1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/delayacct.h> 51 #include <linux/init.h> 52 #include <linux/writeback.h> 53 #include <linux/memcontrol.h> 54 #include <linux/mmu_notifier.h> 55 #include <linux/kallsyms.h> 56 #include <linux/swapops.h> 57 #include <linux/elf.h> 58 59 #include <asm/pgalloc.h> 60 #include <asm/uaccess.h> 61 #include <asm/tlb.h> 62 #include <asm/tlbflush.h> 63 #include <asm/pgtable.h> 64 65 #include "internal.h" 66 67 #ifndef CONFIG_NEED_MULTIPLE_NODES 68 /* use the per-pgdat data instead for discontigmem - mbligh */ 69 unsigned long max_mapnr; 70 struct page *mem_map; 71 72 EXPORT_SYMBOL(max_mapnr); 73 EXPORT_SYMBOL(mem_map); 74 #endif 75 76 unsigned long num_physpages; 77 /* 78 * A number of key systems in x86 including ioremap() rely on the assumption 79 * that high_memory defines the upper bound on direct map memory, then end 80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 82 * and ZONE_HIGHMEM. 83 */ 84 void * high_memory; 85 86 EXPORT_SYMBOL(num_physpages); 87 EXPORT_SYMBOL(high_memory); 88 89 /* 90 * Randomize the address space (stacks, mmaps, brk, etc.). 91 * 92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 93 * as ancient (libc5 based) binaries can segfault. ) 94 */ 95 int randomize_va_space __read_mostly = 96 #ifdef CONFIG_COMPAT_BRK 97 1; 98 #else 99 2; 100 #endif 101 102 static int __init disable_randmaps(char *s) 103 { 104 randomize_va_space = 0; 105 return 1; 106 } 107 __setup("norandmaps", disable_randmaps); 108 109 110 /* 111 * If a p?d_bad entry is found while walking page tables, report 112 * the error, before resetting entry to p?d_none. Usually (but 113 * very seldom) called out from the p?d_none_or_clear_bad macros. 114 */ 115 116 void pgd_clear_bad(pgd_t *pgd) 117 { 118 pgd_ERROR(*pgd); 119 pgd_clear(pgd); 120 } 121 122 void pud_clear_bad(pud_t *pud) 123 { 124 pud_ERROR(*pud); 125 pud_clear(pud); 126 } 127 128 void pmd_clear_bad(pmd_t *pmd) 129 { 130 pmd_ERROR(*pmd); 131 pmd_clear(pmd); 132 } 133 134 /* 135 * Note: this doesn't free the actual pages themselves. That 136 * has been handled earlier when unmapping all the memory regions. 137 */ 138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 139 { 140 pgtable_t token = pmd_pgtable(*pmd); 141 pmd_clear(pmd); 142 pte_free_tlb(tlb, token); 143 tlb->mm->nr_ptes--; 144 } 145 146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 147 unsigned long addr, unsigned long end, 148 unsigned long floor, unsigned long ceiling) 149 { 150 pmd_t *pmd; 151 unsigned long next; 152 unsigned long start; 153 154 start = addr; 155 pmd = pmd_offset(pud, addr); 156 do { 157 next = pmd_addr_end(addr, end); 158 if (pmd_none_or_clear_bad(pmd)) 159 continue; 160 free_pte_range(tlb, pmd); 161 } while (pmd++, addr = next, addr != end); 162 163 start &= PUD_MASK; 164 if (start < floor) 165 return; 166 if (ceiling) { 167 ceiling &= PUD_MASK; 168 if (!ceiling) 169 return; 170 } 171 if (end - 1 > ceiling - 1) 172 return; 173 174 pmd = pmd_offset(pud, start); 175 pud_clear(pud); 176 pmd_free_tlb(tlb, pmd); 177 } 178 179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 180 unsigned long addr, unsigned long end, 181 unsigned long floor, unsigned long ceiling) 182 { 183 pud_t *pud; 184 unsigned long next; 185 unsigned long start; 186 187 start = addr; 188 pud = pud_offset(pgd, addr); 189 do { 190 next = pud_addr_end(addr, end); 191 if (pud_none_or_clear_bad(pud)) 192 continue; 193 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 194 } while (pud++, addr = next, addr != end); 195 196 start &= PGDIR_MASK; 197 if (start < floor) 198 return; 199 if (ceiling) { 200 ceiling &= PGDIR_MASK; 201 if (!ceiling) 202 return; 203 } 204 if (end - 1 > ceiling - 1) 205 return; 206 207 pud = pud_offset(pgd, start); 208 pgd_clear(pgd); 209 pud_free_tlb(tlb, pud); 210 } 211 212 /* 213 * This function frees user-level page tables of a process. 214 * 215 * Must be called with pagetable lock held. 216 */ 217 void free_pgd_range(struct mmu_gather *tlb, 218 unsigned long addr, unsigned long end, 219 unsigned long floor, unsigned long ceiling) 220 { 221 pgd_t *pgd; 222 unsigned long next; 223 unsigned long start; 224 225 /* 226 * The next few lines have given us lots of grief... 227 * 228 * Why are we testing PMD* at this top level? Because often 229 * there will be no work to do at all, and we'd prefer not to 230 * go all the way down to the bottom just to discover that. 231 * 232 * Why all these "- 1"s? Because 0 represents both the bottom 233 * of the address space and the top of it (using -1 for the 234 * top wouldn't help much: the masks would do the wrong thing). 235 * The rule is that addr 0 and floor 0 refer to the bottom of 236 * the address space, but end 0 and ceiling 0 refer to the top 237 * Comparisons need to use "end - 1" and "ceiling - 1" (though 238 * that end 0 case should be mythical). 239 * 240 * Wherever addr is brought up or ceiling brought down, we must 241 * be careful to reject "the opposite 0" before it confuses the 242 * subsequent tests. But what about where end is brought down 243 * by PMD_SIZE below? no, end can't go down to 0 there. 244 * 245 * Whereas we round start (addr) and ceiling down, by different 246 * masks at different levels, in order to test whether a table 247 * now has no other vmas using it, so can be freed, we don't 248 * bother to round floor or end up - the tests don't need that. 249 */ 250 251 addr &= PMD_MASK; 252 if (addr < floor) { 253 addr += PMD_SIZE; 254 if (!addr) 255 return; 256 } 257 if (ceiling) { 258 ceiling &= PMD_MASK; 259 if (!ceiling) 260 return; 261 } 262 if (end - 1 > ceiling - 1) 263 end -= PMD_SIZE; 264 if (addr > end - 1) 265 return; 266 267 start = addr; 268 pgd = pgd_offset(tlb->mm, addr); 269 do { 270 next = pgd_addr_end(addr, end); 271 if (pgd_none_or_clear_bad(pgd)) 272 continue; 273 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 274 } while (pgd++, addr = next, addr != end); 275 } 276 277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 278 unsigned long floor, unsigned long ceiling) 279 { 280 while (vma) { 281 struct vm_area_struct *next = vma->vm_next; 282 unsigned long addr = vma->vm_start; 283 284 /* 285 * Hide vma from rmap and vmtruncate before freeing pgtables 286 */ 287 anon_vma_unlink(vma); 288 unlink_file_vma(vma); 289 290 if (is_vm_hugetlb_page(vma)) { 291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 292 floor, next? next->vm_start: ceiling); 293 } else { 294 /* 295 * Optimization: gather nearby vmas into one call down 296 */ 297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 298 && !is_vm_hugetlb_page(next)) { 299 vma = next; 300 next = vma->vm_next; 301 anon_vma_unlink(vma); 302 unlink_file_vma(vma); 303 } 304 free_pgd_range(tlb, addr, vma->vm_end, 305 floor, next? next->vm_start: ceiling); 306 } 307 vma = next; 308 } 309 } 310 311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 312 { 313 pgtable_t new = pte_alloc_one(mm, address); 314 if (!new) 315 return -ENOMEM; 316 317 /* 318 * Ensure all pte setup (eg. pte page lock and page clearing) are 319 * visible before the pte is made visible to other CPUs by being 320 * put into page tables. 321 * 322 * The other side of the story is the pointer chasing in the page 323 * table walking code (when walking the page table without locking; 324 * ie. most of the time). Fortunately, these data accesses consist 325 * of a chain of data-dependent loads, meaning most CPUs (alpha 326 * being the notable exception) will already guarantee loads are 327 * seen in-order. See the alpha page table accessors for the 328 * smp_read_barrier_depends() barriers in page table walking code. 329 */ 330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 331 332 spin_lock(&mm->page_table_lock); 333 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 334 mm->nr_ptes++; 335 pmd_populate(mm, pmd, new); 336 new = NULL; 337 } 338 spin_unlock(&mm->page_table_lock); 339 if (new) 340 pte_free(mm, new); 341 return 0; 342 } 343 344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 345 { 346 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 347 if (!new) 348 return -ENOMEM; 349 350 smp_wmb(); /* See comment in __pte_alloc */ 351 352 spin_lock(&init_mm.page_table_lock); 353 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 354 pmd_populate_kernel(&init_mm, pmd, new); 355 new = NULL; 356 } 357 spin_unlock(&init_mm.page_table_lock); 358 if (new) 359 pte_free_kernel(&init_mm, new); 360 return 0; 361 } 362 363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 364 { 365 if (file_rss) 366 add_mm_counter(mm, file_rss, file_rss); 367 if (anon_rss) 368 add_mm_counter(mm, anon_rss, anon_rss); 369 } 370 371 /* 372 * This function is called to print an error when a bad pte 373 * is found. For example, we might have a PFN-mapped pte in 374 * a region that doesn't allow it. 375 * 376 * The calling function must still handle the error. 377 */ 378 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 379 pte_t pte, struct page *page) 380 { 381 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 382 pud_t *pud = pud_offset(pgd, addr); 383 pmd_t *pmd = pmd_offset(pud, addr); 384 struct address_space *mapping; 385 pgoff_t index; 386 static unsigned long resume; 387 static unsigned long nr_shown; 388 static unsigned long nr_unshown; 389 390 /* 391 * Allow a burst of 60 reports, then keep quiet for that minute; 392 * or allow a steady drip of one report per second. 393 */ 394 if (nr_shown == 60) { 395 if (time_before(jiffies, resume)) { 396 nr_unshown++; 397 return; 398 } 399 if (nr_unshown) { 400 printk(KERN_ALERT 401 "BUG: Bad page map: %lu messages suppressed\n", 402 nr_unshown); 403 nr_unshown = 0; 404 } 405 nr_shown = 0; 406 } 407 if (nr_shown++ == 0) 408 resume = jiffies + 60 * HZ; 409 410 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 411 index = linear_page_index(vma, addr); 412 413 printk(KERN_ALERT 414 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 415 current->comm, 416 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 417 if (page) { 418 printk(KERN_ALERT 419 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 420 page, (void *)page->flags, page_count(page), 421 page_mapcount(page), page->mapping, page->index); 422 } 423 printk(KERN_ALERT 424 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 425 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 426 /* 427 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 428 */ 429 if (vma->vm_ops) 430 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 431 (unsigned long)vma->vm_ops->fault); 432 if (vma->vm_file && vma->vm_file->f_op) 433 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 434 (unsigned long)vma->vm_file->f_op->mmap); 435 dump_stack(); 436 add_taint(TAINT_BAD_PAGE); 437 } 438 439 static inline int is_cow_mapping(unsigned int flags) 440 { 441 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 442 } 443 444 /* 445 * vm_normal_page -- This function gets the "struct page" associated with a pte. 446 * 447 * "Special" mappings do not wish to be associated with a "struct page" (either 448 * it doesn't exist, or it exists but they don't want to touch it). In this 449 * case, NULL is returned here. "Normal" mappings do have a struct page. 450 * 451 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 452 * pte bit, in which case this function is trivial. Secondly, an architecture 453 * may not have a spare pte bit, which requires a more complicated scheme, 454 * described below. 455 * 456 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 457 * special mapping (even if there are underlying and valid "struct pages"). 458 * COWed pages of a VM_PFNMAP are always normal. 459 * 460 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 461 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 462 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 463 * mapping will always honor the rule 464 * 465 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 466 * 467 * And for normal mappings this is false. 468 * 469 * This restricts such mappings to be a linear translation from virtual address 470 * to pfn. To get around this restriction, we allow arbitrary mappings so long 471 * as the vma is not a COW mapping; in that case, we know that all ptes are 472 * special (because none can have been COWed). 473 * 474 * 475 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 476 * 477 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 478 * page" backing, however the difference is that _all_ pages with a struct 479 * page (that is, those where pfn_valid is true) are refcounted and considered 480 * normal pages by the VM. The disadvantage is that pages are refcounted 481 * (which can be slower and simply not an option for some PFNMAP users). The 482 * advantage is that we don't have to follow the strict linearity rule of 483 * PFNMAP mappings in order to support COWable mappings. 484 * 485 */ 486 #ifdef __HAVE_ARCH_PTE_SPECIAL 487 # define HAVE_PTE_SPECIAL 1 488 #else 489 # define HAVE_PTE_SPECIAL 0 490 #endif 491 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 492 pte_t pte) 493 { 494 unsigned long pfn = pte_pfn(pte); 495 496 if (HAVE_PTE_SPECIAL) { 497 if (likely(!pte_special(pte))) 498 goto check_pfn; 499 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) 500 print_bad_pte(vma, addr, pte, NULL); 501 return NULL; 502 } 503 504 /* !HAVE_PTE_SPECIAL case follows: */ 505 506 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 507 if (vma->vm_flags & VM_MIXEDMAP) { 508 if (!pfn_valid(pfn)) 509 return NULL; 510 goto out; 511 } else { 512 unsigned long off; 513 off = (addr - vma->vm_start) >> PAGE_SHIFT; 514 if (pfn == vma->vm_pgoff + off) 515 return NULL; 516 if (!is_cow_mapping(vma->vm_flags)) 517 return NULL; 518 } 519 } 520 521 check_pfn: 522 if (unlikely(pfn > highest_memmap_pfn)) { 523 print_bad_pte(vma, addr, pte, NULL); 524 return NULL; 525 } 526 527 /* 528 * NOTE! We still have PageReserved() pages in the page tables. 529 * eg. VDSO mappings can cause them to exist. 530 */ 531 out: 532 return pfn_to_page(pfn); 533 } 534 535 /* 536 * copy one vm_area from one task to the other. Assumes the page tables 537 * already present in the new task to be cleared in the whole range 538 * covered by this vma. 539 */ 540 541 static inline void 542 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 543 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 544 unsigned long addr, int *rss) 545 { 546 unsigned long vm_flags = vma->vm_flags; 547 pte_t pte = *src_pte; 548 struct page *page; 549 550 /* pte contains position in swap or file, so copy. */ 551 if (unlikely(!pte_present(pte))) { 552 if (!pte_file(pte)) { 553 swp_entry_t entry = pte_to_swp_entry(pte); 554 555 swap_duplicate(entry); 556 /* make sure dst_mm is on swapoff's mmlist. */ 557 if (unlikely(list_empty(&dst_mm->mmlist))) { 558 spin_lock(&mmlist_lock); 559 if (list_empty(&dst_mm->mmlist)) 560 list_add(&dst_mm->mmlist, 561 &src_mm->mmlist); 562 spin_unlock(&mmlist_lock); 563 } 564 if (is_write_migration_entry(entry) && 565 is_cow_mapping(vm_flags)) { 566 /* 567 * COW mappings require pages in both parent 568 * and child to be set to read. 569 */ 570 make_migration_entry_read(&entry); 571 pte = swp_entry_to_pte(entry); 572 set_pte_at(src_mm, addr, src_pte, pte); 573 } 574 } 575 goto out_set_pte; 576 } 577 578 /* 579 * If it's a COW mapping, write protect it both 580 * in the parent and the child 581 */ 582 if (is_cow_mapping(vm_flags)) { 583 ptep_set_wrprotect(src_mm, addr, src_pte); 584 pte = pte_wrprotect(pte); 585 } 586 587 /* 588 * If it's a shared mapping, mark it clean in 589 * the child 590 */ 591 if (vm_flags & VM_SHARED) 592 pte = pte_mkclean(pte); 593 pte = pte_mkold(pte); 594 595 page = vm_normal_page(vma, addr, pte); 596 if (page) { 597 get_page(page); 598 page_dup_rmap(page, vma, addr); 599 rss[!!PageAnon(page)]++; 600 } 601 602 out_set_pte: 603 set_pte_at(dst_mm, addr, dst_pte, pte); 604 } 605 606 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 607 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 608 unsigned long addr, unsigned long end) 609 { 610 pte_t *src_pte, *dst_pte; 611 spinlock_t *src_ptl, *dst_ptl; 612 int progress = 0; 613 int rss[2]; 614 615 again: 616 rss[1] = rss[0] = 0; 617 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 618 if (!dst_pte) 619 return -ENOMEM; 620 src_pte = pte_offset_map_nested(src_pmd, addr); 621 src_ptl = pte_lockptr(src_mm, src_pmd); 622 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 623 arch_enter_lazy_mmu_mode(); 624 625 do { 626 /* 627 * We are holding two locks at this point - either of them 628 * could generate latencies in another task on another CPU. 629 */ 630 if (progress >= 32) { 631 progress = 0; 632 if (need_resched() || 633 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 634 break; 635 } 636 if (pte_none(*src_pte)) { 637 progress++; 638 continue; 639 } 640 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 641 progress += 8; 642 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 643 644 arch_leave_lazy_mmu_mode(); 645 spin_unlock(src_ptl); 646 pte_unmap_nested(src_pte - 1); 647 add_mm_rss(dst_mm, rss[0], rss[1]); 648 pte_unmap_unlock(dst_pte - 1, dst_ptl); 649 cond_resched(); 650 if (addr != end) 651 goto again; 652 return 0; 653 } 654 655 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 656 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 657 unsigned long addr, unsigned long end) 658 { 659 pmd_t *src_pmd, *dst_pmd; 660 unsigned long next; 661 662 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 663 if (!dst_pmd) 664 return -ENOMEM; 665 src_pmd = pmd_offset(src_pud, addr); 666 do { 667 next = pmd_addr_end(addr, end); 668 if (pmd_none_or_clear_bad(src_pmd)) 669 continue; 670 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 671 vma, addr, next)) 672 return -ENOMEM; 673 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 674 return 0; 675 } 676 677 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 678 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 679 unsigned long addr, unsigned long end) 680 { 681 pud_t *src_pud, *dst_pud; 682 unsigned long next; 683 684 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 685 if (!dst_pud) 686 return -ENOMEM; 687 src_pud = pud_offset(src_pgd, addr); 688 do { 689 next = pud_addr_end(addr, end); 690 if (pud_none_or_clear_bad(src_pud)) 691 continue; 692 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 693 vma, addr, next)) 694 return -ENOMEM; 695 } while (dst_pud++, src_pud++, addr = next, addr != end); 696 return 0; 697 } 698 699 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 700 struct vm_area_struct *vma) 701 { 702 pgd_t *src_pgd, *dst_pgd; 703 unsigned long next; 704 unsigned long addr = vma->vm_start; 705 unsigned long end = vma->vm_end; 706 int ret; 707 708 /* 709 * Don't copy ptes where a page fault will fill them correctly. 710 * Fork becomes much lighter when there are big shared or private 711 * readonly mappings. The tradeoff is that copy_page_range is more 712 * efficient than faulting. 713 */ 714 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 715 if (!vma->anon_vma) 716 return 0; 717 } 718 719 if (is_vm_hugetlb_page(vma)) 720 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 721 722 if (unlikely(is_pfn_mapping(vma))) { 723 /* 724 * We do not free on error cases below as remove_vma 725 * gets called on error from higher level routine 726 */ 727 ret = track_pfn_vma_copy(vma); 728 if (ret) 729 return ret; 730 } 731 732 /* 733 * We need to invalidate the secondary MMU mappings only when 734 * there could be a permission downgrade on the ptes of the 735 * parent mm. And a permission downgrade will only happen if 736 * is_cow_mapping() returns true. 737 */ 738 if (is_cow_mapping(vma->vm_flags)) 739 mmu_notifier_invalidate_range_start(src_mm, addr, end); 740 741 ret = 0; 742 dst_pgd = pgd_offset(dst_mm, addr); 743 src_pgd = pgd_offset(src_mm, addr); 744 do { 745 next = pgd_addr_end(addr, end); 746 if (pgd_none_or_clear_bad(src_pgd)) 747 continue; 748 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 749 vma, addr, next))) { 750 ret = -ENOMEM; 751 break; 752 } 753 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 754 755 if (is_cow_mapping(vma->vm_flags)) 756 mmu_notifier_invalidate_range_end(src_mm, 757 vma->vm_start, end); 758 return ret; 759 } 760 761 static unsigned long zap_pte_range(struct mmu_gather *tlb, 762 struct vm_area_struct *vma, pmd_t *pmd, 763 unsigned long addr, unsigned long end, 764 long *zap_work, struct zap_details *details) 765 { 766 struct mm_struct *mm = tlb->mm; 767 pte_t *pte; 768 spinlock_t *ptl; 769 int file_rss = 0; 770 int anon_rss = 0; 771 772 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 773 arch_enter_lazy_mmu_mode(); 774 do { 775 pte_t ptent = *pte; 776 if (pte_none(ptent)) { 777 (*zap_work)--; 778 continue; 779 } 780 781 (*zap_work) -= PAGE_SIZE; 782 783 if (pte_present(ptent)) { 784 struct page *page; 785 786 page = vm_normal_page(vma, addr, ptent); 787 if (unlikely(details) && page) { 788 /* 789 * unmap_shared_mapping_pages() wants to 790 * invalidate cache without truncating: 791 * unmap shared but keep private pages. 792 */ 793 if (details->check_mapping && 794 details->check_mapping != page->mapping) 795 continue; 796 /* 797 * Each page->index must be checked when 798 * invalidating or truncating nonlinear. 799 */ 800 if (details->nonlinear_vma && 801 (page->index < details->first_index || 802 page->index > details->last_index)) 803 continue; 804 } 805 ptent = ptep_get_and_clear_full(mm, addr, pte, 806 tlb->fullmm); 807 tlb_remove_tlb_entry(tlb, pte, addr); 808 if (unlikely(!page)) 809 continue; 810 if (unlikely(details) && details->nonlinear_vma 811 && linear_page_index(details->nonlinear_vma, 812 addr) != page->index) 813 set_pte_at(mm, addr, pte, 814 pgoff_to_pte(page->index)); 815 if (PageAnon(page)) 816 anon_rss--; 817 else { 818 if (pte_dirty(ptent)) 819 set_page_dirty(page); 820 if (pte_young(ptent) && 821 likely(!VM_SequentialReadHint(vma))) 822 mark_page_accessed(page); 823 file_rss--; 824 } 825 page_remove_rmap(page); 826 if (unlikely(page_mapcount(page) < 0)) 827 print_bad_pte(vma, addr, ptent, page); 828 tlb_remove_page(tlb, page); 829 continue; 830 } 831 /* 832 * If details->check_mapping, we leave swap entries; 833 * if details->nonlinear_vma, we leave file entries. 834 */ 835 if (unlikely(details)) 836 continue; 837 if (pte_file(ptent)) { 838 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 839 print_bad_pte(vma, addr, ptent, NULL); 840 } else if 841 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent)))) 842 print_bad_pte(vma, addr, ptent, NULL); 843 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 844 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 845 846 add_mm_rss(mm, file_rss, anon_rss); 847 arch_leave_lazy_mmu_mode(); 848 pte_unmap_unlock(pte - 1, ptl); 849 850 return addr; 851 } 852 853 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 854 struct vm_area_struct *vma, pud_t *pud, 855 unsigned long addr, unsigned long end, 856 long *zap_work, struct zap_details *details) 857 { 858 pmd_t *pmd; 859 unsigned long next; 860 861 pmd = pmd_offset(pud, addr); 862 do { 863 next = pmd_addr_end(addr, end); 864 if (pmd_none_or_clear_bad(pmd)) { 865 (*zap_work)--; 866 continue; 867 } 868 next = zap_pte_range(tlb, vma, pmd, addr, next, 869 zap_work, details); 870 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 871 872 return addr; 873 } 874 875 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 876 struct vm_area_struct *vma, pgd_t *pgd, 877 unsigned long addr, unsigned long end, 878 long *zap_work, struct zap_details *details) 879 { 880 pud_t *pud; 881 unsigned long next; 882 883 pud = pud_offset(pgd, addr); 884 do { 885 next = pud_addr_end(addr, end); 886 if (pud_none_or_clear_bad(pud)) { 887 (*zap_work)--; 888 continue; 889 } 890 next = zap_pmd_range(tlb, vma, pud, addr, next, 891 zap_work, details); 892 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 893 894 return addr; 895 } 896 897 static unsigned long unmap_page_range(struct mmu_gather *tlb, 898 struct vm_area_struct *vma, 899 unsigned long addr, unsigned long end, 900 long *zap_work, struct zap_details *details) 901 { 902 pgd_t *pgd; 903 unsigned long next; 904 905 if (details && !details->check_mapping && !details->nonlinear_vma) 906 details = NULL; 907 908 BUG_ON(addr >= end); 909 tlb_start_vma(tlb, vma); 910 pgd = pgd_offset(vma->vm_mm, addr); 911 do { 912 next = pgd_addr_end(addr, end); 913 if (pgd_none_or_clear_bad(pgd)) { 914 (*zap_work)--; 915 continue; 916 } 917 next = zap_pud_range(tlb, vma, pgd, addr, next, 918 zap_work, details); 919 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 920 tlb_end_vma(tlb, vma); 921 922 return addr; 923 } 924 925 #ifdef CONFIG_PREEMPT 926 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 927 #else 928 /* No preempt: go for improved straight-line efficiency */ 929 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 930 #endif 931 932 /** 933 * unmap_vmas - unmap a range of memory covered by a list of vma's 934 * @tlbp: address of the caller's struct mmu_gather 935 * @vma: the starting vma 936 * @start_addr: virtual address at which to start unmapping 937 * @end_addr: virtual address at which to end unmapping 938 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 939 * @details: details of nonlinear truncation or shared cache invalidation 940 * 941 * Returns the end address of the unmapping (restart addr if interrupted). 942 * 943 * Unmap all pages in the vma list. 944 * 945 * We aim to not hold locks for too long (for scheduling latency reasons). 946 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 947 * return the ending mmu_gather to the caller. 948 * 949 * Only addresses between `start' and `end' will be unmapped. 950 * 951 * The VMA list must be sorted in ascending virtual address order. 952 * 953 * unmap_vmas() assumes that the caller will flush the whole unmapped address 954 * range after unmap_vmas() returns. So the only responsibility here is to 955 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 956 * drops the lock and schedules. 957 */ 958 unsigned long unmap_vmas(struct mmu_gather **tlbp, 959 struct vm_area_struct *vma, unsigned long start_addr, 960 unsigned long end_addr, unsigned long *nr_accounted, 961 struct zap_details *details) 962 { 963 long zap_work = ZAP_BLOCK_SIZE; 964 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 965 int tlb_start_valid = 0; 966 unsigned long start = start_addr; 967 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 968 int fullmm = (*tlbp)->fullmm; 969 struct mm_struct *mm = vma->vm_mm; 970 971 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 972 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 973 unsigned long end; 974 975 start = max(vma->vm_start, start_addr); 976 if (start >= vma->vm_end) 977 continue; 978 end = min(vma->vm_end, end_addr); 979 if (end <= vma->vm_start) 980 continue; 981 982 if (vma->vm_flags & VM_ACCOUNT) 983 *nr_accounted += (end - start) >> PAGE_SHIFT; 984 985 if (unlikely(is_pfn_mapping(vma))) 986 untrack_pfn_vma(vma, 0, 0); 987 988 while (start != end) { 989 if (!tlb_start_valid) { 990 tlb_start = start; 991 tlb_start_valid = 1; 992 } 993 994 if (unlikely(is_vm_hugetlb_page(vma))) { 995 /* 996 * It is undesirable to test vma->vm_file as it 997 * should be non-null for valid hugetlb area. 998 * However, vm_file will be NULL in the error 999 * cleanup path of do_mmap_pgoff. When 1000 * hugetlbfs ->mmap method fails, 1001 * do_mmap_pgoff() nullifies vma->vm_file 1002 * before calling this function to clean up. 1003 * Since no pte has actually been setup, it is 1004 * safe to do nothing in this case. 1005 */ 1006 if (vma->vm_file) { 1007 unmap_hugepage_range(vma, start, end, NULL); 1008 zap_work -= (end - start) / 1009 pages_per_huge_page(hstate_vma(vma)); 1010 } 1011 1012 start = end; 1013 } else 1014 start = unmap_page_range(*tlbp, vma, 1015 start, end, &zap_work, details); 1016 1017 if (zap_work > 0) { 1018 BUG_ON(start != end); 1019 break; 1020 } 1021 1022 tlb_finish_mmu(*tlbp, tlb_start, start); 1023 1024 if (need_resched() || 1025 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 1026 if (i_mmap_lock) { 1027 *tlbp = NULL; 1028 goto out; 1029 } 1030 cond_resched(); 1031 } 1032 1033 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 1034 tlb_start_valid = 0; 1035 zap_work = ZAP_BLOCK_SIZE; 1036 } 1037 } 1038 out: 1039 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1040 return start; /* which is now the end (or restart) address */ 1041 } 1042 1043 /** 1044 * zap_page_range - remove user pages in a given range 1045 * @vma: vm_area_struct holding the applicable pages 1046 * @address: starting address of pages to zap 1047 * @size: number of bytes to zap 1048 * @details: details of nonlinear truncation or shared cache invalidation 1049 */ 1050 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1051 unsigned long size, struct zap_details *details) 1052 { 1053 struct mm_struct *mm = vma->vm_mm; 1054 struct mmu_gather *tlb; 1055 unsigned long end = address + size; 1056 unsigned long nr_accounted = 0; 1057 1058 lru_add_drain(); 1059 tlb = tlb_gather_mmu(mm, 0); 1060 update_hiwater_rss(mm); 1061 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1062 if (tlb) 1063 tlb_finish_mmu(tlb, address, end); 1064 return end; 1065 } 1066 1067 /** 1068 * zap_vma_ptes - remove ptes mapping the vma 1069 * @vma: vm_area_struct holding ptes to be zapped 1070 * @address: starting address of pages to zap 1071 * @size: number of bytes to zap 1072 * 1073 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1074 * 1075 * The entire address range must be fully contained within the vma. 1076 * 1077 * Returns 0 if successful. 1078 */ 1079 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1080 unsigned long size) 1081 { 1082 if (address < vma->vm_start || address + size > vma->vm_end || 1083 !(vma->vm_flags & VM_PFNMAP)) 1084 return -1; 1085 zap_page_range(vma, address, size, NULL); 1086 return 0; 1087 } 1088 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1089 1090 /* 1091 * Do a quick page-table lookup for a single page. 1092 */ 1093 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1094 unsigned int flags) 1095 { 1096 pgd_t *pgd; 1097 pud_t *pud; 1098 pmd_t *pmd; 1099 pte_t *ptep, pte; 1100 spinlock_t *ptl; 1101 struct page *page; 1102 struct mm_struct *mm = vma->vm_mm; 1103 1104 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1105 if (!IS_ERR(page)) { 1106 BUG_ON(flags & FOLL_GET); 1107 goto out; 1108 } 1109 1110 page = NULL; 1111 pgd = pgd_offset(mm, address); 1112 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1113 goto no_page_table; 1114 1115 pud = pud_offset(pgd, address); 1116 if (pud_none(*pud)) 1117 goto no_page_table; 1118 if (pud_huge(*pud)) { 1119 BUG_ON(flags & FOLL_GET); 1120 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1121 goto out; 1122 } 1123 if (unlikely(pud_bad(*pud))) 1124 goto no_page_table; 1125 1126 pmd = pmd_offset(pud, address); 1127 if (pmd_none(*pmd)) 1128 goto no_page_table; 1129 if (pmd_huge(*pmd)) { 1130 BUG_ON(flags & FOLL_GET); 1131 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1132 goto out; 1133 } 1134 if (unlikely(pmd_bad(*pmd))) 1135 goto no_page_table; 1136 1137 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1138 1139 pte = *ptep; 1140 if (!pte_present(pte)) 1141 goto no_page; 1142 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1143 goto unlock; 1144 page = vm_normal_page(vma, address, pte); 1145 if (unlikely(!page)) 1146 goto bad_page; 1147 1148 if (flags & FOLL_GET) 1149 get_page(page); 1150 if (flags & FOLL_TOUCH) { 1151 if ((flags & FOLL_WRITE) && 1152 !pte_dirty(pte) && !PageDirty(page)) 1153 set_page_dirty(page); 1154 /* 1155 * pte_mkyoung() would be more correct here, but atomic care 1156 * is needed to avoid losing the dirty bit: it is easier to use 1157 * mark_page_accessed(). 1158 */ 1159 mark_page_accessed(page); 1160 } 1161 unlock: 1162 pte_unmap_unlock(ptep, ptl); 1163 out: 1164 return page; 1165 1166 bad_page: 1167 pte_unmap_unlock(ptep, ptl); 1168 return ERR_PTR(-EFAULT); 1169 1170 no_page: 1171 pte_unmap_unlock(ptep, ptl); 1172 if (!pte_none(pte)) 1173 return page; 1174 /* Fall through to ZERO_PAGE handling */ 1175 no_page_table: 1176 /* 1177 * When core dumping an enormous anonymous area that nobody 1178 * has touched so far, we don't want to allocate page tables. 1179 */ 1180 if (flags & FOLL_ANON) { 1181 page = ZERO_PAGE(0); 1182 if (flags & FOLL_GET) 1183 get_page(page); 1184 BUG_ON(flags & FOLL_WRITE); 1185 } 1186 return page; 1187 } 1188 1189 /* Can we do the FOLL_ANON optimization? */ 1190 static inline int use_zero_page(struct vm_area_struct *vma) 1191 { 1192 /* 1193 * We don't want to optimize FOLL_ANON for make_pages_present() 1194 * when it tries to page in a VM_LOCKED region. As to VM_SHARED, 1195 * we want to get the page from the page tables to make sure 1196 * that we serialize and update with any other user of that 1197 * mapping. 1198 */ 1199 if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) 1200 return 0; 1201 /* 1202 * And if we have a fault routine, it's not an anonymous region. 1203 */ 1204 return !vma->vm_ops || !vma->vm_ops->fault; 1205 } 1206 1207 1208 1209 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1210 unsigned long start, int len, int flags, 1211 struct page **pages, struct vm_area_struct **vmas) 1212 { 1213 int i; 1214 unsigned int vm_flags = 0; 1215 int write = !!(flags & GUP_FLAGS_WRITE); 1216 int force = !!(flags & GUP_FLAGS_FORCE); 1217 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); 1218 int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL); 1219 1220 if (len <= 0) 1221 return 0; 1222 /* 1223 * Require read or write permissions. 1224 * If 'force' is set, we only require the "MAY" flags. 1225 */ 1226 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1227 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1228 i = 0; 1229 1230 do { 1231 struct vm_area_struct *vma; 1232 unsigned int foll_flags; 1233 1234 vma = find_extend_vma(mm, start); 1235 if (!vma && in_gate_area(tsk, start)) { 1236 unsigned long pg = start & PAGE_MASK; 1237 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1238 pgd_t *pgd; 1239 pud_t *pud; 1240 pmd_t *pmd; 1241 pte_t *pte; 1242 1243 /* user gate pages are read-only */ 1244 if (!ignore && write) 1245 return i ? : -EFAULT; 1246 if (pg > TASK_SIZE) 1247 pgd = pgd_offset_k(pg); 1248 else 1249 pgd = pgd_offset_gate(mm, pg); 1250 BUG_ON(pgd_none(*pgd)); 1251 pud = pud_offset(pgd, pg); 1252 BUG_ON(pud_none(*pud)); 1253 pmd = pmd_offset(pud, pg); 1254 if (pmd_none(*pmd)) 1255 return i ? : -EFAULT; 1256 pte = pte_offset_map(pmd, pg); 1257 if (pte_none(*pte)) { 1258 pte_unmap(pte); 1259 return i ? : -EFAULT; 1260 } 1261 if (pages) { 1262 struct page *page = vm_normal_page(gate_vma, start, *pte); 1263 pages[i] = page; 1264 if (page) 1265 get_page(page); 1266 } 1267 pte_unmap(pte); 1268 if (vmas) 1269 vmas[i] = gate_vma; 1270 i++; 1271 start += PAGE_SIZE; 1272 len--; 1273 continue; 1274 } 1275 1276 if (!vma || 1277 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1278 (!ignore && !(vm_flags & vma->vm_flags))) 1279 return i ? : -EFAULT; 1280 1281 if (is_vm_hugetlb_page(vma)) { 1282 i = follow_hugetlb_page(mm, vma, pages, vmas, 1283 &start, &len, i, write); 1284 continue; 1285 } 1286 1287 foll_flags = FOLL_TOUCH; 1288 if (pages) 1289 foll_flags |= FOLL_GET; 1290 if (!write && use_zero_page(vma)) 1291 foll_flags |= FOLL_ANON; 1292 1293 do { 1294 struct page *page; 1295 1296 /* 1297 * If we have a pending SIGKILL, don't keep faulting 1298 * pages and potentially allocating memory, unless 1299 * current is handling munlock--e.g., on exit. In 1300 * that case, we are not allocating memory. Rather, 1301 * we're only unlocking already resident/mapped pages. 1302 */ 1303 if (unlikely(!ignore_sigkill && 1304 fatal_signal_pending(current))) 1305 return i ? i : -ERESTARTSYS; 1306 1307 if (write) 1308 foll_flags |= FOLL_WRITE; 1309 1310 cond_resched(); 1311 while (!(page = follow_page(vma, start, foll_flags))) { 1312 int ret; 1313 ret = handle_mm_fault(mm, vma, start, 1314 foll_flags & FOLL_WRITE); 1315 if (ret & VM_FAULT_ERROR) { 1316 if (ret & VM_FAULT_OOM) 1317 return i ? i : -ENOMEM; 1318 else if (ret & VM_FAULT_SIGBUS) 1319 return i ? i : -EFAULT; 1320 BUG(); 1321 } 1322 if (ret & VM_FAULT_MAJOR) 1323 tsk->maj_flt++; 1324 else 1325 tsk->min_flt++; 1326 1327 /* 1328 * The VM_FAULT_WRITE bit tells us that 1329 * do_wp_page has broken COW when necessary, 1330 * even if maybe_mkwrite decided not to set 1331 * pte_write. We can thus safely do subsequent 1332 * page lookups as if they were reads. But only 1333 * do so when looping for pte_write is futile: 1334 * in some cases userspace may also be wanting 1335 * to write to the gotten user page, which a 1336 * read fault here might prevent (a readonly 1337 * page might get reCOWed by userspace write). 1338 */ 1339 if ((ret & VM_FAULT_WRITE) && 1340 !(vma->vm_flags & VM_WRITE)) 1341 foll_flags &= ~FOLL_WRITE; 1342 1343 cond_resched(); 1344 } 1345 if (IS_ERR(page)) 1346 return i ? i : PTR_ERR(page); 1347 if (pages) { 1348 pages[i] = page; 1349 1350 flush_anon_page(vma, page, start); 1351 flush_dcache_page(page); 1352 } 1353 if (vmas) 1354 vmas[i] = vma; 1355 i++; 1356 start += PAGE_SIZE; 1357 len--; 1358 } while (len && start < vma->vm_end); 1359 } while (len); 1360 return i; 1361 } 1362 1363 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1364 unsigned long start, int len, int write, int force, 1365 struct page **pages, struct vm_area_struct **vmas) 1366 { 1367 int flags = 0; 1368 1369 if (write) 1370 flags |= GUP_FLAGS_WRITE; 1371 if (force) 1372 flags |= GUP_FLAGS_FORCE; 1373 1374 return __get_user_pages(tsk, mm, 1375 start, len, flags, 1376 pages, vmas); 1377 } 1378 1379 EXPORT_SYMBOL(get_user_pages); 1380 1381 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1382 spinlock_t **ptl) 1383 { 1384 pgd_t * pgd = pgd_offset(mm, addr); 1385 pud_t * pud = pud_alloc(mm, pgd, addr); 1386 if (pud) { 1387 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1388 if (pmd) 1389 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1390 } 1391 return NULL; 1392 } 1393 1394 /* 1395 * This is the old fallback for page remapping. 1396 * 1397 * For historical reasons, it only allows reserved pages. Only 1398 * old drivers should use this, and they needed to mark their 1399 * pages reserved for the old functions anyway. 1400 */ 1401 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1402 struct page *page, pgprot_t prot) 1403 { 1404 struct mm_struct *mm = vma->vm_mm; 1405 int retval; 1406 pte_t *pte; 1407 spinlock_t *ptl; 1408 1409 retval = -EINVAL; 1410 if (PageAnon(page)) 1411 goto out; 1412 retval = -ENOMEM; 1413 flush_dcache_page(page); 1414 pte = get_locked_pte(mm, addr, &ptl); 1415 if (!pte) 1416 goto out; 1417 retval = -EBUSY; 1418 if (!pte_none(*pte)) 1419 goto out_unlock; 1420 1421 /* Ok, finally just insert the thing.. */ 1422 get_page(page); 1423 inc_mm_counter(mm, file_rss); 1424 page_add_file_rmap(page); 1425 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1426 1427 retval = 0; 1428 pte_unmap_unlock(pte, ptl); 1429 return retval; 1430 out_unlock: 1431 pte_unmap_unlock(pte, ptl); 1432 out: 1433 return retval; 1434 } 1435 1436 /** 1437 * vm_insert_page - insert single page into user vma 1438 * @vma: user vma to map to 1439 * @addr: target user address of this page 1440 * @page: source kernel page 1441 * 1442 * This allows drivers to insert individual pages they've allocated 1443 * into a user vma. 1444 * 1445 * The page has to be a nice clean _individual_ kernel allocation. 1446 * If you allocate a compound page, you need to have marked it as 1447 * such (__GFP_COMP), or manually just split the page up yourself 1448 * (see split_page()). 1449 * 1450 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1451 * took an arbitrary page protection parameter. This doesn't allow 1452 * that. Your vma protection will have to be set up correctly, which 1453 * means that if you want a shared writable mapping, you'd better 1454 * ask for a shared writable mapping! 1455 * 1456 * The page does not need to be reserved. 1457 */ 1458 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1459 struct page *page) 1460 { 1461 if (addr < vma->vm_start || addr >= vma->vm_end) 1462 return -EFAULT; 1463 if (!page_count(page)) 1464 return -EINVAL; 1465 vma->vm_flags |= VM_INSERTPAGE; 1466 return insert_page(vma, addr, page, vma->vm_page_prot); 1467 } 1468 EXPORT_SYMBOL(vm_insert_page); 1469 1470 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1471 unsigned long pfn, pgprot_t prot) 1472 { 1473 struct mm_struct *mm = vma->vm_mm; 1474 int retval; 1475 pte_t *pte, entry; 1476 spinlock_t *ptl; 1477 1478 retval = -ENOMEM; 1479 pte = get_locked_pte(mm, addr, &ptl); 1480 if (!pte) 1481 goto out; 1482 retval = -EBUSY; 1483 if (!pte_none(*pte)) 1484 goto out_unlock; 1485 1486 /* Ok, finally just insert the thing.. */ 1487 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1488 set_pte_at(mm, addr, pte, entry); 1489 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ 1490 1491 retval = 0; 1492 out_unlock: 1493 pte_unmap_unlock(pte, ptl); 1494 out: 1495 return retval; 1496 } 1497 1498 /** 1499 * vm_insert_pfn - insert single pfn into user vma 1500 * @vma: user vma to map to 1501 * @addr: target user address of this page 1502 * @pfn: source kernel pfn 1503 * 1504 * Similar to vm_inert_page, this allows drivers to insert individual pages 1505 * they've allocated into a user vma. Same comments apply. 1506 * 1507 * This function should only be called from a vm_ops->fault handler, and 1508 * in that case the handler should return NULL. 1509 * 1510 * vma cannot be a COW mapping. 1511 * 1512 * As this is called only for pages that do not currently exist, we 1513 * do not need to flush old virtual caches or the TLB. 1514 */ 1515 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1516 unsigned long pfn) 1517 { 1518 int ret; 1519 pgprot_t pgprot = vma->vm_page_prot; 1520 /* 1521 * Technically, architectures with pte_special can avoid all these 1522 * restrictions (same for remap_pfn_range). However we would like 1523 * consistency in testing and feature parity among all, so we should 1524 * try to keep these invariants in place for everybody. 1525 */ 1526 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1527 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1528 (VM_PFNMAP|VM_MIXEDMAP)); 1529 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1530 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1531 1532 if (addr < vma->vm_start || addr >= vma->vm_end) 1533 return -EFAULT; 1534 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 1535 return -EINVAL; 1536 1537 ret = insert_pfn(vma, addr, pfn, pgprot); 1538 1539 if (ret) 1540 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1541 1542 return ret; 1543 } 1544 EXPORT_SYMBOL(vm_insert_pfn); 1545 1546 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1547 unsigned long pfn) 1548 { 1549 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1550 1551 if (addr < vma->vm_start || addr >= vma->vm_end) 1552 return -EFAULT; 1553 1554 /* 1555 * If we don't have pte special, then we have to use the pfn_valid() 1556 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1557 * refcount the page if pfn_valid is true (hence insert_page rather 1558 * than insert_pfn). 1559 */ 1560 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1561 struct page *page; 1562 1563 page = pfn_to_page(pfn); 1564 return insert_page(vma, addr, page, vma->vm_page_prot); 1565 } 1566 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1567 } 1568 EXPORT_SYMBOL(vm_insert_mixed); 1569 1570 /* 1571 * maps a range of physical memory into the requested pages. the old 1572 * mappings are removed. any references to nonexistent pages results 1573 * in null mappings (currently treated as "copy-on-access") 1574 */ 1575 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1576 unsigned long addr, unsigned long end, 1577 unsigned long pfn, pgprot_t prot) 1578 { 1579 pte_t *pte; 1580 spinlock_t *ptl; 1581 1582 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1583 if (!pte) 1584 return -ENOMEM; 1585 arch_enter_lazy_mmu_mode(); 1586 do { 1587 BUG_ON(!pte_none(*pte)); 1588 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1589 pfn++; 1590 } while (pte++, addr += PAGE_SIZE, addr != end); 1591 arch_leave_lazy_mmu_mode(); 1592 pte_unmap_unlock(pte - 1, ptl); 1593 return 0; 1594 } 1595 1596 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1597 unsigned long addr, unsigned long end, 1598 unsigned long pfn, pgprot_t prot) 1599 { 1600 pmd_t *pmd; 1601 unsigned long next; 1602 1603 pfn -= addr >> PAGE_SHIFT; 1604 pmd = pmd_alloc(mm, pud, addr); 1605 if (!pmd) 1606 return -ENOMEM; 1607 do { 1608 next = pmd_addr_end(addr, end); 1609 if (remap_pte_range(mm, pmd, addr, next, 1610 pfn + (addr >> PAGE_SHIFT), prot)) 1611 return -ENOMEM; 1612 } while (pmd++, addr = next, addr != end); 1613 return 0; 1614 } 1615 1616 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1617 unsigned long addr, unsigned long end, 1618 unsigned long pfn, pgprot_t prot) 1619 { 1620 pud_t *pud; 1621 unsigned long next; 1622 1623 pfn -= addr >> PAGE_SHIFT; 1624 pud = pud_alloc(mm, pgd, addr); 1625 if (!pud) 1626 return -ENOMEM; 1627 do { 1628 next = pud_addr_end(addr, end); 1629 if (remap_pmd_range(mm, pud, addr, next, 1630 pfn + (addr >> PAGE_SHIFT), prot)) 1631 return -ENOMEM; 1632 } while (pud++, addr = next, addr != end); 1633 return 0; 1634 } 1635 1636 /** 1637 * remap_pfn_range - remap kernel memory to userspace 1638 * @vma: user vma to map to 1639 * @addr: target user address to start at 1640 * @pfn: physical address of kernel memory 1641 * @size: size of map area 1642 * @prot: page protection flags for this mapping 1643 * 1644 * Note: this is only safe if the mm semaphore is held when called. 1645 */ 1646 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1647 unsigned long pfn, unsigned long size, pgprot_t prot) 1648 { 1649 pgd_t *pgd; 1650 unsigned long next; 1651 unsigned long end = addr + PAGE_ALIGN(size); 1652 struct mm_struct *mm = vma->vm_mm; 1653 int err; 1654 1655 /* 1656 * Physically remapped pages are special. Tell the 1657 * rest of the world about it: 1658 * VM_IO tells people not to look at these pages 1659 * (accesses can have side effects). 1660 * VM_RESERVED is specified all over the place, because 1661 * in 2.4 it kept swapout's vma scan off this vma; but 1662 * in 2.6 the LRU scan won't even find its pages, so this 1663 * flag means no more than count its pages in reserved_vm, 1664 * and omit it from core dump, even when VM_IO turned off. 1665 * VM_PFNMAP tells the core MM that the base pages are just 1666 * raw PFN mappings, and do not have a "struct page" associated 1667 * with them. 1668 * 1669 * There's a horrible special case to handle copy-on-write 1670 * behaviour that some programs depend on. We mark the "original" 1671 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1672 */ 1673 if (addr == vma->vm_start && end == vma->vm_end) { 1674 vma->vm_pgoff = pfn; 1675 vma->vm_flags |= VM_PFN_AT_MMAP; 1676 } else if (is_cow_mapping(vma->vm_flags)) 1677 return -EINVAL; 1678 1679 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1680 1681 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 1682 if (err) { 1683 /* 1684 * To indicate that track_pfn related cleanup is not 1685 * needed from higher level routine calling unmap_vmas 1686 */ 1687 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 1688 vma->vm_flags &= ~VM_PFN_AT_MMAP; 1689 return -EINVAL; 1690 } 1691 1692 BUG_ON(addr >= end); 1693 pfn -= addr >> PAGE_SHIFT; 1694 pgd = pgd_offset(mm, addr); 1695 flush_cache_range(vma, addr, end); 1696 do { 1697 next = pgd_addr_end(addr, end); 1698 err = remap_pud_range(mm, pgd, addr, next, 1699 pfn + (addr >> PAGE_SHIFT), prot); 1700 if (err) 1701 break; 1702 } while (pgd++, addr = next, addr != end); 1703 1704 if (err) 1705 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 1706 1707 return err; 1708 } 1709 EXPORT_SYMBOL(remap_pfn_range); 1710 1711 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1712 unsigned long addr, unsigned long end, 1713 pte_fn_t fn, void *data) 1714 { 1715 pte_t *pte; 1716 int err; 1717 pgtable_t token; 1718 spinlock_t *uninitialized_var(ptl); 1719 1720 pte = (mm == &init_mm) ? 1721 pte_alloc_kernel(pmd, addr) : 1722 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1723 if (!pte) 1724 return -ENOMEM; 1725 1726 BUG_ON(pmd_huge(*pmd)); 1727 1728 arch_enter_lazy_mmu_mode(); 1729 1730 token = pmd_pgtable(*pmd); 1731 1732 do { 1733 err = fn(pte, token, addr, data); 1734 if (err) 1735 break; 1736 } while (pte++, addr += PAGE_SIZE, addr != end); 1737 1738 arch_leave_lazy_mmu_mode(); 1739 1740 if (mm != &init_mm) 1741 pte_unmap_unlock(pte-1, ptl); 1742 return err; 1743 } 1744 1745 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1746 unsigned long addr, unsigned long end, 1747 pte_fn_t fn, void *data) 1748 { 1749 pmd_t *pmd; 1750 unsigned long next; 1751 int err; 1752 1753 BUG_ON(pud_huge(*pud)); 1754 1755 pmd = pmd_alloc(mm, pud, addr); 1756 if (!pmd) 1757 return -ENOMEM; 1758 do { 1759 next = pmd_addr_end(addr, end); 1760 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1761 if (err) 1762 break; 1763 } while (pmd++, addr = next, addr != end); 1764 return err; 1765 } 1766 1767 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1768 unsigned long addr, unsigned long end, 1769 pte_fn_t fn, void *data) 1770 { 1771 pud_t *pud; 1772 unsigned long next; 1773 int err; 1774 1775 pud = pud_alloc(mm, pgd, addr); 1776 if (!pud) 1777 return -ENOMEM; 1778 do { 1779 next = pud_addr_end(addr, end); 1780 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1781 if (err) 1782 break; 1783 } while (pud++, addr = next, addr != end); 1784 return err; 1785 } 1786 1787 /* 1788 * Scan a region of virtual memory, filling in page tables as necessary 1789 * and calling a provided function on each leaf page table. 1790 */ 1791 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1792 unsigned long size, pte_fn_t fn, void *data) 1793 { 1794 pgd_t *pgd; 1795 unsigned long next; 1796 unsigned long start = addr, end = addr + size; 1797 int err; 1798 1799 BUG_ON(addr >= end); 1800 mmu_notifier_invalidate_range_start(mm, start, end); 1801 pgd = pgd_offset(mm, addr); 1802 do { 1803 next = pgd_addr_end(addr, end); 1804 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1805 if (err) 1806 break; 1807 } while (pgd++, addr = next, addr != end); 1808 mmu_notifier_invalidate_range_end(mm, start, end); 1809 return err; 1810 } 1811 EXPORT_SYMBOL_GPL(apply_to_page_range); 1812 1813 /* 1814 * handle_pte_fault chooses page fault handler according to an entry 1815 * which was read non-atomically. Before making any commitment, on 1816 * those architectures or configurations (e.g. i386 with PAE) which 1817 * might give a mix of unmatched parts, do_swap_page and do_file_page 1818 * must check under lock before unmapping the pte and proceeding 1819 * (but do_wp_page is only called after already making such a check; 1820 * and do_anonymous_page and do_no_page can safely check later on). 1821 */ 1822 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1823 pte_t *page_table, pte_t orig_pte) 1824 { 1825 int same = 1; 1826 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1827 if (sizeof(pte_t) > sizeof(unsigned long)) { 1828 spinlock_t *ptl = pte_lockptr(mm, pmd); 1829 spin_lock(ptl); 1830 same = pte_same(*page_table, orig_pte); 1831 spin_unlock(ptl); 1832 } 1833 #endif 1834 pte_unmap(page_table); 1835 return same; 1836 } 1837 1838 /* 1839 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1840 * servicing faults for write access. In the normal case, do always want 1841 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1842 * that do not have writing enabled, when used by access_process_vm. 1843 */ 1844 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1845 { 1846 if (likely(vma->vm_flags & VM_WRITE)) 1847 pte = pte_mkwrite(pte); 1848 return pte; 1849 } 1850 1851 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1852 { 1853 /* 1854 * If the source page was a PFN mapping, we don't have 1855 * a "struct page" for it. We do a best-effort copy by 1856 * just copying from the original user address. If that 1857 * fails, we just zero-fill it. Live with it. 1858 */ 1859 if (unlikely(!src)) { 1860 void *kaddr = kmap_atomic(dst, KM_USER0); 1861 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1862 1863 /* 1864 * This really shouldn't fail, because the page is there 1865 * in the page tables. But it might just be unreadable, 1866 * in which case we just give up and fill the result with 1867 * zeroes. 1868 */ 1869 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1870 memset(kaddr, 0, PAGE_SIZE); 1871 kunmap_atomic(kaddr, KM_USER0); 1872 flush_dcache_page(dst); 1873 } else 1874 copy_user_highpage(dst, src, va, vma); 1875 } 1876 1877 /* 1878 * This routine handles present pages, when users try to write 1879 * to a shared page. It is done by copying the page to a new address 1880 * and decrementing the shared-page counter for the old page. 1881 * 1882 * Note that this routine assumes that the protection checks have been 1883 * done by the caller (the low-level page fault routine in most cases). 1884 * Thus we can safely just mark it writable once we've done any necessary 1885 * COW. 1886 * 1887 * We also mark the page dirty at this point even though the page will 1888 * change only once the write actually happens. This avoids a few races, 1889 * and potentially makes it more efficient. 1890 * 1891 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1892 * but allow concurrent faults), with pte both mapped and locked. 1893 * We return with mmap_sem still held, but pte unmapped and unlocked. 1894 */ 1895 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1896 unsigned long address, pte_t *page_table, pmd_t *pmd, 1897 spinlock_t *ptl, pte_t orig_pte) 1898 { 1899 struct page *old_page, *new_page; 1900 pte_t entry; 1901 int reuse = 0, ret = 0; 1902 int page_mkwrite = 0; 1903 struct page *dirty_page = NULL; 1904 1905 old_page = vm_normal_page(vma, address, orig_pte); 1906 if (!old_page) { 1907 /* 1908 * VM_MIXEDMAP !pfn_valid() case 1909 * 1910 * We should not cow pages in a shared writeable mapping. 1911 * Just mark the pages writable as we can't do any dirty 1912 * accounting on raw pfn maps. 1913 */ 1914 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1915 (VM_WRITE|VM_SHARED)) 1916 goto reuse; 1917 goto gotten; 1918 } 1919 1920 /* 1921 * Take out anonymous pages first, anonymous shared vmas are 1922 * not dirty accountable. 1923 */ 1924 if (PageAnon(old_page)) { 1925 if (!trylock_page(old_page)) { 1926 page_cache_get(old_page); 1927 pte_unmap_unlock(page_table, ptl); 1928 lock_page(old_page); 1929 page_table = pte_offset_map_lock(mm, pmd, address, 1930 &ptl); 1931 if (!pte_same(*page_table, orig_pte)) { 1932 unlock_page(old_page); 1933 page_cache_release(old_page); 1934 goto unlock; 1935 } 1936 page_cache_release(old_page); 1937 } 1938 reuse = reuse_swap_page(old_page); 1939 unlock_page(old_page); 1940 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1941 (VM_WRITE|VM_SHARED))) { 1942 /* 1943 * Only catch write-faults on shared writable pages, 1944 * read-only shared pages can get COWed by 1945 * get_user_pages(.write=1, .force=1). 1946 */ 1947 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 1948 struct vm_fault vmf; 1949 int tmp; 1950 1951 vmf.virtual_address = (void __user *)(address & 1952 PAGE_MASK); 1953 vmf.pgoff = old_page->index; 1954 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 1955 vmf.page = old_page; 1956 1957 /* 1958 * Notify the address space that the page is about to 1959 * become writable so that it can prohibit this or wait 1960 * for the page to get into an appropriate state. 1961 * 1962 * We do this without the lock held, so that it can 1963 * sleep if it needs to. 1964 */ 1965 page_cache_get(old_page); 1966 pte_unmap_unlock(page_table, ptl); 1967 1968 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 1969 if (unlikely(tmp & 1970 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 1971 ret = tmp; 1972 goto unwritable_page; 1973 } 1974 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 1975 lock_page(old_page); 1976 if (!old_page->mapping) { 1977 ret = 0; /* retry the fault */ 1978 unlock_page(old_page); 1979 goto unwritable_page; 1980 } 1981 } else 1982 VM_BUG_ON(!PageLocked(old_page)); 1983 1984 /* 1985 * Since we dropped the lock we need to revalidate 1986 * the PTE as someone else may have changed it. If 1987 * they did, we just return, as we can count on the 1988 * MMU to tell us if they didn't also make it writable. 1989 */ 1990 page_table = pte_offset_map_lock(mm, pmd, address, 1991 &ptl); 1992 if (!pte_same(*page_table, orig_pte)) { 1993 unlock_page(old_page); 1994 page_cache_release(old_page); 1995 goto unlock; 1996 } 1997 1998 page_mkwrite = 1; 1999 } 2000 dirty_page = old_page; 2001 get_page(dirty_page); 2002 reuse = 1; 2003 } 2004 2005 if (reuse) { 2006 reuse: 2007 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2008 entry = pte_mkyoung(orig_pte); 2009 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2010 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2011 update_mmu_cache(vma, address, entry); 2012 ret |= VM_FAULT_WRITE; 2013 goto unlock; 2014 } 2015 2016 /* 2017 * Ok, we need to copy. Oh, well.. 2018 */ 2019 page_cache_get(old_page); 2020 gotten: 2021 pte_unmap_unlock(page_table, ptl); 2022 2023 if (unlikely(anon_vma_prepare(vma))) 2024 goto oom; 2025 VM_BUG_ON(old_page == ZERO_PAGE(0)); 2026 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2027 if (!new_page) 2028 goto oom; 2029 /* 2030 * Don't let another task, with possibly unlocked vma, 2031 * keep the mlocked page. 2032 */ 2033 if ((vma->vm_flags & VM_LOCKED) && old_page) { 2034 lock_page(old_page); /* for LRU manipulation */ 2035 clear_page_mlock(old_page); 2036 unlock_page(old_page); 2037 } 2038 cow_user_page(new_page, old_page, address, vma); 2039 __SetPageUptodate(new_page); 2040 2041 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2042 goto oom_free_new; 2043 2044 /* 2045 * Re-check the pte - we dropped the lock 2046 */ 2047 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2048 if (likely(pte_same(*page_table, orig_pte))) { 2049 if (old_page) { 2050 if (!PageAnon(old_page)) { 2051 dec_mm_counter(mm, file_rss); 2052 inc_mm_counter(mm, anon_rss); 2053 } 2054 } else 2055 inc_mm_counter(mm, anon_rss); 2056 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2057 entry = mk_pte(new_page, vma->vm_page_prot); 2058 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2059 /* 2060 * Clear the pte entry and flush it first, before updating the 2061 * pte with the new entry. This will avoid a race condition 2062 * seen in the presence of one thread doing SMC and another 2063 * thread doing COW. 2064 */ 2065 ptep_clear_flush_notify(vma, address, page_table); 2066 page_add_new_anon_rmap(new_page, vma, address); 2067 set_pte_at(mm, address, page_table, entry); 2068 update_mmu_cache(vma, address, entry); 2069 if (old_page) { 2070 /* 2071 * Only after switching the pte to the new page may 2072 * we remove the mapcount here. Otherwise another 2073 * process may come and find the rmap count decremented 2074 * before the pte is switched to the new page, and 2075 * "reuse" the old page writing into it while our pte 2076 * here still points into it and can be read by other 2077 * threads. 2078 * 2079 * The critical issue is to order this 2080 * page_remove_rmap with the ptp_clear_flush above. 2081 * Those stores are ordered by (if nothing else,) 2082 * the barrier present in the atomic_add_negative 2083 * in page_remove_rmap. 2084 * 2085 * Then the TLB flush in ptep_clear_flush ensures that 2086 * no process can access the old page before the 2087 * decremented mapcount is visible. And the old page 2088 * cannot be reused until after the decremented 2089 * mapcount is visible. So transitively, TLBs to 2090 * old page will be flushed before it can be reused. 2091 */ 2092 page_remove_rmap(old_page); 2093 } 2094 2095 /* Free the old page.. */ 2096 new_page = old_page; 2097 ret |= VM_FAULT_WRITE; 2098 } else 2099 mem_cgroup_uncharge_page(new_page); 2100 2101 if (new_page) 2102 page_cache_release(new_page); 2103 if (old_page) 2104 page_cache_release(old_page); 2105 unlock: 2106 pte_unmap_unlock(page_table, ptl); 2107 if (dirty_page) { 2108 /* 2109 * Yes, Virginia, this is actually required to prevent a race 2110 * with clear_page_dirty_for_io() from clearing the page dirty 2111 * bit after it clear all dirty ptes, but before a racing 2112 * do_wp_page installs a dirty pte. 2113 * 2114 * do_no_page is protected similarly. 2115 */ 2116 if (!page_mkwrite) { 2117 wait_on_page_locked(dirty_page); 2118 set_page_dirty_balance(dirty_page, page_mkwrite); 2119 } 2120 put_page(dirty_page); 2121 if (page_mkwrite) { 2122 struct address_space *mapping = dirty_page->mapping; 2123 2124 set_page_dirty(dirty_page); 2125 unlock_page(dirty_page); 2126 page_cache_release(dirty_page); 2127 if (mapping) { 2128 /* 2129 * Some device drivers do not set page.mapping 2130 * but still dirty their pages 2131 */ 2132 balance_dirty_pages_ratelimited(mapping); 2133 } 2134 } 2135 2136 /* file_update_time outside page_lock */ 2137 if (vma->vm_file) 2138 file_update_time(vma->vm_file); 2139 } 2140 return ret; 2141 oom_free_new: 2142 page_cache_release(new_page); 2143 oom: 2144 if (old_page) { 2145 if (page_mkwrite) { 2146 unlock_page(old_page); 2147 page_cache_release(old_page); 2148 } 2149 page_cache_release(old_page); 2150 } 2151 return VM_FAULT_OOM; 2152 2153 unwritable_page: 2154 page_cache_release(old_page); 2155 return ret; 2156 } 2157 2158 /* 2159 * Helper functions for unmap_mapping_range(). 2160 * 2161 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2162 * 2163 * We have to restart searching the prio_tree whenever we drop the lock, 2164 * since the iterator is only valid while the lock is held, and anyway 2165 * a later vma might be split and reinserted earlier while lock dropped. 2166 * 2167 * The list of nonlinear vmas could be handled more efficiently, using 2168 * a placeholder, but handle it in the same way until a need is shown. 2169 * It is important to search the prio_tree before nonlinear list: a vma 2170 * may become nonlinear and be shifted from prio_tree to nonlinear list 2171 * while the lock is dropped; but never shifted from list to prio_tree. 2172 * 2173 * In order to make forward progress despite restarting the search, 2174 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2175 * quickly skip it next time around. Since the prio_tree search only 2176 * shows us those vmas affected by unmapping the range in question, we 2177 * can't efficiently keep all vmas in step with mapping->truncate_count: 2178 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2179 * mapping->truncate_count and vma->vm_truncate_count are protected by 2180 * i_mmap_lock. 2181 * 2182 * In order to make forward progress despite repeatedly restarting some 2183 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2184 * and restart from that address when we reach that vma again. It might 2185 * have been split or merged, shrunk or extended, but never shifted: so 2186 * restart_addr remains valid so long as it remains in the vma's range. 2187 * unmap_mapping_range forces truncate_count to leap over page-aligned 2188 * values so we can save vma's restart_addr in its truncate_count field. 2189 */ 2190 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2191 2192 static void reset_vma_truncate_counts(struct address_space *mapping) 2193 { 2194 struct vm_area_struct *vma; 2195 struct prio_tree_iter iter; 2196 2197 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2198 vma->vm_truncate_count = 0; 2199 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2200 vma->vm_truncate_count = 0; 2201 } 2202 2203 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2204 unsigned long start_addr, unsigned long end_addr, 2205 struct zap_details *details) 2206 { 2207 unsigned long restart_addr; 2208 int need_break; 2209 2210 /* 2211 * files that support invalidating or truncating portions of the 2212 * file from under mmaped areas must have their ->fault function 2213 * return a locked page (and set VM_FAULT_LOCKED in the return). 2214 * This provides synchronisation against concurrent unmapping here. 2215 */ 2216 2217 again: 2218 restart_addr = vma->vm_truncate_count; 2219 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2220 start_addr = restart_addr; 2221 if (start_addr >= end_addr) { 2222 /* Top of vma has been split off since last time */ 2223 vma->vm_truncate_count = details->truncate_count; 2224 return 0; 2225 } 2226 } 2227 2228 restart_addr = zap_page_range(vma, start_addr, 2229 end_addr - start_addr, details); 2230 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2231 2232 if (restart_addr >= end_addr) { 2233 /* We have now completed this vma: mark it so */ 2234 vma->vm_truncate_count = details->truncate_count; 2235 if (!need_break) 2236 return 0; 2237 } else { 2238 /* Note restart_addr in vma's truncate_count field */ 2239 vma->vm_truncate_count = restart_addr; 2240 if (!need_break) 2241 goto again; 2242 } 2243 2244 spin_unlock(details->i_mmap_lock); 2245 cond_resched(); 2246 spin_lock(details->i_mmap_lock); 2247 return -EINTR; 2248 } 2249 2250 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2251 struct zap_details *details) 2252 { 2253 struct vm_area_struct *vma; 2254 struct prio_tree_iter iter; 2255 pgoff_t vba, vea, zba, zea; 2256 2257 restart: 2258 vma_prio_tree_foreach(vma, &iter, root, 2259 details->first_index, details->last_index) { 2260 /* Skip quickly over those we have already dealt with */ 2261 if (vma->vm_truncate_count == details->truncate_count) 2262 continue; 2263 2264 vba = vma->vm_pgoff; 2265 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2266 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2267 zba = details->first_index; 2268 if (zba < vba) 2269 zba = vba; 2270 zea = details->last_index; 2271 if (zea > vea) 2272 zea = vea; 2273 2274 if (unmap_mapping_range_vma(vma, 2275 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2276 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2277 details) < 0) 2278 goto restart; 2279 } 2280 } 2281 2282 static inline void unmap_mapping_range_list(struct list_head *head, 2283 struct zap_details *details) 2284 { 2285 struct vm_area_struct *vma; 2286 2287 /* 2288 * In nonlinear VMAs there is no correspondence between virtual address 2289 * offset and file offset. So we must perform an exhaustive search 2290 * across *all* the pages in each nonlinear VMA, not just the pages 2291 * whose virtual address lies outside the file truncation point. 2292 */ 2293 restart: 2294 list_for_each_entry(vma, head, shared.vm_set.list) { 2295 /* Skip quickly over those we have already dealt with */ 2296 if (vma->vm_truncate_count == details->truncate_count) 2297 continue; 2298 details->nonlinear_vma = vma; 2299 if (unmap_mapping_range_vma(vma, vma->vm_start, 2300 vma->vm_end, details) < 0) 2301 goto restart; 2302 } 2303 } 2304 2305 /** 2306 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2307 * @mapping: the address space containing mmaps to be unmapped. 2308 * @holebegin: byte in first page to unmap, relative to the start of 2309 * the underlying file. This will be rounded down to a PAGE_SIZE 2310 * boundary. Note that this is different from vmtruncate(), which 2311 * must keep the partial page. In contrast, we must get rid of 2312 * partial pages. 2313 * @holelen: size of prospective hole in bytes. This will be rounded 2314 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2315 * end of the file. 2316 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2317 * but 0 when invalidating pagecache, don't throw away private data. 2318 */ 2319 void unmap_mapping_range(struct address_space *mapping, 2320 loff_t const holebegin, loff_t const holelen, int even_cows) 2321 { 2322 struct zap_details details; 2323 pgoff_t hba = holebegin >> PAGE_SHIFT; 2324 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2325 2326 /* Check for overflow. */ 2327 if (sizeof(holelen) > sizeof(hlen)) { 2328 long long holeend = 2329 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2330 if (holeend & ~(long long)ULONG_MAX) 2331 hlen = ULONG_MAX - hba + 1; 2332 } 2333 2334 details.check_mapping = even_cows? NULL: mapping; 2335 details.nonlinear_vma = NULL; 2336 details.first_index = hba; 2337 details.last_index = hba + hlen - 1; 2338 if (details.last_index < details.first_index) 2339 details.last_index = ULONG_MAX; 2340 details.i_mmap_lock = &mapping->i_mmap_lock; 2341 2342 spin_lock(&mapping->i_mmap_lock); 2343 2344 /* Protect against endless unmapping loops */ 2345 mapping->truncate_count++; 2346 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2347 if (mapping->truncate_count == 0) 2348 reset_vma_truncate_counts(mapping); 2349 mapping->truncate_count++; 2350 } 2351 details.truncate_count = mapping->truncate_count; 2352 2353 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2354 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2355 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2356 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2357 spin_unlock(&mapping->i_mmap_lock); 2358 } 2359 EXPORT_SYMBOL(unmap_mapping_range); 2360 2361 /** 2362 * vmtruncate - unmap mappings "freed" by truncate() syscall 2363 * @inode: inode of the file used 2364 * @offset: file offset to start truncating 2365 * 2366 * NOTE! We have to be ready to update the memory sharing 2367 * between the file and the memory map for a potential last 2368 * incomplete page. Ugly, but necessary. 2369 */ 2370 int vmtruncate(struct inode * inode, loff_t offset) 2371 { 2372 if (inode->i_size < offset) { 2373 unsigned long limit; 2374 2375 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2376 if (limit != RLIM_INFINITY && offset > limit) 2377 goto out_sig; 2378 if (offset > inode->i_sb->s_maxbytes) 2379 goto out_big; 2380 i_size_write(inode, offset); 2381 } else { 2382 struct address_space *mapping = inode->i_mapping; 2383 2384 /* 2385 * truncation of in-use swapfiles is disallowed - it would 2386 * cause subsequent swapout to scribble on the now-freed 2387 * blocks. 2388 */ 2389 if (IS_SWAPFILE(inode)) 2390 return -ETXTBSY; 2391 i_size_write(inode, offset); 2392 2393 /* 2394 * unmap_mapping_range is called twice, first simply for 2395 * efficiency so that truncate_inode_pages does fewer 2396 * single-page unmaps. However after this first call, and 2397 * before truncate_inode_pages finishes, it is possible for 2398 * private pages to be COWed, which remain after 2399 * truncate_inode_pages finishes, hence the second 2400 * unmap_mapping_range call must be made for correctness. 2401 */ 2402 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2403 truncate_inode_pages(mapping, offset); 2404 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2405 } 2406 2407 if (inode->i_op->truncate) 2408 inode->i_op->truncate(inode); 2409 return 0; 2410 2411 out_sig: 2412 send_sig(SIGXFSZ, current, 0); 2413 out_big: 2414 return -EFBIG; 2415 } 2416 EXPORT_SYMBOL(vmtruncate); 2417 2418 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2419 { 2420 struct address_space *mapping = inode->i_mapping; 2421 2422 /* 2423 * If the underlying filesystem is not going to provide 2424 * a way to truncate a range of blocks (punch a hole) - 2425 * we should return failure right now. 2426 */ 2427 if (!inode->i_op->truncate_range) 2428 return -ENOSYS; 2429 2430 mutex_lock(&inode->i_mutex); 2431 down_write(&inode->i_alloc_sem); 2432 unmap_mapping_range(mapping, offset, (end - offset), 1); 2433 truncate_inode_pages_range(mapping, offset, end); 2434 unmap_mapping_range(mapping, offset, (end - offset), 1); 2435 inode->i_op->truncate_range(inode, offset, end); 2436 up_write(&inode->i_alloc_sem); 2437 mutex_unlock(&inode->i_mutex); 2438 2439 return 0; 2440 } 2441 2442 /* 2443 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2444 * but allow concurrent faults), and pte mapped but not yet locked. 2445 * We return with mmap_sem still held, but pte unmapped and unlocked. 2446 */ 2447 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2448 unsigned long address, pte_t *page_table, pmd_t *pmd, 2449 int write_access, pte_t orig_pte) 2450 { 2451 spinlock_t *ptl; 2452 struct page *page; 2453 swp_entry_t entry; 2454 pte_t pte; 2455 struct mem_cgroup *ptr = NULL; 2456 int ret = 0; 2457 2458 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2459 goto out; 2460 2461 entry = pte_to_swp_entry(orig_pte); 2462 if (is_migration_entry(entry)) { 2463 migration_entry_wait(mm, pmd, address); 2464 goto out; 2465 } 2466 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2467 page = lookup_swap_cache(entry); 2468 if (!page) { 2469 grab_swap_token(); /* Contend for token _before_ read-in */ 2470 page = swapin_readahead(entry, 2471 GFP_HIGHUSER_MOVABLE, vma, address); 2472 if (!page) { 2473 /* 2474 * Back out if somebody else faulted in this pte 2475 * while we released the pte lock. 2476 */ 2477 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2478 if (likely(pte_same(*page_table, orig_pte))) 2479 ret = VM_FAULT_OOM; 2480 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2481 goto unlock; 2482 } 2483 2484 /* Had to read the page from swap area: Major fault */ 2485 ret = VM_FAULT_MAJOR; 2486 count_vm_event(PGMAJFAULT); 2487 } 2488 2489 lock_page(page); 2490 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2491 2492 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2493 ret = VM_FAULT_OOM; 2494 goto out_page; 2495 } 2496 2497 /* 2498 * Back out if somebody else already faulted in this pte. 2499 */ 2500 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2501 if (unlikely(!pte_same(*page_table, orig_pte))) 2502 goto out_nomap; 2503 2504 if (unlikely(!PageUptodate(page))) { 2505 ret = VM_FAULT_SIGBUS; 2506 goto out_nomap; 2507 } 2508 2509 /* 2510 * The page isn't present yet, go ahead with the fault. 2511 * 2512 * Be careful about the sequence of operations here. 2513 * To get its accounting right, reuse_swap_page() must be called 2514 * while the page is counted on swap but not yet in mapcount i.e. 2515 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2516 * must be called after the swap_free(), or it will never succeed. 2517 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2518 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2519 * in page->private. In this case, a record in swap_cgroup is silently 2520 * discarded at swap_free(). 2521 */ 2522 2523 inc_mm_counter(mm, anon_rss); 2524 pte = mk_pte(page, vma->vm_page_prot); 2525 if (write_access && reuse_swap_page(page)) { 2526 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2527 write_access = 0; 2528 } 2529 flush_icache_page(vma, page); 2530 set_pte_at(mm, address, page_table, pte); 2531 page_add_anon_rmap(page, vma, address); 2532 /* It's better to call commit-charge after rmap is established */ 2533 mem_cgroup_commit_charge_swapin(page, ptr); 2534 2535 swap_free(entry); 2536 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2537 try_to_free_swap(page); 2538 unlock_page(page); 2539 2540 if (write_access) { 2541 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2542 if (ret & VM_FAULT_ERROR) 2543 ret &= VM_FAULT_ERROR; 2544 goto out; 2545 } 2546 2547 /* No need to invalidate - it was non-present before */ 2548 update_mmu_cache(vma, address, pte); 2549 unlock: 2550 pte_unmap_unlock(page_table, ptl); 2551 out: 2552 return ret; 2553 out_nomap: 2554 mem_cgroup_cancel_charge_swapin(ptr); 2555 pte_unmap_unlock(page_table, ptl); 2556 out_page: 2557 unlock_page(page); 2558 page_cache_release(page); 2559 return ret; 2560 } 2561 2562 /* 2563 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2564 * but allow concurrent faults), and pte mapped but not yet locked. 2565 * We return with mmap_sem still held, but pte unmapped and unlocked. 2566 */ 2567 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2568 unsigned long address, pte_t *page_table, pmd_t *pmd, 2569 int write_access) 2570 { 2571 struct page *page; 2572 spinlock_t *ptl; 2573 pte_t entry; 2574 2575 /* Allocate our own private page. */ 2576 pte_unmap(page_table); 2577 2578 if (unlikely(anon_vma_prepare(vma))) 2579 goto oom; 2580 page = alloc_zeroed_user_highpage_movable(vma, address); 2581 if (!page) 2582 goto oom; 2583 __SetPageUptodate(page); 2584 2585 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 2586 goto oom_free_page; 2587 2588 entry = mk_pte(page, vma->vm_page_prot); 2589 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2590 2591 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2592 if (!pte_none(*page_table)) 2593 goto release; 2594 inc_mm_counter(mm, anon_rss); 2595 page_add_new_anon_rmap(page, vma, address); 2596 set_pte_at(mm, address, page_table, entry); 2597 2598 /* No need to invalidate - it was non-present before */ 2599 update_mmu_cache(vma, address, entry); 2600 unlock: 2601 pte_unmap_unlock(page_table, ptl); 2602 return 0; 2603 release: 2604 mem_cgroup_uncharge_page(page); 2605 page_cache_release(page); 2606 goto unlock; 2607 oom_free_page: 2608 page_cache_release(page); 2609 oom: 2610 return VM_FAULT_OOM; 2611 } 2612 2613 /* 2614 * __do_fault() tries to create a new page mapping. It aggressively 2615 * tries to share with existing pages, but makes a separate copy if 2616 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2617 * the next page fault. 2618 * 2619 * As this is called only for pages that do not currently exist, we 2620 * do not need to flush old virtual caches or the TLB. 2621 * 2622 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2623 * but allow concurrent faults), and pte neither mapped nor locked. 2624 * We return with mmap_sem still held, but pte unmapped and unlocked. 2625 */ 2626 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2627 unsigned long address, pmd_t *pmd, 2628 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2629 { 2630 pte_t *page_table; 2631 spinlock_t *ptl; 2632 struct page *page; 2633 pte_t entry; 2634 int anon = 0; 2635 int charged = 0; 2636 struct page *dirty_page = NULL; 2637 struct vm_fault vmf; 2638 int ret; 2639 int page_mkwrite = 0; 2640 2641 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2642 vmf.pgoff = pgoff; 2643 vmf.flags = flags; 2644 vmf.page = NULL; 2645 2646 ret = vma->vm_ops->fault(vma, &vmf); 2647 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2648 return ret; 2649 2650 /* 2651 * For consistency in subsequent calls, make the faulted page always 2652 * locked. 2653 */ 2654 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2655 lock_page(vmf.page); 2656 else 2657 VM_BUG_ON(!PageLocked(vmf.page)); 2658 2659 /* 2660 * Should we do an early C-O-W break? 2661 */ 2662 page = vmf.page; 2663 if (flags & FAULT_FLAG_WRITE) { 2664 if (!(vma->vm_flags & VM_SHARED)) { 2665 anon = 1; 2666 if (unlikely(anon_vma_prepare(vma))) { 2667 ret = VM_FAULT_OOM; 2668 goto out; 2669 } 2670 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2671 vma, address); 2672 if (!page) { 2673 ret = VM_FAULT_OOM; 2674 goto out; 2675 } 2676 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 2677 ret = VM_FAULT_OOM; 2678 page_cache_release(page); 2679 goto out; 2680 } 2681 charged = 1; 2682 /* 2683 * Don't let another task, with possibly unlocked vma, 2684 * keep the mlocked page. 2685 */ 2686 if (vma->vm_flags & VM_LOCKED) 2687 clear_page_mlock(vmf.page); 2688 copy_user_highpage(page, vmf.page, address, vma); 2689 __SetPageUptodate(page); 2690 } else { 2691 /* 2692 * If the page will be shareable, see if the backing 2693 * address space wants to know that the page is about 2694 * to become writable 2695 */ 2696 if (vma->vm_ops->page_mkwrite) { 2697 int tmp; 2698 2699 unlock_page(page); 2700 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2701 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2702 if (unlikely(tmp & 2703 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2704 ret = tmp; 2705 goto unwritable_page; 2706 } 2707 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2708 lock_page(page); 2709 if (!page->mapping) { 2710 ret = 0; /* retry the fault */ 2711 unlock_page(page); 2712 goto unwritable_page; 2713 } 2714 } else 2715 VM_BUG_ON(!PageLocked(page)); 2716 page_mkwrite = 1; 2717 } 2718 } 2719 2720 } 2721 2722 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2723 2724 /* 2725 * This silly early PAGE_DIRTY setting removes a race 2726 * due to the bad i386 page protection. But it's valid 2727 * for other architectures too. 2728 * 2729 * Note that if write_access is true, we either now have 2730 * an exclusive copy of the page, or this is a shared mapping, 2731 * so we can make it writable and dirty to avoid having to 2732 * handle that later. 2733 */ 2734 /* Only go through if we didn't race with anybody else... */ 2735 if (likely(pte_same(*page_table, orig_pte))) { 2736 flush_icache_page(vma, page); 2737 entry = mk_pte(page, vma->vm_page_prot); 2738 if (flags & FAULT_FLAG_WRITE) 2739 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2740 if (anon) { 2741 inc_mm_counter(mm, anon_rss); 2742 page_add_new_anon_rmap(page, vma, address); 2743 } else { 2744 inc_mm_counter(mm, file_rss); 2745 page_add_file_rmap(page); 2746 if (flags & FAULT_FLAG_WRITE) { 2747 dirty_page = page; 2748 get_page(dirty_page); 2749 } 2750 } 2751 set_pte_at(mm, address, page_table, entry); 2752 2753 /* no need to invalidate: a not-present page won't be cached */ 2754 update_mmu_cache(vma, address, entry); 2755 } else { 2756 if (charged) 2757 mem_cgroup_uncharge_page(page); 2758 if (anon) 2759 page_cache_release(page); 2760 else 2761 anon = 1; /* no anon but release faulted_page */ 2762 } 2763 2764 pte_unmap_unlock(page_table, ptl); 2765 2766 out: 2767 if (dirty_page) { 2768 struct address_space *mapping = page->mapping; 2769 2770 if (set_page_dirty(dirty_page)) 2771 page_mkwrite = 1; 2772 unlock_page(dirty_page); 2773 put_page(dirty_page); 2774 if (page_mkwrite && mapping) { 2775 /* 2776 * Some device drivers do not set page.mapping but still 2777 * dirty their pages 2778 */ 2779 balance_dirty_pages_ratelimited(mapping); 2780 } 2781 2782 /* file_update_time outside page_lock */ 2783 if (vma->vm_file) 2784 file_update_time(vma->vm_file); 2785 } else { 2786 unlock_page(vmf.page); 2787 if (anon) 2788 page_cache_release(vmf.page); 2789 } 2790 2791 return ret; 2792 2793 unwritable_page: 2794 page_cache_release(page); 2795 return ret; 2796 } 2797 2798 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2799 unsigned long address, pte_t *page_table, pmd_t *pmd, 2800 int write_access, pte_t orig_pte) 2801 { 2802 pgoff_t pgoff = (((address & PAGE_MASK) 2803 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2804 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); 2805 2806 pte_unmap(page_table); 2807 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2808 } 2809 2810 /* 2811 * Fault of a previously existing named mapping. Repopulate the pte 2812 * from the encoded file_pte if possible. This enables swappable 2813 * nonlinear vmas. 2814 * 2815 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2816 * but allow concurrent faults), and pte mapped but not yet locked. 2817 * We return with mmap_sem still held, but pte unmapped and unlocked. 2818 */ 2819 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2820 unsigned long address, pte_t *page_table, pmd_t *pmd, 2821 int write_access, pte_t orig_pte) 2822 { 2823 unsigned int flags = FAULT_FLAG_NONLINEAR | 2824 (write_access ? FAULT_FLAG_WRITE : 0); 2825 pgoff_t pgoff; 2826 2827 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2828 return 0; 2829 2830 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 2831 /* 2832 * Page table corrupted: show pte and kill process. 2833 */ 2834 print_bad_pte(vma, address, orig_pte, NULL); 2835 return VM_FAULT_OOM; 2836 } 2837 2838 pgoff = pte_to_pgoff(orig_pte); 2839 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2840 } 2841 2842 /* 2843 * These routines also need to handle stuff like marking pages dirty 2844 * and/or accessed for architectures that don't do it in hardware (most 2845 * RISC architectures). The early dirtying is also good on the i386. 2846 * 2847 * There is also a hook called "update_mmu_cache()" that architectures 2848 * with external mmu caches can use to update those (ie the Sparc or 2849 * PowerPC hashed page tables that act as extended TLBs). 2850 * 2851 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2852 * but allow concurrent faults), and pte mapped but not yet locked. 2853 * We return with mmap_sem still held, but pte unmapped and unlocked. 2854 */ 2855 static inline int handle_pte_fault(struct mm_struct *mm, 2856 struct vm_area_struct *vma, unsigned long address, 2857 pte_t *pte, pmd_t *pmd, int write_access) 2858 { 2859 pte_t entry; 2860 spinlock_t *ptl; 2861 2862 entry = *pte; 2863 if (!pte_present(entry)) { 2864 if (pte_none(entry)) { 2865 if (vma->vm_ops) { 2866 if (likely(vma->vm_ops->fault)) 2867 return do_linear_fault(mm, vma, address, 2868 pte, pmd, write_access, entry); 2869 } 2870 return do_anonymous_page(mm, vma, address, 2871 pte, pmd, write_access); 2872 } 2873 if (pte_file(entry)) 2874 return do_nonlinear_fault(mm, vma, address, 2875 pte, pmd, write_access, entry); 2876 return do_swap_page(mm, vma, address, 2877 pte, pmd, write_access, entry); 2878 } 2879 2880 ptl = pte_lockptr(mm, pmd); 2881 spin_lock(ptl); 2882 if (unlikely(!pte_same(*pte, entry))) 2883 goto unlock; 2884 if (write_access) { 2885 if (!pte_write(entry)) 2886 return do_wp_page(mm, vma, address, 2887 pte, pmd, ptl, entry); 2888 entry = pte_mkdirty(entry); 2889 } 2890 entry = pte_mkyoung(entry); 2891 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { 2892 update_mmu_cache(vma, address, entry); 2893 } else { 2894 /* 2895 * This is needed only for protection faults but the arch code 2896 * is not yet telling us if this is a protection fault or not. 2897 * This still avoids useless tlb flushes for .text page faults 2898 * with threads. 2899 */ 2900 if (write_access) 2901 flush_tlb_page(vma, address); 2902 } 2903 unlock: 2904 pte_unmap_unlock(pte, ptl); 2905 return 0; 2906 } 2907 2908 /* 2909 * By the time we get here, we already hold the mm semaphore 2910 */ 2911 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2912 unsigned long address, int write_access) 2913 { 2914 pgd_t *pgd; 2915 pud_t *pud; 2916 pmd_t *pmd; 2917 pte_t *pte; 2918 2919 __set_current_state(TASK_RUNNING); 2920 2921 count_vm_event(PGFAULT); 2922 2923 if (unlikely(is_vm_hugetlb_page(vma))) 2924 return hugetlb_fault(mm, vma, address, write_access); 2925 2926 pgd = pgd_offset(mm, address); 2927 pud = pud_alloc(mm, pgd, address); 2928 if (!pud) 2929 return VM_FAULT_OOM; 2930 pmd = pmd_alloc(mm, pud, address); 2931 if (!pmd) 2932 return VM_FAULT_OOM; 2933 pte = pte_alloc_map(mm, pmd, address); 2934 if (!pte) 2935 return VM_FAULT_OOM; 2936 2937 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2938 } 2939 2940 #ifndef __PAGETABLE_PUD_FOLDED 2941 /* 2942 * Allocate page upper directory. 2943 * We've already handled the fast-path in-line. 2944 */ 2945 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2946 { 2947 pud_t *new = pud_alloc_one(mm, address); 2948 if (!new) 2949 return -ENOMEM; 2950 2951 smp_wmb(); /* See comment in __pte_alloc */ 2952 2953 spin_lock(&mm->page_table_lock); 2954 if (pgd_present(*pgd)) /* Another has populated it */ 2955 pud_free(mm, new); 2956 else 2957 pgd_populate(mm, pgd, new); 2958 spin_unlock(&mm->page_table_lock); 2959 return 0; 2960 } 2961 #endif /* __PAGETABLE_PUD_FOLDED */ 2962 2963 #ifndef __PAGETABLE_PMD_FOLDED 2964 /* 2965 * Allocate page middle directory. 2966 * We've already handled the fast-path in-line. 2967 */ 2968 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2969 { 2970 pmd_t *new = pmd_alloc_one(mm, address); 2971 if (!new) 2972 return -ENOMEM; 2973 2974 smp_wmb(); /* See comment in __pte_alloc */ 2975 2976 spin_lock(&mm->page_table_lock); 2977 #ifndef __ARCH_HAS_4LEVEL_HACK 2978 if (pud_present(*pud)) /* Another has populated it */ 2979 pmd_free(mm, new); 2980 else 2981 pud_populate(mm, pud, new); 2982 #else 2983 if (pgd_present(*pud)) /* Another has populated it */ 2984 pmd_free(mm, new); 2985 else 2986 pgd_populate(mm, pud, new); 2987 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2988 spin_unlock(&mm->page_table_lock); 2989 return 0; 2990 } 2991 #endif /* __PAGETABLE_PMD_FOLDED */ 2992 2993 int make_pages_present(unsigned long addr, unsigned long end) 2994 { 2995 int ret, len, write; 2996 struct vm_area_struct * vma; 2997 2998 vma = find_vma(current->mm, addr); 2999 if (!vma) 3000 return -ENOMEM; 3001 write = (vma->vm_flags & VM_WRITE) != 0; 3002 BUG_ON(addr >= end); 3003 BUG_ON(end > vma->vm_end); 3004 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3005 ret = get_user_pages(current, current->mm, addr, 3006 len, write, 0, NULL, NULL); 3007 if (ret < 0) 3008 return ret; 3009 return ret == len ? 0 : -EFAULT; 3010 } 3011 3012 #if !defined(__HAVE_ARCH_GATE_AREA) 3013 3014 #if defined(AT_SYSINFO_EHDR) 3015 static struct vm_area_struct gate_vma; 3016 3017 static int __init gate_vma_init(void) 3018 { 3019 gate_vma.vm_mm = NULL; 3020 gate_vma.vm_start = FIXADDR_USER_START; 3021 gate_vma.vm_end = FIXADDR_USER_END; 3022 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3023 gate_vma.vm_page_prot = __P101; 3024 /* 3025 * Make sure the vDSO gets into every core dump. 3026 * Dumping its contents makes post-mortem fully interpretable later 3027 * without matching up the same kernel and hardware config to see 3028 * what PC values meant. 3029 */ 3030 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3031 return 0; 3032 } 3033 __initcall(gate_vma_init); 3034 #endif 3035 3036 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 3037 { 3038 #ifdef AT_SYSINFO_EHDR 3039 return &gate_vma; 3040 #else 3041 return NULL; 3042 #endif 3043 } 3044 3045 int in_gate_area_no_task(unsigned long addr) 3046 { 3047 #ifdef AT_SYSINFO_EHDR 3048 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3049 return 1; 3050 #endif 3051 return 0; 3052 } 3053 3054 #endif /* __HAVE_ARCH_GATE_AREA */ 3055 3056 #ifdef CONFIG_HAVE_IOREMAP_PROT 3057 int follow_phys(struct vm_area_struct *vma, 3058 unsigned long address, unsigned int flags, 3059 unsigned long *prot, resource_size_t *phys) 3060 { 3061 pgd_t *pgd; 3062 pud_t *pud; 3063 pmd_t *pmd; 3064 pte_t *ptep, pte; 3065 spinlock_t *ptl; 3066 resource_size_t phys_addr = 0; 3067 struct mm_struct *mm = vma->vm_mm; 3068 int ret = -EINVAL; 3069 3070 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3071 goto out; 3072 3073 pgd = pgd_offset(mm, address); 3074 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3075 goto out; 3076 3077 pud = pud_offset(pgd, address); 3078 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3079 goto out; 3080 3081 pmd = pmd_offset(pud, address); 3082 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3083 goto out; 3084 3085 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3086 if (pmd_huge(*pmd)) 3087 goto out; 3088 3089 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 3090 if (!ptep) 3091 goto out; 3092 3093 pte = *ptep; 3094 if (!pte_present(pte)) 3095 goto unlock; 3096 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3097 goto unlock; 3098 phys_addr = pte_pfn(pte); 3099 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */ 3100 3101 *prot = pgprot_val(pte_pgprot(pte)); 3102 *phys = phys_addr; 3103 ret = 0; 3104 3105 unlock: 3106 pte_unmap_unlock(ptep, ptl); 3107 out: 3108 return ret; 3109 } 3110 3111 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3112 void *buf, int len, int write) 3113 { 3114 resource_size_t phys_addr; 3115 unsigned long prot = 0; 3116 void __iomem *maddr; 3117 int offset = addr & (PAGE_SIZE-1); 3118 3119 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3120 return -EINVAL; 3121 3122 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3123 if (write) 3124 memcpy_toio(maddr + offset, buf, len); 3125 else 3126 memcpy_fromio(buf, maddr + offset, len); 3127 iounmap(maddr); 3128 3129 return len; 3130 } 3131 #endif 3132 3133 /* 3134 * Access another process' address space. 3135 * Source/target buffer must be kernel space, 3136 * Do not walk the page table directly, use get_user_pages 3137 */ 3138 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 3139 { 3140 struct mm_struct *mm; 3141 struct vm_area_struct *vma; 3142 void *old_buf = buf; 3143 3144 mm = get_task_mm(tsk); 3145 if (!mm) 3146 return 0; 3147 3148 down_read(&mm->mmap_sem); 3149 /* ignore errors, just check how much was successfully transferred */ 3150 while (len) { 3151 int bytes, ret, offset; 3152 void *maddr; 3153 struct page *page = NULL; 3154 3155 ret = get_user_pages(tsk, mm, addr, 1, 3156 write, 1, &page, &vma); 3157 if (ret <= 0) { 3158 /* 3159 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3160 * we can access using slightly different code. 3161 */ 3162 #ifdef CONFIG_HAVE_IOREMAP_PROT 3163 vma = find_vma(mm, addr); 3164 if (!vma) 3165 break; 3166 if (vma->vm_ops && vma->vm_ops->access) 3167 ret = vma->vm_ops->access(vma, addr, buf, 3168 len, write); 3169 if (ret <= 0) 3170 #endif 3171 break; 3172 bytes = ret; 3173 } else { 3174 bytes = len; 3175 offset = addr & (PAGE_SIZE-1); 3176 if (bytes > PAGE_SIZE-offset) 3177 bytes = PAGE_SIZE-offset; 3178 3179 maddr = kmap(page); 3180 if (write) { 3181 copy_to_user_page(vma, page, addr, 3182 maddr + offset, buf, bytes); 3183 set_page_dirty_lock(page); 3184 } else { 3185 copy_from_user_page(vma, page, addr, 3186 buf, maddr + offset, bytes); 3187 } 3188 kunmap(page); 3189 page_cache_release(page); 3190 } 3191 len -= bytes; 3192 buf += bytes; 3193 addr += bytes; 3194 } 3195 up_read(&mm->mmap_sem); 3196 mmput(mm); 3197 3198 return buf - old_buf; 3199 } 3200 3201 /* 3202 * Print the name of a VMA. 3203 */ 3204 void print_vma_addr(char *prefix, unsigned long ip) 3205 { 3206 struct mm_struct *mm = current->mm; 3207 struct vm_area_struct *vma; 3208 3209 /* 3210 * Do not print if we are in atomic 3211 * contexts (in exception stacks, etc.): 3212 */ 3213 if (preempt_count()) 3214 return; 3215 3216 down_read(&mm->mmap_sem); 3217 vma = find_vma(mm, ip); 3218 if (vma && vma->vm_file) { 3219 struct file *f = vma->vm_file; 3220 char *buf = (char *)__get_free_page(GFP_KERNEL); 3221 if (buf) { 3222 char *p, *s; 3223 3224 p = d_path(&f->f_path, buf, PAGE_SIZE); 3225 if (IS_ERR(p)) 3226 p = "?"; 3227 s = strrchr(p, '/'); 3228 if (s) 3229 p = s+1; 3230 printk("%s%s[%lx+%lx]", prefix, p, 3231 vma->vm_start, 3232 vma->vm_end - vma->vm_start); 3233 free_page((unsigned long)buf); 3234 } 3235 } 3236 up_read(¤t->mm->mmap_sem); 3237 } 3238 3239 #ifdef CONFIG_PROVE_LOCKING 3240 void might_fault(void) 3241 { 3242 /* 3243 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3244 * holding the mmap_sem, this is safe because kernel memory doesn't 3245 * get paged out, therefore we'll never actually fault, and the 3246 * below annotations will generate false positives. 3247 */ 3248 if (segment_eq(get_fs(), KERNEL_DS)) 3249 return; 3250 3251 might_sleep(); 3252 /* 3253 * it would be nicer only to annotate paths which are not under 3254 * pagefault_disable, however that requires a larger audit and 3255 * providing helpers like get_user_atomic. 3256 */ 3257 if (!in_atomic() && current->mm) 3258 might_lock_read(¤t->mm->mmap_sem); 3259 } 3260 EXPORT_SYMBOL(might_fault); 3261 #endif 3262