1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/ksm.h> 53 #include <linux/rmap.h> 54 #include <linux/export.h> 55 #include <linux/delayacct.h> 56 #include <linux/init.h> 57 #include <linux/pfn_t.h> 58 #include <linux/writeback.h> 59 #include <linux/memcontrol.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/kallsyms.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 72 #include <asm/io.h> 73 #include <asm/mmu_context.h> 74 #include <asm/pgalloc.h> 75 #include <linux/uaccess.h> 76 #include <asm/tlb.h> 77 #include <asm/tlbflush.h> 78 #include <asm/pgtable.h> 79 80 #include "internal.h" 81 82 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 83 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 84 #endif 85 86 #ifndef CONFIG_NEED_MULTIPLE_NODES 87 /* use the per-pgdat data instead for discontigmem - mbligh */ 88 unsigned long max_mapnr; 89 EXPORT_SYMBOL(max_mapnr); 90 91 struct page *mem_map; 92 EXPORT_SYMBOL(mem_map); 93 #endif 94 95 /* 96 * A number of key systems in x86 including ioremap() rely on the assumption 97 * that high_memory defines the upper bound on direct map memory, then end 98 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 99 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 100 * and ZONE_HIGHMEM. 101 */ 102 void *high_memory; 103 EXPORT_SYMBOL(high_memory); 104 105 /* 106 * Randomize the address space (stacks, mmaps, brk, etc.). 107 * 108 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 109 * as ancient (libc5 based) binaries can segfault. ) 110 */ 111 int randomize_va_space __read_mostly = 112 #ifdef CONFIG_COMPAT_BRK 113 1; 114 #else 115 2; 116 #endif 117 118 static int __init disable_randmaps(char *s) 119 { 120 randomize_va_space = 0; 121 return 1; 122 } 123 __setup("norandmaps", disable_randmaps); 124 125 unsigned long zero_pfn __read_mostly; 126 EXPORT_SYMBOL(zero_pfn); 127 128 unsigned long highest_memmap_pfn __read_mostly; 129 130 /* 131 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 132 */ 133 static int __init init_zero_pfn(void) 134 { 135 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 136 return 0; 137 } 138 core_initcall(init_zero_pfn); 139 140 141 #if defined(SPLIT_RSS_COUNTING) 142 143 void sync_mm_rss(struct mm_struct *mm) 144 { 145 int i; 146 147 for (i = 0; i < NR_MM_COUNTERS; i++) { 148 if (current->rss_stat.count[i]) { 149 add_mm_counter(mm, i, current->rss_stat.count[i]); 150 current->rss_stat.count[i] = 0; 151 } 152 } 153 current->rss_stat.events = 0; 154 } 155 156 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 157 { 158 struct task_struct *task = current; 159 160 if (likely(task->mm == mm)) 161 task->rss_stat.count[member] += val; 162 else 163 add_mm_counter(mm, member, val); 164 } 165 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 166 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 167 168 /* sync counter once per 64 page faults */ 169 #define TASK_RSS_EVENTS_THRESH (64) 170 static void check_sync_rss_stat(struct task_struct *task) 171 { 172 if (unlikely(task != current)) 173 return; 174 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 175 sync_mm_rss(task->mm); 176 } 177 #else /* SPLIT_RSS_COUNTING */ 178 179 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 180 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 181 182 static void check_sync_rss_stat(struct task_struct *task) 183 { 184 } 185 186 #endif /* SPLIT_RSS_COUNTING */ 187 188 #ifdef HAVE_GENERIC_MMU_GATHER 189 190 static bool tlb_next_batch(struct mmu_gather *tlb) 191 { 192 struct mmu_gather_batch *batch; 193 194 batch = tlb->active; 195 if (batch->next) { 196 tlb->active = batch->next; 197 return true; 198 } 199 200 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 201 return false; 202 203 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 204 if (!batch) 205 return false; 206 207 tlb->batch_count++; 208 batch->next = NULL; 209 batch->nr = 0; 210 batch->max = MAX_GATHER_BATCH; 211 212 tlb->active->next = batch; 213 tlb->active = batch; 214 215 return true; 216 } 217 218 /* tlb_gather_mmu 219 * Called to initialize an (on-stack) mmu_gather structure for page-table 220 * tear-down from @mm. The @fullmm argument is used when @mm is without 221 * users and we're going to destroy the full address space (exit/execve). 222 */ 223 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 224 { 225 tlb->mm = mm; 226 227 /* Is it from 0 to ~0? */ 228 tlb->fullmm = !(start | (end+1)); 229 tlb->need_flush_all = 0; 230 tlb->local.next = NULL; 231 tlb->local.nr = 0; 232 tlb->local.max = ARRAY_SIZE(tlb->__pages); 233 tlb->active = &tlb->local; 234 tlb->batch_count = 0; 235 236 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 237 tlb->batch = NULL; 238 #endif 239 tlb->page_size = 0; 240 241 __tlb_reset_range(tlb); 242 } 243 244 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 245 { 246 if (!tlb->end) 247 return; 248 249 tlb_flush(tlb); 250 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 251 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 252 tlb_table_flush(tlb); 253 #endif 254 __tlb_reset_range(tlb); 255 } 256 257 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 258 { 259 struct mmu_gather_batch *batch; 260 261 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 262 free_pages_and_swap_cache(batch->pages, batch->nr); 263 batch->nr = 0; 264 } 265 tlb->active = &tlb->local; 266 } 267 268 void tlb_flush_mmu(struct mmu_gather *tlb) 269 { 270 tlb_flush_mmu_tlbonly(tlb); 271 tlb_flush_mmu_free(tlb); 272 } 273 274 /* tlb_finish_mmu 275 * Called at the end of the shootdown operation to free up any resources 276 * that were required. 277 */ 278 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 279 { 280 struct mmu_gather_batch *batch, *next; 281 282 tlb_flush_mmu(tlb); 283 284 /* keep the page table cache within bounds */ 285 check_pgt_cache(); 286 287 for (batch = tlb->local.next; batch; batch = next) { 288 next = batch->next; 289 free_pages((unsigned long)batch, 0); 290 } 291 tlb->local.next = NULL; 292 } 293 294 /* __tlb_remove_page 295 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 296 * handling the additional races in SMP caused by other CPUs caching valid 297 * mappings in their TLBs. Returns the number of free page slots left. 298 * When out of page slots we must call tlb_flush_mmu(). 299 *returns true if the caller should flush. 300 */ 301 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) 302 { 303 struct mmu_gather_batch *batch; 304 305 VM_BUG_ON(!tlb->end); 306 VM_WARN_ON(tlb->page_size != page_size); 307 308 batch = tlb->active; 309 /* 310 * Add the page and check if we are full. If so 311 * force a flush. 312 */ 313 batch->pages[batch->nr++] = page; 314 if (batch->nr == batch->max) { 315 if (!tlb_next_batch(tlb)) 316 return true; 317 batch = tlb->active; 318 } 319 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 320 321 return false; 322 } 323 324 #endif /* HAVE_GENERIC_MMU_GATHER */ 325 326 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 327 328 /* 329 * See the comment near struct mmu_table_batch. 330 */ 331 332 static void tlb_remove_table_smp_sync(void *arg) 333 { 334 /* Simply deliver the interrupt */ 335 } 336 337 static void tlb_remove_table_one(void *table) 338 { 339 /* 340 * This isn't an RCU grace period and hence the page-tables cannot be 341 * assumed to be actually RCU-freed. 342 * 343 * It is however sufficient for software page-table walkers that rely on 344 * IRQ disabling. See the comment near struct mmu_table_batch. 345 */ 346 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 347 __tlb_remove_table(table); 348 } 349 350 static void tlb_remove_table_rcu(struct rcu_head *head) 351 { 352 struct mmu_table_batch *batch; 353 int i; 354 355 batch = container_of(head, struct mmu_table_batch, rcu); 356 357 for (i = 0; i < batch->nr; i++) 358 __tlb_remove_table(batch->tables[i]); 359 360 free_page((unsigned long)batch); 361 } 362 363 void tlb_table_flush(struct mmu_gather *tlb) 364 { 365 struct mmu_table_batch **batch = &tlb->batch; 366 367 if (*batch) { 368 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 369 *batch = NULL; 370 } 371 } 372 373 void tlb_remove_table(struct mmu_gather *tlb, void *table) 374 { 375 struct mmu_table_batch **batch = &tlb->batch; 376 377 /* 378 * When there's less then two users of this mm there cannot be a 379 * concurrent page-table walk. 380 */ 381 if (atomic_read(&tlb->mm->mm_users) < 2) { 382 __tlb_remove_table(table); 383 return; 384 } 385 386 if (*batch == NULL) { 387 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 388 if (*batch == NULL) { 389 tlb_remove_table_one(table); 390 return; 391 } 392 (*batch)->nr = 0; 393 } 394 (*batch)->tables[(*batch)->nr++] = table; 395 if ((*batch)->nr == MAX_TABLE_BATCH) 396 tlb_table_flush(tlb); 397 } 398 399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 400 401 /* 402 * Note: this doesn't free the actual pages themselves. That 403 * has been handled earlier when unmapping all the memory regions. 404 */ 405 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 406 unsigned long addr) 407 { 408 pgtable_t token = pmd_pgtable(*pmd); 409 pmd_clear(pmd); 410 pte_free_tlb(tlb, token, addr); 411 atomic_long_dec(&tlb->mm->nr_ptes); 412 } 413 414 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 415 unsigned long addr, unsigned long end, 416 unsigned long floor, unsigned long ceiling) 417 { 418 pmd_t *pmd; 419 unsigned long next; 420 unsigned long start; 421 422 start = addr; 423 pmd = pmd_offset(pud, addr); 424 do { 425 next = pmd_addr_end(addr, end); 426 if (pmd_none_or_clear_bad(pmd)) 427 continue; 428 free_pte_range(tlb, pmd, addr); 429 } while (pmd++, addr = next, addr != end); 430 431 start &= PUD_MASK; 432 if (start < floor) 433 return; 434 if (ceiling) { 435 ceiling &= PUD_MASK; 436 if (!ceiling) 437 return; 438 } 439 if (end - 1 > ceiling - 1) 440 return; 441 442 pmd = pmd_offset(pud, start); 443 pud_clear(pud); 444 pmd_free_tlb(tlb, pmd, start); 445 mm_dec_nr_pmds(tlb->mm); 446 } 447 448 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 449 unsigned long addr, unsigned long end, 450 unsigned long floor, unsigned long ceiling) 451 { 452 pud_t *pud; 453 unsigned long next; 454 unsigned long start; 455 456 start = addr; 457 pud = pud_offset(pgd, addr); 458 do { 459 next = pud_addr_end(addr, end); 460 if (pud_none_or_clear_bad(pud)) 461 continue; 462 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 463 } while (pud++, addr = next, addr != end); 464 465 start &= PGDIR_MASK; 466 if (start < floor) 467 return; 468 if (ceiling) { 469 ceiling &= PGDIR_MASK; 470 if (!ceiling) 471 return; 472 } 473 if (end - 1 > ceiling - 1) 474 return; 475 476 pud = pud_offset(pgd, start); 477 pgd_clear(pgd); 478 pud_free_tlb(tlb, pud, start); 479 } 480 481 /* 482 * This function frees user-level page tables of a process. 483 */ 484 void free_pgd_range(struct mmu_gather *tlb, 485 unsigned long addr, unsigned long end, 486 unsigned long floor, unsigned long ceiling) 487 { 488 pgd_t *pgd; 489 unsigned long next; 490 491 /* 492 * The next few lines have given us lots of grief... 493 * 494 * Why are we testing PMD* at this top level? Because often 495 * there will be no work to do at all, and we'd prefer not to 496 * go all the way down to the bottom just to discover that. 497 * 498 * Why all these "- 1"s? Because 0 represents both the bottom 499 * of the address space and the top of it (using -1 for the 500 * top wouldn't help much: the masks would do the wrong thing). 501 * The rule is that addr 0 and floor 0 refer to the bottom of 502 * the address space, but end 0 and ceiling 0 refer to the top 503 * Comparisons need to use "end - 1" and "ceiling - 1" (though 504 * that end 0 case should be mythical). 505 * 506 * Wherever addr is brought up or ceiling brought down, we must 507 * be careful to reject "the opposite 0" before it confuses the 508 * subsequent tests. But what about where end is brought down 509 * by PMD_SIZE below? no, end can't go down to 0 there. 510 * 511 * Whereas we round start (addr) and ceiling down, by different 512 * masks at different levels, in order to test whether a table 513 * now has no other vmas using it, so can be freed, we don't 514 * bother to round floor or end up - the tests don't need that. 515 */ 516 517 addr &= PMD_MASK; 518 if (addr < floor) { 519 addr += PMD_SIZE; 520 if (!addr) 521 return; 522 } 523 if (ceiling) { 524 ceiling &= PMD_MASK; 525 if (!ceiling) 526 return; 527 } 528 if (end - 1 > ceiling - 1) 529 end -= PMD_SIZE; 530 if (addr > end - 1) 531 return; 532 /* 533 * We add page table cache pages with PAGE_SIZE, 534 * (see pte_free_tlb()), flush the tlb if we need 535 */ 536 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 537 pgd = pgd_offset(tlb->mm, addr); 538 do { 539 next = pgd_addr_end(addr, end); 540 if (pgd_none_or_clear_bad(pgd)) 541 continue; 542 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 543 } while (pgd++, addr = next, addr != end); 544 } 545 546 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 547 unsigned long floor, unsigned long ceiling) 548 { 549 while (vma) { 550 struct vm_area_struct *next = vma->vm_next; 551 unsigned long addr = vma->vm_start; 552 553 /* 554 * Hide vma from rmap and truncate_pagecache before freeing 555 * pgtables 556 */ 557 unlink_anon_vmas(vma); 558 unlink_file_vma(vma); 559 560 if (is_vm_hugetlb_page(vma)) { 561 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 562 floor, next ? next->vm_start : ceiling); 563 } else { 564 /* 565 * Optimization: gather nearby vmas into one call down 566 */ 567 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 568 && !is_vm_hugetlb_page(next)) { 569 vma = next; 570 next = vma->vm_next; 571 unlink_anon_vmas(vma); 572 unlink_file_vma(vma); 573 } 574 free_pgd_range(tlb, addr, vma->vm_end, 575 floor, next ? next->vm_start : ceiling); 576 } 577 vma = next; 578 } 579 } 580 581 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 582 { 583 spinlock_t *ptl; 584 pgtable_t new = pte_alloc_one(mm, address); 585 if (!new) 586 return -ENOMEM; 587 588 /* 589 * Ensure all pte setup (eg. pte page lock and page clearing) are 590 * visible before the pte is made visible to other CPUs by being 591 * put into page tables. 592 * 593 * The other side of the story is the pointer chasing in the page 594 * table walking code (when walking the page table without locking; 595 * ie. most of the time). Fortunately, these data accesses consist 596 * of a chain of data-dependent loads, meaning most CPUs (alpha 597 * being the notable exception) will already guarantee loads are 598 * seen in-order. See the alpha page table accessors for the 599 * smp_read_barrier_depends() barriers in page table walking code. 600 */ 601 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 602 603 ptl = pmd_lock(mm, pmd); 604 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 605 atomic_long_inc(&mm->nr_ptes); 606 pmd_populate(mm, pmd, new); 607 new = NULL; 608 } 609 spin_unlock(ptl); 610 if (new) 611 pte_free(mm, new); 612 return 0; 613 } 614 615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 616 { 617 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 618 if (!new) 619 return -ENOMEM; 620 621 smp_wmb(); /* See comment in __pte_alloc */ 622 623 spin_lock(&init_mm.page_table_lock); 624 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 625 pmd_populate_kernel(&init_mm, pmd, new); 626 new = NULL; 627 } 628 spin_unlock(&init_mm.page_table_lock); 629 if (new) 630 pte_free_kernel(&init_mm, new); 631 return 0; 632 } 633 634 static inline void init_rss_vec(int *rss) 635 { 636 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 637 } 638 639 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 640 { 641 int i; 642 643 if (current->mm == mm) 644 sync_mm_rss(mm); 645 for (i = 0; i < NR_MM_COUNTERS; i++) 646 if (rss[i]) 647 add_mm_counter(mm, i, rss[i]); 648 } 649 650 /* 651 * This function is called to print an error when a bad pte 652 * is found. For example, we might have a PFN-mapped pte in 653 * a region that doesn't allow it. 654 * 655 * The calling function must still handle the error. 656 */ 657 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 658 pte_t pte, struct page *page) 659 { 660 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 661 pud_t *pud = pud_offset(pgd, addr); 662 pmd_t *pmd = pmd_offset(pud, addr); 663 struct address_space *mapping; 664 pgoff_t index; 665 static unsigned long resume; 666 static unsigned long nr_shown; 667 static unsigned long nr_unshown; 668 669 /* 670 * Allow a burst of 60 reports, then keep quiet for that minute; 671 * or allow a steady drip of one report per second. 672 */ 673 if (nr_shown == 60) { 674 if (time_before(jiffies, resume)) { 675 nr_unshown++; 676 return; 677 } 678 if (nr_unshown) { 679 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 680 nr_unshown); 681 nr_unshown = 0; 682 } 683 nr_shown = 0; 684 } 685 if (nr_shown++ == 0) 686 resume = jiffies + 60 * HZ; 687 688 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 689 index = linear_page_index(vma, addr); 690 691 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 692 current->comm, 693 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 694 if (page) 695 dump_page(page, "bad pte"); 696 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 697 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 698 /* 699 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 700 */ 701 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 702 vma->vm_file, 703 vma->vm_ops ? vma->vm_ops->fault : NULL, 704 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 705 mapping ? mapping->a_ops->readpage : NULL); 706 dump_stack(); 707 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 708 } 709 710 /* 711 * vm_normal_page -- This function gets the "struct page" associated with a pte. 712 * 713 * "Special" mappings do not wish to be associated with a "struct page" (either 714 * it doesn't exist, or it exists but they don't want to touch it). In this 715 * case, NULL is returned here. "Normal" mappings do have a struct page. 716 * 717 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 718 * pte bit, in which case this function is trivial. Secondly, an architecture 719 * may not have a spare pte bit, which requires a more complicated scheme, 720 * described below. 721 * 722 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 723 * special mapping (even if there are underlying and valid "struct pages"). 724 * COWed pages of a VM_PFNMAP are always normal. 725 * 726 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 727 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 728 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 729 * mapping will always honor the rule 730 * 731 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 732 * 733 * And for normal mappings this is false. 734 * 735 * This restricts such mappings to be a linear translation from virtual address 736 * to pfn. To get around this restriction, we allow arbitrary mappings so long 737 * as the vma is not a COW mapping; in that case, we know that all ptes are 738 * special (because none can have been COWed). 739 * 740 * 741 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 742 * 743 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 744 * page" backing, however the difference is that _all_ pages with a struct 745 * page (that is, those where pfn_valid is true) are refcounted and considered 746 * normal pages by the VM. The disadvantage is that pages are refcounted 747 * (which can be slower and simply not an option for some PFNMAP users). The 748 * advantage is that we don't have to follow the strict linearity rule of 749 * PFNMAP mappings in order to support COWable mappings. 750 * 751 */ 752 #ifdef __HAVE_ARCH_PTE_SPECIAL 753 # define HAVE_PTE_SPECIAL 1 754 #else 755 # define HAVE_PTE_SPECIAL 0 756 #endif 757 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 758 pte_t pte) 759 { 760 unsigned long pfn = pte_pfn(pte); 761 762 if (HAVE_PTE_SPECIAL) { 763 if (likely(!pte_special(pte))) 764 goto check_pfn; 765 if (vma->vm_ops && vma->vm_ops->find_special_page) 766 return vma->vm_ops->find_special_page(vma, addr); 767 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 768 return NULL; 769 if (!is_zero_pfn(pfn)) 770 print_bad_pte(vma, addr, pte, NULL); 771 return NULL; 772 } 773 774 /* !HAVE_PTE_SPECIAL case follows: */ 775 776 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 777 if (vma->vm_flags & VM_MIXEDMAP) { 778 if (!pfn_valid(pfn)) 779 return NULL; 780 goto out; 781 } else { 782 unsigned long off; 783 off = (addr - vma->vm_start) >> PAGE_SHIFT; 784 if (pfn == vma->vm_pgoff + off) 785 return NULL; 786 if (!is_cow_mapping(vma->vm_flags)) 787 return NULL; 788 } 789 } 790 791 if (is_zero_pfn(pfn)) 792 return NULL; 793 check_pfn: 794 if (unlikely(pfn > highest_memmap_pfn)) { 795 print_bad_pte(vma, addr, pte, NULL); 796 return NULL; 797 } 798 799 /* 800 * NOTE! We still have PageReserved() pages in the page tables. 801 * eg. VDSO mappings can cause them to exist. 802 */ 803 out: 804 return pfn_to_page(pfn); 805 } 806 807 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 808 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 809 pmd_t pmd) 810 { 811 unsigned long pfn = pmd_pfn(pmd); 812 813 /* 814 * There is no pmd_special() but there may be special pmds, e.g. 815 * in a direct-access (dax) mapping, so let's just replicate the 816 * !HAVE_PTE_SPECIAL case from vm_normal_page() here. 817 */ 818 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 819 if (vma->vm_flags & VM_MIXEDMAP) { 820 if (!pfn_valid(pfn)) 821 return NULL; 822 goto out; 823 } else { 824 unsigned long off; 825 off = (addr - vma->vm_start) >> PAGE_SHIFT; 826 if (pfn == vma->vm_pgoff + off) 827 return NULL; 828 if (!is_cow_mapping(vma->vm_flags)) 829 return NULL; 830 } 831 } 832 833 if (is_zero_pfn(pfn)) 834 return NULL; 835 if (unlikely(pfn > highest_memmap_pfn)) 836 return NULL; 837 838 /* 839 * NOTE! We still have PageReserved() pages in the page tables. 840 * eg. VDSO mappings can cause them to exist. 841 */ 842 out: 843 return pfn_to_page(pfn); 844 } 845 #endif 846 847 /* 848 * copy one vm_area from one task to the other. Assumes the page tables 849 * already present in the new task to be cleared in the whole range 850 * covered by this vma. 851 */ 852 853 static inline unsigned long 854 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 855 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 856 unsigned long addr, int *rss) 857 { 858 unsigned long vm_flags = vma->vm_flags; 859 pte_t pte = *src_pte; 860 struct page *page; 861 862 /* pte contains position in swap or file, so copy. */ 863 if (unlikely(!pte_present(pte))) { 864 swp_entry_t entry = pte_to_swp_entry(pte); 865 866 if (likely(!non_swap_entry(entry))) { 867 if (swap_duplicate(entry) < 0) 868 return entry.val; 869 870 /* make sure dst_mm is on swapoff's mmlist. */ 871 if (unlikely(list_empty(&dst_mm->mmlist))) { 872 spin_lock(&mmlist_lock); 873 if (list_empty(&dst_mm->mmlist)) 874 list_add(&dst_mm->mmlist, 875 &src_mm->mmlist); 876 spin_unlock(&mmlist_lock); 877 } 878 rss[MM_SWAPENTS]++; 879 } else if (is_migration_entry(entry)) { 880 page = migration_entry_to_page(entry); 881 882 rss[mm_counter(page)]++; 883 884 if (is_write_migration_entry(entry) && 885 is_cow_mapping(vm_flags)) { 886 /* 887 * COW mappings require pages in both 888 * parent and child to be set to read. 889 */ 890 make_migration_entry_read(&entry); 891 pte = swp_entry_to_pte(entry); 892 if (pte_swp_soft_dirty(*src_pte)) 893 pte = pte_swp_mksoft_dirty(pte); 894 set_pte_at(src_mm, addr, src_pte, pte); 895 } 896 } 897 goto out_set_pte; 898 } 899 900 /* 901 * If it's a COW mapping, write protect it both 902 * in the parent and the child 903 */ 904 if (is_cow_mapping(vm_flags)) { 905 ptep_set_wrprotect(src_mm, addr, src_pte); 906 pte = pte_wrprotect(pte); 907 } 908 909 /* 910 * If it's a shared mapping, mark it clean in 911 * the child 912 */ 913 if (vm_flags & VM_SHARED) 914 pte = pte_mkclean(pte); 915 pte = pte_mkold(pte); 916 917 page = vm_normal_page(vma, addr, pte); 918 if (page) { 919 get_page(page); 920 page_dup_rmap(page, false); 921 rss[mm_counter(page)]++; 922 } 923 924 out_set_pte: 925 set_pte_at(dst_mm, addr, dst_pte, pte); 926 return 0; 927 } 928 929 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 930 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 931 unsigned long addr, unsigned long end) 932 { 933 pte_t *orig_src_pte, *orig_dst_pte; 934 pte_t *src_pte, *dst_pte; 935 spinlock_t *src_ptl, *dst_ptl; 936 int progress = 0; 937 int rss[NR_MM_COUNTERS]; 938 swp_entry_t entry = (swp_entry_t){0}; 939 940 again: 941 init_rss_vec(rss); 942 943 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 944 if (!dst_pte) 945 return -ENOMEM; 946 src_pte = pte_offset_map(src_pmd, addr); 947 src_ptl = pte_lockptr(src_mm, src_pmd); 948 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 949 orig_src_pte = src_pte; 950 orig_dst_pte = dst_pte; 951 arch_enter_lazy_mmu_mode(); 952 953 do { 954 /* 955 * We are holding two locks at this point - either of them 956 * could generate latencies in another task on another CPU. 957 */ 958 if (progress >= 32) { 959 progress = 0; 960 if (need_resched() || 961 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 962 break; 963 } 964 if (pte_none(*src_pte)) { 965 progress++; 966 continue; 967 } 968 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 969 vma, addr, rss); 970 if (entry.val) 971 break; 972 progress += 8; 973 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 974 975 arch_leave_lazy_mmu_mode(); 976 spin_unlock(src_ptl); 977 pte_unmap(orig_src_pte); 978 add_mm_rss_vec(dst_mm, rss); 979 pte_unmap_unlock(orig_dst_pte, dst_ptl); 980 cond_resched(); 981 982 if (entry.val) { 983 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 984 return -ENOMEM; 985 progress = 0; 986 } 987 if (addr != end) 988 goto again; 989 return 0; 990 } 991 992 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 993 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 994 unsigned long addr, unsigned long end) 995 { 996 pmd_t *src_pmd, *dst_pmd; 997 unsigned long next; 998 999 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1000 if (!dst_pmd) 1001 return -ENOMEM; 1002 src_pmd = pmd_offset(src_pud, addr); 1003 do { 1004 next = pmd_addr_end(addr, end); 1005 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { 1006 int err; 1007 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 1008 err = copy_huge_pmd(dst_mm, src_mm, 1009 dst_pmd, src_pmd, addr, vma); 1010 if (err == -ENOMEM) 1011 return -ENOMEM; 1012 if (!err) 1013 continue; 1014 /* fall through */ 1015 } 1016 if (pmd_none_or_clear_bad(src_pmd)) 1017 continue; 1018 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1019 vma, addr, next)) 1020 return -ENOMEM; 1021 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1022 return 0; 1023 } 1024 1025 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1026 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1027 unsigned long addr, unsigned long end) 1028 { 1029 pud_t *src_pud, *dst_pud; 1030 unsigned long next; 1031 1032 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1033 if (!dst_pud) 1034 return -ENOMEM; 1035 src_pud = pud_offset(src_pgd, addr); 1036 do { 1037 next = pud_addr_end(addr, end); 1038 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1039 int err; 1040 1041 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 1042 err = copy_huge_pud(dst_mm, src_mm, 1043 dst_pud, src_pud, addr, vma); 1044 if (err == -ENOMEM) 1045 return -ENOMEM; 1046 if (!err) 1047 continue; 1048 /* fall through */ 1049 } 1050 if (pud_none_or_clear_bad(src_pud)) 1051 continue; 1052 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1053 vma, addr, next)) 1054 return -ENOMEM; 1055 } while (dst_pud++, src_pud++, addr = next, addr != end); 1056 return 0; 1057 } 1058 1059 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1060 struct vm_area_struct *vma) 1061 { 1062 pgd_t *src_pgd, *dst_pgd; 1063 unsigned long next; 1064 unsigned long addr = vma->vm_start; 1065 unsigned long end = vma->vm_end; 1066 unsigned long mmun_start; /* For mmu_notifiers */ 1067 unsigned long mmun_end; /* For mmu_notifiers */ 1068 bool is_cow; 1069 int ret; 1070 1071 /* 1072 * Don't copy ptes where a page fault will fill them correctly. 1073 * Fork becomes much lighter when there are big shared or private 1074 * readonly mappings. The tradeoff is that copy_page_range is more 1075 * efficient than faulting. 1076 */ 1077 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1078 !vma->anon_vma) 1079 return 0; 1080 1081 if (is_vm_hugetlb_page(vma)) 1082 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1083 1084 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1085 /* 1086 * We do not free on error cases below as remove_vma 1087 * gets called on error from higher level routine 1088 */ 1089 ret = track_pfn_copy(vma); 1090 if (ret) 1091 return ret; 1092 } 1093 1094 /* 1095 * We need to invalidate the secondary MMU mappings only when 1096 * there could be a permission downgrade on the ptes of the 1097 * parent mm. And a permission downgrade will only happen if 1098 * is_cow_mapping() returns true. 1099 */ 1100 is_cow = is_cow_mapping(vma->vm_flags); 1101 mmun_start = addr; 1102 mmun_end = end; 1103 if (is_cow) 1104 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1105 mmun_end); 1106 1107 ret = 0; 1108 dst_pgd = pgd_offset(dst_mm, addr); 1109 src_pgd = pgd_offset(src_mm, addr); 1110 do { 1111 next = pgd_addr_end(addr, end); 1112 if (pgd_none_or_clear_bad(src_pgd)) 1113 continue; 1114 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1115 vma, addr, next))) { 1116 ret = -ENOMEM; 1117 break; 1118 } 1119 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1120 1121 if (is_cow) 1122 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1123 return ret; 1124 } 1125 1126 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1127 struct vm_area_struct *vma, pmd_t *pmd, 1128 unsigned long addr, unsigned long end, 1129 struct zap_details *details) 1130 { 1131 struct mm_struct *mm = tlb->mm; 1132 int force_flush = 0; 1133 int rss[NR_MM_COUNTERS]; 1134 spinlock_t *ptl; 1135 pte_t *start_pte; 1136 pte_t *pte; 1137 swp_entry_t entry; 1138 1139 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1140 again: 1141 init_rss_vec(rss); 1142 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1143 pte = start_pte; 1144 arch_enter_lazy_mmu_mode(); 1145 do { 1146 pte_t ptent = *pte; 1147 if (pte_none(ptent)) 1148 continue; 1149 1150 if (pte_present(ptent)) { 1151 struct page *page; 1152 1153 page = vm_normal_page(vma, addr, ptent); 1154 if (unlikely(details) && page) { 1155 /* 1156 * unmap_shared_mapping_pages() wants to 1157 * invalidate cache without truncating: 1158 * unmap shared but keep private pages. 1159 */ 1160 if (details->check_mapping && 1161 details->check_mapping != page_rmapping(page)) 1162 continue; 1163 } 1164 ptent = ptep_get_and_clear_full(mm, addr, pte, 1165 tlb->fullmm); 1166 tlb_remove_tlb_entry(tlb, pte, addr); 1167 if (unlikely(!page)) 1168 continue; 1169 1170 if (!PageAnon(page)) { 1171 if (pte_dirty(ptent)) { 1172 force_flush = 1; 1173 set_page_dirty(page); 1174 } 1175 if (pte_young(ptent) && 1176 likely(!(vma->vm_flags & VM_SEQ_READ))) 1177 mark_page_accessed(page); 1178 } 1179 rss[mm_counter(page)]--; 1180 page_remove_rmap(page, false); 1181 if (unlikely(page_mapcount(page) < 0)) 1182 print_bad_pte(vma, addr, ptent, page); 1183 if (unlikely(__tlb_remove_page(tlb, page))) { 1184 force_flush = 1; 1185 addr += PAGE_SIZE; 1186 break; 1187 } 1188 continue; 1189 } 1190 /* If details->check_mapping, we leave swap entries. */ 1191 if (unlikely(details)) 1192 continue; 1193 1194 entry = pte_to_swp_entry(ptent); 1195 if (!non_swap_entry(entry)) 1196 rss[MM_SWAPENTS]--; 1197 else if (is_migration_entry(entry)) { 1198 struct page *page; 1199 1200 page = migration_entry_to_page(entry); 1201 rss[mm_counter(page)]--; 1202 } 1203 if (unlikely(!free_swap_and_cache(entry))) 1204 print_bad_pte(vma, addr, ptent, NULL); 1205 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1206 } while (pte++, addr += PAGE_SIZE, addr != end); 1207 1208 add_mm_rss_vec(mm, rss); 1209 arch_leave_lazy_mmu_mode(); 1210 1211 /* Do the actual TLB flush before dropping ptl */ 1212 if (force_flush) 1213 tlb_flush_mmu_tlbonly(tlb); 1214 pte_unmap_unlock(start_pte, ptl); 1215 1216 /* 1217 * If we forced a TLB flush (either due to running out of 1218 * batch buffers or because we needed to flush dirty TLB 1219 * entries before releasing the ptl), free the batched 1220 * memory too. Restart if we didn't do everything. 1221 */ 1222 if (force_flush) { 1223 force_flush = 0; 1224 tlb_flush_mmu_free(tlb); 1225 if (addr != end) 1226 goto again; 1227 } 1228 1229 return addr; 1230 } 1231 1232 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1233 struct vm_area_struct *vma, pud_t *pud, 1234 unsigned long addr, unsigned long end, 1235 struct zap_details *details) 1236 { 1237 pmd_t *pmd; 1238 unsigned long next; 1239 1240 pmd = pmd_offset(pud, addr); 1241 do { 1242 next = pmd_addr_end(addr, end); 1243 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1244 if (next - addr != HPAGE_PMD_SIZE) { 1245 VM_BUG_ON_VMA(vma_is_anonymous(vma) && 1246 !rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1247 __split_huge_pmd(vma, pmd, addr, false, NULL); 1248 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1249 goto next; 1250 /* fall through */ 1251 } 1252 /* 1253 * Here there can be other concurrent MADV_DONTNEED or 1254 * trans huge page faults running, and if the pmd is 1255 * none or trans huge it can change under us. This is 1256 * because MADV_DONTNEED holds the mmap_sem in read 1257 * mode. 1258 */ 1259 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1260 goto next; 1261 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1262 next: 1263 cond_resched(); 1264 } while (pmd++, addr = next, addr != end); 1265 1266 return addr; 1267 } 1268 1269 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1270 struct vm_area_struct *vma, pgd_t *pgd, 1271 unsigned long addr, unsigned long end, 1272 struct zap_details *details) 1273 { 1274 pud_t *pud; 1275 unsigned long next; 1276 1277 pud = pud_offset(pgd, addr); 1278 do { 1279 next = pud_addr_end(addr, end); 1280 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1281 if (next - addr != HPAGE_PUD_SIZE) { 1282 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1283 split_huge_pud(vma, pud, addr); 1284 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1285 goto next; 1286 /* fall through */ 1287 } 1288 if (pud_none_or_clear_bad(pud)) 1289 continue; 1290 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1291 next: 1292 cond_resched(); 1293 } while (pud++, addr = next, addr != end); 1294 1295 return addr; 1296 } 1297 1298 void unmap_page_range(struct mmu_gather *tlb, 1299 struct vm_area_struct *vma, 1300 unsigned long addr, unsigned long end, 1301 struct zap_details *details) 1302 { 1303 pgd_t *pgd; 1304 unsigned long next; 1305 1306 BUG_ON(addr >= end); 1307 tlb_start_vma(tlb, vma); 1308 pgd = pgd_offset(vma->vm_mm, addr); 1309 do { 1310 next = pgd_addr_end(addr, end); 1311 if (pgd_none_or_clear_bad(pgd)) 1312 continue; 1313 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1314 } while (pgd++, addr = next, addr != end); 1315 tlb_end_vma(tlb, vma); 1316 } 1317 1318 1319 static void unmap_single_vma(struct mmu_gather *tlb, 1320 struct vm_area_struct *vma, unsigned long start_addr, 1321 unsigned long end_addr, 1322 struct zap_details *details) 1323 { 1324 unsigned long start = max(vma->vm_start, start_addr); 1325 unsigned long end; 1326 1327 if (start >= vma->vm_end) 1328 return; 1329 end = min(vma->vm_end, end_addr); 1330 if (end <= vma->vm_start) 1331 return; 1332 1333 if (vma->vm_file) 1334 uprobe_munmap(vma, start, end); 1335 1336 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1337 untrack_pfn(vma, 0, 0); 1338 1339 if (start != end) { 1340 if (unlikely(is_vm_hugetlb_page(vma))) { 1341 /* 1342 * It is undesirable to test vma->vm_file as it 1343 * should be non-null for valid hugetlb area. 1344 * However, vm_file will be NULL in the error 1345 * cleanup path of mmap_region. When 1346 * hugetlbfs ->mmap method fails, 1347 * mmap_region() nullifies vma->vm_file 1348 * before calling this function to clean up. 1349 * Since no pte has actually been setup, it is 1350 * safe to do nothing in this case. 1351 */ 1352 if (vma->vm_file) { 1353 i_mmap_lock_write(vma->vm_file->f_mapping); 1354 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1355 i_mmap_unlock_write(vma->vm_file->f_mapping); 1356 } 1357 } else 1358 unmap_page_range(tlb, vma, start, end, details); 1359 } 1360 } 1361 1362 /** 1363 * unmap_vmas - unmap a range of memory covered by a list of vma's 1364 * @tlb: address of the caller's struct mmu_gather 1365 * @vma: the starting vma 1366 * @start_addr: virtual address at which to start unmapping 1367 * @end_addr: virtual address at which to end unmapping 1368 * 1369 * Unmap all pages in the vma list. 1370 * 1371 * Only addresses between `start' and `end' will be unmapped. 1372 * 1373 * The VMA list must be sorted in ascending virtual address order. 1374 * 1375 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1376 * range after unmap_vmas() returns. So the only responsibility here is to 1377 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1378 * drops the lock and schedules. 1379 */ 1380 void unmap_vmas(struct mmu_gather *tlb, 1381 struct vm_area_struct *vma, unsigned long start_addr, 1382 unsigned long end_addr) 1383 { 1384 struct mm_struct *mm = vma->vm_mm; 1385 1386 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1387 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1388 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1389 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1390 } 1391 1392 /** 1393 * zap_page_range - remove user pages in a given range 1394 * @vma: vm_area_struct holding the applicable pages 1395 * @start: starting address of pages to zap 1396 * @size: number of bytes to zap 1397 * 1398 * Caller must protect the VMA list 1399 */ 1400 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1401 unsigned long size) 1402 { 1403 struct mm_struct *mm = vma->vm_mm; 1404 struct mmu_gather tlb; 1405 unsigned long end = start + size; 1406 1407 lru_add_drain(); 1408 tlb_gather_mmu(&tlb, mm, start, end); 1409 update_hiwater_rss(mm); 1410 mmu_notifier_invalidate_range_start(mm, start, end); 1411 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1412 unmap_single_vma(&tlb, vma, start, end, NULL); 1413 mmu_notifier_invalidate_range_end(mm, start, end); 1414 tlb_finish_mmu(&tlb, start, end); 1415 } 1416 1417 /** 1418 * zap_page_range_single - remove user pages in a given range 1419 * @vma: vm_area_struct holding the applicable pages 1420 * @address: starting address of pages to zap 1421 * @size: number of bytes to zap 1422 * @details: details of shared cache invalidation 1423 * 1424 * The range must fit into one VMA. 1425 */ 1426 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1427 unsigned long size, struct zap_details *details) 1428 { 1429 struct mm_struct *mm = vma->vm_mm; 1430 struct mmu_gather tlb; 1431 unsigned long end = address + size; 1432 1433 lru_add_drain(); 1434 tlb_gather_mmu(&tlb, mm, address, end); 1435 update_hiwater_rss(mm); 1436 mmu_notifier_invalidate_range_start(mm, address, end); 1437 unmap_single_vma(&tlb, vma, address, end, details); 1438 mmu_notifier_invalidate_range_end(mm, address, end); 1439 tlb_finish_mmu(&tlb, address, end); 1440 } 1441 1442 /** 1443 * zap_vma_ptes - remove ptes mapping the vma 1444 * @vma: vm_area_struct holding ptes to be zapped 1445 * @address: starting address of pages to zap 1446 * @size: number of bytes to zap 1447 * 1448 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1449 * 1450 * The entire address range must be fully contained within the vma. 1451 * 1452 * Returns 0 if successful. 1453 */ 1454 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1455 unsigned long size) 1456 { 1457 if (address < vma->vm_start || address + size > vma->vm_end || 1458 !(vma->vm_flags & VM_PFNMAP)) 1459 return -1; 1460 zap_page_range_single(vma, address, size, NULL); 1461 return 0; 1462 } 1463 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1464 1465 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1466 spinlock_t **ptl) 1467 { 1468 pgd_t *pgd = pgd_offset(mm, addr); 1469 pud_t *pud = pud_alloc(mm, pgd, addr); 1470 if (pud) { 1471 pmd_t *pmd = pmd_alloc(mm, pud, addr); 1472 if (pmd) { 1473 VM_BUG_ON(pmd_trans_huge(*pmd)); 1474 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1475 } 1476 } 1477 return NULL; 1478 } 1479 1480 /* 1481 * This is the old fallback for page remapping. 1482 * 1483 * For historical reasons, it only allows reserved pages. Only 1484 * old drivers should use this, and they needed to mark their 1485 * pages reserved for the old functions anyway. 1486 */ 1487 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1488 struct page *page, pgprot_t prot) 1489 { 1490 struct mm_struct *mm = vma->vm_mm; 1491 int retval; 1492 pte_t *pte; 1493 spinlock_t *ptl; 1494 1495 retval = -EINVAL; 1496 if (PageAnon(page)) 1497 goto out; 1498 retval = -ENOMEM; 1499 flush_dcache_page(page); 1500 pte = get_locked_pte(mm, addr, &ptl); 1501 if (!pte) 1502 goto out; 1503 retval = -EBUSY; 1504 if (!pte_none(*pte)) 1505 goto out_unlock; 1506 1507 /* Ok, finally just insert the thing.. */ 1508 get_page(page); 1509 inc_mm_counter_fast(mm, mm_counter_file(page)); 1510 page_add_file_rmap(page, false); 1511 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1512 1513 retval = 0; 1514 pte_unmap_unlock(pte, ptl); 1515 return retval; 1516 out_unlock: 1517 pte_unmap_unlock(pte, ptl); 1518 out: 1519 return retval; 1520 } 1521 1522 /** 1523 * vm_insert_page - insert single page into user vma 1524 * @vma: user vma to map to 1525 * @addr: target user address of this page 1526 * @page: source kernel page 1527 * 1528 * This allows drivers to insert individual pages they've allocated 1529 * into a user vma. 1530 * 1531 * The page has to be a nice clean _individual_ kernel allocation. 1532 * If you allocate a compound page, you need to have marked it as 1533 * such (__GFP_COMP), or manually just split the page up yourself 1534 * (see split_page()). 1535 * 1536 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1537 * took an arbitrary page protection parameter. This doesn't allow 1538 * that. Your vma protection will have to be set up correctly, which 1539 * means that if you want a shared writable mapping, you'd better 1540 * ask for a shared writable mapping! 1541 * 1542 * The page does not need to be reserved. 1543 * 1544 * Usually this function is called from f_op->mmap() handler 1545 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1546 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1547 * function from other places, for example from page-fault handler. 1548 */ 1549 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1550 struct page *page) 1551 { 1552 if (addr < vma->vm_start || addr >= vma->vm_end) 1553 return -EFAULT; 1554 if (!page_count(page)) 1555 return -EINVAL; 1556 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1557 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1558 BUG_ON(vma->vm_flags & VM_PFNMAP); 1559 vma->vm_flags |= VM_MIXEDMAP; 1560 } 1561 return insert_page(vma, addr, page, vma->vm_page_prot); 1562 } 1563 EXPORT_SYMBOL(vm_insert_page); 1564 1565 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1566 pfn_t pfn, pgprot_t prot) 1567 { 1568 struct mm_struct *mm = vma->vm_mm; 1569 int retval; 1570 pte_t *pte, entry; 1571 spinlock_t *ptl; 1572 1573 retval = -ENOMEM; 1574 pte = get_locked_pte(mm, addr, &ptl); 1575 if (!pte) 1576 goto out; 1577 retval = -EBUSY; 1578 if (!pte_none(*pte)) 1579 goto out_unlock; 1580 1581 /* Ok, finally just insert the thing.. */ 1582 if (pfn_t_devmap(pfn)) 1583 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1584 else 1585 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1586 set_pte_at(mm, addr, pte, entry); 1587 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1588 1589 retval = 0; 1590 out_unlock: 1591 pte_unmap_unlock(pte, ptl); 1592 out: 1593 return retval; 1594 } 1595 1596 /** 1597 * vm_insert_pfn - insert single pfn into user vma 1598 * @vma: user vma to map to 1599 * @addr: target user address of this page 1600 * @pfn: source kernel pfn 1601 * 1602 * Similar to vm_insert_page, this allows drivers to insert individual pages 1603 * they've allocated into a user vma. Same comments apply. 1604 * 1605 * This function should only be called from a vm_ops->fault handler, and 1606 * in that case the handler should return NULL. 1607 * 1608 * vma cannot be a COW mapping. 1609 * 1610 * As this is called only for pages that do not currently exist, we 1611 * do not need to flush old virtual caches or the TLB. 1612 */ 1613 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1614 unsigned long pfn) 1615 { 1616 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1617 } 1618 EXPORT_SYMBOL(vm_insert_pfn); 1619 1620 /** 1621 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1622 * @vma: user vma to map to 1623 * @addr: target user address of this page 1624 * @pfn: source kernel pfn 1625 * @pgprot: pgprot flags for the inserted page 1626 * 1627 * This is exactly like vm_insert_pfn, except that it allows drivers to 1628 * to override pgprot on a per-page basis. 1629 * 1630 * This only makes sense for IO mappings, and it makes no sense for 1631 * cow mappings. In general, using multiple vmas is preferable; 1632 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1633 * impractical. 1634 */ 1635 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1636 unsigned long pfn, pgprot_t pgprot) 1637 { 1638 int ret; 1639 /* 1640 * Technically, architectures with pte_special can avoid all these 1641 * restrictions (same for remap_pfn_range). However we would like 1642 * consistency in testing and feature parity among all, so we should 1643 * try to keep these invariants in place for everybody. 1644 */ 1645 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1646 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1647 (VM_PFNMAP|VM_MIXEDMAP)); 1648 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1649 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1650 1651 if (addr < vma->vm_start || addr >= vma->vm_end) 1652 return -EFAULT; 1653 1654 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1655 1656 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot); 1657 1658 return ret; 1659 } 1660 EXPORT_SYMBOL(vm_insert_pfn_prot); 1661 1662 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1663 pfn_t pfn) 1664 { 1665 pgprot_t pgprot = vma->vm_page_prot; 1666 1667 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1668 1669 if (addr < vma->vm_start || addr >= vma->vm_end) 1670 return -EFAULT; 1671 1672 track_pfn_insert(vma, &pgprot, pfn); 1673 1674 /* 1675 * If we don't have pte special, then we have to use the pfn_valid() 1676 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1677 * refcount the page if pfn_valid is true (hence insert_page rather 1678 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1679 * without pte special, it would there be refcounted as a normal page. 1680 */ 1681 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1682 struct page *page; 1683 1684 /* 1685 * At this point we are committed to insert_page() 1686 * regardless of whether the caller specified flags that 1687 * result in pfn_t_has_page() == false. 1688 */ 1689 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1690 return insert_page(vma, addr, page, pgprot); 1691 } 1692 return insert_pfn(vma, addr, pfn, pgprot); 1693 } 1694 EXPORT_SYMBOL(vm_insert_mixed); 1695 1696 /* 1697 * maps a range of physical memory into the requested pages. the old 1698 * mappings are removed. any references to nonexistent pages results 1699 * in null mappings (currently treated as "copy-on-access") 1700 */ 1701 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1702 unsigned long addr, unsigned long end, 1703 unsigned long pfn, pgprot_t prot) 1704 { 1705 pte_t *pte; 1706 spinlock_t *ptl; 1707 1708 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1709 if (!pte) 1710 return -ENOMEM; 1711 arch_enter_lazy_mmu_mode(); 1712 do { 1713 BUG_ON(!pte_none(*pte)); 1714 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1715 pfn++; 1716 } while (pte++, addr += PAGE_SIZE, addr != end); 1717 arch_leave_lazy_mmu_mode(); 1718 pte_unmap_unlock(pte - 1, ptl); 1719 return 0; 1720 } 1721 1722 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1723 unsigned long addr, unsigned long end, 1724 unsigned long pfn, pgprot_t prot) 1725 { 1726 pmd_t *pmd; 1727 unsigned long next; 1728 1729 pfn -= addr >> PAGE_SHIFT; 1730 pmd = pmd_alloc(mm, pud, addr); 1731 if (!pmd) 1732 return -ENOMEM; 1733 VM_BUG_ON(pmd_trans_huge(*pmd)); 1734 do { 1735 next = pmd_addr_end(addr, end); 1736 if (remap_pte_range(mm, pmd, addr, next, 1737 pfn + (addr >> PAGE_SHIFT), prot)) 1738 return -ENOMEM; 1739 } while (pmd++, addr = next, addr != end); 1740 return 0; 1741 } 1742 1743 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1744 unsigned long addr, unsigned long end, 1745 unsigned long pfn, pgprot_t prot) 1746 { 1747 pud_t *pud; 1748 unsigned long next; 1749 1750 pfn -= addr >> PAGE_SHIFT; 1751 pud = pud_alloc(mm, pgd, addr); 1752 if (!pud) 1753 return -ENOMEM; 1754 do { 1755 next = pud_addr_end(addr, end); 1756 if (remap_pmd_range(mm, pud, addr, next, 1757 pfn + (addr >> PAGE_SHIFT), prot)) 1758 return -ENOMEM; 1759 } while (pud++, addr = next, addr != end); 1760 return 0; 1761 } 1762 1763 /** 1764 * remap_pfn_range - remap kernel memory to userspace 1765 * @vma: user vma to map to 1766 * @addr: target user address to start at 1767 * @pfn: physical address of kernel memory 1768 * @size: size of map area 1769 * @prot: page protection flags for this mapping 1770 * 1771 * Note: this is only safe if the mm semaphore is held when called. 1772 */ 1773 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1774 unsigned long pfn, unsigned long size, pgprot_t prot) 1775 { 1776 pgd_t *pgd; 1777 unsigned long next; 1778 unsigned long end = addr + PAGE_ALIGN(size); 1779 struct mm_struct *mm = vma->vm_mm; 1780 unsigned long remap_pfn = pfn; 1781 int err; 1782 1783 /* 1784 * Physically remapped pages are special. Tell the 1785 * rest of the world about it: 1786 * VM_IO tells people not to look at these pages 1787 * (accesses can have side effects). 1788 * VM_PFNMAP tells the core MM that the base pages are just 1789 * raw PFN mappings, and do not have a "struct page" associated 1790 * with them. 1791 * VM_DONTEXPAND 1792 * Disable vma merging and expanding with mremap(). 1793 * VM_DONTDUMP 1794 * Omit vma from core dump, even when VM_IO turned off. 1795 * 1796 * There's a horrible special case to handle copy-on-write 1797 * behaviour that some programs depend on. We mark the "original" 1798 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1799 * See vm_normal_page() for details. 1800 */ 1801 if (is_cow_mapping(vma->vm_flags)) { 1802 if (addr != vma->vm_start || end != vma->vm_end) 1803 return -EINVAL; 1804 vma->vm_pgoff = pfn; 1805 } 1806 1807 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1808 if (err) 1809 return -EINVAL; 1810 1811 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1812 1813 BUG_ON(addr >= end); 1814 pfn -= addr >> PAGE_SHIFT; 1815 pgd = pgd_offset(mm, addr); 1816 flush_cache_range(vma, addr, end); 1817 do { 1818 next = pgd_addr_end(addr, end); 1819 err = remap_pud_range(mm, pgd, addr, next, 1820 pfn + (addr >> PAGE_SHIFT), prot); 1821 if (err) 1822 break; 1823 } while (pgd++, addr = next, addr != end); 1824 1825 if (err) 1826 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1827 1828 return err; 1829 } 1830 EXPORT_SYMBOL(remap_pfn_range); 1831 1832 /** 1833 * vm_iomap_memory - remap memory to userspace 1834 * @vma: user vma to map to 1835 * @start: start of area 1836 * @len: size of area 1837 * 1838 * This is a simplified io_remap_pfn_range() for common driver use. The 1839 * driver just needs to give us the physical memory range to be mapped, 1840 * we'll figure out the rest from the vma information. 1841 * 1842 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1843 * whatever write-combining details or similar. 1844 */ 1845 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1846 { 1847 unsigned long vm_len, pfn, pages; 1848 1849 /* Check that the physical memory area passed in looks valid */ 1850 if (start + len < start) 1851 return -EINVAL; 1852 /* 1853 * You *really* shouldn't map things that aren't page-aligned, 1854 * but we've historically allowed it because IO memory might 1855 * just have smaller alignment. 1856 */ 1857 len += start & ~PAGE_MASK; 1858 pfn = start >> PAGE_SHIFT; 1859 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1860 if (pfn + pages < pfn) 1861 return -EINVAL; 1862 1863 /* We start the mapping 'vm_pgoff' pages into the area */ 1864 if (vma->vm_pgoff > pages) 1865 return -EINVAL; 1866 pfn += vma->vm_pgoff; 1867 pages -= vma->vm_pgoff; 1868 1869 /* Can we fit all of the mapping? */ 1870 vm_len = vma->vm_end - vma->vm_start; 1871 if (vm_len >> PAGE_SHIFT > pages) 1872 return -EINVAL; 1873 1874 /* Ok, let it rip */ 1875 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1876 } 1877 EXPORT_SYMBOL(vm_iomap_memory); 1878 1879 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1880 unsigned long addr, unsigned long end, 1881 pte_fn_t fn, void *data) 1882 { 1883 pte_t *pte; 1884 int err; 1885 pgtable_t token; 1886 spinlock_t *uninitialized_var(ptl); 1887 1888 pte = (mm == &init_mm) ? 1889 pte_alloc_kernel(pmd, addr) : 1890 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1891 if (!pte) 1892 return -ENOMEM; 1893 1894 BUG_ON(pmd_huge(*pmd)); 1895 1896 arch_enter_lazy_mmu_mode(); 1897 1898 token = pmd_pgtable(*pmd); 1899 1900 do { 1901 err = fn(pte++, token, addr, data); 1902 if (err) 1903 break; 1904 } while (addr += PAGE_SIZE, addr != end); 1905 1906 arch_leave_lazy_mmu_mode(); 1907 1908 if (mm != &init_mm) 1909 pte_unmap_unlock(pte-1, ptl); 1910 return err; 1911 } 1912 1913 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1914 unsigned long addr, unsigned long end, 1915 pte_fn_t fn, void *data) 1916 { 1917 pmd_t *pmd; 1918 unsigned long next; 1919 int err; 1920 1921 BUG_ON(pud_huge(*pud)); 1922 1923 pmd = pmd_alloc(mm, pud, addr); 1924 if (!pmd) 1925 return -ENOMEM; 1926 do { 1927 next = pmd_addr_end(addr, end); 1928 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1929 if (err) 1930 break; 1931 } while (pmd++, addr = next, addr != end); 1932 return err; 1933 } 1934 1935 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1936 unsigned long addr, unsigned long end, 1937 pte_fn_t fn, void *data) 1938 { 1939 pud_t *pud; 1940 unsigned long next; 1941 int err; 1942 1943 pud = pud_alloc(mm, pgd, addr); 1944 if (!pud) 1945 return -ENOMEM; 1946 do { 1947 next = pud_addr_end(addr, end); 1948 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1949 if (err) 1950 break; 1951 } while (pud++, addr = next, addr != end); 1952 return err; 1953 } 1954 1955 /* 1956 * Scan a region of virtual memory, filling in page tables as necessary 1957 * and calling a provided function on each leaf page table. 1958 */ 1959 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1960 unsigned long size, pte_fn_t fn, void *data) 1961 { 1962 pgd_t *pgd; 1963 unsigned long next; 1964 unsigned long end = addr + size; 1965 int err; 1966 1967 if (WARN_ON(addr >= end)) 1968 return -EINVAL; 1969 1970 pgd = pgd_offset(mm, addr); 1971 do { 1972 next = pgd_addr_end(addr, end); 1973 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1974 if (err) 1975 break; 1976 } while (pgd++, addr = next, addr != end); 1977 1978 return err; 1979 } 1980 EXPORT_SYMBOL_GPL(apply_to_page_range); 1981 1982 /* 1983 * handle_pte_fault chooses page fault handler according to an entry which was 1984 * read non-atomically. Before making any commitment, on those architectures 1985 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 1986 * parts, do_swap_page must check under lock before unmapping the pte and 1987 * proceeding (but do_wp_page is only called after already making such a check; 1988 * and do_anonymous_page can safely check later on). 1989 */ 1990 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1991 pte_t *page_table, pte_t orig_pte) 1992 { 1993 int same = 1; 1994 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1995 if (sizeof(pte_t) > sizeof(unsigned long)) { 1996 spinlock_t *ptl = pte_lockptr(mm, pmd); 1997 spin_lock(ptl); 1998 same = pte_same(*page_table, orig_pte); 1999 spin_unlock(ptl); 2000 } 2001 #endif 2002 pte_unmap(page_table); 2003 return same; 2004 } 2005 2006 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2007 { 2008 debug_dma_assert_idle(src); 2009 2010 /* 2011 * If the source page was a PFN mapping, we don't have 2012 * a "struct page" for it. We do a best-effort copy by 2013 * just copying from the original user address. If that 2014 * fails, we just zero-fill it. Live with it. 2015 */ 2016 if (unlikely(!src)) { 2017 void *kaddr = kmap_atomic(dst); 2018 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2019 2020 /* 2021 * This really shouldn't fail, because the page is there 2022 * in the page tables. But it might just be unreadable, 2023 * in which case we just give up and fill the result with 2024 * zeroes. 2025 */ 2026 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2027 clear_page(kaddr); 2028 kunmap_atomic(kaddr); 2029 flush_dcache_page(dst); 2030 } else 2031 copy_user_highpage(dst, src, va, vma); 2032 } 2033 2034 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2035 { 2036 struct file *vm_file = vma->vm_file; 2037 2038 if (vm_file) 2039 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2040 2041 /* 2042 * Special mappings (e.g. VDSO) do not have any file so fake 2043 * a default GFP_KERNEL for them. 2044 */ 2045 return GFP_KERNEL; 2046 } 2047 2048 /* 2049 * Notify the address space that the page is about to become writable so that 2050 * it can prohibit this or wait for the page to get into an appropriate state. 2051 * 2052 * We do this without the lock held, so that it can sleep if it needs to. 2053 */ 2054 static int do_page_mkwrite(struct vm_fault *vmf) 2055 { 2056 int ret; 2057 struct page *page = vmf->page; 2058 unsigned int old_flags = vmf->flags; 2059 2060 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2061 2062 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2063 /* Restore original flags so that caller is not surprised */ 2064 vmf->flags = old_flags; 2065 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2066 return ret; 2067 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2068 lock_page(page); 2069 if (!page->mapping) { 2070 unlock_page(page); 2071 return 0; /* retry */ 2072 } 2073 ret |= VM_FAULT_LOCKED; 2074 } else 2075 VM_BUG_ON_PAGE(!PageLocked(page), page); 2076 return ret; 2077 } 2078 2079 /* 2080 * Handle dirtying of a page in shared file mapping on a write fault. 2081 * 2082 * The function expects the page to be locked and unlocks it. 2083 */ 2084 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2085 struct page *page) 2086 { 2087 struct address_space *mapping; 2088 bool dirtied; 2089 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2090 2091 dirtied = set_page_dirty(page); 2092 VM_BUG_ON_PAGE(PageAnon(page), page); 2093 /* 2094 * Take a local copy of the address_space - page.mapping may be zeroed 2095 * by truncate after unlock_page(). The address_space itself remains 2096 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2097 * release semantics to prevent the compiler from undoing this copying. 2098 */ 2099 mapping = page_rmapping(page); 2100 unlock_page(page); 2101 2102 if ((dirtied || page_mkwrite) && mapping) { 2103 /* 2104 * Some device drivers do not set page.mapping 2105 * but still dirty their pages 2106 */ 2107 balance_dirty_pages_ratelimited(mapping); 2108 } 2109 2110 if (!page_mkwrite) 2111 file_update_time(vma->vm_file); 2112 } 2113 2114 /* 2115 * Handle write page faults for pages that can be reused in the current vma 2116 * 2117 * This can happen either due to the mapping being with the VM_SHARED flag, 2118 * or due to us being the last reference standing to the page. In either 2119 * case, all we need to do here is to mark the page as writable and update 2120 * any related book-keeping. 2121 */ 2122 static inline void wp_page_reuse(struct vm_fault *vmf) 2123 __releases(vmf->ptl) 2124 { 2125 struct vm_area_struct *vma = vmf->vma; 2126 struct page *page = vmf->page; 2127 pte_t entry; 2128 /* 2129 * Clear the pages cpupid information as the existing 2130 * information potentially belongs to a now completely 2131 * unrelated process. 2132 */ 2133 if (page) 2134 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2135 2136 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2137 entry = pte_mkyoung(vmf->orig_pte); 2138 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2139 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2140 update_mmu_cache(vma, vmf->address, vmf->pte); 2141 pte_unmap_unlock(vmf->pte, vmf->ptl); 2142 } 2143 2144 /* 2145 * Handle the case of a page which we actually need to copy to a new page. 2146 * 2147 * Called with mmap_sem locked and the old page referenced, but 2148 * without the ptl held. 2149 * 2150 * High level logic flow: 2151 * 2152 * - Allocate a page, copy the content of the old page to the new one. 2153 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2154 * - Take the PTL. If the pte changed, bail out and release the allocated page 2155 * - If the pte is still the way we remember it, update the page table and all 2156 * relevant references. This includes dropping the reference the page-table 2157 * held to the old page, as well as updating the rmap. 2158 * - In any case, unlock the PTL and drop the reference we took to the old page. 2159 */ 2160 static int wp_page_copy(struct vm_fault *vmf) 2161 { 2162 struct vm_area_struct *vma = vmf->vma; 2163 struct mm_struct *mm = vma->vm_mm; 2164 struct page *old_page = vmf->page; 2165 struct page *new_page = NULL; 2166 pte_t entry; 2167 int page_copied = 0; 2168 const unsigned long mmun_start = vmf->address & PAGE_MASK; 2169 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 2170 struct mem_cgroup *memcg; 2171 2172 if (unlikely(anon_vma_prepare(vma))) 2173 goto oom; 2174 2175 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2176 new_page = alloc_zeroed_user_highpage_movable(vma, 2177 vmf->address); 2178 if (!new_page) 2179 goto oom; 2180 } else { 2181 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2182 vmf->address); 2183 if (!new_page) 2184 goto oom; 2185 cow_user_page(new_page, old_page, vmf->address, vma); 2186 } 2187 2188 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) 2189 goto oom_free_new; 2190 2191 __SetPageUptodate(new_page); 2192 2193 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2194 2195 /* 2196 * Re-check the pte - we dropped the lock 2197 */ 2198 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2199 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2200 if (old_page) { 2201 if (!PageAnon(old_page)) { 2202 dec_mm_counter_fast(mm, 2203 mm_counter_file(old_page)); 2204 inc_mm_counter_fast(mm, MM_ANONPAGES); 2205 } 2206 } else { 2207 inc_mm_counter_fast(mm, MM_ANONPAGES); 2208 } 2209 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2210 entry = mk_pte(new_page, vma->vm_page_prot); 2211 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2212 /* 2213 * Clear the pte entry and flush it first, before updating the 2214 * pte with the new entry. This will avoid a race condition 2215 * seen in the presence of one thread doing SMC and another 2216 * thread doing COW. 2217 */ 2218 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2219 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2220 mem_cgroup_commit_charge(new_page, memcg, false, false); 2221 lru_cache_add_active_or_unevictable(new_page, vma); 2222 /* 2223 * We call the notify macro here because, when using secondary 2224 * mmu page tables (such as kvm shadow page tables), we want the 2225 * new page to be mapped directly into the secondary page table. 2226 */ 2227 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2228 update_mmu_cache(vma, vmf->address, vmf->pte); 2229 if (old_page) { 2230 /* 2231 * Only after switching the pte to the new page may 2232 * we remove the mapcount here. Otherwise another 2233 * process may come and find the rmap count decremented 2234 * before the pte is switched to the new page, and 2235 * "reuse" the old page writing into it while our pte 2236 * here still points into it and can be read by other 2237 * threads. 2238 * 2239 * The critical issue is to order this 2240 * page_remove_rmap with the ptp_clear_flush above. 2241 * Those stores are ordered by (if nothing else,) 2242 * the barrier present in the atomic_add_negative 2243 * in page_remove_rmap. 2244 * 2245 * Then the TLB flush in ptep_clear_flush ensures that 2246 * no process can access the old page before the 2247 * decremented mapcount is visible. And the old page 2248 * cannot be reused until after the decremented 2249 * mapcount is visible. So transitively, TLBs to 2250 * old page will be flushed before it can be reused. 2251 */ 2252 page_remove_rmap(old_page, false); 2253 } 2254 2255 /* Free the old page.. */ 2256 new_page = old_page; 2257 page_copied = 1; 2258 } else { 2259 mem_cgroup_cancel_charge(new_page, memcg, false); 2260 } 2261 2262 if (new_page) 2263 put_page(new_page); 2264 2265 pte_unmap_unlock(vmf->pte, vmf->ptl); 2266 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2267 if (old_page) { 2268 /* 2269 * Don't let another task, with possibly unlocked vma, 2270 * keep the mlocked page. 2271 */ 2272 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2273 lock_page(old_page); /* LRU manipulation */ 2274 if (PageMlocked(old_page)) 2275 munlock_vma_page(old_page); 2276 unlock_page(old_page); 2277 } 2278 put_page(old_page); 2279 } 2280 return page_copied ? VM_FAULT_WRITE : 0; 2281 oom_free_new: 2282 put_page(new_page); 2283 oom: 2284 if (old_page) 2285 put_page(old_page); 2286 return VM_FAULT_OOM; 2287 } 2288 2289 /** 2290 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2291 * writeable once the page is prepared 2292 * 2293 * @vmf: structure describing the fault 2294 * 2295 * This function handles all that is needed to finish a write page fault in a 2296 * shared mapping due to PTE being read-only once the mapped page is prepared. 2297 * It handles locking of PTE and modifying it. The function returns 2298 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2299 * lock. 2300 * 2301 * The function expects the page to be locked or other protection against 2302 * concurrent faults / writeback (such as DAX radix tree locks). 2303 */ 2304 int finish_mkwrite_fault(struct vm_fault *vmf) 2305 { 2306 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2307 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2308 &vmf->ptl); 2309 /* 2310 * We might have raced with another page fault while we released the 2311 * pte_offset_map_lock. 2312 */ 2313 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2314 pte_unmap_unlock(vmf->pte, vmf->ptl); 2315 return VM_FAULT_NOPAGE; 2316 } 2317 wp_page_reuse(vmf); 2318 return 0; 2319 } 2320 2321 /* 2322 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2323 * mapping 2324 */ 2325 static int wp_pfn_shared(struct vm_fault *vmf) 2326 { 2327 struct vm_area_struct *vma = vmf->vma; 2328 2329 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2330 int ret; 2331 2332 pte_unmap_unlock(vmf->pte, vmf->ptl); 2333 vmf->flags |= FAULT_FLAG_MKWRITE; 2334 ret = vma->vm_ops->pfn_mkwrite(vmf); 2335 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2336 return ret; 2337 return finish_mkwrite_fault(vmf); 2338 } 2339 wp_page_reuse(vmf); 2340 return VM_FAULT_WRITE; 2341 } 2342 2343 static int wp_page_shared(struct vm_fault *vmf) 2344 __releases(vmf->ptl) 2345 { 2346 struct vm_area_struct *vma = vmf->vma; 2347 2348 get_page(vmf->page); 2349 2350 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2351 int tmp; 2352 2353 pte_unmap_unlock(vmf->pte, vmf->ptl); 2354 tmp = do_page_mkwrite(vmf); 2355 if (unlikely(!tmp || (tmp & 2356 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2357 put_page(vmf->page); 2358 return tmp; 2359 } 2360 tmp = finish_mkwrite_fault(vmf); 2361 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2362 unlock_page(vmf->page); 2363 put_page(vmf->page); 2364 return tmp; 2365 } 2366 } else { 2367 wp_page_reuse(vmf); 2368 lock_page(vmf->page); 2369 } 2370 fault_dirty_shared_page(vma, vmf->page); 2371 put_page(vmf->page); 2372 2373 return VM_FAULT_WRITE; 2374 } 2375 2376 /* 2377 * This routine handles present pages, when users try to write 2378 * to a shared page. It is done by copying the page to a new address 2379 * and decrementing the shared-page counter for the old page. 2380 * 2381 * Note that this routine assumes that the protection checks have been 2382 * done by the caller (the low-level page fault routine in most cases). 2383 * Thus we can safely just mark it writable once we've done any necessary 2384 * COW. 2385 * 2386 * We also mark the page dirty at this point even though the page will 2387 * change only once the write actually happens. This avoids a few races, 2388 * and potentially makes it more efficient. 2389 * 2390 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2391 * but allow concurrent faults), with pte both mapped and locked. 2392 * We return with mmap_sem still held, but pte unmapped and unlocked. 2393 */ 2394 static int do_wp_page(struct vm_fault *vmf) 2395 __releases(vmf->ptl) 2396 { 2397 struct vm_area_struct *vma = vmf->vma; 2398 2399 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2400 if (!vmf->page) { 2401 /* 2402 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2403 * VM_PFNMAP VMA. 2404 * 2405 * We should not cow pages in a shared writeable mapping. 2406 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2407 */ 2408 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2409 (VM_WRITE|VM_SHARED)) 2410 return wp_pfn_shared(vmf); 2411 2412 pte_unmap_unlock(vmf->pte, vmf->ptl); 2413 return wp_page_copy(vmf); 2414 } 2415 2416 /* 2417 * Take out anonymous pages first, anonymous shared vmas are 2418 * not dirty accountable. 2419 */ 2420 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 2421 int total_mapcount; 2422 if (!trylock_page(vmf->page)) { 2423 get_page(vmf->page); 2424 pte_unmap_unlock(vmf->pte, vmf->ptl); 2425 lock_page(vmf->page); 2426 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2427 vmf->address, &vmf->ptl); 2428 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2429 unlock_page(vmf->page); 2430 pte_unmap_unlock(vmf->pte, vmf->ptl); 2431 put_page(vmf->page); 2432 return 0; 2433 } 2434 put_page(vmf->page); 2435 } 2436 if (reuse_swap_page(vmf->page, &total_mapcount)) { 2437 if (total_mapcount == 1) { 2438 /* 2439 * The page is all ours. Move it to 2440 * our anon_vma so the rmap code will 2441 * not search our parent or siblings. 2442 * Protected against the rmap code by 2443 * the page lock. 2444 */ 2445 page_move_anon_rmap(vmf->page, vma); 2446 } 2447 unlock_page(vmf->page); 2448 wp_page_reuse(vmf); 2449 return VM_FAULT_WRITE; 2450 } 2451 unlock_page(vmf->page); 2452 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2453 (VM_WRITE|VM_SHARED))) { 2454 return wp_page_shared(vmf); 2455 } 2456 2457 /* 2458 * Ok, we need to copy. Oh, well.. 2459 */ 2460 get_page(vmf->page); 2461 2462 pte_unmap_unlock(vmf->pte, vmf->ptl); 2463 return wp_page_copy(vmf); 2464 } 2465 2466 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2467 unsigned long start_addr, unsigned long end_addr, 2468 struct zap_details *details) 2469 { 2470 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2471 } 2472 2473 static inline void unmap_mapping_range_tree(struct rb_root *root, 2474 struct zap_details *details) 2475 { 2476 struct vm_area_struct *vma; 2477 pgoff_t vba, vea, zba, zea; 2478 2479 vma_interval_tree_foreach(vma, root, 2480 details->first_index, details->last_index) { 2481 2482 vba = vma->vm_pgoff; 2483 vea = vba + vma_pages(vma) - 1; 2484 zba = details->first_index; 2485 if (zba < vba) 2486 zba = vba; 2487 zea = details->last_index; 2488 if (zea > vea) 2489 zea = vea; 2490 2491 unmap_mapping_range_vma(vma, 2492 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2493 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2494 details); 2495 } 2496 } 2497 2498 /** 2499 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2500 * address_space corresponding to the specified page range in the underlying 2501 * file. 2502 * 2503 * @mapping: the address space containing mmaps to be unmapped. 2504 * @holebegin: byte in first page to unmap, relative to the start of 2505 * the underlying file. This will be rounded down to a PAGE_SIZE 2506 * boundary. Note that this is different from truncate_pagecache(), which 2507 * must keep the partial page. In contrast, we must get rid of 2508 * partial pages. 2509 * @holelen: size of prospective hole in bytes. This will be rounded 2510 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2511 * end of the file. 2512 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2513 * but 0 when invalidating pagecache, don't throw away private data. 2514 */ 2515 void unmap_mapping_range(struct address_space *mapping, 2516 loff_t const holebegin, loff_t const holelen, int even_cows) 2517 { 2518 struct zap_details details = { }; 2519 pgoff_t hba = holebegin >> PAGE_SHIFT; 2520 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2521 2522 /* Check for overflow. */ 2523 if (sizeof(holelen) > sizeof(hlen)) { 2524 long long holeend = 2525 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2526 if (holeend & ~(long long)ULONG_MAX) 2527 hlen = ULONG_MAX - hba + 1; 2528 } 2529 2530 details.check_mapping = even_cows ? NULL : mapping; 2531 details.first_index = hba; 2532 details.last_index = hba + hlen - 1; 2533 if (details.last_index < details.first_index) 2534 details.last_index = ULONG_MAX; 2535 2536 i_mmap_lock_write(mapping); 2537 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2538 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2539 i_mmap_unlock_write(mapping); 2540 } 2541 EXPORT_SYMBOL(unmap_mapping_range); 2542 2543 /* 2544 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2545 * but allow concurrent faults), and pte mapped but not yet locked. 2546 * We return with pte unmapped and unlocked. 2547 * 2548 * We return with the mmap_sem locked or unlocked in the same cases 2549 * as does filemap_fault(). 2550 */ 2551 int do_swap_page(struct vm_fault *vmf) 2552 { 2553 struct vm_area_struct *vma = vmf->vma; 2554 struct page *page, *swapcache; 2555 struct mem_cgroup *memcg; 2556 swp_entry_t entry; 2557 pte_t pte; 2558 int locked; 2559 int exclusive = 0; 2560 int ret = 0; 2561 2562 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2563 goto out; 2564 2565 entry = pte_to_swp_entry(vmf->orig_pte); 2566 if (unlikely(non_swap_entry(entry))) { 2567 if (is_migration_entry(entry)) { 2568 migration_entry_wait(vma->vm_mm, vmf->pmd, 2569 vmf->address); 2570 } else if (is_hwpoison_entry(entry)) { 2571 ret = VM_FAULT_HWPOISON; 2572 } else { 2573 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2574 ret = VM_FAULT_SIGBUS; 2575 } 2576 goto out; 2577 } 2578 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2579 page = lookup_swap_cache(entry); 2580 if (!page) { 2581 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma, 2582 vmf->address); 2583 if (!page) { 2584 /* 2585 * Back out if somebody else faulted in this pte 2586 * while we released the pte lock. 2587 */ 2588 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2589 vmf->address, &vmf->ptl); 2590 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2591 ret = VM_FAULT_OOM; 2592 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2593 goto unlock; 2594 } 2595 2596 /* Had to read the page from swap area: Major fault */ 2597 ret = VM_FAULT_MAJOR; 2598 count_vm_event(PGMAJFAULT); 2599 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 2600 } else if (PageHWPoison(page)) { 2601 /* 2602 * hwpoisoned dirty swapcache pages are kept for killing 2603 * owner processes (which may be unknown at hwpoison time) 2604 */ 2605 ret = VM_FAULT_HWPOISON; 2606 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2607 swapcache = page; 2608 goto out_release; 2609 } 2610 2611 swapcache = page; 2612 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2613 2614 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2615 if (!locked) { 2616 ret |= VM_FAULT_RETRY; 2617 goto out_release; 2618 } 2619 2620 /* 2621 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2622 * release the swapcache from under us. The page pin, and pte_same 2623 * test below, are not enough to exclude that. Even if it is still 2624 * swapcache, we need to check that the page's swap has not changed. 2625 */ 2626 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2627 goto out_page; 2628 2629 page = ksm_might_need_to_copy(page, vma, vmf->address); 2630 if (unlikely(!page)) { 2631 ret = VM_FAULT_OOM; 2632 page = swapcache; 2633 goto out_page; 2634 } 2635 2636 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 2637 &memcg, false)) { 2638 ret = VM_FAULT_OOM; 2639 goto out_page; 2640 } 2641 2642 /* 2643 * Back out if somebody else already faulted in this pte. 2644 */ 2645 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2646 &vmf->ptl); 2647 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2648 goto out_nomap; 2649 2650 if (unlikely(!PageUptodate(page))) { 2651 ret = VM_FAULT_SIGBUS; 2652 goto out_nomap; 2653 } 2654 2655 /* 2656 * The page isn't present yet, go ahead with the fault. 2657 * 2658 * Be careful about the sequence of operations here. 2659 * To get its accounting right, reuse_swap_page() must be called 2660 * while the page is counted on swap but not yet in mapcount i.e. 2661 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2662 * must be called after the swap_free(), or it will never succeed. 2663 */ 2664 2665 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2666 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2667 pte = mk_pte(page, vma->vm_page_prot); 2668 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2669 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2670 vmf->flags &= ~FAULT_FLAG_WRITE; 2671 ret |= VM_FAULT_WRITE; 2672 exclusive = RMAP_EXCLUSIVE; 2673 } 2674 flush_icache_page(vma, page); 2675 if (pte_swp_soft_dirty(vmf->orig_pte)) 2676 pte = pte_mksoft_dirty(pte); 2677 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2678 vmf->orig_pte = pte; 2679 if (page == swapcache) { 2680 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2681 mem_cgroup_commit_charge(page, memcg, true, false); 2682 activate_page(page); 2683 } else { /* ksm created a completely new copy */ 2684 page_add_new_anon_rmap(page, vma, vmf->address, false); 2685 mem_cgroup_commit_charge(page, memcg, false, false); 2686 lru_cache_add_active_or_unevictable(page, vma); 2687 } 2688 2689 swap_free(entry); 2690 if (mem_cgroup_swap_full(page) || 2691 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2692 try_to_free_swap(page); 2693 unlock_page(page); 2694 if (page != swapcache) { 2695 /* 2696 * Hold the lock to avoid the swap entry to be reused 2697 * until we take the PT lock for the pte_same() check 2698 * (to avoid false positives from pte_same). For 2699 * further safety release the lock after the swap_free 2700 * so that the swap count won't change under a 2701 * parallel locked swapcache. 2702 */ 2703 unlock_page(swapcache); 2704 put_page(swapcache); 2705 } 2706 2707 if (vmf->flags & FAULT_FLAG_WRITE) { 2708 ret |= do_wp_page(vmf); 2709 if (ret & VM_FAULT_ERROR) 2710 ret &= VM_FAULT_ERROR; 2711 goto out; 2712 } 2713 2714 /* No need to invalidate - it was non-present before */ 2715 update_mmu_cache(vma, vmf->address, vmf->pte); 2716 unlock: 2717 pte_unmap_unlock(vmf->pte, vmf->ptl); 2718 out: 2719 return ret; 2720 out_nomap: 2721 mem_cgroup_cancel_charge(page, memcg, false); 2722 pte_unmap_unlock(vmf->pte, vmf->ptl); 2723 out_page: 2724 unlock_page(page); 2725 out_release: 2726 put_page(page); 2727 if (page != swapcache) { 2728 unlock_page(swapcache); 2729 put_page(swapcache); 2730 } 2731 return ret; 2732 } 2733 2734 /* 2735 * This is like a special single-page "expand_{down|up}wards()", 2736 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2737 * doesn't hit another vma. 2738 */ 2739 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2740 { 2741 address &= PAGE_MASK; 2742 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2743 struct vm_area_struct *prev = vma->vm_prev; 2744 2745 /* 2746 * Is there a mapping abutting this one below? 2747 * 2748 * That's only ok if it's the same stack mapping 2749 * that has gotten split.. 2750 */ 2751 if (prev && prev->vm_end == address) 2752 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2753 2754 return expand_downwards(vma, address - PAGE_SIZE); 2755 } 2756 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2757 struct vm_area_struct *next = vma->vm_next; 2758 2759 /* As VM_GROWSDOWN but s/below/above/ */ 2760 if (next && next->vm_start == address + PAGE_SIZE) 2761 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2762 2763 return expand_upwards(vma, address + PAGE_SIZE); 2764 } 2765 return 0; 2766 } 2767 2768 /* 2769 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2770 * but allow concurrent faults), and pte mapped but not yet locked. 2771 * We return with mmap_sem still held, but pte unmapped and unlocked. 2772 */ 2773 static int do_anonymous_page(struct vm_fault *vmf) 2774 { 2775 struct vm_area_struct *vma = vmf->vma; 2776 struct mem_cgroup *memcg; 2777 struct page *page; 2778 pte_t entry; 2779 2780 /* File mapping without ->vm_ops ? */ 2781 if (vma->vm_flags & VM_SHARED) 2782 return VM_FAULT_SIGBUS; 2783 2784 /* Check if we need to add a guard page to the stack */ 2785 if (check_stack_guard_page(vma, vmf->address) < 0) 2786 return VM_FAULT_SIGSEGV; 2787 2788 /* 2789 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2790 * pte_offset_map() on pmds where a huge pmd might be created 2791 * from a different thread. 2792 * 2793 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2794 * parallel threads are excluded by other means. 2795 * 2796 * Here we only have down_read(mmap_sem). 2797 */ 2798 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) 2799 return VM_FAULT_OOM; 2800 2801 /* See the comment in pte_alloc_one_map() */ 2802 if (unlikely(pmd_trans_unstable(vmf->pmd))) 2803 return 0; 2804 2805 /* Use the zero-page for reads */ 2806 if (!(vmf->flags & FAULT_FLAG_WRITE) && 2807 !mm_forbids_zeropage(vma->vm_mm)) { 2808 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 2809 vma->vm_page_prot)); 2810 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2811 vmf->address, &vmf->ptl); 2812 if (!pte_none(*vmf->pte)) 2813 goto unlock; 2814 /* Deliver the page fault to userland, check inside PT lock */ 2815 if (userfaultfd_missing(vma)) { 2816 pte_unmap_unlock(vmf->pte, vmf->ptl); 2817 return handle_userfault(vmf, VM_UFFD_MISSING); 2818 } 2819 goto setpte; 2820 } 2821 2822 /* Allocate our own private page. */ 2823 if (unlikely(anon_vma_prepare(vma))) 2824 goto oom; 2825 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 2826 if (!page) 2827 goto oom; 2828 2829 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2830 goto oom_free_page; 2831 2832 /* 2833 * The memory barrier inside __SetPageUptodate makes sure that 2834 * preceeding stores to the page contents become visible before 2835 * the set_pte_at() write. 2836 */ 2837 __SetPageUptodate(page); 2838 2839 entry = mk_pte(page, vma->vm_page_prot); 2840 if (vma->vm_flags & VM_WRITE) 2841 entry = pte_mkwrite(pte_mkdirty(entry)); 2842 2843 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2844 &vmf->ptl); 2845 if (!pte_none(*vmf->pte)) 2846 goto release; 2847 2848 /* Deliver the page fault to userland, check inside PT lock */ 2849 if (userfaultfd_missing(vma)) { 2850 pte_unmap_unlock(vmf->pte, vmf->ptl); 2851 mem_cgroup_cancel_charge(page, memcg, false); 2852 put_page(page); 2853 return handle_userfault(vmf, VM_UFFD_MISSING); 2854 } 2855 2856 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2857 page_add_new_anon_rmap(page, vma, vmf->address, false); 2858 mem_cgroup_commit_charge(page, memcg, false, false); 2859 lru_cache_add_active_or_unevictable(page, vma); 2860 setpte: 2861 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 2862 2863 /* No need to invalidate - it was non-present before */ 2864 update_mmu_cache(vma, vmf->address, vmf->pte); 2865 unlock: 2866 pte_unmap_unlock(vmf->pte, vmf->ptl); 2867 return 0; 2868 release: 2869 mem_cgroup_cancel_charge(page, memcg, false); 2870 put_page(page); 2871 goto unlock; 2872 oom_free_page: 2873 put_page(page); 2874 oom: 2875 return VM_FAULT_OOM; 2876 } 2877 2878 /* 2879 * The mmap_sem must have been held on entry, and may have been 2880 * released depending on flags and vma->vm_ops->fault() return value. 2881 * See filemap_fault() and __lock_page_retry(). 2882 */ 2883 static int __do_fault(struct vm_fault *vmf) 2884 { 2885 struct vm_area_struct *vma = vmf->vma; 2886 int ret; 2887 2888 ret = vma->vm_ops->fault(vmf); 2889 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 2890 VM_FAULT_DONE_COW))) 2891 return ret; 2892 2893 if (unlikely(PageHWPoison(vmf->page))) { 2894 if (ret & VM_FAULT_LOCKED) 2895 unlock_page(vmf->page); 2896 put_page(vmf->page); 2897 vmf->page = NULL; 2898 return VM_FAULT_HWPOISON; 2899 } 2900 2901 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2902 lock_page(vmf->page); 2903 else 2904 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 2905 2906 return ret; 2907 } 2908 2909 static int pte_alloc_one_map(struct vm_fault *vmf) 2910 { 2911 struct vm_area_struct *vma = vmf->vma; 2912 2913 if (!pmd_none(*vmf->pmd)) 2914 goto map_pte; 2915 if (vmf->prealloc_pte) { 2916 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 2917 if (unlikely(!pmd_none(*vmf->pmd))) { 2918 spin_unlock(vmf->ptl); 2919 goto map_pte; 2920 } 2921 2922 atomic_long_inc(&vma->vm_mm->nr_ptes); 2923 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 2924 spin_unlock(vmf->ptl); 2925 vmf->prealloc_pte = NULL; 2926 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { 2927 return VM_FAULT_OOM; 2928 } 2929 map_pte: 2930 /* 2931 * If a huge pmd materialized under us just retry later. Use 2932 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd 2933 * didn't become pmd_trans_huge under us and then back to pmd_none, as 2934 * a result of MADV_DONTNEED running immediately after a huge pmd fault 2935 * in a different thread of this mm, in turn leading to a misleading 2936 * pmd_trans_huge() retval. All we have to ensure is that it is a 2937 * regular pmd that we can walk with pte_offset_map() and we can do that 2938 * through an atomic read in C, which is what pmd_trans_unstable() 2939 * provides. 2940 */ 2941 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd)) 2942 return VM_FAULT_NOPAGE; 2943 2944 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2945 &vmf->ptl); 2946 return 0; 2947 } 2948 2949 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 2950 2951 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 2952 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 2953 unsigned long haddr) 2954 { 2955 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 2956 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 2957 return false; 2958 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 2959 return false; 2960 return true; 2961 } 2962 2963 static void deposit_prealloc_pte(struct vm_fault *vmf) 2964 { 2965 struct vm_area_struct *vma = vmf->vma; 2966 2967 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 2968 /* 2969 * We are going to consume the prealloc table, 2970 * count that as nr_ptes. 2971 */ 2972 atomic_long_inc(&vma->vm_mm->nr_ptes); 2973 vmf->prealloc_pte = NULL; 2974 } 2975 2976 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 2977 { 2978 struct vm_area_struct *vma = vmf->vma; 2979 bool write = vmf->flags & FAULT_FLAG_WRITE; 2980 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 2981 pmd_t entry; 2982 int i, ret; 2983 2984 if (!transhuge_vma_suitable(vma, haddr)) 2985 return VM_FAULT_FALLBACK; 2986 2987 ret = VM_FAULT_FALLBACK; 2988 page = compound_head(page); 2989 2990 /* 2991 * Archs like ppc64 need additonal space to store information 2992 * related to pte entry. Use the preallocated table for that. 2993 */ 2994 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 2995 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); 2996 if (!vmf->prealloc_pte) 2997 return VM_FAULT_OOM; 2998 smp_wmb(); /* See comment in __pte_alloc() */ 2999 } 3000 3001 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3002 if (unlikely(!pmd_none(*vmf->pmd))) 3003 goto out; 3004 3005 for (i = 0; i < HPAGE_PMD_NR; i++) 3006 flush_icache_page(vma, page + i); 3007 3008 entry = mk_huge_pmd(page, vma->vm_page_prot); 3009 if (write) 3010 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3011 3012 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR); 3013 page_add_file_rmap(page, true); 3014 /* 3015 * deposit and withdraw with pmd lock held 3016 */ 3017 if (arch_needs_pgtable_deposit()) 3018 deposit_prealloc_pte(vmf); 3019 3020 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3021 3022 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3023 3024 /* fault is handled */ 3025 ret = 0; 3026 count_vm_event(THP_FILE_MAPPED); 3027 out: 3028 spin_unlock(vmf->ptl); 3029 return ret; 3030 } 3031 #else 3032 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3033 { 3034 BUILD_BUG(); 3035 return 0; 3036 } 3037 #endif 3038 3039 /** 3040 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3041 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3042 * 3043 * @vmf: fault environment 3044 * @memcg: memcg to charge page (only for private mappings) 3045 * @page: page to map 3046 * 3047 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3048 * return. 3049 * 3050 * Target users are page handler itself and implementations of 3051 * vm_ops->map_pages. 3052 */ 3053 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3054 struct page *page) 3055 { 3056 struct vm_area_struct *vma = vmf->vma; 3057 bool write = vmf->flags & FAULT_FLAG_WRITE; 3058 pte_t entry; 3059 int ret; 3060 3061 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3062 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3063 /* THP on COW? */ 3064 VM_BUG_ON_PAGE(memcg, page); 3065 3066 ret = do_set_pmd(vmf, page); 3067 if (ret != VM_FAULT_FALLBACK) 3068 return ret; 3069 } 3070 3071 if (!vmf->pte) { 3072 ret = pte_alloc_one_map(vmf); 3073 if (ret) 3074 return ret; 3075 } 3076 3077 /* Re-check under ptl */ 3078 if (unlikely(!pte_none(*vmf->pte))) 3079 return VM_FAULT_NOPAGE; 3080 3081 flush_icache_page(vma, page); 3082 entry = mk_pte(page, vma->vm_page_prot); 3083 if (write) 3084 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3085 /* copy-on-write page */ 3086 if (write && !(vma->vm_flags & VM_SHARED)) { 3087 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3088 page_add_new_anon_rmap(page, vma, vmf->address, false); 3089 mem_cgroup_commit_charge(page, memcg, false, false); 3090 lru_cache_add_active_or_unevictable(page, vma); 3091 } else { 3092 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3093 page_add_file_rmap(page, false); 3094 } 3095 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3096 3097 /* no need to invalidate: a not-present page won't be cached */ 3098 update_mmu_cache(vma, vmf->address, vmf->pte); 3099 3100 return 0; 3101 } 3102 3103 3104 /** 3105 * finish_fault - finish page fault once we have prepared the page to fault 3106 * 3107 * @vmf: structure describing the fault 3108 * 3109 * This function handles all that is needed to finish a page fault once the 3110 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3111 * given page, adds reverse page mapping, handles memcg charges and LRU 3112 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3113 * error. 3114 * 3115 * The function expects the page to be locked and on success it consumes a 3116 * reference of a page being mapped (for the PTE which maps it). 3117 */ 3118 int finish_fault(struct vm_fault *vmf) 3119 { 3120 struct page *page; 3121 int ret; 3122 3123 /* Did we COW the page? */ 3124 if ((vmf->flags & FAULT_FLAG_WRITE) && 3125 !(vmf->vma->vm_flags & VM_SHARED)) 3126 page = vmf->cow_page; 3127 else 3128 page = vmf->page; 3129 ret = alloc_set_pte(vmf, vmf->memcg, page); 3130 if (vmf->pte) 3131 pte_unmap_unlock(vmf->pte, vmf->ptl); 3132 return ret; 3133 } 3134 3135 static unsigned long fault_around_bytes __read_mostly = 3136 rounddown_pow_of_two(65536); 3137 3138 #ifdef CONFIG_DEBUG_FS 3139 static int fault_around_bytes_get(void *data, u64 *val) 3140 { 3141 *val = fault_around_bytes; 3142 return 0; 3143 } 3144 3145 /* 3146 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 3147 * rounded down to nearest page order. It's what do_fault_around() expects to 3148 * see. 3149 */ 3150 static int fault_around_bytes_set(void *data, u64 val) 3151 { 3152 if (val / PAGE_SIZE > PTRS_PER_PTE) 3153 return -EINVAL; 3154 if (val > PAGE_SIZE) 3155 fault_around_bytes = rounddown_pow_of_two(val); 3156 else 3157 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3158 return 0; 3159 } 3160 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 3161 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3162 3163 static int __init fault_around_debugfs(void) 3164 { 3165 void *ret; 3166 3167 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 3168 &fault_around_bytes_fops); 3169 if (!ret) 3170 pr_warn("Failed to create fault_around_bytes in debugfs"); 3171 return 0; 3172 } 3173 late_initcall(fault_around_debugfs); 3174 #endif 3175 3176 /* 3177 * do_fault_around() tries to map few pages around the fault address. The hope 3178 * is that the pages will be needed soon and this will lower the number of 3179 * faults to handle. 3180 * 3181 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3182 * not ready to be mapped: not up-to-date, locked, etc. 3183 * 3184 * This function is called with the page table lock taken. In the split ptlock 3185 * case the page table lock only protects only those entries which belong to 3186 * the page table corresponding to the fault address. 3187 * 3188 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3189 * only once. 3190 * 3191 * fault_around_pages() defines how many pages we'll try to map. 3192 * do_fault_around() expects it to return a power of two less than or equal to 3193 * PTRS_PER_PTE. 3194 * 3195 * The virtual address of the area that we map is naturally aligned to the 3196 * fault_around_pages() value (and therefore to page order). This way it's 3197 * easier to guarantee that we don't cross page table boundaries. 3198 */ 3199 static int do_fault_around(struct vm_fault *vmf) 3200 { 3201 unsigned long address = vmf->address, nr_pages, mask; 3202 pgoff_t start_pgoff = vmf->pgoff; 3203 pgoff_t end_pgoff; 3204 int off, ret = 0; 3205 3206 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3207 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3208 3209 vmf->address = max(address & mask, vmf->vma->vm_start); 3210 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3211 start_pgoff -= off; 3212 3213 /* 3214 * end_pgoff is either end of page table or end of vma 3215 * or fault_around_pages() from start_pgoff, depending what is nearest. 3216 */ 3217 end_pgoff = start_pgoff - 3218 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3219 PTRS_PER_PTE - 1; 3220 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3221 start_pgoff + nr_pages - 1); 3222 3223 if (pmd_none(*vmf->pmd)) { 3224 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, 3225 vmf->address); 3226 if (!vmf->prealloc_pte) 3227 goto out; 3228 smp_wmb(); /* See comment in __pte_alloc() */ 3229 } 3230 3231 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3232 3233 /* Huge page is mapped? Page fault is solved */ 3234 if (pmd_trans_huge(*vmf->pmd)) { 3235 ret = VM_FAULT_NOPAGE; 3236 goto out; 3237 } 3238 3239 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3240 if (!vmf->pte) 3241 goto out; 3242 3243 /* check if the page fault is solved */ 3244 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3245 if (!pte_none(*vmf->pte)) 3246 ret = VM_FAULT_NOPAGE; 3247 pte_unmap_unlock(vmf->pte, vmf->ptl); 3248 out: 3249 vmf->address = address; 3250 vmf->pte = NULL; 3251 return ret; 3252 } 3253 3254 static int do_read_fault(struct vm_fault *vmf) 3255 { 3256 struct vm_area_struct *vma = vmf->vma; 3257 int ret = 0; 3258 3259 /* 3260 * Let's call ->map_pages() first and use ->fault() as fallback 3261 * if page by the offset is not ready to be mapped (cold cache or 3262 * something). 3263 */ 3264 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3265 ret = do_fault_around(vmf); 3266 if (ret) 3267 return ret; 3268 } 3269 3270 ret = __do_fault(vmf); 3271 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3272 return ret; 3273 3274 ret |= finish_fault(vmf); 3275 unlock_page(vmf->page); 3276 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3277 put_page(vmf->page); 3278 return ret; 3279 } 3280 3281 static int do_cow_fault(struct vm_fault *vmf) 3282 { 3283 struct vm_area_struct *vma = vmf->vma; 3284 int ret; 3285 3286 if (unlikely(anon_vma_prepare(vma))) 3287 return VM_FAULT_OOM; 3288 3289 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3290 if (!vmf->cow_page) 3291 return VM_FAULT_OOM; 3292 3293 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3294 &vmf->memcg, false)) { 3295 put_page(vmf->cow_page); 3296 return VM_FAULT_OOM; 3297 } 3298 3299 ret = __do_fault(vmf); 3300 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3301 goto uncharge_out; 3302 if (ret & VM_FAULT_DONE_COW) 3303 return ret; 3304 3305 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3306 __SetPageUptodate(vmf->cow_page); 3307 3308 ret |= finish_fault(vmf); 3309 unlock_page(vmf->page); 3310 put_page(vmf->page); 3311 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3312 goto uncharge_out; 3313 return ret; 3314 uncharge_out: 3315 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3316 put_page(vmf->cow_page); 3317 return ret; 3318 } 3319 3320 static int do_shared_fault(struct vm_fault *vmf) 3321 { 3322 struct vm_area_struct *vma = vmf->vma; 3323 int ret, tmp; 3324 3325 ret = __do_fault(vmf); 3326 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3327 return ret; 3328 3329 /* 3330 * Check if the backing address space wants to know that the page is 3331 * about to become writable 3332 */ 3333 if (vma->vm_ops->page_mkwrite) { 3334 unlock_page(vmf->page); 3335 tmp = do_page_mkwrite(vmf); 3336 if (unlikely(!tmp || 3337 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3338 put_page(vmf->page); 3339 return tmp; 3340 } 3341 } 3342 3343 ret |= finish_fault(vmf); 3344 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3345 VM_FAULT_RETRY))) { 3346 unlock_page(vmf->page); 3347 put_page(vmf->page); 3348 return ret; 3349 } 3350 3351 fault_dirty_shared_page(vma, vmf->page); 3352 return ret; 3353 } 3354 3355 /* 3356 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3357 * but allow concurrent faults). 3358 * The mmap_sem may have been released depending on flags and our 3359 * return value. See filemap_fault() and __lock_page_or_retry(). 3360 */ 3361 static int do_fault(struct vm_fault *vmf) 3362 { 3363 struct vm_area_struct *vma = vmf->vma; 3364 int ret; 3365 3366 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3367 if (!vma->vm_ops->fault) 3368 ret = VM_FAULT_SIGBUS; 3369 else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3370 ret = do_read_fault(vmf); 3371 else if (!(vma->vm_flags & VM_SHARED)) 3372 ret = do_cow_fault(vmf); 3373 else 3374 ret = do_shared_fault(vmf); 3375 3376 /* preallocated pagetable is unused: free it */ 3377 if (vmf->prealloc_pte) { 3378 pte_free(vma->vm_mm, vmf->prealloc_pte); 3379 vmf->prealloc_pte = NULL; 3380 } 3381 return ret; 3382 } 3383 3384 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3385 unsigned long addr, int page_nid, 3386 int *flags) 3387 { 3388 get_page(page); 3389 3390 count_vm_numa_event(NUMA_HINT_FAULTS); 3391 if (page_nid == numa_node_id()) { 3392 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3393 *flags |= TNF_FAULT_LOCAL; 3394 } 3395 3396 return mpol_misplaced(page, vma, addr); 3397 } 3398 3399 static int do_numa_page(struct vm_fault *vmf) 3400 { 3401 struct vm_area_struct *vma = vmf->vma; 3402 struct page *page = NULL; 3403 int page_nid = -1; 3404 int last_cpupid; 3405 int target_nid; 3406 bool migrated = false; 3407 pte_t pte; 3408 bool was_writable = pte_savedwrite(vmf->orig_pte); 3409 int flags = 0; 3410 3411 /* 3412 * The "pte" at this point cannot be used safely without 3413 * validation through pte_unmap_same(). It's of NUMA type but 3414 * the pfn may be screwed if the read is non atomic. 3415 */ 3416 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3417 spin_lock(vmf->ptl); 3418 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3419 pte_unmap_unlock(vmf->pte, vmf->ptl); 3420 goto out; 3421 } 3422 3423 /* 3424 * Make it present again, Depending on how arch implementes non 3425 * accessible ptes, some can allow access by kernel mode. 3426 */ 3427 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); 3428 pte = pte_modify(pte, vma->vm_page_prot); 3429 pte = pte_mkyoung(pte); 3430 if (was_writable) 3431 pte = pte_mkwrite(pte); 3432 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); 3433 update_mmu_cache(vma, vmf->address, vmf->pte); 3434 3435 page = vm_normal_page(vma, vmf->address, pte); 3436 if (!page) { 3437 pte_unmap_unlock(vmf->pte, vmf->ptl); 3438 return 0; 3439 } 3440 3441 /* TODO: handle PTE-mapped THP */ 3442 if (PageCompound(page)) { 3443 pte_unmap_unlock(vmf->pte, vmf->ptl); 3444 return 0; 3445 } 3446 3447 /* 3448 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3449 * much anyway since they can be in shared cache state. This misses 3450 * the case where a mapping is writable but the process never writes 3451 * to it but pte_write gets cleared during protection updates and 3452 * pte_dirty has unpredictable behaviour between PTE scan updates, 3453 * background writeback, dirty balancing and application behaviour. 3454 */ 3455 if (!pte_write(pte)) 3456 flags |= TNF_NO_GROUP; 3457 3458 /* 3459 * Flag if the page is shared between multiple address spaces. This 3460 * is later used when determining whether to group tasks together 3461 */ 3462 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3463 flags |= TNF_SHARED; 3464 3465 last_cpupid = page_cpupid_last(page); 3466 page_nid = page_to_nid(page); 3467 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3468 &flags); 3469 pte_unmap_unlock(vmf->pte, vmf->ptl); 3470 if (target_nid == -1) { 3471 put_page(page); 3472 goto out; 3473 } 3474 3475 /* Migrate to the requested node */ 3476 migrated = migrate_misplaced_page(page, vma, target_nid); 3477 if (migrated) { 3478 page_nid = target_nid; 3479 flags |= TNF_MIGRATED; 3480 } else 3481 flags |= TNF_MIGRATE_FAIL; 3482 3483 out: 3484 if (page_nid != -1) 3485 task_numa_fault(last_cpupid, page_nid, 1, flags); 3486 return 0; 3487 } 3488 3489 static int create_huge_pmd(struct vm_fault *vmf) 3490 { 3491 if (vma_is_anonymous(vmf->vma)) 3492 return do_huge_pmd_anonymous_page(vmf); 3493 if (vmf->vma->vm_ops->huge_fault) 3494 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3495 return VM_FAULT_FALLBACK; 3496 } 3497 3498 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3499 { 3500 if (vma_is_anonymous(vmf->vma)) 3501 return do_huge_pmd_wp_page(vmf, orig_pmd); 3502 if (vmf->vma->vm_ops->huge_fault) 3503 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3504 3505 /* COW handled on pte level: split pmd */ 3506 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3507 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3508 3509 return VM_FAULT_FALLBACK; 3510 } 3511 3512 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3513 { 3514 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3515 } 3516 3517 static int create_huge_pud(struct vm_fault *vmf) 3518 { 3519 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3520 /* No support for anonymous transparent PUD pages yet */ 3521 if (vma_is_anonymous(vmf->vma)) 3522 return VM_FAULT_FALLBACK; 3523 if (vmf->vma->vm_ops->huge_fault) 3524 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3525 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3526 return VM_FAULT_FALLBACK; 3527 } 3528 3529 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3530 { 3531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3532 /* No support for anonymous transparent PUD pages yet */ 3533 if (vma_is_anonymous(vmf->vma)) 3534 return VM_FAULT_FALLBACK; 3535 if (vmf->vma->vm_ops->huge_fault) 3536 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3537 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3538 return VM_FAULT_FALLBACK; 3539 } 3540 3541 /* 3542 * These routines also need to handle stuff like marking pages dirty 3543 * and/or accessed for architectures that don't do it in hardware (most 3544 * RISC architectures). The early dirtying is also good on the i386. 3545 * 3546 * There is also a hook called "update_mmu_cache()" that architectures 3547 * with external mmu caches can use to update those (ie the Sparc or 3548 * PowerPC hashed page tables that act as extended TLBs). 3549 * 3550 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3551 * concurrent faults). 3552 * 3553 * The mmap_sem may have been released depending on flags and our return value. 3554 * See filemap_fault() and __lock_page_or_retry(). 3555 */ 3556 static int handle_pte_fault(struct vm_fault *vmf) 3557 { 3558 pte_t entry; 3559 3560 if (unlikely(pmd_none(*vmf->pmd))) { 3561 /* 3562 * Leave __pte_alloc() until later: because vm_ops->fault may 3563 * want to allocate huge page, and if we expose page table 3564 * for an instant, it will be difficult to retract from 3565 * concurrent faults and from rmap lookups. 3566 */ 3567 vmf->pte = NULL; 3568 } else { 3569 /* See comment in pte_alloc_one_map() */ 3570 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd)) 3571 return 0; 3572 /* 3573 * A regular pmd is established and it can't morph into a huge 3574 * pmd from under us anymore at this point because we hold the 3575 * mmap_sem read mode and khugepaged takes it in write mode. 3576 * So now it's safe to run pte_offset_map(). 3577 */ 3578 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3579 vmf->orig_pte = *vmf->pte; 3580 3581 /* 3582 * some architectures can have larger ptes than wordsize, 3583 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3584 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee 3585 * atomic accesses. The code below just needs a consistent 3586 * view for the ifs and we later double check anyway with the 3587 * ptl lock held. So here a barrier will do. 3588 */ 3589 barrier(); 3590 if (pte_none(vmf->orig_pte)) { 3591 pte_unmap(vmf->pte); 3592 vmf->pte = NULL; 3593 } 3594 } 3595 3596 if (!vmf->pte) { 3597 if (vma_is_anonymous(vmf->vma)) 3598 return do_anonymous_page(vmf); 3599 else 3600 return do_fault(vmf); 3601 } 3602 3603 if (!pte_present(vmf->orig_pte)) 3604 return do_swap_page(vmf); 3605 3606 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3607 return do_numa_page(vmf); 3608 3609 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3610 spin_lock(vmf->ptl); 3611 entry = vmf->orig_pte; 3612 if (unlikely(!pte_same(*vmf->pte, entry))) 3613 goto unlock; 3614 if (vmf->flags & FAULT_FLAG_WRITE) { 3615 if (!pte_write(entry)) 3616 return do_wp_page(vmf); 3617 entry = pte_mkdirty(entry); 3618 } 3619 entry = pte_mkyoung(entry); 3620 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3621 vmf->flags & FAULT_FLAG_WRITE)) { 3622 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3623 } else { 3624 /* 3625 * This is needed only for protection faults but the arch code 3626 * is not yet telling us if this is a protection fault or not. 3627 * This still avoids useless tlb flushes for .text page faults 3628 * with threads. 3629 */ 3630 if (vmf->flags & FAULT_FLAG_WRITE) 3631 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3632 } 3633 unlock: 3634 pte_unmap_unlock(vmf->pte, vmf->ptl); 3635 return 0; 3636 } 3637 3638 /* 3639 * By the time we get here, we already hold the mm semaphore 3640 * 3641 * The mmap_sem may have been released depending on flags and our 3642 * return value. See filemap_fault() and __lock_page_or_retry(). 3643 */ 3644 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3645 unsigned int flags) 3646 { 3647 struct vm_fault vmf = { 3648 .vma = vma, 3649 .address = address & PAGE_MASK, 3650 .flags = flags, 3651 .pgoff = linear_page_index(vma, address), 3652 .gfp_mask = __get_fault_gfp_mask(vma), 3653 }; 3654 struct mm_struct *mm = vma->vm_mm; 3655 pgd_t *pgd; 3656 int ret; 3657 3658 pgd = pgd_offset(mm, address); 3659 3660 vmf.pud = pud_alloc(mm, pgd, address); 3661 if (!vmf.pud) 3662 return VM_FAULT_OOM; 3663 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) { 3664 ret = create_huge_pud(&vmf); 3665 if (!(ret & VM_FAULT_FALLBACK)) 3666 return ret; 3667 } else { 3668 pud_t orig_pud = *vmf.pud; 3669 3670 barrier(); 3671 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 3672 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3673 3674 /* NUMA case for anonymous PUDs would go here */ 3675 3676 if (dirty && !pud_write(orig_pud)) { 3677 ret = wp_huge_pud(&vmf, orig_pud); 3678 if (!(ret & VM_FAULT_FALLBACK)) 3679 return ret; 3680 } else { 3681 huge_pud_set_accessed(&vmf, orig_pud); 3682 return 0; 3683 } 3684 } 3685 } 3686 3687 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 3688 if (!vmf.pmd) 3689 return VM_FAULT_OOM; 3690 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { 3691 ret = create_huge_pmd(&vmf); 3692 if (!(ret & VM_FAULT_FALLBACK)) 3693 return ret; 3694 } else { 3695 pmd_t orig_pmd = *vmf.pmd; 3696 3697 barrier(); 3698 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3699 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 3700 return do_huge_pmd_numa_page(&vmf, orig_pmd); 3701 3702 if ((vmf.flags & FAULT_FLAG_WRITE) && 3703 !pmd_write(orig_pmd)) { 3704 ret = wp_huge_pmd(&vmf, orig_pmd); 3705 if (!(ret & VM_FAULT_FALLBACK)) 3706 return ret; 3707 } else { 3708 huge_pmd_set_accessed(&vmf, orig_pmd); 3709 return 0; 3710 } 3711 } 3712 } 3713 3714 return handle_pte_fault(&vmf); 3715 } 3716 3717 /* 3718 * By the time we get here, we already hold the mm semaphore 3719 * 3720 * The mmap_sem may have been released depending on flags and our 3721 * return value. See filemap_fault() and __lock_page_or_retry(). 3722 */ 3723 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3724 unsigned int flags) 3725 { 3726 int ret; 3727 3728 __set_current_state(TASK_RUNNING); 3729 3730 count_vm_event(PGFAULT); 3731 mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT); 3732 3733 /* do counter updates before entering really critical section. */ 3734 check_sync_rss_stat(current); 3735 3736 /* 3737 * Enable the memcg OOM handling for faults triggered in user 3738 * space. Kernel faults are handled more gracefully. 3739 */ 3740 if (flags & FAULT_FLAG_USER) 3741 mem_cgroup_oom_enable(); 3742 3743 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3744 flags & FAULT_FLAG_INSTRUCTION, 3745 flags & FAULT_FLAG_REMOTE)) 3746 return VM_FAULT_SIGSEGV; 3747 3748 if (unlikely(is_vm_hugetlb_page(vma))) 3749 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 3750 else 3751 ret = __handle_mm_fault(vma, address, flags); 3752 3753 if (flags & FAULT_FLAG_USER) { 3754 mem_cgroup_oom_disable(); 3755 /* 3756 * The task may have entered a memcg OOM situation but 3757 * if the allocation error was handled gracefully (no 3758 * VM_FAULT_OOM), there is no need to kill anything. 3759 * Just clean up the OOM state peacefully. 3760 */ 3761 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3762 mem_cgroup_oom_synchronize(false); 3763 } 3764 3765 /* 3766 * This mm has been already reaped by the oom reaper and so the 3767 * refault cannot be trusted in general. Anonymous refaults would 3768 * lose data and give a zero page instead e.g. This is especially 3769 * problem for use_mm() because regular tasks will just die and 3770 * the corrupted data will not be visible anywhere while kthread 3771 * will outlive the oom victim and potentially propagate the date 3772 * further. 3773 */ 3774 if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR) 3775 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags))) 3776 ret = VM_FAULT_SIGBUS; 3777 3778 return ret; 3779 } 3780 EXPORT_SYMBOL_GPL(handle_mm_fault); 3781 3782 #ifndef __PAGETABLE_PUD_FOLDED 3783 /* 3784 * Allocate page upper directory. 3785 * We've already handled the fast-path in-line. 3786 */ 3787 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3788 { 3789 pud_t *new = pud_alloc_one(mm, address); 3790 if (!new) 3791 return -ENOMEM; 3792 3793 smp_wmb(); /* See comment in __pte_alloc */ 3794 3795 spin_lock(&mm->page_table_lock); 3796 if (pgd_present(*pgd)) /* Another has populated it */ 3797 pud_free(mm, new); 3798 else 3799 pgd_populate(mm, pgd, new); 3800 spin_unlock(&mm->page_table_lock); 3801 return 0; 3802 } 3803 #endif /* __PAGETABLE_PUD_FOLDED */ 3804 3805 #ifndef __PAGETABLE_PMD_FOLDED 3806 /* 3807 * Allocate page middle directory. 3808 * We've already handled the fast-path in-line. 3809 */ 3810 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3811 { 3812 spinlock_t *ptl; 3813 pmd_t *new = pmd_alloc_one(mm, address); 3814 if (!new) 3815 return -ENOMEM; 3816 3817 smp_wmb(); /* See comment in __pte_alloc */ 3818 3819 ptl = pud_lock(mm, pud); 3820 #ifndef __ARCH_HAS_4LEVEL_HACK 3821 if (!pud_present(*pud)) { 3822 mm_inc_nr_pmds(mm); 3823 pud_populate(mm, pud, new); 3824 } else /* Another has populated it */ 3825 pmd_free(mm, new); 3826 #else 3827 if (!pgd_present(*pud)) { 3828 mm_inc_nr_pmds(mm); 3829 pgd_populate(mm, pud, new); 3830 } else /* Another has populated it */ 3831 pmd_free(mm, new); 3832 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3833 spin_unlock(ptl); 3834 return 0; 3835 } 3836 #endif /* __PAGETABLE_PMD_FOLDED */ 3837 3838 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 3839 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 3840 { 3841 pgd_t *pgd; 3842 pud_t *pud; 3843 pmd_t *pmd; 3844 pte_t *ptep; 3845 3846 pgd = pgd_offset(mm, address); 3847 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3848 goto out; 3849 3850 pud = pud_offset(pgd, address); 3851 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3852 goto out; 3853 3854 pmd = pmd_offset(pud, address); 3855 VM_BUG_ON(pmd_trans_huge(*pmd)); 3856 3857 if (pmd_huge(*pmd)) { 3858 if (!pmdpp) 3859 goto out; 3860 3861 *ptlp = pmd_lock(mm, pmd); 3862 if (pmd_huge(*pmd)) { 3863 *pmdpp = pmd; 3864 return 0; 3865 } 3866 spin_unlock(*ptlp); 3867 } 3868 3869 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3870 goto out; 3871 3872 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3873 if (!ptep) 3874 goto out; 3875 if (!pte_present(*ptep)) 3876 goto unlock; 3877 *ptepp = ptep; 3878 return 0; 3879 unlock: 3880 pte_unmap_unlock(ptep, *ptlp); 3881 out: 3882 return -EINVAL; 3883 } 3884 3885 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3886 pte_t **ptepp, spinlock_t **ptlp) 3887 { 3888 int res; 3889 3890 /* (void) is needed to make gcc happy */ 3891 (void) __cond_lock(*ptlp, 3892 !(res = __follow_pte_pmd(mm, address, ptepp, NULL, 3893 ptlp))); 3894 return res; 3895 } 3896 3897 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 3898 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 3899 { 3900 int res; 3901 3902 /* (void) is needed to make gcc happy */ 3903 (void) __cond_lock(*ptlp, 3904 !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp, 3905 ptlp))); 3906 return res; 3907 } 3908 EXPORT_SYMBOL(follow_pte_pmd); 3909 3910 /** 3911 * follow_pfn - look up PFN at a user virtual address 3912 * @vma: memory mapping 3913 * @address: user virtual address 3914 * @pfn: location to store found PFN 3915 * 3916 * Only IO mappings and raw PFN mappings are allowed. 3917 * 3918 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3919 */ 3920 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3921 unsigned long *pfn) 3922 { 3923 int ret = -EINVAL; 3924 spinlock_t *ptl; 3925 pte_t *ptep; 3926 3927 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3928 return ret; 3929 3930 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3931 if (ret) 3932 return ret; 3933 *pfn = pte_pfn(*ptep); 3934 pte_unmap_unlock(ptep, ptl); 3935 return 0; 3936 } 3937 EXPORT_SYMBOL(follow_pfn); 3938 3939 #ifdef CONFIG_HAVE_IOREMAP_PROT 3940 int follow_phys(struct vm_area_struct *vma, 3941 unsigned long address, unsigned int flags, 3942 unsigned long *prot, resource_size_t *phys) 3943 { 3944 int ret = -EINVAL; 3945 pte_t *ptep, pte; 3946 spinlock_t *ptl; 3947 3948 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3949 goto out; 3950 3951 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3952 goto out; 3953 pte = *ptep; 3954 3955 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3956 goto unlock; 3957 3958 *prot = pgprot_val(pte_pgprot(pte)); 3959 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3960 3961 ret = 0; 3962 unlock: 3963 pte_unmap_unlock(ptep, ptl); 3964 out: 3965 return ret; 3966 } 3967 3968 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3969 void *buf, int len, int write) 3970 { 3971 resource_size_t phys_addr; 3972 unsigned long prot = 0; 3973 void __iomem *maddr; 3974 int offset = addr & (PAGE_SIZE-1); 3975 3976 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3977 return -EINVAL; 3978 3979 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 3980 if (write) 3981 memcpy_toio(maddr + offset, buf, len); 3982 else 3983 memcpy_fromio(buf, maddr + offset, len); 3984 iounmap(maddr); 3985 3986 return len; 3987 } 3988 EXPORT_SYMBOL_GPL(generic_access_phys); 3989 #endif 3990 3991 /* 3992 * Access another process' address space as given in mm. If non-NULL, use the 3993 * given task for page fault accounting. 3994 */ 3995 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3996 unsigned long addr, void *buf, int len, unsigned int gup_flags) 3997 { 3998 struct vm_area_struct *vma; 3999 void *old_buf = buf; 4000 int write = gup_flags & FOLL_WRITE; 4001 4002 down_read(&mm->mmap_sem); 4003 /* ignore errors, just check how much was successfully transferred */ 4004 while (len) { 4005 int bytes, ret, offset; 4006 void *maddr; 4007 struct page *page = NULL; 4008 4009 ret = get_user_pages_remote(tsk, mm, addr, 1, 4010 gup_flags, &page, &vma, NULL); 4011 if (ret <= 0) { 4012 #ifndef CONFIG_HAVE_IOREMAP_PROT 4013 break; 4014 #else 4015 /* 4016 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4017 * we can access using slightly different code. 4018 */ 4019 vma = find_vma(mm, addr); 4020 if (!vma || vma->vm_start > addr) 4021 break; 4022 if (vma->vm_ops && vma->vm_ops->access) 4023 ret = vma->vm_ops->access(vma, addr, buf, 4024 len, write); 4025 if (ret <= 0) 4026 break; 4027 bytes = ret; 4028 #endif 4029 } else { 4030 bytes = len; 4031 offset = addr & (PAGE_SIZE-1); 4032 if (bytes > PAGE_SIZE-offset) 4033 bytes = PAGE_SIZE-offset; 4034 4035 maddr = kmap(page); 4036 if (write) { 4037 copy_to_user_page(vma, page, addr, 4038 maddr + offset, buf, bytes); 4039 set_page_dirty_lock(page); 4040 } else { 4041 copy_from_user_page(vma, page, addr, 4042 buf, maddr + offset, bytes); 4043 } 4044 kunmap(page); 4045 put_page(page); 4046 } 4047 len -= bytes; 4048 buf += bytes; 4049 addr += bytes; 4050 } 4051 up_read(&mm->mmap_sem); 4052 4053 return buf - old_buf; 4054 } 4055 4056 /** 4057 * access_remote_vm - access another process' address space 4058 * @mm: the mm_struct of the target address space 4059 * @addr: start address to access 4060 * @buf: source or destination buffer 4061 * @len: number of bytes to transfer 4062 * @gup_flags: flags modifying lookup behaviour 4063 * 4064 * The caller must hold a reference on @mm. 4065 */ 4066 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4067 void *buf, int len, unsigned int gup_flags) 4068 { 4069 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4070 } 4071 4072 /* 4073 * Access another process' address space. 4074 * Source/target buffer must be kernel space, 4075 * Do not walk the page table directly, use get_user_pages 4076 */ 4077 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4078 void *buf, int len, unsigned int gup_flags) 4079 { 4080 struct mm_struct *mm; 4081 int ret; 4082 4083 mm = get_task_mm(tsk); 4084 if (!mm) 4085 return 0; 4086 4087 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4088 4089 mmput(mm); 4090 4091 return ret; 4092 } 4093 EXPORT_SYMBOL_GPL(access_process_vm); 4094 4095 /* 4096 * Print the name of a VMA. 4097 */ 4098 void print_vma_addr(char *prefix, unsigned long ip) 4099 { 4100 struct mm_struct *mm = current->mm; 4101 struct vm_area_struct *vma; 4102 4103 /* 4104 * Do not print if we are in atomic 4105 * contexts (in exception stacks, etc.): 4106 */ 4107 if (preempt_count()) 4108 return; 4109 4110 down_read(&mm->mmap_sem); 4111 vma = find_vma(mm, ip); 4112 if (vma && vma->vm_file) { 4113 struct file *f = vma->vm_file; 4114 char *buf = (char *)__get_free_page(GFP_KERNEL); 4115 if (buf) { 4116 char *p; 4117 4118 p = file_path(f, buf, PAGE_SIZE); 4119 if (IS_ERR(p)) 4120 p = "?"; 4121 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4122 vma->vm_start, 4123 vma->vm_end - vma->vm_start); 4124 free_page((unsigned long)buf); 4125 } 4126 } 4127 up_read(&mm->mmap_sem); 4128 } 4129 4130 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4131 void __might_fault(const char *file, int line) 4132 { 4133 /* 4134 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4135 * holding the mmap_sem, this is safe because kernel memory doesn't 4136 * get paged out, therefore we'll never actually fault, and the 4137 * below annotations will generate false positives. 4138 */ 4139 if (segment_eq(get_fs(), KERNEL_DS)) 4140 return; 4141 if (pagefault_disabled()) 4142 return; 4143 __might_sleep(file, line, 0); 4144 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4145 if (current->mm) 4146 might_lock_read(¤t->mm->mmap_sem); 4147 #endif 4148 } 4149 EXPORT_SYMBOL(__might_fault); 4150 #endif 4151 4152 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4153 static void clear_gigantic_page(struct page *page, 4154 unsigned long addr, 4155 unsigned int pages_per_huge_page) 4156 { 4157 int i; 4158 struct page *p = page; 4159 4160 might_sleep(); 4161 for (i = 0; i < pages_per_huge_page; 4162 i++, p = mem_map_next(p, page, i)) { 4163 cond_resched(); 4164 clear_user_highpage(p, addr + i * PAGE_SIZE); 4165 } 4166 } 4167 void clear_huge_page(struct page *page, 4168 unsigned long addr, unsigned int pages_per_huge_page) 4169 { 4170 int i; 4171 4172 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4173 clear_gigantic_page(page, addr, pages_per_huge_page); 4174 return; 4175 } 4176 4177 might_sleep(); 4178 for (i = 0; i < pages_per_huge_page; i++) { 4179 cond_resched(); 4180 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4181 } 4182 } 4183 4184 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4185 unsigned long addr, 4186 struct vm_area_struct *vma, 4187 unsigned int pages_per_huge_page) 4188 { 4189 int i; 4190 struct page *dst_base = dst; 4191 struct page *src_base = src; 4192 4193 for (i = 0; i < pages_per_huge_page; ) { 4194 cond_resched(); 4195 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4196 4197 i++; 4198 dst = mem_map_next(dst, dst_base, i); 4199 src = mem_map_next(src, src_base, i); 4200 } 4201 } 4202 4203 void copy_user_huge_page(struct page *dst, struct page *src, 4204 unsigned long addr, struct vm_area_struct *vma, 4205 unsigned int pages_per_huge_page) 4206 { 4207 int i; 4208 4209 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4210 copy_user_gigantic_page(dst, src, addr, vma, 4211 pages_per_huge_page); 4212 return; 4213 } 4214 4215 might_sleep(); 4216 for (i = 0; i < pages_per_huge_page; i++) { 4217 cond_resched(); 4218 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4219 } 4220 } 4221 4222 long copy_huge_page_from_user(struct page *dst_page, 4223 const void __user *usr_src, 4224 unsigned int pages_per_huge_page, 4225 bool allow_pagefault) 4226 { 4227 void *src = (void *)usr_src; 4228 void *page_kaddr; 4229 unsigned long i, rc = 0; 4230 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4231 4232 for (i = 0; i < pages_per_huge_page; i++) { 4233 if (allow_pagefault) 4234 page_kaddr = kmap(dst_page + i); 4235 else 4236 page_kaddr = kmap_atomic(dst_page + i); 4237 rc = copy_from_user(page_kaddr, 4238 (const void __user *)(src + i * PAGE_SIZE), 4239 PAGE_SIZE); 4240 if (allow_pagefault) 4241 kunmap(dst_page + i); 4242 else 4243 kunmap_atomic(page_kaddr); 4244 4245 ret_val -= (PAGE_SIZE - rc); 4246 if (rc) 4247 break; 4248 4249 cond_resched(); 4250 } 4251 return ret_val; 4252 } 4253 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4254 4255 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4256 4257 static struct kmem_cache *page_ptl_cachep; 4258 4259 void __init ptlock_cache_init(void) 4260 { 4261 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4262 SLAB_PANIC, NULL); 4263 } 4264 4265 bool ptlock_alloc(struct page *page) 4266 { 4267 spinlock_t *ptl; 4268 4269 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4270 if (!ptl) 4271 return false; 4272 page->ptl = ptl; 4273 return true; 4274 } 4275 4276 void ptlock_free(struct page *page) 4277 { 4278 kmem_cache_free(page_ptl_cachep, page->ptl); 4279 } 4280 #endif 4281