1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 81 #include <trace/events/kmem.h> 82 83 #include <asm/io.h> 84 #include <asm/mmu_context.h> 85 #include <asm/pgalloc.h> 86 #include <linux/uaccess.h> 87 #include <asm/tlb.h> 88 #include <asm/tlbflush.h> 89 90 #include "pgalloc-track.h" 91 #include "internal.h" 92 #include "swap.h" 93 94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 96 #endif 97 98 #ifndef CONFIG_NUMA 99 unsigned long max_mapnr; 100 EXPORT_SYMBOL(max_mapnr); 101 102 struct page *mem_map; 103 EXPORT_SYMBOL(mem_map); 104 #endif 105 106 static vm_fault_t do_fault(struct vm_fault *vmf); 107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 108 static bool vmf_pte_changed(struct vm_fault *vmf); 109 110 /* 111 * Return true if the original pte was a uffd-wp pte marker (so the pte was 112 * wr-protected). 113 */ 114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 115 { 116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 117 return false; 118 119 return pte_marker_uffd_wp(vmf->orig_pte); 120 } 121 122 /* 123 * A number of key systems in x86 including ioremap() rely on the assumption 124 * that high_memory defines the upper bound on direct map memory, then end 125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 127 * and ZONE_HIGHMEM. 128 */ 129 void *high_memory; 130 EXPORT_SYMBOL(high_memory); 131 132 /* 133 * Randomize the address space (stacks, mmaps, brk, etc.). 134 * 135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 136 * as ancient (libc5 based) binaries can segfault. ) 137 */ 138 int randomize_va_space __read_mostly = 139 #ifdef CONFIG_COMPAT_BRK 140 1; 141 #else 142 2; 143 #endif 144 145 #ifndef arch_wants_old_prefaulted_pte 146 static inline bool arch_wants_old_prefaulted_pte(void) 147 { 148 /* 149 * Transitioning a PTE from 'old' to 'young' can be expensive on 150 * some architectures, even if it's performed in hardware. By 151 * default, "false" means prefaulted entries will be 'young'. 152 */ 153 return false; 154 } 155 #endif 156 157 static int __init disable_randmaps(char *s) 158 { 159 randomize_va_space = 0; 160 return 1; 161 } 162 __setup("norandmaps", disable_randmaps); 163 164 unsigned long zero_pfn __read_mostly; 165 EXPORT_SYMBOL(zero_pfn); 166 167 unsigned long highest_memmap_pfn __read_mostly; 168 169 /* 170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 171 */ 172 static int __init init_zero_pfn(void) 173 { 174 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 175 return 0; 176 } 177 early_initcall(init_zero_pfn); 178 179 void mm_trace_rss_stat(struct mm_struct *mm, int member) 180 { 181 trace_rss_stat(mm, member); 182 } 183 184 /* 185 * Note: this doesn't free the actual pages themselves. That 186 * has been handled earlier when unmapping all the memory regions. 187 */ 188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 189 unsigned long addr) 190 { 191 pgtable_t token = pmd_pgtable(*pmd); 192 pmd_clear(pmd); 193 pte_free_tlb(tlb, token, addr); 194 mm_dec_nr_ptes(tlb->mm); 195 } 196 197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 198 unsigned long addr, unsigned long end, 199 unsigned long floor, unsigned long ceiling) 200 { 201 pmd_t *pmd; 202 unsigned long next; 203 unsigned long start; 204 205 start = addr; 206 pmd = pmd_offset(pud, addr); 207 do { 208 next = pmd_addr_end(addr, end); 209 if (pmd_none_or_clear_bad(pmd)) 210 continue; 211 free_pte_range(tlb, pmd, addr); 212 } while (pmd++, addr = next, addr != end); 213 214 start &= PUD_MASK; 215 if (start < floor) 216 return; 217 if (ceiling) { 218 ceiling &= PUD_MASK; 219 if (!ceiling) 220 return; 221 } 222 if (end - 1 > ceiling - 1) 223 return; 224 225 pmd = pmd_offset(pud, start); 226 pud_clear(pud); 227 pmd_free_tlb(tlb, pmd, start); 228 mm_dec_nr_pmds(tlb->mm); 229 } 230 231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 232 unsigned long addr, unsigned long end, 233 unsigned long floor, unsigned long ceiling) 234 { 235 pud_t *pud; 236 unsigned long next; 237 unsigned long start; 238 239 start = addr; 240 pud = pud_offset(p4d, addr); 241 do { 242 next = pud_addr_end(addr, end); 243 if (pud_none_or_clear_bad(pud)) 244 continue; 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 246 } while (pud++, addr = next, addr != end); 247 248 start &= P4D_MASK; 249 if (start < floor) 250 return; 251 if (ceiling) { 252 ceiling &= P4D_MASK; 253 if (!ceiling) 254 return; 255 } 256 if (end - 1 > ceiling - 1) 257 return; 258 259 pud = pud_offset(p4d, start); 260 p4d_clear(p4d); 261 pud_free_tlb(tlb, pud, start); 262 mm_dec_nr_puds(tlb->mm); 263 } 264 265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 266 unsigned long addr, unsigned long end, 267 unsigned long floor, unsigned long ceiling) 268 { 269 p4d_t *p4d; 270 unsigned long next; 271 unsigned long start; 272 273 start = addr; 274 p4d = p4d_offset(pgd, addr); 275 do { 276 next = p4d_addr_end(addr, end); 277 if (p4d_none_or_clear_bad(p4d)) 278 continue; 279 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 280 } while (p4d++, addr = next, addr != end); 281 282 start &= PGDIR_MASK; 283 if (start < floor) 284 return; 285 if (ceiling) { 286 ceiling &= PGDIR_MASK; 287 if (!ceiling) 288 return; 289 } 290 if (end - 1 > ceiling - 1) 291 return; 292 293 p4d = p4d_offset(pgd, start); 294 pgd_clear(pgd); 295 p4d_free_tlb(tlb, p4d, start); 296 } 297 298 /* 299 * This function frees user-level page tables of a process. 300 */ 301 void free_pgd_range(struct mmu_gather *tlb, 302 unsigned long addr, unsigned long end, 303 unsigned long floor, unsigned long ceiling) 304 { 305 pgd_t *pgd; 306 unsigned long next; 307 308 /* 309 * The next few lines have given us lots of grief... 310 * 311 * Why are we testing PMD* at this top level? Because often 312 * there will be no work to do at all, and we'd prefer not to 313 * go all the way down to the bottom just to discover that. 314 * 315 * Why all these "- 1"s? Because 0 represents both the bottom 316 * of the address space and the top of it (using -1 for the 317 * top wouldn't help much: the masks would do the wrong thing). 318 * The rule is that addr 0 and floor 0 refer to the bottom of 319 * the address space, but end 0 and ceiling 0 refer to the top 320 * Comparisons need to use "end - 1" and "ceiling - 1" (though 321 * that end 0 case should be mythical). 322 * 323 * Wherever addr is brought up or ceiling brought down, we must 324 * be careful to reject "the opposite 0" before it confuses the 325 * subsequent tests. But what about where end is brought down 326 * by PMD_SIZE below? no, end can't go down to 0 there. 327 * 328 * Whereas we round start (addr) and ceiling down, by different 329 * masks at different levels, in order to test whether a table 330 * now has no other vmas using it, so can be freed, we don't 331 * bother to round floor or end up - the tests don't need that. 332 */ 333 334 addr &= PMD_MASK; 335 if (addr < floor) { 336 addr += PMD_SIZE; 337 if (!addr) 338 return; 339 } 340 if (ceiling) { 341 ceiling &= PMD_MASK; 342 if (!ceiling) 343 return; 344 } 345 if (end - 1 > ceiling - 1) 346 end -= PMD_SIZE; 347 if (addr > end - 1) 348 return; 349 /* 350 * We add page table cache pages with PAGE_SIZE, 351 * (see pte_free_tlb()), flush the tlb if we need 352 */ 353 tlb_change_page_size(tlb, PAGE_SIZE); 354 pgd = pgd_offset(tlb->mm, addr); 355 do { 356 next = pgd_addr_end(addr, end); 357 if (pgd_none_or_clear_bad(pgd)) 358 continue; 359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 360 } while (pgd++, addr = next, addr != end); 361 } 362 363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 364 struct vm_area_struct *vma, unsigned long floor, 365 unsigned long ceiling, bool mm_wr_locked) 366 { 367 do { 368 unsigned long addr = vma->vm_start; 369 struct vm_area_struct *next; 370 371 /* 372 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 373 * be 0. This will underflow and is okay. 374 */ 375 next = mas_find(mas, ceiling - 1); 376 377 /* 378 * Hide vma from rmap and truncate_pagecache before freeing 379 * pgtables 380 */ 381 if (mm_wr_locked) 382 vma_start_write(vma); 383 unlink_anon_vmas(vma); 384 unlink_file_vma(vma); 385 386 if (is_vm_hugetlb_page(vma)) { 387 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 388 floor, next ? next->vm_start : ceiling); 389 } else { 390 /* 391 * Optimization: gather nearby vmas into one call down 392 */ 393 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 394 && !is_vm_hugetlb_page(next)) { 395 vma = next; 396 next = mas_find(mas, ceiling - 1); 397 if (mm_wr_locked) 398 vma_start_write(vma); 399 unlink_anon_vmas(vma); 400 unlink_file_vma(vma); 401 } 402 free_pgd_range(tlb, addr, vma->vm_end, 403 floor, next ? next->vm_start : ceiling); 404 } 405 vma = next; 406 } while (vma); 407 } 408 409 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 410 { 411 spinlock_t *ptl = pmd_lock(mm, pmd); 412 413 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 414 mm_inc_nr_ptes(mm); 415 /* 416 * Ensure all pte setup (eg. pte page lock and page clearing) are 417 * visible before the pte is made visible to other CPUs by being 418 * put into page tables. 419 * 420 * The other side of the story is the pointer chasing in the page 421 * table walking code (when walking the page table without locking; 422 * ie. most of the time). Fortunately, these data accesses consist 423 * of a chain of data-dependent loads, meaning most CPUs (alpha 424 * being the notable exception) will already guarantee loads are 425 * seen in-order. See the alpha page table accessors for the 426 * smp_rmb() barriers in page table walking code. 427 */ 428 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 429 pmd_populate(mm, pmd, *pte); 430 *pte = NULL; 431 } 432 spin_unlock(ptl); 433 } 434 435 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 436 { 437 pgtable_t new = pte_alloc_one(mm); 438 if (!new) 439 return -ENOMEM; 440 441 pmd_install(mm, pmd, &new); 442 if (new) 443 pte_free(mm, new); 444 return 0; 445 } 446 447 int __pte_alloc_kernel(pmd_t *pmd) 448 { 449 pte_t *new = pte_alloc_one_kernel(&init_mm); 450 if (!new) 451 return -ENOMEM; 452 453 spin_lock(&init_mm.page_table_lock); 454 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 455 smp_wmb(); /* See comment in pmd_install() */ 456 pmd_populate_kernel(&init_mm, pmd, new); 457 new = NULL; 458 } 459 spin_unlock(&init_mm.page_table_lock); 460 if (new) 461 pte_free_kernel(&init_mm, new); 462 return 0; 463 } 464 465 static inline void init_rss_vec(int *rss) 466 { 467 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 468 } 469 470 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 471 { 472 int i; 473 474 if (current->mm == mm) 475 sync_mm_rss(mm); 476 for (i = 0; i < NR_MM_COUNTERS; i++) 477 if (rss[i]) 478 add_mm_counter(mm, i, rss[i]); 479 } 480 481 /* 482 * This function is called to print an error when a bad pte 483 * is found. For example, we might have a PFN-mapped pte in 484 * a region that doesn't allow it. 485 * 486 * The calling function must still handle the error. 487 */ 488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 489 pte_t pte, struct page *page) 490 { 491 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 492 p4d_t *p4d = p4d_offset(pgd, addr); 493 pud_t *pud = pud_offset(p4d, addr); 494 pmd_t *pmd = pmd_offset(pud, addr); 495 struct address_space *mapping; 496 pgoff_t index; 497 static unsigned long resume; 498 static unsigned long nr_shown; 499 static unsigned long nr_unshown; 500 501 /* 502 * Allow a burst of 60 reports, then keep quiet for that minute; 503 * or allow a steady drip of one report per second. 504 */ 505 if (nr_shown == 60) { 506 if (time_before(jiffies, resume)) { 507 nr_unshown++; 508 return; 509 } 510 if (nr_unshown) { 511 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 512 nr_unshown); 513 nr_unshown = 0; 514 } 515 nr_shown = 0; 516 } 517 if (nr_shown++ == 0) 518 resume = jiffies + 60 * HZ; 519 520 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 521 index = linear_page_index(vma, addr); 522 523 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 524 current->comm, 525 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 526 if (page) 527 dump_page(page, "bad pte"); 528 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 529 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 530 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 531 vma->vm_file, 532 vma->vm_ops ? vma->vm_ops->fault : NULL, 533 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 534 mapping ? mapping->a_ops->read_folio : NULL); 535 dump_stack(); 536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 537 } 538 539 /* 540 * vm_normal_page -- This function gets the "struct page" associated with a pte. 541 * 542 * "Special" mappings do not wish to be associated with a "struct page" (either 543 * it doesn't exist, or it exists but they don't want to touch it). In this 544 * case, NULL is returned here. "Normal" mappings do have a struct page. 545 * 546 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 547 * pte bit, in which case this function is trivial. Secondly, an architecture 548 * may not have a spare pte bit, which requires a more complicated scheme, 549 * described below. 550 * 551 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 552 * special mapping (even if there are underlying and valid "struct pages"). 553 * COWed pages of a VM_PFNMAP are always normal. 554 * 555 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 556 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 557 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 558 * mapping will always honor the rule 559 * 560 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 561 * 562 * And for normal mappings this is false. 563 * 564 * This restricts such mappings to be a linear translation from virtual address 565 * to pfn. To get around this restriction, we allow arbitrary mappings so long 566 * as the vma is not a COW mapping; in that case, we know that all ptes are 567 * special (because none can have been COWed). 568 * 569 * 570 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 571 * 572 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 573 * page" backing, however the difference is that _all_ pages with a struct 574 * page (that is, those where pfn_valid is true) are refcounted and considered 575 * normal pages by the VM. The disadvantage is that pages are refcounted 576 * (which can be slower and simply not an option for some PFNMAP users). The 577 * advantage is that we don't have to follow the strict linearity rule of 578 * PFNMAP mappings in order to support COWable mappings. 579 * 580 */ 581 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 582 pte_t pte) 583 { 584 unsigned long pfn = pte_pfn(pte); 585 586 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 587 if (likely(!pte_special(pte))) 588 goto check_pfn; 589 if (vma->vm_ops && vma->vm_ops->find_special_page) 590 return vma->vm_ops->find_special_page(vma, addr); 591 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 592 return NULL; 593 if (is_zero_pfn(pfn)) 594 return NULL; 595 if (pte_devmap(pte)) 596 /* 597 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 598 * and will have refcounts incremented on their struct pages 599 * when they are inserted into PTEs, thus they are safe to 600 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 601 * do not have refcounts. Example of legacy ZONE_DEVICE is 602 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 603 */ 604 return NULL; 605 606 print_bad_pte(vma, addr, pte, NULL); 607 return NULL; 608 } 609 610 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 611 612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 613 if (vma->vm_flags & VM_MIXEDMAP) { 614 if (!pfn_valid(pfn)) 615 return NULL; 616 goto out; 617 } else { 618 unsigned long off; 619 off = (addr - vma->vm_start) >> PAGE_SHIFT; 620 if (pfn == vma->vm_pgoff + off) 621 return NULL; 622 if (!is_cow_mapping(vma->vm_flags)) 623 return NULL; 624 } 625 } 626 627 if (is_zero_pfn(pfn)) 628 return NULL; 629 630 check_pfn: 631 if (unlikely(pfn > highest_memmap_pfn)) { 632 print_bad_pte(vma, addr, pte, NULL); 633 return NULL; 634 } 635 636 /* 637 * NOTE! We still have PageReserved() pages in the page tables. 638 * eg. VDSO mappings can cause them to exist. 639 */ 640 out: 641 return pfn_to_page(pfn); 642 } 643 644 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 645 pte_t pte) 646 { 647 struct page *page = vm_normal_page(vma, addr, pte); 648 649 if (page) 650 return page_folio(page); 651 return NULL; 652 } 653 654 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 655 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 656 pmd_t pmd) 657 { 658 unsigned long pfn = pmd_pfn(pmd); 659 660 /* 661 * There is no pmd_special() but there may be special pmds, e.g. 662 * in a direct-access (dax) mapping, so let's just replicate the 663 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 664 */ 665 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 666 if (vma->vm_flags & VM_MIXEDMAP) { 667 if (!pfn_valid(pfn)) 668 return NULL; 669 goto out; 670 } else { 671 unsigned long off; 672 off = (addr - vma->vm_start) >> PAGE_SHIFT; 673 if (pfn == vma->vm_pgoff + off) 674 return NULL; 675 if (!is_cow_mapping(vma->vm_flags)) 676 return NULL; 677 } 678 } 679 680 if (pmd_devmap(pmd)) 681 return NULL; 682 if (is_huge_zero_pmd(pmd)) 683 return NULL; 684 if (unlikely(pfn > highest_memmap_pfn)) 685 return NULL; 686 687 /* 688 * NOTE! We still have PageReserved() pages in the page tables. 689 * eg. VDSO mappings can cause them to exist. 690 */ 691 out: 692 return pfn_to_page(pfn); 693 } 694 #endif 695 696 static void restore_exclusive_pte(struct vm_area_struct *vma, 697 struct page *page, unsigned long address, 698 pte_t *ptep) 699 { 700 pte_t orig_pte; 701 pte_t pte; 702 swp_entry_t entry; 703 704 orig_pte = ptep_get(ptep); 705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 706 if (pte_swp_soft_dirty(orig_pte)) 707 pte = pte_mksoft_dirty(pte); 708 709 entry = pte_to_swp_entry(orig_pte); 710 if (pte_swp_uffd_wp(orig_pte)) 711 pte = pte_mkuffd_wp(pte); 712 else if (is_writable_device_exclusive_entry(entry)) 713 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 714 715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 716 717 /* 718 * No need to take a page reference as one was already 719 * created when the swap entry was made. 720 */ 721 if (PageAnon(page)) 722 page_add_anon_rmap(page, vma, address, RMAP_NONE); 723 else 724 /* 725 * Currently device exclusive access only supports anonymous 726 * memory so the entry shouldn't point to a filebacked page. 727 */ 728 WARN_ON_ONCE(1); 729 730 set_pte_at(vma->vm_mm, address, ptep, pte); 731 732 /* 733 * No need to invalidate - it was non-present before. However 734 * secondary CPUs may have mappings that need invalidating. 735 */ 736 update_mmu_cache(vma, address, ptep); 737 } 738 739 /* 740 * Tries to restore an exclusive pte if the page lock can be acquired without 741 * sleeping. 742 */ 743 static int 744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 745 unsigned long addr) 746 { 747 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 748 struct page *page = pfn_swap_entry_to_page(entry); 749 750 if (trylock_page(page)) { 751 restore_exclusive_pte(vma, page, addr, src_pte); 752 unlock_page(page); 753 return 0; 754 } 755 756 return -EBUSY; 757 } 758 759 /* 760 * copy one vm_area from one task to the other. Assumes the page tables 761 * already present in the new task to be cleared in the whole range 762 * covered by this vma. 763 */ 764 765 static unsigned long 766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 768 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 769 { 770 unsigned long vm_flags = dst_vma->vm_flags; 771 pte_t orig_pte = ptep_get(src_pte); 772 pte_t pte = orig_pte; 773 struct page *page; 774 swp_entry_t entry = pte_to_swp_entry(orig_pte); 775 776 if (likely(!non_swap_entry(entry))) { 777 if (swap_duplicate(entry) < 0) 778 return -EIO; 779 780 /* make sure dst_mm is on swapoff's mmlist. */ 781 if (unlikely(list_empty(&dst_mm->mmlist))) { 782 spin_lock(&mmlist_lock); 783 if (list_empty(&dst_mm->mmlist)) 784 list_add(&dst_mm->mmlist, 785 &src_mm->mmlist); 786 spin_unlock(&mmlist_lock); 787 } 788 /* Mark the swap entry as shared. */ 789 if (pte_swp_exclusive(orig_pte)) { 790 pte = pte_swp_clear_exclusive(orig_pte); 791 set_pte_at(src_mm, addr, src_pte, pte); 792 } 793 rss[MM_SWAPENTS]++; 794 } else if (is_migration_entry(entry)) { 795 page = pfn_swap_entry_to_page(entry); 796 797 rss[mm_counter(page)]++; 798 799 if (!is_readable_migration_entry(entry) && 800 is_cow_mapping(vm_flags)) { 801 /* 802 * COW mappings require pages in both parent and child 803 * to be set to read. A previously exclusive entry is 804 * now shared. 805 */ 806 entry = make_readable_migration_entry( 807 swp_offset(entry)); 808 pte = swp_entry_to_pte(entry); 809 if (pte_swp_soft_dirty(orig_pte)) 810 pte = pte_swp_mksoft_dirty(pte); 811 if (pte_swp_uffd_wp(orig_pte)) 812 pte = pte_swp_mkuffd_wp(pte); 813 set_pte_at(src_mm, addr, src_pte, pte); 814 } 815 } else if (is_device_private_entry(entry)) { 816 page = pfn_swap_entry_to_page(entry); 817 818 /* 819 * Update rss count even for unaddressable pages, as 820 * they should treated just like normal pages in this 821 * respect. 822 * 823 * We will likely want to have some new rss counters 824 * for unaddressable pages, at some point. But for now 825 * keep things as they are. 826 */ 827 get_page(page); 828 rss[mm_counter(page)]++; 829 /* Cannot fail as these pages cannot get pinned. */ 830 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 831 832 /* 833 * We do not preserve soft-dirty information, because so 834 * far, checkpoint/restore is the only feature that 835 * requires that. And checkpoint/restore does not work 836 * when a device driver is involved (you cannot easily 837 * save and restore device driver state). 838 */ 839 if (is_writable_device_private_entry(entry) && 840 is_cow_mapping(vm_flags)) { 841 entry = make_readable_device_private_entry( 842 swp_offset(entry)); 843 pte = swp_entry_to_pte(entry); 844 if (pte_swp_uffd_wp(orig_pte)) 845 pte = pte_swp_mkuffd_wp(pte); 846 set_pte_at(src_mm, addr, src_pte, pte); 847 } 848 } else if (is_device_exclusive_entry(entry)) { 849 /* 850 * Make device exclusive entries present by restoring the 851 * original entry then copying as for a present pte. Device 852 * exclusive entries currently only support private writable 853 * (ie. COW) mappings. 854 */ 855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 856 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 857 return -EBUSY; 858 return -ENOENT; 859 } else if (is_pte_marker_entry(entry)) { 860 pte_marker marker = copy_pte_marker(entry, dst_vma); 861 862 if (marker) 863 set_pte_at(dst_mm, addr, dst_pte, 864 make_pte_marker(marker)); 865 return 0; 866 } 867 if (!userfaultfd_wp(dst_vma)) 868 pte = pte_swp_clear_uffd_wp(pte); 869 set_pte_at(dst_mm, addr, dst_pte, pte); 870 return 0; 871 } 872 873 /* 874 * Copy a present and normal page. 875 * 876 * NOTE! The usual case is that this isn't required; 877 * instead, the caller can just increase the page refcount 878 * and re-use the pte the traditional way. 879 * 880 * And if we need a pre-allocated page but don't yet have 881 * one, return a negative error to let the preallocation 882 * code know so that it can do so outside the page table 883 * lock. 884 */ 885 static inline int 886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 888 struct folio **prealloc, struct page *page) 889 { 890 struct folio *new_folio; 891 pte_t pte; 892 893 new_folio = *prealloc; 894 if (!new_folio) 895 return -EAGAIN; 896 897 /* 898 * We have a prealloc page, all good! Take it 899 * over and copy the page & arm it. 900 */ 901 *prealloc = NULL; 902 copy_user_highpage(&new_folio->page, page, addr, src_vma); 903 __folio_mark_uptodate(new_folio); 904 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 905 folio_add_lru_vma(new_folio, dst_vma); 906 rss[MM_ANONPAGES]++; 907 908 /* All done, just insert the new page copy in the child */ 909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 912 /* Uffd-wp needs to be delivered to dest pte as well */ 913 pte = pte_mkuffd_wp(pte); 914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 915 return 0; 916 } 917 918 /* 919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 920 * is required to copy this pte. 921 */ 922 static inline int 923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 925 struct folio **prealloc) 926 { 927 struct mm_struct *src_mm = src_vma->vm_mm; 928 unsigned long vm_flags = src_vma->vm_flags; 929 pte_t pte = ptep_get(src_pte); 930 struct page *page; 931 struct folio *folio; 932 933 page = vm_normal_page(src_vma, addr, pte); 934 if (page) 935 folio = page_folio(page); 936 if (page && folio_test_anon(folio)) { 937 /* 938 * If this page may have been pinned by the parent process, 939 * copy the page immediately for the child so that we'll always 940 * guarantee the pinned page won't be randomly replaced in the 941 * future. 942 */ 943 folio_get(folio); 944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 945 /* Page may be pinned, we have to copy. */ 946 folio_put(folio); 947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 948 addr, rss, prealloc, page); 949 } 950 rss[MM_ANONPAGES]++; 951 } else if (page) { 952 folio_get(folio); 953 page_dup_file_rmap(page, false); 954 rss[mm_counter_file(page)]++; 955 } 956 957 /* 958 * If it's a COW mapping, write protect it both 959 * in the parent and the child 960 */ 961 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 962 ptep_set_wrprotect(src_mm, addr, src_pte); 963 pte = pte_wrprotect(pte); 964 } 965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); 966 967 /* 968 * If it's a shared mapping, mark it clean in 969 * the child 970 */ 971 if (vm_flags & VM_SHARED) 972 pte = pte_mkclean(pte); 973 pte = pte_mkold(pte); 974 975 if (!userfaultfd_wp(dst_vma)) 976 pte = pte_clear_uffd_wp(pte); 977 978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 979 return 0; 980 } 981 982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, 983 struct vm_area_struct *vma, unsigned long addr) 984 { 985 struct folio *new_folio; 986 987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 988 if (!new_folio) 989 return NULL; 990 991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 992 folio_put(new_folio); 993 return NULL; 994 } 995 folio_throttle_swaprate(new_folio, GFP_KERNEL); 996 997 return new_folio; 998 } 999 1000 static int 1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1003 unsigned long end) 1004 { 1005 struct mm_struct *dst_mm = dst_vma->vm_mm; 1006 struct mm_struct *src_mm = src_vma->vm_mm; 1007 pte_t *orig_src_pte, *orig_dst_pte; 1008 pte_t *src_pte, *dst_pte; 1009 pte_t ptent; 1010 spinlock_t *src_ptl, *dst_ptl; 1011 int progress, ret = 0; 1012 int rss[NR_MM_COUNTERS]; 1013 swp_entry_t entry = (swp_entry_t){0}; 1014 struct folio *prealloc = NULL; 1015 1016 again: 1017 progress = 0; 1018 init_rss_vec(rss); 1019 1020 /* 1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1022 * error handling here, assume that exclusive mmap_lock on dst and src 1023 * protects anon from unexpected THP transitions; with shmem and file 1024 * protected by mmap_lock-less collapse skipping areas with anon_vma 1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1026 * can remove such assumptions later, but this is good enough for now. 1027 */ 1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1029 if (!dst_pte) { 1030 ret = -ENOMEM; 1031 goto out; 1032 } 1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1034 if (!src_pte) { 1035 pte_unmap_unlock(dst_pte, dst_ptl); 1036 /* ret == 0 */ 1037 goto out; 1038 } 1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1040 orig_src_pte = src_pte; 1041 orig_dst_pte = dst_pte; 1042 arch_enter_lazy_mmu_mode(); 1043 1044 do { 1045 /* 1046 * We are holding two locks at this point - either of them 1047 * could generate latencies in another task on another CPU. 1048 */ 1049 if (progress >= 32) { 1050 progress = 0; 1051 if (need_resched() || 1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1053 break; 1054 } 1055 ptent = ptep_get(src_pte); 1056 if (pte_none(ptent)) { 1057 progress++; 1058 continue; 1059 } 1060 if (unlikely(!pte_present(ptent))) { 1061 ret = copy_nonpresent_pte(dst_mm, src_mm, 1062 dst_pte, src_pte, 1063 dst_vma, src_vma, 1064 addr, rss); 1065 if (ret == -EIO) { 1066 entry = pte_to_swp_entry(ptep_get(src_pte)); 1067 break; 1068 } else if (ret == -EBUSY) { 1069 break; 1070 } else if (!ret) { 1071 progress += 8; 1072 continue; 1073 } 1074 1075 /* 1076 * Device exclusive entry restored, continue by copying 1077 * the now present pte. 1078 */ 1079 WARN_ON_ONCE(ret != -ENOENT); 1080 } 1081 /* copy_present_pte() will clear `*prealloc' if consumed */ 1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1083 addr, rss, &prealloc); 1084 /* 1085 * If we need a pre-allocated page for this pte, drop the 1086 * locks, allocate, and try again. 1087 */ 1088 if (unlikely(ret == -EAGAIN)) 1089 break; 1090 if (unlikely(prealloc)) { 1091 /* 1092 * pre-alloc page cannot be reused by next time so as 1093 * to strictly follow mempolicy (e.g., alloc_page_vma() 1094 * will allocate page according to address). This 1095 * could only happen if one pinned pte changed. 1096 */ 1097 folio_put(prealloc); 1098 prealloc = NULL; 1099 } 1100 progress += 8; 1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1102 1103 arch_leave_lazy_mmu_mode(); 1104 pte_unmap_unlock(orig_src_pte, src_ptl); 1105 add_mm_rss_vec(dst_mm, rss); 1106 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1107 cond_resched(); 1108 1109 if (ret == -EIO) { 1110 VM_WARN_ON_ONCE(!entry.val); 1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1112 ret = -ENOMEM; 1113 goto out; 1114 } 1115 entry.val = 0; 1116 } else if (ret == -EBUSY) { 1117 goto out; 1118 } else if (ret == -EAGAIN) { 1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1120 if (!prealloc) 1121 return -ENOMEM; 1122 } else if (ret) { 1123 VM_WARN_ON_ONCE(1); 1124 } 1125 1126 /* We've captured and resolved the error. Reset, try again. */ 1127 ret = 0; 1128 1129 if (addr != end) 1130 goto again; 1131 out: 1132 if (unlikely(prealloc)) 1133 folio_put(prealloc); 1134 return ret; 1135 } 1136 1137 static inline int 1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1140 unsigned long end) 1141 { 1142 struct mm_struct *dst_mm = dst_vma->vm_mm; 1143 struct mm_struct *src_mm = src_vma->vm_mm; 1144 pmd_t *src_pmd, *dst_pmd; 1145 unsigned long next; 1146 1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1148 if (!dst_pmd) 1149 return -ENOMEM; 1150 src_pmd = pmd_offset(src_pud, addr); 1151 do { 1152 next = pmd_addr_end(addr, end); 1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1154 || pmd_devmap(*src_pmd)) { 1155 int err; 1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1158 addr, dst_vma, src_vma); 1159 if (err == -ENOMEM) 1160 return -ENOMEM; 1161 if (!err) 1162 continue; 1163 /* fall through */ 1164 } 1165 if (pmd_none_or_clear_bad(src_pmd)) 1166 continue; 1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1168 addr, next)) 1169 return -ENOMEM; 1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1171 return 0; 1172 } 1173 1174 static inline int 1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1177 unsigned long end) 1178 { 1179 struct mm_struct *dst_mm = dst_vma->vm_mm; 1180 struct mm_struct *src_mm = src_vma->vm_mm; 1181 pud_t *src_pud, *dst_pud; 1182 unsigned long next; 1183 1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1185 if (!dst_pud) 1186 return -ENOMEM; 1187 src_pud = pud_offset(src_p4d, addr); 1188 do { 1189 next = pud_addr_end(addr, end); 1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1191 int err; 1192 1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1194 err = copy_huge_pud(dst_mm, src_mm, 1195 dst_pud, src_pud, addr, src_vma); 1196 if (err == -ENOMEM) 1197 return -ENOMEM; 1198 if (!err) 1199 continue; 1200 /* fall through */ 1201 } 1202 if (pud_none_or_clear_bad(src_pud)) 1203 continue; 1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1205 addr, next)) 1206 return -ENOMEM; 1207 } while (dst_pud++, src_pud++, addr = next, addr != end); 1208 return 0; 1209 } 1210 1211 static inline int 1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1214 unsigned long end) 1215 { 1216 struct mm_struct *dst_mm = dst_vma->vm_mm; 1217 p4d_t *src_p4d, *dst_p4d; 1218 unsigned long next; 1219 1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1221 if (!dst_p4d) 1222 return -ENOMEM; 1223 src_p4d = p4d_offset(src_pgd, addr); 1224 do { 1225 next = p4d_addr_end(addr, end); 1226 if (p4d_none_or_clear_bad(src_p4d)) 1227 continue; 1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1229 addr, next)) 1230 return -ENOMEM; 1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1232 return 0; 1233 } 1234 1235 /* 1236 * Return true if the vma needs to copy the pgtable during this fork(). Return 1237 * false when we can speed up fork() by allowing lazy page faults later until 1238 * when the child accesses the memory range. 1239 */ 1240 static bool 1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1242 { 1243 /* 1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1246 * contains uffd-wp protection information, that's something we can't 1247 * retrieve from page cache, and skip copying will lose those info. 1248 */ 1249 if (userfaultfd_wp(dst_vma)) 1250 return true; 1251 1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1253 return true; 1254 1255 if (src_vma->anon_vma) 1256 return true; 1257 1258 /* 1259 * Don't copy ptes where a page fault will fill them correctly. Fork 1260 * becomes much lighter when there are big shared or private readonly 1261 * mappings. The tradeoff is that copy_page_range is more efficient 1262 * than faulting. 1263 */ 1264 return false; 1265 } 1266 1267 int 1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1269 { 1270 pgd_t *src_pgd, *dst_pgd; 1271 unsigned long next; 1272 unsigned long addr = src_vma->vm_start; 1273 unsigned long end = src_vma->vm_end; 1274 struct mm_struct *dst_mm = dst_vma->vm_mm; 1275 struct mm_struct *src_mm = src_vma->vm_mm; 1276 struct mmu_notifier_range range; 1277 bool is_cow; 1278 int ret; 1279 1280 if (!vma_needs_copy(dst_vma, src_vma)) 1281 return 0; 1282 1283 if (is_vm_hugetlb_page(src_vma)) 1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1285 1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1287 /* 1288 * We do not free on error cases below as remove_vma 1289 * gets called on error from higher level routine 1290 */ 1291 ret = track_pfn_copy(src_vma); 1292 if (ret) 1293 return ret; 1294 } 1295 1296 /* 1297 * We need to invalidate the secondary MMU mappings only when 1298 * there could be a permission downgrade on the ptes of the 1299 * parent mm. And a permission downgrade will only happen if 1300 * is_cow_mapping() returns true. 1301 */ 1302 is_cow = is_cow_mapping(src_vma->vm_flags); 1303 1304 if (is_cow) { 1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1306 0, src_mm, addr, end); 1307 mmu_notifier_invalidate_range_start(&range); 1308 /* 1309 * Disabling preemption is not needed for the write side, as 1310 * the read side doesn't spin, but goes to the mmap_lock. 1311 * 1312 * Use the raw variant of the seqcount_t write API to avoid 1313 * lockdep complaining about preemptibility. 1314 */ 1315 vma_assert_write_locked(src_vma); 1316 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1317 } 1318 1319 ret = 0; 1320 dst_pgd = pgd_offset(dst_mm, addr); 1321 src_pgd = pgd_offset(src_mm, addr); 1322 do { 1323 next = pgd_addr_end(addr, end); 1324 if (pgd_none_or_clear_bad(src_pgd)) 1325 continue; 1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1327 addr, next))) { 1328 untrack_pfn_clear(dst_vma); 1329 ret = -ENOMEM; 1330 break; 1331 } 1332 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1333 1334 if (is_cow) { 1335 raw_write_seqcount_end(&src_mm->write_protect_seq); 1336 mmu_notifier_invalidate_range_end(&range); 1337 } 1338 return ret; 1339 } 1340 1341 /* Whether we should zap all COWed (private) pages too */ 1342 static inline bool should_zap_cows(struct zap_details *details) 1343 { 1344 /* By default, zap all pages */ 1345 if (!details) 1346 return true; 1347 1348 /* Or, we zap COWed pages only if the caller wants to */ 1349 return details->even_cows; 1350 } 1351 1352 /* Decides whether we should zap this page with the page pointer specified */ 1353 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1354 { 1355 /* If we can make a decision without *page.. */ 1356 if (should_zap_cows(details)) 1357 return true; 1358 1359 /* E.g. the caller passes NULL for the case of a zero page */ 1360 if (!page) 1361 return true; 1362 1363 /* Otherwise we should only zap non-anon pages */ 1364 return !PageAnon(page); 1365 } 1366 1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1368 { 1369 if (!details) 1370 return false; 1371 1372 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1373 } 1374 1375 /* 1376 * This function makes sure that we'll replace the none pte with an uffd-wp 1377 * swap special pte marker when necessary. Must be with the pgtable lock held. 1378 */ 1379 static inline void 1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1381 unsigned long addr, pte_t *pte, 1382 struct zap_details *details, pte_t pteval) 1383 { 1384 /* Zap on anonymous always means dropping everything */ 1385 if (vma_is_anonymous(vma)) 1386 return; 1387 1388 if (zap_drop_file_uffd_wp(details)) 1389 return; 1390 1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1392 } 1393 1394 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1395 struct vm_area_struct *vma, pmd_t *pmd, 1396 unsigned long addr, unsigned long end, 1397 struct zap_details *details) 1398 { 1399 struct mm_struct *mm = tlb->mm; 1400 int force_flush = 0; 1401 int rss[NR_MM_COUNTERS]; 1402 spinlock_t *ptl; 1403 pte_t *start_pte; 1404 pte_t *pte; 1405 swp_entry_t entry; 1406 1407 tlb_change_page_size(tlb, PAGE_SIZE); 1408 init_rss_vec(rss); 1409 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1410 if (!pte) 1411 return addr; 1412 1413 flush_tlb_batched_pending(mm); 1414 arch_enter_lazy_mmu_mode(); 1415 do { 1416 pte_t ptent = ptep_get(pte); 1417 struct page *page; 1418 1419 if (pte_none(ptent)) 1420 continue; 1421 1422 if (need_resched()) 1423 break; 1424 1425 if (pte_present(ptent)) { 1426 unsigned int delay_rmap; 1427 1428 page = vm_normal_page(vma, addr, ptent); 1429 if (unlikely(!should_zap_page(details, page))) 1430 continue; 1431 ptent = ptep_get_and_clear_full(mm, addr, pte, 1432 tlb->fullmm); 1433 arch_check_zapped_pte(vma, ptent); 1434 tlb_remove_tlb_entry(tlb, pte, addr); 1435 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1436 ptent); 1437 if (unlikely(!page)) { 1438 ksm_might_unmap_zero_page(mm, ptent); 1439 continue; 1440 } 1441 1442 delay_rmap = 0; 1443 if (!PageAnon(page)) { 1444 if (pte_dirty(ptent)) { 1445 set_page_dirty(page); 1446 if (tlb_delay_rmap(tlb)) { 1447 delay_rmap = 1; 1448 force_flush = 1; 1449 } 1450 } 1451 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1452 mark_page_accessed(page); 1453 } 1454 rss[mm_counter(page)]--; 1455 if (!delay_rmap) { 1456 page_remove_rmap(page, vma, false); 1457 if (unlikely(page_mapcount(page) < 0)) 1458 print_bad_pte(vma, addr, ptent, page); 1459 } 1460 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1461 force_flush = 1; 1462 addr += PAGE_SIZE; 1463 break; 1464 } 1465 continue; 1466 } 1467 1468 entry = pte_to_swp_entry(ptent); 1469 if (is_device_private_entry(entry) || 1470 is_device_exclusive_entry(entry)) { 1471 page = pfn_swap_entry_to_page(entry); 1472 if (unlikely(!should_zap_page(details, page))) 1473 continue; 1474 /* 1475 * Both device private/exclusive mappings should only 1476 * work with anonymous page so far, so we don't need to 1477 * consider uffd-wp bit when zap. For more information, 1478 * see zap_install_uffd_wp_if_needed(). 1479 */ 1480 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1481 rss[mm_counter(page)]--; 1482 if (is_device_private_entry(entry)) 1483 page_remove_rmap(page, vma, false); 1484 put_page(page); 1485 } else if (!non_swap_entry(entry)) { 1486 /* Genuine swap entry, hence a private anon page */ 1487 if (!should_zap_cows(details)) 1488 continue; 1489 rss[MM_SWAPENTS]--; 1490 if (unlikely(!free_swap_and_cache(entry))) 1491 print_bad_pte(vma, addr, ptent, NULL); 1492 } else if (is_migration_entry(entry)) { 1493 page = pfn_swap_entry_to_page(entry); 1494 if (!should_zap_page(details, page)) 1495 continue; 1496 rss[mm_counter(page)]--; 1497 } else if (pte_marker_entry_uffd_wp(entry)) { 1498 /* 1499 * For anon: always drop the marker; for file: only 1500 * drop the marker if explicitly requested. 1501 */ 1502 if (!vma_is_anonymous(vma) && 1503 !zap_drop_file_uffd_wp(details)) 1504 continue; 1505 } else if (is_hwpoison_entry(entry) || 1506 is_poisoned_swp_entry(entry)) { 1507 if (!should_zap_cows(details)) 1508 continue; 1509 } else { 1510 /* We should have covered all the swap entry types */ 1511 WARN_ON_ONCE(1); 1512 } 1513 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1514 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1515 } while (pte++, addr += PAGE_SIZE, addr != end); 1516 1517 add_mm_rss_vec(mm, rss); 1518 arch_leave_lazy_mmu_mode(); 1519 1520 /* Do the actual TLB flush before dropping ptl */ 1521 if (force_flush) { 1522 tlb_flush_mmu_tlbonly(tlb); 1523 tlb_flush_rmaps(tlb, vma); 1524 } 1525 pte_unmap_unlock(start_pte, ptl); 1526 1527 /* 1528 * If we forced a TLB flush (either due to running out of 1529 * batch buffers or because we needed to flush dirty TLB 1530 * entries before releasing the ptl), free the batched 1531 * memory too. Come back again if we didn't do everything. 1532 */ 1533 if (force_flush) 1534 tlb_flush_mmu(tlb); 1535 1536 return addr; 1537 } 1538 1539 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1540 struct vm_area_struct *vma, pud_t *pud, 1541 unsigned long addr, unsigned long end, 1542 struct zap_details *details) 1543 { 1544 pmd_t *pmd; 1545 unsigned long next; 1546 1547 pmd = pmd_offset(pud, addr); 1548 do { 1549 next = pmd_addr_end(addr, end); 1550 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1551 if (next - addr != HPAGE_PMD_SIZE) 1552 __split_huge_pmd(vma, pmd, addr, false, NULL); 1553 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1554 addr = next; 1555 continue; 1556 } 1557 /* fall through */ 1558 } else if (details && details->single_folio && 1559 folio_test_pmd_mappable(details->single_folio) && 1560 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1561 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1562 /* 1563 * Take and drop THP pmd lock so that we cannot return 1564 * prematurely, while zap_huge_pmd() has cleared *pmd, 1565 * but not yet decremented compound_mapcount(). 1566 */ 1567 spin_unlock(ptl); 1568 } 1569 if (pmd_none(*pmd)) { 1570 addr = next; 1571 continue; 1572 } 1573 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1574 if (addr != next) 1575 pmd--; 1576 } while (pmd++, cond_resched(), addr != end); 1577 1578 return addr; 1579 } 1580 1581 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1582 struct vm_area_struct *vma, p4d_t *p4d, 1583 unsigned long addr, unsigned long end, 1584 struct zap_details *details) 1585 { 1586 pud_t *pud; 1587 unsigned long next; 1588 1589 pud = pud_offset(p4d, addr); 1590 do { 1591 next = pud_addr_end(addr, end); 1592 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1593 if (next - addr != HPAGE_PUD_SIZE) { 1594 mmap_assert_locked(tlb->mm); 1595 split_huge_pud(vma, pud, addr); 1596 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1597 goto next; 1598 /* fall through */ 1599 } 1600 if (pud_none_or_clear_bad(pud)) 1601 continue; 1602 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1603 next: 1604 cond_resched(); 1605 } while (pud++, addr = next, addr != end); 1606 1607 return addr; 1608 } 1609 1610 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1611 struct vm_area_struct *vma, pgd_t *pgd, 1612 unsigned long addr, unsigned long end, 1613 struct zap_details *details) 1614 { 1615 p4d_t *p4d; 1616 unsigned long next; 1617 1618 p4d = p4d_offset(pgd, addr); 1619 do { 1620 next = p4d_addr_end(addr, end); 1621 if (p4d_none_or_clear_bad(p4d)) 1622 continue; 1623 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1624 } while (p4d++, addr = next, addr != end); 1625 1626 return addr; 1627 } 1628 1629 void unmap_page_range(struct mmu_gather *tlb, 1630 struct vm_area_struct *vma, 1631 unsigned long addr, unsigned long end, 1632 struct zap_details *details) 1633 { 1634 pgd_t *pgd; 1635 unsigned long next; 1636 1637 BUG_ON(addr >= end); 1638 tlb_start_vma(tlb, vma); 1639 pgd = pgd_offset(vma->vm_mm, addr); 1640 do { 1641 next = pgd_addr_end(addr, end); 1642 if (pgd_none_or_clear_bad(pgd)) 1643 continue; 1644 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1645 } while (pgd++, addr = next, addr != end); 1646 tlb_end_vma(tlb, vma); 1647 } 1648 1649 1650 static void unmap_single_vma(struct mmu_gather *tlb, 1651 struct vm_area_struct *vma, unsigned long start_addr, 1652 unsigned long end_addr, 1653 struct zap_details *details, bool mm_wr_locked) 1654 { 1655 unsigned long start = max(vma->vm_start, start_addr); 1656 unsigned long end; 1657 1658 if (start >= vma->vm_end) 1659 return; 1660 end = min(vma->vm_end, end_addr); 1661 if (end <= vma->vm_start) 1662 return; 1663 1664 if (vma->vm_file) 1665 uprobe_munmap(vma, start, end); 1666 1667 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1668 untrack_pfn(vma, 0, 0, mm_wr_locked); 1669 1670 if (start != end) { 1671 if (unlikely(is_vm_hugetlb_page(vma))) { 1672 /* 1673 * It is undesirable to test vma->vm_file as it 1674 * should be non-null for valid hugetlb area. 1675 * However, vm_file will be NULL in the error 1676 * cleanup path of mmap_region. When 1677 * hugetlbfs ->mmap method fails, 1678 * mmap_region() nullifies vma->vm_file 1679 * before calling this function to clean up. 1680 * Since no pte has actually been setup, it is 1681 * safe to do nothing in this case. 1682 */ 1683 if (vma->vm_file) { 1684 zap_flags_t zap_flags = details ? 1685 details->zap_flags : 0; 1686 __unmap_hugepage_range(tlb, vma, start, end, 1687 NULL, zap_flags); 1688 } 1689 } else 1690 unmap_page_range(tlb, vma, start, end, details); 1691 } 1692 } 1693 1694 /** 1695 * unmap_vmas - unmap a range of memory covered by a list of vma's 1696 * @tlb: address of the caller's struct mmu_gather 1697 * @mas: the maple state 1698 * @vma: the starting vma 1699 * @start_addr: virtual address at which to start unmapping 1700 * @end_addr: virtual address at which to end unmapping 1701 * @tree_end: The maximum index to check 1702 * @mm_wr_locked: lock flag 1703 * 1704 * Unmap all pages in the vma list. 1705 * 1706 * Only addresses between `start' and `end' will be unmapped. 1707 * 1708 * The VMA list must be sorted in ascending virtual address order. 1709 * 1710 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1711 * range after unmap_vmas() returns. So the only responsibility here is to 1712 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1713 * drops the lock and schedules. 1714 */ 1715 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1716 struct vm_area_struct *vma, unsigned long start_addr, 1717 unsigned long end_addr, unsigned long tree_end, 1718 bool mm_wr_locked) 1719 { 1720 struct mmu_notifier_range range; 1721 struct zap_details details = { 1722 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1723 /* Careful - we need to zap private pages too! */ 1724 .even_cows = true, 1725 }; 1726 1727 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1728 start_addr, end_addr); 1729 mmu_notifier_invalidate_range_start(&range); 1730 do { 1731 unsigned long start = start_addr; 1732 unsigned long end = end_addr; 1733 hugetlb_zap_begin(vma, &start, &end); 1734 unmap_single_vma(tlb, vma, start, end, &details, 1735 mm_wr_locked); 1736 hugetlb_zap_end(vma, &details); 1737 } while ((vma = mas_find(mas, tree_end - 1)) != NULL); 1738 mmu_notifier_invalidate_range_end(&range); 1739 } 1740 1741 /** 1742 * zap_page_range_single - remove user pages in a given range 1743 * @vma: vm_area_struct holding the applicable pages 1744 * @address: starting address of pages to zap 1745 * @size: number of bytes to zap 1746 * @details: details of shared cache invalidation 1747 * 1748 * The range must fit into one VMA. 1749 */ 1750 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1751 unsigned long size, struct zap_details *details) 1752 { 1753 const unsigned long end = address + size; 1754 struct mmu_notifier_range range; 1755 struct mmu_gather tlb; 1756 1757 lru_add_drain(); 1758 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1759 address, end); 1760 hugetlb_zap_begin(vma, &range.start, &range.end); 1761 tlb_gather_mmu(&tlb, vma->vm_mm); 1762 update_hiwater_rss(vma->vm_mm); 1763 mmu_notifier_invalidate_range_start(&range); 1764 /* 1765 * unmap 'address-end' not 'range.start-range.end' as range 1766 * could have been expanded for hugetlb pmd sharing. 1767 */ 1768 unmap_single_vma(&tlb, vma, address, end, details, false); 1769 mmu_notifier_invalidate_range_end(&range); 1770 tlb_finish_mmu(&tlb); 1771 hugetlb_zap_end(vma, details); 1772 } 1773 1774 /** 1775 * zap_vma_ptes - remove ptes mapping the vma 1776 * @vma: vm_area_struct holding ptes to be zapped 1777 * @address: starting address of pages to zap 1778 * @size: number of bytes to zap 1779 * 1780 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1781 * 1782 * The entire address range must be fully contained within the vma. 1783 * 1784 */ 1785 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1786 unsigned long size) 1787 { 1788 if (!range_in_vma(vma, address, address + size) || 1789 !(vma->vm_flags & VM_PFNMAP)) 1790 return; 1791 1792 zap_page_range_single(vma, address, size, NULL); 1793 } 1794 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1795 1796 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1797 { 1798 pgd_t *pgd; 1799 p4d_t *p4d; 1800 pud_t *pud; 1801 pmd_t *pmd; 1802 1803 pgd = pgd_offset(mm, addr); 1804 p4d = p4d_alloc(mm, pgd, addr); 1805 if (!p4d) 1806 return NULL; 1807 pud = pud_alloc(mm, p4d, addr); 1808 if (!pud) 1809 return NULL; 1810 pmd = pmd_alloc(mm, pud, addr); 1811 if (!pmd) 1812 return NULL; 1813 1814 VM_BUG_ON(pmd_trans_huge(*pmd)); 1815 return pmd; 1816 } 1817 1818 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1819 spinlock_t **ptl) 1820 { 1821 pmd_t *pmd = walk_to_pmd(mm, addr); 1822 1823 if (!pmd) 1824 return NULL; 1825 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1826 } 1827 1828 static int validate_page_before_insert(struct page *page) 1829 { 1830 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1831 return -EINVAL; 1832 flush_dcache_page(page); 1833 return 0; 1834 } 1835 1836 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1837 unsigned long addr, struct page *page, pgprot_t prot) 1838 { 1839 if (!pte_none(ptep_get(pte))) 1840 return -EBUSY; 1841 /* Ok, finally just insert the thing.. */ 1842 get_page(page); 1843 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1844 page_add_file_rmap(page, vma, false); 1845 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1846 return 0; 1847 } 1848 1849 /* 1850 * This is the old fallback for page remapping. 1851 * 1852 * For historical reasons, it only allows reserved pages. Only 1853 * old drivers should use this, and they needed to mark their 1854 * pages reserved for the old functions anyway. 1855 */ 1856 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1857 struct page *page, pgprot_t prot) 1858 { 1859 int retval; 1860 pte_t *pte; 1861 spinlock_t *ptl; 1862 1863 retval = validate_page_before_insert(page); 1864 if (retval) 1865 goto out; 1866 retval = -ENOMEM; 1867 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1868 if (!pte) 1869 goto out; 1870 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1871 pte_unmap_unlock(pte, ptl); 1872 out: 1873 return retval; 1874 } 1875 1876 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1877 unsigned long addr, struct page *page, pgprot_t prot) 1878 { 1879 int err; 1880 1881 if (!page_count(page)) 1882 return -EINVAL; 1883 err = validate_page_before_insert(page); 1884 if (err) 1885 return err; 1886 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1887 } 1888 1889 /* insert_pages() amortizes the cost of spinlock operations 1890 * when inserting pages in a loop. 1891 */ 1892 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1893 struct page **pages, unsigned long *num, pgprot_t prot) 1894 { 1895 pmd_t *pmd = NULL; 1896 pte_t *start_pte, *pte; 1897 spinlock_t *pte_lock; 1898 struct mm_struct *const mm = vma->vm_mm; 1899 unsigned long curr_page_idx = 0; 1900 unsigned long remaining_pages_total = *num; 1901 unsigned long pages_to_write_in_pmd; 1902 int ret; 1903 more: 1904 ret = -EFAULT; 1905 pmd = walk_to_pmd(mm, addr); 1906 if (!pmd) 1907 goto out; 1908 1909 pages_to_write_in_pmd = min_t(unsigned long, 1910 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1911 1912 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1913 ret = -ENOMEM; 1914 if (pte_alloc(mm, pmd)) 1915 goto out; 1916 1917 while (pages_to_write_in_pmd) { 1918 int pte_idx = 0; 1919 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1920 1921 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1922 if (!start_pte) { 1923 ret = -EFAULT; 1924 goto out; 1925 } 1926 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1927 int err = insert_page_in_batch_locked(vma, pte, 1928 addr, pages[curr_page_idx], prot); 1929 if (unlikely(err)) { 1930 pte_unmap_unlock(start_pte, pte_lock); 1931 ret = err; 1932 remaining_pages_total -= pte_idx; 1933 goto out; 1934 } 1935 addr += PAGE_SIZE; 1936 ++curr_page_idx; 1937 } 1938 pte_unmap_unlock(start_pte, pte_lock); 1939 pages_to_write_in_pmd -= batch_size; 1940 remaining_pages_total -= batch_size; 1941 } 1942 if (remaining_pages_total) 1943 goto more; 1944 ret = 0; 1945 out: 1946 *num = remaining_pages_total; 1947 return ret; 1948 } 1949 1950 /** 1951 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1952 * @vma: user vma to map to 1953 * @addr: target start user address of these pages 1954 * @pages: source kernel pages 1955 * @num: in: number of pages to map. out: number of pages that were *not* 1956 * mapped. (0 means all pages were successfully mapped). 1957 * 1958 * Preferred over vm_insert_page() when inserting multiple pages. 1959 * 1960 * In case of error, we may have mapped a subset of the provided 1961 * pages. It is the caller's responsibility to account for this case. 1962 * 1963 * The same restrictions apply as in vm_insert_page(). 1964 */ 1965 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1966 struct page **pages, unsigned long *num) 1967 { 1968 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1969 1970 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1971 return -EFAULT; 1972 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1973 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1974 BUG_ON(vma->vm_flags & VM_PFNMAP); 1975 vm_flags_set(vma, VM_MIXEDMAP); 1976 } 1977 /* Defer page refcount checking till we're about to map that page. */ 1978 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1979 } 1980 EXPORT_SYMBOL(vm_insert_pages); 1981 1982 /** 1983 * vm_insert_page - insert single page into user vma 1984 * @vma: user vma to map to 1985 * @addr: target user address of this page 1986 * @page: source kernel page 1987 * 1988 * This allows drivers to insert individual pages they've allocated 1989 * into a user vma. 1990 * 1991 * The page has to be a nice clean _individual_ kernel allocation. 1992 * If you allocate a compound page, you need to have marked it as 1993 * such (__GFP_COMP), or manually just split the page up yourself 1994 * (see split_page()). 1995 * 1996 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1997 * took an arbitrary page protection parameter. This doesn't allow 1998 * that. Your vma protection will have to be set up correctly, which 1999 * means that if you want a shared writable mapping, you'd better 2000 * ask for a shared writable mapping! 2001 * 2002 * The page does not need to be reserved. 2003 * 2004 * Usually this function is called from f_op->mmap() handler 2005 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2006 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2007 * function from other places, for example from page-fault handler. 2008 * 2009 * Return: %0 on success, negative error code otherwise. 2010 */ 2011 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2012 struct page *page) 2013 { 2014 if (addr < vma->vm_start || addr >= vma->vm_end) 2015 return -EFAULT; 2016 if (!page_count(page)) 2017 return -EINVAL; 2018 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2019 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2020 BUG_ON(vma->vm_flags & VM_PFNMAP); 2021 vm_flags_set(vma, VM_MIXEDMAP); 2022 } 2023 return insert_page(vma, addr, page, vma->vm_page_prot); 2024 } 2025 EXPORT_SYMBOL(vm_insert_page); 2026 2027 /* 2028 * __vm_map_pages - maps range of kernel pages into user vma 2029 * @vma: user vma to map to 2030 * @pages: pointer to array of source kernel pages 2031 * @num: number of pages in page array 2032 * @offset: user's requested vm_pgoff 2033 * 2034 * This allows drivers to map range of kernel pages into a user vma. 2035 * 2036 * Return: 0 on success and error code otherwise. 2037 */ 2038 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2039 unsigned long num, unsigned long offset) 2040 { 2041 unsigned long count = vma_pages(vma); 2042 unsigned long uaddr = vma->vm_start; 2043 int ret, i; 2044 2045 /* Fail if the user requested offset is beyond the end of the object */ 2046 if (offset >= num) 2047 return -ENXIO; 2048 2049 /* Fail if the user requested size exceeds available object size */ 2050 if (count > num - offset) 2051 return -ENXIO; 2052 2053 for (i = 0; i < count; i++) { 2054 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2055 if (ret < 0) 2056 return ret; 2057 uaddr += PAGE_SIZE; 2058 } 2059 2060 return 0; 2061 } 2062 2063 /** 2064 * vm_map_pages - maps range of kernel pages starts with non zero offset 2065 * @vma: user vma to map to 2066 * @pages: pointer to array of source kernel pages 2067 * @num: number of pages in page array 2068 * 2069 * Maps an object consisting of @num pages, catering for the user's 2070 * requested vm_pgoff 2071 * 2072 * If we fail to insert any page into the vma, the function will return 2073 * immediately leaving any previously inserted pages present. Callers 2074 * from the mmap handler may immediately return the error as their caller 2075 * will destroy the vma, removing any successfully inserted pages. Other 2076 * callers should make their own arrangements for calling unmap_region(). 2077 * 2078 * Context: Process context. Called by mmap handlers. 2079 * Return: 0 on success and error code otherwise. 2080 */ 2081 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2082 unsigned long num) 2083 { 2084 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2085 } 2086 EXPORT_SYMBOL(vm_map_pages); 2087 2088 /** 2089 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2090 * @vma: user vma to map to 2091 * @pages: pointer to array of source kernel pages 2092 * @num: number of pages in page array 2093 * 2094 * Similar to vm_map_pages(), except that it explicitly sets the offset 2095 * to 0. This function is intended for the drivers that did not consider 2096 * vm_pgoff. 2097 * 2098 * Context: Process context. Called by mmap handlers. 2099 * Return: 0 on success and error code otherwise. 2100 */ 2101 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2102 unsigned long num) 2103 { 2104 return __vm_map_pages(vma, pages, num, 0); 2105 } 2106 EXPORT_SYMBOL(vm_map_pages_zero); 2107 2108 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2109 pfn_t pfn, pgprot_t prot, bool mkwrite) 2110 { 2111 struct mm_struct *mm = vma->vm_mm; 2112 pte_t *pte, entry; 2113 spinlock_t *ptl; 2114 2115 pte = get_locked_pte(mm, addr, &ptl); 2116 if (!pte) 2117 return VM_FAULT_OOM; 2118 entry = ptep_get(pte); 2119 if (!pte_none(entry)) { 2120 if (mkwrite) { 2121 /* 2122 * For read faults on private mappings the PFN passed 2123 * in may not match the PFN we have mapped if the 2124 * mapped PFN is a writeable COW page. In the mkwrite 2125 * case we are creating a writable PTE for a shared 2126 * mapping and we expect the PFNs to match. If they 2127 * don't match, we are likely racing with block 2128 * allocation and mapping invalidation so just skip the 2129 * update. 2130 */ 2131 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2132 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2133 goto out_unlock; 2134 } 2135 entry = pte_mkyoung(entry); 2136 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2137 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2138 update_mmu_cache(vma, addr, pte); 2139 } 2140 goto out_unlock; 2141 } 2142 2143 /* Ok, finally just insert the thing.. */ 2144 if (pfn_t_devmap(pfn)) 2145 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2146 else 2147 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2148 2149 if (mkwrite) { 2150 entry = pte_mkyoung(entry); 2151 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2152 } 2153 2154 set_pte_at(mm, addr, pte, entry); 2155 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2156 2157 out_unlock: 2158 pte_unmap_unlock(pte, ptl); 2159 return VM_FAULT_NOPAGE; 2160 } 2161 2162 /** 2163 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2164 * @vma: user vma to map to 2165 * @addr: target user address of this page 2166 * @pfn: source kernel pfn 2167 * @pgprot: pgprot flags for the inserted page 2168 * 2169 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2170 * to override pgprot on a per-page basis. 2171 * 2172 * This only makes sense for IO mappings, and it makes no sense for 2173 * COW mappings. In general, using multiple vmas is preferable; 2174 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2175 * impractical. 2176 * 2177 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2178 * caching- and encryption bits different than those of @vma->vm_page_prot, 2179 * because the caching- or encryption mode may not be known at mmap() time. 2180 * 2181 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2182 * to set caching and encryption bits for those vmas (except for COW pages). 2183 * This is ensured by core vm only modifying these page table entries using 2184 * functions that don't touch caching- or encryption bits, using pte_modify() 2185 * if needed. (See for example mprotect()). 2186 * 2187 * Also when new page-table entries are created, this is only done using the 2188 * fault() callback, and never using the value of vma->vm_page_prot, 2189 * except for page-table entries that point to anonymous pages as the result 2190 * of COW. 2191 * 2192 * Context: Process context. May allocate using %GFP_KERNEL. 2193 * Return: vm_fault_t value. 2194 */ 2195 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2196 unsigned long pfn, pgprot_t pgprot) 2197 { 2198 /* 2199 * Technically, architectures with pte_special can avoid all these 2200 * restrictions (same for remap_pfn_range). However we would like 2201 * consistency in testing and feature parity among all, so we should 2202 * try to keep these invariants in place for everybody. 2203 */ 2204 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2205 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2206 (VM_PFNMAP|VM_MIXEDMAP)); 2207 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2208 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2209 2210 if (addr < vma->vm_start || addr >= vma->vm_end) 2211 return VM_FAULT_SIGBUS; 2212 2213 if (!pfn_modify_allowed(pfn, pgprot)) 2214 return VM_FAULT_SIGBUS; 2215 2216 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2217 2218 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2219 false); 2220 } 2221 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2222 2223 /** 2224 * vmf_insert_pfn - insert single pfn into user vma 2225 * @vma: user vma to map to 2226 * @addr: target user address of this page 2227 * @pfn: source kernel pfn 2228 * 2229 * Similar to vm_insert_page, this allows drivers to insert individual pages 2230 * they've allocated into a user vma. Same comments apply. 2231 * 2232 * This function should only be called from a vm_ops->fault handler, and 2233 * in that case the handler should return the result of this function. 2234 * 2235 * vma cannot be a COW mapping. 2236 * 2237 * As this is called only for pages that do not currently exist, we 2238 * do not need to flush old virtual caches or the TLB. 2239 * 2240 * Context: Process context. May allocate using %GFP_KERNEL. 2241 * Return: vm_fault_t value. 2242 */ 2243 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2244 unsigned long pfn) 2245 { 2246 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2247 } 2248 EXPORT_SYMBOL(vmf_insert_pfn); 2249 2250 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2251 { 2252 /* these checks mirror the abort conditions in vm_normal_page */ 2253 if (vma->vm_flags & VM_MIXEDMAP) 2254 return true; 2255 if (pfn_t_devmap(pfn)) 2256 return true; 2257 if (pfn_t_special(pfn)) 2258 return true; 2259 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2260 return true; 2261 return false; 2262 } 2263 2264 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2265 unsigned long addr, pfn_t pfn, bool mkwrite) 2266 { 2267 pgprot_t pgprot = vma->vm_page_prot; 2268 int err; 2269 2270 BUG_ON(!vm_mixed_ok(vma, pfn)); 2271 2272 if (addr < vma->vm_start || addr >= vma->vm_end) 2273 return VM_FAULT_SIGBUS; 2274 2275 track_pfn_insert(vma, &pgprot, pfn); 2276 2277 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2278 return VM_FAULT_SIGBUS; 2279 2280 /* 2281 * If we don't have pte special, then we have to use the pfn_valid() 2282 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2283 * refcount the page if pfn_valid is true (hence insert_page rather 2284 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2285 * without pte special, it would there be refcounted as a normal page. 2286 */ 2287 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2288 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2289 struct page *page; 2290 2291 /* 2292 * At this point we are committed to insert_page() 2293 * regardless of whether the caller specified flags that 2294 * result in pfn_t_has_page() == false. 2295 */ 2296 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2297 err = insert_page(vma, addr, page, pgprot); 2298 } else { 2299 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2300 } 2301 2302 if (err == -ENOMEM) 2303 return VM_FAULT_OOM; 2304 if (err < 0 && err != -EBUSY) 2305 return VM_FAULT_SIGBUS; 2306 2307 return VM_FAULT_NOPAGE; 2308 } 2309 2310 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2311 pfn_t pfn) 2312 { 2313 return __vm_insert_mixed(vma, addr, pfn, false); 2314 } 2315 EXPORT_SYMBOL(vmf_insert_mixed); 2316 2317 /* 2318 * If the insertion of PTE failed because someone else already added a 2319 * different entry in the mean time, we treat that as success as we assume 2320 * the same entry was actually inserted. 2321 */ 2322 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2323 unsigned long addr, pfn_t pfn) 2324 { 2325 return __vm_insert_mixed(vma, addr, pfn, true); 2326 } 2327 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2328 2329 /* 2330 * maps a range of physical memory into the requested pages. the old 2331 * mappings are removed. any references to nonexistent pages results 2332 * in null mappings (currently treated as "copy-on-access") 2333 */ 2334 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2335 unsigned long addr, unsigned long end, 2336 unsigned long pfn, pgprot_t prot) 2337 { 2338 pte_t *pte, *mapped_pte; 2339 spinlock_t *ptl; 2340 int err = 0; 2341 2342 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2343 if (!pte) 2344 return -ENOMEM; 2345 arch_enter_lazy_mmu_mode(); 2346 do { 2347 BUG_ON(!pte_none(ptep_get(pte))); 2348 if (!pfn_modify_allowed(pfn, prot)) { 2349 err = -EACCES; 2350 break; 2351 } 2352 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2353 pfn++; 2354 } while (pte++, addr += PAGE_SIZE, addr != end); 2355 arch_leave_lazy_mmu_mode(); 2356 pte_unmap_unlock(mapped_pte, ptl); 2357 return err; 2358 } 2359 2360 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2361 unsigned long addr, unsigned long end, 2362 unsigned long pfn, pgprot_t prot) 2363 { 2364 pmd_t *pmd; 2365 unsigned long next; 2366 int err; 2367 2368 pfn -= addr >> PAGE_SHIFT; 2369 pmd = pmd_alloc(mm, pud, addr); 2370 if (!pmd) 2371 return -ENOMEM; 2372 VM_BUG_ON(pmd_trans_huge(*pmd)); 2373 do { 2374 next = pmd_addr_end(addr, end); 2375 err = remap_pte_range(mm, pmd, addr, next, 2376 pfn + (addr >> PAGE_SHIFT), prot); 2377 if (err) 2378 return err; 2379 } while (pmd++, addr = next, addr != end); 2380 return 0; 2381 } 2382 2383 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2384 unsigned long addr, unsigned long end, 2385 unsigned long pfn, pgprot_t prot) 2386 { 2387 pud_t *pud; 2388 unsigned long next; 2389 int err; 2390 2391 pfn -= addr >> PAGE_SHIFT; 2392 pud = pud_alloc(mm, p4d, addr); 2393 if (!pud) 2394 return -ENOMEM; 2395 do { 2396 next = pud_addr_end(addr, end); 2397 err = remap_pmd_range(mm, pud, addr, next, 2398 pfn + (addr >> PAGE_SHIFT), prot); 2399 if (err) 2400 return err; 2401 } while (pud++, addr = next, addr != end); 2402 return 0; 2403 } 2404 2405 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2406 unsigned long addr, unsigned long end, 2407 unsigned long pfn, pgprot_t prot) 2408 { 2409 p4d_t *p4d; 2410 unsigned long next; 2411 int err; 2412 2413 pfn -= addr >> PAGE_SHIFT; 2414 p4d = p4d_alloc(mm, pgd, addr); 2415 if (!p4d) 2416 return -ENOMEM; 2417 do { 2418 next = p4d_addr_end(addr, end); 2419 err = remap_pud_range(mm, p4d, addr, next, 2420 pfn + (addr >> PAGE_SHIFT), prot); 2421 if (err) 2422 return err; 2423 } while (p4d++, addr = next, addr != end); 2424 return 0; 2425 } 2426 2427 /* 2428 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2429 * must have pre-validated the caching bits of the pgprot_t. 2430 */ 2431 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2432 unsigned long pfn, unsigned long size, pgprot_t prot) 2433 { 2434 pgd_t *pgd; 2435 unsigned long next; 2436 unsigned long end = addr + PAGE_ALIGN(size); 2437 struct mm_struct *mm = vma->vm_mm; 2438 int err; 2439 2440 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2441 return -EINVAL; 2442 2443 /* 2444 * Physically remapped pages are special. Tell the 2445 * rest of the world about it: 2446 * VM_IO tells people not to look at these pages 2447 * (accesses can have side effects). 2448 * VM_PFNMAP tells the core MM that the base pages are just 2449 * raw PFN mappings, and do not have a "struct page" associated 2450 * with them. 2451 * VM_DONTEXPAND 2452 * Disable vma merging and expanding with mremap(). 2453 * VM_DONTDUMP 2454 * Omit vma from core dump, even when VM_IO turned off. 2455 * 2456 * There's a horrible special case to handle copy-on-write 2457 * behaviour that some programs depend on. We mark the "original" 2458 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2459 * See vm_normal_page() for details. 2460 */ 2461 if (is_cow_mapping(vma->vm_flags)) { 2462 if (addr != vma->vm_start || end != vma->vm_end) 2463 return -EINVAL; 2464 vma->vm_pgoff = pfn; 2465 } 2466 2467 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2468 2469 BUG_ON(addr >= end); 2470 pfn -= addr >> PAGE_SHIFT; 2471 pgd = pgd_offset(mm, addr); 2472 flush_cache_range(vma, addr, end); 2473 do { 2474 next = pgd_addr_end(addr, end); 2475 err = remap_p4d_range(mm, pgd, addr, next, 2476 pfn + (addr >> PAGE_SHIFT), prot); 2477 if (err) 2478 return err; 2479 } while (pgd++, addr = next, addr != end); 2480 2481 return 0; 2482 } 2483 2484 /** 2485 * remap_pfn_range - remap kernel memory to userspace 2486 * @vma: user vma to map to 2487 * @addr: target page aligned user address to start at 2488 * @pfn: page frame number of kernel physical memory address 2489 * @size: size of mapping area 2490 * @prot: page protection flags for this mapping 2491 * 2492 * Note: this is only safe if the mm semaphore is held when called. 2493 * 2494 * Return: %0 on success, negative error code otherwise. 2495 */ 2496 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2497 unsigned long pfn, unsigned long size, pgprot_t prot) 2498 { 2499 int err; 2500 2501 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2502 if (err) 2503 return -EINVAL; 2504 2505 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2506 if (err) 2507 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2508 return err; 2509 } 2510 EXPORT_SYMBOL(remap_pfn_range); 2511 2512 /** 2513 * vm_iomap_memory - remap memory to userspace 2514 * @vma: user vma to map to 2515 * @start: start of the physical memory to be mapped 2516 * @len: size of area 2517 * 2518 * This is a simplified io_remap_pfn_range() for common driver use. The 2519 * driver just needs to give us the physical memory range to be mapped, 2520 * we'll figure out the rest from the vma information. 2521 * 2522 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2523 * whatever write-combining details or similar. 2524 * 2525 * Return: %0 on success, negative error code otherwise. 2526 */ 2527 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2528 { 2529 unsigned long vm_len, pfn, pages; 2530 2531 /* Check that the physical memory area passed in looks valid */ 2532 if (start + len < start) 2533 return -EINVAL; 2534 /* 2535 * You *really* shouldn't map things that aren't page-aligned, 2536 * but we've historically allowed it because IO memory might 2537 * just have smaller alignment. 2538 */ 2539 len += start & ~PAGE_MASK; 2540 pfn = start >> PAGE_SHIFT; 2541 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2542 if (pfn + pages < pfn) 2543 return -EINVAL; 2544 2545 /* We start the mapping 'vm_pgoff' pages into the area */ 2546 if (vma->vm_pgoff > pages) 2547 return -EINVAL; 2548 pfn += vma->vm_pgoff; 2549 pages -= vma->vm_pgoff; 2550 2551 /* Can we fit all of the mapping? */ 2552 vm_len = vma->vm_end - vma->vm_start; 2553 if (vm_len >> PAGE_SHIFT > pages) 2554 return -EINVAL; 2555 2556 /* Ok, let it rip */ 2557 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2558 } 2559 EXPORT_SYMBOL(vm_iomap_memory); 2560 2561 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2562 unsigned long addr, unsigned long end, 2563 pte_fn_t fn, void *data, bool create, 2564 pgtbl_mod_mask *mask) 2565 { 2566 pte_t *pte, *mapped_pte; 2567 int err = 0; 2568 spinlock_t *ptl; 2569 2570 if (create) { 2571 mapped_pte = pte = (mm == &init_mm) ? 2572 pte_alloc_kernel_track(pmd, addr, mask) : 2573 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2574 if (!pte) 2575 return -ENOMEM; 2576 } else { 2577 mapped_pte = pte = (mm == &init_mm) ? 2578 pte_offset_kernel(pmd, addr) : 2579 pte_offset_map_lock(mm, pmd, addr, &ptl); 2580 if (!pte) 2581 return -EINVAL; 2582 } 2583 2584 arch_enter_lazy_mmu_mode(); 2585 2586 if (fn) { 2587 do { 2588 if (create || !pte_none(ptep_get(pte))) { 2589 err = fn(pte++, addr, data); 2590 if (err) 2591 break; 2592 } 2593 } while (addr += PAGE_SIZE, addr != end); 2594 } 2595 *mask |= PGTBL_PTE_MODIFIED; 2596 2597 arch_leave_lazy_mmu_mode(); 2598 2599 if (mm != &init_mm) 2600 pte_unmap_unlock(mapped_pte, ptl); 2601 return err; 2602 } 2603 2604 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2605 unsigned long addr, unsigned long end, 2606 pte_fn_t fn, void *data, bool create, 2607 pgtbl_mod_mask *mask) 2608 { 2609 pmd_t *pmd; 2610 unsigned long next; 2611 int err = 0; 2612 2613 BUG_ON(pud_huge(*pud)); 2614 2615 if (create) { 2616 pmd = pmd_alloc_track(mm, pud, addr, mask); 2617 if (!pmd) 2618 return -ENOMEM; 2619 } else { 2620 pmd = pmd_offset(pud, addr); 2621 } 2622 do { 2623 next = pmd_addr_end(addr, end); 2624 if (pmd_none(*pmd) && !create) 2625 continue; 2626 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2627 return -EINVAL; 2628 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2629 if (!create) 2630 continue; 2631 pmd_clear_bad(pmd); 2632 } 2633 err = apply_to_pte_range(mm, pmd, addr, next, 2634 fn, data, create, mask); 2635 if (err) 2636 break; 2637 } while (pmd++, addr = next, addr != end); 2638 2639 return err; 2640 } 2641 2642 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2643 unsigned long addr, unsigned long end, 2644 pte_fn_t fn, void *data, bool create, 2645 pgtbl_mod_mask *mask) 2646 { 2647 pud_t *pud; 2648 unsigned long next; 2649 int err = 0; 2650 2651 if (create) { 2652 pud = pud_alloc_track(mm, p4d, addr, mask); 2653 if (!pud) 2654 return -ENOMEM; 2655 } else { 2656 pud = pud_offset(p4d, addr); 2657 } 2658 do { 2659 next = pud_addr_end(addr, end); 2660 if (pud_none(*pud) && !create) 2661 continue; 2662 if (WARN_ON_ONCE(pud_leaf(*pud))) 2663 return -EINVAL; 2664 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2665 if (!create) 2666 continue; 2667 pud_clear_bad(pud); 2668 } 2669 err = apply_to_pmd_range(mm, pud, addr, next, 2670 fn, data, create, mask); 2671 if (err) 2672 break; 2673 } while (pud++, addr = next, addr != end); 2674 2675 return err; 2676 } 2677 2678 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2679 unsigned long addr, unsigned long end, 2680 pte_fn_t fn, void *data, bool create, 2681 pgtbl_mod_mask *mask) 2682 { 2683 p4d_t *p4d; 2684 unsigned long next; 2685 int err = 0; 2686 2687 if (create) { 2688 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2689 if (!p4d) 2690 return -ENOMEM; 2691 } else { 2692 p4d = p4d_offset(pgd, addr); 2693 } 2694 do { 2695 next = p4d_addr_end(addr, end); 2696 if (p4d_none(*p4d) && !create) 2697 continue; 2698 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2699 return -EINVAL; 2700 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2701 if (!create) 2702 continue; 2703 p4d_clear_bad(p4d); 2704 } 2705 err = apply_to_pud_range(mm, p4d, addr, next, 2706 fn, data, create, mask); 2707 if (err) 2708 break; 2709 } while (p4d++, addr = next, addr != end); 2710 2711 return err; 2712 } 2713 2714 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2715 unsigned long size, pte_fn_t fn, 2716 void *data, bool create) 2717 { 2718 pgd_t *pgd; 2719 unsigned long start = addr, next; 2720 unsigned long end = addr + size; 2721 pgtbl_mod_mask mask = 0; 2722 int err = 0; 2723 2724 if (WARN_ON(addr >= end)) 2725 return -EINVAL; 2726 2727 pgd = pgd_offset(mm, addr); 2728 do { 2729 next = pgd_addr_end(addr, end); 2730 if (pgd_none(*pgd) && !create) 2731 continue; 2732 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2733 return -EINVAL; 2734 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2735 if (!create) 2736 continue; 2737 pgd_clear_bad(pgd); 2738 } 2739 err = apply_to_p4d_range(mm, pgd, addr, next, 2740 fn, data, create, &mask); 2741 if (err) 2742 break; 2743 } while (pgd++, addr = next, addr != end); 2744 2745 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2746 arch_sync_kernel_mappings(start, start + size); 2747 2748 return err; 2749 } 2750 2751 /* 2752 * Scan a region of virtual memory, filling in page tables as necessary 2753 * and calling a provided function on each leaf page table. 2754 */ 2755 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2756 unsigned long size, pte_fn_t fn, void *data) 2757 { 2758 return __apply_to_page_range(mm, addr, size, fn, data, true); 2759 } 2760 EXPORT_SYMBOL_GPL(apply_to_page_range); 2761 2762 /* 2763 * Scan a region of virtual memory, calling a provided function on 2764 * each leaf page table where it exists. 2765 * 2766 * Unlike apply_to_page_range, this does _not_ fill in page tables 2767 * where they are absent. 2768 */ 2769 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2770 unsigned long size, pte_fn_t fn, void *data) 2771 { 2772 return __apply_to_page_range(mm, addr, size, fn, data, false); 2773 } 2774 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2775 2776 /* 2777 * handle_pte_fault chooses page fault handler according to an entry which was 2778 * read non-atomically. Before making any commitment, on those architectures 2779 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2780 * parts, do_swap_page must check under lock before unmapping the pte and 2781 * proceeding (but do_wp_page is only called after already making such a check; 2782 * and do_anonymous_page can safely check later on). 2783 */ 2784 static inline int pte_unmap_same(struct vm_fault *vmf) 2785 { 2786 int same = 1; 2787 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2788 if (sizeof(pte_t) > sizeof(unsigned long)) { 2789 spin_lock(vmf->ptl); 2790 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2791 spin_unlock(vmf->ptl); 2792 } 2793 #endif 2794 pte_unmap(vmf->pte); 2795 vmf->pte = NULL; 2796 return same; 2797 } 2798 2799 /* 2800 * Return: 2801 * 0: copied succeeded 2802 * -EHWPOISON: copy failed due to hwpoison in source page 2803 * -EAGAIN: copied failed (some other reason) 2804 */ 2805 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2806 struct vm_fault *vmf) 2807 { 2808 int ret; 2809 void *kaddr; 2810 void __user *uaddr; 2811 struct vm_area_struct *vma = vmf->vma; 2812 struct mm_struct *mm = vma->vm_mm; 2813 unsigned long addr = vmf->address; 2814 2815 if (likely(src)) { 2816 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2817 memory_failure_queue(page_to_pfn(src), 0); 2818 return -EHWPOISON; 2819 } 2820 return 0; 2821 } 2822 2823 /* 2824 * If the source page was a PFN mapping, we don't have 2825 * a "struct page" for it. We do a best-effort copy by 2826 * just copying from the original user address. If that 2827 * fails, we just zero-fill it. Live with it. 2828 */ 2829 kaddr = kmap_atomic(dst); 2830 uaddr = (void __user *)(addr & PAGE_MASK); 2831 2832 /* 2833 * On architectures with software "accessed" bits, we would 2834 * take a double page fault, so mark it accessed here. 2835 */ 2836 vmf->pte = NULL; 2837 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2838 pte_t entry; 2839 2840 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2841 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2842 /* 2843 * Other thread has already handled the fault 2844 * and update local tlb only 2845 */ 2846 if (vmf->pte) 2847 update_mmu_tlb(vma, addr, vmf->pte); 2848 ret = -EAGAIN; 2849 goto pte_unlock; 2850 } 2851 2852 entry = pte_mkyoung(vmf->orig_pte); 2853 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2854 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 2855 } 2856 2857 /* 2858 * This really shouldn't fail, because the page is there 2859 * in the page tables. But it might just be unreadable, 2860 * in which case we just give up and fill the result with 2861 * zeroes. 2862 */ 2863 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2864 if (vmf->pte) 2865 goto warn; 2866 2867 /* Re-validate under PTL if the page is still mapped */ 2868 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2869 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2870 /* The PTE changed under us, update local tlb */ 2871 if (vmf->pte) 2872 update_mmu_tlb(vma, addr, vmf->pte); 2873 ret = -EAGAIN; 2874 goto pte_unlock; 2875 } 2876 2877 /* 2878 * The same page can be mapped back since last copy attempt. 2879 * Try to copy again under PTL. 2880 */ 2881 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2882 /* 2883 * Give a warn in case there can be some obscure 2884 * use-case 2885 */ 2886 warn: 2887 WARN_ON_ONCE(1); 2888 clear_page(kaddr); 2889 } 2890 } 2891 2892 ret = 0; 2893 2894 pte_unlock: 2895 if (vmf->pte) 2896 pte_unmap_unlock(vmf->pte, vmf->ptl); 2897 kunmap_atomic(kaddr); 2898 flush_dcache_page(dst); 2899 2900 return ret; 2901 } 2902 2903 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2904 { 2905 struct file *vm_file = vma->vm_file; 2906 2907 if (vm_file) 2908 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2909 2910 /* 2911 * Special mappings (e.g. VDSO) do not have any file so fake 2912 * a default GFP_KERNEL for them. 2913 */ 2914 return GFP_KERNEL; 2915 } 2916 2917 /* 2918 * Notify the address space that the page is about to become writable so that 2919 * it can prohibit this or wait for the page to get into an appropriate state. 2920 * 2921 * We do this without the lock held, so that it can sleep if it needs to. 2922 */ 2923 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 2924 { 2925 vm_fault_t ret; 2926 unsigned int old_flags = vmf->flags; 2927 2928 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2929 2930 if (vmf->vma->vm_file && 2931 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2932 return VM_FAULT_SIGBUS; 2933 2934 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2935 /* Restore original flags so that caller is not surprised */ 2936 vmf->flags = old_flags; 2937 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2938 return ret; 2939 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2940 folio_lock(folio); 2941 if (!folio->mapping) { 2942 folio_unlock(folio); 2943 return 0; /* retry */ 2944 } 2945 ret |= VM_FAULT_LOCKED; 2946 } else 2947 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2948 return ret; 2949 } 2950 2951 /* 2952 * Handle dirtying of a page in shared file mapping on a write fault. 2953 * 2954 * The function expects the page to be locked and unlocks it. 2955 */ 2956 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2957 { 2958 struct vm_area_struct *vma = vmf->vma; 2959 struct address_space *mapping; 2960 struct folio *folio = page_folio(vmf->page); 2961 bool dirtied; 2962 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2963 2964 dirtied = folio_mark_dirty(folio); 2965 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 2966 /* 2967 * Take a local copy of the address_space - folio.mapping may be zeroed 2968 * by truncate after folio_unlock(). The address_space itself remains 2969 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 2970 * release semantics to prevent the compiler from undoing this copying. 2971 */ 2972 mapping = folio_raw_mapping(folio); 2973 folio_unlock(folio); 2974 2975 if (!page_mkwrite) 2976 file_update_time(vma->vm_file); 2977 2978 /* 2979 * Throttle page dirtying rate down to writeback speed. 2980 * 2981 * mapping may be NULL here because some device drivers do not 2982 * set page.mapping but still dirty their pages 2983 * 2984 * Drop the mmap_lock before waiting on IO, if we can. The file 2985 * is pinning the mapping, as per above. 2986 */ 2987 if ((dirtied || page_mkwrite) && mapping) { 2988 struct file *fpin; 2989 2990 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2991 balance_dirty_pages_ratelimited(mapping); 2992 if (fpin) { 2993 fput(fpin); 2994 return VM_FAULT_COMPLETED; 2995 } 2996 } 2997 2998 return 0; 2999 } 3000 3001 /* 3002 * Handle write page faults for pages that can be reused in the current vma 3003 * 3004 * This can happen either due to the mapping being with the VM_SHARED flag, 3005 * or due to us being the last reference standing to the page. In either 3006 * case, all we need to do here is to mark the page as writable and update 3007 * any related book-keeping. 3008 */ 3009 static inline void wp_page_reuse(struct vm_fault *vmf) 3010 __releases(vmf->ptl) 3011 { 3012 struct vm_area_struct *vma = vmf->vma; 3013 struct page *page = vmf->page; 3014 pte_t entry; 3015 3016 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3017 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3018 3019 /* 3020 * Clear the pages cpupid information as the existing 3021 * information potentially belongs to a now completely 3022 * unrelated process. 3023 */ 3024 if (page) 3025 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3026 3027 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3028 entry = pte_mkyoung(vmf->orig_pte); 3029 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3030 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3031 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3032 pte_unmap_unlock(vmf->pte, vmf->ptl); 3033 count_vm_event(PGREUSE); 3034 } 3035 3036 /* 3037 * Handle the case of a page which we actually need to copy to a new page, 3038 * either due to COW or unsharing. 3039 * 3040 * Called with mmap_lock locked and the old page referenced, but 3041 * without the ptl held. 3042 * 3043 * High level logic flow: 3044 * 3045 * - Allocate a page, copy the content of the old page to the new one. 3046 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3047 * - Take the PTL. If the pte changed, bail out and release the allocated page 3048 * - If the pte is still the way we remember it, update the page table and all 3049 * relevant references. This includes dropping the reference the page-table 3050 * held to the old page, as well as updating the rmap. 3051 * - In any case, unlock the PTL and drop the reference we took to the old page. 3052 */ 3053 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3054 { 3055 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3056 struct vm_area_struct *vma = vmf->vma; 3057 struct mm_struct *mm = vma->vm_mm; 3058 struct folio *old_folio = NULL; 3059 struct folio *new_folio = NULL; 3060 pte_t entry; 3061 int page_copied = 0; 3062 struct mmu_notifier_range range; 3063 int ret; 3064 3065 delayacct_wpcopy_start(); 3066 3067 if (vmf->page) 3068 old_folio = page_folio(vmf->page); 3069 if (unlikely(anon_vma_prepare(vma))) 3070 goto oom; 3071 3072 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3073 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 3074 if (!new_folio) 3075 goto oom; 3076 } else { 3077 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 3078 vmf->address, false); 3079 if (!new_folio) 3080 goto oom; 3081 3082 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3083 if (ret) { 3084 /* 3085 * COW failed, if the fault was solved by other, 3086 * it's fine. If not, userspace would re-fault on 3087 * the same address and we will handle the fault 3088 * from the second attempt. 3089 * The -EHWPOISON case will not be retried. 3090 */ 3091 folio_put(new_folio); 3092 if (old_folio) 3093 folio_put(old_folio); 3094 3095 delayacct_wpcopy_end(); 3096 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3097 } 3098 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3099 } 3100 3101 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) 3102 goto oom_free_new; 3103 folio_throttle_swaprate(new_folio, GFP_KERNEL); 3104 3105 __folio_mark_uptodate(new_folio); 3106 3107 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3108 vmf->address & PAGE_MASK, 3109 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3110 mmu_notifier_invalidate_range_start(&range); 3111 3112 /* 3113 * Re-check the pte - we dropped the lock 3114 */ 3115 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3116 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3117 if (old_folio) { 3118 if (!folio_test_anon(old_folio)) { 3119 dec_mm_counter(mm, mm_counter_file(&old_folio->page)); 3120 inc_mm_counter(mm, MM_ANONPAGES); 3121 } 3122 } else { 3123 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3124 inc_mm_counter(mm, MM_ANONPAGES); 3125 } 3126 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3127 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3128 entry = pte_sw_mkyoung(entry); 3129 if (unlikely(unshare)) { 3130 if (pte_soft_dirty(vmf->orig_pte)) 3131 entry = pte_mksoft_dirty(entry); 3132 if (pte_uffd_wp(vmf->orig_pte)) 3133 entry = pte_mkuffd_wp(entry); 3134 } else { 3135 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3136 } 3137 3138 /* 3139 * Clear the pte entry and flush it first, before updating the 3140 * pte with the new entry, to keep TLBs on different CPUs in 3141 * sync. This code used to set the new PTE then flush TLBs, but 3142 * that left a window where the new PTE could be loaded into 3143 * some TLBs while the old PTE remains in others. 3144 */ 3145 ptep_clear_flush(vma, vmf->address, vmf->pte); 3146 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3147 folio_add_lru_vma(new_folio, vma); 3148 /* 3149 * We call the notify macro here because, when using secondary 3150 * mmu page tables (such as kvm shadow page tables), we want the 3151 * new page to be mapped directly into the secondary page table. 3152 */ 3153 BUG_ON(unshare && pte_write(entry)); 3154 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3155 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3156 if (old_folio) { 3157 /* 3158 * Only after switching the pte to the new page may 3159 * we remove the mapcount here. Otherwise another 3160 * process may come and find the rmap count decremented 3161 * before the pte is switched to the new page, and 3162 * "reuse" the old page writing into it while our pte 3163 * here still points into it and can be read by other 3164 * threads. 3165 * 3166 * The critical issue is to order this 3167 * page_remove_rmap with the ptp_clear_flush above. 3168 * Those stores are ordered by (if nothing else,) 3169 * the barrier present in the atomic_add_negative 3170 * in page_remove_rmap. 3171 * 3172 * Then the TLB flush in ptep_clear_flush ensures that 3173 * no process can access the old page before the 3174 * decremented mapcount is visible. And the old page 3175 * cannot be reused until after the decremented 3176 * mapcount is visible. So transitively, TLBs to 3177 * old page will be flushed before it can be reused. 3178 */ 3179 page_remove_rmap(vmf->page, vma, false); 3180 } 3181 3182 /* Free the old page.. */ 3183 new_folio = old_folio; 3184 page_copied = 1; 3185 pte_unmap_unlock(vmf->pte, vmf->ptl); 3186 } else if (vmf->pte) { 3187 update_mmu_tlb(vma, vmf->address, vmf->pte); 3188 pte_unmap_unlock(vmf->pte, vmf->ptl); 3189 } 3190 3191 mmu_notifier_invalidate_range_end(&range); 3192 3193 if (new_folio) 3194 folio_put(new_folio); 3195 if (old_folio) { 3196 if (page_copied) 3197 free_swap_cache(&old_folio->page); 3198 folio_put(old_folio); 3199 } 3200 3201 delayacct_wpcopy_end(); 3202 return 0; 3203 oom_free_new: 3204 folio_put(new_folio); 3205 oom: 3206 if (old_folio) 3207 folio_put(old_folio); 3208 3209 delayacct_wpcopy_end(); 3210 return VM_FAULT_OOM; 3211 } 3212 3213 /** 3214 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3215 * writeable once the page is prepared 3216 * 3217 * @vmf: structure describing the fault 3218 * 3219 * This function handles all that is needed to finish a write page fault in a 3220 * shared mapping due to PTE being read-only once the mapped page is prepared. 3221 * It handles locking of PTE and modifying it. 3222 * 3223 * The function expects the page to be locked or other protection against 3224 * concurrent faults / writeback (such as DAX radix tree locks). 3225 * 3226 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3227 * we acquired PTE lock. 3228 */ 3229 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3230 { 3231 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3232 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3233 &vmf->ptl); 3234 if (!vmf->pte) 3235 return VM_FAULT_NOPAGE; 3236 /* 3237 * We might have raced with another page fault while we released the 3238 * pte_offset_map_lock. 3239 */ 3240 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3241 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3242 pte_unmap_unlock(vmf->pte, vmf->ptl); 3243 return VM_FAULT_NOPAGE; 3244 } 3245 wp_page_reuse(vmf); 3246 return 0; 3247 } 3248 3249 /* 3250 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3251 * mapping 3252 */ 3253 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3254 { 3255 struct vm_area_struct *vma = vmf->vma; 3256 3257 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3258 vm_fault_t ret; 3259 3260 pte_unmap_unlock(vmf->pte, vmf->ptl); 3261 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3262 vma_end_read(vmf->vma); 3263 return VM_FAULT_RETRY; 3264 } 3265 3266 vmf->flags |= FAULT_FLAG_MKWRITE; 3267 ret = vma->vm_ops->pfn_mkwrite(vmf); 3268 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3269 return ret; 3270 return finish_mkwrite_fault(vmf); 3271 } 3272 wp_page_reuse(vmf); 3273 return 0; 3274 } 3275 3276 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3277 __releases(vmf->ptl) 3278 { 3279 struct vm_area_struct *vma = vmf->vma; 3280 vm_fault_t ret = 0; 3281 3282 folio_get(folio); 3283 3284 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3285 vm_fault_t tmp; 3286 3287 pte_unmap_unlock(vmf->pte, vmf->ptl); 3288 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3289 folio_put(folio); 3290 vma_end_read(vmf->vma); 3291 return VM_FAULT_RETRY; 3292 } 3293 3294 tmp = do_page_mkwrite(vmf, folio); 3295 if (unlikely(!tmp || (tmp & 3296 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3297 folio_put(folio); 3298 return tmp; 3299 } 3300 tmp = finish_mkwrite_fault(vmf); 3301 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3302 folio_unlock(folio); 3303 folio_put(folio); 3304 return tmp; 3305 } 3306 } else { 3307 wp_page_reuse(vmf); 3308 folio_lock(folio); 3309 } 3310 ret |= fault_dirty_shared_page(vmf); 3311 folio_put(folio); 3312 3313 return ret; 3314 } 3315 3316 /* 3317 * This routine handles present pages, when 3318 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3319 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3320 * (FAULT_FLAG_UNSHARE) 3321 * 3322 * It is done by copying the page to a new address and decrementing the 3323 * shared-page counter for the old page. 3324 * 3325 * Note that this routine assumes that the protection checks have been 3326 * done by the caller (the low-level page fault routine in most cases). 3327 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3328 * done any necessary COW. 3329 * 3330 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3331 * though the page will change only once the write actually happens. This 3332 * avoids a few races, and potentially makes it more efficient. 3333 * 3334 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3335 * but allow concurrent faults), with pte both mapped and locked. 3336 * We return with mmap_lock still held, but pte unmapped and unlocked. 3337 */ 3338 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3339 __releases(vmf->ptl) 3340 { 3341 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3342 struct vm_area_struct *vma = vmf->vma; 3343 struct folio *folio = NULL; 3344 3345 if (likely(!unshare)) { 3346 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3347 pte_unmap_unlock(vmf->pte, vmf->ptl); 3348 return handle_userfault(vmf, VM_UFFD_WP); 3349 } 3350 3351 /* 3352 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3353 * is flushed in this case before copying. 3354 */ 3355 if (unlikely(userfaultfd_wp(vmf->vma) && 3356 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3357 flush_tlb_page(vmf->vma, vmf->address); 3358 } 3359 3360 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3361 3362 if (vmf->page) 3363 folio = page_folio(vmf->page); 3364 3365 /* 3366 * Shared mapping: we are guaranteed to have VM_WRITE and 3367 * FAULT_FLAG_WRITE set at this point. 3368 */ 3369 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3370 /* 3371 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3372 * VM_PFNMAP VMA. 3373 * 3374 * We should not cow pages in a shared writeable mapping. 3375 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3376 */ 3377 if (!vmf->page) 3378 return wp_pfn_shared(vmf); 3379 return wp_page_shared(vmf, folio); 3380 } 3381 3382 /* 3383 * Private mapping: create an exclusive anonymous page copy if reuse 3384 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3385 */ 3386 if (folio && folio_test_anon(folio)) { 3387 /* 3388 * If the page is exclusive to this process we must reuse the 3389 * page without further checks. 3390 */ 3391 if (PageAnonExclusive(vmf->page)) 3392 goto reuse; 3393 3394 /* 3395 * We have to verify under folio lock: these early checks are 3396 * just an optimization to avoid locking the folio and freeing 3397 * the swapcache if there is little hope that we can reuse. 3398 * 3399 * KSM doesn't necessarily raise the folio refcount. 3400 */ 3401 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3402 goto copy; 3403 if (!folio_test_lru(folio)) 3404 /* 3405 * We cannot easily detect+handle references from 3406 * remote LRU caches or references to LRU folios. 3407 */ 3408 lru_add_drain(); 3409 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3410 goto copy; 3411 if (!folio_trylock(folio)) 3412 goto copy; 3413 if (folio_test_swapcache(folio)) 3414 folio_free_swap(folio); 3415 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3416 folio_unlock(folio); 3417 goto copy; 3418 } 3419 /* 3420 * Ok, we've got the only folio reference from our mapping 3421 * and the folio is locked, it's dark out, and we're wearing 3422 * sunglasses. Hit it. 3423 */ 3424 page_move_anon_rmap(vmf->page, vma); 3425 folio_unlock(folio); 3426 reuse: 3427 if (unlikely(unshare)) { 3428 pte_unmap_unlock(vmf->pte, vmf->ptl); 3429 return 0; 3430 } 3431 wp_page_reuse(vmf); 3432 return 0; 3433 } 3434 copy: 3435 if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) { 3436 pte_unmap_unlock(vmf->pte, vmf->ptl); 3437 vma_end_read(vmf->vma); 3438 return VM_FAULT_RETRY; 3439 } 3440 3441 /* 3442 * Ok, we need to copy. Oh, well.. 3443 */ 3444 if (folio) 3445 folio_get(folio); 3446 3447 pte_unmap_unlock(vmf->pte, vmf->ptl); 3448 #ifdef CONFIG_KSM 3449 if (folio && folio_test_ksm(folio)) 3450 count_vm_event(COW_KSM); 3451 #endif 3452 return wp_page_copy(vmf); 3453 } 3454 3455 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3456 unsigned long start_addr, unsigned long end_addr, 3457 struct zap_details *details) 3458 { 3459 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3460 } 3461 3462 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3463 pgoff_t first_index, 3464 pgoff_t last_index, 3465 struct zap_details *details) 3466 { 3467 struct vm_area_struct *vma; 3468 pgoff_t vba, vea, zba, zea; 3469 3470 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3471 vba = vma->vm_pgoff; 3472 vea = vba + vma_pages(vma) - 1; 3473 zba = max(first_index, vba); 3474 zea = min(last_index, vea); 3475 3476 unmap_mapping_range_vma(vma, 3477 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3478 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3479 details); 3480 } 3481 } 3482 3483 /** 3484 * unmap_mapping_folio() - Unmap single folio from processes. 3485 * @folio: The locked folio to be unmapped. 3486 * 3487 * Unmap this folio from any userspace process which still has it mmaped. 3488 * Typically, for efficiency, the range of nearby pages has already been 3489 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3490 * truncation or invalidation holds the lock on a folio, it may find that 3491 * the page has been remapped again: and then uses unmap_mapping_folio() 3492 * to unmap it finally. 3493 */ 3494 void unmap_mapping_folio(struct folio *folio) 3495 { 3496 struct address_space *mapping = folio->mapping; 3497 struct zap_details details = { }; 3498 pgoff_t first_index; 3499 pgoff_t last_index; 3500 3501 VM_BUG_ON(!folio_test_locked(folio)); 3502 3503 first_index = folio->index; 3504 last_index = folio_next_index(folio) - 1; 3505 3506 details.even_cows = false; 3507 details.single_folio = folio; 3508 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3509 3510 i_mmap_lock_read(mapping); 3511 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3512 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3513 last_index, &details); 3514 i_mmap_unlock_read(mapping); 3515 } 3516 3517 /** 3518 * unmap_mapping_pages() - Unmap pages from processes. 3519 * @mapping: The address space containing pages to be unmapped. 3520 * @start: Index of first page to be unmapped. 3521 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3522 * @even_cows: Whether to unmap even private COWed pages. 3523 * 3524 * Unmap the pages in this address space from any userspace process which 3525 * has them mmaped. Generally, you want to remove COWed pages as well when 3526 * a file is being truncated, but not when invalidating pages from the page 3527 * cache. 3528 */ 3529 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3530 pgoff_t nr, bool even_cows) 3531 { 3532 struct zap_details details = { }; 3533 pgoff_t first_index = start; 3534 pgoff_t last_index = start + nr - 1; 3535 3536 details.even_cows = even_cows; 3537 if (last_index < first_index) 3538 last_index = ULONG_MAX; 3539 3540 i_mmap_lock_read(mapping); 3541 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3542 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3543 last_index, &details); 3544 i_mmap_unlock_read(mapping); 3545 } 3546 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3547 3548 /** 3549 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3550 * address_space corresponding to the specified byte range in the underlying 3551 * file. 3552 * 3553 * @mapping: the address space containing mmaps to be unmapped. 3554 * @holebegin: byte in first page to unmap, relative to the start of 3555 * the underlying file. This will be rounded down to a PAGE_SIZE 3556 * boundary. Note that this is different from truncate_pagecache(), which 3557 * must keep the partial page. In contrast, we must get rid of 3558 * partial pages. 3559 * @holelen: size of prospective hole in bytes. This will be rounded 3560 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3561 * end of the file. 3562 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3563 * but 0 when invalidating pagecache, don't throw away private data. 3564 */ 3565 void unmap_mapping_range(struct address_space *mapping, 3566 loff_t const holebegin, loff_t const holelen, int even_cows) 3567 { 3568 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3569 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3570 3571 /* Check for overflow. */ 3572 if (sizeof(holelen) > sizeof(hlen)) { 3573 long long holeend = 3574 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3575 if (holeend & ~(long long)ULONG_MAX) 3576 hlen = ULONG_MAX - hba + 1; 3577 } 3578 3579 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3580 } 3581 EXPORT_SYMBOL(unmap_mapping_range); 3582 3583 /* 3584 * Restore a potential device exclusive pte to a working pte entry 3585 */ 3586 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3587 { 3588 struct folio *folio = page_folio(vmf->page); 3589 struct vm_area_struct *vma = vmf->vma; 3590 struct mmu_notifier_range range; 3591 vm_fault_t ret; 3592 3593 /* 3594 * We need a reference to lock the folio because we don't hold 3595 * the PTL so a racing thread can remove the device-exclusive 3596 * entry and unmap it. If the folio is free the entry must 3597 * have been removed already. If it happens to have already 3598 * been re-allocated after being freed all we do is lock and 3599 * unlock it. 3600 */ 3601 if (!folio_try_get(folio)) 3602 return 0; 3603 3604 ret = folio_lock_or_retry(folio, vmf); 3605 if (ret) { 3606 folio_put(folio); 3607 return ret; 3608 } 3609 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3610 vma->vm_mm, vmf->address & PAGE_MASK, 3611 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3612 mmu_notifier_invalidate_range_start(&range); 3613 3614 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3615 &vmf->ptl); 3616 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3617 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3618 3619 if (vmf->pte) 3620 pte_unmap_unlock(vmf->pte, vmf->ptl); 3621 folio_unlock(folio); 3622 folio_put(folio); 3623 3624 mmu_notifier_invalidate_range_end(&range); 3625 return 0; 3626 } 3627 3628 static inline bool should_try_to_free_swap(struct folio *folio, 3629 struct vm_area_struct *vma, 3630 unsigned int fault_flags) 3631 { 3632 if (!folio_test_swapcache(folio)) 3633 return false; 3634 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3635 folio_test_mlocked(folio)) 3636 return true; 3637 /* 3638 * If we want to map a page that's in the swapcache writable, we 3639 * have to detect via the refcount if we're really the exclusive 3640 * user. Try freeing the swapcache to get rid of the swapcache 3641 * reference only in case it's likely that we'll be the exlusive user. 3642 */ 3643 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3644 folio_ref_count(folio) == 2; 3645 } 3646 3647 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3648 { 3649 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3650 vmf->address, &vmf->ptl); 3651 if (!vmf->pte) 3652 return 0; 3653 /* 3654 * Be careful so that we will only recover a special uffd-wp pte into a 3655 * none pte. Otherwise it means the pte could have changed, so retry. 3656 * 3657 * This should also cover the case where e.g. the pte changed 3658 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3659 * So is_pte_marker() check is not enough to safely drop the pte. 3660 */ 3661 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3662 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3663 pte_unmap_unlock(vmf->pte, vmf->ptl); 3664 return 0; 3665 } 3666 3667 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3668 { 3669 if (vma_is_anonymous(vmf->vma)) 3670 return do_anonymous_page(vmf); 3671 else 3672 return do_fault(vmf); 3673 } 3674 3675 /* 3676 * This is actually a page-missing access, but with uffd-wp special pte 3677 * installed. It means this pte was wr-protected before being unmapped. 3678 */ 3679 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3680 { 3681 /* 3682 * Just in case there're leftover special ptes even after the region 3683 * got unregistered - we can simply clear them. 3684 */ 3685 if (unlikely(!userfaultfd_wp(vmf->vma))) 3686 return pte_marker_clear(vmf); 3687 3688 return do_pte_missing(vmf); 3689 } 3690 3691 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3692 { 3693 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3694 unsigned long marker = pte_marker_get(entry); 3695 3696 /* 3697 * PTE markers should never be empty. If anything weird happened, 3698 * the best thing to do is to kill the process along with its mm. 3699 */ 3700 if (WARN_ON_ONCE(!marker)) 3701 return VM_FAULT_SIGBUS; 3702 3703 /* Higher priority than uffd-wp when data corrupted */ 3704 if (marker & PTE_MARKER_POISONED) 3705 return VM_FAULT_HWPOISON; 3706 3707 if (pte_marker_entry_uffd_wp(entry)) 3708 return pte_marker_handle_uffd_wp(vmf); 3709 3710 /* This is an unknown pte marker */ 3711 return VM_FAULT_SIGBUS; 3712 } 3713 3714 /* 3715 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3716 * but allow concurrent faults), and pte mapped but not yet locked. 3717 * We return with pte unmapped and unlocked. 3718 * 3719 * We return with the mmap_lock locked or unlocked in the same cases 3720 * as does filemap_fault(). 3721 */ 3722 vm_fault_t do_swap_page(struct vm_fault *vmf) 3723 { 3724 struct vm_area_struct *vma = vmf->vma; 3725 struct folio *swapcache, *folio = NULL; 3726 struct page *page; 3727 struct swap_info_struct *si = NULL; 3728 rmap_t rmap_flags = RMAP_NONE; 3729 bool exclusive = false; 3730 swp_entry_t entry; 3731 pte_t pte; 3732 vm_fault_t ret = 0; 3733 void *shadow = NULL; 3734 3735 if (!pte_unmap_same(vmf)) 3736 goto out; 3737 3738 entry = pte_to_swp_entry(vmf->orig_pte); 3739 if (unlikely(non_swap_entry(entry))) { 3740 if (is_migration_entry(entry)) { 3741 migration_entry_wait(vma->vm_mm, vmf->pmd, 3742 vmf->address); 3743 } else if (is_device_exclusive_entry(entry)) { 3744 vmf->page = pfn_swap_entry_to_page(entry); 3745 ret = remove_device_exclusive_entry(vmf); 3746 } else if (is_device_private_entry(entry)) { 3747 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3748 /* 3749 * migrate_to_ram is not yet ready to operate 3750 * under VMA lock. 3751 */ 3752 vma_end_read(vma); 3753 ret = VM_FAULT_RETRY; 3754 goto out; 3755 } 3756 3757 vmf->page = pfn_swap_entry_to_page(entry); 3758 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3759 vmf->address, &vmf->ptl); 3760 if (unlikely(!vmf->pte || 3761 !pte_same(ptep_get(vmf->pte), 3762 vmf->orig_pte))) 3763 goto unlock; 3764 3765 /* 3766 * Get a page reference while we know the page can't be 3767 * freed. 3768 */ 3769 get_page(vmf->page); 3770 pte_unmap_unlock(vmf->pte, vmf->ptl); 3771 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3772 put_page(vmf->page); 3773 } else if (is_hwpoison_entry(entry)) { 3774 ret = VM_FAULT_HWPOISON; 3775 } else if (is_pte_marker_entry(entry)) { 3776 ret = handle_pte_marker(vmf); 3777 } else { 3778 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3779 ret = VM_FAULT_SIGBUS; 3780 } 3781 goto out; 3782 } 3783 3784 /* Prevent swapoff from happening to us. */ 3785 si = get_swap_device(entry); 3786 if (unlikely(!si)) 3787 goto out; 3788 3789 folio = swap_cache_get_folio(entry, vma, vmf->address); 3790 if (folio) 3791 page = folio_file_page(folio, swp_offset(entry)); 3792 swapcache = folio; 3793 3794 if (!folio) { 3795 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3796 __swap_count(entry) == 1) { 3797 /* skip swapcache */ 3798 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3799 vma, vmf->address, false); 3800 page = &folio->page; 3801 if (folio) { 3802 __folio_set_locked(folio); 3803 __folio_set_swapbacked(folio); 3804 3805 if (mem_cgroup_swapin_charge_folio(folio, 3806 vma->vm_mm, GFP_KERNEL, 3807 entry)) { 3808 ret = VM_FAULT_OOM; 3809 goto out_page; 3810 } 3811 mem_cgroup_swapin_uncharge_swap(entry); 3812 3813 shadow = get_shadow_from_swap_cache(entry); 3814 if (shadow) 3815 workingset_refault(folio, shadow); 3816 3817 folio_add_lru(folio); 3818 3819 /* To provide entry to swap_readpage() */ 3820 folio->swap = entry; 3821 swap_readpage(page, true, NULL); 3822 folio->private = NULL; 3823 } 3824 } else { 3825 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3826 vmf); 3827 if (page) 3828 folio = page_folio(page); 3829 swapcache = folio; 3830 } 3831 3832 if (!folio) { 3833 /* 3834 * Back out if somebody else faulted in this pte 3835 * while we released the pte lock. 3836 */ 3837 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3838 vmf->address, &vmf->ptl); 3839 if (likely(vmf->pte && 3840 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3841 ret = VM_FAULT_OOM; 3842 goto unlock; 3843 } 3844 3845 /* Had to read the page from swap area: Major fault */ 3846 ret = VM_FAULT_MAJOR; 3847 count_vm_event(PGMAJFAULT); 3848 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3849 } else if (PageHWPoison(page)) { 3850 /* 3851 * hwpoisoned dirty swapcache pages are kept for killing 3852 * owner processes (which may be unknown at hwpoison time) 3853 */ 3854 ret = VM_FAULT_HWPOISON; 3855 goto out_release; 3856 } 3857 3858 ret |= folio_lock_or_retry(folio, vmf); 3859 if (ret & VM_FAULT_RETRY) 3860 goto out_release; 3861 3862 if (swapcache) { 3863 /* 3864 * Make sure folio_free_swap() or swapoff did not release the 3865 * swapcache from under us. The page pin, and pte_same test 3866 * below, are not enough to exclude that. Even if it is still 3867 * swapcache, we need to check that the page's swap has not 3868 * changed. 3869 */ 3870 if (unlikely(!folio_test_swapcache(folio) || 3871 page_swap_entry(page).val != entry.val)) 3872 goto out_page; 3873 3874 /* 3875 * KSM sometimes has to copy on read faults, for example, if 3876 * page->index of !PageKSM() pages would be nonlinear inside the 3877 * anon VMA -- PageKSM() is lost on actual swapout. 3878 */ 3879 page = ksm_might_need_to_copy(page, vma, vmf->address); 3880 if (unlikely(!page)) { 3881 ret = VM_FAULT_OOM; 3882 goto out_page; 3883 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { 3884 ret = VM_FAULT_HWPOISON; 3885 goto out_page; 3886 } 3887 folio = page_folio(page); 3888 3889 /* 3890 * If we want to map a page that's in the swapcache writable, we 3891 * have to detect via the refcount if we're really the exclusive 3892 * owner. Try removing the extra reference from the local LRU 3893 * caches if required. 3894 */ 3895 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3896 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3897 lru_add_drain(); 3898 } 3899 3900 folio_throttle_swaprate(folio, GFP_KERNEL); 3901 3902 /* 3903 * Back out if somebody else already faulted in this pte. 3904 */ 3905 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3906 &vmf->ptl); 3907 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3908 goto out_nomap; 3909 3910 if (unlikely(!folio_test_uptodate(folio))) { 3911 ret = VM_FAULT_SIGBUS; 3912 goto out_nomap; 3913 } 3914 3915 /* 3916 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3917 * must never point at an anonymous page in the swapcache that is 3918 * PG_anon_exclusive. Sanity check that this holds and especially, that 3919 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3920 * check after taking the PT lock and making sure that nobody 3921 * concurrently faulted in this page and set PG_anon_exclusive. 3922 */ 3923 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3924 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3925 3926 /* 3927 * Check under PT lock (to protect against concurrent fork() sharing 3928 * the swap entry concurrently) for certainly exclusive pages. 3929 */ 3930 if (!folio_test_ksm(folio)) { 3931 exclusive = pte_swp_exclusive(vmf->orig_pte); 3932 if (folio != swapcache) { 3933 /* 3934 * We have a fresh page that is not exposed to the 3935 * swapcache -> certainly exclusive. 3936 */ 3937 exclusive = true; 3938 } else if (exclusive && folio_test_writeback(folio) && 3939 data_race(si->flags & SWP_STABLE_WRITES)) { 3940 /* 3941 * This is tricky: not all swap backends support 3942 * concurrent page modifications while under writeback. 3943 * 3944 * So if we stumble over such a page in the swapcache 3945 * we must not set the page exclusive, otherwise we can 3946 * map it writable without further checks and modify it 3947 * while still under writeback. 3948 * 3949 * For these problematic swap backends, simply drop the 3950 * exclusive marker: this is perfectly fine as we start 3951 * writeback only if we fully unmapped the page and 3952 * there are no unexpected references on the page after 3953 * unmapping succeeded. After fully unmapped, no 3954 * further GUP references (FOLL_GET and FOLL_PIN) can 3955 * appear, so dropping the exclusive marker and mapping 3956 * it only R/O is fine. 3957 */ 3958 exclusive = false; 3959 } 3960 } 3961 3962 /* 3963 * Some architectures may have to restore extra metadata to the page 3964 * when reading from swap. This metadata may be indexed by swap entry 3965 * so this must be called before swap_free(). 3966 */ 3967 arch_swap_restore(entry, folio); 3968 3969 /* 3970 * Remove the swap entry and conditionally try to free up the swapcache. 3971 * We're already holding a reference on the page but haven't mapped it 3972 * yet. 3973 */ 3974 swap_free(entry); 3975 if (should_try_to_free_swap(folio, vma, vmf->flags)) 3976 folio_free_swap(folio); 3977 3978 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 3979 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 3980 pte = mk_pte(page, vma->vm_page_prot); 3981 3982 /* 3983 * Same logic as in do_wp_page(); however, optimize for pages that are 3984 * certainly not shared either because we just allocated them without 3985 * exposing them to the swapcache or because the swap entry indicates 3986 * exclusivity. 3987 */ 3988 if (!folio_test_ksm(folio) && 3989 (exclusive || folio_ref_count(folio) == 1)) { 3990 if (vmf->flags & FAULT_FLAG_WRITE) { 3991 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3992 vmf->flags &= ~FAULT_FLAG_WRITE; 3993 } 3994 rmap_flags |= RMAP_EXCLUSIVE; 3995 } 3996 flush_icache_page(vma, page); 3997 if (pte_swp_soft_dirty(vmf->orig_pte)) 3998 pte = pte_mksoft_dirty(pte); 3999 if (pte_swp_uffd_wp(vmf->orig_pte)) 4000 pte = pte_mkuffd_wp(pte); 4001 vmf->orig_pte = pte; 4002 4003 /* ksm created a completely new copy */ 4004 if (unlikely(folio != swapcache && swapcache)) { 4005 page_add_new_anon_rmap(page, vma, vmf->address); 4006 folio_add_lru_vma(folio, vma); 4007 } else { 4008 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 4009 } 4010 4011 VM_BUG_ON(!folio_test_anon(folio) || 4012 (pte_write(pte) && !PageAnonExclusive(page))); 4013 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4014 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4015 4016 folio_unlock(folio); 4017 if (folio != swapcache && swapcache) { 4018 /* 4019 * Hold the lock to avoid the swap entry to be reused 4020 * until we take the PT lock for the pte_same() check 4021 * (to avoid false positives from pte_same). For 4022 * further safety release the lock after the swap_free 4023 * so that the swap count won't change under a 4024 * parallel locked swapcache. 4025 */ 4026 folio_unlock(swapcache); 4027 folio_put(swapcache); 4028 } 4029 4030 if (vmf->flags & FAULT_FLAG_WRITE) { 4031 ret |= do_wp_page(vmf); 4032 if (ret & VM_FAULT_ERROR) 4033 ret &= VM_FAULT_ERROR; 4034 goto out; 4035 } 4036 4037 /* No need to invalidate - it was non-present before */ 4038 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4039 unlock: 4040 if (vmf->pte) 4041 pte_unmap_unlock(vmf->pte, vmf->ptl); 4042 out: 4043 if (si) 4044 put_swap_device(si); 4045 return ret; 4046 out_nomap: 4047 if (vmf->pte) 4048 pte_unmap_unlock(vmf->pte, vmf->ptl); 4049 out_page: 4050 folio_unlock(folio); 4051 out_release: 4052 folio_put(folio); 4053 if (folio != swapcache && swapcache) { 4054 folio_unlock(swapcache); 4055 folio_put(swapcache); 4056 } 4057 if (si) 4058 put_swap_device(si); 4059 return ret; 4060 } 4061 4062 /* 4063 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4064 * but allow concurrent faults), and pte mapped but not yet locked. 4065 * We return with mmap_lock still held, but pte unmapped and unlocked. 4066 */ 4067 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4068 { 4069 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4070 struct vm_area_struct *vma = vmf->vma; 4071 struct folio *folio; 4072 vm_fault_t ret = 0; 4073 pte_t entry; 4074 4075 /* File mapping without ->vm_ops ? */ 4076 if (vma->vm_flags & VM_SHARED) 4077 return VM_FAULT_SIGBUS; 4078 4079 /* 4080 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4081 * be distinguished from a transient failure of pte_offset_map(). 4082 */ 4083 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4084 return VM_FAULT_OOM; 4085 4086 /* Use the zero-page for reads */ 4087 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4088 !mm_forbids_zeropage(vma->vm_mm)) { 4089 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4090 vma->vm_page_prot)); 4091 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4092 vmf->address, &vmf->ptl); 4093 if (!vmf->pte) 4094 goto unlock; 4095 if (vmf_pte_changed(vmf)) { 4096 update_mmu_tlb(vma, vmf->address, vmf->pte); 4097 goto unlock; 4098 } 4099 ret = check_stable_address_space(vma->vm_mm); 4100 if (ret) 4101 goto unlock; 4102 /* Deliver the page fault to userland, check inside PT lock */ 4103 if (userfaultfd_missing(vma)) { 4104 pte_unmap_unlock(vmf->pte, vmf->ptl); 4105 return handle_userfault(vmf, VM_UFFD_MISSING); 4106 } 4107 goto setpte; 4108 } 4109 4110 /* Allocate our own private page. */ 4111 if (unlikely(anon_vma_prepare(vma))) 4112 goto oom; 4113 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 4114 if (!folio) 4115 goto oom; 4116 4117 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 4118 goto oom_free_page; 4119 folio_throttle_swaprate(folio, GFP_KERNEL); 4120 4121 /* 4122 * The memory barrier inside __folio_mark_uptodate makes sure that 4123 * preceding stores to the page contents become visible before 4124 * the set_pte_at() write. 4125 */ 4126 __folio_mark_uptodate(folio); 4127 4128 entry = mk_pte(&folio->page, vma->vm_page_prot); 4129 entry = pte_sw_mkyoung(entry); 4130 if (vma->vm_flags & VM_WRITE) 4131 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4132 4133 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4134 &vmf->ptl); 4135 if (!vmf->pte) 4136 goto release; 4137 if (vmf_pte_changed(vmf)) { 4138 update_mmu_tlb(vma, vmf->address, vmf->pte); 4139 goto release; 4140 } 4141 4142 ret = check_stable_address_space(vma->vm_mm); 4143 if (ret) 4144 goto release; 4145 4146 /* Deliver the page fault to userland, check inside PT lock */ 4147 if (userfaultfd_missing(vma)) { 4148 pte_unmap_unlock(vmf->pte, vmf->ptl); 4149 folio_put(folio); 4150 return handle_userfault(vmf, VM_UFFD_MISSING); 4151 } 4152 4153 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4154 folio_add_new_anon_rmap(folio, vma, vmf->address); 4155 folio_add_lru_vma(folio, vma); 4156 setpte: 4157 if (uffd_wp) 4158 entry = pte_mkuffd_wp(entry); 4159 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4160 4161 /* No need to invalidate - it was non-present before */ 4162 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4163 unlock: 4164 if (vmf->pte) 4165 pte_unmap_unlock(vmf->pte, vmf->ptl); 4166 return ret; 4167 release: 4168 folio_put(folio); 4169 goto unlock; 4170 oom_free_page: 4171 folio_put(folio); 4172 oom: 4173 return VM_FAULT_OOM; 4174 } 4175 4176 /* 4177 * The mmap_lock must have been held on entry, and may have been 4178 * released depending on flags and vma->vm_ops->fault() return value. 4179 * See filemap_fault() and __lock_page_retry(). 4180 */ 4181 static vm_fault_t __do_fault(struct vm_fault *vmf) 4182 { 4183 struct vm_area_struct *vma = vmf->vma; 4184 vm_fault_t ret; 4185 4186 /* 4187 * Preallocate pte before we take page_lock because this might lead to 4188 * deadlocks for memcg reclaim which waits for pages under writeback: 4189 * lock_page(A) 4190 * SetPageWriteback(A) 4191 * unlock_page(A) 4192 * lock_page(B) 4193 * lock_page(B) 4194 * pte_alloc_one 4195 * shrink_page_list 4196 * wait_on_page_writeback(A) 4197 * SetPageWriteback(B) 4198 * unlock_page(B) 4199 * # flush A, B to clear the writeback 4200 */ 4201 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4202 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4203 if (!vmf->prealloc_pte) 4204 return VM_FAULT_OOM; 4205 } 4206 4207 ret = vma->vm_ops->fault(vmf); 4208 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4209 VM_FAULT_DONE_COW))) 4210 return ret; 4211 4212 if (unlikely(PageHWPoison(vmf->page))) { 4213 struct page *page = vmf->page; 4214 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4215 if (ret & VM_FAULT_LOCKED) { 4216 if (page_mapped(page)) 4217 unmap_mapping_pages(page_mapping(page), 4218 page->index, 1, false); 4219 /* Retry if a clean page was removed from the cache. */ 4220 if (invalidate_inode_page(page)) 4221 poisonret = VM_FAULT_NOPAGE; 4222 unlock_page(page); 4223 } 4224 put_page(page); 4225 vmf->page = NULL; 4226 return poisonret; 4227 } 4228 4229 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4230 lock_page(vmf->page); 4231 else 4232 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4233 4234 return ret; 4235 } 4236 4237 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4238 static void deposit_prealloc_pte(struct vm_fault *vmf) 4239 { 4240 struct vm_area_struct *vma = vmf->vma; 4241 4242 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4243 /* 4244 * We are going to consume the prealloc table, 4245 * count that as nr_ptes. 4246 */ 4247 mm_inc_nr_ptes(vma->vm_mm); 4248 vmf->prealloc_pte = NULL; 4249 } 4250 4251 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4252 { 4253 struct vm_area_struct *vma = vmf->vma; 4254 bool write = vmf->flags & FAULT_FLAG_WRITE; 4255 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4256 pmd_t entry; 4257 vm_fault_t ret = VM_FAULT_FALLBACK; 4258 4259 if (!transhuge_vma_suitable(vma, haddr)) 4260 return ret; 4261 4262 page = compound_head(page); 4263 if (compound_order(page) != HPAGE_PMD_ORDER) 4264 return ret; 4265 4266 /* 4267 * Just backoff if any subpage of a THP is corrupted otherwise 4268 * the corrupted page may mapped by PMD silently to escape the 4269 * check. This kind of THP just can be PTE mapped. Access to 4270 * the corrupted subpage should trigger SIGBUS as expected. 4271 */ 4272 if (unlikely(PageHasHWPoisoned(page))) 4273 return ret; 4274 4275 /* 4276 * Archs like ppc64 need additional space to store information 4277 * related to pte entry. Use the preallocated table for that. 4278 */ 4279 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4280 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4281 if (!vmf->prealloc_pte) 4282 return VM_FAULT_OOM; 4283 } 4284 4285 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4286 if (unlikely(!pmd_none(*vmf->pmd))) 4287 goto out; 4288 4289 flush_icache_pages(vma, page, HPAGE_PMD_NR); 4290 4291 entry = mk_huge_pmd(page, vma->vm_page_prot); 4292 if (write) 4293 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4294 4295 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4296 page_add_file_rmap(page, vma, true); 4297 4298 /* 4299 * deposit and withdraw with pmd lock held 4300 */ 4301 if (arch_needs_pgtable_deposit()) 4302 deposit_prealloc_pte(vmf); 4303 4304 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4305 4306 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4307 4308 /* fault is handled */ 4309 ret = 0; 4310 count_vm_event(THP_FILE_MAPPED); 4311 out: 4312 spin_unlock(vmf->ptl); 4313 return ret; 4314 } 4315 #else 4316 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4317 { 4318 return VM_FAULT_FALLBACK; 4319 } 4320 #endif 4321 4322 /** 4323 * set_pte_range - Set a range of PTEs to point to pages in a folio. 4324 * @vmf: Fault decription. 4325 * @folio: The folio that contains @page. 4326 * @page: The first page to create a PTE for. 4327 * @nr: The number of PTEs to create. 4328 * @addr: The first address to create a PTE for. 4329 */ 4330 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 4331 struct page *page, unsigned int nr, unsigned long addr) 4332 { 4333 struct vm_area_struct *vma = vmf->vma; 4334 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4335 bool write = vmf->flags & FAULT_FLAG_WRITE; 4336 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE); 4337 pte_t entry; 4338 4339 flush_icache_pages(vma, page, nr); 4340 entry = mk_pte(page, vma->vm_page_prot); 4341 4342 if (prefault && arch_wants_old_prefaulted_pte()) 4343 entry = pte_mkold(entry); 4344 else 4345 entry = pte_sw_mkyoung(entry); 4346 4347 if (write) 4348 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4349 if (unlikely(uffd_wp)) 4350 entry = pte_mkuffd_wp(entry); 4351 /* copy-on-write page */ 4352 if (write && !(vma->vm_flags & VM_SHARED)) { 4353 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr); 4354 VM_BUG_ON_FOLIO(nr != 1, folio); 4355 folio_add_new_anon_rmap(folio, vma, addr); 4356 folio_add_lru_vma(folio, vma); 4357 } else { 4358 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr); 4359 folio_add_file_rmap_range(folio, page, nr, vma, false); 4360 } 4361 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 4362 4363 /* no need to invalidate: a not-present page won't be cached */ 4364 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 4365 } 4366 4367 static bool vmf_pte_changed(struct vm_fault *vmf) 4368 { 4369 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4370 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4371 4372 return !pte_none(ptep_get(vmf->pte)); 4373 } 4374 4375 /** 4376 * finish_fault - finish page fault once we have prepared the page to fault 4377 * 4378 * @vmf: structure describing the fault 4379 * 4380 * This function handles all that is needed to finish a page fault once the 4381 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4382 * given page, adds reverse page mapping, handles memcg charges and LRU 4383 * addition. 4384 * 4385 * The function expects the page to be locked and on success it consumes a 4386 * reference of a page being mapped (for the PTE which maps it). 4387 * 4388 * Return: %0 on success, %VM_FAULT_ code in case of error. 4389 */ 4390 vm_fault_t finish_fault(struct vm_fault *vmf) 4391 { 4392 struct vm_area_struct *vma = vmf->vma; 4393 struct page *page; 4394 vm_fault_t ret; 4395 4396 /* Did we COW the page? */ 4397 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4398 page = vmf->cow_page; 4399 else 4400 page = vmf->page; 4401 4402 /* 4403 * check even for read faults because we might have lost our CoWed 4404 * page 4405 */ 4406 if (!(vma->vm_flags & VM_SHARED)) { 4407 ret = check_stable_address_space(vma->vm_mm); 4408 if (ret) 4409 return ret; 4410 } 4411 4412 if (pmd_none(*vmf->pmd)) { 4413 if (PageTransCompound(page)) { 4414 ret = do_set_pmd(vmf, page); 4415 if (ret != VM_FAULT_FALLBACK) 4416 return ret; 4417 } 4418 4419 if (vmf->prealloc_pte) 4420 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4421 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4422 return VM_FAULT_OOM; 4423 } 4424 4425 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4426 vmf->address, &vmf->ptl); 4427 if (!vmf->pte) 4428 return VM_FAULT_NOPAGE; 4429 4430 /* Re-check under ptl */ 4431 if (likely(!vmf_pte_changed(vmf))) { 4432 struct folio *folio = page_folio(page); 4433 4434 set_pte_range(vmf, folio, page, 1, vmf->address); 4435 ret = 0; 4436 } else { 4437 update_mmu_tlb(vma, vmf->address, vmf->pte); 4438 ret = VM_FAULT_NOPAGE; 4439 } 4440 4441 pte_unmap_unlock(vmf->pte, vmf->ptl); 4442 return ret; 4443 } 4444 4445 static unsigned long fault_around_pages __read_mostly = 4446 65536 >> PAGE_SHIFT; 4447 4448 #ifdef CONFIG_DEBUG_FS 4449 static int fault_around_bytes_get(void *data, u64 *val) 4450 { 4451 *val = fault_around_pages << PAGE_SHIFT; 4452 return 0; 4453 } 4454 4455 /* 4456 * fault_around_bytes must be rounded down to the nearest page order as it's 4457 * what do_fault_around() expects to see. 4458 */ 4459 static int fault_around_bytes_set(void *data, u64 val) 4460 { 4461 if (val / PAGE_SIZE > PTRS_PER_PTE) 4462 return -EINVAL; 4463 4464 /* 4465 * The minimum value is 1 page, however this results in no fault-around 4466 * at all. See should_fault_around(). 4467 */ 4468 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL); 4469 4470 return 0; 4471 } 4472 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4473 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4474 4475 static int __init fault_around_debugfs(void) 4476 { 4477 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4478 &fault_around_bytes_fops); 4479 return 0; 4480 } 4481 late_initcall(fault_around_debugfs); 4482 #endif 4483 4484 /* 4485 * do_fault_around() tries to map few pages around the fault address. The hope 4486 * is that the pages will be needed soon and this will lower the number of 4487 * faults to handle. 4488 * 4489 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4490 * not ready to be mapped: not up-to-date, locked, etc. 4491 * 4492 * This function doesn't cross VMA or page table boundaries, in order to call 4493 * map_pages() and acquire a PTE lock only once. 4494 * 4495 * fault_around_pages defines how many pages we'll try to map. 4496 * do_fault_around() expects it to be set to a power of two less than or equal 4497 * to PTRS_PER_PTE. 4498 * 4499 * The virtual address of the area that we map is naturally aligned to 4500 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4501 * (and therefore to page order). This way it's easier to guarantee 4502 * that we don't cross page table boundaries. 4503 */ 4504 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4505 { 4506 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4507 pgoff_t pte_off = pte_index(vmf->address); 4508 /* The page offset of vmf->address within the VMA. */ 4509 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4510 pgoff_t from_pte, to_pte; 4511 vm_fault_t ret; 4512 4513 /* The PTE offset of the start address, clamped to the VMA. */ 4514 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4515 pte_off - min(pte_off, vma_off)); 4516 4517 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4518 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4519 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4520 4521 if (pmd_none(*vmf->pmd)) { 4522 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4523 if (!vmf->prealloc_pte) 4524 return VM_FAULT_OOM; 4525 } 4526 4527 rcu_read_lock(); 4528 ret = vmf->vma->vm_ops->map_pages(vmf, 4529 vmf->pgoff + from_pte - pte_off, 4530 vmf->pgoff + to_pte - pte_off); 4531 rcu_read_unlock(); 4532 4533 return ret; 4534 } 4535 4536 /* Return true if we should do read fault-around, false otherwise */ 4537 static inline bool should_fault_around(struct vm_fault *vmf) 4538 { 4539 /* No ->map_pages? No way to fault around... */ 4540 if (!vmf->vma->vm_ops->map_pages) 4541 return false; 4542 4543 if (uffd_disable_fault_around(vmf->vma)) 4544 return false; 4545 4546 /* A single page implies no faulting 'around' at all. */ 4547 return fault_around_pages > 1; 4548 } 4549 4550 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4551 { 4552 vm_fault_t ret = 0; 4553 struct folio *folio; 4554 4555 /* 4556 * Let's call ->map_pages() first and use ->fault() as fallback 4557 * if page by the offset is not ready to be mapped (cold cache or 4558 * something). 4559 */ 4560 if (should_fault_around(vmf)) { 4561 ret = do_fault_around(vmf); 4562 if (ret) 4563 return ret; 4564 } 4565 4566 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4567 vma_end_read(vmf->vma); 4568 return VM_FAULT_RETRY; 4569 } 4570 4571 ret = __do_fault(vmf); 4572 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4573 return ret; 4574 4575 ret |= finish_fault(vmf); 4576 folio = page_folio(vmf->page); 4577 folio_unlock(folio); 4578 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4579 folio_put(folio); 4580 return ret; 4581 } 4582 4583 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4584 { 4585 struct vm_area_struct *vma = vmf->vma; 4586 vm_fault_t ret; 4587 4588 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4589 vma_end_read(vma); 4590 return VM_FAULT_RETRY; 4591 } 4592 4593 if (unlikely(anon_vma_prepare(vma))) 4594 return VM_FAULT_OOM; 4595 4596 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4597 if (!vmf->cow_page) 4598 return VM_FAULT_OOM; 4599 4600 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4601 GFP_KERNEL)) { 4602 put_page(vmf->cow_page); 4603 return VM_FAULT_OOM; 4604 } 4605 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL); 4606 4607 ret = __do_fault(vmf); 4608 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4609 goto uncharge_out; 4610 if (ret & VM_FAULT_DONE_COW) 4611 return ret; 4612 4613 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4614 __SetPageUptodate(vmf->cow_page); 4615 4616 ret |= finish_fault(vmf); 4617 unlock_page(vmf->page); 4618 put_page(vmf->page); 4619 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4620 goto uncharge_out; 4621 return ret; 4622 uncharge_out: 4623 put_page(vmf->cow_page); 4624 return ret; 4625 } 4626 4627 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4628 { 4629 struct vm_area_struct *vma = vmf->vma; 4630 vm_fault_t ret, tmp; 4631 struct folio *folio; 4632 4633 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4634 vma_end_read(vma); 4635 return VM_FAULT_RETRY; 4636 } 4637 4638 ret = __do_fault(vmf); 4639 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4640 return ret; 4641 4642 folio = page_folio(vmf->page); 4643 4644 /* 4645 * Check if the backing address space wants to know that the page is 4646 * about to become writable 4647 */ 4648 if (vma->vm_ops->page_mkwrite) { 4649 folio_unlock(folio); 4650 tmp = do_page_mkwrite(vmf, folio); 4651 if (unlikely(!tmp || 4652 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4653 folio_put(folio); 4654 return tmp; 4655 } 4656 } 4657 4658 ret |= finish_fault(vmf); 4659 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4660 VM_FAULT_RETRY))) { 4661 folio_unlock(folio); 4662 folio_put(folio); 4663 return ret; 4664 } 4665 4666 ret |= fault_dirty_shared_page(vmf); 4667 return ret; 4668 } 4669 4670 /* 4671 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4672 * but allow concurrent faults). 4673 * The mmap_lock may have been released depending on flags and our 4674 * return value. See filemap_fault() and __folio_lock_or_retry(). 4675 * If mmap_lock is released, vma may become invalid (for example 4676 * by other thread calling munmap()). 4677 */ 4678 static vm_fault_t do_fault(struct vm_fault *vmf) 4679 { 4680 struct vm_area_struct *vma = vmf->vma; 4681 struct mm_struct *vm_mm = vma->vm_mm; 4682 vm_fault_t ret; 4683 4684 /* 4685 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4686 */ 4687 if (!vma->vm_ops->fault) { 4688 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4689 vmf->address, &vmf->ptl); 4690 if (unlikely(!vmf->pte)) 4691 ret = VM_FAULT_SIGBUS; 4692 else { 4693 /* 4694 * Make sure this is not a temporary clearing of pte 4695 * by holding ptl and checking again. A R/M/W update 4696 * of pte involves: take ptl, clearing the pte so that 4697 * we don't have concurrent modification by hardware 4698 * followed by an update. 4699 */ 4700 if (unlikely(pte_none(ptep_get(vmf->pte)))) 4701 ret = VM_FAULT_SIGBUS; 4702 else 4703 ret = VM_FAULT_NOPAGE; 4704 4705 pte_unmap_unlock(vmf->pte, vmf->ptl); 4706 } 4707 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4708 ret = do_read_fault(vmf); 4709 else if (!(vma->vm_flags & VM_SHARED)) 4710 ret = do_cow_fault(vmf); 4711 else 4712 ret = do_shared_fault(vmf); 4713 4714 /* preallocated pagetable is unused: free it */ 4715 if (vmf->prealloc_pte) { 4716 pte_free(vm_mm, vmf->prealloc_pte); 4717 vmf->prealloc_pte = NULL; 4718 } 4719 return ret; 4720 } 4721 4722 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4723 unsigned long addr, int page_nid, int *flags) 4724 { 4725 get_page(page); 4726 4727 /* Record the current PID acceesing VMA */ 4728 vma_set_access_pid_bit(vma); 4729 4730 count_vm_numa_event(NUMA_HINT_FAULTS); 4731 if (page_nid == numa_node_id()) { 4732 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4733 *flags |= TNF_FAULT_LOCAL; 4734 } 4735 4736 return mpol_misplaced(page, vma, addr); 4737 } 4738 4739 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4740 { 4741 struct vm_area_struct *vma = vmf->vma; 4742 struct page *page = NULL; 4743 int page_nid = NUMA_NO_NODE; 4744 bool writable = false; 4745 int last_cpupid; 4746 int target_nid; 4747 pte_t pte, old_pte; 4748 int flags = 0; 4749 4750 /* 4751 * The "pte" at this point cannot be used safely without 4752 * validation through pte_unmap_same(). It's of NUMA type but 4753 * the pfn may be screwed if the read is non atomic. 4754 */ 4755 spin_lock(vmf->ptl); 4756 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4757 pte_unmap_unlock(vmf->pte, vmf->ptl); 4758 goto out; 4759 } 4760 4761 /* Get the normal PTE */ 4762 old_pte = ptep_get(vmf->pte); 4763 pte = pte_modify(old_pte, vma->vm_page_prot); 4764 4765 /* 4766 * Detect now whether the PTE could be writable; this information 4767 * is only valid while holding the PT lock. 4768 */ 4769 writable = pte_write(pte); 4770 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4771 can_change_pte_writable(vma, vmf->address, pte)) 4772 writable = true; 4773 4774 page = vm_normal_page(vma, vmf->address, pte); 4775 if (!page || is_zone_device_page(page)) 4776 goto out_map; 4777 4778 /* TODO: handle PTE-mapped THP */ 4779 if (PageCompound(page)) 4780 goto out_map; 4781 4782 /* 4783 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4784 * much anyway since they can be in shared cache state. This misses 4785 * the case where a mapping is writable but the process never writes 4786 * to it but pte_write gets cleared during protection updates and 4787 * pte_dirty has unpredictable behaviour between PTE scan updates, 4788 * background writeback, dirty balancing and application behaviour. 4789 */ 4790 if (!writable) 4791 flags |= TNF_NO_GROUP; 4792 4793 /* 4794 * Flag if the page is shared between multiple address spaces. This 4795 * is later used when determining whether to group tasks together 4796 */ 4797 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4798 flags |= TNF_SHARED; 4799 4800 page_nid = page_to_nid(page); 4801 /* 4802 * For memory tiering mode, cpupid of slow memory page is used 4803 * to record page access time. So use default value. 4804 */ 4805 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4806 !node_is_toptier(page_nid)) 4807 last_cpupid = (-1 & LAST_CPUPID_MASK); 4808 else 4809 last_cpupid = page_cpupid_last(page); 4810 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4811 &flags); 4812 if (target_nid == NUMA_NO_NODE) { 4813 put_page(page); 4814 goto out_map; 4815 } 4816 pte_unmap_unlock(vmf->pte, vmf->ptl); 4817 writable = false; 4818 4819 /* Migrate to the requested node */ 4820 if (migrate_misplaced_page(page, vma, target_nid)) { 4821 page_nid = target_nid; 4822 flags |= TNF_MIGRATED; 4823 } else { 4824 flags |= TNF_MIGRATE_FAIL; 4825 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4826 vmf->address, &vmf->ptl); 4827 if (unlikely(!vmf->pte)) 4828 goto out; 4829 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4830 pte_unmap_unlock(vmf->pte, vmf->ptl); 4831 goto out; 4832 } 4833 goto out_map; 4834 } 4835 4836 out: 4837 if (page_nid != NUMA_NO_NODE) 4838 task_numa_fault(last_cpupid, page_nid, 1, flags); 4839 return 0; 4840 out_map: 4841 /* 4842 * Make it present again, depending on how arch implements 4843 * non-accessible ptes, some can allow access by kernel mode. 4844 */ 4845 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4846 pte = pte_modify(old_pte, vma->vm_page_prot); 4847 pte = pte_mkyoung(pte); 4848 if (writable) 4849 pte = pte_mkwrite(pte, vma); 4850 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4851 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4852 pte_unmap_unlock(vmf->pte, vmf->ptl); 4853 goto out; 4854 } 4855 4856 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4857 { 4858 struct vm_area_struct *vma = vmf->vma; 4859 if (vma_is_anonymous(vma)) 4860 return do_huge_pmd_anonymous_page(vmf); 4861 if (vma->vm_ops->huge_fault) 4862 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 4863 return VM_FAULT_FALLBACK; 4864 } 4865 4866 /* `inline' is required to avoid gcc 4.1.2 build error */ 4867 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4868 { 4869 struct vm_area_struct *vma = vmf->vma; 4870 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4871 vm_fault_t ret; 4872 4873 if (vma_is_anonymous(vma)) { 4874 if (likely(!unshare) && 4875 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) 4876 return handle_userfault(vmf, VM_UFFD_WP); 4877 return do_huge_pmd_wp_page(vmf); 4878 } 4879 4880 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4881 if (vma->vm_ops->huge_fault) { 4882 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 4883 if (!(ret & VM_FAULT_FALLBACK)) 4884 return ret; 4885 } 4886 } 4887 4888 /* COW or write-notify handled on pte level: split pmd. */ 4889 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 4890 4891 return VM_FAULT_FALLBACK; 4892 } 4893 4894 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4895 { 4896 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4897 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4898 struct vm_area_struct *vma = vmf->vma; 4899 /* No support for anonymous transparent PUD pages yet */ 4900 if (vma_is_anonymous(vma)) 4901 return VM_FAULT_FALLBACK; 4902 if (vma->vm_ops->huge_fault) 4903 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 4904 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4905 return VM_FAULT_FALLBACK; 4906 } 4907 4908 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4909 { 4910 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4911 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4912 struct vm_area_struct *vma = vmf->vma; 4913 vm_fault_t ret; 4914 4915 /* No support for anonymous transparent PUD pages yet */ 4916 if (vma_is_anonymous(vma)) 4917 goto split; 4918 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4919 if (vma->vm_ops->huge_fault) { 4920 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 4921 if (!(ret & VM_FAULT_FALLBACK)) 4922 return ret; 4923 } 4924 } 4925 split: 4926 /* COW or write-notify not handled on PUD level: split pud.*/ 4927 __split_huge_pud(vma, vmf->pud, vmf->address); 4928 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4929 return VM_FAULT_FALLBACK; 4930 } 4931 4932 /* 4933 * These routines also need to handle stuff like marking pages dirty 4934 * and/or accessed for architectures that don't do it in hardware (most 4935 * RISC architectures). The early dirtying is also good on the i386. 4936 * 4937 * There is also a hook called "update_mmu_cache()" that architectures 4938 * with external mmu caches can use to update those (ie the Sparc or 4939 * PowerPC hashed page tables that act as extended TLBs). 4940 * 4941 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4942 * concurrent faults). 4943 * 4944 * The mmap_lock may have been released depending on flags and our return value. 4945 * See filemap_fault() and __folio_lock_or_retry(). 4946 */ 4947 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4948 { 4949 pte_t entry; 4950 4951 if (unlikely(pmd_none(*vmf->pmd))) { 4952 /* 4953 * Leave __pte_alloc() until later: because vm_ops->fault may 4954 * want to allocate huge page, and if we expose page table 4955 * for an instant, it will be difficult to retract from 4956 * concurrent faults and from rmap lookups. 4957 */ 4958 vmf->pte = NULL; 4959 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4960 } else { 4961 /* 4962 * A regular pmd is established and it can't morph into a huge 4963 * pmd by anon khugepaged, since that takes mmap_lock in write 4964 * mode; but shmem or file collapse to THP could still morph 4965 * it into a huge pmd: just retry later if so. 4966 */ 4967 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 4968 vmf->address, &vmf->ptl); 4969 if (unlikely(!vmf->pte)) 4970 return 0; 4971 vmf->orig_pte = ptep_get_lockless(vmf->pte); 4972 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4973 4974 if (pte_none(vmf->orig_pte)) { 4975 pte_unmap(vmf->pte); 4976 vmf->pte = NULL; 4977 } 4978 } 4979 4980 if (!vmf->pte) 4981 return do_pte_missing(vmf); 4982 4983 if (!pte_present(vmf->orig_pte)) 4984 return do_swap_page(vmf); 4985 4986 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4987 return do_numa_page(vmf); 4988 4989 spin_lock(vmf->ptl); 4990 entry = vmf->orig_pte; 4991 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 4992 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4993 goto unlock; 4994 } 4995 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4996 if (!pte_write(entry)) 4997 return do_wp_page(vmf); 4998 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4999 entry = pte_mkdirty(entry); 5000 } 5001 entry = pte_mkyoung(entry); 5002 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5003 vmf->flags & FAULT_FLAG_WRITE)) { 5004 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5005 vmf->pte, 1); 5006 } else { 5007 /* Skip spurious TLB flush for retried page fault */ 5008 if (vmf->flags & FAULT_FLAG_TRIED) 5009 goto unlock; 5010 /* 5011 * This is needed only for protection faults but the arch code 5012 * is not yet telling us if this is a protection fault or not. 5013 * This still avoids useless tlb flushes for .text page faults 5014 * with threads. 5015 */ 5016 if (vmf->flags & FAULT_FLAG_WRITE) 5017 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5018 vmf->pte); 5019 } 5020 unlock: 5021 pte_unmap_unlock(vmf->pte, vmf->ptl); 5022 return 0; 5023 } 5024 5025 /* 5026 * On entry, we hold either the VMA lock or the mmap_lock 5027 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5028 * the result, the mmap_lock is not held on exit. See filemap_fault() 5029 * and __folio_lock_or_retry(). 5030 */ 5031 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5032 unsigned long address, unsigned int flags) 5033 { 5034 struct vm_fault vmf = { 5035 .vma = vma, 5036 .address = address & PAGE_MASK, 5037 .real_address = address, 5038 .flags = flags, 5039 .pgoff = linear_page_index(vma, address), 5040 .gfp_mask = __get_fault_gfp_mask(vma), 5041 }; 5042 struct mm_struct *mm = vma->vm_mm; 5043 unsigned long vm_flags = vma->vm_flags; 5044 pgd_t *pgd; 5045 p4d_t *p4d; 5046 vm_fault_t ret; 5047 5048 pgd = pgd_offset(mm, address); 5049 p4d = p4d_alloc(mm, pgd, address); 5050 if (!p4d) 5051 return VM_FAULT_OOM; 5052 5053 vmf.pud = pud_alloc(mm, p4d, address); 5054 if (!vmf.pud) 5055 return VM_FAULT_OOM; 5056 retry_pud: 5057 if (pud_none(*vmf.pud) && 5058 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5059 ret = create_huge_pud(&vmf); 5060 if (!(ret & VM_FAULT_FALLBACK)) 5061 return ret; 5062 } else { 5063 pud_t orig_pud = *vmf.pud; 5064 5065 barrier(); 5066 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5067 5068 /* 5069 * TODO once we support anonymous PUDs: NUMA case and 5070 * FAULT_FLAG_UNSHARE handling. 5071 */ 5072 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5073 ret = wp_huge_pud(&vmf, orig_pud); 5074 if (!(ret & VM_FAULT_FALLBACK)) 5075 return ret; 5076 } else { 5077 huge_pud_set_accessed(&vmf, orig_pud); 5078 return 0; 5079 } 5080 } 5081 } 5082 5083 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5084 if (!vmf.pmd) 5085 return VM_FAULT_OOM; 5086 5087 /* Huge pud page fault raced with pmd_alloc? */ 5088 if (pud_trans_unstable(vmf.pud)) 5089 goto retry_pud; 5090 5091 if (pmd_none(*vmf.pmd) && 5092 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5093 ret = create_huge_pmd(&vmf); 5094 if (!(ret & VM_FAULT_FALLBACK)) 5095 return ret; 5096 } else { 5097 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5098 5099 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5100 VM_BUG_ON(thp_migration_supported() && 5101 !is_pmd_migration_entry(vmf.orig_pmd)); 5102 if (is_pmd_migration_entry(vmf.orig_pmd)) 5103 pmd_migration_entry_wait(mm, vmf.pmd); 5104 return 0; 5105 } 5106 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5107 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5108 return do_huge_pmd_numa_page(&vmf); 5109 5110 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5111 !pmd_write(vmf.orig_pmd)) { 5112 ret = wp_huge_pmd(&vmf); 5113 if (!(ret & VM_FAULT_FALLBACK)) 5114 return ret; 5115 } else { 5116 huge_pmd_set_accessed(&vmf); 5117 return 0; 5118 } 5119 } 5120 } 5121 5122 return handle_pte_fault(&vmf); 5123 } 5124 5125 /** 5126 * mm_account_fault - Do page fault accounting 5127 * @mm: mm from which memcg should be extracted. It can be NULL. 5128 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5129 * of perf event counters, but we'll still do the per-task accounting to 5130 * the task who triggered this page fault. 5131 * @address: the faulted address. 5132 * @flags: the fault flags. 5133 * @ret: the fault retcode. 5134 * 5135 * This will take care of most of the page fault accounting. Meanwhile, it 5136 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5137 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5138 * still be in per-arch page fault handlers at the entry of page fault. 5139 */ 5140 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5141 unsigned long address, unsigned int flags, 5142 vm_fault_t ret) 5143 { 5144 bool major; 5145 5146 /* Incomplete faults will be accounted upon completion. */ 5147 if (ret & VM_FAULT_RETRY) 5148 return; 5149 5150 /* 5151 * To preserve the behavior of older kernels, PGFAULT counters record 5152 * both successful and failed faults, as opposed to perf counters, 5153 * which ignore failed cases. 5154 */ 5155 count_vm_event(PGFAULT); 5156 count_memcg_event_mm(mm, PGFAULT); 5157 5158 /* 5159 * Do not account for unsuccessful faults (e.g. when the address wasn't 5160 * valid). That includes arch_vma_access_permitted() failing before 5161 * reaching here. So this is not a "this many hardware page faults" 5162 * counter. We should use the hw profiling for that. 5163 */ 5164 if (ret & VM_FAULT_ERROR) 5165 return; 5166 5167 /* 5168 * We define the fault as a major fault when the final successful fault 5169 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5170 * handle it immediately previously). 5171 */ 5172 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5173 5174 if (major) 5175 current->maj_flt++; 5176 else 5177 current->min_flt++; 5178 5179 /* 5180 * If the fault is done for GUP, regs will be NULL. We only do the 5181 * accounting for the per thread fault counters who triggered the 5182 * fault, and we skip the perf event updates. 5183 */ 5184 if (!regs) 5185 return; 5186 5187 if (major) 5188 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5189 else 5190 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5191 } 5192 5193 #ifdef CONFIG_LRU_GEN 5194 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5195 { 5196 /* the LRU algorithm only applies to accesses with recency */ 5197 current->in_lru_fault = vma_has_recency(vma); 5198 } 5199 5200 static void lru_gen_exit_fault(void) 5201 { 5202 current->in_lru_fault = false; 5203 } 5204 #else 5205 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5206 { 5207 } 5208 5209 static void lru_gen_exit_fault(void) 5210 { 5211 } 5212 #endif /* CONFIG_LRU_GEN */ 5213 5214 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5215 unsigned int *flags) 5216 { 5217 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5218 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5219 return VM_FAULT_SIGSEGV; 5220 /* 5221 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5222 * just treat it like an ordinary read-fault otherwise. 5223 */ 5224 if (!is_cow_mapping(vma->vm_flags)) 5225 *flags &= ~FAULT_FLAG_UNSHARE; 5226 } else if (*flags & FAULT_FLAG_WRITE) { 5227 /* Write faults on read-only mappings are impossible ... */ 5228 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5229 return VM_FAULT_SIGSEGV; 5230 /* ... and FOLL_FORCE only applies to COW mappings. */ 5231 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5232 !is_cow_mapping(vma->vm_flags))) 5233 return VM_FAULT_SIGSEGV; 5234 } 5235 #ifdef CONFIG_PER_VMA_LOCK 5236 /* 5237 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 5238 * the assumption that lock is dropped on VM_FAULT_RETRY. 5239 */ 5240 if (WARN_ON_ONCE((*flags & 5241 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 5242 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 5243 return VM_FAULT_SIGSEGV; 5244 #endif 5245 5246 return 0; 5247 } 5248 5249 /* 5250 * By the time we get here, we already hold the mm semaphore 5251 * 5252 * The mmap_lock may have been released depending on flags and our 5253 * return value. See filemap_fault() and __folio_lock_or_retry(). 5254 */ 5255 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5256 unsigned int flags, struct pt_regs *regs) 5257 { 5258 /* If the fault handler drops the mmap_lock, vma may be freed */ 5259 struct mm_struct *mm = vma->vm_mm; 5260 vm_fault_t ret; 5261 5262 __set_current_state(TASK_RUNNING); 5263 5264 ret = sanitize_fault_flags(vma, &flags); 5265 if (ret) 5266 goto out; 5267 5268 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5269 flags & FAULT_FLAG_INSTRUCTION, 5270 flags & FAULT_FLAG_REMOTE)) { 5271 ret = VM_FAULT_SIGSEGV; 5272 goto out; 5273 } 5274 5275 /* 5276 * Enable the memcg OOM handling for faults triggered in user 5277 * space. Kernel faults are handled more gracefully. 5278 */ 5279 if (flags & FAULT_FLAG_USER) 5280 mem_cgroup_enter_user_fault(); 5281 5282 lru_gen_enter_fault(vma); 5283 5284 if (unlikely(is_vm_hugetlb_page(vma))) 5285 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5286 else 5287 ret = __handle_mm_fault(vma, address, flags); 5288 5289 lru_gen_exit_fault(); 5290 5291 if (flags & FAULT_FLAG_USER) { 5292 mem_cgroup_exit_user_fault(); 5293 /* 5294 * The task may have entered a memcg OOM situation but 5295 * if the allocation error was handled gracefully (no 5296 * VM_FAULT_OOM), there is no need to kill anything. 5297 * Just clean up the OOM state peacefully. 5298 */ 5299 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5300 mem_cgroup_oom_synchronize(false); 5301 } 5302 out: 5303 mm_account_fault(mm, regs, address, flags, ret); 5304 5305 return ret; 5306 } 5307 EXPORT_SYMBOL_GPL(handle_mm_fault); 5308 5309 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5310 #include <linux/extable.h> 5311 5312 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5313 { 5314 if (likely(mmap_read_trylock(mm))) 5315 return true; 5316 5317 if (regs && !user_mode(regs)) { 5318 unsigned long ip = instruction_pointer(regs); 5319 if (!search_exception_tables(ip)) 5320 return false; 5321 } 5322 5323 return !mmap_read_lock_killable(mm); 5324 } 5325 5326 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5327 { 5328 /* 5329 * We don't have this operation yet. 5330 * 5331 * It should be easy enough to do: it's basically a 5332 * atomic_long_try_cmpxchg_acquire() 5333 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5334 * it also needs the proper lockdep magic etc. 5335 */ 5336 return false; 5337 } 5338 5339 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5340 { 5341 mmap_read_unlock(mm); 5342 if (regs && !user_mode(regs)) { 5343 unsigned long ip = instruction_pointer(regs); 5344 if (!search_exception_tables(ip)) 5345 return false; 5346 } 5347 return !mmap_write_lock_killable(mm); 5348 } 5349 5350 /* 5351 * Helper for page fault handling. 5352 * 5353 * This is kind of equivalend to "mmap_read_lock()" followed 5354 * by "find_extend_vma()", except it's a lot more careful about 5355 * the locking (and will drop the lock on failure). 5356 * 5357 * For example, if we have a kernel bug that causes a page 5358 * fault, we don't want to just use mmap_read_lock() to get 5359 * the mm lock, because that would deadlock if the bug were 5360 * to happen while we're holding the mm lock for writing. 5361 * 5362 * So this checks the exception tables on kernel faults in 5363 * order to only do this all for instructions that are actually 5364 * expected to fault. 5365 * 5366 * We can also actually take the mm lock for writing if we 5367 * need to extend the vma, which helps the VM layer a lot. 5368 */ 5369 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5370 unsigned long addr, struct pt_regs *regs) 5371 { 5372 struct vm_area_struct *vma; 5373 5374 if (!get_mmap_lock_carefully(mm, regs)) 5375 return NULL; 5376 5377 vma = find_vma(mm, addr); 5378 if (likely(vma && (vma->vm_start <= addr))) 5379 return vma; 5380 5381 /* 5382 * Well, dang. We might still be successful, but only 5383 * if we can extend a vma to do so. 5384 */ 5385 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5386 mmap_read_unlock(mm); 5387 return NULL; 5388 } 5389 5390 /* 5391 * We can try to upgrade the mmap lock atomically, 5392 * in which case we can continue to use the vma 5393 * we already looked up. 5394 * 5395 * Otherwise we'll have to drop the mmap lock and 5396 * re-take it, and also look up the vma again, 5397 * re-checking it. 5398 */ 5399 if (!mmap_upgrade_trylock(mm)) { 5400 if (!upgrade_mmap_lock_carefully(mm, regs)) 5401 return NULL; 5402 5403 vma = find_vma(mm, addr); 5404 if (!vma) 5405 goto fail; 5406 if (vma->vm_start <= addr) 5407 goto success; 5408 if (!(vma->vm_flags & VM_GROWSDOWN)) 5409 goto fail; 5410 } 5411 5412 if (expand_stack_locked(vma, addr)) 5413 goto fail; 5414 5415 success: 5416 mmap_write_downgrade(mm); 5417 return vma; 5418 5419 fail: 5420 mmap_write_unlock(mm); 5421 return NULL; 5422 } 5423 #endif 5424 5425 #ifdef CONFIG_PER_VMA_LOCK 5426 /* 5427 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5428 * stable and not isolated. If the VMA is not found or is being modified the 5429 * function returns NULL. 5430 */ 5431 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5432 unsigned long address) 5433 { 5434 MA_STATE(mas, &mm->mm_mt, address, address); 5435 struct vm_area_struct *vma; 5436 5437 rcu_read_lock(); 5438 retry: 5439 vma = mas_walk(&mas); 5440 if (!vma) 5441 goto inval; 5442 5443 if (!vma_start_read(vma)) 5444 goto inval; 5445 5446 /* 5447 * find_mergeable_anon_vma uses adjacent vmas which are not locked. 5448 * This check must happen after vma_start_read(); otherwise, a 5449 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA 5450 * from its anon_vma. 5451 */ 5452 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) 5453 goto inval_end_read; 5454 5455 /* Check since vm_start/vm_end might change before we lock the VMA */ 5456 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5457 goto inval_end_read; 5458 5459 /* Check if the VMA got isolated after we found it */ 5460 if (vma->detached) { 5461 vma_end_read(vma); 5462 count_vm_vma_lock_event(VMA_LOCK_MISS); 5463 /* The area was replaced with another one */ 5464 goto retry; 5465 } 5466 5467 rcu_read_unlock(); 5468 return vma; 5469 5470 inval_end_read: 5471 vma_end_read(vma); 5472 inval: 5473 rcu_read_unlock(); 5474 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5475 return NULL; 5476 } 5477 #endif /* CONFIG_PER_VMA_LOCK */ 5478 5479 #ifndef __PAGETABLE_P4D_FOLDED 5480 /* 5481 * Allocate p4d page table. 5482 * We've already handled the fast-path in-line. 5483 */ 5484 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5485 { 5486 p4d_t *new = p4d_alloc_one(mm, address); 5487 if (!new) 5488 return -ENOMEM; 5489 5490 spin_lock(&mm->page_table_lock); 5491 if (pgd_present(*pgd)) { /* Another has populated it */ 5492 p4d_free(mm, new); 5493 } else { 5494 smp_wmb(); /* See comment in pmd_install() */ 5495 pgd_populate(mm, pgd, new); 5496 } 5497 spin_unlock(&mm->page_table_lock); 5498 return 0; 5499 } 5500 #endif /* __PAGETABLE_P4D_FOLDED */ 5501 5502 #ifndef __PAGETABLE_PUD_FOLDED 5503 /* 5504 * Allocate page upper directory. 5505 * We've already handled the fast-path in-line. 5506 */ 5507 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5508 { 5509 pud_t *new = pud_alloc_one(mm, address); 5510 if (!new) 5511 return -ENOMEM; 5512 5513 spin_lock(&mm->page_table_lock); 5514 if (!p4d_present(*p4d)) { 5515 mm_inc_nr_puds(mm); 5516 smp_wmb(); /* See comment in pmd_install() */ 5517 p4d_populate(mm, p4d, new); 5518 } else /* Another has populated it */ 5519 pud_free(mm, new); 5520 spin_unlock(&mm->page_table_lock); 5521 return 0; 5522 } 5523 #endif /* __PAGETABLE_PUD_FOLDED */ 5524 5525 #ifndef __PAGETABLE_PMD_FOLDED 5526 /* 5527 * Allocate page middle directory. 5528 * We've already handled the fast-path in-line. 5529 */ 5530 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5531 { 5532 spinlock_t *ptl; 5533 pmd_t *new = pmd_alloc_one(mm, address); 5534 if (!new) 5535 return -ENOMEM; 5536 5537 ptl = pud_lock(mm, pud); 5538 if (!pud_present(*pud)) { 5539 mm_inc_nr_pmds(mm); 5540 smp_wmb(); /* See comment in pmd_install() */ 5541 pud_populate(mm, pud, new); 5542 } else { /* Another has populated it */ 5543 pmd_free(mm, new); 5544 } 5545 spin_unlock(ptl); 5546 return 0; 5547 } 5548 #endif /* __PAGETABLE_PMD_FOLDED */ 5549 5550 /** 5551 * follow_pte - look up PTE at a user virtual address 5552 * @mm: the mm_struct of the target address space 5553 * @address: user virtual address 5554 * @ptepp: location to store found PTE 5555 * @ptlp: location to store the lock for the PTE 5556 * 5557 * On a successful return, the pointer to the PTE is stored in @ptepp; 5558 * the corresponding lock is taken and its location is stored in @ptlp. 5559 * The contents of the PTE are only stable until @ptlp is released; 5560 * any further use, if any, must be protected against invalidation 5561 * with MMU notifiers. 5562 * 5563 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5564 * should be taken for read. 5565 * 5566 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5567 * it is not a good general-purpose API. 5568 * 5569 * Return: zero on success, -ve otherwise. 5570 */ 5571 int follow_pte(struct mm_struct *mm, unsigned long address, 5572 pte_t **ptepp, spinlock_t **ptlp) 5573 { 5574 pgd_t *pgd; 5575 p4d_t *p4d; 5576 pud_t *pud; 5577 pmd_t *pmd; 5578 pte_t *ptep; 5579 5580 pgd = pgd_offset(mm, address); 5581 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5582 goto out; 5583 5584 p4d = p4d_offset(pgd, address); 5585 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5586 goto out; 5587 5588 pud = pud_offset(p4d, address); 5589 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5590 goto out; 5591 5592 pmd = pmd_offset(pud, address); 5593 VM_BUG_ON(pmd_trans_huge(*pmd)); 5594 5595 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5596 if (!ptep) 5597 goto out; 5598 if (!pte_present(ptep_get(ptep))) 5599 goto unlock; 5600 *ptepp = ptep; 5601 return 0; 5602 unlock: 5603 pte_unmap_unlock(ptep, *ptlp); 5604 out: 5605 return -EINVAL; 5606 } 5607 EXPORT_SYMBOL_GPL(follow_pte); 5608 5609 /** 5610 * follow_pfn - look up PFN at a user virtual address 5611 * @vma: memory mapping 5612 * @address: user virtual address 5613 * @pfn: location to store found PFN 5614 * 5615 * Only IO mappings and raw PFN mappings are allowed. 5616 * 5617 * This function does not allow the caller to read the permissions 5618 * of the PTE. Do not use it. 5619 * 5620 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5621 */ 5622 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5623 unsigned long *pfn) 5624 { 5625 int ret = -EINVAL; 5626 spinlock_t *ptl; 5627 pte_t *ptep; 5628 5629 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5630 return ret; 5631 5632 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5633 if (ret) 5634 return ret; 5635 *pfn = pte_pfn(ptep_get(ptep)); 5636 pte_unmap_unlock(ptep, ptl); 5637 return 0; 5638 } 5639 EXPORT_SYMBOL(follow_pfn); 5640 5641 #ifdef CONFIG_HAVE_IOREMAP_PROT 5642 int follow_phys(struct vm_area_struct *vma, 5643 unsigned long address, unsigned int flags, 5644 unsigned long *prot, resource_size_t *phys) 5645 { 5646 int ret = -EINVAL; 5647 pte_t *ptep, pte; 5648 spinlock_t *ptl; 5649 5650 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5651 goto out; 5652 5653 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5654 goto out; 5655 pte = ptep_get(ptep); 5656 5657 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5658 goto unlock; 5659 5660 *prot = pgprot_val(pte_pgprot(pte)); 5661 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5662 5663 ret = 0; 5664 unlock: 5665 pte_unmap_unlock(ptep, ptl); 5666 out: 5667 return ret; 5668 } 5669 5670 /** 5671 * generic_access_phys - generic implementation for iomem mmap access 5672 * @vma: the vma to access 5673 * @addr: userspace address, not relative offset within @vma 5674 * @buf: buffer to read/write 5675 * @len: length of transfer 5676 * @write: set to FOLL_WRITE when writing, otherwise reading 5677 * 5678 * This is a generic implementation for &vm_operations_struct.access for an 5679 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5680 * not page based. 5681 */ 5682 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5683 void *buf, int len, int write) 5684 { 5685 resource_size_t phys_addr; 5686 unsigned long prot = 0; 5687 void __iomem *maddr; 5688 pte_t *ptep, pte; 5689 spinlock_t *ptl; 5690 int offset = offset_in_page(addr); 5691 int ret = -EINVAL; 5692 5693 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5694 return -EINVAL; 5695 5696 retry: 5697 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5698 return -EINVAL; 5699 pte = ptep_get(ptep); 5700 pte_unmap_unlock(ptep, ptl); 5701 5702 prot = pgprot_val(pte_pgprot(pte)); 5703 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5704 5705 if ((write & FOLL_WRITE) && !pte_write(pte)) 5706 return -EINVAL; 5707 5708 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5709 if (!maddr) 5710 return -ENOMEM; 5711 5712 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5713 goto out_unmap; 5714 5715 if (!pte_same(pte, ptep_get(ptep))) { 5716 pte_unmap_unlock(ptep, ptl); 5717 iounmap(maddr); 5718 5719 goto retry; 5720 } 5721 5722 if (write) 5723 memcpy_toio(maddr + offset, buf, len); 5724 else 5725 memcpy_fromio(buf, maddr + offset, len); 5726 ret = len; 5727 pte_unmap_unlock(ptep, ptl); 5728 out_unmap: 5729 iounmap(maddr); 5730 5731 return ret; 5732 } 5733 EXPORT_SYMBOL_GPL(generic_access_phys); 5734 #endif 5735 5736 /* 5737 * Access another process' address space as given in mm. 5738 */ 5739 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5740 int len, unsigned int gup_flags) 5741 { 5742 void *old_buf = buf; 5743 int write = gup_flags & FOLL_WRITE; 5744 5745 if (mmap_read_lock_killable(mm)) 5746 return 0; 5747 5748 /* Untag the address before looking up the VMA */ 5749 addr = untagged_addr_remote(mm, addr); 5750 5751 /* Avoid triggering the temporary warning in __get_user_pages */ 5752 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 5753 return 0; 5754 5755 /* ignore errors, just check how much was successfully transferred */ 5756 while (len) { 5757 int bytes, offset; 5758 void *maddr; 5759 struct vm_area_struct *vma = NULL; 5760 struct page *page = get_user_page_vma_remote(mm, addr, 5761 gup_flags, &vma); 5762 5763 if (IS_ERR_OR_NULL(page)) { 5764 /* We might need to expand the stack to access it */ 5765 vma = vma_lookup(mm, addr); 5766 if (!vma) { 5767 vma = expand_stack(mm, addr); 5768 5769 /* mmap_lock was dropped on failure */ 5770 if (!vma) 5771 return buf - old_buf; 5772 5773 /* Try again if stack expansion worked */ 5774 continue; 5775 } 5776 5777 5778 /* 5779 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5780 * we can access using slightly different code. 5781 */ 5782 bytes = 0; 5783 #ifdef CONFIG_HAVE_IOREMAP_PROT 5784 if (vma->vm_ops && vma->vm_ops->access) 5785 bytes = vma->vm_ops->access(vma, addr, buf, 5786 len, write); 5787 #endif 5788 if (bytes <= 0) 5789 break; 5790 } else { 5791 bytes = len; 5792 offset = addr & (PAGE_SIZE-1); 5793 if (bytes > PAGE_SIZE-offset) 5794 bytes = PAGE_SIZE-offset; 5795 5796 maddr = kmap(page); 5797 if (write) { 5798 copy_to_user_page(vma, page, addr, 5799 maddr + offset, buf, bytes); 5800 set_page_dirty_lock(page); 5801 } else { 5802 copy_from_user_page(vma, page, addr, 5803 buf, maddr + offset, bytes); 5804 } 5805 kunmap(page); 5806 put_page(page); 5807 } 5808 len -= bytes; 5809 buf += bytes; 5810 addr += bytes; 5811 } 5812 mmap_read_unlock(mm); 5813 5814 return buf - old_buf; 5815 } 5816 5817 /** 5818 * access_remote_vm - access another process' address space 5819 * @mm: the mm_struct of the target address space 5820 * @addr: start address to access 5821 * @buf: source or destination buffer 5822 * @len: number of bytes to transfer 5823 * @gup_flags: flags modifying lookup behaviour 5824 * 5825 * The caller must hold a reference on @mm. 5826 * 5827 * Return: number of bytes copied from source to destination. 5828 */ 5829 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5830 void *buf, int len, unsigned int gup_flags) 5831 { 5832 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5833 } 5834 5835 /* 5836 * Access another process' address space. 5837 * Source/target buffer must be kernel space, 5838 * Do not walk the page table directly, use get_user_pages 5839 */ 5840 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5841 void *buf, int len, unsigned int gup_flags) 5842 { 5843 struct mm_struct *mm; 5844 int ret; 5845 5846 mm = get_task_mm(tsk); 5847 if (!mm) 5848 return 0; 5849 5850 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5851 5852 mmput(mm); 5853 5854 return ret; 5855 } 5856 EXPORT_SYMBOL_GPL(access_process_vm); 5857 5858 /* 5859 * Print the name of a VMA. 5860 */ 5861 void print_vma_addr(char *prefix, unsigned long ip) 5862 { 5863 struct mm_struct *mm = current->mm; 5864 struct vm_area_struct *vma; 5865 5866 /* 5867 * we might be running from an atomic context so we cannot sleep 5868 */ 5869 if (!mmap_read_trylock(mm)) 5870 return; 5871 5872 vma = find_vma(mm, ip); 5873 if (vma && vma->vm_file) { 5874 struct file *f = vma->vm_file; 5875 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5876 if (buf) { 5877 char *p; 5878 5879 p = file_path(f, buf, PAGE_SIZE); 5880 if (IS_ERR(p)) 5881 p = "?"; 5882 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5883 vma->vm_start, 5884 vma->vm_end - vma->vm_start); 5885 free_page((unsigned long)buf); 5886 } 5887 } 5888 mmap_read_unlock(mm); 5889 } 5890 5891 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5892 void __might_fault(const char *file, int line) 5893 { 5894 if (pagefault_disabled()) 5895 return; 5896 __might_sleep(file, line); 5897 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5898 if (current->mm) 5899 might_lock_read(¤t->mm->mmap_lock); 5900 #endif 5901 } 5902 EXPORT_SYMBOL(__might_fault); 5903 #endif 5904 5905 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5906 /* 5907 * Process all subpages of the specified huge page with the specified 5908 * operation. The target subpage will be processed last to keep its 5909 * cache lines hot. 5910 */ 5911 static inline int process_huge_page( 5912 unsigned long addr_hint, unsigned int pages_per_huge_page, 5913 int (*process_subpage)(unsigned long addr, int idx, void *arg), 5914 void *arg) 5915 { 5916 int i, n, base, l, ret; 5917 unsigned long addr = addr_hint & 5918 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5919 5920 /* Process target subpage last to keep its cache lines hot */ 5921 might_sleep(); 5922 n = (addr_hint - addr) / PAGE_SIZE; 5923 if (2 * n <= pages_per_huge_page) { 5924 /* If target subpage in first half of huge page */ 5925 base = 0; 5926 l = n; 5927 /* Process subpages at the end of huge page */ 5928 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5929 cond_resched(); 5930 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5931 if (ret) 5932 return ret; 5933 } 5934 } else { 5935 /* If target subpage in second half of huge page */ 5936 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5937 l = pages_per_huge_page - n; 5938 /* Process subpages at the begin of huge page */ 5939 for (i = 0; i < base; i++) { 5940 cond_resched(); 5941 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5942 if (ret) 5943 return ret; 5944 } 5945 } 5946 /* 5947 * Process remaining subpages in left-right-left-right pattern 5948 * towards the target subpage 5949 */ 5950 for (i = 0; i < l; i++) { 5951 int left_idx = base + i; 5952 int right_idx = base + 2 * l - 1 - i; 5953 5954 cond_resched(); 5955 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5956 if (ret) 5957 return ret; 5958 cond_resched(); 5959 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5960 if (ret) 5961 return ret; 5962 } 5963 return 0; 5964 } 5965 5966 static void clear_gigantic_page(struct page *page, 5967 unsigned long addr, 5968 unsigned int pages_per_huge_page) 5969 { 5970 int i; 5971 struct page *p; 5972 5973 might_sleep(); 5974 for (i = 0; i < pages_per_huge_page; i++) { 5975 p = nth_page(page, i); 5976 cond_resched(); 5977 clear_user_highpage(p, addr + i * PAGE_SIZE); 5978 } 5979 } 5980 5981 static int clear_subpage(unsigned long addr, int idx, void *arg) 5982 { 5983 struct page *page = arg; 5984 5985 clear_user_highpage(page + idx, addr); 5986 return 0; 5987 } 5988 5989 void clear_huge_page(struct page *page, 5990 unsigned long addr_hint, unsigned int pages_per_huge_page) 5991 { 5992 unsigned long addr = addr_hint & 5993 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5994 5995 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5996 clear_gigantic_page(page, addr, pages_per_huge_page); 5997 return; 5998 } 5999 6000 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 6001 } 6002 6003 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6004 unsigned long addr, 6005 struct vm_area_struct *vma, 6006 unsigned int pages_per_huge_page) 6007 { 6008 int i; 6009 struct page *dst_page; 6010 struct page *src_page; 6011 6012 for (i = 0; i < pages_per_huge_page; i++) { 6013 dst_page = folio_page(dst, i); 6014 src_page = folio_page(src, i); 6015 6016 cond_resched(); 6017 if (copy_mc_user_highpage(dst_page, src_page, 6018 addr + i*PAGE_SIZE, vma)) { 6019 memory_failure_queue(page_to_pfn(src_page), 0); 6020 return -EHWPOISON; 6021 } 6022 } 6023 return 0; 6024 } 6025 6026 struct copy_subpage_arg { 6027 struct page *dst; 6028 struct page *src; 6029 struct vm_area_struct *vma; 6030 }; 6031 6032 static int copy_subpage(unsigned long addr, int idx, void *arg) 6033 { 6034 struct copy_subpage_arg *copy_arg = arg; 6035 6036 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 6037 addr, copy_arg->vma)) { 6038 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0); 6039 return -EHWPOISON; 6040 } 6041 return 0; 6042 } 6043 6044 int copy_user_large_folio(struct folio *dst, struct folio *src, 6045 unsigned long addr_hint, struct vm_area_struct *vma) 6046 { 6047 unsigned int pages_per_huge_page = folio_nr_pages(dst); 6048 unsigned long addr = addr_hint & 6049 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6050 struct copy_subpage_arg arg = { 6051 .dst = &dst->page, 6052 .src = &src->page, 6053 .vma = vma, 6054 }; 6055 6056 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 6057 return copy_user_gigantic_page(dst, src, addr, vma, 6058 pages_per_huge_page); 6059 6060 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6061 } 6062 6063 long copy_folio_from_user(struct folio *dst_folio, 6064 const void __user *usr_src, 6065 bool allow_pagefault) 6066 { 6067 void *kaddr; 6068 unsigned long i, rc = 0; 6069 unsigned int nr_pages = folio_nr_pages(dst_folio); 6070 unsigned long ret_val = nr_pages * PAGE_SIZE; 6071 struct page *subpage; 6072 6073 for (i = 0; i < nr_pages; i++) { 6074 subpage = folio_page(dst_folio, i); 6075 kaddr = kmap_local_page(subpage); 6076 if (!allow_pagefault) 6077 pagefault_disable(); 6078 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6079 if (!allow_pagefault) 6080 pagefault_enable(); 6081 kunmap_local(kaddr); 6082 6083 ret_val -= (PAGE_SIZE - rc); 6084 if (rc) 6085 break; 6086 6087 flush_dcache_page(subpage); 6088 6089 cond_resched(); 6090 } 6091 return ret_val; 6092 } 6093 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6094 6095 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6096 6097 static struct kmem_cache *page_ptl_cachep; 6098 6099 void __init ptlock_cache_init(void) 6100 { 6101 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6102 SLAB_PANIC, NULL); 6103 } 6104 6105 bool ptlock_alloc(struct ptdesc *ptdesc) 6106 { 6107 spinlock_t *ptl; 6108 6109 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6110 if (!ptl) 6111 return false; 6112 ptdesc->ptl = ptl; 6113 return true; 6114 } 6115 6116 void ptlock_free(struct ptdesc *ptdesc) 6117 { 6118 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6119 } 6120 #endif 6121