xref: /openbmc/linux/mm/memory.c (revision b7ae6f31d8243ec684af16bc5c763eccdfabaec0)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69 
70 #include "internal.h"
71 
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
75 
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80 
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84 
85 /*
86  * A number of key systems in x86 including ioremap() rely on the assumption
87  * that high_memory defines the upper bound on direct map memory, then end
88  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
89  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
90  * and ZONE_HIGHMEM.
91  */
92 void * high_memory;
93 
94 EXPORT_SYMBOL(high_memory);
95 
96 /*
97  * Randomize the address space (stacks, mmaps, brk, etc.).
98  *
99  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
100  *   as ancient (libc5 based) binaries can segfault. )
101  */
102 int randomize_va_space __read_mostly =
103 #ifdef CONFIG_COMPAT_BRK
104 					1;
105 #else
106 					2;
107 #endif
108 
109 static int __init disable_randmaps(char *s)
110 {
111 	randomize_va_space = 0;
112 	return 1;
113 }
114 __setup("norandmaps", disable_randmaps);
115 
116 unsigned long zero_pfn __read_mostly;
117 unsigned long highest_memmap_pfn __read_mostly;
118 
119 /*
120  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
121  */
122 static int __init init_zero_pfn(void)
123 {
124 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
125 	return 0;
126 }
127 core_initcall(init_zero_pfn);
128 
129 
130 #if defined(SPLIT_RSS_COUNTING)
131 
132 void sync_mm_rss(struct mm_struct *mm)
133 {
134 	int i;
135 
136 	for (i = 0; i < NR_MM_COUNTERS; i++) {
137 		if (current->rss_stat.count[i]) {
138 			add_mm_counter(mm, i, current->rss_stat.count[i]);
139 			current->rss_stat.count[i] = 0;
140 		}
141 	}
142 	current->rss_stat.events = 0;
143 }
144 
145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
146 {
147 	struct task_struct *task = current;
148 
149 	if (likely(task->mm == mm))
150 		task->rss_stat.count[member] += val;
151 	else
152 		add_mm_counter(mm, member, val);
153 }
154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
156 
157 /* sync counter once per 64 page faults */
158 #define TASK_RSS_EVENTS_THRESH	(64)
159 static void check_sync_rss_stat(struct task_struct *task)
160 {
161 	if (unlikely(task != current))
162 		return;
163 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
164 		sync_mm_rss(task->mm);
165 }
166 #else /* SPLIT_RSS_COUNTING */
167 
168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
170 
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 }
174 
175 #endif /* SPLIT_RSS_COUNTING */
176 
177 #ifdef HAVE_GENERIC_MMU_GATHER
178 
179 static int tlb_next_batch(struct mmu_gather *tlb)
180 {
181 	struct mmu_gather_batch *batch;
182 
183 	batch = tlb->active;
184 	if (batch->next) {
185 		tlb->active = batch->next;
186 		return 1;
187 	}
188 
189 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
190 		return 0;
191 
192 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193 	if (!batch)
194 		return 0;
195 
196 	tlb->batch_count++;
197 	batch->next = NULL;
198 	batch->nr   = 0;
199 	batch->max  = MAX_GATHER_BATCH;
200 
201 	tlb->active->next = batch;
202 	tlb->active = batch;
203 
204 	return 1;
205 }
206 
207 /* tlb_gather_mmu
208  *	Called to initialize an (on-stack) mmu_gather structure for page-table
209  *	tear-down from @mm. The @fullmm argument is used when @mm is without
210  *	users and we're going to destroy the full address space (exit/execve).
211  */
212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
213 {
214 	tlb->mm = mm;
215 
216 	tlb->fullmm     = fullmm;
217 	tlb->need_flush_all = 0;
218 	tlb->start	= -1UL;
219 	tlb->end	= 0;
220 	tlb->need_flush = 0;
221 	tlb->local.next = NULL;
222 	tlb->local.nr   = 0;
223 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
224 	tlb->active     = &tlb->local;
225 	tlb->batch_count = 0;
226 
227 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
228 	tlb->batch = NULL;
229 #endif
230 }
231 
232 void tlb_flush_mmu(struct mmu_gather *tlb)
233 {
234 	struct mmu_gather_batch *batch;
235 
236 	if (!tlb->need_flush)
237 		return;
238 	tlb->need_flush = 0;
239 	tlb_flush(tlb);
240 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
241 	tlb_table_flush(tlb);
242 #endif
243 
244 	for (batch = &tlb->local; batch; batch = batch->next) {
245 		free_pages_and_swap_cache(batch->pages, batch->nr);
246 		batch->nr = 0;
247 	}
248 	tlb->active = &tlb->local;
249 }
250 
251 /* tlb_finish_mmu
252  *	Called at the end of the shootdown operation to free up any resources
253  *	that were required.
254  */
255 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
256 {
257 	struct mmu_gather_batch *batch, *next;
258 
259 	tlb->start = start;
260 	tlb->end   = end;
261 	tlb_flush_mmu(tlb);
262 
263 	/* keep the page table cache within bounds */
264 	check_pgt_cache();
265 
266 	for (batch = tlb->local.next; batch; batch = next) {
267 		next = batch->next;
268 		free_pages((unsigned long)batch, 0);
269 	}
270 	tlb->local.next = NULL;
271 }
272 
273 /* __tlb_remove_page
274  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
275  *	handling the additional races in SMP caused by other CPUs caching valid
276  *	mappings in their TLBs. Returns the number of free page slots left.
277  *	When out of page slots we must call tlb_flush_mmu().
278  */
279 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
280 {
281 	struct mmu_gather_batch *batch;
282 
283 	VM_BUG_ON(!tlb->need_flush);
284 
285 	batch = tlb->active;
286 	batch->pages[batch->nr++] = page;
287 	if (batch->nr == batch->max) {
288 		if (!tlb_next_batch(tlb))
289 			return 0;
290 		batch = tlb->active;
291 	}
292 	VM_BUG_ON(batch->nr > batch->max);
293 
294 	return batch->max - batch->nr;
295 }
296 
297 #endif /* HAVE_GENERIC_MMU_GATHER */
298 
299 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
300 
301 /*
302  * See the comment near struct mmu_table_batch.
303  */
304 
305 static void tlb_remove_table_smp_sync(void *arg)
306 {
307 	/* Simply deliver the interrupt */
308 }
309 
310 static void tlb_remove_table_one(void *table)
311 {
312 	/*
313 	 * This isn't an RCU grace period and hence the page-tables cannot be
314 	 * assumed to be actually RCU-freed.
315 	 *
316 	 * It is however sufficient for software page-table walkers that rely on
317 	 * IRQ disabling. See the comment near struct mmu_table_batch.
318 	 */
319 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
320 	__tlb_remove_table(table);
321 }
322 
323 static void tlb_remove_table_rcu(struct rcu_head *head)
324 {
325 	struct mmu_table_batch *batch;
326 	int i;
327 
328 	batch = container_of(head, struct mmu_table_batch, rcu);
329 
330 	for (i = 0; i < batch->nr; i++)
331 		__tlb_remove_table(batch->tables[i]);
332 
333 	free_page((unsigned long)batch);
334 }
335 
336 void tlb_table_flush(struct mmu_gather *tlb)
337 {
338 	struct mmu_table_batch **batch = &tlb->batch;
339 
340 	if (*batch) {
341 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
342 		*batch = NULL;
343 	}
344 }
345 
346 void tlb_remove_table(struct mmu_gather *tlb, void *table)
347 {
348 	struct mmu_table_batch **batch = &tlb->batch;
349 
350 	tlb->need_flush = 1;
351 
352 	/*
353 	 * When there's less then two users of this mm there cannot be a
354 	 * concurrent page-table walk.
355 	 */
356 	if (atomic_read(&tlb->mm->mm_users) < 2) {
357 		__tlb_remove_table(table);
358 		return;
359 	}
360 
361 	if (*batch == NULL) {
362 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
363 		if (*batch == NULL) {
364 			tlb_remove_table_one(table);
365 			return;
366 		}
367 		(*batch)->nr = 0;
368 	}
369 	(*batch)->tables[(*batch)->nr++] = table;
370 	if ((*batch)->nr == MAX_TABLE_BATCH)
371 		tlb_table_flush(tlb);
372 }
373 
374 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
375 
376 /*
377  * If a p?d_bad entry is found while walking page tables, report
378  * the error, before resetting entry to p?d_none.  Usually (but
379  * very seldom) called out from the p?d_none_or_clear_bad macros.
380  */
381 
382 void pgd_clear_bad(pgd_t *pgd)
383 {
384 	pgd_ERROR(*pgd);
385 	pgd_clear(pgd);
386 }
387 
388 void pud_clear_bad(pud_t *pud)
389 {
390 	pud_ERROR(*pud);
391 	pud_clear(pud);
392 }
393 
394 void pmd_clear_bad(pmd_t *pmd)
395 {
396 	pmd_ERROR(*pmd);
397 	pmd_clear(pmd);
398 }
399 
400 /*
401  * Note: this doesn't free the actual pages themselves. That
402  * has been handled earlier when unmapping all the memory regions.
403  */
404 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
405 			   unsigned long addr)
406 {
407 	pgtable_t token = pmd_pgtable(*pmd);
408 	pmd_clear(pmd);
409 	pte_free_tlb(tlb, token, addr);
410 	tlb->mm->nr_ptes--;
411 }
412 
413 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
414 				unsigned long addr, unsigned long end,
415 				unsigned long floor, unsigned long ceiling)
416 {
417 	pmd_t *pmd;
418 	unsigned long next;
419 	unsigned long start;
420 
421 	start = addr;
422 	pmd = pmd_offset(pud, addr);
423 	do {
424 		next = pmd_addr_end(addr, end);
425 		if (pmd_none_or_clear_bad(pmd))
426 			continue;
427 		free_pte_range(tlb, pmd, addr);
428 	} while (pmd++, addr = next, addr != end);
429 
430 	start &= PUD_MASK;
431 	if (start < floor)
432 		return;
433 	if (ceiling) {
434 		ceiling &= PUD_MASK;
435 		if (!ceiling)
436 			return;
437 	}
438 	if (end - 1 > ceiling - 1)
439 		return;
440 
441 	pmd = pmd_offset(pud, start);
442 	pud_clear(pud);
443 	pmd_free_tlb(tlb, pmd, start);
444 }
445 
446 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
447 				unsigned long addr, unsigned long end,
448 				unsigned long floor, unsigned long ceiling)
449 {
450 	pud_t *pud;
451 	unsigned long next;
452 	unsigned long start;
453 
454 	start = addr;
455 	pud = pud_offset(pgd, addr);
456 	do {
457 		next = pud_addr_end(addr, end);
458 		if (pud_none_or_clear_bad(pud))
459 			continue;
460 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
461 	} while (pud++, addr = next, addr != end);
462 
463 	start &= PGDIR_MASK;
464 	if (start < floor)
465 		return;
466 	if (ceiling) {
467 		ceiling &= PGDIR_MASK;
468 		if (!ceiling)
469 			return;
470 	}
471 	if (end - 1 > ceiling - 1)
472 		return;
473 
474 	pud = pud_offset(pgd, start);
475 	pgd_clear(pgd);
476 	pud_free_tlb(tlb, pud, start);
477 }
478 
479 /*
480  * This function frees user-level page tables of a process.
481  *
482  * Must be called with pagetable lock held.
483  */
484 void free_pgd_range(struct mmu_gather *tlb,
485 			unsigned long addr, unsigned long end,
486 			unsigned long floor, unsigned long ceiling)
487 {
488 	pgd_t *pgd;
489 	unsigned long next;
490 
491 	/*
492 	 * The next few lines have given us lots of grief...
493 	 *
494 	 * Why are we testing PMD* at this top level?  Because often
495 	 * there will be no work to do at all, and we'd prefer not to
496 	 * go all the way down to the bottom just to discover that.
497 	 *
498 	 * Why all these "- 1"s?  Because 0 represents both the bottom
499 	 * of the address space and the top of it (using -1 for the
500 	 * top wouldn't help much: the masks would do the wrong thing).
501 	 * The rule is that addr 0 and floor 0 refer to the bottom of
502 	 * the address space, but end 0 and ceiling 0 refer to the top
503 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
504 	 * that end 0 case should be mythical).
505 	 *
506 	 * Wherever addr is brought up or ceiling brought down, we must
507 	 * be careful to reject "the opposite 0" before it confuses the
508 	 * subsequent tests.  But what about where end is brought down
509 	 * by PMD_SIZE below? no, end can't go down to 0 there.
510 	 *
511 	 * Whereas we round start (addr) and ceiling down, by different
512 	 * masks at different levels, in order to test whether a table
513 	 * now has no other vmas using it, so can be freed, we don't
514 	 * bother to round floor or end up - the tests don't need that.
515 	 */
516 
517 	addr &= PMD_MASK;
518 	if (addr < floor) {
519 		addr += PMD_SIZE;
520 		if (!addr)
521 			return;
522 	}
523 	if (ceiling) {
524 		ceiling &= PMD_MASK;
525 		if (!ceiling)
526 			return;
527 	}
528 	if (end - 1 > ceiling - 1)
529 		end -= PMD_SIZE;
530 	if (addr > end - 1)
531 		return;
532 
533 	pgd = pgd_offset(tlb->mm, addr);
534 	do {
535 		next = pgd_addr_end(addr, end);
536 		if (pgd_none_or_clear_bad(pgd))
537 			continue;
538 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
539 	} while (pgd++, addr = next, addr != end);
540 }
541 
542 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
543 		unsigned long floor, unsigned long ceiling)
544 {
545 	while (vma) {
546 		struct vm_area_struct *next = vma->vm_next;
547 		unsigned long addr = vma->vm_start;
548 
549 		/*
550 		 * Hide vma from rmap and truncate_pagecache before freeing
551 		 * pgtables
552 		 */
553 		unlink_anon_vmas(vma);
554 		unlink_file_vma(vma);
555 
556 		if (is_vm_hugetlb_page(vma)) {
557 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
558 				floor, next? next->vm_start: ceiling);
559 		} else {
560 			/*
561 			 * Optimization: gather nearby vmas into one call down
562 			 */
563 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
564 			       && !is_vm_hugetlb_page(next)) {
565 				vma = next;
566 				next = vma->vm_next;
567 				unlink_anon_vmas(vma);
568 				unlink_file_vma(vma);
569 			}
570 			free_pgd_range(tlb, addr, vma->vm_end,
571 				floor, next? next->vm_start: ceiling);
572 		}
573 		vma = next;
574 	}
575 }
576 
577 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
578 		pmd_t *pmd, unsigned long address)
579 {
580 	pgtable_t new = pte_alloc_one(mm, address);
581 	int wait_split_huge_page;
582 	if (!new)
583 		return -ENOMEM;
584 
585 	/*
586 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
587 	 * visible before the pte is made visible to other CPUs by being
588 	 * put into page tables.
589 	 *
590 	 * The other side of the story is the pointer chasing in the page
591 	 * table walking code (when walking the page table without locking;
592 	 * ie. most of the time). Fortunately, these data accesses consist
593 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
594 	 * being the notable exception) will already guarantee loads are
595 	 * seen in-order. See the alpha page table accessors for the
596 	 * smp_read_barrier_depends() barriers in page table walking code.
597 	 */
598 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599 
600 	spin_lock(&mm->page_table_lock);
601 	wait_split_huge_page = 0;
602 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
603 		mm->nr_ptes++;
604 		pmd_populate(mm, pmd, new);
605 		new = NULL;
606 	} else if (unlikely(pmd_trans_splitting(*pmd)))
607 		wait_split_huge_page = 1;
608 	spin_unlock(&mm->page_table_lock);
609 	if (new)
610 		pte_free(mm, new);
611 	if (wait_split_huge_page)
612 		wait_split_huge_page(vma->anon_vma, pmd);
613 	return 0;
614 }
615 
616 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
617 {
618 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
619 	if (!new)
620 		return -ENOMEM;
621 
622 	smp_wmb(); /* See comment in __pte_alloc */
623 
624 	spin_lock(&init_mm.page_table_lock);
625 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
626 		pmd_populate_kernel(&init_mm, pmd, new);
627 		new = NULL;
628 	} else
629 		VM_BUG_ON(pmd_trans_splitting(*pmd));
630 	spin_unlock(&init_mm.page_table_lock);
631 	if (new)
632 		pte_free_kernel(&init_mm, new);
633 	return 0;
634 }
635 
636 static inline void init_rss_vec(int *rss)
637 {
638 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
639 }
640 
641 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
642 {
643 	int i;
644 
645 	if (current->mm == mm)
646 		sync_mm_rss(mm);
647 	for (i = 0; i < NR_MM_COUNTERS; i++)
648 		if (rss[i])
649 			add_mm_counter(mm, i, rss[i]);
650 }
651 
652 /*
653  * This function is called to print an error when a bad pte
654  * is found. For example, we might have a PFN-mapped pte in
655  * a region that doesn't allow it.
656  *
657  * The calling function must still handle the error.
658  */
659 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
660 			  pte_t pte, struct page *page)
661 {
662 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
663 	pud_t *pud = pud_offset(pgd, addr);
664 	pmd_t *pmd = pmd_offset(pud, addr);
665 	struct address_space *mapping;
666 	pgoff_t index;
667 	static unsigned long resume;
668 	static unsigned long nr_shown;
669 	static unsigned long nr_unshown;
670 
671 	/*
672 	 * Allow a burst of 60 reports, then keep quiet for that minute;
673 	 * or allow a steady drip of one report per second.
674 	 */
675 	if (nr_shown == 60) {
676 		if (time_before(jiffies, resume)) {
677 			nr_unshown++;
678 			return;
679 		}
680 		if (nr_unshown) {
681 			printk(KERN_ALERT
682 				"BUG: Bad page map: %lu messages suppressed\n",
683 				nr_unshown);
684 			nr_unshown = 0;
685 		}
686 		nr_shown = 0;
687 	}
688 	if (nr_shown++ == 0)
689 		resume = jiffies + 60 * HZ;
690 
691 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
692 	index = linear_page_index(vma, addr);
693 
694 	printk(KERN_ALERT
695 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
696 		current->comm,
697 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
698 	if (page)
699 		dump_page(page);
700 	printk(KERN_ALERT
701 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
702 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
703 	/*
704 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
705 	 */
706 	if (vma->vm_ops)
707 		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
708 		       vma->vm_ops->fault);
709 	if (vma->vm_file && vma->vm_file->f_op)
710 		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
711 		       vma->vm_file->f_op->mmap);
712 	dump_stack();
713 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
714 }
715 
716 static inline bool is_cow_mapping(vm_flags_t flags)
717 {
718 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
719 }
720 
721 /*
722  * vm_normal_page -- This function gets the "struct page" associated with a pte.
723  *
724  * "Special" mappings do not wish to be associated with a "struct page" (either
725  * it doesn't exist, or it exists but they don't want to touch it). In this
726  * case, NULL is returned here. "Normal" mappings do have a struct page.
727  *
728  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
729  * pte bit, in which case this function is trivial. Secondly, an architecture
730  * may not have a spare pte bit, which requires a more complicated scheme,
731  * described below.
732  *
733  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
734  * special mapping (even if there are underlying and valid "struct pages").
735  * COWed pages of a VM_PFNMAP are always normal.
736  *
737  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
738  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
739  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
740  * mapping will always honor the rule
741  *
742  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
743  *
744  * And for normal mappings this is false.
745  *
746  * This restricts such mappings to be a linear translation from virtual address
747  * to pfn. To get around this restriction, we allow arbitrary mappings so long
748  * as the vma is not a COW mapping; in that case, we know that all ptes are
749  * special (because none can have been COWed).
750  *
751  *
752  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
753  *
754  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
755  * page" backing, however the difference is that _all_ pages with a struct
756  * page (that is, those where pfn_valid is true) are refcounted and considered
757  * normal pages by the VM. The disadvantage is that pages are refcounted
758  * (which can be slower and simply not an option for some PFNMAP users). The
759  * advantage is that we don't have to follow the strict linearity rule of
760  * PFNMAP mappings in order to support COWable mappings.
761  *
762  */
763 #ifdef __HAVE_ARCH_PTE_SPECIAL
764 # define HAVE_PTE_SPECIAL 1
765 #else
766 # define HAVE_PTE_SPECIAL 0
767 #endif
768 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
769 				pte_t pte)
770 {
771 	unsigned long pfn = pte_pfn(pte);
772 
773 	if (HAVE_PTE_SPECIAL) {
774 		if (likely(!pte_special(pte)))
775 			goto check_pfn;
776 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
777 			return NULL;
778 		if (!is_zero_pfn(pfn))
779 			print_bad_pte(vma, addr, pte, NULL);
780 		return NULL;
781 	}
782 
783 	/* !HAVE_PTE_SPECIAL case follows: */
784 
785 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
786 		if (vma->vm_flags & VM_MIXEDMAP) {
787 			if (!pfn_valid(pfn))
788 				return NULL;
789 			goto out;
790 		} else {
791 			unsigned long off;
792 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
793 			if (pfn == vma->vm_pgoff + off)
794 				return NULL;
795 			if (!is_cow_mapping(vma->vm_flags))
796 				return NULL;
797 		}
798 	}
799 
800 	if (is_zero_pfn(pfn))
801 		return NULL;
802 check_pfn:
803 	if (unlikely(pfn > highest_memmap_pfn)) {
804 		print_bad_pte(vma, addr, pte, NULL);
805 		return NULL;
806 	}
807 
808 	/*
809 	 * NOTE! We still have PageReserved() pages in the page tables.
810 	 * eg. VDSO mappings can cause them to exist.
811 	 */
812 out:
813 	return pfn_to_page(pfn);
814 }
815 
816 /*
817  * copy one vm_area from one task to the other. Assumes the page tables
818  * already present in the new task to be cleared in the whole range
819  * covered by this vma.
820  */
821 
822 static inline unsigned long
823 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
824 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
825 		unsigned long addr, int *rss)
826 {
827 	unsigned long vm_flags = vma->vm_flags;
828 	pte_t pte = *src_pte;
829 	struct page *page;
830 
831 	/* pte contains position in swap or file, so copy. */
832 	if (unlikely(!pte_present(pte))) {
833 		if (!pte_file(pte)) {
834 			swp_entry_t entry = pte_to_swp_entry(pte);
835 
836 			if (swap_duplicate(entry) < 0)
837 				return entry.val;
838 
839 			/* make sure dst_mm is on swapoff's mmlist. */
840 			if (unlikely(list_empty(&dst_mm->mmlist))) {
841 				spin_lock(&mmlist_lock);
842 				if (list_empty(&dst_mm->mmlist))
843 					list_add(&dst_mm->mmlist,
844 						 &src_mm->mmlist);
845 				spin_unlock(&mmlist_lock);
846 			}
847 			if (likely(!non_swap_entry(entry)))
848 				rss[MM_SWAPENTS]++;
849 			else if (is_migration_entry(entry)) {
850 				page = migration_entry_to_page(entry);
851 
852 				if (PageAnon(page))
853 					rss[MM_ANONPAGES]++;
854 				else
855 					rss[MM_FILEPAGES]++;
856 
857 				if (is_write_migration_entry(entry) &&
858 				    is_cow_mapping(vm_flags)) {
859 					/*
860 					 * COW mappings require pages in both
861 					 * parent and child to be set to read.
862 					 */
863 					make_migration_entry_read(&entry);
864 					pte = swp_entry_to_pte(entry);
865 					set_pte_at(src_mm, addr, src_pte, pte);
866 				}
867 			}
868 		}
869 		goto out_set_pte;
870 	}
871 
872 	/*
873 	 * If it's a COW mapping, write protect it both
874 	 * in the parent and the child
875 	 */
876 	if (is_cow_mapping(vm_flags)) {
877 		ptep_set_wrprotect(src_mm, addr, src_pte);
878 		pte = pte_wrprotect(pte);
879 	}
880 
881 	/*
882 	 * If it's a shared mapping, mark it clean in
883 	 * the child
884 	 */
885 	if (vm_flags & VM_SHARED)
886 		pte = pte_mkclean(pte);
887 	pte = pte_mkold(pte);
888 
889 	page = vm_normal_page(vma, addr, pte);
890 	if (page) {
891 		get_page(page);
892 		page_dup_rmap(page);
893 		if (PageAnon(page))
894 			rss[MM_ANONPAGES]++;
895 		else
896 			rss[MM_FILEPAGES]++;
897 	}
898 
899 out_set_pte:
900 	set_pte_at(dst_mm, addr, dst_pte, pte);
901 	return 0;
902 }
903 
904 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
905 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
906 		   unsigned long addr, unsigned long end)
907 {
908 	pte_t *orig_src_pte, *orig_dst_pte;
909 	pte_t *src_pte, *dst_pte;
910 	spinlock_t *src_ptl, *dst_ptl;
911 	int progress = 0;
912 	int rss[NR_MM_COUNTERS];
913 	swp_entry_t entry = (swp_entry_t){0};
914 
915 again:
916 	init_rss_vec(rss);
917 
918 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
919 	if (!dst_pte)
920 		return -ENOMEM;
921 	src_pte = pte_offset_map(src_pmd, addr);
922 	src_ptl = pte_lockptr(src_mm, src_pmd);
923 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
924 	orig_src_pte = src_pte;
925 	orig_dst_pte = dst_pte;
926 	arch_enter_lazy_mmu_mode();
927 
928 	do {
929 		/*
930 		 * We are holding two locks at this point - either of them
931 		 * could generate latencies in another task on another CPU.
932 		 */
933 		if (progress >= 32) {
934 			progress = 0;
935 			if (need_resched() ||
936 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
937 				break;
938 		}
939 		if (pte_none(*src_pte)) {
940 			progress++;
941 			continue;
942 		}
943 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
944 							vma, addr, rss);
945 		if (entry.val)
946 			break;
947 		progress += 8;
948 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
949 
950 	arch_leave_lazy_mmu_mode();
951 	spin_unlock(src_ptl);
952 	pte_unmap(orig_src_pte);
953 	add_mm_rss_vec(dst_mm, rss);
954 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
955 	cond_resched();
956 
957 	if (entry.val) {
958 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
959 			return -ENOMEM;
960 		progress = 0;
961 	}
962 	if (addr != end)
963 		goto again;
964 	return 0;
965 }
966 
967 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
968 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
969 		unsigned long addr, unsigned long end)
970 {
971 	pmd_t *src_pmd, *dst_pmd;
972 	unsigned long next;
973 
974 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
975 	if (!dst_pmd)
976 		return -ENOMEM;
977 	src_pmd = pmd_offset(src_pud, addr);
978 	do {
979 		next = pmd_addr_end(addr, end);
980 		if (pmd_trans_huge(*src_pmd)) {
981 			int err;
982 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
983 			err = copy_huge_pmd(dst_mm, src_mm,
984 					    dst_pmd, src_pmd, addr, vma);
985 			if (err == -ENOMEM)
986 				return -ENOMEM;
987 			if (!err)
988 				continue;
989 			/* fall through */
990 		}
991 		if (pmd_none_or_clear_bad(src_pmd))
992 			continue;
993 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
994 						vma, addr, next))
995 			return -ENOMEM;
996 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
997 	return 0;
998 }
999 
1000 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1001 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1002 		unsigned long addr, unsigned long end)
1003 {
1004 	pud_t *src_pud, *dst_pud;
1005 	unsigned long next;
1006 
1007 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1008 	if (!dst_pud)
1009 		return -ENOMEM;
1010 	src_pud = pud_offset(src_pgd, addr);
1011 	do {
1012 		next = pud_addr_end(addr, end);
1013 		if (pud_none_or_clear_bad(src_pud))
1014 			continue;
1015 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1016 						vma, addr, next))
1017 			return -ENOMEM;
1018 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1019 	return 0;
1020 }
1021 
1022 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023 		struct vm_area_struct *vma)
1024 {
1025 	pgd_t *src_pgd, *dst_pgd;
1026 	unsigned long next;
1027 	unsigned long addr = vma->vm_start;
1028 	unsigned long end = vma->vm_end;
1029 	unsigned long mmun_start;	/* For mmu_notifiers */
1030 	unsigned long mmun_end;		/* For mmu_notifiers */
1031 	bool is_cow;
1032 	int ret;
1033 
1034 	/*
1035 	 * Don't copy ptes where a page fault will fill them correctly.
1036 	 * Fork becomes much lighter when there are big shared or private
1037 	 * readonly mappings. The tradeoff is that copy_page_range is more
1038 	 * efficient than faulting.
1039 	 */
1040 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1041 			       VM_PFNMAP | VM_MIXEDMAP))) {
1042 		if (!vma->anon_vma)
1043 			return 0;
1044 	}
1045 
1046 	if (is_vm_hugetlb_page(vma))
1047 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1048 
1049 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1050 		/*
1051 		 * We do not free on error cases below as remove_vma
1052 		 * gets called on error from higher level routine
1053 		 */
1054 		ret = track_pfn_copy(vma);
1055 		if (ret)
1056 			return ret;
1057 	}
1058 
1059 	/*
1060 	 * We need to invalidate the secondary MMU mappings only when
1061 	 * there could be a permission downgrade on the ptes of the
1062 	 * parent mm. And a permission downgrade will only happen if
1063 	 * is_cow_mapping() returns true.
1064 	 */
1065 	is_cow = is_cow_mapping(vma->vm_flags);
1066 	mmun_start = addr;
1067 	mmun_end   = end;
1068 	if (is_cow)
1069 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1070 						    mmun_end);
1071 
1072 	ret = 0;
1073 	dst_pgd = pgd_offset(dst_mm, addr);
1074 	src_pgd = pgd_offset(src_mm, addr);
1075 	do {
1076 		next = pgd_addr_end(addr, end);
1077 		if (pgd_none_or_clear_bad(src_pgd))
1078 			continue;
1079 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1080 					    vma, addr, next))) {
1081 			ret = -ENOMEM;
1082 			break;
1083 		}
1084 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1085 
1086 	if (is_cow)
1087 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1088 	return ret;
1089 }
1090 
1091 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1092 				struct vm_area_struct *vma, pmd_t *pmd,
1093 				unsigned long addr, unsigned long end,
1094 				struct zap_details *details)
1095 {
1096 	struct mm_struct *mm = tlb->mm;
1097 	int force_flush = 0;
1098 	int rss[NR_MM_COUNTERS];
1099 	spinlock_t *ptl;
1100 	pte_t *start_pte;
1101 	pte_t *pte;
1102 	unsigned long range_start = addr;
1103 
1104 again:
1105 	init_rss_vec(rss);
1106 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1107 	pte = start_pte;
1108 	arch_enter_lazy_mmu_mode();
1109 	do {
1110 		pte_t ptent = *pte;
1111 		if (pte_none(ptent)) {
1112 			continue;
1113 		}
1114 
1115 		if (pte_present(ptent)) {
1116 			struct page *page;
1117 
1118 			page = vm_normal_page(vma, addr, ptent);
1119 			if (unlikely(details) && page) {
1120 				/*
1121 				 * unmap_shared_mapping_pages() wants to
1122 				 * invalidate cache without truncating:
1123 				 * unmap shared but keep private pages.
1124 				 */
1125 				if (details->check_mapping &&
1126 				    details->check_mapping != page->mapping)
1127 					continue;
1128 				/*
1129 				 * Each page->index must be checked when
1130 				 * invalidating or truncating nonlinear.
1131 				 */
1132 				if (details->nonlinear_vma &&
1133 				    (page->index < details->first_index ||
1134 				     page->index > details->last_index))
1135 					continue;
1136 			}
1137 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1138 							tlb->fullmm);
1139 			tlb_remove_tlb_entry(tlb, pte, addr);
1140 			if (unlikely(!page))
1141 				continue;
1142 			if (unlikely(details) && details->nonlinear_vma
1143 			    && linear_page_index(details->nonlinear_vma,
1144 						addr) != page->index)
1145 				set_pte_at(mm, addr, pte,
1146 					   pgoff_to_pte(page->index));
1147 			if (PageAnon(page))
1148 				rss[MM_ANONPAGES]--;
1149 			else {
1150 				if (pte_dirty(ptent))
1151 					set_page_dirty(page);
1152 				if (pte_young(ptent) &&
1153 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1154 					mark_page_accessed(page);
1155 				rss[MM_FILEPAGES]--;
1156 			}
1157 			page_remove_rmap(page);
1158 			if (unlikely(page_mapcount(page) < 0))
1159 				print_bad_pte(vma, addr, ptent, page);
1160 			force_flush = !__tlb_remove_page(tlb, page);
1161 			if (force_flush)
1162 				break;
1163 			continue;
1164 		}
1165 		/*
1166 		 * If details->check_mapping, we leave swap entries;
1167 		 * if details->nonlinear_vma, we leave file entries.
1168 		 */
1169 		if (unlikely(details))
1170 			continue;
1171 		if (pte_file(ptent)) {
1172 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1173 				print_bad_pte(vma, addr, ptent, NULL);
1174 		} else {
1175 			swp_entry_t entry = pte_to_swp_entry(ptent);
1176 
1177 			if (!non_swap_entry(entry))
1178 				rss[MM_SWAPENTS]--;
1179 			else if (is_migration_entry(entry)) {
1180 				struct page *page;
1181 
1182 				page = migration_entry_to_page(entry);
1183 
1184 				if (PageAnon(page))
1185 					rss[MM_ANONPAGES]--;
1186 				else
1187 					rss[MM_FILEPAGES]--;
1188 			}
1189 			if (unlikely(!free_swap_and_cache(entry)))
1190 				print_bad_pte(vma, addr, ptent, NULL);
1191 		}
1192 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1193 	} while (pte++, addr += PAGE_SIZE, addr != end);
1194 
1195 	add_mm_rss_vec(mm, rss);
1196 	arch_leave_lazy_mmu_mode();
1197 	pte_unmap_unlock(start_pte, ptl);
1198 
1199 	/*
1200 	 * mmu_gather ran out of room to batch pages, we break out of
1201 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1202 	 * and page-free while holding it.
1203 	 */
1204 	if (force_flush) {
1205 		force_flush = 0;
1206 
1207 #ifdef HAVE_GENERIC_MMU_GATHER
1208 		tlb->start = range_start;
1209 		tlb->end = addr;
1210 #endif
1211 		tlb_flush_mmu(tlb);
1212 		if (addr != end) {
1213 			range_start = addr;
1214 			goto again;
1215 		}
1216 	}
1217 
1218 	return addr;
1219 }
1220 
1221 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1222 				struct vm_area_struct *vma, pud_t *pud,
1223 				unsigned long addr, unsigned long end,
1224 				struct zap_details *details)
1225 {
1226 	pmd_t *pmd;
1227 	unsigned long next;
1228 
1229 	pmd = pmd_offset(pud, addr);
1230 	do {
1231 		next = pmd_addr_end(addr, end);
1232 		if (pmd_trans_huge(*pmd)) {
1233 			if (next - addr != HPAGE_PMD_SIZE) {
1234 #ifdef CONFIG_DEBUG_VM
1235 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1236 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1237 						__func__, addr, end,
1238 						vma->vm_start,
1239 						vma->vm_end);
1240 					BUG();
1241 				}
1242 #endif
1243 				split_huge_page_pmd(vma, addr, pmd);
1244 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1245 				goto next;
1246 			/* fall through */
1247 		}
1248 		/*
1249 		 * Here there can be other concurrent MADV_DONTNEED or
1250 		 * trans huge page faults running, and if the pmd is
1251 		 * none or trans huge it can change under us. This is
1252 		 * because MADV_DONTNEED holds the mmap_sem in read
1253 		 * mode.
1254 		 */
1255 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1256 			goto next;
1257 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1258 next:
1259 		cond_resched();
1260 	} while (pmd++, addr = next, addr != end);
1261 
1262 	return addr;
1263 }
1264 
1265 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1266 				struct vm_area_struct *vma, pgd_t *pgd,
1267 				unsigned long addr, unsigned long end,
1268 				struct zap_details *details)
1269 {
1270 	pud_t *pud;
1271 	unsigned long next;
1272 
1273 	pud = pud_offset(pgd, addr);
1274 	do {
1275 		next = pud_addr_end(addr, end);
1276 		if (pud_none_or_clear_bad(pud))
1277 			continue;
1278 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1279 	} while (pud++, addr = next, addr != end);
1280 
1281 	return addr;
1282 }
1283 
1284 static void unmap_page_range(struct mmu_gather *tlb,
1285 			     struct vm_area_struct *vma,
1286 			     unsigned long addr, unsigned long end,
1287 			     struct zap_details *details)
1288 {
1289 	pgd_t *pgd;
1290 	unsigned long next;
1291 
1292 	if (details && !details->check_mapping && !details->nonlinear_vma)
1293 		details = NULL;
1294 
1295 	BUG_ON(addr >= end);
1296 	mem_cgroup_uncharge_start();
1297 	tlb_start_vma(tlb, vma);
1298 	pgd = pgd_offset(vma->vm_mm, addr);
1299 	do {
1300 		next = pgd_addr_end(addr, end);
1301 		if (pgd_none_or_clear_bad(pgd))
1302 			continue;
1303 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1304 	} while (pgd++, addr = next, addr != end);
1305 	tlb_end_vma(tlb, vma);
1306 	mem_cgroup_uncharge_end();
1307 }
1308 
1309 
1310 static void unmap_single_vma(struct mmu_gather *tlb,
1311 		struct vm_area_struct *vma, unsigned long start_addr,
1312 		unsigned long end_addr,
1313 		struct zap_details *details)
1314 {
1315 	unsigned long start = max(vma->vm_start, start_addr);
1316 	unsigned long end;
1317 
1318 	if (start >= vma->vm_end)
1319 		return;
1320 	end = min(vma->vm_end, end_addr);
1321 	if (end <= vma->vm_start)
1322 		return;
1323 
1324 	if (vma->vm_file)
1325 		uprobe_munmap(vma, start, end);
1326 
1327 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1328 		untrack_pfn(vma, 0, 0);
1329 
1330 	if (start != end) {
1331 		if (unlikely(is_vm_hugetlb_page(vma))) {
1332 			/*
1333 			 * It is undesirable to test vma->vm_file as it
1334 			 * should be non-null for valid hugetlb area.
1335 			 * However, vm_file will be NULL in the error
1336 			 * cleanup path of do_mmap_pgoff. When
1337 			 * hugetlbfs ->mmap method fails,
1338 			 * do_mmap_pgoff() nullifies vma->vm_file
1339 			 * before calling this function to clean up.
1340 			 * Since no pte has actually been setup, it is
1341 			 * safe to do nothing in this case.
1342 			 */
1343 			if (vma->vm_file) {
1344 				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1345 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1346 				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1347 			}
1348 		} else
1349 			unmap_page_range(tlb, vma, start, end, details);
1350 	}
1351 }
1352 
1353 /**
1354  * unmap_vmas - unmap a range of memory covered by a list of vma's
1355  * @tlb: address of the caller's struct mmu_gather
1356  * @vma: the starting vma
1357  * @start_addr: virtual address at which to start unmapping
1358  * @end_addr: virtual address at which to end unmapping
1359  *
1360  * Unmap all pages in the vma list.
1361  *
1362  * Only addresses between `start' and `end' will be unmapped.
1363  *
1364  * The VMA list must be sorted in ascending virtual address order.
1365  *
1366  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1367  * range after unmap_vmas() returns.  So the only responsibility here is to
1368  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1369  * drops the lock and schedules.
1370  */
1371 void unmap_vmas(struct mmu_gather *tlb,
1372 		struct vm_area_struct *vma, unsigned long start_addr,
1373 		unsigned long end_addr)
1374 {
1375 	struct mm_struct *mm = vma->vm_mm;
1376 
1377 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1378 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1379 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1380 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1381 }
1382 
1383 /**
1384  * zap_page_range - remove user pages in a given range
1385  * @vma: vm_area_struct holding the applicable pages
1386  * @start: starting address of pages to zap
1387  * @size: number of bytes to zap
1388  * @details: details of nonlinear truncation or shared cache invalidation
1389  *
1390  * Caller must protect the VMA list
1391  */
1392 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1393 		unsigned long size, struct zap_details *details)
1394 {
1395 	struct mm_struct *mm = vma->vm_mm;
1396 	struct mmu_gather tlb;
1397 	unsigned long end = start + size;
1398 
1399 	lru_add_drain();
1400 	tlb_gather_mmu(&tlb, mm, 0);
1401 	update_hiwater_rss(mm);
1402 	mmu_notifier_invalidate_range_start(mm, start, end);
1403 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1404 		unmap_single_vma(&tlb, vma, start, end, details);
1405 	mmu_notifier_invalidate_range_end(mm, start, end);
1406 	tlb_finish_mmu(&tlb, start, end);
1407 }
1408 
1409 /**
1410  * zap_page_range_single - remove user pages in a given range
1411  * @vma: vm_area_struct holding the applicable pages
1412  * @address: starting address of pages to zap
1413  * @size: number of bytes to zap
1414  * @details: details of nonlinear truncation or shared cache invalidation
1415  *
1416  * The range must fit into one VMA.
1417  */
1418 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1419 		unsigned long size, struct zap_details *details)
1420 {
1421 	struct mm_struct *mm = vma->vm_mm;
1422 	struct mmu_gather tlb;
1423 	unsigned long end = address + size;
1424 
1425 	lru_add_drain();
1426 	tlb_gather_mmu(&tlb, mm, 0);
1427 	update_hiwater_rss(mm);
1428 	mmu_notifier_invalidate_range_start(mm, address, end);
1429 	unmap_single_vma(&tlb, vma, address, end, details);
1430 	mmu_notifier_invalidate_range_end(mm, address, end);
1431 	tlb_finish_mmu(&tlb, address, end);
1432 }
1433 
1434 /**
1435  * zap_vma_ptes - remove ptes mapping the vma
1436  * @vma: vm_area_struct holding ptes to be zapped
1437  * @address: starting address of pages to zap
1438  * @size: number of bytes to zap
1439  *
1440  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1441  *
1442  * The entire address range must be fully contained within the vma.
1443  *
1444  * Returns 0 if successful.
1445  */
1446 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1447 		unsigned long size)
1448 {
1449 	if (address < vma->vm_start || address + size > vma->vm_end ||
1450 	    		!(vma->vm_flags & VM_PFNMAP))
1451 		return -1;
1452 	zap_page_range_single(vma, address, size, NULL);
1453 	return 0;
1454 }
1455 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1456 
1457 /**
1458  * follow_page_mask - look up a page descriptor from a user-virtual address
1459  * @vma: vm_area_struct mapping @address
1460  * @address: virtual address to look up
1461  * @flags: flags modifying lookup behaviour
1462  * @page_mask: on output, *page_mask is set according to the size of the page
1463  *
1464  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1465  *
1466  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1467  * an error pointer if there is a mapping to something not represented
1468  * by a page descriptor (see also vm_normal_page()).
1469  */
1470 struct page *follow_page_mask(struct vm_area_struct *vma,
1471 			      unsigned long address, unsigned int flags,
1472 			      unsigned int *page_mask)
1473 {
1474 	pgd_t *pgd;
1475 	pud_t *pud;
1476 	pmd_t *pmd;
1477 	pte_t *ptep, pte;
1478 	spinlock_t *ptl;
1479 	struct page *page;
1480 	struct mm_struct *mm = vma->vm_mm;
1481 
1482 	*page_mask = 0;
1483 
1484 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1485 	if (!IS_ERR(page)) {
1486 		BUG_ON(flags & FOLL_GET);
1487 		goto out;
1488 	}
1489 
1490 	page = NULL;
1491 	pgd = pgd_offset(mm, address);
1492 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1493 		goto no_page_table;
1494 
1495 	pud = pud_offset(pgd, address);
1496 	if (pud_none(*pud))
1497 		goto no_page_table;
1498 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1499 		BUG_ON(flags & FOLL_GET);
1500 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1501 		goto out;
1502 	}
1503 	if (unlikely(pud_bad(*pud)))
1504 		goto no_page_table;
1505 
1506 	pmd = pmd_offset(pud, address);
1507 	if (pmd_none(*pmd))
1508 		goto no_page_table;
1509 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1510 		BUG_ON(flags & FOLL_GET);
1511 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1512 		goto out;
1513 	}
1514 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1515 		goto no_page_table;
1516 	if (pmd_trans_huge(*pmd)) {
1517 		if (flags & FOLL_SPLIT) {
1518 			split_huge_page_pmd(vma, address, pmd);
1519 			goto split_fallthrough;
1520 		}
1521 		spin_lock(&mm->page_table_lock);
1522 		if (likely(pmd_trans_huge(*pmd))) {
1523 			if (unlikely(pmd_trans_splitting(*pmd))) {
1524 				spin_unlock(&mm->page_table_lock);
1525 				wait_split_huge_page(vma->anon_vma, pmd);
1526 			} else {
1527 				page = follow_trans_huge_pmd(vma, address,
1528 							     pmd, flags);
1529 				spin_unlock(&mm->page_table_lock);
1530 				*page_mask = HPAGE_PMD_NR - 1;
1531 				goto out;
1532 			}
1533 		} else
1534 			spin_unlock(&mm->page_table_lock);
1535 		/* fall through */
1536 	}
1537 split_fallthrough:
1538 	if (unlikely(pmd_bad(*pmd)))
1539 		goto no_page_table;
1540 
1541 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1542 
1543 	pte = *ptep;
1544 	if (!pte_present(pte)) {
1545 		swp_entry_t entry;
1546 		/*
1547 		 * KSM's break_ksm() relies upon recognizing a ksm page
1548 		 * even while it is being migrated, so for that case we
1549 		 * need migration_entry_wait().
1550 		 */
1551 		if (likely(!(flags & FOLL_MIGRATION)))
1552 			goto no_page;
1553 		if (pte_none(pte) || pte_file(pte))
1554 			goto no_page;
1555 		entry = pte_to_swp_entry(pte);
1556 		if (!is_migration_entry(entry))
1557 			goto no_page;
1558 		pte_unmap_unlock(ptep, ptl);
1559 		migration_entry_wait(mm, pmd, address);
1560 		goto split_fallthrough;
1561 	}
1562 	if ((flags & FOLL_NUMA) && pte_numa(pte))
1563 		goto no_page;
1564 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1565 		goto unlock;
1566 
1567 	page = vm_normal_page(vma, address, pte);
1568 	if (unlikely(!page)) {
1569 		if ((flags & FOLL_DUMP) ||
1570 		    !is_zero_pfn(pte_pfn(pte)))
1571 			goto bad_page;
1572 		page = pte_page(pte);
1573 	}
1574 
1575 	if (flags & FOLL_GET)
1576 		get_page_foll(page);
1577 	if (flags & FOLL_TOUCH) {
1578 		if ((flags & FOLL_WRITE) &&
1579 		    !pte_dirty(pte) && !PageDirty(page))
1580 			set_page_dirty(page);
1581 		/*
1582 		 * pte_mkyoung() would be more correct here, but atomic care
1583 		 * is needed to avoid losing the dirty bit: it is easier to use
1584 		 * mark_page_accessed().
1585 		 */
1586 		mark_page_accessed(page);
1587 	}
1588 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1589 		/*
1590 		 * The preliminary mapping check is mainly to avoid the
1591 		 * pointless overhead of lock_page on the ZERO_PAGE
1592 		 * which might bounce very badly if there is contention.
1593 		 *
1594 		 * If the page is already locked, we don't need to
1595 		 * handle it now - vmscan will handle it later if and
1596 		 * when it attempts to reclaim the page.
1597 		 */
1598 		if (page->mapping && trylock_page(page)) {
1599 			lru_add_drain();  /* push cached pages to LRU */
1600 			/*
1601 			 * Because we lock page here, and migration is
1602 			 * blocked by the pte's page reference, and we
1603 			 * know the page is still mapped, we don't even
1604 			 * need to check for file-cache page truncation.
1605 			 */
1606 			mlock_vma_page(page);
1607 			unlock_page(page);
1608 		}
1609 	}
1610 unlock:
1611 	pte_unmap_unlock(ptep, ptl);
1612 out:
1613 	return page;
1614 
1615 bad_page:
1616 	pte_unmap_unlock(ptep, ptl);
1617 	return ERR_PTR(-EFAULT);
1618 
1619 no_page:
1620 	pte_unmap_unlock(ptep, ptl);
1621 	if (!pte_none(pte))
1622 		return page;
1623 
1624 no_page_table:
1625 	/*
1626 	 * When core dumping an enormous anonymous area that nobody
1627 	 * has touched so far, we don't want to allocate unnecessary pages or
1628 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1629 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1630 	 * But we can only make this optimization where a hole would surely
1631 	 * be zero-filled if handle_mm_fault() actually did handle it.
1632 	 */
1633 	if ((flags & FOLL_DUMP) &&
1634 	    (!vma->vm_ops || !vma->vm_ops->fault))
1635 		return ERR_PTR(-EFAULT);
1636 	return page;
1637 }
1638 
1639 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1640 {
1641 	return stack_guard_page_start(vma, addr) ||
1642 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1643 }
1644 
1645 /**
1646  * __get_user_pages() - pin user pages in memory
1647  * @tsk:	task_struct of target task
1648  * @mm:		mm_struct of target mm
1649  * @start:	starting user address
1650  * @nr_pages:	number of pages from start to pin
1651  * @gup_flags:	flags modifying pin behaviour
1652  * @pages:	array that receives pointers to the pages pinned.
1653  *		Should be at least nr_pages long. Or NULL, if caller
1654  *		only intends to ensure the pages are faulted in.
1655  * @vmas:	array of pointers to vmas corresponding to each page.
1656  *		Or NULL if the caller does not require them.
1657  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1658  *
1659  * Returns number of pages pinned. This may be fewer than the number
1660  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1661  * were pinned, returns -errno. Each page returned must be released
1662  * with a put_page() call when it is finished with. vmas will only
1663  * remain valid while mmap_sem is held.
1664  *
1665  * Must be called with mmap_sem held for read or write.
1666  *
1667  * __get_user_pages walks a process's page tables and takes a reference to
1668  * each struct page that each user address corresponds to at a given
1669  * instant. That is, it takes the page that would be accessed if a user
1670  * thread accesses the given user virtual address at that instant.
1671  *
1672  * This does not guarantee that the page exists in the user mappings when
1673  * __get_user_pages returns, and there may even be a completely different
1674  * page there in some cases (eg. if mmapped pagecache has been invalidated
1675  * and subsequently re faulted). However it does guarantee that the page
1676  * won't be freed completely. And mostly callers simply care that the page
1677  * contains data that was valid *at some point in time*. Typically, an IO
1678  * or similar operation cannot guarantee anything stronger anyway because
1679  * locks can't be held over the syscall boundary.
1680  *
1681  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1682  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1683  * appropriate) must be called after the page is finished with, and
1684  * before put_page is called.
1685  *
1686  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1687  * or mmap_sem contention, and if waiting is needed to pin all pages,
1688  * *@nonblocking will be set to 0.
1689  *
1690  * In most cases, get_user_pages or get_user_pages_fast should be used
1691  * instead of __get_user_pages. __get_user_pages should be used only if
1692  * you need some special @gup_flags.
1693  */
1694 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1695 		unsigned long start, unsigned long nr_pages,
1696 		unsigned int gup_flags, struct page **pages,
1697 		struct vm_area_struct **vmas, int *nonblocking)
1698 {
1699 	long i;
1700 	unsigned long vm_flags;
1701 	unsigned int page_mask;
1702 
1703 	if (!nr_pages)
1704 		return 0;
1705 
1706 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1707 
1708 	/*
1709 	 * Require read or write permissions.
1710 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1711 	 */
1712 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1713 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1714 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1715 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1716 
1717 	/*
1718 	 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1719 	 * would be called on PROT_NONE ranges. We must never invoke
1720 	 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1721 	 * page faults would unprotect the PROT_NONE ranges if
1722 	 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1723 	 * bitflag. So to avoid that, don't set FOLL_NUMA if
1724 	 * FOLL_FORCE is set.
1725 	 */
1726 	if (!(gup_flags & FOLL_FORCE))
1727 		gup_flags |= FOLL_NUMA;
1728 
1729 	i = 0;
1730 
1731 	do {
1732 		struct vm_area_struct *vma;
1733 
1734 		vma = find_extend_vma(mm, start);
1735 		if (!vma && in_gate_area(mm, start)) {
1736 			unsigned long pg = start & PAGE_MASK;
1737 			pgd_t *pgd;
1738 			pud_t *pud;
1739 			pmd_t *pmd;
1740 			pte_t *pte;
1741 
1742 			/* user gate pages are read-only */
1743 			if (gup_flags & FOLL_WRITE)
1744 				return i ? : -EFAULT;
1745 			if (pg > TASK_SIZE)
1746 				pgd = pgd_offset_k(pg);
1747 			else
1748 				pgd = pgd_offset_gate(mm, pg);
1749 			BUG_ON(pgd_none(*pgd));
1750 			pud = pud_offset(pgd, pg);
1751 			BUG_ON(pud_none(*pud));
1752 			pmd = pmd_offset(pud, pg);
1753 			if (pmd_none(*pmd))
1754 				return i ? : -EFAULT;
1755 			VM_BUG_ON(pmd_trans_huge(*pmd));
1756 			pte = pte_offset_map(pmd, pg);
1757 			if (pte_none(*pte)) {
1758 				pte_unmap(pte);
1759 				return i ? : -EFAULT;
1760 			}
1761 			vma = get_gate_vma(mm);
1762 			if (pages) {
1763 				struct page *page;
1764 
1765 				page = vm_normal_page(vma, start, *pte);
1766 				if (!page) {
1767 					if (!(gup_flags & FOLL_DUMP) &&
1768 					     is_zero_pfn(pte_pfn(*pte)))
1769 						page = pte_page(*pte);
1770 					else {
1771 						pte_unmap(pte);
1772 						return i ? : -EFAULT;
1773 					}
1774 				}
1775 				pages[i] = page;
1776 				get_page(page);
1777 			}
1778 			pte_unmap(pte);
1779 			page_mask = 0;
1780 			goto next_page;
1781 		}
1782 
1783 		if (!vma ||
1784 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1785 		    !(vm_flags & vma->vm_flags))
1786 			return i ? : -EFAULT;
1787 
1788 		if (is_vm_hugetlb_page(vma)) {
1789 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1790 					&start, &nr_pages, i, gup_flags);
1791 			continue;
1792 		}
1793 
1794 		do {
1795 			struct page *page;
1796 			unsigned int foll_flags = gup_flags;
1797 			unsigned int page_increm;
1798 
1799 			/*
1800 			 * If we have a pending SIGKILL, don't keep faulting
1801 			 * pages and potentially allocating memory.
1802 			 */
1803 			if (unlikely(fatal_signal_pending(current)))
1804 				return i ? i : -ERESTARTSYS;
1805 
1806 			cond_resched();
1807 			while (!(page = follow_page_mask(vma, start,
1808 						foll_flags, &page_mask))) {
1809 				int ret;
1810 				unsigned int fault_flags = 0;
1811 
1812 				/* For mlock, just skip the stack guard page. */
1813 				if (foll_flags & FOLL_MLOCK) {
1814 					if (stack_guard_page(vma, start))
1815 						goto next_page;
1816 				}
1817 				if (foll_flags & FOLL_WRITE)
1818 					fault_flags |= FAULT_FLAG_WRITE;
1819 				if (nonblocking)
1820 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1821 				if (foll_flags & FOLL_NOWAIT)
1822 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1823 
1824 				ret = handle_mm_fault(mm, vma, start,
1825 							fault_flags);
1826 
1827 				if (ret & VM_FAULT_ERROR) {
1828 					if (ret & VM_FAULT_OOM)
1829 						return i ? i : -ENOMEM;
1830 					if (ret & (VM_FAULT_HWPOISON |
1831 						   VM_FAULT_HWPOISON_LARGE)) {
1832 						if (i)
1833 							return i;
1834 						else if (gup_flags & FOLL_HWPOISON)
1835 							return -EHWPOISON;
1836 						else
1837 							return -EFAULT;
1838 					}
1839 					if (ret & VM_FAULT_SIGBUS)
1840 						return i ? i : -EFAULT;
1841 					BUG();
1842 				}
1843 
1844 				if (tsk) {
1845 					if (ret & VM_FAULT_MAJOR)
1846 						tsk->maj_flt++;
1847 					else
1848 						tsk->min_flt++;
1849 				}
1850 
1851 				if (ret & VM_FAULT_RETRY) {
1852 					if (nonblocking)
1853 						*nonblocking = 0;
1854 					return i;
1855 				}
1856 
1857 				/*
1858 				 * The VM_FAULT_WRITE bit tells us that
1859 				 * do_wp_page has broken COW when necessary,
1860 				 * even if maybe_mkwrite decided not to set
1861 				 * pte_write. We can thus safely do subsequent
1862 				 * page lookups as if they were reads. But only
1863 				 * do so when looping for pte_write is futile:
1864 				 * in some cases userspace may also be wanting
1865 				 * to write to the gotten user page, which a
1866 				 * read fault here might prevent (a readonly
1867 				 * page might get reCOWed by userspace write).
1868 				 */
1869 				if ((ret & VM_FAULT_WRITE) &&
1870 				    !(vma->vm_flags & VM_WRITE))
1871 					foll_flags &= ~FOLL_WRITE;
1872 
1873 				cond_resched();
1874 			}
1875 			if (IS_ERR(page))
1876 				return i ? i : PTR_ERR(page);
1877 			if (pages) {
1878 				pages[i] = page;
1879 
1880 				flush_anon_page(vma, page, start);
1881 				flush_dcache_page(page);
1882 				page_mask = 0;
1883 			}
1884 next_page:
1885 			if (vmas) {
1886 				vmas[i] = vma;
1887 				page_mask = 0;
1888 			}
1889 			page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1890 			if (page_increm > nr_pages)
1891 				page_increm = nr_pages;
1892 			i += page_increm;
1893 			start += page_increm * PAGE_SIZE;
1894 			nr_pages -= page_increm;
1895 		} while (nr_pages && start < vma->vm_end);
1896 	} while (nr_pages);
1897 	return i;
1898 }
1899 EXPORT_SYMBOL(__get_user_pages);
1900 
1901 /*
1902  * fixup_user_fault() - manually resolve a user page fault
1903  * @tsk:	the task_struct to use for page fault accounting, or
1904  *		NULL if faults are not to be recorded.
1905  * @mm:		mm_struct of target mm
1906  * @address:	user address
1907  * @fault_flags:flags to pass down to handle_mm_fault()
1908  *
1909  * This is meant to be called in the specific scenario where for locking reasons
1910  * we try to access user memory in atomic context (within a pagefault_disable()
1911  * section), this returns -EFAULT, and we want to resolve the user fault before
1912  * trying again.
1913  *
1914  * Typically this is meant to be used by the futex code.
1915  *
1916  * The main difference with get_user_pages() is that this function will
1917  * unconditionally call handle_mm_fault() which will in turn perform all the
1918  * necessary SW fixup of the dirty and young bits in the PTE, while
1919  * handle_mm_fault() only guarantees to update these in the struct page.
1920  *
1921  * This is important for some architectures where those bits also gate the
1922  * access permission to the page because they are maintained in software.  On
1923  * such architectures, gup() will not be enough to make a subsequent access
1924  * succeed.
1925  *
1926  * This should be called with the mm_sem held for read.
1927  */
1928 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1929 		     unsigned long address, unsigned int fault_flags)
1930 {
1931 	struct vm_area_struct *vma;
1932 	int ret;
1933 
1934 	vma = find_extend_vma(mm, address);
1935 	if (!vma || address < vma->vm_start)
1936 		return -EFAULT;
1937 
1938 	ret = handle_mm_fault(mm, vma, address, fault_flags);
1939 	if (ret & VM_FAULT_ERROR) {
1940 		if (ret & VM_FAULT_OOM)
1941 			return -ENOMEM;
1942 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1943 			return -EHWPOISON;
1944 		if (ret & VM_FAULT_SIGBUS)
1945 			return -EFAULT;
1946 		BUG();
1947 	}
1948 	if (tsk) {
1949 		if (ret & VM_FAULT_MAJOR)
1950 			tsk->maj_flt++;
1951 		else
1952 			tsk->min_flt++;
1953 	}
1954 	return 0;
1955 }
1956 
1957 /*
1958  * get_user_pages() - pin user pages in memory
1959  * @tsk:	the task_struct to use for page fault accounting, or
1960  *		NULL if faults are not to be recorded.
1961  * @mm:		mm_struct of target mm
1962  * @start:	starting user address
1963  * @nr_pages:	number of pages from start to pin
1964  * @write:	whether pages will be written to by the caller
1965  * @force:	whether to force write access even if user mapping is
1966  *		readonly. This will result in the page being COWed even
1967  *		in MAP_SHARED mappings. You do not want this.
1968  * @pages:	array that receives pointers to the pages pinned.
1969  *		Should be at least nr_pages long. Or NULL, if caller
1970  *		only intends to ensure the pages are faulted in.
1971  * @vmas:	array of pointers to vmas corresponding to each page.
1972  *		Or NULL if the caller does not require them.
1973  *
1974  * Returns number of pages pinned. This may be fewer than the number
1975  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1976  * were pinned, returns -errno. Each page returned must be released
1977  * with a put_page() call when it is finished with. vmas will only
1978  * remain valid while mmap_sem is held.
1979  *
1980  * Must be called with mmap_sem held for read or write.
1981  *
1982  * get_user_pages walks a process's page tables and takes a reference to
1983  * each struct page that each user address corresponds to at a given
1984  * instant. That is, it takes the page that would be accessed if a user
1985  * thread accesses the given user virtual address at that instant.
1986  *
1987  * This does not guarantee that the page exists in the user mappings when
1988  * get_user_pages returns, and there may even be a completely different
1989  * page there in some cases (eg. if mmapped pagecache has been invalidated
1990  * and subsequently re faulted). However it does guarantee that the page
1991  * won't be freed completely. And mostly callers simply care that the page
1992  * contains data that was valid *at some point in time*. Typically, an IO
1993  * or similar operation cannot guarantee anything stronger anyway because
1994  * locks can't be held over the syscall boundary.
1995  *
1996  * If write=0, the page must not be written to. If the page is written to,
1997  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1998  * after the page is finished with, and before put_page is called.
1999  *
2000  * get_user_pages is typically used for fewer-copy IO operations, to get a
2001  * handle on the memory by some means other than accesses via the user virtual
2002  * addresses. The pages may be submitted for DMA to devices or accessed via
2003  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2004  * use the correct cache flushing APIs.
2005  *
2006  * See also get_user_pages_fast, for performance critical applications.
2007  */
2008 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2009 		unsigned long start, unsigned long nr_pages, int write,
2010 		int force, struct page **pages, struct vm_area_struct **vmas)
2011 {
2012 	int flags = FOLL_TOUCH;
2013 
2014 	if (pages)
2015 		flags |= FOLL_GET;
2016 	if (write)
2017 		flags |= FOLL_WRITE;
2018 	if (force)
2019 		flags |= FOLL_FORCE;
2020 
2021 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2022 				NULL);
2023 }
2024 EXPORT_SYMBOL(get_user_pages);
2025 
2026 /**
2027  * get_dump_page() - pin user page in memory while writing it to core dump
2028  * @addr: user address
2029  *
2030  * Returns struct page pointer of user page pinned for dump,
2031  * to be freed afterwards by page_cache_release() or put_page().
2032  *
2033  * Returns NULL on any kind of failure - a hole must then be inserted into
2034  * the corefile, to preserve alignment with its headers; and also returns
2035  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2036  * allowing a hole to be left in the corefile to save diskspace.
2037  *
2038  * Called without mmap_sem, but after all other threads have been killed.
2039  */
2040 #ifdef CONFIG_ELF_CORE
2041 struct page *get_dump_page(unsigned long addr)
2042 {
2043 	struct vm_area_struct *vma;
2044 	struct page *page;
2045 
2046 	if (__get_user_pages(current, current->mm, addr, 1,
2047 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2048 			     NULL) < 1)
2049 		return NULL;
2050 	flush_cache_page(vma, addr, page_to_pfn(page));
2051 	return page;
2052 }
2053 #endif /* CONFIG_ELF_CORE */
2054 
2055 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2056 			spinlock_t **ptl)
2057 {
2058 	pgd_t * pgd = pgd_offset(mm, addr);
2059 	pud_t * pud = pud_alloc(mm, pgd, addr);
2060 	if (pud) {
2061 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2062 		if (pmd) {
2063 			VM_BUG_ON(pmd_trans_huge(*pmd));
2064 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2065 		}
2066 	}
2067 	return NULL;
2068 }
2069 
2070 /*
2071  * This is the old fallback for page remapping.
2072  *
2073  * For historical reasons, it only allows reserved pages. Only
2074  * old drivers should use this, and they needed to mark their
2075  * pages reserved for the old functions anyway.
2076  */
2077 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2078 			struct page *page, pgprot_t prot)
2079 {
2080 	struct mm_struct *mm = vma->vm_mm;
2081 	int retval;
2082 	pte_t *pte;
2083 	spinlock_t *ptl;
2084 
2085 	retval = -EINVAL;
2086 	if (PageAnon(page))
2087 		goto out;
2088 	retval = -ENOMEM;
2089 	flush_dcache_page(page);
2090 	pte = get_locked_pte(mm, addr, &ptl);
2091 	if (!pte)
2092 		goto out;
2093 	retval = -EBUSY;
2094 	if (!pte_none(*pte))
2095 		goto out_unlock;
2096 
2097 	/* Ok, finally just insert the thing.. */
2098 	get_page(page);
2099 	inc_mm_counter_fast(mm, MM_FILEPAGES);
2100 	page_add_file_rmap(page);
2101 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2102 
2103 	retval = 0;
2104 	pte_unmap_unlock(pte, ptl);
2105 	return retval;
2106 out_unlock:
2107 	pte_unmap_unlock(pte, ptl);
2108 out:
2109 	return retval;
2110 }
2111 
2112 /**
2113  * vm_insert_page - insert single page into user vma
2114  * @vma: user vma to map to
2115  * @addr: target user address of this page
2116  * @page: source kernel page
2117  *
2118  * This allows drivers to insert individual pages they've allocated
2119  * into a user vma.
2120  *
2121  * The page has to be a nice clean _individual_ kernel allocation.
2122  * If you allocate a compound page, you need to have marked it as
2123  * such (__GFP_COMP), or manually just split the page up yourself
2124  * (see split_page()).
2125  *
2126  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2127  * took an arbitrary page protection parameter. This doesn't allow
2128  * that. Your vma protection will have to be set up correctly, which
2129  * means that if you want a shared writable mapping, you'd better
2130  * ask for a shared writable mapping!
2131  *
2132  * The page does not need to be reserved.
2133  *
2134  * Usually this function is called from f_op->mmap() handler
2135  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2136  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2137  * function from other places, for example from page-fault handler.
2138  */
2139 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2140 			struct page *page)
2141 {
2142 	if (addr < vma->vm_start || addr >= vma->vm_end)
2143 		return -EFAULT;
2144 	if (!page_count(page))
2145 		return -EINVAL;
2146 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2147 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2148 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2149 		vma->vm_flags |= VM_MIXEDMAP;
2150 	}
2151 	return insert_page(vma, addr, page, vma->vm_page_prot);
2152 }
2153 EXPORT_SYMBOL(vm_insert_page);
2154 
2155 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2156 			unsigned long pfn, pgprot_t prot)
2157 {
2158 	struct mm_struct *mm = vma->vm_mm;
2159 	int retval;
2160 	pte_t *pte, entry;
2161 	spinlock_t *ptl;
2162 
2163 	retval = -ENOMEM;
2164 	pte = get_locked_pte(mm, addr, &ptl);
2165 	if (!pte)
2166 		goto out;
2167 	retval = -EBUSY;
2168 	if (!pte_none(*pte))
2169 		goto out_unlock;
2170 
2171 	/* Ok, finally just insert the thing.. */
2172 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2173 	set_pte_at(mm, addr, pte, entry);
2174 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2175 
2176 	retval = 0;
2177 out_unlock:
2178 	pte_unmap_unlock(pte, ptl);
2179 out:
2180 	return retval;
2181 }
2182 
2183 /**
2184  * vm_insert_pfn - insert single pfn into user vma
2185  * @vma: user vma to map to
2186  * @addr: target user address of this page
2187  * @pfn: source kernel pfn
2188  *
2189  * Similar to vm_insert_page, this allows drivers to insert individual pages
2190  * they've allocated into a user vma. Same comments apply.
2191  *
2192  * This function should only be called from a vm_ops->fault handler, and
2193  * in that case the handler should return NULL.
2194  *
2195  * vma cannot be a COW mapping.
2196  *
2197  * As this is called only for pages that do not currently exist, we
2198  * do not need to flush old virtual caches or the TLB.
2199  */
2200 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2201 			unsigned long pfn)
2202 {
2203 	int ret;
2204 	pgprot_t pgprot = vma->vm_page_prot;
2205 	/*
2206 	 * Technically, architectures with pte_special can avoid all these
2207 	 * restrictions (same for remap_pfn_range).  However we would like
2208 	 * consistency in testing and feature parity among all, so we should
2209 	 * try to keep these invariants in place for everybody.
2210 	 */
2211 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2212 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2213 						(VM_PFNMAP|VM_MIXEDMAP));
2214 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2215 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2216 
2217 	if (addr < vma->vm_start || addr >= vma->vm_end)
2218 		return -EFAULT;
2219 	if (track_pfn_insert(vma, &pgprot, pfn))
2220 		return -EINVAL;
2221 
2222 	ret = insert_pfn(vma, addr, pfn, pgprot);
2223 
2224 	return ret;
2225 }
2226 EXPORT_SYMBOL(vm_insert_pfn);
2227 
2228 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2229 			unsigned long pfn)
2230 {
2231 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2232 
2233 	if (addr < vma->vm_start || addr >= vma->vm_end)
2234 		return -EFAULT;
2235 
2236 	/*
2237 	 * If we don't have pte special, then we have to use the pfn_valid()
2238 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2239 	 * refcount the page if pfn_valid is true (hence insert_page rather
2240 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2241 	 * without pte special, it would there be refcounted as a normal page.
2242 	 */
2243 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2244 		struct page *page;
2245 
2246 		page = pfn_to_page(pfn);
2247 		return insert_page(vma, addr, page, vma->vm_page_prot);
2248 	}
2249 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2250 }
2251 EXPORT_SYMBOL(vm_insert_mixed);
2252 
2253 /*
2254  * maps a range of physical memory into the requested pages. the old
2255  * mappings are removed. any references to nonexistent pages results
2256  * in null mappings (currently treated as "copy-on-access")
2257  */
2258 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2259 			unsigned long addr, unsigned long end,
2260 			unsigned long pfn, pgprot_t prot)
2261 {
2262 	pte_t *pte;
2263 	spinlock_t *ptl;
2264 
2265 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2266 	if (!pte)
2267 		return -ENOMEM;
2268 	arch_enter_lazy_mmu_mode();
2269 	do {
2270 		BUG_ON(!pte_none(*pte));
2271 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2272 		pfn++;
2273 	} while (pte++, addr += PAGE_SIZE, addr != end);
2274 	arch_leave_lazy_mmu_mode();
2275 	pte_unmap_unlock(pte - 1, ptl);
2276 	return 0;
2277 }
2278 
2279 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2280 			unsigned long addr, unsigned long end,
2281 			unsigned long pfn, pgprot_t prot)
2282 {
2283 	pmd_t *pmd;
2284 	unsigned long next;
2285 
2286 	pfn -= addr >> PAGE_SHIFT;
2287 	pmd = pmd_alloc(mm, pud, addr);
2288 	if (!pmd)
2289 		return -ENOMEM;
2290 	VM_BUG_ON(pmd_trans_huge(*pmd));
2291 	do {
2292 		next = pmd_addr_end(addr, end);
2293 		if (remap_pte_range(mm, pmd, addr, next,
2294 				pfn + (addr >> PAGE_SHIFT), prot))
2295 			return -ENOMEM;
2296 	} while (pmd++, addr = next, addr != end);
2297 	return 0;
2298 }
2299 
2300 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2301 			unsigned long addr, unsigned long end,
2302 			unsigned long pfn, pgprot_t prot)
2303 {
2304 	pud_t *pud;
2305 	unsigned long next;
2306 
2307 	pfn -= addr >> PAGE_SHIFT;
2308 	pud = pud_alloc(mm, pgd, addr);
2309 	if (!pud)
2310 		return -ENOMEM;
2311 	do {
2312 		next = pud_addr_end(addr, end);
2313 		if (remap_pmd_range(mm, pud, addr, next,
2314 				pfn + (addr >> PAGE_SHIFT), prot))
2315 			return -ENOMEM;
2316 	} while (pud++, addr = next, addr != end);
2317 	return 0;
2318 }
2319 
2320 /**
2321  * remap_pfn_range - remap kernel memory to userspace
2322  * @vma: user vma to map to
2323  * @addr: target user address to start at
2324  * @pfn: physical address of kernel memory
2325  * @size: size of map area
2326  * @prot: page protection flags for this mapping
2327  *
2328  *  Note: this is only safe if the mm semaphore is held when called.
2329  */
2330 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2331 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2332 {
2333 	pgd_t *pgd;
2334 	unsigned long next;
2335 	unsigned long end = addr + PAGE_ALIGN(size);
2336 	struct mm_struct *mm = vma->vm_mm;
2337 	int err;
2338 
2339 	/*
2340 	 * Physically remapped pages are special. Tell the
2341 	 * rest of the world about it:
2342 	 *   VM_IO tells people not to look at these pages
2343 	 *	(accesses can have side effects).
2344 	 *   VM_PFNMAP tells the core MM that the base pages are just
2345 	 *	raw PFN mappings, and do not have a "struct page" associated
2346 	 *	with them.
2347 	 *   VM_DONTEXPAND
2348 	 *      Disable vma merging and expanding with mremap().
2349 	 *   VM_DONTDUMP
2350 	 *      Omit vma from core dump, even when VM_IO turned off.
2351 	 *
2352 	 * There's a horrible special case to handle copy-on-write
2353 	 * behaviour that some programs depend on. We mark the "original"
2354 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2355 	 * See vm_normal_page() for details.
2356 	 */
2357 	if (is_cow_mapping(vma->vm_flags)) {
2358 		if (addr != vma->vm_start || end != vma->vm_end)
2359 			return -EINVAL;
2360 		vma->vm_pgoff = pfn;
2361 	}
2362 
2363 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2364 	if (err)
2365 		return -EINVAL;
2366 
2367 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2368 
2369 	BUG_ON(addr >= end);
2370 	pfn -= addr >> PAGE_SHIFT;
2371 	pgd = pgd_offset(mm, addr);
2372 	flush_cache_range(vma, addr, end);
2373 	do {
2374 		next = pgd_addr_end(addr, end);
2375 		err = remap_pud_range(mm, pgd, addr, next,
2376 				pfn + (addr >> PAGE_SHIFT), prot);
2377 		if (err)
2378 			break;
2379 	} while (pgd++, addr = next, addr != end);
2380 
2381 	if (err)
2382 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2383 
2384 	return err;
2385 }
2386 EXPORT_SYMBOL(remap_pfn_range);
2387 
2388 /**
2389  * vm_iomap_memory - remap memory to userspace
2390  * @vma: user vma to map to
2391  * @start: start of area
2392  * @len: size of area
2393  *
2394  * This is a simplified io_remap_pfn_range() for common driver use. The
2395  * driver just needs to give us the physical memory range to be mapped,
2396  * we'll figure out the rest from the vma information.
2397  *
2398  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2399  * whatever write-combining details or similar.
2400  */
2401 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2402 {
2403 	unsigned long vm_len, pfn, pages;
2404 
2405 	/* Check that the physical memory area passed in looks valid */
2406 	if (start + len < start)
2407 		return -EINVAL;
2408 	/*
2409 	 * You *really* shouldn't map things that aren't page-aligned,
2410 	 * but we've historically allowed it because IO memory might
2411 	 * just have smaller alignment.
2412 	 */
2413 	len += start & ~PAGE_MASK;
2414 	pfn = start >> PAGE_SHIFT;
2415 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2416 	if (pfn + pages < pfn)
2417 		return -EINVAL;
2418 
2419 	/* We start the mapping 'vm_pgoff' pages into the area */
2420 	if (vma->vm_pgoff > pages)
2421 		return -EINVAL;
2422 	pfn += vma->vm_pgoff;
2423 	pages -= vma->vm_pgoff;
2424 
2425 	/* Can we fit all of the mapping? */
2426 	vm_len = vma->vm_end - vma->vm_start;
2427 	if (vm_len >> PAGE_SHIFT > pages)
2428 		return -EINVAL;
2429 
2430 	/* Ok, let it rip */
2431 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2432 }
2433 EXPORT_SYMBOL(vm_iomap_memory);
2434 
2435 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2436 				     unsigned long addr, unsigned long end,
2437 				     pte_fn_t fn, void *data)
2438 {
2439 	pte_t *pte;
2440 	int err;
2441 	pgtable_t token;
2442 	spinlock_t *uninitialized_var(ptl);
2443 
2444 	pte = (mm == &init_mm) ?
2445 		pte_alloc_kernel(pmd, addr) :
2446 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2447 	if (!pte)
2448 		return -ENOMEM;
2449 
2450 	BUG_ON(pmd_huge(*pmd));
2451 
2452 	arch_enter_lazy_mmu_mode();
2453 
2454 	token = pmd_pgtable(*pmd);
2455 
2456 	do {
2457 		err = fn(pte++, token, addr, data);
2458 		if (err)
2459 			break;
2460 	} while (addr += PAGE_SIZE, addr != end);
2461 
2462 	arch_leave_lazy_mmu_mode();
2463 
2464 	if (mm != &init_mm)
2465 		pte_unmap_unlock(pte-1, ptl);
2466 	return err;
2467 }
2468 
2469 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2470 				     unsigned long addr, unsigned long end,
2471 				     pte_fn_t fn, void *data)
2472 {
2473 	pmd_t *pmd;
2474 	unsigned long next;
2475 	int err;
2476 
2477 	BUG_ON(pud_huge(*pud));
2478 
2479 	pmd = pmd_alloc(mm, pud, addr);
2480 	if (!pmd)
2481 		return -ENOMEM;
2482 	do {
2483 		next = pmd_addr_end(addr, end);
2484 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2485 		if (err)
2486 			break;
2487 	} while (pmd++, addr = next, addr != end);
2488 	return err;
2489 }
2490 
2491 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2492 				     unsigned long addr, unsigned long end,
2493 				     pte_fn_t fn, void *data)
2494 {
2495 	pud_t *pud;
2496 	unsigned long next;
2497 	int err;
2498 
2499 	pud = pud_alloc(mm, pgd, addr);
2500 	if (!pud)
2501 		return -ENOMEM;
2502 	do {
2503 		next = pud_addr_end(addr, end);
2504 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2505 		if (err)
2506 			break;
2507 	} while (pud++, addr = next, addr != end);
2508 	return err;
2509 }
2510 
2511 /*
2512  * Scan a region of virtual memory, filling in page tables as necessary
2513  * and calling a provided function on each leaf page table.
2514  */
2515 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2516 			unsigned long size, pte_fn_t fn, void *data)
2517 {
2518 	pgd_t *pgd;
2519 	unsigned long next;
2520 	unsigned long end = addr + size;
2521 	int err;
2522 
2523 	BUG_ON(addr >= end);
2524 	pgd = pgd_offset(mm, addr);
2525 	do {
2526 		next = pgd_addr_end(addr, end);
2527 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2528 		if (err)
2529 			break;
2530 	} while (pgd++, addr = next, addr != end);
2531 
2532 	return err;
2533 }
2534 EXPORT_SYMBOL_GPL(apply_to_page_range);
2535 
2536 /*
2537  * handle_pte_fault chooses page fault handler according to an entry
2538  * which was read non-atomically.  Before making any commitment, on
2539  * those architectures or configurations (e.g. i386 with PAE) which
2540  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2541  * must check under lock before unmapping the pte and proceeding
2542  * (but do_wp_page is only called after already making such a check;
2543  * and do_anonymous_page can safely check later on).
2544  */
2545 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2546 				pte_t *page_table, pte_t orig_pte)
2547 {
2548 	int same = 1;
2549 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2550 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2551 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2552 		spin_lock(ptl);
2553 		same = pte_same(*page_table, orig_pte);
2554 		spin_unlock(ptl);
2555 	}
2556 #endif
2557 	pte_unmap(page_table);
2558 	return same;
2559 }
2560 
2561 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2562 {
2563 	/*
2564 	 * If the source page was a PFN mapping, we don't have
2565 	 * a "struct page" for it. We do a best-effort copy by
2566 	 * just copying from the original user address. If that
2567 	 * fails, we just zero-fill it. Live with it.
2568 	 */
2569 	if (unlikely(!src)) {
2570 		void *kaddr = kmap_atomic(dst);
2571 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2572 
2573 		/*
2574 		 * This really shouldn't fail, because the page is there
2575 		 * in the page tables. But it might just be unreadable,
2576 		 * in which case we just give up and fill the result with
2577 		 * zeroes.
2578 		 */
2579 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2580 			clear_page(kaddr);
2581 		kunmap_atomic(kaddr);
2582 		flush_dcache_page(dst);
2583 	} else
2584 		copy_user_highpage(dst, src, va, vma);
2585 }
2586 
2587 /*
2588  * This routine handles present pages, when users try to write
2589  * to a shared page. It is done by copying the page to a new address
2590  * and decrementing the shared-page counter for the old page.
2591  *
2592  * Note that this routine assumes that the protection checks have been
2593  * done by the caller (the low-level page fault routine in most cases).
2594  * Thus we can safely just mark it writable once we've done any necessary
2595  * COW.
2596  *
2597  * We also mark the page dirty at this point even though the page will
2598  * change only once the write actually happens. This avoids a few races,
2599  * and potentially makes it more efficient.
2600  *
2601  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2602  * but allow concurrent faults), with pte both mapped and locked.
2603  * We return with mmap_sem still held, but pte unmapped and unlocked.
2604  */
2605 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2606 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2607 		spinlock_t *ptl, pte_t orig_pte)
2608 	__releases(ptl)
2609 {
2610 	struct page *old_page, *new_page = NULL;
2611 	pte_t entry;
2612 	int ret = 0;
2613 	int page_mkwrite = 0;
2614 	struct page *dirty_page = NULL;
2615 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2616 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2617 
2618 	old_page = vm_normal_page(vma, address, orig_pte);
2619 	if (!old_page) {
2620 		/*
2621 		 * VM_MIXEDMAP !pfn_valid() case
2622 		 *
2623 		 * We should not cow pages in a shared writeable mapping.
2624 		 * Just mark the pages writable as we can't do any dirty
2625 		 * accounting on raw pfn maps.
2626 		 */
2627 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2628 				     (VM_WRITE|VM_SHARED))
2629 			goto reuse;
2630 		goto gotten;
2631 	}
2632 
2633 	/*
2634 	 * Take out anonymous pages first, anonymous shared vmas are
2635 	 * not dirty accountable.
2636 	 */
2637 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2638 		if (!trylock_page(old_page)) {
2639 			page_cache_get(old_page);
2640 			pte_unmap_unlock(page_table, ptl);
2641 			lock_page(old_page);
2642 			page_table = pte_offset_map_lock(mm, pmd, address,
2643 							 &ptl);
2644 			if (!pte_same(*page_table, orig_pte)) {
2645 				unlock_page(old_page);
2646 				goto unlock;
2647 			}
2648 			page_cache_release(old_page);
2649 		}
2650 		if (reuse_swap_page(old_page)) {
2651 			/*
2652 			 * The page is all ours.  Move it to our anon_vma so
2653 			 * the rmap code will not search our parent or siblings.
2654 			 * Protected against the rmap code by the page lock.
2655 			 */
2656 			page_move_anon_rmap(old_page, vma, address);
2657 			unlock_page(old_page);
2658 			goto reuse;
2659 		}
2660 		unlock_page(old_page);
2661 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2662 					(VM_WRITE|VM_SHARED))) {
2663 		/*
2664 		 * Only catch write-faults on shared writable pages,
2665 		 * read-only shared pages can get COWed by
2666 		 * get_user_pages(.write=1, .force=1).
2667 		 */
2668 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2669 			struct vm_fault vmf;
2670 			int tmp;
2671 
2672 			vmf.virtual_address = (void __user *)(address &
2673 								PAGE_MASK);
2674 			vmf.pgoff = old_page->index;
2675 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2676 			vmf.page = old_page;
2677 
2678 			/*
2679 			 * Notify the address space that the page is about to
2680 			 * become writable so that it can prohibit this or wait
2681 			 * for the page to get into an appropriate state.
2682 			 *
2683 			 * We do this without the lock held, so that it can
2684 			 * sleep if it needs to.
2685 			 */
2686 			page_cache_get(old_page);
2687 			pte_unmap_unlock(page_table, ptl);
2688 
2689 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2690 			if (unlikely(tmp &
2691 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2692 				ret = tmp;
2693 				goto unwritable_page;
2694 			}
2695 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2696 				lock_page(old_page);
2697 				if (!old_page->mapping) {
2698 					ret = 0; /* retry the fault */
2699 					unlock_page(old_page);
2700 					goto unwritable_page;
2701 				}
2702 			} else
2703 				VM_BUG_ON(!PageLocked(old_page));
2704 
2705 			/*
2706 			 * Since we dropped the lock we need to revalidate
2707 			 * the PTE as someone else may have changed it.  If
2708 			 * they did, we just return, as we can count on the
2709 			 * MMU to tell us if they didn't also make it writable.
2710 			 */
2711 			page_table = pte_offset_map_lock(mm, pmd, address,
2712 							 &ptl);
2713 			if (!pte_same(*page_table, orig_pte)) {
2714 				unlock_page(old_page);
2715 				goto unlock;
2716 			}
2717 
2718 			page_mkwrite = 1;
2719 		}
2720 		dirty_page = old_page;
2721 		get_page(dirty_page);
2722 
2723 reuse:
2724 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2725 		entry = pte_mkyoung(orig_pte);
2726 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2727 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2728 			update_mmu_cache(vma, address, page_table);
2729 		pte_unmap_unlock(page_table, ptl);
2730 		ret |= VM_FAULT_WRITE;
2731 
2732 		if (!dirty_page)
2733 			return ret;
2734 
2735 		/*
2736 		 * Yes, Virginia, this is actually required to prevent a race
2737 		 * with clear_page_dirty_for_io() from clearing the page dirty
2738 		 * bit after it clear all dirty ptes, but before a racing
2739 		 * do_wp_page installs a dirty pte.
2740 		 *
2741 		 * __do_fault is protected similarly.
2742 		 */
2743 		if (!page_mkwrite) {
2744 			wait_on_page_locked(dirty_page);
2745 			set_page_dirty_balance(dirty_page, page_mkwrite);
2746 			/* file_update_time outside page_lock */
2747 			if (vma->vm_file)
2748 				file_update_time(vma->vm_file);
2749 		}
2750 		put_page(dirty_page);
2751 		if (page_mkwrite) {
2752 			struct address_space *mapping = dirty_page->mapping;
2753 
2754 			set_page_dirty(dirty_page);
2755 			unlock_page(dirty_page);
2756 			page_cache_release(dirty_page);
2757 			if (mapping)	{
2758 				/*
2759 				 * Some device drivers do not set page.mapping
2760 				 * but still dirty their pages
2761 				 */
2762 				balance_dirty_pages_ratelimited(mapping);
2763 			}
2764 		}
2765 
2766 		return ret;
2767 	}
2768 
2769 	/*
2770 	 * Ok, we need to copy. Oh, well..
2771 	 */
2772 	page_cache_get(old_page);
2773 gotten:
2774 	pte_unmap_unlock(page_table, ptl);
2775 
2776 	if (unlikely(anon_vma_prepare(vma)))
2777 		goto oom;
2778 
2779 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2780 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2781 		if (!new_page)
2782 			goto oom;
2783 	} else {
2784 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2785 		if (!new_page)
2786 			goto oom;
2787 		cow_user_page(new_page, old_page, address, vma);
2788 	}
2789 	__SetPageUptodate(new_page);
2790 
2791 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2792 		goto oom_free_new;
2793 
2794 	mmun_start  = address & PAGE_MASK;
2795 	mmun_end    = mmun_start + PAGE_SIZE;
2796 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2797 
2798 	/*
2799 	 * Re-check the pte - we dropped the lock
2800 	 */
2801 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2802 	if (likely(pte_same(*page_table, orig_pte))) {
2803 		if (old_page) {
2804 			if (!PageAnon(old_page)) {
2805 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2806 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2807 			}
2808 		} else
2809 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2810 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2811 		entry = mk_pte(new_page, vma->vm_page_prot);
2812 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2813 		/*
2814 		 * Clear the pte entry and flush it first, before updating the
2815 		 * pte with the new entry. This will avoid a race condition
2816 		 * seen in the presence of one thread doing SMC and another
2817 		 * thread doing COW.
2818 		 */
2819 		ptep_clear_flush(vma, address, page_table);
2820 		page_add_new_anon_rmap(new_page, vma, address);
2821 		/*
2822 		 * We call the notify macro here because, when using secondary
2823 		 * mmu page tables (such as kvm shadow page tables), we want the
2824 		 * new page to be mapped directly into the secondary page table.
2825 		 */
2826 		set_pte_at_notify(mm, address, page_table, entry);
2827 		update_mmu_cache(vma, address, page_table);
2828 		if (old_page) {
2829 			/*
2830 			 * Only after switching the pte to the new page may
2831 			 * we remove the mapcount here. Otherwise another
2832 			 * process may come and find the rmap count decremented
2833 			 * before the pte is switched to the new page, and
2834 			 * "reuse" the old page writing into it while our pte
2835 			 * here still points into it and can be read by other
2836 			 * threads.
2837 			 *
2838 			 * The critical issue is to order this
2839 			 * page_remove_rmap with the ptp_clear_flush above.
2840 			 * Those stores are ordered by (if nothing else,)
2841 			 * the barrier present in the atomic_add_negative
2842 			 * in page_remove_rmap.
2843 			 *
2844 			 * Then the TLB flush in ptep_clear_flush ensures that
2845 			 * no process can access the old page before the
2846 			 * decremented mapcount is visible. And the old page
2847 			 * cannot be reused until after the decremented
2848 			 * mapcount is visible. So transitively, TLBs to
2849 			 * old page will be flushed before it can be reused.
2850 			 */
2851 			page_remove_rmap(old_page);
2852 		}
2853 
2854 		/* Free the old page.. */
2855 		new_page = old_page;
2856 		ret |= VM_FAULT_WRITE;
2857 	} else
2858 		mem_cgroup_uncharge_page(new_page);
2859 
2860 	if (new_page)
2861 		page_cache_release(new_page);
2862 unlock:
2863 	pte_unmap_unlock(page_table, ptl);
2864 	if (mmun_end > mmun_start)
2865 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2866 	if (old_page) {
2867 		/*
2868 		 * Don't let another task, with possibly unlocked vma,
2869 		 * keep the mlocked page.
2870 		 */
2871 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2872 			lock_page(old_page);	/* LRU manipulation */
2873 			munlock_vma_page(old_page);
2874 			unlock_page(old_page);
2875 		}
2876 		page_cache_release(old_page);
2877 	}
2878 	return ret;
2879 oom_free_new:
2880 	page_cache_release(new_page);
2881 oom:
2882 	if (old_page)
2883 		page_cache_release(old_page);
2884 	return VM_FAULT_OOM;
2885 
2886 unwritable_page:
2887 	page_cache_release(old_page);
2888 	return ret;
2889 }
2890 
2891 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2892 		unsigned long start_addr, unsigned long end_addr,
2893 		struct zap_details *details)
2894 {
2895 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2896 }
2897 
2898 static inline void unmap_mapping_range_tree(struct rb_root *root,
2899 					    struct zap_details *details)
2900 {
2901 	struct vm_area_struct *vma;
2902 	pgoff_t vba, vea, zba, zea;
2903 
2904 	vma_interval_tree_foreach(vma, root,
2905 			details->first_index, details->last_index) {
2906 
2907 		vba = vma->vm_pgoff;
2908 		vea = vba + vma_pages(vma) - 1;
2909 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2910 		zba = details->first_index;
2911 		if (zba < vba)
2912 			zba = vba;
2913 		zea = details->last_index;
2914 		if (zea > vea)
2915 			zea = vea;
2916 
2917 		unmap_mapping_range_vma(vma,
2918 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2919 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2920 				details);
2921 	}
2922 }
2923 
2924 static inline void unmap_mapping_range_list(struct list_head *head,
2925 					    struct zap_details *details)
2926 {
2927 	struct vm_area_struct *vma;
2928 
2929 	/*
2930 	 * In nonlinear VMAs there is no correspondence between virtual address
2931 	 * offset and file offset.  So we must perform an exhaustive search
2932 	 * across *all* the pages in each nonlinear VMA, not just the pages
2933 	 * whose virtual address lies outside the file truncation point.
2934 	 */
2935 	list_for_each_entry(vma, head, shared.nonlinear) {
2936 		details->nonlinear_vma = vma;
2937 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2938 	}
2939 }
2940 
2941 /**
2942  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2943  * @mapping: the address space containing mmaps to be unmapped.
2944  * @holebegin: byte in first page to unmap, relative to the start of
2945  * the underlying file.  This will be rounded down to a PAGE_SIZE
2946  * boundary.  Note that this is different from truncate_pagecache(), which
2947  * must keep the partial page.  In contrast, we must get rid of
2948  * partial pages.
2949  * @holelen: size of prospective hole in bytes.  This will be rounded
2950  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2951  * end of the file.
2952  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2953  * but 0 when invalidating pagecache, don't throw away private data.
2954  */
2955 void unmap_mapping_range(struct address_space *mapping,
2956 		loff_t const holebegin, loff_t const holelen, int even_cows)
2957 {
2958 	struct zap_details details;
2959 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2960 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2961 
2962 	/* Check for overflow. */
2963 	if (sizeof(holelen) > sizeof(hlen)) {
2964 		long long holeend =
2965 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2966 		if (holeend & ~(long long)ULONG_MAX)
2967 			hlen = ULONG_MAX - hba + 1;
2968 	}
2969 
2970 	details.check_mapping = even_cows? NULL: mapping;
2971 	details.nonlinear_vma = NULL;
2972 	details.first_index = hba;
2973 	details.last_index = hba + hlen - 1;
2974 	if (details.last_index < details.first_index)
2975 		details.last_index = ULONG_MAX;
2976 
2977 
2978 	mutex_lock(&mapping->i_mmap_mutex);
2979 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2980 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2981 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2982 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2983 	mutex_unlock(&mapping->i_mmap_mutex);
2984 }
2985 EXPORT_SYMBOL(unmap_mapping_range);
2986 
2987 /*
2988  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2989  * but allow concurrent faults), and pte mapped but not yet locked.
2990  * We return with mmap_sem still held, but pte unmapped and unlocked.
2991  */
2992 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2993 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2994 		unsigned int flags, pte_t orig_pte)
2995 {
2996 	spinlock_t *ptl;
2997 	struct page *page, *swapcache;
2998 	swp_entry_t entry;
2999 	pte_t pte;
3000 	int locked;
3001 	struct mem_cgroup *ptr;
3002 	int exclusive = 0;
3003 	int ret = 0;
3004 
3005 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3006 		goto out;
3007 
3008 	entry = pte_to_swp_entry(orig_pte);
3009 	if (unlikely(non_swap_entry(entry))) {
3010 		if (is_migration_entry(entry)) {
3011 			migration_entry_wait(mm, pmd, address);
3012 		} else if (is_hwpoison_entry(entry)) {
3013 			ret = VM_FAULT_HWPOISON;
3014 		} else {
3015 			print_bad_pte(vma, address, orig_pte, NULL);
3016 			ret = VM_FAULT_SIGBUS;
3017 		}
3018 		goto out;
3019 	}
3020 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3021 	page = lookup_swap_cache(entry);
3022 	if (!page) {
3023 		page = swapin_readahead(entry,
3024 					GFP_HIGHUSER_MOVABLE, vma, address);
3025 		if (!page) {
3026 			/*
3027 			 * Back out if somebody else faulted in this pte
3028 			 * while we released the pte lock.
3029 			 */
3030 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3031 			if (likely(pte_same(*page_table, orig_pte)))
3032 				ret = VM_FAULT_OOM;
3033 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3034 			goto unlock;
3035 		}
3036 
3037 		/* Had to read the page from swap area: Major fault */
3038 		ret = VM_FAULT_MAJOR;
3039 		count_vm_event(PGMAJFAULT);
3040 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3041 	} else if (PageHWPoison(page)) {
3042 		/*
3043 		 * hwpoisoned dirty swapcache pages are kept for killing
3044 		 * owner processes (which may be unknown at hwpoison time)
3045 		 */
3046 		ret = VM_FAULT_HWPOISON;
3047 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3048 		swapcache = page;
3049 		goto out_release;
3050 	}
3051 
3052 	swapcache = page;
3053 	locked = lock_page_or_retry(page, mm, flags);
3054 
3055 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3056 	if (!locked) {
3057 		ret |= VM_FAULT_RETRY;
3058 		goto out_release;
3059 	}
3060 
3061 	/*
3062 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3063 	 * release the swapcache from under us.  The page pin, and pte_same
3064 	 * test below, are not enough to exclude that.  Even if it is still
3065 	 * swapcache, we need to check that the page's swap has not changed.
3066 	 */
3067 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3068 		goto out_page;
3069 
3070 	page = ksm_might_need_to_copy(page, vma, address);
3071 	if (unlikely(!page)) {
3072 		ret = VM_FAULT_OOM;
3073 		page = swapcache;
3074 		goto out_page;
3075 	}
3076 
3077 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3078 		ret = VM_FAULT_OOM;
3079 		goto out_page;
3080 	}
3081 
3082 	/*
3083 	 * Back out if somebody else already faulted in this pte.
3084 	 */
3085 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3086 	if (unlikely(!pte_same(*page_table, orig_pte)))
3087 		goto out_nomap;
3088 
3089 	if (unlikely(!PageUptodate(page))) {
3090 		ret = VM_FAULT_SIGBUS;
3091 		goto out_nomap;
3092 	}
3093 
3094 	/*
3095 	 * The page isn't present yet, go ahead with the fault.
3096 	 *
3097 	 * Be careful about the sequence of operations here.
3098 	 * To get its accounting right, reuse_swap_page() must be called
3099 	 * while the page is counted on swap but not yet in mapcount i.e.
3100 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3101 	 * must be called after the swap_free(), or it will never succeed.
3102 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3103 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3104 	 * in page->private. In this case, a record in swap_cgroup  is silently
3105 	 * discarded at swap_free().
3106 	 */
3107 
3108 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3109 	dec_mm_counter_fast(mm, MM_SWAPENTS);
3110 	pte = mk_pte(page, vma->vm_page_prot);
3111 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3112 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3113 		flags &= ~FAULT_FLAG_WRITE;
3114 		ret |= VM_FAULT_WRITE;
3115 		exclusive = 1;
3116 	}
3117 	flush_icache_page(vma, page);
3118 	set_pte_at(mm, address, page_table, pte);
3119 	if (page == swapcache)
3120 		do_page_add_anon_rmap(page, vma, address, exclusive);
3121 	else /* ksm created a completely new copy */
3122 		page_add_new_anon_rmap(page, vma, address);
3123 	/* It's better to call commit-charge after rmap is established */
3124 	mem_cgroup_commit_charge_swapin(page, ptr);
3125 
3126 	swap_free(entry);
3127 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3128 		try_to_free_swap(page);
3129 	unlock_page(page);
3130 	if (page != swapcache) {
3131 		/*
3132 		 * Hold the lock to avoid the swap entry to be reused
3133 		 * until we take the PT lock for the pte_same() check
3134 		 * (to avoid false positives from pte_same). For
3135 		 * further safety release the lock after the swap_free
3136 		 * so that the swap count won't change under a
3137 		 * parallel locked swapcache.
3138 		 */
3139 		unlock_page(swapcache);
3140 		page_cache_release(swapcache);
3141 	}
3142 
3143 	if (flags & FAULT_FLAG_WRITE) {
3144 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3145 		if (ret & VM_FAULT_ERROR)
3146 			ret &= VM_FAULT_ERROR;
3147 		goto out;
3148 	}
3149 
3150 	/* No need to invalidate - it was non-present before */
3151 	update_mmu_cache(vma, address, page_table);
3152 unlock:
3153 	pte_unmap_unlock(page_table, ptl);
3154 out:
3155 	return ret;
3156 out_nomap:
3157 	mem_cgroup_cancel_charge_swapin(ptr);
3158 	pte_unmap_unlock(page_table, ptl);
3159 out_page:
3160 	unlock_page(page);
3161 out_release:
3162 	page_cache_release(page);
3163 	if (page != swapcache) {
3164 		unlock_page(swapcache);
3165 		page_cache_release(swapcache);
3166 	}
3167 	return ret;
3168 }
3169 
3170 /*
3171  * This is like a special single-page "expand_{down|up}wards()",
3172  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3173  * doesn't hit another vma.
3174  */
3175 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3176 {
3177 	address &= PAGE_MASK;
3178 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3179 		struct vm_area_struct *prev = vma->vm_prev;
3180 
3181 		/*
3182 		 * Is there a mapping abutting this one below?
3183 		 *
3184 		 * That's only ok if it's the same stack mapping
3185 		 * that has gotten split..
3186 		 */
3187 		if (prev && prev->vm_end == address)
3188 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3189 
3190 		expand_downwards(vma, address - PAGE_SIZE);
3191 	}
3192 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3193 		struct vm_area_struct *next = vma->vm_next;
3194 
3195 		/* As VM_GROWSDOWN but s/below/above/ */
3196 		if (next && next->vm_start == address + PAGE_SIZE)
3197 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3198 
3199 		expand_upwards(vma, address + PAGE_SIZE);
3200 	}
3201 	return 0;
3202 }
3203 
3204 /*
3205  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3206  * but allow concurrent faults), and pte mapped but not yet locked.
3207  * We return with mmap_sem still held, but pte unmapped and unlocked.
3208  */
3209 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3210 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3211 		unsigned int flags)
3212 {
3213 	struct page *page;
3214 	spinlock_t *ptl;
3215 	pte_t entry;
3216 
3217 	pte_unmap(page_table);
3218 
3219 	/* Check if we need to add a guard page to the stack */
3220 	if (check_stack_guard_page(vma, address) < 0)
3221 		return VM_FAULT_SIGBUS;
3222 
3223 	/* Use the zero-page for reads */
3224 	if (!(flags & FAULT_FLAG_WRITE)) {
3225 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3226 						vma->vm_page_prot));
3227 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3228 		if (!pte_none(*page_table))
3229 			goto unlock;
3230 		goto setpte;
3231 	}
3232 
3233 	/* Allocate our own private page. */
3234 	if (unlikely(anon_vma_prepare(vma)))
3235 		goto oom;
3236 	page = alloc_zeroed_user_highpage_movable(vma, address);
3237 	if (!page)
3238 		goto oom;
3239 	/*
3240 	 * The memory barrier inside __SetPageUptodate makes sure that
3241 	 * preceeding stores to the page contents become visible before
3242 	 * the set_pte_at() write.
3243 	 */
3244 	__SetPageUptodate(page);
3245 
3246 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3247 		goto oom_free_page;
3248 
3249 	entry = mk_pte(page, vma->vm_page_prot);
3250 	if (vma->vm_flags & VM_WRITE)
3251 		entry = pte_mkwrite(pte_mkdirty(entry));
3252 
3253 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3254 	if (!pte_none(*page_table))
3255 		goto release;
3256 
3257 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3258 	page_add_new_anon_rmap(page, vma, address);
3259 setpte:
3260 	set_pte_at(mm, address, page_table, entry);
3261 
3262 	/* No need to invalidate - it was non-present before */
3263 	update_mmu_cache(vma, address, page_table);
3264 unlock:
3265 	pte_unmap_unlock(page_table, ptl);
3266 	return 0;
3267 release:
3268 	mem_cgroup_uncharge_page(page);
3269 	page_cache_release(page);
3270 	goto unlock;
3271 oom_free_page:
3272 	page_cache_release(page);
3273 oom:
3274 	return VM_FAULT_OOM;
3275 }
3276 
3277 /*
3278  * __do_fault() tries to create a new page mapping. It aggressively
3279  * tries to share with existing pages, but makes a separate copy if
3280  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3281  * the next page fault.
3282  *
3283  * As this is called only for pages that do not currently exist, we
3284  * do not need to flush old virtual caches or the TLB.
3285  *
3286  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3287  * but allow concurrent faults), and pte neither mapped nor locked.
3288  * We return with mmap_sem still held, but pte unmapped and unlocked.
3289  */
3290 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3291 		unsigned long address, pmd_t *pmd,
3292 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3293 {
3294 	pte_t *page_table;
3295 	spinlock_t *ptl;
3296 	struct page *page;
3297 	struct page *cow_page;
3298 	pte_t entry;
3299 	int anon = 0;
3300 	struct page *dirty_page = NULL;
3301 	struct vm_fault vmf;
3302 	int ret;
3303 	int page_mkwrite = 0;
3304 
3305 	/*
3306 	 * If we do COW later, allocate page befor taking lock_page()
3307 	 * on the file cache page. This will reduce lock holding time.
3308 	 */
3309 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3310 
3311 		if (unlikely(anon_vma_prepare(vma)))
3312 			return VM_FAULT_OOM;
3313 
3314 		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3315 		if (!cow_page)
3316 			return VM_FAULT_OOM;
3317 
3318 		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3319 			page_cache_release(cow_page);
3320 			return VM_FAULT_OOM;
3321 		}
3322 	} else
3323 		cow_page = NULL;
3324 
3325 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3326 	vmf.pgoff = pgoff;
3327 	vmf.flags = flags;
3328 	vmf.page = NULL;
3329 
3330 	ret = vma->vm_ops->fault(vma, &vmf);
3331 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3332 			    VM_FAULT_RETRY)))
3333 		goto uncharge_out;
3334 
3335 	if (unlikely(PageHWPoison(vmf.page))) {
3336 		if (ret & VM_FAULT_LOCKED)
3337 			unlock_page(vmf.page);
3338 		ret = VM_FAULT_HWPOISON;
3339 		goto uncharge_out;
3340 	}
3341 
3342 	/*
3343 	 * For consistency in subsequent calls, make the faulted page always
3344 	 * locked.
3345 	 */
3346 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3347 		lock_page(vmf.page);
3348 	else
3349 		VM_BUG_ON(!PageLocked(vmf.page));
3350 
3351 	/*
3352 	 * Should we do an early C-O-W break?
3353 	 */
3354 	page = vmf.page;
3355 	if (flags & FAULT_FLAG_WRITE) {
3356 		if (!(vma->vm_flags & VM_SHARED)) {
3357 			page = cow_page;
3358 			anon = 1;
3359 			copy_user_highpage(page, vmf.page, address, vma);
3360 			__SetPageUptodate(page);
3361 		} else {
3362 			/*
3363 			 * If the page will be shareable, see if the backing
3364 			 * address space wants to know that the page is about
3365 			 * to become writable
3366 			 */
3367 			if (vma->vm_ops->page_mkwrite) {
3368 				int tmp;
3369 
3370 				unlock_page(page);
3371 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3372 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3373 				if (unlikely(tmp &
3374 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3375 					ret = tmp;
3376 					goto unwritable_page;
3377 				}
3378 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3379 					lock_page(page);
3380 					if (!page->mapping) {
3381 						ret = 0; /* retry the fault */
3382 						unlock_page(page);
3383 						goto unwritable_page;
3384 					}
3385 				} else
3386 					VM_BUG_ON(!PageLocked(page));
3387 				page_mkwrite = 1;
3388 			}
3389 		}
3390 
3391 	}
3392 
3393 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3394 
3395 	/*
3396 	 * This silly early PAGE_DIRTY setting removes a race
3397 	 * due to the bad i386 page protection. But it's valid
3398 	 * for other architectures too.
3399 	 *
3400 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3401 	 * an exclusive copy of the page, or this is a shared mapping,
3402 	 * so we can make it writable and dirty to avoid having to
3403 	 * handle that later.
3404 	 */
3405 	/* Only go through if we didn't race with anybody else... */
3406 	if (likely(pte_same(*page_table, orig_pte))) {
3407 		flush_icache_page(vma, page);
3408 		entry = mk_pte(page, vma->vm_page_prot);
3409 		if (flags & FAULT_FLAG_WRITE)
3410 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3411 		if (anon) {
3412 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3413 			page_add_new_anon_rmap(page, vma, address);
3414 		} else {
3415 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3416 			page_add_file_rmap(page);
3417 			if (flags & FAULT_FLAG_WRITE) {
3418 				dirty_page = page;
3419 				get_page(dirty_page);
3420 			}
3421 		}
3422 		set_pte_at(mm, address, page_table, entry);
3423 
3424 		/* no need to invalidate: a not-present page won't be cached */
3425 		update_mmu_cache(vma, address, page_table);
3426 	} else {
3427 		if (cow_page)
3428 			mem_cgroup_uncharge_page(cow_page);
3429 		if (anon)
3430 			page_cache_release(page);
3431 		else
3432 			anon = 1; /* no anon but release faulted_page */
3433 	}
3434 
3435 	pte_unmap_unlock(page_table, ptl);
3436 
3437 	if (dirty_page) {
3438 		struct address_space *mapping = page->mapping;
3439 		int dirtied = 0;
3440 
3441 		if (set_page_dirty(dirty_page))
3442 			dirtied = 1;
3443 		unlock_page(dirty_page);
3444 		put_page(dirty_page);
3445 		if ((dirtied || page_mkwrite) && mapping) {
3446 			/*
3447 			 * Some device drivers do not set page.mapping but still
3448 			 * dirty their pages
3449 			 */
3450 			balance_dirty_pages_ratelimited(mapping);
3451 		}
3452 
3453 		/* file_update_time outside page_lock */
3454 		if (vma->vm_file && !page_mkwrite)
3455 			file_update_time(vma->vm_file);
3456 	} else {
3457 		unlock_page(vmf.page);
3458 		if (anon)
3459 			page_cache_release(vmf.page);
3460 	}
3461 
3462 	return ret;
3463 
3464 unwritable_page:
3465 	page_cache_release(page);
3466 	return ret;
3467 uncharge_out:
3468 	/* fs's fault handler get error */
3469 	if (cow_page) {
3470 		mem_cgroup_uncharge_page(cow_page);
3471 		page_cache_release(cow_page);
3472 	}
3473 	return ret;
3474 }
3475 
3476 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3477 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3478 		unsigned int flags, pte_t orig_pte)
3479 {
3480 	pgoff_t pgoff = (((address & PAGE_MASK)
3481 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3482 
3483 	pte_unmap(page_table);
3484 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3485 }
3486 
3487 /*
3488  * Fault of a previously existing named mapping. Repopulate the pte
3489  * from the encoded file_pte if possible. This enables swappable
3490  * nonlinear vmas.
3491  *
3492  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3493  * but allow concurrent faults), and pte mapped but not yet locked.
3494  * We return with mmap_sem still held, but pte unmapped and unlocked.
3495  */
3496 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3497 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3498 		unsigned int flags, pte_t orig_pte)
3499 {
3500 	pgoff_t pgoff;
3501 
3502 	flags |= FAULT_FLAG_NONLINEAR;
3503 
3504 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3505 		return 0;
3506 
3507 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3508 		/*
3509 		 * Page table corrupted: show pte and kill process.
3510 		 */
3511 		print_bad_pte(vma, address, orig_pte, NULL);
3512 		return VM_FAULT_SIGBUS;
3513 	}
3514 
3515 	pgoff = pte_to_pgoff(orig_pte);
3516 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3517 }
3518 
3519 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3520 				unsigned long addr, int current_nid)
3521 {
3522 	get_page(page);
3523 
3524 	count_vm_numa_event(NUMA_HINT_FAULTS);
3525 	if (current_nid == numa_node_id())
3526 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3527 
3528 	return mpol_misplaced(page, vma, addr);
3529 }
3530 
3531 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3532 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3533 {
3534 	struct page *page = NULL;
3535 	spinlock_t *ptl;
3536 	int current_nid = -1;
3537 	int target_nid;
3538 	bool migrated = false;
3539 
3540 	/*
3541 	* The "pte" at this point cannot be used safely without
3542 	* validation through pte_unmap_same(). It's of NUMA type but
3543 	* the pfn may be screwed if the read is non atomic.
3544 	*
3545 	* ptep_modify_prot_start is not called as this is clearing
3546 	* the _PAGE_NUMA bit and it is not really expected that there
3547 	* would be concurrent hardware modifications to the PTE.
3548 	*/
3549 	ptl = pte_lockptr(mm, pmd);
3550 	spin_lock(ptl);
3551 	if (unlikely(!pte_same(*ptep, pte))) {
3552 		pte_unmap_unlock(ptep, ptl);
3553 		goto out;
3554 	}
3555 
3556 	pte = pte_mknonnuma(pte);
3557 	set_pte_at(mm, addr, ptep, pte);
3558 	update_mmu_cache(vma, addr, ptep);
3559 
3560 	page = vm_normal_page(vma, addr, pte);
3561 	if (!page) {
3562 		pte_unmap_unlock(ptep, ptl);
3563 		return 0;
3564 	}
3565 
3566 	current_nid = page_to_nid(page);
3567 	target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3568 	pte_unmap_unlock(ptep, ptl);
3569 	if (target_nid == -1) {
3570 		/*
3571 		 * Account for the fault against the current node if it not
3572 		 * being replaced regardless of where the page is located.
3573 		 */
3574 		current_nid = numa_node_id();
3575 		put_page(page);
3576 		goto out;
3577 	}
3578 
3579 	/* Migrate to the requested node */
3580 	migrated = migrate_misplaced_page(page, target_nid);
3581 	if (migrated)
3582 		current_nid = target_nid;
3583 
3584 out:
3585 	if (current_nid != -1)
3586 		task_numa_fault(current_nid, 1, migrated);
3587 	return 0;
3588 }
3589 
3590 /* NUMA hinting page fault entry point for regular pmds */
3591 #ifdef CONFIG_NUMA_BALANCING
3592 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3593 		     unsigned long addr, pmd_t *pmdp)
3594 {
3595 	pmd_t pmd;
3596 	pte_t *pte, *orig_pte;
3597 	unsigned long _addr = addr & PMD_MASK;
3598 	unsigned long offset;
3599 	spinlock_t *ptl;
3600 	bool numa = false;
3601 	int local_nid = numa_node_id();
3602 
3603 	spin_lock(&mm->page_table_lock);
3604 	pmd = *pmdp;
3605 	if (pmd_numa(pmd)) {
3606 		set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3607 		numa = true;
3608 	}
3609 	spin_unlock(&mm->page_table_lock);
3610 
3611 	if (!numa)
3612 		return 0;
3613 
3614 	/* we're in a page fault so some vma must be in the range */
3615 	BUG_ON(!vma);
3616 	BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3617 	offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3618 	VM_BUG_ON(offset >= PMD_SIZE);
3619 	orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3620 	pte += offset >> PAGE_SHIFT;
3621 	for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3622 		pte_t pteval = *pte;
3623 		struct page *page;
3624 		int curr_nid = local_nid;
3625 		int target_nid;
3626 		bool migrated;
3627 		if (!pte_present(pteval))
3628 			continue;
3629 		if (!pte_numa(pteval))
3630 			continue;
3631 		if (addr >= vma->vm_end) {
3632 			vma = find_vma(mm, addr);
3633 			/* there's a pte present so there must be a vma */
3634 			BUG_ON(!vma);
3635 			BUG_ON(addr < vma->vm_start);
3636 		}
3637 		if (pte_numa(pteval)) {
3638 			pteval = pte_mknonnuma(pteval);
3639 			set_pte_at(mm, addr, pte, pteval);
3640 		}
3641 		page = vm_normal_page(vma, addr, pteval);
3642 		if (unlikely(!page))
3643 			continue;
3644 		/* only check non-shared pages */
3645 		if (unlikely(page_mapcount(page) != 1))
3646 			continue;
3647 
3648 		/*
3649 		 * Note that the NUMA fault is later accounted to either
3650 		 * the node that is currently running or where the page is
3651 		 * migrated to.
3652 		 */
3653 		curr_nid = local_nid;
3654 		target_nid = numa_migrate_prep(page, vma, addr,
3655 					       page_to_nid(page));
3656 		if (target_nid == -1) {
3657 			put_page(page);
3658 			continue;
3659 		}
3660 
3661 		/* Migrate to the requested node */
3662 		pte_unmap_unlock(pte, ptl);
3663 		migrated = migrate_misplaced_page(page, target_nid);
3664 		if (migrated)
3665 			curr_nid = target_nid;
3666 		task_numa_fault(curr_nid, 1, migrated);
3667 
3668 		pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3669 	}
3670 	pte_unmap_unlock(orig_pte, ptl);
3671 
3672 	return 0;
3673 }
3674 #else
3675 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3676 		     unsigned long addr, pmd_t *pmdp)
3677 {
3678 	BUG();
3679 	return 0;
3680 }
3681 #endif /* CONFIG_NUMA_BALANCING */
3682 
3683 /*
3684  * These routines also need to handle stuff like marking pages dirty
3685  * and/or accessed for architectures that don't do it in hardware (most
3686  * RISC architectures).  The early dirtying is also good on the i386.
3687  *
3688  * There is also a hook called "update_mmu_cache()" that architectures
3689  * with external mmu caches can use to update those (ie the Sparc or
3690  * PowerPC hashed page tables that act as extended TLBs).
3691  *
3692  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3693  * but allow concurrent faults), and pte mapped but not yet locked.
3694  * We return with mmap_sem still held, but pte unmapped and unlocked.
3695  */
3696 int handle_pte_fault(struct mm_struct *mm,
3697 		     struct vm_area_struct *vma, unsigned long address,
3698 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3699 {
3700 	pte_t entry;
3701 	spinlock_t *ptl;
3702 
3703 	entry = *pte;
3704 	if (!pte_present(entry)) {
3705 		if (pte_none(entry)) {
3706 			if (vma->vm_ops) {
3707 				if (likely(vma->vm_ops->fault))
3708 					return do_linear_fault(mm, vma, address,
3709 						pte, pmd, flags, entry);
3710 			}
3711 			return do_anonymous_page(mm, vma, address,
3712 						 pte, pmd, flags);
3713 		}
3714 		if (pte_file(entry))
3715 			return do_nonlinear_fault(mm, vma, address,
3716 					pte, pmd, flags, entry);
3717 		return do_swap_page(mm, vma, address,
3718 					pte, pmd, flags, entry);
3719 	}
3720 
3721 	if (pte_numa(entry))
3722 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3723 
3724 	ptl = pte_lockptr(mm, pmd);
3725 	spin_lock(ptl);
3726 	if (unlikely(!pte_same(*pte, entry)))
3727 		goto unlock;
3728 	if (flags & FAULT_FLAG_WRITE) {
3729 		if (!pte_write(entry))
3730 			return do_wp_page(mm, vma, address,
3731 					pte, pmd, ptl, entry);
3732 		entry = pte_mkdirty(entry);
3733 	}
3734 	entry = pte_mkyoung(entry);
3735 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3736 		update_mmu_cache(vma, address, pte);
3737 	} else {
3738 		/*
3739 		 * This is needed only for protection faults but the arch code
3740 		 * is not yet telling us if this is a protection fault or not.
3741 		 * This still avoids useless tlb flushes for .text page faults
3742 		 * with threads.
3743 		 */
3744 		if (flags & FAULT_FLAG_WRITE)
3745 			flush_tlb_fix_spurious_fault(vma, address);
3746 	}
3747 unlock:
3748 	pte_unmap_unlock(pte, ptl);
3749 	return 0;
3750 }
3751 
3752 /*
3753  * By the time we get here, we already hold the mm semaphore
3754  */
3755 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3756 		unsigned long address, unsigned int flags)
3757 {
3758 	pgd_t *pgd;
3759 	pud_t *pud;
3760 	pmd_t *pmd;
3761 	pte_t *pte;
3762 
3763 	__set_current_state(TASK_RUNNING);
3764 
3765 	count_vm_event(PGFAULT);
3766 	mem_cgroup_count_vm_event(mm, PGFAULT);
3767 
3768 	/* do counter updates before entering really critical section. */
3769 	check_sync_rss_stat(current);
3770 
3771 	if (unlikely(is_vm_hugetlb_page(vma)))
3772 		return hugetlb_fault(mm, vma, address, flags);
3773 
3774 retry:
3775 	pgd = pgd_offset(mm, address);
3776 	pud = pud_alloc(mm, pgd, address);
3777 	if (!pud)
3778 		return VM_FAULT_OOM;
3779 	pmd = pmd_alloc(mm, pud, address);
3780 	if (!pmd)
3781 		return VM_FAULT_OOM;
3782 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3783 		if (!vma->vm_ops)
3784 			return do_huge_pmd_anonymous_page(mm, vma, address,
3785 							  pmd, flags);
3786 	} else {
3787 		pmd_t orig_pmd = *pmd;
3788 		int ret;
3789 
3790 		barrier();
3791 		if (pmd_trans_huge(orig_pmd)) {
3792 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3793 
3794 			/*
3795 			 * If the pmd is splitting, return and retry the
3796 			 * the fault.  Alternative: wait until the split
3797 			 * is done, and goto retry.
3798 			 */
3799 			if (pmd_trans_splitting(orig_pmd))
3800 				return 0;
3801 
3802 			if (pmd_numa(orig_pmd))
3803 				return do_huge_pmd_numa_page(mm, vma, address,
3804 							     orig_pmd, pmd);
3805 
3806 			if (dirty && !pmd_write(orig_pmd)) {
3807 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3808 							  orig_pmd);
3809 				/*
3810 				 * If COW results in an oom, the huge pmd will
3811 				 * have been split, so retry the fault on the
3812 				 * pte for a smaller charge.
3813 				 */
3814 				if (unlikely(ret & VM_FAULT_OOM))
3815 					goto retry;
3816 				return ret;
3817 			} else {
3818 				huge_pmd_set_accessed(mm, vma, address, pmd,
3819 						      orig_pmd, dirty);
3820 			}
3821 
3822 			return 0;
3823 		}
3824 	}
3825 
3826 	if (pmd_numa(*pmd))
3827 		return do_pmd_numa_page(mm, vma, address, pmd);
3828 
3829 	/*
3830 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3831 	 * run pte_offset_map on the pmd, if an huge pmd could
3832 	 * materialize from under us from a different thread.
3833 	 */
3834 	if (unlikely(pmd_none(*pmd)) &&
3835 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3836 		return VM_FAULT_OOM;
3837 	/* if an huge pmd materialized from under us just retry later */
3838 	if (unlikely(pmd_trans_huge(*pmd)))
3839 		return 0;
3840 	/*
3841 	 * A regular pmd is established and it can't morph into a huge pmd
3842 	 * from under us anymore at this point because we hold the mmap_sem
3843 	 * read mode and khugepaged takes it in write mode. So now it's
3844 	 * safe to run pte_offset_map().
3845 	 */
3846 	pte = pte_offset_map(pmd, address);
3847 
3848 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3849 }
3850 
3851 #ifndef __PAGETABLE_PUD_FOLDED
3852 /*
3853  * Allocate page upper directory.
3854  * We've already handled the fast-path in-line.
3855  */
3856 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3857 {
3858 	pud_t *new = pud_alloc_one(mm, address);
3859 	if (!new)
3860 		return -ENOMEM;
3861 
3862 	smp_wmb(); /* See comment in __pte_alloc */
3863 
3864 	spin_lock(&mm->page_table_lock);
3865 	if (pgd_present(*pgd))		/* Another has populated it */
3866 		pud_free(mm, new);
3867 	else
3868 		pgd_populate(mm, pgd, new);
3869 	spin_unlock(&mm->page_table_lock);
3870 	return 0;
3871 }
3872 #endif /* __PAGETABLE_PUD_FOLDED */
3873 
3874 #ifndef __PAGETABLE_PMD_FOLDED
3875 /*
3876  * Allocate page middle directory.
3877  * We've already handled the fast-path in-line.
3878  */
3879 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3880 {
3881 	pmd_t *new = pmd_alloc_one(mm, address);
3882 	if (!new)
3883 		return -ENOMEM;
3884 
3885 	smp_wmb(); /* See comment in __pte_alloc */
3886 
3887 	spin_lock(&mm->page_table_lock);
3888 #ifndef __ARCH_HAS_4LEVEL_HACK
3889 	if (pud_present(*pud))		/* Another has populated it */
3890 		pmd_free(mm, new);
3891 	else
3892 		pud_populate(mm, pud, new);
3893 #else
3894 	if (pgd_present(*pud))		/* Another has populated it */
3895 		pmd_free(mm, new);
3896 	else
3897 		pgd_populate(mm, pud, new);
3898 #endif /* __ARCH_HAS_4LEVEL_HACK */
3899 	spin_unlock(&mm->page_table_lock);
3900 	return 0;
3901 }
3902 #endif /* __PAGETABLE_PMD_FOLDED */
3903 
3904 #if !defined(__HAVE_ARCH_GATE_AREA)
3905 
3906 #if defined(AT_SYSINFO_EHDR)
3907 static struct vm_area_struct gate_vma;
3908 
3909 static int __init gate_vma_init(void)
3910 {
3911 	gate_vma.vm_mm = NULL;
3912 	gate_vma.vm_start = FIXADDR_USER_START;
3913 	gate_vma.vm_end = FIXADDR_USER_END;
3914 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3915 	gate_vma.vm_page_prot = __P101;
3916 
3917 	return 0;
3918 }
3919 __initcall(gate_vma_init);
3920 #endif
3921 
3922 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3923 {
3924 #ifdef AT_SYSINFO_EHDR
3925 	return &gate_vma;
3926 #else
3927 	return NULL;
3928 #endif
3929 }
3930 
3931 int in_gate_area_no_mm(unsigned long addr)
3932 {
3933 #ifdef AT_SYSINFO_EHDR
3934 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3935 		return 1;
3936 #endif
3937 	return 0;
3938 }
3939 
3940 #endif	/* __HAVE_ARCH_GATE_AREA */
3941 
3942 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3943 		pte_t **ptepp, spinlock_t **ptlp)
3944 {
3945 	pgd_t *pgd;
3946 	pud_t *pud;
3947 	pmd_t *pmd;
3948 	pte_t *ptep;
3949 
3950 	pgd = pgd_offset(mm, address);
3951 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3952 		goto out;
3953 
3954 	pud = pud_offset(pgd, address);
3955 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3956 		goto out;
3957 
3958 	pmd = pmd_offset(pud, address);
3959 	VM_BUG_ON(pmd_trans_huge(*pmd));
3960 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3961 		goto out;
3962 
3963 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3964 	if (pmd_huge(*pmd))
3965 		goto out;
3966 
3967 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3968 	if (!ptep)
3969 		goto out;
3970 	if (!pte_present(*ptep))
3971 		goto unlock;
3972 	*ptepp = ptep;
3973 	return 0;
3974 unlock:
3975 	pte_unmap_unlock(ptep, *ptlp);
3976 out:
3977 	return -EINVAL;
3978 }
3979 
3980 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3981 			     pte_t **ptepp, spinlock_t **ptlp)
3982 {
3983 	int res;
3984 
3985 	/* (void) is needed to make gcc happy */
3986 	(void) __cond_lock(*ptlp,
3987 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3988 	return res;
3989 }
3990 
3991 /**
3992  * follow_pfn - look up PFN at a user virtual address
3993  * @vma: memory mapping
3994  * @address: user virtual address
3995  * @pfn: location to store found PFN
3996  *
3997  * Only IO mappings and raw PFN mappings are allowed.
3998  *
3999  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4000  */
4001 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4002 	unsigned long *pfn)
4003 {
4004 	int ret = -EINVAL;
4005 	spinlock_t *ptl;
4006 	pte_t *ptep;
4007 
4008 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4009 		return ret;
4010 
4011 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4012 	if (ret)
4013 		return ret;
4014 	*pfn = pte_pfn(*ptep);
4015 	pte_unmap_unlock(ptep, ptl);
4016 	return 0;
4017 }
4018 EXPORT_SYMBOL(follow_pfn);
4019 
4020 #ifdef CONFIG_HAVE_IOREMAP_PROT
4021 int follow_phys(struct vm_area_struct *vma,
4022 		unsigned long address, unsigned int flags,
4023 		unsigned long *prot, resource_size_t *phys)
4024 {
4025 	int ret = -EINVAL;
4026 	pte_t *ptep, pte;
4027 	spinlock_t *ptl;
4028 
4029 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4030 		goto out;
4031 
4032 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4033 		goto out;
4034 	pte = *ptep;
4035 
4036 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4037 		goto unlock;
4038 
4039 	*prot = pgprot_val(pte_pgprot(pte));
4040 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4041 
4042 	ret = 0;
4043 unlock:
4044 	pte_unmap_unlock(ptep, ptl);
4045 out:
4046 	return ret;
4047 }
4048 
4049 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4050 			void *buf, int len, int write)
4051 {
4052 	resource_size_t phys_addr;
4053 	unsigned long prot = 0;
4054 	void __iomem *maddr;
4055 	int offset = addr & (PAGE_SIZE-1);
4056 
4057 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4058 		return -EINVAL;
4059 
4060 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4061 	if (write)
4062 		memcpy_toio(maddr + offset, buf, len);
4063 	else
4064 		memcpy_fromio(buf, maddr + offset, len);
4065 	iounmap(maddr);
4066 
4067 	return len;
4068 }
4069 #endif
4070 
4071 /*
4072  * Access another process' address space as given in mm.  If non-NULL, use the
4073  * given task for page fault accounting.
4074  */
4075 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4076 		unsigned long addr, void *buf, int len, int write)
4077 {
4078 	struct vm_area_struct *vma;
4079 	void *old_buf = buf;
4080 
4081 	down_read(&mm->mmap_sem);
4082 	/* ignore errors, just check how much was successfully transferred */
4083 	while (len) {
4084 		int bytes, ret, offset;
4085 		void *maddr;
4086 		struct page *page = NULL;
4087 
4088 		ret = get_user_pages(tsk, mm, addr, 1,
4089 				write, 1, &page, &vma);
4090 		if (ret <= 0) {
4091 			/*
4092 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4093 			 * we can access using slightly different code.
4094 			 */
4095 #ifdef CONFIG_HAVE_IOREMAP_PROT
4096 			vma = find_vma(mm, addr);
4097 			if (!vma || vma->vm_start > addr)
4098 				break;
4099 			if (vma->vm_ops && vma->vm_ops->access)
4100 				ret = vma->vm_ops->access(vma, addr, buf,
4101 							  len, write);
4102 			if (ret <= 0)
4103 #endif
4104 				break;
4105 			bytes = ret;
4106 		} else {
4107 			bytes = len;
4108 			offset = addr & (PAGE_SIZE-1);
4109 			if (bytes > PAGE_SIZE-offset)
4110 				bytes = PAGE_SIZE-offset;
4111 
4112 			maddr = kmap(page);
4113 			if (write) {
4114 				copy_to_user_page(vma, page, addr,
4115 						  maddr + offset, buf, bytes);
4116 				set_page_dirty_lock(page);
4117 			} else {
4118 				copy_from_user_page(vma, page, addr,
4119 						    buf, maddr + offset, bytes);
4120 			}
4121 			kunmap(page);
4122 			page_cache_release(page);
4123 		}
4124 		len -= bytes;
4125 		buf += bytes;
4126 		addr += bytes;
4127 	}
4128 	up_read(&mm->mmap_sem);
4129 
4130 	return buf - old_buf;
4131 }
4132 
4133 /**
4134  * access_remote_vm - access another process' address space
4135  * @mm:		the mm_struct of the target address space
4136  * @addr:	start address to access
4137  * @buf:	source or destination buffer
4138  * @len:	number of bytes to transfer
4139  * @write:	whether the access is a write
4140  *
4141  * The caller must hold a reference on @mm.
4142  */
4143 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4144 		void *buf, int len, int write)
4145 {
4146 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
4147 }
4148 
4149 /*
4150  * Access another process' address space.
4151  * Source/target buffer must be kernel space,
4152  * Do not walk the page table directly, use get_user_pages
4153  */
4154 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4155 		void *buf, int len, int write)
4156 {
4157 	struct mm_struct *mm;
4158 	int ret;
4159 
4160 	mm = get_task_mm(tsk);
4161 	if (!mm)
4162 		return 0;
4163 
4164 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4165 	mmput(mm);
4166 
4167 	return ret;
4168 }
4169 
4170 /*
4171  * Print the name of a VMA.
4172  */
4173 void print_vma_addr(char *prefix, unsigned long ip)
4174 {
4175 	struct mm_struct *mm = current->mm;
4176 	struct vm_area_struct *vma;
4177 
4178 	/*
4179 	 * Do not print if we are in atomic
4180 	 * contexts (in exception stacks, etc.):
4181 	 */
4182 	if (preempt_count())
4183 		return;
4184 
4185 	down_read(&mm->mmap_sem);
4186 	vma = find_vma(mm, ip);
4187 	if (vma && vma->vm_file) {
4188 		struct file *f = vma->vm_file;
4189 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4190 		if (buf) {
4191 			char *p;
4192 
4193 			p = d_path(&f->f_path, buf, PAGE_SIZE);
4194 			if (IS_ERR(p))
4195 				p = "?";
4196 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4197 					vma->vm_start,
4198 					vma->vm_end - vma->vm_start);
4199 			free_page((unsigned long)buf);
4200 		}
4201 	}
4202 	up_read(&mm->mmap_sem);
4203 }
4204 
4205 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4206 void might_fault(void)
4207 {
4208 	/*
4209 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4210 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4211 	 * get paged out, therefore we'll never actually fault, and the
4212 	 * below annotations will generate false positives.
4213 	 */
4214 	if (segment_eq(get_fs(), KERNEL_DS))
4215 		return;
4216 
4217 	/*
4218 	 * it would be nicer only to annotate paths which are not under
4219 	 * pagefault_disable, however that requires a larger audit and
4220 	 * providing helpers like get_user_atomic.
4221 	 */
4222 	if (in_atomic())
4223 		return;
4224 
4225 	__might_sleep(__FILE__, __LINE__, 0);
4226 
4227 	if (current->mm)
4228 		might_lock_read(&current->mm->mmap_sem);
4229 }
4230 EXPORT_SYMBOL(might_fault);
4231 #endif
4232 
4233 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4234 static void clear_gigantic_page(struct page *page,
4235 				unsigned long addr,
4236 				unsigned int pages_per_huge_page)
4237 {
4238 	int i;
4239 	struct page *p = page;
4240 
4241 	might_sleep();
4242 	for (i = 0; i < pages_per_huge_page;
4243 	     i++, p = mem_map_next(p, page, i)) {
4244 		cond_resched();
4245 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4246 	}
4247 }
4248 void clear_huge_page(struct page *page,
4249 		     unsigned long addr, unsigned int pages_per_huge_page)
4250 {
4251 	int i;
4252 
4253 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4254 		clear_gigantic_page(page, addr, pages_per_huge_page);
4255 		return;
4256 	}
4257 
4258 	might_sleep();
4259 	for (i = 0; i < pages_per_huge_page; i++) {
4260 		cond_resched();
4261 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4262 	}
4263 }
4264 
4265 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4266 				    unsigned long addr,
4267 				    struct vm_area_struct *vma,
4268 				    unsigned int pages_per_huge_page)
4269 {
4270 	int i;
4271 	struct page *dst_base = dst;
4272 	struct page *src_base = src;
4273 
4274 	for (i = 0; i < pages_per_huge_page; ) {
4275 		cond_resched();
4276 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4277 
4278 		i++;
4279 		dst = mem_map_next(dst, dst_base, i);
4280 		src = mem_map_next(src, src_base, i);
4281 	}
4282 }
4283 
4284 void copy_user_huge_page(struct page *dst, struct page *src,
4285 			 unsigned long addr, struct vm_area_struct *vma,
4286 			 unsigned int pages_per_huge_page)
4287 {
4288 	int i;
4289 
4290 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4291 		copy_user_gigantic_page(dst, src, addr, vma,
4292 					pages_per_huge_page);
4293 		return;
4294 	}
4295 
4296 	might_sleep();
4297 	for (i = 0; i < pages_per_huge_page; i++) {
4298 		cond_resched();
4299 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4300 	}
4301 }
4302 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4303