xref: /openbmc/linux/mm/memory.c (revision a99237af)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80 
81 #include "internal.h"
82 
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86 
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91 
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95 
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105 
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114 					1;
115 #else
116 					2;
117 #endif
118 
119 static int __init disable_randmaps(char *s)
120 {
121 	randomize_va_space = 0;
122 	return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125 
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128 
129 unsigned long highest_memmap_pfn __read_mostly;
130 
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 	return 0;
138 }
139 core_initcall(init_zero_pfn);
140 
141 
142 #if defined(SPLIT_RSS_COUNTING)
143 
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146 	int i;
147 
148 	for (i = 0; i < NR_MM_COUNTERS; i++) {
149 		if (current->rss_stat.count[i]) {
150 			add_mm_counter(mm, i, current->rss_stat.count[i]);
151 			current->rss_stat.count[i] = 0;
152 		}
153 	}
154 	current->rss_stat.events = 0;
155 }
156 
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159 	struct task_struct *task = current;
160 
161 	if (likely(task->mm == mm))
162 		task->rss_stat.count[member] += val;
163 	else
164 		add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168 
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH	(64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 	if (unlikely(task != current))
174 		return;
175 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 		sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179 
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182 
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186 
187 #endif /* SPLIT_RSS_COUNTING */
188 
189 #ifdef HAVE_GENERIC_MMU_GATHER
190 
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193 	struct mmu_gather_batch *batch;
194 
195 	batch = tlb->active;
196 	if (batch->next) {
197 		tlb->active = batch->next;
198 		return true;
199 	}
200 
201 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 		return false;
203 
204 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 	if (!batch)
206 		return false;
207 
208 	tlb->batch_count++;
209 	batch->next = NULL;
210 	batch->nr   = 0;
211 	batch->max  = MAX_GATHER_BATCH;
212 
213 	tlb->active->next = batch;
214 	tlb->active = batch;
215 
216 	return true;
217 }
218 
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 				unsigned long start, unsigned long end)
221 {
222 	tlb->mm = mm;
223 
224 	/* Is it from 0 to ~0? */
225 	tlb->fullmm     = !(start | (end+1));
226 	tlb->need_flush_all = 0;
227 	tlb->local.next = NULL;
228 	tlb->local.nr   = 0;
229 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230 	tlb->active     = &tlb->local;
231 	tlb->batch_count = 0;
232 
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 	tlb->batch = NULL;
235 #endif
236 	tlb->page_size = 0;
237 
238 	__tlb_reset_range(tlb);
239 }
240 
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243 	if (!tlb->end)
244 		return;
245 
246 	tlb_flush(tlb);
247 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 	tlb_table_flush(tlb);
250 #endif
251 	__tlb_reset_range(tlb);
252 }
253 
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256 	struct mmu_gather_batch *batch;
257 
258 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 		free_pages_and_swap_cache(batch->pages, batch->nr);
260 		batch->nr = 0;
261 	}
262 	tlb->active = &tlb->local;
263 }
264 
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267 	tlb_flush_mmu_tlbonly(tlb);
268 	tlb_flush_mmu_free(tlb);
269 }
270 
271 /* tlb_finish_mmu
272  *	Called at the end of the shootdown operation to free up any resources
273  *	that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276 		unsigned long start, unsigned long end, bool force)
277 {
278 	struct mmu_gather_batch *batch, *next;
279 
280 	if (force)
281 		__tlb_adjust_range(tlb, start, end - start);
282 
283 	tlb_flush_mmu(tlb);
284 
285 	/* keep the page table cache within bounds */
286 	check_pgt_cache();
287 
288 	for (batch = tlb->local.next; batch; batch = next) {
289 		next = batch->next;
290 		free_pages((unsigned long)batch, 0);
291 	}
292 	tlb->local.next = NULL;
293 }
294 
295 /* __tlb_remove_page
296  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *	handling the additional races in SMP caused by other CPUs caching valid
298  *	mappings in their TLBs. Returns the number of free page slots left.
299  *	When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304 	struct mmu_gather_batch *batch;
305 
306 	VM_BUG_ON(!tlb->end);
307 	VM_WARN_ON(tlb->page_size != page_size);
308 
309 	batch = tlb->active;
310 	/*
311 	 * Add the page and check if we are full. If so
312 	 * force a flush.
313 	 */
314 	batch->pages[batch->nr++] = page;
315 	if (batch->nr == batch->max) {
316 		if (!tlb_next_batch(tlb))
317 			return true;
318 		batch = tlb->active;
319 	}
320 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321 
322 	return false;
323 }
324 
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326 
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328 
329 static void tlb_remove_table_smp_sync(void *arg)
330 {
331 	struct mm_struct __maybe_unused *mm = arg;
332 	/*
333 	 * On most architectures this does nothing. Simply delivering the
334 	 * interrupt is enough to prevent races with software page table
335 	 * walking like that done in get_user_pages_fast.
336 	 *
337 	 * See the comment near struct mmu_table_batch.
338 	 */
339 	tlb_flush_remove_tables_local(mm);
340 }
341 
342 static void tlb_remove_table_one(void *table, struct mmu_gather *tlb)
343 {
344 	/*
345 	 * This isn't an RCU grace period and hence the page-tables cannot be
346 	 * assumed to be actually RCU-freed.
347 	 *
348 	 * It is however sufficient for software page-table walkers that rely on
349 	 * IRQ disabling. See the comment near struct mmu_table_batch.
350 	 */
351 	smp_call_function(tlb_remove_table_smp_sync, tlb->mm, 1);
352 	__tlb_remove_table(table);
353 }
354 
355 static void tlb_remove_table_rcu(struct rcu_head *head)
356 {
357 	struct mmu_table_batch *batch;
358 	int i;
359 
360 	batch = container_of(head, struct mmu_table_batch, rcu);
361 
362 	for (i = 0; i < batch->nr; i++)
363 		__tlb_remove_table(batch->tables[i]);
364 
365 	free_page((unsigned long)batch);
366 }
367 
368 void tlb_table_flush(struct mmu_gather *tlb)
369 {
370 	struct mmu_table_batch **batch = &tlb->batch;
371 
372 	tlb_flush_remove_tables(tlb->mm);
373 
374 	if (*batch) {
375 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
376 		*batch = NULL;
377 	}
378 }
379 
380 void tlb_remove_table(struct mmu_gather *tlb, void *table)
381 {
382 	struct mmu_table_batch **batch = &tlb->batch;
383 
384 	/*
385 	 * When there's less then two users of this mm there cannot be a
386 	 * concurrent page-table walk.
387 	 */
388 	if (atomic_read(&tlb->mm->mm_users) < 2) {
389 		__tlb_remove_table(table);
390 		return;
391 	}
392 
393 	if (*batch == NULL) {
394 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
395 		if (*batch == NULL) {
396 			tlb_remove_table_one(table, tlb);
397 			return;
398 		}
399 		(*batch)->nr = 0;
400 	}
401 	(*batch)->tables[(*batch)->nr++] = table;
402 	if ((*batch)->nr == MAX_TABLE_BATCH)
403 		tlb_table_flush(tlb);
404 }
405 
406 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
407 
408 /**
409  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
410  * @tlb: the mmu_gather structure to initialize
411  * @mm: the mm_struct of the target address space
412  * @start: start of the region that will be removed from the page-table
413  * @end: end of the region that will be removed from the page-table
414  *
415  * Called to initialize an (on-stack) mmu_gather structure for page-table
416  * tear-down from @mm. The @start and @end are set to 0 and -1
417  * respectively when @mm is without users and we're going to destroy
418  * the full address space (exit/execve).
419  */
420 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
421 			unsigned long start, unsigned long end)
422 {
423 	arch_tlb_gather_mmu(tlb, mm, start, end);
424 	inc_tlb_flush_pending(tlb->mm);
425 }
426 
427 void tlb_finish_mmu(struct mmu_gather *tlb,
428 		unsigned long start, unsigned long end)
429 {
430 	/*
431 	 * If there are parallel threads are doing PTE changes on same range
432 	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
433 	 * flush by batching, a thread has stable TLB entry can fail to flush
434 	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
435 	 * forcefully if we detect parallel PTE batching threads.
436 	 */
437 	bool force = mm_tlb_flush_nested(tlb->mm);
438 
439 	arch_tlb_finish_mmu(tlb, start, end, force);
440 	dec_tlb_flush_pending(tlb->mm);
441 }
442 
443 /*
444  * Note: this doesn't free the actual pages themselves. That
445  * has been handled earlier when unmapping all the memory regions.
446  */
447 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
448 			   unsigned long addr)
449 {
450 	pgtable_t token = pmd_pgtable(*pmd);
451 	pmd_clear(pmd);
452 	pte_free_tlb(tlb, token, addr);
453 	mm_dec_nr_ptes(tlb->mm);
454 }
455 
456 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
457 				unsigned long addr, unsigned long end,
458 				unsigned long floor, unsigned long ceiling)
459 {
460 	pmd_t *pmd;
461 	unsigned long next;
462 	unsigned long start;
463 
464 	start = addr;
465 	pmd = pmd_offset(pud, addr);
466 	do {
467 		next = pmd_addr_end(addr, end);
468 		if (pmd_none_or_clear_bad(pmd))
469 			continue;
470 		free_pte_range(tlb, pmd, addr);
471 	} while (pmd++, addr = next, addr != end);
472 
473 	start &= PUD_MASK;
474 	if (start < floor)
475 		return;
476 	if (ceiling) {
477 		ceiling &= PUD_MASK;
478 		if (!ceiling)
479 			return;
480 	}
481 	if (end - 1 > ceiling - 1)
482 		return;
483 
484 	pmd = pmd_offset(pud, start);
485 	pud_clear(pud);
486 	pmd_free_tlb(tlb, pmd, start);
487 	mm_dec_nr_pmds(tlb->mm);
488 }
489 
490 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
491 				unsigned long addr, unsigned long end,
492 				unsigned long floor, unsigned long ceiling)
493 {
494 	pud_t *pud;
495 	unsigned long next;
496 	unsigned long start;
497 
498 	start = addr;
499 	pud = pud_offset(p4d, addr);
500 	do {
501 		next = pud_addr_end(addr, end);
502 		if (pud_none_or_clear_bad(pud))
503 			continue;
504 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
505 	} while (pud++, addr = next, addr != end);
506 
507 	start &= P4D_MASK;
508 	if (start < floor)
509 		return;
510 	if (ceiling) {
511 		ceiling &= P4D_MASK;
512 		if (!ceiling)
513 			return;
514 	}
515 	if (end - 1 > ceiling - 1)
516 		return;
517 
518 	pud = pud_offset(p4d, start);
519 	p4d_clear(p4d);
520 	pud_free_tlb(tlb, pud, start);
521 	mm_dec_nr_puds(tlb->mm);
522 }
523 
524 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
525 				unsigned long addr, unsigned long end,
526 				unsigned long floor, unsigned long ceiling)
527 {
528 	p4d_t *p4d;
529 	unsigned long next;
530 	unsigned long start;
531 
532 	start = addr;
533 	p4d = p4d_offset(pgd, addr);
534 	do {
535 		next = p4d_addr_end(addr, end);
536 		if (p4d_none_or_clear_bad(p4d))
537 			continue;
538 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
539 	} while (p4d++, addr = next, addr != end);
540 
541 	start &= PGDIR_MASK;
542 	if (start < floor)
543 		return;
544 	if (ceiling) {
545 		ceiling &= PGDIR_MASK;
546 		if (!ceiling)
547 			return;
548 	}
549 	if (end - 1 > ceiling - 1)
550 		return;
551 
552 	p4d = p4d_offset(pgd, start);
553 	pgd_clear(pgd);
554 	p4d_free_tlb(tlb, p4d, start);
555 }
556 
557 /*
558  * This function frees user-level page tables of a process.
559  */
560 void free_pgd_range(struct mmu_gather *tlb,
561 			unsigned long addr, unsigned long end,
562 			unsigned long floor, unsigned long ceiling)
563 {
564 	pgd_t *pgd;
565 	unsigned long next;
566 
567 	/*
568 	 * The next few lines have given us lots of grief...
569 	 *
570 	 * Why are we testing PMD* at this top level?  Because often
571 	 * there will be no work to do at all, and we'd prefer not to
572 	 * go all the way down to the bottom just to discover that.
573 	 *
574 	 * Why all these "- 1"s?  Because 0 represents both the bottom
575 	 * of the address space and the top of it (using -1 for the
576 	 * top wouldn't help much: the masks would do the wrong thing).
577 	 * The rule is that addr 0 and floor 0 refer to the bottom of
578 	 * the address space, but end 0 and ceiling 0 refer to the top
579 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
580 	 * that end 0 case should be mythical).
581 	 *
582 	 * Wherever addr is brought up or ceiling brought down, we must
583 	 * be careful to reject "the opposite 0" before it confuses the
584 	 * subsequent tests.  But what about where end is brought down
585 	 * by PMD_SIZE below? no, end can't go down to 0 there.
586 	 *
587 	 * Whereas we round start (addr) and ceiling down, by different
588 	 * masks at different levels, in order to test whether a table
589 	 * now has no other vmas using it, so can be freed, we don't
590 	 * bother to round floor or end up - the tests don't need that.
591 	 */
592 
593 	addr &= PMD_MASK;
594 	if (addr < floor) {
595 		addr += PMD_SIZE;
596 		if (!addr)
597 			return;
598 	}
599 	if (ceiling) {
600 		ceiling &= PMD_MASK;
601 		if (!ceiling)
602 			return;
603 	}
604 	if (end - 1 > ceiling - 1)
605 		end -= PMD_SIZE;
606 	if (addr > end - 1)
607 		return;
608 	/*
609 	 * We add page table cache pages with PAGE_SIZE,
610 	 * (see pte_free_tlb()), flush the tlb if we need
611 	 */
612 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
613 	pgd = pgd_offset(tlb->mm, addr);
614 	do {
615 		next = pgd_addr_end(addr, end);
616 		if (pgd_none_or_clear_bad(pgd))
617 			continue;
618 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
619 	} while (pgd++, addr = next, addr != end);
620 }
621 
622 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
623 		unsigned long floor, unsigned long ceiling)
624 {
625 	while (vma) {
626 		struct vm_area_struct *next = vma->vm_next;
627 		unsigned long addr = vma->vm_start;
628 
629 		/*
630 		 * Hide vma from rmap and truncate_pagecache before freeing
631 		 * pgtables
632 		 */
633 		unlink_anon_vmas(vma);
634 		unlink_file_vma(vma);
635 
636 		if (is_vm_hugetlb_page(vma)) {
637 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
638 				floor, next ? next->vm_start : ceiling);
639 		} else {
640 			/*
641 			 * Optimization: gather nearby vmas into one call down
642 			 */
643 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
644 			       && !is_vm_hugetlb_page(next)) {
645 				vma = next;
646 				next = vma->vm_next;
647 				unlink_anon_vmas(vma);
648 				unlink_file_vma(vma);
649 			}
650 			free_pgd_range(tlb, addr, vma->vm_end,
651 				floor, next ? next->vm_start : ceiling);
652 		}
653 		vma = next;
654 	}
655 }
656 
657 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
658 {
659 	spinlock_t *ptl;
660 	pgtable_t new = pte_alloc_one(mm, address);
661 	if (!new)
662 		return -ENOMEM;
663 
664 	/*
665 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
666 	 * visible before the pte is made visible to other CPUs by being
667 	 * put into page tables.
668 	 *
669 	 * The other side of the story is the pointer chasing in the page
670 	 * table walking code (when walking the page table without locking;
671 	 * ie. most of the time). Fortunately, these data accesses consist
672 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
673 	 * being the notable exception) will already guarantee loads are
674 	 * seen in-order. See the alpha page table accessors for the
675 	 * smp_read_barrier_depends() barriers in page table walking code.
676 	 */
677 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
678 
679 	ptl = pmd_lock(mm, pmd);
680 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
681 		mm_inc_nr_ptes(mm);
682 		pmd_populate(mm, pmd, new);
683 		new = NULL;
684 	}
685 	spin_unlock(ptl);
686 	if (new)
687 		pte_free(mm, new);
688 	return 0;
689 }
690 
691 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
692 {
693 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
694 	if (!new)
695 		return -ENOMEM;
696 
697 	smp_wmb(); /* See comment in __pte_alloc */
698 
699 	spin_lock(&init_mm.page_table_lock);
700 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
701 		pmd_populate_kernel(&init_mm, pmd, new);
702 		new = NULL;
703 	}
704 	spin_unlock(&init_mm.page_table_lock);
705 	if (new)
706 		pte_free_kernel(&init_mm, new);
707 	return 0;
708 }
709 
710 static inline void init_rss_vec(int *rss)
711 {
712 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
713 }
714 
715 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
716 {
717 	int i;
718 
719 	if (current->mm == mm)
720 		sync_mm_rss(mm);
721 	for (i = 0; i < NR_MM_COUNTERS; i++)
722 		if (rss[i])
723 			add_mm_counter(mm, i, rss[i]);
724 }
725 
726 /*
727  * This function is called to print an error when a bad pte
728  * is found. For example, we might have a PFN-mapped pte in
729  * a region that doesn't allow it.
730  *
731  * The calling function must still handle the error.
732  */
733 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
734 			  pte_t pte, struct page *page)
735 {
736 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
737 	p4d_t *p4d = p4d_offset(pgd, addr);
738 	pud_t *pud = pud_offset(p4d, addr);
739 	pmd_t *pmd = pmd_offset(pud, addr);
740 	struct address_space *mapping;
741 	pgoff_t index;
742 	static unsigned long resume;
743 	static unsigned long nr_shown;
744 	static unsigned long nr_unshown;
745 
746 	/*
747 	 * Allow a burst of 60 reports, then keep quiet for that minute;
748 	 * or allow a steady drip of one report per second.
749 	 */
750 	if (nr_shown == 60) {
751 		if (time_before(jiffies, resume)) {
752 			nr_unshown++;
753 			return;
754 		}
755 		if (nr_unshown) {
756 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
757 				 nr_unshown);
758 			nr_unshown = 0;
759 		}
760 		nr_shown = 0;
761 	}
762 	if (nr_shown++ == 0)
763 		resume = jiffies + 60 * HZ;
764 
765 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
766 	index = linear_page_index(vma, addr);
767 
768 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
769 		 current->comm,
770 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
771 	if (page)
772 		dump_page(page, "bad pte");
773 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
774 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
775 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
776 		 vma->vm_file,
777 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
778 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
779 		 mapping ? mapping->a_ops->readpage : NULL);
780 	dump_stack();
781 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
782 }
783 
784 /*
785  * vm_normal_page -- This function gets the "struct page" associated with a pte.
786  *
787  * "Special" mappings do not wish to be associated with a "struct page" (either
788  * it doesn't exist, or it exists but they don't want to touch it). In this
789  * case, NULL is returned here. "Normal" mappings do have a struct page.
790  *
791  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
792  * pte bit, in which case this function is trivial. Secondly, an architecture
793  * may not have a spare pte bit, which requires a more complicated scheme,
794  * described below.
795  *
796  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
797  * special mapping (even if there are underlying and valid "struct pages").
798  * COWed pages of a VM_PFNMAP are always normal.
799  *
800  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
801  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
802  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
803  * mapping will always honor the rule
804  *
805  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
806  *
807  * And for normal mappings this is false.
808  *
809  * This restricts such mappings to be a linear translation from virtual address
810  * to pfn. To get around this restriction, we allow arbitrary mappings so long
811  * as the vma is not a COW mapping; in that case, we know that all ptes are
812  * special (because none can have been COWed).
813  *
814  *
815  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
816  *
817  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
818  * page" backing, however the difference is that _all_ pages with a struct
819  * page (that is, those where pfn_valid is true) are refcounted and considered
820  * normal pages by the VM. The disadvantage is that pages are refcounted
821  * (which can be slower and simply not an option for some PFNMAP users). The
822  * advantage is that we don't have to follow the strict linearity rule of
823  * PFNMAP mappings in order to support COWable mappings.
824  *
825  */
826 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
827 			     pte_t pte, bool with_public_device)
828 {
829 	unsigned long pfn = pte_pfn(pte);
830 
831 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
832 		if (likely(!pte_special(pte)))
833 			goto check_pfn;
834 		if (vma->vm_ops && vma->vm_ops->find_special_page)
835 			return vma->vm_ops->find_special_page(vma, addr);
836 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
837 			return NULL;
838 		if (is_zero_pfn(pfn))
839 			return NULL;
840 
841 		/*
842 		 * Device public pages are special pages (they are ZONE_DEVICE
843 		 * pages but different from persistent memory). They behave
844 		 * allmost like normal pages. The difference is that they are
845 		 * not on the lru and thus should never be involve with any-
846 		 * thing that involve lru manipulation (mlock, numa balancing,
847 		 * ...).
848 		 *
849 		 * This is why we still want to return NULL for such page from
850 		 * vm_normal_page() so that we do not have to special case all
851 		 * call site of vm_normal_page().
852 		 */
853 		if (likely(pfn <= highest_memmap_pfn)) {
854 			struct page *page = pfn_to_page(pfn);
855 
856 			if (is_device_public_page(page)) {
857 				if (with_public_device)
858 					return page;
859 				return NULL;
860 			}
861 		}
862 
863 		if (pte_devmap(pte))
864 			return NULL;
865 
866 		print_bad_pte(vma, addr, pte, NULL);
867 		return NULL;
868 	}
869 
870 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
871 
872 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
873 		if (vma->vm_flags & VM_MIXEDMAP) {
874 			if (!pfn_valid(pfn))
875 				return NULL;
876 			goto out;
877 		} else {
878 			unsigned long off;
879 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
880 			if (pfn == vma->vm_pgoff + off)
881 				return NULL;
882 			if (!is_cow_mapping(vma->vm_flags))
883 				return NULL;
884 		}
885 	}
886 
887 	if (is_zero_pfn(pfn))
888 		return NULL;
889 
890 check_pfn:
891 	if (unlikely(pfn > highest_memmap_pfn)) {
892 		print_bad_pte(vma, addr, pte, NULL);
893 		return NULL;
894 	}
895 
896 	/*
897 	 * NOTE! We still have PageReserved() pages in the page tables.
898 	 * eg. VDSO mappings can cause them to exist.
899 	 */
900 out:
901 	return pfn_to_page(pfn);
902 }
903 
904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
905 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
906 				pmd_t pmd)
907 {
908 	unsigned long pfn = pmd_pfn(pmd);
909 
910 	/*
911 	 * There is no pmd_special() but there may be special pmds, e.g.
912 	 * in a direct-access (dax) mapping, so let's just replicate the
913 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
914 	 */
915 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
916 		if (vma->vm_flags & VM_MIXEDMAP) {
917 			if (!pfn_valid(pfn))
918 				return NULL;
919 			goto out;
920 		} else {
921 			unsigned long off;
922 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
923 			if (pfn == vma->vm_pgoff + off)
924 				return NULL;
925 			if (!is_cow_mapping(vma->vm_flags))
926 				return NULL;
927 		}
928 	}
929 
930 	if (pmd_devmap(pmd))
931 		return NULL;
932 	if (is_zero_pfn(pfn))
933 		return NULL;
934 	if (unlikely(pfn > highest_memmap_pfn))
935 		return NULL;
936 
937 	/*
938 	 * NOTE! We still have PageReserved() pages in the page tables.
939 	 * eg. VDSO mappings can cause them to exist.
940 	 */
941 out:
942 	return pfn_to_page(pfn);
943 }
944 #endif
945 
946 /*
947  * copy one vm_area from one task to the other. Assumes the page tables
948  * already present in the new task to be cleared in the whole range
949  * covered by this vma.
950  */
951 
952 static inline unsigned long
953 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
954 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
955 		unsigned long addr, int *rss)
956 {
957 	unsigned long vm_flags = vma->vm_flags;
958 	pte_t pte = *src_pte;
959 	struct page *page;
960 
961 	/* pte contains position in swap or file, so copy. */
962 	if (unlikely(!pte_present(pte))) {
963 		swp_entry_t entry = pte_to_swp_entry(pte);
964 
965 		if (likely(!non_swap_entry(entry))) {
966 			if (swap_duplicate(entry) < 0)
967 				return entry.val;
968 
969 			/* make sure dst_mm is on swapoff's mmlist. */
970 			if (unlikely(list_empty(&dst_mm->mmlist))) {
971 				spin_lock(&mmlist_lock);
972 				if (list_empty(&dst_mm->mmlist))
973 					list_add(&dst_mm->mmlist,
974 							&src_mm->mmlist);
975 				spin_unlock(&mmlist_lock);
976 			}
977 			rss[MM_SWAPENTS]++;
978 		} else if (is_migration_entry(entry)) {
979 			page = migration_entry_to_page(entry);
980 
981 			rss[mm_counter(page)]++;
982 
983 			if (is_write_migration_entry(entry) &&
984 					is_cow_mapping(vm_flags)) {
985 				/*
986 				 * COW mappings require pages in both
987 				 * parent and child to be set to read.
988 				 */
989 				make_migration_entry_read(&entry);
990 				pte = swp_entry_to_pte(entry);
991 				if (pte_swp_soft_dirty(*src_pte))
992 					pte = pte_swp_mksoft_dirty(pte);
993 				set_pte_at(src_mm, addr, src_pte, pte);
994 			}
995 		} else if (is_device_private_entry(entry)) {
996 			page = device_private_entry_to_page(entry);
997 
998 			/*
999 			 * Update rss count even for unaddressable pages, as
1000 			 * they should treated just like normal pages in this
1001 			 * respect.
1002 			 *
1003 			 * We will likely want to have some new rss counters
1004 			 * for unaddressable pages, at some point. But for now
1005 			 * keep things as they are.
1006 			 */
1007 			get_page(page);
1008 			rss[mm_counter(page)]++;
1009 			page_dup_rmap(page, false);
1010 
1011 			/*
1012 			 * We do not preserve soft-dirty information, because so
1013 			 * far, checkpoint/restore is the only feature that
1014 			 * requires that. And checkpoint/restore does not work
1015 			 * when a device driver is involved (you cannot easily
1016 			 * save and restore device driver state).
1017 			 */
1018 			if (is_write_device_private_entry(entry) &&
1019 			    is_cow_mapping(vm_flags)) {
1020 				make_device_private_entry_read(&entry);
1021 				pte = swp_entry_to_pte(entry);
1022 				set_pte_at(src_mm, addr, src_pte, pte);
1023 			}
1024 		}
1025 		goto out_set_pte;
1026 	}
1027 
1028 	/*
1029 	 * If it's a COW mapping, write protect it both
1030 	 * in the parent and the child
1031 	 */
1032 	if (is_cow_mapping(vm_flags)) {
1033 		ptep_set_wrprotect(src_mm, addr, src_pte);
1034 		pte = pte_wrprotect(pte);
1035 	}
1036 
1037 	/*
1038 	 * If it's a shared mapping, mark it clean in
1039 	 * the child
1040 	 */
1041 	if (vm_flags & VM_SHARED)
1042 		pte = pte_mkclean(pte);
1043 	pte = pte_mkold(pte);
1044 
1045 	page = vm_normal_page(vma, addr, pte);
1046 	if (page) {
1047 		get_page(page);
1048 		page_dup_rmap(page, false);
1049 		rss[mm_counter(page)]++;
1050 	} else if (pte_devmap(pte)) {
1051 		page = pte_page(pte);
1052 
1053 		/*
1054 		 * Cache coherent device memory behave like regular page and
1055 		 * not like persistent memory page. For more informations see
1056 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1057 		 */
1058 		if (is_device_public_page(page)) {
1059 			get_page(page);
1060 			page_dup_rmap(page, false);
1061 			rss[mm_counter(page)]++;
1062 		}
1063 	}
1064 
1065 out_set_pte:
1066 	set_pte_at(dst_mm, addr, dst_pte, pte);
1067 	return 0;
1068 }
1069 
1070 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1071 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1072 		   unsigned long addr, unsigned long end)
1073 {
1074 	pte_t *orig_src_pte, *orig_dst_pte;
1075 	pte_t *src_pte, *dst_pte;
1076 	spinlock_t *src_ptl, *dst_ptl;
1077 	int progress = 0;
1078 	int rss[NR_MM_COUNTERS];
1079 	swp_entry_t entry = (swp_entry_t){0};
1080 
1081 again:
1082 	init_rss_vec(rss);
1083 
1084 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1085 	if (!dst_pte)
1086 		return -ENOMEM;
1087 	src_pte = pte_offset_map(src_pmd, addr);
1088 	src_ptl = pte_lockptr(src_mm, src_pmd);
1089 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1090 	orig_src_pte = src_pte;
1091 	orig_dst_pte = dst_pte;
1092 	arch_enter_lazy_mmu_mode();
1093 
1094 	do {
1095 		/*
1096 		 * We are holding two locks at this point - either of them
1097 		 * could generate latencies in another task on another CPU.
1098 		 */
1099 		if (progress >= 32) {
1100 			progress = 0;
1101 			if (need_resched() ||
1102 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1103 				break;
1104 		}
1105 		if (pte_none(*src_pte)) {
1106 			progress++;
1107 			continue;
1108 		}
1109 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1110 							vma, addr, rss);
1111 		if (entry.val)
1112 			break;
1113 		progress += 8;
1114 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1115 
1116 	arch_leave_lazy_mmu_mode();
1117 	spin_unlock(src_ptl);
1118 	pte_unmap(orig_src_pte);
1119 	add_mm_rss_vec(dst_mm, rss);
1120 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1121 	cond_resched();
1122 
1123 	if (entry.val) {
1124 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1125 			return -ENOMEM;
1126 		progress = 0;
1127 	}
1128 	if (addr != end)
1129 		goto again;
1130 	return 0;
1131 }
1132 
1133 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1134 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1135 		unsigned long addr, unsigned long end)
1136 {
1137 	pmd_t *src_pmd, *dst_pmd;
1138 	unsigned long next;
1139 
1140 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1141 	if (!dst_pmd)
1142 		return -ENOMEM;
1143 	src_pmd = pmd_offset(src_pud, addr);
1144 	do {
1145 		next = pmd_addr_end(addr, end);
1146 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1147 			|| pmd_devmap(*src_pmd)) {
1148 			int err;
1149 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1150 			err = copy_huge_pmd(dst_mm, src_mm,
1151 					    dst_pmd, src_pmd, addr, vma);
1152 			if (err == -ENOMEM)
1153 				return -ENOMEM;
1154 			if (!err)
1155 				continue;
1156 			/* fall through */
1157 		}
1158 		if (pmd_none_or_clear_bad(src_pmd))
1159 			continue;
1160 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1161 						vma, addr, next))
1162 			return -ENOMEM;
1163 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1164 	return 0;
1165 }
1166 
1167 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1168 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1169 		unsigned long addr, unsigned long end)
1170 {
1171 	pud_t *src_pud, *dst_pud;
1172 	unsigned long next;
1173 
1174 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1175 	if (!dst_pud)
1176 		return -ENOMEM;
1177 	src_pud = pud_offset(src_p4d, addr);
1178 	do {
1179 		next = pud_addr_end(addr, end);
1180 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1181 			int err;
1182 
1183 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1184 			err = copy_huge_pud(dst_mm, src_mm,
1185 					    dst_pud, src_pud, addr, vma);
1186 			if (err == -ENOMEM)
1187 				return -ENOMEM;
1188 			if (!err)
1189 				continue;
1190 			/* fall through */
1191 		}
1192 		if (pud_none_or_clear_bad(src_pud))
1193 			continue;
1194 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1195 						vma, addr, next))
1196 			return -ENOMEM;
1197 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1198 	return 0;
1199 }
1200 
1201 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1202 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1203 		unsigned long addr, unsigned long end)
1204 {
1205 	p4d_t *src_p4d, *dst_p4d;
1206 	unsigned long next;
1207 
1208 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1209 	if (!dst_p4d)
1210 		return -ENOMEM;
1211 	src_p4d = p4d_offset(src_pgd, addr);
1212 	do {
1213 		next = p4d_addr_end(addr, end);
1214 		if (p4d_none_or_clear_bad(src_p4d))
1215 			continue;
1216 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1217 						vma, addr, next))
1218 			return -ENOMEM;
1219 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1220 	return 0;
1221 }
1222 
1223 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1224 		struct vm_area_struct *vma)
1225 {
1226 	pgd_t *src_pgd, *dst_pgd;
1227 	unsigned long next;
1228 	unsigned long addr = vma->vm_start;
1229 	unsigned long end = vma->vm_end;
1230 	unsigned long mmun_start;	/* For mmu_notifiers */
1231 	unsigned long mmun_end;		/* For mmu_notifiers */
1232 	bool is_cow;
1233 	int ret;
1234 
1235 	/*
1236 	 * Don't copy ptes where a page fault will fill them correctly.
1237 	 * Fork becomes much lighter when there are big shared or private
1238 	 * readonly mappings. The tradeoff is that copy_page_range is more
1239 	 * efficient than faulting.
1240 	 */
1241 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1242 			!vma->anon_vma)
1243 		return 0;
1244 
1245 	if (is_vm_hugetlb_page(vma))
1246 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1247 
1248 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1249 		/*
1250 		 * We do not free on error cases below as remove_vma
1251 		 * gets called on error from higher level routine
1252 		 */
1253 		ret = track_pfn_copy(vma);
1254 		if (ret)
1255 			return ret;
1256 	}
1257 
1258 	/*
1259 	 * We need to invalidate the secondary MMU mappings only when
1260 	 * there could be a permission downgrade on the ptes of the
1261 	 * parent mm. And a permission downgrade will only happen if
1262 	 * is_cow_mapping() returns true.
1263 	 */
1264 	is_cow = is_cow_mapping(vma->vm_flags);
1265 	mmun_start = addr;
1266 	mmun_end   = end;
1267 	if (is_cow)
1268 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1269 						    mmun_end);
1270 
1271 	ret = 0;
1272 	dst_pgd = pgd_offset(dst_mm, addr);
1273 	src_pgd = pgd_offset(src_mm, addr);
1274 	do {
1275 		next = pgd_addr_end(addr, end);
1276 		if (pgd_none_or_clear_bad(src_pgd))
1277 			continue;
1278 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1279 					    vma, addr, next))) {
1280 			ret = -ENOMEM;
1281 			break;
1282 		}
1283 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1284 
1285 	if (is_cow)
1286 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1287 	return ret;
1288 }
1289 
1290 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1291 				struct vm_area_struct *vma, pmd_t *pmd,
1292 				unsigned long addr, unsigned long end,
1293 				struct zap_details *details)
1294 {
1295 	struct mm_struct *mm = tlb->mm;
1296 	int force_flush = 0;
1297 	int rss[NR_MM_COUNTERS];
1298 	spinlock_t *ptl;
1299 	pte_t *start_pte;
1300 	pte_t *pte;
1301 	swp_entry_t entry;
1302 
1303 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1304 again:
1305 	init_rss_vec(rss);
1306 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1307 	pte = start_pte;
1308 	flush_tlb_batched_pending(mm);
1309 	arch_enter_lazy_mmu_mode();
1310 	do {
1311 		pte_t ptent = *pte;
1312 		if (pte_none(ptent))
1313 			continue;
1314 
1315 		if (pte_present(ptent)) {
1316 			struct page *page;
1317 
1318 			page = _vm_normal_page(vma, addr, ptent, true);
1319 			if (unlikely(details) && page) {
1320 				/*
1321 				 * unmap_shared_mapping_pages() wants to
1322 				 * invalidate cache without truncating:
1323 				 * unmap shared but keep private pages.
1324 				 */
1325 				if (details->check_mapping &&
1326 				    details->check_mapping != page_rmapping(page))
1327 					continue;
1328 			}
1329 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1330 							tlb->fullmm);
1331 			tlb_remove_tlb_entry(tlb, pte, addr);
1332 			if (unlikely(!page))
1333 				continue;
1334 
1335 			if (!PageAnon(page)) {
1336 				if (pte_dirty(ptent)) {
1337 					force_flush = 1;
1338 					set_page_dirty(page);
1339 				}
1340 				if (pte_young(ptent) &&
1341 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1342 					mark_page_accessed(page);
1343 			}
1344 			rss[mm_counter(page)]--;
1345 			page_remove_rmap(page, false);
1346 			if (unlikely(page_mapcount(page) < 0))
1347 				print_bad_pte(vma, addr, ptent, page);
1348 			if (unlikely(__tlb_remove_page(tlb, page))) {
1349 				force_flush = 1;
1350 				addr += PAGE_SIZE;
1351 				break;
1352 			}
1353 			continue;
1354 		}
1355 
1356 		entry = pte_to_swp_entry(ptent);
1357 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1358 			struct page *page = device_private_entry_to_page(entry);
1359 
1360 			if (unlikely(details && details->check_mapping)) {
1361 				/*
1362 				 * unmap_shared_mapping_pages() wants to
1363 				 * invalidate cache without truncating:
1364 				 * unmap shared but keep private pages.
1365 				 */
1366 				if (details->check_mapping !=
1367 				    page_rmapping(page))
1368 					continue;
1369 			}
1370 
1371 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1372 			rss[mm_counter(page)]--;
1373 			page_remove_rmap(page, false);
1374 			put_page(page);
1375 			continue;
1376 		}
1377 
1378 		/* If details->check_mapping, we leave swap entries. */
1379 		if (unlikely(details))
1380 			continue;
1381 
1382 		entry = pte_to_swp_entry(ptent);
1383 		if (!non_swap_entry(entry))
1384 			rss[MM_SWAPENTS]--;
1385 		else if (is_migration_entry(entry)) {
1386 			struct page *page;
1387 
1388 			page = migration_entry_to_page(entry);
1389 			rss[mm_counter(page)]--;
1390 		}
1391 		if (unlikely(!free_swap_and_cache(entry)))
1392 			print_bad_pte(vma, addr, ptent, NULL);
1393 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1394 	} while (pte++, addr += PAGE_SIZE, addr != end);
1395 
1396 	add_mm_rss_vec(mm, rss);
1397 	arch_leave_lazy_mmu_mode();
1398 
1399 	/* Do the actual TLB flush before dropping ptl */
1400 	if (force_flush)
1401 		tlb_flush_mmu_tlbonly(tlb);
1402 	pte_unmap_unlock(start_pte, ptl);
1403 
1404 	/*
1405 	 * If we forced a TLB flush (either due to running out of
1406 	 * batch buffers or because we needed to flush dirty TLB
1407 	 * entries before releasing the ptl), free the batched
1408 	 * memory too. Restart if we didn't do everything.
1409 	 */
1410 	if (force_flush) {
1411 		force_flush = 0;
1412 		tlb_flush_mmu_free(tlb);
1413 		if (addr != end)
1414 			goto again;
1415 	}
1416 
1417 	return addr;
1418 }
1419 
1420 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1421 				struct vm_area_struct *vma, pud_t *pud,
1422 				unsigned long addr, unsigned long end,
1423 				struct zap_details *details)
1424 {
1425 	pmd_t *pmd;
1426 	unsigned long next;
1427 
1428 	pmd = pmd_offset(pud, addr);
1429 	do {
1430 		next = pmd_addr_end(addr, end);
1431 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1432 			if (next - addr != HPAGE_PMD_SIZE)
1433 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1434 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1435 				goto next;
1436 			/* fall through */
1437 		}
1438 		/*
1439 		 * Here there can be other concurrent MADV_DONTNEED or
1440 		 * trans huge page faults running, and if the pmd is
1441 		 * none or trans huge it can change under us. This is
1442 		 * because MADV_DONTNEED holds the mmap_sem in read
1443 		 * mode.
1444 		 */
1445 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1446 			goto next;
1447 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1448 next:
1449 		cond_resched();
1450 	} while (pmd++, addr = next, addr != end);
1451 
1452 	return addr;
1453 }
1454 
1455 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1456 				struct vm_area_struct *vma, p4d_t *p4d,
1457 				unsigned long addr, unsigned long end,
1458 				struct zap_details *details)
1459 {
1460 	pud_t *pud;
1461 	unsigned long next;
1462 
1463 	pud = pud_offset(p4d, addr);
1464 	do {
1465 		next = pud_addr_end(addr, end);
1466 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1467 			if (next - addr != HPAGE_PUD_SIZE) {
1468 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1469 				split_huge_pud(vma, pud, addr);
1470 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1471 				goto next;
1472 			/* fall through */
1473 		}
1474 		if (pud_none_or_clear_bad(pud))
1475 			continue;
1476 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1477 next:
1478 		cond_resched();
1479 	} while (pud++, addr = next, addr != end);
1480 
1481 	return addr;
1482 }
1483 
1484 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1485 				struct vm_area_struct *vma, pgd_t *pgd,
1486 				unsigned long addr, unsigned long end,
1487 				struct zap_details *details)
1488 {
1489 	p4d_t *p4d;
1490 	unsigned long next;
1491 
1492 	p4d = p4d_offset(pgd, addr);
1493 	do {
1494 		next = p4d_addr_end(addr, end);
1495 		if (p4d_none_or_clear_bad(p4d))
1496 			continue;
1497 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1498 	} while (p4d++, addr = next, addr != end);
1499 
1500 	return addr;
1501 }
1502 
1503 void unmap_page_range(struct mmu_gather *tlb,
1504 			     struct vm_area_struct *vma,
1505 			     unsigned long addr, unsigned long end,
1506 			     struct zap_details *details)
1507 {
1508 	pgd_t *pgd;
1509 	unsigned long next;
1510 
1511 	BUG_ON(addr >= end);
1512 	tlb_start_vma(tlb, vma);
1513 	pgd = pgd_offset(vma->vm_mm, addr);
1514 	do {
1515 		next = pgd_addr_end(addr, end);
1516 		if (pgd_none_or_clear_bad(pgd))
1517 			continue;
1518 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1519 	} while (pgd++, addr = next, addr != end);
1520 	tlb_end_vma(tlb, vma);
1521 }
1522 
1523 
1524 static void unmap_single_vma(struct mmu_gather *tlb,
1525 		struct vm_area_struct *vma, unsigned long start_addr,
1526 		unsigned long end_addr,
1527 		struct zap_details *details)
1528 {
1529 	unsigned long start = max(vma->vm_start, start_addr);
1530 	unsigned long end;
1531 
1532 	if (start >= vma->vm_end)
1533 		return;
1534 	end = min(vma->vm_end, end_addr);
1535 	if (end <= vma->vm_start)
1536 		return;
1537 
1538 	if (vma->vm_file)
1539 		uprobe_munmap(vma, start, end);
1540 
1541 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1542 		untrack_pfn(vma, 0, 0);
1543 
1544 	if (start != end) {
1545 		if (unlikely(is_vm_hugetlb_page(vma))) {
1546 			/*
1547 			 * It is undesirable to test vma->vm_file as it
1548 			 * should be non-null for valid hugetlb area.
1549 			 * However, vm_file will be NULL in the error
1550 			 * cleanup path of mmap_region. When
1551 			 * hugetlbfs ->mmap method fails,
1552 			 * mmap_region() nullifies vma->vm_file
1553 			 * before calling this function to clean up.
1554 			 * Since no pte has actually been setup, it is
1555 			 * safe to do nothing in this case.
1556 			 */
1557 			if (vma->vm_file) {
1558 				i_mmap_lock_write(vma->vm_file->f_mapping);
1559 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1560 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1561 			}
1562 		} else
1563 			unmap_page_range(tlb, vma, start, end, details);
1564 	}
1565 }
1566 
1567 /**
1568  * unmap_vmas - unmap a range of memory covered by a list of vma's
1569  * @tlb: address of the caller's struct mmu_gather
1570  * @vma: the starting vma
1571  * @start_addr: virtual address at which to start unmapping
1572  * @end_addr: virtual address at which to end unmapping
1573  *
1574  * Unmap all pages in the vma list.
1575  *
1576  * Only addresses between `start' and `end' will be unmapped.
1577  *
1578  * The VMA list must be sorted in ascending virtual address order.
1579  *
1580  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1581  * range after unmap_vmas() returns.  So the only responsibility here is to
1582  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1583  * drops the lock and schedules.
1584  */
1585 void unmap_vmas(struct mmu_gather *tlb,
1586 		struct vm_area_struct *vma, unsigned long start_addr,
1587 		unsigned long end_addr)
1588 {
1589 	struct mm_struct *mm = vma->vm_mm;
1590 
1591 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1592 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1593 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1594 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1595 }
1596 
1597 /**
1598  * zap_page_range - remove user pages in a given range
1599  * @vma: vm_area_struct holding the applicable pages
1600  * @start: starting address of pages to zap
1601  * @size: number of bytes to zap
1602  *
1603  * Caller must protect the VMA list
1604  */
1605 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1606 		unsigned long size)
1607 {
1608 	struct mm_struct *mm = vma->vm_mm;
1609 	struct mmu_gather tlb;
1610 	unsigned long end = start + size;
1611 
1612 	lru_add_drain();
1613 	tlb_gather_mmu(&tlb, mm, start, end);
1614 	update_hiwater_rss(mm);
1615 	mmu_notifier_invalidate_range_start(mm, start, end);
1616 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1617 		unmap_single_vma(&tlb, vma, start, end, NULL);
1618 	mmu_notifier_invalidate_range_end(mm, start, end);
1619 	tlb_finish_mmu(&tlb, start, end);
1620 }
1621 
1622 /**
1623  * zap_page_range_single - remove user pages in a given range
1624  * @vma: vm_area_struct holding the applicable pages
1625  * @address: starting address of pages to zap
1626  * @size: number of bytes to zap
1627  * @details: details of shared cache invalidation
1628  *
1629  * The range must fit into one VMA.
1630  */
1631 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1632 		unsigned long size, struct zap_details *details)
1633 {
1634 	struct mm_struct *mm = vma->vm_mm;
1635 	struct mmu_gather tlb;
1636 	unsigned long end = address + size;
1637 
1638 	lru_add_drain();
1639 	tlb_gather_mmu(&tlb, mm, address, end);
1640 	update_hiwater_rss(mm);
1641 	mmu_notifier_invalidate_range_start(mm, address, end);
1642 	unmap_single_vma(&tlb, vma, address, end, details);
1643 	mmu_notifier_invalidate_range_end(mm, address, end);
1644 	tlb_finish_mmu(&tlb, address, end);
1645 }
1646 
1647 /**
1648  * zap_vma_ptes - remove ptes mapping the vma
1649  * @vma: vm_area_struct holding ptes to be zapped
1650  * @address: starting address of pages to zap
1651  * @size: number of bytes to zap
1652  *
1653  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1654  *
1655  * The entire address range must be fully contained within the vma.
1656  *
1657  */
1658 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1659 		unsigned long size)
1660 {
1661 	if (address < vma->vm_start || address + size > vma->vm_end ||
1662 	    		!(vma->vm_flags & VM_PFNMAP))
1663 		return;
1664 
1665 	zap_page_range_single(vma, address, size, NULL);
1666 }
1667 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1668 
1669 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1670 			spinlock_t **ptl)
1671 {
1672 	pgd_t *pgd;
1673 	p4d_t *p4d;
1674 	pud_t *pud;
1675 	pmd_t *pmd;
1676 
1677 	pgd = pgd_offset(mm, addr);
1678 	p4d = p4d_alloc(mm, pgd, addr);
1679 	if (!p4d)
1680 		return NULL;
1681 	pud = pud_alloc(mm, p4d, addr);
1682 	if (!pud)
1683 		return NULL;
1684 	pmd = pmd_alloc(mm, pud, addr);
1685 	if (!pmd)
1686 		return NULL;
1687 
1688 	VM_BUG_ON(pmd_trans_huge(*pmd));
1689 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1690 }
1691 
1692 /*
1693  * This is the old fallback for page remapping.
1694  *
1695  * For historical reasons, it only allows reserved pages. Only
1696  * old drivers should use this, and they needed to mark their
1697  * pages reserved for the old functions anyway.
1698  */
1699 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1700 			struct page *page, pgprot_t prot)
1701 {
1702 	struct mm_struct *mm = vma->vm_mm;
1703 	int retval;
1704 	pte_t *pte;
1705 	spinlock_t *ptl;
1706 
1707 	retval = -EINVAL;
1708 	if (PageAnon(page))
1709 		goto out;
1710 	retval = -ENOMEM;
1711 	flush_dcache_page(page);
1712 	pte = get_locked_pte(mm, addr, &ptl);
1713 	if (!pte)
1714 		goto out;
1715 	retval = -EBUSY;
1716 	if (!pte_none(*pte))
1717 		goto out_unlock;
1718 
1719 	/* Ok, finally just insert the thing.. */
1720 	get_page(page);
1721 	inc_mm_counter_fast(mm, mm_counter_file(page));
1722 	page_add_file_rmap(page, false);
1723 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1724 
1725 	retval = 0;
1726 	pte_unmap_unlock(pte, ptl);
1727 	return retval;
1728 out_unlock:
1729 	pte_unmap_unlock(pte, ptl);
1730 out:
1731 	return retval;
1732 }
1733 
1734 /**
1735  * vm_insert_page - insert single page into user vma
1736  * @vma: user vma to map to
1737  * @addr: target user address of this page
1738  * @page: source kernel page
1739  *
1740  * This allows drivers to insert individual pages they've allocated
1741  * into a user vma.
1742  *
1743  * The page has to be a nice clean _individual_ kernel allocation.
1744  * If you allocate a compound page, you need to have marked it as
1745  * such (__GFP_COMP), or manually just split the page up yourself
1746  * (see split_page()).
1747  *
1748  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1749  * took an arbitrary page protection parameter. This doesn't allow
1750  * that. Your vma protection will have to be set up correctly, which
1751  * means that if you want a shared writable mapping, you'd better
1752  * ask for a shared writable mapping!
1753  *
1754  * The page does not need to be reserved.
1755  *
1756  * Usually this function is called from f_op->mmap() handler
1757  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1758  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1759  * function from other places, for example from page-fault handler.
1760  */
1761 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1762 			struct page *page)
1763 {
1764 	if (addr < vma->vm_start || addr >= vma->vm_end)
1765 		return -EFAULT;
1766 	if (!page_count(page))
1767 		return -EINVAL;
1768 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1769 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1770 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1771 		vma->vm_flags |= VM_MIXEDMAP;
1772 	}
1773 	return insert_page(vma, addr, page, vma->vm_page_prot);
1774 }
1775 EXPORT_SYMBOL(vm_insert_page);
1776 
1777 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1778 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1779 {
1780 	struct mm_struct *mm = vma->vm_mm;
1781 	int retval;
1782 	pte_t *pte, entry;
1783 	spinlock_t *ptl;
1784 
1785 	retval = -ENOMEM;
1786 	pte = get_locked_pte(mm, addr, &ptl);
1787 	if (!pte)
1788 		goto out;
1789 	retval = -EBUSY;
1790 	if (!pte_none(*pte)) {
1791 		if (mkwrite) {
1792 			/*
1793 			 * For read faults on private mappings the PFN passed
1794 			 * in may not match the PFN we have mapped if the
1795 			 * mapped PFN is a writeable COW page.  In the mkwrite
1796 			 * case we are creating a writable PTE for a shared
1797 			 * mapping and we expect the PFNs to match.
1798 			 */
1799 			if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1800 				goto out_unlock;
1801 			entry = *pte;
1802 			goto out_mkwrite;
1803 		} else
1804 			goto out_unlock;
1805 	}
1806 
1807 	/* Ok, finally just insert the thing.. */
1808 	if (pfn_t_devmap(pfn))
1809 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1810 	else
1811 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1812 
1813 out_mkwrite:
1814 	if (mkwrite) {
1815 		entry = pte_mkyoung(entry);
1816 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1817 	}
1818 
1819 	set_pte_at(mm, addr, pte, entry);
1820 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1821 
1822 	retval = 0;
1823 out_unlock:
1824 	pte_unmap_unlock(pte, ptl);
1825 out:
1826 	return retval;
1827 }
1828 
1829 /**
1830  * vm_insert_pfn - insert single pfn into user vma
1831  * @vma: user vma to map to
1832  * @addr: target user address of this page
1833  * @pfn: source kernel pfn
1834  *
1835  * Similar to vm_insert_page, this allows drivers to insert individual pages
1836  * they've allocated into a user vma. Same comments apply.
1837  *
1838  * This function should only be called from a vm_ops->fault handler, and
1839  * in that case the handler should return NULL.
1840  *
1841  * vma cannot be a COW mapping.
1842  *
1843  * As this is called only for pages that do not currently exist, we
1844  * do not need to flush old virtual caches or the TLB.
1845  */
1846 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1847 			unsigned long pfn)
1848 {
1849 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1850 }
1851 EXPORT_SYMBOL(vm_insert_pfn);
1852 
1853 /**
1854  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1855  * @vma: user vma to map to
1856  * @addr: target user address of this page
1857  * @pfn: source kernel pfn
1858  * @pgprot: pgprot flags for the inserted page
1859  *
1860  * This is exactly like vm_insert_pfn, except that it allows drivers to
1861  * to override pgprot on a per-page basis.
1862  *
1863  * This only makes sense for IO mappings, and it makes no sense for
1864  * cow mappings.  In general, using multiple vmas is preferable;
1865  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1866  * impractical.
1867  */
1868 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1869 			unsigned long pfn, pgprot_t pgprot)
1870 {
1871 	int ret;
1872 	/*
1873 	 * Technically, architectures with pte_special can avoid all these
1874 	 * restrictions (same for remap_pfn_range).  However we would like
1875 	 * consistency in testing and feature parity among all, so we should
1876 	 * try to keep these invariants in place for everybody.
1877 	 */
1878 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1879 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1880 						(VM_PFNMAP|VM_MIXEDMAP));
1881 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1882 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1883 
1884 	if (addr < vma->vm_start || addr >= vma->vm_end)
1885 		return -EFAULT;
1886 
1887 	if (!pfn_modify_allowed(pfn, pgprot))
1888 		return -EACCES;
1889 
1890 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1891 
1892 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1893 			false);
1894 
1895 	return ret;
1896 }
1897 EXPORT_SYMBOL(vm_insert_pfn_prot);
1898 
1899 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1900 {
1901 	/* these checks mirror the abort conditions in vm_normal_page */
1902 	if (vma->vm_flags & VM_MIXEDMAP)
1903 		return true;
1904 	if (pfn_t_devmap(pfn))
1905 		return true;
1906 	if (pfn_t_special(pfn))
1907 		return true;
1908 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1909 		return true;
1910 	return false;
1911 }
1912 
1913 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1914 			pfn_t pfn, bool mkwrite)
1915 {
1916 	pgprot_t pgprot = vma->vm_page_prot;
1917 
1918 	BUG_ON(!vm_mixed_ok(vma, pfn));
1919 
1920 	if (addr < vma->vm_start || addr >= vma->vm_end)
1921 		return -EFAULT;
1922 
1923 	track_pfn_insert(vma, &pgprot, pfn);
1924 
1925 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1926 		return -EACCES;
1927 
1928 	/*
1929 	 * If we don't have pte special, then we have to use the pfn_valid()
1930 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1931 	 * refcount the page if pfn_valid is true (hence insert_page rather
1932 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1933 	 * without pte special, it would there be refcounted as a normal page.
1934 	 */
1935 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1936 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1937 		struct page *page;
1938 
1939 		/*
1940 		 * At this point we are committed to insert_page()
1941 		 * regardless of whether the caller specified flags that
1942 		 * result in pfn_t_has_page() == false.
1943 		 */
1944 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1945 		return insert_page(vma, addr, page, pgprot);
1946 	}
1947 	return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1948 }
1949 
1950 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1951 			pfn_t pfn)
1952 {
1953 	return __vm_insert_mixed(vma, addr, pfn, false);
1954 
1955 }
1956 EXPORT_SYMBOL(vm_insert_mixed);
1957 
1958 /*
1959  *  If the insertion of PTE failed because someone else already added a
1960  *  different entry in the mean time, we treat that as success as we assume
1961  *  the same entry was actually inserted.
1962  */
1963 
1964 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1965 		unsigned long addr, pfn_t pfn)
1966 {
1967 	int err;
1968 
1969 	err =  __vm_insert_mixed(vma, addr, pfn, true);
1970 	if (err == -ENOMEM)
1971 		return VM_FAULT_OOM;
1972 	if (err < 0 && err != -EBUSY)
1973 		return VM_FAULT_SIGBUS;
1974 	return VM_FAULT_NOPAGE;
1975 }
1976 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1977 
1978 /*
1979  * maps a range of physical memory into the requested pages. the old
1980  * mappings are removed. any references to nonexistent pages results
1981  * in null mappings (currently treated as "copy-on-access")
1982  */
1983 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1984 			unsigned long addr, unsigned long end,
1985 			unsigned long pfn, pgprot_t prot)
1986 {
1987 	pte_t *pte;
1988 	spinlock_t *ptl;
1989 	int err = 0;
1990 
1991 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1992 	if (!pte)
1993 		return -ENOMEM;
1994 	arch_enter_lazy_mmu_mode();
1995 	do {
1996 		BUG_ON(!pte_none(*pte));
1997 		if (!pfn_modify_allowed(pfn, prot)) {
1998 			err = -EACCES;
1999 			break;
2000 		}
2001 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2002 		pfn++;
2003 	} while (pte++, addr += PAGE_SIZE, addr != end);
2004 	arch_leave_lazy_mmu_mode();
2005 	pte_unmap_unlock(pte - 1, ptl);
2006 	return err;
2007 }
2008 
2009 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2010 			unsigned long addr, unsigned long end,
2011 			unsigned long pfn, pgprot_t prot)
2012 {
2013 	pmd_t *pmd;
2014 	unsigned long next;
2015 	int err;
2016 
2017 	pfn -= addr >> PAGE_SHIFT;
2018 	pmd = pmd_alloc(mm, pud, addr);
2019 	if (!pmd)
2020 		return -ENOMEM;
2021 	VM_BUG_ON(pmd_trans_huge(*pmd));
2022 	do {
2023 		next = pmd_addr_end(addr, end);
2024 		err = remap_pte_range(mm, pmd, addr, next,
2025 				pfn + (addr >> PAGE_SHIFT), prot);
2026 		if (err)
2027 			return err;
2028 	} while (pmd++, addr = next, addr != end);
2029 	return 0;
2030 }
2031 
2032 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2033 			unsigned long addr, unsigned long end,
2034 			unsigned long pfn, pgprot_t prot)
2035 {
2036 	pud_t *pud;
2037 	unsigned long next;
2038 	int err;
2039 
2040 	pfn -= addr >> PAGE_SHIFT;
2041 	pud = pud_alloc(mm, p4d, addr);
2042 	if (!pud)
2043 		return -ENOMEM;
2044 	do {
2045 		next = pud_addr_end(addr, end);
2046 		err = remap_pmd_range(mm, pud, addr, next,
2047 				pfn + (addr >> PAGE_SHIFT), prot);
2048 		if (err)
2049 			return err;
2050 	} while (pud++, addr = next, addr != end);
2051 	return 0;
2052 }
2053 
2054 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2055 			unsigned long addr, unsigned long end,
2056 			unsigned long pfn, pgprot_t prot)
2057 {
2058 	p4d_t *p4d;
2059 	unsigned long next;
2060 	int err;
2061 
2062 	pfn -= addr >> PAGE_SHIFT;
2063 	p4d = p4d_alloc(mm, pgd, addr);
2064 	if (!p4d)
2065 		return -ENOMEM;
2066 	do {
2067 		next = p4d_addr_end(addr, end);
2068 		err = remap_pud_range(mm, p4d, addr, next,
2069 				pfn + (addr >> PAGE_SHIFT), prot);
2070 		if (err)
2071 			return err;
2072 	} while (p4d++, addr = next, addr != end);
2073 	return 0;
2074 }
2075 
2076 /**
2077  * remap_pfn_range - remap kernel memory to userspace
2078  * @vma: user vma to map to
2079  * @addr: target user address to start at
2080  * @pfn: physical address of kernel memory
2081  * @size: size of map area
2082  * @prot: page protection flags for this mapping
2083  *
2084  *  Note: this is only safe if the mm semaphore is held when called.
2085  */
2086 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2087 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2088 {
2089 	pgd_t *pgd;
2090 	unsigned long next;
2091 	unsigned long end = addr + PAGE_ALIGN(size);
2092 	struct mm_struct *mm = vma->vm_mm;
2093 	unsigned long remap_pfn = pfn;
2094 	int err;
2095 
2096 	/*
2097 	 * Physically remapped pages are special. Tell the
2098 	 * rest of the world about it:
2099 	 *   VM_IO tells people not to look at these pages
2100 	 *	(accesses can have side effects).
2101 	 *   VM_PFNMAP tells the core MM that the base pages are just
2102 	 *	raw PFN mappings, and do not have a "struct page" associated
2103 	 *	with them.
2104 	 *   VM_DONTEXPAND
2105 	 *      Disable vma merging and expanding with mremap().
2106 	 *   VM_DONTDUMP
2107 	 *      Omit vma from core dump, even when VM_IO turned off.
2108 	 *
2109 	 * There's a horrible special case to handle copy-on-write
2110 	 * behaviour that some programs depend on. We mark the "original"
2111 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2112 	 * See vm_normal_page() for details.
2113 	 */
2114 	if (is_cow_mapping(vma->vm_flags)) {
2115 		if (addr != vma->vm_start || end != vma->vm_end)
2116 			return -EINVAL;
2117 		vma->vm_pgoff = pfn;
2118 	}
2119 
2120 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2121 	if (err)
2122 		return -EINVAL;
2123 
2124 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2125 
2126 	BUG_ON(addr >= end);
2127 	pfn -= addr >> PAGE_SHIFT;
2128 	pgd = pgd_offset(mm, addr);
2129 	flush_cache_range(vma, addr, end);
2130 	do {
2131 		next = pgd_addr_end(addr, end);
2132 		err = remap_p4d_range(mm, pgd, addr, next,
2133 				pfn + (addr >> PAGE_SHIFT), prot);
2134 		if (err)
2135 			break;
2136 	} while (pgd++, addr = next, addr != end);
2137 
2138 	if (err)
2139 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2140 
2141 	return err;
2142 }
2143 EXPORT_SYMBOL(remap_pfn_range);
2144 
2145 /**
2146  * vm_iomap_memory - remap memory to userspace
2147  * @vma: user vma to map to
2148  * @start: start of area
2149  * @len: size of area
2150  *
2151  * This is a simplified io_remap_pfn_range() for common driver use. The
2152  * driver just needs to give us the physical memory range to be mapped,
2153  * we'll figure out the rest from the vma information.
2154  *
2155  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2156  * whatever write-combining details or similar.
2157  */
2158 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2159 {
2160 	unsigned long vm_len, pfn, pages;
2161 
2162 	/* Check that the physical memory area passed in looks valid */
2163 	if (start + len < start)
2164 		return -EINVAL;
2165 	/*
2166 	 * You *really* shouldn't map things that aren't page-aligned,
2167 	 * but we've historically allowed it because IO memory might
2168 	 * just have smaller alignment.
2169 	 */
2170 	len += start & ~PAGE_MASK;
2171 	pfn = start >> PAGE_SHIFT;
2172 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2173 	if (pfn + pages < pfn)
2174 		return -EINVAL;
2175 
2176 	/* We start the mapping 'vm_pgoff' pages into the area */
2177 	if (vma->vm_pgoff > pages)
2178 		return -EINVAL;
2179 	pfn += vma->vm_pgoff;
2180 	pages -= vma->vm_pgoff;
2181 
2182 	/* Can we fit all of the mapping? */
2183 	vm_len = vma->vm_end - vma->vm_start;
2184 	if (vm_len >> PAGE_SHIFT > pages)
2185 		return -EINVAL;
2186 
2187 	/* Ok, let it rip */
2188 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2189 }
2190 EXPORT_SYMBOL(vm_iomap_memory);
2191 
2192 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2193 				     unsigned long addr, unsigned long end,
2194 				     pte_fn_t fn, void *data)
2195 {
2196 	pte_t *pte;
2197 	int err;
2198 	pgtable_t token;
2199 	spinlock_t *uninitialized_var(ptl);
2200 
2201 	pte = (mm == &init_mm) ?
2202 		pte_alloc_kernel(pmd, addr) :
2203 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2204 	if (!pte)
2205 		return -ENOMEM;
2206 
2207 	BUG_ON(pmd_huge(*pmd));
2208 
2209 	arch_enter_lazy_mmu_mode();
2210 
2211 	token = pmd_pgtable(*pmd);
2212 
2213 	do {
2214 		err = fn(pte++, token, addr, data);
2215 		if (err)
2216 			break;
2217 	} while (addr += PAGE_SIZE, addr != end);
2218 
2219 	arch_leave_lazy_mmu_mode();
2220 
2221 	if (mm != &init_mm)
2222 		pte_unmap_unlock(pte-1, ptl);
2223 	return err;
2224 }
2225 
2226 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2227 				     unsigned long addr, unsigned long end,
2228 				     pte_fn_t fn, void *data)
2229 {
2230 	pmd_t *pmd;
2231 	unsigned long next;
2232 	int err;
2233 
2234 	BUG_ON(pud_huge(*pud));
2235 
2236 	pmd = pmd_alloc(mm, pud, addr);
2237 	if (!pmd)
2238 		return -ENOMEM;
2239 	do {
2240 		next = pmd_addr_end(addr, end);
2241 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2242 		if (err)
2243 			break;
2244 	} while (pmd++, addr = next, addr != end);
2245 	return err;
2246 }
2247 
2248 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2249 				     unsigned long addr, unsigned long end,
2250 				     pte_fn_t fn, void *data)
2251 {
2252 	pud_t *pud;
2253 	unsigned long next;
2254 	int err;
2255 
2256 	pud = pud_alloc(mm, p4d, addr);
2257 	if (!pud)
2258 		return -ENOMEM;
2259 	do {
2260 		next = pud_addr_end(addr, end);
2261 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2262 		if (err)
2263 			break;
2264 	} while (pud++, addr = next, addr != end);
2265 	return err;
2266 }
2267 
2268 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2269 				     unsigned long addr, unsigned long end,
2270 				     pte_fn_t fn, void *data)
2271 {
2272 	p4d_t *p4d;
2273 	unsigned long next;
2274 	int err;
2275 
2276 	p4d = p4d_alloc(mm, pgd, addr);
2277 	if (!p4d)
2278 		return -ENOMEM;
2279 	do {
2280 		next = p4d_addr_end(addr, end);
2281 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2282 		if (err)
2283 			break;
2284 	} while (p4d++, addr = next, addr != end);
2285 	return err;
2286 }
2287 
2288 /*
2289  * Scan a region of virtual memory, filling in page tables as necessary
2290  * and calling a provided function on each leaf page table.
2291  */
2292 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2293 			unsigned long size, pte_fn_t fn, void *data)
2294 {
2295 	pgd_t *pgd;
2296 	unsigned long next;
2297 	unsigned long end = addr + size;
2298 	int err;
2299 
2300 	if (WARN_ON(addr >= end))
2301 		return -EINVAL;
2302 
2303 	pgd = pgd_offset(mm, addr);
2304 	do {
2305 		next = pgd_addr_end(addr, end);
2306 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2307 		if (err)
2308 			break;
2309 	} while (pgd++, addr = next, addr != end);
2310 
2311 	return err;
2312 }
2313 EXPORT_SYMBOL_GPL(apply_to_page_range);
2314 
2315 /*
2316  * handle_pte_fault chooses page fault handler according to an entry which was
2317  * read non-atomically.  Before making any commitment, on those architectures
2318  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2319  * parts, do_swap_page must check under lock before unmapping the pte and
2320  * proceeding (but do_wp_page is only called after already making such a check;
2321  * and do_anonymous_page can safely check later on).
2322  */
2323 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2324 				pte_t *page_table, pte_t orig_pte)
2325 {
2326 	int same = 1;
2327 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2328 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2329 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2330 		spin_lock(ptl);
2331 		same = pte_same(*page_table, orig_pte);
2332 		spin_unlock(ptl);
2333 	}
2334 #endif
2335 	pte_unmap(page_table);
2336 	return same;
2337 }
2338 
2339 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2340 {
2341 	debug_dma_assert_idle(src);
2342 
2343 	/*
2344 	 * If the source page was a PFN mapping, we don't have
2345 	 * a "struct page" for it. We do a best-effort copy by
2346 	 * just copying from the original user address. If that
2347 	 * fails, we just zero-fill it. Live with it.
2348 	 */
2349 	if (unlikely(!src)) {
2350 		void *kaddr = kmap_atomic(dst);
2351 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2352 
2353 		/*
2354 		 * This really shouldn't fail, because the page is there
2355 		 * in the page tables. But it might just be unreadable,
2356 		 * in which case we just give up and fill the result with
2357 		 * zeroes.
2358 		 */
2359 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2360 			clear_page(kaddr);
2361 		kunmap_atomic(kaddr);
2362 		flush_dcache_page(dst);
2363 	} else
2364 		copy_user_highpage(dst, src, va, vma);
2365 }
2366 
2367 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2368 {
2369 	struct file *vm_file = vma->vm_file;
2370 
2371 	if (vm_file)
2372 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2373 
2374 	/*
2375 	 * Special mappings (e.g. VDSO) do not have any file so fake
2376 	 * a default GFP_KERNEL for them.
2377 	 */
2378 	return GFP_KERNEL;
2379 }
2380 
2381 /*
2382  * Notify the address space that the page is about to become writable so that
2383  * it can prohibit this or wait for the page to get into an appropriate state.
2384  *
2385  * We do this without the lock held, so that it can sleep if it needs to.
2386  */
2387 static int do_page_mkwrite(struct vm_fault *vmf)
2388 {
2389 	int ret;
2390 	struct page *page = vmf->page;
2391 	unsigned int old_flags = vmf->flags;
2392 
2393 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2394 
2395 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2396 	/* Restore original flags so that caller is not surprised */
2397 	vmf->flags = old_flags;
2398 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2399 		return ret;
2400 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2401 		lock_page(page);
2402 		if (!page->mapping) {
2403 			unlock_page(page);
2404 			return 0; /* retry */
2405 		}
2406 		ret |= VM_FAULT_LOCKED;
2407 	} else
2408 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2409 	return ret;
2410 }
2411 
2412 /*
2413  * Handle dirtying of a page in shared file mapping on a write fault.
2414  *
2415  * The function expects the page to be locked and unlocks it.
2416  */
2417 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2418 				    struct page *page)
2419 {
2420 	struct address_space *mapping;
2421 	bool dirtied;
2422 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2423 
2424 	dirtied = set_page_dirty(page);
2425 	VM_BUG_ON_PAGE(PageAnon(page), page);
2426 	/*
2427 	 * Take a local copy of the address_space - page.mapping may be zeroed
2428 	 * by truncate after unlock_page().   The address_space itself remains
2429 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2430 	 * release semantics to prevent the compiler from undoing this copying.
2431 	 */
2432 	mapping = page_rmapping(page);
2433 	unlock_page(page);
2434 
2435 	if ((dirtied || page_mkwrite) && mapping) {
2436 		/*
2437 		 * Some device drivers do not set page.mapping
2438 		 * but still dirty their pages
2439 		 */
2440 		balance_dirty_pages_ratelimited(mapping);
2441 	}
2442 
2443 	if (!page_mkwrite)
2444 		file_update_time(vma->vm_file);
2445 }
2446 
2447 /*
2448  * Handle write page faults for pages that can be reused in the current vma
2449  *
2450  * This can happen either due to the mapping being with the VM_SHARED flag,
2451  * or due to us being the last reference standing to the page. In either
2452  * case, all we need to do here is to mark the page as writable and update
2453  * any related book-keeping.
2454  */
2455 static inline void wp_page_reuse(struct vm_fault *vmf)
2456 	__releases(vmf->ptl)
2457 {
2458 	struct vm_area_struct *vma = vmf->vma;
2459 	struct page *page = vmf->page;
2460 	pte_t entry;
2461 	/*
2462 	 * Clear the pages cpupid information as the existing
2463 	 * information potentially belongs to a now completely
2464 	 * unrelated process.
2465 	 */
2466 	if (page)
2467 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2468 
2469 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2470 	entry = pte_mkyoung(vmf->orig_pte);
2471 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2472 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2473 		update_mmu_cache(vma, vmf->address, vmf->pte);
2474 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2475 }
2476 
2477 /*
2478  * Handle the case of a page which we actually need to copy to a new page.
2479  *
2480  * Called with mmap_sem locked and the old page referenced, but
2481  * without the ptl held.
2482  *
2483  * High level logic flow:
2484  *
2485  * - Allocate a page, copy the content of the old page to the new one.
2486  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2487  * - Take the PTL. If the pte changed, bail out and release the allocated page
2488  * - If the pte is still the way we remember it, update the page table and all
2489  *   relevant references. This includes dropping the reference the page-table
2490  *   held to the old page, as well as updating the rmap.
2491  * - In any case, unlock the PTL and drop the reference we took to the old page.
2492  */
2493 static int wp_page_copy(struct vm_fault *vmf)
2494 {
2495 	struct vm_area_struct *vma = vmf->vma;
2496 	struct mm_struct *mm = vma->vm_mm;
2497 	struct page *old_page = vmf->page;
2498 	struct page *new_page = NULL;
2499 	pte_t entry;
2500 	int page_copied = 0;
2501 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2502 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2503 	struct mem_cgroup *memcg;
2504 
2505 	if (unlikely(anon_vma_prepare(vma)))
2506 		goto oom;
2507 
2508 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2509 		new_page = alloc_zeroed_user_highpage_movable(vma,
2510 							      vmf->address);
2511 		if (!new_page)
2512 			goto oom;
2513 	} else {
2514 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2515 				vmf->address);
2516 		if (!new_page)
2517 			goto oom;
2518 		cow_user_page(new_page, old_page, vmf->address, vma);
2519 	}
2520 
2521 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2522 		goto oom_free_new;
2523 
2524 	__SetPageUptodate(new_page);
2525 
2526 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2527 
2528 	/*
2529 	 * Re-check the pte - we dropped the lock
2530 	 */
2531 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2532 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2533 		if (old_page) {
2534 			if (!PageAnon(old_page)) {
2535 				dec_mm_counter_fast(mm,
2536 						mm_counter_file(old_page));
2537 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2538 			}
2539 		} else {
2540 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2541 		}
2542 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2543 		entry = mk_pte(new_page, vma->vm_page_prot);
2544 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2545 		/*
2546 		 * Clear the pte entry and flush it first, before updating the
2547 		 * pte with the new entry. This will avoid a race condition
2548 		 * seen in the presence of one thread doing SMC and another
2549 		 * thread doing COW.
2550 		 */
2551 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2552 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2553 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2554 		lru_cache_add_active_or_unevictable(new_page, vma);
2555 		/*
2556 		 * We call the notify macro here because, when using secondary
2557 		 * mmu page tables (such as kvm shadow page tables), we want the
2558 		 * new page to be mapped directly into the secondary page table.
2559 		 */
2560 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2561 		update_mmu_cache(vma, vmf->address, vmf->pte);
2562 		if (old_page) {
2563 			/*
2564 			 * Only after switching the pte to the new page may
2565 			 * we remove the mapcount here. Otherwise another
2566 			 * process may come and find the rmap count decremented
2567 			 * before the pte is switched to the new page, and
2568 			 * "reuse" the old page writing into it while our pte
2569 			 * here still points into it and can be read by other
2570 			 * threads.
2571 			 *
2572 			 * The critical issue is to order this
2573 			 * page_remove_rmap with the ptp_clear_flush above.
2574 			 * Those stores are ordered by (if nothing else,)
2575 			 * the barrier present in the atomic_add_negative
2576 			 * in page_remove_rmap.
2577 			 *
2578 			 * Then the TLB flush in ptep_clear_flush ensures that
2579 			 * no process can access the old page before the
2580 			 * decremented mapcount is visible. And the old page
2581 			 * cannot be reused until after the decremented
2582 			 * mapcount is visible. So transitively, TLBs to
2583 			 * old page will be flushed before it can be reused.
2584 			 */
2585 			page_remove_rmap(old_page, false);
2586 		}
2587 
2588 		/* Free the old page.. */
2589 		new_page = old_page;
2590 		page_copied = 1;
2591 	} else {
2592 		mem_cgroup_cancel_charge(new_page, memcg, false);
2593 	}
2594 
2595 	if (new_page)
2596 		put_page(new_page);
2597 
2598 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2599 	/*
2600 	 * No need to double call mmu_notifier->invalidate_range() callback as
2601 	 * the above ptep_clear_flush_notify() did already call it.
2602 	 */
2603 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2604 	if (old_page) {
2605 		/*
2606 		 * Don't let another task, with possibly unlocked vma,
2607 		 * keep the mlocked page.
2608 		 */
2609 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2610 			lock_page(old_page);	/* LRU manipulation */
2611 			if (PageMlocked(old_page))
2612 				munlock_vma_page(old_page);
2613 			unlock_page(old_page);
2614 		}
2615 		put_page(old_page);
2616 	}
2617 	return page_copied ? VM_FAULT_WRITE : 0;
2618 oom_free_new:
2619 	put_page(new_page);
2620 oom:
2621 	if (old_page)
2622 		put_page(old_page);
2623 	return VM_FAULT_OOM;
2624 }
2625 
2626 /**
2627  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2628  *			  writeable once the page is prepared
2629  *
2630  * @vmf: structure describing the fault
2631  *
2632  * This function handles all that is needed to finish a write page fault in a
2633  * shared mapping due to PTE being read-only once the mapped page is prepared.
2634  * It handles locking of PTE and modifying it. The function returns
2635  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2636  * lock.
2637  *
2638  * The function expects the page to be locked or other protection against
2639  * concurrent faults / writeback (such as DAX radix tree locks).
2640  */
2641 int finish_mkwrite_fault(struct vm_fault *vmf)
2642 {
2643 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2644 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2645 				       &vmf->ptl);
2646 	/*
2647 	 * We might have raced with another page fault while we released the
2648 	 * pte_offset_map_lock.
2649 	 */
2650 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2651 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2652 		return VM_FAULT_NOPAGE;
2653 	}
2654 	wp_page_reuse(vmf);
2655 	return 0;
2656 }
2657 
2658 /*
2659  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2660  * mapping
2661  */
2662 static int wp_pfn_shared(struct vm_fault *vmf)
2663 {
2664 	struct vm_area_struct *vma = vmf->vma;
2665 
2666 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2667 		int ret;
2668 
2669 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2670 		vmf->flags |= FAULT_FLAG_MKWRITE;
2671 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2672 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2673 			return ret;
2674 		return finish_mkwrite_fault(vmf);
2675 	}
2676 	wp_page_reuse(vmf);
2677 	return VM_FAULT_WRITE;
2678 }
2679 
2680 static int wp_page_shared(struct vm_fault *vmf)
2681 	__releases(vmf->ptl)
2682 {
2683 	struct vm_area_struct *vma = vmf->vma;
2684 
2685 	get_page(vmf->page);
2686 
2687 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2688 		int tmp;
2689 
2690 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2691 		tmp = do_page_mkwrite(vmf);
2692 		if (unlikely(!tmp || (tmp &
2693 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2694 			put_page(vmf->page);
2695 			return tmp;
2696 		}
2697 		tmp = finish_mkwrite_fault(vmf);
2698 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2699 			unlock_page(vmf->page);
2700 			put_page(vmf->page);
2701 			return tmp;
2702 		}
2703 	} else {
2704 		wp_page_reuse(vmf);
2705 		lock_page(vmf->page);
2706 	}
2707 	fault_dirty_shared_page(vma, vmf->page);
2708 	put_page(vmf->page);
2709 
2710 	return VM_FAULT_WRITE;
2711 }
2712 
2713 /*
2714  * This routine handles present pages, when users try to write
2715  * to a shared page. It is done by copying the page to a new address
2716  * and decrementing the shared-page counter for the old page.
2717  *
2718  * Note that this routine assumes that the protection checks have been
2719  * done by the caller (the low-level page fault routine in most cases).
2720  * Thus we can safely just mark it writable once we've done any necessary
2721  * COW.
2722  *
2723  * We also mark the page dirty at this point even though the page will
2724  * change only once the write actually happens. This avoids a few races,
2725  * and potentially makes it more efficient.
2726  *
2727  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2728  * but allow concurrent faults), with pte both mapped and locked.
2729  * We return with mmap_sem still held, but pte unmapped and unlocked.
2730  */
2731 static int do_wp_page(struct vm_fault *vmf)
2732 	__releases(vmf->ptl)
2733 {
2734 	struct vm_area_struct *vma = vmf->vma;
2735 
2736 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2737 	if (!vmf->page) {
2738 		/*
2739 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2740 		 * VM_PFNMAP VMA.
2741 		 *
2742 		 * We should not cow pages in a shared writeable mapping.
2743 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2744 		 */
2745 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2746 				     (VM_WRITE|VM_SHARED))
2747 			return wp_pfn_shared(vmf);
2748 
2749 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2750 		return wp_page_copy(vmf);
2751 	}
2752 
2753 	/*
2754 	 * Take out anonymous pages first, anonymous shared vmas are
2755 	 * not dirty accountable.
2756 	 */
2757 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2758 		int total_map_swapcount;
2759 		if (!trylock_page(vmf->page)) {
2760 			get_page(vmf->page);
2761 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2762 			lock_page(vmf->page);
2763 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2764 					vmf->address, &vmf->ptl);
2765 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2766 				unlock_page(vmf->page);
2767 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2768 				put_page(vmf->page);
2769 				return 0;
2770 			}
2771 			put_page(vmf->page);
2772 		}
2773 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2774 			if (total_map_swapcount == 1) {
2775 				/*
2776 				 * The page is all ours. Move it to
2777 				 * our anon_vma so the rmap code will
2778 				 * not search our parent or siblings.
2779 				 * Protected against the rmap code by
2780 				 * the page lock.
2781 				 */
2782 				page_move_anon_rmap(vmf->page, vma);
2783 			}
2784 			unlock_page(vmf->page);
2785 			wp_page_reuse(vmf);
2786 			return VM_FAULT_WRITE;
2787 		}
2788 		unlock_page(vmf->page);
2789 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2790 					(VM_WRITE|VM_SHARED))) {
2791 		return wp_page_shared(vmf);
2792 	}
2793 
2794 	/*
2795 	 * Ok, we need to copy. Oh, well..
2796 	 */
2797 	get_page(vmf->page);
2798 
2799 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2800 	return wp_page_copy(vmf);
2801 }
2802 
2803 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2804 		unsigned long start_addr, unsigned long end_addr,
2805 		struct zap_details *details)
2806 {
2807 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2808 }
2809 
2810 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2811 					    struct zap_details *details)
2812 {
2813 	struct vm_area_struct *vma;
2814 	pgoff_t vba, vea, zba, zea;
2815 
2816 	vma_interval_tree_foreach(vma, root,
2817 			details->first_index, details->last_index) {
2818 
2819 		vba = vma->vm_pgoff;
2820 		vea = vba + vma_pages(vma) - 1;
2821 		zba = details->first_index;
2822 		if (zba < vba)
2823 			zba = vba;
2824 		zea = details->last_index;
2825 		if (zea > vea)
2826 			zea = vea;
2827 
2828 		unmap_mapping_range_vma(vma,
2829 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2830 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2831 				details);
2832 	}
2833 }
2834 
2835 /**
2836  * unmap_mapping_pages() - Unmap pages from processes.
2837  * @mapping: The address space containing pages to be unmapped.
2838  * @start: Index of first page to be unmapped.
2839  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2840  * @even_cows: Whether to unmap even private COWed pages.
2841  *
2842  * Unmap the pages in this address space from any userspace process which
2843  * has them mmaped.  Generally, you want to remove COWed pages as well when
2844  * a file is being truncated, but not when invalidating pages from the page
2845  * cache.
2846  */
2847 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2848 		pgoff_t nr, bool even_cows)
2849 {
2850 	struct zap_details details = { };
2851 
2852 	details.check_mapping = even_cows ? NULL : mapping;
2853 	details.first_index = start;
2854 	details.last_index = start + nr - 1;
2855 	if (details.last_index < details.first_index)
2856 		details.last_index = ULONG_MAX;
2857 
2858 	i_mmap_lock_write(mapping);
2859 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2860 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2861 	i_mmap_unlock_write(mapping);
2862 }
2863 
2864 /**
2865  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2866  * address_space corresponding to the specified byte range in the underlying
2867  * file.
2868  *
2869  * @mapping: the address space containing mmaps to be unmapped.
2870  * @holebegin: byte in first page to unmap, relative to the start of
2871  * the underlying file.  This will be rounded down to a PAGE_SIZE
2872  * boundary.  Note that this is different from truncate_pagecache(), which
2873  * must keep the partial page.  In contrast, we must get rid of
2874  * partial pages.
2875  * @holelen: size of prospective hole in bytes.  This will be rounded
2876  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2877  * end of the file.
2878  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2879  * but 0 when invalidating pagecache, don't throw away private data.
2880  */
2881 void unmap_mapping_range(struct address_space *mapping,
2882 		loff_t const holebegin, loff_t const holelen, int even_cows)
2883 {
2884 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2885 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2886 
2887 	/* Check for overflow. */
2888 	if (sizeof(holelen) > sizeof(hlen)) {
2889 		long long holeend =
2890 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2891 		if (holeend & ~(long long)ULONG_MAX)
2892 			hlen = ULONG_MAX - hba + 1;
2893 	}
2894 
2895 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2896 }
2897 EXPORT_SYMBOL(unmap_mapping_range);
2898 
2899 /*
2900  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2901  * but allow concurrent faults), and pte mapped but not yet locked.
2902  * We return with pte unmapped and unlocked.
2903  *
2904  * We return with the mmap_sem locked or unlocked in the same cases
2905  * as does filemap_fault().
2906  */
2907 int do_swap_page(struct vm_fault *vmf)
2908 {
2909 	struct vm_area_struct *vma = vmf->vma;
2910 	struct page *page = NULL, *swapcache;
2911 	struct mem_cgroup *memcg;
2912 	swp_entry_t entry;
2913 	pte_t pte;
2914 	int locked;
2915 	int exclusive = 0;
2916 	int ret = 0;
2917 
2918 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2919 		goto out;
2920 
2921 	entry = pte_to_swp_entry(vmf->orig_pte);
2922 	if (unlikely(non_swap_entry(entry))) {
2923 		if (is_migration_entry(entry)) {
2924 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2925 					     vmf->address);
2926 		} else if (is_device_private_entry(entry)) {
2927 			/*
2928 			 * For un-addressable device memory we call the pgmap
2929 			 * fault handler callback. The callback must migrate
2930 			 * the page back to some CPU accessible page.
2931 			 */
2932 			ret = device_private_entry_fault(vma, vmf->address, entry,
2933 						 vmf->flags, vmf->pmd);
2934 		} else if (is_hwpoison_entry(entry)) {
2935 			ret = VM_FAULT_HWPOISON;
2936 		} else {
2937 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2938 			ret = VM_FAULT_SIGBUS;
2939 		}
2940 		goto out;
2941 	}
2942 
2943 
2944 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2945 	page = lookup_swap_cache(entry, vma, vmf->address);
2946 	swapcache = page;
2947 
2948 	if (!page) {
2949 		struct swap_info_struct *si = swp_swap_info(entry);
2950 
2951 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2952 				__swap_count(si, entry) == 1) {
2953 			/* skip swapcache */
2954 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2955 							vmf->address);
2956 			if (page) {
2957 				__SetPageLocked(page);
2958 				__SetPageSwapBacked(page);
2959 				set_page_private(page, entry.val);
2960 				lru_cache_add_anon(page);
2961 				swap_readpage(page, true);
2962 			}
2963 		} else {
2964 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2965 						vmf);
2966 			swapcache = page;
2967 		}
2968 
2969 		if (!page) {
2970 			/*
2971 			 * Back out if somebody else faulted in this pte
2972 			 * while we released the pte lock.
2973 			 */
2974 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2975 					vmf->address, &vmf->ptl);
2976 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2977 				ret = VM_FAULT_OOM;
2978 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2979 			goto unlock;
2980 		}
2981 
2982 		/* Had to read the page from swap area: Major fault */
2983 		ret = VM_FAULT_MAJOR;
2984 		count_vm_event(PGMAJFAULT);
2985 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2986 	} else if (PageHWPoison(page)) {
2987 		/*
2988 		 * hwpoisoned dirty swapcache pages are kept for killing
2989 		 * owner processes (which may be unknown at hwpoison time)
2990 		 */
2991 		ret = VM_FAULT_HWPOISON;
2992 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2993 		goto out_release;
2994 	}
2995 
2996 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2997 
2998 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2999 	if (!locked) {
3000 		ret |= VM_FAULT_RETRY;
3001 		goto out_release;
3002 	}
3003 
3004 	/*
3005 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3006 	 * release the swapcache from under us.  The page pin, and pte_same
3007 	 * test below, are not enough to exclude that.  Even if it is still
3008 	 * swapcache, we need to check that the page's swap has not changed.
3009 	 */
3010 	if (unlikely((!PageSwapCache(page) ||
3011 			page_private(page) != entry.val)) && swapcache)
3012 		goto out_page;
3013 
3014 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3015 	if (unlikely(!page)) {
3016 		ret = VM_FAULT_OOM;
3017 		page = swapcache;
3018 		goto out_page;
3019 	}
3020 
3021 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3022 					&memcg, false)) {
3023 		ret = VM_FAULT_OOM;
3024 		goto out_page;
3025 	}
3026 
3027 	/*
3028 	 * Back out if somebody else already faulted in this pte.
3029 	 */
3030 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3031 			&vmf->ptl);
3032 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3033 		goto out_nomap;
3034 
3035 	if (unlikely(!PageUptodate(page))) {
3036 		ret = VM_FAULT_SIGBUS;
3037 		goto out_nomap;
3038 	}
3039 
3040 	/*
3041 	 * The page isn't present yet, go ahead with the fault.
3042 	 *
3043 	 * Be careful about the sequence of operations here.
3044 	 * To get its accounting right, reuse_swap_page() must be called
3045 	 * while the page is counted on swap but not yet in mapcount i.e.
3046 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3047 	 * must be called after the swap_free(), or it will never succeed.
3048 	 */
3049 
3050 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3051 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3052 	pte = mk_pte(page, vma->vm_page_prot);
3053 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3054 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3055 		vmf->flags &= ~FAULT_FLAG_WRITE;
3056 		ret |= VM_FAULT_WRITE;
3057 		exclusive = RMAP_EXCLUSIVE;
3058 	}
3059 	flush_icache_page(vma, page);
3060 	if (pte_swp_soft_dirty(vmf->orig_pte))
3061 		pte = pte_mksoft_dirty(pte);
3062 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3063 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3064 	vmf->orig_pte = pte;
3065 
3066 	/* ksm created a completely new copy */
3067 	if (unlikely(page != swapcache && swapcache)) {
3068 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3069 		mem_cgroup_commit_charge(page, memcg, false, false);
3070 		lru_cache_add_active_or_unevictable(page, vma);
3071 	} else {
3072 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3073 		mem_cgroup_commit_charge(page, memcg, true, false);
3074 		activate_page(page);
3075 	}
3076 
3077 	swap_free(entry);
3078 	if (mem_cgroup_swap_full(page) ||
3079 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3080 		try_to_free_swap(page);
3081 	unlock_page(page);
3082 	if (page != swapcache && swapcache) {
3083 		/*
3084 		 * Hold the lock to avoid the swap entry to be reused
3085 		 * until we take the PT lock for the pte_same() check
3086 		 * (to avoid false positives from pte_same). For
3087 		 * further safety release the lock after the swap_free
3088 		 * so that the swap count won't change under a
3089 		 * parallel locked swapcache.
3090 		 */
3091 		unlock_page(swapcache);
3092 		put_page(swapcache);
3093 	}
3094 
3095 	if (vmf->flags & FAULT_FLAG_WRITE) {
3096 		ret |= do_wp_page(vmf);
3097 		if (ret & VM_FAULT_ERROR)
3098 			ret &= VM_FAULT_ERROR;
3099 		goto out;
3100 	}
3101 
3102 	/* No need to invalidate - it was non-present before */
3103 	update_mmu_cache(vma, vmf->address, vmf->pte);
3104 unlock:
3105 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3106 out:
3107 	return ret;
3108 out_nomap:
3109 	mem_cgroup_cancel_charge(page, memcg, false);
3110 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3111 out_page:
3112 	unlock_page(page);
3113 out_release:
3114 	put_page(page);
3115 	if (page != swapcache && swapcache) {
3116 		unlock_page(swapcache);
3117 		put_page(swapcache);
3118 	}
3119 	return ret;
3120 }
3121 
3122 /*
3123  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3124  * but allow concurrent faults), and pte mapped but not yet locked.
3125  * We return with mmap_sem still held, but pte unmapped and unlocked.
3126  */
3127 static int do_anonymous_page(struct vm_fault *vmf)
3128 {
3129 	struct vm_area_struct *vma = vmf->vma;
3130 	struct mem_cgroup *memcg;
3131 	struct page *page;
3132 	int ret = 0;
3133 	pte_t entry;
3134 
3135 	/* File mapping without ->vm_ops ? */
3136 	if (vma->vm_flags & VM_SHARED)
3137 		return VM_FAULT_SIGBUS;
3138 
3139 	/*
3140 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3141 	 * pte_offset_map() on pmds where a huge pmd might be created
3142 	 * from a different thread.
3143 	 *
3144 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3145 	 * parallel threads are excluded by other means.
3146 	 *
3147 	 * Here we only have down_read(mmap_sem).
3148 	 */
3149 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3150 		return VM_FAULT_OOM;
3151 
3152 	/* See the comment in pte_alloc_one_map() */
3153 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3154 		return 0;
3155 
3156 	/* Use the zero-page for reads */
3157 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3158 			!mm_forbids_zeropage(vma->vm_mm)) {
3159 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3160 						vma->vm_page_prot));
3161 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3162 				vmf->address, &vmf->ptl);
3163 		if (!pte_none(*vmf->pte))
3164 			goto unlock;
3165 		ret = check_stable_address_space(vma->vm_mm);
3166 		if (ret)
3167 			goto unlock;
3168 		/* Deliver the page fault to userland, check inside PT lock */
3169 		if (userfaultfd_missing(vma)) {
3170 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3171 			return handle_userfault(vmf, VM_UFFD_MISSING);
3172 		}
3173 		goto setpte;
3174 	}
3175 
3176 	/* Allocate our own private page. */
3177 	if (unlikely(anon_vma_prepare(vma)))
3178 		goto oom;
3179 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3180 	if (!page)
3181 		goto oom;
3182 
3183 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3184 					false))
3185 		goto oom_free_page;
3186 
3187 	/*
3188 	 * The memory barrier inside __SetPageUptodate makes sure that
3189 	 * preceeding stores to the page contents become visible before
3190 	 * the set_pte_at() write.
3191 	 */
3192 	__SetPageUptodate(page);
3193 
3194 	entry = mk_pte(page, vma->vm_page_prot);
3195 	if (vma->vm_flags & VM_WRITE)
3196 		entry = pte_mkwrite(pte_mkdirty(entry));
3197 
3198 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3199 			&vmf->ptl);
3200 	if (!pte_none(*vmf->pte))
3201 		goto release;
3202 
3203 	ret = check_stable_address_space(vma->vm_mm);
3204 	if (ret)
3205 		goto release;
3206 
3207 	/* Deliver the page fault to userland, check inside PT lock */
3208 	if (userfaultfd_missing(vma)) {
3209 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3210 		mem_cgroup_cancel_charge(page, memcg, false);
3211 		put_page(page);
3212 		return handle_userfault(vmf, VM_UFFD_MISSING);
3213 	}
3214 
3215 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3216 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3217 	mem_cgroup_commit_charge(page, memcg, false, false);
3218 	lru_cache_add_active_or_unevictable(page, vma);
3219 setpte:
3220 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3221 
3222 	/* No need to invalidate - it was non-present before */
3223 	update_mmu_cache(vma, vmf->address, vmf->pte);
3224 unlock:
3225 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3226 	return ret;
3227 release:
3228 	mem_cgroup_cancel_charge(page, memcg, false);
3229 	put_page(page);
3230 	goto unlock;
3231 oom_free_page:
3232 	put_page(page);
3233 oom:
3234 	return VM_FAULT_OOM;
3235 }
3236 
3237 /*
3238  * The mmap_sem must have been held on entry, and may have been
3239  * released depending on flags and vma->vm_ops->fault() return value.
3240  * See filemap_fault() and __lock_page_retry().
3241  */
3242 static int __do_fault(struct vm_fault *vmf)
3243 {
3244 	struct vm_area_struct *vma = vmf->vma;
3245 	int ret;
3246 
3247 	ret = vma->vm_ops->fault(vmf);
3248 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3249 			    VM_FAULT_DONE_COW)))
3250 		return ret;
3251 
3252 	if (unlikely(PageHWPoison(vmf->page))) {
3253 		if (ret & VM_FAULT_LOCKED)
3254 			unlock_page(vmf->page);
3255 		put_page(vmf->page);
3256 		vmf->page = NULL;
3257 		return VM_FAULT_HWPOISON;
3258 	}
3259 
3260 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3261 		lock_page(vmf->page);
3262 	else
3263 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3264 
3265 	return ret;
3266 }
3267 
3268 /*
3269  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3270  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3271  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3272  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3273  */
3274 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3275 {
3276 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3277 }
3278 
3279 static int pte_alloc_one_map(struct vm_fault *vmf)
3280 {
3281 	struct vm_area_struct *vma = vmf->vma;
3282 
3283 	if (!pmd_none(*vmf->pmd))
3284 		goto map_pte;
3285 	if (vmf->prealloc_pte) {
3286 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3287 		if (unlikely(!pmd_none(*vmf->pmd))) {
3288 			spin_unlock(vmf->ptl);
3289 			goto map_pte;
3290 		}
3291 
3292 		mm_inc_nr_ptes(vma->vm_mm);
3293 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3294 		spin_unlock(vmf->ptl);
3295 		vmf->prealloc_pte = NULL;
3296 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3297 		return VM_FAULT_OOM;
3298 	}
3299 map_pte:
3300 	/*
3301 	 * If a huge pmd materialized under us just retry later.  Use
3302 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3303 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3304 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3305 	 * running immediately after a huge pmd fault in a different thread of
3306 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3307 	 * All we have to ensure is that it is a regular pmd that we can walk
3308 	 * with pte_offset_map() and we can do that through an atomic read in
3309 	 * C, which is what pmd_trans_unstable() provides.
3310 	 */
3311 	if (pmd_devmap_trans_unstable(vmf->pmd))
3312 		return VM_FAULT_NOPAGE;
3313 
3314 	/*
3315 	 * At this point we know that our vmf->pmd points to a page of ptes
3316 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3317 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3318 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3319 	 * be valid and we will re-check to make sure the vmf->pte isn't
3320 	 * pte_none() under vmf->ptl protection when we return to
3321 	 * alloc_set_pte().
3322 	 */
3323 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3324 			&vmf->ptl);
3325 	return 0;
3326 }
3327 
3328 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3329 
3330 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3331 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3332 		unsigned long haddr)
3333 {
3334 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3335 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3336 		return false;
3337 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3338 		return false;
3339 	return true;
3340 }
3341 
3342 static void deposit_prealloc_pte(struct vm_fault *vmf)
3343 {
3344 	struct vm_area_struct *vma = vmf->vma;
3345 
3346 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3347 	/*
3348 	 * We are going to consume the prealloc table,
3349 	 * count that as nr_ptes.
3350 	 */
3351 	mm_inc_nr_ptes(vma->vm_mm);
3352 	vmf->prealloc_pte = NULL;
3353 }
3354 
3355 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3356 {
3357 	struct vm_area_struct *vma = vmf->vma;
3358 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3359 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3360 	pmd_t entry;
3361 	int i, ret;
3362 
3363 	if (!transhuge_vma_suitable(vma, haddr))
3364 		return VM_FAULT_FALLBACK;
3365 
3366 	ret = VM_FAULT_FALLBACK;
3367 	page = compound_head(page);
3368 
3369 	/*
3370 	 * Archs like ppc64 need additonal space to store information
3371 	 * related to pte entry. Use the preallocated table for that.
3372 	 */
3373 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3374 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3375 		if (!vmf->prealloc_pte)
3376 			return VM_FAULT_OOM;
3377 		smp_wmb(); /* See comment in __pte_alloc() */
3378 	}
3379 
3380 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3381 	if (unlikely(!pmd_none(*vmf->pmd)))
3382 		goto out;
3383 
3384 	for (i = 0; i < HPAGE_PMD_NR; i++)
3385 		flush_icache_page(vma, page + i);
3386 
3387 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3388 	if (write)
3389 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3390 
3391 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3392 	page_add_file_rmap(page, true);
3393 	/*
3394 	 * deposit and withdraw with pmd lock held
3395 	 */
3396 	if (arch_needs_pgtable_deposit())
3397 		deposit_prealloc_pte(vmf);
3398 
3399 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3400 
3401 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3402 
3403 	/* fault is handled */
3404 	ret = 0;
3405 	count_vm_event(THP_FILE_MAPPED);
3406 out:
3407 	spin_unlock(vmf->ptl);
3408 	return ret;
3409 }
3410 #else
3411 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3412 {
3413 	BUILD_BUG();
3414 	return 0;
3415 }
3416 #endif
3417 
3418 /**
3419  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3420  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3421  *
3422  * @vmf: fault environment
3423  * @memcg: memcg to charge page (only for private mappings)
3424  * @page: page to map
3425  *
3426  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3427  * return.
3428  *
3429  * Target users are page handler itself and implementations of
3430  * vm_ops->map_pages.
3431  */
3432 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3433 		struct page *page)
3434 {
3435 	struct vm_area_struct *vma = vmf->vma;
3436 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3437 	pte_t entry;
3438 	int ret;
3439 
3440 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3441 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3442 		/* THP on COW? */
3443 		VM_BUG_ON_PAGE(memcg, page);
3444 
3445 		ret = do_set_pmd(vmf, page);
3446 		if (ret != VM_FAULT_FALLBACK)
3447 			return ret;
3448 	}
3449 
3450 	if (!vmf->pte) {
3451 		ret = pte_alloc_one_map(vmf);
3452 		if (ret)
3453 			return ret;
3454 	}
3455 
3456 	/* Re-check under ptl */
3457 	if (unlikely(!pte_none(*vmf->pte)))
3458 		return VM_FAULT_NOPAGE;
3459 
3460 	flush_icache_page(vma, page);
3461 	entry = mk_pte(page, vma->vm_page_prot);
3462 	if (write)
3463 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3464 	/* copy-on-write page */
3465 	if (write && !(vma->vm_flags & VM_SHARED)) {
3466 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3467 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3468 		mem_cgroup_commit_charge(page, memcg, false, false);
3469 		lru_cache_add_active_or_unevictable(page, vma);
3470 	} else {
3471 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3472 		page_add_file_rmap(page, false);
3473 	}
3474 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3475 
3476 	/* no need to invalidate: a not-present page won't be cached */
3477 	update_mmu_cache(vma, vmf->address, vmf->pte);
3478 
3479 	return 0;
3480 }
3481 
3482 
3483 /**
3484  * finish_fault - finish page fault once we have prepared the page to fault
3485  *
3486  * @vmf: structure describing the fault
3487  *
3488  * This function handles all that is needed to finish a page fault once the
3489  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3490  * given page, adds reverse page mapping, handles memcg charges and LRU
3491  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3492  * error.
3493  *
3494  * The function expects the page to be locked and on success it consumes a
3495  * reference of a page being mapped (for the PTE which maps it).
3496  */
3497 int finish_fault(struct vm_fault *vmf)
3498 {
3499 	struct page *page;
3500 	int ret = 0;
3501 
3502 	/* Did we COW the page? */
3503 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3504 	    !(vmf->vma->vm_flags & VM_SHARED))
3505 		page = vmf->cow_page;
3506 	else
3507 		page = vmf->page;
3508 
3509 	/*
3510 	 * check even for read faults because we might have lost our CoWed
3511 	 * page
3512 	 */
3513 	if (!(vmf->vma->vm_flags & VM_SHARED))
3514 		ret = check_stable_address_space(vmf->vma->vm_mm);
3515 	if (!ret)
3516 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3517 	if (vmf->pte)
3518 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3519 	return ret;
3520 }
3521 
3522 static unsigned long fault_around_bytes __read_mostly =
3523 	rounddown_pow_of_two(65536);
3524 
3525 #ifdef CONFIG_DEBUG_FS
3526 static int fault_around_bytes_get(void *data, u64 *val)
3527 {
3528 	*val = fault_around_bytes;
3529 	return 0;
3530 }
3531 
3532 /*
3533  * fault_around_bytes must be rounded down to the nearest page order as it's
3534  * what do_fault_around() expects to see.
3535  */
3536 static int fault_around_bytes_set(void *data, u64 val)
3537 {
3538 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3539 		return -EINVAL;
3540 	if (val > PAGE_SIZE)
3541 		fault_around_bytes = rounddown_pow_of_two(val);
3542 	else
3543 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3544 	return 0;
3545 }
3546 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3547 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3548 
3549 static int __init fault_around_debugfs(void)
3550 {
3551 	void *ret;
3552 
3553 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3554 			&fault_around_bytes_fops);
3555 	if (!ret)
3556 		pr_warn("Failed to create fault_around_bytes in debugfs");
3557 	return 0;
3558 }
3559 late_initcall(fault_around_debugfs);
3560 #endif
3561 
3562 /*
3563  * do_fault_around() tries to map few pages around the fault address. The hope
3564  * is that the pages will be needed soon and this will lower the number of
3565  * faults to handle.
3566  *
3567  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3568  * not ready to be mapped: not up-to-date, locked, etc.
3569  *
3570  * This function is called with the page table lock taken. In the split ptlock
3571  * case the page table lock only protects only those entries which belong to
3572  * the page table corresponding to the fault address.
3573  *
3574  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3575  * only once.
3576  *
3577  * fault_around_bytes defines how many bytes we'll try to map.
3578  * do_fault_around() expects it to be set to a power of two less than or equal
3579  * to PTRS_PER_PTE.
3580  *
3581  * The virtual address of the area that we map is naturally aligned to
3582  * fault_around_bytes rounded down to the machine page size
3583  * (and therefore to page order).  This way it's easier to guarantee
3584  * that we don't cross page table boundaries.
3585  */
3586 static int do_fault_around(struct vm_fault *vmf)
3587 {
3588 	unsigned long address = vmf->address, nr_pages, mask;
3589 	pgoff_t start_pgoff = vmf->pgoff;
3590 	pgoff_t end_pgoff;
3591 	int off, ret = 0;
3592 
3593 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3594 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3595 
3596 	vmf->address = max(address & mask, vmf->vma->vm_start);
3597 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3598 	start_pgoff -= off;
3599 
3600 	/*
3601 	 *  end_pgoff is either the end of the page table, the end of
3602 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3603 	 */
3604 	end_pgoff = start_pgoff -
3605 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3606 		PTRS_PER_PTE - 1;
3607 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3608 			start_pgoff + nr_pages - 1);
3609 
3610 	if (pmd_none(*vmf->pmd)) {
3611 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3612 						  vmf->address);
3613 		if (!vmf->prealloc_pte)
3614 			goto out;
3615 		smp_wmb(); /* See comment in __pte_alloc() */
3616 	}
3617 
3618 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3619 
3620 	/* Huge page is mapped? Page fault is solved */
3621 	if (pmd_trans_huge(*vmf->pmd)) {
3622 		ret = VM_FAULT_NOPAGE;
3623 		goto out;
3624 	}
3625 
3626 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3627 	if (!vmf->pte)
3628 		goto out;
3629 
3630 	/* check if the page fault is solved */
3631 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3632 	if (!pte_none(*vmf->pte))
3633 		ret = VM_FAULT_NOPAGE;
3634 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3635 out:
3636 	vmf->address = address;
3637 	vmf->pte = NULL;
3638 	return ret;
3639 }
3640 
3641 static int do_read_fault(struct vm_fault *vmf)
3642 {
3643 	struct vm_area_struct *vma = vmf->vma;
3644 	int ret = 0;
3645 
3646 	/*
3647 	 * Let's call ->map_pages() first and use ->fault() as fallback
3648 	 * if page by the offset is not ready to be mapped (cold cache or
3649 	 * something).
3650 	 */
3651 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3652 		ret = do_fault_around(vmf);
3653 		if (ret)
3654 			return ret;
3655 	}
3656 
3657 	ret = __do_fault(vmf);
3658 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3659 		return ret;
3660 
3661 	ret |= finish_fault(vmf);
3662 	unlock_page(vmf->page);
3663 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3664 		put_page(vmf->page);
3665 	return ret;
3666 }
3667 
3668 static int do_cow_fault(struct vm_fault *vmf)
3669 {
3670 	struct vm_area_struct *vma = vmf->vma;
3671 	int ret;
3672 
3673 	if (unlikely(anon_vma_prepare(vma)))
3674 		return VM_FAULT_OOM;
3675 
3676 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3677 	if (!vmf->cow_page)
3678 		return VM_FAULT_OOM;
3679 
3680 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3681 				&vmf->memcg, false)) {
3682 		put_page(vmf->cow_page);
3683 		return VM_FAULT_OOM;
3684 	}
3685 
3686 	ret = __do_fault(vmf);
3687 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3688 		goto uncharge_out;
3689 	if (ret & VM_FAULT_DONE_COW)
3690 		return ret;
3691 
3692 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3693 	__SetPageUptodate(vmf->cow_page);
3694 
3695 	ret |= finish_fault(vmf);
3696 	unlock_page(vmf->page);
3697 	put_page(vmf->page);
3698 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3699 		goto uncharge_out;
3700 	return ret;
3701 uncharge_out:
3702 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3703 	put_page(vmf->cow_page);
3704 	return ret;
3705 }
3706 
3707 static int do_shared_fault(struct vm_fault *vmf)
3708 {
3709 	struct vm_area_struct *vma = vmf->vma;
3710 	int ret, tmp;
3711 
3712 	ret = __do_fault(vmf);
3713 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3714 		return ret;
3715 
3716 	/*
3717 	 * Check if the backing address space wants to know that the page is
3718 	 * about to become writable
3719 	 */
3720 	if (vma->vm_ops->page_mkwrite) {
3721 		unlock_page(vmf->page);
3722 		tmp = do_page_mkwrite(vmf);
3723 		if (unlikely(!tmp ||
3724 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3725 			put_page(vmf->page);
3726 			return tmp;
3727 		}
3728 	}
3729 
3730 	ret |= finish_fault(vmf);
3731 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3732 					VM_FAULT_RETRY))) {
3733 		unlock_page(vmf->page);
3734 		put_page(vmf->page);
3735 		return ret;
3736 	}
3737 
3738 	fault_dirty_shared_page(vma, vmf->page);
3739 	return ret;
3740 }
3741 
3742 /*
3743  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3744  * but allow concurrent faults).
3745  * The mmap_sem may have been released depending on flags and our
3746  * return value.  See filemap_fault() and __lock_page_or_retry().
3747  */
3748 static int do_fault(struct vm_fault *vmf)
3749 {
3750 	struct vm_area_struct *vma = vmf->vma;
3751 	int ret;
3752 
3753 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3754 	if (!vma->vm_ops->fault)
3755 		ret = VM_FAULT_SIGBUS;
3756 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3757 		ret = do_read_fault(vmf);
3758 	else if (!(vma->vm_flags & VM_SHARED))
3759 		ret = do_cow_fault(vmf);
3760 	else
3761 		ret = do_shared_fault(vmf);
3762 
3763 	/* preallocated pagetable is unused: free it */
3764 	if (vmf->prealloc_pte) {
3765 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3766 		vmf->prealloc_pte = NULL;
3767 	}
3768 	return ret;
3769 }
3770 
3771 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3772 				unsigned long addr, int page_nid,
3773 				int *flags)
3774 {
3775 	get_page(page);
3776 
3777 	count_vm_numa_event(NUMA_HINT_FAULTS);
3778 	if (page_nid == numa_node_id()) {
3779 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3780 		*flags |= TNF_FAULT_LOCAL;
3781 	}
3782 
3783 	return mpol_misplaced(page, vma, addr);
3784 }
3785 
3786 static int do_numa_page(struct vm_fault *vmf)
3787 {
3788 	struct vm_area_struct *vma = vmf->vma;
3789 	struct page *page = NULL;
3790 	int page_nid = -1;
3791 	int last_cpupid;
3792 	int target_nid;
3793 	bool migrated = false;
3794 	pte_t pte;
3795 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3796 	int flags = 0;
3797 
3798 	/*
3799 	 * The "pte" at this point cannot be used safely without
3800 	 * validation through pte_unmap_same(). It's of NUMA type but
3801 	 * the pfn may be screwed if the read is non atomic.
3802 	 */
3803 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3804 	spin_lock(vmf->ptl);
3805 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3806 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3807 		goto out;
3808 	}
3809 
3810 	/*
3811 	 * Make it present again, Depending on how arch implementes non
3812 	 * accessible ptes, some can allow access by kernel mode.
3813 	 */
3814 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3815 	pte = pte_modify(pte, vma->vm_page_prot);
3816 	pte = pte_mkyoung(pte);
3817 	if (was_writable)
3818 		pte = pte_mkwrite(pte);
3819 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3820 	update_mmu_cache(vma, vmf->address, vmf->pte);
3821 
3822 	page = vm_normal_page(vma, vmf->address, pte);
3823 	if (!page) {
3824 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3825 		return 0;
3826 	}
3827 
3828 	/* TODO: handle PTE-mapped THP */
3829 	if (PageCompound(page)) {
3830 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3831 		return 0;
3832 	}
3833 
3834 	/*
3835 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3836 	 * much anyway since they can be in shared cache state. This misses
3837 	 * the case where a mapping is writable but the process never writes
3838 	 * to it but pte_write gets cleared during protection updates and
3839 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3840 	 * background writeback, dirty balancing and application behaviour.
3841 	 */
3842 	if (!pte_write(pte))
3843 		flags |= TNF_NO_GROUP;
3844 
3845 	/*
3846 	 * Flag if the page is shared between multiple address spaces. This
3847 	 * is later used when determining whether to group tasks together
3848 	 */
3849 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3850 		flags |= TNF_SHARED;
3851 
3852 	last_cpupid = page_cpupid_last(page);
3853 	page_nid = page_to_nid(page);
3854 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3855 			&flags);
3856 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3857 	if (target_nid == -1) {
3858 		put_page(page);
3859 		goto out;
3860 	}
3861 
3862 	/* Migrate to the requested node */
3863 	migrated = migrate_misplaced_page(page, vma, target_nid);
3864 	if (migrated) {
3865 		page_nid = target_nid;
3866 		flags |= TNF_MIGRATED;
3867 	} else
3868 		flags |= TNF_MIGRATE_FAIL;
3869 
3870 out:
3871 	if (page_nid != -1)
3872 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3873 	return 0;
3874 }
3875 
3876 static inline int create_huge_pmd(struct vm_fault *vmf)
3877 {
3878 	if (vma_is_anonymous(vmf->vma))
3879 		return do_huge_pmd_anonymous_page(vmf);
3880 	if (vmf->vma->vm_ops->huge_fault)
3881 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3882 	return VM_FAULT_FALLBACK;
3883 }
3884 
3885 /* `inline' is required to avoid gcc 4.1.2 build error */
3886 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3887 {
3888 	if (vma_is_anonymous(vmf->vma))
3889 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3890 	if (vmf->vma->vm_ops->huge_fault)
3891 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3892 
3893 	/* COW handled on pte level: split pmd */
3894 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3895 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3896 
3897 	return VM_FAULT_FALLBACK;
3898 }
3899 
3900 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3901 {
3902 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3903 }
3904 
3905 static int create_huge_pud(struct vm_fault *vmf)
3906 {
3907 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3908 	/* No support for anonymous transparent PUD pages yet */
3909 	if (vma_is_anonymous(vmf->vma))
3910 		return VM_FAULT_FALLBACK;
3911 	if (vmf->vma->vm_ops->huge_fault)
3912 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3913 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3914 	return VM_FAULT_FALLBACK;
3915 }
3916 
3917 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3918 {
3919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3920 	/* No support for anonymous transparent PUD pages yet */
3921 	if (vma_is_anonymous(vmf->vma))
3922 		return VM_FAULT_FALLBACK;
3923 	if (vmf->vma->vm_ops->huge_fault)
3924 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3926 	return VM_FAULT_FALLBACK;
3927 }
3928 
3929 /*
3930  * These routines also need to handle stuff like marking pages dirty
3931  * and/or accessed for architectures that don't do it in hardware (most
3932  * RISC architectures).  The early dirtying is also good on the i386.
3933  *
3934  * There is also a hook called "update_mmu_cache()" that architectures
3935  * with external mmu caches can use to update those (ie the Sparc or
3936  * PowerPC hashed page tables that act as extended TLBs).
3937  *
3938  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3939  * concurrent faults).
3940  *
3941  * The mmap_sem may have been released depending on flags and our return value.
3942  * See filemap_fault() and __lock_page_or_retry().
3943  */
3944 static int handle_pte_fault(struct vm_fault *vmf)
3945 {
3946 	pte_t entry;
3947 
3948 	if (unlikely(pmd_none(*vmf->pmd))) {
3949 		/*
3950 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3951 		 * want to allocate huge page, and if we expose page table
3952 		 * for an instant, it will be difficult to retract from
3953 		 * concurrent faults and from rmap lookups.
3954 		 */
3955 		vmf->pte = NULL;
3956 	} else {
3957 		/* See comment in pte_alloc_one_map() */
3958 		if (pmd_devmap_trans_unstable(vmf->pmd))
3959 			return 0;
3960 		/*
3961 		 * A regular pmd is established and it can't morph into a huge
3962 		 * pmd from under us anymore at this point because we hold the
3963 		 * mmap_sem read mode and khugepaged takes it in write mode.
3964 		 * So now it's safe to run pte_offset_map().
3965 		 */
3966 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3967 		vmf->orig_pte = *vmf->pte;
3968 
3969 		/*
3970 		 * some architectures can have larger ptes than wordsize,
3971 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3972 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3973 		 * accesses.  The code below just needs a consistent view
3974 		 * for the ifs and we later double check anyway with the
3975 		 * ptl lock held. So here a barrier will do.
3976 		 */
3977 		barrier();
3978 		if (pte_none(vmf->orig_pte)) {
3979 			pte_unmap(vmf->pte);
3980 			vmf->pte = NULL;
3981 		}
3982 	}
3983 
3984 	if (!vmf->pte) {
3985 		if (vma_is_anonymous(vmf->vma))
3986 			return do_anonymous_page(vmf);
3987 		else
3988 			return do_fault(vmf);
3989 	}
3990 
3991 	if (!pte_present(vmf->orig_pte))
3992 		return do_swap_page(vmf);
3993 
3994 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3995 		return do_numa_page(vmf);
3996 
3997 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3998 	spin_lock(vmf->ptl);
3999 	entry = vmf->orig_pte;
4000 	if (unlikely(!pte_same(*vmf->pte, entry)))
4001 		goto unlock;
4002 	if (vmf->flags & FAULT_FLAG_WRITE) {
4003 		if (!pte_write(entry))
4004 			return do_wp_page(vmf);
4005 		entry = pte_mkdirty(entry);
4006 	}
4007 	entry = pte_mkyoung(entry);
4008 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4009 				vmf->flags & FAULT_FLAG_WRITE)) {
4010 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4011 	} else {
4012 		/*
4013 		 * This is needed only for protection faults but the arch code
4014 		 * is not yet telling us if this is a protection fault or not.
4015 		 * This still avoids useless tlb flushes for .text page faults
4016 		 * with threads.
4017 		 */
4018 		if (vmf->flags & FAULT_FLAG_WRITE)
4019 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4020 	}
4021 unlock:
4022 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4023 	return 0;
4024 }
4025 
4026 /*
4027  * By the time we get here, we already hold the mm semaphore
4028  *
4029  * The mmap_sem may have been released depending on flags and our
4030  * return value.  See filemap_fault() and __lock_page_or_retry().
4031  */
4032 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4033 		unsigned int flags)
4034 {
4035 	struct vm_fault vmf = {
4036 		.vma = vma,
4037 		.address = address & PAGE_MASK,
4038 		.flags = flags,
4039 		.pgoff = linear_page_index(vma, address),
4040 		.gfp_mask = __get_fault_gfp_mask(vma),
4041 	};
4042 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4043 	struct mm_struct *mm = vma->vm_mm;
4044 	pgd_t *pgd;
4045 	p4d_t *p4d;
4046 	int ret;
4047 
4048 	pgd = pgd_offset(mm, address);
4049 	p4d = p4d_alloc(mm, pgd, address);
4050 	if (!p4d)
4051 		return VM_FAULT_OOM;
4052 
4053 	vmf.pud = pud_alloc(mm, p4d, address);
4054 	if (!vmf.pud)
4055 		return VM_FAULT_OOM;
4056 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4057 		ret = create_huge_pud(&vmf);
4058 		if (!(ret & VM_FAULT_FALLBACK))
4059 			return ret;
4060 	} else {
4061 		pud_t orig_pud = *vmf.pud;
4062 
4063 		barrier();
4064 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4065 
4066 			/* NUMA case for anonymous PUDs would go here */
4067 
4068 			if (dirty && !pud_write(orig_pud)) {
4069 				ret = wp_huge_pud(&vmf, orig_pud);
4070 				if (!(ret & VM_FAULT_FALLBACK))
4071 					return ret;
4072 			} else {
4073 				huge_pud_set_accessed(&vmf, orig_pud);
4074 				return 0;
4075 			}
4076 		}
4077 	}
4078 
4079 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4080 	if (!vmf.pmd)
4081 		return VM_FAULT_OOM;
4082 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4083 		ret = create_huge_pmd(&vmf);
4084 		if (!(ret & VM_FAULT_FALLBACK))
4085 			return ret;
4086 	} else {
4087 		pmd_t orig_pmd = *vmf.pmd;
4088 
4089 		barrier();
4090 		if (unlikely(is_swap_pmd(orig_pmd))) {
4091 			VM_BUG_ON(thp_migration_supported() &&
4092 					  !is_pmd_migration_entry(orig_pmd));
4093 			if (is_pmd_migration_entry(orig_pmd))
4094 				pmd_migration_entry_wait(mm, vmf.pmd);
4095 			return 0;
4096 		}
4097 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4098 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4099 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4100 
4101 			if (dirty && !pmd_write(orig_pmd)) {
4102 				ret = wp_huge_pmd(&vmf, orig_pmd);
4103 				if (!(ret & VM_FAULT_FALLBACK))
4104 					return ret;
4105 			} else {
4106 				huge_pmd_set_accessed(&vmf, orig_pmd);
4107 				return 0;
4108 			}
4109 		}
4110 	}
4111 
4112 	return handle_pte_fault(&vmf);
4113 }
4114 
4115 /*
4116  * By the time we get here, we already hold the mm semaphore
4117  *
4118  * The mmap_sem may have been released depending on flags and our
4119  * return value.  See filemap_fault() and __lock_page_or_retry().
4120  */
4121 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4122 		unsigned int flags)
4123 {
4124 	int ret;
4125 
4126 	__set_current_state(TASK_RUNNING);
4127 
4128 	count_vm_event(PGFAULT);
4129 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4130 
4131 	/* do counter updates before entering really critical section. */
4132 	check_sync_rss_stat(current);
4133 
4134 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4135 					    flags & FAULT_FLAG_INSTRUCTION,
4136 					    flags & FAULT_FLAG_REMOTE))
4137 		return VM_FAULT_SIGSEGV;
4138 
4139 	/*
4140 	 * Enable the memcg OOM handling for faults triggered in user
4141 	 * space.  Kernel faults are handled more gracefully.
4142 	 */
4143 	if (flags & FAULT_FLAG_USER)
4144 		mem_cgroup_enter_user_fault();
4145 
4146 	if (unlikely(is_vm_hugetlb_page(vma)))
4147 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4148 	else
4149 		ret = __handle_mm_fault(vma, address, flags);
4150 
4151 	if (flags & FAULT_FLAG_USER) {
4152 		mem_cgroup_exit_user_fault();
4153 		/*
4154 		 * The task may have entered a memcg OOM situation but
4155 		 * if the allocation error was handled gracefully (no
4156 		 * VM_FAULT_OOM), there is no need to kill anything.
4157 		 * Just clean up the OOM state peacefully.
4158 		 */
4159 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4160 			mem_cgroup_oom_synchronize(false);
4161 	}
4162 
4163 	return ret;
4164 }
4165 EXPORT_SYMBOL_GPL(handle_mm_fault);
4166 
4167 #ifndef __PAGETABLE_P4D_FOLDED
4168 /*
4169  * Allocate p4d page table.
4170  * We've already handled the fast-path in-line.
4171  */
4172 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4173 {
4174 	p4d_t *new = p4d_alloc_one(mm, address);
4175 	if (!new)
4176 		return -ENOMEM;
4177 
4178 	smp_wmb(); /* See comment in __pte_alloc */
4179 
4180 	spin_lock(&mm->page_table_lock);
4181 	if (pgd_present(*pgd))		/* Another has populated it */
4182 		p4d_free(mm, new);
4183 	else
4184 		pgd_populate(mm, pgd, new);
4185 	spin_unlock(&mm->page_table_lock);
4186 	return 0;
4187 }
4188 #endif /* __PAGETABLE_P4D_FOLDED */
4189 
4190 #ifndef __PAGETABLE_PUD_FOLDED
4191 /*
4192  * Allocate page upper directory.
4193  * We've already handled the fast-path in-line.
4194  */
4195 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4196 {
4197 	pud_t *new = pud_alloc_one(mm, address);
4198 	if (!new)
4199 		return -ENOMEM;
4200 
4201 	smp_wmb(); /* See comment in __pte_alloc */
4202 
4203 	spin_lock(&mm->page_table_lock);
4204 #ifndef __ARCH_HAS_5LEVEL_HACK
4205 	if (!p4d_present(*p4d)) {
4206 		mm_inc_nr_puds(mm);
4207 		p4d_populate(mm, p4d, new);
4208 	} else	/* Another has populated it */
4209 		pud_free(mm, new);
4210 #else
4211 	if (!pgd_present(*p4d)) {
4212 		mm_inc_nr_puds(mm);
4213 		pgd_populate(mm, p4d, new);
4214 	} else	/* Another has populated it */
4215 		pud_free(mm, new);
4216 #endif /* __ARCH_HAS_5LEVEL_HACK */
4217 	spin_unlock(&mm->page_table_lock);
4218 	return 0;
4219 }
4220 #endif /* __PAGETABLE_PUD_FOLDED */
4221 
4222 #ifndef __PAGETABLE_PMD_FOLDED
4223 /*
4224  * Allocate page middle directory.
4225  * We've already handled the fast-path in-line.
4226  */
4227 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4228 {
4229 	spinlock_t *ptl;
4230 	pmd_t *new = pmd_alloc_one(mm, address);
4231 	if (!new)
4232 		return -ENOMEM;
4233 
4234 	smp_wmb(); /* See comment in __pte_alloc */
4235 
4236 	ptl = pud_lock(mm, pud);
4237 #ifndef __ARCH_HAS_4LEVEL_HACK
4238 	if (!pud_present(*pud)) {
4239 		mm_inc_nr_pmds(mm);
4240 		pud_populate(mm, pud, new);
4241 	} else	/* Another has populated it */
4242 		pmd_free(mm, new);
4243 #else
4244 	if (!pgd_present(*pud)) {
4245 		mm_inc_nr_pmds(mm);
4246 		pgd_populate(mm, pud, new);
4247 	} else /* Another has populated it */
4248 		pmd_free(mm, new);
4249 #endif /* __ARCH_HAS_4LEVEL_HACK */
4250 	spin_unlock(ptl);
4251 	return 0;
4252 }
4253 #endif /* __PAGETABLE_PMD_FOLDED */
4254 
4255 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4256 			    unsigned long *start, unsigned long *end,
4257 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4258 {
4259 	pgd_t *pgd;
4260 	p4d_t *p4d;
4261 	pud_t *pud;
4262 	pmd_t *pmd;
4263 	pte_t *ptep;
4264 
4265 	pgd = pgd_offset(mm, address);
4266 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4267 		goto out;
4268 
4269 	p4d = p4d_offset(pgd, address);
4270 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4271 		goto out;
4272 
4273 	pud = pud_offset(p4d, address);
4274 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4275 		goto out;
4276 
4277 	pmd = pmd_offset(pud, address);
4278 	VM_BUG_ON(pmd_trans_huge(*pmd));
4279 
4280 	if (pmd_huge(*pmd)) {
4281 		if (!pmdpp)
4282 			goto out;
4283 
4284 		if (start && end) {
4285 			*start = address & PMD_MASK;
4286 			*end = *start + PMD_SIZE;
4287 			mmu_notifier_invalidate_range_start(mm, *start, *end);
4288 		}
4289 		*ptlp = pmd_lock(mm, pmd);
4290 		if (pmd_huge(*pmd)) {
4291 			*pmdpp = pmd;
4292 			return 0;
4293 		}
4294 		spin_unlock(*ptlp);
4295 		if (start && end)
4296 			mmu_notifier_invalidate_range_end(mm, *start, *end);
4297 	}
4298 
4299 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4300 		goto out;
4301 
4302 	if (start && end) {
4303 		*start = address & PAGE_MASK;
4304 		*end = *start + PAGE_SIZE;
4305 		mmu_notifier_invalidate_range_start(mm, *start, *end);
4306 	}
4307 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4308 	if (!pte_present(*ptep))
4309 		goto unlock;
4310 	*ptepp = ptep;
4311 	return 0;
4312 unlock:
4313 	pte_unmap_unlock(ptep, *ptlp);
4314 	if (start && end)
4315 		mmu_notifier_invalidate_range_end(mm, *start, *end);
4316 out:
4317 	return -EINVAL;
4318 }
4319 
4320 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4321 			     pte_t **ptepp, spinlock_t **ptlp)
4322 {
4323 	int res;
4324 
4325 	/* (void) is needed to make gcc happy */
4326 	(void) __cond_lock(*ptlp,
4327 			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4328 						    ptepp, NULL, ptlp)));
4329 	return res;
4330 }
4331 
4332 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4333 			     unsigned long *start, unsigned long *end,
4334 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4335 {
4336 	int res;
4337 
4338 	/* (void) is needed to make gcc happy */
4339 	(void) __cond_lock(*ptlp,
4340 			   !(res = __follow_pte_pmd(mm, address, start, end,
4341 						    ptepp, pmdpp, ptlp)));
4342 	return res;
4343 }
4344 EXPORT_SYMBOL(follow_pte_pmd);
4345 
4346 /**
4347  * follow_pfn - look up PFN at a user virtual address
4348  * @vma: memory mapping
4349  * @address: user virtual address
4350  * @pfn: location to store found PFN
4351  *
4352  * Only IO mappings and raw PFN mappings are allowed.
4353  *
4354  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4355  */
4356 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4357 	unsigned long *pfn)
4358 {
4359 	int ret = -EINVAL;
4360 	spinlock_t *ptl;
4361 	pte_t *ptep;
4362 
4363 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4364 		return ret;
4365 
4366 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4367 	if (ret)
4368 		return ret;
4369 	*pfn = pte_pfn(*ptep);
4370 	pte_unmap_unlock(ptep, ptl);
4371 	return 0;
4372 }
4373 EXPORT_SYMBOL(follow_pfn);
4374 
4375 #ifdef CONFIG_HAVE_IOREMAP_PROT
4376 int follow_phys(struct vm_area_struct *vma,
4377 		unsigned long address, unsigned int flags,
4378 		unsigned long *prot, resource_size_t *phys)
4379 {
4380 	int ret = -EINVAL;
4381 	pte_t *ptep, pte;
4382 	spinlock_t *ptl;
4383 
4384 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4385 		goto out;
4386 
4387 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4388 		goto out;
4389 	pte = *ptep;
4390 
4391 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4392 		goto unlock;
4393 
4394 	*prot = pgprot_val(pte_pgprot(pte));
4395 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4396 
4397 	ret = 0;
4398 unlock:
4399 	pte_unmap_unlock(ptep, ptl);
4400 out:
4401 	return ret;
4402 }
4403 
4404 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4405 			void *buf, int len, int write)
4406 {
4407 	resource_size_t phys_addr;
4408 	unsigned long prot = 0;
4409 	void __iomem *maddr;
4410 	int offset = addr & (PAGE_SIZE-1);
4411 
4412 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4413 		return -EINVAL;
4414 
4415 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4416 	if (!maddr)
4417 		return -ENOMEM;
4418 
4419 	if (write)
4420 		memcpy_toio(maddr + offset, buf, len);
4421 	else
4422 		memcpy_fromio(buf, maddr + offset, len);
4423 	iounmap(maddr);
4424 
4425 	return len;
4426 }
4427 EXPORT_SYMBOL_GPL(generic_access_phys);
4428 #endif
4429 
4430 /*
4431  * Access another process' address space as given in mm.  If non-NULL, use the
4432  * given task for page fault accounting.
4433  */
4434 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4435 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4436 {
4437 	struct vm_area_struct *vma;
4438 	void *old_buf = buf;
4439 	int write = gup_flags & FOLL_WRITE;
4440 
4441 	down_read(&mm->mmap_sem);
4442 	/* ignore errors, just check how much was successfully transferred */
4443 	while (len) {
4444 		int bytes, ret, offset;
4445 		void *maddr;
4446 		struct page *page = NULL;
4447 
4448 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4449 				gup_flags, &page, &vma, NULL);
4450 		if (ret <= 0) {
4451 #ifndef CONFIG_HAVE_IOREMAP_PROT
4452 			break;
4453 #else
4454 			/*
4455 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4456 			 * we can access using slightly different code.
4457 			 */
4458 			vma = find_vma(mm, addr);
4459 			if (!vma || vma->vm_start > addr)
4460 				break;
4461 			if (vma->vm_ops && vma->vm_ops->access)
4462 				ret = vma->vm_ops->access(vma, addr, buf,
4463 							  len, write);
4464 			if (ret <= 0)
4465 				break;
4466 			bytes = ret;
4467 #endif
4468 		} else {
4469 			bytes = len;
4470 			offset = addr & (PAGE_SIZE-1);
4471 			if (bytes > PAGE_SIZE-offset)
4472 				bytes = PAGE_SIZE-offset;
4473 
4474 			maddr = kmap(page);
4475 			if (write) {
4476 				copy_to_user_page(vma, page, addr,
4477 						  maddr + offset, buf, bytes);
4478 				set_page_dirty_lock(page);
4479 			} else {
4480 				copy_from_user_page(vma, page, addr,
4481 						    buf, maddr + offset, bytes);
4482 			}
4483 			kunmap(page);
4484 			put_page(page);
4485 		}
4486 		len -= bytes;
4487 		buf += bytes;
4488 		addr += bytes;
4489 	}
4490 	up_read(&mm->mmap_sem);
4491 
4492 	return buf - old_buf;
4493 }
4494 
4495 /**
4496  * access_remote_vm - access another process' address space
4497  * @mm:		the mm_struct of the target address space
4498  * @addr:	start address to access
4499  * @buf:	source or destination buffer
4500  * @len:	number of bytes to transfer
4501  * @gup_flags:	flags modifying lookup behaviour
4502  *
4503  * The caller must hold a reference on @mm.
4504  */
4505 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4506 		void *buf, int len, unsigned int gup_flags)
4507 {
4508 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4509 }
4510 
4511 /*
4512  * Access another process' address space.
4513  * Source/target buffer must be kernel space,
4514  * Do not walk the page table directly, use get_user_pages
4515  */
4516 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4517 		void *buf, int len, unsigned int gup_flags)
4518 {
4519 	struct mm_struct *mm;
4520 	int ret;
4521 
4522 	mm = get_task_mm(tsk);
4523 	if (!mm)
4524 		return 0;
4525 
4526 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4527 
4528 	mmput(mm);
4529 
4530 	return ret;
4531 }
4532 EXPORT_SYMBOL_GPL(access_process_vm);
4533 
4534 /*
4535  * Print the name of a VMA.
4536  */
4537 void print_vma_addr(char *prefix, unsigned long ip)
4538 {
4539 	struct mm_struct *mm = current->mm;
4540 	struct vm_area_struct *vma;
4541 
4542 	/*
4543 	 * we might be running from an atomic context so we cannot sleep
4544 	 */
4545 	if (!down_read_trylock(&mm->mmap_sem))
4546 		return;
4547 
4548 	vma = find_vma(mm, ip);
4549 	if (vma && vma->vm_file) {
4550 		struct file *f = vma->vm_file;
4551 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4552 		if (buf) {
4553 			char *p;
4554 
4555 			p = file_path(f, buf, PAGE_SIZE);
4556 			if (IS_ERR(p))
4557 				p = "?";
4558 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4559 					vma->vm_start,
4560 					vma->vm_end - vma->vm_start);
4561 			free_page((unsigned long)buf);
4562 		}
4563 	}
4564 	up_read(&mm->mmap_sem);
4565 }
4566 
4567 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4568 void __might_fault(const char *file, int line)
4569 {
4570 	/*
4571 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4572 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4573 	 * get paged out, therefore we'll never actually fault, and the
4574 	 * below annotations will generate false positives.
4575 	 */
4576 	if (uaccess_kernel())
4577 		return;
4578 	if (pagefault_disabled())
4579 		return;
4580 	__might_sleep(file, line, 0);
4581 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4582 	if (current->mm)
4583 		might_lock_read(&current->mm->mmap_sem);
4584 #endif
4585 }
4586 EXPORT_SYMBOL(__might_fault);
4587 #endif
4588 
4589 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4590 /*
4591  * Process all subpages of the specified huge page with the specified
4592  * operation.  The target subpage will be processed last to keep its
4593  * cache lines hot.
4594  */
4595 static inline void process_huge_page(
4596 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4597 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4598 	void *arg)
4599 {
4600 	int i, n, base, l;
4601 	unsigned long addr = addr_hint &
4602 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4603 
4604 	/* Process target subpage last to keep its cache lines hot */
4605 	might_sleep();
4606 	n = (addr_hint - addr) / PAGE_SIZE;
4607 	if (2 * n <= pages_per_huge_page) {
4608 		/* If target subpage in first half of huge page */
4609 		base = 0;
4610 		l = n;
4611 		/* Process subpages at the end of huge page */
4612 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4613 			cond_resched();
4614 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4615 		}
4616 	} else {
4617 		/* If target subpage in second half of huge page */
4618 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4619 		l = pages_per_huge_page - n;
4620 		/* Process subpages at the begin of huge page */
4621 		for (i = 0; i < base; i++) {
4622 			cond_resched();
4623 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4624 		}
4625 	}
4626 	/*
4627 	 * Process remaining subpages in left-right-left-right pattern
4628 	 * towards the target subpage
4629 	 */
4630 	for (i = 0; i < l; i++) {
4631 		int left_idx = base + i;
4632 		int right_idx = base + 2 * l - 1 - i;
4633 
4634 		cond_resched();
4635 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4636 		cond_resched();
4637 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4638 	}
4639 }
4640 
4641 static void clear_gigantic_page(struct page *page,
4642 				unsigned long addr,
4643 				unsigned int pages_per_huge_page)
4644 {
4645 	int i;
4646 	struct page *p = page;
4647 
4648 	might_sleep();
4649 	for (i = 0; i < pages_per_huge_page;
4650 	     i++, p = mem_map_next(p, page, i)) {
4651 		cond_resched();
4652 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4653 	}
4654 }
4655 
4656 static void clear_subpage(unsigned long addr, int idx, void *arg)
4657 {
4658 	struct page *page = arg;
4659 
4660 	clear_user_highpage(page + idx, addr);
4661 }
4662 
4663 void clear_huge_page(struct page *page,
4664 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4665 {
4666 	unsigned long addr = addr_hint &
4667 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4668 
4669 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4670 		clear_gigantic_page(page, addr, pages_per_huge_page);
4671 		return;
4672 	}
4673 
4674 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4675 }
4676 
4677 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4678 				    unsigned long addr,
4679 				    struct vm_area_struct *vma,
4680 				    unsigned int pages_per_huge_page)
4681 {
4682 	int i;
4683 	struct page *dst_base = dst;
4684 	struct page *src_base = src;
4685 
4686 	for (i = 0; i < pages_per_huge_page; ) {
4687 		cond_resched();
4688 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4689 
4690 		i++;
4691 		dst = mem_map_next(dst, dst_base, i);
4692 		src = mem_map_next(src, src_base, i);
4693 	}
4694 }
4695 
4696 struct copy_subpage_arg {
4697 	struct page *dst;
4698 	struct page *src;
4699 	struct vm_area_struct *vma;
4700 };
4701 
4702 static void copy_subpage(unsigned long addr, int idx, void *arg)
4703 {
4704 	struct copy_subpage_arg *copy_arg = arg;
4705 
4706 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4707 			   addr, copy_arg->vma);
4708 }
4709 
4710 void copy_user_huge_page(struct page *dst, struct page *src,
4711 			 unsigned long addr_hint, struct vm_area_struct *vma,
4712 			 unsigned int pages_per_huge_page)
4713 {
4714 	unsigned long addr = addr_hint &
4715 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4716 	struct copy_subpage_arg arg = {
4717 		.dst = dst,
4718 		.src = src,
4719 		.vma = vma,
4720 	};
4721 
4722 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4723 		copy_user_gigantic_page(dst, src, addr, vma,
4724 					pages_per_huge_page);
4725 		return;
4726 	}
4727 
4728 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4729 }
4730 
4731 long copy_huge_page_from_user(struct page *dst_page,
4732 				const void __user *usr_src,
4733 				unsigned int pages_per_huge_page,
4734 				bool allow_pagefault)
4735 {
4736 	void *src = (void *)usr_src;
4737 	void *page_kaddr;
4738 	unsigned long i, rc = 0;
4739 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4740 
4741 	for (i = 0; i < pages_per_huge_page; i++) {
4742 		if (allow_pagefault)
4743 			page_kaddr = kmap(dst_page + i);
4744 		else
4745 			page_kaddr = kmap_atomic(dst_page + i);
4746 		rc = copy_from_user(page_kaddr,
4747 				(const void __user *)(src + i * PAGE_SIZE),
4748 				PAGE_SIZE);
4749 		if (allow_pagefault)
4750 			kunmap(dst_page + i);
4751 		else
4752 			kunmap_atomic(page_kaddr);
4753 
4754 		ret_val -= (PAGE_SIZE - rc);
4755 		if (rc)
4756 			break;
4757 
4758 		cond_resched();
4759 	}
4760 	return ret_val;
4761 }
4762 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4763 
4764 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4765 
4766 static struct kmem_cache *page_ptl_cachep;
4767 
4768 void __init ptlock_cache_init(void)
4769 {
4770 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4771 			SLAB_PANIC, NULL);
4772 }
4773 
4774 bool ptlock_alloc(struct page *page)
4775 {
4776 	spinlock_t *ptl;
4777 
4778 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4779 	if (!ptl)
4780 		return false;
4781 	page->ptl = ptl;
4782 	return true;
4783 }
4784 
4785 void ptlock_free(struct page *page)
4786 {
4787 	kmem_cache_free(page_ptl_cachep, page->ptl);
4788 }
4789 #endif
4790