xref: /openbmc/linux/mm/memory.c (revision b5f184fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76 
77 #include <trace/events/kmem.h>
78 
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85 
86 #include "pgalloc-track.h"
87 #include "internal.h"
88 
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92 
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97 
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101 
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111 
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120 					1;
121 #else
122 					2;
123 #endif
124 
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128 	/*
129 	 * Those arches which don't have hw access flag feature need to
130 	 * implement their own helper. By default, "true" means pagefault
131 	 * will be hit on old pte.
132 	 */
133 	return true;
134 }
135 #endif
136 
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
139 {
140 	/*
141 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 	 * some architectures, even if it's performed in hardware. By
143 	 * default, "false" means prefaulted entries will be 'young'.
144 	 */
145 	return false;
146 }
147 #endif
148 
149 static int __init disable_randmaps(char *s)
150 {
151 	randomize_va_space = 0;
152 	return 1;
153 }
154 __setup("norandmaps", disable_randmaps);
155 
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
158 
159 unsigned long highest_memmap_pfn __read_mostly;
160 
161 /*
162  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163  */
164 static int __init init_zero_pfn(void)
165 {
166 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 	return 0;
168 }
169 core_initcall(init_zero_pfn);
170 
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 {
173 	trace_rss_stat(mm, member, count);
174 }
175 
176 #if defined(SPLIT_RSS_COUNTING)
177 
178 void sync_mm_rss(struct mm_struct *mm)
179 {
180 	int i;
181 
182 	for (i = 0; i < NR_MM_COUNTERS; i++) {
183 		if (current->rss_stat.count[i]) {
184 			add_mm_counter(mm, i, current->rss_stat.count[i]);
185 			current->rss_stat.count[i] = 0;
186 		}
187 	}
188 	current->rss_stat.events = 0;
189 }
190 
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 {
193 	struct task_struct *task = current;
194 
195 	if (likely(task->mm == mm))
196 		task->rss_stat.count[member] += val;
197 	else
198 		add_mm_counter(mm, member, val);
199 }
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202 
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH	(64)
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 	if (unlikely(task != current))
208 		return;
209 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210 		sync_mm_rss(task->mm);
211 }
212 #else /* SPLIT_RSS_COUNTING */
213 
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216 
217 static void check_sync_rss_stat(struct task_struct *task)
218 {
219 }
220 
221 #endif /* SPLIT_RSS_COUNTING */
222 
223 /*
224  * Note: this doesn't free the actual pages themselves. That
225  * has been handled earlier when unmapping all the memory regions.
226  */
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 			   unsigned long addr)
229 {
230 	pgtable_t token = pmd_pgtable(*pmd);
231 	pmd_clear(pmd);
232 	pte_free_tlb(tlb, token, addr);
233 	mm_dec_nr_ptes(tlb->mm);
234 }
235 
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 				unsigned long addr, unsigned long end,
238 				unsigned long floor, unsigned long ceiling)
239 {
240 	pmd_t *pmd;
241 	unsigned long next;
242 	unsigned long start;
243 
244 	start = addr;
245 	pmd = pmd_offset(pud, addr);
246 	do {
247 		next = pmd_addr_end(addr, end);
248 		if (pmd_none_or_clear_bad(pmd))
249 			continue;
250 		free_pte_range(tlb, pmd, addr);
251 	} while (pmd++, addr = next, addr != end);
252 
253 	start &= PUD_MASK;
254 	if (start < floor)
255 		return;
256 	if (ceiling) {
257 		ceiling &= PUD_MASK;
258 		if (!ceiling)
259 			return;
260 	}
261 	if (end - 1 > ceiling - 1)
262 		return;
263 
264 	pmd = pmd_offset(pud, start);
265 	pud_clear(pud);
266 	pmd_free_tlb(tlb, pmd, start);
267 	mm_dec_nr_pmds(tlb->mm);
268 }
269 
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271 				unsigned long addr, unsigned long end,
272 				unsigned long floor, unsigned long ceiling)
273 {
274 	pud_t *pud;
275 	unsigned long next;
276 	unsigned long start;
277 
278 	start = addr;
279 	pud = pud_offset(p4d, addr);
280 	do {
281 		next = pud_addr_end(addr, end);
282 		if (pud_none_or_clear_bad(pud))
283 			continue;
284 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285 	} while (pud++, addr = next, addr != end);
286 
287 	start &= P4D_MASK;
288 	if (start < floor)
289 		return;
290 	if (ceiling) {
291 		ceiling &= P4D_MASK;
292 		if (!ceiling)
293 			return;
294 	}
295 	if (end - 1 > ceiling - 1)
296 		return;
297 
298 	pud = pud_offset(p4d, start);
299 	p4d_clear(p4d);
300 	pud_free_tlb(tlb, pud, start);
301 	mm_dec_nr_puds(tlb->mm);
302 }
303 
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 				unsigned long addr, unsigned long end,
306 				unsigned long floor, unsigned long ceiling)
307 {
308 	p4d_t *p4d;
309 	unsigned long next;
310 	unsigned long start;
311 
312 	start = addr;
313 	p4d = p4d_offset(pgd, addr);
314 	do {
315 		next = p4d_addr_end(addr, end);
316 		if (p4d_none_or_clear_bad(p4d))
317 			continue;
318 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 	} while (p4d++, addr = next, addr != end);
320 
321 	start &= PGDIR_MASK;
322 	if (start < floor)
323 		return;
324 	if (ceiling) {
325 		ceiling &= PGDIR_MASK;
326 		if (!ceiling)
327 			return;
328 	}
329 	if (end - 1 > ceiling - 1)
330 		return;
331 
332 	p4d = p4d_offset(pgd, start);
333 	pgd_clear(pgd);
334 	p4d_free_tlb(tlb, p4d, start);
335 }
336 
337 /*
338  * This function frees user-level page tables of a process.
339  */
340 void free_pgd_range(struct mmu_gather *tlb,
341 			unsigned long addr, unsigned long end,
342 			unsigned long floor, unsigned long ceiling)
343 {
344 	pgd_t *pgd;
345 	unsigned long next;
346 
347 	/*
348 	 * The next few lines have given us lots of grief...
349 	 *
350 	 * Why are we testing PMD* at this top level?  Because often
351 	 * there will be no work to do at all, and we'd prefer not to
352 	 * go all the way down to the bottom just to discover that.
353 	 *
354 	 * Why all these "- 1"s?  Because 0 represents both the bottom
355 	 * of the address space and the top of it (using -1 for the
356 	 * top wouldn't help much: the masks would do the wrong thing).
357 	 * The rule is that addr 0 and floor 0 refer to the bottom of
358 	 * the address space, but end 0 and ceiling 0 refer to the top
359 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 	 * that end 0 case should be mythical).
361 	 *
362 	 * Wherever addr is brought up or ceiling brought down, we must
363 	 * be careful to reject "the opposite 0" before it confuses the
364 	 * subsequent tests.  But what about where end is brought down
365 	 * by PMD_SIZE below? no, end can't go down to 0 there.
366 	 *
367 	 * Whereas we round start (addr) and ceiling down, by different
368 	 * masks at different levels, in order to test whether a table
369 	 * now has no other vmas using it, so can be freed, we don't
370 	 * bother to round floor or end up - the tests don't need that.
371 	 */
372 
373 	addr &= PMD_MASK;
374 	if (addr < floor) {
375 		addr += PMD_SIZE;
376 		if (!addr)
377 			return;
378 	}
379 	if (ceiling) {
380 		ceiling &= PMD_MASK;
381 		if (!ceiling)
382 			return;
383 	}
384 	if (end - 1 > ceiling - 1)
385 		end -= PMD_SIZE;
386 	if (addr > end - 1)
387 		return;
388 	/*
389 	 * We add page table cache pages with PAGE_SIZE,
390 	 * (see pte_free_tlb()), flush the tlb if we need
391 	 */
392 	tlb_change_page_size(tlb, PAGE_SIZE);
393 	pgd = pgd_offset(tlb->mm, addr);
394 	do {
395 		next = pgd_addr_end(addr, end);
396 		if (pgd_none_or_clear_bad(pgd))
397 			continue;
398 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399 	} while (pgd++, addr = next, addr != end);
400 }
401 
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403 		unsigned long floor, unsigned long ceiling)
404 {
405 	while (vma) {
406 		struct vm_area_struct *next = vma->vm_next;
407 		unsigned long addr = vma->vm_start;
408 
409 		/*
410 		 * Hide vma from rmap and truncate_pagecache before freeing
411 		 * pgtables
412 		 */
413 		unlink_anon_vmas(vma);
414 		unlink_file_vma(vma);
415 
416 		if (is_vm_hugetlb_page(vma)) {
417 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418 				floor, next ? next->vm_start : ceiling);
419 		} else {
420 			/*
421 			 * Optimization: gather nearby vmas into one call down
422 			 */
423 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424 			       && !is_vm_hugetlb_page(next)) {
425 				vma = next;
426 				next = vma->vm_next;
427 				unlink_anon_vmas(vma);
428 				unlink_file_vma(vma);
429 			}
430 			free_pgd_range(tlb, addr, vma->vm_end,
431 				floor, next ? next->vm_start : ceiling);
432 		}
433 		vma = next;
434 	}
435 }
436 
437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 {
439 	spinlock_t *ptl;
440 	pgtable_t new = pte_alloc_one(mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	/*
445 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
446 	 * visible before the pte is made visible to other CPUs by being
447 	 * put into page tables.
448 	 *
449 	 * The other side of the story is the pointer chasing in the page
450 	 * table walking code (when walking the page table without locking;
451 	 * ie. most of the time). Fortunately, these data accesses consist
452 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
453 	 * being the notable exception) will already guarantee loads are
454 	 * seen in-order. See the alpha page table accessors for the
455 	 * smp_rmb() barriers in page table walking code.
456 	 */
457 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
458 
459 	ptl = pmd_lock(mm, pmd);
460 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
461 		mm_inc_nr_ptes(mm);
462 		pmd_populate(mm, pmd, new);
463 		new = NULL;
464 	}
465 	spin_unlock(ptl);
466 	if (new)
467 		pte_free(mm, new);
468 	return 0;
469 }
470 
471 int __pte_alloc_kernel(pmd_t *pmd)
472 {
473 	pte_t *new = pte_alloc_one_kernel(&init_mm);
474 	if (!new)
475 		return -ENOMEM;
476 
477 	smp_wmb(); /* See comment in __pte_alloc */
478 
479 	spin_lock(&init_mm.page_table_lock);
480 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
481 		pmd_populate_kernel(&init_mm, pmd, new);
482 		new = NULL;
483 	}
484 	spin_unlock(&init_mm.page_table_lock);
485 	if (new)
486 		pte_free_kernel(&init_mm, new);
487 	return 0;
488 }
489 
490 static inline void init_rss_vec(int *rss)
491 {
492 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
493 }
494 
495 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
496 {
497 	int i;
498 
499 	if (current->mm == mm)
500 		sync_mm_rss(mm);
501 	for (i = 0; i < NR_MM_COUNTERS; i++)
502 		if (rss[i])
503 			add_mm_counter(mm, i, rss[i]);
504 }
505 
506 /*
507  * This function is called to print an error when a bad pte
508  * is found. For example, we might have a PFN-mapped pte in
509  * a region that doesn't allow it.
510  *
511  * The calling function must still handle the error.
512  */
513 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
514 			  pte_t pte, struct page *page)
515 {
516 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
517 	p4d_t *p4d = p4d_offset(pgd, addr);
518 	pud_t *pud = pud_offset(p4d, addr);
519 	pmd_t *pmd = pmd_offset(pud, addr);
520 	struct address_space *mapping;
521 	pgoff_t index;
522 	static unsigned long resume;
523 	static unsigned long nr_shown;
524 	static unsigned long nr_unshown;
525 
526 	/*
527 	 * Allow a burst of 60 reports, then keep quiet for that minute;
528 	 * or allow a steady drip of one report per second.
529 	 */
530 	if (nr_shown == 60) {
531 		if (time_before(jiffies, resume)) {
532 			nr_unshown++;
533 			return;
534 		}
535 		if (nr_unshown) {
536 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
537 				 nr_unshown);
538 			nr_unshown = 0;
539 		}
540 		nr_shown = 0;
541 	}
542 	if (nr_shown++ == 0)
543 		resume = jiffies + 60 * HZ;
544 
545 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
546 	index = linear_page_index(vma, addr);
547 
548 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
549 		 current->comm,
550 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
551 	if (page)
552 		dump_page(page, "bad pte");
553 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
554 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
555 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
556 		 vma->vm_file,
557 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
558 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
559 		 mapping ? mapping->a_ops->readpage : NULL);
560 	dump_stack();
561 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
562 }
563 
564 /*
565  * vm_normal_page -- This function gets the "struct page" associated with a pte.
566  *
567  * "Special" mappings do not wish to be associated with a "struct page" (either
568  * it doesn't exist, or it exists but they don't want to touch it). In this
569  * case, NULL is returned here. "Normal" mappings do have a struct page.
570  *
571  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
572  * pte bit, in which case this function is trivial. Secondly, an architecture
573  * may not have a spare pte bit, which requires a more complicated scheme,
574  * described below.
575  *
576  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
577  * special mapping (even if there are underlying and valid "struct pages").
578  * COWed pages of a VM_PFNMAP are always normal.
579  *
580  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
581  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
582  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
583  * mapping will always honor the rule
584  *
585  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
586  *
587  * And for normal mappings this is false.
588  *
589  * This restricts such mappings to be a linear translation from virtual address
590  * to pfn. To get around this restriction, we allow arbitrary mappings so long
591  * as the vma is not a COW mapping; in that case, we know that all ptes are
592  * special (because none can have been COWed).
593  *
594  *
595  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
596  *
597  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
598  * page" backing, however the difference is that _all_ pages with a struct
599  * page (that is, those where pfn_valid is true) are refcounted and considered
600  * normal pages by the VM. The disadvantage is that pages are refcounted
601  * (which can be slower and simply not an option for some PFNMAP users). The
602  * advantage is that we don't have to follow the strict linearity rule of
603  * PFNMAP mappings in order to support COWable mappings.
604  *
605  */
606 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
607 			    pte_t pte)
608 {
609 	unsigned long pfn = pte_pfn(pte);
610 
611 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
612 		if (likely(!pte_special(pte)))
613 			goto check_pfn;
614 		if (vma->vm_ops && vma->vm_ops->find_special_page)
615 			return vma->vm_ops->find_special_page(vma, addr);
616 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
617 			return NULL;
618 		if (is_zero_pfn(pfn))
619 			return NULL;
620 		if (pte_devmap(pte))
621 			return NULL;
622 
623 		print_bad_pte(vma, addr, pte, NULL);
624 		return NULL;
625 	}
626 
627 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
628 
629 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
630 		if (vma->vm_flags & VM_MIXEDMAP) {
631 			if (!pfn_valid(pfn))
632 				return NULL;
633 			goto out;
634 		} else {
635 			unsigned long off;
636 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
637 			if (pfn == vma->vm_pgoff + off)
638 				return NULL;
639 			if (!is_cow_mapping(vma->vm_flags))
640 				return NULL;
641 		}
642 	}
643 
644 	if (is_zero_pfn(pfn))
645 		return NULL;
646 
647 check_pfn:
648 	if (unlikely(pfn > highest_memmap_pfn)) {
649 		print_bad_pte(vma, addr, pte, NULL);
650 		return NULL;
651 	}
652 
653 	/*
654 	 * NOTE! We still have PageReserved() pages in the page tables.
655 	 * eg. VDSO mappings can cause them to exist.
656 	 */
657 out:
658 	return pfn_to_page(pfn);
659 }
660 
661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
662 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
663 				pmd_t pmd)
664 {
665 	unsigned long pfn = pmd_pfn(pmd);
666 
667 	/*
668 	 * There is no pmd_special() but there may be special pmds, e.g.
669 	 * in a direct-access (dax) mapping, so let's just replicate the
670 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
671 	 */
672 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
673 		if (vma->vm_flags & VM_MIXEDMAP) {
674 			if (!pfn_valid(pfn))
675 				return NULL;
676 			goto out;
677 		} else {
678 			unsigned long off;
679 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
680 			if (pfn == vma->vm_pgoff + off)
681 				return NULL;
682 			if (!is_cow_mapping(vma->vm_flags))
683 				return NULL;
684 		}
685 	}
686 
687 	if (pmd_devmap(pmd))
688 		return NULL;
689 	if (is_huge_zero_pmd(pmd))
690 		return NULL;
691 	if (unlikely(pfn > highest_memmap_pfn))
692 		return NULL;
693 
694 	/*
695 	 * NOTE! We still have PageReserved() pages in the page tables.
696 	 * eg. VDSO mappings can cause them to exist.
697 	 */
698 out:
699 	return pfn_to_page(pfn);
700 }
701 #endif
702 
703 /*
704  * copy one vm_area from one task to the other. Assumes the page tables
705  * already present in the new task to be cleared in the whole range
706  * covered by this vma.
707  */
708 
709 static unsigned long
710 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
711 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
712 		unsigned long addr, int *rss)
713 {
714 	unsigned long vm_flags = vma->vm_flags;
715 	pte_t pte = *src_pte;
716 	struct page *page;
717 	swp_entry_t entry = pte_to_swp_entry(pte);
718 
719 	if (likely(!non_swap_entry(entry))) {
720 		if (swap_duplicate(entry) < 0)
721 			return entry.val;
722 
723 		/* make sure dst_mm is on swapoff's mmlist. */
724 		if (unlikely(list_empty(&dst_mm->mmlist))) {
725 			spin_lock(&mmlist_lock);
726 			if (list_empty(&dst_mm->mmlist))
727 				list_add(&dst_mm->mmlist,
728 						&src_mm->mmlist);
729 			spin_unlock(&mmlist_lock);
730 		}
731 		rss[MM_SWAPENTS]++;
732 	} else if (is_migration_entry(entry)) {
733 		page = migration_entry_to_page(entry);
734 
735 		rss[mm_counter(page)]++;
736 
737 		if (is_write_migration_entry(entry) &&
738 				is_cow_mapping(vm_flags)) {
739 			/*
740 			 * COW mappings require pages in both
741 			 * parent and child to be set to read.
742 			 */
743 			make_migration_entry_read(&entry);
744 			pte = swp_entry_to_pte(entry);
745 			if (pte_swp_soft_dirty(*src_pte))
746 				pte = pte_swp_mksoft_dirty(pte);
747 			if (pte_swp_uffd_wp(*src_pte))
748 				pte = pte_swp_mkuffd_wp(pte);
749 			set_pte_at(src_mm, addr, src_pte, pte);
750 		}
751 	} else if (is_device_private_entry(entry)) {
752 		page = device_private_entry_to_page(entry);
753 
754 		/*
755 		 * Update rss count even for unaddressable pages, as
756 		 * they should treated just like normal pages in this
757 		 * respect.
758 		 *
759 		 * We will likely want to have some new rss counters
760 		 * for unaddressable pages, at some point. But for now
761 		 * keep things as they are.
762 		 */
763 		get_page(page);
764 		rss[mm_counter(page)]++;
765 		page_dup_rmap(page, false);
766 
767 		/*
768 		 * We do not preserve soft-dirty information, because so
769 		 * far, checkpoint/restore is the only feature that
770 		 * requires that. And checkpoint/restore does not work
771 		 * when a device driver is involved (you cannot easily
772 		 * save and restore device driver state).
773 		 */
774 		if (is_write_device_private_entry(entry) &&
775 		    is_cow_mapping(vm_flags)) {
776 			make_device_private_entry_read(&entry);
777 			pte = swp_entry_to_pte(entry);
778 			if (pte_swp_uffd_wp(*src_pte))
779 				pte = pte_swp_mkuffd_wp(pte);
780 			set_pte_at(src_mm, addr, src_pte, pte);
781 		}
782 	}
783 	set_pte_at(dst_mm, addr, dst_pte, pte);
784 	return 0;
785 }
786 
787 /*
788  * Copy a present and normal page if necessary.
789  *
790  * NOTE! The usual case is that this doesn't need to do
791  * anything, and can just return a positive value. That
792  * will let the caller know that it can just increase
793  * the page refcount and re-use the pte the traditional
794  * way.
795  *
796  * But _if_ we need to copy it because it needs to be
797  * pinned in the parent (and the child should get its own
798  * copy rather than just a reference to the same page),
799  * we'll do that here and return zero to let the caller
800  * know we're done.
801  *
802  * And if we need a pre-allocated page but don't yet have
803  * one, return a negative error to let the preallocation
804  * code know so that it can do so outside the page table
805  * lock.
806  */
807 static inline int
808 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
809 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
810 		  struct page **prealloc, pte_t pte, struct page *page)
811 {
812 	struct mm_struct *src_mm = src_vma->vm_mm;
813 	struct page *new_page;
814 
815 	if (!is_cow_mapping(src_vma->vm_flags))
816 		return 1;
817 
818 	/*
819 	 * What we want to do is to check whether this page may
820 	 * have been pinned by the parent process.  If so,
821 	 * instead of wrprotect the pte on both sides, we copy
822 	 * the page immediately so that we'll always guarantee
823 	 * the pinned page won't be randomly replaced in the
824 	 * future.
825 	 *
826 	 * The page pinning checks are just "has this mm ever
827 	 * seen pinning", along with the (inexact) check of
828 	 * the page count. That might give false positives for
829 	 * for pinning, but it will work correctly.
830 	 */
831 	if (likely(!atomic_read(&src_mm->has_pinned)))
832 		return 1;
833 	if (likely(!page_maybe_dma_pinned(page)))
834 		return 1;
835 
836 	new_page = *prealloc;
837 	if (!new_page)
838 		return -EAGAIN;
839 
840 	/*
841 	 * We have a prealloc page, all good!  Take it
842 	 * over and copy the page & arm it.
843 	 */
844 	*prealloc = NULL;
845 	copy_user_highpage(new_page, page, addr, src_vma);
846 	__SetPageUptodate(new_page);
847 	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
848 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
849 	rss[mm_counter(new_page)]++;
850 
851 	/* All done, just insert the new page copy in the child */
852 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
853 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
854 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
855 	return 0;
856 }
857 
858 /*
859  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
860  * is required to copy this pte.
861  */
862 static inline int
863 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
864 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
865 		 struct page **prealloc)
866 {
867 	struct mm_struct *src_mm = src_vma->vm_mm;
868 	unsigned long vm_flags = src_vma->vm_flags;
869 	pte_t pte = *src_pte;
870 	struct page *page;
871 
872 	page = vm_normal_page(src_vma, addr, pte);
873 	if (page) {
874 		int retval;
875 
876 		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
877 					   addr, rss, prealloc, pte, page);
878 		if (retval <= 0)
879 			return retval;
880 
881 		get_page(page);
882 		page_dup_rmap(page, false);
883 		rss[mm_counter(page)]++;
884 	}
885 
886 	/*
887 	 * If it's a COW mapping, write protect it both
888 	 * in the parent and the child
889 	 */
890 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
891 		ptep_set_wrprotect(src_mm, addr, src_pte);
892 		pte = pte_wrprotect(pte);
893 	}
894 
895 	/*
896 	 * If it's a shared mapping, mark it clean in
897 	 * the child
898 	 */
899 	if (vm_flags & VM_SHARED)
900 		pte = pte_mkclean(pte);
901 	pte = pte_mkold(pte);
902 
903 	/*
904 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
905 	 * does not have the VM_UFFD_WP, which means that the uffd
906 	 * fork event is not enabled.
907 	 */
908 	if (!(vm_flags & VM_UFFD_WP))
909 		pte = pte_clear_uffd_wp(pte);
910 
911 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
912 	return 0;
913 }
914 
915 static inline struct page *
916 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
917 		   unsigned long addr)
918 {
919 	struct page *new_page;
920 
921 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
922 	if (!new_page)
923 		return NULL;
924 
925 	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
926 		put_page(new_page);
927 		return NULL;
928 	}
929 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
930 
931 	return new_page;
932 }
933 
934 static int
935 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
936 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
937 	       unsigned long end)
938 {
939 	struct mm_struct *dst_mm = dst_vma->vm_mm;
940 	struct mm_struct *src_mm = src_vma->vm_mm;
941 	pte_t *orig_src_pte, *orig_dst_pte;
942 	pte_t *src_pte, *dst_pte;
943 	spinlock_t *src_ptl, *dst_ptl;
944 	int progress, ret = 0;
945 	int rss[NR_MM_COUNTERS];
946 	swp_entry_t entry = (swp_entry_t){0};
947 	struct page *prealloc = NULL;
948 
949 again:
950 	progress = 0;
951 	init_rss_vec(rss);
952 
953 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
954 	if (!dst_pte) {
955 		ret = -ENOMEM;
956 		goto out;
957 	}
958 	src_pte = pte_offset_map(src_pmd, addr);
959 	src_ptl = pte_lockptr(src_mm, src_pmd);
960 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
961 	orig_src_pte = src_pte;
962 	orig_dst_pte = dst_pte;
963 	arch_enter_lazy_mmu_mode();
964 
965 	do {
966 		/*
967 		 * We are holding two locks at this point - either of them
968 		 * could generate latencies in another task on another CPU.
969 		 */
970 		if (progress >= 32) {
971 			progress = 0;
972 			if (need_resched() ||
973 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
974 				break;
975 		}
976 		if (pte_none(*src_pte)) {
977 			progress++;
978 			continue;
979 		}
980 		if (unlikely(!pte_present(*src_pte))) {
981 			entry.val = copy_nonpresent_pte(dst_mm, src_mm,
982 							dst_pte, src_pte,
983 							src_vma, addr, rss);
984 			if (entry.val)
985 				break;
986 			progress += 8;
987 			continue;
988 		}
989 		/* copy_present_pte() will clear `*prealloc' if consumed */
990 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
991 				       addr, rss, &prealloc);
992 		/*
993 		 * If we need a pre-allocated page for this pte, drop the
994 		 * locks, allocate, and try again.
995 		 */
996 		if (unlikely(ret == -EAGAIN))
997 			break;
998 		if (unlikely(prealloc)) {
999 			/*
1000 			 * pre-alloc page cannot be reused by next time so as
1001 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1002 			 * will allocate page according to address).  This
1003 			 * could only happen if one pinned pte changed.
1004 			 */
1005 			put_page(prealloc);
1006 			prealloc = NULL;
1007 		}
1008 		progress += 8;
1009 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1010 
1011 	arch_leave_lazy_mmu_mode();
1012 	spin_unlock(src_ptl);
1013 	pte_unmap(orig_src_pte);
1014 	add_mm_rss_vec(dst_mm, rss);
1015 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1016 	cond_resched();
1017 
1018 	if (entry.val) {
1019 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1020 			ret = -ENOMEM;
1021 			goto out;
1022 		}
1023 		entry.val = 0;
1024 	} else if (ret) {
1025 		WARN_ON_ONCE(ret != -EAGAIN);
1026 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1027 		if (!prealloc)
1028 			return -ENOMEM;
1029 		/* We've captured and resolved the error. Reset, try again. */
1030 		ret = 0;
1031 	}
1032 	if (addr != end)
1033 		goto again;
1034 out:
1035 	if (unlikely(prealloc))
1036 		put_page(prealloc);
1037 	return ret;
1038 }
1039 
1040 static inline int
1041 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1042 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1043 	       unsigned long end)
1044 {
1045 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1046 	struct mm_struct *src_mm = src_vma->vm_mm;
1047 	pmd_t *src_pmd, *dst_pmd;
1048 	unsigned long next;
1049 
1050 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1051 	if (!dst_pmd)
1052 		return -ENOMEM;
1053 	src_pmd = pmd_offset(src_pud, addr);
1054 	do {
1055 		next = pmd_addr_end(addr, end);
1056 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1057 			|| pmd_devmap(*src_pmd)) {
1058 			int err;
1059 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1060 			err = copy_huge_pmd(dst_mm, src_mm,
1061 					    dst_pmd, src_pmd, addr, src_vma);
1062 			if (err == -ENOMEM)
1063 				return -ENOMEM;
1064 			if (!err)
1065 				continue;
1066 			/* fall through */
1067 		}
1068 		if (pmd_none_or_clear_bad(src_pmd))
1069 			continue;
1070 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1071 				   addr, next))
1072 			return -ENOMEM;
1073 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1074 	return 0;
1075 }
1076 
1077 static inline int
1078 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1079 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1080 	       unsigned long end)
1081 {
1082 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1083 	struct mm_struct *src_mm = src_vma->vm_mm;
1084 	pud_t *src_pud, *dst_pud;
1085 	unsigned long next;
1086 
1087 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1088 	if (!dst_pud)
1089 		return -ENOMEM;
1090 	src_pud = pud_offset(src_p4d, addr);
1091 	do {
1092 		next = pud_addr_end(addr, end);
1093 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1094 			int err;
1095 
1096 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1097 			err = copy_huge_pud(dst_mm, src_mm,
1098 					    dst_pud, src_pud, addr, src_vma);
1099 			if (err == -ENOMEM)
1100 				return -ENOMEM;
1101 			if (!err)
1102 				continue;
1103 			/* fall through */
1104 		}
1105 		if (pud_none_or_clear_bad(src_pud))
1106 			continue;
1107 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1108 				   addr, next))
1109 			return -ENOMEM;
1110 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1111 	return 0;
1112 }
1113 
1114 static inline int
1115 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1116 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1117 	       unsigned long end)
1118 {
1119 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1120 	p4d_t *src_p4d, *dst_p4d;
1121 	unsigned long next;
1122 
1123 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1124 	if (!dst_p4d)
1125 		return -ENOMEM;
1126 	src_p4d = p4d_offset(src_pgd, addr);
1127 	do {
1128 		next = p4d_addr_end(addr, end);
1129 		if (p4d_none_or_clear_bad(src_p4d))
1130 			continue;
1131 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1132 				   addr, next))
1133 			return -ENOMEM;
1134 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1135 	return 0;
1136 }
1137 
1138 int
1139 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1140 {
1141 	pgd_t *src_pgd, *dst_pgd;
1142 	unsigned long next;
1143 	unsigned long addr = src_vma->vm_start;
1144 	unsigned long end = src_vma->vm_end;
1145 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1146 	struct mm_struct *src_mm = src_vma->vm_mm;
1147 	struct mmu_notifier_range range;
1148 	bool is_cow;
1149 	int ret;
1150 
1151 	/*
1152 	 * Don't copy ptes where a page fault will fill them correctly.
1153 	 * Fork becomes much lighter when there are big shared or private
1154 	 * readonly mappings. The tradeoff is that copy_page_range is more
1155 	 * efficient than faulting.
1156 	 */
1157 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1158 	    !src_vma->anon_vma)
1159 		return 0;
1160 
1161 	if (is_vm_hugetlb_page(src_vma))
1162 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1163 
1164 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1165 		/*
1166 		 * We do not free on error cases below as remove_vma
1167 		 * gets called on error from higher level routine
1168 		 */
1169 		ret = track_pfn_copy(src_vma);
1170 		if (ret)
1171 			return ret;
1172 	}
1173 
1174 	/*
1175 	 * We need to invalidate the secondary MMU mappings only when
1176 	 * there could be a permission downgrade on the ptes of the
1177 	 * parent mm. And a permission downgrade will only happen if
1178 	 * is_cow_mapping() returns true.
1179 	 */
1180 	is_cow = is_cow_mapping(src_vma->vm_flags);
1181 
1182 	if (is_cow) {
1183 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1184 					0, src_vma, src_mm, addr, end);
1185 		mmu_notifier_invalidate_range_start(&range);
1186 		/*
1187 		 * Disabling preemption is not needed for the write side, as
1188 		 * the read side doesn't spin, but goes to the mmap_lock.
1189 		 *
1190 		 * Use the raw variant of the seqcount_t write API to avoid
1191 		 * lockdep complaining about preemptibility.
1192 		 */
1193 		mmap_assert_write_locked(src_mm);
1194 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1195 	}
1196 
1197 	ret = 0;
1198 	dst_pgd = pgd_offset(dst_mm, addr);
1199 	src_pgd = pgd_offset(src_mm, addr);
1200 	do {
1201 		next = pgd_addr_end(addr, end);
1202 		if (pgd_none_or_clear_bad(src_pgd))
1203 			continue;
1204 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1205 					    addr, next))) {
1206 			ret = -ENOMEM;
1207 			break;
1208 		}
1209 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1210 
1211 	if (is_cow) {
1212 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1213 		mmu_notifier_invalidate_range_end(&range);
1214 	}
1215 	return ret;
1216 }
1217 
1218 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1219 				struct vm_area_struct *vma, pmd_t *pmd,
1220 				unsigned long addr, unsigned long end,
1221 				struct zap_details *details)
1222 {
1223 	struct mm_struct *mm = tlb->mm;
1224 	int force_flush = 0;
1225 	int rss[NR_MM_COUNTERS];
1226 	spinlock_t *ptl;
1227 	pte_t *start_pte;
1228 	pte_t *pte;
1229 	swp_entry_t entry;
1230 
1231 	tlb_change_page_size(tlb, PAGE_SIZE);
1232 again:
1233 	init_rss_vec(rss);
1234 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1235 	pte = start_pte;
1236 	flush_tlb_batched_pending(mm);
1237 	arch_enter_lazy_mmu_mode();
1238 	do {
1239 		pte_t ptent = *pte;
1240 		if (pte_none(ptent))
1241 			continue;
1242 
1243 		if (need_resched())
1244 			break;
1245 
1246 		if (pte_present(ptent)) {
1247 			struct page *page;
1248 
1249 			page = vm_normal_page(vma, addr, ptent);
1250 			if (unlikely(details) && page) {
1251 				/*
1252 				 * unmap_shared_mapping_pages() wants to
1253 				 * invalidate cache without truncating:
1254 				 * unmap shared but keep private pages.
1255 				 */
1256 				if (details->check_mapping &&
1257 				    details->check_mapping != page_rmapping(page))
1258 					continue;
1259 			}
1260 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1261 							tlb->fullmm);
1262 			tlb_remove_tlb_entry(tlb, pte, addr);
1263 			if (unlikely(!page))
1264 				continue;
1265 
1266 			if (!PageAnon(page)) {
1267 				if (pte_dirty(ptent)) {
1268 					force_flush = 1;
1269 					set_page_dirty(page);
1270 				}
1271 				if (pte_young(ptent) &&
1272 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1273 					mark_page_accessed(page);
1274 			}
1275 			rss[mm_counter(page)]--;
1276 			page_remove_rmap(page, false);
1277 			if (unlikely(page_mapcount(page) < 0))
1278 				print_bad_pte(vma, addr, ptent, page);
1279 			if (unlikely(__tlb_remove_page(tlb, page))) {
1280 				force_flush = 1;
1281 				addr += PAGE_SIZE;
1282 				break;
1283 			}
1284 			continue;
1285 		}
1286 
1287 		entry = pte_to_swp_entry(ptent);
1288 		if (is_device_private_entry(entry)) {
1289 			struct page *page = device_private_entry_to_page(entry);
1290 
1291 			if (unlikely(details && details->check_mapping)) {
1292 				/*
1293 				 * unmap_shared_mapping_pages() wants to
1294 				 * invalidate cache without truncating:
1295 				 * unmap shared but keep private pages.
1296 				 */
1297 				if (details->check_mapping !=
1298 				    page_rmapping(page))
1299 					continue;
1300 			}
1301 
1302 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1303 			rss[mm_counter(page)]--;
1304 			page_remove_rmap(page, false);
1305 			put_page(page);
1306 			continue;
1307 		}
1308 
1309 		/* If details->check_mapping, we leave swap entries. */
1310 		if (unlikely(details))
1311 			continue;
1312 
1313 		if (!non_swap_entry(entry))
1314 			rss[MM_SWAPENTS]--;
1315 		else if (is_migration_entry(entry)) {
1316 			struct page *page;
1317 
1318 			page = migration_entry_to_page(entry);
1319 			rss[mm_counter(page)]--;
1320 		}
1321 		if (unlikely(!free_swap_and_cache(entry)))
1322 			print_bad_pte(vma, addr, ptent, NULL);
1323 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1324 	} while (pte++, addr += PAGE_SIZE, addr != end);
1325 
1326 	add_mm_rss_vec(mm, rss);
1327 	arch_leave_lazy_mmu_mode();
1328 
1329 	/* Do the actual TLB flush before dropping ptl */
1330 	if (force_flush)
1331 		tlb_flush_mmu_tlbonly(tlb);
1332 	pte_unmap_unlock(start_pte, ptl);
1333 
1334 	/*
1335 	 * If we forced a TLB flush (either due to running out of
1336 	 * batch buffers or because we needed to flush dirty TLB
1337 	 * entries before releasing the ptl), free the batched
1338 	 * memory too. Restart if we didn't do everything.
1339 	 */
1340 	if (force_flush) {
1341 		force_flush = 0;
1342 		tlb_flush_mmu(tlb);
1343 	}
1344 
1345 	if (addr != end) {
1346 		cond_resched();
1347 		goto again;
1348 	}
1349 
1350 	return addr;
1351 }
1352 
1353 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1354 				struct vm_area_struct *vma, pud_t *pud,
1355 				unsigned long addr, unsigned long end,
1356 				struct zap_details *details)
1357 {
1358 	pmd_t *pmd;
1359 	unsigned long next;
1360 
1361 	pmd = pmd_offset(pud, addr);
1362 	do {
1363 		next = pmd_addr_end(addr, end);
1364 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1365 			if (next - addr != HPAGE_PMD_SIZE)
1366 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1367 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1368 				goto next;
1369 			/* fall through */
1370 		}
1371 		/*
1372 		 * Here there can be other concurrent MADV_DONTNEED or
1373 		 * trans huge page faults running, and if the pmd is
1374 		 * none or trans huge it can change under us. This is
1375 		 * because MADV_DONTNEED holds the mmap_lock in read
1376 		 * mode.
1377 		 */
1378 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1379 			goto next;
1380 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1381 next:
1382 		cond_resched();
1383 	} while (pmd++, addr = next, addr != end);
1384 
1385 	return addr;
1386 }
1387 
1388 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1389 				struct vm_area_struct *vma, p4d_t *p4d,
1390 				unsigned long addr, unsigned long end,
1391 				struct zap_details *details)
1392 {
1393 	pud_t *pud;
1394 	unsigned long next;
1395 
1396 	pud = pud_offset(p4d, addr);
1397 	do {
1398 		next = pud_addr_end(addr, end);
1399 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1400 			if (next - addr != HPAGE_PUD_SIZE) {
1401 				mmap_assert_locked(tlb->mm);
1402 				split_huge_pud(vma, pud, addr);
1403 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1404 				goto next;
1405 			/* fall through */
1406 		}
1407 		if (pud_none_or_clear_bad(pud))
1408 			continue;
1409 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1410 next:
1411 		cond_resched();
1412 	} while (pud++, addr = next, addr != end);
1413 
1414 	return addr;
1415 }
1416 
1417 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1418 				struct vm_area_struct *vma, pgd_t *pgd,
1419 				unsigned long addr, unsigned long end,
1420 				struct zap_details *details)
1421 {
1422 	p4d_t *p4d;
1423 	unsigned long next;
1424 
1425 	p4d = p4d_offset(pgd, addr);
1426 	do {
1427 		next = p4d_addr_end(addr, end);
1428 		if (p4d_none_or_clear_bad(p4d))
1429 			continue;
1430 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1431 	} while (p4d++, addr = next, addr != end);
1432 
1433 	return addr;
1434 }
1435 
1436 void unmap_page_range(struct mmu_gather *tlb,
1437 			     struct vm_area_struct *vma,
1438 			     unsigned long addr, unsigned long end,
1439 			     struct zap_details *details)
1440 {
1441 	pgd_t *pgd;
1442 	unsigned long next;
1443 
1444 	BUG_ON(addr >= end);
1445 	tlb_start_vma(tlb, vma);
1446 	pgd = pgd_offset(vma->vm_mm, addr);
1447 	do {
1448 		next = pgd_addr_end(addr, end);
1449 		if (pgd_none_or_clear_bad(pgd))
1450 			continue;
1451 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1452 	} while (pgd++, addr = next, addr != end);
1453 	tlb_end_vma(tlb, vma);
1454 }
1455 
1456 
1457 static void unmap_single_vma(struct mmu_gather *tlb,
1458 		struct vm_area_struct *vma, unsigned long start_addr,
1459 		unsigned long end_addr,
1460 		struct zap_details *details)
1461 {
1462 	unsigned long start = max(vma->vm_start, start_addr);
1463 	unsigned long end;
1464 
1465 	if (start >= vma->vm_end)
1466 		return;
1467 	end = min(vma->vm_end, end_addr);
1468 	if (end <= vma->vm_start)
1469 		return;
1470 
1471 	if (vma->vm_file)
1472 		uprobe_munmap(vma, start, end);
1473 
1474 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1475 		untrack_pfn(vma, 0, 0);
1476 
1477 	if (start != end) {
1478 		if (unlikely(is_vm_hugetlb_page(vma))) {
1479 			/*
1480 			 * It is undesirable to test vma->vm_file as it
1481 			 * should be non-null for valid hugetlb area.
1482 			 * However, vm_file will be NULL in the error
1483 			 * cleanup path of mmap_region. When
1484 			 * hugetlbfs ->mmap method fails,
1485 			 * mmap_region() nullifies vma->vm_file
1486 			 * before calling this function to clean up.
1487 			 * Since no pte has actually been setup, it is
1488 			 * safe to do nothing in this case.
1489 			 */
1490 			if (vma->vm_file) {
1491 				i_mmap_lock_write(vma->vm_file->f_mapping);
1492 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1493 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1494 			}
1495 		} else
1496 			unmap_page_range(tlb, vma, start, end, details);
1497 	}
1498 }
1499 
1500 /**
1501  * unmap_vmas - unmap a range of memory covered by a list of vma's
1502  * @tlb: address of the caller's struct mmu_gather
1503  * @vma: the starting vma
1504  * @start_addr: virtual address at which to start unmapping
1505  * @end_addr: virtual address at which to end unmapping
1506  *
1507  * Unmap all pages in the vma list.
1508  *
1509  * Only addresses between `start' and `end' will be unmapped.
1510  *
1511  * The VMA list must be sorted in ascending virtual address order.
1512  *
1513  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1514  * range after unmap_vmas() returns.  So the only responsibility here is to
1515  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1516  * drops the lock and schedules.
1517  */
1518 void unmap_vmas(struct mmu_gather *tlb,
1519 		struct vm_area_struct *vma, unsigned long start_addr,
1520 		unsigned long end_addr)
1521 {
1522 	struct mmu_notifier_range range;
1523 
1524 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1525 				start_addr, end_addr);
1526 	mmu_notifier_invalidate_range_start(&range);
1527 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1528 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1529 	mmu_notifier_invalidate_range_end(&range);
1530 }
1531 
1532 /**
1533  * zap_page_range - remove user pages in a given range
1534  * @vma: vm_area_struct holding the applicable pages
1535  * @start: starting address of pages to zap
1536  * @size: number of bytes to zap
1537  *
1538  * Caller must protect the VMA list
1539  */
1540 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1541 		unsigned long size)
1542 {
1543 	struct mmu_notifier_range range;
1544 	struct mmu_gather tlb;
1545 
1546 	lru_add_drain();
1547 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1548 				start, start + size);
1549 	tlb_gather_mmu(&tlb, vma->vm_mm);
1550 	update_hiwater_rss(vma->vm_mm);
1551 	mmu_notifier_invalidate_range_start(&range);
1552 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1553 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1554 	mmu_notifier_invalidate_range_end(&range);
1555 	tlb_finish_mmu(&tlb);
1556 }
1557 
1558 /**
1559  * zap_page_range_single - remove user pages in a given range
1560  * @vma: vm_area_struct holding the applicable pages
1561  * @address: starting address of pages to zap
1562  * @size: number of bytes to zap
1563  * @details: details of shared cache invalidation
1564  *
1565  * The range must fit into one VMA.
1566  */
1567 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1568 		unsigned long size, struct zap_details *details)
1569 {
1570 	struct mmu_notifier_range range;
1571 	struct mmu_gather tlb;
1572 
1573 	lru_add_drain();
1574 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1575 				address, address + size);
1576 	tlb_gather_mmu(&tlb, vma->vm_mm);
1577 	update_hiwater_rss(vma->vm_mm);
1578 	mmu_notifier_invalidate_range_start(&range);
1579 	unmap_single_vma(&tlb, vma, address, range.end, details);
1580 	mmu_notifier_invalidate_range_end(&range);
1581 	tlb_finish_mmu(&tlb);
1582 }
1583 
1584 /**
1585  * zap_vma_ptes - remove ptes mapping the vma
1586  * @vma: vm_area_struct holding ptes to be zapped
1587  * @address: starting address of pages to zap
1588  * @size: number of bytes to zap
1589  *
1590  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1591  *
1592  * The entire address range must be fully contained within the vma.
1593  *
1594  */
1595 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1596 		unsigned long size)
1597 {
1598 	if (address < vma->vm_start || address + size > vma->vm_end ||
1599 	    		!(vma->vm_flags & VM_PFNMAP))
1600 		return;
1601 
1602 	zap_page_range_single(vma, address, size, NULL);
1603 }
1604 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1605 
1606 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1607 {
1608 	pgd_t *pgd;
1609 	p4d_t *p4d;
1610 	pud_t *pud;
1611 	pmd_t *pmd;
1612 
1613 	pgd = pgd_offset(mm, addr);
1614 	p4d = p4d_alloc(mm, pgd, addr);
1615 	if (!p4d)
1616 		return NULL;
1617 	pud = pud_alloc(mm, p4d, addr);
1618 	if (!pud)
1619 		return NULL;
1620 	pmd = pmd_alloc(mm, pud, addr);
1621 	if (!pmd)
1622 		return NULL;
1623 
1624 	VM_BUG_ON(pmd_trans_huge(*pmd));
1625 	return pmd;
1626 }
1627 
1628 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1629 			spinlock_t **ptl)
1630 {
1631 	pmd_t *pmd = walk_to_pmd(mm, addr);
1632 
1633 	if (!pmd)
1634 		return NULL;
1635 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1636 }
1637 
1638 static int validate_page_before_insert(struct page *page)
1639 {
1640 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1641 		return -EINVAL;
1642 	flush_dcache_page(page);
1643 	return 0;
1644 }
1645 
1646 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1647 			unsigned long addr, struct page *page, pgprot_t prot)
1648 {
1649 	if (!pte_none(*pte))
1650 		return -EBUSY;
1651 	/* Ok, finally just insert the thing.. */
1652 	get_page(page);
1653 	inc_mm_counter_fast(mm, mm_counter_file(page));
1654 	page_add_file_rmap(page, false);
1655 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1656 	return 0;
1657 }
1658 
1659 /*
1660  * This is the old fallback for page remapping.
1661  *
1662  * For historical reasons, it only allows reserved pages. Only
1663  * old drivers should use this, and they needed to mark their
1664  * pages reserved for the old functions anyway.
1665  */
1666 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1667 			struct page *page, pgprot_t prot)
1668 {
1669 	struct mm_struct *mm = vma->vm_mm;
1670 	int retval;
1671 	pte_t *pte;
1672 	spinlock_t *ptl;
1673 
1674 	retval = validate_page_before_insert(page);
1675 	if (retval)
1676 		goto out;
1677 	retval = -ENOMEM;
1678 	pte = get_locked_pte(mm, addr, &ptl);
1679 	if (!pte)
1680 		goto out;
1681 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1682 	pte_unmap_unlock(pte, ptl);
1683 out:
1684 	return retval;
1685 }
1686 
1687 #ifdef pte_index
1688 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1689 			unsigned long addr, struct page *page, pgprot_t prot)
1690 {
1691 	int err;
1692 
1693 	if (!page_count(page))
1694 		return -EINVAL;
1695 	err = validate_page_before_insert(page);
1696 	if (err)
1697 		return err;
1698 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1699 }
1700 
1701 /* insert_pages() amortizes the cost of spinlock operations
1702  * when inserting pages in a loop. Arch *must* define pte_index.
1703  */
1704 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1705 			struct page **pages, unsigned long *num, pgprot_t prot)
1706 {
1707 	pmd_t *pmd = NULL;
1708 	pte_t *start_pte, *pte;
1709 	spinlock_t *pte_lock;
1710 	struct mm_struct *const mm = vma->vm_mm;
1711 	unsigned long curr_page_idx = 0;
1712 	unsigned long remaining_pages_total = *num;
1713 	unsigned long pages_to_write_in_pmd;
1714 	int ret;
1715 more:
1716 	ret = -EFAULT;
1717 	pmd = walk_to_pmd(mm, addr);
1718 	if (!pmd)
1719 		goto out;
1720 
1721 	pages_to_write_in_pmd = min_t(unsigned long,
1722 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1723 
1724 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1725 	ret = -ENOMEM;
1726 	if (pte_alloc(mm, pmd))
1727 		goto out;
1728 
1729 	while (pages_to_write_in_pmd) {
1730 		int pte_idx = 0;
1731 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1732 
1733 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1734 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1735 			int err = insert_page_in_batch_locked(mm, pte,
1736 				addr, pages[curr_page_idx], prot);
1737 			if (unlikely(err)) {
1738 				pte_unmap_unlock(start_pte, pte_lock);
1739 				ret = err;
1740 				remaining_pages_total -= pte_idx;
1741 				goto out;
1742 			}
1743 			addr += PAGE_SIZE;
1744 			++curr_page_idx;
1745 		}
1746 		pte_unmap_unlock(start_pte, pte_lock);
1747 		pages_to_write_in_pmd -= batch_size;
1748 		remaining_pages_total -= batch_size;
1749 	}
1750 	if (remaining_pages_total)
1751 		goto more;
1752 	ret = 0;
1753 out:
1754 	*num = remaining_pages_total;
1755 	return ret;
1756 }
1757 #endif  /* ifdef pte_index */
1758 
1759 /**
1760  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1761  * @vma: user vma to map to
1762  * @addr: target start user address of these pages
1763  * @pages: source kernel pages
1764  * @num: in: number of pages to map. out: number of pages that were *not*
1765  * mapped. (0 means all pages were successfully mapped).
1766  *
1767  * Preferred over vm_insert_page() when inserting multiple pages.
1768  *
1769  * In case of error, we may have mapped a subset of the provided
1770  * pages. It is the caller's responsibility to account for this case.
1771  *
1772  * The same restrictions apply as in vm_insert_page().
1773  */
1774 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1775 			struct page **pages, unsigned long *num)
1776 {
1777 #ifdef pte_index
1778 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1779 
1780 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1781 		return -EFAULT;
1782 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1783 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1784 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1785 		vma->vm_flags |= VM_MIXEDMAP;
1786 	}
1787 	/* Defer page refcount checking till we're about to map that page. */
1788 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1789 #else
1790 	unsigned long idx = 0, pgcount = *num;
1791 	int err = -EINVAL;
1792 
1793 	for (; idx < pgcount; ++idx) {
1794 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1795 		if (err)
1796 			break;
1797 	}
1798 	*num = pgcount - idx;
1799 	return err;
1800 #endif  /* ifdef pte_index */
1801 }
1802 EXPORT_SYMBOL(vm_insert_pages);
1803 
1804 /**
1805  * vm_insert_page - insert single page into user vma
1806  * @vma: user vma to map to
1807  * @addr: target user address of this page
1808  * @page: source kernel page
1809  *
1810  * This allows drivers to insert individual pages they've allocated
1811  * into a user vma.
1812  *
1813  * The page has to be a nice clean _individual_ kernel allocation.
1814  * If you allocate a compound page, you need to have marked it as
1815  * such (__GFP_COMP), or manually just split the page up yourself
1816  * (see split_page()).
1817  *
1818  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1819  * took an arbitrary page protection parameter. This doesn't allow
1820  * that. Your vma protection will have to be set up correctly, which
1821  * means that if you want a shared writable mapping, you'd better
1822  * ask for a shared writable mapping!
1823  *
1824  * The page does not need to be reserved.
1825  *
1826  * Usually this function is called from f_op->mmap() handler
1827  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1828  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1829  * function from other places, for example from page-fault handler.
1830  *
1831  * Return: %0 on success, negative error code otherwise.
1832  */
1833 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1834 			struct page *page)
1835 {
1836 	if (addr < vma->vm_start || addr >= vma->vm_end)
1837 		return -EFAULT;
1838 	if (!page_count(page))
1839 		return -EINVAL;
1840 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1841 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1842 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1843 		vma->vm_flags |= VM_MIXEDMAP;
1844 	}
1845 	return insert_page(vma, addr, page, vma->vm_page_prot);
1846 }
1847 EXPORT_SYMBOL(vm_insert_page);
1848 
1849 /*
1850  * __vm_map_pages - maps range of kernel pages into user vma
1851  * @vma: user vma to map to
1852  * @pages: pointer to array of source kernel pages
1853  * @num: number of pages in page array
1854  * @offset: user's requested vm_pgoff
1855  *
1856  * This allows drivers to map range of kernel pages into a user vma.
1857  *
1858  * Return: 0 on success and error code otherwise.
1859  */
1860 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1861 				unsigned long num, unsigned long offset)
1862 {
1863 	unsigned long count = vma_pages(vma);
1864 	unsigned long uaddr = vma->vm_start;
1865 	int ret, i;
1866 
1867 	/* Fail if the user requested offset is beyond the end of the object */
1868 	if (offset >= num)
1869 		return -ENXIO;
1870 
1871 	/* Fail if the user requested size exceeds available object size */
1872 	if (count > num - offset)
1873 		return -ENXIO;
1874 
1875 	for (i = 0; i < count; i++) {
1876 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1877 		if (ret < 0)
1878 			return ret;
1879 		uaddr += PAGE_SIZE;
1880 	}
1881 
1882 	return 0;
1883 }
1884 
1885 /**
1886  * vm_map_pages - maps range of kernel pages starts with non zero offset
1887  * @vma: user vma to map to
1888  * @pages: pointer to array of source kernel pages
1889  * @num: number of pages in page array
1890  *
1891  * Maps an object consisting of @num pages, catering for the user's
1892  * requested vm_pgoff
1893  *
1894  * If we fail to insert any page into the vma, the function will return
1895  * immediately leaving any previously inserted pages present.  Callers
1896  * from the mmap handler may immediately return the error as their caller
1897  * will destroy the vma, removing any successfully inserted pages. Other
1898  * callers should make their own arrangements for calling unmap_region().
1899  *
1900  * Context: Process context. Called by mmap handlers.
1901  * Return: 0 on success and error code otherwise.
1902  */
1903 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1904 				unsigned long num)
1905 {
1906 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1907 }
1908 EXPORT_SYMBOL(vm_map_pages);
1909 
1910 /**
1911  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1912  * @vma: user vma to map to
1913  * @pages: pointer to array of source kernel pages
1914  * @num: number of pages in page array
1915  *
1916  * Similar to vm_map_pages(), except that it explicitly sets the offset
1917  * to 0. This function is intended for the drivers that did not consider
1918  * vm_pgoff.
1919  *
1920  * Context: Process context. Called by mmap handlers.
1921  * Return: 0 on success and error code otherwise.
1922  */
1923 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1924 				unsigned long num)
1925 {
1926 	return __vm_map_pages(vma, pages, num, 0);
1927 }
1928 EXPORT_SYMBOL(vm_map_pages_zero);
1929 
1930 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1931 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1932 {
1933 	struct mm_struct *mm = vma->vm_mm;
1934 	pte_t *pte, entry;
1935 	spinlock_t *ptl;
1936 
1937 	pte = get_locked_pte(mm, addr, &ptl);
1938 	if (!pte)
1939 		return VM_FAULT_OOM;
1940 	if (!pte_none(*pte)) {
1941 		if (mkwrite) {
1942 			/*
1943 			 * For read faults on private mappings the PFN passed
1944 			 * in may not match the PFN we have mapped if the
1945 			 * mapped PFN is a writeable COW page.  In the mkwrite
1946 			 * case we are creating a writable PTE for a shared
1947 			 * mapping and we expect the PFNs to match. If they
1948 			 * don't match, we are likely racing with block
1949 			 * allocation and mapping invalidation so just skip the
1950 			 * update.
1951 			 */
1952 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1953 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1954 				goto out_unlock;
1955 			}
1956 			entry = pte_mkyoung(*pte);
1957 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1958 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1959 				update_mmu_cache(vma, addr, pte);
1960 		}
1961 		goto out_unlock;
1962 	}
1963 
1964 	/* Ok, finally just insert the thing.. */
1965 	if (pfn_t_devmap(pfn))
1966 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1967 	else
1968 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1969 
1970 	if (mkwrite) {
1971 		entry = pte_mkyoung(entry);
1972 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1973 	}
1974 
1975 	set_pte_at(mm, addr, pte, entry);
1976 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1977 
1978 out_unlock:
1979 	pte_unmap_unlock(pte, ptl);
1980 	return VM_FAULT_NOPAGE;
1981 }
1982 
1983 /**
1984  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1985  * @vma: user vma to map to
1986  * @addr: target user address of this page
1987  * @pfn: source kernel pfn
1988  * @pgprot: pgprot flags for the inserted page
1989  *
1990  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1991  * to override pgprot on a per-page basis.
1992  *
1993  * This only makes sense for IO mappings, and it makes no sense for
1994  * COW mappings.  In general, using multiple vmas is preferable;
1995  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1996  * impractical.
1997  *
1998  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1999  * a value of @pgprot different from that of @vma->vm_page_prot.
2000  *
2001  * Context: Process context.  May allocate using %GFP_KERNEL.
2002  * Return: vm_fault_t value.
2003  */
2004 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2005 			unsigned long pfn, pgprot_t pgprot)
2006 {
2007 	/*
2008 	 * Technically, architectures with pte_special can avoid all these
2009 	 * restrictions (same for remap_pfn_range).  However we would like
2010 	 * consistency in testing and feature parity among all, so we should
2011 	 * try to keep these invariants in place for everybody.
2012 	 */
2013 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2014 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2015 						(VM_PFNMAP|VM_MIXEDMAP));
2016 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2017 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2018 
2019 	if (addr < vma->vm_start || addr >= vma->vm_end)
2020 		return VM_FAULT_SIGBUS;
2021 
2022 	if (!pfn_modify_allowed(pfn, pgprot))
2023 		return VM_FAULT_SIGBUS;
2024 
2025 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2026 
2027 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2028 			false);
2029 }
2030 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2031 
2032 /**
2033  * vmf_insert_pfn - insert single pfn into user vma
2034  * @vma: user vma to map to
2035  * @addr: target user address of this page
2036  * @pfn: source kernel pfn
2037  *
2038  * Similar to vm_insert_page, this allows drivers to insert individual pages
2039  * they've allocated into a user vma. Same comments apply.
2040  *
2041  * This function should only be called from a vm_ops->fault handler, and
2042  * in that case the handler should return the result of this function.
2043  *
2044  * vma cannot be a COW mapping.
2045  *
2046  * As this is called only for pages that do not currently exist, we
2047  * do not need to flush old virtual caches or the TLB.
2048  *
2049  * Context: Process context.  May allocate using %GFP_KERNEL.
2050  * Return: vm_fault_t value.
2051  */
2052 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2053 			unsigned long pfn)
2054 {
2055 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2056 }
2057 EXPORT_SYMBOL(vmf_insert_pfn);
2058 
2059 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2060 {
2061 	/* these checks mirror the abort conditions in vm_normal_page */
2062 	if (vma->vm_flags & VM_MIXEDMAP)
2063 		return true;
2064 	if (pfn_t_devmap(pfn))
2065 		return true;
2066 	if (pfn_t_special(pfn))
2067 		return true;
2068 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2069 		return true;
2070 	return false;
2071 }
2072 
2073 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2074 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2075 		bool mkwrite)
2076 {
2077 	int err;
2078 
2079 	BUG_ON(!vm_mixed_ok(vma, pfn));
2080 
2081 	if (addr < vma->vm_start || addr >= vma->vm_end)
2082 		return VM_FAULT_SIGBUS;
2083 
2084 	track_pfn_insert(vma, &pgprot, pfn);
2085 
2086 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2087 		return VM_FAULT_SIGBUS;
2088 
2089 	/*
2090 	 * If we don't have pte special, then we have to use the pfn_valid()
2091 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2092 	 * refcount the page if pfn_valid is true (hence insert_page rather
2093 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2094 	 * without pte special, it would there be refcounted as a normal page.
2095 	 */
2096 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2097 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2098 		struct page *page;
2099 
2100 		/*
2101 		 * At this point we are committed to insert_page()
2102 		 * regardless of whether the caller specified flags that
2103 		 * result in pfn_t_has_page() == false.
2104 		 */
2105 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2106 		err = insert_page(vma, addr, page, pgprot);
2107 	} else {
2108 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2109 	}
2110 
2111 	if (err == -ENOMEM)
2112 		return VM_FAULT_OOM;
2113 	if (err < 0 && err != -EBUSY)
2114 		return VM_FAULT_SIGBUS;
2115 
2116 	return VM_FAULT_NOPAGE;
2117 }
2118 
2119 /**
2120  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2121  * @vma: user vma to map to
2122  * @addr: target user address of this page
2123  * @pfn: source kernel pfn
2124  * @pgprot: pgprot flags for the inserted page
2125  *
2126  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2127  * to override pgprot on a per-page basis.
2128  *
2129  * Typically this function should be used by drivers to set caching- and
2130  * encryption bits different than those of @vma->vm_page_prot, because
2131  * the caching- or encryption mode may not be known at mmap() time.
2132  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2133  * to set caching and encryption bits for those vmas (except for COW pages).
2134  * This is ensured by core vm only modifying these page table entries using
2135  * functions that don't touch caching- or encryption bits, using pte_modify()
2136  * if needed. (See for example mprotect()).
2137  * Also when new page-table entries are created, this is only done using the
2138  * fault() callback, and never using the value of vma->vm_page_prot,
2139  * except for page-table entries that point to anonymous pages as the result
2140  * of COW.
2141  *
2142  * Context: Process context.  May allocate using %GFP_KERNEL.
2143  * Return: vm_fault_t value.
2144  */
2145 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2146 				 pfn_t pfn, pgprot_t pgprot)
2147 {
2148 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2149 }
2150 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2151 
2152 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2153 		pfn_t pfn)
2154 {
2155 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2156 }
2157 EXPORT_SYMBOL(vmf_insert_mixed);
2158 
2159 /*
2160  *  If the insertion of PTE failed because someone else already added a
2161  *  different entry in the mean time, we treat that as success as we assume
2162  *  the same entry was actually inserted.
2163  */
2164 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2165 		unsigned long addr, pfn_t pfn)
2166 {
2167 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2168 }
2169 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2170 
2171 /*
2172  * maps a range of physical memory into the requested pages. the old
2173  * mappings are removed. any references to nonexistent pages results
2174  * in null mappings (currently treated as "copy-on-access")
2175  */
2176 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2177 			unsigned long addr, unsigned long end,
2178 			unsigned long pfn, pgprot_t prot)
2179 {
2180 	pte_t *pte;
2181 	spinlock_t *ptl;
2182 	int err = 0;
2183 
2184 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2185 	if (!pte)
2186 		return -ENOMEM;
2187 	arch_enter_lazy_mmu_mode();
2188 	do {
2189 		BUG_ON(!pte_none(*pte));
2190 		if (!pfn_modify_allowed(pfn, prot)) {
2191 			err = -EACCES;
2192 			break;
2193 		}
2194 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2195 		pfn++;
2196 	} while (pte++, addr += PAGE_SIZE, addr != end);
2197 	arch_leave_lazy_mmu_mode();
2198 	pte_unmap_unlock(pte - 1, ptl);
2199 	return err;
2200 }
2201 
2202 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2203 			unsigned long addr, unsigned long end,
2204 			unsigned long pfn, pgprot_t prot)
2205 {
2206 	pmd_t *pmd;
2207 	unsigned long next;
2208 	int err;
2209 
2210 	pfn -= addr >> PAGE_SHIFT;
2211 	pmd = pmd_alloc(mm, pud, addr);
2212 	if (!pmd)
2213 		return -ENOMEM;
2214 	VM_BUG_ON(pmd_trans_huge(*pmd));
2215 	do {
2216 		next = pmd_addr_end(addr, end);
2217 		err = remap_pte_range(mm, pmd, addr, next,
2218 				pfn + (addr >> PAGE_SHIFT), prot);
2219 		if (err)
2220 			return err;
2221 	} while (pmd++, addr = next, addr != end);
2222 	return 0;
2223 }
2224 
2225 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2226 			unsigned long addr, unsigned long end,
2227 			unsigned long pfn, pgprot_t prot)
2228 {
2229 	pud_t *pud;
2230 	unsigned long next;
2231 	int err;
2232 
2233 	pfn -= addr >> PAGE_SHIFT;
2234 	pud = pud_alloc(mm, p4d, addr);
2235 	if (!pud)
2236 		return -ENOMEM;
2237 	do {
2238 		next = pud_addr_end(addr, end);
2239 		err = remap_pmd_range(mm, pud, addr, next,
2240 				pfn + (addr >> PAGE_SHIFT), prot);
2241 		if (err)
2242 			return err;
2243 	} while (pud++, addr = next, addr != end);
2244 	return 0;
2245 }
2246 
2247 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2248 			unsigned long addr, unsigned long end,
2249 			unsigned long pfn, pgprot_t prot)
2250 {
2251 	p4d_t *p4d;
2252 	unsigned long next;
2253 	int err;
2254 
2255 	pfn -= addr >> PAGE_SHIFT;
2256 	p4d = p4d_alloc(mm, pgd, addr);
2257 	if (!p4d)
2258 		return -ENOMEM;
2259 	do {
2260 		next = p4d_addr_end(addr, end);
2261 		err = remap_pud_range(mm, p4d, addr, next,
2262 				pfn + (addr >> PAGE_SHIFT), prot);
2263 		if (err)
2264 			return err;
2265 	} while (p4d++, addr = next, addr != end);
2266 	return 0;
2267 }
2268 
2269 /**
2270  * remap_pfn_range - remap kernel memory to userspace
2271  * @vma: user vma to map to
2272  * @addr: target page aligned user address to start at
2273  * @pfn: page frame number of kernel physical memory address
2274  * @size: size of mapping area
2275  * @prot: page protection flags for this mapping
2276  *
2277  * Note: this is only safe if the mm semaphore is held when called.
2278  *
2279  * Return: %0 on success, negative error code otherwise.
2280  */
2281 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2282 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2283 {
2284 	pgd_t *pgd;
2285 	unsigned long next;
2286 	unsigned long end = addr + PAGE_ALIGN(size);
2287 	struct mm_struct *mm = vma->vm_mm;
2288 	unsigned long remap_pfn = pfn;
2289 	int err;
2290 
2291 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2292 		return -EINVAL;
2293 
2294 	/*
2295 	 * Physically remapped pages are special. Tell the
2296 	 * rest of the world about it:
2297 	 *   VM_IO tells people not to look at these pages
2298 	 *	(accesses can have side effects).
2299 	 *   VM_PFNMAP tells the core MM that the base pages are just
2300 	 *	raw PFN mappings, and do not have a "struct page" associated
2301 	 *	with them.
2302 	 *   VM_DONTEXPAND
2303 	 *      Disable vma merging and expanding with mremap().
2304 	 *   VM_DONTDUMP
2305 	 *      Omit vma from core dump, even when VM_IO turned off.
2306 	 *
2307 	 * There's a horrible special case to handle copy-on-write
2308 	 * behaviour that some programs depend on. We mark the "original"
2309 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2310 	 * See vm_normal_page() for details.
2311 	 */
2312 	if (is_cow_mapping(vma->vm_flags)) {
2313 		if (addr != vma->vm_start || end != vma->vm_end)
2314 			return -EINVAL;
2315 		vma->vm_pgoff = pfn;
2316 	}
2317 
2318 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2319 	if (err)
2320 		return -EINVAL;
2321 
2322 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2323 
2324 	BUG_ON(addr >= end);
2325 	pfn -= addr >> PAGE_SHIFT;
2326 	pgd = pgd_offset(mm, addr);
2327 	flush_cache_range(vma, addr, end);
2328 	do {
2329 		next = pgd_addr_end(addr, end);
2330 		err = remap_p4d_range(mm, pgd, addr, next,
2331 				pfn + (addr >> PAGE_SHIFT), prot);
2332 		if (err)
2333 			break;
2334 	} while (pgd++, addr = next, addr != end);
2335 
2336 	if (err)
2337 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2338 
2339 	return err;
2340 }
2341 EXPORT_SYMBOL(remap_pfn_range);
2342 
2343 /**
2344  * vm_iomap_memory - remap memory to userspace
2345  * @vma: user vma to map to
2346  * @start: start of the physical memory to be mapped
2347  * @len: size of area
2348  *
2349  * This is a simplified io_remap_pfn_range() for common driver use. The
2350  * driver just needs to give us the physical memory range to be mapped,
2351  * we'll figure out the rest from the vma information.
2352  *
2353  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2354  * whatever write-combining details or similar.
2355  *
2356  * Return: %0 on success, negative error code otherwise.
2357  */
2358 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2359 {
2360 	unsigned long vm_len, pfn, pages;
2361 
2362 	/* Check that the physical memory area passed in looks valid */
2363 	if (start + len < start)
2364 		return -EINVAL;
2365 	/*
2366 	 * You *really* shouldn't map things that aren't page-aligned,
2367 	 * but we've historically allowed it because IO memory might
2368 	 * just have smaller alignment.
2369 	 */
2370 	len += start & ~PAGE_MASK;
2371 	pfn = start >> PAGE_SHIFT;
2372 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2373 	if (pfn + pages < pfn)
2374 		return -EINVAL;
2375 
2376 	/* We start the mapping 'vm_pgoff' pages into the area */
2377 	if (vma->vm_pgoff > pages)
2378 		return -EINVAL;
2379 	pfn += vma->vm_pgoff;
2380 	pages -= vma->vm_pgoff;
2381 
2382 	/* Can we fit all of the mapping? */
2383 	vm_len = vma->vm_end - vma->vm_start;
2384 	if (vm_len >> PAGE_SHIFT > pages)
2385 		return -EINVAL;
2386 
2387 	/* Ok, let it rip */
2388 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2389 }
2390 EXPORT_SYMBOL(vm_iomap_memory);
2391 
2392 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2393 				     unsigned long addr, unsigned long end,
2394 				     pte_fn_t fn, void *data, bool create,
2395 				     pgtbl_mod_mask *mask)
2396 {
2397 	pte_t *pte;
2398 	int err = 0;
2399 	spinlock_t *ptl;
2400 
2401 	if (create) {
2402 		pte = (mm == &init_mm) ?
2403 			pte_alloc_kernel_track(pmd, addr, mask) :
2404 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2405 		if (!pte)
2406 			return -ENOMEM;
2407 	} else {
2408 		pte = (mm == &init_mm) ?
2409 			pte_offset_kernel(pmd, addr) :
2410 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2411 	}
2412 
2413 	BUG_ON(pmd_huge(*pmd));
2414 
2415 	arch_enter_lazy_mmu_mode();
2416 
2417 	if (fn) {
2418 		do {
2419 			if (create || !pte_none(*pte)) {
2420 				err = fn(pte++, addr, data);
2421 				if (err)
2422 					break;
2423 			}
2424 		} while (addr += PAGE_SIZE, addr != end);
2425 	}
2426 	*mask |= PGTBL_PTE_MODIFIED;
2427 
2428 	arch_leave_lazy_mmu_mode();
2429 
2430 	if (mm != &init_mm)
2431 		pte_unmap_unlock(pte-1, ptl);
2432 	return err;
2433 }
2434 
2435 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2436 				     unsigned long addr, unsigned long end,
2437 				     pte_fn_t fn, void *data, bool create,
2438 				     pgtbl_mod_mask *mask)
2439 {
2440 	pmd_t *pmd;
2441 	unsigned long next;
2442 	int err = 0;
2443 
2444 	BUG_ON(pud_huge(*pud));
2445 
2446 	if (create) {
2447 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2448 		if (!pmd)
2449 			return -ENOMEM;
2450 	} else {
2451 		pmd = pmd_offset(pud, addr);
2452 	}
2453 	do {
2454 		next = pmd_addr_end(addr, end);
2455 		if (create || !pmd_none_or_clear_bad(pmd)) {
2456 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2457 						 create, mask);
2458 			if (err)
2459 				break;
2460 		}
2461 	} while (pmd++, addr = next, addr != end);
2462 	return err;
2463 }
2464 
2465 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2466 				     unsigned long addr, unsigned long end,
2467 				     pte_fn_t fn, void *data, bool create,
2468 				     pgtbl_mod_mask *mask)
2469 {
2470 	pud_t *pud;
2471 	unsigned long next;
2472 	int err = 0;
2473 
2474 	if (create) {
2475 		pud = pud_alloc_track(mm, p4d, addr, mask);
2476 		if (!pud)
2477 			return -ENOMEM;
2478 	} else {
2479 		pud = pud_offset(p4d, addr);
2480 	}
2481 	do {
2482 		next = pud_addr_end(addr, end);
2483 		if (create || !pud_none_or_clear_bad(pud)) {
2484 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2485 						 create, mask);
2486 			if (err)
2487 				break;
2488 		}
2489 	} while (pud++, addr = next, addr != end);
2490 	return err;
2491 }
2492 
2493 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2494 				     unsigned long addr, unsigned long end,
2495 				     pte_fn_t fn, void *data, bool create,
2496 				     pgtbl_mod_mask *mask)
2497 {
2498 	p4d_t *p4d;
2499 	unsigned long next;
2500 	int err = 0;
2501 
2502 	if (create) {
2503 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2504 		if (!p4d)
2505 			return -ENOMEM;
2506 	} else {
2507 		p4d = p4d_offset(pgd, addr);
2508 	}
2509 	do {
2510 		next = p4d_addr_end(addr, end);
2511 		if (create || !p4d_none_or_clear_bad(p4d)) {
2512 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2513 						 create, mask);
2514 			if (err)
2515 				break;
2516 		}
2517 	} while (p4d++, addr = next, addr != end);
2518 	return err;
2519 }
2520 
2521 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2522 				 unsigned long size, pte_fn_t fn,
2523 				 void *data, bool create)
2524 {
2525 	pgd_t *pgd;
2526 	unsigned long start = addr, next;
2527 	unsigned long end = addr + size;
2528 	pgtbl_mod_mask mask = 0;
2529 	int err = 0;
2530 
2531 	if (WARN_ON(addr >= end))
2532 		return -EINVAL;
2533 
2534 	pgd = pgd_offset(mm, addr);
2535 	do {
2536 		next = pgd_addr_end(addr, end);
2537 		if (!create && pgd_none_or_clear_bad(pgd))
2538 			continue;
2539 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2540 		if (err)
2541 			break;
2542 	} while (pgd++, addr = next, addr != end);
2543 
2544 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2545 		arch_sync_kernel_mappings(start, start + size);
2546 
2547 	return err;
2548 }
2549 
2550 /*
2551  * Scan a region of virtual memory, filling in page tables as necessary
2552  * and calling a provided function on each leaf page table.
2553  */
2554 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2555 			unsigned long size, pte_fn_t fn, void *data)
2556 {
2557 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2558 }
2559 EXPORT_SYMBOL_GPL(apply_to_page_range);
2560 
2561 /*
2562  * Scan a region of virtual memory, calling a provided function on
2563  * each leaf page table where it exists.
2564  *
2565  * Unlike apply_to_page_range, this does _not_ fill in page tables
2566  * where they are absent.
2567  */
2568 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2569 				 unsigned long size, pte_fn_t fn, void *data)
2570 {
2571 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2572 }
2573 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2574 
2575 /*
2576  * handle_pte_fault chooses page fault handler according to an entry which was
2577  * read non-atomically.  Before making any commitment, on those architectures
2578  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2579  * parts, do_swap_page must check under lock before unmapping the pte and
2580  * proceeding (but do_wp_page is only called after already making such a check;
2581  * and do_anonymous_page can safely check later on).
2582  */
2583 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2584 				pte_t *page_table, pte_t orig_pte)
2585 {
2586 	int same = 1;
2587 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2588 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2589 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2590 		spin_lock(ptl);
2591 		same = pte_same(*page_table, orig_pte);
2592 		spin_unlock(ptl);
2593 	}
2594 #endif
2595 	pte_unmap(page_table);
2596 	return same;
2597 }
2598 
2599 static inline bool cow_user_page(struct page *dst, struct page *src,
2600 				 struct vm_fault *vmf)
2601 {
2602 	bool ret;
2603 	void *kaddr;
2604 	void __user *uaddr;
2605 	bool locked = false;
2606 	struct vm_area_struct *vma = vmf->vma;
2607 	struct mm_struct *mm = vma->vm_mm;
2608 	unsigned long addr = vmf->address;
2609 
2610 	if (likely(src)) {
2611 		copy_user_highpage(dst, src, addr, vma);
2612 		return true;
2613 	}
2614 
2615 	/*
2616 	 * If the source page was a PFN mapping, we don't have
2617 	 * a "struct page" for it. We do a best-effort copy by
2618 	 * just copying from the original user address. If that
2619 	 * fails, we just zero-fill it. Live with it.
2620 	 */
2621 	kaddr = kmap_atomic(dst);
2622 	uaddr = (void __user *)(addr & PAGE_MASK);
2623 
2624 	/*
2625 	 * On architectures with software "accessed" bits, we would
2626 	 * take a double page fault, so mark it accessed here.
2627 	 */
2628 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2629 		pte_t entry;
2630 
2631 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2632 		locked = true;
2633 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2634 			/*
2635 			 * Other thread has already handled the fault
2636 			 * and update local tlb only
2637 			 */
2638 			update_mmu_tlb(vma, addr, vmf->pte);
2639 			ret = false;
2640 			goto pte_unlock;
2641 		}
2642 
2643 		entry = pte_mkyoung(vmf->orig_pte);
2644 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2645 			update_mmu_cache(vma, addr, vmf->pte);
2646 	}
2647 
2648 	/*
2649 	 * This really shouldn't fail, because the page is there
2650 	 * in the page tables. But it might just be unreadable,
2651 	 * in which case we just give up and fill the result with
2652 	 * zeroes.
2653 	 */
2654 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2655 		if (locked)
2656 			goto warn;
2657 
2658 		/* Re-validate under PTL if the page is still mapped */
2659 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2660 		locked = true;
2661 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2662 			/* The PTE changed under us, update local tlb */
2663 			update_mmu_tlb(vma, addr, vmf->pte);
2664 			ret = false;
2665 			goto pte_unlock;
2666 		}
2667 
2668 		/*
2669 		 * The same page can be mapped back since last copy attempt.
2670 		 * Try to copy again under PTL.
2671 		 */
2672 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2673 			/*
2674 			 * Give a warn in case there can be some obscure
2675 			 * use-case
2676 			 */
2677 warn:
2678 			WARN_ON_ONCE(1);
2679 			clear_page(kaddr);
2680 		}
2681 	}
2682 
2683 	ret = true;
2684 
2685 pte_unlock:
2686 	if (locked)
2687 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2688 	kunmap_atomic(kaddr);
2689 	flush_dcache_page(dst);
2690 
2691 	return ret;
2692 }
2693 
2694 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2695 {
2696 	struct file *vm_file = vma->vm_file;
2697 
2698 	if (vm_file)
2699 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2700 
2701 	/*
2702 	 * Special mappings (e.g. VDSO) do not have any file so fake
2703 	 * a default GFP_KERNEL for them.
2704 	 */
2705 	return GFP_KERNEL;
2706 }
2707 
2708 /*
2709  * Notify the address space that the page is about to become writable so that
2710  * it can prohibit this or wait for the page to get into an appropriate state.
2711  *
2712  * We do this without the lock held, so that it can sleep if it needs to.
2713  */
2714 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2715 {
2716 	vm_fault_t ret;
2717 	struct page *page = vmf->page;
2718 	unsigned int old_flags = vmf->flags;
2719 
2720 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2721 
2722 	if (vmf->vma->vm_file &&
2723 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2724 		return VM_FAULT_SIGBUS;
2725 
2726 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2727 	/* Restore original flags so that caller is not surprised */
2728 	vmf->flags = old_flags;
2729 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2730 		return ret;
2731 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2732 		lock_page(page);
2733 		if (!page->mapping) {
2734 			unlock_page(page);
2735 			return 0; /* retry */
2736 		}
2737 		ret |= VM_FAULT_LOCKED;
2738 	} else
2739 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2740 	return ret;
2741 }
2742 
2743 /*
2744  * Handle dirtying of a page in shared file mapping on a write fault.
2745  *
2746  * The function expects the page to be locked and unlocks it.
2747  */
2748 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2749 {
2750 	struct vm_area_struct *vma = vmf->vma;
2751 	struct address_space *mapping;
2752 	struct page *page = vmf->page;
2753 	bool dirtied;
2754 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2755 
2756 	dirtied = set_page_dirty(page);
2757 	VM_BUG_ON_PAGE(PageAnon(page), page);
2758 	/*
2759 	 * Take a local copy of the address_space - page.mapping may be zeroed
2760 	 * by truncate after unlock_page().   The address_space itself remains
2761 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2762 	 * release semantics to prevent the compiler from undoing this copying.
2763 	 */
2764 	mapping = page_rmapping(page);
2765 	unlock_page(page);
2766 
2767 	if (!page_mkwrite)
2768 		file_update_time(vma->vm_file);
2769 
2770 	/*
2771 	 * Throttle page dirtying rate down to writeback speed.
2772 	 *
2773 	 * mapping may be NULL here because some device drivers do not
2774 	 * set page.mapping but still dirty their pages
2775 	 *
2776 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2777 	 * is pinning the mapping, as per above.
2778 	 */
2779 	if ((dirtied || page_mkwrite) && mapping) {
2780 		struct file *fpin;
2781 
2782 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2783 		balance_dirty_pages_ratelimited(mapping);
2784 		if (fpin) {
2785 			fput(fpin);
2786 			return VM_FAULT_RETRY;
2787 		}
2788 	}
2789 
2790 	return 0;
2791 }
2792 
2793 /*
2794  * Handle write page faults for pages that can be reused in the current vma
2795  *
2796  * This can happen either due to the mapping being with the VM_SHARED flag,
2797  * or due to us being the last reference standing to the page. In either
2798  * case, all we need to do here is to mark the page as writable and update
2799  * any related book-keeping.
2800  */
2801 static inline void wp_page_reuse(struct vm_fault *vmf)
2802 	__releases(vmf->ptl)
2803 {
2804 	struct vm_area_struct *vma = vmf->vma;
2805 	struct page *page = vmf->page;
2806 	pte_t entry;
2807 	/*
2808 	 * Clear the pages cpupid information as the existing
2809 	 * information potentially belongs to a now completely
2810 	 * unrelated process.
2811 	 */
2812 	if (page)
2813 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2814 
2815 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2816 	entry = pte_mkyoung(vmf->orig_pte);
2817 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2818 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2819 		update_mmu_cache(vma, vmf->address, vmf->pte);
2820 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2821 	count_vm_event(PGREUSE);
2822 }
2823 
2824 /*
2825  * Handle the case of a page which we actually need to copy to a new page.
2826  *
2827  * Called with mmap_lock locked and the old page referenced, but
2828  * without the ptl held.
2829  *
2830  * High level logic flow:
2831  *
2832  * - Allocate a page, copy the content of the old page to the new one.
2833  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2834  * - Take the PTL. If the pte changed, bail out and release the allocated page
2835  * - If the pte is still the way we remember it, update the page table and all
2836  *   relevant references. This includes dropping the reference the page-table
2837  *   held to the old page, as well as updating the rmap.
2838  * - In any case, unlock the PTL and drop the reference we took to the old page.
2839  */
2840 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2841 {
2842 	struct vm_area_struct *vma = vmf->vma;
2843 	struct mm_struct *mm = vma->vm_mm;
2844 	struct page *old_page = vmf->page;
2845 	struct page *new_page = NULL;
2846 	pte_t entry;
2847 	int page_copied = 0;
2848 	struct mmu_notifier_range range;
2849 
2850 	if (unlikely(anon_vma_prepare(vma)))
2851 		goto oom;
2852 
2853 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2854 		new_page = alloc_zeroed_user_highpage_movable(vma,
2855 							      vmf->address);
2856 		if (!new_page)
2857 			goto oom;
2858 	} else {
2859 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2860 				vmf->address);
2861 		if (!new_page)
2862 			goto oom;
2863 
2864 		if (!cow_user_page(new_page, old_page, vmf)) {
2865 			/*
2866 			 * COW failed, if the fault was solved by other,
2867 			 * it's fine. If not, userspace would re-fault on
2868 			 * the same address and we will handle the fault
2869 			 * from the second attempt.
2870 			 */
2871 			put_page(new_page);
2872 			if (old_page)
2873 				put_page(old_page);
2874 			return 0;
2875 		}
2876 	}
2877 
2878 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2879 		goto oom_free_new;
2880 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2881 
2882 	__SetPageUptodate(new_page);
2883 
2884 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2885 				vmf->address & PAGE_MASK,
2886 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2887 	mmu_notifier_invalidate_range_start(&range);
2888 
2889 	/*
2890 	 * Re-check the pte - we dropped the lock
2891 	 */
2892 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2893 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2894 		if (old_page) {
2895 			if (!PageAnon(old_page)) {
2896 				dec_mm_counter_fast(mm,
2897 						mm_counter_file(old_page));
2898 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2899 			}
2900 		} else {
2901 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2902 		}
2903 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2904 		entry = mk_pte(new_page, vma->vm_page_prot);
2905 		entry = pte_sw_mkyoung(entry);
2906 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2907 
2908 		/*
2909 		 * Clear the pte entry and flush it first, before updating the
2910 		 * pte with the new entry, to keep TLBs on different CPUs in
2911 		 * sync. This code used to set the new PTE then flush TLBs, but
2912 		 * that left a window where the new PTE could be loaded into
2913 		 * some TLBs while the old PTE remains in others.
2914 		 */
2915 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2916 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2917 		lru_cache_add_inactive_or_unevictable(new_page, vma);
2918 		/*
2919 		 * We call the notify macro here because, when using secondary
2920 		 * mmu page tables (such as kvm shadow page tables), we want the
2921 		 * new page to be mapped directly into the secondary page table.
2922 		 */
2923 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2924 		update_mmu_cache(vma, vmf->address, vmf->pte);
2925 		if (old_page) {
2926 			/*
2927 			 * Only after switching the pte to the new page may
2928 			 * we remove the mapcount here. Otherwise another
2929 			 * process may come and find the rmap count decremented
2930 			 * before the pte is switched to the new page, and
2931 			 * "reuse" the old page writing into it while our pte
2932 			 * here still points into it and can be read by other
2933 			 * threads.
2934 			 *
2935 			 * The critical issue is to order this
2936 			 * page_remove_rmap with the ptp_clear_flush above.
2937 			 * Those stores are ordered by (if nothing else,)
2938 			 * the barrier present in the atomic_add_negative
2939 			 * in page_remove_rmap.
2940 			 *
2941 			 * Then the TLB flush in ptep_clear_flush ensures that
2942 			 * no process can access the old page before the
2943 			 * decremented mapcount is visible. And the old page
2944 			 * cannot be reused until after the decremented
2945 			 * mapcount is visible. So transitively, TLBs to
2946 			 * old page will be flushed before it can be reused.
2947 			 */
2948 			page_remove_rmap(old_page, false);
2949 		}
2950 
2951 		/* Free the old page.. */
2952 		new_page = old_page;
2953 		page_copied = 1;
2954 	} else {
2955 		update_mmu_tlb(vma, vmf->address, vmf->pte);
2956 	}
2957 
2958 	if (new_page)
2959 		put_page(new_page);
2960 
2961 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2962 	/*
2963 	 * No need to double call mmu_notifier->invalidate_range() callback as
2964 	 * the above ptep_clear_flush_notify() did already call it.
2965 	 */
2966 	mmu_notifier_invalidate_range_only_end(&range);
2967 	if (old_page) {
2968 		/*
2969 		 * Don't let another task, with possibly unlocked vma,
2970 		 * keep the mlocked page.
2971 		 */
2972 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2973 			lock_page(old_page);	/* LRU manipulation */
2974 			if (PageMlocked(old_page))
2975 				munlock_vma_page(old_page);
2976 			unlock_page(old_page);
2977 		}
2978 		put_page(old_page);
2979 	}
2980 	return page_copied ? VM_FAULT_WRITE : 0;
2981 oom_free_new:
2982 	put_page(new_page);
2983 oom:
2984 	if (old_page)
2985 		put_page(old_page);
2986 	return VM_FAULT_OOM;
2987 }
2988 
2989 /**
2990  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2991  *			  writeable once the page is prepared
2992  *
2993  * @vmf: structure describing the fault
2994  *
2995  * This function handles all that is needed to finish a write page fault in a
2996  * shared mapping due to PTE being read-only once the mapped page is prepared.
2997  * It handles locking of PTE and modifying it.
2998  *
2999  * The function expects the page to be locked or other protection against
3000  * concurrent faults / writeback (such as DAX radix tree locks).
3001  *
3002  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3003  * we acquired PTE lock.
3004  */
3005 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3006 {
3007 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3008 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3009 				       &vmf->ptl);
3010 	/*
3011 	 * We might have raced with another page fault while we released the
3012 	 * pte_offset_map_lock.
3013 	 */
3014 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3015 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3016 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3017 		return VM_FAULT_NOPAGE;
3018 	}
3019 	wp_page_reuse(vmf);
3020 	return 0;
3021 }
3022 
3023 /*
3024  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3025  * mapping
3026  */
3027 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3028 {
3029 	struct vm_area_struct *vma = vmf->vma;
3030 
3031 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3032 		vm_fault_t ret;
3033 
3034 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3035 		vmf->flags |= FAULT_FLAG_MKWRITE;
3036 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3037 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3038 			return ret;
3039 		return finish_mkwrite_fault(vmf);
3040 	}
3041 	wp_page_reuse(vmf);
3042 	return VM_FAULT_WRITE;
3043 }
3044 
3045 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3046 	__releases(vmf->ptl)
3047 {
3048 	struct vm_area_struct *vma = vmf->vma;
3049 	vm_fault_t ret = VM_FAULT_WRITE;
3050 
3051 	get_page(vmf->page);
3052 
3053 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3054 		vm_fault_t tmp;
3055 
3056 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3057 		tmp = do_page_mkwrite(vmf);
3058 		if (unlikely(!tmp || (tmp &
3059 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3060 			put_page(vmf->page);
3061 			return tmp;
3062 		}
3063 		tmp = finish_mkwrite_fault(vmf);
3064 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3065 			unlock_page(vmf->page);
3066 			put_page(vmf->page);
3067 			return tmp;
3068 		}
3069 	} else {
3070 		wp_page_reuse(vmf);
3071 		lock_page(vmf->page);
3072 	}
3073 	ret |= fault_dirty_shared_page(vmf);
3074 	put_page(vmf->page);
3075 
3076 	return ret;
3077 }
3078 
3079 /*
3080  * This routine handles present pages, when users try to write
3081  * to a shared page. It is done by copying the page to a new address
3082  * and decrementing the shared-page counter for the old page.
3083  *
3084  * Note that this routine assumes that the protection checks have been
3085  * done by the caller (the low-level page fault routine in most cases).
3086  * Thus we can safely just mark it writable once we've done any necessary
3087  * COW.
3088  *
3089  * We also mark the page dirty at this point even though the page will
3090  * change only once the write actually happens. This avoids a few races,
3091  * and potentially makes it more efficient.
3092  *
3093  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3094  * but allow concurrent faults), with pte both mapped and locked.
3095  * We return with mmap_lock still held, but pte unmapped and unlocked.
3096  */
3097 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3098 	__releases(vmf->ptl)
3099 {
3100 	struct vm_area_struct *vma = vmf->vma;
3101 
3102 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3103 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3104 		return handle_userfault(vmf, VM_UFFD_WP);
3105 	}
3106 
3107 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3108 	if (!vmf->page) {
3109 		/*
3110 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3111 		 * VM_PFNMAP VMA.
3112 		 *
3113 		 * We should not cow pages in a shared writeable mapping.
3114 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3115 		 */
3116 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3117 				     (VM_WRITE|VM_SHARED))
3118 			return wp_pfn_shared(vmf);
3119 
3120 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3121 		return wp_page_copy(vmf);
3122 	}
3123 
3124 	/*
3125 	 * Take out anonymous pages first, anonymous shared vmas are
3126 	 * not dirty accountable.
3127 	 */
3128 	if (PageAnon(vmf->page)) {
3129 		struct page *page = vmf->page;
3130 
3131 		/* PageKsm() doesn't necessarily raise the page refcount */
3132 		if (PageKsm(page) || page_count(page) != 1)
3133 			goto copy;
3134 		if (!trylock_page(page))
3135 			goto copy;
3136 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3137 			unlock_page(page);
3138 			goto copy;
3139 		}
3140 		/*
3141 		 * Ok, we've got the only map reference, and the only
3142 		 * page count reference, and the page is locked,
3143 		 * it's dark out, and we're wearing sunglasses. Hit it.
3144 		 */
3145 		unlock_page(page);
3146 		wp_page_reuse(vmf);
3147 		return VM_FAULT_WRITE;
3148 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3149 					(VM_WRITE|VM_SHARED))) {
3150 		return wp_page_shared(vmf);
3151 	}
3152 copy:
3153 	/*
3154 	 * Ok, we need to copy. Oh, well..
3155 	 */
3156 	get_page(vmf->page);
3157 
3158 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3159 	return wp_page_copy(vmf);
3160 }
3161 
3162 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3163 		unsigned long start_addr, unsigned long end_addr,
3164 		struct zap_details *details)
3165 {
3166 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3167 }
3168 
3169 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3170 					    struct zap_details *details)
3171 {
3172 	struct vm_area_struct *vma;
3173 	pgoff_t vba, vea, zba, zea;
3174 
3175 	vma_interval_tree_foreach(vma, root,
3176 			details->first_index, details->last_index) {
3177 
3178 		vba = vma->vm_pgoff;
3179 		vea = vba + vma_pages(vma) - 1;
3180 		zba = details->first_index;
3181 		if (zba < vba)
3182 			zba = vba;
3183 		zea = details->last_index;
3184 		if (zea > vea)
3185 			zea = vea;
3186 
3187 		unmap_mapping_range_vma(vma,
3188 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3189 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3190 				details);
3191 	}
3192 }
3193 
3194 /**
3195  * unmap_mapping_pages() - Unmap pages from processes.
3196  * @mapping: The address space containing pages to be unmapped.
3197  * @start: Index of first page to be unmapped.
3198  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3199  * @even_cows: Whether to unmap even private COWed pages.
3200  *
3201  * Unmap the pages in this address space from any userspace process which
3202  * has them mmaped.  Generally, you want to remove COWed pages as well when
3203  * a file is being truncated, but not when invalidating pages from the page
3204  * cache.
3205  */
3206 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3207 		pgoff_t nr, bool even_cows)
3208 {
3209 	struct zap_details details = { };
3210 
3211 	details.check_mapping = even_cows ? NULL : mapping;
3212 	details.first_index = start;
3213 	details.last_index = start + nr - 1;
3214 	if (details.last_index < details.first_index)
3215 		details.last_index = ULONG_MAX;
3216 
3217 	i_mmap_lock_write(mapping);
3218 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3219 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3220 	i_mmap_unlock_write(mapping);
3221 }
3222 
3223 /**
3224  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3225  * address_space corresponding to the specified byte range in the underlying
3226  * file.
3227  *
3228  * @mapping: the address space containing mmaps to be unmapped.
3229  * @holebegin: byte in first page to unmap, relative to the start of
3230  * the underlying file.  This will be rounded down to a PAGE_SIZE
3231  * boundary.  Note that this is different from truncate_pagecache(), which
3232  * must keep the partial page.  In contrast, we must get rid of
3233  * partial pages.
3234  * @holelen: size of prospective hole in bytes.  This will be rounded
3235  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3236  * end of the file.
3237  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3238  * but 0 when invalidating pagecache, don't throw away private data.
3239  */
3240 void unmap_mapping_range(struct address_space *mapping,
3241 		loff_t const holebegin, loff_t const holelen, int even_cows)
3242 {
3243 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3244 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3245 
3246 	/* Check for overflow. */
3247 	if (sizeof(holelen) > sizeof(hlen)) {
3248 		long long holeend =
3249 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3250 		if (holeend & ~(long long)ULONG_MAX)
3251 			hlen = ULONG_MAX - hba + 1;
3252 	}
3253 
3254 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3255 }
3256 EXPORT_SYMBOL(unmap_mapping_range);
3257 
3258 /*
3259  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3260  * but allow concurrent faults), and pte mapped but not yet locked.
3261  * We return with pte unmapped and unlocked.
3262  *
3263  * We return with the mmap_lock locked or unlocked in the same cases
3264  * as does filemap_fault().
3265  */
3266 vm_fault_t do_swap_page(struct vm_fault *vmf)
3267 {
3268 	struct vm_area_struct *vma = vmf->vma;
3269 	struct page *page = NULL, *swapcache;
3270 	swp_entry_t entry;
3271 	pte_t pte;
3272 	int locked;
3273 	int exclusive = 0;
3274 	vm_fault_t ret = 0;
3275 	void *shadow = NULL;
3276 
3277 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3278 		goto out;
3279 
3280 	entry = pte_to_swp_entry(vmf->orig_pte);
3281 	if (unlikely(non_swap_entry(entry))) {
3282 		if (is_migration_entry(entry)) {
3283 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3284 					     vmf->address);
3285 		} else if (is_device_private_entry(entry)) {
3286 			vmf->page = device_private_entry_to_page(entry);
3287 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3288 		} else if (is_hwpoison_entry(entry)) {
3289 			ret = VM_FAULT_HWPOISON;
3290 		} else {
3291 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3292 			ret = VM_FAULT_SIGBUS;
3293 		}
3294 		goto out;
3295 	}
3296 
3297 
3298 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3299 	page = lookup_swap_cache(entry, vma, vmf->address);
3300 	swapcache = page;
3301 
3302 	if (!page) {
3303 		struct swap_info_struct *si = swp_swap_info(entry);
3304 
3305 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3306 		    __swap_count(entry) == 1) {
3307 			/* skip swapcache */
3308 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3309 							vmf->address);
3310 			if (page) {
3311 				int err;
3312 
3313 				__SetPageLocked(page);
3314 				__SetPageSwapBacked(page);
3315 				set_page_private(page, entry.val);
3316 
3317 				/* Tell memcg to use swap ownership records */
3318 				SetPageSwapCache(page);
3319 				err = mem_cgroup_charge(page, vma->vm_mm,
3320 							GFP_KERNEL);
3321 				ClearPageSwapCache(page);
3322 				if (err) {
3323 					ret = VM_FAULT_OOM;
3324 					goto out_page;
3325 				}
3326 
3327 				shadow = get_shadow_from_swap_cache(entry);
3328 				if (shadow)
3329 					workingset_refault(page, shadow);
3330 
3331 				lru_cache_add(page);
3332 				swap_readpage(page, true);
3333 			}
3334 		} else {
3335 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3336 						vmf);
3337 			swapcache = page;
3338 		}
3339 
3340 		if (!page) {
3341 			/*
3342 			 * Back out if somebody else faulted in this pte
3343 			 * while we released the pte lock.
3344 			 */
3345 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3346 					vmf->address, &vmf->ptl);
3347 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3348 				ret = VM_FAULT_OOM;
3349 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3350 			goto unlock;
3351 		}
3352 
3353 		/* Had to read the page from swap area: Major fault */
3354 		ret = VM_FAULT_MAJOR;
3355 		count_vm_event(PGMAJFAULT);
3356 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3357 	} else if (PageHWPoison(page)) {
3358 		/*
3359 		 * hwpoisoned dirty swapcache pages are kept for killing
3360 		 * owner processes (which may be unknown at hwpoison time)
3361 		 */
3362 		ret = VM_FAULT_HWPOISON;
3363 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3364 		goto out_release;
3365 	}
3366 
3367 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3368 
3369 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3370 	if (!locked) {
3371 		ret |= VM_FAULT_RETRY;
3372 		goto out_release;
3373 	}
3374 
3375 	/*
3376 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3377 	 * release the swapcache from under us.  The page pin, and pte_same
3378 	 * test below, are not enough to exclude that.  Even if it is still
3379 	 * swapcache, we need to check that the page's swap has not changed.
3380 	 */
3381 	if (unlikely((!PageSwapCache(page) ||
3382 			page_private(page) != entry.val)) && swapcache)
3383 		goto out_page;
3384 
3385 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3386 	if (unlikely(!page)) {
3387 		ret = VM_FAULT_OOM;
3388 		page = swapcache;
3389 		goto out_page;
3390 	}
3391 
3392 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3393 
3394 	/*
3395 	 * Back out if somebody else already faulted in this pte.
3396 	 */
3397 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3398 			&vmf->ptl);
3399 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3400 		goto out_nomap;
3401 
3402 	if (unlikely(!PageUptodate(page))) {
3403 		ret = VM_FAULT_SIGBUS;
3404 		goto out_nomap;
3405 	}
3406 
3407 	/*
3408 	 * The page isn't present yet, go ahead with the fault.
3409 	 *
3410 	 * Be careful about the sequence of operations here.
3411 	 * To get its accounting right, reuse_swap_page() must be called
3412 	 * while the page is counted on swap but not yet in mapcount i.e.
3413 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3414 	 * must be called after the swap_free(), or it will never succeed.
3415 	 */
3416 
3417 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3418 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3419 	pte = mk_pte(page, vma->vm_page_prot);
3420 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3421 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3422 		vmf->flags &= ~FAULT_FLAG_WRITE;
3423 		ret |= VM_FAULT_WRITE;
3424 		exclusive = RMAP_EXCLUSIVE;
3425 	}
3426 	flush_icache_page(vma, page);
3427 	if (pte_swp_soft_dirty(vmf->orig_pte))
3428 		pte = pte_mksoft_dirty(pte);
3429 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3430 		pte = pte_mkuffd_wp(pte);
3431 		pte = pte_wrprotect(pte);
3432 	}
3433 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3434 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3435 	vmf->orig_pte = pte;
3436 
3437 	/* ksm created a completely new copy */
3438 	if (unlikely(page != swapcache && swapcache)) {
3439 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3440 		lru_cache_add_inactive_or_unevictable(page, vma);
3441 	} else {
3442 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3443 	}
3444 
3445 	swap_free(entry);
3446 	if (mem_cgroup_swap_full(page) ||
3447 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3448 		try_to_free_swap(page);
3449 	unlock_page(page);
3450 	if (page != swapcache && swapcache) {
3451 		/*
3452 		 * Hold the lock to avoid the swap entry to be reused
3453 		 * until we take the PT lock for the pte_same() check
3454 		 * (to avoid false positives from pte_same). For
3455 		 * further safety release the lock after the swap_free
3456 		 * so that the swap count won't change under a
3457 		 * parallel locked swapcache.
3458 		 */
3459 		unlock_page(swapcache);
3460 		put_page(swapcache);
3461 	}
3462 
3463 	if (vmf->flags & FAULT_FLAG_WRITE) {
3464 		ret |= do_wp_page(vmf);
3465 		if (ret & VM_FAULT_ERROR)
3466 			ret &= VM_FAULT_ERROR;
3467 		goto out;
3468 	}
3469 
3470 	/* No need to invalidate - it was non-present before */
3471 	update_mmu_cache(vma, vmf->address, vmf->pte);
3472 unlock:
3473 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3474 out:
3475 	return ret;
3476 out_nomap:
3477 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3478 out_page:
3479 	unlock_page(page);
3480 out_release:
3481 	put_page(page);
3482 	if (page != swapcache && swapcache) {
3483 		unlock_page(swapcache);
3484 		put_page(swapcache);
3485 	}
3486 	return ret;
3487 }
3488 
3489 /*
3490  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3491  * but allow concurrent faults), and pte mapped but not yet locked.
3492  * We return with mmap_lock still held, but pte unmapped and unlocked.
3493  */
3494 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3495 {
3496 	struct vm_area_struct *vma = vmf->vma;
3497 	struct page *page;
3498 	vm_fault_t ret = 0;
3499 	pte_t entry;
3500 
3501 	/* File mapping without ->vm_ops ? */
3502 	if (vma->vm_flags & VM_SHARED)
3503 		return VM_FAULT_SIGBUS;
3504 
3505 	/*
3506 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3507 	 * pte_offset_map() on pmds where a huge pmd might be created
3508 	 * from a different thread.
3509 	 *
3510 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3511 	 * parallel threads are excluded by other means.
3512 	 *
3513 	 * Here we only have mmap_read_lock(mm).
3514 	 */
3515 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3516 		return VM_FAULT_OOM;
3517 
3518 	/* See comment in handle_pte_fault() */
3519 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3520 		return 0;
3521 
3522 	/* Use the zero-page for reads */
3523 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3524 			!mm_forbids_zeropage(vma->vm_mm)) {
3525 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3526 						vma->vm_page_prot));
3527 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3528 				vmf->address, &vmf->ptl);
3529 		if (!pte_none(*vmf->pte)) {
3530 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3531 			goto unlock;
3532 		}
3533 		ret = check_stable_address_space(vma->vm_mm);
3534 		if (ret)
3535 			goto unlock;
3536 		/* Deliver the page fault to userland, check inside PT lock */
3537 		if (userfaultfd_missing(vma)) {
3538 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3539 			return handle_userfault(vmf, VM_UFFD_MISSING);
3540 		}
3541 		goto setpte;
3542 	}
3543 
3544 	/* Allocate our own private page. */
3545 	if (unlikely(anon_vma_prepare(vma)))
3546 		goto oom;
3547 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3548 	if (!page)
3549 		goto oom;
3550 
3551 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3552 		goto oom_free_page;
3553 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3554 
3555 	/*
3556 	 * The memory barrier inside __SetPageUptodate makes sure that
3557 	 * preceding stores to the page contents become visible before
3558 	 * the set_pte_at() write.
3559 	 */
3560 	__SetPageUptodate(page);
3561 
3562 	entry = mk_pte(page, vma->vm_page_prot);
3563 	entry = pte_sw_mkyoung(entry);
3564 	if (vma->vm_flags & VM_WRITE)
3565 		entry = pte_mkwrite(pte_mkdirty(entry));
3566 
3567 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3568 			&vmf->ptl);
3569 	if (!pte_none(*vmf->pte)) {
3570 		update_mmu_cache(vma, vmf->address, vmf->pte);
3571 		goto release;
3572 	}
3573 
3574 	ret = check_stable_address_space(vma->vm_mm);
3575 	if (ret)
3576 		goto release;
3577 
3578 	/* Deliver the page fault to userland, check inside PT lock */
3579 	if (userfaultfd_missing(vma)) {
3580 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3581 		put_page(page);
3582 		return handle_userfault(vmf, VM_UFFD_MISSING);
3583 	}
3584 
3585 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3586 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3587 	lru_cache_add_inactive_or_unevictable(page, vma);
3588 setpte:
3589 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3590 
3591 	/* No need to invalidate - it was non-present before */
3592 	update_mmu_cache(vma, vmf->address, vmf->pte);
3593 unlock:
3594 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3595 	return ret;
3596 release:
3597 	put_page(page);
3598 	goto unlock;
3599 oom_free_page:
3600 	put_page(page);
3601 oom:
3602 	return VM_FAULT_OOM;
3603 }
3604 
3605 /*
3606  * The mmap_lock must have been held on entry, and may have been
3607  * released depending on flags and vma->vm_ops->fault() return value.
3608  * See filemap_fault() and __lock_page_retry().
3609  */
3610 static vm_fault_t __do_fault(struct vm_fault *vmf)
3611 {
3612 	struct vm_area_struct *vma = vmf->vma;
3613 	vm_fault_t ret;
3614 
3615 	/*
3616 	 * Preallocate pte before we take page_lock because this might lead to
3617 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3618 	 *				lock_page(A)
3619 	 *				SetPageWriteback(A)
3620 	 *				unlock_page(A)
3621 	 * lock_page(B)
3622 	 *				lock_page(B)
3623 	 * pte_alloc_one
3624 	 *   shrink_page_list
3625 	 *     wait_on_page_writeback(A)
3626 	 *				SetPageWriteback(B)
3627 	 *				unlock_page(B)
3628 	 *				# flush A, B to clear the writeback
3629 	 */
3630 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3631 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3632 		if (!vmf->prealloc_pte)
3633 			return VM_FAULT_OOM;
3634 		smp_wmb(); /* See comment in __pte_alloc() */
3635 	}
3636 
3637 	ret = vma->vm_ops->fault(vmf);
3638 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3639 			    VM_FAULT_DONE_COW)))
3640 		return ret;
3641 
3642 	if (unlikely(PageHWPoison(vmf->page))) {
3643 		if (ret & VM_FAULT_LOCKED)
3644 			unlock_page(vmf->page);
3645 		put_page(vmf->page);
3646 		vmf->page = NULL;
3647 		return VM_FAULT_HWPOISON;
3648 	}
3649 
3650 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3651 		lock_page(vmf->page);
3652 	else
3653 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3654 
3655 	return ret;
3656 }
3657 
3658 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3659 static void deposit_prealloc_pte(struct vm_fault *vmf)
3660 {
3661 	struct vm_area_struct *vma = vmf->vma;
3662 
3663 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3664 	/*
3665 	 * We are going to consume the prealloc table,
3666 	 * count that as nr_ptes.
3667 	 */
3668 	mm_inc_nr_ptes(vma->vm_mm);
3669 	vmf->prealloc_pte = NULL;
3670 }
3671 
3672 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3673 {
3674 	struct vm_area_struct *vma = vmf->vma;
3675 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3676 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3677 	pmd_t entry;
3678 	int i;
3679 	vm_fault_t ret = VM_FAULT_FALLBACK;
3680 
3681 	if (!transhuge_vma_suitable(vma, haddr))
3682 		return ret;
3683 
3684 	page = compound_head(page);
3685 	if (compound_order(page) != HPAGE_PMD_ORDER)
3686 		return ret;
3687 
3688 	/*
3689 	 * Archs like ppc64 need additonal space to store information
3690 	 * related to pte entry. Use the preallocated table for that.
3691 	 */
3692 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3693 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3694 		if (!vmf->prealloc_pte)
3695 			return VM_FAULT_OOM;
3696 		smp_wmb(); /* See comment in __pte_alloc() */
3697 	}
3698 
3699 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3700 	if (unlikely(!pmd_none(*vmf->pmd)))
3701 		goto out;
3702 
3703 	for (i = 0; i < HPAGE_PMD_NR; i++)
3704 		flush_icache_page(vma, page + i);
3705 
3706 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3707 	if (write)
3708 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3709 
3710 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3711 	page_add_file_rmap(page, true);
3712 	/*
3713 	 * deposit and withdraw with pmd lock held
3714 	 */
3715 	if (arch_needs_pgtable_deposit())
3716 		deposit_prealloc_pte(vmf);
3717 
3718 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3719 
3720 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3721 
3722 	/* fault is handled */
3723 	ret = 0;
3724 	count_vm_event(THP_FILE_MAPPED);
3725 out:
3726 	spin_unlock(vmf->ptl);
3727 	return ret;
3728 }
3729 #else
3730 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3731 {
3732 	return VM_FAULT_FALLBACK;
3733 }
3734 #endif
3735 
3736 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3737 {
3738 	struct vm_area_struct *vma = vmf->vma;
3739 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3740 	bool prefault = vmf->address != addr;
3741 	pte_t entry;
3742 
3743 	flush_icache_page(vma, page);
3744 	entry = mk_pte(page, vma->vm_page_prot);
3745 
3746 	if (prefault && arch_wants_old_prefaulted_pte())
3747 		entry = pte_mkold(entry);
3748 	else
3749 		entry = pte_sw_mkyoung(entry);
3750 
3751 	if (write)
3752 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3753 	/* copy-on-write page */
3754 	if (write && !(vma->vm_flags & VM_SHARED)) {
3755 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3756 		page_add_new_anon_rmap(page, vma, addr, false);
3757 		lru_cache_add_inactive_or_unevictable(page, vma);
3758 	} else {
3759 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3760 		page_add_file_rmap(page, false);
3761 	}
3762 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3763 }
3764 
3765 /**
3766  * finish_fault - finish page fault once we have prepared the page to fault
3767  *
3768  * @vmf: structure describing the fault
3769  *
3770  * This function handles all that is needed to finish a page fault once the
3771  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3772  * given page, adds reverse page mapping, handles memcg charges and LRU
3773  * addition.
3774  *
3775  * The function expects the page to be locked and on success it consumes a
3776  * reference of a page being mapped (for the PTE which maps it).
3777  *
3778  * Return: %0 on success, %VM_FAULT_ code in case of error.
3779  */
3780 vm_fault_t finish_fault(struct vm_fault *vmf)
3781 {
3782 	struct vm_area_struct *vma = vmf->vma;
3783 	struct page *page;
3784 	vm_fault_t ret;
3785 
3786 	/* Did we COW the page? */
3787 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3788 		page = vmf->cow_page;
3789 	else
3790 		page = vmf->page;
3791 
3792 	/*
3793 	 * check even for read faults because we might have lost our CoWed
3794 	 * page
3795 	 */
3796 	if (!(vma->vm_flags & VM_SHARED)) {
3797 		ret = check_stable_address_space(vma->vm_mm);
3798 		if (ret)
3799 			return ret;
3800 	}
3801 
3802 	if (pmd_none(*vmf->pmd)) {
3803 		if (PageTransCompound(page)) {
3804 			ret = do_set_pmd(vmf, page);
3805 			if (ret != VM_FAULT_FALLBACK)
3806 				return ret;
3807 		}
3808 
3809 		if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3810 			return VM_FAULT_OOM;
3811 	}
3812 
3813 	/* See comment in handle_pte_fault() */
3814 	if (pmd_devmap_trans_unstable(vmf->pmd))
3815 		return 0;
3816 
3817 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3818 				      vmf->address, &vmf->ptl);
3819 	ret = 0;
3820 	/* Re-check under ptl */
3821 	if (likely(pte_none(*vmf->pte)))
3822 		do_set_pte(vmf, page, vmf->address);
3823 	else
3824 		ret = VM_FAULT_NOPAGE;
3825 
3826 	update_mmu_tlb(vma, vmf->address, vmf->pte);
3827 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3828 	return ret;
3829 }
3830 
3831 static unsigned long fault_around_bytes __read_mostly =
3832 	rounddown_pow_of_two(65536);
3833 
3834 #ifdef CONFIG_DEBUG_FS
3835 static int fault_around_bytes_get(void *data, u64 *val)
3836 {
3837 	*val = fault_around_bytes;
3838 	return 0;
3839 }
3840 
3841 /*
3842  * fault_around_bytes must be rounded down to the nearest page order as it's
3843  * what do_fault_around() expects to see.
3844  */
3845 static int fault_around_bytes_set(void *data, u64 val)
3846 {
3847 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3848 		return -EINVAL;
3849 	if (val > PAGE_SIZE)
3850 		fault_around_bytes = rounddown_pow_of_two(val);
3851 	else
3852 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3853 	return 0;
3854 }
3855 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3856 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3857 
3858 static int __init fault_around_debugfs(void)
3859 {
3860 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3861 				   &fault_around_bytes_fops);
3862 	return 0;
3863 }
3864 late_initcall(fault_around_debugfs);
3865 #endif
3866 
3867 /*
3868  * do_fault_around() tries to map few pages around the fault address. The hope
3869  * is that the pages will be needed soon and this will lower the number of
3870  * faults to handle.
3871  *
3872  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3873  * not ready to be mapped: not up-to-date, locked, etc.
3874  *
3875  * This function is called with the page table lock taken. In the split ptlock
3876  * case the page table lock only protects only those entries which belong to
3877  * the page table corresponding to the fault address.
3878  *
3879  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3880  * only once.
3881  *
3882  * fault_around_bytes defines how many bytes we'll try to map.
3883  * do_fault_around() expects it to be set to a power of two less than or equal
3884  * to PTRS_PER_PTE.
3885  *
3886  * The virtual address of the area that we map is naturally aligned to
3887  * fault_around_bytes rounded down to the machine page size
3888  * (and therefore to page order).  This way it's easier to guarantee
3889  * that we don't cross page table boundaries.
3890  */
3891 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3892 {
3893 	unsigned long address = vmf->address, nr_pages, mask;
3894 	pgoff_t start_pgoff = vmf->pgoff;
3895 	pgoff_t end_pgoff;
3896 	int off;
3897 
3898 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3899 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3900 
3901 	address = max(address & mask, vmf->vma->vm_start);
3902 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3903 	start_pgoff -= off;
3904 
3905 	/*
3906 	 *  end_pgoff is either the end of the page table, the end of
3907 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3908 	 */
3909 	end_pgoff = start_pgoff -
3910 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3911 		PTRS_PER_PTE - 1;
3912 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3913 			start_pgoff + nr_pages - 1);
3914 
3915 	if (pmd_none(*vmf->pmd)) {
3916 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3917 		if (!vmf->prealloc_pte)
3918 			return VM_FAULT_OOM;
3919 		smp_wmb(); /* See comment in __pte_alloc() */
3920 	}
3921 
3922 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3923 }
3924 
3925 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3926 {
3927 	struct vm_area_struct *vma = vmf->vma;
3928 	vm_fault_t ret = 0;
3929 
3930 	/*
3931 	 * Let's call ->map_pages() first and use ->fault() as fallback
3932 	 * if page by the offset is not ready to be mapped (cold cache or
3933 	 * something).
3934 	 */
3935 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3936 		ret = do_fault_around(vmf);
3937 		if (ret)
3938 			return ret;
3939 	}
3940 
3941 	ret = __do_fault(vmf);
3942 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3943 		return ret;
3944 
3945 	ret |= finish_fault(vmf);
3946 	unlock_page(vmf->page);
3947 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3948 		put_page(vmf->page);
3949 	return ret;
3950 }
3951 
3952 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3953 {
3954 	struct vm_area_struct *vma = vmf->vma;
3955 	vm_fault_t ret;
3956 
3957 	if (unlikely(anon_vma_prepare(vma)))
3958 		return VM_FAULT_OOM;
3959 
3960 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3961 	if (!vmf->cow_page)
3962 		return VM_FAULT_OOM;
3963 
3964 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3965 		put_page(vmf->cow_page);
3966 		return VM_FAULT_OOM;
3967 	}
3968 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3969 
3970 	ret = __do_fault(vmf);
3971 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3972 		goto uncharge_out;
3973 	if (ret & VM_FAULT_DONE_COW)
3974 		return ret;
3975 
3976 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3977 	__SetPageUptodate(vmf->cow_page);
3978 
3979 	ret |= finish_fault(vmf);
3980 	unlock_page(vmf->page);
3981 	put_page(vmf->page);
3982 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3983 		goto uncharge_out;
3984 	return ret;
3985 uncharge_out:
3986 	put_page(vmf->cow_page);
3987 	return ret;
3988 }
3989 
3990 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3991 {
3992 	struct vm_area_struct *vma = vmf->vma;
3993 	vm_fault_t ret, tmp;
3994 
3995 	ret = __do_fault(vmf);
3996 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3997 		return ret;
3998 
3999 	/*
4000 	 * Check if the backing address space wants to know that the page is
4001 	 * about to become writable
4002 	 */
4003 	if (vma->vm_ops->page_mkwrite) {
4004 		unlock_page(vmf->page);
4005 		tmp = do_page_mkwrite(vmf);
4006 		if (unlikely(!tmp ||
4007 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4008 			put_page(vmf->page);
4009 			return tmp;
4010 		}
4011 	}
4012 
4013 	ret |= finish_fault(vmf);
4014 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4015 					VM_FAULT_RETRY))) {
4016 		unlock_page(vmf->page);
4017 		put_page(vmf->page);
4018 		return ret;
4019 	}
4020 
4021 	ret |= fault_dirty_shared_page(vmf);
4022 	return ret;
4023 }
4024 
4025 /*
4026  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4027  * but allow concurrent faults).
4028  * The mmap_lock may have been released depending on flags and our
4029  * return value.  See filemap_fault() and __lock_page_or_retry().
4030  * If mmap_lock is released, vma may become invalid (for example
4031  * by other thread calling munmap()).
4032  */
4033 static vm_fault_t do_fault(struct vm_fault *vmf)
4034 {
4035 	struct vm_area_struct *vma = vmf->vma;
4036 	struct mm_struct *vm_mm = vma->vm_mm;
4037 	vm_fault_t ret;
4038 
4039 	/*
4040 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4041 	 */
4042 	if (!vma->vm_ops->fault) {
4043 		/*
4044 		 * If we find a migration pmd entry or a none pmd entry, which
4045 		 * should never happen, return SIGBUS
4046 		 */
4047 		if (unlikely(!pmd_present(*vmf->pmd)))
4048 			ret = VM_FAULT_SIGBUS;
4049 		else {
4050 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4051 						       vmf->pmd,
4052 						       vmf->address,
4053 						       &vmf->ptl);
4054 			/*
4055 			 * Make sure this is not a temporary clearing of pte
4056 			 * by holding ptl and checking again. A R/M/W update
4057 			 * of pte involves: take ptl, clearing the pte so that
4058 			 * we don't have concurrent modification by hardware
4059 			 * followed by an update.
4060 			 */
4061 			if (unlikely(pte_none(*vmf->pte)))
4062 				ret = VM_FAULT_SIGBUS;
4063 			else
4064 				ret = VM_FAULT_NOPAGE;
4065 
4066 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4067 		}
4068 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4069 		ret = do_read_fault(vmf);
4070 	else if (!(vma->vm_flags & VM_SHARED))
4071 		ret = do_cow_fault(vmf);
4072 	else
4073 		ret = do_shared_fault(vmf);
4074 
4075 	/* preallocated pagetable is unused: free it */
4076 	if (vmf->prealloc_pte) {
4077 		pte_free(vm_mm, vmf->prealloc_pte);
4078 		vmf->prealloc_pte = NULL;
4079 	}
4080 	return ret;
4081 }
4082 
4083 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4084 				unsigned long addr, int page_nid,
4085 				int *flags)
4086 {
4087 	get_page(page);
4088 
4089 	count_vm_numa_event(NUMA_HINT_FAULTS);
4090 	if (page_nid == numa_node_id()) {
4091 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4092 		*flags |= TNF_FAULT_LOCAL;
4093 	}
4094 
4095 	return mpol_misplaced(page, vma, addr);
4096 }
4097 
4098 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4099 {
4100 	struct vm_area_struct *vma = vmf->vma;
4101 	struct page *page = NULL;
4102 	int page_nid = NUMA_NO_NODE;
4103 	int last_cpupid;
4104 	int target_nid;
4105 	bool migrated = false;
4106 	pte_t pte, old_pte;
4107 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4108 	int flags = 0;
4109 
4110 	/*
4111 	 * The "pte" at this point cannot be used safely without
4112 	 * validation through pte_unmap_same(). It's of NUMA type but
4113 	 * the pfn may be screwed if the read is non atomic.
4114 	 */
4115 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4116 	spin_lock(vmf->ptl);
4117 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4118 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4119 		goto out;
4120 	}
4121 
4122 	/*
4123 	 * Make it present again, Depending on how arch implementes non
4124 	 * accessible ptes, some can allow access by kernel mode.
4125 	 */
4126 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4127 	pte = pte_modify(old_pte, vma->vm_page_prot);
4128 	pte = pte_mkyoung(pte);
4129 	if (was_writable)
4130 		pte = pte_mkwrite(pte);
4131 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4132 	update_mmu_cache(vma, vmf->address, vmf->pte);
4133 
4134 	page = vm_normal_page(vma, vmf->address, pte);
4135 	if (!page) {
4136 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4137 		return 0;
4138 	}
4139 
4140 	/* TODO: handle PTE-mapped THP */
4141 	if (PageCompound(page)) {
4142 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4143 		return 0;
4144 	}
4145 
4146 	/*
4147 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4148 	 * much anyway since they can be in shared cache state. This misses
4149 	 * the case where a mapping is writable but the process never writes
4150 	 * to it but pte_write gets cleared during protection updates and
4151 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4152 	 * background writeback, dirty balancing and application behaviour.
4153 	 */
4154 	if (!pte_write(pte))
4155 		flags |= TNF_NO_GROUP;
4156 
4157 	/*
4158 	 * Flag if the page is shared between multiple address spaces. This
4159 	 * is later used when determining whether to group tasks together
4160 	 */
4161 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4162 		flags |= TNF_SHARED;
4163 
4164 	last_cpupid = page_cpupid_last(page);
4165 	page_nid = page_to_nid(page);
4166 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4167 			&flags);
4168 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4169 	if (target_nid == NUMA_NO_NODE) {
4170 		put_page(page);
4171 		goto out;
4172 	}
4173 
4174 	/* Migrate to the requested node */
4175 	migrated = migrate_misplaced_page(page, vma, target_nid);
4176 	if (migrated) {
4177 		page_nid = target_nid;
4178 		flags |= TNF_MIGRATED;
4179 	} else
4180 		flags |= TNF_MIGRATE_FAIL;
4181 
4182 out:
4183 	if (page_nid != NUMA_NO_NODE)
4184 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4185 	return 0;
4186 }
4187 
4188 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4189 {
4190 	if (vma_is_anonymous(vmf->vma))
4191 		return do_huge_pmd_anonymous_page(vmf);
4192 	if (vmf->vma->vm_ops->huge_fault)
4193 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4194 	return VM_FAULT_FALLBACK;
4195 }
4196 
4197 /* `inline' is required to avoid gcc 4.1.2 build error */
4198 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4199 {
4200 	if (vma_is_anonymous(vmf->vma)) {
4201 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4202 			return handle_userfault(vmf, VM_UFFD_WP);
4203 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4204 	}
4205 	if (vmf->vma->vm_ops->huge_fault) {
4206 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4207 
4208 		if (!(ret & VM_FAULT_FALLBACK))
4209 			return ret;
4210 	}
4211 
4212 	/* COW or write-notify handled on pte level: split pmd. */
4213 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4214 
4215 	return VM_FAULT_FALLBACK;
4216 }
4217 
4218 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4219 {
4220 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4221 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4222 	/* No support for anonymous transparent PUD pages yet */
4223 	if (vma_is_anonymous(vmf->vma))
4224 		goto split;
4225 	if (vmf->vma->vm_ops->huge_fault) {
4226 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4227 
4228 		if (!(ret & VM_FAULT_FALLBACK))
4229 			return ret;
4230 	}
4231 split:
4232 	/* COW or write-notify not handled on PUD level: split pud.*/
4233 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4234 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4235 	return VM_FAULT_FALLBACK;
4236 }
4237 
4238 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4239 {
4240 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4241 	/* No support for anonymous transparent PUD pages yet */
4242 	if (vma_is_anonymous(vmf->vma))
4243 		return VM_FAULT_FALLBACK;
4244 	if (vmf->vma->vm_ops->huge_fault)
4245 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4246 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4247 	return VM_FAULT_FALLBACK;
4248 }
4249 
4250 /*
4251  * These routines also need to handle stuff like marking pages dirty
4252  * and/or accessed for architectures that don't do it in hardware (most
4253  * RISC architectures).  The early dirtying is also good on the i386.
4254  *
4255  * There is also a hook called "update_mmu_cache()" that architectures
4256  * with external mmu caches can use to update those (ie the Sparc or
4257  * PowerPC hashed page tables that act as extended TLBs).
4258  *
4259  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4260  * concurrent faults).
4261  *
4262  * The mmap_lock may have been released depending on flags and our return value.
4263  * See filemap_fault() and __lock_page_or_retry().
4264  */
4265 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4266 {
4267 	pte_t entry;
4268 
4269 	if (unlikely(pmd_none(*vmf->pmd))) {
4270 		/*
4271 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4272 		 * want to allocate huge page, and if we expose page table
4273 		 * for an instant, it will be difficult to retract from
4274 		 * concurrent faults and from rmap lookups.
4275 		 */
4276 		vmf->pte = NULL;
4277 	} else {
4278 		/*
4279 		 * If a huge pmd materialized under us just retry later.  Use
4280 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4281 		 * of pmd_trans_huge() to ensure the pmd didn't become
4282 		 * pmd_trans_huge under us and then back to pmd_none, as a
4283 		 * result of MADV_DONTNEED running immediately after a huge pmd
4284 		 * fault in a different thread of this mm, in turn leading to a
4285 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4286 		 * that it is a regular pmd that we can walk with
4287 		 * pte_offset_map() and we can do that through an atomic read
4288 		 * in C, which is what pmd_trans_unstable() provides.
4289 		 */
4290 		if (pmd_devmap_trans_unstable(vmf->pmd))
4291 			return 0;
4292 		/*
4293 		 * A regular pmd is established and it can't morph into a huge
4294 		 * pmd from under us anymore at this point because we hold the
4295 		 * mmap_lock read mode and khugepaged takes it in write mode.
4296 		 * So now it's safe to run pte_offset_map().
4297 		 */
4298 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4299 		vmf->orig_pte = *vmf->pte;
4300 
4301 		/*
4302 		 * some architectures can have larger ptes than wordsize,
4303 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4304 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4305 		 * accesses.  The code below just needs a consistent view
4306 		 * for the ifs and we later double check anyway with the
4307 		 * ptl lock held. So here a barrier will do.
4308 		 */
4309 		barrier();
4310 		if (pte_none(vmf->orig_pte)) {
4311 			pte_unmap(vmf->pte);
4312 			vmf->pte = NULL;
4313 		}
4314 	}
4315 
4316 	if (!vmf->pte) {
4317 		if (vma_is_anonymous(vmf->vma))
4318 			return do_anonymous_page(vmf);
4319 		else
4320 			return do_fault(vmf);
4321 	}
4322 
4323 	if (!pte_present(vmf->orig_pte))
4324 		return do_swap_page(vmf);
4325 
4326 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4327 		return do_numa_page(vmf);
4328 
4329 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4330 	spin_lock(vmf->ptl);
4331 	entry = vmf->orig_pte;
4332 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4333 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4334 		goto unlock;
4335 	}
4336 	if (vmf->flags & FAULT_FLAG_WRITE) {
4337 		if (!pte_write(entry))
4338 			return do_wp_page(vmf);
4339 		entry = pte_mkdirty(entry);
4340 	}
4341 	entry = pte_mkyoung(entry);
4342 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4343 				vmf->flags & FAULT_FLAG_WRITE)) {
4344 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4345 	} else {
4346 		/* Skip spurious TLB flush for retried page fault */
4347 		if (vmf->flags & FAULT_FLAG_TRIED)
4348 			goto unlock;
4349 		/*
4350 		 * This is needed only for protection faults but the arch code
4351 		 * is not yet telling us if this is a protection fault or not.
4352 		 * This still avoids useless tlb flushes for .text page faults
4353 		 * with threads.
4354 		 */
4355 		if (vmf->flags & FAULT_FLAG_WRITE)
4356 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4357 	}
4358 unlock:
4359 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4360 	return 0;
4361 }
4362 
4363 /*
4364  * By the time we get here, we already hold the mm semaphore
4365  *
4366  * The mmap_lock may have been released depending on flags and our
4367  * return value.  See filemap_fault() and __lock_page_or_retry().
4368  */
4369 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4370 		unsigned long address, unsigned int flags)
4371 {
4372 	struct vm_fault vmf = {
4373 		.vma = vma,
4374 		.address = address & PAGE_MASK,
4375 		.flags = flags,
4376 		.pgoff = linear_page_index(vma, address),
4377 		.gfp_mask = __get_fault_gfp_mask(vma),
4378 	};
4379 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4380 	struct mm_struct *mm = vma->vm_mm;
4381 	pgd_t *pgd;
4382 	p4d_t *p4d;
4383 	vm_fault_t ret;
4384 
4385 	pgd = pgd_offset(mm, address);
4386 	p4d = p4d_alloc(mm, pgd, address);
4387 	if (!p4d)
4388 		return VM_FAULT_OOM;
4389 
4390 	vmf.pud = pud_alloc(mm, p4d, address);
4391 	if (!vmf.pud)
4392 		return VM_FAULT_OOM;
4393 retry_pud:
4394 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4395 		ret = create_huge_pud(&vmf);
4396 		if (!(ret & VM_FAULT_FALLBACK))
4397 			return ret;
4398 	} else {
4399 		pud_t orig_pud = *vmf.pud;
4400 
4401 		barrier();
4402 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4403 
4404 			/* NUMA case for anonymous PUDs would go here */
4405 
4406 			if (dirty && !pud_write(orig_pud)) {
4407 				ret = wp_huge_pud(&vmf, orig_pud);
4408 				if (!(ret & VM_FAULT_FALLBACK))
4409 					return ret;
4410 			} else {
4411 				huge_pud_set_accessed(&vmf, orig_pud);
4412 				return 0;
4413 			}
4414 		}
4415 	}
4416 
4417 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4418 	if (!vmf.pmd)
4419 		return VM_FAULT_OOM;
4420 
4421 	/* Huge pud page fault raced with pmd_alloc? */
4422 	if (pud_trans_unstable(vmf.pud))
4423 		goto retry_pud;
4424 
4425 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4426 		ret = create_huge_pmd(&vmf);
4427 		if (!(ret & VM_FAULT_FALLBACK))
4428 			return ret;
4429 	} else {
4430 		pmd_t orig_pmd = *vmf.pmd;
4431 
4432 		barrier();
4433 		if (unlikely(is_swap_pmd(orig_pmd))) {
4434 			VM_BUG_ON(thp_migration_supported() &&
4435 					  !is_pmd_migration_entry(orig_pmd));
4436 			if (is_pmd_migration_entry(orig_pmd))
4437 				pmd_migration_entry_wait(mm, vmf.pmd);
4438 			return 0;
4439 		}
4440 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4441 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4442 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4443 
4444 			if (dirty && !pmd_write(orig_pmd)) {
4445 				ret = wp_huge_pmd(&vmf, orig_pmd);
4446 				if (!(ret & VM_FAULT_FALLBACK))
4447 					return ret;
4448 			} else {
4449 				huge_pmd_set_accessed(&vmf, orig_pmd);
4450 				return 0;
4451 			}
4452 		}
4453 	}
4454 
4455 	return handle_pte_fault(&vmf);
4456 }
4457 
4458 /**
4459  * mm_account_fault - Do page fault accountings
4460  *
4461  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4462  *        of perf event counters, but we'll still do the per-task accounting to
4463  *        the task who triggered this page fault.
4464  * @address: the faulted address.
4465  * @flags: the fault flags.
4466  * @ret: the fault retcode.
4467  *
4468  * This will take care of most of the page fault accountings.  Meanwhile, it
4469  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4470  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4471  * still be in per-arch page fault handlers at the entry of page fault.
4472  */
4473 static inline void mm_account_fault(struct pt_regs *regs,
4474 				    unsigned long address, unsigned int flags,
4475 				    vm_fault_t ret)
4476 {
4477 	bool major;
4478 
4479 	/*
4480 	 * We don't do accounting for some specific faults:
4481 	 *
4482 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4483 	 *   includes arch_vma_access_permitted() failing before reaching here.
4484 	 *   So this is not a "this many hardware page faults" counter.  We
4485 	 *   should use the hw profiling for that.
4486 	 *
4487 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4488 	 *   once they're completed.
4489 	 */
4490 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4491 		return;
4492 
4493 	/*
4494 	 * We define the fault as a major fault when the final successful fault
4495 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4496 	 * handle it immediately previously).
4497 	 */
4498 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4499 
4500 	if (major)
4501 		current->maj_flt++;
4502 	else
4503 		current->min_flt++;
4504 
4505 	/*
4506 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4507 	 * accounting for the per thread fault counters who triggered the
4508 	 * fault, and we skip the perf event updates.
4509 	 */
4510 	if (!regs)
4511 		return;
4512 
4513 	if (major)
4514 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4515 	else
4516 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4517 }
4518 
4519 /*
4520  * By the time we get here, we already hold the mm semaphore
4521  *
4522  * The mmap_lock may have been released depending on flags and our
4523  * return value.  See filemap_fault() and __lock_page_or_retry().
4524  */
4525 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4526 			   unsigned int flags, struct pt_regs *regs)
4527 {
4528 	vm_fault_t ret;
4529 
4530 	__set_current_state(TASK_RUNNING);
4531 
4532 	count_vm_event(PGFAULT);
4533 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4534 
4535 	/* do counter updates before entering really critical section. */
4536 	check_sync_rss_stat(current);
4537 
4538 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4539 					    flags & FAULT_FLAG_INSTRUCTION,
4540 					    flags & FAULT_FLAG_REMOTE))
4541 		return VM_FAULT_SIGSEGV;
4542 
4543 	/*
4544 	 * Enable the memcg OOM handling for faults triggered in user
4545 	 * space.  Kernel faults are handled more gracefully.
4546 	 */
4547 	if (flags & FAULT_FLAG_USER)
4548 		mem_cgroup_enter_user_fault();
4549 
4550 	if (unlikely(is_vm_hugetlb_page(vma)))
4551 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4552 	else
4553 		ret = __handle_mm_fault(vma, address, flags);
4554 
4555 	if (flags & FAULT_FLAG_USER) {
4556 		mem_cgroup_exit_user_fault();
4557 		/*
4558 		 * The task may have entered a memcg OOM situation but
4559 		 * if the allocation error was handled gracefully (no
4560 		 * VM_FAULT_OOM), there is no need to kill anything.
4561 		 * Just clean up the OOM state peacefully.
4562 		 */
4563 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4564 			mem_cgroup_oom_synchronize(false);
4565 	}
4566 
4567 	mm_account_fault(regs, address, flags, ret);
4568 
4569 	return ret;
4570 }
4571 EXPORT_SYMBOL_GPL(handle_mm_fault);
4572 
4573 #ifndef __PAGETABLE_P4D_FOLDED
4574 /*
4575  * Allocate p4d page table.
4576  * We've already handled the fast-path in-line.
4577  */
4578 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4579 {
4580 	p4d_t *new = p4d_alloc_one(mm, address);
4581 	if (!new)
4582 		return -ENOMEM;
4583 
4584 	smp_wmb(); /* See comment in __pte_alloc */
4585 
4586 	spin_lock(&mm->page_table_lock);
4587 	if (pgd_present(*pgd))		/* Another has populated it */
4588 		p4d_free(mm, new);
4589 	else
4590 		pgd_populate(mm, pgd, new);
4591 	spin_unlock(&mm->page_table_lock);
4592 	return 0;
4593 }
4594 #endif /* __PAGETABLE_P4D_FOLDED */
4595 
4596 #ifndef __PAGETABLE_PUD_FOLDED
4597 /*
4598  * Allocate page upper directory.
4599  * We've already handled the fast-path in-line.
4600  */
4601 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4602 {
4603 	pud_t *new = pud_alloc_one(mm, address);
4604 	if (!new)
4605 		return -ENOMEM;
4606 
4607 	smp_wmb(); /* See comment in __pte_alloc */
4608 
4609 	spin_lock(&mm->page_table_lock);
4610 	if (!p4d_present(*p4d)) {
4611 		mm_inc_nr_puds(mm);
4612 		p4d_populate(mm, p4d, new);
4613 	} else	/* Another has populated it */
4614 		pud_free(mm, new);
4615 	spin_unlock(&mm->page_table_lock);
4616 	return 0;
4617 }
4618 #endif /* __PAGETABLE_PUD_FOLDED */
4619 
4620 #ifndef __PAGETABLE_PMD_FOLDED
4621 /*
4622  * Allocate page middle directory.
4623  * We've already handled the fast-path in-line.
4624  */
4625 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4626 {
4627 	spinlock_t *ptl;
4628 	pmd_t *new = pmd_alloc_one(mm, address);
4629 	if (!new)
4630 		return -ENOMEM;
4631 
4632 	smp_wmb(); /* See comment in __pte_alloc */
4633 
4634 	ptl = pud_lock(mm, pud);
4635 	if (!pud_present(*pud)) {
4636 		mm_inc_nr_pmds(mm);
4637 		pud_populate(mm, pud, new);
4638 	} else	/* Another has populated it */
4639 		pmd_free(mm, new);
4640 	spin_unlock(ptl);
4641 	return 0;
4642 }
4643 #endif /* __PAGETABLE_PMD_FOLDED */
4644 
4645 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4646 			  struct mmu_notifier_range *range, pte_t **ptepp,
4647 			  pmd_t **pmdpp, spinlock_t **ptlp)
4648 {
4649 	pgd_t *pgd;
4650 	p4d_t *p4d;
4651 	pud_t *pud;
4652 	pmd_t *pmd;
4653 	pte_t *ptep;
4654 
4655 	pgd = pgd_offset(mm, address);
4656 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4657 		goto out;
4658 
4659 	p4d = p4d_offset(pgd, address);
4660 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4661 		goto out;
4662 
4663 	pud = pud_offset(p4d, address);
4664 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4665 		goto out;
4666 
4667 	pmd = pmd_offset(pud, address);
4668 	VM_BUG_ON(pmd_trans_huge(*pmd));
4669 
4670 	if (pmd_huge(*pmd)) {
4671 		if (!pmdpp)
4672 			goto out;
4673 
4674 		if (range) {
4675 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4676 						NULL, mm, address & PMD_MASK,
4677 						(address & PMD_MASK) + PMD_SIZE);
4678 			mmu_notifier_invalidate_range_start(range);
4679 		}
4680 		*ptlp = pmd_lock(mm, pmd);
4681 		if (pmd_huge(*pmd)) {
4682 			*pmdpp = pmd;
4683 			return 0;
4684 		}
4685 		spin_unlock(*ptlp);
4686 		if (range)
4687 			mmu_notifier_invalidate_range_end(range);
4688 	}
4689 
4690 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4691 		goto out;
4692 
4693 	if (range) {
4694 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4695 					address & PAGE_MASK,
4696 					(address & PAGE_MASK) + PAGE_SIZE);
4697 		mmu_notifier_invalidate_range_start(range);
4698 	}
4699 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4700 	if (!pte_present(*ptep))
4701 		goto unlock;
4702 	*ptepp = ptep;
4703 	return 0;
4704 unlock:
4705 	pte_unmap_unlock(ptep, *ptlp);
4706 	if (range)
4707 		mmu_notifier_invalidate_range_end(range);
4708 out:
4709 	return -EINVAL;
4710 }
4711 
4712 /**
4713  * follow_pte - look up PTE at a user virtual address
4714  * @mm: the mm_struct of the target address space
4715  * @address: user virtual address
4716  * @ptepp: location to store found PTE
4717  * @ptlp: location to store the lock for the PTE
4718  *
4719  * On a successful return, the pointer to the PTE is stored in @ptepp;
4720  * the corresponding lock is taken and its location is stored in @ptlp.
4721  * The contents of the PTE are only stable until @ptlp is released;
4722  * any further use, if any, must be protected against invalidation
4723  * with MMU notifiers.
4724  *
4725  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4726  * should be taken for read.
4727  *
4728  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4729  * it is not a good general-purpose API.
4730  *
4731  * Return: zero on success, -ve otherwise.
4732  */
4733 int follow_pte(struct mm_struct *mm, unsigned long address,
4734 	       pte_t **ptepp, spinlock_t **ptlp)
4735 {
4736 	return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4737 }
4738 EXPORT_SYMBOL_GPL(follow_pte);
4739 
4740 /**
4741  * follow_pfn - look up PFN at a user virtual address
4742  * @vma: memory mapping
4743  * @address: user virtual address
4744  * @pfn: location to store found PFN
4745  *
4746  * Only IO mappings and raw PFN mappings are allowed.
4747  *
4748  * This function does not allow the caller to read the permissions
4749  * of the PTE.  Do not use it.
4750  *
4751  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4752  */
4753 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4754 	unsigned long *pfn)
4755 {
4756 	int ret = -EINVAL;
4757 	spinlock_t *ptl;
4758 	pte_t *ptep;
4759 
4760 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4761 		return ret;
4762 
4763 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4764 	if (ret)
4765 		return ret;
4766 	*pfn = pte_pfn(*ptep);
4767 	pte_unmap_unlock(ptep, ptl);
4768 	return 0;
4769 }
4770 EXPORT_SYMBOL(follow_pfn);
4771 
4772 #ifdef CONFIG_HAVE_IOREMAP_PROT
4773 int follow_phys(struct vm_area_struct *vma,
4774 		unsigned long address, unsigned int flags,
4775 		unsigned long *prot, resource_size_t *phys)
4776 {
4777 	int ret = -EINVAL;
4778 	pte_t *ptep, pte;
4779 	spinlock_t *ptl;
4780 
4781 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4782 		goto out;
4783 
4784 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4785 		goto out;
4786 	pte = *ptep;
4787 
4788 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4789 		goto unlock;
4790 
4791 	*prot = pgprot_val(pte_pgprot(pte));
4792 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4793 
4794 	ret = 0;
4795 unlock:
4796 	pte_unmap_unlock(ptep, ptl);
4797 out:
4798 	return ret;
4799 }
4800 
4801 /**
4802  * generic_access_phys - generic implementation for iomem mmap access
4803  * @vma: the vma to access
4804  * @addr: userspace addres, not relative offset within @vma
4805  * @buf: buffer to read/write
4806  * @len: length of transfer
4807  * @write: set to FOLL_WRITE when writing, otherwise reading
4808  *
4809  * This is a generic implementation for &vm_operations_struct.access for an
4810  * iomem mapping. This callback is used by access_process_vm() when the @vma is
4811  * not page based.
4812  */
4813 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4814 			void *buf, int len, int write)
4815 {
4816 	resource_size_t phys_addr;
4817 	unsigned long prot = 0;
4818 	void __iomem *maddr;
4819 	pte_t *ptep, pte;
4820 	spinlock_t *ptl;
4821 	int offset = offset_in_page(addr);
4822 	int ret = -EINVAL;
4823 
4824 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4825 		return -EINVAL;
4826 
4827 retry:
4828 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4829 		return -EINVAL;
4830 	pte = *ptep;
4831 	pte_unmap_unlock(ptep, ptl);
4832 
4833 	prot = pgprot_val(pte_pgprot(pte));
4834 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4835 
4836 	if ((write & FOLL_WRITE) && !pte_write(pte))
4837 		return -EINVAL;
4838 
4839 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4840 	if (!maddr)
4841 		return -ENOMEM;
4842 
4843 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4844 		goto out_unmap;
4845 
4846 	if (!pte_same(pte, *ptep)) {
4847 		pte_unmap_unlock(ptep, ptl);
4848 		iounmap(maddr);
4849 
4850 		goto retry;
4851 	}
4852 
4853 	if (write)
4854 		memcpy_toio(maddr + offset, buf, len);
4855 	else
4856 		memcpy_fromio(buf, maddr + offset, len);
4857 	ret = len;
4858 	pte_unmap_unlock(ptep, ptl);
4859 out_unmap:
4860 	iounmap(maddr);
4861 
4862 	return ret;
4863 }
4864 EXPORT_SYMBOL_GPL(generic_access_phys);
4865 #endif
4866 
4867 /*
4868  * Access another process' address space as given in mm.
4869  */
4870 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4871 		       int len, unsigned int gup_flags)
4872 {
4873 	struct vm_area_struct *vma;
4874 	void *old_buf = buf;
4875 	int write = gup_flags & FOLL_WRITE;
4876 
4877 	if (mmap_read_lock_killable(mm))
4878 		return 0;
4879 
4880 	/* ignore errors, just check how much was successfully transferred */
4881 	while (len) {
4882 		int bytes, ret, offset;
4883 		void *maddr;
4884 		struct page *page = NULL;
4885 
4886 		ret = get_user_pages_remote(mm, addr, 1,
4887 				gup_flags, &page, &vma, NULL);
4888 		if (ret <= 0) {
4889 #ifndef CONFIG_HAVE_IOREMAP_PROT
4890 			break;
4891 #else
4892 			/*
4893 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4894 			 * we can access using slightly different code.
4895 			 */
4896 			vma = find_vma(mm, addr);
4897 			if (!vma || vma->vm_start > addr)
4898 				break;
4899 			if (vma->vm_ops && vma->vm_ops->access)
4900 				ret = vma->vm_ops->access(vma, addr, buf,
4901 							  len, write);
4902 			if (ret <= 0)
4903 				break;
4904 			bytes = ret;
4905 #endif
4906 		} else {
4907 			bytes = len;
4908 			offset = addr & (PAGE_SIZE-1);
4909 			if (bytes > PAGE_SIZE-offset)
4910 				bytes = PAGE_SIZE-offset;
4911 
4912 			maddr = kmap(page);
4913 			if (write) {
4914 				copy_to_user_page(vma, page, addr,
4915 						  maddr + offset, buf, bytes);
4916 				set_page_dirty_lock(page);
4917 			} else {
4918 				copy_from_user_page(vma, page, addr,
4919 						    buf, maddr + offset, bytes);
4920 			}
4921 			kunmap(page);
4922 			put_page(page);
4923 		}
4924 		len -= bytes;
4925 		buf += bytes;
4926 		addr += bytes;
4927 	}
4928 	mmap_read_unlock(mm);
4929 
4930 	return buf - old_buf;
4931 }
4932 
4933 /**
4934  * access_remote_vm - access another process' address space
4935  * @mm:		the mm_struct of the target address space
4936  * @addr:	start address to access
4937  * @buf:	source or destination buffer
4938  * @len:	number of bytes to transfer
4939  * @gup_flags:	flags modifying lookup behaviour
4940  *
4941  * The caller must hold a reference on @mm.
4942  *
4943  * Return: number of bytes copied from source to destination.
4944  */
4945 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4946 		void *buf, int len, unsigned int gup_flags)
4947 {
4948 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
4949 }
4950 
4951 /*
4952  * Access another process' address space.
4953  * Source/target buffer must be kernel space,
4954  * Do not walk the page table directly, use get_user_pages
4955  */
4956 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4957 		void *buf, int len, unsigned int gup_flags)
4958 {
4959 	struct mm_struct *mm;
4960 	int ret;
4961 
4962 	mm = get_task_mm(tsk);
4963 	if (!mm)
4964 		return 0;
4965 
4966 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
4967 
4968 	mmput(mm);
4969 
4970 	return ret;
4971 }
4972 EXPORT_SYMBOL_GPL(access_process_vm);
4973 
4974 /*
4975  * Print the name of a VMA.
4976  */
4977 void print_vma_addr(char *prefix, unsigned long ip)
4978 {
4979 	struct mm_struct *mm = current->mm;
4980 	struct vm_area_struct *vma;
4981 
4982 	/*
4983 	 * we might be running from an atomic context so we cannot sleep
4984 	 */
4985 	if (!mmap_read_trylock(mm))
4986 		return;
4987 
4988 	vma = find_vma(mm, ip);
4989 	if (vma && vma->vm_file) {
4990 		struct file *f = vma->vm_file;
4991 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4992 		if (buf) {
4993 			char *p;
4994 
4995 			p = file_path(f, buf, PAGE_SIZE);
4996 			if (IS_ERR(p))
4997 				p = "?";
4998 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4999 					vma->vm_start,
5000 					vma->vm_end - vma->vm_start);
5001 			free_page((unsigned long)buf);
5002 		}
5003 	}
5004 	mmap_read_unlock(mm);
5005 }
5006 
5007 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5008 void __might_fault(const char *file, int line)
5009 {
5010 	/*
5011 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5012 	 * holding the mmap_lock, this is safe because kernel memory doesn't
5013 	 * get paged out, therefore we'll never actually fault, and the
5014 	 * below annotations will generate false positives.
5015 	 */
5016 	if (uaccess_kernel())
5017 		return;
5018 	if (pagefault_disabled())
5019 		return;
5020 	__might_sleep(file, line, 0);
5021 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5022 	if (current->mm)
5023 		might_lock_read(&current->mm->mmap_lock);
5024 #endif
5025 }
5026 EXPORT_SYMBOL(__might_fault);
5027 #endif
5028 
5029 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5030 /*
5031  * Process all subpages of the specified huge page with the specified
5032  * operation.  The target subpage will be processed last to keep its
5033  * cache lines hot.
5034  */
5035 static inline void process_huge_page(
5036 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5037 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5038 	void *arg)
5039 {
5040 	int i, n, base, l;
5041 	unsigned long addr = addr_hint &
5042 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5043 
5044 	/* Process target subpage last to keep its cache lines hot */
5045 	might_sleep();
5046 	n = (addr_hint - addr) / PAGE_SIZE;
5047 	if (2 * n <= pages_per_huge_page) {
5048 		/* If target subpage in first half of huge page */
5049 		base = 0;
5050 		l = n;
5051 		/* Process subpages at the end of huge page */
5052 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5053 			cond_resched();
5054 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5055 		}
5056 	} else {
5057 		/* If target subpage in second half of huge page */
5058 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5059 		l = pages_per_huge_page - n;
5060 		/* Process subpages at the begin of huge page */
5061 		for (i = 0; i < base; i++) {
5062 			cond_resched();
5063 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5064 		}
5065 	}
5066 	/*
5067 	 * Process remaining subpages in left-right-left-right pattern
5068 	 * towards the target subpage
5069 	 */
5070 	for (i = 0; i < l; i++) {
5071 		int left_idx = base + i;
5072 		int right_idx = base + 2 * l - 1 - i;
5073 
5074 		cond_resched();
5075 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5076 		cond_resched();
5077 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5078 	}
5079 }
5080 
5081 static void clear_gigantic_page(struct page *page,
5082 				unsigned long addr,
5083 				unsigned int pages_per_huge_page)
5084 {
5085 	int i;
5086 	struct page *p = page;
5087 
5088 	might_sleep();
5089 	for (i = 0; i < pages_per_huge_page;
5090 	     i++, p = mem_map_next(p, page, i)) {
5091 		cond_resched();
5092 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5093 	}
5094 }
5095 
5096 static void clear_subpage(unsigned long addr, int idx, void *arg)
5097 {
5098 	struct page *page = arg;
5099 
5100 	clear_user_highpage(page + idx, addr);
5101 }
5102 
5103 void clear_huge_page(struct page *page,
5104 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5105 {
5106 	unsigned long addr = addr_hint &
5107 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5108 
5109 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5110 		clear_gigantic_page(page, addr, pages_per_huge_page);
5111 		return;
5112 	}
5113 
5114 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5115 }
5116 
5117 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5118 				    unsigned long addr,
5119 				    struct vm_area_struct *vma,
5120 				    unsigned int pages_per_huge_page)
5121 {
5122 	int i;
5123 	struct page *dst_base = dst;
5124 	struct page *src_base = src;
5125 
5126 	for (i = 0; i < pages_per_huge_page; ) {
5127 		cond_resched();
5128 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5129 
5130 		i++;
5131 		dst = mem_map_next(dst, dst_base, i);
5132 		src = mem_map_next(src, src_base, i);
5133 	}
5134 }
5135 
5136 struct copy_subpage_arg {
5137 	struct page *dst;
5138 	struct page *src;
5139 	struct vm_area_struct *vma;
5140 };
5141 
5142 static void copy_subpage(unsigned long addr, int idx, void *arg)
5143 {
5144 	struct copy_subpage_arg *copy_arg = arg;
5145 
5146 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5147 			   addr, copy_arg->vma);
5148 }
5149 
5150 void copy_user_huge_page(struct page *dst, struct page *src,
5151 			 unsigned long addr_hint, struct vm_area_struct *vma,
5152 			 unsigned int pages_per_huge_page)
5153 {
5154 	unsigned long addr = addr_hint &
5155 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5156 	struct copy_subpage_arg arg = {
5157 		.dst = dst,
5158 		.src = src,
5159 		.vma = vma,
5160 	};
5161 
5162 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5163 		copy_user_gigantic_page(dst, src, addr, vma,
5164 					pages_per_huge_page);
5165 		return;
5166 	}
5167 
5168 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5169 }
5170 
5171 long copy_huge_page_from_user(struct page *dst_page,
5172 				const void __user *usr_src,
5173 				unsigned int pages_per_huge_page,
5174 				bool allow_pagefault)
5175 {
5176 	void *src = (void *)usr_src;
5177 	void *page_kaddr;
5178 	unsigned long i, rc = 0;
5179 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5180 
5181 	for (i = 0; i < pages_per_huge_page; i++) {
5182 		if (allow_pagefault)
5183 			page_kaddr = kmap(dst_page + i);
5184 		else
5185 			page_kaddr = kmap_atomic(dst_page + i);
5186 		rc = copy_from_user(page_kaddr,
5187 				(const void __user *)(src + i * PAGE_SIZE),
5188 				PAGE_SIZE);
5189 		if (allow_pagefault)
5190 			kunmap(dst_page + i);
5191 		else
5192 			kunmap_atomic(page_kaddr);
5193 
5194 		ret_val -= (PAGE_SIZE - rc);
5195 		if (rc)
5196 			break;
5197 
5198 		cond_resched();
5199 	}
5200 	return ret_val;
5201 }
5202 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5203 
5204 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5205 
5206 static struct kmem_cache *page_ptl_cachep;
5207 
5208 void __init ptlock_cache_init(void)
5209 {
5210 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5211 			SLAB_PANIC, NULL);
5212 }
5213 
5214 bool ptlock_alloc(struct page *page)
5215 {
5216 	spinlock_t *ptl;
5217 
5218 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5219 	if (!ptl)
5220 		return false;
5221 	page->ptl = ptl;
5222 	return true;
5223 }
5224 
5225 void ptlock_free(struct page *page)
5226 {
5227 	kmem_cache_free(page_ptl_cachep, page->ptl);
5228 }
5229 #endif
5230