
2117  * of COW.
2118  *
2119  * Context: Process context.  May allocate using %GFP_KERNEL.
2120  * Return: vm_fault_t value.
2121  */
2122 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2123 				 pfn_t pfn, pgprot_t pgprot)
2124 {
2125 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2126 }
2127 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2128 
2129 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2130 		pfn_t pfn)
2131 {
2132 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2133 }
2134 EXPORT_SYMBOL(vmf_insert_mixed);
2135 
2136 /*
2137  *  If the insertion of PTE failed because someone else already added a
2138  *  different entry in the mean time, we treat that as success as we assume
2139  *  the same entry was actually inserted.
2140  */
2141 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2142 		unsigned long addr, pfn_t pfn)
2143 {
2144 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2145 }
2146 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2147 
2148 /*
2149  * maps a range of physical memory into the requested pages. the old
2150  * mappings are removed. any references to nonexistent pages results
2151  * in null mappings (currently treated as "copy-on-access")
2152  */
2153 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2154 			unsigned long addr, unsigned long end,
2155 			unsigned long pfn, pgprot_t prot)
2156 {
2157 	pte_t *pte;
2158 	spinlock_t *ptl;
2159 	int err = 0;
2160 
2161 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2162 	if (!pte)
2163 		return -ENOMEM;
2164 	arch_enter_lazy_mmu_mode();
2165 	do {
2166 		BUG_ON(!pte_none(*pte));
2167 		if (!pfn_modify_allowed(pfn, prot)) {
2168 			err = -EACCES;
2169 			break;
2170 		}
2171 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2172 		pfn++;
2173 	} while (pte++, addr += PAGE_SIZE, addr != end);
2174 	arch_leave_lazy_mmu_mode();
2175 	pte_unmap_unlock(pte - 1, ptl);
2176 	return err;
2177 }
2178 
2179 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2180 			unsigned long addr, unsigned long end,
2181 			unsigned long pfn, pgprot_t prot)
2182 {
2183 	pmd_t *pmd;
2184 	unsigned long next;
2185 	int err;
2186 
2187 	pfn -= addr >> PAGE_SHIFT;
2188 	pmd = pmd_alloc(mm, pud, addr);
2189 	if (!pmd)
2190 		return -ENOMEM;
2191 	VM_BUG_ON(pmd_trans_huge(*pmd));
2192 	do {
2193 		next = pmd_addr_end(addr, end);
2194 		err = remap_pte_range(mm, pmd, addr, next,
2195 				pfn + (addr >> PAGE_SHIFT), prot);
2196 		if (err)
2197 			return err;
2198 	} while (pmd++, addr = next, addr != end);
2199 	return 0;
2200 }
2201 
2202 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2203 			unsigned long addr, unsigned long end,
2204 			unsigned long pfn, pgprot_t prot)
2205 {
2206 	pud_t *pud;
2207 	unsigned long next;
2208 	int err;
2209 
2210 	pfn -= addr >> PAGE_SHIFT;
2211 	pud = pud_alloc(mm, p4d, addr);
2212 	if (!pud)
2213 		return -ENOMEM;
2214 	do {
2215 		next = pud_addr_end(addr, end);
2216 		err = remap_pmd_range(mm, pud, addr, next,
2217 				pfn + (addr >> PAGE_SHIFT), prot);
2218 		if (err)
2219 			return err;
2220 	} while (pud++, addr = next, addr != end);
2221 	return 0;
2222 }
2223 
2224 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2225 			unsigned long addr, unsigned long end,
2226 			unsigned long pfn, pgprot_t prot)
2227 {
2228 	p4d_t *p4d;
2229 	unsigned long next;
2230 	int err;
2231 
2232 	pfn -= addr >> PAGE_SHIFT;
2233 	p4d = p4d_alloc(mm, pgd, addr);
2234 	if (!p4d)
2235 		return -ENOMEM;
2236 	do {
2237 		next = p4d_addr_end(addr, end);
2238 		err = remap_pud_range(mm, p4d, addr, next,
2239 				pfn + (addr >> PAGE_SHIFT), prot);
2240 		if (err)
2241 			return err;
2242 	} while (p4d++, addr = next, addr != end);
2243 	return 0;
2244 }
2245 
2246 /**
2247  * remap_pfn_range - remap kernel memory to userspace
2248  * @vma: user vma to map to
2249  * @addr: target page aligned user address to start at
2250  * @pfn: page frame number of kernel physical memory address
2251  * @size: size of mapping area
2252  * @prot: page protection flags for this mapping
2253  *
2254  * Note: this is only safe if the mm semaphore is held when called.
2255  *
2256  * Return: %0 on success, negative error code otherwise.
2257  */
2258 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2259 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2260 {
2261 	pgd_t *pgd;
2262 	unsigned long next;
2263 	unsigned long end = addr + PAGE_ALIGN(size);
2264 	struct mm_struct *mm = vma->vm_mm;
2265 	unsigned long remap_pfn = pfn;
2266 	int err;
2267 
2268 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2269 		return -EINVAL;
2270 
2271 	/*
2272 	 * Physically remapped pages are special. Tell the
2273 	 * rest of the world about it:
2274 	 *   VM_IO tells people not to look at these pages
2275 	 *	(accesses can have side effects).
2276 	 *   VM_PFNMAP tells the core MM that the base pages are just
2277 	 *	raw PFN mappings, and do not have a "struct page" associated
2278 	 *	with them.
2279 	 *   VM_DONTEXPAND
2280 	 *      Disable vma merging and expanding with mremap().
2281 	 *   VM_DONTDUMP
2282 	 *      Omit vma from core dump, even when VM_IO turned off.
2283 	 *
2284 	 * There's a horrible special case to handle copy-on-write
2285 	 * behaviour that some programs depend on. We mark the "original"
2286 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2287 	 * See vm_normal_page() for details.
2288 	 */
2289 	if (is_cow_mapping(vma->vm_flags)) {
2290 		if (addr != vma->vm_start || end != vma->vm_end)
2291 			return -EINVAL;
2292 		vma->vm_pgoff = pfn;
2293 	}
2294 
2295 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2296 	if (err)
2297 		return -EINVAL;
2298 
2299 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2300 
2301 	BUG_ON(addr >= end);
2302 	pfn -= addr >> PAGE_SHIFT;
2303 	pgd = pgd_offset(mm, addr);
2304 	flush_cache_range(vma, addr, end);
2305 	do {
2306 		next = pgd_addr_end(addr, end);
2307 		err = remap_p4d_range(mm, pgd, addr, next,
2308 				pfn + (addr >> PAGE_SHIFT), prot);
2309 		if (err)
2310 			break;
2311 	} while (pgd++, addr = next, addr != end);
2312 
2313 	if (err)
2314 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2315 
2316 	return err;
2317 }
2318 EXPORT_SYMBOL(remap_pfn_range);
2319 
2320 /**
2321  * vm_iomap_memory - remap memory to userspace
2322  * @vma: user vma to map to
2323  * @start: start of the physical memory to be mapped
2324  * @len: size of area
2325  *
2326  * This is a simplified io_remap_pfn_range() for common driver use. The
2327  * driver just needs to give us the physical memory range to be mapped,
2328  * we'll figure out the rest from the vma information.
2329  *
2330  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2331  * whatever write-combining details or similar.
2332  *
2333  * Return: %0 on success, negative error code otherwise.
2334  */
2335 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2336 {
2337 	unsigned long vm_len, pfn, pages;
2338 
2339 	/* Check that the physical memory area passed in looks valid */
2340 	if (start + len < start)
2341 		return -EINVAL;
2342 	/*
2343 	 * You *really* shouldn't map things that aren't page-aligned,
2344 	 * but we've historically allowed it because IO memory might
2345 	 * just have smaller alignment.
2346 	 */
2347 	len += start & ~PAGE_MASK;
2348 	pfn = start >> PAGE_SHIFT;
2349 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2350 	if (pfn + pages < pfn)
2351 		return -EINVAL;
2352 
2353 	/* We start the mapping 'vm_pgoff' pages into the area */
2354 	if (vma->vm_pgoff > pages)
2355 		return -EINVAL;
2356 	pfn += vma->vm_pgoff;
2357 	pages -= vma->vm_pgoff;
2358 
2359 	/* Can we fit all of the mapping? */
2360 	vm_len = vma->vm_end - vma->vm_start;
2361 	if (vm_len >> PAGE_SHIFT > pages)
2362 		return -EINVAL;
2363 
2364 	/* Ok, let it rip */
2365 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2366 }
2367 EXPORT_SYMBOL(vm_iomap_memory);
2368 
2369 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2370 				     unsigned long addr, unsigned long end,
2371 				     pte_fn_t fn, void *data, bool create,
2372 				     pgtbl_mod_mask *mask)
2373 {
2374 	pte_t *pte;
2375 	int err = 0;
2376 	spinlock_t *ptl;
2377 
2378 	if (create) {
2379 		pte = (mm == &init_mm) ?
2380 			pte_alloc_kernel_track(pmd, addr, mask) :
2381 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2382 		if (!pte)
2383 			return -ENOMEM;
2384 	} else {
2385 		pte = (mm == &init_mm) ?
2386 			pte_offset_kernel(pmd, addr) :
2387 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2388 	}
2389 
2390 	BUG_ON(pmd_huge(*pmd));
2391 
2392 	arch_enter_lazy_mmu_mode();
2393 
2394 	if (fn) {
2395 		do {
2396 			if (create || !pte_none(*pte)) {
2397 				err = fn(pte++, addr, data);
2398 				if (err)
2399 					break;
2400 			}
2401 		} while (addr += PAGE_SIZE, addr != end);
2402 	}
2403 	*mask |= PGTBL_PTE_MODIFIED;
2404 
2405 	arch_leave_lazy_mmu_mode();
2406 
2407 	if (mm != &init_mm)
2408 		pte_unmap_unlock(pte-1, ptl);
2409 	return err;
2410 }
2411 
2412 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2413 				     unsigned long addr, unsigned long end,
2414 				     pte_fn_t fn, void *data, bool create,
2415 				     pgtbl_mod_mask *mask)
2416 {
2417 	pmd_t *pmd;
2418 	unsigned long next;
2419 	int err = 0;
2420 
2421 	BUG_ON(pud_huge(*pud));
2422 
2423 	if (create) {
2424 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2425 		if (!pmd)
2426 			return -ENOMEM;
2427 	} else {
2428 		pmd = pmd_offset(pud, addr);
2429 	}
2430 	do {
2431 		next = pmd_addr_end(addr, end);
2432 		if (create || !pmd_none_or_clear_bad(pmd)) {
2433 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2434 						 create, mask);
2435 			if (err)
2436 				break;
2437 		}
2438 	} while (pmd++, addr = next, addr != end);
2439 	return err;
2440 }
2441 
2442 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2443 				     unsigned long addr, unsigned long end,
2444 				     pte_fn_t fn, void *data, bool create,
2445 				     pgtbl_mod_mask *mask)
2446 {
2447 	pud_t *pud;
2448 	unsigned long next;
2449 	int err = 0;
2450 
2451 	if (create) {
2452 		pud = pud_alloc_track(mm, p4d, addr, mask);
2453 		if (!pud)
2454 			return -ENOMEM;
2455 	} else {
2456 		pud = pud_offset(p4d, addr);
2457 	}
2458 	do {
2459 		next = pud_addr_end(addr, end);
2460 		if (create || !pud_none_or_clear_bad(pud)) {
2461 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2462 						 create, mask);
2463 			if (err)
2464 				break;
2465 		}
2466 	} while (pud++, addr = next, addr != end);
2467 	return err;
2468 }
2469 
2470 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2471 				     unsigned long addr, unsigned long end,
2472 				     pte_fn_t fn, void *data, bool create,
2473 				     pgtbl_mod_mask *mask)
2474 {
2475 	p4d_t *p4d;
2476 	unsigned long next;
2477 	int err = 0;
2478 
2479 	if (create) {
2480 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2481 		if (!p4d)
2482 			return -ENOMEM;
2483 	} else {
2484 		p4d = p4d_offset(pgd, addr);
2485 	}
2486 	do {
2487 		next = p4d_addr_end(addr, end);
2488 		if (create || !p4d_none_or_clear_bad(p4d)) {
2489 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2490 						 create, mask);
2491 			if (err)
2492 				break;
2493 		}
2494 	} while (p4d++, addr = next, addr != end);
2495 	return err;
2496 }
2497 
2498 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2499 				 unsigned long size, pte_fn_t fn,
2500 				 void *data, bool create)
2501 {
2502 	pgd_t *pgd;
2503 	unsigned long start = addr, next;
2504 	unsigned long end = addr + size;
2505 	pgtbl_mod_mask mask = 0;
2506 	int err = 0;
2507 
2508 	if (WARN_ON(addr >= end))
2509 		return -EINVAL;
2510 
2511 	pgd = pgd_offset(mm, addr);
2512 	do {
2513 		next = pgd_addr_end(addr, end);
2514 		if (!create && pgd_none_or_clear_bad(pgd))
2515 			continue;
2516 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2517 		if (err)
2518 			break;
2519 	} while (pgd++, addr = next, addr != end);
2520 
2521 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2522 		arch_sync_kernel_mappings(start, start + size);
2523 
2524 	return err;
2525 }
2526 
2527 /*
2528  * Scan a region of virtual memory, filling in page tables as necessary
2529  * and calling a provided function on each leaf page table.
2530  */
2531 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2532 			unsigned long size, pte_fn_t fn, void *data)
2533 {
2534 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2535 }
2536 EXPORT_SYMBOL_GPL(apply_to_page_range);
2537 
2538 /*
2539  * Scan a region of virtual memory, calling a provided function on
2540  * each leaf page table where it exists.
2541  *
2542  * Unlike apply_to_page_range, this does _not_ fill in page tables
2543  * where they are absent.
2544  */
2545 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2546 				 unsigned long size, pte_fn_t fn, void *data)
2547 {
2548 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2549 }
2550 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2551 
2552 /*
2553  * handle_pte_fault chooses page fault handler according to an entry which was
2554  * read non-atomically.  Before making any commitment, on those architectures
2555  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2556  * parts, do_swap_page must check under lock before unmapping the pte and
2557  * proceeding (but do_wp_page is only called after already making such a check;
2558  * and do_anonymous_page can safely check later on).
2559  */
2560 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2561 				pte_t *page_table, pte_t orig_pte)
2562 {
2563 	int same = 1;
2564 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2565 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2566 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2567 		spin_lock(ptl);
2568 		same = pte_same(*page_table, orig_pte);
2569 		spin_unlock(ptl);
2570 	}
2571 #endif
2572 	pte_unmap(page_table);
2573 	return same;
2574 }
2575 
2576 static inline bool cow_user_page(struct page *dst, struct page *src,
2577 				 struct vm_fault *vmf)
2578 {
2579 	bool ret;
2580 	void *kaddr;
2581 	void __user *uaddr;
2582 	bool locked = false;
2583 	struct vm_area_struct *vma = vmf->vma;
2584 	struct mm_struct *mm = vma->vm_mm;
2585 	unsigned long addr = vmf->address;
2586 
2587 	if (likely(src)) {
2588 		copy_user_highpage(dst, src, addr, vma);
2589 		return true;
2590 	}
2591 
2592 	/*
2593 	 * If the source page was a PFN mapping, we don't have
2594 	 * a "struct page" for it. We do a best-effort copy by
2595 	 * just copying from the original user address. If that
2596 	 * fails, we just zero-fill it. Live with it.
2597 	 */
2598 	kaddr = kmap_atomic(dst);
2599 	uaddr = (void __user *)(addr & PAGE_MASK);
2600 
2601 	/*
2602 	 * On architectures with software "accessed" bits, we would
2603 	 * take a double page fault, so mark it accessed here.
2604 	 */
2605 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2606 		pte_t entry;
2607 
2608 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2609 		locked = true;
2610 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2611 			/*
2612 			 * Other thread has already handled the fault
2613 			 * and update local tlb only
2614 			 */
2615 			update_mmu_tlb(vma, addr, vmf->pte);
2616 			ret = false;
2617 			goto pte_unlock;
2618 		}
2619 
2620 		entry = pte_mkyoung(vmf->orig_pte);
2621 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2622 			update_mmu_cache(vma, addr, vmf->pte);
2623 	}
2624 
2625 	/*
2626 	 * This really shouldn't fail, because the page is there
2627 	 * in the page tables. But it might just be unreadable,
2628 	 * in which case we just give up and fill the result with
2629 	 * zeroes.
2630 	 */
2631 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2632 		if (locked)
2633 			goto warn;
2634 
2635 		/* Re-validate under PTL if the page is still mapped */
2636 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2637 		locked = true;
2638 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2639 			/* The PTE changed under us, update local tlb */
2640 			update_mmu_tlb(vma, addr, vmf->pte);
2641 			ret = false;
2642 			goto pte_unlock;
2643 		}
2644 
2645 		/*
2646 		 * The same page can be mapped back since last copy attempt.
2647 		 * Try to copy again under PTL.
2648 		 */
2649 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2650 			/*
2651 			 * Give a warn in case there can be some obscure
2652 			 * use-case
2653 			 */
2654 warn:
2655 			WARN_ON_ONCE(1);
2656 			clear_page(kaddr);
2657 		}
2658 	}
2659 
2660 	ret = true;
2661 
2662 pte_unlock:
2663 	if (locked)
2664 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2665 	kunmap_atomic(kaddr);
2666 	flush_dcache_page(dst);
2667 
2668 	return ret;
2669 }
2670 
2671 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2672 {
2673 	struct file *vm_file = vma->vm_file;
2674 
2675 	if (vm_file)
2676 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2677 
2678 	/*
2679 	 * Special mappings (e.g. VDSO) do not have any file so fake
2680 	 * a default GFP_KERNEL for them.
2681 	 */
2682 	return GFP_KERNEL;
2683 }
2684 
2685 /*
2686  * Notify the address space that the page is about to become writable so that
2687  * it can prohibit this or wait for the page to get into an appropriate state.
2688  *
2689  * We do this without the lock held, so that it can sleep if it needs to.
2690  */
2691 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2692 {
2693 	vm_fault_t ret;
2694 	struct page *page = vmf->page;
2695 	unsigned int old_flags = vmf->flags;
2696 
2697 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2698 
2699 	if (vmf->vma->vm_file &&
2700 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2701 		return VM_FAULT_SIGBUS;
2702 
2703 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2704 	/* Restore original flags so that caller is not surprised */
2705 	vmf->flags = old_flags;
2706 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2707 		return ret;
2708 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2709 		lock_page(page);
2710 		if (!page->mapping) {
2711 			unlock_page(page);
2712 			return 0; /* retry */
2713 		}
2714 		ret |= VM_FAULT_LOCKED;
2715 	} else
2716 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2717 	return ret;
2718 }
2719 
2720 /*
2721  * Handle dirtying of a page in shared file mapping on a write fault.
2722  *
2723  * The function expects the page to be locked and unlocks it.
2724  */
2725 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2726 {
2727 	struct vm_area_struct *vma = vmf->vma;
2728 	struct address_space *mapping;
2729 	struct page *page = vmf->page;
2730 	bool dirtied;
2731 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2732 
2733 	dirtied = set_page_dirty(page);
2734 	VM_BUG_ON_PAGE(PageAnon(page), page);
2735 	/*
2736 	 * Take a local copy of the address_space - page.mapping may be zeroed
2737 	 * by truncate after unlock_page().   The address_space itself remains
2738 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2739 	 * release semantics to prevent the compiler from undoing this copying.
2740 	 */
2741 	mapping = page_rmapping(page);
2742 	unlock_page(page);
2743 
2744 	if (!page_mkwrite)
2745 		file_update_time(vma->vm_file);
2746 
2747 	/*
2748 	 * Throttle page dirtying rate down to writeback speed.
2749 	 *
2750 	 * mapping may be NULL here because some device drivers do not
2751 	 * set page.mapping but still dirty their pages
2752 	 *
2753 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2754 	 * is pinning the mapping, as per above.
2755 	 */
2756 	if ((dirtied || page_mkwrite) && mapping) {
2757 		struct file *fpin;
2758 
2759 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2760 		balance_dirty_pages_ratelimited(mapping);
2761 		if (fpin) {
2762 			fput(fpin);
2763 			return VM_FAULT_RETRY;
2764 		}
2765 	}
2766 
2767 	return 0;
2768 }
2769 
2770 /*
2771  * Handle write page faults for pages that can be reused in the current vma
2772  *
2773  * This can happen either due to the mapping being with the VM_SHARED flag,
2774  * or due to us being the last reference standing to the page. In either
2775  * case, all we need to do here is to mark the page as writable and update
2776  * any related book-keeping.
2777  */
2778 static inline void wp_page_reuse(struct vm_fault *vmf)
2779 	__releases(vmf->ptl)
2780 {
2781 	struct vm_area_struct *vma = vmf->vma;
2782 	struct page *page = vmf->page;
2783 	pte_t entry;
2784 	/*
2785 	 * Clear the pages cpupid information as the existing
2786 	 * information potentially belongs to a now completely
2787 	 * unrelated process.
2788 	 */
2789 	if (page)
2790 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2791 
2792 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2793 	entry = pte_mkyoung(vmf->orig_pte);
2794 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2795 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2796 		update_mmu_cache(vma, vmf->address, vmf->pte);
2797 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2798 	count_vm_event(PGREUSE);
2799 }
2800 
2801 /*
2802  * Handle the case of a page which we actually need to copy to a new page.
2803  *
2804  * Called with mmap_lock locked and the old page referenced, but
2805  * without the ptl held.
2806  *
2807  * High level logic flow:
2808  *
2809  * - Allocate a page, copy the content of the old page to the new one.
2810  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2811  * - Take the PTL. If the pte changed, bail out and release the allocated page
2812  * - If the pte is still the way we remember it, update the page table and all
2813  *   relevant references. This includes dropping the reference the page-table
2814  *   held to the old page, as well as updating the rmap.
2815  * - In any case, unlock the PTL and drop the reference we took to the old page.
2816  */
2817 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2818 {
2819 	struct vm_area_struct *vma = vmf->vma;
2820 	struct mm_struct *mm = vma->vm_mm;
2821 	struct page *old_page = vmf->page;
2822 	struct page *new_page = NULL;
2823 	pte_t entry;
2824 	int page_copied = 0;
2825 	struct mmu_notifier_range range;
2826 
2827 	if (unlikely(anon_vma_prepare(vma)))
2828 		goto oom;
2829 
2830 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2831 		new_page = alloc_zeroed_user_highpage_movable(vma,
2832 							      vmf->address);
2833 		if (!new_page)
2834 			goto oom;
2835 	} else {
2836 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2837 				vmf->address);
2838 		if (!new_page)
2839 			goto oom;
2840 
2841 		if (!cow_user_page(new_page, old_page, vmf)) {
2842 			/*
2843 			 * COW failed, if the fault was solved by other,
2844 			 * it's fine. If not, userspace would re-fault on
2845 			 * the same address and we will handle the fault
2846 			 * from the second attempt.
2847 			 */
2848 			put_page(new_page);
2849 			if (old_page)
2850 				put_page(old_page);
2851 			return 0;
2852 		}
2853 	}
2854 
2855 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2856 		goto oom_free_new;
2857 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2858 
2859 	__SetPageUptodate(new_page);
2860 
2861 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2862 				vmf->address & PAGE_MASK,
2863 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2864 	mmu_notifier_invalidate_range_start(&range);
2865 
2866 	/*
2867 	 * Re-check the pte - we dropped the lock
2868 	 */
2869 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2870 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2871 		if (old_page) {
2872 			if (!PageAnon(old_page)) {
2873 				dec_mm_counter_fast(mm,
2874 						mm_counter_file(old_page));
2875 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2876 			}
2877 		} else {
2878 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2879 		}
2880 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2881 		entry = mk_pte(new_page, vma->vm_page_prot);
2882 		entry = pte_sw_mkyoung(entry);
2883 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2884 		/*
2885 		 * Clear the pte entry and flush it first, before updating the
2886 		 * pte with the new entry. This will avoid a race condition
2887 		 * seen in the presence of one thread doing SMC and another
2888 		 * thread doing COW.
2889 		 */
2890 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2891 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2892 		lru_cache_add_inactive_or_unevictable(new_page, vma);
2893 		/*
2894 		 * We call the notify macro here because, when using secondary
2895 		 * mmu page tables (such as kvm shadow page tables), we want the
2896 		 * new page to be mapped directly into the secondary page table.
2897 		 */
2898 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2899 		update_mmu_cache(vma, vmf->address, vmf->pte);
2900 		if (old_page) {
2901 			/*
2902 			 * Only after switching the pte to the new page may
2903 			 * we remove the mapcount here. Otherwise another
2904 			 * process may come and find the rmap count decremented
2905 			 * before the pte is switched to the new page, and
2906 			 * "reuse" the old page writing into it while our pte
2907 			 * here still points into it and can be read by other
2908 			 * threads.
2909 			 *
2910 			 * The critical issue is to order this
2911 			 * page_remove_rmap with the ptp_clear_flush above.
2912 			 * Those stores are ordered by (if nothing else,)
2913 			 * the barrier present in the atomic_add_negative
2914 			 * in page_remove_rmap.
2915 			 *
2916 			 * Then the TLB flush in ptep_clear_flush ensures that
2917 			 * no process can access the old page before the
2918 			 * decremented mapcount is visible. And the old page
2919 			 * cannot be reused until after the decremented
2920 			 * mapcount is visible. So transitively, TLBs to
2921 			 * old page will be flushed before it can be reused.
2922 			 */
2923 			page_remove_rmap(old_page, false);
2924 		}
2925 
2926 		/* Free the old page.. */
2927 		new_page = old_page;
2928 		page_copied = 1;
2929 	} else {
2930 		update_mmu_tlb(vma, vmf->address, vmf->pte);
2931 	}
2932 
2933 	if (new_page)
2934 		put_page(new_page);
2935 
2936 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2937 	/*
2938 	 * No need to double call mmu_notifier->invalidate_range() callback as
2939 	 * the above ptep_clear_flush_notify() did already call it.
2940 	 */
2941 	mmu_notifier_invalidate_range_only_end(&range);
2942 	if (old_page) {
2943 		/*
2944 		 * Don't let another task, with possibly unlocked vma,
2945 		 * keep the mlocked page.
2946 		 */
2947 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2948 			lock_page(old_page);	/* LRU manipulation */
2949 			if (PageMlocked(old_page))
2950 				munlock_vma_page(old_page);
2951 			unlock_page(old_page);
2952 		}
2953 		put_page(old_page);
2954 	}
2955 	return page_copied ? VM_FAULT_WRITE : 0;
2956 oom_free_new:
2957 	put_page(new_page);
2958 oom:
2959 	if (old_page)
2960 		put_page(old_page);
2961 	return VM_FAULT_OOM;
2962 }
2963 
2964 /**
2965  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2966  *			  writeable once the page is prepared
2967  *
2968  * @vmf: structure describing the fault
2969  *
2970  * This function handles all that is needed to finish a write page fault in a
2971  * shared mapping due to PTE being read-only once the mapped page is prepared.
2972  * It handles locking of PTE and modifying it.
2973  *
2974  * The function expects the page to be locked or other protection against
2975  * concurrent faults / writeback (such as DAX radix tree locks).
2976  *
2977  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2978  * we acquired PTE lock.
2979  */
2980 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2981 {
2982 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2983 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2984 				       &vmf->ptl);
2985 	/*
2986 	 * We might have raced with another page fault while we released the
2987 	 * pte_offset_map_lock.
2988 	 */
2989 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2990 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2991 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2992 		return VM_FAULT_NOPAGE;
2993 	}
2994 	wp_page_reuse(vmf);
2995 	return 0;
2996 }
2997 
2998 /*
2999  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3000  * mapping
3001  */
3002 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3003 {
3004 	struct vm_area_struct *vma = vmf->vma;
3005 
3006 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3007 		vm_fault_t ret;
3008 
3009 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3010 		vmf->flags |= FAULT_FLAG_MKWRITE;
3011 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3012 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3013 			return ret;
3014 		return finish_mkwrite_fault(vmf);
3015 	}
3016 	wp_page_reuse(vmf);
3017 	return VM_FAULT_WRITE;
3018 }
3019 
3020 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3021 	__releases(vmf->ptl)
3022 {
3023 	struct vm_area_struct *vma = vmf->vma;
3024 	vm_fault_t ret = VM_FAULT_WRITE;
3025 
3026 	get_page(vmf->page);
3027 
3028 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3029 		vm_fault_t tmp;
3030 
3031 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3032 		tmp = do_page_mkwrite(vmf);
3033 		if (unlikely(!tmp || (tmp &
3034 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3035 			put_page(vmf->page);
3036 			return tmp;
3037 		}
3038 		tmp = finish_mkwrite_fault(vmf);
3039 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3040 			unlock_page(vmf->page);
3041 			put_page(vmf->page);
3042 			return tmp;
3043 		}
3044 	} else {
3045 		wp_page_reuse(vmf);
3046 		lock_page(vmf->page);
3047 	}
3048 	ret |= fault_dirty_shared_page(vmf);
3049 	put_page(vmf->page);
3050 
3051 	return ret;
3052 }
3053 
3054 /*
3055  * This routine handles present pages, when users try to write
3056  * to a shared page. It is done by copying the page to a new address
3057  * and decrementing the shared-page counter for the old page.
3058  *
3059  * Note that this routine assumes that the protection checks have been
3060  * done by the caller (the low-level page fault routine in most cases).
3061  * Thus we can safely just mark it writable once we've done any necessary
3062  * COW.
3063  *
3064  * We also mark the page dirty at this point even though the page will
3065  * change only once the write actually happens. This avoids a few races,
3066  * and potentially makes it more efficient.
3067  *
3068  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3069  * but allow concurrent faults), with pte both mapped and locked.
3070  * We return with mmap_lock still held, but pte unmapped and unlocked.
3071  */
3072 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3073 	__releases(vmf->ptl)
3074 {
3075 	struct vm_area_struct *vma = vmf->vma;
3076 
3077 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3078 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3079 		return handle_userfault(vmf, VM_UFFD_WP);
3080 	}
3081 
3082 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3083 	if (!vmf->page) {
3084 		/*
3085 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3086 		 * VM_PFNMAP VMA.
3087 		 *
3088 		 * We should not cow pages in a shared writeable mapping.
3089 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3090 		 */
3091 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3092 				     (VM_WRITE|VM_SHARED))
3093 			return wp_pfn_shared(vmf);
3094 
3095 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3096 		return wp_page_copy(vmf);
3097 	}
3098 
3099 	/*
3100 	 * Take out anonymous pages first, anonymous shared vmas are
3101 	 * not dirty accountable.
3102 	 */
3103 	if (PageAnon(vmf->page)) {
3104 		struct page *page = vmf->page;
3105 
3106 		/* PageKsm() doesn't necessarily raise the page refcount */
3107 		if (PageKsm(page) || page_count(page) != 1)
3108 			goto copy;
3109 		if (!trylock_page(page))
3110 			goto copy;
3111 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3112 			unlock_page(page);
3113 			goto copy;
3114 		}
3115 		/*
3116 		 * Ok, we've got the only map reference, and the only
3117 		 * page count reference, and the page is locked,
3118 		 * it's dark out, and we're wearing sunglasses. Hit it.
3119 		 */
3120 		unlock_page(page);
3121 		wp_page_reuse(vmf);
3122 		return VM_FAULT_WRITE;
3123 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3124 					(VM_WRITE|VM_SHARED))) {
3125 		return wp_page_shared(vmf);
3126 	}
3127 copy:
3128 	/*
3129 	 * Ok, we need to copy. Oh, well..
3130 	 */
3131 	get_page(vmf->page);
3132 
3133 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3134 	return wp_page_copy(vmf);
3135 }
3136 
3137 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3138 		unsigned long start_addr, unsigned long end_addr,
3139 		struct zap_details *details)
3140 {
3141 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3142 }
3143 
3144 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3145 					    struct zap_details *details)
3146 {
3147 	struct vm_area_struct *vma;
3148 	pgoff_t vba, vea, zba, zea;
3149 
3150 	vma_interval_tree_foreach(vma, root,
3151 			details->first_index, details->last_index) {
3152 
3153 		vba = vma->vm_pgoff;
3154 		vea = vba + vma_pages(vma) - 1;
3155 		zba = details->first_index;
3156 		if (zba < vba)
3157 			zba = vba;
3158 		zea = details->last_index;
3159 		if (zea > vea)
3160 			zea = vea;
3161 
3162 		unmap_mapping_range_vma(vma,
3163 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3164 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3165 				details);
3166 	}
3167 }
3168 
3169 /**
3170  * unmap_mapping_pages() - Unmap pages from processes.
3171  * @mapping: The address space containing pages to be unmapped.
3172  * @start: Index of first page to be unmapped.
3173  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3174  * @even_cows: Whether to unmap even private COWed pages.
3175  *
3176  * Unmap the pages in this address space from any userspace process which
3177  * has them mmaped.  Generally, you want to remove COWed pages as well when
3178  * a file is being truncated, but not when invalidating pages from the page
3179  * cache.
3180  */
3181 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3182 		pgoff_t nr, bool even_cows)
3183 {
3184 	struct zap_details details = { };
3185 
3186 	details.check_mapping = even_cows ? NULL : mapping;
3187 	details.first_index = start;
3188 	details.last_index = start + nr - 1;
3189 	if (details.last_index < details.first_index)
3190 		details.last_index = ULONG_MAX;
3191 
3192 	i_mmap_lock_write(mapping);
3193 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3194 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3195 	i_mmap_unlock_write(mapping);
3196 }
3197 
3198 /**
3199  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3200  * address_space corresponding to the specified byte range in the underlying
3201  * file.
3202  *
3203  * @mapping: the address space containing mmaps to be unmapped.
3204  * @holebegin: byte in first page to unmap, relative to the start of
3205  * the underlying file.  This will be rounded down to a PAGE_SIZE
3206  * boundary.  Note that this is different from truncate_pagecache(), which
3207  * must keep the partial page.  In contrast, we must get rid of
3208  * partial pages.
3209  * @holelen: size of prospective hole in bytes.  This will be rounded
3210  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3211  * end of the file.
3212  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3213  * but 0 when invalidating pagecache, don't throw away private data.
3214  */
3215 void unmap_mapping_range(struct address_space *mapping,
3216 		loff_t const holebegin, loff_t const holelen, int even_cows)
3217 {
3218 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3219 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3220 
3221 	/* Check for overflow. */
3222 	if (sizeof(holelen) > sizeof(hlen)) {
3223 		long long holeend =
3224 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3225 		if (holeend & ~(long long)ULONG_MAX)
3226 			hlen = ULONG_MAX - hba + 1;
3227 	}
3228 
3229 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3230 }
3231 EXPORT_SYMBOL(unmap_mapping_range);
3232 
3233 /*
3234  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3235  * but allow concurrent faults), and pte mapped but not yet locked.
3236  * We return with pte unmapped and unlocked.
3237  *
3238  * We return with the mmap_lock locked or unlocked in the same cases
3239  * as does filemap_fault().
3240  */
3241 vm_fault_t do_swap_page(struct vm_fault *vmf)
3242 {
3243 	struct vm_area_struct *vma = vmf->vma;
3244 	struct page *page = NULL, *swapcache;
3245 	swp_entry_t entry;
3246 	pte_t pte;
3247 	int locked;
3248 	int exclusive = 0;
3249 	vm_fault_t ret = 0;
3250 	void *shadow = NULL;
3251 
3252 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3253 		goto out;
3254 
3255 	entry = pte_to_swp_entry(vmf->orig_pte);
3256 	if (unlikely(non_swap_entry(entry))) {
3257 		if (is_migration_entry(entry)) {
3258 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3259 					     vmf->address);
3260 		} else if (is_device_private_entry(entry)) {
3261 			vmf->page = device_private_entry_to_page(entry);
3262 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3263 		} else if (is_hwpoison_entry(entry)) {
3264 			ret = VM_FAULT_HWPOISON;
3265 		} else {
3266 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3267 			ret = VM_FAULT_SIGBUS;
3268 		}
3269 		goto out;
3270 	}
3271 
3272 
3273 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3274 	page = lookup_swap_cache(entry, vma, vmf->address);
3275 	swapcache = page;
3276 
3277 	if (!page) {
3278 		struct swap_info_struct *si = swp_swap_info(entry);
3279 
3280 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3281 		    __swap_count(entry) == 1) {
3282 			/* skip swapcache */
3283 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3284 							vmf->address);
3285 			if (page) {
3286 				int err;
3287 
3288 				__SetPageLocked(page);
3289 				__SetPageSwapBacked(page);
3290 				set_page_private(page, entry.val);
3291 
3292 				/* Tell memcg to use swap ownership records */
3293 				SetPageSwapCache(page);
3294 				err = mem_cgroup_charge(page, vma->vm_mm,
3295 							GFP_KERNEL);
3296 				ClearPageSwapCache(page);
3297 				if (err) {
3298 					ret = VM_FAULT_OOM;
3299 					goto out_page;
3300 				}
3301 
3302 				shadow = get_shadow_from_swap_cache(entry);
3303 				if (shadow)
3304 					workingset_refault(page, shadow);
3305 
3306 				lru_cache_add(page);
3307 				swap_readpage(page, true);
3308 			}
3309 		} else {
3310 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3311 						vmf);
3312 			swapcache = page;
3313 		}
3314 
3315 		if (!page) {
3316 			/*
3317 			 * Back out if somebody else faulted in this pte
3318 			 * while we released the pte lock.
3319 			 */
3320 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3321 					vmf->address, &vmf->ptl);
3322 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3323 				ret = VM_FAULT_OOM;
3324 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3325 			goto unlock;
3326 		}
3327 
3328 		/* Had to read the page from swap area: Major fault */
3329 		ret = VM_FAULT_MAJOR;
3330 		count_vm_event(PGMAJFAULT);
3331 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3332 	} else if (PageHWPoison(page)) {
3333 		/*
3334 		 * hwpoisoned dirty swapcache pages are kept for killing
3335 		 * owner processes (which may be unknown at hwpoison time)
3336 		 */
3337 		ret = VM_FAULT_HWPOISON;
3338 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3339 		goto out_release;
3340 	}
3341 
3342 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3343 
3344 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3345 	if (!locked) {
3346 		ret |= VM_FAULT_RETRY;
3347 		goto out_release;
3348 	}
3349 
3350 	/*
3351 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3352 	 * release the swapcache from under us.  The page pin, and pte_same
3353 	 * test below, are not enough to exclude that.  Even if it is still
3354 	 * swapcache, we need to check that the page's swap has not changed.
3355 	 */
3356 	if (unlikely((!PageSwapCache(page) ||
3357 			page_private(page) != entry.val)) && swapcache)
3358 		goto out_page;
3359 
3360 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3361 	if (unlikely(!page)) {
3362 		ret = VM_FAULT_OOM;
3363 		page = swapcache;
3364 		goto out_page;
3365 	}
3366 
3367 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3368 
3369 	/*
3370 	 * Back out if somebody else already faulted in this pte.
3371 	 */
3372 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3373 			&vmf->ptl);
3374 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3375 		goto out_nomap;
3376 
3377 	if (unlikely(!PageUptodate(page))) {
3378 		ret = VM_FAULT_SIGBUS;
3379 		goto out_nomap;
3380 	}
3381 
3382 	/*
3383 	 * The page isn't present yet, go ahead with the fault.
3384 	 *
3385 	 * Be careful about the sequence of operations here.
3386 	 * To get its accounting right, reuse_swap_page() must be called
3387 	 * while the page is counted on swap but not yet in mapcount i.e.
3388 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3389 	 * must be called after the swap_free(), or it will never succeed.
3390 	 */
3391 
3392 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3393 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3394 	pte = mk_pte(page, vma->vm_page_prot);
3395 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3396 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3397 		vmf->flags &= ~FAULT_FLAG_WRITE;
3398 		ret |= VM_FAULT_WRITE;
3399 		exclusive = RMAP_EXCLUSIVE;
3400 	}
3401 	flush_icache_page(vma, page);
3402 	if (pte_swp_soft_dirty(vmf->orig_pte))
3403 		pte = pte_mksoft_dirty(pte);
3404 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3405 		pte = pte_mkuffd_wp(pte);
3406 		pte = pte_wrprotect(pte);
3407 	}
3408 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3409 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3410 	vmf->orig_pte = pte;
3411 
3412 	/* ksm created a completely new copy */
3413 	if (unlikely(page != swapcache && swapcache)) {
3414 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3415 		lru_cache_add_inactive_or_unevictable(page, vma);
3416 	} else {
3417 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3418 	}
3419 
3420 	swap_free(entry);
3421 	if (mem_cgroup_swap_full(page) ||
3422 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3423 		try_to_free_swap(page);
3424 	unlock_page(page);
3425 	if (page != swapcache && swapcache) {
3426 		/*
3427 		 * Hold the lock to avoid the swap entry to be reused
3428 		 * until we take the PT lock for the pte_same() check
3429 		 * (to avoid false positives from pte_same). For
3430 		 * further safety release the lock after the swap_free
3431 		 * so that the swap count won't change under a
3432 		 * parallel locked swapcache.
3433 		 */
3434 		unlock_page(swapcache);
3435 		put_page(swapcache);
3436 	}
3437 
3438 	if (vmf->flags & FAULT_FLAG_WRITE) {
3439 		ret |= do_wp_page(vmf);
3440 		if (ret & VM_FAULT_ERROR)
3441 			ret &= VM_FAULT_ERROR;
3442 		goto out;
3443 	}
3444 
3445 	/* No need to invalidate - it was non-present before */
3446 	update_mmu_cache(vma, vmf->address, vmf->pte);
3447 unlock:
3448 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3449 out:
3450 	return ret;
3451 out_nomap:
3452 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3453 out_page:
3454 	unlock_page(page);
3455 out_release:
3456 	put_page(page);
3457 	if (page != swapcache && swapcache) {
3458 		unlock_page(swapcache);
3459 		put_page(swapcache);
3460 	}
3461 	return ret;
3462 }
3463 
3464 /*
3465  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3466  * but allow concurrent faults), and pte mapped but not yet locked.
3467  * We return with mmap_lock still held, but pte unmapped and unlocked.
3468  */
3469 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3470 {
3471 	struct vm_area_struct *vma = vmf->vma;
3472 	struct page *page;
3473 	vm_fault_t ret = 0;
3474 	pte_t entry;
3475 
3476 	/* File mapping without ->vm_ops ? */
3477 	if (vma->vm_flags & VM_SHARED)
3478 		return VM_FAULT_SIGBUS;
3479 
3480 	/*
3481 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3482 	 * pte_offset_map() on pmds where a huge pmd might be created
3483 	 * from a different thread.
3484 	 *
3485 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3486 	 * parallel threads are excluded by other means.
3487 	 *
3488 	 * Here we only have mmap_read_lock(mm).
3489 	 */
3490 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3491 		return VM_FAULT_OOM;
3492 
3493 	/* See the comment in pte_alloc_one_map() */
3494 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3495 		return 0;
3496 
3497 	/* Use the zero-page for reads */
3498 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3499 			!mm_forbids_zeropage(vma->vm_mm)) {
3500 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3501 						vma->vm_page_prot));
3502 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3503 				vmf->address, &vmf->ptl);
3504 		if (!pte_none(*vmf->pte)) {
3505 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3506 			goto unlock;
3507 		}
3508 		ret = check_stable_address_space(vma->vm_mm);
3509 		if (ret)
3510 			goto unlock;
3511 		/* Deliver the page fault to userland, check inside PT lock */
3512 		if (userfaultfd_missing(vma)) {
3513 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3514 			return handle_userfault(vmf, VM_UFFD_MISSING);
3515 		}
3516 		goto setpte;
3517 	}
3518 
3519 	/* Allocate our own private page. */
3520 	if (unlikely(anon_vma_prepare(vma)))
3521 		goto oom;
3522 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3523 	if (!page)
3524 		goto oom;
3525 
3526 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3527 		goto oom_free_page;
3528 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3529 
3530 	/*
3531 	 * The memory barrier inside __SetPageUptodate makes sure that
3532 	 * preceding stores to the page contents become visible before
3533 	 * the set_pte_at() write.
3534 	 */
3535 	__SetPageUptodate(page);
3536 
3537 	entry = mk_pte(page, vma->vm_page_prot);
3538 	entry = pte_sw_mkyoung(entry);
3539 	if (vma->vm_flags & VM_WRITE)
3540 		entry = pte_mkwrite(pte_mkdirty(entry));
3541 
3542 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3543 			&vmf->ptl);
3544 	if (!pte_none(*vmf->pte)) {
3545 		update_mmu_cache(vma, vmf->address, vmf->pte);
3546 		goto release;
3547 	}
3548 
3549 	ret = check_stable_address_space(vma->vm_mm);
3550 	if (ret)
3551 		goto release;
3552 
3553 	/* Deliver the page fault to userland, check inside PT lock */
3554 	if (userfaultfd_missing(vma)) {
3555 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3556 		put_page(page);
3557 		return handle_userfault(vmf, VM_UFFD_MISSING);
3558 	}
3559 
3560 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3561 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3562 	lru_cache_add_inactive_or_unevictable(page, vma);
3563 setpte:
3564 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3565 
3566 	/* No need to invalidate - it was non-present before */
3567 	update_mmu_cache(vma, vmf->address, vmf->pte);
3568 unlock:
3569 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3570 	return ret;
3571 release:
3572 	put_page(page);
3573 	goto unlock;
3574 oom_free_page:
3575 	put_page(page);
3576 oom:
3577 	return VM_FAULT_OOM;
3578 }
3579 
3580 /*
3581  * The mmap_lock must have been held on entry, and may have been
3582  * released depending on flags and vma->vm_ops->fault() return value.
3583  * See filemap_fault() and __lock_page_retry().
3584  */
3585 static vm_fault_t __do_fault(struct vm_fault *vmf)
3586 {
3587 	struct vm_area_struct *vma = vmf->vma;
3588 	vm_fault_t ret;
3589 
3590 	/*
3591 	 * Preallocate pte before we take page_lock because this might lead to
3592 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3593 	 *				lock_page(A)
3594 	 *				SetPageWriteback(A)
3595 	 *				unlock_page(A)
3596 	 * lock_page(B)
3597 	 *				lock_page(B)
3598 	 * pte_alloc_one
3599 	 *   shrink_page_list
3600 	 *     wait_on_page_writeback(A)
3601 	 *				SetPageWriteback(B)
3602 	 *				unlock_page(B)
3603 	 *				# flush A, B to clear the writeback
3604 	 */
3605 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3606 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3607 		if (!vmf->prealloc_pte)
3608 			return VM_FAULT_OOM;
3609 		smp_wmb(); /* See comment in __pte_alloc() */
3610 	}
3611 
3612 	ret = vma->vm_ops->fault(vmf);
3613 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3614 			    VM_FAULT_DONE_COW)))
3615 		return ret;
3616 
3617 	if (unlikely(PageHWPoison(vmf->page))) {
3618 		if (ret & VM_FAULT_LOCKED)
3619 			unlock_page(vmf->page);
3620 		put_page(vmf->page);
3621 		vmf->page = NULL;
3622 		return VM_FAULT_HWPOISON;
3623 	}
3624 
3625 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3626 		lock_page(vmf->page);
3627 	else
3628 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3629 
3630 	return ret;
3631 }
3632 
3633 /*
3634  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3635  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3636  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3637  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3638  */
3639 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3640 {
3641 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3642 }
3643 
3644 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3645 {
3646 	struct vm_area_struct *vma = vmf->vma;
3647 
3648 	if (!pmd_none(*vmf->pmd))
3649 		goto map_pte;
3650 	if (vmf->prealloc_pte) {
3651 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3652 		if (unlikely(!pmd_none(*vmf->pmd))) {
3653 			spin_unlock(vmf->ptl);
3654 			goto map_pte;
3655 		}
3656 
3657 		mm_inc_nr_ptes(vma->vm_mm);
3658 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3659 		spin_unlock(vmf->ptl);
3660 		vmf->prealloc_pte = NULL;
3661 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3662 		return VM_FAULT_OOM;
3663 	}
3664 map_pte:
3665 	/*
3666 	 * If a huge pmd materialized under us just retry later.  Use
3667 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3668 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3669 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3670 	 * running immediately after a huge pmd fault in a different thread of
3671 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3672 	 * All we have to ensure is that it is a regular pmd that we can walk
3673 	 * with pte_offset_map() and we can do that through an atomic read in
3674 	 * C, which is what pmd_trans_unstable() provides.
3675 	 */
3676 	if (pmd_devmap_trans_unstable(vmf->pmd))
3677 		return VM_FAULT_NOPAGE;
3678 
3679 	/*
3680 	 * At this point we know that our vmf->pmd points to a page of ptes
3681 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3682 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3683 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3684 	 * be valid and we will re-check to make sure the vmf->pte isn't
3685 	 * pte_none() under vmf->ptl protection when we return to
3686 	 * alloc_set_pte().
3687 	 */
3688 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3689 			&vmf->ptl);
3690 	return 0;
3691 }
3692 
3693 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3694 static void deposit_prealloc_pte(struct vm_fault *vmf)
3695 {
3696 	struct vm_area_struct *vma = vmf->vma;
3697 
3698 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3699 	/*
3700 	 * We are going to consume the prealloc table,
3701 	 * count that as nr_ptes.
3702 	 */
3703 	mm_inc_nr_ptes(vma->vm_mm);
3704 	vmf->prealloc_pte = NULL;
3705 }
3706 
3707 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3708 {
3709 	struct vm_area_struct *vma = vmf->vma;
3710 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3711 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3712 	pmd_t entry;
3713 	int i;
3714 	vm_fault_t ret = VM_FAULT_FALLBACK;
3715 
3716 	if (!transhuge_vma_suitable(vma, haddr))
3717 		return ret;
3718 
3719 	page = compound_head(page);
3720 	if (compound_order(page) != HPAGE_PMD_ORDER)
3721 		return ret;
3722 
3723 	/*
3724 	 * Archs like ppc64 need additonal space to store information
3725 	 * related to pte entry. Use the preallocated table for that.
3726 	 */
3727 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3728 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3729 		if (!vmf->prealloc_pte)
3730 			return VM_FAULT_OOM;
3731 		smp_wmb(); /* See comment in __pte_alloc() */
3732 	}
3733 
3734 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3735 	if (unlikely(!pmd_none(*vmf->pmd)))
3736 		goto out;
3737 
3738 	for (i = 0; i < HPAGE_PMD_NR; i++)
3739 		flush_icache_page(vma, page + i);
3740 
3741 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3742 	if (write)
3743 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3744 
3745 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3746 	page_add_file_rmap(page, true);
3747 	/*
3748 	 * deposit and withdraw with pmd lock held
3749 	 */
3750 	if (arch_needs_pgtable_deposit())
3751 		deposit_prealloc_pte(vmf);
3752 
3753 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3754 
3755 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3756 
3757 	/* fault is handled */
3758 	ret = 0;
3759 	count_vm_event(THP_FILE_MAPPED);
3760 out:
3761 	spin_unlock(vmf->ptl);
3762 	return ret;
3763 }
3764 #else
3765 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3766 {
3767 	BUILD_BUG();
3768 	return 0;
3769 }
3770 #endif
3771 
3772 /**
3773  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3774  * mapping. If needed, the function allocates page table or use pre-allocated.
3775  *
3776  * @vmf: fault environment
3777  * @page: page to map
3778  *
3779  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3780  * return.
3781  *
3782  * Target users are page handler itself and implementations of
3783  * vm_ops->map_pages.
3784  *
3785  * Return: %0 on success, %VM_FAULT_ code in case of error.
3786  */
3787 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3788 {
3789 	struct vm_area_struct *vma = vmf->vma;
3790 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3791 	pte_t entry;
3792 	vm_fault_t ret;
3793 
3794 	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3795 		ret = do_set_pmd(vmf, page);
3796 		if (ret != VM_FAULT_FALLBACK)
3797 			return ret;
3798 	}
3799 
3800 	if (!vmf->pte) {
3801 		ret = pte_alloc_one_map(vmf);
3802 		if (ret)
3803 			return ret;
3804 	}
3805 
3806 	/* Re-check under ptl */
3807 	if (unlikely(!pte_none(*vmf->pte))) {
3808 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3809 		return VM_FAULT_NOPAGE;
3810 	}
3811 
3812 	flush_icache_page(vma, page);
3813 	entry = mk_pte(page, vma->vm_page_prot);
3814 	entry = pte_sw_mkyoung(entry);
3815 	if (write)
3816 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3817 	/* copy-on-write page */
3818 	if (write && !(vma->vm_flags & VM_SHARED)) {
3819 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3820 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3821 		lru_cache_add_inactive_or_unevictable(page, vma);
3822 	} else {
3823 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3824 		page_add_file_rmap(page, false);
3825 	}
3826 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3827 
3828 	/* no need to invalidate: a not-present page won't be cached */
3829 	update_mmu_cache(vma, vmf->address, vmf->pte);
3830 
3831 	return 0;
3832 }
3833 
3834 
3835 /**
3836  * finish_fault - finish page fault once we have prepared the page to fault
3837  *
3838  * @vmf: structure describing the fault
3839  *
3840  * This function handles all that is needed to finish a page fault once the
3841  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3842  * given page, adds reverse page mapping, handles memcg charges and LRU
3843  * addition.
3844  *
3845  * The function expects the page to be locked and on success it consumes a
3846  * reference of a page being mapped (for the PTE which maps it).
3847  *
3848  * Return: %0 on success, %VM_FAULT_ code in case of error.
3849  */
3850 vm_fault_t finish_fault(struct vm_fault *vmf)
3851 {
3852 	struct page *page;
3853 	vm_fault_t ret = 0;
3854 
3855 	/* Did we COW the page? */
3856 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3857 	    !(vmf->vma->vm_flags & VM_SHARED))
3858 		page = vmf->cow_page;
3859 	else
3860 		page = vmf->page;
3861 
3862 	/*
3863 	 * check even for read faults because we might have lost our CoWed
3864 	 * page
3865 	 */
3866 	if (!(vmf->vma->vm_flags & VM_SHARED))
3867 		ret = check_stable_address_space(vmf->vma->vm_mm);
3868 	if (!ret)
3869 		ret = alloc_set_pte(vmf, page);
3870 	if (vmf->pte)
3871 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3872 	return ret;
3873 }
3874 
3875 static unsigned long fault_around_bytes __read_mostly =
3876 	rounddown_pow_of_two(65536);
3877 
3878 #ifdef CONFIG_DEBUG_FS
3879 static int fault_around_bytes_get(void *data, u64 *val)
3880 {
3881 	*val = fault_around_bytes;
3882 	return 0;
3883 }
3884 
3885 /*
3886  * fault_around_bytes must be rounded down to the nearest page order as it's
3887  * what do_fault_around() expects to see.
3888  */
3889 static int fault_around_bytes_set(void *data, u64 val)
3890 {
3891 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3892 		return -EINVAL;
3893 	if (val > PAGE_SIZE)
3894 		fault_around_bytes = rounddown_pow_of_two(val);
3895 	else
3896 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3897 	return 0;
3898 }
3899 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3900 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3901 
3902 static int __init fault_around_debugfs(void)
3903 {
3904 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3905 				   &fault_around_bytes_fops);
3906 	return 0;
3907 }
3908 late_initcall(fault_around_debugfs);
3909 #endif
3910 
3911 /*
3912  * do_fault_around() tries to map few pages around the fault address. The hope
3913  * is that the pages will be needed soon and this will lower the number of
3914  * faults to handle.
3915  *
3916  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3917  * not ready to be mapped: not up-to-date, locked, etc.
3918  *
3919  * This function is called with the page table lock taken. In the split ptlock
3920  * case the page table lock only protects only those entries which belong to
3921  * the page table corresponding to the fault address.
3922  *
3923  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3924  * only once.
3925  *
3926  * fault_around_bytes defines how many bytes we'll try to map.
3927  * do_fault_around() expects it to be set to a power of two less than or equal
3928  * to PTRS_PER_PTE.
3929  *
3930  * The virtual address of the area that we map is naturally aligned to
3931  * fault_around_bytes rounded down to the machine page size
3932  * (and therefore to page order).  This way it's easier to guarantee
3933  * that we don't cross page table boundaries.
3934  */
3935 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3936 {
3937 	unsigned long address = vmf->address, nr_pages, mask;
3938 	pgoff_t start_pgoff = vmf->pgoff;
3939 	pgoff_t end_pgoff;
3940 	int off;
3941 	vm_fault_t ret = 0;
3942 
3943 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3944 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3945 
3946 	vmf->address = max(address & mask, vmf->vma->vm_start);
3947 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3948 	start_pgoff -= off;
3949 
3950 	/*
3951 	 *  end_pgoff is either the end of the page table, the end of
3952 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3953 	 */
3954 	end_pgoff = start_pgoff -
3955 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3956 		PTRS_PER_PTE - 1;
3957 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3958 			start_pgoff + nr_pages - 1);
3959 
3960 	if (pmd_none(*vmf->pmd)) {
3961 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3962 		if (!vmf->prealloc_pte)
3963 			goto out;
3964 		smp_wmb(); /* See comment in __pte_alloc() */
3965 	}
3966 
3967 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3968 
3969 	/* Huge page is mapped? Page fault is solved */
3970 	if (pmd_trans_huge(*vmf->pmd)) {
3971 		ret = VM_FAULT_NOPAGE;
3972 		goto out;
3973 	}
3974 
3975 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3976 	if (!vmf->pte)
3977 		goto out;
3978 
3979 	/* check if the page fault is solved */
3980 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3981 	if (!pte_none(*vmf->pte))
3982 		ret = VM_FAULT_NOPAGE;
3983 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3984 out:
3985 	vmf->address = address;
3986 	vmf->pte = NULL;
3987 	return ret;
3988 }
3989 
3990 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3991 {
3992 	struct vm_area_struct *vma = vmf->vma;
3993 	vm_fault_t ret = 0;
3994 
3995 	/*
3996 	 * Let's call ->map_pages() first and use ->fault() as fallback
3997 	 * if page by the offset is not ready to be mapped (cold cache or
3998 	 * something).
3999 	 */
4000 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4001 		ret = do_fault_around(vmf);
4002 		if (ret)
4003 			return ret;
4004 	}
4005 
4006 	ret = __do_fault(vmf);
4007 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4008 		return ret;
4009 
4010 	ret |= finish_fault(vmf);
4011 	unlock_page(vmf->page);
4012 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4013 		put_page(vmf->page);
4014 	return ret;
4015 }
4016 
4017 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4018 {
4019 	struct vm_area_struct *vma = vmf->vma;
4020 	vm_fault_t ret;
4021 
4022 	if (unlikely(anon_vma_prepare(vma)))
4023 		return VM_FAULT_OOM;
4024 
4025 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4026 	if (!vmf->cow_page)
4027 		return VM_FAULT_OOM;
4028 
4029 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4030 		put_page(vmf->cow_page);
4031 		return VM_FAULT_OOM;
4032 	}
4033 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4034 
4035 	ret = __do_fault(vmf);
4036 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4037 		goto uncharge_out;
4038 	if (ret & VM_FAULT_DONE_COW)
4039 		return ret;
4040 
4041 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4042 	__SetPageUptodate(vmf->cow_page);
4043 
4044 	ret |= finish_fault(vmf);
4045 	unlock_page(vmf->page);
4046 	put_page(vmf->page);
4047 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4048 		goto uncharge_out;
4049 	return ret;
4050 uncharge_out:
4051 	put_page(vmf->cow_page);
4052 	return ret;
4053 }
4054 
4055 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4056 {
4057 	struct vm_area_struct *vma = vmf->vma;
4058 	vm_fault_t ret, tmp;
4059 
4060 	ret = __do_fault(vmf);
4061 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4062 		return ret;
4063 
4064 	/*
4065 	 * Check if the backing address space wants to know that the page is
4066 	 * about to become writable
4067 	 */
4068 	if (vma->vm_ops->page_mkwrite) {
4069 		unlock_page(vmf->page);
4070 		tmp = do_page_mkwrite(vmf);
4071 		if (unlikely(!tmp ||
4072 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4073 			put_page(vmf->page);
4074 			return tmp;
4075 		}
4076 	}
4077 
4078 	ret |= finish_fault(vmf);
4079 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4080 					VM_FAULT_RETRY))) {
4081 		unlock_page(vmf->page);
4082 		put_page(vmf->page);
4083 		return ret;
4084 	}
4085 
4086 	ret |= fault_dirty_shared_page(vmf);
4087 	return ret;
4088 }
4089 
4090 /*
4091  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4092  * but allow concurrent faults).
4093  * The mmap_lock may have been released depending on flags and our
4094  * return value.  See filemap_fault() and __lock_page_or_retry().
4095  * If mmap_lock is released, vma may become invalid (for example
4096  * by other thread calling munmap()).
4097  */
4098 static vm_fault_t do_fault(struct vm_fault *vmf)
4099 {
4100 	struct vm_area_struct *vma = vmf->vma;
4101 	struct mm_struct *vm_mm = vma->vm_mm;
4102 	vm_fault_t ret;
4103 
4104 	/*
4105 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4106 	 */
4107 	if (!vma->vm_ops->fault) {
4108 		/*
4109 		 * If we find a migration pmd entry or a none pmd entry, which
4110 		 * should never happen, return SIGBUS
4111 		 */
4112 		if (unlikely(!pmd_present(*vmf->pmd)))
4113 			ret = VM_FAULT_SIGBUS;
4114 		else {
4115 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4116 						       vmf->pmd,
4117 						       vmf->address,
4118 						       &vmf->ptl);
4119 			/*
4120 			 * Make sure this is not a temporary clearing of pte
4121 			 * by holding ptl and checking again. A R/M/W update
4122 			 * of pte involves: take ptl, clearing the pte so that
4123 			 * we don't have concurrent modification by hardware
4124 			 * followed by an update.
4125 			 */
4126 			if (unlikely(pte_none(*vmf->pte)))
4127 				ret = VM_FAULT_SIGBUS;
4128 			else
4129 				ret = VM_FAULT_NOPAGE;
4130 
4131 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4132 		}
4133 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4134 		ret = do_read_fault(vmf);
4135 	else if (!(vma->vm_flags & VM_SHARED))
4136 		ret = do_cow_fault(vmf);
4137 	else
4138 		ret = do_shared_fault(vmf);
4139 
4140 	/* preallocated pagetable is unused: free it */
4141 	if (vmf->prealloc_pte) {
4142 		pte_free(vm_mm, vmf->prealloc_pte);
4143 		vmf->prealloc_pte = NULL;
4144 	}
4145 	return ret;
4146 }
4147 
4148 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4149 				unsigned long addr, int page_nid,
4150 				int *flags)
4151 {
4152 	get_page(page);
4153 
4154 	count_vm_numa_event(NUMA_HINT_FAULTS);
4155 	if (page_nid == numa_node_id()) {
4156 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4157 		*flags |= TNF_FAULT_LOCAL;
4158 	}
4159 
4160 	return mpol_misplaced(page, vma, addr);
4161 }
4162 
4163 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4164 {
4165 	struct vm_area_struct *vma = vmf->vma;
4166 	struct page *page = NULL;
4167 	int page_nid = NUMA_NO_NODE;
4168 	int last_cpupid;
4169 	int target_nid;
4170 	bool migrated = false;
4171 	pte_t pte, old_pte;
4172 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4173 	int flags = 0;
4174 
4175 	/*
4176 	 * The "pte" at this point cannot be used safely without
4177 	 * validation through pte_unmap_same(). It's of NUMA type but
4178 	 * the pfn may be screwed if the read is non atomic.
4179 	 */
4180 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4181 	spin_lock(vmf->ptl);
4182 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4183 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4184 		goto out;
4185 	}
4186 
4187 	/*
4188 	 * Make it present again, Depending on how arch implementes non
4189 	 * accessible ptes, some can allow access by kernel mode.
4190 	 */
4191 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4192 	pte = pte_modify(old_pte, vma->vm_page_prot);
4193 	pte = pte_mkyoung(pte);
4194 	if (was_writable)
4195 		pte = pte_mkwrite(pte);
4196 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4197 	update_mmu_cache(vma, vmf->address, vmf->pte);
4198 
4199 	page = vm_normal_page(vma, vmf->address, pte);
4200 	if (!page) {
4201 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4202 		return 0;
4203 	}
4204 
4205 	/* TODO: handle PTE-mapped THP */
4206 	if (PageCompound(page)) {
4207 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4208 		return 0;
4209 	}
4210 
4211 	/*
4212 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4213 	 * much anyway since they can be in shared cache state. This misses
4214 	 * the case where a mapping is writable but the process never writes
4215 	 * to it but pte_write gets cleared during protection updates and
4216 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4217 	 * background writeback, dirty balancing and application behaviour.
4218 	 */
4219 	if (!pte_write(pte))
4220 		flags |= TNF_NO_GROUP;
4221 
4222 	/*
4223 	 * Flag if the page is shared between multiple address spaces. This
4224 	 * is later used when determining whether to group tasks together
4225 	 */
4226 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4227 		flags |= TNF_SHARED;
4228 
4229 	last_cpupid = page_cpupid_last(page);
4230 	page_nid = page_to_nid(page);
4231 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4232 			&flags);
4233 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4234 	if (target_nid == NUMA_NO_NODE) {
4235 		put_page(page);
4236 		goto out;
4237 	}
4238 
4239 	/* Migrate to the requested node */
4240 	migrated = migrate_misplaced_page(page, vma, target_nid);
4241 	if (migrated) {
4242 		page_nid = target_nid;
4243 		flags |= TNF_MIGRATED;
4244 	} else
4245 		flags |= TNF_MIGRATE_FAIL;
4246 
4247 out:
4248 	if (page_nid != NUMA_NO_NODE)
4249 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4250 	return 0;
4251 }
4252 
4253 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4254 {
4255 	if (vma_is_anonymous(vmf->vma))
4256 		return do_huge_pmd_anonymous_page(vmf);
4257 	if (vmf->vma->vm_ops->huge_fault)
4258 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4259 	return VM_FAULT_FALLBACK;
4260 }
4261 
4262 /* `inline' is required to avoid gcc 4.1.2 build error */
4263 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4264 {
4265 	if (vma_is_anonymous(vmf->vma)) {
4266 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4267 			return handle_userfault(vmf, VM_UFFD_WP);
4268 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4269 	}
4270 	if (vmf->vma->vm_ops->huge_fault) {
4271 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4272 
4273 		if (!(ret & VM_FAULT_FALLBACK))
4274 			return ret;
4275 	}
4276 
4277 	/* COW or write-notify handled on pte level: split pmd. */
4278 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4279 
4280 	return VM_FAULT_FALLBACK;
4281 }
4282 
4283 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4284 {
4285 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4286 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4287 	/* No support for anonymous transparent PUD pages yet */
4288 	if (vma_is_anonymous(vmf->vma))
4289 		goto split;
4290 	if (vmf->vma->vm_ops->huge_fault) {
4291 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4292 
4293 		if (!(ret & VM_FAULT_FALLBACK))
4294 			return ret;
4295 	}
4296 split:
4297 	/* COW or write-notify not handled on PUD level: split pud.*/
4298 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4299 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4300 	return VM_FAULT_FALLBACK;
4301 }
4302 
4303 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4304 {
4305 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4306 	/* No support for anonymous transparent PUD pages yet */
4307 	if (vma_is_anonymous(vmf->vma))
4308 		return VM_FAULT_FALLBACK;
4309 	if (vmf->vma->vm_ops->huge_fault)
4310 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4311 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4312 	return VM_FAULT_FALLBACK;
4313 }
4314 
4315 /*
4316  * These routines also need to handle stuff like marking pages dirty
4317  * and/or accessed for architectures that don't do it in hardware (most
4318  * RISC architectures).  The early dirtying is also good on the i386.
4319  *
4320  * There is also a hook called "update_mmu_cache()" that architectures
4321  * with external mmu caches can use to update those (ie the Sparc or
4322  * PowerPC hashed page tables that act as extended TLBs).
4323  *
4324  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4325  * concurrent faults).
4326  *
4327  * The mmap_lock may have been released depending on flags and our return value.
4328  * See filemap_fault() and __lock_page_or_retry().
4329  */
4330 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4331 {
4332 	pte_t entry;
4333 
4334 	if (unlikely(pmd_none(*vmf->pmd))) {
4335 		/*
4336 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4337 		 * want to allocate huge page, and if we expose page table
4338 		 * for an instant, it will be difficult to retract from
4339 		 * concurrent faults and from rmap lookups.
4340 		 */
4341 		vmf->pte = NULL;
4342 	} else {
4343 		/* See comment in pte_alloc_one_map() */
4344 		if (pmd_devmap_trans_unstable(vmf->pmd))
4345 			return 0;
4346 		/*
4347 		 * A regular pmd is established and it can't morph into a huge
4348 		 * pmd from under us anymore at this point because we hold the
4349 		 * mmap_lock read mode and khugepaged takes it in write mode.
4350 		 * So now it's safe to run pte_offset_map().
4351 		 */
4352 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4353 		vmf->orig_pte = *vmf->pte;
4354 
4355 		/*
4356 		 * some architectures can have larger ptes than wordsize,
4357 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4358 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4359 		 * accesses.  The code below just needs a consistent view
4360 		 * for the ifs and we later double check anyway with the
4361 		 * ptl lock held. So here a barrier will do.
4362 		 */
4363 		barrier();
4364 		if (pte_none(vmf->orig_pte)) {
4365 			pte_unmap(vmf->pte);
4366 			vmf->pte = NULL;
4367 		}
4368 	}
4369 
4370 	if (!vmf->pte) {
4371 		if (vma_is_anonymous(vmf->vma))
4372 			return do_anonymous_page(vmf);
4373 		else
4374 			return do_fault(vmf);
4375 	}
4376 
4377 	if (!pte_present(vmf->orig_pte))
4378 		return do_swap_page(vmf);
4379 
4380 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4381 		return do_numa_page(vmf);
4382 
4383 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4384 	spin_lock(vmf->ptl);
4385 	entry = vmf->orig_pte;
4386 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4387 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4388 		goto unlock;
4389 	}
4390 	if (vmf->flags & FAULT_FLAG_WRITE) {
4391 		if (!pte_write(entry))
4392 			return do_wp_page(vmf);
4393 		entry = pte_mkdirty(entry);
4394 	}
4395 	entry = pte_mkyoung(entry);
4396 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4397 				vmf->flags & FAULT_FLAG_WRITE)) {
4398 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4399 	} else {
4400 		/* Skip spurious TLB flush for retried page fault */
4401 		if (vmf->flags & FAULT_FLAG_TRIED)
4402 			goto unlock;
4403 		/*
4404 		 * This is needed only for protection faults but the arch code
4405 		 * is not yet telling us if this is a protection fault or not.
4406 		 * This still avoids useless tlb flushes for .text page faults
4407 		 * with threads.
4408 		 */
4409 		if (vmf->flags & FAULT_FLAG_WRITE)
4410 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4411 	}
4412 unlock:
4413 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4414 	return 0;
4415 }
4416 
4417 /*
4418  * By the time we get here, we already hold the mm semaphore
4419  *
4420  * The mmap_lock may have been released depending on flags and our
4421  * return value.  See filemap_fault() and __lock_page_or_retry().
4422  */
4423 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4424 		unsigned long address, unsigned int flags)
4425 {
4426 	struct vm_fault vmf = {
4427 		.vma = vma,
4428 		.address = address & PAGE_MASK,
4429 		.flags = flags,
4430 		.pgoff = linear_page_index(vma, address),
4431 		.gfp_mask = __get_fault_gfp_mask(vma),
4432 	};
4433 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4434 	struct mm_struct *mm = vma->vm_mm;
4435 	pgd_t *pgd;
4436 	p4d_t *p4d;
4437 	vm_fault_t ret;
4438 
4439 	pgd = pgd_offset(mm, address);
4440 	p4d = p4d_alloc(mm, pgd, address);
4441 	if (!p4d)
4442 		return VM_FAULT_OOM;
4443 
4444 	vmf.pud = pud_alloc(mm, p4d, address);
4445 	if (!vmf.pud)
4446 		return VM_FAULT_OOM;
4447 retry_pud:
4448 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4449 		ret = create_huge_pud(&vmf);
4450 		if (!(ret & VM_FAULT_FALLBACK))
4451 			return ret;
4452 	} else {
4453 		pud_t orig_pud = *vmf.pud;
4454 
4455 		barrier();
4456 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4457 
4458 			/* NUMA case for anonymous PUDs would go here */
4459 
4460 			if (dirty && !pud_write(orig_pud)) {
4461 				ret = wp_huge_pud(&vmf, orig_pud);
4462 				if (!(ret & VM_FAULT_FALLBACK))
4463 					return ret;
4464 			} else {
4465 				huge_pud_set_accessed(&vmf, orig_pud);
4466 				return 0;
4467 			}
4468 		}
4469 	}
4470 
4471 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4472 	if (!vmf.pmd)
4473 		return VM_FAULT_OOM;
4474 
4475 	/* Huge pud page fault raced with pmd_alloc? */
4476 	if (pud_trans_unstable(vmf.pud))
4477 		goto retry_pud;
4478 
4479 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4480 		ret = create_huge_pmd(&vmf);
4481 		if (!(ret & VM_FAULT_FALLBACK))
4482 			return ret;
4483 	} else {
4484 		pmd_t orig_pmd = *vmf.pmd;
4485 
4486 		barrier();
4487 		if (unlikely(is_swap_pmd(orig_pmd))) {
4488 			VM_BUG_ON(thp_migration_supported() &&
4489 					  !is_pmd_migration_entry(orig_pmd));
4490 			if (is_pmd_migration_entry(orig_pmd))
4491 				pmd_migration_entry_wait(mm, vmf.pmd);
4492 			return 0;
4493 		}
4494 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4495 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4496 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4497 
4498 			if (dirty && !pmd_write(orig_pmd)) {
4499 				ret = wp_huge_pmd(&vmf, orig_pmd);
4500 				if (!(ret & VM_FAULT_FALLBACK))
4501 					return ret;
4502 			} else {
4503 				huge_pmd_set_accessed(&vmf, orig_pmd);
4504 				return 0;
4505 			}
4506 		}
4507 	}
4508 
4509 	return handle_pte_fault(&vmf);
4510 }
4511 
4512 /**
4513  * mm_account_fault - Do page fault accountings
4514  *
4515  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4516  *        of perf event counters, but we'll still do the per-task accounting to
4517  *        the task who triggered this page fault.
4518  * @address: the faulted address.
4519  * @flags: the fault flags.
4520  * @ret: the fault retcode.
4521  *
4522  * This will take care of most of the page fault accountings.  Meanwhile, it
4523  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4524  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4525  * still be in per-arch page fault handlers at the entry of page fault.
4526  */
4527 static inline void mm_account_fault(struct pt_regs *regs,
4528 				    unsigned long address, unsigned int flags,
4529 				    vm_fault_t ret)
4530 {
4531 	bool major;
4532 
4533 	/*
4534 	 * We don't do accounting for some specific faults:
4535 	 *
4536 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4537 	 *   includes arch_vma_access_permitted() failing before reaching here.
4538 	 *   So this is not a "this many hardware page faults" counter.  We
4539 	 *   should use the hw profiling for that.
4540 	 *
4541 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4542 	 *   once they're completed.
4543 	 */
4544 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4545 		return;
4546 
4547 	/*
4548 	 * We define the fault as a major fault when the final successful fault
4549 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4550 	 * handle it immediately previously).
4551 	 */
4552 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4553 
4554 	if (major)
4555 		current->maj_flt++;
4556 	else
4557 		current->min_flt++;
4558 
4559 	/*
4560 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4561 	 * accounting for the per thread fault counters who triggered the
4562 	 * fault, and we skip the perf event updates.
4563 	 */
4564 	if (!regs)
4565 		return;
4566 
4567 	if (major)
4568 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4569 	else
4570 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4571 }
4572 
4573 /*
4574  * By the time we get here, we already hold the mm semaphore
4575  *
4576  * The mmap_lock may have been released depending on flags and our
4577  * return value.  See filemap_fault() and __lock_page_or_retry().
4578  */
4579 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4580 			   unsigned int flags, struct pt_regs *regs)
4581 {
4582 	vm_fault_t ret;
4583 
4584 	__set_current_state(TASK_RUNNING);
4585 
4586 	count_vm_event(PGFAULT);
4587 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4588 
4589 	/* do counter updates before entering really critical section. */
4590 	check_sync_rss_stat(current);
4591 
4592 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4593 					    flags & FAULT_FLAG_INSTRUCTION,
4594 					    flags & FAULT_FLAG_REMOTE))
4595 		return VM_FAULT_SIGSEGV;
4596 
4597 	/*
4598 	 * Enable the memcg OOM handling for faults triggered in user
4599 	 * space.  Kernel faults are handled more gracefully.
4600 	 */
4601 	if (flags & FAULT_FLAG_USER)
4602 		mem_cgroup_enter_user_fault();
4603 
4604 	if (unlikely(is_vm_hugetlb_page(vma)))
4605 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4606 	else
4607 		ret = __handle_mm_fault(vma, address, flags);
4608 
4609 	if (flags & FAULT_FLAG_USER) {
4610 		mem_cgroup_exit_user_fault();
4611 		/*
4612 		 * The task may have entered a memcg OOM situation but
4613 		 * if the allocation error was handled gracefully (no
4614 		 * VM_FAULT_OOM), there is no need to kill anything.
4615 		 * Just clean up the OOM state peacefully.
4616 		 */
4617 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4618 			mem_cgroup_oom_synchronize(false);
4619 	}
4620 
4621 	mm_account_fault(regs, address, flags, ret);
4622 
4623 	return ret;
4624 }
4625 EXPORT_SYMBOL_GPL(handle_mm_fault);
4626 
4627 #ifndef __PAGETABLE_P4D_FOLDED
4628 /*
4629  * Allocate p4d page table.
4630  * We've already handled the fast-path in-line.
4631  */
4632 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4633 {
4634 	p4d_t *new = p4d_alloc_one(mm, address);
4635 	if (!new)
4636 		return -ENOMEM;
4637 
4638 	smp_wmb(); /* See comment in __pte_alloc */
4639 
4640 	spin_lock(&mm->page_table_lock);
4641 	if (pgd_present(*pgd))		/* Another has populated it */
4642 		p4d_free(mm, new);
4643 	else
4644 		pgd_populate(mm, pgd, new);
4645 	spin_unlock(&mm->page_table_lock);
4646 	return 0;
4647 }
4648 #endif /* __PAGETABLE_P4D_FOLDED */
4649 
4650 #ifndef __PAGETABLE_PUD_FOLDED
4651 /*
4652  * Allocate page upper directory.
4653  * We've already handled the fast-path in-line.
4654  */
4655 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4656 {
4657 	pud_t *new = pud_alloc_one(mm, address);
4658 	if (!new)
4659 		return -ENOMEM;
4660 
4661 	smp_wmb(); /* See comment in __pte_alloc */
4662 
4663 	spin_lock(&mm->page_table_lock);
4664 	if (!p4d_present(*p4d)) {
4665 		mm_inc_nr_puds(mm);
4666 		p4d_populate(mm, p4d, new);
4667 	} else	/* Another has populated it */
4668 		pud_free(mm, new);
4669 	spin_unlock(&mm->page_table_lock);
4670 	return 0;
4671 }
4672 #endif /* __PAGETABLE_PUD_FOLDED */
4673 
4674 #ifndef __PAGETABLE_PMD_FOLDED
4675 /*
4676  * Allocate page middle directory.
4677  * We've already handled the fast-path in-line.
4678  */
4679 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4680 {
4681 	spinlock_t *ptl;
4682 	pmd_t *new = pmd_alloc_one(mm, address);
4683 	if (!new)
4684 		return -ENOMEM;
4685 
4686 	smp_wmb(); /* See comment in __pte_alloc */
4687 
4688 	ptl = pud_lock(mm, pud);
4689 	if (!pud_present(*pud)) {
4690 		mm_inc_nr_pmds(mm);
4691 		pud_populate(mm, pud, new);
4692 	} else	/* Another has populated it */
4693 		pmd_free(mm, new);
4694 	spin_unlock(ptl);
4695 	return 0;
4696 }
4697 #endif /* __PAGETABLE_PMD_FOLDED */
4698 
4699 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4700 			    struct mmu_notifier_range *range,
4701 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4702 {
4703 	pgd_t *pgd;
4704 	p4d_t *p4d;
4705 	pud_t *pud;
4706 	pmd_t *pmd;
4707 	pte_t *ptep;
4708 
4709 	pgd = pgd_offset(mm, address);
4710 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4711 		goto out;
4712 
4713 	p4d = p4d_offset(pgd, address);
4714 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4715 		goto out;
4716 
4717 	pud = pud_offset(p4d, address);
4718 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4719 		goto out;
4720 
4721 	pmd = pmd_offset(pud, address);
4722 	VM_BUG_ON(pmd_trans_huge(*pmd));
4723 
4724 	if (pmd_huge(*pmd)) {
4725 		if (!pmdpp)
4726 			goto out;
4727 
4728 		if (range) {
4729 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4730 						NULL, mm, address & PMD_MASK,
4731 						(address & PMD_MASK) + PMD_SIZE);
4732 			mmu_notifier_invalidate_range_start(range);
4733 		}
4734 		*ptlp = pmd_lock(mm, pmd);
4735 		if (pmd_huge(*pmd)) {
4736 			*pmdpp = pmd;
4737 			return 0;
4738 		}
4739 		spin_unlock(*ptlp);
4740 		if (range)
4741 			mmu_notifier_invalidate_range_end(range);
4742 	}
4743 
4744 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4745 		goto out;
4746 
4747 	if (range) {
4748 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4749 					address & PAGE_MASK,
4750 					(address & PAGE_MASK) + PAGE_SIZE);
4751 		mmu_notifier_invalidate_range_start(range);
4752 	}
4753 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4754 	if (!pte_present(*ptep))
4755 		goto unlock;
4756 	*ptepp = ptep;
4757 	return 0;
4758 unlock:
4759 	pte_unmap_unlock(ptep, *ptlp);
4760 	if (range)
4761 		mmu_notifier_invalidate_range_end(range);
4762 out:
4763 	return -EINVAL;
4764 }
4765 
4766 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4767 			     pte_t **ptepp, spinlock_t **ptlp)
4768 {
4769 	int res;
4770 
4771 	/* (void) is needed to make gcc happy */
4772 	(void) __cond_lock(*ptlp,
4773 			   !(res = __follow_pte_pmd(mm, address, NULL,
4774 						    ptepp, NULL, ptlp)));
4775 	return res;
4776 }
4777 
4778 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4779 		   struct mmu_notifier_range *range,
4780 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4781 {
4782 	int res;
4783 
4784 	/* (void) is needed to make gcc happy */
4785 	(void) __cond_lock(*ptlp,
4786 			   !(res = __follow_pte_pmd(mm, address, range,
4787 						    ptepp, pmdpp, ptlp)));
4788 	return res;
4789 }
4790 EXPORT_SYMBOL(follow_pte_pmd);
4791 
4792 /**
4793  * follow_pfn - look up PFN at a user virtual address
4794  * @vma: memory mapping
4795  * @address: user virtual address
4796  * @pfn: location to store found PFN
4797  *
4798  * Only IO mappings and raw PFN mappings are allowed.
4799  *
4800  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4801  */
4802 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4803 	unsigned long *pfn)
4804 {
4805 	int ret = -EINVAL;
4806 	spinlock_t *ptl;
4807 	pte_t *ptep;
4808 
4809 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4810 		return ret;
4811 
4812 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4813 	if (ret)
4814 		return ret;
4815 	*pfn = pte_pfn(*ptep);
4816 	pte_unmap_unlock(ptep, ptl);
4817 	return 0;
4818 }
4819 EXPORT_SYMBOL(follow_pfn);
4820 
4821 #ifdef CONFIG_HAVE_IOREMAP_PROT
4822 int follow_phys(struct vm_area_struct *vma,
4823 		unsigned long address, unsigned int flags,
4824 		unsigned long *prot, resource_size_t *phys)
4825 {
4826 	int ret = -EINVAL;
4827 	pte_t *ptep, pte;
4828 	spinlock_t *ptl;
4829 
4830 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4831 		goto out;
4832 
4833 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4834 		goto out;
4835 	pte = *ptep;
4836 
4837 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4838 		goto unlock;
4839 
4840 	*prot = pgprot_val(pte_pgprot(pte));
4841 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4842 
4843 	ret = 0;
4844 unlock:
4845 	pte_unmap_unlock(ptep, ptl);
4846 out:
4847 	return ret;
4848 }
4849 
4850 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4851 			void *buf, int len, int write)
4852 {
4853 	resource_size_t phys_addr;
4854 	unsigned long prot = 0;
4855 	void __iomem *maddr;
4856 	int offset = addr & (PAGE_SIZE-1);
4857 
4858 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4859 		return -EINVAL;
4860 
4861 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4862 	if (!maddr)
4863 		return -ENOMEM;
4864 
4865 	if (write)
4866 		memcpy_toio(maddr + offset, buf, len);
4867 	else
4868 		memcpy_fromio(buf, maddr + offset, len);
4869 	iounmap(maddr);
4870 
4871 	return len;
4872 }
4873 EXPORT_SYMBOL_GPL(generic_access_phys);
4874 #endif
4875 
4876 /*
4877  * Access another process' address space as given in mm.  If non-NULL, use the
4878  * given task for page fault accounting.
4879  */
4880 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4881 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4882 {
4883 	struct vm_area_struct *vma;
4884 	void *old_buf = buf;
4885 	int write = gup_flags & FOLL_WRITE;
4886 
4887 	if (mmap_read_lock_killable(mm))
4888 		return 0;
4889 
4890 	/* ignore errors, just check how much was successfully transferred */
4891 	while (len) {
4892 		int bytes, ret, offset;
4893 		void *maddr;
4894 		struct page *page = NULL;
4895 
4896 		ret = get_user_pages_remote(mm, addr, 1,
4897 				gup_flags, &page, &vma, NULL);
4898 		if (ret <= 0) {
4899 #ifndef CONFIG_HAVE_IOREMAP_PROT
4900 			break;
4901 #else
4902 			/*
4903 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4904 			 * we can access using slightly different code.
4905 			 */
4906 			vma = find_vma(mm, addr);
4907 			if (!vma || vma->vm_start > addr)
4908 				break;
4909 			if (vma->vm_ops && vma->vm_ops->access)
4910 				ret = vma->vm_ops->access(vma, addr, buf,
4911 							  len, write);
4912 			if (ret <= 0)
4913 				break;
4914 			bytes = ret;
4915 #endif
4916 		} else {
4917 			bytes = len;
4918 			offset = addr & (PAGE_SIZE-1);
4919 			if (bytes > PAGE_SIZE-offset)
4920 				bytes = PAGE_SIZE-offset;
4921 
4922 			maddr = kmap(page);
4923 			if (write) {
4924 				copy_to_user_page(vma, page, addr,
4925 						  maddr + offset, buf, bytes);
4926 				set_page_dirty_lock(page);
4927 			} else {
4928 				copy_from_user_page(vma, page, addr,
4929 						    buf, maddr + offset, bytes);
4930 			}
4931 			kunmap(page);
4932 			put_page(page);
4933 		}
4934 		len -= bytes;
4935 		buf += bytes;
4936 		addr += bytes;
4937 	}
4938 	mmap_read_unlock(mm);
4939 
4940 	return buf - old_buf;
4941 }
4942 
4943 /**
4944  * access_remote_vm - access another process' address space
4945  * @mm:		the mm_struct of the target address space
4946  * @addr:	start address to access
4947  * @buf:	source or destination buffer
4948  * @len:	number of bytes to transfer
4949  * @gup_flags:	flags modifying lookup behaviour
4950  *
4951  * The caller must hold a reference on @mm.
4952  *
4953  * Return: number of bytes copied from source to destination.
4954  */
4955 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4956 		void *buf, int len, unsigned int gup_flags)
4957 {
4958 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4959 }
4960 
4961 /*
4962  * Access another process' address space.
4963  * Source/target buffer must be kernel space,
4964  * Do not walk the page table directly, use get_user_pages
4965  */
4966 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4967 		void *buf, int len, unsigned int gup_flags)
4968 {
4969 	struct mm_struct *mm;
4970 	int ret;
4971 
4972 	mm = get_task_mm(tsk);
4973 	if (!mm)
4974 		return 0;
4975 
4976 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4977 
4978 	mmput(mm);
4979 
4980 	return ret;
4981 }
4982 EXPORT_SYMBOL_GPL(access_process_vm);
4983 
4984 /*
4985  * Print the name of a VMA.
4986  */
4987 void print_vma_addr(char *prefix, unsigned long ip)
4988 {
4989 	struct mm_struct *mm = current->mm;
4990 	struct vm_area_struct *vma;
4991 
4992 	/*
4993 	 * we might be running from an atomic context so we cannot sleep
4994 	 */
4995 	if (!mmap_read_trylock(mm))
4996 		return;
4997 
4998 	vma = find_vma(mm, ip);
4999 	if (vma && vma->vm_file) {
5000 		struct file *f = vma->vm_file;
5001 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5002 		if (buf) {
5003 			char *p;
5004 
5005 			p = file_path(f, buf, PAGE_SIZE);
5006 			if (IS_ERR(p))
5007 				p = "?";
5008 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5009 					vma->vm_start,
5010 					vma->vm_end - vma->vm_start);
5011 			free_page((unsigned long)buf);
5012 		}
5013 	}
5014 	mmap_read_unlock(mm);
5015 }
5016 
5017 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5018 void __might_fault(const char *file, int line)
5019 {
5020 	/*
5021 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5022 	 * holding the mmap_lock, this is safe because kernel memory doesn't
5023 	 * get paged out, therefore we'll never actually fault, and the
5024 	 * below annotations will generate false positives.
5025 	 */
5026 	if (uaccess_kernel())
5027 		return;
5028 	if (pagefault_disabled())
5029 		return;
5030 	__might_sleep(file, line, 0);
5031 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5032 	if (current->mm)
5033 		might_lock_read(&current->mm->mmap_lock);
5034 #endif
5035 }
5036 EXPORT_SYMBOL(__might_fault);
5037 #endif
5038 
5039 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5040 /*
5041  * Process all subpages of the specified huge page with the specified
5042  * operation.  The target subpage will be processed last to keep its
5043  * cache lines hot.
5044  */
5045 static inline void process_huge_page(
5046 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5047 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5048 	void *arg)
5049 {
5050 	int i, n, base, l;
5051 	unsigned long addr = addr_hint &
5052 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5053 
5054 	/* Process target subpage last to keep its cache lines hot */
5055 	might_sleep();
5056 	n = (addr_hint - addr) / PAGE_SIZE;
5057 	if (2 * n <= pages_per_huge_page) {
5058 		/* If target subpage in first half of huge page */
5059 		base = 0;
5060 		l = n;
5061 		/* Process subpages at the end of huge page */
5062 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5063 			cond_resched();
5064 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5065 		}
5066 	} else {
5067 		/* If target subpage in second half of huge page */
5068 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5069 		l = pages_per_huge_page - n;
5070 		/* Process subpages at the begin of huge page */
5071 		for (i = 0; i < base; i++) {
5072 			cond_resched();
5073 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5074 		}
5075 	}
5076 	/*
5077 	 * Process remaining subpages in left-right-left-right pattern
5078 	 * towards the target subpage
5079 	 */
5080 	for (i = 0; i < l; i++) {
5081 		int left_idx = base + i;
5082 		int right_idx = base + 2 * l - 1 - i;
5083 
5084 		cond_resched();
5085 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5086 		cond_resched();
5087 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5088 	}
5089 }
5090 
5091 static void clear_gigantic_page(struct page *page,
5092 				unsigned long addr,
5093 				unsigned int pages_per_huge_page)
5094 {
5095 	int i;
5096 	struct page *p = page;
5097 
5098 	might_sleep();
5099 	for (i = 0; i < pages_per_huge_page;
5100 	     i++, p = mem_map_next(p, page, i)) {
5101 		cond_resched();
5102 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5103 	}
5104 }
5105 
5106 static void clear_subpage(unsigned long addr, int idx, void *arg)
5107 {
5108 	struct page *page = arg;
5109 
5110 	clear_user_highpage(page + idx, addr);
5111 }
5112 
5113 void clear_huge_page(struct page *page,
5114 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5115 {
5116 	unsigned long addr = addr_hint &
5117 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5118 
5119 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5120 		clear_gigantic_page(page, addr, pages_per_huge_page);
5121 		return;
5122 	}
5123 
5124 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5125 }
5126 
5127 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5128 				    unsigned long addr,
5129 				    struct vm_area_struct *vma,
5130 				    unsigned int pages_per_huge_page)
5131 {
5132 	int i;
5133 	struct page *dst_base = dst;
5134 	struct page *src_base = src;
5135 
5136 	for (i = 0; i < pages_per_huge_page; ) {
5137 		cond_resched();
5138 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5139 
5140 		i++;
5141 		dst = mem_map_next(dst, dst_base, i);
5142 		src = mem_map_next(src, src_base, i);
5143 	}
5144 }
5145 
5146 struct copy_subpage_arg {
5147 	struct page *dst;
5148 	struct page *src;
5149 	struct vm_area_struct *vma;
5150 };
5151 
5152 static void copy_subpage(unsigned long addr, int idx, void *arg)
5153 {
5154 	struct copy_subpage_arg *copy_arg = arg;
5155 
5156 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5157 			   addr, copy_arg->vma);
5158 }
5159 
5160 void copy_user_huge_page(struct page *dst, struct page *src,
5161 			 unsigned long addr_hint, struct vm_area_struct *vma,
5162 			 unsigned int pages_per_huge_page)
5163 {
5164 	unsigned long addr = addr_hint &
5165 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5166 	struct copy_subpage_arg arg = {
5167 		.dst = dst,
5168 		.src = src,
5169 		.vma = vma,
5170 	};
5171 
5172 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5173 		copy_user_gigantic_page(dst, src, addr, vma,
5174 					pages_per_huge_page);
5175 		return;
5176 	}
5177 
5178 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5179 }
5180 
5181 long copy_huge_page_from_user(struct page *dst_page,
5182 				const void __user *usr_src,
5183 				unsigned int pages_per_huge_page,
5184 				bool allow_pagefault)
5185 {
5186 	void *src = (void *)usr_src;
5187 	void *page_kaddr;
5188 	unsigned long i, rc = 0;
5189 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5190 
5191 	for (i = 0; i < pages_per_huge_page; i++) {
5192 		if (allow_pagefault)
5193 			page_kaddr = kmap(dst_page + i);
5194 		else
5195 			page_kaddr = kmap_atomic(dst_page + i);
5196 		rc = copy_from_user(page_kaddr,
5197 				(const void __user *)(src + i * PAGE_SIZE),
5198 				PAGE_SIZE);
5199 		if (allow_pagefault)
5200 			kunmap(dst_page + i);
5201 		else
5202 			kunmap_atomic(page_kaddr);
5203 
5204 		ret_val -= (PAGE_SIZE - rc);
5205 		if (rc)
5206 			break;
5207 
5208 		cond_resched();
5209 	}
5210 	return ret_val;
5211 }
5212 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5213 
5214 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5215 
5216 static struct kmem_cache *page_ptl_cachep;
5217 
5218 void __init ptlock_cache_init(void)
5219 {
5220 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5221 			SLAB_PANIC, NULL);
5222 }
5223 
5224 bool ptlock_alloc(struct page *page)
5225 {
5226 	spinlock_t *ptl;
5227 
5228 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5229 	if (!ptl)
5230 		return false;
5231 	page->ptl = ptl;
5232 	return true;
5233 }
5234 
5235 void ptlock_free(struct page *page)
5236 {
5237 	kmem_cache_free(page_ptl_cachep, page->ptl);
5238 }
5239 #endif
5240