1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 #include <linux/migrate.h> 61 #include <linux/string.h> 62 #include <linux/dma-debug.h> 63 #include <linux/debugfs.h> 64 65 #include <asm/io.h> 66 #include <asm/pgalloc.h> 67 #include <asm/uaccess.h> 68 #include <asm/tlb.h> 69 #include <asm/tlbflush.h> 70 #include <asm/pgtable.h> 71 72 #include "internal.h" 73 74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 76 #endif 77 78 #ifndef CONFIG_NEED_MULTIPLE_NODES 79 /* use the per-pgdat data instead for discontigmem - mbligh */ 80 unsigned long max_mapnr; 81 struct page *mem_map; 82 83 EXPORT_SYMBOL(max_mapnr); 84 EXPORT_SYMBOL(mem_map); 85 #endif 86 87 /* 88 * A number of key systems in x86 including ioremap() rely on the assumption 89 * that high_memory defines the upper bound on direct map memory, then end 90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 92 * and ZONE_HIGHMEM. 93 */ 94 void * high_memory; 95 96 EXPORT_SYMBOL(high_memory); 97 98 /* 99 * Randomize the address space (stacks, mmaps, brk, etc.). 100 * 101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 102 * as ancient (libc5 based) binaries can segfault. ) 103 */ 104 int randomize_va_space __read_mostly = 105 #ifdef CONFIG_COMPAT_BRK 106 1; 107 #else 108 2; 109 #endif 110 111 static int __init disable_randmaps(char *s) 112 { 113 randomize_va_space = 0; 114 return 1; 115 } 116 __setup("norandmaps", disable_randmaps); 117 118 unsigned long zero_pfn __read_mostly; 119 unsigned long highest_memmap_pfn __read_mostly; 120 121 /* 122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 123 */ 124 static int __init init_zero_pfn(void) 125 { 126 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 127 return 0; 128 } 129 core_initcall(init_zero_pfn); 130 131 132 #if defined(SPLIT_RSS_COUNTING) 133 134 void sync_mm_rss(struct mm_struct *mm) 135 { 136 int i; 137 138 for (i = 0; i < NR_MM_COUNTERS; i++) { 139 if (current->rss_stat.count[i]) { 140 add_mm_counter(mm, i, current->rss_stat.count[i]); 141 current->rss_stat.count[i] = 0; 142 } 143 } 144 current->rss_stat.events = 0; 145 } 146 147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 148 { 149 struct task_struct *task = current; 150 151 if (likely(task->mm == mm)) 152 task->rss_stat.count[member] += val; 153 else 154 add_mm_counter(mm, member, val); 155 } 156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 158 159 /* sync counter once per 64 page faults */ 160 #define TASK_RSS_EVENTS_THRESH (64) 161 static void check_sync_rss_stat(struct task_struct *task) 162 { 163 if (unlikely(task != current)) 164 return; 165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 166 sync_mm_rss(task->mm); 167 } 168 #else /* SPLIT_RSS_COUNTING */ 169 170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 172 173 static void check_sync_rss_stat(struct task_struct *task) 174 { 175 } 176 177 #endif /* SPLIT_RSS_COUNTING */ 178 179 #ifdef HAVE_GENERIC_MMU_GATHER 180 181 static int tlb_next_batch(struct mmu_gather *tlb) 182 { 183 struct mmu_gather_batch *batch; 184 185 batch = tlb->active; 186 if (batch->next) { 187 tlb->active = batch->next; 188 return 1; 189 } 190 191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 192 return 0; 193 194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 195 if (!batch) 196 return 0; 197 198 tlb->batch_count++; 199 batch->next = NULL; 200 batch->nr = 0; 201 batch->max = MAX_GATHER_BATCH; 202 203 tlb->active->next = batch; 204 tlb->active = batch; 205 206 return 1; 207 } 208 209 /* tlb_gather_mmu 210 * Called to initialize an (on-stack) mmu_gather structure for page-table 211 * tear-down from @mm. The @fullmm argument is used when @mm is without 212 * users and we're going to destroy the full address space (exit/execve). 213 */ 214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 215 { 216 tlb->mm = mm; 217 218 /* Is it from 0 to ~0? */ 219 tlb->fullmm = !(start | (end+1)); 220 tlb->need_flush_all = 0; 221 tlb->start = start; 222 tlb->end = end; 223 tlb->need_flush = 0; 224 tlb->local.next = NULL; 225 tlb->local.nr = 0; 226 tlb->local.max = ARRAY_SIZE(tlb->__pages); 227 tlb->active = &tlb->local; 228 tlb->batch_count = 0; 229 230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 231 tlb->batch = NULL; 232 #endif 233 } 234 235 void tlb_flush_mmu(struct mmu_gather *tlb) 236 { 237 struct mmu_gather_batch *batch; 238 239 if (!tlb->need_flush) 240 return; 241 tlb->need_flush = 0; 242 tlb_flush(tlb); 243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 244 tlb_table_flush(tlb); 245 #endif 246 247 for (batch = &tlb->local; batch; batch = batch->next) { 248 free_pages_and_swap_cache(batch->pages, batch->nr); 249 batch->nr = 0; 250 } 251 tlb->active = &tlb->local; 252 } 253 254 /* tlb_finish_mmu 255 * Called at the end of the shootdown operation to free up any resources 256 * that were required. 257 */ 258 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 259 { 260 struct mmu_gather_batch *batch, *next; 261 262 tlb_flush_mmu(tlb); 263 264 /* keep the page table cache within bounds */ 265 check_pgt_cache(); 266 267 for (batch = tlb->local.next; batch; batch = next) { 268 next = batch->next; 269 free_pages((unsigned long)batch, 0); 270 } 271 tlb->local.next = NULL; 272 } 273 274 /* __tlb_remove_page 275 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 276 * handling the additional races in SMP caused by other CPUs caching valid 277 * mappings in their TLBs. Returns the number of free page slots left. 278 * When out of page slots we must call tlb_flush_mmu(). 279 */ 280 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 281 { 282 struct mmu_gather_batch *batch; 283 284 VM_BUG_ON(!tlb->need_flush); 285 286 batch = tlb->active; 287 batch->pages[batch->nr++] = page; 288 if (batch->nr == batch->max) { 289 if (!tlb_next_batch(tlb)) 290 return 0; 291 batch = tlb->active; 292 } 293 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 294 295 return batch->max - batch->nr; 296 } 297 298 #endif /* HAVE_GENERIC_MMU_GATHER */ 299 300 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 301 302 /* 303 * See the comment near struct mmu_table_batch. 304 */ 305 306 static void tlb_remove_table_smp_sync(void *arg) 307 { 308 /* Simply deliver the interrupt */ 309 } 310 311 static void tlb_remove_table_one(void *table) 312 { 313 /* 314 * This isn't an RCU grace period and hence the page-tables cannot be 315 * assumed to be actually RCU-freed. 316 * 317 * It is however sufficient for software page-table walkers that rely on 318 * IRQ disabling. See the comment near struct mmu_table_batch. 319 */ 320 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 321 __tlb_remove_table(table); 322 } 323 324 static void tlb_remove_table_rcu(struct rcu_head *head) 325 { 326 struct mmu_table_batch *batch; 327 int i; 328 329 batch = container_of(head, struct mmu_table_batch, rcu); 330 331 for (i = 0; i < batch->nr; i++) 332 __tlb_remove_table(batch->tables[i]); 333 334 free_page((unsigned long)batch); 335 } 336 337 void tlb_table_flush(struct mmu_gather *tlb) 338 { 339 struct mmu_table_batch **batch = &tlb->batch; 340 341 if (*batch) { 342 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 343 *batch = NULL; 344 } 345 } 346 347 void tlb_remove_table(struct mmu_gather *tlb, void *table) 348 { 349 struct mmu_table_batch **batch = &tlb->batch; 350 351 tlb->need_flush = 1; 352 353 /* 354 * When there's less then two users of this mm there cannot be a 355 * concurrent page-table walk. 356 */ 357 if (atomic_read(&tlb->mm->mm_users) < 2) { 358 __tlb_remove_table(table); 359 return; 360 } 361 362 if (*batch == NULL) { 363 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 364 if (*batch == NULL) { 365 tlb_remove_table_one(table); 366 return; 367 } 368 (*batch)->nr = 0; 369 } 370 (*batch)->tables[(*batch)->nr++] = table; 371 if ((*batch)->nr == MAX_TABLE_BATCH) 372 tlb_table_flush(tlb); 373 } 374 375 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 376 377 /* 378 * Note: this doesn't free the actual pages themselves. That 379 * has been handled earlier when unmapping all the memory regions. 380 */ 381 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 382 unsigned long addr) 383 { 384 pgtable_t token = pmd_pgtable(*pmd); 385 pmd_clear(pmd); 386 pte_free_tlb(tlb, token, addr); 387 atomic_long_dec(&tlb->mm->nr_ptes); 388 } 389 390 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 391 unsigned long addr, unsigned long end, 392 unsigned long floor, unsigned long ceiling) 393 { 394 pmd_t *pmd; 395 unsigned long next; 396 unsigned long start; 397 398 start = addr; 399 pmd = pmd_offset(pud, addr); 400 do { 401 next = pmd_addr_end(addr, end); 402 if (pmd_none_or_clear_bad(pmd)) 403 continue; 404 free_pte_range(tlb, pmd, addr); 405 } while (pmd++, addr = next, addr != end); 406 407 start &= PUD_MASK; 408 if (start < floor) 409 return; 410 if (ceiling) { 411 ceiling &= PUD_MASK; 412 if (!ceiling) 413 return; 414 } 415 if (end - 1 > ceiling - 1) 416 return; 417 418 pmd = pmd_offset(pud, start); 419 pud_clear(pud); 420 pmd_free_tlb(tlb, pmd, start); 421 } 422 423 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 424 unsigned long addr, unsigned long end, 425 unsigned long floor, unsigned long ceiling) 426 { 427 pud_t *pud; 428 unsigned long next; 429 unsigned long start; 430 431 start = addr; 432 pud = pud_offset(pgd, addr); 433 do { 434 next = pud_addr_end(addr, end); 435 if (pud_none_or_clear_bad(pud)) 436 continue; 437 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 438 } while (pud++, addr = next, addr != end); 439 440 start &= PGDIR_MASK; 441 if (start < floor) 442 return; 443 if (ceiling) { 444 ceiling &= PGDIR_MASK; 445 if (!ceiling) 446 return; 447 } 448 if (end - 1 > ceiling - 1) 449 return; 450 451 pud = pud_offset(pgd, start); 452 pgd_clear(pgd); 453 pud_free_tlb(tlb, pud, start); 454 } 455 456 /* 457 * This function frees user-level page tables of a process. 458 */ 459 void free_pgd_range(struct mmu_gather *tlb, 460 unsigned long addr, unsigned long end, 461 unsigned long floor, unsigned long ceiling) 462 { 463 pgd_t *pgd; 464 unsigned long next; 465 466 /* 467 * The next few lines have given us lots of grief... 468 * 469 * Why are we testing PMD* at this top level? Because often 470 * there will be no work to do at all, and we'd prefer not to 471 * go all the way down to the bottom just to discover that. 472 * 473 * Why all these "- 1"s? Because 0 represents both the bottom 474 * of the address space and the top of it (using -1 for the 475 * top wouldn't help much: the masks would do the wrong thing). 476 * The rule is that addr 0 and floor 0 refer to the bottom of 477 * the address space, but end 0 and ceiling 0 refer to the top 478 * Comparisons need to use "end - 1" and "ceiling - 1" (though 479 * that end 0 case should be mythical). 480 * 481 * Wherever addr is brought up or ceiling brought down, we must 482 * be careful to reject "the opposite 0" before it confuses the 483 * subsequent tests. But what about where end is brought down 484 * by PMD_SIZE below? no, end can't go down to 0 there. 485 * 486 * Whereas we round start (addr) and ceiling down, by different 487 * masks at different levels, in order to test whether a table 488 * now has no other vmas using it, so can be freed, we don't 489 * bother to round floor or end up - the tests don't need that. 490 */ 491 492 addr &= PMD_MASK; 493 if (addr < floor) { 494 addr += PMD_SIZE; 495 if (!addr) 496 return; 497 } 498 if (ceiling) { 499 ceiling &= PMD_MASK; 500 if (!ceiling) 501 return; 502 } 503 if (end - 1 > ceiling - 1) 504 end -= PMD_SIZE; 505 if (addr > end - 1) 506 return; 507 508 pgd = pgd_offset(tlb->mm, addr); 509 do { 510 next = pgd_addr_end(addr, end); 511 if (pgd_none_or_clear_bad(pgd)) 512 continue; 513 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 514 } while (pgd++, addr = next, addr != end); 515 } 516 517 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 518 unsigned long floor, unsigned long ceiling) 519 { 520 while (vma) { 521 struct vm_area_struct *next = vma->vm_next; 522 unsigned long addr = vma->vm_start; 523 524 /* 525 * Hide vma from rmap and truncate_pagecache before freeing 526 * pgtables 527 */ 528 unlink_anon_vmas(vma); 529 unlink_file_vma(vma); 530 531 if (is_vm_hugetlb_page(vma)) { 532 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 533 floor, next? next->vm_start: ceiling); 534 } else { 535 /* 536 * Optimization: gather nearby vmas into one call down 537 */ 538 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 539 && !is_vm_hugetlb_page(next)) { 540 vma = next; 541 next = vma->vm_next; 542 unlink_anon_vmas(vma); 543 unlink_file_vma(vma); 544 } 545 free_pgd_range(tlb, addr, vma->vm_end, 546 floor, next? next->vm_start: ceiling); 547 } 548 vma = next; 549 } 550 } 551 552 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 553 pmd_t *pmd, unsigned long address) 554 { 555 spinlock_t *ptl; 556 pgtable_t new = pte_alloc_one(mm, address); 557 int wait_split_huge_page; 558 if (!new) 559 return -ENOMEM; 560 561 /* 562 * Ensure all pte setup (eg. pte page lock and page clearing) are 563 * visible before the pte is made visible to other CPUs by being 564 * put into page tables. 565 * 566 * The other side of the story is the pointer chasing in the page 567 * table walking code (when walking the page table without locking; 568 * ie. most of the time). Fortunately, these data accesses consist 569 * of a chain of data-dependent loads, meaning most CPUs (alpha 570 * being the notable exception) will already guarantee loads are 571 * seen in-order. See the alpha page table accessors for the 572 * smp_read_barrier_depends() barriers in page table walking code. 573 */ 574 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 575 576 ptl = pmd_lock(mm, pmd); 577 wait_split_huge_page = 0; 578 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 579 atomic_long_inc(&mm->nr_ptes); 580 pmd_populate(mm, pmd, new); 581 new = NULL; 582 } else if (unlikely(pmd_trans_splitting(*pmd))) 583 wait_split_huge_page = 1; 584 spin_unlock(ptl); 585 if (new) 586 pte_free(mm, new); 587 if (wait_split_huge_page) 588 wait_split_huge_page(vma->anon_vma, pmd); 589 return 0; 590 } 591 592 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 593 { 594 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 595 if (!new) 596 return -ENOMEM; 597 598 smp_wmb(); /* See comment in __pte_alloc */ 599 600 spin_lock(&init_mm.page_table_lock); 601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 602 pmd_populate_kernel(&init_mm, pmd, new); 603 new = NULL; 604 } else 605 VM_BUG_ON(pmd_trans_splitting(*pmd)); 606 spin_unlock(&init_mm.page_table_lock); 607 if (new) 608 pte_free_kernel(&init_mm, new); 609 return 0; 610 } 611 612 static inline void init_rss_vec(int *rss) 613 { 614 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 615 } 616 617 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 618 { 619 int i; 620 621 if (current->mm == mm) 622 sync_mm_rss(mm); 623 for (i = 0; i < NR_MM_COUNTERS; i++) 624 if (rss[i]) 625 add_mm_counter(mm, i, rss[i]); 626 } 627 628 /* 629 * This function is called to print an error when a bad pte 630 * is found. For example, we might have a PFN-mapped pte in 631 * a region that doesn't allow it. 632 * 633 * The calling function must still handle the error. 634 */ 635 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 636 pte_t pte, struct page *page) 637 { 638 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 639 pud_t *pud = pud_offset(pgd, addr); 640 pmd_t *pmd = pmd_offset(pud, addr); 641 struct address_space *mapping; 642 pgoff_t index; 643 static unsigned long resume; 644 static unsigned long nr_shown; 645 static unsigned long nr_unshown; 646 647 /* 648 * Allow a burst of 60 reports, then keep quiet for that minute; 649 * or allow a steady drip of one report per second. 650 */ 651 if (nr_shown == 60) { 652 if (time_before(jiffies, resume)) { 653 nr_unshown++; 654 return; 655 } 656 if (nr_unshown) { 657 printk(KERN_ALERT 658 "BUG: Bad page map: %lu messages suppressed\n", 659 nr_unshown); 660 nr_unshown = 0; 661 } 662 nr_shown = 0; 663 } 664 if (nr_shown++ == 0) 665 resume = jiffies + 60 * HZ; 666 667 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 668 index = linear_page_index(vma, addr); 669 670 printk(KERN_ALERT 671 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 672 current->comm, 673 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 674 if (page) 675 dump_page(page, "bad pte"); 676 printk(KERN_ALERT 677 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 678 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 679 /* 680 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 681 */ 682 if (vma->vm_ops) 683 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n", 684 vma->vm_ops->fault); 685 if (vma->vm_file) 686 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n", 687 vma->vm_file->f_op->mmap); 688 dump_stack(); 689 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 690 } 691 692 static inline bool is_cow_mapping(vm_flags_t flags) 693 { 694 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 695 } 696 697 /* 698 * vm_normal_page -- This function gets the "struct page" associated with a pte. 699 * 700 * "Special" mappings do not wish to be associated with a "struct page" (either 701 * it doesn't exist, or it exists but they don't want to touch it). In this 702 * case, NULL is returned here. "Normal" mappings do have a struct page. 703 * 704 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 705 * pte bit, in which case this function is trivial. Secondly, an architecture 706 * may not have a spare pte bit, which requires a more complicated scheme, 707 * described below. 708 * 709 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 710 * special mapping (even if there are underlying and valid "struct pages"). 711 * COWed pages of a VM_PFNMAP are always normal. 712 * 713 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 714 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 715 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 716 * mapping will always honor the rule 717 * 718 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 719 * 720 * And for normal mappings this is false. 721 * 722 * This restricts such mappings to be a linear translation from virtual address 723 * to pfn. To get around this restriction, we allow arbitrary mappings so long 724 * as the vma is not a COW mapping; in that case, we know that all ptes are 725 * special (because none can have been COWed). 726 * 727 * 728 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 729 * 730 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 731 * page" backing, however the difference is that _all_ pages with a struct 732 * page (that is, those where pfn_valid is true) are refcounted and considered 733 * normal pages by the VM. The disadvantage is that pages are refcounted 734 * (which can be slower and simply not an option for some PFNMAP users). The 735 * advantage is that we don't have to follow the strict linearity rule of 736 * PFNMAP mappings in order to support COWable mappings. 737 * 738 */ 739 #ifdef __HAVE_ARCH_PTE_SPECIAL 740 # define HAVE_PTE_SPECIAL 1 741 #else 742 # define HAVE_PTE_SPECIAL 0 743 #endif 744 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 745 pte_t pte) 746 { 747 unsigned long pfn = pte_pfn(pte); 748 749 if (HAVE_PTE_SPECIAL) { 750 if (likely(!pte_special(pte))) 751 goto check_pfn; 752 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 753 return NULL; 754 if (!is_zero_pfn(pfn)) 755 print_bad_pte(vma, addr, pte, NULL); 756 return NULL; 757 } 758 759 /* !HAVE_PTE_SPECIAL case follows: */ 760 761 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 762 if (vma->vm_flags & VM_MIXEDMAP) { 763 if (!pfn_valid(pfn)) 764 return NULL; 765 goto out; 766 } else { 767 unsigned long off; 768 off = (addr - vma->vm_start) >> PAGE_SHIFT; 769 if (pfn == vma->vm_pgoff + off) 770 return NULL; 771 if (!is_cow_mapping(vma->vm_flags)) 772 return NULL; 773 } 774 } 775 776 if (is_zero_pfn(pfn)) 777 return NULL; 778 check_pfn: 779 if (unlikely(pfn > highest_memmap_pfn)) { 780 print_bad_pte(vma, addr, pte, NULL); 781 return NULL; 782 } 783 784 /* 785 * NOTE! We still have PageReserved() pages in the page tables. 786 * eg. VDSO mappings can cause them to exist. 787 */ 788 out: 789 return pfn_to_page(pfn); 790 } 791 792 /* 793 * copy one vm_area from one task to the other. Assumes the page tables 794 * already present in the new task to be cleared in the whole range 795 * covered by this vma. 796 */ 797 798 static inline unsigned long 799 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 800 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 801 unsigned long addr, int *rss) 802 { 803 unsigned long vm_flags = vma->vm_flags; 804 pte_t pte = *src_pte; 805 struct page *page; 806 807 /* pte contains position in swap or file, so copy. */ 808 if (unlikely(!pte_present(pte))) { 809 if (!pte_file(pte)) { 810 swp_entry_t entry = pte_to_swp_entry(pte); 811 812 if (swap_duplicate(entry) < 0) 813 return entry.val; 814 815 /* make sure dst_mm is on swapoff's mmlist. */ 816 if (unlikely(list_empty(&dst_mm->mmlist))) { 817 spin_lock(&mmlist_lock); 818 if (list_empty(&dst_mm->mmlist)) 819 list_add(&dst_mm->mmlist, 820 &src_mm->mmlist); 821 spin_unlock(&mmlist_lock); 822 } 823 if (likely(!non_swap_entry(entry))) 824 rss[MM_SWAPENTS]++; 825 else if (is_migration_entry(entry)) { 826 page = migration_entry_to_page(entry); 827 828 if (PageAnon(page)) 829 rss[MM_ANONPAGES]++; 830 else 831 rss[MM_FILEPAGES]++; 832 833 if (is_write_migration_entry(entry) && 834 is_cow_mapping(vm_flags)) { 835 /* 836 * COW mappings require pages in both 837 * parent and child to be set to read. 838 */ 839 make_migration_entry_read(&entry); 840 pte = swp_entry_to_pte(entry); 841 if (pte_swp_soft_dirty(*src_pte)) 842 pte = pte_swp_mksoft_dirty(pte); 843 set_pte_at(src_mm, addr, src_pte, pte); 844 } 845 } 846 } 847 goto out_set_pte; 848 } 849 850 /* 851 * If it's a COW mapping, write protect it both 852 * in the parent and the child 853 */ 854 if (is_cow_mapping(vm_flags)) { 855 ptep_set_wrprotect(src_mm, addr, src_pte); 856 pte = pte_wrprotect(pte); 857 } 858 859 /* 860 * If it's a shared mapping, mark it clean in 861 * the child 862 */ 863 if (vm_flags & VM_SHARED) 864 pte = pte_mkclean(pte); 865 pte = pte_mkold(pte); 866 867 page = vm_normal_page(vma, addr, pte); 868 if (page) { 869 get_page(page); 870 page_dup_rmap(page); 871 if (PageAnon(page)) 872 rss[MM_ANONPAGES]++; 873 else 874 rss[MM_FILEPAGES]++; 875 } 876 877 out_set_pte: 878 set_pte_at(dst_mm, addr, dst_pte, pte); 879 return 0; 880 } 881 882 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 883 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 884 unsigned long addr, unsigned long end) 885 { 886 pte_t *orig_src_pte, *orig_dst_pte; 887 pte_t *src_pte, *dst_pte; 888 spinlock_t *src_ptl, *dst_ptl; 889 int progress = 0; 890 int rss[NR_MM_COUNTERS]; 891 swp_entry_t entry = (swp_entry_t){0}; 892 893 again: 894 init_rss_vec(rss); 895 896 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 897 if (!dst_pte) 898 return -ENOMEM; 899 src_pte = pte_offset_map(src_pmd, addr); 900 src_ptl = pte_lockptr(src_mm, src_pmd); 901 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 902 orig_src_pte = src_pte; 903 orig_dst_pte = dst_pte; 904 arch_enter_lazy_mmu_mode(); 905 906 do { 907 /* 908 * We are holding two locks at this point - either of them 909 * could generate latencies in another task on another CPU. 910 */ 911 if (progress >= 32) { 912 progress = 0; 913 if (need_resched() || 914 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 915 break; 916 } 917 if (pte_none(*src_pte)) { 918 progress++; 919 continue; 920 } 921 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 922 vma, addr, rss); 923 if (entry.val) 924 break; 925 progress += 8; 926 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 927 928 arch_leave_lazy_mmu_mode(); 929 spin_unlock(src_ptl); 930 pte_unmap(orig_src_pte); 931 add_mm_rss_vec(dst_mm, rss); 932 pte_unmap_unlock(orig_dst_pte, dst_ptl); 933 cond_resched(); 934 935 if (entry.val) { 936 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 937 return -ENOMEM; 938 progress = 0; 939 } 940 if (addr != end) 941 goto again; 942 return 0; 943 } 944 945 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 946 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 947 unsigned long addr, unsigned long end) 948 { 949 pmd_t *src_pmd, *dst_pmd; 950 unsigned long next; 951 952 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 953 if (!dst_pmd) 954 return -ENOMEM; 955 src_pmd = pmd_offset(src_pud, addr); 956 do { 957 next = pmd_addr_end(addr, end); 958 if (pmd_trans_huge(*src_pmd)) { 959 int err; 960 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 961 err = copy_huge_pmd(dst_mm, src_mm, 962 dst_pmd, src_pmd, addr, vma); 963 if (err == -ENOMEM) 964 return -ENOMEM; 965 if (!err) 966 continue; 967 /* fall through */ 968 } 969 if (pmd_none_or_clear_bad(src_pmd)) 970 continue; 971 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 972 vma, addr, next)) 973 return -ENOMEM; 974 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 975 return 0; 976 } 977 978 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 979 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 980 unsigned long addr, unsigned long end) 981 { 982 pud_t *src_pud, *dst_pud; 983 unsigned long next; 984 985 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 986 if (!dst_pud) 987 return -ENOMEM; 988 src_pud = pud_offset(src_pgd, addr); 989 do { 990 next = pud_addr_end(addr, end); 991 if (pud_none_or_clear_bad(src_pud)) 992 continue; 993 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 994 vma, addr, next)) 995 return -ENOMEM; 996 } while (dst_pud++, src_pud++, addr = next, addr != end); 997 return 0; 998 } 999 1000 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1001 struct vm_area_struct *vma) 1002 { 1003 pgd_t *src_pgd, *dst_pgd; 1004 unsigned long next; 1005 unsigned long addr = vma->vm_start; 1006 unsigned long end = vma->vm_end; 1007 unsigned long mmun_start; /* For mmu_notifiers */ 1008 unsigned long mmun_end; /* For mmu_notifiers */ 1009 bool is_cow; 1010 int ret; 1011 1012 /* 1013 * Don't copy ptes where a page fault will fill them correctly. 1014 * Fork becomes much lighter when there are big shared or private 1015 * readonly mappings. The tradeoff is that copy_page_range is more 1016 * efficient than faulting. 1017 */ 1018 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR | 1019 VM_PFNMAP | VM_MIXEDMAP))) { 1020 if (!vma->anon_vma) 1021 return 0; 1022 } 1023 1024 if (is_vm_hugetlb_page(vma)) 1025 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1026 1027 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1028 /* 1029 * We do not free on error cases below as remove_vma 1030 * gets called on error from higher level routine 1031 */ 1032 ret = track_pfn_copy(vma); 1033 if (ret) 1034 return ret; 1035 } 1036 1037 /* 1038 * We need to invalidate the secondary MMU mappings only when 1039 * there could be a permission downgrade on the ptes of the 1040 * parent mm. And a permission downgrade will only happen if 1041 * is_cow_mapping() returns true. 1042 */ 1043 is_cow = is_cow_mapping(vma->vm_flags); 1044 mmun_start = addr; 1045 mmun_end = end; 1046 if (is_cow) 1047 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1048 mmun_end); 1049 1050 ret = 0; 1051 dst_pgd = pgd_offset(dst_mm, addr); 1052 src_pgd = pgd_offset(src_mm, addr); 1053 do { 1054 next = pgd_addr_end(addr, end); 1055 if (pgd_none_or_clear_bad(src_pgd)) 1056 continue; 1057 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1058 vma, addr, next))) { 1059 ret = -ENOMEM; 1060 break; 1061 } 1062 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1063 1064 if (is_cow) 1065 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1066 return ret; 1067 } 1068 1069 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1070 struct vm_area_struct *vma, pmd_t *pmd, 1071 unsigned long addr, unsigned long end, 1072 struct zap_details *details) 1073 { 1074 struct mm_struct *mm = tlb->mm; 1075 int force_flush = 0; 1076 int rss[NR_MM_COUNTERS]; 1077 spinlock_t *ptl; 1078 pte_t *start_pte; 1079 pte_t *pte; 1080 1081 again: 1082 init_rss_vec(rss); 1083 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1084 pte = start_pte; 1085 arch_enter_lazy_mmu_mode(); 1086 do { 1087 pte_t ptent = *pte; 1088 if (pte_none(ptent)) { 1089 continue; 1090 } 1091 1092 if (pte_present(ptent)) { 1093 struct page *page; 1094 1095 page = vm_normal_page(vma, addr, ptent); 1096 if (unlikely(details) && page) { 1097 /* 1098 * unmap_shared_mapping_pages() wants to 1099 * invalidate cache without truncating: 1100 * unmap shared but keep private pages. 1101 */ 1102 if (details->check_mapping && 1103 details->check_mapping != page->mapping) 1104 continue; 1105 /* 1106 * Each page->index must be checked when 1107 * invalidating or truncating nonlinear. 1108 */ 1109 if (details->nonlinear_vma && 1110 (page->index < details->first_index || 1111 page->index > details->last_index)) 1112 continue; 1113 } 1114 ptent = ptep_get_and_clear_full(mm, addr, pte, 1115 tlb->fullmm); 1116 tlb_remove_tlb_entry(tlb, pte, addr); 1117 if (unlikely(!page)) 1118 continue; 1119 if (unlikely(details) && details->nonlinear_vma 1120 && linear_page_index(details->nonlinear_vma, 1121 addr) != page->index) { 1122 pte_t ptfile = pgoff_to_pte(page->index); 1123 if (pte_soft_dirty(ptent)) 1124 pte_file_mksoft_dirty(ptfile); 1125 set_pte_at(mm, addr, pte, ptfile); 1126 } 1127 if (PageAnon(page)) 1128 rss[MM_ANONPAGES]--; 1129 else { 1130 if (pte_dirty(ptent)) 1131 set_page_dirty(page); 1132 if (pte_young(ptent) && 1133 likely(!(vma->vm_flags & VM_SEQ_READ))) 1134 mark_page_accessed(page); 1135 rss[MM_FILEPAGES]--; 1136 } 1137 page_remove_rmap(page); 1138 if (unlikely(page_mapcount(page) < 0)) 1139 print_bad_pte(vma, addr, ptent, page); 1140 force_flush = !__tlb_remove_page(tlb, page); 1141 if (force_flush) 1142 break; 1143 continue; 1144 } 1145 /* 1146 * If details->check_mapping, we leave swap entries; 1147 * if details->nonlinear_vma, we leave file entries. 1148 */ 1149 if (unlikely(details)) 1150 continue; 1151 if (pte_file(ptent)) { 1152 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1153 print_bad_pte(vma, addr, ptent, NULL); 1154 } else { 1155 swp_entry_t entry = pte_to_swp_entry(ptent); 1156 1157 if (!non_swap_entry(entry)) 1158 rss[MM_SWAPENTS]--; 1159 else if (is_migration_entry(entry)) { 1160 struct page *page; 1161 1162 page = migration_entry_to_page(entry); 1163 1164 if (PageAnon(page)) 1165 rss[MM_ANONPAGES]--; 1166 else 1167 rss[MM_FILEPAGES]--; 1168 } 1169 if (unlikely(!free_swap_and_cache(entry))) 1170 print_bad_pte(vma, addr, ptent, NULL); 1171 } 1172 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1173 } while (pte++, addr += PAGE_SIZE, addr != end); 1174 1175 add_mm_rss_vec(mm, rss); 1176 arch_leave_lazy_mmu_mode(); 1177 pte_unmap_unlock(start_pte, ptl); 1178 1179 /* 1180 * mmu_gather ran out of room to batch pages, we break out of 1181 * the PTE lock to avoid doing the potential expensive TLB invalidate 1182 * and page-free while holding it. 1183 */ 1184 if (force_flush) { 1185 unsigned long old_end; 1186 1187 force_flush = 0; 1188 1189 /* 1190 * Flush the TLB just for the previous segment, 1191 * then update the range to be the remaining 1192 * TLB range. 1193 */ 1194 old_end = tlb->end; 1195 tlb->end = addr; 1196 1197 tlb_flush_mmu(tlb); 1198 1199 tlb->start = addr; 1200 tlb->end = old_end; 1201 1202 if (addr != end) 1203 goto again; 1204 } 1205 1206 return addr; 1207 } 1208 1209 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1210 struct vm_area_struct *vma, pud_t *pud, 1211 unsigned long addr, unsigned long end, 1212 struct zap_details *details) 1213 { 1214 pmd_t *pmd; 1215 unsigned long next; 1216 1217 pmd = pmd_offset(pud, addr); 1218 do { 1219 next = pmd_addr_end(addr, end); 1220 if (pmd_trans_huge(*pmd)) { 1221 if (next - addr != HPAGE_PMD_SIZE) { 1222 #ifdef CONFIG_DEBUG_VM 1223 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1224 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1225 __func__, addr, end, 1226 vma->vm_start, 1227 vma->vm_end); 1228 BUG(); 1229 } 1230 #endif 1231 split_huge_page_pmd(vma, addr, pmd); 1232 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1233 goto next; 1234 /* fall through */ 1235 } 1236 /* 1237 * Here there can be other concurrent MADV_DONTNEED or 1238 * trans huge page faults running, and if the pmd is 1239 * none or trans huge it can change under us. This is 1240 * because MADV_DONTNEED holds the mmap_sem in read 1241 * mode. 1242 */ 1243 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1244 goto next; 1245 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1246 next: 1247 cond_resched(); 1248 } while (pmd++, addr = next, addr != end); 1249 1250 return addr; 1251 } 1252 1253 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1254 struct vm_area_struct *vma, pgd_t *pgd, 1255 unsigned long addr, unsigned long end, 1256 struct zap_details *details) 1257 { 1258 pud_t *pud; 1259 unsigned long next; 1260 1261 pud = pud_offset(pgd, addr); 1262 do { 1263 next = pud_addr_end(addr, end); 1264 if (pud_none_or_clear_bad(pud)) 1265 continue; 1266 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1267 } while (pud++, addr = next, addr != end); 1268 1269 return addr; 1270 } 1271 1272 static void unmap_page_range(struct mmu_gather *tlb, 1273 struct vm_area_struct *vma, 1274 unsigned long addr, unsigned long end, 1275 struct zap_details *details) 1276 { 1277 pgd_t *pgd; 1278 unsigned long next; 1279 1280 if (details && !details->check_mapping && !details->nonlinear_vma) 1281 details = NULL; 1282 1283 BUG_ON(addr >= end); 1284 mem_cgroup_uncharge_start(); 1285 tlb_start_vma(tlb, vma); 1286 pgd = pgd_offset(vma->vm_mm, addr); 1287 do { 1288 next = pgd_addr_end(addr, end); 1289 if (pgd_none_or_clear_bad(pgd)) 1290 continue; 1291 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1292 } while (pgd++, addr = next, addr != end); 1293 tlb_end_vma(tlb, vma); 1294 mem_cgroup_uncharge_end(); 1295 } 1296 1297 1298 static void unmap_single_vma(struct mmu_gather *tlb, 1299 struct vm_area_struct *vma, unsigned long start_addr, 1300 unsigned long end_addr, 1301 struct zap_details *details) 1302 { 1303 unsigned long start = max(vma->vm_start, start_addr); 1304 unsigned long end; 1305 1306 if (start >= vma->vm_end) 1307 return; 1308 end = min(vma->vm_end, end_addr); 1309 if (end <= vma->vm_start) 1310 return; 1311 1312 if (vma->vm_file) 1313 uprobe_munmap(vma, start, end); 1314 1315 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1316 untrack_pfn(vma, 0, 0); 1317 1318 if (start != end) { 1319 if (unlikely(is_vm_hugetlb_page(vma))) { 1320 /* 1321 * It is undesirable to test vma->vm_file as it 1322 * should be non-null for valid hugetlb area. 1323 * However, vm_file will be NULL in the error 1324 * cleanup path of mmap_region. When 1325 * hugetlbfs ->mmap method fails, 1326 * mmap_region() nullifies vma->vm_file 1327 * before calling this function to clean up. 1328 * Since no pte has actually been setup, it is 1329 * safe to do nothing in this case. 1330 */ 1331 if (vma->vm_file) { 1332 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 1333 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1334 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 1335 } 1336 } else 1337 unmap_page_range(tlb, vma, start, end, details); 1338 } 1339 } 1340 1341 /** 1342 * unmap_vmas - unmap a range of memory covered by a list of vma's 1343 * @tlb: address of the caller's struct mmu_gather 1344 * @vma: the starting vma 1345 * @start_addr: virtual address at which to start unmapping 1346 * @end_addr: virtual address at which to end unmapping 1347 * 1348 * Unmap all pages in the vma list. 1349 * 1350 * Only addresses between `start' and `end' will be unmapped. 1351 * 1352 * The VMA list must be sorted in ascending virtual address order. 1353 * 1354 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1355 * range after unmap_vmas() returns. So the only responsibility here is to 1356 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1357 * drops the lock and schedules. 1358 */ 1359 void unmap_vmas(struct mmu_gather *tlb, 1360 struct vm_area_struct *vma, unsigned long start_addr, 1361 unsigned long end_addr) 1362 { 1363 struct mm_struct *mm = vma->vm_mm; 1364 1365 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1366 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1367 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1368 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1369 } 1370 1371 /** 1372 * zap_page_range - remove user pages in a given range 1373 * @vma: vm_area_struct holding the applicable pages 1374 * @start: starting address of pages to zap 1375 * @size: number of bytes to zap 1376 * @details: details of nonlinear truncation or shared cache invalidation 1377 * 1378 * Caller must protect the VMA list 1379 */ 1380 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1381 unsigned long size, struct zap_details *details) 1382 { 1383 struct mm_struct *mm = vma->vm_mm; 1384 struct mmu_gather tlb; 1385 unsigned long end = start + size; 1386 1387 lru_add_drain(); 1388 tlb_gather_mmu(&tlb, mm, start, end); 1389 update_hiwater_rss(mm); 1390 mmu_notifier_invalidate_range_start(mm, start, end); 1391 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1392 unmap_single_vma(&tlb, vma, start, end, details); 1393 mmu_notifier_invalidate_range_end(mm, start, end); 1394 tlb_finish_mmu(&tlb, start, end); 1395 } 1396 1397 /** 1398 * zap_page_range_single - remove user pages in a given range 1399 * @vma: vm_area_struct holding the applicable pages 1400 * @address: starting address of pages to zap 1401 * @size: number of bytes to zap 1402 * @details: details of nonlinear truncation or shared cache invalidation 1403 * 1404 * The range must fit into one VMA. 1405 */ 1406 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1407 unsigned long size, struct zap_details *details) 1408 { 1409 struct mm_struct *mm = vma->vm_mm; 1410 struct mmu_gather tlb; 1411 unsigned long end = address + size; 1412 1413 lru_add_drain(); 1414 tlb_gather_mmu(&tlb, mm, address, end); 1415 update_hiwater_rss(mm); 1416 mmu_notifier_invalidate_range_start(mm, address, end); 1417 unmap_single_vma(&tlb, vma, address, end, details); 1418 mmu_notifier_invalidate_range_end(mm, address, end); 1419 tlb_finish_mmu(&tlb, address, end); 1420 } 1421 1422 /** 1423 * zap_vma_ptes - remove ptes mapping the vma 1424 * @vma: vm_area_struct holding ptes to be zapped 1425 * @address: starting address of pages to zap 1426 * @size: number of bytes to zap 1427 * 1428 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1429 * 1430 * The entire address range must be fully contained within the vma. 1431 * 1432 * Returns 0 if successful. 1433 */ 1434 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1435 unsigned long size) 1436 { 1437 if (address < vma->vm_start || address + size > vma->vm_end || 1438 !(vma->vm_flags & VM_PFNMAP)) 1439 return -1; 1440 zap_page_range_single(vma, address, size, NULL); 1441 return 0; 1442 } 1443 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1444 1445 /** 1446 * follow_page_mask - look up a page descriptor from a user-virtual address 1447 * @vma: vm_area_struct mapping @address 1448 * @address: virtual address to look up 1449 * @flags: flags modifying lookup behaviour 1450 * @page_mask: on output, *page_mask is set according to the size of the page 1451 * 1452 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1453 * 1454 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1455 * an error pointer if there is a mapping to something not represented 1456 * by a page descriptor (see also vm_normal_page()). 1457 */ 1458 struct page *follow_page_mask(struct vm_area_struct *vma, 1459 unsigned long address, unsigned int flags, 1460 unsigned int *page_mask) 1461 { 1462 pgd_t *pgd; 1463 pud_t *pud; 1464 pmd_t *pmd; 1465 pte_t *ptep, pte; 1466 spinlock_t *ptl; 1467 struct page *page; 1468 struct mm_struct *mm = vma->vm_mm; 1469 1470 *page_mask = 0; 1471 1472 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1473 if (!IS_ERR(page)) { 1474 BUG_ON(flags & FOLL_GET); 1475 goto out; 1476 } 1477 1478 page = NULL; 1479 pgd = pgd_offset(mm, address); 1480 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1481 goto no_page_table; 1482 1483 pud = pud_offset(pgd, address); 1484 if (pud_none(*pud)) 1485 goto no_page_table; 1486 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1487 if (flags & FOLL_GET) 1488 goto out; 1489 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1490 goto out; 1491 } 1492 if (unlikely(pud_bad(*pud))) 1493 goto no_page_table; 1494 1495 pmd = pmd_offset(pud, address); 1496 if (pmd_none(*pmd)) 1497 goto no_page_table; 1498 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1499 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1500 if (flags & FOLL_GET) { 1501 /* 1502 * Refcount on tail pages are not well-defined and 1503 * shouldn't be taken. The caller should handle a NULL 1504 * return when trying to follow tail pages. 1505 */ 1506 if (PageHead(page)) 1507 get_page(page); 1508 else { 1509 page = NULL; 1510 goto out; 1511 } 1512 } 1513 goto out; 1514 } 1515 if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) 1516 goto no_page_table; 1517 if (pmd_trans_huge(*pmd)) { 1518 if (flags & FOLL_SPLIT) { 1519 split_huge_page_pmd(vma, address, pmd); 1520 goto split_fallthrough; 1521 } 1522 ptl = pmd_lock(mm, pmd); 1523 if (likely(pmd_trans_huge(*pmd))) { 1524 if (unlikely(pmd_trans_splitting(*pmd))) { 1525 spin_unlock(ptl); 1526 wait_split_huge_page(vma->anon_vma, pmd); 1527 } else { 1528 page = follow_trans_huge_pmd(vma, address, 1529 pmd, flags); 1530 spin_unlock(ptl); 1531 *page_mask = HPAGE_PMD_NR - 1; 1532 goto out; 1533 } 1534 } else 1535 spin_unlock(ptl); 1536 /* fall through */ 1537 } 1538 split_fallthrough: 1539 if (unlikely(pmd_bad(*pmd))) 1540 goto no_page_table; 1541 1542 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1543 1544 pte = *ptep; 1545 if (!pte_present(pte)) { 1546 swp_entry_t entry; 1547 /* 1548 * KSM's break_ksm() relies upon recognizing a ksm page 1549 * even while it is being migrated, so for that case we 1550 * need migration_entry_wait(). 1551 */ 1552 if (likely(!(flags & FOLL_MIGRATION))) 1553 goto no_page; 1554 if (pte_none(pte) || pte_file(pte)) 1555 goto no_page; 1556 entry = pte_to_swp_entry(pte); 1557 if (!is_migration_entry(entry)) 1558 goto no_page; 1559 pte_unmap_unlock(ptep, ptl); 1560 migration_entry_wait(mm, pmd, address); 1561 goto split_fallthrough; 1562 } 1563 if ((flags & FOLL_NUMA) && pte_numa(pte)) 1564 goto no_page; 1565 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1566 goto unlock; 1567 1568 page = vm_normal_page(vma, address, pte); 1569 if (unlikely(!page)) { 1570 if ((flags & FOLL_DUMP) || 1571 !is_zero_pfn(pte_pfn(pte))) 1572 goto bad_page; 1573 page = pte_page(pte); 1574 } 1575 1576 if (flags & FOLL_GET) 1577 get_page_foll(page); 1578 if (flags & FOLL_TOUCH) { 1579 if ((flags & FOLL_WRITE) && 1580 !pte_dirty(pte) && !PageDirty(page)) 1581 set_page_dirty(page); 1582 /* 1583 * pte_mkyoung() would be more correct here, but atomic care 1584 * is needed to avoid losing the dirty bit: it is easier to use 1585 * mark_page_accessed(). 1586 */ 1587 mark_page_accessed(page); 1588 } 1589 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1590 /* 1591 * The preliminary mapping check is mainly to avoid the 1592 * pointless overhead of lock_page on the ZERO_PAGE 1593 * which might bounce very badly if there is contention. 1594 * 1595 * If the page is already locked, we don't need to 1596 * handle it now - vmscan will handle it later if and 1597 * when it attempts to reclaim the page. 1598 */ 1599 if (page->mapping && trylock_page(page)) { 1600 lru_add_drain(); /* push cached pages to LRU */ 1601 /* 1602 * Because we lock page here, and migration is 1603 * blocked by the pte's page reference, and we 1604 * know the page is still mapped, we don't even 1605 * need to check for file-cache page truncation. 1606 */ 1607 mlock_vma_page(page); 1608 unlock_page(page); 1609 } 1610 } 1611 unlock: 1612 pte_unmap_unlock(ptep, ptl); 1613 out: 1614 return page; 1615 1616 bad_page: 1617 pte_unmap_unlock(ptep, ptl); 1618 return ERR_PTR(-EFAULT); 1619 1620 no_page: 1621 pte_unmap_unlock(ptep, ptl); 1622 if (!pte_none(pte)) 1623 return page; 1624 1625 no_page_table: 1626 /* 1627 * When core dumping an enormous anonymous area that nobody 1628 * has touched so far, we don't want to allocate unnecessary pages or 1629 * page tables. Return error instead of NULL to skip handle_mm_fault, 1630 * then get_dump_page() will return NULL to leave a hole in the dump. 1631 * But we can only make this optimization where a hole would surely 1632 * be zero-filled if handle_mm_fault() actually did handle it. 1633 */ 1634 if ((flags & FOLL_DUMP) && 1635 (!vma->vm_ops || !vma->vm_ops->fault)) 1636 return ERR_PTR(-EFAULT); 1637 return page; 1638 } 1639 1640 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1641 { 1642 return stack_guard_page_start(vma, addr) || 1643 stack_guard_page_end(vma, addr+PAGE_SIZE); 1644 } 1645 1646 /** 1647 * __get_user_pages() - pin user pages in memory 1648 * @tsk: task_struct of target task 1649 * @mm: mm_struct of target mm 1650 * @start: starting user address 1651 * @nr_pages: number of pages from start to pin 1652 * @gup_flags: flags modifying pin behaviour 1653 * @pages: array that receives pointers to the pages pinned. 1654 * Should be at least nr_pages long. Or NULL, if caller 1655 * only intends to ensure the pages are faulted in. 1656 * @vmas: array of pointers to vmas corresponding to each page. 1657 * Or NULL if the caller does not require them. 1658 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1659 * 1660 * Returns number of pages pinned. This may be fewer than the number 1661 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1662 * were pinned, returns -errno. Each page returned must be released 1663 * with a put_page() call when it is finished with. vmas will only 1664 * remain valid while mmap_sem is held. 1665 * 1666 * Must be called with mmap_sem held for read or write. 1667 * 1668 * __get_user_pages walks a process's page tables and takes a reference to 1669 * each struct page that each user address corresponds to at a given 1670 * instant. That is, it takes the page that would be accessed if a user 1671 * thread accesses the given user virtual address at that instant. 1672 * 1673 * This does not guarantee that the page exists in the user mappings when 1674 * __get_user_pages returns, and there may even be a completely different 1675 * page there in some cases (eg. if mmapped pagecache has been invalidated 1676 * and subsequently re faulted). However it does guarantee that the page 1677 * won't be freed completely. And mostly callers simply care that the page 1678 * contains data that was valid *at some point in time*. Typically, an IO 1679 * or similar operation cannot guarantee anything stronger anyway because 1680 * locks can't be held over the syscall boundary. 1681 * 1682 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1683 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1684 * appropriate) must be called after the page is finished with, and 1685 * before put_page is called. 1686 * 1687 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1688 * or mmap_sem contention, and if waiting is needed to pin all pages, 1689 * *@nonblocking will be set to 0. 1690 * 1691 * In most cases, get_user_pages or get_user_pages_fast should be used 1692 * instead of __get_user_pages. __get_user_pages should be used only if 1693 * you need some special @gup_flags. 1694 */ 1695 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1696 unsigned long start, unsigned long nr_pages, 1697 unsigned int gup_flags, struct page **pages, 1698 struct vm_area_struct **vmas, int *nonblocking) 1699 { 1700 long i; 1701 unsigned long vm_flags; 1702 unsigned int page_mask; 1703 1704 if (!nr_pages) 1705 return 0; 1706 1707 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1708 1709 /* 1710 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault 1711 * would be called on PROT_NONE ranges. We must never invoke 1712 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting 1713 * page faults would unprotect the PROT_NONE ranges if 1714 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd 1715 * bitflag. So to avoid that, don't set FOLL_NUMA if 1716 * FOLL_FORCE is set. 1717 */ 1718 if (!(gup_flags & FOLL_FORCE)) 1719 gup_flags |= FOLL_NUMA; 1720 1721 i = 0; 1722 1723 do { 1724 struct vm_area_struct *vma; 1725 1726 vma = find_extend_vma(mm, start); 1727 if (!vma && in_gate_area(mm, start)) { 1728 unsigned long pg = start & PAGE_MASK; 1729 pgd_t *pgd; 1730 pud_t *pud; 1731 pmd_t *pmd; 1732 pte_t *pte; 1733 1734 /* user gate pages are read-only */ 1735 if (gup_flags & FOLL_WRITE) 1736 goto efault; 1737 if (pg > TASK_SIZE) 1738 pgd = pgd_offset_k(pg); 1739 else 1740 pgd = pgd_offset_gate(mm, pg); 1741 BUG_ON(pgd_none(*pgd)); 1742 pud = pud_offset(pgd, pg); 1743 BUG_ON(pud_none(*pud)); 1744 pmd = pmd_offset(pud, pg); 1745 if (pmd_none(*pmd)) 1746 goto efault; 1747 VM_BUG_ON(pmd_trans_huge(*pmd)); 1748 pte = pte_offset_map(pmd, pg); 1749 if (pte_none(*pte)) { 1750 pte_unmap(pte); 1751 goto efault; 1752 } 1753 vma = get_gate_vma(mm); 1754 if (pages) { 1755 struct page *page; 1756 1757 page = vm_normal_page(vma, start, *pte); 1758 if (!page) { 1759 if (!(gup_flags & FOLL_DUMP) && 1760 is_zero_pfn(pte_pfn(*pte))) 1761 page = pte_page(*pte); 1762 else { 1763 pte_unmap(pte); 1764 goto efault; 1765 } 1766 } 1767 pages[i] = page; 1768 get_page(page); 1769 } 1770 pte_unmap(pte); 1771 page_mask = 0; 1772 goto next_page; 1773 } 1774 1775 if (!vma) 1776 goto efault; 1777 vm_flags = vma->vm_flags; 1778 if (vm_flags & (VM_IO | VM_PFNMAP)) 1779 goto efault; 1780 1781 if (gup_flags & FOLL_WRITE) { 1782 if (!(vm_flags & VM_WRITE)) { 1783 if (!(gup_flags & FOLL_FORCE)) 1784 goto efault; 1785 /* 1786 * We used to let the write,force case do COW 1787 * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so 1788 * ptrace could set a breakpoint in a read-only 1789 * mapping of an executable, without corrupting 1790 * the file (yet only when that file had been 1791 * opened for writing!). Anon pages in shared 1792 * mappings are surprising: now just reject it. 1793 */ 1794 if (!is_cow_mapping(vm_flags)) { 1795 WARN_ON_ONCE(vm_flags & VM_MAYWRITE); 1796 goto efault; 1797 } 1798 } 1799 } else { 1800 if (!(vm_flags & VM_READ)) { 1801 if (!(gup_flags & FOLL_FORCE)) 1802 goto efault; 1803 /* 1804 * Is there actually any vma we can reach here 1805 * which does not have VM_MAYREAD set? 1806 */ 1807 if (!(vm_flags & VM_MAYREAD)) 1808 goto efault; 1809 } 1810 } 1811 1812 if (is_vm_hugetlb_page(vma)) { 1813 i = follow_hugetlb_page(mm, vma, pages, vmas, 1814 &start, &nr_pages, i, gup_flags); 1815 continue; 1816 } 1817 1818 do { 1819 struct page *page; 1820 unsigned int foll_flags = gup_flags; 1821 unsigned int page_increm; 1822 1823 /* 1824 * If we have a pending SIGKILL, don't keep faulting 1825 * pages and potentially allocating memory. 1826 */ 1827 if (unlikely(fatal_signal_pending(current))) 1828 return i ? i : -ERESTARTSYS; 1829 1830 cond_resched(); 1831 while (!(page = follow_page_mask(vma, start, 1832 foll_flags, &page_mask))) { 1833 int ret; 1834 unsigned int fault_flags = 0; 1835 1836 /* For mlock, just skip the stack guard page. */ 1837 if (foll_flags & FOLL_MLOCK) { 1838 if (stack_guard_page(vma, start)) 1839 goto next_page; 1840 } 1841 if (foll_flags & FOLL_WRITE) 1842 fault_flags |= FAULT_FLAG_WRITE; 1843 if (nonblocking) 1844 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1845 if (foll_flags & FOLL_NOWAIT) 1846 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1847 1848 ret = handle_mm_fault(mm, vma, start, 1849 fault_flags); 1850 1851 if (ret & VM_FAULT_ERROR) { 1852 if (ret & VM_FAULT_OOM) 1853 return i ? i : -ENOMEM; 1854 if (ret & (VM_FAULT_HWPOISON | 1855 VM_FAULT_HWPOISON_LARGE)) { 1856 if (i) 1857 return i; 1858 else if (gup_flags & FOLL_HWPOISON) 1859 return -EHWPOISON; 1860 else 1861 return -EFAULT; 1862 } 1863 if (ret & VM_FAULT_SIGBUS) 1864 goto efault; 1865 BUG(); 1866 } 1867 1868 if (tsk) { 1869 if (ret & VM_FAULT_MAJOR) 1870 tsk->maj_flt++; 1871 else 1872 tsk->min_flt++; 1873 } 1874 1875 if (ret & VM_FAULT_RETRY) { 1876 if (nonblocking) 1877 *nonblocking = 0; 1878 return i; 1879 } 1880 1881 /* 1882 * The VM_FAULT_WRITE bit tells us that 1883 * do_wp_page has broken COW when necessary, 1884 * even if maybe_mkwrite decided not to set 1885 * pte_write. We can thus safely do subsequent 1886 * page lookups as if they were reads. But only 1887 * do so when looping for pte_write is futile: 1888 * in some cases userspace may also be wanting 1889 * to write to the gotten user page, which a 1890 * read fault here might prevent (a readonly 1891 * page might get reCOWed by userspace write). 1892 */ 1893 if ((ret & VM_FAULT_WRITE) && 1894 !(vma->vm_flags & VM_WRITE)) 1895 foll_flags &= ~FOLL_WRITE; 1896 1897 cond_resched(); 1898 } 1899 if (IS_ERR(page)) 1900 return i ? i : PTR_ERR(page); 1901 if (pages) { 1902 pages[i] = page; 1903 1904 flush_anon_page(vma, page, start); 1905 flush_dcache_page(page); 1906 page_mask = 0; 1907 } 1908 next_page: 1909 if (vmas) { 1910 vmas[i] = vma; 1911 page_mask = 0; 1912 } 1913 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 1914 if (page_increm > nr_pages) 1915 page_increm = nr_pages; 1916 i += page_increm; 1917 start += page_increm * PAGE_SIZE; 1918 nr_pages -= page_increm; 1919 } while (nr_pages && start < vma->vm_end); 1920 } while (nr_pages); 1921 return i; 1922 efault: 1923 return i ? : -EFAULT; 1924 } 1925 EXPORT_SYMBOL(__get_user_pages); 1926 1927 /* 1928 * fixup_user_fault() - manually resolve a user page fault 1929 * @tsk: the task_struct to use for page fault accounting, or 1930 * NULL if faults are not to be recorded. 1931 * @mm: mm_struct of target mm 1932 * @address: user address 1933 * @fault_flags:flags to pass down to handle_mm_fault() 1934 * 1935 * This is meant to be called in the specific scenario where for locking reasons 1936 * we try to access user memory in atomic context (within a pagefault_disable() 1937 * section), this returns -EFAULT, and we want to resolve the user fault before 1938 * trying again. 1939 * 1940 * Typically this is meant to be used by the futex code. 1941 * 1942 * The main difference with get_user_pages() is that this function will 1943 * unconditionally call handle_mm_fault() which will in turn perform all the 1944 * necessary SW fixup of the dirty and young bits in the PTE, while 1945 * handle_mm_fault() only guarantees to update these in the struct page. 1946 * 1947 * This is important for some architectures where those bits also gate the 1948 * access permission to the page because they are maintained in software. On 1949 * such architectures, gup() will not be enough to make a subsequent access 1950 * succeed. 1951 * 1952 * This should be called with the mm_sem held for read. 1953 */ 1954 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1955 unsigned long address, unsigned int fault_flags) 1956 { 1957 struct vm_area_struct *vma; 1958 int ret; 1959 1960 vma = find_extend_vma(mm, address); 1961 if (!vma || address < vma->vm_start) 1962 return -EFAULT; 1963 1964 ret = handle_mm_fault(mm, vma, address, fault_flags); 1965 if (ret & VM_FAULT_ERROR) { 1966 if (ret & VM_FAULT_OOM) 1967 return -ENOMEM; 1968 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 1969 return -EHWPOISON; 1970 if (ret & VM_FAULT_SIGBUS) 1971 return -EFAULT; 1972 BUG(); 1973 } 1974 if (tsk) { 1975 if (ret & VM_FAULT_MAJOR) 1976 tsk->maj_flt++; 1977 else 1978 tsk->min_flt++; 1979 } 1980 return 0; 1981 } 1982 1983 /* 1984 * get_user_pages() - pin user pages in memory 1985 * @tsk: the task_struct to use for page fault accounting, or 1986 * NULL if faults are not to be recorded. 1987 * @mm: mm_struct of target mm 1988 * @start: starting user address 1989 * @nr_pages: number of pages from start to pin 1990 * @write: whether pages will be written to by the caller 1991 * @force: whether to force access even when user mapping is currently 1992 * protected (but never forces write access to shared mapping). 1993 * @pages: array that receives pointers to the pages pinned. 1994 * Should be at least nr_pages long. Or NULL, if caller 1995 * only intends to ensure the pages are faulted in. 1996 * @vmas: array of pointers to vmas corresponding to each page. 1997 * Or NULL if the caller does not require them. 1998 * 1999 * Returns number of pages pinned. This may be fewer than the number 2000 * requested. If nr_pages is 0 or negative, returns 0. If no pages 2001 * were pinned, returns -errno. Each page returned must be released 2002 * with a put_page() call when it is finished with. vmas will only 2003 * remain valid while mmap_sem is held. 2004 * 2005 * Must be called with mmap_sem held for read or write. 2006 * 2007 * get_user_pages walks a process's page tables and takes a reference to 2008 * each struct page that each user address corresponds to at a given 2009 * instant. That is, it takes the page that would be accessed if a user 2010 * thread accesses the given user virtual address at that instant. 2011 * 2012 * This does not guarantee that the page exists in the user mappings when 2013 * get_user_pages returns, and there may even be a completely different 2014 * page there in some cases (eg. if mmapped pagecache has been invalidated 2015 * and subsequently re faulted). However it does guarantee that the page 2016 * won't be freed completely. And mostly callers simply care that the page 2017 * contains data that was valid *at some point in time*. Typically, an IO 2018 * or similar operation cannot guarantee anything stronger anyway because 2019 * locks can't be held over the syscall boundary. 2020 * 2021 * If write=0, the page must not be written to. If the page is written to, 2022 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 2023 * after the page is finished with, and before put_page is called. 2024 * 2025 * get_user_pages is typically used for fewer-copy IO operations, to get a 2026 * handle on the memory by some means other than accesses via the user virtual 2027 * addresses. The pages may be submitted for DMA to devices or accessed via 2028 * their kernel linear mapping (via the kmap APIs). Care should be taken to 2029 * use the correct cache flushing APIs. 2030 * 2031 * See also get_user_pages_fast, for performance critical applications. 2032 */ 2033 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 2034 unsigned long start, unsigned long nr_pages, int write, 2035 int force, struct page **pages, struct vm_area_struct **vmas) 2036 { 2037 int flags = FOLL_TOUCH; 2038 2039 if (pages) 2040 flags |= FOLL_GET; 2041 if (write) 2042 flags |= FOLL_WRITE; 2043 if (force) 2044 flags |= FOLL_FORCE; 2045 2046 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 2047 NULL); 2048 } 2049 EXPORT_SYMBOL(get_user_pages); 2050 2051 /** 2052 * get_dump_page() - pin user page in memory while writing it to core dump 2053 * @addr: user address 2054 * 2055 * Returns struct page pointer of user page pinned for dump, 2056 * to be freed afterwards by page_cache_release() or put_page(). 2057 * 2058 * Returns NULL on any kind of failure - a hole must then be inserted into 2059 * the corefile, to preserve alignment with its headers; and also returns 2060 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2061 * allowing a hole to be left in the corefile to save diskspace. 2062 * 2063 * Called without mmap_sem, but after all other threads have been killed. 2064 */ 2065 #ifdef CONFIG_ELF_CORE 2066 struct page *get_dump_page(unsigned long addr) 2067 { 2068 struct vm_area_struct *vma; 2069 struct page *page; 2070 2071 if (__get_user_pages(current, current->mm, addr, 1, 2072 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 2073 NULL) < 1) 2074 return NULL; 2075 flush_cache_page(vma, addr, page_to_pfn(page)); 2076 return page; 2077 } 2078 #endif /* CONFIG_ELF_CORE */ 2079 2080 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2081 spinlock_t **ptl) 2082 { 2083 pgd_t * pgd = pgd_offset(mm, addr); 2084 pud_t * pud = pud_alloc(mm, pgd, addr); 2085 if (pud) { 2086 pmd_t * pmd = pmd_alloc(mm, pud, addr); 2087 if (pmd) { 2088 VM_BUG_ON(pmd_trans_huge(*pmd)); 2089 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2090 } 2091 } 2092 return NULL; 2093 } 2094 2095 /* 2096 * This is the old fallback for page remapping. 2097 * 2098 * For historical reasons, it only allows reserved pages. Only 2099 * old drivers should use this, and they needed to mark their 2100 * pages reserved for the old functions anyway. 2101 */ 2102 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2103 struct page *page, pgprot_t prot) 2104 { 2105 struct mm_struct *mm = vma->vm_mm; 2106 int retval; 2107 pte_t *pte; 2108 spinlock_t *ptl; 2109 2110 retval = -EINVAL; 2111 if (PageAnon(page)) 2112 goto out; 2113 retval = -ENOMEM; 2114 flush_dcache_page(page); 2115 pte = get_locked_pte(mm, addr, &ptl); 2116 if (!pte) 2117 goto out; 2118 retval = -EBUSY; 2119 if (!pte_none(*pte)) 2120 goto out_unlock; 2121 2122 /* Ok, finally just insert the thing.. */ 2123 get_page(page); 2124 inc_mm_counter_fast(mm, MM_FILEPAGES); 2125 page_add_file_rmap(page); 2126 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 2127 2128 retval = 0; 2129 pte_unmap_unlock(pte, ptl); 2130 return retval; 2131 out_unlock: 2132 pte_unmap_unlock(pte, ptl); 2133 out: 2134 return retval; 2135 } 2136 2137 /** 2138 * vm_insert_page - insert single page into user vma 2139 * @vma: user vma to map to 2140 * @addr: target user address of this page 2141 * @page: source kernel page 2142 * 2143 * This allows drivers to insert individual pages they've allocated 2144 * into a user vma. 2145 * 2146 * The page has to be a nice clean _individual_ kernel allocation. 2147 * If you allocate a compound page, you need to have marked it as 2148 * such (__GFP_COMP), or manually just split the page up yourself 2149 * (see split_page()). 2150 * 2151 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2152 * took an arbitrary page protection parameter. This doesn't allow 2153 * that. Your vma protection will have to be set up correctly, which 2154 * means that if you want a shared writable mapping, you'd better 2155 * ask for a shared writable mapping! 2156 * 2157 * The page does not need to be reserved. 2158 * 2159 * Usually this function is called from f_op->mmap() handler 2160 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 2161 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2162 * function from other places, for example from page-fault handler. 2163 */ 2164 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2165 struct page *page) 2166 { 2167 if (addr < vma->vm_start || addr >= vma->vm_end) 2168 return -EFAULT; 2169 if (!page_count(page)) 2170 return -EINVAL; 2171 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2172 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 2173 BUG_ON(vma->vm_flags & VM_PFNMAP); 2174 vma->vm_flags |= VM_MIXEDMAP; 2175 } 2176 return insert_page(vma, addr, page, vma->vm_page_prot); 2177 } 2178 EXPORT_SYMBOL(vm_insert_page); 2179 2180 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2181 unsigned long pfn, pgprot_t prot) 2182 { 2183 struct mm_struct *mm = vma->vm_mm; 2184 int retval; 2185 pte_t *pte, entry; 2186 spinlock_t *ptl; 2187 2188 retval = -ENOMEM; 2189 pte = get_locked_pte(mm, addr, &ptl); 2190 if (!pte) 2191 goto out; 2192 retval = -EBUSY; 2193 if (!pte_none(*pte)) 2194 goto out_unlock; 2195 2196 /* Ok, finally just insert the thing.. */ 2197 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2198 set_pte_at(mm, addr, pte, entry); 2199 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2200 2201 retval = 0; 2202 out_unlock: 2203 pte_unmap_unlock(pte, ptl); 2204 out: 2205 return retval; 2206 } 2207 2208 /** 2209 * vm_insert_pfn - insert single pfn into user vma 2210 * @vma: user vma to map to 2211 * @addr: target user address of this page 2212 * @pfn: source kernel pfn 2213 * 2214 * Similar to vm_insert_page, this allows drivers to insert individual pages 2215 * they've allocated into a user vma. Same comments apply. 2216 * 2217 * This function should only be called from a vm_ops->fault handler, and 2218 * in that case the handler should return NULL. 2219 * 2220 * vma cannot be a COW mapping. 2221 * 2222 * As this is called only for pages that do not currently exist, we 2223 * do not need to flush old virtual caches or the TLB. 2224 */ 2225 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2226 unsigned long pfn) 2227 { 2228 int ret; 2229 pgprot_t pgprot = vma->vm_page_prot; 2230 /* 2231 * Technically, architectures with pte_special can avoid all these 2232 * restrictions (same for remap_pfn_range). However we would like 2233 * consistency in testing and feature parity among all, so we should 2234 * try to keep these invariants in place for everybody. 2235 */ 2236 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2237 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2238 (VM_PFNMAP|VM_MIXEDMAP)); 2239 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2240 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2241 2242 if (addr < vma->vm_start || addr >= vma->vm_end) 2243 return -EFAULT; 2244 if (track_pfn_insert(vma, &pgprot, pfn)) 2245 return -EINVAL; 2246 2247 ret = insert_pfn(vma, addr, pfn, pgprot); 2248 2249 return ret; 2250 } 2251 EXPORT_SYMBOL(vm_insert_pfn); 2252 2253 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2254 unsigned long pfn) 2255 { 2256 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2257 2258 if (addr < vma->vm_start || addr >= vma->vm_end) 2259 return -EFAULT; 2260 2261 /* 2262 * If we don't have pte special, then we have to use the pfn_valid() 2263 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2264 * refcount the page if pfn_valid is true (hence insert_page rather 2265 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2266 * without pte special, it would there be refcounted as a normal page. 2267 */ 2268 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2269 struct page *page; 2270 2271 page = pfn_to_page(pfn); 2272 return insert_page(vma, addr, page, vma->vm_page_prot); 2273 } 2274 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2275 } 2276 EXPORT_SYMBOL(vm_insert_mixed); 2277 2278 /* 2279 * maps a range of physical memory into the requested pages. the old 2280 * mappings are removed. any references to nonexistent pages results 2281 * in null mappings (currently treated as "copy-on-access") 2282 */ 2283 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2284 unsigned long addr, unsigned long end, 2285 unsigned long pfn, pgprot_t prot) 2286 { 2287 pte_t *pte; 2288 spinlock_t *ptl; 2289 2290 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2291 if (!pte) 2292 return -ENOMEM; 2293 arch_enter_lazy_mmu_mode(); 2294 do { 2295 BUG_ON(!pte_none(*pte)); 2296 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2297 pfn++; 2298 } while (pte++, addr += PAGE_SIZE, addr != end); 2299 arch_leave_lazy_mmu_mode(); 2300 pte_unmap_unlock(pte - 1, ptl); 2301 return 0; 2302 } 2303 2304 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2305 unsigned long addr, unsigned long end, 2306 unsigned long pfn, pgprot_t prot) 2307 { 2308 pmd_t *pmd; 2309 unsigned long next; 2310 2311 pfn -= addr >> PAGE_SHIFT; 2312 pmd = pmd_alloc(mm, pud, addr); 2313 if (!pmd) 2314 return -ENOMEM; 2315 VM_BUG_ON(pmd_trans_huge(*pmd)); 2316 do { 2317 next = pmd_addr_end(addr, end); 2318 if (remap_pte_range(mm, pmd, addr, next, 2319 pfn + (addr >> PAGE_SHIFT), prot)) 2320 return -ENOMEM; 2321 } while (pmd++, addr = next, addr != end); 2322 return 0; 2323 } 2324 2325 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2326 unsigned long addr, unsigned long end, 2327 unsigned long pfn, pgprot_t prot) 2328 { 2329 pud_t *pud; 2330 unsigned long next; 2331 2332 pfn -= addr >> PAGE_SHIFT; 2333 pud = pud_alloc(mm, pgd, addr); 2334 if (!pud) 2335 return -ENOMEM; 2336 do { 2337 next = pud_addr_end(addr, end); 2338 if (remap_pmd_range(mm, pud, addr, next, 2339 pfn + (addr >> PAGE_SHIFT), prot)) 2340 return -ENOMEM; 2341 } while (pud++, addr = next, addr != end); 2342 return 0; 2343 } 2344 2345 /** 2346 * remap_pfn_range - remap kernel memory to userspace 2347 * @vma: user vma to map to 2348 * @addr: target user address to start at 2349 * @pfn: physical address of kernel memory 2350 * @size: size of map area 2351 * @prot: page protection flags for this mapping 2352 * 2353 * Note: this is only safe if the mm semaphore is held when called. 2354 */ 2355 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2356 unsigned long pfn, unsigned long size, pgprot_t prot) 2357 { 2358 pgd_t *pgd; 2359 unsigned long next; 2360 unsigned long end = addr + PAGE_ALIGN(size); 2361 struct mm_struct *mm = vma->vm_mm; 2362 int err; 2363 2364 /* 2365 * Physically remapped pages are special. Tell the 2366 * rest of the world about it: 2367 * VM_IO tells people not to look at these pages 2368 * (accesses can have side effects). 2369 * VM_PFNMAP tells the core MM that the base pages are just 2370 * raw PFN mappings, and do not have a "struct page" associated 2371 * with them. 2372 * VM_DONTEXPAND 2373 * Disable vma merging and expanding with mremap(). 2374 * VM_DONTDUMP 2375 * Omit vma from core dump, even when VM_IO turned off. 2376 * 2377 * There's a horrible special case to handle copy-on-write 2378 * behaviour that some programs depend on. We mark the "original" 2379 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2380 * See vm_normal_page() for details. 2381 */ 2382 if (is_cow_mapping(vma->vm_flags)) { 2383 if (addr != vma->vm_start || end != vma->vm_end) 2384 return -EINVAL; 2385 vma->vm_pgoff = pfn; 2386 } 2387 2388 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2389 if (err) 2390 return -EINVAL; 2391 2392 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2393 2394 BUG_ON(addr >= end); 2395 pfn -= addr >> PAGE_SHIFT; 2396 pgd = pgd_offset(mm, addr); 2397 flush_cache_range(vma, addr, end); 2398 do { 2399 next = pgd_addr_end(addr, end); 2400 err = remap_pud_range(mm, pgd, addr, next, 2401 pfn + (addr >> PAGE_SHIFT), prot); 2402 if (err) 2403 break; 2404 } while (pgd++, addr = next, addr != end); 2405 2406 if (err) 2407 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2408 2409 return err; 2410 } 2411 EXPORT_SYMBOL(remap_pfn_range); 2412 2413 /** 2414 * vm_iomap_memory - remap memory to userspace 2415 * @vma: user vma to map to 2416 * @start: start of area 2417 * @len: size of area 2418 * 2419 * This is a simplified io_remap_pfn_range() for common driver use. The 2420 * driver just needs to give us the physical memory range to be mapped, 2421 * we'll figure out the rest from the vma information. 2422 * 2423 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2424 * whatever write-combining details or similar. 2425 */ 2426 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2427 { 2428 unsigned long vm_len, pfn, pages; 2429 2430 /* Check that the physical memory area passed in looks valid */ 2431 if (start + len < start) 2432 return -EINVAL; 2433 /* 2434 * You *really* shouldn't map things that aren't page-aligned, 2435 * but we've historically allowed it because IO memory might 2436 * just have smaller alignment. 2437 */ 2438 len += start & ~PAGE_MASK; 2439 pfn = start >> PAGE_SHIFT; 2440 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2441 if (pfn + pages < pfn) 2442 return -EINVAL; 2443 2444 /* We start the mapping 'vm_pgoff' pages into the area */ 2445 if (vma->vm_pgoff > pages) 2446 return -EINVAL; 2447 pfn += vma->vm_pgoff; 2448 pages -= vma->vm_pgoff; 2449 2450 /* Can we fit all of the mapping? */ 2451 vm_len = vma->vm_end - vma->vm_start; 2452 if (vm_len >> PAGE_SHIFT > pages) 2453 return -EINVAL; 2454 2455 /* Ok, let it rip */ 2456 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2457 } 2458 EXPORT_SYMBOL(vm_iomap_memory); 2459 2460 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2461 unsigned long addr, unsigned long end, 2462 pte_fn_t fn, void *data) 2463 { 2464 pte_t *pte; 2465 int err; 2466 pgtable_t token; 2467 spinlock_t *uninitialized_var(ptl); 2468 2469 pte = (mm == &init_mm) ? 2470 pte_alloc_kernel(pmd, addr) : 2471 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2472 if (!pte) 2473 return -ENOMEM; 2474 2475 BUG_ON(pmd_huge(*pmd)); 2476 2477 arch_enter_lazy_mmu_mode(); 2478 2479 token = pmd_pgtable(*pmd); 2480 2481 do { 2482 err = fn(pte++, token, addr, data); 2483 if (err) 2484 break; 2485 } while (addr += PAGE_SIZE, addr != end); 2486 2487 arch_leave_lazy_mmu_mode(); 2488 2489 if (mm != &init_mm) 2490 pte_unmap_unlock(pte-1, ptl); 2491 return err; 2492 } 2493 2494 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2495 unsigned long addr, unsigned long end, 2496 pte_fn_t fn, void *data) 2497 { 2498 pmd_t *pmd; 2499 unsigned long next; 2500 int err; 2501 2502 BUG_ON(pud_huge(*pud)); 2503 2504 pmd = pmd_alloc(mm, pud, addr); 2505 if (!pmd) 2506 return -ENOMEM; 2507 do { 2508 next = pmd_addr_end(addr, end); 2509 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2510 if (err) 2511 break; 2512 } while (pmd++, addr = next, addr != end); 2513 return err; 2514 } 2515 2516 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2517 unsigned long addr, unsigned long end, 2518 pte_fn_t fn, void *data) 2519 { 2520 pud_t *pud; 2521 unsigned long next; 2522 int err; 2523 2524 pud = pud_alloc(mm, pgd, addr); 2525 if (!pud) 2526 return -ENOMEM; 2527 do { 2528 next = pud_addr_end(addr, end); 2529 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2530 if (err) 2531 break; 2532 } while (pud++, addr = next, addr != end); 2533 return err; 2534 } 2535 2536 /* 2537 * Scan a region of virtual memory, filling in page tables as necessary 2538 * and calling a provided function on each leaf page table. 2539 */ 2540 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2541 unsigned long size, pte_fn_t fn, void *data) 2542 { 2543 pgd_t *pgd; 2544 unsigned long next; 2545 unsigned long end = addr + size; 2546 int err; 2547 2548 BUG_ON(addr >= end); 2549 pgd = pgd_offset(mm, addr); 2550 do { 2551 next = pgd_addr_end(addr, end); 2552 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2553 if (err) 2554 break; 2555 } while (pgd++, addr = next, addr != end); 2556 2557 return err; 2558 } 2559 EXPORT_SYMBOL_GPL(apply_to_page_range); 2560 2561 /* 2562 * handle_pte_fault chooses page fault handler according to an entry 2563 * which was read non-atomically. Before making any commitment, on 2564 * those architectures or configurations (e.g. i386 with PAE) which 2565 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2566 * must check under lock before unmapping the pte and proceeding 2567 * (but do_wp_page is only called after already making such a check; 2568 * and do_anonymous_page can safely check later on). 2569 */ 2570 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2571 pte_t *page_table, pte_t orig_pte) 2572 { 2573 int same = 1; 2574 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2575 if (sizeof(pte_t) > sizeof(unsigned long)) { 2576 spinlock_t *ptl = pte_lockptr(mm, pmd); 2577 spin_lock(ptl); 2578 same = pte_same(*page_table, orig_pte); 2579 spin_unlock(ptl); 2580 } 2581 #endif 2582 pte_unmap(page_table); 2583 return same; 2584 } 2585 2586 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2587 { 2588 debug_dma_assert_idle(src); 2589 2590 /* 2591 * If the source page was a PFN mapping, we don't have 2592 * a "struct page" for it. We do a best-effort copy by 2593 * just copying from the original user address. If that 2594 * fails, we just zero-fill it. Live with it. 2595 */ 2596 if (unlikely(!src)) { 2597 void *kaddr = kmap_atomic(dst); 2598 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2599 2600 /* 2601 * This really shouldn't fail, because the page is there 2602 * in the page tables. But it might just be unreadable, 2603 * in which case we just give up and fill the result with 2604 * zeroes. 2605 */ 2606 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2607 clear_page(kaddr); 2608 kunmap_atomic(kaddr); 2609 flush_dcache_page(dst); 2610 } else 2611 copy_user_highpage(dst, src, va, vma); 2612 } 2613 2614 /* 2615 * Notify the address space that the page is about to become writable so that 2616 * it can prohibit this or wait for the page to get into an appropriate state. 2617 * 2618 * We do this without the lock held, so that it can sleep if it needs to. 2619 */ 2620 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 2621 unsigned long address) 2622 { 2623 struct vm_fault vmf; 2624 int ret; 2625 2626 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2627 vmf.pgoff = page->index; 2628 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2629 vmf.page = page; 2630 2631 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 2632 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2633 return ret; 2634 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2635 lock_page(page); 2636 if (!page->mapping) { 2637 unlock_page(page); 2638 return 0; /* retry */ 2639 } 2640 ret |= VM_FAULT_LOCKED; 2641 } else 2642 VM_BUG_ON_PAGE(!PageLocked(page), page); 2643 return ret; 2644 } 2645 2646 /* 2647 * This routine handles present pages, when users try to write 2648 * to a shared page. It is done by copying the page to a new address 2649 * and decrementing the shared-page counter for the old page. 2650 * 2651 * Note that this routine assumes that the protection checks have been 2652 * done by the caller (the low-level page fault routine in most cases). 2653 * Thus we can safely just mark it writable once we've done any necessary 2654 * COW. 2655 * 2656 * We also mark the page dirty at this point even though the page will 2657 * change only once the write actually happens. This avoids a few races, 2658 * and potentially makes it more efficient. 2659 * 2660 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2661 * but allow concurrent faults), with pte both mapped and locked. 2662 * We return with mmap_sem still held, but pte unmapped and unlocked. 2663 */ 2664 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2665 unsigned long address, pte_t *page_table, pmd_t *pmd, 2666 spinlock_t *ptl, pte_t orig_pte) 2667 __releases(ptl) 2668 { 2669 struct page *old_page, *new_page = NULL; 2670 pte_t entry; 2671 int ret = 0; 2672 int page_mkwrite = 0; 2673 struct page *dirty_page = NULL; 2674 unsigned long mmun_start = 0; /* For mmu_notifiers */ 2675 unsigned long mmun_end = 0; /* For mmu_notifiers */ 2676 2677 old_page = vm_normal_page(vma, address, orig_pte); 2678 if (!old_page) { 2679 /* 2680 * VM_MIXEDMAP !pfn_valid() case 2681 * 2682 * We should not cow pages in a shared writeable mapping. 2683 * Just mark the pages writable as we can't do any dirty 2684 * accounting on raw pfn maps. 2685 */ 2686 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2687 (VM_WRITE|VM_SHARED)) 2688 goto reuse; 2689 goto gotten; 2690 } 2691 2692 /* 2693 * Take out anonymous pages first, anonymous shared vmas are 2694 * not dirty accountable. 2695 */ 2696 if (PageAnon(old_page) && !PageKsm(old_page)) { 2697 if (!trylock_page(old_page)) { 2698 page_cache_get(old_page); 2699 pte_unmap_unlock(page_table, ptl); 2700 lock_page(old_page); 2701 page_table = pte_offset_map_lock(mm, pmd, address, 2702 &ptl); 2703 if (!pte_same(*page_table, orig_pte)) { 2704 unlock_page(old_page); 2705 goto unlock; 2706 } 2707 page_cache_release(old_page); 2708 } 2709 if (reuse_swap_page(old_page)) { 2710 /* 2711 * The page is all ours. Move it to our anon_vma so 2712 * the rmap code will not search our parent or siblings. 2713 * Protected against the rmap code by the page lock. 2714 */ 2715 page_move_anon_rmap(old_page, vma, address); 2716 unlock_page(old_page); 2717 goto reuse; 2718 } 2719 unlock_page(old_page); 2720 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2721 (VM_WRITE|VM_SHARED))) { 2722 /* 2723 * Only catch write-faults on shared writable pages, 2724 * read-only shared pages can get COWed by 2725 * get_user_pages(.write=1, .force=1). 2726 */ 2727 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2728 int tmp; 2729 page_cache_get(old_page); 2730 pte_unmap_unlock(page_table, ptl); 2731 tmp = do_page_mkwrite(vma, old_page, address); 2732 if (unlikely(!tmp || (tmp & 2733 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2734 page_cache_release(old_page); 2735 return tmp; 2736 } 2737 /* 2738 * Since we dropped the lock we need to revalidate 2739 * the PTE as someone else may have changed it. If 2740 * they did, we just return, as we can count on the 2741 * MMU to tell us if they didn't also make it writable. 2742 */ 2743 page_table = pte_offset_map_lock(mm, pmd, address, 2744 &ptl); 2745 if (!pte_same(*page_table, orig_pte)) { 2746 unlock_page(old_page); 2747 goto unlock; 2748 } 2749 2750 page_mkwrite = 1; 2751 } 2752 dirty_page = old_page; 2753 get_page(dirty_page); 2754 2755 reuse: 2756 /* 2757 * Clear the pages cpupid information as the existing 2758 * information potentially belongs to a now completely 2759 * unrelated process. 2760 */ 2761 if (old_page) 2762 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1); 2763 2764 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2765 entry = pte_mkyoung(orig_pte); 2766 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2767 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2768 update_mmu_cache(vma, address, page_table); 2769 pte_unmap_unlock(page_table, ptl); 2770 ret |= VM_FAULT_WRITE; 2771 2772 if (!dirty_page) 2773 return ret; 2774 2775 /* 2776 * Yes, Virginia, this is actually required to prevent a race 2777 * with clear_page_dirty_for_io() from clearing the page dirty 2778 * bit after it clear all dirty ptes, but before a racing 2779 * do_wp_page installs a dirty pte. 2780 * 2781 * do_shared_fault is protected similarly. 2782 */ 2783 if (!page_mkwrite) { 2784 wait_on_page_locked(dirty_page); 2785 set_page_dirty_balance(dirty_page); 2786 /* file_update_time outside page_lock */ 2787 if (vma->vm_file) 2788 file_update_time(vma->vm_file); 2789 } 2790 put_page(dirty_page); 2791 if (page_mkwrite) { 2792 struct address_space *mapping = dirty_page->mapping; 2793 2794 set_page_dirty(dirty_page); 2795 unlock_page(dirty_page); 2796 page_cache_release(dirty_page); 2797 if (mapping) { 2798 /* 2799 * Some device drivers do not set page.mapping 2800 * but still dirty their pages 2801 */ 2802 balance_dirty_pages_ratelimited(mapping); 2803 } 2804 } 2805 2806 return ret; 2807 } 2808 2809 /* 2810 * Ok, we need to copy. Oh, well.. 2811 */ 2812 page_cache_get(old_page); 2813 gotten: 2814 pte_unmap_unlock(page_table, ptl); 2815 2816 if (unlikely(anon_vma_prepare(vma))) 2817 goto oom; 2818 2819 if (is_zero_pfn(pte_pfn(orig_pte))) { 2820 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2821 if (!new_page) 2822 goto oom; 2823 } else { 2824 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2825 if (!new_page) 2826 goto oom; 2827 cow_user_page(new_page, old_page, address, vma); 2828 } 2829 __SetPageUptodate(new_page); 2830 2831 if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) 2832 goto oom_free_new; 2833 2834 mmun_start = address & PAGE_MASK; 2835 mmun_end = mmun_start + PAGE_SIZE; 2836 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2837 2838 /* 2839 * Re-check the pte - we dropped the lock 2840 */ 2841 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2842 if (likely(pte_same(*page_table, orig_pte))) { 2843 if (old_page) { 2844 if (!PageAnon(old_page)) { 2845 dec_mm_counter_fast(mm, MM_FILEPAGES); 2846 inc_mm_counter_fast(mm, MM_ANONPAGES); 2847 } 2848 } else 2849 inc_mm_counter_fast(mm, MM_ANONPAGES); 2850 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2851 entry = mk_pte(new_page, vma->vm_page_prot); 2852 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2853 /* 2854 * Clear the pte entry and flush it first, before updating the 2855 * pte with the new entry. This will avoid a race condition 2856 * seen in the presence of one thread doing SMC and another 2857 * thread doing COW. 2858 */ 2859 ptep_clear_flush(vma, address, page_table); 2860 page_add_new_anon_rmap(new_page, vma, address); 2861 /* 2862 * We call the notify macro here because, when using secondary 2863 * mmu page tables (such as kvm shadow page tables), we want the 2864 * new page to be mapped directly into the secondary page table. 2865 */ 2866 set_pte_at_notify(mm, address, page_table, entry); 2867 update_mmu_cache(vma, address, page_table); 2868 if (old_page) { 2869 /* 2870 * Only after switching the pte to the new page may 2871 * we remove the mapcount here. Otherwise another 2872 * process may come and find the rmap count decremented 2873 * before the pte is switched to the new page, and 2874 * "reuse" the old page writing into it while our pte 2875 * here still points into it and can be read by other 2876 * threads. 2877 * 2878 * The critical issue is to order this 2879 * page_remove_rmap with the ptp_clear_flush above. 2880 * Those stores are ordered by (if nothing else,) 2881 * the barrier present in the atomic_add_negative 2882 * in page_remove_rmap. 2883 * 2884 * Then the TLB flush in ptep_clear_flush ensures that 2885 * no process can access the old page before the 2886 * decremented mapcount is visible. And the old page 2887 * cannot be reused until after the decremented 2888 * mapcount is visible. So transitively, TLBs to 2889 * old page will be flushed before it can be reused. 2890 */ 2891 page_remove_rmap(old_page); 2892 } 2893 2894 /* Free the old page.. */ 2895 new_page = old_page; 2896 ret |= VM_FAULT_WRITE; 2897 } else 2898 mem_cgroup_uncharge_page(new_page); 2899 2900 if (new_page) 2901 page_cache_release(new_page); 2902 unlock: 2903 pte_unmap_unlock(page_table, ptl); 2904 if (mmun_end > mmun_start) 2905 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2906 if (old_page) { 2907 /* 2908 * Don't let another task, with possibly unlocked vma, 2909 * keep the mlocked page. 2910 */ 2911 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2912 lock_page(old_page); /* LRU manipulation */ 2913 munlock_vma_page(old_page); 2914 unlock_page(old_page); 2915 } 2916 page_cache_release(old_page); 2917 } 2918 return ret; 2919 oom_free_new: 2920 page_cache_release(new_page); 2921 oom: 2922 if (old_page) 2923 page_cache_release(old_page); 2924 return VM_FAULT_OOM; 2925 } 2926 2927 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2928 unsigned long start_addr, unsigned long end_addr, 2929 struct zap_details *details) 2930 { 2931 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2932 } 2933 2934 static inline void unmap_mapping_range_tree(struct rb_root *root, 2935 struct zap_details *details) 2936 { 2937 struct vm_area_struct *vma; 2938 pgoff_t vba, vea, zba, zea; 2939 2940 vma_interval_tree_foreach(vma, root, 2941 details->first_index, details->last_index) { 2942 2943 vba = vma->vm_pgoff; 2944 vea = vba + vma_pages(vma) - 1; 2945 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2946 zba = details->first_index; 2947 if (zba < vba) 2948 zba = vba; 2949 zea = details->last_index; 2950 if (zea > vea) 2951 zea = vea; 2952 2953 unmap_mapping_range_vma(vma, 2954 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2955 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2956 details); 2957 } 2958 } 2959 2960 static inline void unmap_mapping_range_list(struct list_head *head, 2961 struct zap_details *details) 2962 { 2963 struct vm_area_struct *vma; 2964 2965 /* 2966 * In nonlinear VMAs there is no correspondence between virtual address 2967 * offset and file offset. So we must perform an exhaustive search 2968 * across *all* the pages in each nonlinear VMA, not just the pages 2969 * whose virtual address lies outside the file truncation point. 2970 */ 2971 list_for_each_entry(vma, head, shared.nonlinear) { 2972 details->nonlinear_vma = vma; 2973 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2974 } 2975 } 2976 2977 /** 2978 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2979 * @mapping: the address space containing mmaps to be unmapped. 2980 * @holebegin: byte in first page to unmap, relative to the start of 2981 * the underlying file. This will be rounded down to a PAGE_SIZE 2982 * boundary. Note that this is different from truncate_pagecache(), which 2983 * must keep the partial page. In contrast, we must get rid of 2984 * partial pages. 2985 * @holelen: size of prospective hole in bytes. This will be rounded 2986 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2987 * end of the file. 2988 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2989 * but 0 when invalidating pagecache, don't throw away private data. 2990 */ 2991 void unmap_mapping_range(struct address_space *mapping, 2992 loff_t const holebegin, loff_t const holelen, int even_cows) 2993 { 2994 struct zap_details details; 2995 pgoff_t hba = holebegin >> PAGE_SHIFT; 2996 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2997 2998 /* Check for overflow. */ 2999 if (sizeof(holelen) > sizeof(hlen)) { 3000 long long holeend = 3001 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3002 if (holeend & ~(long long)ULONG_MAX) 3003 hlen = ULONG_MAX - hba + 1; 3004 } 3005 3006 details.check_mapping = even_cows? NULL: mapping; 3007 details.nonlinear_vma = NULL; 3008 details.first_index = hba; 3009 details.last_index = hba + hlen - 1; 3010 if (details.last_index < details.first_index) 3011 details.last_index = ULONG_MAX; 3012 3013 3014 mutex_lock(&mapping->i_mmap_mutex); 3015 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 3016 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3017 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 3018 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 3019 mutex_unlock(&mapping->i_mmap_mutex); 3020 } 3021 EXPORT_SYMBOL(unmap_mapping_range); 3022 3023 /* 3024 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3025 * but allow concurrent faults), and pte mapped but not yet locked. 3026 * We return with mmap_sem still held, but pte unmapped and unlocked. 3027 */ 3028 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 3029 unsigned long address, pte_t *page_table, pmd_t *pmd, 3030 unsigned int flags, pte_t orig_pte) 3031 { 3032 spinlock_t *ptl; 3033 struct page *page, *swapcache; 3034 swp_entry_t entry; 3035 pte_t pte; 3036 int locked; 3037 struct mem_cgroup *ptr; 3038 int exclusive = 0; 3039 int ret = 0; 3040 3041 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3042 goto out; 3043 3044 entry = pte_to_swp_entry(orig_pte); 3045 if (unlikely(non_swap_entry(entry))) { 3046 if (is_migration_entry(entry)) { 3047 migration_entry_wait(mm, pmd, address); 3048 } else if (is_hwpoison_entry(entry)) { 3049 ret = VM_FAULT_HWPOISON; 3050 } else { 3051 print_bad_pte(vma, address, orig_pte, NULL); 3052 ret = VM_FAULT_SIGBUS; 3053 } 3054 goto out; 3055 } 3056 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3057 page = lookup_swap_cache(entry); 3058 if (!page) { 3059 page = swapin_readahead(entry, 3060 GFP_HIGHUSER_MOVABLE, vma, address); 3061 if (!page) { 3062 /* 3063 * Back out if somebody else faulted in this pte 3064 * while we released the pte lock. 3065 */ 3066 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3067 if (likely(pte_same(*page_table, orig_pte))) 3068 ret = VM_FAULT_OOM; 3069 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3070 goto unlock; 3071 } 3072 3073 /* Had to read the page from swap area: Major fault */ 3074 ret = VM_FAULT_MAJOR; 3075 count_vm_event(PGMAJFAULT); 3076 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 3077 } else if (PageHWPoison(page)) { 3078 /* 3079 * hwpoisoned dirty swapcache pages are kept for killing 3080 * owner processes (which may be unknown at hwpoison time) 3081 */ 3082 ret = VM_FAULT_HWPOISON; 3083 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3084 swapcache = page; 3085 goto out_release; 3086 } 3087 3088 swapcache = page; 3089 locked = lock_page_or_retry(page, mm, flags); 3090 3091 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3092 if (!locked) { 3093 ret |= VM_FAULT_RETRY; 3094 goto out_release; 3095 } 3096 3097 /* 3098 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3099 * release the swapcache from under us. The page pin, and pte_same 3100 * test below, are not enough to exclude that. Even if it is still 3101 * swapcache, we need to check that the page's swap has not changed. 3102 */ 3103 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 3104 goto out_page; 3105 3106 page = ksm_might_need_to_copy(page, vma, address); 3107 if (unlikely(!page)) { 3108 ret = VM_FAULT_OOM; 3109 page = swapcache; 3110 goto out_page; 3111 } 3112 3113 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 3114 ret = VM_FAULT_OOM; 3115 goto out_page; 3116 } 3117 3118 /* 3119 * Back out if somebody else already faulted in this pte. 3120 */ 3121 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3122 if (unlikely(!pte_same(*page_table, orig_pte))) 3123 goto out_nomap; 3124 3125 if (unlikely(!PageUptodate(page))) { 3126 ret = VM_FAULT_SIGBUS; 3127 goto out_nomap; 3128 } 3129 3130 /* 3131 * The page isn't present yet, go ahead with the fault. 3132 * 3133 * Be careful about the sequence of operations here. 3134 * To get its accounting right, reuse_swap_page() must be called 3135 * while the page is counted on swap but not yet in mapcount i.e. 3136 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3137 * must be called after the swap_free(), or it will never succeed. 3138 * Because delete_from_swap_page() may be called by reuse_swap_page(), 3139 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 3140 * in page->private. In this case, a record in swap_cgroup is silently 3141 * discarded at swap_free(). 3142 */ 3143 3144 inc_mm_counter_fast(mm, MM_ANONPAGES); 3145 dec_mm_counter_fast(mm, MM_SWAPENTS); 3146 pte = mk_pte(page, vma->vm_page_prot); 3147 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 3148 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3149 flags &= ~FAULT_FLAG_WRITE; 3150 ret |= VM_FAULT_WRITE; 3151 exclusive = 1; 3152 } 3153 flush_icache_page(vma, page); 3154 if (pte_swp_soft_dirty(orig_pte)) 3155 pte = pte_mksoft_dirty(pte); 3156 set_pte_at(mm, address, page_table, pte); 3157 if (page == swapcache) 3158 do_page_add_anon_rmap(page, vma, address, exclusive); 3159 else /* ksm created a completely new copy */ 3160 page_add_new_anon_rmap(page, vma, address); 3161 /* It's better to call commit-charge after rmap is established */ 3162 mem_cgroup_commit_charge_swapin(page, ptr); 3163 3164 swap_free(entry); 3165 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3166 try_to_free_swap(page); 3167 unlock_page(page); 3168 if (page != swapcache) { 3169 /* 3170 * Hold the lock to avoid the swap entry to be reused 3171 * until we take the PT lock for the pte_same() check 3172 * (to avoid false positives from pte_same). For 3173 * further safety release the lock after the swap_free 3174 * so that the swap count won't change under a 3175 * parallel locked swapcache. 3176 */ 3177 unlock_page(swapcache); 3178 page_cache_release(swapcache); 3179 } 3180 3181 if (flags & FAULT_FLAG_WRITE) { 3182 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 3183 if (ret & VM_FAULT_ERROR) 3184 ret &= VM_FAULT_ERROR; 3185 goto out; 3186 } 3187 3188 /* No need to invalidate - it was non-present before */ 3189 update_mmu_cache(vma, address, page_table); 3190 unlock: 3191 pte_unmap_unlock(page_table, ptl); 3192 out: 3193 return ret; 3194 out_nomap: 3195 mem_cgroup_cancel_charge_swapin(ptr); 3196 pte_unmap_unlock(page_table, ptl); 3197 out_page: 3198 unlock_page(page); 3199 out_release: 3200 page_cache_release(page); 3201 if (page != swapcache) { 3202 unlock_page(swapcache); 3203 page_cache_release(swapcache); 3204 } 3205 return ret; 3206 } 3207 3208 /* 3209 * This is like a special single-page "expand_{down|up}wards()", 3210 * except we must first make sure that 'address{-|+}PAGE_SIZE' 3211 * doesn't hit another vma. 3212 */ 3213 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 3214 { 3215 address &= PAGE_MASK; 3216 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 3217 struct vm_area_struct *prev = vma->vm_prev; 3218 3219 /* 3220 * Is there a mapping abutting this one below? 3221 * 3222 * That's only ok if it's the same stack mapping 3223 * that has gotten split.. 3224 */ 3225 if (prev && prev->vm_end == address) 3226 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3227 3228 expand_downwards(vma, address - PAGE_SIZE); 3229 } 3230 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3231 struct vm_area_struct *next = vma->vm_next; 3232 3233 /* As VM_GROWSDOWN but s/below/above/ */ 3234 if (next && next->vm_start == address + PAGE_SIZE) 3235 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3236 3237 expand_upwards(vma, address + PAGE_SIZE); 3238 } 3239 return 0; 3240 } 3241 3242 /* 3243 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3244 * but allow concurrent faults), and pte mapped but not yet locked. 3245 * We return with mmap_sem still held, but pte unmapped and unlocked. 3246 */ 3247 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3248 unsigned long address, pte_t *page_table, pmd_t *pmd, 3249 unsigned int flags) 3250 { 3251 struct page *page; 3252 spinlock_t *ptl; 3253 pte_t entry; 3254 3255 pte_unmap(page_table); 3256 3257 /* Check if we need to add a guard page to the stack */ 3258 if (check_stack_guard_page(vma, address) < 0) 3259 return VM_FAULT_SIGBUS; 3260 3261 /* Use the zero-page for reads */ 3262 if (!(flags & FAULT_FLAG_WRITE)) { 3263 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3264 vma->vm_page_prot)); 3265 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3266 if (!pte_none(*page_table)) 3267 goto unlock; 3268 goto setpte; 3269 } 3270 3271 /* Allocate our own private page. */ 3272 if (unlikely(anon_vma_prepare(vma))) 3273 goto oom; 3274 page = alloc_zeroed_user_highpage_movable(vma, address); 3275 if (!page) 3276 goto oom; 3277 /* 3278 * The memory barrier inside __SetPageUptodate makes sure that 3279 * preceeding stores to the page contents become visible before 3280 * the set_pte_at() write. 3281 */ 3282 __SetPageUptodate(page); 3283 3284 if (mem_cgroup_charge_anon(page, mm, GFP_KERNEL)) 3285 goto oom_free_page; 3286 3287 entry = mk_pte(page, vma->vm_page_prot); 3288 if (vma->vm_flags & VM_WRITE) 3289 entry = pte_mkwrite(pte_mkdirty(entry)); 3290 3291 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3292 if (!pte_none(*page_table)) 3293 goto release; 3294 3295 inc_mm_counter_fast(mm, MM_ANONPAGES); 3296 page_add_new_anon_rmap(page, vma, address); 3297 setpte: 3298 set_pte_at(mm, address, page_table, entry); 3299 3300 /* No need to invalidate - it was non-present before */ 3301 update_mmu_cache(vma, address, page_table); 3302 unlock: 3303 pte_unmap_unlock(page_table, ptl); 3304 return 0; 3305 release: 3306 mem_cgroup_uncharge_page(page); 3307 page_cache_release(page); 3308 goto unlock; 3309 oom_free_page: 3310 page_cache_release(page); 3311 oom: 3312 return VM_FAULT_OOM; 3313 } 3314 3315 static int __do_fault(struct vm_area_struct *vma, unsigned long address, 3316 pgoff_t pgoff, unsigned int flags, struct page **page) 3317 { 3318 struct vm_fault vmf; 3319 int ret; 3320 3321 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3322 vmf.pgoff = pgoff; 3323 vmf.flags = flags; 3324 vmf.page = NULL; 3325 3326 ret = vma->vm_ops->fault(vma, &vmf); 3327 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3328 return ret; 3329 3330 if (unlikely(PageHWPoison(vmf.page))) { 3331 if (ret & VM_FAULT_LOCKED) 3332 unlock_page(vmf.page); 3333 page_cache_release(vmf.page); 3334 return VM_FAULT_HWPOISON; 3335 } 3336 3337 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3338 lock_page(vmf.page); 3339 else 3340 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 3341 3342 *page = vmf.page; 3343 return ret; 3344 } 3345 3346 /** 3347 * do_set_pte - setup new PTE entry for given page and add reverse page mapping. 3348 * 3349 * @vma: virtual memory area 3350 * @address: user virtual address 3351 * @page: page to map 3352 * @pte: pointer to target page table entry 3353 * @write: true, if new entry is writable 3354 * @anon: true, if it's anonymous page 3355 * 3356 * Caller must hold page table lock relevant for @pte. 3357 * 3358 * Target users are page handler itself and implementations of 3359 * vm_ops->map_pages. 3360 */ 3361 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 3362 struct page *page, pte_t *pte, bool write, bool anon) 3363 { 3364 pte_t entry; 3365 3366 flush_icache_page(vma, page); 3367 entry = mk_pte(page, vma->vm_page_prot); 3368 if (write) 3369 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3370 else if (pte_file(*pte) && pte_file_soft_dirty(*pte)) 3371 pte_mksoft_dirty(entry); 3372 if (anon) { 3373 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3374 page_add_new_anon_rmap(page, vma, address); 3375 } else { 3376 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES); 3377 page_add_file_rmap(page); 3378 } 3379 set_pte_at(vma->vm_mm, address, pte, entry); 3380 3381 /* no need to invalidate: a not-present page won't be cached */ 3382 update_mmu_cache(vma, address, pte); 3383 } 3384 3385 #define FAULT_AROUND_ORDER 4 3386 3387 #ifdef CONFIG_DEBUG_FS 3388 static unsigned int fault_around_order = FAULT_AROUND_ORDER; 3389 3390 static int fault_around_order_get(void *data, u64 *val) 3391 { 3392 *val = fault_around_order; 3393 return 0; 3394 } 3395 3396 static int fault_around_order_set(void *data, u64 val) 3397 { 3398 BUILD_BUG_ON((1UL << FAULT_AROUND_ORDER) > PTRS_PER_PTE); 3399 if (1UL << val > PTRS_PER_PTE) 3400 return -EINVAL; 3401 fault_around_order = val; 3402 return 0; 3403 } 3404 DEFINE_SIMPLE_ATTRIBUTE(fault_around_order_fops, 3405 fault_around_order_get, fault_around_order_set, "%llu\n"); 3406 3407 static int __init fault_around_debugfs(void) 3408 { 3409 void *ret; 3410 3411 ret = debugfs_create_file("fault_around_order", 0644, NULL, NULL, 3412 &fault_around_order_fops); 3413 if (!ret) 3414 pr_warn("Failed to create fault_around_order in debugfs"); 3415 return 0; 3416 } 3417 late_initcall(fault_around_debugfs); 3418 3419 static inline unsigned long fault_around_pages(void) 3420 { 3421 return 1UL << fault_around_order; 3422 } 3423 3424 static inline unsigned long fault_around_mask(void) 3425 { 3426 return ~((1UL << (PAGE_SHIFT + fault_around_order)) - 1); 3427 } 3428 #else 3429 static inline unsigned long fault_around_pages(void) 3430 { 3431 unsigned long nr_pages; 3432 3433 nr_pages = 1UL << FAULT_AROUND_ORDER; 3434 BUILD_BUG_ON(nr_pages > PTRS_PER_PTE); 3435 return nr_pages; 3436 } 3437 3438 static inline unsigned long fault_around_mask(void) 3439 { 3440 return ~((1UL << (PAGE_SHIFT + FAULT_AROUND_ORDER)) - 1); 3441 } 3442 #endif 3443 3444 static void do_fault_around(struct vm_area_struct *vma, unsigned long address, 3445 pte_t *pte, pgoff_t pgoff, unsigned int flags) 3446 { 3447 unsigned long start_addr; 3448 pgoff_t max_pgoff; 3449 struct vm_fault vmf; 3450 int off; 3451 3452 start_addr = max(address & fault_around_mask(), vma->vm_start); 3453 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3454 pte -= off; 3455 pgoff -= off; 3456 3457 /* 3458 * max_pgoff is either end of page table or end of vma 3459 * or fault_around_pages() from pgoff, depending what is neast. 3460 */ 3461 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3462 PTRS_PER_PTE - 1; 3463 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, 3464 pgoff + fault_around_pages() - 1); 3465 3466 /* Check if it makes any sense to call ->map_pages */ 3467 while (!pte_none(*pte)) { 3468 if (++pgoff > max_pgoff) 3469 return; 3470 start_addr += PAGE_SIZE; 3471 if (start_addr >= vma->vm_end) 3472 return; 3473 pte++; 3474 } 3475 3476 vmf.virtual_address = (void __user *) start_addr; 3477 vmf.pte = pte; 3478 vmf.pgoff = pgoff; 3479 vmf.max_pgoff = max_pgoff; 3480 vmf.flags = flags; 3481 vma->vm_ops->map_pages(vma, &vmf); 3482 } 3483 3484 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3485 unsigned long address, pmd_t *pmd, 3486 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3487 { 3488 struct page *fault_page; 3489 spinlock_t *ptl; 3490 pte_t *pte; 3491 int ret = 0; 3492 3493 /* 3494 * Let's call ->map_pages() first and use ->fault() as fallback 3495 * if page by the offset is not ready to be mapped (cold cache or 3496 * something). 3497 */ 3498 if (vma->vm_ops->map_pages) { 3499 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3500 do_fault_around(vma, address, pte, pgoff, flags); 3501 if (!pte_same(*pte, orig_pte)) 3502 goto unlock_out; 3503 pte_unmap_unlock(pte, ptl); 3504 } 3505 3506 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 3507 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3508 return ret; 3509 3510 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3511 if (unlikely(!pte_same(*pte, orig_pte))) { 3512 pte_unmap_unlock(pte, ptl); 3513 unlock_page(fault_page); 3514 page_cache_release(fault_page); 3515 return ret; 3516 } 3517 do_set_pte(vma, address, fault_page, pte, false, false); 3518 unlock_page(fault_page); 3519 unlock_out: 3520 pte_unmap_unlock(pte, ptl); 3521 return ret; 3522 } 3523 3524 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3525 unsigned long address, pmd_t *pmd, 3526 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3527 { 3528 struct page *fault_page, *new_page; 3529 spinlock_t *ptl; 3530 pte_t *pte; 3531 int ret; 3532 3533 if (unlikely(anon_vma_prepare(vma))) 3534 return VM_FAULT_OOM; 3535 3536 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3537 if (!new_page) 3538 return VM_FAULT_OOM; 3539 3540 if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) { 3541 page_cache_release(new_page); 3542 return VM_FAULT_OOM; 3543 } 3544 3545 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 3546 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3547 goto uncharge_out; 3548 3549 copy_user_highpage(new_page, fault_page, address, vma); 3550 __SetPageUptodate(new_page); 3551 3552 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3553 if (unlikely(!pte_same(*pte, orig_pte))) { 3554 pte_unmap_unlock(pte, ptl); 3555 unlock_page(fault_page); 3556 page_cache_release(fault_page); 3557 goto uncharge_out; 3558 } 3559 do_set_pte(vma, address, new_page, pte, true, true); 3560 pte_unmap_unlock(pte, ptl); 3561 unlock_page(fault_page); 3562 page_cache_release(fault_page); 3563 return ret; 3564 uncharge_out: 3565 mem_cgroup_uncharge_page(new_page); 3566 page_cache_release(new_page); 3567 return ret; 3568 } 3569 3570 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3571 unsigned long address, pmd_t *pmd, 3572 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3573 { 3574 struct page *fault_page; 3575 struct address_space *mapping; 3576 spinlock_t *ptl; 3577 pte_t *pte; 3578 int dirtied = 0; 3579 int ret, tmp; 3580 3581 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 3582 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3583 return ret; 3584 3585 /* 3586 * Check if the backing address space wants to know that the page is 3587 * about to become writable 3588 */ 3589 if (vma->vm_ops->page_mkwrite) { 3590 unlock_page(fault_page); 3591 tmp = do_page_mkwrite(vma, fault_page, address); 3592 if (unlikely(!tmp || 3593 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3594 page_cache_release(fault_page); 3595 return tmp; 3596 } 3597 } 3598 3599 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3600 if (unlikely(!pte_same(*pte, orig_pte))) { 3601 pte_unmap_unlock(pte, ptl); 3602 unlock_page(fault_page); 3603 page_cache_release(fault_page); 3604 return ret; 3605 } 3606 do_set_pte(vma, address, fault_page, pte, true, false); 3607 pte_unmap_unlock(pte, ptl); 3608 3609 if (set_page_dirty(fault_page)) 3610 dirtied = 1; 3611 mapping = fault_page->mapping; 3612 unlock_page(fault_page); 3613 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3614 /* 3615 * Some device drivers do not set page.mapping but still 3616 * dirty their pages 3617 */ 3618 balance_dirty_pages_ratelimited(mapping); 3619 } 3620 3621 /* file_update_time outside page_lock */ 3622 if (vma->vm_file && !vma->vm_ops->page_mkwrite) 3623 file_update_time(vma->vm_file); 3624 3625 return ret; 3626 } 3627 3628 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3629 unsigned long address, pte_t *page_table, pmd_t *pmd, 3630 unsigned int flags, pte_t orig_pte) 3631 { 3632 pgoff_t pgoff = (((address & PAGE_MASK) 3633 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3634 3635 pte_unmap(page_table); 3636 if (!(flags & FAULT_FLAG_WRITE)) 3637 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3638 orig_pte); 3639 if (!(vma->vm_flags & VM_SHARED)) 3640 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3641 orig_pte); 3642 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3643 } 3644 3645 /* 3646 * Fault of a previously existing named mapping. Repopulate the pte 3647 * from the encoded file_pte if possible. This enables swappable 3648 * nonlinear vmas. 3649 * 3650 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3651 * but allow concurrent faults), and pte mapped but not yet locked. 3652 * We return with mmap_sem still held, but pte unmapped and unlocked. 3653 */ 3654 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3655 unsigned long address, pte_t *page_table, pmd_t *pmd, 3656 unsigned int flags, pte_t orig_pte) 3657 { 3658 pgoff_t pgoff; 3659 3660 flags |= FAULT_FLAG_NONLINEAR; 3661 3662 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3663 return 0; 3664 3665 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3666 /* 3667 * Page table corrupted: show pte and kill process. 3668 */ 3669 print_bad_pte(vma, address, orig_pte, NULL); 3670 return VM_FAULT_SIGBUS; 3671 } 3672 3673 pgoff = pte_to_pgoff(orig_pte); 3674 if (!(flags & FAULT_FLAG_WRITE)) 3675 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3676 orig_pte); 3677 if (!(vma->vm_flags & VM_SHARED)) 3678 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3679 orig_pte); 3680 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3681 } 3682 3683 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3684 unsigned long addr, int page_nid, 3685 int *flags) 3686 { 3687 get_page(page); 3688 3689 count_vm_numa_event(NUMA_HINT_FAULTS); 3690 if (page_nid == numa_node_id()) { 3691 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3692 *flags |= TNF_FAULT_LOCAL; 3693 } 3694 3695 return mpol_misplaced(page, vma, addr); 3696 } 3697 3698 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3699 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3700 { 3701 struct page *page = NULL; 3702 spinlock_t *ptl; 3703 int page_nid = -1; 3704 int last_cpupid; 3705 int target_nid; 3706 bool migrated = false; 3707 int flags = 0; 3708 3709 /* 3710 * The "pte" at this point cannot be used safely without 3711 * validation through pte_unmap_same(). It's of NUMA type but 3712 * the pfn may be screwed if the read is non atomic. 3713 * 3714 * ptep_modify_prot_start is not called as this is clearing 3715 * the _PAGE_NUMA bit and it is not really expected that there 3716 * would be concurrent hardware modifications to the PTE. 3717 */ 3718 ptl = pte_lockptr(mm, pmd); 3719 spin_lock(ptl); 3720 if (unlikely(!pte_same(*ptep, pte))) { 3721 pte_unmap_unlock(ptep, ptl); 3722 goto out; 3723 } 3724 3725 pte = pte_mknonnuma(pte); 3726 set_pte_at(mm, addr, ptep, pte); 3727 update_mmu_cache(vma, addr, ptep); 3728 3729 page = vm_normal_page(vma, addr, pte); 3730 if (!page) { 3731 pte_unmap_unlock(ptep, ptl); 3732 return 0; 3733 } 3734 BUG_ON(is_zero_pfn(page_to_pfn(page))); 3735 3736 /* 3737 * Avoid grouping on DSO/COW pages in specific and RO pages 3738 * in general, RO pages shouldn't hurt as much anyway since 3739 * they can be in shared cache state. 3740 */ 3741 if (!pte_write(pte)) 3742 flags |= TNF_NO_GROUP; 3743 3744 /* 3745 * Flag if the page is shared between multiple address spaces. This 3746 * is later used when determining whether to group tasks together 3747 */ 3748 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3749 flags |= TNF_SHARED; 3750 3751 last_cpupid = page_cpupid_last(page); 3752 page_nid = page_to_nid(page); 3753 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3754 pte_unmap_unlock(ptep, ptl); 3755 if (target_nid == -1) { 3756 put_page(page); 3757 goto out; 3758 } 3759 3760 /* Migrate to the requested node */ 3761 migrated = migrate_misplaced_page(page, vma, target_nid); 3762 if (migrated) { 3763 page_nid = target_nid; 3764 flags |= TNF_MIGRATED; 3765 } 3766 3767 out: 3768 if (page_nid != -1) 3769 task_numa_fault(last_cpupid, page_nid, 1, flags); 3770 return 0; 3771 } 3772 3773 /* 3774 * These routines also need to handle stuff like marking pages dirty 3775 * and/or accessed for architectures that don't do it in hardware (most 3776 * RISC architectures). The early dirtying is also good on the i386. 3777 * 3778 * There is also a hook called "update_mmu_cache()" that architectures 3779 * with external mmu caches can use to update those (ie the Sparc or 3780 * PowerPC hashed page tables that act as extended TLBs). 3781 * 3782 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3783 * but allow concurrent faults), and pte mapped but not yet locked. 3784 * We return with mmap_sem still held, but pte unmapped and unlocked. 3785 */ 3786 static int handle_pte_fault(struct mm_struct *mm, 3787 struct vm_area_struct *vma, unsigned long address, 3788 pte_t *pte, pmd_t *pmd, unsigned int flags) 3789 { 3790 pte_t entry; 3791 spinlock_t *ptl; 3792 3793 entry = *pte; 3794 if (!pte_present(entry)) { 3795 if (pte_none(entry)) { 3796 if (vma->vm_ops) { 3797 if (likely(vma->vm_ops->fault)) 3798 return do_linear_fault(mm, vma, address, 3799 pte, pmd, flags, entry); 3800 } 3801 return do_anonymous_page(mm, vma, address, 3802 pte, pmd, flags); 3803 } 3804 if (pte_file(entry)) 3805 return do_nonlinear_fault(mm, vma, address, 3806 pte, pmd, flags, entry); 3807 return do_swap_page(mm, vma, address, 3808 pte, pmd, flags, entry); 3809 } 3810 3811 if (pte_numa(entry)) 3812 return do_numa_page(mm, vma, address, entry, pte, pmd); 3813 3814 ptl = pte_lockptr(mm, pmd); 3815 spin_lock(ptl); 3816 if (unlikely(!pte_same(*pte, entry))) 3817 goto unlock; 3818 if (flags & FAULT_FLAG_WRITE) { 3819 if (!pte_write(entry)) 3820 return do_wp_page(mm, vma, address, 3821 pte, pmd, ptl, entry); 3822 entry = pte_mkdirty(entry); 3823 } 3824 entry = pte_mkyoung(entry); 3825 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3826 update_mmu_cache(vma, address, pte); 3827 } else { 3828 /* 3829 * This is needed only for protection faults but the arch code 3830 * is not yet telling us if this is a protection fault or not. 3831 * This still avoids useless tlb flushes for .text page faults 3832 * with threads. 3833 */ 3834 if (flags & FAULT_FLAG_WRITE) 3835 flush_tlb_fix_spurious_fault(vma, address); 3836 } 3837 unlock: 3838 pte_unmap_unlock(pte, ptl); 3839 return 0; 3840 } 3841 3842 /* 3843 * By the time we get here, we already hold the mm semaphore 3844 */ 3845 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3846 unsigned long address, unsigned int flags) 3847 { 3848 pgd_t *pgd; 3849 pud_t *pud; 3850 pmd_t *pmd; 3851 pte_t *pte; 3852 3853 if (unlikely(is_vm_hugetlb_page(vma))) 3854 return hugetlb_fault(mm, vma, address, flags); 3855 3856 pgd = pgd_offset(mm, address); 3857 pud = pud_alloc(mm, pgd, address); 3858 if (!pud) 3859 return VM_FAULT_OOM; 3860 pmd = pmd_alloc(mm, pud, address); 3861 if (!pmd) 3862 return VM_FAULT_OOM; 3863 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3864 int ret = VM_FAULT_FALLBACK; 3865 if (!vma->vm_ops) 3866 ret = do_huge_pmd_anonymous_page(mm, vma, address, 3867 pmd, flags); 3868 if (!(ret & VM_FAULT_FALLBACK)) 3869 return ret; 3870 } else { 3871 pmd_t orig_pmd = *pmd; 3872 int ret; 3873 3874 barrier(); 3875 if (pmd_trans_huge(orig_pmd)) { 3876 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3877 3878 /* 3879 * If the pmd is splitting, return and retry the 3880 * the fault. Alternative: wait until the split 3881 * is done, and goto retry. 3882 */ 3883 if (pmd_trans_splitting(orig_pmd)) 3884 return 0; 3885 3886 if (pmd_numa(orig_pmd)) 3887 return do_huge_pmd_numa_page(mm, vma, address, 3888 orig_pmd, pmd); 3889 3890 if (dirty && !pmd_write(orig_pmd)) { 3891 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3892 orig_pmd); 3893 if (!(ret & VM_FAULT_FALLBACK)) 3894 return ret; 3895 } else { 3896 huge_pmd_set_accessed(mm, vma, address, pmd, 3897 orig_pmd, dirty); 3898 return 0; 3899 } 3900 } 3901 } 3902 3903 /* THP should already have been handled */ 3904 BUG_ON(pmd_numa(*pmd)); 3905 3906 /* 3907 * Use __pte_alloc instead of pte_alloc_map, because we can't 3908 * run pte_offset_map on the pmd, if an huge pmd could 3909 * materialize from under us from a different thread. 3910 */ 3911 if (unlikely(pmd_none(*pmd)) && 3912 unlikely(__pte_alloc(mm, vma, pmd, address))) 3913 return VM_FAULT_OOM; 3914 /* if an huge pmd materialized from under us just retry later */ 3915 if (unlikely(pmd_trans_huge(*pmd))) 3916 return 0; 3917 /* 3918 * A regular pmd is established and it can't morph into a huge pmd 3919 * from under us anymore at this point because we hold the mmap_sem 3920 * read mode and khugepaged takes it in write mode. So now it's 3921 * safe to run pte_offset_map(). 3922 */ 3923 pte = pte_offset_map(pmd, address); 3924 3925 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3926 } 3927 3928 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3929 unsigned long address, unsigned int flags) 3930 { 3931 int ret; 3932 3933 __set_current_state(TASK_RUNNING); 3934 3935 count_vm_event(PGFAULT); 3936 mem_cgroup_count_vm_event(mm, PGFAULT); 3937 3938 /* do counter updates before entering really critical section. */ 3939 check_sync_rss_stat(current); 3940 3941 /* 3942 * Enable the memcg OOM handling for faults triggered in user 3943 * space. Kernel faults are handled more gracefully. 3944 */ 3945 if (flags & FAULT_FLAG_USER) 3946 mem_cgroup_oom_enable(); 3947 3948 ret = __handle_mm_fault(mm, vma, address, flags); 3949 3950 if (flags & FAULT_FLAG_USER) { 3951 mem_cgroup_oom_disable(); 3952 /* 3953 * The task may have entered a memcg OOM situation but 3954 * if the allocation error was handled gracefully (no 3955 * VM_FAULT_OOM), there is no need to kill anything. 3956 * Just clean up the OOM state peacefully. 3957 */ 3958 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3959 mem_cgroup_oom_synchronize(false); 3960 } 3961 3962 return ret; 3963 } 3964 3965 #ifndef __PAGETABLE_PUD_FOLDED 3966 /* 3967 * Allocate page upper directory. 3968 * We've already handled the fast-path in-line. 3969 */ 3970 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3971 { 3972 pud_t *new = pud_alloc_one(mm, address); 3973 if (!new) 3974 return -ENOMEM; 3975 3976 smp_wmb(); /* See comment in __pte_alloc */ 3977 3978 spin_lock(&mm->page_table_lock); 3979 if (pgd_present(*pgd)) /* Another has populated it */ 3980 pud_free(mm, new); 3981 else 3982 pgd_populate(mm, pgd, new); 3983 spin_unlock(&mm->page_table_lock); 3984 return 0; 3985 } 3986 #endif /* __PAGETABLE_PUD_FOLDED */ 3987 3988 #ifndef __PAGETABLE_PMD_FOLDED 3989 /* 3990 * Allocate page middle directory. 3991 * We've already handled the fast-path in-line. 3992 */ 3993 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3994 { 3995 pmd_t *new = pmd_alloc_one(mm, address); 3996 if (!new) 3997 return -ENOMEM; 3998 3999 smp_wmb(); /* See comment in __pte_alloc */ 4000 4001 spin_lock(&mm->page_table_lock); 4002 #ifndef __ARCH_HAS_4LEVEL_HACK 4003 if (pud_present(*pud)) /* Another has populated it */ 4004 pmd_free(mm, new); 4005 else 4006 pud_populate(mm, pud, new); 4007 #else 4008 if (pgd_present(*pud)) /* Another has populated it */ 4009 pmd_free(mm, new); 4010 else 4011 pgd_populate(mm, pud, new); 4012 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4013 spin_unlock(&mm->page_table_lock); 4014 return 0; 4015 } 4016 #endif /* __PAGETABLE_PMD_FOLDED */ 4017 4018 #if !defined(__HAVE_ARCH_GATE_AREA) 4019 4020 #if defined(AT_SYSINFO_EHDR) 4021 static struct vm_area_struct gate_vma; 4022 4023 static int __init gate_vma_init(void) 4024 { 4025 gate_vma.vm_mm = NULL; 4026 gate_vma.vm_start = FIXADDR_USER_START; 4027 gate_vma.vm_end = FIXADDR_USER_END; 4028 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 4029 gate_vma.vm_page_prot = __P101; 4030 4031 return 0; 4032 } 4033 __initcall(gate_vma_init); 4034 #endif 4035 4036 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 4037 { 4038 #ifdef AT_SYSINFO_EHDR 4039 return &gate_vma; 4040 #else 4041 return NULL; 4042 #endif 4043 } 4044 4045 int in_gate_area_no_mm(unsigned long addr) 4046 { 4047 #ifdef AT_SYSINFO_EHDR 4048 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 4049 return 1; 4050 #endif 4051 return 0; 4052 } 4053 4054 #endif /* __HAVE_ARCH_GATE_AREA */ 4055 4056 static int __follow_pte(struct mm_struct *mm, unsigned long address, 4057 pte_t **ptepp, spinlock_t **ptlp) 4058 { 4059 pgd_t *pgd; 4060 pud_t *pud; 4061 pmd_t *pmd; 4062 pte_t *ptep; 4063 4064 pgd = pgd_offset(mm, address); 4065 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4066 goto out; 4067 4068 pud = pud_offset(pgd, address); 4069 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4070 goto out; 4071 4072 pmd = pmd_offset(pud, address); 4073 VM_BUG_ON(pmd_trans_huge(*pmd)); 4074 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4075 goto out; 4076 4077 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 4078 if (pmd_huge(*pmd)) 4079 goto out; 4080 4081 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4082 if (!ptep) 4083 goto out; 4084 if (!pte_present(*ptep)) 4085 goto unlock; 4086 *ptepp = ptep; 4087 return 0; 4088 unlock: 4089 pte_unmap_unlock(ptep, *ptlp); 4090 out: 4091 return -EINVAL; 4092 } 4093 4094 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4095 pte_t **ptepp, spinlock_t **ptlp) 4096 { 4097 int res; 4098 4099 /* (void) is needed to make gcc happy */ 4100 (void) __cond_lock(*ptlp, 4101 !(res = __follow_pte(mm, address, ptepp, ptlp))); 4102 return res; 4103 } 4104 4105 /** 4106 * follow_pfn - look up PFN at a user virtual address 4107 * @vma: memory mapping 4108 * @address: user virtual address 4109 * @pfn: location to store found PFN 4110 * 4111 * Only IO mappings and raw PFN mappings are allowed. 4112 * 4113 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4114 */ 4115 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4116 unsigned long *pfn) 4117 { 4118 int ret = -EINVAL; 4119 spinlock_t *ptl; 4120 pte_t *ptep; 4121 4122 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4123 return ret; 4124 4125 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4126 if (ret) 4127 return ret; 4128 *pfn = pte_pfn(*ptep); 4129 pte_unmap_unlock(ptep, ptl); 4130 return 0; 4131 } 4132 EXPORT_SYMBOL(follow_pfn); 4133 4134 #ifdef CONFIG_HAVE_IOREMAP_PROT 4135 int follow_phys(struct vm_area_struct *vma, 4136 unsigned long address, unsigned int flags, 4137 unsigned long *prot, resource_size_t *phys) 4138 { 4139 int ret = -EINVAL; 4140 pte_t *ptep, pte; 4141 spinlock_t *ptl; 4142 4143 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4144 goto out; 4145 4146 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4147 goto out; 4148 pte = *ptep; 4149 4150 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4151 goto unlock; 4152 4153 *prot = pgprot_val(pte_pgprot(pte)); 4154 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4155 4156 ret = 0; 4157 unlock: 4158 pte_unmap_unlock(ptep, ptl); 4159 out: 4160 return ret; 4161 } 4162 4163 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4164 void *buf, int len, int write) 4165 { 4166 resource_size_t phys_addr; 4167 unsigned long prot = 0; 4168 void __iomem *maddr; 4169 int offset = addr & (PAGE_SIZE-1); 4170 4171 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4172 return -EINVAL; 4173 4174 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 4175 if (write) 4176 memcpy_toio(maddr + offset, buf, len); 4177 else 4178 memcpy_fromio(buf, maddr + offset, len); 4179 iounmap(maddr); 4180 4181 return len; 4182 } 4183 EXPORT_SYMBOL_GPL(generic_access_phys); 4184 #endif 4185 4186 /* 4187 * Access another process' address space as given in mm. If non-NULL, use the 4188 * given task for page fault accounting. 4189 */ 4190 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4191 unsigned long addr, void *buf, int len, int write) 4192 { 4193 struct vm_area_struct *vma; 4194 void *old_buf = buf; 4195 4196 down_read(&mm->mmap_sem); 4197 /* ignore errors, just check how much was successfully transferred */ 4198 while (len) { 4199 int bytes, ret, offset; 4200 void *maddr; 4201 struct page *page = NULL; 4202 4203 ret = get_user_pages(tsk, mm, addr, 1, 4204 write, 1, &page, &vma); 4205 if (ret <= 0) { 4206 /* 4207 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4208 * we can access using slightly different code. 4209 */ 4210 #ifdef CONFIG_HAVE_IOREMAP_PROT 4211 vma = find_vma(mm, addr); 4212 if (!vma || vma->vm_start > addr) 4213 break; 4214 if (vma->vm_ops && vma->vm_ops->access) 4215 ret = vma->vm_ops->access(vma, addr, buf, 4216 len, write); 4217 if (ret <= 0) 4218 #endif 4219 break; 4220 bytes = ret; 4221 } else { 4222 bytes = len; 4223 offset = addr & (PAGE_SIZE-1); 4224 if (bytes > PAGE_SIZE-offset) 4225 bytes = PAGE_SIZE-offset; 4226 4227 maddr = kmap(page); 4228 if (write) { 4229 copy_to_user_page(vma, page, addr, 4230 maddr + offset, buf, bytes); 4231 set_page_dirty_lock(page); 4232 } else { 4233 copy_from_user_page(vma, page, addr, 4234 buf, maddr + offset, bytes); 4235 } 4236 kunmap(page); 4237 page_cache_release(page); 4238 } 4239 len -= bytes; 4240 buf += bytes; 4241 addr += bytes; 4242 } 4243 up_read(&mm->mmap_sem); 4244 4245 return buf - old_buf; 4246 } 4247 4248 /** 4249 * access_remote_vm - access another process' address space 4250 * @mm: the mm_struct of the target address space 4251 * @addr: start address to access 4252 * @buf: source or destination buffer 4253 * @len: number of bytes to transfer 4254 * @write: whether the access is a write 4255 * 4256 * The caller must hold a reference on @mm. 4257 */ 4258 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4259 void *buf, int len, int write) 4260 { 4261 return __access_remote_vm(NULL, mm, addr, buf, len, write); 4262 } 4263 4264 /* 4265 * Access another process' address space. 4266 * Source/target buffer must be kernel space, 4267 * Do not walk the page table directly, use get_user_pages 4268 */ 4269 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4270 void *buf, int len, int write) 4271 { 4272 struct mm_struct *mm; 4273 int ret; 4274 4275 mm = get_task_mm(tsk); 4276 if (!mm) 4277 return 0; 4278 4279 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 4280 mmput(mm); 4281 4282 return ret; 4283 } 4284 4285 /* 4286 * Print the name of a VMA. 4287 */ 4288 void print_vma_addr(char *prefix, unsigned long ip) 4289 { 4290 struct mm_struct *mm = current->mm; 4291 struct vm_area_struct *vma; 4292 4293 /* 4294 * Do not print if we are in atomic 4295 * contexts (in exception stacks, etc.): 4296 */ 4297 if (preempt_count()) 4298 return; 4299 4300 down_read(&mm->mmap_sem); 4301 vma = find_vma(mm, ip); 4302 if (vma && vma->vm_file) { 4303 struct file *f = vma->vm_file; 4304 char *buf = (char *)__get_free_page(GFP_KERNEL); 4305 if (buf) { 4306 char *p; 4307 4308 p = d_path(&f->f_path, buf, PAGE_SIZE); 4309 if (IS_ERR(p)) 4310 p = "?"; 4311 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4312 vma->vm_start, 4313 vma->vm_end - vma->vm_start); 4314 free_page((unsigned long)buf); 4315 } 4316 } 4317 up_read(&mm->mmap_sem); 4318 } 4319 4320 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4321 void might_fault(void) 4322 { 4323 /* 4324 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4325 * holding the mmap_sem, this is safe because kernel memory doesn't 4326 * get paged out, therefore we'll never actually fault, and the 4327 * below annotations will generate false positives. 4328 */ 4329 if (segment_eq(get_fs(), KERNEL_DS)) 4330 return; 4331 4332 /* 4333 * it would be nicer only to annotate paths which are not under 4334 * pagefault_disable, however that requires a larger audit and 4335 * providing helpers like get_user_atomic. 4336 */ 4337 if (in_atomic()) 4338 return; 4339 4340 __might_sleep(__FILE__, __LINE__, 0); 4341 4342 if (current->mm) 4343 might_lock_read(¤t->mm->mmap_sem); 4344 } 4345 EXPORT_SYMBOL(might_fault); 4346 #endif 4347 4348 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4349 static void clear_gigantic_page(struct page *page, 4350 unsigned long addr, 4351 unsigned int pages_per_huge_page) 4352 { 4353 int i; 4354 struct page *p = page; 4355 4356 might_sleep(); 4357 for (i = 0; i < pages_per_huge_page; 4358 i++, p = mem_map_next(p, page, i)) { 4359 cond_resched(); 4360 clear_user_highpage(p, addr + i * PAGE_SIZE); 4361 } 4362 } 4363 void clear_huge_page(struct page *page, 4364 unsigned long addr, unsigned int pages_per_huge_page) 4365 { 4366 int i; 4367 4368 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4369 clear_gigantic_page(page, addr, pages_per_huge_page); 4370 return; 4371 } 4372 4373 might_sleep(); 4374 for (i = 0; i < pages_per_huge_page; i++) { 4375 cond_resched(); 4376 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4377 } 4378 } 4379 4380 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4381 unsigned long addr, 4382 struct vm_area_struct *vma, 4383 unsigned int pages_per_huge_page) 4384 { 4385 int i; 4386 struct page *dst_base = dst; 4387 struct page *src_base = src; 4388 4389 for (i = 0; i < pages_per_huge_page; ) { 4390 cond_resched(); 4391 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4392 4393 i++; 4394 dst = mem_map_next(dst, dst_base, i); 4395 src = mem_map_next(src, src_base, i); 4396 } 4397 } 4398 4399 void copy_user_huge_page(struct page *dst, struct page *src, 4400 unsigned long addr, struct vm_area_struct *vma, 4401 unsigned int pages_per_huge_page) 4402 { 4403 int i; 4404 4405 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4406 copy_user_gigantic_page(dst, src, addr, vma, 4407 pages_per_huge_page); 4408 return; 4409 } 4410 4411 might_sleep(); 4412 for (i = 0; i < pages_per_huge_page; i++) { 4413 cond_resched(); 4414 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4415 } 4416 } 4417 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4418 4419 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4420 4421 static struct kmem_cache *page_ptl_cachep; 4422 4423 void __init ptlock_cache_init(void) 4424 { 4425 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4426 SLAB_PANIC, NULL); 4427 } 4428 4429 bool ptlock_alloc(struct page *page) 4430 { 4431 spinlock_t *ptl; 4432 4433 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4434 if (!ptl) 4435 return false; 4436 page->ptl = ptl; 4437 return true; 4438 } 4439 4440 void ptlock_free(struct page *page) 4441 { 4442 kmem_cache_free(page_ptl_cachep, page->ptl); 4443 } 4444 #endif 4445