1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 #include <linux/migrate.h> 61 #include <linux/string.h> 62 #include <linux/dma-debug.h> 63 #include <linux/debugfs.h> 64 #include <linux/userfaultfd_k.h> 65 66 #include <asm/io.h> 67 #include <asm/pgalloc.h> 68 #include <asm/uaccess.h> 69 #include <asm/tlb.h> 70 #include <asm/tlbflush.h> 71 #include <asm/pgtable.h> 72 73 #include "internal.h" 74 75 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 76 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 77 #endif 78 79 #ifndef CONFIG_NEED_MULTIPLE_NODES 80 /* use the per-pgdat data instead for discontigmem - mbligh */ 81 unsigned long max_mapnr; 82 struct page *mem_map; 83 84 EXPORT_SYMBOL(max_mapnr); 85 EXPORT_SYMBOL(mem_map); 86 #endif 87 88 /* 89 * A number of key systems in x86 including ioremap() rely on the assumption 90 * that high_memory defines the upper bound on direct map memory, then end 91 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 92 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 93 * and ZONE_HIGHMEM. 94 */ 95 void * high_memory; 96 97 EXPORT_SYMBOL(high_memory); 98 99 /* 100 * Randomize the address space (stacks, mmaps, brk, etc.). 101 * 102 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 103 * as ancient (libc5 based) binaries can segfault. ) 104 */ 105 int randomize_va_space __read_mostly = 106 #ifdef CONFIG_COMPAT_BRK 107 1; 108 #else 109 2; 110 #endif 111 112 static int __init disable_randmaps(char *s) 113 { 114 randomize_va_space = 0; 115 return 1; 116 } 117 __setup("norandmaps", disable_randmaps); 118 119 unsigned long zero_pfn __read_mostly; 120 unsigned long highest_memmap_pfn __read_mostly; 121 122 EXPORT_SYMBOL(zero_pfn); 123 124 /* 125 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 126 */ 127 static int __init init_zero_pfn(void) 128 { 129 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 130 return 0; 131 } 132 core_initcall(init_zero_pfn); 133 134 135 #if defined(SPLIT_RSS_COUNTING) 136 137 void sync_mm_rss(struct mm_struct *mm) 138 { 139 int i; 140 141 for (i = 0; i < NR_MM_COUNTERS; i++) { 142 if (current->rss_stat.count[i]) { 143 add_mm_counter(mm, i, current->rss_stat.count[i]); 144 current->rss_stat.count[i] = 0; 145 } 146 } 147 current->rss_stat.events = 0; 148 } 149 150 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 151 { 152 struct task_struct *task = current; 153 154 if (likely(task->mm == mm)) 155 task->rss_stat.count[member] += val; 156 else 157 add_mm_counter(mm, member, val); 158 } 159 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 160 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 161 162 /* sync counter once per 64 page faults */ 163 #define TASK_RSS_EVENTS_THRESH (64) 164 static void check_sync_rss_stat(struct task_struct *task) 165 { 166 if (unlikely(task != current)) 167 return; 168 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 169 sync_mm_rss(task->mm); 170 } 171 #else /* SPLIT_RSS_COUNTING */ 172 173 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 174 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 175 176 static void check_sync_rss_stat(struct task_struct *task) 177 { 178 } 179 180 #endif /* SPLIT_RSS_COUNTING */ 181 182 #ifdef HAVE_GENERIC_MMU_GATHER 183 184 static bool tlb_next_batch(struct mmu_gather *tlb) 185 { 186 struct mmu_gather_batch *batch; 187 188 batch = tlb->active; 189 if (batch->next) { 190 tlb->active = batch->next; 191 return true; 192 } 193 194 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 195 return false; 196 197 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 198 if (!batch) 199 return false; 200 201 tlb->batch_count++; 202 batch->next = NULL; 203 batch->nr = 0; 204 batch->max = MAX_GATHER_BATCH; 205 206 tlb->active->next = batch; 207 tlb->active = batch; 208 209 return true; 210 } 211 212 /* tlb_gather_mmu 213 * Called to initialize an (on-stack) mmu_gather structure for page-table 214 * tear-down from @mm. The @fullmm argument is used when @mm is without 215 * users and we're going to destroy the full address space (exit/execve). 216 */ 217 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 218 { 219 tlb->mm = mm; 220 221 /* Is it from 0 to ~0? */ 222 tlb->fullmm = !(start | (end+1)); 223 tlb->need_flush_all = 0; 224 tlb->local.next = NULL; 225 tlb->local.nr = 0; 226 tlb->local.max = ARRAY_SIZE(tlb->__pages); 227 tlb->active = &tlb->local; 228 tlb->batch_count = 0; 229 230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 231 tlb->batch = NULL; 232 #endif 233 234 __tlb_reset_range(tlb); 235 } 236 237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 238 { 239 if (!tlb->end) 240 return; 241 242 tlb_flush(tlb); 243 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 245 tlb_table_flush(tlb); 246 #endif 247 __tlb_reset_range(tlb); 248 } 249 250 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 251 { 252 struct mmu_gather_batch *batch; 253 254 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 255 free_pages_and_swap_cache(batch->pages, batch->nr); 256 batch->nr = 0; 257 } 258 tlb->active = &tlb->local; 259 } 260 261 void tlb_flush_mmu(struct mmu_gather *tlb) 262 { 263 tlb_flush_mmu_tlbonly(tlb); 264 tlb_flush_mmu_free(tlb); 265 } 266 267 /* tlb_finish_mmu 268 * Called at the end of the shootdown operation to free up any resources 269 * that were required. 270 */ 271 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 272 { 273 struct mmu_gather_batch *batch, *next; 274 275 tlb_flush_mmu(tlb); 276 277 /* keep the page table cache within bounds */ 278 check_pgt_cache(); 279 280 for (batch = tlb->local.next; batch; batch = next) { 281 next = batch->next; 282 free_pages((unsigned long)batch, 0); 283 } 284 tlb->local.next = NULL; 285 } 286 287 /* __tlb_remove_page 288 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 289 * handling the additional races in SMP caused by other CPUs caching valid 290 * mappings in their TLBs. Returns the number of free page slots left. 291 * When out of page slots we must call tlb_flush_mmu(). 292 */ 293 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 294 { 295 struct mmu_gather_batch *batch; 296 297 VM_BUG_ON(!tlb->end); 298 299 batch = tlb->active; 300 batch->pages[batch->nr++] = page; 301 if (batch->nr == batch->max) { 302 if (!tlb_next_batch(tlb)) 303 return 0; 304 batch = tlb->active; 305 } 306 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 307 308 return batch->max - batch->nr; 309 } 310 311 #endif /* HAVE_GENERIC_MMU_GATHER */ 312 313 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 314 315 /* 316 * See the comment near struct mmu_table_batch. 317 */ 318 319 static void tlb_remove_table_smp_sync(void *arg) 320 { 321 /* Simply deliver the interrupt */ 322 } 323 324 static void tlb_remove_table_one(void *table) 325 { 326 /* 327 * This isn't an RCU grace period and hence the page-tables cannot be 328 * assumed to be actually RCU-freed. 329 * 330 * It is however sufficient for software page-table walkers that rely on 331 * IRQ disabling. See the comment near struct mmu_table_batch. 332 */ 333 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 334 __tlb_remove_table(table); 335 } 336 337 static void tlb_remove_table_rcu(struct rcu_head *head) 338 { 339 struct mmu_table_batch *batch; 340 int i; 341 342 batch = container_of(head, struct mmu_table_batch, rcu); 343 344 for (i = 0; i < batch->nr; i++) 345 __tlb_remove_table(batch->tables[i]); 346 347 free_page((unsigned long)batch); 348 } 349 350 void tlb_table_flush(struct mmu_gather *tlb) 351 { 352 struct mmu_table_batch **batch = &tlb->batch; 353 354 if (*batch) { 355 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 356 *batch = NULL; 357 } 358 } 359 360 void tlb_remove_table(struct mmu_gather *tlb, void *table) 361 { 362 struct mmu_table_batch **batch = &tlb->batch; 363 364 /* 365 * When there's less then two users of this mm there cannot be a 366 * concurrent page-table walk. 367 */ 368 if (atomic_read(&tlb->mm->mm_users) < 2) { 369 __tlb_remove_table(table); 370 return; 371 } 372 373 if (*batch == NULL) { 374 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 375 if (*batch == NULL) { 376 tlb_remove_table_one(table); 377 return; 378 } 379 (*batch)->nr = 0; 380 } 381 (*batch)->tables[(*batch)->nr++] = table; 382 if ((*batch)->nr == MAX_TABLE_BATCH) 383 tlb_table_flush(tlb); 384 } 385 386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 387 388 /* 389 * Note: this doesn't free the actual pages themselves. That 390 * has been handled earlier when unmapping all the memory regions. 391 */ 392 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 393 unsigned long addr) 394 { 395 pgtable_t token = pmd_pgtable(*pmd); 396 pmd_clear(pmd); 397 pte_free_tlb(tlb, token, addr); 398 atomic_long_dec(&tlb->mm->nr_ptes); 399 } 400 401 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 402 unsigned long addr, unsigned long end, 403 unsigned long floor, unsigned long ceiling) 404 { 405 pmd_t *pmd; 406 unsigned long next; 407 unsigned long start; 408 409 start = addr; 410 pmd = pmd_offset(pud, addr); 411 do { 412 next = pmd_addr_end(addr, end); 413 if (pmd_none_or_clear_bad(pmd)) 414 continue; 415 free_pte_range(tlb, pmd, addr); 416 } while (pmd++, addr = next, addr != end); 417 418 start &= PUD_MASK; 419 if (start < floor) 420 return; 421 if (ceiling) { 422 ceiling &= PUD_MASK; 423 if (!ceiling) 424 return; 425 } 426 if (end - 1 > ceiling - 1) 427 return; 428 429 pmd = pmd_offset(pud, start); 430 pud_clear(pud); 431 pmd_free_tlb(tlb, pmd, start); 432 mm_dec_nr_pmds(tlb->mm); 433 } 434 435 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 436 unsigned long addr, unsigned long end, 437 unsigned long floor, unsigned long ceiling) 438 { 439 pud_t *pud; 440 unsigned long next; 441 unsigned long start; 442 443 start = addr; 444 pud = pud_offset(pgd, addr); 445 do { 446 next = pud_addr_end(addr, end); 447 if (pud_none_or_clear_bad(pud)) 448 continue; 449 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 450 } while (pud++, addr = next, addr != end); 451 452 start &= PGDIR_MASK; 453 if (start < floor) 454 return; 455 if (ceiling) { 456 ceiling &= PGDIR_MASK; 457 if (!ceiling) 458 return; 459 } 460 if (end - 1 > ceiling - 1) 461 return; 462 463 pud = pud_offset(pgd, start); 464 pgd_clear(pgd); 465 pud_free_tlb(tlb, pud, start); 466 } 467 468 /* 469 * This function frees user-level page tables of a process. 470 */ 471 void free_pgd_range(struct mmu_gather *tlb, 472 unsigned long addr, unsigned long end, 473 unsigned long floor, unsigned long ceiling) 474 { 475 pgd_t *pgd; 476 unsigned long next; 477 478 /* 479 * The next few lines have given us lots of grief... 480 * 481 * Why are we testing PMD* at this top level? Because often 482 * there will be no work to do at all, and we'd prefer not to 483 * go all the way down to the bottom just to discover that. 484 * 485 * Why all these "- 1"s? Because 0 represents both the bottom 486 * of the address space and the top of it (using -1 for the 487 * top wouldn't help much: the masks would do the wrong thing). 488 * The rule is that addr 0 and floor 0 refer to the bottom of 489 * the address space, but end 0 and ceiling 0 refer to the top 490 * Comparisons need to use "end - 1" and "ceiling - 1" (though 491 * that end 0 case should be mythical). 492 * 493 * Wherever addr is brought up or ceiling brought down, we must 494 * be careful to reject "the opposite 0" before it confuses the 495 * subsequent tests. But what about where end is brought down 496 * by PMD_SIZE below? no, end can't go down to 0 there. 497 * 498 * Whereas we round start (addr) and ceiling down, by different 499 * masks at different levels, in order to test whether a table 500 * now has no other vmas using it, so can be freed, we don't 501 * bother to round floor or end up - the tests don't need that. 502 */ 503 504 addr &= PMD_MASK; 505 if (addr < floor) { 506 addr += PMD_SIZE; 507 if (!addr) 508 return; 509 } 510 if (ceiling) { 511 ceiling &= PMD_MASK; 512 if (!ceiling) 513 return; 514 } 515 if (end - 1 > ceiling - 1) 516 end -= PMD_SIZE; 517 if (addr > end - 1) 518 return; 519 520 pgd = pgd_offset(tlb->mm, addr); 521 do { 522 next = pgd_addr_end(addr, end); 523 if (pgd_none_or_clear_bad(pgd)) 524 continue; 525 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 526 } while (pgd++, addr = next, addr != end); 527 } 528 529 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 530 unsigned long floor, unsigned long ceiling) 531 { 532 while (vma) { 533 struct vm_area_struct *next = vma->vm_next; 534 unsigned long addr = vma->vm_start; 535 536 /* 537 * Hide vma from rmap and truncate_pagecache before freeing 538 * pgtables 539 */ 540 unlink_anon_vmas(vma); 541 unlink_file_vma(vma); 542 543 if (is_vm_hugetlb_page(vma)) { 544 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 545 floor, next? next->vm_start: ceiling); 546 } else { 547 /* 548 * Optimization: gather nearby vmas into one call down 549 */ 550 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 551 && !is_vm_hugetlb_page(next)) { 552 vma = next; 553 next = vma->vm_next; 554 unlink_anon_vmas(vma); 555 unlink_file_vma(vma); 556 } 557 free_pgd_range(tlb, addr, vma->vm_end, 558 floor, next? next->vm_start: ceiling); 559 } 560 vma = next; 561 } 562 } 563 564 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 565 pmd_t *pmd, unsigned long address) 566 { 567 spinlock_t *ptl; 568 pgtable_t new = pte_alloc_one(mm, address); 569 int wait_split_huge_page; 570 if (!new) 571 return -ENOMEM; 572 573 /* 574 * Ensure all pte setup (eg. pte page lock and page clearing) are 575 * visible before the pte is made visible to other CPUs by being 576 * put into page tables. 577 * 578 * The other side of the story is the pointer chasing in the page 579 * table walking code (when walking the page table without locking; 580 * ie. most of the time). Fortunately, these data accesses consist 581 * of a chain of data-dependent loads, meaning most CPUs (alpha 582 * being the notable exception) will already guarantee loads are 583 * seen in-order. See the alpha page table accessors for the 584 * smp_read_barrier_depends() barriers in page table walking code. 585 */ 586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 587 588 ptl = pmd_lock(mm, pmd); 589 wait_split_huge_page = 0; 590 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 591 atomic_long_inc(&mm->nr_ptes); 592 pmd_populate(mm, pmd, new); 593 new = NULL; 594 } else if (unlikely(pmd_trans_splitting(*pmd))) 595 wait_split_huge_page = 1; 596 spin_unlock(ptl); 597 if (new) 598 pte_free(mm, new); 599 if (wait_split_huge_page) 600 wait_split_huge_page(vma->anon_vma, pmd); 601 return 0; 602 } 603 604 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 605 { 606 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 607 if (!new) 608 return -ENOMEM; 609 610 smp_wmb(); /* See comment in __pte_alloc */ 611 612 spin_lock(&init_mm.page_table_lock); 613 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 614 pmd_populate_kernel(&init_mm, pmd, new); 615 new = NULL; 616 } else 617 VM_BUG_ON(pmd_trans_splitting(*pmd)); 618 spin_unlock(&init_mm.page_table_lock); 619 if (new) 620 pte_free_kernel(&init_mm, new); 621 return 0; 622 } 623 624 static inline void init_rss_vec(int *rss) 625 { 626 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 627 } 628 629 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 630 { 631 int i; 632 633 if (current->mm == mm) 634 sync_mm_rss(mm); 635 for (i = 0; i < NR_MM_COUNTERS; i++) 636 if (rss[i]) 637 add_mm_counter(mm, i, rss[i]); 638 } 639 640 /* 641 * This function is called to print an error when a bad pte 642 * is found. For example, we might have a PFN-mapped pte in 643 * a region that doesn't allow it. 644 * 645 * The calling function must still handle the error. 646 */ 647 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 648 pte_t pte, struct page *page) 649 { 650 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 651 pud_t *pud = pud_offset(pgd, addr); 652 pmd_t *pmd = pmd_offset(pud, addr); 653 struct address_space *mapping; 654 pgoff_t index; 655 static unsigned long resume; 656 static unsigned long nr_shown; 657 static unsigned long nr_unshown; 658 659 /* 660 * Allow a burst of 60 reports, then keep quiet for that minute; 661 * or allow a steady drip of one report per second. 662 */ 663 if (nr_shown == 60) { 664 if (time_before(jiffies, resume)) { 665 nr_unshown++; 666 return; 667 } 668 if (nr_unshown) { 669 printk(KERN_ALERT 670 "BUG: Bad page map: %lu messages suppressed\n", 671 nr_unshown); 672 nr_unshown = 0; 673 } 674 nr_shown = 0; 675 } 676 if (nr_shown++ == 0) 677 resume = jiffies + 60 * HZ; 678 679 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 680 index = linear_page_index(vma, addr); 681 682 printk(KERN_ALERT 683 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 684 current->comm, 685 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 686 if (page) 687 dump_page(page, "bad pte"); 688 printk(KERN_ALERT 689 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 690 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 691 /* 692 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 693 */ 694 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 695 vma->vm_file, 696 vma->vm_ops ? vma->vm_ops->fault : NULL, 697 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 698 mapping ? mapping->a_ops->readpage : NULL); 699 dump_stack(); 700 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 701 } 702 703 /* 704 * vm_normal_page -- This function gets the "struct page" associated with a pte. 705 * 706 * "Special" mappings do not wish to be associated with a "struct page" (either 707 * it doesn't exist, or it exists but they don't want to touch it). In this 708 * case, NULL is returned here. "Normal" mappings do have a struct page. 709 * 710 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 711 * pte bit, in which case this function is trivial. Secondly, an architecture 712 * may not have a spare pte bit, which requires a more complicated scheme, 713 * described below. 714 * 715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 716 * special mapping (even if there are underlying and valid "struct pages"). 717 * COWed pages of a VM_PFNMAP are always normal. 718 * 719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 722 * mapping will always honor the rule 723 * 724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 725 * 726 * And for normal mappings this is false. 727 * 728 * This restricts such mappings to be a linear translation from virtual address 729 * to pfn. To get around this restriction, we allow arbitrary mappings so long 730 * as the vma is not a COW mapping; in that case, we know that all ptes are 731 * special (because none can have been COWed). 732 * 733 * 734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 735 * 736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 737 * page" backing, however the difference is that _all_ pages with a struct 738 * page (that is, those where pfn_valid is true) are refcounted and considered 739 * normal pages by the VM. The disadvantage is that pages are refcounted 740 * (which can be slower and simply not an option for some PFNMAP users). The 741 * advantage is that we don't have to follow the strict linearity rule of 742 * PFNMAP mappings in order to support COWable mappings. 743 * 744 */ 745 #ifdef __HAVE_ARCH_PTE_SPECIAL 746 # define HAVE_PTE_SPECIAL 1 747 #else 748 # define HAVE_PTE_SPECIAL 0 749 #endif 750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 751 pte_t pte) 752 { 753 unsigned long pfn = pte_pfn(pte); 754 755 if (HAVE_PTE_SPECIAL) { 756 if (likely(!pte_special(pte))) 757 goto check_pfn; 758 if (vma->vm_ops && vma->vm_ops->find_special_page) 759 return vma->vm_ops->find_special_page(vma, addr); 760 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 761 return NULL; 762 if (!is_zero_pfn(pfn)) 763 print_bad_pte(vma, addr, pte, NULL); 764 return NULL; 765 } 766 767 /* !HAVE_PTE_SPECIAL case follows: */ 768 769 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 770 if (vma->vm_flags & VM_MIXEDMAP) { 771 if (!pfn_valid(pfn)) 772 return NULL; 773 goto out; 774 } else { 775 unsigned long off; 776 off = (addr - vma->vm_start) >> PAGE_SHIFT; 777 if (pfn == vma->vm_pgoff + off) 778 return NULL; 779 if (!is_cow_mapping(vma->vm_flags)) 780 return NULL; 781 } 782 } 783 784 if (is_zero_pfn(pfn)) 785 return NULL; 786 check_pfn: 787 if (unlikely(pfn > highest_memmap_pfn)) { 788 print_bad_pte(vma, addr, pte, NULL); 789 return NULL; 790 } 791 792 /* 793 * NOTE! We still have PageReserved() pages in the page tables. 794 * eg. VDSO mappings can cause them to exist. 795 */ 796 out: 797 return pfn_to_page(pfn); 798 } 799 800 /* 801 * copy one vm_area from one task to the other. Assumes the page tables 802 * already present in the new task to be cleared in the whole range 803 * covered by this vma. 804 */ 805 806 static inline unsigned long 807 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 808 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 809 unsigned long addr, int *rss) 810 { 811 unsigned long vm_flags = vma->vm_flags; 812 pte_t pte = *src_pte; 813 struct page *page; 814 815 /* pte contains position in swap or file, so copy. */ 816 if (unlikely(!pte_present(pte))) { 817 swp_entry_t entry = pte_to_swp_entry(pte); 818 819 if (likely(!non_swap_entry(entry))) { 820 if (swap_duplicate(entry) < 0) 821 return entry.val; 822 823 /* make sure dst_mm is on swapoff's mmlist. */ 824 if (unlikely(list_empty(&dst_mm->mmlist))) { 825 spin_lock(&mmlist_lock); 826 if (list_empty(&dst_mm->mmlist)) 827 list_add(&dst_mm->mmlist, 828 &src_mm->mmlist); 829 spin_unlock(&mmlist_lock); 830 } 831 rss[MM_SWAPENTS]++; 832 } else if (is_migration_entry(entry)) { 833 page = migration_entry_to_page(entry); 834 835 if (PageAnon(page)) 836 rss[MM_ANONPAGES]++; 837 else 838 rss[MM_FILEPAGES]++; 839 840 if (is_write_migration_entry(entry) && 841 is_cow_mapping(vm_flags)) { 842 /* 843 * COW mappings require pages in both 844 * parent and child to be set to read. 845 */ 846 make_migration_entry_read(&entry); 847 pte = swp_entry_to_pte(entry); 848 if (pte_swp_soft_dirty(*src_pte)) 849 pte = pte_swp_mksoft_dirty(pte); 850 set_pte_at(src_mm, addr, src_pte, pte); 851 } 852 } 853 goto out_set_pte; 854 } 855 856 /* 857 * If it's a COW mapping, write protect it both 858 * in the parent and the child 859 */ 860 if (is_cow_mapping(vm_flags)) { 861 ptep_set_wrprotect(src_mm, addr, src_pte); 862 pte = pte_wrprotect(pte); 863 } 864 865 /* 866 * If it's a shared mapping, mark it clean in 867 * the child 868 */ 869 if (vm_flags & VM_SHARED) 870 pte = pte_mkclean(pte); 871 pte = pte_mkold(pte); 872 873 page = vm_normal_page(vma, addr, pte); 874 if (page) { 875 get_page(page); 876 page_dup_rmap(page); 877 if (PageAnon(page)) 878 rss[MM_ANONPAGES]++; 879 else 880 rss[MM_FILEPAGES]++; 881 } 882 883 out_set_pte: 884 set_pte_at(dst_mm, addr, dst_pte, pte); 885 return 0; 886 } 887 888 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 889 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 890 unsigned long addr, unsigned long end) 891 { 892 pte_t *orig_src_pte, *orig_dst_pte; 893 pte_t *src_pte, *dst_pte; 894 spinlock_t *src_ptl, *dst_ptl; 895 int progress = 0; 896 int rss[NR_MM_COUNTERS]; 897 swp_entry_t entry = (swp_entry_t){0}; 898 899 again: 900 init_rss_vec(rss); 901 902 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 903 if (!dst_pte) 904 return -ENOMEM; 905 src_pte = pte_offset_map(src_pmd, addr); 906 src_ptl = pte_lockptr(src_mm, src_pmd); 907 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 908 orig_src_pte = src_pte; 909 orig_dst_pte = dst_pte; 910 arch_enter_lazy_mmu_mode(); 911 912 do { 913 /* 914 * We are holding two locks at this point - either of them 915 * could generate latencies in another task on another CPU. 916 */ 917 if (progress >= 32) { 918 progress = 0; 919 if (need_resched() || 920 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 921 break; 922 } 923 if (pte_none(*src_pte)) { 924 progress++; 925 continue; 926 } 927 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 928 vma, addr, rss); 929 if (entry.val) 930 break; 931 progress += 8; 932 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 933 934 arch_leave_lazy_mmu_mode(); 935 spin_unlock(src_ptl); 936 pte_unmap(orig_src_pte); 937 add_mm_rss_vec(dst_mm, rss); 938 pte_unmap_unlock(orig_dst_pte, dst_ptl); 939 cond_resched(); 940 941 if (entry.val) { 942 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 943 return -ENOMEM; 944 progress = 0; 945 } 946 if (addr != end) 947 goto again; 948 return 0; 949 } 950 951 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 952 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 953 unsigned long addr, unsigned long end) 954 { 955 pmd_t *src_pmd, *dst_pmd; 956 unsigned long next; 957 958 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 959 if (!dst_pmd) 960 return -ENOMEM; 961 src_pmd = pmd_offset(src_pud, addr); 962 do { 963 next = pmd_addr_end(addr, end); 964 if (pmd_trans_huge(*src_pmd)) { 965 int err; 966 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 967 err = copy_huge_pmd(dst_mm, src_mm, 968 dst_pmd, src_pmd, addr, vma); 969 if (err == -ENOMEM) 970 return -ENOMEM; 971 if (!err) 972 continue; 973 /* fall through */ 974 } 975 if (pmd_none_or_clear_bad(src_pmd)) 976 continue; 977 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 978 vma, addr, next)) 979 return -ENOMEM; 980 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 981 return 0; 982 } 983 984 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 985 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 986 unsigned long addr, unsigned long end) 987 { 988 pud_t *src_pud, *dst_pud; 989 unsigned long next; 990 991 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 992 if (!dst_pud) 993 return -ENOMEM; 994 src_pud = pud_offset(src_pgd, addr); 995 do { 996 next = pud_addr_end(addr, end); 997 if (pud_none_or_clear_bad(src_pud)) 998 continue; 999 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1000 vma, addr, next)) 1001 return -ENOMEM; 1002 } while (dst_pud++, src_pud++, addr = next, addr != end); 1003 return 0; 1004 } 1005 1006 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1007 struct vm_area_struct *vma) 1008 { 1009 pgd_t *src_pgd, *dst_pgd; 1010 unsigned long next; 1011 unsigned long addr = vma->vm_start; 1012 unsigned long end = vma->vm_end; 1013 unsigned long mmun_start; /* For mmu_notifiers */ 1014 unsigned long mmun_end; /* For mmu_notifiers */ 1015 bool is_cow; 1016 int ret; 1017 1018 /* 1019 * Don't copy ptes where a page fault will fill them correctly. 1020 * Fork becomes much lighter when there are big shared or private 1021 * readonly mappings. The tradeoff is that copy_page_range is more 1022 * efficient than faulting. 1023 */ 1024 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1025 !vma->anon_vma) 1026 return 0; 1027 1028 if (is_vm_hugetlb_page(vma)) 1029 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1030 1031 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1032 /* 1033 * We do not free on error cases below as remove_vma 1034 * gets called on error from higher level routine 1035 */ 1036 ret = track_pfn_copy(vma); 1037 if (ret) 1038 return ret; 1039 } 1040 1041 /* 1042 * We need to invalidate the secondary MMU mappings only when 1043 * there could be a permission downgrade on the ptes of the 1044 * parent mm. And a permission downgrade will only happen if 1045 * is_cow_mapping() returns true. 1046 */ 1047 is_cow = is_cow_mapping(vma->vm_flags); 1048 mmun_start = addr; 1049 mmun_end = end; 1050 if (is_cow) 1051 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1052 mmun_end); 1053 1054 ret = 0; 1055 dst_pgd = pgd_offset(dst_mm, addr); 1056 src_pgd = pgd_offset(src_mm, addr); 1057 do { 1058 next = pgd_addr_end(addr, end); 1059 if (pgd_none_or_clear_bad(src_pgd)) 1060 continue; 1061 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1062 vma, addr, next))) { 1063 ret = -ENOMEM; 1064 break; 1065 } 1066 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1067 1068 if (is_cow) 1069 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1070 return ret; 1071 } 1072 1073 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1074 struct vm_area_struct *vma, pmd_t *pmd, 1075 unsigned long addr, unsigned long end, 1076 struct zap_details *details) 1077 { 1078 struct mm_struct *mm = tlb->mm; 1079 int force_flush = 0; 1080 int rss[NR_MM_COUNTERS]; 1081 spinlock_t *ptl; 1082 pte_t *start_pte; 1083 pte_t *pte; 1084 swp_entry_t entry; 1085 1086 again: 1087 init_rss_vec(rss); 1088 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1089 pte = start_pte; 1090 arch_enter_lazy_mmu_mode(); 1091 do { 1092 pte_t ptent = *pte; 1093 if (pte_none(ptent)) { 1094 continue; 1095 } 1096 1097 if (pte_present(ptent)) { 1098 struct page *page; 1099 1100 page = vm_normal_page(vma, addr, ptent); 1101 if (unlikely(details) && page) { 1102 /* 1103 * unmap_shared_mapping_pages() wants to 1104 * invalidate cache without truncating: 1105 * unmap shared but keep private pages. 1106 */ 1107 if (details->check_mapping && 1108 details->check_mapping != page->mapping) 1109 continue; 1110 } 1111 ptent = ptep_get_and_clear_full(mm, addr, pte, 1112 tlb->fullmm); 1113 tlb_remove_tlb_entry(tlb, pte, addr); 1114 if (unlikely(!page)) 1115 continue; 1116 if (PageAnon(page)) 1117 rss[MM_ANONPAGES]--; 1118 else { 1119 if (pte_dirty(ptent)) { 1120 force_flush = 1; 1121 set_page_dirty(page); 1122 } 1123 if (pte_young(ptent) && 1124 likely(!(vma->vm_flags & VM_SEQ_READ))) 1125 mark_page_accessed(page); 1126 rss[MM_FILEPAGES]--; 1127 } 1128 page_remove_rmap(page); 1129 if (unlikely(page_mapcount(page) < 0)) 1130 print_bad_pte(vma, addr, ptent, page); 1131 if (unlikely(!__tlb_remove_page(tlb, page))) { 1132 force_flush = 1; 1133 addr += PAGE_SIZE; 1134 break; 1135 } 1136 continue; 1137 } 1138 /* If details->check_mapping, we leave swap entries. */ 1139 if (unlikely(details)) 1140 continue; 1141 1142 entry = pte_to_swp_entry(ptent); 1143 if (!non_swap_entry(entry)) 1144 rss[MM_SWAPENTS]--; 1145 else if (is_migration_entry(entry)) { 1146 struct page *page; 1147 1148 page = migration_entry_to_page(entry); 1149 1150 if (PageAnon(page)) 1151 rss[MM_ANONPAGES]--; 1152 else 1153 rss[MM_FILEPAGES]--; 1154 } 1155 if (unlikely(!free_swap_and_cache(entry))) 1156 print_bad_pte(vma, addr, ptent, NULL); 1157 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1158 } while (pte++, addr += PAGE_SIZE, addr != end); 1159 1160 add_mm_rss_vec(mm, rss); 1161 arch_leave_lazy_mmu_mode(); 1162 1163 /* Do the actual TLB flush before dropping ptl */ 1164 if (force_flush) 1165 tlb_flush_mmu_tlbonly(tlb); 1166 pte_unmap_unlock(start_pte, ptl); 1167 1168 /* 1169 * If we forced a TLB flush (either due to running out of 1170 * batch buffers or because we needed to flush dirty TLB 1171 * entries before releasing the ptl), free the batched 1172 * memory too. Restart if we didn't do everything. 1173 */ 1174 if (force_flush) { 1175 force_flush = 0; 1176 tlb_flush_mmu_free(tlb); 1177 1178 if (addr != end) 1179 goto again; 1180 } 1181 1182 return addr; 1183 } 1184 1185 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1186 struct vm_area_struct *vma, pud_t *pud, 1187 unsigned long addr, unsigned long end, 1188 struct zap_details *details) 1189 { 1190 pmd_t *pmd; 1191 unsigned long next; 1192 1193 pmd = pmd_offset(pud, addr); 1194 do { 1195 next = pmd_addr_end(addr, end); 1196 if (pmd_trans_huge(*pmd)) { 1197 if (next - addr != HPAGE_PMD_SIZE) { 1198 #ifdef CONFIG_DEBUG_VM 1199 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1200 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1201 __func__, addr, end, 1202 vma->vm_start, 1203 vma->vm_end); 1204 BUG(); 1205 } 1206 #endif 1207 split_huge_page_pmd(vma, addr, pmd); 1208 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1209 goto next; 1210 /* fall through */ 1211 } 1212 /* 1213 * Here there can be other concurrent MADV_DONTNEED or 1214 * trans huge page faults running, and if the pmd is 1215 * none or trans huge it can change under us. This is 1216 * because MADV_DONTNEED holds the mmap_sem in read 1217 * mode. 1218 */ 1219 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1220 goto next; 1221 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1222 next: 1223 cond_resched(); 1224 } while (pmd++, addr = next, addr != end); 1225 1226 return addr; 1227 } 1228 1229 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1230 struct vm_area_struct *vma, pgd_t *pgd, 1231 unsigned long addr, unsigned long end, 1232 struct zap_details *details) 1233 { 1234 pud_t *pud; 1235 unsigned long next; 1236 1237 pud = pud_offset(pgd, addr); 1238 do { 1239 next = pud_addr_end(addr, end); 1240 if (pud_none_or_clear_bad(pud)) 1241 continue; 1242 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1243 } while (pud++, addr = next, addr != end); 1244 1245 return addr; 1246 } 1247 1248 static void unmap_page_range(struct mmu_gather *tlb, 1249 struct vm_area_struct *vma, 1250 unsigned long addr, unsigned long end, 1251 struct zap_details *details) 1252 { 1253 pgd_t *pgd; 1254 unsigned long next; 1255 1256 if (details && !details->check_mapping) 1257 details = NULL; 1258 1259 BUG_ON(addr >= end); 1260 tlb_start_vma(tlb, vma); 1261 pgd = pgd_offset(vma->vm_mm, addr); 1262 do { 1263 next = pgd_addr_end(addr, end); 1264 if (pgd_none_or_clear_bad(pgd)) 1265 continue; 1266 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1267 } while (pgd++, addr = next, addr != end); 1268 tlb_end_vma(tlb, vma); 1269 } 1270 1271 1272 static void unmap_single_vma(struct mmu_gather *tlb, 1273 struct vm_area_struct *vma, unsigned long start_addr, 1274 unsigned long end_addr, 1275 struct zap_details *details) 1276 { 1277 unsigned long start = max(vma->vm_start, start_addr); 1278 unsigned long end; 1279 1280 if (start >= vma->vm_end) 1281 return; 1282 end = min(vma->vm_end, end_addr); 1283 if (end <= vma->vm_start) 1284 return; 1285 1286 if (vma->vm_file) 1287 uprobe_munmap(vma, start, end); 1288 1289 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1290 untrack_pfn(vma, 0, 0); 1291 1292 if (start != end) { 1293 if (unlikely(is_vm_hugetlb_page(vma))) { 1294 /* 1295 * It is undesirable to test vma->vm_file as it 1296 * should be non-null for valid hugetlb area. 1297 * However, vm_file will be NULL in the error 1298 * cleanup path of mmap_region. When 1299 * hugetlbfs ->mmap method fails, 1300 * mmap_region() nullifies vma->vm_file 1301 * before calling this function to clean up. 1302 * Since no pte has actually been setup, it is 1303 * safe to do nothing in this case. 1304 */ 1305 if (vma->vm_file) { 1306 i_mmap_lock_write(vma->vm_file->f_mapping); 1307 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1308 i_mmap_unlock_write(vma->vm_file->f_mapping); 1309 } 1310 } else 1311 unmap_page_range(tlb, vma, start, end, details); 1312 } 1313 } 1314 1315 /** 1316 * unmap_vmas - unmap a range of memory covered by a list of vma's 1317 * @tlb: address of the caller's struct mmu_gather 1318 * @vma: the starting vma 1319 * @start_addr: virtual address at which to start unmapping 1320 * @end_addr: virtual address at which to end unmapping 1321 * 1322 * Unmap all pages in the vma list. 1323 * 1324 * Only addresses between `start' and `end' will be unmapped. 1325 * 1326 * The VMA list must be sorted in ascending virtual address order. 1327 * 1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1329 * range after unmap_vmas() returns. So the only responsibility here is to 1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1331 * drops the lock and schedules. 1332 */ 1333 void unmap_vmas(struct mmu_gather *tlb, 1334 struct vm_area_struct *vma, unsigned long start_addr, 1335 unsigned long end_addr) 1336 { 1337 struct mm_struct *mm = vma->vm_mm; 1338 1339 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1340 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1341 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1342 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1343 } 1344 1345 /** 1346 * zap_page_range - remove user pages in a given range 1347 * @vma: vm_area_struct holding the applicable pages 1348 * @start: starting address of pages to zap 1349 * @size: number of bytes to zap 1350 * @details: details of shared cache invalidation 1351 * 1352 * Caller must protect the VMA list 1353 */ 1354 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1355 unsigned long size, struct zap_details *details) 1356 { 1357 struct mm_struct *mm = vma->vm_mm; 1358 struct mmu_gather tlb; 1359 unsigned long end = start + size; 1360 1361 lru_add_drain(); 1362 tlb_gather_mmu(&tlb, mm, start, end); 1363 update_hiwater_rss(mm); 1364 mmu_notifier_invalidate_range_start(mm, start, end); 1365 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1366 unmap_single_vma(&tlb, vma, start, end, details); 1367 mmu_notifier_invalidate_range_end(mm, start, end); 1368 tlb_finish_mmu(&tlb, start, end); 1369 } 1370 1371 /** 1372 * zap_page_range_single - remove user pages in a given range 1373 * @vma: vm_area_struct holding the applicable pages 1374 * @address: starting address of pages to zap 1375 * @size: number of bytes to zap 1376 * @details: details of shared cache invalidation 1377 * 1378 * The range must fit into one VMA. 1379 */ 1380 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1381 unsigned long size, struct zap_details *details) 1382 { 1383 struct mm_struct *mm = vma->vm_mm; 1384 struct mmu_gather tlb; 1385 unsigned long end = address + size; 1386 1387 lru_add_drain(); 1388 tlb_gather_mmu(&tlb, mm, address, end); 1389 update_hiwater_rss(mm); 1390 mmu_notifier_invalidate_range_start(mm, address, end); 1391 unmap_single_vma(&tlb, vma, address, end, details); 1392 mmu_notifier_invalidate_range_end(mm, address, end); 1393 tlb_finish_mmu(&tlb, address, end); 1394 } 1395 1396 /** 1397 * zap_vma_ptes - remove ptes mapping the vma 1398 * @vma: vm_area_struct holding ptes to be zapped 1399 * @address: starting address of pages to zap 1400 * @size: number of bytes to zap 1401 * 1402 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1403 * 1404 * The entire address range must be fully contained within the vma. 1405 * 1406 * Returns 0 if successful. 1407 */ 1408 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1409 unsigned long size) 1410 { 1411 if (address < vma->vm_start || address + size > vma->vm_end || 1412 !(vma->vm_flags & VM_PFNMAP)) 1413 return -1; 1414 zap_page_range_single(vma, address, size, NULL); 1415 return 0; 1416 } 1417 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1418 1419 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1420 spinlock_t **ptl) 1421 { 1422 pgd_t * pgd = pgd_offset(mm, addr); 1423 pud_t * pud = pud_alloc(mm, pgd, addr); 1424 if (pud) { 1425 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1426 if (pmd) { 1427 VM_BUG_ON(pmd_trans_huge(*pmd)); 1428 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1429 } 1430 } 1431 return NULL; 1432 } 1433 1434 /* 1435 * This is the old fallback for page remapping. 1436 * 1437 * For historical reasons, it only allows reserved pages. Only 1438 * old drivers should use this, and they needed to mark their 1439 * pages reserved for the old functions anyway. 1440 */ 1441 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1442 struct page *page, pgprot_t prot) 1443 { 1444 struct mm_struct *mm = vma->vm_mm; 1445 int retval; 1446 pte_t *pte; 1447 spinlock_t *ptl; 1448 1449 retval = -EINVAL; 1450 if (PageAnon(page)) 1451 goto out; 1452 retval = -ENOMEM; 1453 flush_dcache_page(page); 1454 pte = get_locked_pte(mm, addr, &ptl); 1455 if (!pte) 1456 goto out; 1457 retval = -EBUSY; 1458 if (!pte_none(*pte)) 1459 goto out_unlock; 1460 1461 /* Ok, finally just insert the thing.. */ 1462 get_page(page); 1463 inc_mm_counter_fast(mm, MM_FILEPAGES); 1464 page_add_file_rmap(page); 1465 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1466 1467 retval = 0; 1468 pte_unmap_unlock(pte, ptl); 1469 return retval; 1470 out_unlock: 1471 pte_unmap_unlock(pte, ptl); 1472 out: 1473 return retval; 1474 } 1475 1476 /** 1477 * vm_insert_page - insert single page into user vma 1478 * @vma: user vma to map to 1479 * @addr: target user address of this page 1480 * @page: source kernel page 1481 * 1482 * This allows drivers to insert individual pages they've allocated 1483 * into a user vma. 1484 * 1485 * The page has to be a nice clean _individual_ kernel allocation. 1486 * If you allocate a compound page, you need to have marked it as 1487 * such (__GFP_COMP), or manually just split the page up yourself 1488 * (see split_page()). 1489 * 1490 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1491 * took an arbitrary page protection parameter. This doesn't allow 1492 * that. Your vma protection will have to be set up correctly, which 1493 * means that if you want a shared writable mapping, you'd better 1494 * ask for a shared writable mapping! 1495 * 1496 * The page does not need to be reserved. 1497 * 1498 * Usually this function is called from f_op->mmap() handler 1499 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1500 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1501 * function from other places, for example from page-fault handler. 1502 */ 1503 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1504 struct page *page) 1505 { 1506 if (addr < vma->vm_start || addr >= vma->vm_end) 1507 return -EFAULT; 1508 if (!page_count(page)) 1509 return -EINVAL; 1510 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1511 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1512 BUG_ON(vma->vm_flags & VM_PFNMAP); 1513 vma->vm_flags |= VM_MIXEDMAP; 1514 } 1515 return insert_page(vma, addr, page, vma->vm_page_prot); 1516 } 1517 EXPORT_SYMBOL(vm_insert_page); 1518 1519 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1520 unsigned long pfn, pgprot_t prot) 1521 { 1522 struct mm_struct *mm = vma->vm_mm; 1523 int retval; 1524 pte_t *pte, entry; 1525 spinlock_t *ptl; 1526 1527 retval = -ENOMEM; 1528 pte = get_locked_pte(mm, addr, &ptl); 1529 if (!pte) 1530 goto out; 1531 retval = -EBUSY; 1532 if (!pte_none(*pte)) 1533 goto out_unlock; 1534 1535 /* Ok, finally just insert the thing.. */ 1536 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1537 set_pte_at(mm, addr, pte, entry); 1538 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1539 1540 retval = 0; 1541 out_unlock: 1542 pte_unmap_unlock(pte, ptl); 1543 out: 1544 return retval; 1545 } 1546 1547 /** 1548 * vm_insert_pfn - insert single pfn into user vma 1549 * @vma: user vma to map to 1550 * @addr: target user address of this page 1551 * @pfn: source kernel pfn 1552 * 1553 * Similar to vm_insert_page, this allows drivers to insert individual pages 1554 * they've allocated into a user vma. Same comments apply. 1555 * 1556 * This function should only be called from a vm_ops->fault handler, and 1557 * in that case the handler should return NULL. 1558 * 1559 * vma cannot be a COW mapping. 1560 * 1561 * As this is called only for pages that do not currently exist, we 1562 * do not need to flush old virtual caches or the TLB. 1563 */ 1564 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1565 unsigned long pfn) 1566 { 1567 int ret; 1568 pgprot_t pgprot = vma->vm_page_prot; 1569 /* 1570 * Technically, architectures with pte_special can avoid all these 1571 * restrictions (same for remap_pfn_range). However we would like 1572 * consistency in testing and feature parity among all, so we should 1573 * try to keep these invariants in place for everybody. 1574 */ 1575 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1576 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1577 (VM_PFNMAP|VM_MIXEDMAP)); 1578 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1579 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1580 1581 if (addr < vma->vm_start || addr >= vma->vm_end) 1582 return -EFAULT; 1583 if (track_pfn_insert(vma, &pgprot, pfn)) 1584 return -EINVAL; 1585 1586 ret = insert_pfn(vma, addr, pfn, pgprot); 1587 1588 return ret; 1589 } 1590 EXPORT_SYMBOL(vm_insert_pfn); 1591 1592 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1593 unsigned long pfn) 1594 { 1595 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1596 1597 if (addr < vma->vm_start || addr >= vma->vm_end) 1598 return -EFAULT; 1599 1600 /* 1601 * If we don't have pte special, then we have to use the pfn_valid() 1602 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1603 * refcount the page if pfn_valid is true (hence insert_page rather 1604 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1605 * without pte special, it would there be refcounted as a normal page. 1606 */ 1607 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1608 struct page *page; 1609 1610 page = pfn_to_page(pfn); 1611 return insert_page(vma, addr, page, vma->vm_page_prot); 1612 } 1613 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1614 } 1615 EXPORT_SYMBOL(vm_insert_mixed); 1616 1617 /* 1618 * maps a range of physical memory into the requested pages. the old 1619 * mappings are removed. any references to nonexistent pages results 1620 * in null mappings (currently treated as "copy-on-access") 1621 */ 1622 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1623 unsigned long addr, unsigned long end, 1624 unsigned long pfn, pgprot_t prot) 1625 { 1626 pte_t *pte; 1627 spinlock_t *ptl; 1628 1629 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1630 if (!pte) 1631 return -ENOMEM; 1632 arch_enter_lazy_mmu_mode(); 1633 do { 1634 BUG_ON(!pte_none(*pte)); 1635 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1636 pfn++; 1637 } while (pte++, addr += PAGE_SIZE, addr != end); 1638 arch_leave_lazy_mmu_mode(); 1639 pte_unmap_unlock(pte - 1, ptl); 1640 return 0; 1641 } 1642 1643 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1644 unsigned long addr, unsigned long end, 1645 unsigned long pfn, pgprot_t prot) 1646 { 1647 pmd_t *pmd; 1648 unsigned long next; 1649 1650 pfn -= addr >> PAGE_SHIFT; 1651 pmd = pmd_alloc(mm, pud, addr); 1652 if (!pmd) 1653 return -ENOMEM; 1654 VM_BUG_ON(pmd_trans_huge(*pmd)); 1655 do { 1656 next = pmd_addr_end(addr, end); 1657 if (remap_pte_range(mm, pmd, addr, next, 1658 pfn + (addr >> PAGE_SHIFT), prot)) 1659 return -ENOMEM; 1660 } while (pmd++, addr = next, addr != end); 1661 return 0; 1662 } 1663 1664 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1665 unsigned long addr, unsigned long end, 1666 unsigned long pfn, pgprot_t prot) 1667 { 1668 pud_t *pud; 1669 unsigned long next; 1670 1671 pfn -= addr >> PAGE_SHIFT; 1672 pud = pud_alloc(mm, pgd, addr); 1673 if (!pud) 1674 return -ENOMEM; 1675 do { 1676 next = pud_addr_end(addr, end); 1677 if (remap_pmd_range(mm, pud, addr, next, 1678 pfn + (addr >> PAGE_SHIFT), prot)) 1679 return -ENOMEM; 1680 } while (pud++, addr = next, addr != end); 1681 return 0; 1682 } 1683 1684 /** 1685 * remap_pfn_range - remap kernel memory to userspace 1686 * @vma: user vma to map to 1687 * @addr: target user address to start at 1688 * @pfn: physical address of kernel memory 1689 * @size: size of map area 1690 * @prot: page protection flags for this mapping 1691 * 1692 * Note: this is only safe if the mm semaphore is held when called. 1693 */ 1694 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1695 unsigned long pfn, unsigned long size, pgprot_t prot) 1696 { 1697 pgd_t *pgd; 1698 unsigned long next; 1699 unsigned long end = addr + PAGE_ALIGN(size); 1700 struct mm_struct *mm = vma->vm_mm; 1701 int err; 1702 1703 /* 1704 * Physically remapped pages are special. Tell the 1705 * rest of the world about it: 1706 * VM_IO tells people not to look at these pages 1707 * (accesses can have side effects). 1708 * VM_PFNMAP tells the core MM that the base pages are just 1709 * raw PFN mappings, and do not have a "struct page" associated 1710 * with them. 1711 * VM_DONTEXPAND 1712 * Disable vma merging and expanding with mremap(). 1713 * VM_DONTDUMP 1714 * Omit vma from core dump, even when VM_IO turned off. 1715 * 1716 * There's a horrible special case to handle copy-on-write 1717 * behaviour that some programs depend on. We mark the "original" 1718 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1719 * See vm_normal_page() for details. 1720 */ 1721 if (is_cow_mapping(vma->vm_flags)) { 1722 if (addr != vma->vm_start || end != vma->vm_end) 1723 return -EINVAL; 1724 vma->vm_pgoff = pfn; 1725 } 1726 1727 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 1728 if (err) 1729 return -EINVAL; 1730 1731 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1732 1733 BUG_ON(addr >= end); 1734 pfn -= addr >> PAGE_SHIFT; 1735 pgd = pgd_offset(mm, addr); 1736 flush_cache_range(vma, addr, end); 1737 do { 1738 next = pgd_addr_end(addr, end); 1739 err = remap_pud_range(mm, pgd, addr, next, 1740 pfn + (addr >> PAGE_SHIFT), prot); 1741 if (err) 1742 break; 1743 } while (pgd++, addr = next, addr != end); 1744 1745 if (err) 1746 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 1747 1748 return err; 1749 } 1750 EXPORT_SYMBOL(remap_pfn_range); 1751 1752 /** 1753 * vm_iomap_memory - remap memory to userspace 1754 * @vma: user vma to map to 1755 * @start: start of area 1756 * @len: size of area 1757 * 1758 * This is a simplified io_remap_pfn_range() for common driver use. The 1759 * driver just needs to give us the physical memory range to be mapped, 1760 * we'll figure out the rest from the vma information. 1761 * 1762 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1763 * whatever write-combining details or similar. 1764 */ 1765 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1766 { 1767 unsigned long vm_len, pfn, pages; 1768 1769 /* Check that the physical memory area passed in looks valid */ 1770 if (start + len < start) 1771 return -EINVAL; 1772 /* 1773 * You *really* shouldn't map things that aren't page-aligned, 1774 * but we've historically allowed it because IO memory might 1775 * just have smaller alignment. 1776 */ 1777 len += start & ~PAGE_MASK; 1778 pfn = start >> PAGE_SHIFT; 1779 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1780 if (pfn + pages < pfn) 1781 return -EINVAL; 1782 1783 /* We start the mapping 'vm_pgoff' pages into the area */ 1784 if (vma->vm_pgoff > pages) 1785 return -EINVAL; 1786 pfn += vma->vm_pgoff; 1787 pages -= vma->vm_pgoff; 1788 1789 /* Can we fit all of the mapping? */ 1790 vm_len = vma->vm_end - vma->vm_start; 1791 if (vm_len >> PAGE_SHIFT > pages) 1792 return -EINVAL; 1793 1794 /* Ok, let it rip */ 1795 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1796 } 1797 EXPORT_SYMBOL(vm_iomap_memory); 1798 1799 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1800 unsigned long addr, unsigned long end, 1801 pte_fn_t fn, void *data) 1802 { 1803 pte_t *pte; 1804 int err; 1805 pgtable_t token; 1806 spinlock_t *uninitialized_var(ptl); 1807 1808 pte = (mm == &init_mm) ? 1809 pte_alloc_kernel(pmd, addr) : 1810 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1811 if (!pte) 1812 return -ENOMEM; 1813 1814 BUG_ON(pmd_huge(*pmd)); 1815 1816 arch_enter_lazy_mmu_mode(); 1817 1818 token = pmd_pgtable(*pmd); 1819 1820 do { 1821 err = fn(pte++, token, addr, data); 1822 if (err) 1823 break; 1824 } while (addr += PAGE_SIZE, addr != end); 1825 1826 arch_leave_lazy_mmu_mode(); 1827 1828 if (mm != &init_mm) 1829 pte_unmap_unlock(pte-1, ptl); 1830 return err; 1831 } 1832 1833 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1834 unsigned long addr, unsigned long end, 1835 pte_fn_t fn, void *data) 1836 { 1837 pmd_t *pmd; 1838 unsigned long next; 1839 int err; 1840 1841 BUG_ON(pud_huge(*pud)); 1842 1843 pmd = pmd_alloc(mm, pud, addr); 1844 if (!pmd) 1845 return -ENOMEM; 1846 do { 1847 next = pmd_addr_end(addr, end); 1848 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1849 if (err) 1850 break; 1851 } while (pmd++, addr = next, addr != end); 1852 return err; 1853 } 1854 1855 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1856 unsigned long addr, unsigned long end, 1857 pte_fn_t fn, void *data) 1858 { 1859 pud_t *pud; 1860 unsigned long next; 1861 int err; 1862 1863 pud = pud_alloc(mm, pgd, addr); 1864 if (!pud) 1865 return -ENOMEM; 1866 do { 1867 next = pud_addr_end(addr, end); 1868 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1869 if (err) 1870 break; 1871 } while (pud++, addr = next, addr != end); 1872 return err; 1873 } 1874 1875 /* 1876 * Scan a region of virtual memory, filling in page tables as necessary 1877 * and calling a provided function on each leaf page table. 1878 */ 1879 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1880 unsigned long size, pte_fn_t fn, void *data) 1881 { 1882 pgd_t *pgd; 1883 unsigned long next; 1884 unsigned long end = addr + size; 1885 int err; 1886 1887 BUG_ON(addr >= end); 1888 pgd = pgd_offset(mm, addr); 1889 do { 1890 next = pgd_addr_end(addr, end); 1891 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1892 if (err) 1893 break; 1894 } while (pgd++, addr = next, addr != end); 1895 1896 return err; 1897 } 1898 EXPORT_SYMBOL_GPL(apply_to_page_range); 1899 1900 /* 1901 * handle_pte_fault chooses page fault handler according to an entry which was 1902 * read non-atomically. Before making any commitment, on those architectures 1903 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 1904 * parts, do_swap_page must check under lock before unmapping the pte and 1905 * proceeding (but do_wp_page is only called after already making such a check; 1906 * and do_anonymous_page can safely check later on). 1907 */ 1908 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1909 pte_t *page_table, pte_t orig_pte) 1910 { 1911 int same = 1; 1912 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1913 if (sizeof(pte_t) > sizeof(unsigned long)) { 1914 spinlock_t *ptl = pte_lockptr(mm, pmd); 1915 spin_lock(ptl); 1916 same = pte_same(*page_table, orig_pte); 1917 spin_unlock(ptl); 1918 } 1919 #endif 1920 pte_unmap(page_table); 1921 return same; 1922 } 1923 1924 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1925 { 1926 debug_dma_assert_idle(src); 1927 1928 /* 1929 * If the source page was a PFN mapping, we don't have 1930 * a "struct page" for it. We do a best-effort copy by 1931 * just copying from the original user address. If that 1932 * fails, we just zero-fill it. Live with it. 1933 */ 1934 if (unlikely(!src)) { 1935 void *kaddr = kmap_atomic(dst); 1936 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1937 1938 /* 1939 * This really shouldn't fail, because the page is there 1940 * in the page tables. But it might just be unreadable, 1941 * in which case we just give up and fill the result with 1942 * zeroes. 1943 */ 1944 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1945 clear_page(kaddr); 1946 kunmap_atomic(kaddr); 1947 flush_dcache_page(dst); 1948 } else 1949 copy_user_highpage(dst, src, va, vma); 1950 } 1951 1952 /* 1953 * Notify the address space that the page is about to become writable so that 1954 * it can prohibit this or wait for the page to get into an appropriate state. 1955 * 1956 * We do this without the lock held, so that it can sleep if it needs to. 1957 */ 1958 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 1959 unsigned long address) 1960 { 1961 struct vm_fault vmf; 1962 int ret; 1963 1964 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 1965 vmf.pgoff = page->index; 1966 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 1967 vmf.page = page; 1968 vmf.cow_page = NULL; 1969 1970 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 1971 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 1972 return ret; 1973 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 1974 lock_page(page); 1975 if (!page->mapping) { 1976 unlock_page(page); 1977 return 0; /* retry */ 1978 } 1979 ret |= VM_FAULT_LOCKED; 1980 } else 1981 VM_BUG_ON_PAGE(!PageLocked(page), page); 1982 return ret; 1983 } 1984 1985 /* 1986 * Handle write page faults for pages that can be reused in the current vma 1987 * 1988 * This can happen either due to the mapping being with the VM_SHARED flag, 1989 * or due to us being the last reference standing to the page. In either 1990 * case, all we need to do here is to mark the page as writable and update 1991 * any related book-keeping. 1992 */ 1993 static inline int wp_page_reuse(struct mm_struct *mm, 1994 struct vm_area_struct *vma, unsigned long address, 1995 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 1996 struct page *page, int page_mkwrite, 1997 int dirty_shared) 1998 __releases(ptl) 1999 { 2000 pte_t entry; 2001 /* 2002 * Clear the pages cpupid information as the existing 2003 * information potentially belongs to a now completely 2004 * unrelated process. 2005 */ 2006 if (page) 2007 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2008 2009 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2010 entry = pte_mkyoung(orig_pte); 2011 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2012 if (ptep_set_access_flags(vma, address, page_table, entry, 1)) 2013 update_mmu_cache(vma, address, page_table); 2014 pte_unmap_unlock(page_table, ptl); 2015 2016 if (dirty_shared) { 2017 struct address_space *mapping; 2018 int dirtied; 2019 2020 if (!page_mkwrite) 2021 lock_page(page); 2022 2023 dirtied = set_page_dirty(page); 2024 VM_BUG_ON_PAGE(PageAnon(page), page); 2025 mapping = page->mapping; 2026 unlock_page(page); 2027 page_cache_release(page); 2028 2029 if ((dirtied || page_mkwrite) && mapping) { 2030 /* 2031 * Some device drivers do not set page.mapping 2032 * but still dirty their pages 2033 */ 2034 balance_dirty_pages_ratelimited(mapping); 2035 } 2036 2037 if (!page_mkwrite) 2038 file_update_time(vma->vm_file); 2039 } 2040 2041 return VM_FAULT_WRITE; 2042 } 2043 2044 /* 2045 * Handle the case of a page which we actually need to copy to a new page. 2046 * 2047 * Called with mmap_sem locked and the old page referenced, but 2048 * without the ptl held. 2049 * 2050 * High level logic flow: 2051 * 2052 * - Allocate a page, copy the content of the old page to the new one. 2053 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2054 * - Take the PTL. If the pte changed, bail out and release the allocated page 2055 * - If the pte is still the way we remember it, update the page table and all 2056 * relevant references. This includes dropping the reference the page-table 2057 * held to the old page, as well as updating the rmap. 2058 * - In any case, unlock the PTL and drop the reference we took to the old page. 2059 */ 2060 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma, 2061 unsigned long address, pte_t *page_table, pmd_t *pmd, 2062 pte_t orig_pte, struct page *old_page) 2063 { 2064 struct page *new_page = NULL; 2065 spinlock_t *ptl = NULL; 2066 pte_t entry; 2067 int page_copied = 0; 2068 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */ 2069 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */ 2070 struct mem_cgroup *memcg; 2071 2072 if (unlikely(anon_vma_prepare(vma))) 2073 goto oom; 2074 2075 if (is_zero_pfn(pte_pfn(orig_pte))) { 2076 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2077 if (!new_page) 2078 goto oom; 2079 } else { 2080 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2081 if (!new_page) 2082 goto oom; 2083 cow_user_page(new_page, old_page, address, vma); 2084 } 2085 2086 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) 2087 goto oom_free_new; 2088 2089 __SetPageUptodate(new_page); 2090 2091 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2092 2093 /* 2094 * Re-check the pte - we dropped the lock 2095 */ 2096 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2097 if (likely(pte_same(*page_table, orig_pte))) { 2098 if (old_page) { 2099 if (!PageAnon(old_page)) { 2100 dec_mm_counter_fast(mm, MM_FILEPAGES); 2101 inc_mm_counter_fast(mm, MM_ANONPAGES); 2102 } 2103 } else { 2104 inc_mm_counter_fast(mm, MM_ANONPAGES); 2105 } 2106 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2107 entry = mk_pte(new_page, vma->vm_page_prot); 2108 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2109 /* 2110 * Clear the pte entry and flush it first, before updating the 2111 * pte with the new entry. This will avoid a race condition 2112 * seen in the presence of one thread doing SMC and another 2113 * thread doing COW. 2114 */ 2115 ptep_clear_flush_notify(vma, address, page_table); 2116 page_add_new_anon_rmap(new_page, vma, address); 2117 mem_cgroup_commit_charge(new_page, memcg, false); 2118 lru_cache_add_active_or_unevictable(new_page, vma); 2119 /* 2120 * We call the notify macro here because, when using secondary 2121 * mmu page tables (such as kvm shadow page tables), we want the 2122 * new page to be mapped directly into the secondary page table. 2123 */ 2124 set_pte_at_notify(mm, address, page_table, entry); 2125 update_mmu_cache(vma, address, page_table); 2126 if (old_page) { 2127 /* 2128 * Only after switching the pte to the new page may 2129 * we remove the mapcount here. Otherwise another 2130 * process may come and find the rmap count decremented 2131 * before the pte is switched to the new page, and 2132 * "reuse" the old page writing into it while our pte 2133 * here still points into it and can be read by other 2134 * threads. 2135 * 2136 * The critical issue is to order this 2137 * page_remove_rmap with the ptp_clear_flush above. 2138 * Those stores are ordered by (if nothing else,) 2139 * the barrier present in the atomic_add_negative 2140 * in page_remove_rmap. 2141 * 2142 * Then the TLB flush in ptep_clear_flush ensures that 2143 * no process can access the old page before the 2144 * decremented mapcount is visible. And the old page 2145 * cannot be reused until after the decremented 2146 * mapcount is visible. So transitively, TLBs to 2147 * old page will be flushed before it can be reused. 2148 */ 2149 page_remove_rmap(old_page); 2150 } 2151 2152 /* Free the old page.. */ 2153 new_page = old_page; 2154 page_copied = 1; 2155 } else { 2156 mem_cgroup_cancel_charge(new_page, memcg); 2157 } 2158 2159 if (new_page) 2160 page_cache_release(new_page); 2161 2162 pte_unmap_unlock(page_table, ptl); 2163 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2164 if (old_page) { 2165 /* 2166 * Don't let another task, with possibly unlocked vma, 2167 * keep the mlocked page. 2168 */ 2169 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2170 lock_page(old_page); /* LRU manipulation */ 2171 munlock_vma_page(old_page); 2172 unlock_page(old_page); 2173 } 2174 page_cache_release(old_page); 2175 } 2176 return page_copied ? VM_FAULT_WRITE : 0; 2177 oom_free_new: 2178 page_cache_release(new_page); 2179 oom: 2180 if (old_page) 2181 page_cache_release(old_page); 2182 return VM_FAULT_OOM; 2183 } 2184 2185 /* 2186 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2187 * mapping 2188 */ 2189 static int wp_pfn_shared(struct mm_struct *mm, 2190 struct vm_area_struct *vma, unsigned long address, 2191 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 2192 pmd_t *pmd) 2193 { 2194 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2195 struct vm_fault vmf = { 2196 .page = NULL, 2197 .pgoff = linear_page_index(vma, address), 2198 .virtual_address = (void __user *)(address & PAGE_MASK), 2199 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE, 2200 }; 2201 int ret; 2202 2203 pte_unmap_unlock(page_table, ptl); 2204 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf); 2205 if (ret & VM_FAULT_ERROR) 2206 return ret; 2207 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2208 /* 2209 * We might have raced with another page fault while we 2210 * released the pte_offset_map_lock. 2211 */ 2212 if (!pte_same(*page_table, orig_pte)) { 2213 pte_unmap_unlock(page_table, ptl); 2214 return 0; 2215 } 2216 } 2217 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte, 2218 NULL, 0, 0); 2219 } 2220 2221 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma, 2222 unsigned long address, pte_t *page_table, 2223 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte, 2224 struct page *old_page) 2225 __releases(ptl) 2226 { 2227 int page_mkwrite = 0; 2228 2229 page_cache_get(old_page); 2230 2231 /* 2232 * Only catch write-faults on shared writable pages, 2233 * read-only shared pages can get COWed by 2234 * get_user_pages(.write=1, .force=1). 2235 */ 2236 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2237 int tmp; 2238 2239 pte_unmap_unlock(page_table, ptl); 2240 tmp = do_page_mkwrite(vma, old_page, address); 2241 if (unlikely(!tmp || (tmp & 2242 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2243 page_cache_release(old_page); 2244 return tmp; 2245 } 2246 /* 2247 * Since we dropped the lock we need to revalidate 2248 * the PTE as someone else may have changed it. If 2249 * they did, we just return, as we can count on the 2250 * MMU to tell us if they didn't also make it writable. 2251 */ 2252 page_table = pte_offset_map_lock(mm, pmd, address, 2253 &ptl); 2254 if (!pte_same(*page_table, orig_pte)) { 2255 unlock_page(old_page); 2256 pte_unmap_unlock(page_table, ptl); 2257 page_cache_release(old_page); 2258 return 0; 2259 } 2260 page_mkwrite = 1; 2261 } 2262 2263 return wp_page_reuse(mm, vma, address, page_table, ptl, 2264 orig_pte, old_page, page_mkwrite, 1); 2265 } 2266 2267 /* 2268 * This routine handles present pages, when users try to write 2269 * to a shared page. It is done by copying the page to a new address 2270 * and decrementing the shared-page counter for the old page. 2271 * 2272 * Note that this routine assumes that the protection checks have been 2273 * done by the caller (the low-level page fault routine in most cases). 2274 * Thus we can safely just mark it writable once we've done any necessary 2275 * COW. 2276 * 2277 * We also mark the page dirty at this point even though the page will 2278 * change only once the write actually happens. This avoids a few races, 2279 * and potentially makes it more efficient. 2280 * 2281 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2282 * but allow concurrent faults), with pte both mapped and locked. 2283 * We return with mmap_sem still held, but pte unmapped and unlocked. 2284 */ 2285 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2286 unsigned long address, pte_t *page_table, pmd_t *pmd, 2287 spinlock_t *ptl, pte_t orig_pte) 2288 __releases(ptl) 2289 { 2290 struct page *old_page; 2291 2292 old_page = vm_normal_page(vma, address, orig_pte); 2293 if (!old_page) { 2294 /* 2295 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2296 * VM_PFNMAP VMA. 2297 * 2298 * We should not cow pages in a shared writeable mapping. 2299 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2300 */ 2301 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2302 (VM_WRITE|VM_SHARED)) 2303 return wp_pfn_shared(mm, vma, address, page_table, ptl, 2304 orig_pte, pmd); 2305 2306 pte_unmap_unlock(page_table, ptl); 2307 return wp_page_copy(mm, vma, address, page_table, pmd, 2308 orig_pte, old_page); 2309 } 2310 2311 /* 2312 * Take out anonymous pages first, anonymous shared vmas are 2313 * not dirty accountable. 2314 */ 2315 if (PageAnon(old_page) && !PageKsm(old_page)) { 2316 if (!trylock_page(old_page)) { 2317 page_cache_get(old_page); 2318 pte_unmap_unlock(page_table, ptl); 2319 lock_page(old_page); 2320 page_table = pte_offset_map_lock(mm, pmd, address, 2321 &ptl); 2322 if (!pte_same(*page_table, orig_pte)) { 2323 unlock_page(old_page); 2324 pte_unmap_unlock(page_table, ptl); 2325 page_cache_release(old_page); 2326 return 0; 2327 } 2328 page_cache_release(old_page); 2329 } 2330 if (reuse_swap_page(old_page)) { 2331 /* 2332 * The page is all ours. Move it to our anon_vma so 2333 * the rmap code will not search our parent or siblings. 2334 * Protected against the rmap code by the page lock. 2335 */ 2336 page_move_anon_rmap(old_page, vma, address); 2337 unlock_page(old_page); 2338 return wp_page_reuse(mm, vma, address, page_table, ptl, 2339 orig_pte, old_page, 0, 0); 2340 } 2341 unlock_page(old_page); 2342 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2343 (VM_WRITE|VM_SHARED))) { 2344 return wp_page_shared(mm, vma, address, page_table, pmd, 2345 ptl, orig_pte, old_page); 2346 } 2347 2348 /* 2349 * Ok, we need to copy. Oh, well.. 2350 */ 2351 page_cache_get(old_page); 2352 2353 pte_unmap_unlock(page_table, ptl); 2354 return wp_page_copy(mm, vma, address, page_table, pmd, 2355 orig_pte, old_page); 2356 } 2357 2358 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2359 unsigned long start_addr, unsigned long end_addr, 2360 struct zap_details *details) 2361 { 2362 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2363 } 2364 2365 static inline void unmap_mapping_range_tree(struct rb_root *root, 2366 struct zap_details *details) 2367 { 2368 struct vm_area_struct *vma; 2369 pgoff_t vba, vea, zba, zea; 2370 2371 vma_interval_tree_foreach(vma, root, 2372 details->first_index, details->last_index) { 2373 2374 vba = vma->vm_pgoff; 2375 vea = vba + vma_pages(vma) - 1; 2376 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2377 zba = details->first_index; 2378 if (zba < vba) 2379 zba = vba; 2380 zea = details->last_index; 2381 if (zea > vea) 2382 zea = vea; 2383 2384 unmap_mapping_range_vma(vma, 2385 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2386 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2387 details); 2388 } 2389 } 2390 2391 /** 2392 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2393 * address_space corresponding to the specified page range in the underlying 2394 * file. 2395 * 2396 * @mapping: the address space containing mmaps to be unmapped. 2397 * @holebegin: byte in first page to unmap, relative to the start of 2398 * the underlying file. This will be rounded down to a PAGE_SIZE 2399 * boundary. Note that this is different from truncate_pagecache(), which 2400 * must keep the partial page. In contrast, we must get rid of 2401 * partial pages. 2402 * @holelen: size of prospective hole in bytes. This will be rounded 2403 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2404 * end of the file. 2405 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2406 * but 0 when invalidating pagecache, don't throw away private data. 2407 */ 2408 void unmap_mapping_range(struct address_space *mapping, 2409 loff_t const holebegin, loff_t const holelen, int even_cows) 2410 { 2411 struct zap_details details; 2412 pgoff_t hba = holebegin >> PAGE_SHIFT; 2413 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2414 2415 /* Check for overflow. */ 2416 if (sizeof(holelen) > sizeof(hlen)) { 2417 long long holeend = 2418 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2419 if (holeend & ~(long long)ULONG_MAX) 2420 hlen = ULONG_MAX - hba + 1; 2421 } 2422 2423 details.check_mapping = even_cows? NULL: mapping; 2424 details.first_index = hba; 2425 details.last_index = hba + hlen - 1; 2426 if (details.last_index < details.first_index) 2427 details.last_index = ULONG_MAX; 2428 2429 2430 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */ 2431 i_mmap_lock_write(mapping); 2432 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2433 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2434 i_mmap_unlock_write(mapping); 2435 } 2436 EXPORT_SYMBOL(unmap_mapping_range); 2437 2438 /* 2439 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2440 * but allow concurrent faults), and pte mapped but not yet locked. 2441 * We return with pte unmapped and unlocked. 2442 * 2443 * We return with the mmap_sem locked or unlocked in the same cases 2444 * as does filemap_fault(). 2445 */ 2446 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2447 unsigned long address, pte_t *page_table, pmd_t *pmd, 2448 unsigned int flags, pte_t orig_pte) 2449 { 2450 spinlock_t *ptl; 2451 struct page *page, *swapcache; 2452 struct mem_cgroup *memcg; 2453 swp_entry_t entry; 2454 pte_t pte; 2455 int locked; 2456 int exclusive = 0; 2457 int ret = 0; 2458 2459 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2460 goto out; 2461 2462 entry = pte_to_swp_entry(orig_pte); 2463 if (unlikely(non_swap_entry(entry))) { 2464 if (is_migration_entry(entry)) { 2465 migration_entry_wait(mm, pmd, address); 2466 } else if (is_hwpoison_entry(entry)) { 2467 ret = VM_FAULT_HWPOISON; 2468 } else { 2469 print_bad_pte(vma, address, orig_pte, NULL); 2470 ret = VM_FAULT_SIGBUS; 2471 } 2472 goto out; 2473 } 2474 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2475 page = lookup_swap_cache(entry); 2476 if (!page) { 2477 page = swapin_readahead(entry, 2478 GFP_HIGHUSER_MOVABLE, vma, address); 2479 if (!page) { 2480 /* 2481 * Back out if somebody else faulted in this pte 2482 * while we released the pte lock. 2483 */ 2484 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2485 if (likely(pte_same(*page_table, orig_pte))) 2486 ret = VM_FAULT_OOM; 2487 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2488 goto unlock; 2489 } 2490 2491 /* Had to read the page from swap area: Major fault */ 2492 ret = VM_FAULT_MAJOR; 2493 count_vm_event(PGMAJFAULT); 2494 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2495 } else if (PageHWPoison(page)) { 2496 /* 2497 * hwpoisoned dirty swapcache pages are kept for killing 2498 * owner processes (which may be unknown at hwpoison time) 2499 */ 2500 ret = VM_FAULT_HWPOISON; 2501 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2502 swapcache = page; 2503 goto out_release; 2504 } 2505 2506 swapcache = page; 2507 locked = lock_page_or_retry(page, mm, flags); 2508 2509 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2510 if (!locked) { 2511 ret |= VM_FAULT_RETRY; 2512 goto out_release; 2513 } 2514 2515 /* 2516 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2517 * release the swapcache from under us. The page pin, and pte_same 2518 * test below, are not enough to exclude that. Even if it is still 2519 * swapcache, we need to check that the page's swap has not changed. 2520 */ 2521 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2522 goto out_page; 2523 2524 page = ksm_might_need_to_copy(page, vma, address); 2525 if (unlikely(!page)) { 2526 ret = VM_FAULT_OOM; 2527 page = swapcache; 2528 goto out_page; 2529 } 2530 2531 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) { 2532 ret = VM_FAULT_OOM; 2533 goto out_page; 2534 } 2535 2536 /* 2537 * Back out if somebody else already faulted in this pte. 2538 */ 2539 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2540 if (unlikely(!pte_same(*page_table, orig_pte))) 2541 goto out_nomap; 2542 2543 if (unlikely(!PageUptodate(page))) { 2544 ret = VM_FAULT_SIGBUS; 2545 goto out_nomap; 2546 } 2547 2548 /* 2549 * The page isn't present yet, go ahead with the fault. 2550 * 2551 * Be careful about the sequence of operations here. 2552 * To get its accounting right, reuse_swap_page() must be called 2553 * while the page is counted on swap but not yet in mapcount i.e. 2554 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2555 * must be called after the swap_free(), or it will never succeed. 2556 */ 2557 2558 inc_mm_counter_fast(mm, MM_ANONPAGES); 2559 dec_mm_counter_fast(mm, MM_SWAPENTS); 2560 pte = mk_pte(page, vma->vm_page_prot); 2561 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2562 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2563 flags &= ~FAULT_FLAG_WRITE; 2564 ret |= VM_FAULT_WRITE; 2565 exclusive = 1; 2566 } 2567 flush_icache_page(vma, page); 2568 if (pte_swp_soft_dirty(orig_pte)) 2569 pte = pte_mksoft_dirty(pte); 2570 set_pte_at(mm, address, page_table, pte); 2571 if (page == swapcache) { 2572 do_page_add_anon_rmap(page, vma, address, exclusive); 2573 mem_cgroup_commit_charge(page, memcg, true); 2574 } else { /* ksm created a completely new copy */ 2575 page_add_new_anon_rmap(page, vma, address); 2576 mem_cgroup_commit_charge(page, memcg, false); 2577 lru_cache_add_active_or_unevictable(page, vma); 2578 } 2579 2580 swap_free(entry); 2581 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2582 try_to_free_swap(page); 2583 unlock_page(page); 2584 if (page != swapcache) { 2585 /* 2586 * Hold the lock to avoid the swap entry to be reused 2587 * until we take the PT lock for the pte_same() check 2588 * (to avoid false positives from pte_same). For 2589 * further safety release the lock after the swap_free 2590 * so that the swap count won't change under a 2591 * parallel locked swapcache. 2592 */ 2593 unlock_page(swapcache); 2594 page_cache_release(swapcache); 2595 } 2596 2597 if (flags & FAULT_FLAG_WRITE) { 2598 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2599 if (ret & VM_FAULT_ERROR) 2600 ret &= VM_FAULT_ERROR; 2601 goto out; 2602 } 2603 2604 /* No need to invalidate - it was non-present before */ 2605 update_mmu_cache(vma, address, page_table); 2606 unlock: 2607 pte_unmap_unlock(page_table, ptl); 2608 out: 2609 return ret; 2610 out_nomap: 2611 mem_cgroup_cancel_charge(page, memcg); 2612 pte_unmap_unlock(page_table, ptl); 2613 out_page: 2614 unlock_page(page); 2615 out_release: 2616 page_cache_release(page); 2617 if (page != swapcache) { 2618 unlock_page(swapcache); 2619 page_cache_release(swapcache); 2620 } 2621 return ret; 2622 } 2623 2624 /* 2625 * This is like a special single-page "expand_{down|up}wards()", 2626 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2627 * doesn't hit another vma. 2628 */ 2629 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2630 { 2631 address &= PAGE_MASK; 2632 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2633 struct vm_area_struct *prev = vma->vm_prev; 2634 2635 /* 2636 * Is there a mapping abutting this one below? 2637 * 2638 * That's only ok if it's the same stack mapping 2639 * that has gotten split.. 2640 */ 2641 if (prev && prev->vm_end == address) 2642 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2643 2644 return expand_downwards(vma, address - PAGE_SIZE); 2645 } 2646 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2647 struct vm_area_struct *next = vma->vm_next; 2648 2649 /* As VM_GROWSDOWN but s/below/above/ */ 2650 if (next && next->vm_start == address + PAGE_SIZE) 2651 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2652 2653 return expand_upwards(vma, address + PAGE_SIZE); 2654 } 2655 return 0; 2656 } 2657 2658 /* 2659 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2660 * but allow concurrent faults), and pte mapped but not yet locked. 2661 * We return with mmap_sem still held, but pte unmapped and unlocked. 2662 */ 2663 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2664 unsigned long address, pte_t *page_table, pmd_t *pmd, 2665 unsigned int flags) 2666 { 2667 struct mem_cgroup *memcg; 2668 struct page *page; 2669 spinlock_t *ptl; 2670 pte_t entry; 2671 2672 pte_unmap(page_table); 2673 2674 /* File mapping without ->vm_ops ? */ 2675 if (vma->vm_flags & VM_SHARED) 2676 return VM_FAULT_SIGBUS; 2677 2678 /* Check if we need to add a guard page to the stack */ 2679 if (check_stack_guard_page(vma, address) < 0) 2680 return VM_FAULT_SIGSEGV; 2681 2682 /* Use the zero-page for reads */ 2683 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) { 2684 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2685 vma->vm_page_prot)); 2686 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2687 if (!pte_none(*page_table)) 2688 goto unlock; 2689 /* Deliver the page fault to userland, check inside PT lock */ 2690 if (userfaultfd_missing(vma)) { 2691 pte_unmap_unlock(page_table, ptl); 2692 return handle_userfault(vma, address, flags, 2693 VM_UFFD_MISSING); 2694 } 2695 goto setpte; 2696 } 2697 2698 /* Allocate our own private page. */ 2699 if (unlikely(anon_vma_prepare(vma))) 2700 goto oom; 2701 page = alloc_zeroed_user_highpage_movable(vma, address); 2702 if (!page) 2703 goto oom; 2704 2705 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) 2706 goto oom_free_page; 2707 2708 /* 2709 * The memory barrier inside __SetPageUptodate makes sure that 2710 * preceeding stores to the page contents become visible before 2711 * the set_pte_at() write. 2712 */ 2713 __SetPageUptodate(page); 2714 2715 entry = mk_pte(page, vma->vm_page_prot); 2716 if (vma->vm_flags & VM_WRITE) 2717 entry = pte_mkwrite(pte_mkdirty(entry)); 2718 2719 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2720 if (!pte_none(*page_table)) 2721 goto release; 2722 2723 /* Deliver the page fault to userland, check inside PT lock */ 2724 if (userfaultfd_missing(vma)) { 2725 pte_unmap_unlock(page_table, ptl); 2726 mem_cgroup_cancel_charge(page, memcg); 2727 page_cache_release(page); 2728 return handle_userfault(vma, address, flags, 2729 VM_UFFD_MISSING); 2730 } 2731 2732 inc_mm_counter_fast(mm, MM_ANONPAGES); 2733 page_add_new_anon_rmap(page, vma, address); 2734 mem_cgroup_commit_charge(page, memcg, false); 2735 lru_cache_add_active_or_unevictable(page, vma); 2736 setpte: 2737 set_pte_at(mm, address, page_table, entry); 2738 2739 /* No need to invalidate - it was non-present before */ 2740 update_mmu_cache(vma, address, page_table); 2741 unlock: 2742 pte_unmap_unlock(page_table, ptl); 2743 return 0; 2744 release: 2745 mem_cgroup_cancel_charge(page, memcg); 2746 page_cache_release(page); 2747 goto unlock; 2748 oom_free_page: 2749 page_cache_release(page); 2750 oom: 2751 return VM_FAULT_OOM; 2752 } 2753 2754 /* 2755 * The mmap_sem must have been held on entry, and may have been 2756 * released depending on flags and vma->vm_ops->fault() return value. 2757 * See filemap_fault() and __lock_page_retry(). 2758 */ 2759 static int __do_fault(struct vm_area_struct *vma, unsigned long address, 2760 pgoff_t pgoff, unsigned int flags, 2761 struct page *cow_page, struct page **page) 2762 { 2763 struct vm_fault vmf; 2764 int ret; 2765 2766 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2767 vmf.pgoff = pgoff; 2768 vmf.flags = flags; 2769 vmf.page = NULL; 2770 vmf.cow_page = cow_page; 2771 2772 ret = vma->vm_ops->fault(vma, &vmf); 2773 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2774 return ret; 2775 if (!vmf.page) 2776 goto out; 2777 2778 if (unlikely(PageHWPoison(vmf.page))) { 2779 if (ret & VM_FAULT_LOCKED) 2780 unlock_page(vmf.page); 2781 page_cache_release(vmf.page); 2782 return VM_FAULT_HWPOISON; 2783 } 2784 2785 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2786 lock_page(vmf.page); 2787 else 2788 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2789 2790 out: 2791 *page = vmf.page; 2792 return ret; 2793 } 2794 2795 /** 2796 * do_set_pte - setup new PTE entry for given page and add reverse page mapping. 2797 * 2798 * @vma: virtual memory area 2799 * @address: user virtual address 2800 * @page: page to map 2801 * @pte: pointer to target page table entry 2802 * @write: true, if new entry is writable 2803 * @anon: true, if it's anonymous page 2804 * 2805 * Caller must hold page table lock relevant for @pte. 2806 * 2807 * Target users are page handler itself and implementations of 2808 * vm_ops->map_pages. 2809 */ 2810 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 2811 struct page *page, pte_t *pte, bool write, bool anon) 2812 { 2813 pte_t entry; 2814 2815 flush_icache_page(vma, page); 2816 entry = mk_pte(page, vma->vm_page_prot); 2817 if (write) 2818 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2819 if (anon) { 2820 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2821 page_add_new_anon_rmap(page, vma, address); 2822 } else { 2823 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES); 2824 page_add_file_rmap(page); 2825 } 2826 set_pte_at(vma->vm_mm, address, pte, entry); 2827 2828 /* no need to invalidate: a not-present page won't be cached */ 2829 update_mmu_cache(vma, address, pte); 2830 } 2831 2832 static unsigned long fault_around_bytes __read_mostly = 2833 rounddown_pow_of_two(65536); 2834 2835 #ifdef CONFIG_DEBUG_FS 2836 static int fault_around_bytes_get(void *data, u64 *val) 2837 { 2838 *val = fault_around_bytes; 2839 return 0; 2840 } 2841 2842 /* 2843 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 2844 * rounded down to nearest page order. It's what do_fault_around() expects to 2845 * see. 2846 */ 2847 static int fault_around_bytes_set(void *data, u64 val) 2848 { 2849 if (val / PAGE_SIZE > PTRS_PER_PTE) 2850 return -EINVAL; 2851 if (val > PAGE_SIZE) 2852 fault_around_bytes = rounddown_pow_of_two(val); 2853 else 2854 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 2855 return 0; 2856 } 2857 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 2858 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 2859 2860 static int __init fault_around_debugfs(void) 2861 { 2862 void *ret; 2863 2864 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 2865 &fault_around_bytes_fops); 2866 if (!ret) 2867 pr_warn("Failed to create fault_around_bytes in debugfs"); 2868 return 0; 2869 } 2870 late_initcall(fault_around_debugfs); 2871 #endif 2872 2873 /* 2874 * do_fault_around() tries to map few pages around the fault address. The hope 2875 * is that the pages will be needed soon and this will lower the number of 2876 * faults to handle. 2877 * 2878 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 2879 * not ready to be mapped: not up-to-date, locked, etc. 2880 * 2881 * This function is called with the page table lock taken. In the split ptlock 2882 * case the page table lock only protects only those entries which belong to 2883 * the page table corresponding to the fault address. 2884 * 2885 * This function doesn't cross the VMA boundaries, in order to call map_pages() 2886 * only once. 2887 * 2888 * fault_around_pages() defines how many pages we'll try to map. 2889 * do_fault_around() expects it to return a power of two less than or equal to 2890 * PTRS_PER_PTE. 2891 * 2892 * The virtual address of the area that we map is naturally aligned to the 2893 * fault_around_pages() value (and therefore to page order). This way it's 2894 * easier to guarantee that we don't cross page table boundaries. 2895 */ 2896 static void do_fault_around(struct vm_area_struct *vma, unsigned long address, 2897 pte_t *pte, pgoff_t pgoff, unsigned int flags) 2898 { 2899 unsigned long start_addr, nr_pages, mask; 2900 pgoff_t max_pgoff; 2901 struct vm_fault vmf; 2902 int off; 2903 2904 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 2905 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 2906 2907 start_addr = max(address & mask, vma->vm_start); 2908 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 2909 pte -= off; 2910 pgoff -= off; 2911 2912 /* 2913 * max_pgoff is either end of page table or end of vma 2914 * or fault_around_pages() from pgoff, depending what is nearest. 2915 */ 2916 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 2917 PTRS_PER_PTE - 1; 2918 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, 2919 pgoff + nr_pages - 1); 2920 2921 /* Check if it makes any sense to call ->map_pages */ 2922 while (!pte_none(*pte)) { 2923 if (++pgoff > max_pgoff) 2924 return; 2925 start_addr += PAGE_SIZE; 2926 if (start_addr >= vma->vm_end) 2927 return; 2928 pte++; 2929 } 2930 2931 vmf.virtual_address = (void __user *) start_addr; 2932 vmf.pte = pte; 2933 vmf.pgoff = pgoff; 2934 vmf.max_pgoff = max_pgoff; 2935 vmf.flags = flags; 2936 vma->vm_ops->map_pages(vma, &vmf); 2937 } 2938 2939 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2940 unsigned long address, pmd_t *pmd, 2941 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2942 { 2943 struct page *fault_page; 2944 spinlock_t *ptl; 2945 pte_t *pte; 2946 int ret = 0; 2947 2948 /* 2949 * Let's call ->map_pages() first and use ->fault() as fallback 2950 * if page by the offset is not ready to be mapped (cold cache or 2951 * something). 2952 */ 2953 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 2954 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2955 do_fault_around(vma, address, pte, pgoff, flags); 2956 if (!pte_same(*pte, orig_pte)) 2957 goto unlock_out; 2958 pte_unmap_unlock(pte, ptl); 2959 } 2960 2961 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page); 2962 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2963 return ret; 2964 2965 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2966 if (unlikely(!pte_same(*pte, orig_pte))) { 2967 pte_unmap_unlock(pte, ptl); 2968 unlock_page(fault_page); 2969 page_cache_release(fault_page); 2970 return ret; 2971 } 2972 do_set_pte(vma, address, fault_page, pte, false, false); 2973 unlock_page(fault_page); 2974 unlock_out: 2975 pte_unmap_unlock(pte, ptl); 2976 return ret; 2977 } 2978 2979 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2980 unsigned long address, pmd_t *pmd, 2981 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2982 { 2983 struct page *fault_page, *new_page; 2984 struct mem_cgroup *memcg; 2985 spinlock_t *ptl; 2986 pte_t *pte; 2987 int ret; 2988 2989 if (unlikely(anon_vma_prepare(vma))) 2990 return VM_FAULT_OOM; 2991 2992 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2993 if (!new_page) 2994 return VM_FAULT_OOM; 2995 2996 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) { 2997 page_cache_release(new_page); 2998 return VM_FAULT_OOM; 2999 } 3000 3001 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page); 3002 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3003 goto uncharge_out; 3004 3005 if (fault_page) 3006 copy_user_highpage(new_page, fault_page, address, vma); 3007 __SetPageUptodate(new_page); 3008 3009 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3010 if (unlikely(!pte_same(*pte, orig_pte))) { 3011 pte_unmap_unlock(pte, ptl); 3012 if (fault_page) { 3013 unlock_page(fault_page); 3014 page_cache_release(fault_page); 3015 } else { 3016 /* 3017 * The fault handler has no page to lock, so it holds 3018 * i_mmap_lock for read to protect against truncate. 3019 */ 3020 i_mmap_unlock_read(vma->vm_file->f_mapping); 3021 } 3022 goto uncharge_out; 3023 } 3024 do_set_pte(vma, address, new_page, pte, true, true); 3025 mem_cgroup_commit_charge(new_page, memcg, false); 3026 lru_cache_add_active_or_unevictable(new_page, vma); 3027 pte_unmap_unlock(pte, ptl); 3028 if (fault_page) { 3029 unlock_page(fault_page); 3030 page_cache_release(fault_page); 3031 } else { 3032 /* 3033 * The fault handler has no page to lock, so it holds 3034 * i_mmap_lock for read to protect against truncate. 3035 */ 3036 i_mmap_unlock_read(vma->vm_file->f_mapping); 3037 } 3038 return ret; 3039 uncharge_out: 3040 mem_cgroup_cancel_charge(new_page, memcg); 3041 page_cache_release(new_page); 3042 return ret; 3043 } 3044 3045 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3046 unsigned long address, pmd_t *pmd, 3047 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3048 { 3049 struct page *fault_page; 3050 struct address_space *mapping; 3051 spinlock_t *ptl; 3052 pte_t *pte; 3053 int dirtied = 0; 3054 int ret, tmp; 3055 3056 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page); 3057 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3058 return ret; 3059 3060 /* 3061 * Check if the backing address space wants to know that the page is 3062 * about to become writable 3063 */ 3064 if (vma->vm_ops->page_mkwrite) { 3065 unlock_page(fault_page); 3066 tmp = do_page_mkwrite(vma, fault_page, address); 3067 if (unlikely(!tmp || 3068 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3069 page_cache_release(fault_page); 3070 return tmp; 3071 } 3072 } 3073 3074 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3075 if (unlikely(!pte_same(*pte, orig_pte))) { 3076 pte_unmap_unlock(pte, ptl); 3077 unlock_page(fault_page); 3078 page_cache_release(fault_page); 3079 return ret; 3080 } 3081 do_set_pte(vma, address, fault_page, pte, true, false); 3082 pte_unmap_unlock(pte, ptl); 3083 3084 if (set_page_dirty(fault_page)) 3085 dirtied = 1; 3086 /* 3087 * Take a local copy of the address_space - page.mapping may be zeroed 3088 * by truncate after unlock_page(). The address_space itself remains 3089 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 3090 * release semantics to prevent the compiler from undoing this copying. 3091 */ 3092 mapping = fault_page->mapping; 3093 unlock_page(fault_page); 3094 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3095 /* 3096 * Some device drivers do not set page.mapping but still 3097 * dirty their pages 3098 */ 3099 balance_dirty_pages_ratelimited(mapping); 3100 } 3101 3102 if (!vma->vm_ops->page_mkwrite) 3103 file_update_time(vma->vm_file); 3104 3105 return ret; 3106 } 3107 3108 /* 3109 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3110 * but allow concurrent faults). 3111 * The mmap_sem may have been released depending on flags and our 3112 * return value. See filemap_fault() and __lock_page_or_retry(). 3113 */ 3114 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3115 unsigned long address, pte_t *page_table, pmd_t *pmd, 3116 unsigned int flags, pte_t orig_pte) 3117 { 3118 pgoff_t pgoff = (((address & PAGE_MASK) 3119 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3120 3121 pte_unmap(page_table); 3122 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3123 if (!vma->vm_ops->fault) 3124 return VM_FAULT_SIGBUS; 3125 if (!(flags & FAULT_FLAG_WRITE)) 3126 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3127 orig_pte); 3128 if (!(vma->vm_flags & VM_SHARED)) 3129 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3130 orig_pte); 3131 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3132 } 3133 3134 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3135 unsigned long addr, int page_nid, 3136 int *flags) 3137 { 3138 get_page(page); 3139 3140 count_vm_numa_event(NUMA_HINT_FAULTS); 3141 if (page_nid == numa_node_id()) { 3142 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3143 *flags |= TNF_FAULT_LOCAL; 3144 } 3145 3146 return mpol_misplaced(page, vma, addr); 3147 } 3148 3149 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3150 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3151 { 3152 struct page *page = NULL; 3153 spinlock_t *ptl; 3154 int page_nid = -1; 3155 int last_cpupid; 3156 int target_nid; 3157 bool migrated = false; 3158 bool was_writable = pte_write(pte); 3159 int flags = 0; 3160 3161 /* A PROT_NONE fault should not end up here */ 3162 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))); 3163 3164 /* 3165 * The "pte" at this point cannot be used safely without 3166 * validation through pte_unmap_same(). It's of NUMA type but 3167 * the pfn may be screwed if the read is non atomic. 3168 * 3169 * We can safely just do a "set_pte_at()", because the old 3170 * page table entry is not accessible, so there would be no 3171 * concurrent hardware modifications to the PTE. 3172 */ 3173 ptl = pte_lockptr(mm, pmd); 3174 spin_lock(ptl); 3175 if (unlikely(!pte_same(*ptep, pte))) { 3176 pte_unmap_unlock(ptep, ptl); 3177 goto out; 3178 } 3179 3180 /* Make it present again */ 3181 pte = pte_modify(pte, vma->vm_page_prot); 3182 pte = pte_mkyoung(pte); 3183 if (was_writable) 3184 pte = pte_mkwrite(pte); 3185 set_pte_at(mm, addr, ptep, pte); 3186 update_mmu_cache(vma, addr, ptep); 3187 3188 page = vm_normal_page(vma, addr, pte); 3189 if (!page) { 3190 pte_unmap_unlock(ptep, ptl); 3191 return 0; 3192 } 3193 3194 /* 3195 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3196 * much anyway since they can be in shared cache state. This misses 3197 * the case where a mapping is writable but the process never writes 3198 * to it but pte_write gets cleared during protection updates and 3199 * pte_dirty has unpredictable behaviour between PTE scan updates, 3200 * background writeback, dirty balancing and application behaviour. 3201 */ 3202 if (!(vma->vm_flags & VM_WRITE)) 3203 flags |= TNF_NO_GROUP; 3204 3205 /* 3206 * Flag if the page is shared between multiple address spaces. This 3207 * is later used when determining whether to group tasks together 3208 */ 3209 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3210 flags |= TNF_SHARED; 3211 3212 last_cpupid = page_cpupid_last(page); 3213 page_nid = page_to_nid(page); 3214 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3215 pte_unmap_unlock(ptep, ptl); 3216 if (target_nid == -1) { 3217 put_page(page); 3218 goto out; 3219 } 3220 3221 /* Migrate to the requested node */ 3222 migrated = migrate_misplaced_page(page, vma, target_nid); 3223 if (migrated) { 3224 page_nid = target_nid; 3225 flags |= TNF_MIGRATED; 3226 } else 3227 flags |= TNF_MIGRATE_FAIL; 3228 3229 out: 3230 if (page_nid != -1) 3231 task_numa_fault(last_cpupid, page_nid, 1, flags); 3232 return 0; 3233 } 3234 3235 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 3236 unsigned long address, pmd_t *pmd, unsigned int flags) 3237 { 3238 if (vma_is_anonymous(vma)) 3239 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags); 3240 if (vma->vm_ops->pmd_fault) 3241 return vma->vm_ops->pmd_fault(vma, address, pmd, flags); 3242 return VM_FAULT_FALLBACK; 3243 } 3244 3245 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 3246 unsigned long address, pmd_t *pmd, pmd_t orig_pmd, 3247 unsigned int flags) 3248 { 3249 if (vma_is_anonymous(vma)) 3250 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd); 3251 if (vma->vm_ops->pmd_fault) 3252 return vma->vm_ops->pmd_fault(vma, address, pmd, flags); 3253 return VM_FAULT_FALLBACK; 3254 } 3255 3256 /* 3257 * These routines also need to handle stuff like marking pages dirty 3258 * and/or accessed for architectures that don't do it in hardware (most 3259 * RISC architectures). The early dirtying is also good on the i386. 3260 * 3261 * There is also a hook called "update_mmu_cache()" that architectures 3262 * with external mmu caches can use to update those (ie the Sparc or 3263 * PowerPC hashed page tables that act as extended TLBs). 3264 * 3265 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3266 * but allow concurrent faults), and pte mapped but not yet locked. 3267 * We return with pte unmapped and unlocked. 3268 * 3269 * The mmap_sem may have been released depending on flags and our 3270 * return value. See filemap_fault() and __lock_page_or_retry(). 3271 */ 3272 static int handle_pte_fault(struct mm_struct *mm, 3273 struct vm_area_struct *vma, unsigned long address, 3274 pte_t *pte, pmd_t *pmd, unsigned int flags) 3275 { 3276 pte_t entry; 3277 spinlock_t *ptl; 3278 3279 /* 3280 * some architectures can have larger ptes than wordsize, 3281 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y, 3282 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses. 3283 * The code below just needs a consistent view for the ifs and 3284 * we later double check anyway with the ptl lock held. So here 3285 * a barrier will do. 3286 */ 3287 entry = *pte; 3288 barrier(); 3289 if (!pte_present(entry)) { 3290 if (pte_none(entry)) { 3291 if (vma_is_anonymous(vma)) 3292 return do_anonymous_page(mm, vma, address, 3293 pte, pmd, flags); 3294 else 3295 return do_fault(mm, vma, address, pte, pmd, 3296 flags, entry); 3297 } 3298 return do_swap_page(mm, vma, address, 3299 pte, pmd, flags, entry); 3300 } 3301 3302 if (pte_protnone(entry)) 3303 return do_numa_page(mm, vma, address, entry, pte, pmd); 3304 3305 ptl = pte_lockptr(mm, pmd); 3306 spin_lock(ptl); 3307 if (unlikely(!pte_same(*pte, entry))) 3308 goto unlock; 3309 if (flags & FAULT_FLAG_WRITE) { 3310 if (!pte_write(entry)) 3311 return do_wp_page(mm, vma, address, 3312 pte, pmd, ptl, entry); 3313 entry = pte_mkdirty(entry); 3314 } 3315 entry = pte_mkyoung(entry); 3316 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3317 update_mmu_cache(vma, address, pte); 3318 } else { 3319 /* 3320 * This is needed only for protection faults but the arch code 3321 * is not yet telling us if this is a protection fault or not. 3322 * This still avoids useless tlb flushes for .text page faults 3323 * with threads. 3324 */ 3325 if (flags & FAULT_FLAG_WRITE) 3326 flush_tlb_fix_spurious_fault(vma, address); 3327 } 3328 unlock: 3329 pte_unmap_unlock(pte, ptl); 3330 return 0; 3331 } 3332 3333 /* 3334 * By the time we get here, we already hold the mm semaphore 3335 * 3336 * The mmap_sem may have been released depending on flags and our 3337 * return value. See filemap_fault() and __lock_page_or_retry(). 3338 */ 3339 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3340 unsigned long address, unsigned int flags) 3341 { 3342 pgd_t *pgd; 3343 pud_t *pud; 3344 pmd_t *pmd; 3345 pte_t *pte; 3346 3347 if (unlikely(is_vm_hugetlb_page(vma))) 3348 return hugetlb_fault(mm, vma, address, flags); 3349 3350 pgd = pgd_offset(mm, address); 3351 pud = pud_alloc(mm, pgd, address); 3352 if (!pud) 3353 return VM_FAULT_OOM; 3354 pmd = pmd_alloc(mm, pud, address); 3355 if (!pmd) 3356 return VM_FAULT_OOM; 3357 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3358 int ret = create_huge_pmd(mm, vma, address, pmd, flags); 3359 if (!(ret & VM_FAULT_FALLBACK)) 3360 return ret; 3361 } else { 3362 pmd_t orig_pmd = *pmd; 3363 int ret; 3364 3365 barrier(); 3366 if (pmd_trans_huge(orig_pmd)) { 3367 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3368 3369 /* 3370 * If the pmd is splitting, return and retry the 3371 * the fault. Alternative: wait until the split 3372 * is done, and goto retry. 3373 */ 3374 if (pmd_trans_splitting(orig_pmd)) 3375 return 0; 3376 3377 if (pmd_protnone(orig_pmd)) 3378 return do_huge_pmd_numa_page(mm, vma, address, 3379 orig_pmd, pmd); 3380 3381 if (dirty && !pmd_write(orig_pmd)) { 3382 ret = wp_huge_pmd(mm, vma, address, pmd, 3383 orig_pmd, flags); 3384 if (!(ret & VM_FAULT_FALLBACK)) 3385 return ret; 3386 } else { 3387 huge_pmd_set_accessed(mm, vma, address, pmd, 3388 orig_pmd, dirty); 3389 return 0; 3390 } 3391 } 3392 } 3393 3394 /* 3395 * Use __pte_alloc instead of pte_alloc_map, because we can't 3396 * run pte_offset_map on the pmd, if an huge pmd could 3397 * materialize from under us from a different thread. 3398 */ 3399 if (unlikely(pmd_none(*pmd)) && 3400 unlikely(__pte_alloc(mm, vma, pmd, address))) 3401 return VM_FAULT_OOM; 3402 /* if an huge pmd materialized from under us just retry later */ 3403 if (unlikely(pmd_trans_huge(*pmd))) 3404 return 0; 3405 /* 3406 * A regular pmd is established and it can't morph into a huge pmd 3407 * from under us anymore at this point because we hold the mmap_sem 3408 * read mode and khugepaged takes it in write mode. So now it's 3409 * safe to run pte_offset_map(). 3410 */ 3411 pte = pte_offset_map(pmd, address); 3412 3413 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3414 } 3415 3416 /* 3417 * By the time we get here, we already hold the mm semaphore 3418 * 3419 * The mmap_sem may have been released depending on flags and our 3420 * return value. See filemap_fault() and __lock_page_or_retry(). 3421 */ 3422 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3423 unsigned long address, unsigned int flags) 3424 { 3425 int ret; 3426 3427 __set_current_state(TASK_RUNNING); 3428 3429 count_vm_event(PGFAULT); 3430 mem_cgroup_count_vm_event(mm, PGFAULT); 3431 3432 /* do counter updates before entering really critical section. */ 3433 check_sync_rss_stat(current); 3434 3435 /* 3436 * Enable the memcg OOM handling for faults triggered in user 3437 * space. Kernel faults are handled more gracefully. 3438 */ 3439 if (flags & FAULT_FLAG_USER) 3440 mem_cgroup_oom_enable(); 3441 3442 ret = __handle_mm_fault(mm, vma, address, flags); 3443 3444 if (flags & FAULT_FLAG_USER) { 3445 mem_cgroup_oom_disable(); 3446 /* 3447 * The task may have entered a memcg OOM situation but 3448 * if the allocation error was handled gracefully (no 3449 * VM_FAULT_OOM), there is no need to kill anything. 3450 * Just clean up the OOM state peacefully. 3451 */ 3452 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3453 mem_cgroup_oom_synchronize(false); 3454 } 3455 3456 return ret; 3457 } 3458 EXPORT_SYMBOL_GPL(handle_mm_fault); 3459 3460 #ifndef __PAGETABLE_PUD_FOLDED 3461 /* 3462 * Allocate page upper directory. 3463 * We've already handled the fast-path in-line. 3464 */ 3465 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3466 { 3467 pud_t *new = pud_alloc_one(mm, address); 3468 if (!new) 3469 return -ENOMEM; 3470 3471 smp_wmb(); /* See comment in __pte_alloc */ 3472 3473 spin_lock(&mm->page_table_lock); 3474 if (pgd_present(*pgd)) /* Another has populated it */ 3475 pud_free(mm, new); 3476 else 3477 pgd_populate(mm, pgd, new); 3478 spin_unlock(&mm->page_table_lock); 3479 return 0; 3480 } 3481 #endif /* __PAGETABLE_PUD_FOLDED */ 3482 3483 #ifndef __PAGETABLE_PMD_FOLDED 3484 /* 3485 * Allocate page middle directory. 3486 * We've already handled the fast-path in-line. 3487 */ 3488 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3489 { 3490 pmd_t *new = pmd_alloc_one(mm, address); 3491 if (!new) 3492 return -ENOMEM; 3493 3494 smp_wmb(); /* See comment in __pte_alloc */ 3495 3496 spin_lock(&mm->page_table_lock); 3497 #ifndef __ARCH_HAS_4LEVEL_HACK 3498 if (!pud_present(*pud)) { 3499 mm_inc_nr_pmds(mm); 3500 pud_populate(mm, pud, new); 3501 } else /* Another has populated it */ 3502 pmd_free(mm, new); 3503 #else 3504 if (!pgd_present(*pud)) { 3505 mm_inc_nr_pmds(mm); 3506 pgd_populate(mm, pud, new); 3507 } else /* Another has populated it */ 3508 pmd_free(mm, new); 3509 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3510 spin_unlock(&mm->page_table_lock); 3511 return 0; 3512 } 3513 #endif /* __PAGETABLE_PMD_FOLDED */ 3514 3515 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3516 pte_t **ptepp, spinlock_t **ptlp) 3517 { 3518 pgd_t *pgd; 3519 pud_t *pud; 3520 pmd_t *pmd; 3521 pte_t *ptep; 3522 3523 pgd = pgd_offset(mm, address); 3524 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3525 goto out; 3526 3527 pud = pud_offset(pgd, address); 3528 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3529 goto out; 3530 3531 pmd = pmd_offset(pud, address); 3532 VM_BUG_ON(pmd_trans_huge(*pmd)); 3533 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3534 goto out; 3535 3536 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3537 if (pmd_huge(*pmd)) 3538 goto out; 3539 3540 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3541 if (!ptep) 3542 goto out; 3543 if (!pte_present(*ptep)) 3544 goto unlock; 3545 *ptepp = ptep; 3546 return 0; 3547 unlock: 3548 pte_unmap_unlock(ptep, *ptlp); 3549 out: 3550 return -EINVAL; 3551 } 3552 3553 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3554 pte_t **ptepp, spinlock_t **ptlp) 3555 { 3556 int res; 3557 3558 /* (void) is needed to make gcc happy */ 3559 (void) __cond_lock(*ptlp, 3560 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3561 return res; 3562 } 3563 3564 /** 3565 * follow_pfn - look up PFN at a user virtual address 3566 * @vma: memory mapping 3567 * @address: user virtual address 3568 * @pfn: location to store found PFN 3569 * 3570 * Only IO mappings and raw PFN mappings are allowed. 3571 * 3572 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3573 */ 3574 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3575 unsigned long *pfn) 3576 { 3577 int ret = -EINVAL; 3578 spinlock_t *ptl; 3579 pte_t *ptep; 3580 3581 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3582 return ret; 3583 3584 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3585 if (ret) 3586 return ret; 3587 *pfn = pte_pfn(*ptep); 3588 pte_unmap_unlock(ptep, ptl); 3589 return 0; 3590 } 3591 EXPORT_SYMBOL(follow_pfn); 3592 3593 #ifdef CONFIG_HAVE_IOREMAP_PROT 3594 int follow_phys(struct vm_area_struct *vma, 3595 unsigned long address, unsigned int flags, 3596 unsigned long *prot, resource_size_t *phys) 3597 { 3598 int ret = -EINVAL; 3599 pte_t *ptep, pte; 3600 spinlock_t *ptl; 3601 3602 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3603 goto out; 3604 3605 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3606 goto out; 3607 pte = *ptep; 3608 3609 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3610 goto unlock; 3611 3612 *prot = pgprot_val(pte_pgprot(pte)); 3613 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3614 3615 ret = 0; 3616 unlock: 3617 pte_unmap_unlock(ptep, ptl); 3618 out: 3619 return ret; 3620 } 3621 3622 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3623 void *buf, int len, int write) 3624 { 3625 resource_size_t phys_addr; 3626 unsigned long prot = 0; 3627 void __iomem *maddr; 3628 int offset = addr & (PAGE_SIZE-1); 3629 3630 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3631 return -EINVAL; 3632 3633 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 3634 if (write) 3635 memcpy_toio(maddr + offset, buf, len); 3636 else 3637 memcpy_fromio(buf, maddr + offset, len); 3638 iounmap(maddr); 3639 3640 return len; 3641 } 3642 EXPORT_SYMBOL_GPL(generic_access_phys); 3643 #endif 3644 3645 /* 3646 * Access another process' address space as given in mm. If non-NULL, use the 3647 * given task for page fault accounting. 3648 */ 3649 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3650 unsigned long addr, void *buf, int len, int write) 3651 { 3652 struct vm_area_struct *vma; 3653 void *old_buf = buf; 3654 3655 down_read(&mm->mmap_sem); 3656 /* ignore errors, just check how much was successfully transferred */ 3657 while (len) { 3658 int bytes, ret, offset; 3659 void *maddr; 3660 struct page *page = NULL; 3661 3662 ret = get_user_pages(tsk, mm, addr, 1, 3663 write, 1, &page, &vma); 3664 if (ret <= 0) { 3665 #ifndef CONFIG_HAVE_IOREMAP_PROT 3666 break; 3667 #else 3668 /* 3669 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3670 * we can access using slightly different code. 3671 */ 3672 vma = find_vma(mm, addr); 3673 if (!vma || vma->vm_start > addr) 3674 break; 3675 if (vma->vm_ops && vma->vm_ops->access) 3676 ret = vma->vm_ops->access(vma, addr, buf, 3677 len, write); 3678 if (ret <= 0) 3679 break; 3680 bytes = ret; 3681 #endif 3682 } else { 3683 bytes = len; 3684 offset = addr & (PAGE_SIZE-1); 3685 if (bytes > PAGE_SIZE-offset) 3686 bytes = PAGE_SIZE-offset; 3687 3688 maddr = kmap(page); 3689 if (write) { 3690 copy_to_user_page(vma, page, addr, 3691 maddr + offset, buf, bytes); 3692 set_page_dirty_lock(page); 3693 } else { 3694 copy_from_user_page(vma, page, addr, 3695 buf, maddr + offset, bytes); 3696 } 3697 kunmap(page); 3698 page_cache_release(page); 3699 } 3700 len -= bytes; 3701 buf += bytes; 3702 addr += bytes; 3703 } 3704 up_read(&mm->mmap_sem); 3705 3706 return buf - old_buf; 3707 } 3708 3709 /** 3710 * access_remote_vm - access another process' address space 3711 * @mm: the mm_struct of the target address space 3712 * @addr: start address to access 3713 * @buf: source or destination buffer 3714 * @len: number of bytes to transfer 3715 * @write: whether the access is a write 3716 * 3717 * The caller must hold a reference on @mm. 3718 */ 3719 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3720 void *buf, int len, int write) 3721 { 3722 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3723 } 3724 3725 /* 3726 * Access another process' address space. 3727 * Source/target buffer must be kernel space, 3728 * Do not walk the page table directly, use get_user_pages 3729 */ 3730 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3731 void *buf, int len, int write) 3732 { 3733 struct mm_struct *mm; 3734 int ret; 3735 3736 mm = get_task_mm(tsk); 3737 if (!mm) 3738 return 0; 3739 3740 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3741 mmput(mm); 3742 3743 return ret; 3744 } 3745 3746 /* 3747 * Print the name of a VMA. 3748 */ 3749 void print_vma_addr(char *prefix, unsigned long ip) 3750 { 3751 struct mm_struct *mm = current->mm; 3752 struct vm_area_struct *vma; 3753 3754 /* 3755 * Do not print if we are in atomic 3756 * contexts (in exception stacks, etc.): 3757 */ 3758 if (preempt_count()) 3759 return; 3760 3761 down_read(&mm->mmap_sem); 3762 vma = find_vma(mm, ip); 3763 if (vma && vma->vm_file) { 3764 struct file *f = vma->vm_file; 3765 char *buf = (char *)__get_free_page(GFP_KERNEL); 3766 if (buf) { 3767 char *p; 3768 3769 p = file_path(f, buf, PAGE_SIZE); 3770 if (IS_ERR(p)) 3771 p = "?"; 3772 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 3773 vma->vm_start, 3774 vma->vm_end - vma->vm_start); 3775 free_page((unsigned long)buf); 3776 } 3777 } 3778 up_read(&mm->mmap_sem); 3779 } 3780 3781 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3782 void __might_fault(const char *file, int line) 3783 { 3784 /* 3785 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3786 * holding the mmap_sem, this is safe because kernel memory doesn't 3787 * get paged out, therefore we'll never actually fault, and the 3788 * below annotations will generate false positives. 3789 */ 3790 if (segment_eq(get_fs(), KERNEL_DS)) 3791 return; 3792 if (pagefault_disabled()) 3793 return; 3794 __might_sleep(file, line, 0); 3795 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3796 if (current->mm) 3797 might_lock_read(¤t->mm->mmap_sem); 3798 #endif 3799 } 3800 EXPORT_SYMBOL(__might_fault); 3801 #endif 3802 3803 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3804 static void clear_gigantic_page(struct page *page, 3805 unsigned long addr, 3806 unsigned int pages_per_huge_page) 3807 { 3808 int i; 3809 struct page *p = page; 3810 3811 might_sleep(); 3812 for (i = 0; i < pages_per_huge_page; 3813 i++, p = mem_map_next(p, page, i)) { 3814 cond_resched(); 3815 clear_user_highpage(p, addr + i * PAGE_SIZE); 3816 } 3817 } 3818 void clear_huge_page(struct page *page, 3819 unsigned long addr, unsigned int pages_per_huge_page) 3820 { 3821 int i; 3822 3823 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3824 clear_gigantic_page(page, addr, pages_per_huge_page); 3825 return; 3826 } 3827 3828 might_sleep(); 3829 for (i = 0; i < pages_per_huge_page; i++) { 3830 cond_resched(); 3831 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3832 } 3833 } 3834 3835 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3836 unsigned long addr, 3837 struct vm_area_struct *vma, 3838 unsigned int pages_per_huge_page) 3839 { 3840 int i; 3841 struct page *dst_base = dst; 3842 struct page *src_base = src; 3843 3844 for (i = 0; i < pages_per_huge_page; ) { 3845 cond_resched(); 3846 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3847 3848 i++; 3849 dst = mem_map_next(dst, dst_base, i); 3850 src = mem_map_next(src, src_base, i); 3851 } 3852 } 3853 3854 void copy_user_huge_page(struct page *dst, struct page *src, 3855 unsigned long addr, struct vm_area_struct *vma, 3856 unsigned int pages_per_huge_page) 3857 { 3858 int i; 3859 3860 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3861 copy_user_gigantic_page(dst, src, addr, vma, 3862 pages_per_huge_page); 3863 return; 3864 } 3865 3866 might_sleep(); 3867 for (i = 0; i < pages_per_huge_page; i++) { 3868 cond_resched(); 3869 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3870 } 3871 } 3872 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3873 3874 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 3875 3876 static struct kmem_cache *page_ptl_cachep; 3877 3878 void __init ptlock_cache_init(void) 3879 { 3880 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 3881 SLAB_PANIC, NULL); 3882 } 3883 3884 bool ptlock_alloc(struct page *page) 3885 { 3886 spinlock_t *ptl; 3887 3888 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 3889 if (!ptl) 3890 return false; 3891 page->ptl = ptl; 3892 return true; 3893 } 3894 3895 void ptlock_free(struct page *page) 3896 { 3897 kmem_cache_free(page_ptl_cachep, page->ptl); 3898 } 3899 #endif 3900