xref: /openbmc/linux/mm/memory.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80 
81 #include "internal.h"
82 
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86 
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91 
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95 
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105 
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114 					1;
115 #else
116 					2;
117 #endif
118 
119 static int __init disable_randmaps(char *s)
120 {
121 	randomize_va_space = 0;
122 	return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125 
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128 
129 unsigned long highest_memmap_pfn __read_mostly;
130 
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 	return 0;
138 }
139 core_initcall(init_zero_pfn);
140 
141 
142 #if defined(SPLIT_RSS_COUNTING)
143 
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146 	int i;
147 
148 	for (i = 0; i < NR_MM_COUNTERS; i++) {
149 		if (current->rss_stat.count[i]) {
150 			add_mm_counter(mm, i, current->rss_stat.count[i]);
151 			current->rss_stat.count[i] = 0;
152 		}
153 	}
154 	current->rss_stat.events = 0;
155 }
156 
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159 	struct task_struct *task = current;
160 
161 	if (likely(task->mm == mm))
162 		task->rss_stat.count[member] += val;
163 	else
164 		add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168 
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH	(64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 	if (unlikely(task != current))
174 		return;
175 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 		sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179 
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182 
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186 
187 #endif /* SPLIT_RSS_COUNTING */
188 
189 #ifdef HAVE_GENERIC_MMU_GATHER
190 
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193 	struct mmu_gather_batch *batch;
194 
195 	batch = tlb->active;
196 	if (batch->next) {
197 		tlb->active = batch->next;
198 		return true;
199 	}
200 
201 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 		return false;
203 
204 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 	if (!batch)
206 		return false;
207 
208 	tlb->batch_count++;
209 	batch->next = NULL;
210 	batch->nr   = 0;
211 	batch->max  = MAX_GATHER_BATCH;
212 
213 	tlb->active->next = batch;
214 	tlb->active = batch;
215 
216 	return true;
217 }
218 
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 				unsigned long start, unsigned long end)
221 {
222 	tlb->mm = mm;
223 
224 	/* Is it from 0 to ~0? */
225 	tlb->fullmm     = !(start | (end+1));
226 	tlb->need_flush_all = 0;
227 	tlb->local.next = NULL;
228 	tlb->local.nr   = 0;
229 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230 	tlb->active     = &tlb->local;
231 	tlb->batch_count = 0;
232 
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 	tlb->batch = NULL;
235 #endif
236 	tlb->page_size = 0;
237 
238 	__tlb_reset_range(tlb);
239 }
240 
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243 	if (!tlb->end)
244 		return;
245 
246 	tlb_flush(tlb);
247 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 	tlb_table_flush(tlb);
250 #endif
251 	__tlb_reset_range(tlb);
252 }
253 
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256 	struct mmu_gather_batch *batch;
257 
258 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 		free_pages_and_swap_cache(batch->pages, batch->nr);
260 		batch->nr = 0;
261 	}
262 	tlb->active = &tlb->local;
263 }
264 
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267 	tlb_flush_mmu_tlbonly(tlb);
268 	tlb_flush_mmu_free(tlb);
269 }
270 
271 /* tlb_finish_mmu
272  *	Called at the end of the shootdown operation to free up any resources
273  *	that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276 		unsigned long start, unsigned long end, bool force)
277 {
278 	struct mmu_gather_batch *batch, *next;
279 
280 	if (force)
281 		__tlb_adjust_range(tlb, start, end - start);
282 
283 	tlb_flush_mmu(tlb);
284 
285 	/* keep the page table cache within bounds */
286 	check_pgt_cache();
287 
288 	for (batch = tlb->local.next; batch; batch = next) {
289 		next = batch->next;
290 		free_pages((unsigned long)batch, 0);
291 	}
292 	tlb->local.next = NULL;
293 }
294 
295 /* __tlb_remove_page
296  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *	handling the additional races in SMP caused by other CPUs caching valid
298  *	mappings in their TLBs. Returns the number of free page slots left.
299  *	When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304 	struct mmu_gather_batch *batch;
305 
306 	VM_BUG_ON(!tlb->end);
307 	VM_WARN_ON(tlb->page_size != page_size);
308 
309 	batch = tlb->active;
310 	/*
311 	 * Add the page and check if we are full. If so
312 	 * force a flush.
313 	 */
314 	batch->pages[batch->nr++] = page;
315 	if (batch->nr == batch->max) {
316 		if (!tlb_next_batch(tlb))
317 			return true;
318 		batch = tlb->active;
319 	}
320 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321 
322 	return false;
323 }
324 
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326 
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328 
329 /*
330  * See the comment near struct mmu_table_batch.
331  */
332 
333 static void tlb_remove_table_smp_sync(void *arg)
334 {
335 	/* Simply deliver the interrupt */
336 }
337 
338 static void tlb_remove_table_one(void *table)
339 {
340 	/*
341 	 * This isn't an RCU grace period and hence the page-tables cannot be
342 	 * assumed to be actually RCU-freed.
343 	 *
344 	 * It is however sufficient for software page-table walkers that rely on
345 	 * IRQ disabling. See the comment near struct mmu_table_batch.
346 	 */
347 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 	__tlb_remove_table(table);
349 }
350 
351 static void tlb_remove_table_rcu(struct rcu_head *head)
352 {
353 	struct mmu_table_batch *batch;
354 	int i;
355 
356 	batch = container_of(head, struct mmu_table_batch, rcu);
357 
358 	for (i = 0; i < batch->nr; i++)
359 		__tlb_remove_table(batch->tables[i]);
360 
361 	free_page((unsigned long)batch);
362 }
363 
364 void tlb_table_flush(struct mmu_gather *tlb)
365 {
366 	struct mmu_table_batch **batch = &tlb->batch;
367 
368 	if (*batch) {
369 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 		*batch = NULL;
371 	}
372 }
373 
374 void tlb_remove_table(struct mmu_gather *tlb, void *table)
375 {
376 	struct mmu_table_batch **batch = &tlb->batch;
377 
378 	/*
379 	 * When there's less then two users of this mm there cannot be a
380 	 * concurrent page-table walk.
381 	 */
382 	if (atomic_read(&tlb->mm->mm_users) < 2) {
383 		__tlb_remove_table(table);
384 		return;
385 	}
386 
387 	if (*batch == NULL) {
388 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 		if (*batch == NULL) {
390 			tlb_remove_table_one(table);
391 			return;
392 		}
393 		(*batch)->nr = 0;
394 	}
395 	(*batch)->tables[(*batch)->nr++] = table;
396 	if ((*batch)->nr == MAX_TABLE_BATCH)
397 		tlb_table_flush(tlb);
398 }
399 
400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
401 
402 /**
403  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
404  * @tlb: the mmu_gather structure to initialize
405  * @mm: the mm_struct of the target address space
406  * @start: start of the region that will be removed from the page-table
407  * @end: end of the region that will be removed from the page-table
408  *
409  * Called to initialize an (on-stack) mmu_gather structure for page-table
410  * tear-down from @mm. The @start and @end are set to 0 and -1
411  * respectively when @mm is without users and we're going to destroy
412  * the full address space (exit/execve).
413  */
414 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
415 			unsigned long start, unsigned long end)
416 {
417 	arch_tlb_gather_mmu(tlb, mm, start, end);
418 	inc_tlb_flush_pending(tlb->mm);
419 }
420 
421 void tlb_finish_mmu(struct mmu_gather *tlb,
422 		unsigned long start, unsigned long end)
423 {
424 	/*
425 	 * If there are parallel threads are doing PTE changes on same range
426 	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
427 	 * flush by batching, a thread has stable TLB entry can fail to flush
428 	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
429 	 * forcefully if we detect parallel PTE batching threads.
430 	 */
431 	bool force = mm_tlb_flush_nested(tlb->mm);
432 
433 	arch_tlb_finish_mmu(tlb, start, end, force);
434 	dec_tlb_flush_pending(tlb->mm);
435 }
436 
437 /*
438  * Note: this doesn't free the actual pages themselves. That
439  * has been handled earlier when unmapping all the memory regions.
440  */
441 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
442 			   unsigned long addr)
443 {
444 	pgtable_t token = pmd_pgtable(*pmd);
445 	pmd_clear(pmd);
446 	pte_free_tlb(tlb, token, addr);
447 	mm_dec_nr_ptes(tlb->mm);
448 }
449 
450 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
451 				unsigned long addr, unsigned long end,
452 				unsigned long floor, unsigned long ceiling)
453 {
454 	pmd_t *pmd;
455 	unsigned long next;
456 	unsigned long start;
457 
458 	start = addr;
459 	pmd = pmd_offset(pud, addr);
460 	do {
461 		next = pmd_addr_end(addr, end);
462 		if (pmd_none_or_clear_bad(pmd))
463 			continue;
464 		free_pte_range(tlb, pmd, addr);
465 	} while (pmd++, addr = next, addr != end);
466 
467 	start &= PUD_MASK;
468 	if (start < floor)
469 		return;
470 	if (ceiling) {
471 		ceiling &= PUD_MASK;
472 		if (!ceiling)
473 			return;
474 	}
475 	if (end - 1 > ceiling - 1)
476 		return;
477 
478 	pmd = pmd_offset(pud, start);
479 	pud_clear(pud);
480 	pmd_free_tlb(tlb, pmd, start);
481 	mm_dec_nr_pmds(tlb->mm);
482 }
483 
484 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
485 				unsigned long addr, unsigned long end,
486 				unsigned long floor, unsigned long ceiling)
487 {
488 	pud_t *pud;
489 	unsigned long next;
490 	unsigned long start;
491 
492 	start = addr;
493 	pud = pud_offset(p4d, addr);
494 	do {
495 		next = pud_addr_end(addr, end);
496 		if (pud_none_or_clear_bad(pud))
497 			continue;
498 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
499 	} while (pud++, addr = next, addr != end);
500 
501 	start &= P4D_MASK;
502 	if (start < floor)
503 		return;
504 	if (ceiling) {
505 		ceiling &= P4D_MASK;
506 		if (!ceiling)
507 			return;
508 	}
509 	if (end - 1 > ceiling - 1)
510 		return;
511 
512 	pud = pud_offset(p4d, start);
513 	p4d_clear(p4d);
514 	pud_free_tlb(tlb, pud, start);
515 	mm_dec_nr_puds(tlb->mm);
516 }
517 
518 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
519 				unsigned long addr, unsigned long end,
520 				unsigned long floor, unsigned long ceiling)
521 {
522 	p4d_t *p4d;
523 	unsigned long next;
524 	unsigned long start;
525 
526 	start = addr;
527 	p4d = p4d_offset(pgd, addr);
528 	do {
529 		next = p4d_addr_end(addr, end);
530 		if (p4d_none_or_clear_bad(p4d))
531 			continue;
532 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
533 	} while (p4d++, addr = next, addr != end);
534 
535 	start &= PGDIR_MASK;
536 	if (start < floor)
537 		return;
538 	if (ceiling) {
539 		ceiling &= PGDIR_MASK;
540 		if (!ceiling)
541 			return;
542 	}
543 	if (end - 1 > ceiling - 1)
544 		return;
545 
546 	p4d = p4d_offset(pgd, start);
547 	pgd_clear(pgd);
548 	p4d_free_tlb(tlb, p4d, start);
549 }
550 
551 /*
552  * This function frees user-level page tables of a process.
553  */
554 void free_pgd_range(struct mmu_gather *tlb,
555 			unsigned long addr, unsigned long end,
556 			unsigned long floor, unsigned long ceiling)
557 {
558 	pgd_t *pgd;
559 	unsigned long next;
560 
561 	/*
562 	 * The next few lines have given us lots of grief...
563 	 *
564 	 * Why are we testing PMD* at this top level?  Because often
565 	 * there will be no work to do at all, and we'd prefer not to
566 	 * go all the way down to the bottom just to discover that.
567 	 *
568 	 * Why all these "- 1"s?  Because 0 represents both the bottom
569 	 * of the address space and the top of it (using -1 for the
570 	 * top wouldn't help much: the masks would do the wrong thing).
571 	 * The rule is that addr 0 and floor 0 refer to the bottom of
572 	 * the address space, but end 0 and ceiling 0 refer to the top
573 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
574 	 * that end 0 case should be mythical).
575 	 *
576 	 * Wherever addr is brought up or ceiling brought down, we must
577 	 * be careful to reject "the opposite 0" before it confuses the
578 	 * subsequent tests.  But what about where end is brought down
579 	 * by PMD_SIZE below? no, end can't go down to 0 there.
580 	 *
581 	 * Whereas we round start (addr) and ceiling down, by different
582 	 * masks at different levels, in order to test whether a table
583 	 * now has no other vmas using it, so can be freed, we don't
584 	 * bother to round floor or end up - the tests don't need that.
585 	 */
586 
587 	addr &= PMD_MASK;
588 	if (addr < floor) {
589 		addr += PMD_SIZE;
590 		if (!addr)
591 			return;
592 	}
593 	if (ceiling) {
594 		ceiling &= PMD_MASK;
595 		if (!ceiling)
596 			return;
597 	}
598 	if (end - 1 > ceiling - 1)
599 		end -= PMD_SIZE;
600 	if (addr > end - 1)
601 		return;
602 	/*
603 	 * We add page table cache pages with PAGE_SIZE,
604 	 * (see pte_free_tlb()), flush the tlb if we need
605 	 */
606 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
607 	pgd = pgd_offset(tlb->mm, addr);
608 	do {
609 		next = pgd_addr_end(addr, end);
610 		if (pgd_none_or_clear_bad(pgd))
611 			continue;
612 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
613 	} while (pgd++, addr = next, addr != end);
614 }
615 
616 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
617 		unsigned long floor, unsigned long ceiling)
618 {
619 	while (vma) {
620 		struct vm_area_struct *next = vma->vm_next;
621 		unsigned long addr = vma->vm_start;
622 
623 		/*
624 		 * Hide vma from rmap and truncate_pagecache before freeing
625 		 * pgtables
626 		 */
627 		unlink_anon_vmas(vma);
628 		unlink_file_vma(vma);
629 
630 		if (is_vm_hugetlb_page(vma)) {
631 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
632 				floor, next ? next->vm_start : ceiling);
633 		} else {
634 			/*
635 			 * Optimization: gather nearby vmas into one call down
636 			 */
637 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
638 			       && !is_vm_hugetlb_page(next)) {
639 				vma = next;
640 				next = vma->vm_next;
641 				unlink_anon_vmas(vma);
642 				unlink_file_vma(vma);
643 			}
644 			free_pgd_range(tlb, addr, vma->vm_end,
645 				floor, next ? next->vm_start : ceiling);
646 		}
647 		vma = next;
648 	}
649 }
650 
651 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
652 {
653 	spinlock_t *ptl;
654 	pgtable_t new = pte_alloc_one(mm, address);
655 	if (!new)
656 		return -ENOMEM;
657 
658 	/*
659 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
660 	 * visible before the pte is made visible to other CPUs by being
661 	 * put into page tables.
662 	 *
663 	 * The other side of the story is the pointer chasing in the page
664 	 * table walking code (when walking the page table without locking;
665 	 * ie. most of the time). Fortunately, these data accesses consist
666 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
667 	 * being the notable exception) will already guarantee loads are
668 	 * seen in-order. See the alpha page table accessors for the
669 	 * smp_read_barrier_depends() barriers in page table walking code.
670 	 */
671 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
672 
673 	ptl = pmd_lock(mm, pmd);
674 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
675 		mm_inc_nr_ptes(mm);
676 		pmd_populate(mm, pmd, new);
677 		new = NULL;
678 	}
679 	spin_unlock(ptl);
680 	if (new)
681 		pte_free(mm, new);
682 	return 0;
683 }
684 
685 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
686 {
687 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
688 	if (!new)
689 		return -ENOMEM;
690 
691 	smp_wmb(); /* See comment in __pte_alloc */
692 
693 	spin_lock(&init_mm.page_table_lock);
694 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
695 		pmd_populate_kernel(&init_mm, pmd, new);
696 		new = NULL;
697 	}
698 	spin_unlock(&init_mm.page_table_lock);
699 	if (new)
700 		pte_free_kernel(&init_mm, new);
701 	return 0;
702 }
703 
704 static inline void init_rss_vec(int *rss)
705 {
706 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
707 }
708 
709 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
710 {
711 	int i;
712 
713 	if (current->mm == mm)
714 		sync_mm_rss(mm);
715 	for (i = 0; i < NR_MM_COUNTERS; i++)
716 		if (rss[i])
717 			add_mm_counter(mm, i, rss[i]);
718 }
719 
720 /*
721  * This function is called to print an error when a bad pte
722  * is found. For example, we might have a PFN-mapped pte in
723  * a region that doesn't allow it.
724  *
725  * The calling function must still handle the error.
726  */
727 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
728 			  pte_t pte, struct page *page)
729 {
730 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
731 	p4d_t *p4d = p4d_offset(pgd, addr);
732 	pud_t *pud = pud_offset(p4d, addr);
733 	pmd_t *pmd = pmd_offset(pud, addr);
734 	struct address_space *mapping;
735 	pgoff_t index;
736 	static unsigned long resume;
737 	static unsigned long nr_shown;
738 	static unsigned long nr_unshown;
739 
740 	/*
741 	 * Allow a burst of 60 reports, then keep quiet for that minute;
742 	 * or allow a steady drip of one report per second.
743 	 */
744 	if (nr_shown == 60) {
745 		if (time_before(jiffies, resume)) {
746 			nr_unshown++;
747 			return;
748 		}
749 		if (nr_unshown) {
750 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
751 				 nr_unshown);
752 			nr_unshown = 0;
753 		}
754 		nr_shown = 0;
755 	}
756 	if (nr_shown++ == 0)
757 		resume = jiffies + 60 * HZ;
758 
759 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
760 	index = linear_page_index(vma, addr);
761 
762 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
763 		 current->comm,
764 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
765 	if (page)
766 		dump_page(page, "bad pte");
767 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
768 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
769 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
770 		 vma->vm_file,
771 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
772 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
773 		 mapping ? mapping->a_ops->readpage : NULL);
774 	dump_stack();
775 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
776 }
777 
778 /*
779  * vm_normal_page -- This function gets the "struct page" associated with a pte.
780  *
781  * "Special" mappings do not wish to be associated with a "struct page" (either
782  * it doesn't exist, or it exists but they don't want to touch it). In this
783  * case, NULL is returned here. "Normal" mappings do have a struct page.
784  *
785  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
786  * pte bit, in which case this function is trivial. Secondly, an architecture
787  * may not have a spare pte bit, which requires a more complicated scheme,
788  * described below.
789  *
790  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
791  * special mapping (even if there are underlying and valid "struct pages").
792  * COWed pages of a VM_PFNMAP are always normal.
793  *
794  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
795  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
796  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
797  * mapping will always honor the rule
798  *
799  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
800  *
801  * And for normal mappings this is false.
802  *
803  * This restricts such mappings to be a linear translation from virtual address
804  * to pfn. To get around this restriction, we allow arbitrary mappings so long
805  * as the vma is not a COW mapping; in that case, we know that all ptes are
806  * special (because none can have been COWed).
807  *
808  *
809  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
810  *
811  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
812  * page" backing, however the difference is that _all_ pages with a struct
813  * page (that is, those where pfn_valid is true) are refcounted and considered
814  * normal pages by the VM. The disadvantage is that pages are refcounted
815  * (which can be slower and simply not an option for some PFNMAP users). The
816  * advantage is that we don't have to follow the strict linearity rule of
817  * PFNMAP mappings in order to support COWable mappings.
818  *
819  */
820 #ifdef __HAVE_ARCH_PTE_SPECIAL
821 # define HAVE_PTE_SPECIAL 1
822 #else
823 # define HAVE_PTE_SPECIAL 0
824 #endif
825 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
826 			     pte_t pte, bool with_public_device)
827 {
828 	unsigned long pfn = pte_pfn(pte);
829 
830 	if (HAVE_PTE_SPECIAL) {
831 		if (likely(!pte_special(pte)))
832 			goto check_pfn;
833 		if (vma->vm_ops && vma->vm_ops->find_special_page)
834 			return vma->vm_ops->find_special_page(vma, addr);
835 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
836 			return NULL;
837 		if (is_zero_pfn(pfn))
838 			return NULL;
839 
840 		/*
841 		 * Device public pages are special pages (they are ZONE_DEVICE
842 		 * pages but different from persistent memory). They behave
843 		 * allmost like normal pages. The difference is that they are
844 		 * not on the lru and thus should never be involve with any-
845 		 * thing that involve lru manipulation (mlock, numa balancing,
846 		 * ...).
847 		 *
848 		 * This is why we still want to return NULL for such page from
849 		 * vm_normal_page() so that we do not have to special case all
850 		 * call site of vm_normal_page().
851 		 */
852 		if (likely(pfn <= highest_memmap_pfn)) {
853 			struct page *page = pfn_to_page(pfn);
854 
855 			if (is_device_public_page(page)) {
856 				if (with_public_device)
857 					return page;
858 				return NULL;
859 			}
860 		}
861 		print_bad_pte(vma, addr, pte, NULL);
862 		return NULL;
863 	}
864 
865 	/* !HAVE_PTE_SPECIAL case follows: */
866 
867 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
868 		if (vma->vm_flags & VM_MIXEDMAP) {
869 			if (!pfn_valid(pfn))
870 				return NULL;
871 			goto out;
872 		} else {
873 			unsigned long off;
874 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
875 			if (pfn == vma->vm_pgoff + off)
876 				return NULL;
877 			if (!is_cow_mapping(vma->vm_flags))
878 				return NULL;
879 		}
880 	}
881 
882 	if (is_zero_pfn(pfn))
883 		return NULL;
884 check_pfn:
885 	if (unlikely(pfn > highest_memmap_pfn)) {
886 		print_bad_pte(vma, addr, pte, NULL);
887 		return NULL;
888 	}
889 
890 	/*
891 	 * NOTE! We still have PageReserved() pages in the page tables.
892 	 * eg. VDSO mappings can cause them to exist.
893 	 */
894 out:
895 	return pfn_to_page(pfn);
896 }
897 
898 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
899 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
900 				pmd_t pmd)
901 {
902 	unsigned long pfn = pmd_pfn(pmd);
903 
904 	/*
905 	 * There is no pmd_special() but there may be special pmds, e.g.
906 	 * in a direct-access (dax) mapping, so let's just replicate the
907 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
908 	 */
909 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
910 		if (vma->vm_flags & VM_MIXEDMAP) {
911 			if (!pfn_valid(pfn))
912 				return NULL;
913 			goto out;
914 		} else {
915 			unsigned long off;
916 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
917 			if (pfn == vma->vm_pgoff + off)
918 				return NULL;
919 			if (!is_cow_mapping(vma->vm_flags))
920 				return NULL;
921 		}
922 	}
923 
924 	if (is_zero_pfn(pfn))
925 		return NULL;
926 	if (unlikely(pfn > highest_memmap_pfn))
927 		return NULL;
928 
929 	/*
930 	 * NOTE! We still have PageReserved() pages in the page tables.
931 	 * eg. VDSO mappings can cause them to exist.
932 	 */
933 out:
934 	return pfn_to_page(pfn);
935 }
936 #endif
937 
938 /*
939  * copy one vm_area from one task to the other. Assumes the page tables
940  * already present in the new task to be cleared in the whole range
941  * covered by this vma.
942  */
943 
944 static inline unsigned long
945 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
947 		unsigned long addr, int *rss)
948 {
949 	unsigned long vm_flags = vma->vm_flags;
950 	pte_t pte = *src_pte;
951 	struct page *page;
952 
953 	/* pte contains position in swap or file, so copy. */
954 	if (unlikely(!pte_present(pte))) {
955 		swp_entry_t entry = pte_to_swp_entry(pte);
956 
957 		if (likely(!non_swap_entry(entry))) {
958 			if (swap_duplicate(entry) < 0)
959 				return entry.val;
960 
961 			/* make sure dst_mm is on swapoff's mmlist. */
962 			if (unlikely(list_empty(&dst_mm->mmlist))) {
963 				spin_lock(&mmlist_lock);
964 				if (list_empty(&dst_mm->mmlist))
965 					list_add(&dst_mm->mmlist,
966 							&src_mm->mmlist);
967 				spin_unlock(&mmlist_lock);
968 			}
969 			rss[MM_SWAPENTS]++;
970 		} else if (is_migration_entry(entry)) {
971 			page = migration_entry_to_page(entry);
972 
973 			rss[mm_counter(page)]++;
974 
975 			if (is_write_migration_entry(entry) &&
976 					is_cow_mapping(vm_flags)) {
977 				/*
978 				 * COW mappings require pages in both
979 				 * parent and child to be set to read.
980 				 */
981 				make_migration_entry_read(&entry);
982 				pte = swp_entry_to_pte(entry);
983 				if (pte_swp_soft_dirty(*src_pte))
984 					pte = pte_swp_mksoft_dirty(pte);
985 				set_pte_at(src_mm, addr, src_pte, pte);
986 			}
987 		} else if (is_device_private_entry(entry)) {
988 			page = device_private_entry_to_page(entry);
989 
990 			/*
991 			 * Update rss count even for unaddressable pages, as
992 			 * they should treated just like normal pages in this
993 			 * respect.
994 			 *
995 			 * We will likely want to have some new rss counters
996 			 * for unaddressable pages, at some point. But for now
997 			 * keep things as they are.
998 			 */
999 			get_page(page);
1000 			rss[mm_counter(page)]++;
1001 			page_dup_rmap(page, false);
1002 
1003 			/*
1004 			 * We do not preserve soft-dirty information, because so
1005 			 * far, checkpoint/restore is the only feature that
1006 			 * requires that. And checkpoint/restore does not work
1007 			 * when a device driver is involved (you cannot easily
1008 			 * save and restore device driver state).
1009 			 */
1010 			if (is_write_device_private_entry(entry) &&
1011 			    is_cow_mapping(vm_flags)) {
1012 				make_device_private_entry_read(&entry);
1013 				pte = swp_entry_to_pte(entry);
1014 				set_pte_at(src_mm, addr, src_pte, pte);
1015 			}
1016 		}
1017 		goto out_set_pte;
1018 	}
1019 
1020 	/*
1021 	 * If it's a COW mapping, write protect it both
1022 	 * in the parent and the child
1023 	 */
1024 	if (is_cow_mapping(vm_flags)) {
1025 		ptep_set_wrprotect(src_mm, addr, src_pte);
1026 		pte = pte_wrprotect(pte);
1027 	}
1028 
1029 	/*
1030 	 * If it's a shared mapping, mark it clean in
1031 	 * the child
1032 	 */
1033 	if (vm_flags & VM_SHARED)
1034 		pte = pte_mkclean(pte);
1035 	pte = pte_mkold(pte);
1036 
1037 	page = vm_normal_page(vma, addr, pte);
1038 	if (page) {
1039 		get_page(page);
1040 		page_dup_rmap(page, false);
1041 		rss[mm_counter(page)]++;
1042 	} else if (pte_devmap(pte)) {
1043 		page = pte_page(pte);
1044 
1045 		/*
1046 		 * Cache coherent device memory behave like regular page and
1047 		 * not like persistent memory page. For more informations see
1048 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1049 		 */
1050 		if (is_device_public_page(page)) {
1051 			get_page(page);
1052 			page_dup_rmap(page, false);
1053 			rss[mm_counter(page)]++;
1054 		}
1055 	}
1056 
1057 out_set_pte:
1058 	set_pte_at(dst_mm, addr, dst_pte, pte);
1059 	return 0;
1060 }
1061 
1062 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1063 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1064 		   unsigned long addr, unsigned long end)
1065 {
1066 	pte_t *orig_src_pte, *orig_dst_pte;
1067 	pte_t *src_pte, *dst_pte;
1068 	spinlock_t *src_ptl, *dst_ptl;
1069 	int progress = 0;
1070 	int rss[NR_MM_COUNTERS];
1071 	swp_entry_t entry = (swp_entry_t){0};
1072 
1073 again:
1074 	init_rss_vec(rss);
1075 
1076 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1077 	if (!dst_pte)
1078 		return -ENOMEM;
1079 	src_pte = pte_offset_map(src_pmd, addr);
1080 	src_ptl = pte_lockptr(src_mm, src_pmd);
1081 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1082 	orig_src_pte = src_pte;
1083 	orig_dst_pte = dst_pte;
1084 	arch_enter_lazy_mmu_mode();
1085 
1086 	do {
1087 		/*
1088 		 * We are holding two locks at this point - either of them
1089 		 * could generate latencies in another task on another CPU.
1090 		 */
1091 		if (progress >= 32) {
1092 			progress = 0;
1093 			if (need_resched() ||
1094 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1095 				break;
1096 		}
1097 		if (pte_none(*src_pte)) {
1098 			progress++;
1099 			continue;
1100 		}
1101 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1102 							vma, addr, rss);
1103 		if (entry.val)
1104 			break;
1105 		progress += 8;
1106 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1107 
1108 	arch_leave_lazy_mmu_mode();
1109 	spin_unlock(src_ptl);
1110 	pte_unmap(orig_src_pte);
1111 	add_mm_rss_vec(dst_mm, rss);
1112 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1113 	cond_resched();
1114 
1115 	if (entry.val) {
1116 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1117 			return -ENOMEM;
1118 		progress = 0;
1119 	}
1120 	if (addr != end)
1121 		goto again;
1122 	return 0;
1123 }
1124 
1125 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1126 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1127 		unsigned long addr, unsigned long end)
1128 {
1129 	pmd_t *src_pmd, *dst_pmd;
1130 	unsigned long next;
1131 
1132 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1133 	if (!dst_pmd)
1134 		return -ENOMEM;
1135 	src_pmd = pmd_offset(src_pud, addr);
1136 	do {
1137 		next = pmd_addr_end(addr, end);
1138 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1139 			|| pmd_devmap(*src_pmd)) {
1140 			int err;
1141 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1142 			err = copy_huge_pmd(dst_mm, src_mm,
1143 					    dst_pmd, src_pmd, addr, vma);
1144 			if (err == -ENOMEM)
1145 				return -ENOMEM;
1146 			if (!err)
1147 				continue;
1148 			/* fall through */
1149 		}
1150 		if (pmd_none_or_clear_bad(src_pmd))
1151 			continue;
1152 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1153 						vma, addr, next))
1154 			return -ENOMEM;
1155 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1156 	return 0;
1157 }
1158 
1159 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1160 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1161 		unsigned long addr, unsigned long end)
1162 {
1163 	pud_t *src_pud, *dst_pud;
1164 	unsigned long next;
1165 
1166 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1167 	if (!dst_pud)
1168 		return -ENOMEM;
1169 	src_pud = pud_offset(src_p4d, addr);
1170 	do {
1171 		next = pud_addr_end(addr, end);
1172 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1173 			int err;
1174 
1175 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1176 			err = copy_huge_pud(dst_mm, src_mm,
1177 					    dst_pud, src_pud, addr, vma);
1178 			if (err == -ENOMEM)
1179 				return -ENOMEM;
1180 			if (!err)
1181 				continue;
1182 			/* fall through */
1183 		}
1184 		if (pud_none_or_clear_bad(src_pud))
1185 			continue;
1186 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1187 						vma, addr, next))
1188 			return -ENOMEM;
1189 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1190 	return 0;
1191 }
1192 
1193 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1194 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1195 		unsigned long addr, unsigned long end)
1196 {
1197 	p4d_t *src_p4d, *dst_p4d;
1198 	unsigned long next;
1199 
1200 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1201 	if (!dst_p4d)
1202 		return -ENOMEM;
1203 	src_p4d = p4d_offset(src_pgd, addr);
1204 	do {
1205 		next = p4d_addr_end(addr, end);
1206 		if (p4d_none_or_clear_bad(src_p4d))
1207 			continue;
1208 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1209 						vma, addr, next))
1210 			return -ENOMEM;
1211 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1212 	return 0;
1213 }
1214 
1215 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1216 		struct vm_area_struct *vma)
1217 {
1218 	pgd_t *src_pgd, *dst_pgd;
1219 	unsigned long next;
1220 	unsigned long addr = vma->vm_start;
1221 	unsigned long end = vma->vm_end;
1222 	unsigned long mmun_start;	/* For mmu_notifiers */
1223 	unsigned long mmun_end;		/* For mmu_notifiers */
1224 	bool is_cow;
1225 	int ret;
1226 
1227 	/*
1228 	 * Don't copy ptes where a page fault will fill them correctly.
1229 	 * Fork becomes much lighter when there are big shared or private
1230 	 * readonly mappings. The tradeoff is that copy_page_range is more
1231 	 * efficient than faulting.
1232 	 */
1233 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1234 			!vma->anon_vma)
1235 		return 0;
1236 
1237 	if (is_vm_hugetlb_page(vma))
1238 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1239 
1240 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1241 		/*
1242 		 * We do not free on error cases below as remove_vma
1243 		 * gets called on error from higher level routine
1244 		 */
1245 		ret = track_pfn_copy(vma);
1246 		if (ret)
1247 			return ret;
1248 	}
1249 
1250 	/*
1251 	 * We need to invalidate the secondary MMU mappings only when
1252 	 * there could be a permission downgrade on the ptes of the
1253 	 * parent mm. And a permission downgrade will only happen if
1254 	 * is_cow_mapping() returns true.
1255 	 */
1256 	is_cow = is_cow_mapping(vma->vm_flags);
1257 	mmun_start = addr;
1258 	mmun_end   = end;
1259 	if (is_cow)
1260 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1261 						    mmun_end);
1262 
1263 	ret = 0;
1264 	dst_pgd = pgd_offset(dst_mm, addr);
1265 	src_pgd = pgd_offset(src_mm, addr);
1266 	do {
1267 		next = pgd_addr_end(addr, end);
1268 		if (pgd_none_or_clear_bad(src_pgd))
1269 			continue;
1270 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1271 					    vma, addr, next))) {
1272 			ret = -ENOMEM;
1273 			break;
1274 		}
1275 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1276 
1277 	if (is_cow)
1278 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1279 	return ret;
1280 }
1281 
1282 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1283 				struct vm_area_struct *vma, pmd_t *pmd,
1284 				unsigned long addr, unsigned long end,
1285 				struct zap_details *details)
1286 {
1287 	struct mm_struct *mm = tlb->mm;
1288 	int force_flush = 0;
1289 	int rss[NR_MM_COUNTERS];
1290 	spinlock_t *ptl;
1291 	pte_t *start_pte;
1292 	pte_t *pte;
1293 	swp_entry_t entry;
1294 
1295 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1296 again:
1297 	init_rss_vec(rss);
1298 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1299 	pte = start_pte;
1300 	flush_tlb_batched_pending(mm);
1301 	arch_enter_lazy_mmu_mode();
1302 	do {
1303 		pte_t ptent = *pte;
1304 		if (pte_none(ptent))
1305 			continue;
1306 
1307 		if (pte_present(ptent)) {
1308 			struct page *page;
1309 
1310 			page = _vm_normal_page(vma, addr, ptent, true);
1311 			if (unlikely(details) && page) {
1312 				/*
1313 				 * unmap_shared_mapping_pages() wants to
1314 				 * invalidate cache without truncating:
1315 				 * unmap shared but keep private pages.
1316 				 */
1317 				if (details->check_mapping &&
1318 				    details->check_mapping != page_rmapping(page))
1319 					continue;
1320 			}
1321 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1322 							tlb->fullmm);
1323 			tlb_remove_tlb_entry(tlb, pte, addr);
1324 			if (unlikely(!page))
1325 				continue;
1326 
1327 			if (!PageAnon(page)) {
1328 				if (pte_dirty(ptent)) {
1329 					force_flush = 1;
1330 					set_page_dirty(page);
1331 				}
1332 				if (pte_young(ptent) &&
1333 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1334 					mark_page_accessed(page);
1335 			}
1336 			rss[mm_counter(page)]--;
1337 			page_remove_rmap(page, false);
1338 			if (unlikely(page_mapcount(page) < 0))
1339 				print_bad_pte(vma, addr, ptent, page);
1340 			if (unlikely(__tlb_remove_page(tlb, page))) {
1341 				force_flush = 1;
1342 				addr += PAGE_SIZE;
1343 				break;
1344 			}
1345 			continue;
1346 		}
1347 
1348 		entry = pte_to_swp_entry(ptent);
1349 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1350 			struct page *page = device_private_entry_to_page(entry);
1351 
1352 			if (unlikely(details && details->check_mapping)) {
1353 				/*
1354 				 * unmap_shared_mapping_pages() wants to
1355 				 * invalidate cache without truncating:
1356 				 * unmap shared but keep private pages.
1357 				 */
1358 				if (details->check_mapping !=
1359 				    page_rmapping(page))
1360 					continue;
1361 			}
1362 
1363 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1364 			rss[mm_counter(page)]--;
1365 			page_remove_rmap(page, false);
1366 			put_page(page);
1367 			continue;
1368 		}
1369 
1370 		/* If details->check_mapping, we leave swap entries. */
1371 		if (unlikely(details))
1372 			continue;
1373 
1374 		entry = pte_to_swp_entry(ptent);
1375 		if (!non_swap_entry(entry))
1376 			rss[MM_SWAPENTS]--;
1377 		else if (is_migration_entry(entry)) {
1378 			struct page *page;
1379 
1380 			page = migration_entry_to_page(entry);
1381 			rss[mm_counter(page)]--;
1382 		}
1383 		if (unlikely(!free_swap_and_cache(entry)))
1384 			print_bad_pte(vma, addr, ptent, NULL);
1385 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1386 	} while (pte++, addr += PAGE_SIZE, addr != end);
1387 
1388 	add_mm_rss_vec(mm, rss);
1389 	arch_leave_lazy_mmu_mode();
1390 
1391 	/* Do the actual TLB flush before dropping ptl */
1392 	if (force_flush)
1393 		tlb_flush_mmu_tlbonly(tlb);
1394 	pte_unmap_unlock(start_pte, ptl);
1395 
1396 	/*
1397 	 * If we forced a TLB flush (either due to running out of
1398 	 * batch buffers or because we needed to flush dirty TLB
1399 	 * entries before releasing the ptl), free the batched
1400 	 * memory too. Restart if we didn't do everything.
1401 	 */
1402 	if (force_flush) {
1403 		force_flush = 0;
1404 		tlb_flush_mmu_free(tlb);
1405 		if (addr != end)
1406 			goto again;
1407 	}
1408 
1409 	return addr;
1410 }
1411 
1412 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1413 				struct vm_area_struct *vma, pud_t *pud,
1414 				unsigned long addr, unsigned long end,
1415 				struct zap_details *details)
1416 {
1417 	pmd_t *pmd;
1418 	unsigned long next;
1419 
1420 	pmd = pmd_offset(pud, addr);
1421 	do {
1422 		next = pmd_addr_end(addr, end);
1423 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1424 			if (next - addr != HPAGE_PMD_SIZE) {
1425 				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1426 				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1427 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1428 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1429 				goto next;
1430 			/* fall through */
1431 		}
1432 		/*
1433 		 * Here there can be other concurrent MADV_DONTNEED or
1434 		 * trans huge page faults running, and if the pmd is
1435 		 * none or trans huge it can change under us. This is
1436 		 * because MADV_DONTNEED holds the mmap_sem in read
1437 		 * mode.
1438 		 */
1439 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1440 			goto next;
1441 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1442 next:
1443 		cond_resched();
1444 	} while (pmd++, addr = next, addr != end);
1445 
1446 	return addr;
1447 }
1448 
1449 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1450 				struct vm_area_struct *vma, p4d_t *p4d,
1451 				unsigned long addr, unsigned long end,
1452 				struct zap_details *details)
1453 {
1454 	pud_t *pud;
1455 	unsigned long next;
1456 
1457 	pud = pud_offset(p4d, addr);
1458 	do {
1459 		next = pud_addr_end(addr, end);
1460 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1461 			if (next - addr != HPAGE_PUD_SIZE) {
1462 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1463 				split_huge_pud(vma, pud, addr);
1464 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1465 				goto next;
1466 			/* fall through */
1467 		}
1468 		if (pud_none_or_clear_bad(pud))
1469 			continue;
1470 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1471 next:
1472 		cond_resched();
1473 	} while (pud++, addr = next, addr != end);
1474 
1475 	return addr;
1476 }
1477 
1478 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1479 				struct vm_area_struct *vma, pgd_t *pgd,
1480 				unsigned long addr, unsigned long end,
1481 				struct zap_details *details)
1482 {
1483 	p4d_t *p4d;
1484 	unsigned long next;
1485 
1486 	p4d = p4d_offset(pgd, addr);
1487 	do {
1488 		next = p4d_addr_end(addr, end);
1489 		if (p4d_none_or_clear_bad(p4d))
1490 			continue;
1491 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1492 	} while (p4d++, addr = next, addr != end);
1493 
1494 	return addr;
1495 }
1496 
1497 void unmap_page_range(struct mmu_gather *tlb,
1498 			     struct vm_area_struct *vma,
1499 			     unsigned long addr, unsigned long end,
1500 			     struct zap_details *details)
1501 {
1502 	pgd_t *pgd;
1503 	unsigned long next;
1504 
1505 	BUG_ON(addr >= end);
1506 	tlb_start_vma(tlb, vma);
1507 	pgd = pgd_offset(vma->vm_mm, addr);
1508 	do {
1509 		next = pgd_addr_end(addr, end);
1510 		if (pgd_none_or_clear_bad(pgd))
1511 			continue;
1512 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1513 	} while (pgd++, addr = next, addr != end);
1514 	tlb_end_vma(tlb, vma);
1515 }
1516 
1517 
1518 static void unmap_single_vma(struct mmu_gather *tlb,
1519 		struct vm_area_struct *vma, unsigned long start_addr,
1520 		unsigned long end_addr,
1521 		struct zap_details *details)
1522 {
1523 	unsigned long start = max(vma->vm_start, start_addr);
1524 	unsigned long end;
1525 
1526 	if (start >= vma->vm_end)
1527 		return;
1528 	end = min(vma->vm_end, end_addr);
1529 	if (end <= vma->vm_start)
1530 		return;
1531 
1532 	if (vma->vm_file)
1533 		uprobe_munmap(vma, start, end);
1534 
1535 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1536 		untrack_pfn(vma, 0, 0);
1537 
1538 	if (start != end) {
1539 		if (unlikely(is_vm_hugetlb_page(vma))) {
1540 			/*
1541 			 * It is undesirable to test vma->vm_file as it
1542 			 * should be non-null for valid hugetlb area.
1543 			 * However, vm_file will be NULL in the error
1544 			 * cleanup path of mmap_region. When
1545 			 * hugetlbfs ->mmap method fails,
1546 			 * mmap_region() nullifies vma->vm_file
1547 			 * before calling this function to clean up.
1548 			 * Since no pte has actually been setup, it is
1549 			 * safe to do nothing in this case.
1550 			 */
1551 			if (vma->vm_file) {
1552 				i_mmap_lock_write(vma->vm_file->f_mapping);
1553 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1554 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1555 			}
1556 		} else
1557 			unmap_page_range(tlb, vma, start, end, details);
1558 	}
1559 }
1560 
1561 /**
1562  * unmap_vmas - unmap a range of memory covered by a list of vma's
1563  * @tlb: address of the caller's struct mmu_gather
1564  * @vma: the starting vma
1565  * @start_addr: virtual address at which to start unmapping
1566  * @end_addr: virtual address at which to end unmapping
1567  *
1568  * Unmap all pages in the vma list.
1569  *
1570  * Only addresses between `start' and `end' will be unmapped.
1571  *
1572  * The VMA list must be sorted in ascending virtual address order.
1573  *
1574  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1575  * range after unmap_vmas() returns.  So the only responsibility here is to
1576  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1577  * drops the lock and schedules.
1578  */
1579 void unmap_vmas(struct mmu_gather *tlb,
1580 		struct vm_area_struct *vma, unsigned long start_addr,
1581 		unsigned long end_addr)
1582 {
1583 	struct mm_struct *mm = vma->vm_mm;
1584 
1585 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1586 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1587 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1588 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1589 }
1590 
1591 /**
1592  * zap_page_range - remove user pages in a given range
1593  * @vma: vm_area_struct holding the applicable pages
1594  * @start: starting address of pages to zap
1595  * @size: number of bytes to zap
1596  *
1597  * Caller must protect the VMA list
1598  */
1599 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1600 		unsigned long size)
1601 {
1602 	struct mm_struct *mm = vma->vm_mm;
1603 	struct mmu_gather tlb;
1604 	unsigned long end = start + size;
1605 
1606 	lru_add_drain();
1607 	tlb_gather_mmu(&tlb, mm, start, end);
1608 	update_hiwater_rss(mm);
1609 	mmu_notifier_invalidate_range_start(mm, start, end);
1610 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1611 		unmap_single_vma(&tlb, vma, start, end, NULL);
1612 
1613 		/*
1614 		 * zap_page_range does not specify whether mmap_sem should be
1615 		 * held for read or write. That allows parallel zap_page_range
1616 		 * operations to unmap a PTE and defer a flush meaning that
1617 		 * this call observes pte_none and fails to flush the TLB.
1618 		 * Rather than adding a complex API, ensure that no stale
1619 		 * TLB entries exist when this call returns.
1620 		 */
1621 		flush_tlb_range(vma, start, end);
1622 	}
1623 
1624 	mmu_notifier_invalidate_range_end(mm, start, end);
1625 	tlb_finish_mmu(&tlb, start, end);
1626 }
1627 
1628 /**
1629  * zap_page_range_single - remove user pages in a given range
1630  * @vma: vm_area_struct holding the applicable pages
1631  * @address: starting address of pages to zap
1632  * @size: number of bytes to zap
1633  * @details: details of shared cache invalidation
1634  *
1635  * The range must fit into one VMA.
1636  */
1637 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1638 		unsigned long size, struct zap_details *details)
1639 {
1640 	struct mm_struct *mm = vma->vm_mm;
1641 	struct mmu_gather tlb;
1642 	unsigned long end = address + size;
1643 
1644 	lru_add_drain();
1645 	tlb_gather_mmu(&tlb, mm, address, end);
1646 	update_hiwater_rss(mm);
1647 	mmu_notifier_invalidate_range_start(mm, address, end);
1648 	unmap_single_vma(&tlb, vma, address, end, details);
1649 	mmu_notifier_invalidate_range_end(mm, address, end);
1650 	tlb_finish_mmu(&tlb, address, end);
1651 }
1652 
1653 /**
1654  * zap_vma_ptes - remove ptes mapping the vma
1655  * @vma: vm_area_struct holding ptes to be zapped
1656  * @address: starting address of pages to zap
1657  * @size: number of bytes to zap
1658  *
1659  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1660  *
1661  * The entire address range must be fully contained within the vma.
1662  *
1663  * Returns 0 if successful.
1664  */
1665 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1666 		unsigned long size)
1667 {
1668 	if (address < vma->vm_start || address + size > vma->vm_end ||
1669 	    		!(vma->vm_flags & VM_PFNMAP))
1670 		return -1;
1671 	zap_page_range_single(vma, address, size, NULL);
1672 	return 0;
1673 }
1674 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1675 
1676 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1677 			spinlock_t **ptl)
1678 {
1679 	pgd_t *pgd;
1680 	p4d_t *p4d;
1681 	pud_t *pud;
1682 	pmd_t *pmd;
1683 
1684 	pgd = pgd_offset(mm, addr);
1685 	p4d = p4d_alloc(mm, pgd, addr);
1686 	if (!p4d)
1687 		return NULL;
1688 	pud = pud_alloc(mm, p4d, addr);
1689 	if (!pud)
1690 		return NULL;
1691 	pmd = pmd_alloc(mm, pud, addr);
1692 	if (!pmd)
1693 		return NULL;
1694 
1695 	VM_BUG_ON(pmd_trans_huge(*pmd));
1696 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1697 }
1698 
1699 /*
1700  * This is the old fallback for page remapping.
1701  *
1702  * For historical reasons, it only allows reserved pages. Only
1703  * old drivers should use this, and they needed to mark their
1704  * pages reserved for the old functions anyway.
1705  */
1706 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1707 			struct page *page, pgprot_t prot)
1708 {
1709 	struct mm_struct *mm = vma->vm_mm;
1710 	int retval;
1711 	pte_t *pte;
1712 	spinlock_t *ptl;
1713 
1714 	retval = -EINVAL;
1715 	if (PageAnon(page))
1716 		goto out;
1717 	retval = -ENOMEM;
1718 	flush_dcache_page(page);
1719 	pte = get_locked_pte(mm, addr, &ptl);
1720 	if (!pte)
1721 		goto out;
1722 	retval = -EBUSY;
1723 	if (!pte_none(*pte))
1724 		goto out_unlock;
1725 
1726 	/* Ok, finally just insert the thing.. */
1727 	get_page(page);
1728 	inc_mm_counter_fast(mm, mm_counter_file(page));
1729 	page_add_file_rmap(page, false);
1730 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1731 
1732 	retval = 0;
1733 	pte_unmap_unlock(pte, ptl);
1734 	return retval;
1735 out_unlock:
1736 	pte_unmap_unlock(pte, ptl);
1737 out:
1738 	return retval;
1739 }
1740 
1741 /**
1742  * vm_insert_page - insert single page into user vma
1743  * @vma: user vma to map to
1744  * @addr: target user address of this page
1745  * @page: source kernel page
1746  *
1747  * This allows drivers to insert individual pages they've allocated
1748  * into a user vma.
1749  *
1750  * The page has to be a nice clean _individual_ kernel allocation.
1751  * If you allocate a compound page, you need to have marked it as
1752  * such (__GFP_COMP), or manually just split the page up yourself
1753  * (see split_page()).
1754  *
1755  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1756  * took an arbitrary page protection parameter. This doesn't allow
1757  * that. Your vma protection will have to be set up correctly, which
1758  * means that if you want a shared writable mapping, you'd better
1759  * ask for a shared writable mapping!
1760  *
1761  * The page does not need to be reserved.
1762  *
1763  * Usually this function is called from f_op->mmap() handler
1764  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1765  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1766  * function from other places, for example from page-fault handler.
1767  */
1768 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1769 			struct page *page)
1770 {
1771 	if (addr < vma->vm_start || addr >= vma->vm_end)
1772 		return -EFAULT;
1773 	if (!page_count(page))
1774 		return -EINVAL;
1775 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1776 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1777 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1778 		vma->vm_flags |= VM_MIXEDMAP;
1779 	}
1780 	return insert_page(vma, addr, page, vma->vm_page_prot);
1781 }
1782 EXPORT_SYMBOL(vm_insert_page);
1783 
1784 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1785 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1786 {
1787 	struct mm_struct *mm = vma->vm_mm;
1788 	int retval;
1789 	pte_t *pte, entry;
1790 	spinlock_t *ptl;
1791 
1792 	retval = -ENOMEM;
1793 	pte = get_locked_pte(mm, addr, &ptl);
1794 	if (!pte)
1795 		goto out;
1796 	retval = -EBUSY;
1797 	if (!pte_none(*pte)) {
1798 		if (mkwrite) {
1799 			/*
1800 			 * For read faults on private mappings the PFN passed
1801 			 * in may not match the PFN we have mapped if the
1802 			 * mapped PFN is a writeable COW page.  In the mkwrite
1803 			 * case we are creating a writable PTE for a shared
1804 			 * mapping and we expect the PFNs to match.
1805 			 */
1806 			if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1807 				goto out_unlock;
1808 			entry = *pte;
1809 			goto out_mkwrite;
1810 		} else
1811 			goto out_unlock;
1812 	}
1813 
1814 	/* Ok, finally just insert the thing.. */
1815 	if (pfn_t_devmap(pfn))
1816 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1817 	else
1818 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1819 
1820 out_mkwrite:
1821 	if (mkwrite) {
1822 		entry = pte_mkyoung(entry);
1823 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1824 	}
1825 
1826 	set_pte_at(mm, addr, pte, entry);
1827 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1828 
1829 	retval = 0;
1830 out_unlock:
1831 	pte_unmap_unlock(pte, ptl);
1832 out:
1833 	return retval;
1834 }
1835 
1836 /**
1837  * vm_insert_pfn - insert single pfn into user vma
1838  * @vma: user vma to map to
1839  * @addr: target user address of this page
1840  * @pfn: source kernel pfn
1841  *
1842  * Similar to vm_insert_page, this allows drivers to insert individual pages
1843  * they've allocated into a user vma. Same comments apply.
1844  *
1845  * This function should only be called from a vm_ops->fault handler, and
1846  * in that case the handler should return NULL.
1847  *
1848  * vma cannot be a COW mapping.
1849  *
1850  * As this is called only for pages that do not currently exist, we
1851  * do not need to flush old virtual caches or the TLB.
1852  */
1853 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1854 			unsigned long pfn)
1855 {
1856 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1857 }
1858 EXPORT_SYMBOL(vm_insert_pfn);
1859 
1860 /**
1861  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1862  * @vma: user vma to map to
1863  * @addr: target user address of this page
1864  * @pfn: source kernel pfn
1865  * @pgprot: pgprot flags for the inserted page
1866  *
1867  * This is exactly like vm_insert_pfn, except that it allows drivers to
1868  * to override pgprot on a per-page basis.
1869  *
1870  * This only makes sense for IO mappings, and it makes no sense for
1871  * cow mappings.  In general, using multiple vmas is preferable;
1872  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1873  * impractical.
1874  */
1875 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1876 			unsigned long pfn, pgprot_t pgprot)
1877 {
1878 	int ret;
1879 	/*
1880 	 * Technically, architectures with pte_special can avoid all these
1881 	 * restrictions (same for remap_pfn_range).  However we would like
1882 	 * consistency in testing and feature parity among all, so we should
1883 	 * try to keep these invariants in place for everybody.
1884 	 */
1885 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1886 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1887 						(VM_PFNMAP|VM_MIXEDMAP));
1888 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1889 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1890 
1891 	if (addr < vma->vm_start || addr >= vma->vm_end)
1892 		return -EFAULT;
1893 
1894 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1895 
1896 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1897 			false);
1898 
1899 	return ret;
1900 }
1901 EXPORT_SYMBOL(vm_insert_pfn_prot);
1902 
1903 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1904 {
1905 	/* these checks mirror the abort conditions in vm_normal_page */
1906 	if (vma->vm_flags & VM_MIXEDMAP)
1907 		return true;
1908 	if (pfn_t_devmap(pfn))
1909 		return true;
1910 	if (pfn_t_special(pfn))
1911 		return true;
1912 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1913 		return true;
1914 	return false;
1915 }
1916 
1917 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1918 			pfn_t pfn, bool mkwrite)
1919 {
1920 	pgprot_t pgprot = vma->vm_page_prot;
1921 
1922 	BUG_ON(!vm_mixed_ok(vma, pfn));
1923 
1924 	if (addr < vma->vm_start || addr >= vma->vm_end)
1925 		return -EFAULT;
1926 
1927 	track_pfn_insert(vma, &pgprot, pfn);
1928 
1929 	/*
1930 	 * If we don't have pte special, then we have to use the pfn_valid()
1931 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1932 	 * refcount the page if pfn_valid is true (hence insert_page rather
1933 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1934 	 * without pte special, it would there be refcounted as a normal page.
1935 	 */
1936 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1937 		struct page *page;
1938 
1939 		/*
1940 		 * At this point we are committed to insert_page()
1941 		 * regardless of whether the caller specified flags that
1942 		 * result in pfn_t_has_page() == false.
1943 		 */
1944 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1945 		return insert_page(vma, addr, page, pgprot);
1946 	}
1947 	return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1948 }
1949 
1950 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1951 			pfn_t pfn)
1952 {
1953 	return __vm_insert_mixed(vma, addr, pfn, false);
1954 
1955 }
1956 EXPORT_SYMBOL(vm_insert_mixed);
1957 
1958 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1959 			pfn_t pfn)
1960 {
1961 	return __vm_insert_mixed(vma, addr, pfn, true);
1962 }
1963 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1964 
1965 /*
1966  * maps a range of physical memory into the requested pages. the old
1967  * mappings are removed. any references to nonexistent pages results
1968  * in null mappings (currently treated as "copy-on-access")
1969  */
1970 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1971 			unsigned long addr, unsigned long end,
1972 			unsigned long pfn, pgprot_t prot)
1973 {
1974 	pte_t *pte;
1975 	spinlock_t *ptl;
1976 
1977 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1978 	if (!pte)
1979 		return -ENOMEM;
1980 	arch_enter_lazy_mmu_mode();
1981 	do {
1982 		BUG_ON(!pte_none(*pte));
1983 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1984 		pfn++;
1985 	} while (pte++, addr += PAGE_SIZE, addr != end);
1986 	arch_leave_lazy_mmu_mode();
1987 	pte_unmap_unlock(pte - 1, ptl);
1988 	return 0;
1989 }
1990 
1991 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1992 			unsigned long addr, unsigned long end,
1993 			unsigned long pfn, pgprot_t prot)
1994 {
1995 	pmd_t *pmd;
1996 	unsigned long next;
1997 
1998 	pfn -= addr >> PAGE_SHIFT;
1999 	pmd = pmd_alloc(mm, pud, addr);
2000 	if (!pmd)
2001 		return -ENOMEM;
2002 	VM_BUG_ON(pmd_trans_huge(*pmd));
2003 	do {
2004 		next = pmd_addr_end(addr, end);
2005 		if (remap_pte_range(mm, pmd, addr, next,
2006 				pfn + (addr >> PAGE_SHIFT), prot))
2007 			return -ENOMEM;
2008 	} while (pmd++, addr = next, addr != end);
2009 	return 0;
2010 }
2011 
2012 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2013 			unsigned long addr, unsigned long end,
2014 			unsigned long pfn, pgprot_t prot)
2015 {
2016 	pud_t *pud;
2017 	unsigned long next;
2018 
2019 	pfn -= addr >> PAGE_SHIFT;
2020 	pud = pud_alloc(mm, p4d, addr);
2021 	if (!pud)
2022 		return -ENOMEM;
2023 	do {
2024 		next = pud_addr_end(addr, end);
2025 		if (remap_pmd_range(mm, pud, addr, next,
2026 				pfn + (addr >> PAGE_SHIFT), prot))
2027 			return -ENOMEM;
2028 	} while (pud++, addr = next, addr != end);
2029 	return 0;
2030 }
2031 
2032 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2033 			unsigned long addr, unsigned long end,
2034 			unsigned long pfn, pgprot_t prot)
2035 {
2036 	p4d_t *p4d;
2037 	unsigned long next;
2038 
2039 	pfn -= addr >> PAGE_SHIFT;
2040 	p4d = p4d_alloc(mm, pgd, addr);
2041 	if (!p4d)
2042 		return -ENOMEM;
2043 	do {
2044 		next = p4d_addr_end(addr, end);
2045 		if (remap_pud_range(mm, p4d, addr, next,
2046 				pfn + (addr >> PAGE_SHIFT), prot))
2047 			return -ENOMEM;
2048 	} while (p4d++, addr = next, addr != end);
2049 	return 0;
2050 }
2051 
2052 /**
2053  * remap_pfn_range - remap kernel memory to userspace
2054  * @vma: user vma to map to
2055  * @addr: target user address to start at
2056  * @pfn: physical address of kernel memory
2057  * @size: size of map area
2058  * @prot: page protection flags for this mapping
2059  *
2060  *  Note: this is only safe if the mm semaphore is held when called.
2061  */
2062 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2063 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2064 {
2065 	pgd_t *pgd;
2066 	unsigned long next;
2067 	unsigned long end = addr + PAGE_ALIGN(size);
2068 	struct mm_struct *mm = vma->vm_mm;
2069 	unsigned long remap_pfn = pfn;
2070 	int err;
2071 
2072 	/*
2073 	 * Physically remapped pages are special. Tell the
2074 	 * rest of the world about it:
2075 	 *   VM_IO tells people not to look at these pages
2076 	 *	(accesses can have side effects).
2077 	 *   VM_PFNMAP tells the core MM that the base pages are just
2078 	 *	raw PFN mappings, and do not have a "struct page" associated
2079 	 *	with them.
2080 	 *   VM_DONTEXPAND
2081 	 *      Disable vma merging and expanding with mremap().
2082 	 *   VM_DONTDUMP
2083 	 *      Omit vma from core dump, even when VM_IO turned off.
2084 	 *
2085 	 * There's a horrible special case to handle copy-on-write
2086 	 * behaviour that some programs depend on. We mark the "original"
2087 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2088 	 * See vm_normal_page() for details.
2089 	 */
2090 	if (is_cow_mapping(vma->vm_flags)) {
2091 		if (addr != vma->vm_start || end != vma->vm_end)
2092 			return -EINVAL;
2093 		vma->vm_pgoff = pfn;
2094 	}
2095 
2096 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2097 	if (err)
2098 		return -EINVAL;
2099 
2100 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2101 
2102 	BUG_ON(addr >= end);
2103 	pfn -= addr >> PAGE_SHIFT;
2104 	pgd = pgd_offset(mm, addr);
2105 	flush_cache_range(vma, addr, end);
2106 	do {
2107 		next = pgd_addr_end(addr, end);
2108 		err = remap_p4d_range(mm, pgd, addr, next,
2109 				pfn + (addr >> PAGE_SHIFT), prot);
2110 		if (err)
2111 			break;
2112 	} while (pgd++, addr = next, addr != end);
2113 
2114 	if (err)
2115 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2116 
2117 	return err;
2118 }
2119 EXPORT_SYMBOL(remap_pfn_range);
2120 
2121 /**
2122  * vm_iomap_memory - remap memory to userspace
2123  * @vma: user vma to map to
2124  * @start: start of area
2125  * @len: size of area
2126  *
2127  * This is a simplified io_remap_pfn_range() for common driver use. The
2128  * driver just needs to give us the physical memory range to be mapped,
2129  * we'll figure out the rest from the vma information.
2130  *
2131  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2132  * whatever write-combining details or similar.
2133  */
2134 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2135 {
2136 	unsigned long vm_len, pfn, pages;
2137 
2138 	/* Check that the physical memory area passed in looks valid */
2139 	if (start + len < start)
2140 		return -EINVAL;
2141 	/*
2142 	 * You *really* shouldn't map things that aren't page-aligned,
2143 	 * but we've historically allowed it because IO memory might
2144 	 * just have smaller alignment.
2145 	 */
2146 	len += start & ~PAGE_MASK;
2147 	pfn = start >> PAGE_SHIFT;
2148 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2149 	if (pfn + pages < pfn)
2150 		return -EINVAL;
2151 
2152 	/* We start the mapping 'vm_pgoff' pages into the area */
2153 	if (vma->vm_pgoff > pages)
2154 		return -EINVAL;
2155 	pfn += vma->vm_pgoff;
2156 	pages -= vma->vm_pgoff;
2157 
2158 	/* Can we fit all of the mapping? */
2159 	vm_len = vma->vm_end - vma->vm_start;
2160 	if (vm_len >> PAGE_SHIFT > pages)
2161 		return -EINVAL;
2162 
2163 	/* Ok, let it rip */
2164 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2165 }
2166 EXPORT_SYMBOL(vm_iomap_memory);
2167 
2168 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2169 				     unsigned long addr, unsigned long end,
2170 				     pte_fn_t fn, void *data)
2171 {
2172 	pte_t *pte;
2173 	int err;
2174 	pgtable_t token;
2175 	spinlock_t *uninitialized_var(ptl);
2176 
2177 	pte = (mm == &init_mm) ?
2178 		pte_alloc_kernel(pmd, addr) :
2179 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2180 	if (!pte)
2181 		return -ENOMEM;
2182 
2183 	BUG_ON(pmd_huge(*pmd));
2184 
2185 	arch_enter_lazy_mmu_mode();
2186 
2187 	token = pmd_pgtable(*pmd);
2188 
2189 	do {
2190 		err = fn(pte++, token, addr, data);
2191 		if (err)
2192 			break;
2193 	} while (addr += PAGE_SIZE, addr != end);
2194 
2195 	arch_leave_lazy_mmu_mode();
2196 
2197 	if (mm != &init_mm)
2198 		pte_unmap_unlock(pte-1, ptl);
2199 	return err;
2200 }
2201 
2202 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2203 				     unsigned long addr, unsigned long end,
2204 				     pte_fn_t fn, void *data)
2205 {
2206 	pmd_t *pmd;
2207 	unsigned long next;
2208 	int err;
2209 
2210 	BUG_ON(pud_huge(*pud));
2211 
2212 	pmd = pmd_alloc(mm, pud, addr);
2213 	if (!pmd)
2214 		return -ENOMEM;
2215 	do {
2216 		next = pmd_addr_end(addr, end);
2217 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2218 		if (err)
2219 			break;
2220 	} while (pmd++, addr = next, addr != end);
2221 	return err;
2222 }
2223 
2224 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2225 				     unsigned long addr, unsigned long end,
2226 				     pte_fn_t fn, void *data)
2227 {
2228 	pud_t *pud;
2229 	unsigned long next;
2230 	int err;
2231 
2232 	pud = pud_alloc(mm, p4d, addr);
2233 	if (!pud)
2234 		return -ENOMEM;
2235 	do {
2236 		next = pud_addr_end(addr, end);
2237 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2238 		if (err)
2239 			break;
2240 	} while (pud++, addr = next, addr != end);
2241 	return err;
2242 }
2243 
2244 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2245 				     unsigned long addr, unsigned long end,
2246 				     pte_fn_t fn, void *data)
2247 {
2248 	p4d_t *p4d;
2249 	unsigned long next;
2250 	int err;
2251 
2252 	p4d = p4d_alloc(mm, pgd, addr);
2253 	if (!p4d)
2254 		return -ENOMEM;
2255 	do {
2256 		next = p4d_addr_end(addr, end);
2257 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2258 		if (err)
2259 			break;
2260 	} while (p4d++, addr = next, addr != end);
2261 	return err;
2262 }
2263 
2264 /*
2265  * Scan a region of virtual memory, filling in page tables as necessary
2266  * and calling a provided function on each leaf page table.
2267  */
2268 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2269 			unsigned long size, pte_fn_t fn, void *data)
2270 {
2271 	pgd_t *pgd;
2272 	unsigned long next;
2273 	unsigned long end = addr + size;
2274 	int err;
2275 
2276 	if (WARN_ON(addr >= end))
2277 		return -EINVAL;
2278 
2279 	pgd = pgd_offset(mm, addr);
2280 	do {
2281 		next = pgd_addr_end(addr, end);
2282 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2283 		if (err)
2284 			break;
2285 	} while (pgd++, addr = next, addr != end);
2286 
2287 	return err;
2288 }
2289 EXPORT_SYMBOL_GPL(apply_to_page_range);
2290 
2291 /*
2292  * handle_pte_fault chooses page fault handler according to an entry which was
2293  * read non-atomically.  Before making any commitment, on those architectures
2294  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2295  * parts, do_swap_page must check under lock before unmapping the pte and
2296  * proceeding (but do_wp_page is only called after already making such a check;
2297  * and do_anonymous_page can safely check later on).
2298  */
2299 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2300 				pte_t *page_table, pte_t orig_pte)
2301 {
2302 	int same = 1;
2303 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2304 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2305 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2306 		spin_lock(ptl);
2307 		same = pte_same(*page_table, orig_pte);
2308 		spin_unlock(ptl);
2309 	}
2310 #endif
2311 	pte_unmap(page_table);
2312 	return same;
2313 }
2314 
2315 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2316 {
2317 	debug_dma_assert_idle(src);
2318 
2319 	/*
2320 	 * If the source page was a PFN mapping, we don't have
2321 	 * a "struct page" for it. We do a best-effort copy by
2322 	 * just copying from the original user address. If that
2323 	 * fails, we just zero-fill it. Live with it.
2324 	 */
2325 	if (unlikely(!src)) {
2326 		void *kaddr = kmap_atomic(dst);
2327 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2328 
2329 		/*
2330 		 * This really shouldn't fail, because the page is there
2331 		 * in the page tables. But it might just be unreadable,
2332 		 * in which case we just give up and fill the result with
2333 		 * zeroes.
2334 		 */
2335 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2336 			clear_page(kaddr);
2337 		kunmap_atomic(kaddr);
2338 		flush_dcache_page(dst);
2339 	} else
2340 		copy_user_highpage(dst, src, va, vma);
2341 }
2342 
2343 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2344 {
2345 	struct file *vm_file = vma->vm_file;
2346 
2347 	if (vm_file)
2348 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2349 
2350 	/*
2351 	 * Special mappings (e.g. VDSO) do not have any file so fake
2352 	 * a default GFP_KERNEL for them.
2353 	 */
2354 	return GFP_KERNEL;
2355 }
2356 
2357 /*
2358  * Notify the address space that the page is about to become writable so that
2359  * it can prohibit this or wait for the page to get into an appropriate state.
2360  *
2361  * We do this without the lock held, so that it can sleep if it needs to.
2362  */
2363 static int do_page_mkwrite(struct vm_fault *vmf)
2364 {
2365 	int ret;
2366 	struct page *page = vmf->page;
2367 	unsigned int old_flags = vmf->flags;
2368 
2369 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2370 
2371 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2372 	/* Restore original flags so that caller is not surprised */
2373 	vmf->flags = old_flags;
2374 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2375 		return ret;
2376 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2377 		lock_page(page);
2378 		if (!page->mapping) {
2379 			unlock_page(page);
2380 			return 0; /* retry */
2381 		}
2382 		ret |= VM_FAULT_LOCKED;
2383 	} else
2384 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2385 	return ret;
2386 }
2387 
2388 /*
2389  * Handle dirtying of a page in shared file mapping on a write fault.
2390  *
2391  * The function expects the page to be locked and unlocks it.
2392  */
2393 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2394 				    struct page *page)
2395 {
2396 	struct address_space *mapping;
2397 	bool dirtied;
2398 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2399 
2400 	dirtied = set_page_dirty(page);
2401 	VM_BUG_ON_PAGE(PageAnon(page), page);
2402 	/*
2403 	 * Take a local copy of the address_space - page.mapping may be zeroed
2404 	 * by truncate after unlock_page().   The address_space itself remains
2405 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2406 	 * release semantics to prevent the compiler from undoing this copying.
2407 	 */
2408 	mapping = page_rmapping(page);
2409 	unlock_page(page);
2410 
2411 	if ((dirtied || page_mkwrite) && mapping) {
2412 		/*
2413 		 * Some device drivers do not set page.mapping
2414 		 * but still dirty their pages
2415 		 */
2416 		balance_dirty_pages_ratelimited(mapping);
2417 	}
2418 
2419 	if (!page_mkwrite)
2420 		file_update_time(vma->vm_file);
2421 }
2422 
2423 /*
2424  * Handle write page faults for pages that can be reused in the current vma
2425  *
2426  * This can happen either due to the mapping being with the VM_SHARED flag,
2427  * or due to us being the last reference standing to the page. In either
2428  * case, all we need to do here is to mark the page as writable and update
2429  * any related book-keeping.
2430  */
2431 static inline void wp_page_reuse(struct vm_fault *vmf)
2432 	__releases(vmf->ptl)
2433 {
2434 	struct vm_area_struct *vma = vmf->vma;
2435 	struct page *page = vmf->page;
2436 	pte_t entry;
2437 	/*
2438 	 * Clear the pages cpupid information as the existing
2439 	 * information potentially belongs to a now completely
2440 	 * unrelated process.
2441 	 */
2442 	if (page)
2443 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2444 
2445 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2446 	entry = pte_mkyoung(vmf->orig_pte);
2447 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2448 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2449 		update_mmu_cache(vma, vmf->address, vmf->pte);
2450 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2451 }
2452 
2453 /*
2454  * Handle the case of a page which we actually need to copy to a new page.
2455  *
2456  * Called with mmap_sem locked and the old page referenced, but
2457  * without the ptl held.
2458  *
2459  * High level logic flow:
2460  *
2461  * - Allocate a page, copy the content of the old page to the new one.
2462  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2463  * - Take the PTL. If the pte changed, bail out and release the allocated page
2464  * - If the pte is still the way we remember it, update the page table and all
2465  *   relevant references. This includes dropping the reference the page-table
2466  *   held to the old page, as well as updating the rmap.
2467  * - In any case, unlock the PTL and drop the reference we took to the old page.
2468  */
2469 static int wp_page_copy(struct vm_fault *vmf)
2470 {
2471 	struct vm_area_struct *vma = vmf->vma;
2472 	struct mm_struct *mm = vma->vm_mm;
2473 	struct page *old_page = vmf->page;
2474 	struct page *new_page = NULL;
2475 	pte_t entry;
2476 	int page_copied = 0;
2477 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2478 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2479 	struct mem_cgroup *memcg;
2480 
2481 	if (unlikely(anon_vma_prepare(vma)))
2482 		goto oom;
2483 
2484 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2485 		new_page = alloc_zeroed_user_highpage_movable(vma,
2486 							      vmf->address);
2487 		if (!new_page)
2488 			goto oom;
2489 	} else {
2490 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2491 				vmf->address);
2492 		if (!new_page)
2493 			goto oom;
2494 		cow_user_page(new_page, old_page, vmf->address, vma);
2495 	}
2496 
2497 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2498 		goto oom_free_new;
2499 
2500 	__SetPageUptodate(new_page);
2501 
2502 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2503 
2504 	/*
2505 	 * Re-check the pte - we dropped the lock
2506 	 */
2507 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2508 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2509 		if (old_page) {
2510 			if (!PageAnon(old_page)) {
2511 				dec_mm_counter_fast(mm,
2512 						mm_counter_file(old_page));
2513 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2514 			}
2515 		} else {
2516 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2517 		}
2518 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2519 		entry = mk_pte(new_page, vma->vm_page_prot);
2520 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2521 		/*
2522 		 * Clear the pte entry and flush it first, before updating the
2523 		 * pte with the new entry. This will avoid a race condition
2524 		 * seen in the presence of one thread doing SMC and another
2525 		 * thread doing COW.
2526 		 */
2527 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2528 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2529 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2530 		lru_cache_add_active_or_unevictable(new_page, vma);
2531 		/*
2532 		 * We call the notify macro here because, when using secondary
2533 		 * mmu page tables (such as kvm shadow page tables), we want the
2534 		 * new page to be mapped directly into the secondary page table.
2535 		 */
2536 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2537 		update_mmu_cache(vma, vmf->address, vmf->pte);
2538 		if (old_page) {
2539 			/*
2540 			 * Only after switching the pte to the new page may
2541 			 * we remove the mapcount here. Otherwise another
2542 			 * process may come and find the rmap count decremented
2543 			 * before the pte is switched to the new page, and
2544 			 * "reuse" the old page writing into it while our pte
2545 			 * here still points into it and can be read by other
2546 			 * threads.
2547 			 *
2548 			 * The critical issue is to order this
2549 			 * page_remove_rmap with the ptp_clear_flush above.
2550 			 * Those stores are ordered by (if nothing else,)
2551 			 * the barrier present in the atomic_add_negative
2552 			 * in page_remove_rmap.
2553 			 *
2554 			 * Then the TLB flush in ptep_clear_flush ensures that
2555 			 * no process can access the old page before the
2556 			 * decremented mapcount is visible. And the old page
2557 			 * cannot be reused until after the decremented
2558 			 * mapcount is visible. So transitively, TLBs to
2559 			 * old page will be flushed before it can be reused.
2560 			 */
2561 			page_remove_rmap(old_page, false);
2562 		}
2563 
2564 		/* Free the old page.. */
2565 		new_page = old_page;
2566 		page_copied = 1;
2567 	} else {
2568 		mem_cgroup_cancel_charge(new_page, memcg, false);
2569 	}
2570 
2571 	if (new_page)
2572 		put_page(new_page);
2573 
2574 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2575 	/*
2576 	 * No need to double call mmu_notifier->invalidate_range() callback as
2577 	 * the above ptep_clear_flush_notify() did already call it.
2578 	 */
2579 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2580 	if (old_page) {
2581 		/*
2582 		 * Don't let another task, with possibly unlocked vma,
2583 		 * keep the mlocked page.
2584 		 */
2585 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2586 			lock_page(old_page);	/* LRU manipulation */
2587 			if (PageMlocked(old_page))
2588 				munlock_vma_page(old_page);
2589 			unlock_page(old_page);
2590 		}
2591 		put_page(old_page);
2592 	}
2593 	return page_copied ? VM_FAULT_WRITE : 0;
2594 oom_free_new:
2595 	put_page(new_page);
2596 oom:
2597 	if (old_page)
2598 		put_page(old_page);
2599 	return VM_FAULT_OOM;
2600 }
2601 
2602 /**
2603  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2604  *			  writeable once the page is prepared
2605  *
2606  * @vmf: structure describing the fault
2607  *
2608  * This function handles all that is needed to finish a write page fault in a
2609  * shared mapping due to PTE being read-only once the mapped page is prepared.
2610  * It handles locking of PTE and modifying it. The function returns
2611  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2612  * lock.
2613  *
2614  * The function expects the page to be locked or other protection against
2615  * concurrent faults / writeback (such as DAX radix tree locks).
2616  */
2617 int finish_mkwrite_fault(struct vm_fault *vmf)
2618 {
2619 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2620 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2621 				       &vmf->ptl);
2622 	/*
2623 	 * We might have raced with another page fault while we released the
2624 	 * pte_offset_map_lock.
2625 	 */
2626 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2627 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2628 		return VM_FAULT_NOPAGE;
2629 	}
2630 	wp_page_reuse(vmf);
2631 	return 0;
2632 }
2633 
2634 /*
2635  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2636  * mapping
2637  */
2638 static int wp_pfn_shared(struct vm_fault *vmf)
2639 {
2640 	struct vm_area_struct *vma = vmf->vma;
2641 
2642 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2643 		int ret;
2644 
2645 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2646 		vmf->flags |= FAULT_FLAG_MKWRITE;
2647 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2648 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2649 			return ret;
2650 		return finish_mkwrite_fault(vmf);
2651 	}
2652 	wp_page_reuse(vmf);
2653 	return VM_FAULT_WRITE;
2654 }
2655 
2656 static int wp_page_shared(struct vm_fault *vmf)
2657 	__releases(vmf->ptl)
2658 {
2659 	struct vm_area_struct *vma = vmf->vma;
2660 
2661 	get_page(vmf->page);
2662 
2663 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2664 		int tmp;
2665 
2666 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2667 		tmp = do_page_mkwrite(vmf);
2668 		if (unlikely(!tmp || (tmp &
2669 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2670 			put_page(vmf->page);
2671 			return tmp;
2672 		}
2673 		tmp = finish_mkwrite_fault(vmf);
2674 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2675 			unlock_page(vmf->page);
2676 			put_page(vmf->page);
2677 			return tmp;
2678 		}
2679 	} else {
2680 		wp_page_reuse(vmf);
2681 		lock_page(vmf->page);
2682 	}
2683 	fault_dirty_shared_page(vma, vmf->page);
2684 	put_page(vmf->page);
2685 
2686 	return VM_FAULT_WRITE;
2687 }
2688 
2689 /*
2690  * This routine handles present pages, when users try to write
2691  * to a shared page. It is done by copying the page to a new address
2692  * and decrementing the shared-page counter for the old page.
2693  *
2694  * Note that this routine assumes that the protection checks have been
2695  * done by the caller (the low-level page fault routine in most cases).
2696  * Thus we can safely just mark it writable once we've done any necessary
2697  * COW.
2698  *
2699  * We also mark the page dirty at this point even though the page will
2700  * change only once the write actually happens. This avoids a few races,
2701  * and potentially makes it more efficient.
2702  *
2703  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2704  * but allow concurrent faults), with pte both mapped and locked.
2705  * We return with mmap_sem still held, but pte unmapped and unlocked.
2706  */
2707 static int do_wp_page(struct vm_fault *vmf)
2708 	__releases(vmf->ptl)
2709 {
2710 	struct vm_area_struct *vma = vmf->vma;
2711 
2712 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2713 	if (!vmf->page) {
2714 		/*
2715 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2716 		 * VM_PFNMAP VMA.
2717 		 *
2718 		 * We should not cow pages in a shared writeable mapping.
2719 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2720 		 */
2721 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2722 				     (VM_WRITE|VM_SHARED))
2723 			return wp_pfn_shared(vmf);
2724 
2725 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2726 		return wp_page_copy(vmf);
2727 	}
2728 
2729 	/*
2730 	 * Take out anonymous pages first, anonymous shared vmas are
2731 	 * not dirty accountable.
2732 	 */
2733 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2734 		int total_map_swapcount;
2735 		if (!trylock_page(vmf->page)) {
2736 			get_page(vmf->page);
2737 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2738 			lock_page(vmf->page);
2739 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2740 					vmf->address, &vmf->ptl);
2741 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2742 				unlock_page(vmf->page);
2743 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2744 				put_page(vmf->page);
2745 				return 0;
2746 			}
2747 			put_page(vmf->page);
2748 		}
2749 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2750 			if (total_map_swapcount == 1) {
2751 				/*
2752 				 * The page is all ours. Move it to
2753 				 * our anon_vma so the rmap code will
2754 				 * not search our parent or siblings.
2755 				 * Protected against the rmap code by
2756 				 * the page lock.
2757 				 */
2758 				page_move_anon_rmap(vmf->page, vma);
2759 			}
2760 			unlock_page(vmf->page);
2761 			wp_page_reuse(vmf);
2762 			return VM_FAULT_WRITE;
2763 		}
2764 		unlock_page(vmf->page);
2765 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2766 					(VM_WRITE|VM_SHARED))) {
2767 		return wp_page_shared(vmf);
2768 	}
2769 
2770 	/*
2771 	 * Ok, we need to copy. Oh, well..
2772 	 */
2773 	get_page(vmf->page);
2774 
2775 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2776 	return wp_page_copy(vmf);
2777 }
2778 
2779 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2780 		unsigned long start_addr, unsigned long end_addr,
2781 		struct zap_details *details)
2782 {
2783 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2784 }
2785 
2786 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2787 					    struct zap_details *details)
2788 {
2789 	struct vm_area_struct *vma;
2790 	pgoff_t vba, vea, zba, zea;
2791 
2792 	vma_interval_tree_foreach(vma, root,
2793 			details->first_index, details->last_index) {
2794 
2795 		vba = vma->vm_pgoff;
2796 		vea = vba + vma_pages(vma) - 1;
2797 		zba = details->first_index;
2798 		if (zba < vba)
2799 			zba = vba;
2800 		zea = details->last_index;
2801 		if (zea > vea)
2802 			zea = vea;
2803 
2804 		unmap_mapping_range_vma(vma,
2805 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2806 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2807 				details);
2808 	}
2809 }
2810 
2811 /**
2812  * unmap_mapping_pages() - Unmap pages from processes.
2813  * @mapping: The address space containing pages to be unmapped.
2814  * @start: Index of first page to be unmapped.
2815  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2816  * @even_cows: Whether to unmap even private COWed pages.
2817  *
2818  * Unmap the pages in this address space from any userspace process which
2819  * has them mmaped.  Generally, you want to remove COWed pages as well when
2820  * a file is being truncated, but not when invalidating pages from the page
2821  * cache.
2822  */
2823 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2824 		pgoff_t nr, bool even_cows)
2825 {
2826 	struct zap_details details = { };
2827 
2828 	details.check_mapping = even_cows ? NULL : mapping;
2829 	details.first_index = start;
2830 	details.last_index = start + nr - 1;
2831 	if (details.last_index < details.first_index)
2832 		details.last_index = ULONG_MAX;
2833 
2834 	i_mmap_lock_write(mapping);
2835 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2836 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2837 	i_mmap_unlock_write(mapping);
2838 }
2839 
2840 /**
2841  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2842  * address_space corresponding to the specified byte range in the underlying
2843  * file.
2844  *
2845  * @mapping: the address space containing mmaps to be unmapped.
2846  * @holebegin: byte in first page to unmap, relative to the start of
2847  * the underlying file.  This will be rounded down to a PAGE_SIZE
2848  * boundary.  Note that this is different from truncate_pagecache(), which
2849  * must keep the partial page.  In contrast, we must get rid of
2850  * partial pages.
2851  * @holelen: size of prospective hole in bytes.  This will be rounded
2852  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2853  * end of the file.
2854  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2855  * but 0 when invalidating pagecache, don't throw away private data.
2856  */
2857 void unmap_mapping_range(struct address_space *mapping,
2858 		loff_t const holebegin, loff_t const holelen, int even_cows)
2859 {
2860 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2861 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2862 
2863 	/* Check for overflow. */
2864 	if (sizeof(holelen) > sizeof(hlen)) {
2865 		long long holeend =
2866 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2867 		if (holeend & ~(long long)ULONG_MAX)
2868 			hlen = ULONG_MAX - hba + 1;
2869 	}
2870 
2871 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2872 }
2873 EXPORT_SYMBOL(unmap_mapping_range);
2874 
2875 /*
2876  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2877  * but allow concurrent faults), and pte mapped but not yet locked.
2878  * We return with pte unmapped and unlocked.
2879  *
2880  * We return with the mmap_sem locked or unlocked in the same cases
2881  * as does filemap_fault().
2882  */
2883 int do_swap_page(struct vm_fault *vmf)
2884 {
2885 	struct vm_area_struct *vma = vmf->vma;
2886 	struct page *page = NULL, *swapcache = NULL;
2887 	struct mem_cgroup *memcg;
2888 	struct vma_swap_readahead swap_ra;
2889 	swp_entry_t entry;
2890 	pte_t pte;
2891 	int locked;
2892 	int exclusive = 0;
2893 	int ret = 0;
2894 	bool vma_readahead = swap_use_vma_readahead();
2895 
2896 	if (vma_readahead) {
2897 		page = swap_readahead_detect(vmf, &swap_ra);
2898 		swapcache = page;
2899 	}
2900 
2901 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2902 		if (page)
2903 			put_page(page);
2904 		goto out;
2905 	}
2906 
2907 	entry = pte_to_swp_entry(vmf->orig_pte);
2908 	if (unlikely(non_swap_entry(entry))) {
2909 		if (is_migration_entry(entry)) {
2910 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2911 					     vmf->address);
2912 		} else if (is_device_private_entry(entry)) {
2913 			/*
2914 			 * For un-addressable device memory we call the pgmap
2915 			 * fault handler callback. The callback must migrate
2916 			 * the page back to some CPU accessible page.
2917 			 */
2918 			ret = device_private_entry_fault(vma, vmf->address, entry,
2919 						 vmf->flags, vmf->pmd);
2920 		} else if (is_hwpoison_entry(entry)) {
2921 			ret = VM_FAULT_HWPOISON;
2922 		} else {
2923 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2924 			ret = VM_FAULT_SIGBUS;
2925 		}
2926 		goto out;
2927 	}
2928 
2929 
2930 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2931 	if (!page) {
2932 		page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2933 					 vmf->address);
2934 		swapcache = page;
2935 	}
2936 
2937 	if (!page) {
2938 		struct swap_info_struct *si = swp_swap_info(entry);
2939 
2940 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2941 				__swap_count(si, entry) == 1) {
2942 			/* skip swapcache */
2943 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2944 			if (page) {
2945 				__SetPageLocked(page);
2946 				__SetPageSwapBacked(page);
2947 				set_page_private(page, entry.val);
2948 				lru_cache_add_anon(page);
2949 				swap_readpage(page, true);
2950 			}
2951 		} else {
2952 			if (vma_readahead)
2953 				page = do_swap_page_readahead(entry,
2954 					GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2955 			else
2956 				page = swapin_readahead(entry,
2957 				       GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2958 			swapcache = page;
2959 		}
2960 
2961 		if (!page) {
2962 			/*
2963 			 * Back out if somebody else faulted in this pte
2964 			 * while we released the pte lock.
2965 			 */
2966 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2967 					vmf->address, &vmf->ptl);
2968 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2969 				ret = VM_FAULT_OOM;
2970 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2971 			goto unlock;
2972 		}
2973 
2974 		/* Had to read the page from swap area: Major fault */
2975 		ret = VM_FAULT_MAJOR;
2976 		count_vm_event(PGMAJFAULT);
2977 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2978 	} else if (PageHWPoison(page)) {
2979 		/*
2980 		 * hwpoisoned dirty swapcache pages are kept for killing
2981 		 * owner processes (which may be unknown at hwpoison time)
2982 		 */
2983 		ret = VM_FAULT_HWPOISON;
2984 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2985 		swapcache = page;
2986 		goto out_release;
2987 	}
2988 
2989 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2990 
2991 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2992 	if (!locked) {
2993 		ret |= VM_FAULT_RETRY;
2994 		goto out_release;
2995 	}
2996 
2997 	/*
2998 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2999 	 * release the swapcache from under us.  The page pin, and pte_same
3000 	 * test below, are not enough to exclude that.  Even if it is still
3001 	 * swapcache, we need to check that the page's swap has not changed.
3002 	 */
3003 	if (unlikely((!PageSwapCache(page) ||
3004 			page_private(page) != entry.val)) && swapcache)
3005 		goto out_page;
3006 
3007 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3008 	if (unlikely(!page)) {
3009 		ret = VM_FAULT_OOM;
3010 		page = swapcache;
3011 		goto out_page;
3012 	}
3013 
3014 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3015 				&memcg, false)) {
3016 		ret = VM_FAULT_OOM;
3017 		goto out_page;
3018 	}
3019 
3020 	/*
3021 	 * Back out if somebody else already faulted in this pte.
3022 	 */
3023 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3024 			&vmf->ptl);
3025 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3026 		goto out_nomap;
3027 
3028 	if (unlikely(!PageUptodate(page))) {
3029 		ret = VM_FAULT_SIGBUS;
3030 		goto out_nomap;
3031 	}
3032 
3033 	/*
3034 	 * The page isn't present yet, go ahead with the fault.
3035 	 *
3036 	 * Be careful about the sequence of operations here.
3037 	 * To get its accounting right, reuse_swap_page() must be called
3038 	 * while the page is counted on swap but not yet in mapcount i.e.
3039 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3040 	 * must be called after the swap_free(), or it will never succeed.
3041 	 */
3042 
3043 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3044 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3045 	pte = mk_pte(page, vma->vm_page_prot);
3046 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3047 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3048 		vmf->flags &= ~FAULT_FLAG_WRITE;
3049 		ret |= VM_FAULT_WRITE;
3050 		exclusive = RMAP_EXCLUSIVE;
3051 	}
3052 	flush_icache_page(vma, page);
3053 	if (pte_swp_soft_dirty(vmf->orig_pte))
3054 		pte = pte_mksoft_dirty(pte);
3055 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3056 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3057 	vmf->orig_pte = pte;
3058 
3059 	/* ksm created a completely new copy */
3060 	if (unlikely(page != swapcache && swapcache)) {
3061 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3062 		mem_cgroup_commit_charge(page, memcg, false, false);
3063 		lru_cache_add_active_or_unevictable(page, vma);
3064 	} else {
3065 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3066 		mem_cgroup_commit_charge(page, memcg, true, false);
3067 		activate_page(page);
3068 	}
3069 
3070 	swap_free(entry);
3071 	if (mem_cgroup_swap_full(page) ||
3072 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3073 		try_to_free_swap(page);
3074 	unlock_page(page);
3075 	if (page != swapcache && swapcache) {
3076 		/*
3077 		 * Hold the lock to avoid the swap entry to be reused
3078 		 * until we take the PT lock for the pte_same() check
3079 		 * (to avoid false positives from pte_same). For
3080 		 * further safety release the lock after the swap_free
3081 		 * so that the swap count won't change under a
3082 		 * parallel locked swapcache.
3083 		 */
3084 		unlock_page(swapcache);
3085 		put_page(swapcache);
3086 	}
3087 
3088 	if (vmf->flags & FAULT_FLAG_WRITE) {
3089 		ret |= do_wp_page(vmf);
3090 		if (ret & VM_FAULT_ERROR)
3091 			ret &= VM_FAULT_ERROR;
3092 		goto out;
3093 	}
3094 
3095 	/* No need to invalidate - it was non-present before */
3096 	update_mmu_cache(vma, vmf->address, vmf->pte);
3097 unlock:
3098 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3099 out:
3100 	return ret;
3101 out_nomap:
3102 	mem_cgroup_cancel_charge(page, memcg, false);
3103 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3104 out_page:
3105 	unlock_page(page);
3106 out_release:
3107 	put_page(page);
3108 	if (page != swapcache && swapcache) {
3109 		unlock_page(swapcache);
3110 		put_page(swapcache);
3111 	}
3112 	return ret;
3113 }
3114 
3115 /*
3116  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3117  * but allow concurrent faults), and pte mapped but not yet locked.
3118  * We return with mmap_sem still held, but pte unmapped and unlocked.
3119  */
3120 static int do_anonymous_page(struct vm_fault *vmf)
3121 {
3122 	struct vm_area_struct *vma = vmf->vma;
3123 	struct mem_cgroup *memcg;
3124 	struct page *page;
3125 	int ret = 0;
3126 	pte_t entry;
3127 
3128 	/* File mapping without ->vm_ops ? */
3129 	if (vma->vm_flags & VM_SHARED)
3130 		return VM_FAULT_SIGBUS;
3131 
3132 	/*
3133 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3134 	 * pte_offset_map() on pmds where a huge pmd might be created
3135 	 * from a different thread.
3136 	 *
3137 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3138 	 * parallel threads are excluded by other means.
3139 	 *
3140 	 * Here we only have down_read(mmap_sem).
3141 	 */
3142 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3143 		return VM_FAULT_OOM;
3144 
3145 	/* See the comment in pte_alloc_one_map() */
3146 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3147 		return 0;
3148 
3149 	/* Use the zero-page for reads */
3150 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3151 			!mm_forbids_zeropage(vma->vm_mm)) {
3152 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3153 						vma->vm_page_prot));
3154 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3155 				vmf->address, &vmf->ptl);
3156 		if (!pte_none(*vmf->pte))
3157 			goto unlock;
3158 		ret = check_stable_address_space(vma->vm_mm);
3159 		if (ret)
3160 			goto unlock;
3161 		/* Deliver the page fault to userland, check inside PT lock */
3162 		if (userfaultfd_missing(vma)) {
3163 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3164 			return handle_userfault(vmf, VM_UFFD_MISSING);
3165 		}
3166 		goto setpte;
3167 	}
3168 
3169 	/* Allocate our own private page. */
3170 	if (unlikely(anon_vma_prepare(vma)))
3171 		goto oom;
3172 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3173 	if (!page)
3174 		goto oom;
3175 
3176 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3177 		goto oom_free_page;
3178 
3179 	/*
3180 	 * The memory barrier inside __SetPageUptodate makes sure that
3181 	 * preceeding stores to the page contents become visible before
3182 	 * the set_pte_at() write.
3183 	 */
3184 	__SetPageUptodate(page);
3185 
3186 	entry = mk_pte(page, vma->vm_page_prot);
3187 	if (vma->vm_flags & VM_WRITE)
3188 		entry = pte_mkwrite(pte_mkdirty(entry));
3189 
3190 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3191 			&vmf->ptl);
3192 	if (!pte_none(*vmf->pte))
3193 		goto release;
3194 
3195 	ret = check_stable_address_space(vma->vm_mm);
3196 	if (ret)
3197 		goto release;
3198 
3199 	/* Deliver the page fault to userland, check inside PT lock */
3200 	if (userfaultfd_missing(vma)) {
3201 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3202 		mem_cgroup_cancel_charge(page, memcg, false);
3203 		put_page(page);
3204 		return handle_userfault(vmf, VM_UFFD_MISSING);
3205 	}
3206 
3207 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3208 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3209 	mem_cgroup_commit_charge(page, memcg, false, false);
3210 	lru_cache_add_active_or_unevictable(page, vma);
3211 setpte:
3212 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3213 
3214 	/* No need to invalidate - it was non-present before */
3215 	update_mmu_cache(vma, vmf->address, vmf->pte);
3216 unlock:
3217 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3218 	return ret;
3219 release:
3220 	mem_cgroup_cancel_charge(page, memcg, false);
3221 	put_page(page);
3222 	goto unlock;
3223 oom_free_page:
3224 	put_page(page);
3225 oom:
3226 	return VM_FAULT_OOM;
3227 }
3228 
3229 /*
3230  * The mmap_sem must have been held on entry, and may have been
3231  * released depending on flags and vma->vm_ops->fault() return value.
3232  * See filemap_fault() and __lock_page_retry().
3233  */
3234 static int __do_fault(struct vm_fault *vmf)
3235 {
3236 	struct vm_area_struct *vma = vmf->vma;
3237 	int ret;
3238 
3239 	ret = vma->vm_ops->fault(vmf);
3240 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3241 			    VM_FAULT_DONE_COW)))
3242 		return ret;
3243 
3244 	if (unlikely(PageHWPoison(vmf->page))) {
3245 		if (ret & VM_FAULT_LOCKED)
3246 			unlock_page(vmf->page);
3247 		put_page(vmf->page);
3248 		vmf->page = NULL;
3249 		return VM_FAULT_HWPOISON;
3250 	}
3251 
3252 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3253 		lock_page(vmf->page);
3254 	else
3255 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3256 
3257 	return ret;
3258 }
3259 
3260 /*
3261  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3262  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3263  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3264  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3265  */
3266 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3267 {
3268 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3269 }
3270 
3271 static int pte_alloc_one_map(struct vm_fault *vmf)
3272 {
3273 	struct vm_area_struct *vma = vmf->vma;
3274 
3275 	if (!pmd_none(*vmf->pmd))
3276 		goto map_pte;
3277 	if (vmf->prealloc_pte) {
3278 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3279 		if (unlikely(!pmd_none(*vmf->pmd))) {
3280 			spin_unlock(vmf->ptl);
3281 			goto map_pte;
3282 		}
3283 
3284 		mm_inc_nr_ptes(vma->vm_mm);
3285 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3286 		spin_unlock(vmf->ptl);
3287 		vmf->prealloc_pte = NULL;
3288 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3289 		return VM_FAULT_OOM;
3290 	}
3291 map_pte:
3292 	/*
3293 	 * If a huge pmd materialized under us just retry later.  Use
3294 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3295 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3296 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3297 	 * running immediately after a huge pmd fault in a different thread of
3298 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3299 	 * All we have to ensure is that it is a regular pmd that we can walk
3300 	 * with pte_offset_map() and we can do that through an atomic read in
3301 	 * C, which is what pmd_trans_unstable() provides.
3302 	 */
3303 	if (pmd_devmap_trans_unstable(vmf->pmd))
3304 		return VM_FAULT_NOPAGE;
3305 
3306 	/*
3307 	 * At this point we know that our vmf->pmd points to a page of ptes
3308 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3309 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3310 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3311 	 * be valid and we will re-check to make sure the vmf->pte isn't
3312 	 * pte_none() under vmf->ptl protection when we return to
3313 	 * alloc_set_pte().
3314 	 */
3315 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3316 			&vmf->ptl);
3317 	return 0;
3318 }
3319 
3320 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3321 
3322 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3323 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3324 		unsigned long haddr)
3325 {
3326 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3327 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3328 		return false;
3329 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3330 		return false;
3331 	return true;
3332 }
3333 
3334 static void deposit_prealloc_pte(struct vm_fault *vmf)
3335 {
3336 	struct vm_area_struct *vma = vmf->vma;
3337 
3338 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3339 	/*
3340 	 * We are going to consume the prealloc table,
3341 	 * count that as nr_ptes.
3342 	 */
3343 	mm_inc_nr_ptes(vma->vm_mm);
3344 	vmf->prealloc_pte = NULL;
3345 }
3346 
3347 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3348 {
3349 	struct vm_area_struct *vma = vmf->vma;
3350 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3351 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3352 	pmd_t entry;
3353 	int i, ret;
3354 
3355 	if (!transhuge_vma_suitable(vma, haddr))
3356 		return VM_FAULT_FALLBACK;
3357 
3358 	ret = VM_FAULT_FALLBACK;
3359 	page = compound_head(page);
3360 
3361 	/*
3362 	 * Archs like ppc64 need additonal space to store information
3363 	 * related to pte entry. Use the preallocated table for that.
3364 	 */
3365 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3366 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3367 		if (!vmf->prealloc_pte)
3368 			return VM_FAULT_OOM;
3369 		smp_wmb(); /* See comment in __pte_alloc() */
3370 	}
3371 
3372 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3373 	if (unlikely(!pmd_none(*vmf->pmd)))
3374 		goto out;
3375 
3376 	for (i = 0; i < HPAGE_PMD_NR; i++)
3377 		flush_icache_page(vma, page + i);
3378 
3379 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3380 	if (write)
3381 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3382 
3383 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3384 	page_add_file_rmap(page, true);
3385 	/*
3386 	 * deposit and withdraw with pmd lock held
3387 	 */
3388 	if (arch_needs_pgtable_deposit())
3389 		deposit_prealloc_pte(vmf);
3390 
3391 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3392 
3393 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3394 
3395 	/* fault is handled */
3396 	ret = 0;
3397 	count_vm_event(THP_FILE_MAPPED);
3398 out:
3399 	spin_unlock(vmf->ptl);
3400 	return ret;
3401 }
3402 #else
3403 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3404 {
3405 	BUILD_BUG();
3406 	return 0;
3407 }
3408 #endif
3409 
3410 /**
3411  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3412  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3413  *
3414  * @vmf: fault environment
3415  * @memcg: memcg to charge page (only for private mappings)
3416  * @page: page to map
3417  *
3418  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3419  * return.
3420  *
3421  * Target users are page handler itself and implementations of
3422  * vm_ops->map_pages.
3423  */
3424 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3425 		struct page *page)
3426 {
3427 	struct vm_area_struct *vma = vmf->vma;
3428 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3429 	pte_t entry;
3430 	int ret;
3431 
3432 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3433 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3434 		/* THP on COW? */
3435 		VM_BUG_ON_PAGE(memcg, page);
3436 
3437 		ret = do_set_pmd(vmf, page);
3438 		if (ret != VM_FAULT_FALLBACK)
3439 			return ret;
3440 	}
3441 
3442 	if (!vmf->pte) {
3443 		ret = pte_alloc_one_map(vmf);
3444 		if (ret)
3445 			return ret;
3446 	}
3447 
3448 	/* Re-check under ptl */
3449 	if (unlikely(!pte_none(*vmf->pte)))
3450 		return VM_FAULT_NOPAGE;
3451 
3452 	flush_icache_page(vma, page);
3453 	entry = mk_pte(page, vma->vm_page_prot);
3454 	if (write)
3455 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3456 	/* copy-on-write page */
3457 	if (write && !(vma->vm_flags & VM_SHARED)) {
3458 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3459 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3460 		mem_cgroup_commit_charge(page, memcg, false, false);
3461 		lru_cache_add_active_or_unevictable(page, vma);
3462 	} else {
3463 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3464 		page_add_file_rmap(page, false);
3465 	}
3466 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3467 
3468 	/* no need to invalidate: a not-present page won't be cached */
3469 	update_mmu_cache(vma, vmf->address, vmf->pte);
3470 
3471 	return 0;
3472 }
3473 
3474 
3475 /**
3476  * finish_fault - finish page fault once we have prepared the page to fault
3477  *
3478  * @vmf: structure describing the fault
3479  *
3480  * This function handles all that is needed to finish a page fault once the
3481  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3482  * given page, adds reverse page mapping, handles memcg charges and LRU
3483  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3484  * error.
3485  *
3486  * The function expects the page to be locked and on success it consumes a
3487  * reference of a page being mapped (for the PTE which maps it).
3488  */
3489 int finish_fault(struct vm_fault *vmf)
3490 {
3491 	struct page *page;
3492 	int ret = 0;
3493 
3494 	/* Did we COW the page? */
3495 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3496 	    !(vmf->vma->vm_flags & VM_SHARED))
3497 		page = vmf->cow_page;
3498 	else
3499 		page = vmf->page;
3500 
3501 	/*
3502 	 * check even for read faults because we might have lost our CoWed
3503 	 * page
3504 	 */
3505 	if (!(vmf->vma->vm_flags & VM_SHARED))
3506 		ret = check_stable_address_space(vmf->vma->vm_mm);
3507 	if (!ret)
3508 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3509 	if (vmf->pte)
3510 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3511 	return ret;
3512 }
3513 
3514 static unsigned long fault_around_bytes __read_mostly =
3515 	rounddown_pow_of_two(65536);
3516 
3517 #ifdef CONFIG_DEBUG_FS
3518 static int fault_around_bytes_get(void *data, u64 *val)
3519 {
3520 	*val = fault_around_bytes;
3521 	return 0;
3522 }
3523 
3524 /*
3525  * fault_around_bytes must be rounded down to the nearest page order as it's
3526  * what do_fault_around() expects to see.
3527  */
3528 static int fault_around_bytes_set(void *data, u64 val)
3529 {
3530 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3531 		return -EINVAL;
3532 	if (val > PAGE_SIZE)
3533 		fault_around_bytes = rounddown_pow_of_two(val);
3534 	else
3535 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3536 	return 0;
3537 }
3538 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3539 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3540 
3541 static int __init fault_around_debugfs(void)
3542 {
3543 	void *ret;
3544 
3545 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3546 			&fault_around_bytes_fops);
3547 	if (!ret)
3548 		pr_warn("Failed to create fault_around_bytes in debugfs");
3549 	return 0;
3550 }
3551 late_initcall(fault_around_debugfs);
3552 #endif
3553 
3554 /*
3555  * do_fault_around() tries to map few pages around the fault address. The hope
3556  * is that the pages will be needed soon and this will lower the number of
3557  * faults to handle.
3558  *
3559  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3560  * not ready to be mapped: not up-to-date, locked, etc.
3561  *
3562  * This function is called with the page table lock taken. In the split ptlock
3563  * case the page table lock only protects only those entries which belong to
3564  * the page table corresponding to the fault address.
3565  *
3566  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3567  * only once.
3568  *
3569  * fault_around_bytes defines how many bytes we'll try to map.
3570  * do_fault_around() expects it to be set to a power of two less than or equal
3571  * to PTRS_PER_PTE.
3572  *
3573  * The virtual address of the area that we map is naturally aligned to
3574  * fault_around_bytes rounded down to the machine page size
3575  * (and therefore to page order).  This way it's easier to guarantee
3576  * that we don't cross page table boundaries.
3577  */
3578 static int do_fault_around(struct vm_fault *vmf)
3579 {
3580 	unsigned long address = vmf->address, nr_pages, mask;
3581 	pgoff_t start_pgoff = vmf->pgoff;
3582 	pgoff_t end_pgoff;
3583 	int off, ret = 0;
3584 
3585 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3586 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3587 
3588 	vmf->address = max(address & mask, vmf->vma->vm_start);
3589 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3590 	start_pgoff -= off;
3591 
3592 	/*
3593 	 *  end_pgoff is either the end of the page table, the end of
3594 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3595 	 */
3596 	end_pgoff = start_pgoff -
3597 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3598 		PTRS_PER_PTE - 1;
3599 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3600 			start_pgoff + nr_pages - 1);
3601 
3602 	if (pmd_none(*vmf->pmd)) {
3603 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3604 						  vmf->address);
3605 		if (!vmf->prealloc_pte)
3606 			goto out;
3607 		smp_wmb(); /* See comment in __pte_alloc() */
3608 	}
3609 
3610 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3611 
3612 	/* Huge page is mapped? Page fault is solved */
3613 	if (pmd_trans_huge(*vmf->pmd)) {
3614 		ret = VM_FAULT_NOPAGE;
3615 		goto out;
3616 	}
3617 
3618 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3619 	if (!vmf->pte)
3620 		goto out;
3621 
3622 	/* check if the page fault is solved */
3623 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3624 	if (!pte_none(*vmf->pte))
3625 		ret = VM_FAULT_NOPAGE;
3626 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3627 out:
3628 	vmf->address = address;
3629 	vmf->pte = NULL;
3630 	return ret;
3631 }
3632 
3633 static int do_read_fault(struct vm_fault *vmf)
3634 {
3635 	struct vm_area_struct *vma = vmf->vma;
3636 	int ret = 0;
3637 
3638 	/*
3639 	 * Let's call ->map_pages() first and use ->fault() as fallback
3640 	 * if page by the offset is not ready to be mapped (cold cache or
3641 	 * something).
3642 	 */
3643 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3644 		ret = do_fault_around(vmf);
3645 		if (ret)
3646 			return ret;
3647 	}
3648 
3649 	ret = __do_fault(vmf);
3650 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3651 		return ret;
3652 
3653 	ret |= finish_fault(vmf);
3654 	unlock_page(vmf->page);
3655 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3656 		put_page(vmf->page);
3657 	return ret;
3658 }
3659 
3660 static int do_cow_fault(struct vm_fault *vmf)
3661 {
3662 	struct vm_area_struct *vma = vmf->vma;
3663 	int ret;
3664 
3665 	if (unlikely(anon_vma_prepare(vma)))
3666 		return VM_FAULT_OOM;
3667 
3668 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3669 	if (!vmf->cow_page)
3670 		return VM_FAULT_OOM;
3671 
3672 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3673 				&vmf->memcg, false)) {
3674 		put_page(vmf->cow_page);
3675 		return VM_FAULT_OOM;
3676 	}
3677 
3678 	ret = __do_fault(vmf);
3679 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3680 		goto uncharge_out;
3681 	if (ret & VM_FAULT_DONE_COW)
3682 		return ret;
3683 
3684 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3685 	__SetPageUptodate(vmf->cow_page);
3686 
3687 	ret |= finish_fault(vmf);
3688 	unlock_page(vmf->page);
3689 	put_page(vmf->page);
3690 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3691 		goto uncharge_out;
3692 	return ret;
3693 uncharge_out:
3694 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3695 	put_page(vmf->cow_page);
3696 	return ret;
3697 }
3698 
3699 static int do_shared_fault(struct vm_fault *vmf)
3700 {
3701 	struct vm_area_struct *vma = vmf->vma;
3702 	int ret, tmp;
3703 
3704 	ret = __do_fault(vmf);
3705 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3706 		return ret;
3707 
3708 	/*
3709 	 * Check if the backing address space wants to know that the page is
3710 	 * about to become writable
3711 	 */
3712 	if (vma->vm_ops->page_mkwrite) {
3713 		unlock_page(vmf->page);
3714 		tmp = do_page_mkwrite(vmf);
3715 		if (unlikely(!tmp ||
3716 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3717 			put_page(vmf->page);
3718 			return tmp;
3719 		}
3720 	}
3721 
3722 	ret |= finish_fault(vmf);
3723 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3724 					VM_FAULT_RETRY))) {
3725 		unlock_page(vmf->page);
3726 		put_page(vmf->page);
3727 		return ret;
3728 	}
3729 
3730 	fault_dirty_shared_page(vma, vmf->page);
3731 	return ret;
3732 }
3733 
3734 /*
3735  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3736  * but allow concurrent faults).
3737  * The mmap_sem may have been released depending on flags and our
3738  * return value.  See filemap_fault() and __lock_page_or_retry().
3739  */
3740 static int do_fault(struct vm_fault *vmf)
3741 {
3742 	struct vm_area_struct *vma = vmf->vma;
3743 	int ret;
3744 
3745 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3746 	if (!vma->vm_ops->fault)
3747 		ret = VM_FAULT_SIGBUS;
3748 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3749 		ret = do_read_fault(vmf);
3750 	else if (!(vma->vm_flags & VM_SHARED))
3751 		ret = do_cow_fault(vmf);
3752 	else
3753 		ret = do_shared_fault(vmf);
3754 
3755 	/* preallocated pagetable is unused: free it */
3756 	if (vmf->prealloc_pte) {
3757 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3758 		vmf->prealloc_pte = NULL;
3759 	}
3760 	return ret;
3761 }
3762 
3763 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3764 				unsigned long addr, int page_nid,
3765 				int *flags)
3766 {
3767 	get_page(page);
3768 
3769 	count_vm_numa_event(NUMA_HINT_FAULTS);
3770 	if (page_nid == numa_node_id()) {
3771 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3772 		*flags |= TNF_FAULT_LOCAL;
3773 	}
3774 
3775 	return mpol_misplaced(page, vma, addr);
3776 }
3777 
3778 static int do_numa_page(struct vm_fault *vmf)
3779 {
3780 	struct vm_area_struct *vma = vmf->vma;
3781 	struct page *page = NULL;
3782 	int page_nid = -1;
3783 	int last_cpupid;
3784 	int target_nid;
3785 	bool migrated = false;
3786 	pte_t pte;
3787 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3788 	int flags = 0;
3789 
3790 	/*
3791 	 * The "pte" at this point cannot be used safely without
3792 	 * validation through pte_unmap_same(). It's of NUMA type but
3793 	 * the pfn may be screwed if the read is non atomic.
3794 	 */
3795 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3796 	spin_lock(vmf->ptl);
3797 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3798 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3799 		goto out;
3800 	}
3801 
3802 	/*
3803 	 * Make it present again, Depending on how arch implementes non
3804 	 * accessible ptes, some can allow access by kernel mode.
3805 	 */
3806 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3807 	pte = pte_modify(pte, vma->vm_page_prot);
3808 	pte = pte_mkyoung(pte);
3809 	if (was_writable)
3810 		pte = pte_mkwrite(pte);
3811 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3812 	update_mmu_cache(vma, vmf->address, vmf->pte);
3813 
3814 	page = vm_normal_page(vma, vmf->address, pte);
3815 	if (!page) {
3816 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3817 		return 0;
3818 	}
3819 
3820 	/* TODO: handle PTE-mapped THP */
3821 	if (PageCompound(page)) {
3822 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3823 		return 0;
3824 	}
3825 
3826 	/*
3827 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3828 	 * much anyway since they can be in shared cache state. This misses
3829 	 * the case where a mapping is writable but the process never writes
3830 	 * to it but pte_write gets cleared during protection updates and
3831 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3832 	 * background writeback, dirty balancing and application behaviour.
3833 	 */
3834 	if (!pte_write(pte))
3835 		flags |= TNF_NO_GROUP;
3836 
3837 	/*
3838 	 * Flag if the page is shared between multiple address spaces. This
3839 	 * is later used when determining whether to group tasks together
3840 	 */
3841 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3842 		flags |= TNF_SHARED;
3843 
3844 	last_cpupid = page_cpupid_last(page);
3845 	page_nid = page_to_nid(page);
3846 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3847 			&flags);
3848 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3849 	if (target_nid == -1) {
3850 		put_page(page);
3851 		goto out;
3852 	}
3853 
3854 	/* Migrate to the requested node */
3855 	migrated = migrate_misplaced_page(page, vma, target_nid);
3856 	if (migrated) {
3857 		page_nid = target_nid;
3858 		flags |= TNF_MIGRATED;
3859 	} else
3860 		flags |= TNF_MIGRATE_FAIL;
3861 
3862 out:
3863 	if (page_nid != -1)
3864 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3865 	return 0;
3866 }
3867 
3868 static inline int create_huge_pmd(struct vm_fault *vmf)
3869 {
3870 	if (vma_is_anonymous(vmf->vma))
3871 		return do_huge_pmd_anonymous_page(vmf);
3872 	if (vmf->vma->vm_ops->huge_fault)
3873 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3874 	return VM_FAULT_FALLBACK;
3875 }
3876 
3877 /* `inline' is required to avoid gcc 4.1.2 build error */
3878 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3879 {
3880 	if (vma_is_anonymous(vmf->vma))
3881 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3882 	if (vmf->vma->vm_ops->huge_fault)
3883 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3884 
3885 	/* COW handled on pte level: split pmd */
3886 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3887 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3888 
3889 	return VM_FAULT_FALLBACK;
3890 }
3891 
3892 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3893 {
3894 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3895 }
3896 
3897 static int create_huge_pud(struct vm_fault *vmf)
3898 {
3899 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3900 	/* No support for anonymous transparent PUD pages yet */
3901 	if (vma_is_anonymous(vmf->vma))
3902 		return VM_FAULT_FALLBACK;
3903 	if (vmf->vma->vm_ops->huge_fault)
3904 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3905 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3906 	return VM_FAULT_FALLBACK;
3907 }
3908 
3909 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3910 {
3911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3912 	/* No support for anonymous transparent PUD pages yet */
3913 	if (vma_is_anonymous(vmf->vma))
3914 		return VM_FAULT_FALLBACK;
3915 	if (vmf->vma->vm_ops->huge_fault)
3916 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3917 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3918 	return VM_FAULT_FALLBACK;
3919 }
3920 
3921 /*
3922  * These routines also need to handle stuff like marking pages dirty
3923  * and/or accessed for architectures that don't do it in hardware (most
3924  * RISC architectures).  The early dirtying is also good on the i386.
3925  *
3926  * There is also a hook called "update_mmu_cache()" that architectures
3927  * with external mmu caches can use to update those (ie the Sparc or
3928  * PowerPC hashed page tables that act as extended TLBs).
3929  *
3930  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3931  * concurrent faults).
3932  *
3933  * The mmap_sem may have been released depending on flags and our return value.
3934  * See filemap_fault() and __lock_page_or_retry().
3935  */
3936 static int handle_pte_fault(struct vm_fault *vmf)
3937 {
3938 	pte_t entry;
3939 
3940 	if (unlikely(pmd_none(*vmf->pmd))) {
3941 		/*
3942 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3943 		 * want to allocate huge page, and if we expose page table
3944 		 * for an instant, it will be difficult to retract from
3945 		 * concurrent faults and from rmap lookups.
3946 		 */
3947 		vmf->pte = NULL;
3948 	} else {
3949 		/* See comment in pte_alloc_one_map() */
3950 		if (pmd_devmap_trans_unstable(vmf->pmd))
3951 			return 0;
3952 		/*
3953 		 * A regular pmd is established and it can't morph into a huge
3954 		 * pmd from under us anymore at this point because we hold the
3955 		 * mmap_sem read mode and khugepaged takes it in write mode.
3956 		 * So now it's safe to run pte_offset_map().
3957 		 */
3958 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3959 		vmf->orig_pte = *vmf->pte;
3960 
3961 		/*
3962 		 * some architectures can have larger ptes than wordsize,
3963 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3964 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3965 		 * accesses.  The code below just needs a consistent view
3966 		 * for the ifs and we later double check anyway with the
3967 		 * ptl lock held. So here a barrier will do.
3968 		 */
3969 		barrier();
3970 		if (pte_none(vmf->orig_pte)) {
3971 			pte_unmap(vmf->pte);
3972 			vmf->pte = NULL;
3973 		}
3974 	}
3975 
3976 	if (!vmf->pte) {
3977 		if (vma_is_anonymous(vmf->vma))
3978 			return do_anonymous_page(vmf);
3979 		else
3980 			return do_fault(vmf);
3981 	}
3982 
3983 	if (!pte_present(vmf->orig_pte))
3984 		return do_swap_page(vmf);
3985 
3986 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3987 		return do_numa_page(vmf);
3988 
3989 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3990 	spin_lock(vmf->ptl);
3991 	entry = vmf->orig_pte;
3992 	if (unlikely(!pte_same(*vmf->pte, entry)))
3993 		goto unlock;
3994 	if (vmf->flags & FAULT_FLAG_WRITE) {
3995 		if (!pte_write(entry))
3996 			return do_wp_page(vmf);
3997 		entry = pte_mkdirty(entry);
3998 	}
3999 	entry = pte_mkyoung(entry);
4000 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4001 				vmf->flags & FAULT_FLAG_WRITE)) {
4002 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4003 	} else {
4004 		/*
4005 		 * This is needed only for protection faults but the arch code
4006 		 * is not yet telling us if this is a protection fault or not.
4007 		 * This still avoids useless tlb flushes for .text page faults
4008 		 * with threads.
4009 		 */
4010 		if (vmf->flags & FAULT_FLAG_WRITE)
4011 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4012 	}
4013 unlock:
4014 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4015 	return 0;
4016 }
4017 
4018 /*
4019  * By the time we get here, we already hold the mm semaphore
4020  *
4021  * The mmap_sem may have been released depending on flags and our
4022  * return value.  See filemap_fault() and __lock_page_or_retry().
4023  */
4024 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4025 		unsigned int flags)
4026 {
4027 	struct vm_fault vmf = {
4028 		.vma = vma,
4029 		.address = address & PAGE_MASK,
4030 		.flags = flags,
4031 		.pgoff = linear_page_index(vma, address),
4032 		.gfp_mask = __get_fault_gfp_mask(vma),
4033 	};
4034 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4035 	struct mm_struct *mm = vma->vm_mm;
4036 	pgd_t *pgd;
4037 	p4d_t *p4d;
4038 	int ret;
4039 
4040 	pgd = pgd_offset(mm, address);
4041 	p4d = p4d_alloc(mm, pgd, address);
4042 	if (!p4d)
4043 		return VM_FAULT_OOM;
4044 
4045 	vmf.pud = pud_alloc(mm, p4d, address);
4046 	if (!vmf.pud)
4047 		return VM_FAULT_OOM;
4048 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4049 		ret = create_huge_pud(&vmf);
4050 		if (!(ret & VM_FAULT_FALLBACK))
4051 			return ret;
4052 	} else {
4053 		pud_t orig_pud = *vmf.pud;
4054 
4055 		barrier();
4056 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4057 
4058 			/* NUMA case for anonymous PUDs would go here */
4059 
4060 			if (dirty && !pud_write(orig_pud)) {
4061 				ret = wp_huge_pud(&vmf, orig_pud);
4062 				if (!(ret & VM_FAULT_FALLBACK))
4063 					return ret;
4064 			} else {
4065 				huge_pud_set_accessed(&vmf, orig_pud);
4066 				return 0;
4067 			}
4068 		}
4069 	}
4070 
4071 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4072 	if (!vmf.pmd)
4073 		return VM_FAULT_OOM;
4074 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4075 		ret = create_huge_pmd(&vmf);
4076 		if (!(ret & VM_FAULT_FALLBACK))
4077 			return ret;
4078 	} else {
4079 		pmd_t orig_pmd = *vmf.pmd;
4080 
4081 		barrier();
4082 		if (unlikely(is_swap_pmd(orig_pmd))) {
4083 			VM_BUG_ON(thp_migration_supported() &&
4084 					  !is_pmd_migration_entry(orig_pmd));
4085 			if (is_pmd_migration_entry(orig_pmd))
4086 				pmd_migration_entry_wait(mm, vmf.pmd);
4087 			return 0;
4088 		}
4089 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4090 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4091 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4092 
4093 			if (dirty && !pmd_write(orig_pmd)) {
4094 				ret = wp_huge_pmd(&vmf, orig_pmd);
4095 				if (!(ret & VM_FAULT_FALLBACK))
4096 					return ret;
4097 			} else {
4098 				huge_pmd_set_accessed(&vmf, orig_pmd);
4099 				return 0;
4100 			}
4101 		}
4102 	}
4103 
4104 	return handle_pte_fault(&vmf);
4105 }
4106 
4107 /*
4108  * By the time we get here, we already hold the mm semaphore
4109  *
4110  * The mmap_sem may have been released depending on flags and our
4111  * return value.  See filemap_fault() and __lock_page_or_retry().
4112  */
4113 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4114 		unsigned int flags)
4115 {
4116 	int ret;
4117 
4118 	__set_current_state(TASK_RUNNING);
4119 
4120 	count_vm_event(PGFAULT);
4121 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4122 
4123 	/* do counter updates before entering really critical section. */
4124 	check_sync_rss_stat(current);
4125 
4126 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4127 					    flags & FAULT_FLAG_INSTRUCTION,
4128 					    flags & FAULT_FLAG_REMOTE))
4129 		return VM_FAULT_SIGSEGV;
4130 
4131 	/*
4132 	 * Enable the memcg OOM handling for faults triggered in user
4133 	 * space.  Kernel faults are handled more gracefully.
4134 	 */
4135 	if (flags & FAULT_FLAG_USER)
4136 		mem_cgroup_oom_enable();
4137 
4138 	if (unlikely(is_vm_hugetlb_page(vma)))
4139 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4140 	else
4141 		ret = __handle_mm_fault(vma, address, flags);
4142 
4143 	if (flags & FAULT_FLAG_USER) {
4144 		mem_cgroup_oom_disable();
4145 		/*
4146 		 * The task may have entered a memcg OOM situation but
4147 		 * if the allocation error was handled gracefully (no
4148 		 * VM_FAULT_OOM), there is no need to kill anything.
4149 		 * Just clean up the OOM state peacefully.
4150 		 */
4151 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4152 			mem_cgroup_oom_synchronize(false);
4153 	}
4154 
4155 	return ret;
4156 }
4157 EXPORT_SYMBOL_GPL(handle_mm_fault);
4158 
4159 #ifndef __PAGETABLE_P4D_FOLDED
4160 /*
4161  * Allocate p4d page table.
4162  * We've already handled the fast-path in-line.
4163  */
4164 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4165 {
4166 	p4d_t *new = p4d_alloc_one(mm, address);
4167 	if (!new)
4168 		return -ENOMEM;
4169 
4170 	smp_wmb(); /* See comment in __pte_alloc */
4171 
4172 	spin_lock(&mm->page_table_lock);
4173 	if (pgd_present(*pgd))		/* Another has populated it */
4174 		p4d_free(mm, new);
4175 	else
4176 		pgd_populate(mm, pgd, new);
4177 	spin_unlock(&mm->page_table_lock);
4178 	return 0;
4179 }
4180 #endif /* __PAGETABLE_P4D_FOLDED */
4181 
4182 #ifndef __PAGETABLE_PUD_FOLDED
4183 /*
4184  * Allocate page upper directory.
4185  * We've already handled the fast-path in-line.
4186  */
4187 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4188 {
4189 	pud_t *new = pud_alloc_one(mm, address);
4190 	if (!new)
4191 		return -ENOMEM;
4192 
4193 	smp_wmb(); /* See comment in __pte_alloc */
4194 
4195 	spin_lock(&mm->page_table_lock);
4196 #ifndef __ARCH_HAS_5LEVEL_HACK
4197 	if (!p4d_present(*p4d)) {
4198 		mm_inc_nr_puds(mm);
4199 		p4d_populate(mm, p4d, new);
4200 	} else	/* Another has populated it */
4201 		pud_free(mm, new);
4202 #else
4203 	if (!pgd_present(*p4d)) {
4204 		mm_inc_nr_puds(mm);
4205 		pgd_populate(mm, p4d, new);
4206 	} else	/* Another has populated it */
4207 		pud_free(mm, new);
4208 #endif /* __ARCH_HAS_5LEVEL_HACK */
4209 	spin_unlock(&mm->page_table_lock);
4210 	return 0;
4211 }
4212 #endif /* __PAGETABLE_PUD_FOLDED */
4213 
4214 #ifndef __PAGETABLE_PMD_FOLDED
4215 /*
4216  * Allocate page middle directory.
4217  * We've already handled the fast-path in-line.
4218  */
4219 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4220 {
4221 	spinlock_t *ptl;
4222 	pmd_t *new = pmd_alloc_one(mm, address);
4223 	if (!new)
4224 		return -ENOMEM;
4225 
4226 	smp_wmb(); /* See comment in __pte_alloc */
4227 
4228 	ptl = pud_lock(mm, pud);
4229 #ifndef __ARCH_HAS_4LEVEL_HACK
4230 	if (!pud_present(*pud)) {
4231 		mm_inc_nr_pmds(mm);
4232 		pud_populate(mm, pud, new);
4233 	} else	/* Another has populated it */
4234 		pmd_free(mm, new);
4235 #else
4236 	if (!pgd_present(*pud)) {
4237 		mm_inc_nr_pmds(mm);
4238 		pgd_populate(mm, pud, new);
4239 	} else /* Another has populated it */
4240 		pmd_free(mm, new);
4241 #endif /* __ARCH_HAS_4LEVEL_HACK */
4242 	spin_unlock(ptl);
4243 	return 0;
4244 }
4245 #endif /* __PAGETABLE_PMD_FOLDED */
4246 
4247 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4248 			    unsigned long *start, unsigned long *end,
4249 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4250 {
4251 	pgd_t *pgd;
4252 	p4d_t *p4d;
4253 	pud_t *pud;
4254 	pmd_t *pmd;
4255 	pte_t *ptep;
4256 
4257 	pgd = pgd_offset(mm, address);
4258 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4259 		goto out;
4260 
4261 	p4d = p4d_offset(pgd, address);
4262 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4263 		goto out;
4264 
4265 	pud = pud_offset(p4d, address);
4266 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4267 		goto out;
4268 
4269 	pmd = pmd_offset(pud, address);
4270 	VM_BUG_ON(pmd_trans_huge(*pmd));
4271 
4272 	if (pmd_huge(*pmd)) {
4273 		if (!pmdpp)
4274 			goto out;
4275 
4276 		if (start && end) {
4277 			*start = address & PMD_MASK;
4278 			*end = *start + PMD_SIZE;
4279 			mmu_notifier_invalidate_range_start(mm, *start, *end);
4280 		}
4281 		*ptlp = pmd_lock(mm, pmd);
4282 		if (pmd_huge(*pmd)) {
4283 			*pmdpp = pmd;
4284 			return 0;
4285 		}
4286 		spin_unlock(*ptlp);
4287 		if (start && end)
4288 			mmu_notifier_invalidate_range_end(mm, *start, *end);
4289 	}
4290 
4291 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4292 		goto out;
4293 
4294 	if (start && end) {
4295 		*start = address & PAGE_MASK;
4296 		*end = *start + PAGE_SIZE;
4297 		mmu_notifier_invalidate_range_start(mm, *start, *end);
4298 	}
4299 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4300 	if (!pte_present(*ptep))
4301 		goto unlock;
4302 	*ptepp = ptep;
4303 	return 0;
4304 unlock:
4305 	pte_unmap_unlock(ptep, *ptlp);
4306 	if (start && end)
4307 		mmu_notifier_invalidate_range_end(mm, *start, *end);
4308 out:
4309 	return -EINVAL;
4310 }
4311 
4312 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4313 			     pte_t **ptepp, spinlock_t **ptlp)
4314 {
4315 	int res;
4316 
4317 	/* (void) is needed to make gcc happy */
4318 	(void) __cond_lock(*ptlp,
4319 			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4320 						    ptepp, NULL, ptlp)));
4321 	return res;
4322 }
4323 
4324 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4325 			     unsigned long *start, unsigned long *end,
4326 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4327 {
4328 	int res;
4329 
4330 	/* (void) is needed to make gcc happy */
4331 	(void) __cond_lock(*ptlp,
4332 			   !(res = __follow_pte_pmd(mm, address, start, end,
4333 						    ptepp, pmdpp, ptlp)));
4334 	return res;
4335 }
4336 EXPORT_SYMBOL(follow_pte_pmd);
4337 
4338 /**
4339  * follow_pfn - look up PFN at a user virtual address
4340  * @vma: memory mapping
4341  * @address: user virtual address
4342  * @pfn: location to store found PFN
4343  *
4344  * Only IO mappings and raw PFN mappings are allowed.
4345  *
4346  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4347  */
4348 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4349 	unsigned long *pfn)
4350 {
4351 	int ret = -EINVAL;
4352 	spinlock_t *ptl;
4353 	pte_t *ptep;
4354 
4355 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4356 		return ret;
4357 
4358 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4359 	if (ret)
4360 		return ret;
4361 	*pfn = pte_pfn(*ptep);
4362 	pte_unmap_unlock(ptep, ptl);
4363 	return 0;
4364 }
4365 EXPORT_SYMBOL(follow_pfn);
4366 
4367 #ifdef CONFIG_HAVE_IOREMAP_PROT
4368 int follow_phys(struct vm_area_struct *vma,
4369 		unsigned long address, unsigned int flags,
4370 		unsigned long *prot, resource_size_t *phys)
4371 {
4372 	int ret = -EINVAL;
4373 	pte_t *ptep, pte;
4374 	spinlock_t *ptl;
4375 
4376 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4377 		goto out;
4378 
4379 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4380 		goto out;
4381 	pte = *ptep;
4382 
4383 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4384 		goto unlock;
4385 
4386 	*prot = pgprot_val(pte_pgprot(pte));
4387 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4388 
4389 	ret = 0;
4390 unlock:
4391 	pte_unmap_unlock(ptep, ptl);
4392 out:
4393 	return ret;
4394 }
4395 
4396 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4397 			void *buf, int len, int write)
4398 {
4399 	resource_size_t phys_addr;
4400 	unsigned long prot = 0;
4401 	void __iomem *maddr;
4402 	int offset = addr & (PAGE_SIZE-1);
4403 
4404 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4405 		return -EINVAL;
4406 
4407 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4408 	if (write)
4409 		memcpy_toio(maddr + offset, buf, len);
4410 	else
4411 		memcpy_fromio(buf, maddr + offset, len);
4412 	iounmap(maddr);
4413 
4414 	return len;
4415 }
4416 EXPORT_SYMBOL_GPL(generic_access_phys);
4417 #endif
4418 
4419 /*
4420  * Access another process' address space as given in mm.  If non-NULL, use the
4421  * given task for page fault accounting.
4422  */
4423 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4424 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4425 {
4426 	struct vm_area_struct *vma;
4427 	void *old_buf = buf;
4428 	int write = gup_flags & FOLL_WRITE;
4429 
4430 	down_read(&mm->mmap_sem);
4431 	/* ignore errors, just check how much was successfully transferred */
4432 	while (len) {
4433 		int bytes, ret, offset;
4434 		void *maddr;
4435 		struct page *page = NULL;
4436 
4437 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4438 				gup_flags, &page, &vma, NULL);
4439 		if (ret <= 0) {
4440 #ifndef CONFIG_HAVE_IOREMAP_PROT
4441 			break;
4442 #else
4443 			/*
4444 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4445 			 * we can access using slightly different code.
4446 			 */
4447 			vma = find_vma(mm, addr);
4448 			if (!vma || vma->vm_start > addr)
4449 				break;
4450 			if (vma->vm_ops && vma->vm_ops->access)
4451 				ret = vma->vm_ops->access(vma, addr, buf,
4452 							  len, write);
4453 			if (ret <= 0)
4454 				break;
4455 			bytes = ret;
4456 #endif
4457 		} else {
4458 			bytes = len;
4459 			offset = addr & (PAGE_SIZE-1);
4460 			if (bytes > PAGE_SIZE-offset)
4461 				bytes = PAGE_SIZE-offset;
4462 
4463 			maddr = kmap(page);
4464 			if (write) {
4465 				copy_to_user_page(vma, page, addr,
4466 						  maddr + offset, buf, bytes);
4467 				set_page_dirty_lock(page);
4468 			} else {
4469 				copy_from_user_page(vma, page, addr,
4470 						    buf, maddr + offset, bytes);
4471 			}
4472 			kunmap(page);
4473 			put_page(page);
4474 		}
4475 		len -= bytes;
4476 		buf += bytes;
4477 		addr += bytes;
4478 	}
4479 	up_read(&mm->mmap_sem);
4480 
4481 	return buf - old_buf;
4482 }
4483 
4484 /**
4485  * access_remote_vm - access another process' address space
4486  * @mm:		the mm_struct of the target address space
4487  * @addr:	start address to access
4488  * @buf:	source or destination buffer
4489  * @len:	number of bytes to transfer
4490  * @gup_flags:	flags modifying lookup behaviour
4491  *
4492  * The caller must hold a reference on @mm.
4493  */
4494 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4495 		void *buf, int len, unsigned int gup_flags)
4496 {
4497 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4498 }
4499 
4500 /*
4501  * Access another process' address space.
4502  * Source/target buffer must be kernel space,
4503  * Do not walk the page table directly, use get_user_pages
4504  */
4505 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4506 		void *buf, int len, unsigned int gup_flags)
4507 {
4508 	struct mm_struct *mm;
4509 	int ret;
4510 
4511 	mm = get_task_mm(tsk);
4512 	if (!mm)
4513 		return 0;
4514 
4515 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4516 
4517 	mmput(mm);
4518 
4519 	return ret;
4520 }
4521 EXPORT_SYMBOL_GPL(access_process_vm);
4522 
4523 /*
4524  * Print the name of a VMA.
4525  */
4526 void print_vma_addr(char *prefix, unsigned long ip)
4527 {
4528 	struct mm_struct *mm = current->mm;
4529 	struct vm_area_struct *vma;
4530 
4531 	/*
4532 	 * we might be running from an atomic context so we cannot sleep
4533 	 */
4534 	if (!down_read_trylock(&mm->mmap_sem))
4535 		return;
4536 
4537 	vma = find_vma(mm, ip);
4538 	if (vma && vma->vm_file) {
4539 		struct file *f = vma->vm_file;
4540 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4541 		if (buf) {
4542 			char *p;
4543 
4544 			p = file_path(f, buf, PAGE_SIZE);
4545 			if (IS_ERR(p))
4546 				p = "?";
4547 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4548 					vma->vm_start,
4549 					vma->vm_end - vma->vm_start);
4550 			free_page((unsigned long)buf);
4551 		}
4552 	}
4553 	up_read(&mm->mmap_sem);
4554 }
4555 
4556 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4557 void __might_fault(const char *file, int line)
4558 {
4559 	/*
4560 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4561 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4562 	 * get paged out, therefore we'll never actually fault, and the
4563 	 * below annotations will generate false positives.
4564 	 */
4565 	if (uaccess_kernel())
4566 		return;
4567 	if (pagefault_disabled())
4568 		return;
4569 	__might_sleep(file, line, 0);
4570 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4571 	if (current->mm)
4572 		might_lock_read(&current->mm->mmap_sem);
4573 #endif
4574 }
4575 EXPORT_SYMBOL(__might_fault);
4576 #endif
4577 
4578 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4579 static void clear_gigantic_page(struct page *page,
4580 				unsigned long addr,
4581 				unsigned int pages_per_huge_page)
4582 {
4583 	int i;
4584 	struct page *p = page;
4585 
4586 	might_sleep();
4587 	for (i = 0; i < pages_per_huge_page;
4588 	     i++, p = mem_map_next(p, page, i)) {
4589 		cond_resched();
4590 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4591 	}
4592 }
4593 void clear_huge_page(struct page *page,
4594 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4595 {
4596 	int i, n, base, l;
4597 	unsigned long addr = addr_hint &
4598 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4599 
4600 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4601 		clear_gigantic_page(page, addr, pages_per_huge_page);
4602 		return;
4603 	}
4604 
4605 	/* Clear sub-page to access last to keep its cache lines hot */
4606 	might_sleep();
4607 	n = (addr_hint - addr) / PAGE_SIZE;
4608 	if (2 * n <= pages_per_huge_page) {
4609 		/* If sub-page to access in first half of huge page */
4610 		base = 0;
4611 		l = n;
4612 		/* Clear sub-pages at the end of huge page */
4613 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4614 			cond_resched();
4615 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4616 		}
4617 	} else {
4618 		/* If sub-page to access in second half of huge page */
4619 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4620 		l = pages_per_huge_page - n;
4621 		/* Clear sub-pages at the begin of huge page */
4622 		for (i = 0; i < base; i++) {
4623 			cond_resched();
4624 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4625 		}
4626 	}
4627 	/*
4628 	 * Clear remaining sub-pages in left-right-left-right pattern
4629 	 * towards the sub-page to access
4630 	 */
4631 	for (i = 0; i < l; i++) {
4632 		int left_idx = base + i;
4633 		int right_idx = base + 2 * l - 1 - i;
4634 
4635 		cond_resched();
4636 		clear_user_highpage(page + left_idx,
4637 				    addr + left_idx * PAGE_SIZE);
4638 		cond_resched();
4639 		clear_user_highpage(page + right_idx,
4640 				    addr + right_idx * PAGE_SIZE);
4641 	}
4642 }
4643 
4644 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4645 				    unsigned long addr,
4646 				    struct vm_area_struct *vma,
4647 				    unsigned int pages_per_huge_page)
4648 {
4649 	int i;
4650 	struct page *dst_base = dst;
4651 	struct page *src_base = src;
4652 
4653 	for (i = 0; i < pages_per_huge_page; ) {
4654 		cond_resched();
4655 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4656 
4657 		i++;
4658 		dst = mem_map_next(dst, dst_base, i);
4659 		src = mem_map_next(src, src_base, i);
4660 	}
4661 }
4662 
4663 void copy_user_huge_page(struct page *dst, struct page *src,
4664 			 unsigned long addr, struct vm_area_struct *vma,
4665 			 unsigned int pages_per_huge_page)
4666 {
4667 	int i;
4668 
4669 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4670 		copy_user_gigantic_page(dst, src, addr, vma,
4671 					pages_per_huge_page);
4672 		return;
4673 	}
4674 
4675 	might_sleep();
4676 	for (i = 0; i < pages_per_huge_page; i++) {
4677 		cond_resched();
4678 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4679 	}
4680 }
4681 
4682 long copy_huge_page_from_user(struct page *dst_page,
4683 				const void __user *usr_src,
4684 				unsigned int pages_per_huge_page,
4685 				bool allow_pagefault)
4686 {
4687 	void *src = (void *)usr_src;
4688 	void *page_kaddr;
4689 	unsigned long i, rc = 0;
4690 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4691 
4692 	for (i = 0; i < pages_per_huge_page; i++) {
4693 		if (allow_pagefault)
4694 			page_kaddr = kmap(dst_page + i);
4695 		else
4696 			page_kaddr = kmap_atomic(dst_page + i);
4697 		rc = copy_from_user(page_kaddr,
4698 				(const void __user *)(src + i * PAGE_SIZE),
4699 				PAGE_SIZE);
4700 		if (allow_pagefault)
4701 			kunmap(dst_page + i);
4702 		else
4703 			kunmap_atomic(page_kaddr);
4704 
4705 		ret_val -= (PAGE_SIZE - rc);
4706 		if (rc)
4707 			break;
4708 
4709 		cond_resched();
4710 	}
4711 	return ret_val;
4712 }
4713 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4714 
4715 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4716 
4717 static struct kmem_cache *page_ptl_cachep;
4718 
4719 void __init ptlock_cache_init(void)
4720 {
4721 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4722 			SLAB_PANIC, NULL);
4723 }
4724 
4725 bool ptlock_alloc(struct page *page)
4726 {
4727 	spinlock_t *ptl;
4728 
4729 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4730 	if (!ptl)
4731 		return false;
4732 	page->ptl = ptl;
4733 	return true;
4734 }
4735 
4736 void ptlock_free(struct page *page)
4737 {
4738 	kmem_cache_free(page_ptl_cachep, page->ptl);
4739 }
4740 #endif
4741