xref: /openbmc/linux/mm/memory.c (revision b664e06d)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81 
82 #include "internal.h"
83 
84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87 
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92 
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96 
97 /*
98  * A number of key systems in x86 including ioremap() rely on the assumption
99  * that high_memory defines the upper bound on direct map memory, then end
100  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
101  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102  * and ZONE_HIGHMEM.
103  */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106 
107 /*
108  * Randomize the address space (stacks, mmaps, brk, etc.).
109  *
110  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111  *   as ancient (libc5 based) binaries can segfault. )
112  */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115 					1;
116 #else
117 					2;
118 #endif
119 
120 static int __init disable_randmaps(char *s)
121 {
122 	randomize_va_space = 0;
123 	return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126 
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129 
130 unsigned long highest_memmap_pfn __read_mostly;
131 
132 /*
133  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134  */
135 static int __init init_zero_pfn(void)
136 {
137 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 	return 0;
139 }
140 core_initcall(init_zero_pfn);
141 
142 
143 #if defined(SPLIT_RSS_COUNTING)
144 
145 void sync_mm_rss(struct mm_struct *mm)
146 {
147 	int i;
148 
149 	for (i = 0; i < NR_MM_COUNTERS; i++) {
150 		if (current->rss_stat.count[i]) {
151 			add_mm_counter(mm, i, current->rss_stat.count[i]);
152 			current->rss_stat.count[i] = 0;
153 		}
154 	}
155 	current->rss_stat.events = 0;
156 }
157 
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160 	struct task_struct *task = current;
161 
162 	if (likely(task->mm == mm))
163 		task->rss_stat.count[member] += val;
164 	else
165 		add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169 
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH	(64)
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 	if (unlikely(task != current))
175 		return;
176 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 		sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180 
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183 
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187 
188 #endif /* SPLIT_RSS_COUNTING */
189 
190 /*
191  * Note: this doesn't free the actual pages themselves. That
192  * has been handled earlier when unmapping all the memory regions.
193  */
194 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
195 			   unsigned long addr)
196 {
197 	pgtable_t token = pmd_pgtable(*pmd);
198 	pmd_clear(pmd);
199 	pte_free_tlb(tlb, token, addr);
200 	mm_dec_nr_ptes(tlb->mm);
201 }
202 
203 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
204 				unsigned long addr, unsigned long end,
205 				unsigned long floor, unsigned long ceiling)
206 {
207 	pmd_t *pmd;
208 	unsigned long next;
209 	unsigned long start;
210 
211 	start = addr;
212 	pmd = pmd_offset(pud, addr);
213 	do {
214 		next = pmd_addr_end(addr, end);
215 		if (pmd_none_or_clear_bad(pmd))
216 			continue;
217 		free_pte_range(tlb, pmd, addr);
218 	} while (pmd++, addr = next, addr != end);
219 
220 	start &= PUD_MASK;
221 	if (start < floor)
222 		return;
223 	if (ceiling) {
224 		ceiling &= PUD_MASK;
225 		if (!ceiling)
226 			return;
227 	}
228 	if (end - 1 > ceiling - 1)
229 		return;
230 
231 	pmd = pmd_offset(pud, start);
232 	pud_clear(pud);
233 	pmd_free_tlb(tlb, pmd, start);
234 	mm_dec_nr_pmds(tlb->mm);
235 }
236 
237 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
238 				unsigned long addr, unsigned long end,
239 				unsigned long floor, unsigned long ceiling)
240 {
241 	pud_t *pud;
242 	unsigned long next;
243 	unsigned long start;
244 
245 	start = addr;
246 	pud = pud_offset(p4d, addr);
247 	do {
248 		next = pud_addr_end(addr, end);
249 		if (pud_none_or_clear_bad(pud))
250 			continue;
251 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
252 	} while (pud++, addr = next, addr != end);
253 
254 	start &= P4D_MASK;
255 	if (start < floor)
256 		return;
257 	if (ceiling) {
258 		ceiling &= P4D_MASK;
259 		if (!ceiling)
260 			return;
261 	}
262 	if (end - 1 > ceiling - 1)
263 		return;
264 
265 	pud = pud_offset(p4d, start);
266 	p4d_clear(p4d);
267 	pud_free_tlb(tlb, pud, start);
268 	mm_dec_nr_puds(tlb->mm);
269 }
270 
271 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
272 				unsigned long addr, unsigned long end,
273 				unsigned long floor, unsigned long ceiling)
274 {
275 	p4d_t *p4d;
276 	unsigned long next;
277 	unsigned long start;
278 
279 	start = addr;
280 	p4d = p4d_offset(pgd, addr);
281 	do {
282 		next = p4d_addr_end(addr, end);
283 		if (p4d_none_or_clear_bad(p4d))
284 			continue;
285 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
286 	} while (p4d++, addr = next, addr != end);
287 
288 	start &= PGDIR_MASK;
289 	if (start < floor)
290 		return;
291 	if (ceiling) {
292 		ceiling &= PGDIR_MASK;
293 		if (!ceiling)
294 			return;
295 	}
296 	if (end - 1 > ceiling - 1)
297 		return;
298 
299 	p4d = p4d_offset(pgd, start);
300 	pgd_clear(pgd);
301 	p4d_free_tlb(tlb, p4d, start);
302 }
303 
304 /*
305  * This function frees user-level page tables of a process.
306  */
307 void free_pgd_range(struct mmu_gather *tlb,
308 			unsigned long addr, unsigned long end,
309 			unsigned long floor, unsigned long ceiling)
310 {
311 	pgd_t *pgd;
312 	unsigned long next;
313 
314 	/*
315 	 * The next few lines have given us lots of grief...
316 	 *
317 	 * Why are we testing PMD* at this top level?  Because often
318 	 * there will be no work to do at all, and we'd prefer not to
319 	 * go all the way down to the bottom just to discover that.
320 	 *
321 	 * Why all these "- 1"s?  Because 0 represents both the bottom
322 	 * of the address space and the top of it (using -1 for the
323 	 * top wouldn't help much: the masks would do the wrong thing).
324 	 * The rule is that addr 0 and floor 0 refer to the bottom of
325 	 * the address space, but end 0 and ceiling 0 refer to the top
326 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
327 	 * that end 0 case should be mythical).
328 	 *
329 	 * Wherever addr is brought up or ceiling brought down, we must
330 	 * be careful to reject "the opposite 0" before it confuses the
331 	 * subsequent tests.  But what about where end is brought down
332 	 * by PMD_SIZE below? no, end can't go down to 0 there.
333 	 *
334 	 * Whereas we round start (addr) and ceiling down, by different
335 	 * masks at different levels, in order to test whether a table
336 	 * now has no other vmas using it, so can be freed, we don't
337 	 * bother to round floor or end up - the tests don't need that.
338 	 */
339 
340 	addr &= PMD_MASK;
341 	if (addr < floor) {
342 		addr += PMD_SIZE;
343 		if (!addr)
344 			return;
345 	}
346 	if (ceiling) {
347 		ceiling &= PMD_MASK;
348 		if (!ceiling)
349 			return;
350 	}
351 	if (end - 1 > ceiling - 1)
352 		end -= PMD_SIZE;
353 	if (addr > end - 1)
354 		return;
355 	/*
356 	 * We add page table cache pages with PAGE_SIZE,
357 	 * (see pte_free_tlb()), flush the tlb if we need
358 	 */
359 	tlb_change_page_size(tlb, PAGE_SIZE);
360 	pgd = pgd_offset(tlb->mm, addr);
361 	do {
362 		next = pgd_addr_end(addr, end);
363 		if (pgd_none_or_clear_bad(pgd))
364 			continue;
365 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
366 	} while (pgd++, addr = next, addr != end);
367 }
368 
369 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
370 		unsigned long floor, unsigned long ceiling)
371 {
372 	while (vma) {
373 		struct vm_area_struct *next = vma->vm_next;
374 		unsigned long addr = vma->vm_start;
375 
376 		/*
377 		 * Hide vma from rmap and truncate_pagecache before freeing
378 		 * pgtables
379 		 */
380 		unlink_anon_vmas(vma);
381 		unlink_file_vma(vma);
382 
383 		if (is_vm_hugetlb_page(vma)) {
384 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
385 				floor, next ? next->vm_start : ceiling);
386 		} else {
387 			/*
388 			 * Optimization: gather nearby vmas into one call down
389 			 */
390 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
391 			       && !is_vm_hugetlb_page(next)) {
392 				vma = next;
393 				next = vma->vm_next;
394 				unlink_anon_vmas(vma);
395 				unlink_file_vma(vma);
396 			}
397 			free_pgd_range(tlb, addr, vma->vm_end,
398 				floor, next ? next->vm_start : ceiling);
399 		}
400 		vma = next;
401 	}
402 }
403 
404 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
405 {
406 	spinlock_t *ptl;
407 	pgtable_t new = pte_alloc_one(mm);
408 	if (!new)
409 		return -ENOMEM;
410 
411 	/*
412 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
413 	 * visible before the pte is made visible to other CPUs by being
414 	 * put into page tables.
415 	 *
416 	 * The other side of the story is the pointer chasing in the page
417 	 * table walking code (when walking the page table without locking;
418 	 * ie. most of the time). Fortunately, these data accesses consist
419 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
420 	 * being the notable exception) will already guarantee loads are
421 	 * seen in-order. See the alpha page table accessors for the
422 	 * smp_read_barrier_depends() barriers in page table walking code.
423 	 */
424 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
425 
426 	ptl = pmd_lock(mm, pmd);
427 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
428 		mm_inc_nr_ptes(mm);
429 		pmd_populate(mm, pmd, new);
430 		new = NULL;
431 	}
432 	spin_unlock(ptl);
433 	if (new)
434 		pte_free(mm, new);
435 	return 0;
436 }
437 
438 int __pte_alloc_kernel(pmd_t *pmd)
439 {
440 	pte_t *new = pte_alloc_one_kernel(&init_mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	smp_wmb(); /* See comment in __pte_alloc */
445 
446 	spin_lock(&init_mm.page_table_lock);
447 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
448 		pmd_populate_kernel(&init_mm, pmd, new);
449 		new = NULL;
450 	}
451 	spin_unlock(&init_mm.page_table_lock);
452 	if (new)
453 		pte_free_kernel(&init_mm, new);
454 	return 0;
455 }
456 
457 static inline void init_rss_vec(int *rss)
458 {
459 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
460 }
461 
462 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
463 {
464 	int i;
465 
466 	if (current->mm == mm)
467 		sync_mm_rss(mm);
468 	for (i = 0; i < NR_MM_COUNTERS; i++)
469 		if (rss[i])
470 			add_mm_counter(mm, i, rss[i]);
471 }
472 
473 /*
474  * This function is called to print an error when a bad pte
475  * is found. For example, we might have a PFN-mapped pte in
476  * a region that doesn't allow it.
477  *
478  * The calling function must still handle the error.
479  */
480 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
481 			  pte_t pte, struct page *page)
482 {
483 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
484 	p4d_t *p4d = p4d_offset(pgd, addr);
485 	pud_t *pud = pud_offset(p4d, addr);
486 	pmd_t *pmd = pmd_offset(pud, addr);
487 	struct address_space *mapping;
488 	pgoff_t index;
489 	static unsigned long resume;
490 	static unsigned long nr_shown;
491 	static unsigned long nr_unshown;
492 
493 	/*
494 	 * Allow a burst of 60 reports, then keep quiet for that minute;
495 	 * or allow a steady drip of one report per second.
496 	 */
497 	if (nr_shown == 60) {
498 		if (time_before(jiffies, resume)) {
499 			nr_unshown++;
500 			return;
501 		}
502 		if (nr_unshown) {
503 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
504 				 nr_unshown);
505 			nr_unshown = 0;
506 		}
507 		nr_shown = 0;
508 	}
509 	if (nr_shown++ == 0)
510 		resume = jiffies + 60 * HZ;
511 
512 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
513 	index = linear_page_index(vma, addr);
514 
515 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
516 		 current->comm,
517 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
518 	if (page)
519 		dump_page(page, "bad pte");
520 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
521 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
522 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
523 		 vma->vm_file,
524 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
525 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
526 		 mapping ? mapping->a_ops->readpage : NULL);
527 	dump_stack();
528 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
529 }
530 
531 /*
532  * vm_normal_page -- This function gets the "struct page" associated with a pte.
533  *
534  * "Special" mappings do not wish to be associated with a "struct page" (either
535  * it doesn't exist, or it exists but they don't want to touch it). In this
536  * case, NULL is returned here. "Normal" mappings do have a struct page.
537  *
538  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
539  * pte bit, in which case this function is trivial. Secondly, an architecture
540  * may not have a spare pte bit, which requires a more complicated scheme,
541  * described below.
542  *
543  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
544  * special mapping (even if there are underlying and valid "struct pages").
545  * COWed pages of a VM_PFNMAP are always normal.
546  *
547  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
548  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
549  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
550  * mapping will always honor the rule
551  *
552  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
553  *
554  * And for normal mappings this is false.
555  *
556  * This restricts such mappings to be a linear translation from virtual address
557  * to pfn. To get around this restriction, we allow arbitrary mappings so long
558  * as the vma is not a COW mapping; in that case, we know that all ptes are
559  * special (because none can have been COWed).
560  *
561  *
562  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
563  *
564  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
565  * page" backing, however the difference is that _all_ pages with a struct
566  * page (that is, those where pfn_valid is true) are refcounted and considered
567  * normal pages by the VM. The disadvantage is that pages are refcounted
568  * (which can be slower and simply not an option for some PFNMAP users). The
569  * advantage is that we don't have to follow the strict linearity rule of
570  * PFNMAP mappings in order to support COWable mappings.
571  *
572  */
573 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
574 			     pte_t pte, bool with_public_device)
575 {
576 	unsigned long pfn = pte_pfn(pte);
577 
578 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
579 		if (likely(!pte_special(pte)))
580 			goto check_pfn;
581 		if (vma->vm_ops && vma->vm_ops->find_special_page)
582 			return vma->vm_ops->find_special_page(vma, addr);
583 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
584 			return NULL;
585 		if (is_zero_pfn(pfn))
586 			return NULL;
587 
588 		/*
589 		 * Device public pages are special pages (they are ZONE_DEVICE
590 		 * pages but different from persistent memory). They behave
591 		 * allmost like normal pages. The difference is that they are
592 		 * not on the lru and thus should never be involve with any-
593 		 * thing that involve lru manipulation (mlock, numa balancing,
594 		 * ...).
595 		 *
596 		 * This is why we still want to return NULL for such page from
597 		 * vm_normal_page() so that we do not have to special case all
598 		 * call site of vm_normal_page().
599 		 */
600 		if (likely(pfn <= highest_memmap_pfn)) {
601 			struct page *page = pfn_to_page(pfn);
602 
603 			if (is_device_public_page(page)) {
604 				if (with_public_device)
605 					return page;
606 				return NULL;
607 			}
608 		}
609 
610 		if (pte_devmap(pte))
611 			return NULL;
612 
613 		print_bad_pte(vma, addr, pte, NULL);
614 		return NULL;
615 	}
616 
617 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
618 
619 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620 		if (vma->vm_flags & VM_MIXEDMAP) {
621 			if (!pfn_valid(pfn))
622 				return NULL;
623 			goto out;
624 		} else {
625 			unsigned long off;
626 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
627 			if (pfn == vma->vm_pgoff + off)
628 				return NULL;
629 			if (!is_cow_mapping(vma->vm_flags))
630 				return NULL;
631 		}
632 	}
633 
634 	if (is_zero_pfn(pfn))
635 		return NULL;
636 
637 check_pfn:
638 	if (unlikely(pfn > highest_memmap_pfn)) {
639 		print_bad_pte(vma, addr, pte, NULL);
640 		return NULL;
641 	}
642 
643 	/*
644 	 * NOTE! We still have PageReserved() pages in the page tables.
645 	 * eg. VDSO mappings can cause them to exist.
646 	 */
647 out:
648 	return pfn_to_page(pfn);
649 }
650 
651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
652 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
653 				pmd_t pmd)
654 {
655 	unsigned long pfn = pmd_pfn(pmd);
656 
657 	/*
658 	 * There is no pmd_special() but there may be special pmds, e.g.
659 	 * in a direct-access (dax) mapping, so let's just replicate the
660 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
661 	 */
662 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
663 		if (vma->vm_flags & VM_MIXEDMAP) {
664 			if (!pfn_valid(pfn))
665 				return NULL;
666 			goto out;
667 		} else {
668 			unsigned long off;
669 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
670 			if (pfn == vma->vm_pgoff + off)
671 				return NULL;
672 			if (!is_cow_mapping(vma->vm_flags))
673 				return NULL;
674 		}
675 	}
676 
677 	if (pmd_devmap(pmd))
678 		return NULL;
679 	if (is_zero_pfn(pfn))
680 		return NULL;
681 	if (unlikely(pfn > highest_memmap_pfn))
682 		return NULL;
683 
684 	/*
685 	 * NOTE! We still have PageReserved() pages in the page tables.
686 	 * eg. VDSO mappings can cause them to exist.
687 	 */
688 out:
689 	return pfn_to_page(pfn);
690 }
691 #endif
692 
693 /*
694  * copy one vm_area from one task to the other. Assumes the page tables
695  * already present in the new task to be cleared in the whole range
696  * covered by this vma.
697  */
698 
699 static inline unsigned long
700 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
701 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
702 		unsigned long addr, int *rss)
703 {
704 	unsigned long vm_flags = vma->vm_flags;
705 	pte_t pte = *src_pte;
706 	struct page *page;
707 
708 	/* pte contains position in swap or file, so copy. */
709 	if (unlikely(!pte_present(pte))) {
710 		swp_entry_t entry = pte_to_swp_entry(pte);
711 
712 		if (likely(!non_swap_entry(entry))) {
713 			if (swap_duplicate(entry) < 0)
714 				return entry.val;
715 
716 			/* make sure dst_mm is on swapoff's mmlist. */
717 			if (unlikely(list_empty(&dst_mm->mmlist))) {
718 				spin_lock(&mmlist_lock);
719 				if (list_empty(&dst_mm->mmlist))
720 					list_add(&dst_mm->mmlist,
721 							&src_mm->mmlist);
722 				spin_unlock(&mmlist_lock);
723 			}
724 			rss[MM_SWAPENTS]++;
725 		} else if (is_migration_entry(entry)) {
726 			page = migration_entry_to_page(entry);
727 
728 			rss[mm_counter(page)]++;
729 
730 			if (is_write_migration_entry(entry) &&
731 					is_cow_mapping(vm_flags)) {
732 				/*
733 				 * COW mappings require pages in both
734 				 * parent and child to be set to read.
735 				 */
736 				make_migration_entry_read(&entry);
737 				pte = swp_entry_to_pte(entry);
738 				if (pte_swp_soft_dirty(*src_pte))
739 					pte = pte_swp_mksoft_dirty(pte);
740 				set_pte_at(src_mm, addr, src_pte, pte);
741 			}
742 		} else if (is_device_private_entry(entry)) {
743 			page = device_private_entry_to_page(entry);
744 
745 			/*
746 			 * Update rss count even for unaddressable pages, as
747 			 * they should treated just like normal pages in this
748 			 * respect.
749 			 *
750 			 * We will likely want to have some new rss counters
751 			 * for unaddressable pages, at some point. But for now
752 			 * keep things as they are.
753 			 */
754 			get_page(page);
755 			rss[mm_counter(page)]++;
756 			page_dup_rmap(page, false);
757 
758 			/*
759 			 * We do not preserve soft-dirty information, because so
760 			 * far, checkpoint/restore is the only feature that
761 			 * requires that. And checkpoint/restore does not work
762 			 * when a device driver is involved (you cannot easily
763 			 * save and restore device driver state).
764 			 */
765 			if (is_write_device_private_entry(entry) &&
766 			    is_cow_mapping(vm_flags)) {
767 				make_device_private_entry_read(&entry);
768 				pte = swp_entry_to_pte(entry);
769 				set_pte_at(src_mm, addr, src_pte, pte);
770 			}
771 		}
772 		goto out_set_pte;
773 	}
774 
775 	/*
776 	 * If it's a COW mapping, write protect it both
777 	 * in the parent and the child
778 	 */
779 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
780 		ptep_set_wrprotect(src_mm, addr, src_pte);
781 		pte = pte_wrprotect(pte);
782 	}
783 
784 	/*
785 	 * If it's a shared mapping, mark it clean in
786 	 * the child
787 	 */
788 	if (vm_flags & VM_SHARED)
789 		pte = pte_mkclean(pte);
790 	pte = pte_mkold(pte);
791 
792 	page = vm_normal_page(vma, addr, pte);
793 	if (page) {
794 		get_page(page);
795 		page_dup_rmap(page, false);
796 		rss[mm_counter(page)]++;
797 	} else if (pte_devmap(pte)) {
798 		page = pte_page(pte);
799 
800 		/*
801 		 * Cache coherent device memory behave like regular page and
802 		 * not like persistent memory page. For more informations see
803 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
804 		 */
805 		if (is_device_public_page(page)) {
806 			get_page(page);
807 			page_dup_rmap(page, false);
808 			rss[mm_counter(page)]++;
809 		}
810 	}
811 
812 out_set_pte:
813 	set_pte_at(dst_mm, addr, dst_pte, pte);
814 	return 0;
815 }
816 
817 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
818 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
819 		   unsigned long addr, unsigned long end)
820 {
821 	pte_t *orig_src_pte, *orig_dst_pte;
822 	pte_t *src_pte, *dst_pte;
823 	spinlock_t *src_ptl, *dst_ptl;
824 	int progress = 0;
825 	int rss[NR_MM_COUNTERS];
826 	swp_entry_t entry = (swp_entry_t){0};
827 
828 again:
829 	init_rss_vec(rss);
830 
831 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
832 	if (!dst_pte)
833 		return -ENOMEM;
834 	src_pte = pte_offset_map(src_pmd, addr);
835 	src_ptl = pte_lockptr(src_mm, src_pmd);
836 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
837 	orig_src_pte = src_pte;
838 	orig_dst_pte = dst_pte;
839 	arch_enter_lazy_mmu_mode();
840 
841 	do {
842 		/*
843 		 * We are holding two locks at this point - either of them
844 		 * could generate latencies in another task on another CPU.
845 		 */
846 		if (progress >= 32) {
847 			progress = 0;
848 			if (need_resched() ||
849 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
850 				break;
851 		}
852 		if (pte_none(*src_pte)) {
853 			progress++;
854 			continue;
855 		}
856 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
857 							vma, addr, rss);
858 		if (entry.val)
859 			break;
860 		progress += 8;
861 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
862 
863 	arch_leave_lazy_mmu_mode();
864 	spin_unlock(src_ptl);
865 	pte_unmap(orig_src_pte);
866 	add_mm_rss_vec(dst_mm, rss);
867 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
868 	cond_resched();
869 
870 	if (entry.val) {
871 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
872 			return -ENOMEM;
873 		progress = 0;
874 	}
875 	if (addr != end)
876 		goto again;
877 	return 0;
878 }
879 
880 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
881 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
882 		unsigned long addr, unsigned long end)
883 {
884 	pmd_t *src_pmd, *dst_pmd;
885 	unsigned long next;
886 
887 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
888 	if (!dst_pmd)
889 		return -ENOMEM;
890 	src_pmd = pmd_offset(src_pud, addr);
891 	do {
892 		next = pmd_addr_end(addr, end);
893 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
894 			|| pmd_devmap(*src_pmd)) {
895 			int err;
896 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
897 			err = copy_huge_pmd(dst_mm, src_mm,
898 					    dst_pmd, src_pmd, addr, vma);
899 			if (err == -ENOMEM)
900 				return -ENOMEM;
901 			if (!err)
902 				continue;
903 			/* fall through */
904 		}
905 		if (pmd_none_or_clear_bad(src_pmd))
906 			continue;
907 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
908 						vma, addr, next))
909 			return -ENOMEM;
910 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
911 	return 0;
912 }
913 
914 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
916 		unsigned long addr, unsigned long end)
917 {
918 	pud_t *src_pud, *dst_pud;
919 	unsigned long next;
920 
921 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
922 	if (!dst_pud)
923 		return -ENOMEM;
924 	src_pud = pud_offset(src_p4d, addr);
925 	do {
926 		next = pud_addr_end(addr, end);
927 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
928 			int err;
929 
930 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
931 			err = copy_huge_pud(dst_mm, src_mm,
932 					    dst_pud, src_pud, addr, vma);
933 			if (err == -ENOMEM)
934 				return -ENOMEM;
935 			if (!err)
936 				continue;
937 			/* fall through */
938 		}
939 		if (pud_none_or_clear_bad(src_pud))
940 			continue;
941 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
942 						vma, addr, next))
943 			return -ENOMEM;
944 	} while (dst_pud++, src_pud++, addr = next, addr != end);
945 	return 0;
946 }
947 
948 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
949 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
950 		unsigned long addr, unsigned long end)
951 {
952 	p4d_t *src_p4d, *dst_p4d;
953 	unsigned long next;
954 
955 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
956 	if (!dst_p4d)
957 		return -ENOMEM;
958 	src_p4d = p4d_offset(src_pgd, addr);
959 	do {
960 		next = p4d_addr_end(addr, end);
961 		if (p4d_none_or_clear_bad(src_p4d))
962 			continue;
963 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
964 						vma, addr, next))
965 			return -ENOMEM;
966 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
967 	return 0;
968 }
969 
970 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
971 		struct vm_area_struct *vma)
972 {
973 	pgd_t *src_pgd, *dst_pgd;
974 	unsigned long next;
975 	unsigned long addr = vma->vm_start;
976 	unsigned long end = vma->vm_end;
977 	struct mmu_notifier_range range;
978 	bool is_cow;
979 	int ret;
980 
981 	/*
982 	 * Don't copy ptes where a page fault will fill them correctly.
983 	 * Fork becomes much lighter when there are big shared or private
984 	 * readonly mappings. The tradeoff is that copy_page_range is more
985 	 * efficient than faulting.
986 	 */
987 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988 			!vma->anon_vma)
989 		return 0;
990 
991 	if (is_vm_hugetlb_page(vma))
992 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993 
994 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
995 		/*
996 		 * We do not free on error cases below as remove_vma
997 		 * gets called on error from higher level routine
998 		 */
999 		ret = track_pfn_copy(vma);
1000 		if (ret)
1001 			return ret;
1002 	}
1003 
1004 	/*
1005 	 * We need to invalidate the secondary MMU mappings only when
1006 	 * there could be a permission downgrade on the ptes of the
1007 	 * parent mm. And a permission downgrade will only happen if
1008 	 * is_cow_mapping() returns true.
1009 	 */
1010 	is_cow = is_cow_mapping(vma->vm_flags);
1011 
1012 	if (is_cow) {
1013 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1014 					0, vma, src_mm, addr, end);
1015 		mmu_notifier_invalidate_range_start(&range);
1016 	}
1017 
1018 	ret = 0;
1019 	dst_pgd = pgd_offset(dst_mm, addr);
1020 	src_pgd = pgd_offset(src_mm, addr);
1021 	do {
1022 		next = pgd_addr_end(addr, end);
1023 		if (pgd_none_or_clear_bad(src_pgd))
1024 			continue;
1025 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1026 					    vma, addr, next))) {
1027 			ret = -ENOMEM;
1028 			break;
1029 		}
1030 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1031 
1032 	if (is_cow)
1033 		mmu_notifier_invalidate_range_end(&range);
1034 	return ret;
1035 }
1036 
1037 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1038 				struct vm_area_struct *vma, pmd_t *pmd,
1039 				unsigned long addr, unsigned long end,
1040 				struct zap_details *details)
1041 {
1042 	struct mm_struct *mm = tlb->mm;
1043 	int force_flush = 0;
1044 	int rss[NR_MM_COUNTERS];
1045 	spinlock_t *ptl;
1046 	pte_t *start_pte;
1047 	pte_t *pte;
1048 	swp_entry_t entry;
1049 
1050 	tlb_change_page_size(tlb, PAGE_SIZE);
1051 again:
1052 	init_rss_vec(rss);
1053 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1054 	pte = start_pte;
1055 	flush_tlb_batched_pending(mm);
1056 	arch_enter_lazy_mmu_mode();
1057 	do {
1058 		pte_t ptent = *pte;
1059 		if (pte_none(ptent))
1060 			continue;
1061 
1062 		if (pte_present(ptent)) {
1063 			struct page *page;
1064 
1065 			page = _vm_normal_page(vma, addr, ptent, true);
1066 			if (unlikely(details) && page) {
1067 				/*
1068 				 * unmap_shared_mapping_pages() wants to
1069 				 * invalidate cache without truncating:
1070 				 * unmap shared but keep private pages.
1071 				 */
1072 				if (details->check_mapping &&
1073 				    details->check_mapping != page_rmapping(page))
1074 					continue;
1075 			}
1076 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1077 							tlb->fullmm);
1078 			tlb_remove_tlb_entry(tlb, pte, addr);
1079 			if (unlikely(!page))
1080 				continue;
1081 
1082 			if (!PageAnon(page)) {
1083 				if (pte_dirty(ptent)) {
1084 					force_flush = 1;
1085 					set_page_dirty(page);
1086 				}
1087 				if (pte_young(ptent) &&
1088 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1089 					mark_page_accessed(page);
1090 			}
1091 			rss[mm_counter(page)]--;
1092 			page_remove_rmap(page, false);
1093 			if (unlikely(page_mapcount(page) < 0))
1094 				print_bad_pte(vma, addr, ptent, page);
1095 			if (unlikely(__tlb_remove_page(tlb, page))) {
1096 				force_flush = 1;
1097 				addr += PAGE_SIZE;
1098 				break;
1099 			}
1100 			continue;
1101 		}
1102 
1103 		entry = pte_to_swp_entry(ptent);
1104 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1105 			struct page *page = device_private_entry_to_page(entry);
1106 
1107 			if (unlikely(details && details->check_mapping)) {
1108 				/*
1109 				 * unmap_shared_mapping_pages() wants to
1110 				 * invalidate cache without truncating:
1111 				 * unmap shared but keep private pages.
1112 				 */
1113 				if (details->check_mapping !=
1114 				    page_rmapping(page))
1115 					continue;
1116 			}
1117 
1118 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1119 			rss[mm_counter(page)]--;
1120 			page_remove_rmap(page, false);
1121 			put_page(page);
1122 			continue;
1123 		}
1124 
1125 		/* If details->check_mapping, we leave swap entries. */
1126 		if (unlikely(details))
1127 			continue;
1128 
1129 		entry = pte_to_swp_entry(ptent);
1130 		if (!non_swap_entry(entry))
1131 			rss[MM_SWAPENTS]--;
1132 		else if (is_migration_entry(entry)) {
1133 			struct page *page;
1134 
1135 			page = migration_entry_to_page(entry);
1136 			rss[mm_counter(page)]--;
1137 		}
1138 		if (unlikely(!free_swap_and_cache(entry)))
1139 			print_bad_pte(vma, addr, ptent, NULL);
1140 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1141 	} while (pte++, addr += PAGE_SIZE, addr != end);
1142 
1143 	add_mm_rss_vec(mm, rss);
1144 	arch_leave_lazy_mmu_mode();
1145 
1146 	/* Do the actual TLB flush before dropping ptl */
1147 	if (force_flush)
1148 		tlb_flush_mmu_tlbonly(tlb);
1149 	pte_unmap_unlock(start_pte, ptl);
1150 
1151 	/*
1152 	 * If we forced a TLB flush (either due to running out of
1153 	 * batch buffers or because we needed to flush dirty TLB
1154 	 * entries before releasing the ptl), free the batched
1155 	 * memory too. Restart if we didn't do everything.
1156 	 */
1157 	if (force_flush) {
1158 		force_flush = 0;
1159 		tlb_flush_mmu(tlb);
1160 		if (addr != end)
1161 			goto again;
1162 	}
1163 
1164 	return addr;
1165 }
1166 
1167 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1168 				struct vm_area_struct *vma, pud_t *pud,
1169 				unsigned long addr, unsigned long end,
1170 				struct zap_details *details)
1171 {
1172 	pmd_t *pmd;
1173 	unsigned long next;
1174 
1175 	pmd = pmd_offset(pud, addr);
1176 	do {
1177 		next = pmd_addr_end(addr, end);
1178 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1179 			if (next - addr != HPAGE_PMD_SIZE)
1180 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1181 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1182 				goto next;
1183 			/* fall through */
1184 		}
1185 		/*
1186 		 * Here there can be other concurrent MADV_DONTNEED or
1187 		 * trans huge page faults running, and if the pmd is
1188 		 * none or trans huge it can change under us. This is
1189 		 * because MADV_DONTNEED holds the mmap_sem in read
1190 		 * mode.
1191 		 */
1192 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1193 			goto next;
1194 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1195 next:
1196 		cond_resched();
1197 	} while (pmd++, addr = next, addr != end);
1198 
1199 	return addr;
1200 }
1201 
1202 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1203 				struct vm_area_struct *vma, p4d_t *p4d,
1204 				unsigned long addr, unsigned long end,
1205 				struct zap_details *details)
1206 {
1207 	pud_t *pud;
1208 	unsigned long next;
1209 
1210 	pud = pud_offset(p4d, addr);
1211 	do {
1212 		next = pud_addr_end(addr, end);
1213 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1214 			if (next - addr != HPAGE_PUD_SIZE) {
1215 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1216 				split_huge_pud(vma, pud, addr);
1217 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1218 				goto next;
1219 			/* fall through */
1220 		}
1221 		if (pud_none_or_clear_bad(pud))
1222 			continue;
1223 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1224 next:
1225 		cond_resched();
1226 	} while (pud++, addr = next, addr != end);
1227 
1228 	return addr;
1229 }
1230 
1231 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1232 				struct vm_area_struct *vma, pgd_t *pgd,
1233 				unsigned long addr, unsigned long end,
1234 				struct zap_details *details)
1235 {
1236 	p4d_t *p4d;
1237 	unsigned long next;
1238 
1239 	p4d = p4d_offset(pgd, addr);
1240 	do {
1241 		next = p4d_addr_end(addr, end);
1242 		if (p4d_none_or_clear_bad(p4d))
1243 			continue;
1244 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1245 	} while (p4d++, addr = next, addr != end);
1246 
1247 	return addr;
1248 }
1249 
1250 void unmap_page_range(struct mmu_gather *tlb,
1251 			     struct vm_area_struct *vma,
1252 			     unsigned long addr, unsigned long end,
1253 			     struct zap_details *details)
1254 {
1255 	pgd_t *pgd;
1256 	unsigned long next;
1257 
1258 	BUG_ON(addr >= end);
1259 	tlb_start_vma(tlb, vma);
1260 	pgd = pgd_offset(vma->vm_mm, addr);
1261 	do {
1262 		next = pgd_addr_end(addr, end);
1263 		if (pgd_none_or_clear_bad(pgd))
1264 			continue;
1265 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1266 	} while (pgd++, addr = next, addr != end);
1267 	tlb_end_vma(tlb, vma);
1268 }
1269 
1270 
1271 static void unmap_single_vma(struct mmu_gather *tlb,
1272 		struct vm_area_struct *vma, unsigned long start_addr,
1273 		unsigned long end_addr,
1274 		struct zap_details *details)
1275 {
1276 	unsigned long start = max(vma->vm_start, start_addr);
1277 	unsigned long end;
1278 
1279 	if (start >= vma->vm_end)
1280 		return;
1281 	end = min(vma->vm_end, end_addr);
1282 	if (end <= vma->vm_start)
1283 		return;
1284 
1285 	if (vma->vm_file)
1286 		uprobe_munmap(vma, start, end);
1287 
1288 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1289 		untrack_pfn(vma, 0, 0);
1290 
1291 	if (start != end) {
1292 		if (unlikely(is_vm_hugetlb_page(vma))) {
1293 			/*
1294 			 * It is undesirable to test vma->vm_file as it
1295 			 * should be non-null for valid hugetlb area.
1296 			 * However, vm_file will be NULL in the error
1297 			 * cleanup path of mmap_region. When
1298 			 * hugetlbfs ->mmap method fails,
1299 			 * mmap_region() nullifies vma->vm_file
1300 			 * before calling this function to clean up.
1301 			 * Since no pte has actually been setup, it is
1302 			 * safe to do nothing in this case.
1303 			 */
1304 			if (vma->vm_file) {
1305 				i_mmap_lock_write(vma->vm_file->f_mapping);
1306 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1307 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1308 			}
1309 		} else
1310 			unmap_page_range(tlb, vma, start, end, details);
1311 	}
1312 }
1313 
1314 /**
1315  * unmap_vmas - unmap a range of memory covered by a list of vma's
1316  * @tlb: address of the caller's struct mmu_gather
1317  * @vma: the starting vma
1318  * @start_addr: virtual address at which to start unmapping
1319  * @end_addr: virtual address at which to end unmapping
1320  *
1321  * Unmap all pages in the vma list.
1322  *
1323  * Only addresses between `start' and `end' will be unmapped.
1324  *
1325  * The VMA list must be sorted in ascending virtual address order.
1326  *
1327  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1328  * range after unmap_vmas() returns.  So the only responsibility here is to
1329  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1330  * drops the lock and schedules.
1331  */
1332 void unmap_vmas(struct mmu_gather *tlb,
1333 		struct vm_area_struct *vma, unsigned long start_addr,
1334 		unsigned long end_addr)
1335 {
1336 	struct mmu_notifier_range range;
1337 
1338 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1339 				start_addr, end_addr);
1340 	mmu_notifier_invalidate_range_start(&range);
1341 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1342 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1343 	mmu_notifier_invalidate_range_end(&range);
1344 }
1345 
1346 /**
1347  * zap_page_range - remove user pages in a given range
1348  * @vma: vm_area_struct holding the applicable pages
1349  * @start: starting address of pages to zap
1350  * @size: number of bytes to zap
1351  *
1352  * Caller must protect the VMA list
1353  */
1354 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1355 		unsigned long size)
1356 {
1357 	struct mmu_notifier_range range;
1358 	struct mmu_gather tlb;
1359 
1360 	lru_add_drain();
1361 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1362 				start, start + size);
1363 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1364 	update_hiwater_rss(vma->vm_mm);
1365 	mmu_notifier_invalidate_range_start(&range);
1366 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1367 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1368 	mmu_notifier_invalidate_range_end(&range);
1369 	tlb_finish_mmu(&tlb, start, range.end);
1370 }
1371 
1372 /**
1373  * zap_page_range_single - remove user pages in a given range
1374  * @vma: vm_area_struct holding the applicable pages
1375  * @address: starting address of pages to zap
1376  * @size: number of bytes to zap
1377  * @details: details of shared cache invalidation
1378  *
1379  * The range must fit into one VMA.
1380  */
1381 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1382 		unsigned long size, struct zap_details *details)
1383 {
1384 	struct mmu_notifier_range range;
1385 	struct mmu_gather tlb;
1386 
1387 	lru_add_drain();
1388 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1389 				address, address + size);
1390 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1391 	update_hiwater_rss(vma->vm_mm);
1392 	mmu_notifier_invalidate_range_start(&range);
1393 	unmap_single_vma(&tlb, vma, address, range.end, details);
1394 	mmu_notifier_invalidate_range_end(&range);
1395 	tlb_finish_mmu(&tlb, address, range.end);
1396 }
1397 
1398 /**
1399  * zap_vma_ptes - remove ptes mapping the vma
1400  * @vma: vm_area_struct holding ptes to be zapped
1401  * @address: starting address of pages to zap
1402  * @size: number of bytes to zap
1403  *
1404  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1405  *
1406  * The entire address range must be fully contained within the vma.
1407  *
1408  */
1409 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1410 		unsigned long size)
1411 {
1412 	if (address < vma->vm_start || address + size > vma->vm_end ||
1413 	    		!(vma->vm_flags & VM_PFNMAP))
1414 		return;
1415 
1416 	zap_page_range_single(vma, address, size, NULL);
1417 }
1418 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1419 
1420 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1421 			spinlock_t **ptl)
1422 {
1423 	pgd_t *pgd;
1424 	p4d_t *p4d;
1425 	pud_t *pud;
1426 	pmd_t *pmd;
1427 
1428 	pgd = pgd_offset(mm, addr);
1429 	p4d = p4d_alloc(mm, pgd, addr);
1430 	if (!p4d)
1431 		return NULL;
1432 	pud = pud_alloc(mm, p4d, addr);
1433 	if (!pud)
1434 		return NULL;
1435 	pmd = pmd_alloc(mm, pud, addr);
1436 	if (!pmd)
1437 		return NULL;
1438 
1439 	VM_BUG_ON(pmd_trans_huge(*pmd));
1440 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1441 }
1442 
1443 /*
1444  * This is the old fallback for page remapping.
1445  *
1446  * For historical reasons, it only allows reserved pages. Only
1447  * old drivers should use this, and they needed to mark their
1448  * pages reserved for the old functions anyway.
1449  */
1450 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1451 			struct page *page, pgprot_t prot)
1452 {
1453 	struct mm_struct *mm = vma->vm_mm;
1454 	int retval;
1455 	pte_t *pte;
1456 	spinlock_t *ptl;
1457 
1458 	retval = -EINVAL;
1459 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1460 		goto out;
1461 	retval = -ENOMEM;
1462 	flush_dcache_page(page);
1463 	pte = get_locked_pte(mm, addr, &ptl);
1464 	if (!pte)
1465 		goto out;
1466 	retval = -EBUSY;
1467 	if (!pte_none(*pte))
1468 		goto out_unlock;
1469 
1470 	/* Ok, finally just insert the thing.. */
1471 	get_page(page);
1472 	inc_mm_counter_fast(mm, mm_counter_file(page));
1473 	page_add_file_rmap(page, false);
1474 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1475 
1476 	retval = 0;
1477 	pte_unmap_unlock(pte, ptl);
1478 	return retval;
1479 out_unlock:
1480 	pte_unmap_unlock(pte, ptl);
1481 out:
1482 	return retval;
1483 }
1484 
1485 /**
1486  * vm_insert_page - insert single page into user vma
1487  * @vma: user vma to map to
1488  * @addr: target user address of this page
1489  * @page: source kernel page
1490  *
1491  * This allows drivers to insert individual pages they've allocated
1492  * into a user vma.
1493  *
1494  * The page has to be a nice clean _individual_ kernel allocation.
1495  * If you allocate a compound page, you need to have marked it as
1496  * such (__GFP_COMP), or manually just split the page up yourself
1497  * (see split_page()).
1498  *
1499  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1500  * took an arbitrary page protection parameter. This doesn't allow
1501  * that. Your vma protection will have to be set up correctly, which
1502  * means that if you want a shared writable mapping, you'd better
1503  * ask for a shared writable mapping!
1504  *
1505  * The page does not need to be reserved.
1506  *
1507  * Usually this function is called from f_op->mmap() handler
1508  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1509  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1510  * function from other places, for example from page-fault handler.
1511  *
1512  * Return: %0 on success, negative error code otherwise.
1513  */
1514 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1515 			struct page *page)
1516 {
1517 	if (addr < vma->vm_start || addr >= vma->vm_end)
1518 		return -EFAULT;
1519 	if (!page_count(page))
1520 		return -EINVAL;
1521 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1522 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1523 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1524 		vma->vm_flags |= VM_MIXEDMAP;
1525 	}
1526 	return insert_page(vma, addr, page, vma->vm_page_prot);
1527 }
1528 EXPORT_SYMBOL(vm_insert_page);
1529 
1530 /*
1531  * __vm_map_pages - maps range of kernel pages into user vma
1532  * @vma: user vma to map to
1533  * @pages: pointer to array of source kernel pages
1534  * @num: number of pages in page array
1535  * @offset: user's requested vm_pgoff
1536  *
1537  * This allows drivers to map range of kernel pages into a user vma.
1538  *
1539  * Return: 0 on success and error code otherwise.
1540  */
1541 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1542 				unsigned long num, unsigned long offset)
1543 {
1544 	unsigned long count = vma_pages(vma);
1545 	unsigned long uaddr = vma->vm_start;
1546 	int ret, i;
1547 
1548 	/* Fail if the user requested offset is beyond the end of the object */
1549 	if (offset > num)
1550 		return -ENXIO;
1551 
1552 	/* Fail if the user requested size exceeds available object size */
1553 	if (count > num - offset)
1554 		return -ENXIO;
1555 
1556 	for (i = 0; i < count; i++) {
1557 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1558 		if (ret < 0)
1559 			return ret;
1560 		uaddr += PAGE_SIZE;
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 /**
1567  * vm_map_pages - maps range of kernel pages starts with non zero offset
1568  * @vma: user vma to map to
1569  * @pages: pointer to array of source kernel pages
1570  * @num: number of pages in page array
1571  *
1572  * Maps an object consisting of @num pages, catering for the user's
1573  * requested vm_pgoff
1574  *
1575  * If we fail to insert any page into the vma, the function will return
1576  * immediately leaving any previously inserted pages present.  Callers
1577  * from the mmap handler may immediately return the error as their caller
1578  * will destroy the vma, removing any successfully inserted pages. Other
1579  * callers should make their own arrangements for calling unmap_region().
1580  *
1581  * Context: Process context. Called by mmap handlers.
1582  * Return: 0 on success and error code otherwise.
1583  */
1584 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1585 				unsigned long num)
1586 {
1587 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1588 }
1589 EXPORT_SYMBOL(vm_map_pages);
1590 
1591 /**
1592  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1593  * @vma: user vma to map to
1594  * @pages: pointer to array of source kernel pages
1595  * @num: number of pages in page array
1596  *
1597  * Similar to vm_map_pages(), except that it explicitly sets the offset
1598  * to 0. This function is intended for the drivers that did not consider
1599  * vm_pgoff.
1600  *
1601  * Context: Process context. Called by mmap handlers.
1602  * Return: 0 on success and error code otherwise.
1603  */
1604 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1605 				unsigned long num)
1606 {
1607 	return __vm_map_pages(vma, pages, num, 0);
1608 }
1609 EXPORT_SYMBOL(vm_map_pages_zero);
1610 
1611 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1612 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1613 {
1614 	struct mm_struct *mm = vma->vm_mm;
1615 	pte_t *pte, entry;
1616 	spinlock_t *ptl;
1617 
1618 	pte = get_locked_pte(mm, addr, &ptl);
1619 	if (!pte)
1620 		return VM_FAULT_OOM;
1621 	if (!pte_none(*pte)) {
1622 		if (mkwrite) {
1623 			/*
1624 			 * For read faults on private mappings the PFN passed
1625 			 * in may not match the PFN we have mapped if the
1626 			 * mapped PFN is a writeable COW page.  In the mkwrite
1627 			 * case we are creating a writable PTE for a shared
1628 			 * mapping and we expect the PFNs to match. If they
1629 			 * don't match, we are likely racing with block
1630 			 * allocation and mapping invalidation so just skip the
1631 			 * update.
1632 			 */
1633 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1634 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1635 				goto out_unlock;
1636 			}
1637 			entry = pte_mkyoung(*pte);
1638 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1639 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1640 				update_mmu_cache(vma, addr, pte);
1641 		}
1642 		goto out_unlock;
1643 	}
1644 
1645 	/* Ok, finally just insert the thing.. */
1646 	if (pfn_t_devmap(pfn))
1647 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1648 	else
1649 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1650 
1651 	if (mkwrite) {
1652 		entry = pte_mkyoung(entry);
1653 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1654 	}
1655 
1656 	set_pte_at(mm, addr, pte, entry);
1657 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1658 
1659 out_unlock:
1660 	pte_unmap_unlock(pte, ptl);
1661 	return VM_FAULT_NOPAGE;
1662 }
1663 
1664 /**
1665  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1666  * @vma: user vma to map to
1667  * @addr: target user address of this page
1668  * @pfn: source kernel pfn
1669  * @pgprot: pgprot flags for the inserted page
1670  *
1671  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1672  * to override pgprot on a per-page basis.
1673  *
1674  * This only makes sense for IO mappings, and it makes no sense for
1675  * COW mappings.  In general, using multiple vmas is preferable;
1676  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1677  * impractical.
1678  *
1679  * Context: Process context.  May allocate using %GFP_KERNEL.
1680  * Return: vm_fault_t value.
1681  */
1682 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1683 			unsigned long pfn, pgprot_t pgprot)
1684 {
1685 	/*
1686 	 * Technically, architectures with pte_special can avoid all these
1687 	 * restrictions (same for remap_pfn_range).  However we would like
1688 	 * consistency in testing and feature parity among all, so we should
1689 	 * try to keep these invariants in place for everybody.
1690 	 */
1691 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1692 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1693 						(VM_PFNMAP|VM_MIXEDMAP));
1694 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1695 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1696 
1697 	if (addr < vma->vm_start || addr >= vma->vm_end)
1698 		return VM_FAULT_SIGBUS;
1699 
1700 	if (!pfn_modify_allowed(pfn, pgprot))
1701 		return VM_FAULT_SIGBUS;
1702 
1703 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1704 
1705 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1706 			false);
1707 }
1708 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1709 
1710 /**
1711  * vmf_insert_pfn - insert single pfn into user vma
1712  * @vma: user vma to map to
1713  * @addr: target user address of this page
1714  * @pfn: source kernel pfn
1715  *
1716  * Similar to vm_insert_page, this allows drivers to insert individual pages
1717  * they've allocated into a user vma. Same comments apply.
1718  *
1719  * This function should only be called from a vm_ops->fault handler, and
1720  * in that case the handler should return the result of this function.
1721  *
1722  * vma cannot be a COW mapping.
1723  *
1724  * As this is called only for pages that do not currently exist, we
1725  * do not need to flush old virtual caches or the TLB.
1726  *
1727  * Context: Process context.  May allocate using %GFP_KERNEL.
1728  * Return: vm_fault_t value.
1729  */
1730 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1731 			unsigned long pfn)
1732 {
1733 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1734 }
1735 EXPORT_SYMBOL(vmf_insert_pfn);
1736 
1737 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1738 {
1739 	/* these checks mirror the abort conditions in vm_normal_page */
1740 	if (vma->vm_flags & VM_MIXEDMAP)
1741 		return true;
1742 	if (pfn_t_devmap(pfn))
1743 		return true;
1744 	if (pfn_t_special(pfn))
1745 		return true;
1746 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1747 		return true;
1748 	return false;
1749 }
1750 
1751 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1752 		unsigned long addr, pfn_t pfn, bool mkwrite)
1753 {
1754 	pgprot_t pgprot = vma->vm_page_prot;
1755 	int err;
1756 
1757 	BUG_ON(!vm_mixed_ok(vma, pfn));
1758 
1759 	if (addr < vma->vm_start || addr >= vma->vm_end)
1760 		return VM_FAULT_SIGBUS;
1761 
1762 	track_pfn_insert(vma, &pgprot, pfn);
1763 
1764 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1765 		return VM_FAULT_SIGBUS;
1766 
1767 	/*
1768 	 * If we don't have pte special, then we have to use the pfn_valid()
1769 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1770 	 * refcount the page if pfn_valid is true (hence insert_page rather
1771 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1772 	 * without pte special, it would there be refcounted as a normal page.
1773 	 */
1774 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1775 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1776 		struct page *page;
1777 
1778 		/*
1779 		 * At this point we are committed to insert_page()
1780 		 * regardless of whether the caller specified flags that
1781 		 * result in pfn_t_has_page() == false.
1782 		 */
1783 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1784 		err = insert_page(vma, addr, page, pgprot);
1785 	} else {
1786 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1787 	}
1788 
1789 	if (err == -ENOMEM)
1790 		return VM_FAULT_OOM;
1791 	if (err < 0 && err != -EBUSY)
1792 		return VM_FAULT_SIGBUS;
1793 
1794 	return VM_FAULT_NOPAGE;
1795 }
1796 
1797 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1798 		pfn_t pfn)
1799 {
1800 	return __vm_insert_mixed(vma, addr, pfn, false);
1801 }
1802 EXPORT_SYMBOL(vmf_insert_mixed);
1803 
1804 /*
1805  *  If the insertion of PTE failed because someone else already added a
1806  *  different entry in the mean time, we treat that as success as we assume
1807  *  the same entry was actually inserted.
1808  */
1809 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1810 		unsigned long addr, pfn_t pfn)
1811 {
1812 	return __vm_insert_mixed(vma, addr, pfn, true);
1813 }
1814 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1815 
1816 /*
1817  * maps a range of physical memory into the requested pages. the old
1818  * mappings are removed. any references to nonexistent pages results
1819  * in null mappings (currently treated as "copy-on-access")
1820  */
1821 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1822 			unsigned long addr, unsigned long end,
1823 			unsigned long pfn, pgprot_t prot)
1824 {
1825 	pte_t *pte;
1826 	spinlock_t *ptl;
1827 	int err = 0;
1828 
1829 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1830 	if (!pte)
1831 		return -ENOMEM;
1832 	arch_enter_lazy_mmu_mode();
1833 	do {
1834 		BUG_ON(!pte_none(*pte));
1835 		if (!pfn_modify_allowed(pfn, prot)) {
1836 			err = -EACCES;
1837 			break;
1838 		}
1839 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1840 		pfn++;
1841 	} while (pte++, addr += PAGE_SIZE, addr != end);
1842 	arch_leave_lazy_mmu_mode();
1843 	pte_unmap_unlock(pte - 1, ptl);
1844 	return err;
1845 }
1846 
1847 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1848 			unsigned long addr, unsigned long end,
1849 			unsigned long pfn, pgprot_t prot)
1850 {
1851 	pmd_t *pmd;
1852 	unsigned long next;
1853 	int err;
1854 
1855 	pfn -= addr >> PAGE_SHIFT;
1856 	pmd = pmd_alloc(mm, pud, addr);
1857 	if (!pmd)
1858 		return -ENOMEM;
1859 	VM_BUG_ON(pmd_trans_huge(*pmd));
1860 	do {
1861 		next = pmd_addr_end(addr, end);
1862 		err = remap_pte_range(mm, pmd, addr, next,
1863 				pfn + (addr >> PAGE_SHIFT), prot);
1864 		if (err)
1865 			return err;
1866 	} while (pmd++, addr = next, addr != end);
1867 	return 0;
1868 }
1869 
1870 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1871 			unsigned long addr, unsigned long end,
1872 			unsigned long pfn, pgprot_t prot)
1873 {
1874 	pud_t *pud;
1875 	unsigned long next;
1876 	int err;
1877 
1878 	pfn -= addr >> PAGE_SHIFT;
1879 	pud = pud_alloc(mm, p4d, addr);
1880 	if (!pud)
1881 		return -ENOMEM;
1882 	do {
1883 		next = pud_addr_end(addr, end);
1884 		err = remap_pmd_range(mm, pud, addr, next,
1885 				pfn + (addr >> PAGE_SHIFT), prot);
1886 		if (err)
1887 			return err;
1888 	} while (pud++, addr = next, addr != end);
1889 	return 0;
1890 }
1891 
1892 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1893 			unsigned long addr, unsigned long end,
1894 			unsigned long pfn, pgprot_t prot)
1895 {
1896 	p4d_t *p4d;
1897 	unsigned long next;
1898 	int err;
1899 
1900 	pfn -= addr >> PAGE_SHIFT;
1901 	p4d = p4d_alloc(mm, pgd, addr);
1902 	if (!p4d)
1903 		return -ENOMEM;
1904 	do {
1905 		next = p4d_addr_end(addr, end);
1906 		err = remap_pud_range(mm, p4d, addr, next,
1907 				pfn + (addr >> PAGE_SHIFT), prot);
1908 		if (err)
1909 			return err;
1910 	} while (p4d++, addr = next, addr != end);
1911 	return 0;
1912 }
1913 
1914 /**
1915  * remap_pfn_range - remap kernel memory to userspace
1916  * @vma: user vma to map to
1917  * @addr: target user address to start at
1918  * @pfn: physical address of kernel memory
1919  * @size: size of map area
1920  * @prot: page protection flags for this mapping
1921  *
1922  * Note: this is only safe if the mm semaphore is held when called.
1923  *
1924  * Return: %0 on success, negative error code otherwise.
1925  */
1926 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1927 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1928 {
1929 	pgd_t *pgd;
1930 	unsigned long next;
1931 	unsigned long end = addr + PAGE_ALIGN(size);
1932 	struct mm_struct *mm = vma->vm_mm;
1933 	unsigned long remap_pfn = pfn;
1934 	int err;
1935 
1936 	/*
1937 	 * Physically remapped pages are special. Tell the
1938 	 * rest of the world about it:
1939 	 *   VM_IO tells people not to look at these pages
1940 	 *	(accesses can have side effects).
1941 	 *   VM_PFNMAP tells the core MM that the base pages are just
1942 	 *	raw PFN mappings, and do not have a "struct page" associated
1943 	 *	with them.
1944 	 *   VM_DONTEXPAND
1945 	 *      Disable vma merging and expanding with mremap().
1946 	 *   VM_DONTDUMP
1947 	 *      Omit vma from core dump, even when VM_IO turned off.
1948 	 *
1949 	 * There's a horrible special case to handle copy-on-write
1950 	 * behaviour that some programs depend on. We mark the "original"
1951 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1952 	 * See vm_normal_page() for details.
1953 	 */
1954 	if (is_cow_mapping(vma->vm_flags)) {
1955 		if (addr != vma->vm_start || end != vma->vm_end)
1956 			return -EINVAL;
1957 		vma->vm_pgoff = pfn;
1958 	}
1959 
1960 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1961 	if (err)
1962 		return -EINVAL;
1963 
1964 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1965 
1966 	BUG_ON(addr >= end);
1967 	pfn -= addr >> PAGE_SHIFT;
1968 	pgd = pgd_offset(mm, addr);
1969 	flush_cache_range(vma, addr, end);
1970 	do {
1971 		next = pgd_addr_end(addr, end);
1972 		err = remap_p4d_range(mm, pgd, addr, next,
1973 				pfn + (addr >> PAGE_SHIFT), prot);
1974 		if (err)
1975 			break;
1976 	} while (pgd++, addr = next, addr != end);
1977 
1978 	if (err)
1979 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1980 
1981 	return err;
1982 }
1983 EXPORT_SYMBOL(remap_pfn_range);
1984 
1985 /**
1986  * vm_iomap_memory - remap memory to userspace
1987  * @vma: user vma to map to
1988  * @start: start of area
1989  * @len: size of area
1990  *
1991  * This is a simplified io_remap_pfn_range() for common driver use. The
1992  * driver just needs to give us the physical memory range to be mapped,
1993  * we'll figure out the rest from the vma information.
1994  *
1995  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1996  * whatever write-combining details or similar.
1997  *
1998  * Return: %0 on success, negative error code otherwise.
1999  */
2000 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2001 {
2002 	unsigned long vm_len, pfn, pages;
2003 
2004 	/* Check that the physical memory area passed in looks valid */
2005 	if (start + len < start)
2006 		return -EINVAL;
2007 	/*
2008 	 * You *really* shouldn't map things that aren't page-aligned,
2009 	 * but we've historically allowed it because IO memory might
2010 	 * just have smaller alignment.
2011 	 */
2012 	len += start & ~PAGE_MASK;
2013 	pfn = start >> PAGE_SHIFT;
2014 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2015 	if (pfn + pages < pfn)
2016 		return -EINVAL;
2017 
2018 	/* We start the mapping 'vm_pgoff' pages into the area */
2019 	if (vma->vm_pgoff > pages)
2020 		return -EINVAL;
2021 	pfn += vma->vm_pgoff;
2022 	pages -= vma->vm_pgoff;
2023 
2024 	/* Can we fit all of the mapping? */
2025 	vm_len = vma->vm_end - vma->vm_start;
2026 	if (vm_len >> PAGE_SHIFT > pages)
2027 		return -EINVAL;
2028 
2029 	/* Ok, let it rip */
2030 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2031 }
2032 EXPORT_SYMBOL(vm_iomap_memory);
2033 
2034 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2035 				     unsigned long addr, unsigned long end,
2036 				     pte_fn_t fn, void *data)
2037 {
2038 	pte_t *pte;
2039 	int err;
2040 	pgtable_t token;
2041 	spinlock_t *uninitialized_var(ptl);
2042 
2043 	pte = (mm == &init_mm) ?
2044 		pte_alloc_kernel(pmd, addr) :
2045 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2046 	if (!pte)
2047 		return -ENOMEM;
2048 
2049 	BUG_ON(pmd_huge(*pmd));
2050 
2051 	arch_enter_lazy_mmu_mode();
2052 
2053 	token = pmd_pgtable(*pmd);
2054 
2055 	do {
2056 		err = fn(pte++, token, addr, data);
2057 		if (err)
2058 			break;
2059 	} while (addr += PAGE_SIZE, addr != end);
2060 
2061 	arch_leave_lazy_mmu_mode();
2062 
2063 	if (mm != &init_mm)
2064 		pte_unmap_unlock(pte-1, ptl);
2065 	return err;
2066 }
2067 
2068 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2069 				     unsigned long addr, unsigned long end,
2070 				     pte_fn_t fn, void *data)
2071 {
2072 	pmd_t *pmd;
2073 	unsigned long next;
2074 	int err;
2075 
2076 	BUG_ON(pud_huge(*pud));
2077 
2078 	pmd = pmd_alloc(mm, pud, addr);
2079 	if (!pmd)
2080 		return -ENOMEM;
2081 	do {
2082 		next = pmd_addr_end(addr, end);
2083 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2084 		if (err)
2085 			break;
2086 	} while (pmd++, addr = next, addr != end);
2087 	return err;
2088 }
2089 
2090 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2091 				     unsigned long addr, unsigned long end,
2092 				     pte_fn_t fn, void *data)
2093 {
2094 	pud_t *pud;
2095 	unsigned long next;
2096 	int err;
2097 
2098 	pud = pud_alloc(mm, p4d, addr);
2099 	if (!pud)
2100 		return -ENOMEM;
2101 	do {
2102 		next = pud_addr_end(addr, end);
2103 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2104 		if (err)
2105 			break;
2106 	} while (pud++, addr = next, addr != end);
2107 	return err;
2108 }
2109 
2110 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2111 				     unsigned long addr, unsigned long end,
2112 				     pte_fn_t fn, void *data)
2113 {
2114 	p4d_t *p4d;
2115 	unsigned long next;
2116 	int err;
2117 
2118 	p4d = p4d_alloc(mm, pgd, addr);
2119 	if (!p4d)
2120 		return -ENOMEM;
2121 	do {
2122 		next = p4d_addr_end(addr, end);
2123 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2124 		if (err)
2125 			break;
2126 	} while (p4d++, addr = next, addr != end);
2127 	return err;
2128 }
2129 
2130 /*
2131  * Scan a region of virtual memory, filling in page tables as necessary
2132  * and calling a provided function on each leaf page table.
2133  */
2134 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2135 			unsigned long size, pte_fn_t fn, void *data)
2136 {
2137 	pgd_t *pgd;
2138 	unsigned long next;
2139 	unsigned long end = addr + size;
2140 	int err;
2141 
2142 	if (WARN_ON(addr >= end))
2143 		return -EINVAL;
2144 
2145 	pgd = pgd_offset(mm, addr);
2146 	do {
2147 		next = pgd_addr_end(addr, end);
2148 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2149 		if (err)
2150 			break;
2151 	} while (pgd++, addr = next, addr != end);
2152 
2153 	return err;
2154 }
2155 EXPORT_SYMBOL_GPL(apply_to_page_range);
2156 
2157 /*
2158  * handle_pte_fault chooses page fault handler according to an entry which was
2159  * read non-atomically.  Before making any commitment, on those architectures
2160  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2161  * parts, do_swap_page must check under lock before unmapping the pte and
2162  * proceeding (but do_wp_page is only called after already making such a check;
2163  * and do_anonymous_page can safely check later on).
2164  */
2165 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2166 				pte_t *page_table, pte_t orig_pte)
2167 {
2168 	int same = 1;
2169 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2170 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2171 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2172 		spin_lock(ptl);
2173 		same = pte_same(*page_table, orig_pte);
2174 		spin_unlock(ptl);
2175 	}
2176 #endif
2177 	pte_unmap(page_table);
2178 	return same;
2179 }
2180 
2181 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2182 {
2183 	debug_dma_assert_idle(src);
2184 
2185 	/*
2186 	 * If the source page was a PFN mapping, we don't have
2187 	 * a "struct page" for it. We do a best-effort copy by
2188 	 * just copying from the original user address. If that
2189 	 * fails, we just zero-fill it. Live with it.
2190 	 */
2191 	if (unlikely(!src)) {
2192 		void *kaddr = kmap_atomic(dst);
2193 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2194 
2195 		/*
2196 		 * This really shouldn't fail, because the page is there
2197 		 * in the page tables. But it might just be unreadable,
2198 		 * in which case we just give up and fill the result with
2199 		 * zeroes.
2200 		 */
2201 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2202 			clear_page(kaddr);
2203 		kunmap_atomic(kaddr);
2204 		flush_dcache_page(dst);
2205 	} else
2206 		copy_user_highpage(dst, src, va, vma);
2207 }
2208 
2209 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2210 {
2211 	struct file *vm_file = vma->vm_file;
2212 
2213 	if (vm_file)
2214 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2215 
2216 	/*
2217 	 * Special mappings (e.g. VDSO) do not have any file so fake
2218 	 * a default GFP_KERNEL for them.
2219 	 */
2220 	return GFP_KERNEL;
2221 }
2222 
2223 /*
2224  * Notify the address space that the page is about to become writable so that
2225  * it can prohibit this or wait for the page to get into an appropriate state.
2226  *
2227  * We do this without the lock held, so that it can sleep if it needs to.
2228  */
2229 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2230 {
2231 	vm_fault_t ret;
2232 	struct page *page = vmf->page;
2233 	unsigned int old_flags = vmf->flags;
2234 
2235 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2236 
2237 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2238 	/* Restore original flags so that caller is not surprised */
2239 	vmf->flags = old_flags;
2240 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2241 		return ret;
2242 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2243 		lock_page(page);
2244 		if (!page->mapping) {
2245 			unlock_page(page);
2246 			return 0; /* retry */
2247 		}
2248 		ret |= VM_FAULT_LOCKED;
2249 	} else
2250 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2251 	return ret;
2252 }
2253 
2254 /*
2255  * Handle dirtying of a page in shared file mapping on a write fault.
2256  *
2257  * The function expects the page to be locked and unlocks it.
2258  */
2259 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2260 				    struct page *page)
2261 {
2262 	struct address_space *mapping;
2263 	bool dirtied;
2264 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2265 
2266 	dirtied = set_page_dirty(page);
2267 	VM_BUG_ON_PAGE(PageAnon(page), page);
2268 	/*
2269 	 * Take a local copy of the address_space - page.mapping may be zeroed
2270 	 * by truncate after unlock_page().   The address_space itself remains
2271 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2272 	 * release semantics to prevent the compiler from undoing this copying.
2273 	 */
2274 	mapping = page_rmapping(page);
2275 	unlock_page(page);
2276 
2277 	if ((dirtied || page_mkwrite) && mapping) {
2278 		/*
2279 		 * Some device drivers do not set page.mapping
2280 		 * but still dirty their pages
2281 		 */
2282 		balance_dirty_pages_ratelimited(mapping);
2283 	}
2284 
2285 	if (!page_mkwrite)
2286 		file_update_time(vma->vm_file);
2287 }
2288 
2289 /*
2290  * Handle write page faults for pages that can be reused in the current vma
2291  *
2292  * This can happen either due to the mapping being with the VM_SHARED flag,
2293  * or due to us being the last reference standing to the page. In either
2294  * case, all we need to do here is to mark the page as writable and update
2295  * any related book-keeping.
2296  */
2297 static inline void wp_page_reuse(struct vm_fault *vmf)
2298 	__releases(vmf->ptl)
2299 {
2300 	struct vm_area_struct *vma = vmf->vma;
2301 	struct page *page = vmf->page;
2302 	pte_t entry;
2303 	/*
2304 	 * Clear the pages cpupid information as the existing
2305 	 * information potentially belongs to a now completely
2306 	 * unrelated process.
2307 	 */
2308 	if (page)
2309 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2310 
2311 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2312 	entry = pte_mkyoung(vmf->orig_pte);
2313 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2314 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2315 		update_mmu_cache(vma, vmf->address, vmf->pte);
2316 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2317 }
2318 
2319 /*
2320  * Handle the case of a page which we actually need to copy to a new page.
2321  *
2322  * Called with mmap_sem locked and the old page referenced, but
2323  * without the ptl held.
2324  *
2325  * High level logic flow:
2326  *
2327  * - Allocate a page, copy the content of the old page to the new one.
2328  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2329  * - Take the PTL. If the pte changed, bail out and release the allocated page
2330  * - If the pte is still the way we remember it, update the page table and all
2331  *   relevant references. This includes dropping the reference the page-table
2332  *   held to the old page, as well as updating the rmap.
2333  * - In any case, unlock the PTL and drop the reference we took to the old page.
2334  */
2335 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2336 {
2337 	struct vm_area_struct *vma = vmf->vma;
2338 	struct mm_struct *mm = vma->vm_mm;
2339 	struct page *old_page = vmf->page;
2340 	struct page *new_page = NULL;
2341 	pte_t entry;
2342 	int page_copied = 0;
2343 	struct mem_cgroup *memcg;
2344 	struct mmu_notifier_range range;
2345 
2346 	if (unlikely(anon_vma_prepare(vma)))
2347 		goto oom;
2348 
2349 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2350 		new_page = alloc_zeroed_user_highpage_movable(vma,
2351 							      vmf->address);
2352 		if (!new_page)
2353 			goto oom;
2354 	} else {
2355 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2356 				vmf->address);
2357 		if (!new_page)
2358 			goto oom;
2359 		cow_user_page(new_page, old_page, vmf->address, vma);
2360 	}
2361 
2362 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2363 		goto oom_free_new;
2364 
2365 	__SetPageUptodate(new_page);
2366 
2367 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2368 				vmf->address & PAGE_MASK,
2369 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2370 	mmu_notifier_invalidate_range_start(&range);
2371 
2372 	/*
2373 	 * Re-check the pte - we dropped the lock
2374 	 */
2375 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2376 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2377 		if (old_page) {
2378 			if (!PageAnon(old_page)) {
2379 				dec_mm_counter_fast(mm,
2380 						mm_counter_file(old_page));
2381 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2382 			}
2383 		} else {
2384 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2385 		}
2386 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2387 		entry = mk_pte(new_page, vma->vm_page_prot);
2388 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2389 		/*
2390 		 * Clear the pte entry and flush it first, before updating the
2391 		 * pte with the new entry. This will avoid a race condition
2392 		 * seen in the presence of one thread doing SMC and another
2393 		 * thread doing COW.
2394 		 */
2395 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2396 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2397 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2398 		lru_cache_add_active_or_unevictable(new_page, vma);
2399 		/*
2400 		 * We call the notify macro here because, when using secondary
2401 		 * mmu page tables (such as kvm shadow page tables), we want the
2402 		 * new page to be mapped directly into the secondary page table.
2403 		 */
2404 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2405 		update_mmu_cache(vma, vmf->address, vmf->pte);
2406 		if (old_page) {
2407 			/*
2408 			 * Only after switching the pte to the new page may
2409 			 * we remove the mapcount here. Otherwise another
2410 			 * process may come and find the rmap count decremented
2411 			 * before the pte is switched to the new page, and
2412 			 * "reuse" the old page writing into it while our pte
2413 			 * here still points into it and can be read by other
2414 			 * threads.
2415 			 *
2416 			 * The critical issue is to order this
2417 			 * page_remove_rmap with the ptp_clear_flush above.
2418 			 * Those stores are ordered by (if nothing else,)
2419 			 * the barrier present in the atomic_add_negative
2420 			 * in page_remove_rmap.
2421 			 *
2422 			 * Then the TLB flush in ptep_clear_flush ensures that
2423 			 * no process can access the old page before the
2424 			 * decremented mapcount is visible. And the old page
2425 			 * cannot be reused until after the decremented
2426 			 * mapcount is visible. So transitively, TLBs to
2427 			 * old page will be flushed before it can be reused.
2428 			 */
2429 			page_remove_rmap(old_page, false);
2430 		}
2431 
2432 		/* Free the old page.. */
2433 		new_page = old_page;
2434 		page_copied = 1;
2435 	} else {
2436 		mem_cgroup_cancel_charge(new_page, memcg, false);
2437 	}
2438 
2439 	if (new_page)
2440 		put_page(new_page);
2441 
2442 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2443 	/*
2444 	 * No need to double call mmu_notifier->invalidate_range() callback as
2445 	 * the above ptep_clear_flush_notify() did already call it.
2446 	 */
2447 	mmu_notifier_invalidate_range_only_end(&range);
2448 	if (old_page) {
2449 		/*
2450 		 * Don't let another task, with possibly unlocked vma,
2451 		 * keep the mlocked page.
2452 		 */
2453 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2454 			lock_page(old_page);	/* LRU manipulation */
2455 			if (PageMlocked(old_page))
2456 				munlock_vma_page(old_page);
2457 			unlock_page(old_page);
2458 		}
2459 		put_page(old_page);
2460 	}
2461 	return page_copied ? VM_FAULT_WRITE : 0;
2462 oom_free_new:
2463 	put_page(new_page);
2464 oom:
2465 	if (old_page)
2466 		put_page(old_page);
2467 	return VM_FAULT_OOM;
2468 }
2469 
2470 /**
2471  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2472  *			  writeable once the page is prepared
2473  *
2474  * @vmf: structure describing the fault
2475  *
2476  * This function handles all that is needed to finish a write page fault in a
2477  * shared mapping due to PTE being read-only once the mapped page is prepared.
2478  * It handles locking of PTE and modifying it.
2479  *
2480  * The function expects the page to be locked or other protection against
2481  * concurrent faults / writeback (such as DAX radix tree locks).
2482  *
2483  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2484  * we acquired PTE lock.
2485  */
2486 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2487 {
2488 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2489 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2490 				       &vmf->ptl);
2491 	/*
2492 	 * We might have raced with another page fault while we released the
2493 	 * pte_offset_map_lock.
2494 	 */
2495 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2496 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2497 		return VM_FAULT_NOPAGE;
2498 	}
2499 	wp_page_reuse(vmf);
2500 	return 0;
2501 }
2502 
2503 /*
2504  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2505  * mapping
2506  */
2507 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2508 {
2509 	struct vm_area_struct *vma = vmf->vma;
2510 
2511 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2512 		vm_fault_t ret;
2513 
2514 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2515 		vmf->flags |= FAULT_FLAG_MKWRITE;
2516 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2517 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2518 			return ret;
2519 		return finish_mkwrite_fault(vmf);
2520 	}
2521 	wp_page_reuse(vmf);
2522 	return VM_FAULT_WRITE;
2523 }
2524 
2525 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2526 	__releases(vmf->ptl)
2527 {
2528 	struct vm_area_struct *vma = vmf->vma;
2529 
2530 	get_page(vmf->page);
2531 
2532 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2533 		vm_fault_t tmp;
2534 
2535 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2536 		tmp = do_page_mkwrite(vmf);
2537 		if (unlikely(!tmp || (tmp &
2538 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2539 			put_page(vmf->page);
2540 			return tmp;
2541 		}
2542 		tmp = finish_mkwrite_fault(vmf);
2543 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2544 			unlock_page(vmf->page);
2545 			put_page(vmf->page);
2546 			return tmp;
2547 		}
2548 	} else {
2549 		wp_page_reuse(vmf);
2550 		lock_page(vmf->page);
2551 	}
2552 	fault_dirty_shared_page(vma, vmf->page);
2553 	put_page(vmf->page);
2554 
2555 	return VM_FAULT_WRITE;
2556 }
2557 
2558 /*
2559  * This routine handles present pages, when users try to write
2560  * to a shared page. It is done by copying the page to a new address
2561  * and decrementing the shared-page counter for the old page.
2562  *
2563  * Note that this routine assumes that the protection checks have been
2564  * done by the caller (the low-level page fault routine in most cases).
2565  * Thus we can safely just mark it writable once we've done any necessary
2566  * COW.
2567  *
2568  * We also mark the page dirty at this point even though the page will
2569  * change only once the write actually happens. This avoids a few races,
2570  * and potentially makes it more efficient.
2571  *
2572  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2573  * but allow concurrent faults), with pte both mapped and locked.
2574  * We return with mmap_sem still held, but pte unmapped and unlocked.
2575  */
2576 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2577 	__releases(vmf->ptl)
2578 {
2579 	struct vm_area_struct *vma = vmf->vma;
2580 
2581 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2582 	if (!vmf->page) {
2583 		/*
2584 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2585 		 * VM_PFNMAP VMA.
2586 		 *
2587 		 * We should not cow pages in a shared writeable mapping.
2588 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2589 		 */
2590 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2591 				     (VM_WRITE|VM_SHARED))
2592 			return wp_pfn_shared(vmf);
2593 
2594 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2595 		return wp_page_copy(vmf);
2596 	}
2597 
2598 	/*
2599 	 * Take out anonymous pages first, anonymous shared vmas are
2600 	 * not dirty accountable.
2601 	 */
2602 	if (PageAnon(vmf->page)) {
2603 		int total_map_swapcount;
2604 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2605 					   page_count(vmf->page) != 1))
2606 			goto copy;
2607 		if (!trylock_page(vmf->page)) {
2608 			get_page(vmf->page);
2609 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2610 			lock_page(vmf->page);
2611 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2612 					vmf->address, &vmf->ptl);
2613 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2614 				unlock_page(vmf->page);
2615 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2616 				put_page(vmf->page);
2617 				return 0;
2618 			}
2619 			put_page(vmf->page);
2620 		}
2621 		if (PageKsm(vmf->page)) {
2622 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2623 						     vmf->address);
2624 			unlock_page(vmf->page);
2625 			if (!reused)
2626 				goto copy;
2627 			wp_page_reuse(vmf);
2628 			return VM_FAULT_WRITE;
2629 		}
2630 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2631 			if (total_map_swapcount == 1) {
2632 				/*
2633 				 * The page is all ours. Move it to
2634 				 * our anon_vma so the rmap code will
2635 				 * not search our parent or siblings.
2636 				 * Protected against the rmap code by
2637 				 * the page lock.
2638 				 */
2639 				page_move_anon_rmap(vmf->page, vma);
2640 			}
2641 			unlock_page(vmf->page);
2642 			wp_page_reuse(vmf);
2643 			return VM_FAULT_WRITE;
2644 		}
2645 		unlock_page(vmf->page);
2646 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2647 					(VM_WRITE|VM_SHARED))) {
2648 		return wp_page_shared(vmf);
2649 	}
2650 copy:
2651 	/*
2652 	 * Ok, we need to copy. Oh, well..
2653 	 */
2654 	get_page(vmf->page);
2655 
2656 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2657 	return wp_page_copy(vmf);
2658 }
2659 
2660 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2661 		unsigned long start_addr, unsigned long end_addr,
2662 		struct zap_details *details)
2663 {
2664 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2665 }
2666 
2667 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2668 					    struct zap_details *details)
2669 {
2670 	struct vm_area_struct *vma;
2671 	pgoff_t vba, vea, zba, zea;
2672 
2673 	vma_interval_tree_foreach(vma, root,
2674 			details->first_index, details->last_index) {
2675 
2676 		vba = vma->vm_pgoff;
2677 		vea = vba + vma_pages(vma) - 1;
2678 		zba = details->first_index;
2679 		if (zba < vba)
2680 			zba = vba;
2681 		zea = details->last_index;
2682 		if (zea > vea)
2683 			zea = vea;
2684 
2685 		unmap_mapping_range_vma(vma,
2686 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2687 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2688 				details);
2689 	}
2690 }
2691 
2692 /**
2693  * unmap_mapping_pages() - Unmap pages from processes.
2694  * @mapping: The address space containing pages to be unmapped.
2695  * @start: Index of first page to be unmapped.
2696  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2697  * @even_cows: Whether to unmap even private COWed pages.
2698  *
2699  * Unmap the pages in this address space from any userspace process which
2700  * has them mmaped.  Generally, you want to remove COWed pages as well when
2701  * a file is being truncated, but not when invalidating pages from the page
2702  * cache.
2703  */
2704 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2705 		pgoff_t nr, bool even_cows)
2706 {
2707 	struct zap_details details = { };
2708 
2709 	details.check_mapping = even_cows ? NULL : mapping;
2710 	details.first_index = start;
2711 	details.last_index = start + nr - 1;
2712 	if (details.last_index < details.first_index)
2713 		details.last_index = ULONG_MAX;
2714 
2715 	i_mmap_lock_write(mapping);
2716 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2717 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2718 	i_mmap_unlock_write(mapping);
2719 }
2720 
2721 /**
2722  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2723  * address_space corresponding to the specified byte range in the underlying
2724  * file.
2725  *
2726  * @mapping: the address space containing mmaps to be unmapped.
2727  * @holebegin: byte in first page to unmap, relative to the start of
2728  * the underlying file.  This will be rounded down to a PAGE_SIZE
2729  * boundary.  Note that this is different from truncate_pagecache(), which
2730  * must keep the partial page.  In contrast, we must get rid of
2731  * partial pages.
2732  * @holelen: size of prospective hole in bytes.  This will be rounded
2733  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2734  * end of the file.
2735  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2736  * but 0 when invalidating pagecache, don't throw away private data.
2737  */
2738 void unmap_mapping_range(struct address_space *mapping,
2739 		loff_t const holebegin, loff_t const holelen, int even_cows)
2740 {
2741 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2742 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2743 
2744 	/* Check for overflow. */
2745 	if (sizeof(holelen) > sizeof(hlen)) {
2746 		long long holeend =
2747 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2748 		if (holeend & ~(long long)ULONG_MAX)
2749 			hlen = ULONG_MAX - hba + 1;
2750 	}
2751 
2752 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2753 }
2754 EXPORT_SYMBOL(unmap_mapping_range);
2755 
2756 /*
2757  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2758  * but allow concurrent faults), and pte mapped but not yet locked.
2759  * We return with pte unmapped and unlocked.
2760  *
2761  * We return with the mmap_sem locked or unlocked in the same cases
2762  * as does filemap_fault().
2763  */
2764 vm_fault_t do_swap_page(struct vm_fault *vmf)
2765 {
2766 	struct vm_area_struct *vma = vmf->vma;
2767 	struct page *page = NULL, *swapcache;
2768 	struct mem_cgroup *memcg;
2769 	swp_entry_t entry;
2770 	pte_t pte;
2771 	int locked;
2772 	int exclusive = 0;
2773 	vm_fault_t ret = 0;
2774 
2775 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2776 		goto out;
2777 
2778 	entry = pte_to_swp_entry(vmf->orig_pte);
2779 	if (unlikely(non_swap_entry(entry))) {
2780 		if (is_migration_entry(entry)) {
2781 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2782 					     vmf->address);
2783 		} else if (is_device_private_entry(entry)) {
2784 			/*
2785 			 * For un-addressable device memory we call the pgmap
2786 			 * fault handler callback. The callback must migrate
2787 			 * the page back to some CPU accessible page.
2788 			 */
2789 			ret = device_private_entry_fault(vma, vmf->address, entry,
2790 						 vmf->flags, vmf->pmd);
2791 		} else if (is_hwpoison_entry(entry)) {
2792 			ret = VM_FAULT_HWPOISON;
2793 		} else {
2794 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2795 			ret = VM_FAULT_SIGBUS;
2796 		}
2797 		goto out;
2798 	}
2799 
2800 
2801 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2802 	page = lookup_swap_cache(entry, vma, vmf->address);
2803 	swapcache = page;
2804 
2805 	if (!page) {
2806 		struct swap_info_struct *si = swp_swap_info(entry);
2807 
2808 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2809 				__swap_count(si, entry) == 1) {
2810 			/* skip swapcache */
2811 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2812 							vmf->address);
2813 			if (page) {
2814 				__SetPageLocked(page);
2815 				__SetPageSwapBacked(page);
2816 				set_page_private(page, entry.val);
2817 				lru_cache_add_anon(page);
2818 				swap_readpage(page, true);
2819 			}
2820 		} else {
2821 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2822 						vmf);
2823 			swapcache = page;
2824 		}
2825 
2826 		if (!page) {
2827 			/*
2828 			 * Back out if somebody else faulted in this pte
2829 			 * while we released the pte lock.
2830 			 */
2831 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2832 					vmf->address, &vmf->ptl);
2833 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2834 				ret = VM_FAULT_OOM;
2835 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2836 			goto unlock;
2837 		}
2838 
2839 		/* Had to read the page from swap area: Major fault */
2840 		ret = VM_FAULT_MAJOR;
2841 		count_vm_event(PGMAJFAULT);
2842 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2843 	} else if (PageHWPoison(page)) {
2844 		/*
2845 		 * hwpoisoned dirty swapcache pages are kept for killing
2846 		 * owner processes (which may be unknown at hwpoison time)
2847 		 */
2848 		ret = VM_FAULT_HWPOISON;
2849 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2850 		goto out_release;
2851 	}
2852 
2853 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2854 
2855 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2856 	if (!locked) {
2857 		ret |= VM_FAULT_RETRY;
2858 		goto out_release;
2859 	}
2860 
2861 	/*
2862 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2863 	 * release the swapcache from under us.  The page pin, and pte_same
2864 	 * test below, are not enough to exclude that.  Even if it is still
2865 	 * swapcache, we need to check that the page's swap has not changed.
2866 	 */
2867 	if (unlikely((!PageSwapCache(page) ||
2868 			page_private(page) != entry.val)) && swapcache)
2869 		goto out_page;
2870 
2871 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2872 	if (unlikely(!page)) {
2873 		ret = VM_FAULT_OOM;
2874 		page = swapcache;
2875 		goto out_page;
2876 	}
2877 
2878 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2879 					&memcg, false)) {
2880 		ret = VM_FAULT_OOM;
2881 		goto out_page;
2882 	}
2883 
2884 	/*
2885 	 * Back out if somebody else already faulted in this pte.
2886 	 */
2887 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2888 			&vmf->ptl);
2889 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2890 		goto out_nomap;
2891 
2892 	if (unlikely(!PageUptodate(page))) {
2893 		ret = VM_FAULT_SIGBUS;
2894 		goto out_nomap;
2895 	}
2896 
2897 	/*
2898 	 * The page isn't present yet, go ahead with the fault.
2899 	 *
2900 	 * Be careful about the sequence of operations here.
2901 	 * To get its accounting right, reuse_swap_page() must be called
2902 	 * while the page is counted on swap but not yet in mapcount i.e.
2903 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2904 	 * must be called after the swap_free(), or it will never succeed.
2905 	 */
2906 
2907 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2908 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2909 	pte = mk_pte(page, vma->vm_page_prot);
2910 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2911 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2912 		vmf->flags &= ~FAULT_FLAG_WRITE;
2913 		ret |= VM_FAULT_WRITE;
2914 		exclusive = RMAP_EXCLUSIVE;
2915 	}
2916 	flush_icache_page(vma, page);
2917 	if (pte_swp_soft_dirty(vmf->orig_pte))
2918 		pte = pte_mksoft_dirty(pte);
2919 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2920 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2921 	vmf->orig_pte = pte;
2922 
2923 	/* ksm created a completely new copy */
2924 	if (unlikely(page != swapcache && swapcache)) {
2925 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2926 		mem_cgroup_commit_charge(page, memcg, false, false);
2927 		lru_cache_add_active_or_unevictable(page, vma);
2928 	} else {
2929 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2930 		mem_cgroup_commit_charge(page, memcg, true, false);
2931 		activate_page(page);
2932 	}
2933 
2934 	swap_free(entry);
2935 	if (mem_cgroup_swap_full(page) ||
2936 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2937 		try_to_free_swap(page);
2938 	unlock_page(page);
2939 	if (page != swapcache && swapcache) {
2940 		/*
2941 		 * Hold the lock to avoid the swap entry to be reused
2942 		 * until we take the PT lock for the pte_same() check
2943 		 * (to avoid false positives from pte_same). For
2944 		 * further safety release the lock after the swap_free
2945 		 * so that the swap count won't change under a
2946 		 * parallel locked swapcache.
2947 		 */
2948 		unlock_page(swapcache);
2949 		put_page(swapcache);
2950 	}
2951 
2952 	if (vmf->flags & FAULT_FLAG_WRITE) {
2953 		ret |= do_wp_page(vmf);
2954 		if (ret & VM_FAULT_ERROR)
2955 			ret &= VM_FAULT_ERROR;
2956 		goto out;
2957 	}
2958 
2959 	/* No need to invalidate - it was non-present before */
2960 	update_mmu_cache(vma, vmf->address, vmf->pte);
2961 unlock:
2962 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2963 out:
2964 	return ret;
2965 out_nomap:
2966 	mem_cgroup_cancel_charge(page, memcg, false);
2967 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2968 out_page:
2969 	unlock_page(page);
2970 out_release:
2971 	put_page(page);
2972 	if (page != swapcache && swapcache) {
2973 		unlock_page(swapcache);
2974 		put_page(swapcache);
2975 	}
2976 	return ret;
2977 }
2978 
2979 /*
2980  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2981  * but allow concurrent faults), and pte mapped but not yet locked.
2982  * We return with mmap_sem still held, but pte unmapped and unlocked.
2983  */
2984 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2985 {
2986 	struct vm_area_struct *vma = vmf->vma;
2987 	struct mem_cgroup *memcg;
2988 	struct page *page;
2989 	vm_fault_t ret = 0;
2990 	pte_t entry;
2991 
2992 	/* File mapping without ->vm_ops ? */
2993 	if (vma->vm_flags & VM_SHARED)
2994 		return VM_FAULT_SIGBUS;
2995 
2996 	/*
2997 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2998 	 * pte_offset_map() on pmds where a huge pmd might be created
2999 	 * from a different thread.
3000 	 *
3001 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3002 	 * parallel threads are excluded by other means.
3003 	 *
3004 	 * Here we only have down_read(mmap_sem).
3005 	 */
3006 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3007 		return VM_FAULT_OOM;
3008 
3009 	/* See the comment in pte_alloc_one_map() */
3010 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3011 		return 0;
3012 
3013 	/* Use the zero-page for reads */
3014 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3015 			!mm_forbids_zeropage(vma->vm_mm)) {
3016 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3017 						vma->vm_page_prot));
3018 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3019 				vmf->address, &vmf->ptl);
3020 		if (!pte_none(*vmf->pte))
3021 			goto unlock;
3022 		ret = check_stable_address_space(vma->vm_mm);
3023 		if (ret)
3024 			goto unlock;
3025 		/* Deliver the page fault to userland, check inside PT lock */
3026 		if (userfaultfd_missing(vma)) {
3027 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3028 			return handle_userfault(vmf, VM_UFFD_MISSING);
3029 		}
3030 		goto setpte;
3031 	}
3032 
3033 	/* Allocate our own private page. */
3034 	if (unlikely(anon_vma_prepare(vma)))
3035 		goto oom;
3036 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3037 	if (!page)
3038 		goto oom;
3039 
3040 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3041 					false))
3042 		goto oom_free_page;
3043 
3044 	/*
3045 	 * The memory barrier inside __SetPageUptodate makes sure that
3046 	 * preceeding stores to the page contents become visible before
3047 	 * the set_pte_at() write.
3048 	 */
3049 	__SetPageUptodate(page);
3050 
3051 	entry = mk_pte(page, vma->vm_page_prot);
3052 	if (vma->vm_flags & VM_WRITE)
3053 		entry = pte_mkwrite(pte_mkdirty(entry));
3054 
3055 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3056 			&vmf->ptl);
3057 	if (!pte_none(*vmf->pte))
3058 		goto release;
3059 
3060 	ret = check_stable_address_space(vma->vm_mm);
3061 	if (ret)
3062 		goto release;
3063 
3064 	/* Deliver the page fault to userland, check inside PT lock */
3065 	if (userfaultfd_missing(vma)) {
3066 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3067 		mem_cgroup_cancel_charge(page, memcg, false);
3068 		put_page(page);
3069 		return handle_userfault(vmf, VM_UFFD_MISSING);
3070 	}
3071 
3072 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3073 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3074 	mem_cgroup_commit_charge(page, memcg, false, false);
3075 	lru_cache_add_active_or_unevictable(page, vma);
3076 setpte:
3077 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3078 
3079 	/* No need to invalidate - it was non-present before */
3080 	update_mmu_cache(vma, vmf->address, vmf->pte);
3081 unlock:
3082 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3083 	return ret;
3084 release:
3085 	mem_cgroup_cancel_charge(page, memcg, false);
3086 	put_page(page);
3087 	goto unlock;
3088 oom_free_page:
3089 	put_page(page);
3090 oom:
3091 	return VM_FAULT_OOM;
3092 }
3093 
3094 /*
3095  * The mmap_sem must have been held on entry, and may have been
3096  * released depending on flags and vma->vm_ops->fault() return value.
3097  * See filemap_fault() and __lock_page_retry().
3098  */
3099 static vm_fault_t __do_fault(struct vm_fault *vmf)
3100 {
3101 	struct vm_area_struct *vma = vmf->vma;
3102 	vm_fault_t ret;
3103 
3104 	/*
3105 	 * Preallocate pte before we take page_lock because this might lead to
3106 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3107 	 *				lock_page(A)
3108 	 *				SetPageWriteback(A)
3109 	 *				unlock_page(A)
3110 	 * lock_page(B)
3111 	 *				lock_page(B)
3112 	 * pte_alloc_pne
3113 	 *   shrink_page_list
3114 	 *     wait_on_page_writeback(A)
3115 	 *				SetPageWriteback(B)
3116 	 *				unlock_page(B)
3117 	 *				# flush A, B to clear the writeback
3118 	 */
3119 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3120 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3121 		if (!vmf->prealloc_pte)
3122 			return VM_FAULT_OOM;
3123 		smp_wmb(); /* See comment in __pte_alloc() */
3124 	}
3125 
3126 	ret = vma->vm_ops->fault(vmf);
3127 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3128 			    VM_FAULT_DONE_COW)))
3129 		return ret;
3130 
3131 	if (unlikely(PageHWPoison(vmf->page))) {
3132 		if (ret & VM_FAULT_LOCKED)
3133 			unlock_page(vmf->page);
3134 		put_page(vmf->page);
3135 		vmf->page = NULL;
3136 		return VM_FAULT_HWPOISON;
3137 	}
3138 
3139 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3140 		lock_page(vmf->page);
3141 	else
3142 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3143 
3144 	return ret;
3145 }
3146 
3147 /*
3148  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3149  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3150  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3151  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3152  */
3153 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3154 {
3155 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3156 }
3157 
3158 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3159 {
3160 	struct vm_area_struct *vma = vmf->vma;
3161 
3162 	if (!pmd_none(*vmf->pmd))
3163 		goto map_pte;
3164 	if (vmf->prealloc_pte) {
3165 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3166 		if (unlikely(!pmd_none(*vmf->pmd))) {
3167 			spin_unlock(vmf->ptl);
3168 			goto map_pte;
3169 		}
3170 
3171 		mm_inc_nr_ptes(vma->vm_mm);
3172 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3173 		spin_unlock(vmf->ptl);
3174 		vmf->prealloc_pte = NULL;
3175 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3176 		return VM_FAULT_OOM;
3177 	}
3178 map_pte:
3179 	/*
3180 	 * If a huge pmd materialized under us just retry later.  Use
3181 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3182 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3183 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3184 	 * running immediately after a huge pmd fault in a different thread of
3185 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3186 	 * All we have to ensure is that it is a regular pmd that we can walk
3187 	 * with pte_offset_map() and we can do that through an atomic read in
3188 	 * C, which is what pmd_trans_unstable() provides.
3189 	 */
3190 	if (pmd_devmap_trans_unstable(vmf->pmd))
3191 		return VM_FAULT_NOPAGE;
3192 
3193 	/*
3194 	 * At this point we know that our vmf->pmd points to a page of ptes
3195 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3196 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3197 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3198 	 * be valid and we will re-check to make sure the vmf->pte isn't
3199 	 * pte_none() under vmf->ptl protection when we return to
3200 	 * alloc_set_pte().
3201 	 */
3202 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3203 			&vmf->ptl);
3204 	return 0;
3205 }
3206 
3207 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3208 
3209 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3210 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3211 		unsigned long haddr)
3212 {
3213 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3214 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3215 		return false;
3216 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3217 		return false;
3218 	return true;
3219 }
3220 
3221 static void deposit_prealloc_pte(struct vm_fault *vmf)
3222 {
3223 	struct vm_area_struct *vma = vmf->vma;
3224 
3225 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3226 	/*
3227 	 * We are going to consume the prealloc table,
3228 	 * count that as nr_ptes.
3229 	 */
3230 	mm_inc_nr_ptes(vma->vm_mm);
3231 	vmf->prealloc_pte = NULL;
3232 }
3233 
3234 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3235 {
3236 	struct vm_area_struct *vma = vmf->vma;
3237 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3238 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3239 	pmd_t entry;
3240 	int i;
3241 	vm_fault_t ret;
3242 
3243 	if (!transhuge_vma_suitable(vma, haddr))
3244 		return VM_FAULT_FALLBACK;
3245 
3246 	ret = VM_FAULT_FALLBACK;
3247 	page = compound_head(page);
3248 
3249 	/*
3250 	 * Archs like ppc64 need additonal space to store information
3251 	 * related to pte entry. Use the preallocated table for that.
3252 	 */
3253 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3254 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3255 		if (!vmf->prealloc_pte)
3256 			return VM_FAULT_OOM;
3257 		smp_wmb(); /* See comment in __pte_alloc() */
3258 	}
3259 
3260 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3261 	if (unlikely(!pmd_none(*vmf->pmd)))
3262 		goto out;
3263 
3264 	for (i = 0; i < HPAGE_PMD_NR; i++)
3265 		flush_icache_page(vma, page + i);
3266 
3267 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3268 	if (write)
3269 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3270 
3271 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3272 	page_add_file_rmap(page, true);
3273 	/*
3274 	 * deposit and withdraw with pmd lock held
3275 	 */
3276 	if (arch_needs_pgtable_deposit())
3277 		deposit_prealloc_pte(vmf);
3278 
3279 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3280 
3281 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3282 
3283 	/* fault is handled */
3284 	ret = 0;
3285 	count_vm_event(THP_FILE_MAPPED);
3286 out:
3287 	spin_unlock(vmf->ptl);
3288 	return ret;
3289 }
3290 #else
3291 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3292 {
3293 	BUILD_BUG();
3294 	return 0;
3295 }
3296 #endif
3297 
3298 /**
3299  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3300  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3301  *
3302  * @vmf: fault environment
3303  * @memcg: memcg to charge page (only for private mappings)
3304  * @page: page to map
3305  *
3306  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3307  * return.
3308  *
3309  * Target users are page handler itself and implementations of
3310  * vm_ops->map_pages.
3311  *
3312  * Return: %0 on success, %VM_FAULT_ code in case of error.
3313  */
3314 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3315 		struct page *page)
3316 {
3317 	struct vm_area_struct *vma = vmf->vma;
3318 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3319 	pte_t entry;
3320 	vm_fault_t ret;
3321 
3322 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3323 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3324 		/* THP on COW? */
3325 		VM_BUG_ON_PAGE(memcg, page);
3326 
3327 		ret = do_set_pmd(vmf, page);
3328 		if (ret != VM_FAULT_FALLBACK)
3329 			return ret;
3330 	}
3331 
3332 	if (!vmf->pte) {
3333 		ret = pte_alloc_one_map(vmf);
3334 		if (ret)
3335 			return ret;
3336 	}
3337 
3338 	/* Re-check under ptl */
3339 	if (unlikely(!pte_none(*vmf->pte)))
3340 		return VM_FAULT_NOPAGE;
3341 
3342 	flush_icache_page(vma, page);
3343 	entry = mk_pte(page, vma->vm_page_prot);
3344 	if (write)
3345 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3346 	/* copy-on-write page */
3347 	if (write && !(vma->vm_flags & VM_SHARED)) {
3348 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3349 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3350 		mem_cgroup_commit_charge(page, memcg, false, false);
3351 		lru_cache_add_active_or_unevictable(page, vma);
3352 	} else {
3353 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3354 		page_add_file_rmap(page, false);
3355 	}
3356 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3357 
3358 	/* no need to invalidate: a not-present page won't be cached */
3359 	update_mmu_cache(vma, vmf->address, vmf->pte);
3360 
3361 	return 0;
3362 }
3363 
3364 
3365 /**
3366  * finish_fault - finish page fault once we have prepared the page to fault
3367  *
3368  * @vmf: structure describing the fault
3369  *
3370  * This function handles all that is needed to finish a page fault once the
3371  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3372  * given page, adds reverse page mapping, handles memcg charges and LRU
3373  * addition.
3374  *
3375  * The function expects the page to be locked and on success it consumes a
3376  * reference of a page being mapped (for the PTE which maps it).
3377  *
3378  * Return: %0 on success, %VM_FAULT_ code in case of error.
3379  */
3380 vm_fault_t finish_fault(struct vm_fault *vmf)
3381 {
3382 	struct page *page;
3383 	vm_fault_t ret = 0;
3384 
3385 	/* Did we COW the page? */
3386 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3387 	    !(vmf->vma->vm_flags & VM_SHARED))
3388 		page = vmf->cow_page;
3389 	else
3390 		page = vmf->page;
3391 
3392 	/*
3393 	 * check even for read faults because we might have lost our CoWed
3394 	 * page
3395 	 */
3396 	if (!(vmf->vma->vm_flags & VM_SHARED))
3397 		ret = check_stable_address_space(vmf->vma->vm_mm);
3398 	if (!ret)
3399 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3400 	if (vmf->pte)
3401 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3402 	return ret;
3403 }
3404 
3405 static unsigned long fault_around_bytes __read_mostly =
3406 	rounddown_pow_of_two(65536);
3407 
3408 #ifdef CONFIG_DEBUG_FS
3409 static int fault_around_bytes_get(void *data, u64 *val)
3410 {
3411 	*val = fault_around_bytes;
3412 	return 0;
3413 }
3414 
3415 /*
3416  * fault_around_bytes must be rounded down to the nearest page order as it's
3417  * what do_fault_around() expects to see.
3418  */
3419 static int fault_around_bytes_set(void *data, u64 val)
3420 {
3421 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3422 		return -EINVAL;
3423 	if (val > PAGE_SIZE)
3424 		fault_around_bytes = rounddown_pow_of_two(val);
3425 	else
3426 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3427 	return 0;
3428 }
3429 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3430 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3431 
3432 static int __init fault_around_debugfs(void)
3433 {
3434 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3435 				   &fault_around_bytes_fops);
3436 	return 0;
3437 }
3438 late_initcall(fault_around_debugfs);
3439 #endif
3440 
3441 /*
3442  * do_fault_around() tries to map few pages around the fault address. The hope
3443  * is that the pages will be needed soon and this will lower the number of
3444  * faults to handle.
3445  *
3446  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3447  * not ready to be mapped: not up-to-date, locked, etc.
3448  *
3449  * This function is called with the page table lock taken. In the split ptlock
3450  * case the page table lock only protects only those entries which belong to
3451  * the page table corresponding to the fault address.
3452  *
3453  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3454  * only once.
3455  *
3456  * fault_around_bytes defines how many bytes we'll try to map.
3457  * do_fault_around() expects it to be set to a power of two less than or equal
3458  * to PTRS_PER_PTE.
3459  *
3460  * The virtual address of the area that we map is naturally aligned to
3461  * fault_around_bytes rounded down to the machine page size
3462  * (and therefore to page order).  This way it's easier to guarantee
3463  * that we don't cross page table boundaries.
3464  */
3465 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3466 {
3467 	unsigned long address = vmf->address, nr_pages, mask;
3468 	pgoff_t start_pgoff = vmf->pgoff;
3469 	pgoff_t end_pgoff;
3470 	int off;
3471 	vm_fault_t ret = 0;
3472 
3473 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3474 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3475 
3476 	vmf->address = max(address & mask, vmf->vma->vm_start);
3477 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3478 	start_pgoff -= off;
3479 
3480 	/*
3481 	 *  end_pgoff is either the end of the page table, the end of
3482 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3483 	 */
3484 	end_pgoff = start_pgoff -
3485 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3486 		PTRS_PER_PTE - 1;
3487 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3488 			start_pgoff + nr_pages - 1);
3489 
3490 	if (pmd_none(*vmf->pmd)) {
3491 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3492 		if (!vmf->prealloc_pte)
3493 			goto out;
3494 		smp_wmb(); /* See comment in __pte_alloc() */
3495 	}
3496 
3497 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3498 
3499 	/* Huge page is mapped? Page fault is solved */
3500 	if (pmd_trans_huge(*vmf->pmd)) {
3501 		ret = VM_FAULT_NOPAGE;
3502 		goto out;
3503 	}
3504 
3505 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3506 	if (!vmf->pte)
3507 		goto out;
3508 
3509 	/* check if the page fault is solved */
3510 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3511 	if (!pte_none(*vmf->pte))
3512 		ret = VM_FAULT_NOPAGE;
3513 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3514 out:
3515 	vmf->address = address;
3516 	vmf->pte = NULL;
3517 	return ret;
3518 }
3519 
3520 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3521 {
3522 	struct vm_area_struct *vma = vmf->vma;
3523 	vm_fault_t ret = 0;
3524 
3525 	/*
3526 	 * Let's call ->map_pages() first and use ->fault() as fallback
3527 	 * if page by the offset is not ready to be mapped (cold cache or
3528 	 * something).
3529 	 */
3530 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3531 		ret = do_fault_around(vmf);
3532 		if (ret)
3533 			return ret;
3534 	}
3535 
3536 	ret = __do_fault(vmf);
3537 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3538 		return ret;
3539 
3540 	ret |= finish_fault(vmf);
3541 	unlock_page(vmf->page);
3542 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3543 		put_page(vmf->page);
3544 	return ret;
3545 }
3546 
3547 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3548 {
3549 	struct vm_area_struct *vma = vmf->vma;
3550 	vm_fault_t ret;
3551 
3552 	if (unlikely(anon_vma_prepare(vma)))
3553 		return VM_FAULT_OOM;
3554 
3555 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3556 	if (!vmf->cow_page)
3557 		return VM_FAULT_OOM;
3558 
3559 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3560 				&vmf->memcg, false)) {
3561 		put_page(vmf->cow_page);
3562 		return VM_FAULT_OOM;
3563 	}
3564 
3565 	ret = __do_fault(vmf);
3566 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3567 		goto uncharge_out;
3568 	if (ret & VM_FAULT_DONE_COW)
3569 		return ret;
3570 
3571 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3572 	__SetPageUptodate(vmf->cow_page);
3573 
3574 	ret |= finish_fault(vmf);
3575 	unlock_page(vmf->page);
3576 	put_page(vmf->page);
3577 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3578 		goto uncharge_out;
3579 	return ret;
3580 uncharge_out:
3581 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3582 	put_page(vmf->cow_page);
3583 	return ret;
3584 }
3585 
3586 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3587 {
3588 	struct vm_area_struct *vma = vmf->vma;
3589 	vm_fault_t ret, tmp;
3590 
3591 	ret = __do_fault(vmf);
3592 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3593 		return ret;
3594 
3595 	/*
3596 	 * Check if the backing address space wants to know that the page is
3597 	 * about to become writable
3598 	 */
3599 	if (vma->vm_ops->page_mkwrite) {
3600 		unlock_page(vmf->page);
3601 		tmp = do_page_mkwrite(vmf);
3602 		if (unlikely(!tmp ||
3603 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3604 			put_page(vmf->page);
3605 			return tmp;
3606 		}
3607 	}
3608 
3609 	ret |= finish_fault(vmf);
3610 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3611 					VM_FAULT_RETRY))) {
3612 		unlock_page(vmf->page);
3613 		put_page(vmf->page);
3614 		return ret;
3615 	}
3616 
3617 	fault_dirty_shared_page(vma, vmf->page);
3618 	return ret;
3619 }
3620 
3621 /*
3622  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3623  * but allow concurrent faults).
3624  * The mmap_sem may have been released depending on flags and our
3625  * return value.  See filemap_fault() and __lock_page_or_retry().
3626  * If mmap_sem is released, vma may become invalid (for example
3627  * by other thread calling munmap()).
3628  */
3629 static vm_fault_t do_fault(struct vm_fault *vmf)
3630 {
3631 	struct vm_area_struct *vma = vmf->vma;
3632 	struct mm_struct *vm_mm = vma->vm_mm;
3633 	vm_fault_t ret;
3634 
3635 	/*
3636 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3637 	 */
3638 	if (!vma->vm_ops->fault) {
3639 		/*
3640 		 * If we find a migration pmd entry or a none pmd entry, which
3641 		 * should never happen, return SIGBUS
3642 		 */
3643 		if (unlikely(!pmd_present(*vmf->pmd)))
3644 			ret = VM_FAULT_SIGBUS;
3645 		else {
3646 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3647 						       vmf->pmd,
3648 						       vmf->address,
3649 						       &vmf->ptl);
3650 			/*
3651 			 * Make sure this is not a temporary clearing of pte
3652 			 * by holding ptl and checking again. A R/M/W update
3653 			 * of pte involves: take ptl, clearing the pte so that
3654 			 * we don't have concurrent modification by hardware
3655 			 * followed by an update.
3656 			 */
3657 			if (unlikely(pte_none(*vmf->pte)))
3658 				ret = VM_FAULT_SIGBUS;
3659 			else
3660 				ret = VM_FAULT_NOPAGE;
3661 
3662 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3663 		}
3664 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3665 		ret = do_read_fault(vmf);
3666 	else if (!(vma->vm_flags & VM_SHARED))
3667 		ret = do_cow_fault(vmf);
3668 	else
3669 		ret = do_shared_fault(vmf);
3670 
3671 	/* preallocated pagetable is unused: free it */
3672 	if (vmf->prealloc_pte) {
3673 		pte_free(vm_mm, vmf->prealloc_pte);
3674 		vmf->prealloc_pte = NULL;
3675 	}
3676 	return ret;
3677 }
3678 
3679 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3680 				unsigned long addr, int page_nid,
3681 				int *flags)
3682 {
3683 	get_page(page);
3684 
3685 	count_vm_numa_event(NUMA_HINT_FAULTS);
3686 	if (page_nid == numa_node_id()) {
3687 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3688 		*flags |= TNF_FAULT_LOCAL;
3689 	}
3690 
3691 	return mpol_misplaced(page, vma, addr);
3692 }
3693 
3694 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3695 {
3696 	struct vm_area_struct *vma = vmf->vma;
3697 	struct page *page = NULL;
3698 	int page_nid = NUMA_NO_NODE;
3699 	int last_cpupid;
3700 	int target_nid;
3701 	bool migrated = false;
3702 	pte_t pte, old_pte;
3703 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3704 	int flags = 0;
3705 
3706 	/*
3707 	 * The "pte" at this point cannot be used safely without
3708 	 * validation through pte_unmap_same(). It's of NUMA type but
3709 	 * the pfn may be screwed if the read is non atomic.
3710 	 */
3711 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3712 	spin_lock(vmf->ptl);
3713 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3714 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3715 		goto out;
3716 	}
3717 
3718 	/*
3719 	 * Make it present again, Depending on how arch implementes non
3720 	 * accessible ptes, some can allow access by kernel mode.
3721 	 */
3722 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3723 	pte = pte_modify(old_pte, vma->vm_page_prot);
3724 	pte = pte_mkyoung(pte);
3725 	if (was_writable)
3726 		pte = pte_mkwrite(pte);
3727 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3728 	update_mmu_cache(vma, vmf->address, vmf->pte);
3729 
3730 	page = vm_normal_page(vma, vmf->address, pte);
3731 	if (!page) {
3732 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3733 		return 0;
3734 	}
3735 
3736 	/* TODO: handle PTE-mapped THP */
3737 	if (PageCompound(page)) {
3738 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3739 		return 0;
3740 	}
3741 
3742 	/*
3743 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3744 	 * much anyway since they can be in shared cache state. This misses
3745 	 * the case where a mapping is writable but the process never writes
3746 	 * to it but pte_write gets cleared during protection updates and
3747 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3748 	 * background writeback, dirty balancing and application behaviour.
3749 	 */
3750 	if (!pte_write(pte))
3751 		flags |= TNF_NO_GROUP;
3752 
3753 	/*
3754 	 * Flag if the page is shared between multiple address spaces. This
3755 	 * is later used when determining whether to group tasks together
3756 	 */
3757 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3758 		flags |= TNF_SHARED;
3759 
3760 	last_cpupid = page_cpupid_last(page);
3761 	page_nid = page_to_nid(page);
3762 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3763 			&flags);
3764 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3765 	if (target_nid == NUMA_NO_NODE) {
3766 		put_page(page);
3767 		goto out;
3768 	}
3769 
3770 	/* Migrate to the requested node */
3771 	migrated = migrate_misplaced_page(page, vma, target_nid);
3772 	if (migrated) {
3773 		page_nid = target_nid;
3774 		flags |= TNF_MIGRATED;
3775 	} else
3776 		flags |= TNF_MIGRATE_FAIL;
3777 
3778 out:
3779 	if (page_nid != NUMA_NO_NODE)
3780 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3781 	return 0;
3782 }
3783 
3784 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3785 {
3786 	if (vma_is_anonymous(vmf->vma))
3787 		return do_huge_pmd_anonymous_page(vmf);
3788 	if (vmf->vma->vm_ops->huge_fault)
3789 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3790 	return VM_FAULT_FALLBACK;
3791 }
3792 
3793 /* `inline' is required to avoid gcc 4.1.2 build error */
3794 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3795 {
3796 	if (vma_is_anonymous(vmf->vma))
3797 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3798 	if (vmf->vma->vm_ops->huge_fault)
3799 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3800 
3801 	/* COW handled on pte level: split pmd */
3802 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3803 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3804 
3805 	return VM_FAULT_FALLBACK;
3806 }
3807 
3808 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3809 {
3810 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3811 }
3812 
3813 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3814 {
3815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3816 	/* No support for anonymous transparent PUD pages yet */
3817 	if (vma_is_anonymous(vmf->vma))
3818 		return VM_FAULT_FALLBACK;
3819 	if (vmf->vma->vm_ops->huge_fault)
3820 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3821 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3822 	return VM_FAULT_FALLBACK;
3823 }
3824 
3825 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3826 {
3827 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3828 	/* No support for anonymous transparent PUD pages yet */
3829 	if (vma_is_anonymous(vmf->vma))
3830 		return VM_FAULT_FALLBACK;
3831 	if (vmf->vma->vm_ops->huge_fault)
3832 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3833 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3834 	return VM_FAULT_FALLBACK;
3835 }
3836 
3837 /*
3838  * These routines also need to handle stuff like marking pages dirty
3839  * and/or accessed for architectures that don't do it in hardware (most
3840  * RISC architectures).  The early dirtying is also good on the i386.
3841  *
3842  * There is also a hook called "update_mmu_cache()" that architectures
3843  * with external mmu caches can use to update those (ie the Sparc or
3844  * PowerPC hashed page tables that act as extended TLBs).
3845  *
3846  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3847  * concurrent faults).
3848  *
3849  * The mmap_sem may have been released depending on flags and our return value.
3850  * See filemap_fault() and __lock_page_or_retry().
3851  */
3852 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3853 {
3854 	pte_t entry;
3855 
3856 	if (unlikely(pmd_none(*vmf->pmd))) {
3857 		/*
3858 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3859 		 * want to allocate huge page, and if we expose page table
3860 		 * for an instant, it will be difficult to retract from
3861 		 * concurrent faults and from rmap lookups.
3862 		 */
3863 		vmf->pte = NULL;
3864 	} else {
3865 		/* See comment in pte_alloc_one_map() */
3866 		if (pmd_devmap_trans_unstable(vmf->pmd))
3867 			return 0;
3868 		/*
3869 		 * A regular pmd is established and it can't morph into a huge
3870 		 * pmd from under us anymore at this point because we hold the
3871 		 * mmap_sem read mode and khugepaged takes it in write mode.
3872 		 * So now it's safe to run pte_offset_map().
3873 		 */
3874 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3875 		vmf->orig_pte = *vmf->pte;
3876 
3877 		/*
3878 		 * some architectures can have larger ptes than wordsize,
3879 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3880 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3881 		 * accesses.  The code below just needs a consistent view
3882 		 * for the ifs and we later double check anyway with the
3883 		 * ptl lock held. So here a barrier will do.
3884 		 */
3885 		barrier();
3886 		if (pte_none(vmf->orig_pte)) {
3887 			pte_unmap(vmf->pte);
3888 			vmf->pte = NULL;
3889 		}
3890 	}
3891 
3892 	if (!vmf->pte) {
3893 		if (vma_is_anonymous(vmf->vma))
3894 			return do_anonymous_page(vmf);
3895 		else
3896 			return do_fault(vmf);
3897 	}
3898 
3899 	if (!pte_present(vmf->orig_pte))
3900 		return do_swap_page(vmf);
3901 
3902 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3903 		return do_numa_page(vmf);
3904 
3905 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3906 	spin_lock(vmf->ptl);
3907 	entry = vmf->orig_pte;
3908 	if (unlikely(!pte_same(*vmf->pte, entry)))
3909 		goto unlock;
3910 	if (vmf->flags & FAULT_FLAG_WRITE) {
3911 		if (!pte_write(entry))
3912 			return do_wp_page(vmf);
3913 		entry = pte_mkdirty(entry);
3914 	}
3915 	entry = pte_mkyoung(entry);
3916 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3917 				vmf->flags & FAULT_FLAG_WRITE)) {
3918 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3919 	} else {
3920 		/*
3921 		 * This is needed only for protection faults but the arch code
3922 		 * is not yet telling us if this is a protection fault or not.
3923 		 * This still avoids useless tlb flushes for .text page faults
3924 		 * with threads.
3925 		 */
3926 		if (vmf->flags & FAULT_FLAG_WRITE)
3927 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3928 	}
3929 unlock:
3930 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3931 	return 0;
3932 }
3933 
3934 /*
3935  * By the time we get here, we already hold the mm semaphore
3936  *
3937  * The mmap_sem may have been released depending on flags and our
3938  * return value.  See filemap_fault() and __lock_page_or_retry().
3939  */
3940 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3941 		unsigned long address, unsigned int flags)
3942 {
3943 	struct vm_fault vmf = {
3944 		.vma = vma,
3945 		.address = address & PAGE_MASK,
3946 		.flags = flags,
3947 		.pgoff = linear_page_index(vma, address),
3948 		.gfp_mask = __get_fault_gfp_mask(vma),
3949 	};
3950 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
3951 	struct mm_struct *mm = vma->vm_mm;
3952 	pgd_t *pgd;
3953 	p4d_t *p4d;
3954 	vm_fault_t ret;
3955 
3956 	pgd = pgd_offset(mm, address);
3957 	p4d = p4d_alloc(mm, pgd, address);
3958 	if (!p4d)
3959 		return VM_FAULT_OOM;
3960 
3961 	vmf.pud = pud_alloc(mm, p4d, address);
3962 	if (!vmf.pud)
3963 		return VM_FAULT_OOM;
3964 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3965 		ret = create_huge_pud(&vmf);
3966 		if (!(ret & VM_FAULT_FALLBACK))
3967 			return ret;
3968 	} else {
3969 		pud_t orig_pud = *vmf.pud;
3970 
3971 		barrier();
3972 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3973 
3974 			/* NUMA case for anonymous PUDs would go here */
3975 
3976 			if (dirty && !pud_write(orig_pud)) {
3977 				ret = wp_huge_pud(&vmf, orig_pud);
3978 				if (!(ret & VM_FAULT_FALLBACK))
3979 					return ret;
3980 			} else {
3981 				huge_pud_set_accessed(&vmf, orig_pud);
3982 				return 0;
3983 			}
3984 		}
3985 	}
3986 
3987 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3988 	if (!vmf.pmd)
3989 		return VM_FAULT_OOM;
3990 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3991 		ret = create_huge_pmd(&vmf);
3992 		if (!(ret & VM_FAULT_FALLBACK))
3993 			return ret;
3994 	} else {
3995 		pmd_t orig_pmd = *vmf.pmd;
3996 
3997 		barrier();
3998 		if (unlikely(is_swap_pmd(orig_pmd))) {
3999 			VM_BUG_ON(thp_migration_supported() &&
4000 					  !is_pmd_migration_entry(orig_pmd));
4001 			if (is_pmd_migration_entry(orig_pmd))
4002 				pmd_migration_entry_wait(mm, vmf.pmd);
4003 			return 0;
4004 		}
4005 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4006 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4007 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4008 
4009 			if (dirty && !pmd_write(orig_pmd)) {
4010 				ret = wp_huge_pmd(&vmf, orig_pmd);
4011 				if (!(ret & VM_FAULT_FALLBACK))
4012 					return ret;
4013 			} else {
4014 				huge_pmd_set_accessed(&vmf, orig_pmd);
4015 				return 0;
4016 			}
4017 		}
4018 	}
4019 
4020 	return handle_pte_fault(&vmf);
4021 }
4022 
4023 /*
4024  * By the time we get here, we already hold the mm semaphore
4025  *
4026  * The mmap_sem may have been released depending on flags and our
4027  * return value.  See filemap_fault() and __lock_page_or_retry().
4028  */
4029 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4030 		unsigned int flags)
4031 {
4032 	vm_fault_t ret;
4033 
4034 	__set_current_state(TASK_RUNNING);
4035 
4036 	count_vm_event(PGFAULT);
4037 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4038 
4039 	/* do counter updates before entering really critical section. */
4040 	check_sync_rss_stat(current);
4041 
4042 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4043 					    flags & FAULT_FLAG_INSTRUCTION,
4044 					    flags & FAULT_FLAG_REMOTE))
4045 		return VM_FAULT_SIGSEGV;
4046 
4047 	/*
4048 	 * Enable the memcg OOM handling for faults triggered in user
4049 	 * space.  Kernel faults are handled more gracefully.
4050 	 */
4051 	if (flags & FAULT_FLAG_USER)
4052 		mem_cgroup_enter_user_fault();
4053 
4054 	if (unlikely(is_vm_hugetlb_page(vma)))
4055 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4056 	else
4057 		ret = __handle_mm_fault(vma, address, flags);
4058 
4059 	if (flags & FAULT_FLAG_USER) {
4060 		mem_cgroup_exit_user_fault();
4061 		/*
4062 		 * The task may have entered a memcg OOM situation but
4063 		 * if the allocation error was handled gracefully (no
4064 		 * VM_FAULT_OOM), there is no need to kill anything.
4065 		 * Just clean up the OOM state peacefully.
4066 		 */
4067 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4068 			mem_cgroup_oom_synchronize(false);
4069 	}
4070 
4071 	return ret;
4072 }
4073 EXPORT_SYMBOL_GPL(handle_mm_fault);
4074 
4075 #ifndef __PAGETABLE_P4D_FOLDED
4076 /*
4077  * Allocate p4d page table.
4078  * We've already handled the fast-path in-line.
4079  */
4080 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4081 {
4082 	p4d_t *new = p4d_alloc_one(mm, address);
4083 	if (!new)
4084 		return -ENOMEM;
4085 
4086 	smp_wmb(); /* See comment in __pte_alloc */
4087 
4088 	spin_lock(&mm->page_table_lock);
4089 	if (pgd_present(*pgd))		/* Another has populated it */
4090 		p4d_free(mm, new);
4091 	else
4092 		pgd_populate(mm, pgd, new);
4093 	spin_unlock(&mm->page_table_lock);
4094 	return 0;
4095 }
4096 #endif /* __PAGETABLE_P4D_FOLDED */
4097 
4098 #ifndef __PAGETABLE_PUD_FOLDED
4099 /*
4100  * Allocate page upper directory.
4101  * We've already handled the fast-path in-line.
4102  */
4103 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4104 {
4105 	pud_t *new = pud_alloc_one(mm, address);
4106 	if (!new)
4107 		return -ENOMEM;
4108 
4109 	smp_wmb(); /* See comment in __pte_alloc */
4110 
4111 	spin_lock(&mm->page_table_lock);
4112 #ifndef __ARCH_HAS_5LEVEL_HACK
4113 	if (!p4d_present(*p4d)) {
4114 		mm_inc_nr_puds(mm);
4115 		p4d_populate(mm, p4d, new);
4116 	} else	/* Another has populated it */
4117 		pud_free(mm, new);
4118 #else
4119 	if (!pgd_present(*p4d)) {
4120 		mm_inc_nr_puds(mm);
4121 		pgd_populate(mm, p4d, new);
4122 	} else	/* Another has populated it */
4123 		pud_free(mm, new);
4124 #endif /* __ARCH_HAS_5LEVEL_HACK */
4125 	spin_unlock(&mm->page_table_lock);
4126 	return 0;
4127 }
4128 #endif /* __PAGETABLE_PUD_FOLDED */
4129 
4130 #ifndef __PAGETABLE_PMD_FOLDED
4131 /*
4132  * Allocate page middle directory.
4133  * We've already handled the fast-path in-line.
4134  */
4135 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4136 {
4137 	spinlock_t *ptl;
4138 	pmd_t *new = pmd_alloc_one(mm, address);
4139 	if (!new)
4140 		return -ENOMEM;
4141 
4142 	smp_wmb(); /* See comment in __pte_alloc */
4143 
4144 	ptl = pud_lock(mm, pud);
4145 #ifndef __ARCH_HAS_4LEVEL_HACK
4146 	if (!pud_present(*pud)) {
4147 		mm_inc_nr_pmds(mm);
4148 		pud_populate(mm, pud, new);
4149 	} else	/* Another has populated it */
4150 		pmd_free(mm, new);
4151 #else
4152 	if (!pgd_present(*pud)) {
4153 		mm_inc_nr_pmds(mm);
4154 		pgd_populate(mm, pud, new);
4155 	} else /* Another has populated it */
4156 		pmd_free(mm, new);
4157 #endif /* __ARCH_HAS_4LEVEL_HACK */
4158 	spin_unlock(ptl);
4159 	return 0;
4160 }
4161 #endif /* __PAGETABLE_PMD_FOLDED */
4162 
4163 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4164 			    struct mmu_notifier_range *range,
4165 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4166 {
4167 	pgd_t *pgd;
4168 	p4d_t *p4d;
4169 	pud_t *pud;
4170 	pmd_t *pmd;
4171 	pte_t *ptep;
4172 
4173 	pgd = pgd_offset(mm, address);
4174 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4175 		goto out;
4176 
4177 	p4d = p4d_offset(pgd, address);
4178 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4179 		goto out;
4180 
4181 	pud = pud_offset(p4d, address);
4182 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4183 		goto out;
4184 
4185 	pmd = pmd_offset(pud, address);
4186 	VM_BUG_ON(pmd_trans_huge(*pmd));
4187 
4188 	if (pmd_huge(*pmd)) {
4189 		if (!pmdpp)
4190 			goto out;
4191 
4192 		if (range) {
4193 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4194 						NULL, mm, address & PMD_MASK,
4195 						(address & PMD_MASK) + PMD_SIZE);
4196 			mmu_notifier_invalidate_range_start(range);
4197 		}
4198 		*ptlp = pmd_lock(mm, pmd);
4199 		if (pmd_huge(*pmd)) {
4200 			*pmdpp = pmd;
4201 			return 0;
4202 		}
4203 		spin_unlock(*ptlp);
4204 		if (range)
4205 			mmu_notifier_invalidate_range_end(range);
4206 	}
4207 
4208 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4209 		goto out;
4210 
4211 	if (range) {
4212 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4213 					address & PAGE_MASK,
4214 					(address & PAGE_MASK) + PAGE_SIZE);
4215 		mmu_notifier_invalidate_range_start(range);
4216 	}
4217 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4218 	if (!pte_present(*ptep))
4219 		goto unlock;
4220 	*ptepp = ptep;
4221 	return 0;
4222 unlock:
4223 	pte_unmap_unlock(ptep, *ptlp);
4224 	if (range)
4225 		mmu_notifier_invalidate_range_end(range);
4226 out:
4227 	return -EINVAL;
4228 }
4229 
4230 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4231 			     pte_t **ptepp, spinlock_t **ptlp)
4232 {
4233 	int res;
4234 
4235 	/* (void) is needed to make gcc happy */
4236 	(void) __cond_lock(*ptlp,
4237 			   !(res = __follow_pte_pmd(mm, address, NULL,
4238 						    ptepp, NULL, ptlp)));
4239 	return res;
4240 }
4241 
4242 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4243 		   struct mmu_notifier_range *range,
4244 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4245 {
4246 	int res;
4247 
4248 	/* (void) is needed to make gcc happy */
4249 	(void) __cond_lock(*ptlp,
4250 			   !(res = __follow_pte_pmd(mm, address, range,
4251 						    ptepp, pmdpp, ptlp)));
4252 	return res;
4253 }
4254 EXPORT_SYMBOL(follow_pte_pmd);
4255 
4256 /**
4257  * follow_pfn - look up PFN at a user virtual address
4258  * @vma: memory mapping
4259  * @address: user virtual address
4260  * @pfn: location to store found PFN
4261  *
4262  * Only IO mappings and raw PFN mappings are allowed.
4263  *
4264  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4265  */
4266 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4267 	unsigned long *pfn)
4268 {
4269 	int ret = -EINVAL;
4270 	spinlock_t *ptl;
4271 	pte_t *ptep;
4272 
4273 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4274 		return ret;
4275 
4276 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4277 	if (ret)
4278 		return ret;
4279 	*pfn = pte_pfn(*ptep);
4280 	pte_unmap_unlock(ptep, ptl);
4281 	return 0;
4282 }
4283 EXPORT_SYMBOL(follow_pfn);
4284 
4285 #ifdef CONFIG_HAVE_IOREMAP_PROT
4286 int follow_phys(struct vm_area_struct *vma,
4287 		unsigned long address, unsigned int flags,
4288 		unsigned long *prot, resource_size_t *phys)
4289 {
4290 	int ret = -EINVAL;
4291 	pte_t *ptep, pte;
4292 	spinlock_t *ptl;
4293 
4294 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4295 		goto out;
4296 
4297 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4298 		goto out;
4299 	pte = *ptep;
4300 
4301 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4302 		goto unlock;
4303 
4304 	*prot = pgprot_val(pte_pgprot(pte));
4305 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4306 
4307 	ret = 0;
4308 unlock:
4309 	pte_unmap_unlock(ptep, ptl);
4310 out:
4311 	return ret;
4312 }
4313 
4314 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4315 			void *buf, int len, int write)
4316 {
4317 	resource_size_t phys_addr;
4318 	unsigned long prot = 0;
4319 	void __iomem *maddr;
4320 	int offset = addr & (PAGE_SIZE-1);
4321 
4322 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4323 		return -EINVAL;
4324 
4325 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4326 	if (!maddr)
4327 		return -ENOMEM;
4328 
4329 	if (write)
4330 		memcpy_toio(maddr + offset, buf, len);
4331 	else
4332 		memcpy_fromio(buf, maddr + offset, len);
4333 	iounmap(maddr);
4334 
4335 	return len;
4336 }
4337 EXPORT_SYMBOL_GPL(generic_access_phys);
4338 #endif
4339 
4340 /*
4341  * Access another process' address space as given in mm.  If non-NULL, use the
4342  * given task for page fault accounting.
4343  */
4344 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4345 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4346 {
4347 	struct vm_area_struct *vma;
4348 	void *old_buf = buf;
4349 	int write = gup_flags & FOLL_WRITE;
4350 
4351 	down_read(&mm->mmap_sem);
4352 	/* ignore errors, just check how much was successfully transferred */
4353 	while (len) {
4354 		int bytes, ret, offset;
4355 		void *maddr;
4356 		struct page *page = NULL;
4357 
4358 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4359 				gup_flags, &page, &vma, NULL);
4360 		if (ret <= 0) {
4361 #ifndef CONFIG_HAVE_IOREMAP_PROT
4362 			break;
4363 #else
4364 			/*
4365 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4366 			 * we can access using slightly different code.
4367 			 */
4368 			vma = find_vma(mm, addr);
4369 			if (!vma || vma->vm_start > addr)
4370 				break;
4371 			if (vma->vm_ops && vma->vm_ops->access)
4372 				ret = vma->vm_ops->access(vma, addr, buf,
4373 							  len, write);
4374 			if (ret <= 0)
4375 				break;
4376 			bytes = ret;
4377 #endif
4378 		} else {
4379 			bytes = len;
4380 			offset = addr & (PAGE_SIZE-1);
4381 			if (bytes > PAGE_SIZE-offset)
4382 				bytes = PAGE_SIZE-offset;
4383 
4384 			maddr = kmap(page);
4385 			if (write) {
4386 				copy_to_user_page(vma, page, addr,
4387 						  maddr + offset, buf, bytes);
4388 				set_page_dirty_lock(page);
4389 			} else {
4390 				copy_from_user_page(vma, page, addr,
4391 						    buf, maddr + offset, bytes);
4392 			}
4393 			kunmap(page);
4394 			put_page(page);
4395 		}
4396 		len -= bytes;
4397 		buf += bytes;
4398 		addr += bytes;
4399 	}
4400 	up_read(&mm->mmap_sem);
4401 
4402 	return buf - old_buf;
4403 }
4404 
4405 /**
4406  * access_remote_vm - access another process' address space
4407  * @mm:		the mm_struct of the target address space
4408  * @addr:	start address to access
4409  * @buf:	source or destination buffer
4410  * @len:	number of bytes to transfer
4411  * @gup_flags:	flags modifying lookup behaviour
4412  *
4413  * The caller must hold a reference on @mm.
4414  *
4415  * Return: number of bytes copied from source to destination.
4416  */
4417 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4418 		void *buf, int len, unsigned int gup_flags)
4419 {
4420 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4421 }
4422 
4423 /*
4424  * Access another process' address space.
4425  * Source/target buffer must be kernel space,
4426  * Do not walk the page table directly, use get_user_pages
4427  */
4428 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4429 		void *buf, int len, unsigned int gup_flags)
4430 {
4431 	struct mm_struct *mm;
4432 	int ret;
4433 
4434 	mm = get_task_mm(tsk);
4435 	if (!mm)
4436 		return 0;
4437 
4438 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4439 
4440 	mmput(mm);
4441 
4442 	return ret;
4443 }
4444 EXPORT_SYMBOL_GPL(access_process_vm);
4445 
4446 /*
4447  * Print the name of a VMA.
4448  */
4449 void print_vma_addr(char *prefix, unsigned long ip)
4450 {
4451 	struct mm_struct *mm = current->mm;
4452 	struct vm_area_struct *vma;
4453 
4454 	/*
4455 	 * we might be running from an atomic context so we cannot sleep
4456 	 */
4457 	if (!down_read_trylock(&mm->mmap_sem))
4458 		return;
4459 
4460 	vma = find_vma(mm, ip);
4461 	if (vma && vma->vm_file) {
4462 		struct file *f = vma->vm_file;
4463 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4464 		if (buf) {
4465 			char *p;
4466 
4467 			p = file_path(f, buf, PAGE_SIZE);
4468 			if (IS_ERR(p))
4469 				p = "?";
4470 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4471 					vma->vm_start,
4472 					vma->vm_end - vma->vm_start);
4473 			free_page((unsigned long)buf);
4474 		}
4475 	}
4476 	up_read(&mm->mmap_sem);
4477 }
4478 
4479 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4480 void __might_fault(const char *file, int line)
4481 {
4482 	/*
4483 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4484 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4485 	 * get paged out, therefore we'll never actually fault, and the
4486 	 * below annotations will generate false positives.
4487 	 */
4488 	if (uaccess_kernel())
4489 		return;
4490 	if (pagefault_disabled())
4491 		return;
4492 	__might_sleep(file, line, 0);
4493 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4494 	if (current->mm)
4495 		might_lock_read(&current->mm->mmap_sem);
4496 #endif
4497 }
4498 EXPORT_SYMBOL(__might_fault);
4499 #endif
4500 
4501 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4502 /*
4503  * Process all subpages of the specified huge page with the specified
4504  * operation.  The target subpage will be processed last to keep its
4505  * cache lines hot.
4506  */
4507 static inline void process_huge_page(
4508 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4509 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4510 	void *arg)
4511 {
4512 	int i, n, base, l;
4513 	unsigned long addr = addr_hint &
4514 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4515 
4516 	/* Process target subpage last to keep its cache lines hot */
4517 	might_sleep();
4518 	n = (addr_hint - addr) / PAGE_SIZE;
4519 	if (2 * n <= pages_per_huge_page) {
4520 		/* If target subpage in first half of huge page */
4521 		base = 0;
4522 		l = n;
4523 		/* Process subpages at the end of huge page */
4524 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4525 			cond_resched();
4526 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4527 		}
4528 	} else {
4529 		/* If target subpage in second half of huge page */
4530 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4531 		l = pages_per_huge_page - n;
4532 		/* Process subpages at the begin of huge page */
4533 		for (i = 0; i < base; i++) {
4534 			cond_resched();
4535 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4536 		}
4537 	}
4538 	/*
4539 	 * Process remaining subpages in left-right-left-right pattern
4540 	 * towards the target subpage
4541 	 */
4542 	for (i = 0; i < l; i++) {
4543 		int left_idx = base + i;
4544 		int right_idx = base + 2 * l - 1 - i;
4545 
4546 		cond_resched();
4547 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4548 		cond_resched();
4549 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4550 	}
4551 }
4552 
4553 static void clear_gigantic_page(struct page *page,
4554 				unsigned long addr,
4555 				unsigned int pages_per_huge_page)
4556 {
4557 	int i;
4558 	struct page *p = page;
4559 
4560 	might_sleep();
4561 	for (i = 0; i < pages_per_huge_page;
4562 	     i++, p = mem_map_next(p, page, i)) {
4563 		cond_resched();
4564 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4565 	}
4566 }
4567 
4568 static void clear_subpage(unsigned long addr, int idx, void *arg)
4569 {
4570 	struct page *page = arg;
4571 
4572 	clear_user_highpage(page + idx, addr);
4573 }
4574 
4575 void clear_huge_page(struct page *page,
4576 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4577 {
4578 	unsigned long addr = addr_hint &
4579 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4580 
4581 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4582 		clear_gigantic_page(page, addr, pages_per_huge_page);
4583 		return;
4584 	}
4585 
4586 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4587 }
4588 
4589 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4590 				    unsigned long addr,
4591 				    struct vm_area_struct *vma,
4592 				    unsigned int pages_per_huge_page)
4593 {
4594 	int i;
4595 	struct page *dst_base = dst;
4596 	struct page *src_base = src;
4597 
4598 	for (i = 0; i < pages_per_huge_page; ) {
4599 		cond_resched();
4600 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4601 
4602 		i++;
4603 		dst = mem_map_next(dst, dst_base, i);
4604 		src = mem_map_next(src, src_base, i);
4605 	}
4606 }
4607 
4608 struct copy_subpage_arg {
4609 	struct page *dst;
4610 	struct page *src;
4611 	struct vm_area_struct *vma;
4612 };
4613 
4614 static void copy_subpage(unsigned long addr, int idx, void *arg)
4615 {
4616 	struct copy_subpage_arg *copy_arg = arg;
4617 
4618 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4619 			   addr, copy_arg->vma);
4620 }
4621 
4622 void copy_user_huge_page(struct page *dst, struct page *src,
4623 			 unsigned long addr_hint, struct vm_area_struct *vma,
4624 			 unsigned int pages_per_huge_page)
4625 {
4626 	unsigned long addr = addr_hint &
4627 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4628 	struct copy_subpage_arg arg = {
4629 		.dst = dst,
4630 		.src = src,
4631 		.vma = vma,
4632 	};
4633 
4634 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4635 		copy_user_gigantic_page(dst, src, addr, vma,
4636 					pages_per_huge_page);
4637 		return;
4638 	}
4639 
4640 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4641 }
4642 
4643 long copy_huge_page_from_user(struct page *dst_page,
4644 				const void __user *usr_src,
4645 				unsigned int pages_per_huge_page,
4646 				bool allow_pagefault)
4647 {
4648 	void *src = (void *)usr_src;
4649 	void *page_kaddr;
4650 	unsigned long i, rc = 0;
4651 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4652 
4653 	for (i = 0; i < pages_per_huge_page; i++) {
4654 		if (allow_pagefault)
4655 			page_kaddr = kmap(dst_page + i);
4656 		else
4657 			page_kaddr = kmap_atomic(dst_page + i);
4658 		rc = copy_from_user(page_kaddr,
4659 				(const void __user *)(src + i * PAGE_SIZE),
4660 				PAGE_SIZE);
4661 		if (allow_pagefault)
4662 			kunmap(dst_page + i);
4663 		else
4664 			kunmap_atomic(page_kaddr);
4665 
4666 		ret_val -= (PAGE_SIZE - rc);
4667 		if (rc)
4668 			break;
4669 
4670 		cond_resched();
4671 	}
4672 	return ret_val;
4673 }
4674 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4675 
4676 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4677 
4678 static struct kmem_cache *page_ptl_cachep;
4679 
4680 void __init ptlock_cache_init(void)
4681 {
4682 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4683 			SLAB_PANIC, NULL);
4684 }
4685 
4686 bool ptlock_alloc(struct page *page)
4687 {
4688 	spinlock_t *ptl;
4689 
4690 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4691 	if (!ptl)
4692 		return false;
4693 	page->ptl = ptl;
4694 	return true;
4695 }
4696 
4697 void ptlock_free(struct page *page)
4698 {
4699 	kmem_cache_free(page_ptl_cachep, page->ptl);
4700 }
4701 #endif
4702