1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/memremap.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/export.h> 56 #include <linux/delayacct.h> 57 #include <linux/init.h> 58 #include <linux/pfn_t.h> 59 #include <linux/writeback.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 73 #include <asm/io.h> 74 #include <asm/mmu_context.h> 75 #include <asm/pgalloc.h> 76 #include <linux/uaccess.h> 77 #include <asm/tlb.h> 78 #include <asm/tlbflush.h> 79 #include <asm/pgtable.h> 80 81 #include "internal.h" 82 83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 85 #endif 86 87 #ifndef CONFIG_NEED_MULTIPLE_NODES 88 /* use the per-pgdat data instead for discontigmem - mbligh */ 89 unsigned long max_mapnr; 90 EXPORT_SYMBOL(max_mapnr); 91 92 struct page *mem_map; 93 EXPORT_SYMBOL(mem_map); 94 #endif 95 96 /* 97 * A number of key systems in x86 including ioremap() rely on the assumption 98 * that high_memory defines the upper bound on direct map memory, then end 99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 101 * and ZONE_HIGHMEM. 102 */ 103 void *high_memory; 104 EXPORT_SYMBOL(high_memory); 105 106 /* 107 * Randomize the address space (stacks, mmaps, brk, etc.). 108 * 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 110 * as ancient (libc5 based) binaries can segfault. ) 111 */ 112 int randomize_va_space __read_mostly = 113 #ifdef CONFIG_COMPAT_BRK 114 1; 115 #else 116 2; 117 #endif 118 119 static int __init disable_randmaps(char *s) 120 { 121 randomize_va_space = 0; 122 return 1; 123 } 124 __setup("norandmaps", disable_randmaps); 125 126 unsigned long zero_pfn __read_mostly; 127 EXPORT_SYMBOL(zero_pfn); 128 129 unsigned long highest_memmap_pfn __read_mostly; 130 131 /* 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 133 */ 134 static int __init init_zero_pfn(void) 135 { 136 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 137 return 0; 138 } 139 core_initcall(init_zero_pfn); 140 141 142 #if defined(SPLIT_RSS_COUNTING) 143 144 void sync_mm_rss(struct mm_struct *mm) 145 { 146 int i; 147 148 for (i = 0; i < NR_MM_COUNTERS; i++) { 149 if (current->rss_stat.count[i]) { 150 add_mm_counter(mm, i, current->rss_stat.count[i]); 151 current->rss_stat.count[i] = 0; 152 } 153 } 154 current->rss_stat.events = 0; 155 } 156 157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 158 { 159 struct task_struct *task = current; 160 161 if (likely(task->mm == mm)) 162 task->rss_stat.count[member] += val; 163 else 164 add_mm_counter(mm, member, val); 165 } 166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 168 169 /* sync counter once per 64 page faults */ 170 #define TASK_RSS_EVENTS_THRESH (64) 171 static void check_sync_rss_stat(struct task_struct *task) 172 { 173 if (unlikely(task != current)) 174 return; 175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 176 sync_mm_rss(task->mm); 177 } 178 #else /* SPLIT_RSS_COUNTING */ 179 180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 182 183 static void check_sync_rss_stat(struct task_struct *task) 184 { 185 } 186 187 #endif /* SPLIT_RSS_COUNTING */ 188 189 #ifdef HAVE_GENERIC_MMU_GATHER 190 191 static bool tlb_next_batch(struct mmu_gather *tlb) 192 { 193 struct mmu_gather_batch *batch; 194 195 batch = tlb->active; 196 if (batch->next) { 197 tlb->active = batch->next; 198 return true; 199 } 200 201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 202 return false; 203 204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 205 if (!batch) 206 return false; 207 208 tlb->batch_count++; 209 batch->next = NULL; 210 batch->nr = 0; 211 batch->max = MAX_GATHER_BATCH; 212 213 tlb->active->next = batch; 214 tlb->active = batch; 215 216 return true; 217 } 218 219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 220 unsigned long start, unsigned long end) 221 { 222 tlb->mm = mm; 223 224 /* Is it from 0 to ~0? */ 225 tlb->fullmm = !(start | (end+1)); 226 tlb->need_flush_all = 0; 227 tlb->local.next = NULL; 228 tlb->local.nr = 0; 229 tlb->local.max = ARRAY_SIZE(tlb->__pages); 230 tlb->active = &tlb->local; 231 tlb->batch_count = 0; 232 233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 234 tlb->batch = NULL; 235 #endif 236 tlb->page_size = 0; 237 238 __tlb_reset_range(tlb); 239 } 240 241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 242 { 243 if (!tlb->end) 244 return; 245 246 tlb_flush(tlb); 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 249 tlb_table_flush(tlb); 250 #endif 251 __tlb_reset_range(tlb); 252 } 253 254 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 255 { 256 struct mmu_gather_batch *batch; 257 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 259 free_pages_and_swap_cache(batch->pages, batch->nr); 260 batch->nr = 0; 261 } 262 tlb->active = &tlb->local; 263 } 264 265 void tlb_flush_mmu(struct mmu_gather *tlb) 266 { 267 tlb_flush_mmu_tlbonly(tlb); 268 tlb_flush_mmu_free(tlb); 269 } 270 271 /* tlb_finish_mmu 272 * Called at the end of the shootdown operation to free up any resources 273 * that were required. 274 */ 275 void arch_tlb_finish_mmu(struct mmu_gather *tlb, 276 unsigned long start, unsigned long end, bool force) 277 { 278 struct mmu_gather_batch *batch, *next; 279 280 if (force) 281 __tlb_adjust_range(tlb, start, end - start); 282 283 tlb_flush_mmu(tlb); 284 285 /* keep the page table cache within bounds */ 286 check_pgt_cache(); 287 288 for (batch = tlb->local.next; batch; batch = next) { 289 next = batch->next; 290 free_pages((unsigned long)batch, 0); 291 } 292 tlb->local.next = NULL; 293 } 294 295 /* __tlb_remove_page 296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 297 * handling the additional races in SMP caused by other CPUs caching valid 298 * mappings in their TLBs. Returns the number of free page slots left. 299 * When out of page slots we must call tlb_flush_mmu(). 300 *returns true if the caller should flush. 301 */ 302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) 303 { 304 struct mmu_gather_batch *batch; 305 306 VM_BUG_ON(!tlb->end); 307 VM_WARN_ON(tlb->page_size != page_size); 308 309 batch = tlb->active; 310 /* 311 * Add the page and check if we are full. If so 312 * force a flush. 313 */ 314 batch->pages[batch->nr++] = page; 315 if (batch->nr == batch->max) { 316 if (!tlb_next_batch(tlb)) 317 return true; 318 batch = tlb->active; 319 } 320 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 321 322 return false; 323 } 324 325 #endif /* HAVE_GENERIC_MMU_GATHER */ 326 327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 328 329 static void tlb_remove_table_smp_sync(void *arg) 330 { 331 struct mm_struct __maybe_unused *mm = arg; 332 /* 333 * On most architectures this does nothing. Simply delivering the 334 * interrupt is enough to prevent races with software page table 335 * walking like that done in get_user_pages_fast. 336 * 337 * See the comment near struct mmu_table_batch. 338 */ 339 tlb_flush_remove_tables_local(mm); 340 } 341 342 static void tlb_remove_table_one(void *table, struct mmu_gather *tlb) 343 { 344 /* 345 * This isn't an RCU grace period and hence the page-tables cannot be 346 * assumed to be actually RCU-freed. 347 * 348 * It is however sufficient for software page-table walkers that rely on 349 * IRQ disabling. See the comment near struct mmu_table_batch. 350 */ 351 smp_call_function(tlb_remove_table_smp_sync, tlb->mm, 1); 352 __tlb_remove_table(table); 353 } 354 355 static void tlb_remove_table_rcu(struct rcu_head *head) 356 { 357 struct mmu_table_batch *batch; 358 int i; 359 360 batch = container_of(head, struct mmu_table_batch, rcu); 361 362 for (i = 0; i < batch->nr; i++) 363 __tlb_remove_table(batch->tables[i]); 364 365 free_page((unsigned long)batch); 366 } 367 368 void tlb_table_flush(struct mmu_gather *tlb) 369 { 370 struct mmu_table_batch **batch = &tlb->batch; 371 372 tlb_flush_remove_tables(tlb->mm); 373 374 if (*batch) { 375 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 376 *batch = NULL; 377 } 378 } 379 380 void tlb_remove_table(struct mmu_gather *tlb, void *table) 381 { 382 struct mmu_table_batch **batch = &tlb->batch; 383 384 /* 385 * When there's less then two users of this mm there cannot be a 386 * concurrent page-table walk. 387 */ 388 if (atomic_read(&tlb->mm->mm_users) < 2) { 389 __tlb_remove_table(table); 390 return; 391 } 392 393 if (*batch == NULL) { 394 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 395 if (*batch == NULL) { 396 tlb_remove_table_one(table, tlb); 397 return; 398 } 399 (*batch)->nr = 0; 400 } 401 (*batch)->tables[(*batch)->nr++] = table; 402 if ((*batch)->nr == MAX_TABLE_BATCH) 403 tlb_table_flush(tlb); 404 } 405 406 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 407 408 /** 409 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down 410 * @tlb: the mmu_gather structure to initialize 411 * @mm: the mm_struct of the target address space 412 * @start: start of the region that will be removed from the page-table 413 * @end: end of the region that will be removed from the page-table 414 * 415 * Called to initialize an (on-stack) mmu_gather structure for page-table 416 * tear-down from @mm. The @start and @end are set to 0 and -1 417 * respectively when @mm is without users and we're going to destroy 418 * the full address space (exit/execve). 419 */ 420 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 421 unsigned long start, unsigned long end) 422 { 423 arch_tlb_gather_mmu(tlb, mm, start, end); 424 inc_tlb_flush_pending(tlb->mm); 425 } 426 427 void tlb_finish_mmu(struct mmu_gather *tlb, 428 unsigned long start, unsigned long end) 429 { 430 /* 431 * If there are parallel threads are doing PTE changes on same range 432 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB 433 * flush by batching, a thread has stable TLB entry can fail to flush 434 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB 435 * forcefully if we detect parallel PTE batching threads. 436 */ 437 bool force = mm_tlb_flush_nested(tlb->mm); 438 439 arch_tlb_finish_mmu(tlb, start, end, force); 440 dec_tlb_flush_pending(tlb->mm); 441 } 442 443 /* 444 * Note: this doesn't free the actual pages themselves. That 445 * has been handled earlier when unmapping all the memory regions. 446 */ 447 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 448 unsigned long addr) 449 { 450 pgtable_t token = pmd_pgtable(*pmd); 451 pmd_clear(pmd); 452 pte_free_tlb(tlb, token, addr); 453 mm_dec_nr_ptes(tlb->mm); 454 } 455 456 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 457 unsigned long addr, unsigned long end, 458 unsigned long floor, unsigned long ceiling) 459 { 460 pmd_t *pmd; 461 unsigned long next; 462 unsigned long start; 463 464 start = addr; 465 pmd = pmd_offset(pud, addr); 466 do { 467 next = pmd_addr_end(addr, end); 468 if (pmd_none_or_clear_bad(pmd)) 469 continue; 470 free_pte_range(tlb, pmd, addr); 471 } while (pmd++, addr = next, addr != end); 472 473 start &= PUD_MASK; 474 if (start < floor) 475 return; 476 if (ceiling) { 477 ceiling &= PUD_MASK; 478 if (!ceiling) 479 return; 480 } 481 if (end - 1 > ceiling - 1) 482 return; 483 484 pmd = pmd_offset(pud, start); 485 pud_clear(pud); 486 pmd_free_tlb(tlb, pmd, start); 487 mm_dec_nr_pmds(tlb->mm); 488 } 489 490 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 491 unsigned long addr, unsigned long end, 492 unsigned long floor, unsigned long ceiling) 493 { 494 pud_t *pud; 495 unsigned long next; 496 unsigned long start; 497 498 start = addr; 499 pud = pud_offset(p4d, addr); 500 do { 501 next = pud_addr_end(addr, end); 502 if (pud_none_or_clear_bad(pud)) 503 continue; 504 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 505 } while (pud++, addr = next, addr != end); 506 507 start &= P4D_MASK; 508 if (start < floor) 509 return; 510 if (ceiling) { 511 ceiling &= P4D_MASK; 512 if (!ceiling) 513 return; 514 } 515 if (end - 1 > ceiling - 1) 516 return; 517 518 pud = pud_offset(p4d, start); 519 p4d_clear(p4d); 520 pud_free_tlb(tlb, pud, start); 521 mm_dec_nr_puds(tlb->mm); 522 } 523 524 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 525 unsigned long addr, unsigned long end, 526 unsigned long floor, unsigned long ceiling) 527 { 528 p4d_t *p4d; 529 unsigned long next; 530 unsigned long start; 531 532 start = addr; 533 p4d = p4d_offset(pgd, addr); 534 do { 535 next = p4d_addr_end(addr, end); 536 if (p4d_none_or_clear_bad(p4d)) 537 continue; 538 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 539 } while (p4d++, addr = next, addr != end); 540 541 start &= PGDIR_MASK; 542 if (start < floor) 543 return; 544 if (ceiling) { 545 ceiling &= PGDIR_MASK; 546 if (!ceiling) 547 return; 548 } 549 if (end - 1 > ceiling - 1) 550 return; 551 552 p4d = p4d_offset(pgd, start); 553 pgd_clear(pgd); 554 p4d_free_tlb(tlb, p4d, start); 555 } 556 557 /* 558 * This function frees user-level page tables of a process. 559 */ 560 void free_pgd_range(struct mmu_gather *tlb, 561 unsigned long addr, unsigned long end, 562 unsigned long floor, unsigned long ceiling) 563 { 564 pgd_t *pgd; 565 unsigned long next; 566 567 /* 568 * The next few lines have given us lots of grief... 569 * 570 * Why are we testing PMD* at this top level? Because often 571 * there will be no work to do at all, and we'd prefer not to 572 * go all the way down to the bottom just to discover that. 573 * 574 * Why all these "- 1"s? Because 0 represents both the bottom 575 * of the address space and the top of it (using -1 for the 576 * top wouldn't help much: the masks would do the wrong thing). 577 * The rule is that addr 0 and floor 0 refer to the bottom of 578 * the address space, but end 0 and ceiling 0 refer to the top 579 * Comparisons need to use "end - 1" and "ceiling - 1" (though 580 * that end 0 case should be mythical). 581 * 582 * Wherever addr is brought up or ceiling brought down, we must 583 * be careful to reject "the opposite 0" before it confuses the 584 * subsequent tests. But what about where end is brought down 585 * by PMD_SIZE below? no, end can't go down to 0 there. 586 * 587 * Whereas we round start (addr) and ceiling down, by different 588 * masks at different levels, in order to test whether a table 589 * now has no other vmas using it, so can be freed, we don't 590 * bother to round floor or end up - the tests don't need that. 591 */ 592 593 addr &= PMD_MASK; 594 if (addr < floor) { 595 addr += PMD_SIZE; 596 if (!addr) 597 return; 598 } 599 if (ceiling) { 600 ceiling &= PMD_MASK; 601 if (!ceiling) 602 return; 603 } 604 if (end - 1 > ceiling - 1) 605 end -= PMD_SIZE; 606 if (addr > end - 1) 607 return; 608 /* 609 * We add page table cache pages with PAGE_SIZE, 610 * (see pte_free_tlb()), flush the tlb if we need 611 */ 612 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 613 pgd = pgd_offset(tlb->mm, addr); 614 do { 615 next = pgd_addr_end(addr, end); 616 if (pgd_none_or_clear_bad(pgd)) 617 continue; 618 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 619 } while (pgd++, addr = next, addr != end); 620 } 621 622 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 623 unsigned long floor, unsigned long ceiling) 624 { 625 while (vma) { 626 struct vm_area_struct *next = vma->vm_next; 627 unsigned long addr = vma->vm_start; 628 629 /* 630 * Hide vma from rmap and truncate_pagecache before freeing 631 * pgtables 632 */ 633 unlink_anon_vmas(vma); 634 unlink_file_vma(vma); 635 636 if (is_vm_hugetlb_page(vma)) { 637 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 638 floor, next ? next->vm_start : ceiling); 639 } else { 640 /* 641 * Optimization: gather nearby vmas into one call down 642 */ 643 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 644 && !is_vm_hugetlb_page(next)) { 645 vma = next; 646 next = vma->vm_next; 647 unlink_anon_vmas(vma); 648 unlink_file_vma(vma); 649 } 650 free_pgd_range(tlb, addr, vma->vm_end, 651 floor, next ? next->vm_start : ceiling); 652 } 653 vma = next; 654 } 655 } 656 657 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 658 { 659 spinlock_t *ptl; 660 pgtable_t new = pte_alloc_one(mm, address); 661 if (!new) 662 return -ENOMEM; 663 664 /* 665 * Ensure all pte setup (eg. pte page lock and page clearing) are 666 * visible before the pte is made visible to other CPUs by being 667 * put into page tables. 668 * 669 * The other side of the story is the pointer chasing in the page 670 * table walking code (when walking the page table without locking; 671 * ie. most of the time). Fortunately, these data accesses consist 672 * of a chain of data-dependent loads, meaning most CPUs (alpha 673 * being the notable exception) will already guarantee loads are 674 * seen in-order. See the alpha page table accessors for the 675 * smp_read_barrier_depends() barriers in page table walking code. 676 */ 677 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 678 679 ptl = pmd_lock(mm, pmd); 680 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 681 mm_inc_nr_ptes(mm); 682 pmd_populate(mm, pmd, new); 683 new = NULL; 684 } 685 spin_unlock(ptl); 686 if (new) 687 pte_free(mm, new); 688 return 0; 689 } 690 691 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 692 { 693 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 694 if (!new) 695 return -ENOMEM; 696 697 smp_wmb(); /* See comment in __pte_alloc */ 698 699 spin_lock(&init_mm.page_table_lock); 700 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 701 pmd_populate_kernel(&init_mm, pmd, new); 702 new = NULL; 703 } 704 spin_unlock(&init_mm.page_table_lock); 705 if (new) 706 pte_free_kernel(&init_mm, new); 707 return 0; 708 } 709 710 static inline void init_rss_vec(int *rss) 711 { 712 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 713 } 714 715 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 716 { 717 int i; 718 719 if (current->mm == mm) 720 sync_mm_rss(mm); 721 for (i = 0; i < NR_MM_COUNTERS; i++) 722 if (rss[i]) 723 add_mm_counter(mm, i, rss[i]); 724 } 725 726 /* 727 * This function is called to print an error when a bad pte 728 * is found. For example, we might have a PFN-mapped pte in 729 * a region that doesn't allow it. 730 * 731 * The calling function must still handle the error. 732 */ 733 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 734 pte_t pte, struct page *page) 735 { 736 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 737 p4d_t *p4d = p4d_offset(pgd, addr); 738 pud_t *pud = pud_offset(p4d, addr); 739 pmd_t *pmd = pmd_offset(pud, addr); 740 struct address_space *mapping; 741 pgoff_t index; 742 static unsigned long resume; 743 static unsigned long nr_shown; 744 static unsigned long nr_unshown; 745 746 /* 747 * Allow a burst of 60 reports, then keep quiet for that minute; 748 * or allow a steady drip of one report per second. 749 */ 750 if (nr_shown == 60) { 751 if (time_before(jiffies, resume)) { 752 nr_unshown++; 753 return; 754 } 755 if (nr_unshown) { 756 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 757 nr_unshown); 758 nr_unshown = 0; 759 } 760 nr_shown = 0; 761 } 762 if (nr_shown++ == 0) 763 resume = jiffies + 60 * HZ; 764 765 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 766 index = linear_page_index(vma, addr); 767 768 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 769 current->comm, 770 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 771 if (page) 772 dump_page(page, "bad pte"); 773 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 774 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 775 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 776 vma->vm_file, 777 vma->vm_ops ? vma->vm_ops->fault : NULL, 778 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 779 mapping ? mapping->a_ops->readpage : NULL); 780 dump_stack(); 781 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 782 } 783 784 /* 785 * vm_normal_page -- This function gets the "struct page" associated with a pte. 786 * 787 * "Special" mappings do not wish to be associated with a "struct page" (either 788 * it doesn't exist, or it exists but they don't want to touch it). In this 789 * case, NULL is returned here. "Normal" mappings do have a struct page. 790 * 791 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 792 * pte bit, in which case this function is trivial. Secondly, an architecture 793 * may not have a spare pte bit, which requires a more complicated scheme, 794 * described below. 795 * 796 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 797 * special mapping (even if there are underlying and valid "struct pages"). 798 * COWed pages of a VM_PFNMAP are always normal. 799 * 800 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 801 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 802 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 803 * mapping will always honor the rule 804 * 805 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 806 * 807 * And for normal mappings this is false. 808 * 809 * This restricts such mappings to be a linear translation from virtual address 810 * to pfn. To get around this restriction, we allow arbitrary mappings so long 811 * as the vma is not a COW mapping; in that case, we know that all ptes are 812 * special (because none can have been COWed). 813 * 814 * 815 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 816 * 817 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 818 * page" backing, however the difference is that _all_ pages with a struct 819 * page (that is, those where pfn_valid is true) are refcounted and considered 820 * normal pages by the VM. The disadvantage is that pages are refcounted 821 * (which can be slower and simply not an option for some PFNMAP users). The 822 * advantage is that we don't have to follow the strict linearity rule of 823 * PFNMAP mappings in order to support COWable mappings. 824 * 825 */ 826 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 827 pte_t pte, bool with_public_device) 828 { 829 unsigned long pfn = pte_pfn(pte); 830 831 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 832 if (likely(!pte_special(pte))) 833 goto check_pfn; 834 if (vma->vm_ops && vma->vm_ops->find_special_page) 835 return vma->vm_ops->find_special_page(vma, addr); 836 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 837 return NULL; 838 if (is_zero_pfn(pfn)) 839 return NULL; 840 841 /* 842 * Device public pages are special pages (they are ZONE_DEVICE 843 * pages but different from persistent memory). They behave 844 * allmost like normal pages. The difference is that they are 845 * not on the lru and thus should never be involve with any- 846 * thing that involve lru manipulation (mlock, numa balancing, 847 * ...). 848 * 849 * This is why we still want to return NULL for such page from 850 * vm_normal_page() so that we do not have to special case all 851 * call site of vm_normal_page(). 852 */ 853 if (likely(pfn <= highest_memmap_pfn)) { 854 struct page *page = pfn_to_page(pfn); 855 856 if (is_device_public_page(page)) { 857 if (with_public_device) 858 return page; 859 return NULL; 860 } 861 } 862 863 if (pte_devmap(pte)) 864 return NULL; 865 866 print_bad_pte(vma, addr, pte, NULL); 867 return NULL; 868 } 869 870 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 871 872 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 873 if (vma->vm_flags & VM_MIXEDMAP) { 874 if (!pfn_valid(pfn)) 875 return NULL; 876 goto out; 877 } else { 878 unsigned long off; 879 off = (addr - vma->vm_start) >> PAGE_SHIFT; 880 if (pfn == vma->vm_pgoff + off) 881 return NULL; 882 if (!is_cow_mapping(vma->vm_flags)) 883 return NULL; 884 } 885 } 886 887 if (is_zero_pfn(pfn)) 888 return NULL; 889 890 check_pfn: 891 if (unlikely(pfn > highest_memmap_pfn)) { 892 print_bad_pte(vma, addr, pte, NULL); 893 return NULL; 894 } 895 896 /* 897 * NOTE! We still have PageReserved() pages in the page tables. 898 * eg. VDSO mappings can cause them to exist. 899 */ 900 out: 901 return pfn_to_page(pfn); 902 } 903 904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 905 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 906 pmd_t pmd) 907 { 908 unsigned long pfn = pmd_pfn(pmd); 909 910 /* 911 * There is no pmd_special() but there may be special pmds, e.g. 912 * in a direct-access (dax) mapping, so let's just replicate the 913 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 914 */ 915 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 916 if (vma->vm_flags & VM_MIXEDMAP) { 917 if (!pfn_valid(pfn)) 918 return NULL; 919 goto out; 920 } else { 921 unsigned long off; 922 off = (addr - vma->vm_start) >> PAGE_SHIFT; 923 if (pfn == vma->vm_pgoff + off) 924 return NULL; 925 if (!is_cow_mapping(vma->vm_flags)) 926 return NULL; 927 } 928 } 929 930 if (pmd_devmap(pmd)) 931 return NULL; 932 if (is_zero_pfn(pfn)) 933 return NULL; 934 if (unlikely(pfn > highest_memmap_pfn)) 935 return NULL; 936 937 /* 938 * NOTE! We still have PageReserved() pages in the page tables. 939 * eg. VDSO mappings can cause them to exist. 940 */ 941 out: 942 return pfn_to_page(pfn); 943 } 944 #endif 945 946 /* 947 * copy one vm_area from one task to the other. Assumes the page tables 948 * already present in the new task to be cleared in the whole range 949 * covered by this vma. 950 */ 951 952 static inline unsigned long 953 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 954 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 955 unsigned long addr, int *rss) 956 { 957 unsigned long vm_flags = vma->vm_flags; 958 pte_t pte = *src_pte; 959 struct page *page; 960 961 /* pte contains position in swap or file, so copy. */ 962 if (unlikely(!pte_present(pte))) { 963 swp_entry_t entry = pte_to_swp_entry(pte); 964 965 if (likely(!non_swap_entry(entry))) { 966 if (swap_duplicate(entry) < 0) 967 return entry.val; 968 969 /* make sure dst_mm is on swapoff's mmlist. */ 970 if (unlikely(list_empty(&dst_mm->mmlist))) { 971 spin_lock(&mmlist_lock); 972 if (list_empty(&dst_mm->mmlist)) 973 list_add(&dst_mm->mmlist, 974 &src_mm->mmlist); 975 spin_unlock(&mmlist_lock); 976 } 977 rss[MM_SWAPENTS]++; 978 } else if (is_migration_entry(entry)) { 979 page = migration_entry_to_page(entry); 980 981 rss[mm_counter(page)]++; 982 983 if (is_write_migration_entry(entry) && 984 is_cow_mapping(vm_flags)) { 985 /* 986 * COW mappings require pages in both 987 * parent and child to be set to read. 988 */ 989 make_migration_entry_read(&entry); 990 pte = swp_entry_to_pte(entry); 991 if (pte_swp_soft_dirty(*src_pte)) 992 pte = pte_swp_mksoft_dirty(pte); 993 set_pte_at(src_mm, addr, src_pte, pte); 994 } 995 } else if (is_device_private_entry(entry)) { 996 page = device_private_entry_to_page(entry); 997 998 /* 999 * Update rss count even for unaddressable pages, as 1000 * they should treated just like normal pages in this 1001 * respect. 1002 * 1003 * We will likely want to have some new rss counters 1004 * for unaddressable pages, at some point. But for now 1005 * keep things as they are. 1006 */ 1007 get_page(page); 1008 rss[mm_counter(page)]++; 1009 page_dup_rmap(page, false); 1010 1011 /* 1012 * We do not preserve soft-dirty information, because so 1013 * far, checkpoint/restore is the only feature that 1014 * requires that. And checkpoint/restore does not work 1015 * when a device driver is involved (you cannot easily 1016 * save and restore device driver state). 1017 */ 1018 if (is_write_device_private_entry(entry) && 1019 is_cow_mapping(vm_flags)) { 1020 make_device_private_entry_read(&entry); 1021 pte = swp_entry_to_pte(entry); 1022 set_pte_at(src_mm, addr, src_pte, pte); 1023 } 1024 } 1025 goto out_set_pte; 1026 } 1027 1028 /* 1029 * If it's a COW mapping, write protect it both 1030 * in the parent and the child 1031 */ 1032 if (is_cow_mapping(vm_flags)) { 1033 ptep_set_wrprotect(src_mm, addr, src_pte); 1034 pte = pte_wrprotect(pte); 1035 } 1036 1037 /* 1038 * If it's a shared mapping, mark it clean in 1039 * the child 1040 */ 1041 if (vm_flags & VM_SHARED) 1042 pte = pte_mkclean(pte); 1043 pte = pte_mkold(pte); 1044 1045 page = vm_normal_page(vma, addr, pte); 1046 if (page) { 1047 get_page(page); 1048 page_dup_rmap(page, false); 1049 rss[mm_counter(page)]++; 1050 } else if (pte_devmap(pte)) { 1051 page = pte_page(pte); 1052 1053 /* 1054 * Cache coherent device memory behave like regular page and 1055 * not like persistent memory page. For more informations see 1056 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 1057 */ 1058 if (is_device_public_page(page)) { 1059 get_page(page); 1060 page_dup_rmap(page, false); 1061 rss[mm_counter(page)]++; 1062 } 1063 } 1064 1065 out_set_pte: 1066 set_pte_at(dst_mm, addr, dst_pte, pte); 1067 return 0; 1068 } 1069 1070 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1071 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 1072 unsigned long addr, unsigned long end) 1073 { 1074 pte_t *orig_src_pte, *orig_dst_pte; 1075 pte_t *src_pte, *dst_pte; 1076 spinlock_t *src_ptl, *dst_ptl; 1077 int progress = 0; 1078 int rss[NR_MM_COUNTERS]; 1079 swp_entry_t entry = (swp_entry_t){0}; 1080 1081 again: 1082 init_rss_vec(rss); 1083 1084 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1085 if (!dst_pte) 1086 return -ENOMEM; 1087 src_pte = pte_offset_map(src_pmd, addr); 1088 src_ptl = pte_lockptr(src_mm, src_pmd); 1089 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1090 orig_src_pte = src_pte; 1091 orig_dst_pte = dst_pte; 1092 arch_enter_lazy_mmu_mode(); 1093 1094 do { 1095 /* 1096 * We are holding two locks at this point - either of them 1097 * could generate latencies in another task on another CPU. 1098 */ 1099 if (progress >= 32) { 1100 progress = 0; 1101 if (need_resched() || 1102 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1103 break; 1104 } 1105 if (pte_none(*src_pte)) { 1106 progress++; 1107 continue; 1108 } 1109 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 1110 vma, addr, rss); 1111 if (entry.val) 1112 break; 1113 progress += 8; 1114 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1115 1116 arch_leave_lazy_mmu_mode(); 1117 spin_unlock(src_ptl); 1118 pte_unmap(orig_src_pte); 1119 add_mm_rss_vec(dst_mm, rss); 1120 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1121 cond_resched(); 1122 1123 if (entry.val) { 1124 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 1125 return -ENOMEM; 1126 progress = 0; 1127 } 1128 if (addr != end) 1129 goto again; 1130 return 0; 1131 } 1132 1133 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1134 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 1135 unsigned long addr, unsigned long end) 1136 { 1137 pmd_t *src_pmd, *dst_pmd; 1138 unsigned long next; 1139 1140 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1141 if (!dst_pmd) 1142 return -ENOMEM; 1143 src_pmd = pmd_offset(src_pud, addr); 1144 do { 1145 next = pmd_addr_end(addr, end); 1146 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1147 || pmd_devmap(*src_pmd)) { 1148 int err; 1149 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 1150 err = copy_huge_pmd(dst_mm, src_mm, 1151 dst_pmd, src_pmd, addr, vma); 1152 if (err == -ENOMEM) 1153 return -ENOMEM; 1154 if (!err) 1155 continue; 1156 /* fall through */ 1157 } 1158 if (pmd_none_or_clear_bad(src_pmd)) 1159 continue; 1160 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1161 vma, addr, next)) 1162 return -ENOMEM; 1163 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1164 return 0; 1165 } 1166 1167 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1168 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 1169 unsigned long addr, unsigned long end) 1170 { 1171 pud_t *src_pud, *dst_pud; 1172 unsigned long next; 1173 1174 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1175 if (!dst_pud) 1176 return -ENOMEM; 1177 src_pud = pud_offset(src_p4d, addr); 1178 do { 1179 next = pud_addr_end(addr, end); 1180 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1181 int err; 1182 1183 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 1184 err = copy_huge_pud(dst_mm, src_mm, 1185 dst_pud, src_pud, addr, vma); 1186 if (err == -ENOMEM) 1187 return -ENOMEM; 1188 if (!err) 1189 continue; 1190 /* fall through */ 1191 } 1192 if (pud_none_or_clear_bad(src_pud)) 1193 continue; 1194 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1195 vma, addr, next)) 1196 return -ENOMEM; 1197 } while (dst_pud++, src_pud++, addr = next, addr != end); 1198 return 0; 1199 } 1200 1201 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1202 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1203 unsigned long addr, unsigned long end) 1204 { 1205 p4d_t *src_p4d, *dst_p4d; 1206 unsigned long next; 1207 1208 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1209 if (!dst_p4d) 1210 return -ENOMEM; 1211 src_p4d = p4d_offset(src_pgd, addr); 1212 do { 1213 next = p4d_addr_end(addr, end); 1214 if (p4d_none_or_clear_bad(src_p4d)) 1215 continue; 1216 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 1217 vma, addr, next)) 1218 return -ENOMEM; 1219 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1220 return 0; 1221 } 1222 1223 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1224 struct vm_area_struct *vma) 1225 { 1226 pgd_t *src_pgd, *dst_pgd; 1227 unsigned long next; 1228 unsigned long addr = vma->vm_start; 1229 unsigned long end = vma->vm_end; 1230 unsigned long mmun_start; /* For mmu_notifiers */ 1231 unsigned long mmun_end; /* For mmu_notifiers */ 1232 bool is_cow; 1233 int ret; 1234 1235 /* 1236 * Don't copy ptes where a page fault will fill them correctly. 1237 * Fork becomes much lighter when there are big shared or private 1238 * readonly mappings. The tradeoff is that copy_page_range is more 1239 * efficient than faulting. 1240 */ 1241 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1242 !vma->anon_vma) 1243 return 0; 1244 1245 if (is_vm_hugetlb_page(vma)) 1246 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1247 1248 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1249 /* 1250 * We do not free on error cases below as remove_vma 1251 * gets called on error from higher level routine 1252 */ 1253 ret = track_pfn_copy(vma); 1254 if (ret) 1255 return ret; 1256 } 1257 1258 /* 1259 * We need to invalidate the secondary MMU mappings only when 1260 * there could be a permission downgrade on the ptes of the 1261 * parent mm. And a permission downgrade will only happen if 1262 * is_cow_mapping() returns true. 1263 */ 1264 is_cow = is_cow_mapping(vma->vm_flags); 1265 mmun_start = addr; 1266 mmun_end = end; 1267 if (is_cow) 1268 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1269 mmun_end); 1270 1271 ret = 0; 1272 dst_pgd = pgd_offset(dst_mm, addr); 1273 src_pgd = pgd_offset(src_mm, addr); 1274 do { 1275 next = pgd_addr_end(addr, end); 1276 if (pgd_none_or_clear_bad(src_pgd)) 1277 continue; 1278 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1279 vma, addr, next))) { 1280 ret = -ENOMEM; 1281 break; 1282 } 1283 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1284 1285 if (is_cow) 1286 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1287 return ret; 1288 } 1289 1290 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1291 struct vm_area_struct *vma, pmd_t *pmd, 1292 unsigned long addr, unsigned long end, 1293 struct zap_details *details) 1294 { 1295 struct mm_struct *mm = tlb->mm; 1296 int force_flush = 0; 1297 int rss[NR_MM_COUNTERS]; 1298 spinlock_t *ptl; 1299 pte_t *start_pte; 1300 pte_t *pte; 1301 swp_entry_t entry; 1302 1303 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1304 again: 1305 init_rss_vec(rss); 1306 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1307 pte = start_pte; 1308 flush_tlb_batched_pending(mm); 1309 arch_enter_lazy_mmu_mode(); 1310 do { 1311 pte_t ptent = *pte; 1312 if (pte_none(ptent)) 1313 continue; 1314 1315 if (pte_present(ptent)) { 1316 struct page *page; 1317 1318 page = _vm_normal_page(vma, addr, ptent, true); 1319 if (unlikely(details) && page) { 1320 /* 1321 * unmap_shared_mapping_pages() wants to 1322 * invalidate cache without truncating: 1323 * unmap shared but keep private pages. 1324 */ 1325 if (details->check_mapping && 1326 details->check_mapping != page_rmapping(page)) 1327 continue; 1328 } 1329 ptent = ptep_get_and_clear_full(mm, addr, pte, 1330 tlb->fullmm); 1331 tlb_remove_tlb_entry(tlb, pte, addr); 1332 if (unlikely(!page)) 1333 continue; 1334 1335 if (!PageAnon(page)) { 1336 if (pte_dirty(ptent)) { 1337 force_flush = 1; 1338 set_page_dirty(page); 1339 } 1340 if (pte_young(ptent) && 1341 likely(!(vma->vm_flags & VM_SEQ_READ))) 1342 mark_page_accessed(page); 1343 } 1344 rss[mm_counter(page)]--; 1345 page_remove_rmap(page, false); 1346 if (unlikely(page_mapcount(page) < 0)) 1347 print_bad_pte(vma, addr, ptent, page); 1348 if (unlikely(__tlb_remove_page(tlb, page))) { 1349 force_flush = 1; 1350 addr += PAGE_SIZE; 1351 break; 1352 } 1353 continue; 1354 } 1355 1356 entry = pte_to_swp_entry(ptent); 1357 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1358 struct page *page = device_private_entry_to_page(entry); 1359 1360 if (unlikely(details && details->check_mapping)) { 1361 /* 1362 * unmap_shared_mapping_pages() wants to 1363 * invalidate cache without truncating: 1364 * unmap shared but keep private pages. 1365 */ 1366 if (details->check_mapping != 1367 page_rmapping(page)) 1368 continue; 1369 } 1370 1371 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1372 rss[mm_counter(page)]--; 1373 page_remove_rmap(page, false); 1374 put_page(page); 1375 continue; 1376 } 1377 1378 /* If details->check_mapping, we leave swap entries. */ 1379 if (unlikely(details)) 1380 continue; 1381 1382 entry = pte_to_swp_entry(ptent); 1383 if (!non_swap_entry(entry)) 1384 rss[MM_SWAPENTS]--; 1385 else if (is_migration_entry(entry)) { 1386 struct page *page; 1387 1388 page = migration_entry_to_page(entry); 1389 rss[mm_counter(page)]--; 1390 } 1391 if (unlikely(!free_swap_and_cache(entry))) 1392 print_bad_pte(vma, addr, ptent, NULL); 1393 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1394 } while (pte++, addr += PAGE_SIZE, addr != end); 1395 1396 add_mm_rss_vec(mm, rss); 1397 arch_leave_lazy_mmu_mode(); 1398 1399 /* Do the actual TLB flush before dropping ptl */ 1400 if (force_flush) 1401 tlb_flush_mmu_tlbonly(tlb); 1402 pte_unmap_unlock(start_pte, ptl); 1403 1404 /* 1405 * If we forced a TLB flush (either due to running out of 1406 * batch buffers or because we needed to flush dirty TLB 1407 * entries before releasing the ptl), free the batched 1408 * memory too. Restart if we didn't do everything. 1409 */ 1410 if (force_flush) { 1411 force_flush = 0; 1412 tlb_flush_mmu_free(tlb); 1413 if (addr != end) 1414 goto again; 1415 } 1416 1417 return addr; 1418 } 1419 1420 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1421 struct vm_area_struct *vma, pud_t *pud, 1422 unsigned long addr, unsigned long end, 1423 struct zap_details *details) 1424 { 1425 pmd_t *pmd; 1426 unsigned long next; 1427 1428 pmd = pmd_offset(pud, addr); 1429 do { 1430 next = pmd_addr_end(addr, end); 1431 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1432 if (next - addr != HPAGE_PMD_SIZE) 1433 __split_huge_pmd(vma, pmd, addr, false, NULL); 1434 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1435 goto next; 1436 /* fall through */ 1437 } 1438 /* 1439 * Here there can be other concurrent MADV_DONTNEED or 1440 * trans huge page faults running, and if the pmd is 1441 * none or trans huge it can change under us. This is 1442 * because MADV_DONTNEED holds the mmap_sem in read 1443 * mode. 1444 */ 1445 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1446 goto next; 1447 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1448 next: 1449 cond_resched(); 1450 } while (pmd++, addr = next, addr != end); 1451 1452 return addr; 1453 } 1454 1455 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1456 struct vm_area_struct *vma, p4d_t *p4d, 1457 unsigned long addr, unsigned long end, 1458 struct zap_details *details) 1459 { 1460 pud_t *pud; 1461 unsigned long next; 1462 1463 pud = pud_offset(p4d, addr); 1464 do { 1465 next = pud_addr_end(addr, end); 1466 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1467 if (next - addr != HPAGE_PUD_SIZE) { 1468 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1469 split_huge_pud(vma, pud, addr); 1470 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1471 goto next; 1472 /* fall through */ 1473 } 1474 if (pud_none_or_clear_bad(pud)) 1475 continue; 1476 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1477 next: 1478 cond_resched(); 1479 } while (pud++, addr = next, addr != end); 1480 1481 return addr; 1482 } 1483 1484 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1485 struct vm_area_struct *vma, pgd_t *pgd, 1486 unsigned long addr, unsigned long end, 1487 struct zap_details *details) 1488 { 1489 p4d_t *p4d; 1490 unsigned long next; 1491 1492 p4d = p4d_offset(pgd, addr); 1493 do { 1494 next = p4d_addr_end(addr, end); 1495 if (p4d_none_or_clear_bad(p4d)) 1496 continue; 1497 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1498 } while (p4d++, addr = next, addr != end); 1499 1500 return addr; 1501 } 1502 1503 void unmap_page_range(struct mmu_gather *tlb, 1504 struct vm_area_struct *vma, 1505 unsigned long addr, unsigned long end, 1506 struct zap_details *details) 1507 { 1508 pgd_t *pgd; 1509 unsigned long next; 1510 1511 BUG_ON(addr >= end); 1512 tlb_start_vma(tlb, vma); 1513 pgd = pgd_offset(vma->vm_mm, addr); 1514 do { 1515 next = pgd_addr_end(addr, end); 1516 if (pgd_none_or_clear_bad(pgd)) 1517 continue; 1518 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1519 } while (pgd++, addr = next, addr != end); 1520 tlb_end_vma(tlb, vma); 1521 } 1522 1523 1524 static void unmap_single_vma(struct mmu_gather *tlb, 1525 struct vm_area_struct *vma, unsigned long start_addr, 1526 unsigned long end_addr, 1527 struct zap_details *details) 1528 { 1529 unsigned long start = max(vma->vm_start, start_addr); 1530 unsigned long end; 1531 1532 if (start >= vma->vm_end) 1533 return; 1534 end = min(vma->vm_end, end_addr); 1535 if (end <= vma->vm_start) 1536 return; 1537 1538 if (vma->vm_file) 1539 uprobe_munmap(vma, start, end); 1540 1541 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1542 untrack_pfn(vma, 0, 0); 1543 1544 if (start != end) { 1545 if (unlikely(is_vm_hugetlb_page(vma))) { 1546 /* 1547 * It is undesirable to test vma->vm_file as it 1548 * should be non-null for valid hugetlb area. 1549 * However, vm_file will be NULL in the error 1550 * cleanup path of mmap_region. When 1551 * hugetlbfs ->mmap method fails, 1552 * mmap_region() nullifies vma->vm_file 1553 * before calling this function to clean up. 1554 * Since no pte has actually been setup, it is 1555 * safe to do nothing in this case. 1556 */ 1557 if (vma->vm_file) { 1558 i_mmap_lock_write(vma->vm_file->f_mapping); 1559 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1560 i_mmap_unlock_write(vma->vm_file->f_mapping); 1561 } 1562 } else 1563 unmap_page_range(tlb, vma, start, end, details); 1564 } 1565 } 1566 1567 /** 1568 * unmap_vmas - unmap a range of memory covered by a list of vma's 1569 * @tlb: address of the caller's struct mmu_gather 1570 * @vma: the starting vma 1571 * @start_addr: virtual address at which to start unmapping 1572 * @end_addr: virtual address at which to end unmapping 1573 * 1574 * Unmap all pages in the vma list. 1575 * 1576 * Only addresses between `start' and `end' will be unmapped. 1577 * 1578 * The VMA list must be sorted in ascending virtual address order. 1579 * 1580 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1581 * range after unmap_vmas() returns. So the only responsibility here is to 1582 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1583 * drops the lock and schedules. 1584 */ 1585 void unmap_vmas(struct mmu_gather *tlb, 1586 struct vm_area_struct *vma, unsigned long start_addr, 1587 unsigned long end_addr) 1588 { 1589 struct mm_struct *mm = vma->vm_mm; 1590 1591 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1592 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1593 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1594 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1595 } 1596 1597 /** 1598 * zap_page_range - remove user pages in a given range 1599 * @vma: vm_area_struct holding the applicable pages 1600 * @start: starting address of pages to zap 1601 * @size: number of bytes to zap 1602 * 1603 * Caller must protect the VMA list 1604 */ 1605 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1606 unsigned long size) 1607 { 1608 struct mm_struct *mm = vma->vm_mm; 1609 struct mmu_gather tlb; 1610 unsigned long end = start + size; 1611 1612 lru_add_drain(); 1613 tlb_gather_mmu(&tlb, mm, start, end); 1614 update_hiwater_rss(mm); 1615 mmu_notifier_invalidate_range_start(mm, start, end); 1616 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1617 unmap_single_vma(&tlb, vma, start, end, NULL); 1618 mmu_notifier_invalidate_range_end(mm, start, end); 1619 tlb_finish_mmu(&tlb, start, end); 1620 } 1621 1622 /** 1623 * zap_page_range_single - remove user pages in a given range 1624 * @vma: vm_area_struct holding the applicable pages 1625 * @address: starting address of pages to zap 1626 * @size: number of bytes to zap 1627 * @details: details of shared cache invalidation 1628 * 1629 * The range must fit into one VMA. 1630 */ 1631 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1632 unsigned long size, struct zap_details *details) 1633 { 1634 struct mm_struct *mm = vma->vm_mm; 1635 struct mmu_gather tlb; 1636 unsigned long end = address + size; 1637 1638 lru_add_drain(); 1639 tlb_gather_mmu(&tlb, mm, address, end); 1640 update_hiwater_rss(mm); 1641 mmu_notifier_invalidate_range_start(mm, address, end); 1642 unmap_single_vma(&tlb, vma, address, end, details); 1643 mmu_notifier_invalidate_range_end(mm, address, end); 1644 tlb_finish_mmu(&tlb, address, end); 1645 } 1646 1647 /** 1648 * zap_vma_ptes - remove ptes mapping the vma 1649 * @vma: vm_area_struct holding ptes to be zapped 1650 * @address: starting address of pages to zap 1651 * @size: number of bytes to zap 1652 * 1653 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1654 * 1655 * The entire address range must be fully contained within the vma. 1656 * 1657 */ 1658 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1659 unsigned long size) 1660 { 1661 if (address < vma->vm_start || address + size > vma->vm_end || 1662 !(vma->vm_flags & VM_PFNMAP)) 1663 return; 1664 1665 zap_page_range_single(vma, address, size, NULL); 1666 } 1667 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1668 1669 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1670 spinlock_t **ptl) 1671 { 1672 pgd_t *pgd; 1673 p4d_t *p4d; 1674 pud_t *pud; 1675 pmd_t *pmd; 1676 1677 pgd = pgd_offset(mm, addr); 1678 p4d = p4d_alloc(mm, pgd, addr); 1679 if (!p4d) 1680 return NULL; 1681 pud = pud_alloc(mm, p4d, addr); 1682 if (!pud) 1683 return NULL; 1684 pmd = pmd_alloc(mm, pud, addr); 1685 if (!pmd) 1686 return NULL; 1687 1688 VM_BUG_ON(pmd_trans_huge(*pmd)); 1689 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1690 } 1691 1692 /* 1693 * This is the old fallback for page remapping. 1694 * 1695 * For historical reasons, it only allows reserved pages. Only 1696 * old drivers should use this, and they needed to mark their 1697 * pages reserved for the old functions anyway. 1698 */ 1699 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1700 struct page *page, pgprot_t prot) 1701 { 1702 struct mm_struct *mm = vma->vm_mm; 1703 int retval; 1704 pte_t *pte; 1705 spinlock_t *ptl; 1706 1707 retval = -EINVAL; 1708 if (PageAnon(page)) 1709 goto out; 1710 retval = -ENOMEM; 1711 flush_dcache_page(page); 1712 pte = get_locked_pte(mm, addr, &ptl); 1713 if (!pte) 1714 goto out; 1715 retval = -EBUSY; 1716 if (!pte_none(*pte)) 1717 goto out_unlock; 1718 1719 /* Ok, finally just insert the thing.. */ 1720 get_page(page); 1721 inc_mm_counter_fast(mm, mm_counter_file(page)); 1722 page_add_file_rmap(page, false); 1723 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1724 1725 retval = 0; 1726 pte_unmap_unlock(pte, ptl); 1727 return retval; 1728 out_unlock: 1729 pte_unmap_unlock(pte, ptl); 1730 out: 1731 return retval; 1732 } 1733 1734 /** 1735 * vm_insert_page - insert single page into user vma 1736 * @vma: user vma to map to 1737 * @addr: target user address of this page 1738 * @page: source kernel page 1739 * 1740 * This allows drivers to insert individual pages they've allocated 1741 * into a user vma. 1742 * 1743 * The page has to be a nice clean _individual_ kernel allocation. 1744 * If you allocate a compound page, you need to have marked it as 1745 * such (__GFP_COMP), or manually just split the page up yourself 1746 * (see split_page()). 1747 * 1748 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1749 * took an arbitrary page protection parameter. This doesn't allow 1750 * that. Your vma protection will have to be set up correctly, which 1751 * means that if you want a shared writable mapping, you'd better 1752 * ask for a shared writable mapping! 1753 * 1754 * The page does not need to be reserved. 1755 * 1756 * Usually this function is called from f_op->mmap() handler 1757 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1758 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1759 * function from other places, for example from page-fault handler. 1760 */ 1761 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1762 struct page *page) 1763 { 1764 if (addr < vma->vm_start || addr >= vma->vm_end) 1765 return -EFAULT; 1766 if (!page_count(page)) 1767 return -EINVAL; 1768 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1769 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1770 BUG_ON(vma->vm_flags & VM_PFNMAP); 1771 vma->vm_flags |= VM_MIXEDMAP; 1772 } 1773 return insert_page(vma, addr, page, vma->vm_page_prot); 1774 } 1775 EXPORT_SYMBOL(vm_insert_page); 1776 1777 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1778 pfn_t pfn, pgprot_t prot, bool mkwrite) 1779 { 1780 struct mm_struct *mm = vma->vm_mm; 1781 int retval; 1782 pte_t *pte, entry; 1783 spinlock_t *ptl; 1784 1785 retval = -ENOMEM; 1786 pte = get_locked_pte(mm, addr, &ptl); 1787 if (!pte) 1788 goto out; 1789 retval = -EBUSY; 1790 if (!pte_none(*pte)) { 1791 if (mkwrite) { 1792 /* 1793 * For read faults on private mappings the PFN passed 1794 * in may not match the PFN we have mapped if the 1795 * mapped PFN is a writeable COW page. In the mkwrite 1796 * case we are creating a writable PTE for a shared 1797 * mapping and we expect the PFNs to match. 1798 */ 1799 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn))) 1800 goto out_unlock; 1801 entry = *pte; 1802 goto out_mkwrite; 1803 } else 1804 goto out_unlock; 1805 } 1806 1807 /* Ok, finally just insert the thing.. */ 1808 if (pfn_t_devmap(pfn)) 1809 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1810 else 1811 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1812 1813 out_mkwrite: 1814 if (mkwrite) { 1815 entry = pte_mkyoung(entry); 1816 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1817 } 1818 1819 set_pte_at(mm, addr, pte, entry); 1820 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1821 1822 retval = 0; 1823 out_unlock: 1824 pte_unmap_unlock(pte, ptl); 1825 out: 1826 return retval; 1827 } 1828 1829 /** 1830 * vm_insert_pfn - insert single pfn into user vma 1831 * @vma: user vma to map to 1832 * @addr: target user address of this page 1833 * @pfn: source kernel pfn 1834 * 1835 * Similar to vm_insert_page, this allows drivers to insert individual pages 1836 * they've allocated into a user vma. Same comments apply. 1837 * 1838 * This function should only be called from a vm_ops->fault handler, and 1839 * in that case the handler should return NULL. 1840 * 1841 * vma cannot be a COW mapping. 1842 * 1843 * As this is called only for pages that do not currently exist, we 1844 * do not need to flush old virtual caches or the TLB. 1845 */ 1846 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1847 unsigned long pfn) 1848 { 1849 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1850 } 1851 EXPORT_SYMBOL(vm_insert_pfn); 1852 1853 /** 1854 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1855 * @vma: user vma to map to 1856 * @addr: target user address of this page 1857 * @pfn: source kernel pfn 1858 * @pgprot: pgprot flags for the inserted page 1859 * 1860 * This is exactly like vm_insert_pfn, except that it allows drivers to 1861 * to override pgprot on a per-page basis. 1862 * 1863 * This only makes sense for IO mappings, and it makes no sense for 1864 * cow mappings. In general, using multiple vmas is preferable; 1865 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1866 * impractical. 1867 */ 1868 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1869 unsigned long pfn, pgprot_t pgprot) 1870 { 1871 int ret; 1872 /* 1873 * Technically, architectures with pte_special can avoid all these 1874 * restrictions (same for remap_pfn_range). However we would like 1875 * consistency in testing and feature parity among all, so we should 1876 * try to keep these invariants in place for everybody. 1877 */ 1878 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1879 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1880 (VM_PFNMAP|VM_MIXEDMAP)); 1881 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1882 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1883 1884 if (addr < vma->vm_start || addr >= vma->vm_end) 1885 return -EFAULT; 1886 1887 if (!pfn_modify_allowed(pfn, pgprot)) 1888 return -EACCES; 1889 1890 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1891 1892 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1893 false); 1894 1895 return ret; 1896 } 1897 EXPORT_SYMBOL(vm_insert_pfn_prot); 1898 1899 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1900 { 1901 /* these checks mirror the abort conditions in vm_normal_page */ 1902 if (vma->vm_flags & VM_MIXEDMAP) 1903 return true; 1904 if (pfn_t_devmap(pfn)) 1905 return true; 1906 if (pfn_t_special(pfn)) 1907 return true; 1908 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1909 return true; 1910 return false; 1911 } 1912 1913 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1914 pfn_t pfn, bool mkwrite) 1915 { 1916 pgprot_t pgprot = vma->vm_page_prot; 1917 1918 BUG_ON(!vm_mixed_ok(vma, pfn)); 1919 1920 if (addr < vma->vm_start || addr >= vma->vm_end) 1921 return -EFAULT; 1922 1923 track_pfn_insert(vma, &pgprot, pfn); 1924 1925 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1926 return -EACCES; 1927 1928 /* 1929 * If we don't have pte special, then we have to use the pfn_valid() 1930 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1931 * refcount the page if pfn_valid is true (hence insert_page rather 1932 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1933 * without pte special, it would there be refcounted as a normal page. 1934 */ 1935 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1936 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1937 struct page *page; 1938 1939 /* 1940 * At this point we are committed to insert_page() 1941 * regardless of whether the caller specified flags that 1942 * result in pfn_t_has_page() == false. 1943 */ 1944 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1945 return insert_page(vma, addr, page, pgprot); 1946 } 1947 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1948 } 1949 1950 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1951 pfn_t pfn) 1952 { 1953 return __vm_insert_mixed(vma, addr, pfn, false); 1954 1955 } 1956 EXPORT_SYMBOL(vm_insert_mixed); 1957 1958 /* 1959 * If the insertion of PTE failed because someone else already added a 1960 * different entry in the mean time, we treat that as success as we assume 1961 * the same entry was actually inserted. 1962 */ 1963 1964 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1965 unsigned long addr, pfn_t pfn) 1966 { 1967 int err; 1968 1969 err = __vm_insert_mixed(vma, addr, pfn, true); 1970 if (err == -ENOMEM) 1971 return VM_FAULT_OOM; 1972 if (err < 0 && err != -EBUSY) 1973 return VM_FAULT_SIGBUS; 1974 return VM_FAULT_NOPAGE; 1975 } 1976 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1977 1978 /* 1979 * maps a range of physical memory into the requested pages. the old 1980 * mappings are removed. any references to nonexistent pages results 1981 * in null mappings (currently treated as "copy-on-access") 1982 */ 1983 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1984 unsigned long addr, unsigned long end, 1985 unsigned long pfn, pgprot_t prot) 1986 { 1987 pte_t *pte; 1988 spinlock_t *ptl; 1989 int err = 0; 1990 1991 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1992 if (!pte) 1993 return -ENOMEM; 1994 arch_enter_lazy_mmu_mode(); 1995 do { 1996 BUG_ON(!pte_none(*pte)); 1997 if (!pfn_modify_allowed(pfn, prot)) { 1998 err = -EACCES; 1999 break; 2000 } 2001 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2002 pfn++; 2003 } while (pte++, addr += PAGE_SIZE, addr != end); 2004 arch_leave_lazy_mmu_mode(); 2005 pte_unmap_unlock(pte - 1, ptl); 2006 return err; 2007 } 2008 2009 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2010 unsigned long addr, unsigned long end, 2011 unsigned long pfn, pgprot_t prot) 2012 { 2013 pmd_t *pmd; 2014 unsigned long next; 2015 int err; 2016 2017 pfn -= addr >> PAGE_SHIFT; 2018 pmd = pmd_alloc(mm, pud, addr); 2019 if (!pmd) 2020 return -ENOMEM; 2021 VM_BUG_ON(pmd_trans_huge(*pmd)); 2022 do { 2023 next = pmd_addr_end(addr, end); 2024 err = remap_pte_range(mm, pmd, addr, next, 2025 pfn + (addr >> PAGE_SHIFT), prot); 2026 if (err) 2027 return err; 2028 } while (pmd++, addr = next, addr != end); 2029 return 0; 2030 } 2031 2032 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2033 unsigned long addr, unsigned long end, 2034 unsigned long pfn, pgprot_t prot) 2035 { 2036 pud_t *pud; 2037 unsigned long next; 2038 int err; 2039 2040 pfn -= addr >> PAGE_SHIFT; 2041 pud = pud_alloc(mm, p4d, addr); 2042 if (!pud) 2043 return -ENOMEM; 2044 do { 2045 next = pud_addr_end(addr, end); 2046 err = remap_pmd_range(mm, pud, addr, next, 2047 pfn + (addr >> PAGE_SHIFT), prot); 2048 if (err) 2049 return err; 2050 } while (pud++, addr = next, addr != end); 2051 return 0; 2052 } 2053 2054 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2055 unsigned long addr, unsigned long end, 2056 unsigned long pfn, pgprot_t prot) 2057 { 2058 p4d_t *p4d; 2059 unsigned long next; 2060 int err; 2061 2062 pfn -= addr >> PAGE_SHIFT; 2063 p4d = p4d_alloc(mm, pgd, addr); 2064 if (!p4d) 2065 return -ENOMEM; 2066 do { 2067 next = p4d_addr_end(addr, end); 2068 err = remap_pud_range(mm, p4d, addr, next, 2069 pfn + (addr >> PAGE_SHIFT), prot); 2070 if (err) 2071 return err; 2072 } while (p4d++, addr = next, addr != end); 2073 return 0; 2074 } 2075 2076 /** 2077 * remap_pfn_range - remap kernel memory to userspace 2078 * @vma: user vma to map to 2079 * @addr: target user address to start at 2080 * @pfn: physical address of kernel memory 2081 * @size: size of map area 2082 * @prot: page protection flags for this mapping 2083 * 2084 * Note: this is only safe if the mm semaphore is held when called. 2085 */ 2086 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2087 unsigned long pfn, unsigned long size, pgprot_t prot) 2088 { 2089 pgd_t *pgd; 2090 unsigned long next; 2091 unsigned long end = addr + PAGE_ALIGN(size); 2092 struct mm_struct *mm = vma->vm_mm; 2093 unsigned long remap_pfn = pfn; 2094 int err; 2095 2096 /* 2097 * Physically remapped pages are special. Tell the 2098 * rest of the world about it: 2099 * VM_IO tells people not to look at these pages 2100 * (accesses can have side effects). 2101 * VM_PFNMAP tells the core MM that the base pages are just 2102 * raw PFN mappings, and do not have a "struct page" associated 2103 * with them. 2104 * VM_DONTEXPAND 2105 * Disable vma merging and expanding with mremap(). 2106 * VM_DONTDUMP 2107 * Omit vma from core dump, even when VM_IO turned off. 2108 * 2109 * There's a horrible special case to handle copy-on-write 2110 * behaviour that some programs depend on. We mark the "original" 2111 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2112 * See vm_normal_page() for details. 2113 */ 2114 if (is_cow_mapping(vma->vm_flags)) { 2115 if (addr != vma->vm_start || end != vma->vm_end) 2116 return -EINVAL; 2117 vma->vm_pgoff = pfn; 2118 } 2119 2120 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2121 if (err) 2122 return -EINVAL; 2123 2124 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2125 2126 BUG_ON(addr >= end); 2127 pfn -= addr >> PAGE_SHIFT; 2128 pgd = pgd_offset(mm, addr); 2129 flush_cache_range(vma, addr, end); 2130 do { 2131 next = pgd_addr_end(addr, end); 2132 err = remap_p4d_range(mm, pgd, addr, next, 2133 pfn + (addr >> PAGE_SHIFT), prot); 2134 if (err) 2135 break; 2136 } while (pgd++, addr = next, addr != end); 2137 2138 if (err) 2139 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2140 2141 return err; 2142 } 2143 EXPORT_SYMBOL(remap_pfn_range); 2144 2145 /** 2146 * vm_iomap_memory - remap memory to userspace 2147 * @vma: user vma to map to 2148 * @start: start of area 2149 * @len: size of area 2150 * 2151 * This is a simplified io_remap_pfn_range() for common driver use. The 2152 * driver just needs to give us the physical memory range to be mapped, 2153 * we'll figure out the rest from the vma information. 2154 * 2155 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2156 * whatever write-combining details or similar. 2157 */ 2158 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2159 { 2160 unsigned long vm_len, pfn, pages; 2161 2162 /* Check that the physical memory area passed in looks valid */ 2163 if (start + len < start) 2164 return -EINVAL; 2165 /* 2166 * You *really* shouldn't map things that aren't page-aligned, 2167 * but we've historically allowed it because IO memory might 2168 * just have smaller alignment. 2169 */ 2170 len += start & ~PAGE_MASK; 2171 pfn = start >> PAGE_SHIFT; 2172 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2173 if (pfn + pages < pfn) 2174 return -EINVAL; 2175 2176 /* We start the mapping 'vm_pgoff' pages into the area */ 2177 if (vma->vm_pgoff > pages) 2178 return -EINVAL; 2179 pfn += vma->vm_pgoff; 2180 pages -= vma->vm_pgoff; 2181 2182 /* Can we fit all of the mapping? */ 2183 vm_len = vma->vm_end - vma->vm_start; 2184 if (vm_len >> PAGE_SHIFT > pages) 2185 return -EINVAL; 2186 2187 /* Ok, let it rip */ 2188 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2189 } 2190 EXPORT_SYMBOL(vm_iomap_memory); 2191 2192 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2193 unsigned long addr, unsigned long end, 2194 pte_fn_t fn, void *data) 2195 { 2196 pte_t *pte; 2197 int err; 2198 pgtable_t token; 2199 spinlock_t *uninitialized_var(ptl); 2200 2201 pte = (mm == &init_mm) ? 2202 pte_alloc_kernel(pmd, addr) : 2203 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2204 if (!pte) 2205 return -ENOMEM; 2206 2207 BUG_ON(pmd_huge(*pmd)); 2208 2209 arch_enter_lazy_mmu_mode(); 2210 2211 token = pmd_pgtable(*pmd); 2212 2213 do { 2214 err = fn(pte++, token, addr, data); 2215 if (err) 2216 break; 2217 } while (addr += PAGE_SIZE, addr != end); 2218 2219 arch_leave_lazy_mmu_mode(); 2220 2221 if (mm != &init_mm) 2222 pte_unmap_unlock(pte-1, ptl); 2223 return err; 2224 } 2225 2226 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2227 unsigned long addr, unsigned long end, 2228 pte_fn_t fn, void *data) 2229 { 2230 pmd_t *pmd; 2231 unsigned long next; 2232 int err; 2233 2234 BUG_ON(pud_huge(*pud)); 2235 2236 pmd = pmd_alloc(mm, pud, addr); 2237 if (!pmd) 2238 return -ENOMEM; 2239 do { 2240 next = pmd_addr_end(addr, end); 2241 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2242 if (err) 2243 break; 2244 } while (pmd++, addr = next, addr != end); 2245 return err; 2246 } 2247 2248 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2249 unsigned long addr, unsigned long end, 2250 pte_fn_t fn, void *data) 2251 { 2252 pud_t *pud; 2253 unsigned long next; 2254 int err; 2255 2256 pud = pud_alloc(mm, p4d, addr); 2257 if (!pud) 2258 return -ENOMEM; 2259 do { 2260 next = pud_addr_end(addr, end); 2261 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2262 if (err) 2263 break; 2264 } while (pud++, addr = next, addr != end); 2265 return err; 2266 } 2267 2268 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2269 unsigned long addr, unsigned long end, 2270 pte_fn_t fn, void *data) 2271 { 2272 p4d_t *p4d; 2273 unsigned long next; 2274 int err; 2275 2276 p4d = p4d_alloc(mm, pgd, addr); 2277 if (!p4d) 2278 return -ENOMEM; 2279 do { 2280 next = p4d_addr_end(addr, end); 2281 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2282 if (err) 2283 break; 2284 } while (p4d++, addr = next, addr != end); 2285 return err; 2286 } 2287 2288 /* 2289 * Scan a region of virtual memory, filling in page tables as necessary 2290 * and calling a provided function on each leaf page table. 2291 */ 2292 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2293 unsigned long size, pte_fn_t fn, void *data) 2294 { 2295 pgd_t *pgd; 2296 unsigned long next; 2297 unsigned long end = addr + size; 2298 int err; 2299 2300 if (WARN_ON(addr >= end)) 2301 return -EINVAL; 2302 2303 pgd = pgd_offset(mm, addr); 2304 do { 2305 next = pgd_addr_end(addr, end); 2306 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2307 if (err) 2308 break; 2309 } while (pgd++, addr = next, addr != end); 2310 2311 return err; 2312 } 2313 EXPORT_SYMBOL_GPL(apply_to_page_range); 2314 2315 /* 2316 * handle_pte_fault chooses page fault handler according to an entry which was 2317 * read non-atomically. Before making any commitment, on those architectures 2318 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2319 * parts, do_swap_page must check under lock before unmapping the pte and 2320 * proceeding (but do_wp_page is only called after already making such a check; 2321 * and do_anonymous_page can safely check later on). 2322 */ 2323 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2324 pte_t *page_table, pte_t orig_pte) 2325 { 2326 int same = 1; 2327 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2328 if (sizeof(pte_t) > sizeof(unsigned long)) { 2329 spinlock_t *ptl = pte_lockptr(mm, pmd); 2330 spin_lock(ptl); 2331 same = pte_same(*page_table, orig_pte); 2332 spin_unlock(ptl); 2333 } 2334 #endif 2335 pte_unmap(page_table); 2336 return same; 2337 } 2338 2339 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2340 { 2341 debug_dma_assert_idle(src); 2342 2343 /* 2344 * If the source page was a PFN mapping, we don't have 2345 * a "struct page" for it. We do a best-effort copy by 2346 * just copying from the original user address. If that 2347 * fails, we just zero-fill it. Live with it. 2348 */ 2349 if (unlikely(!src)) { 2350 void *kaddr = kmap_atomic(dst); 2351 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2352 2353 /* 2354 * This really shouldn't fail, because the page is there 2355 * in the page tables. But it might just be unreadable, 2356 * in which case we just give up and fill the result with 2357 * zeroes. 2358 */ 2359 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2360 clear_page(kaddr); 2361 kunmap_atomic(kaddr); 2362 flush_dcache_page(dst); 2363 } else 2364 copy_user_highpage(dst, src, va, vma); 2365 } 2366 2367 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2368 { 2369 struct file *vm_file = vma->vm_file; 2370 2371 if (vm_file) 2372 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2373 2374 /* 2375 * Special mappings (e.g. VDSO) do not have any file so fake 2376 * a default GFP_KERNEL for them. 2377 */ 2378 return GFP_KERNEL; 2379 } 2380 2381 /* 2382 * Notify the address space that the page is about to become writable so that 2383 * it can prohibit this or wait for the page to get into an appropriate state. 2384 * 2385 * We do this without the lock held, so that it can sleep if it needs to. 2386 */ 2387 static int do_page_mkwrite(struct vm_fault *vmf) 2388 { 2389 int ret; 2390 struct page *page = vmf->page; 2391 unsigned int old_flags = vmf->flags; 2392 2393 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2394 2395 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2396 /* Restore original flags so that caller is not surprised */ 2397 vmf->flags = old_flags; 2398 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2399 return ret; 2400 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2401 lock_page(page); 2402 if (!page->mapping) { 2403 unlock_page(page); 2404 return 0; /* retry */ 2405 } 2406 ret |= VM_FAULT_LOCKED; 2407 } else 2408 VM_BUG_ON_PAGE(!PageLocked(page), page); 2409 return ret; 2410 } 2411 2412 /* 2413 * Handle dirtying of a page in shared file mapping on a write fault. 2414 * 2415 * The function expects the page to be locked and unlocks it. 2416 */ 2417 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2418 struct page *page) 2419 { 2420 struct address_space *mapping; 2421 bool dirtied; 2422 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2423 2424 dirtied = set_page_dirty(page); 2425 VM_BUG_ON_PAGE(PageAnon(page), page); 2426 /* 2427 * Take a local copy of the address_space - page.mapping may be zeroed 2428 * by truncate after unlock_page(). The address_space itself remains 2429 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2430 * release semantics to prevent the compiler from undoing this copying. 2431 */ 2432 mapping = page_rmapping(page); 2433 unlock_page(page); 2434 2435 if ((dirtied || page_mkwrite) && mapping) { 2436 /* 2437 * Some device drivers do not set page.mapping 2438 * but still dirty their pages 2439 */ 2440 balance_dirty_pages_ratelimited(mapping); 2441 } 2442 2443 if (!page_mkwrite) 2444 file_update_time(vma->vm_file); 2445 } 2446 2447 /* 2448 * Handle write page faults for pages that can be reused in the current vma 2449 * 2450 * This can happen either due to the mapping being with the VM_SHARED flag, 2451 * or due to us being the last reference standing to the page. In either 2452 * case, all we need to do here is to mark the page as writable and update 2453 * any related book-keeping. 2454 */ 2455 static inline void wp_page_reuse(struct vm_fault *vmf) 2456 __releases(vmf->ptl) 2457 { 2458 struct vm_area_struct *vma = vmf->vma; 2459 struct page *page = vmf->page; 2460 pte_t entry; 2461 /* 2462 * Clear the pages cpupid information as the existing 2463 * information potentially belongs to a now completely 2464 * unrelated process. 2465 */ 2466 if (page) 2467 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2468 2469 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2470 entry = pte_mkyoung(vmf->orig_pte); 2471 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2472 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2473 update_mmu_cache(vma, vmf->address, vmf->pte); 2474 pte_unmap_unlock(vmf->pte, vmf->ptl); 2475 } 2476 2477 /* 2478 * Handle the case of a page which we actually need to copy to a new page. 2479 * 2480 * Called with mmap_sem locked and the old page referenced, but 2481 * without the ptl held. 2482 * 2483 * High level logic flow: 2484 * 2485 * - Allocate a page, copy the content of the old page to the new one. 2486 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2487 * - Take the PTL. If the pte changed, bail out and release the allocated page 2488 * - If the pte is still the way we remember it, update the page table and all 2489 * relevant references. This includes dropping the reference the page-table 2490 * held to the old page, as well as updating the rmap. 2491 * - In any case, unlock the PTL and drop the reference we took to the old page. 2492 */ 2493 static int wp_page_copy(struct vm_fault *vmf) 2494 { 2495 struct vm_area_struct *vma = vmf->vma; 2496 struct mm_struct *mm = vma->vm_mm; 2497 struct page *old_page = vmf->page; 2498 struct page *new_page = NULL; 2499 pte_t entry; 2500 int page_copied = 0; 2501 const unsigned long mmun_start = vmf->address & PAGE_MASK; 2502 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 2503 struct mem_cgroup *memcg; 2504 2505 if (unlikely(anon_vma_prepare(vma))) 2506 goto oom; 2507 2508 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2509 new_page = alloc_zeroed_user_highpage_movable(vma, 2510 vmf->address); 2511 if (!new_page) 2512 goto oom; 2513 } else { 2514 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2515 vmf->address); 2516 if (!new_page) 2517 goto oom; 2518 cow_user_page(new_page, old_page, vmf->address, vma); 2519 } 2520 2521 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2522 goto oom_free_new; 2523 2524 __SetPageUptodate(new_page); 2525 2526 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2527 2528 /* 2529 * Re-check the pte - we dropped the lock 2530 */ 2531 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2532 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2533 if (old_page) { 2534 if (!PageAnon(old_page)) { 2535 dec_mm_counter_fast(mm, 2536 mm_counter_file(old_page)); 2537 inc_mm_counter_fast(mm, MM_ANONPAGES); 2538 } 2539 } else { 2540 inc_mm_counter_fast(mm, MM_ANONPAGES); 2541 } 2542 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2543 entry = mk_pte(new_page, vma->vm_page_prot); 2544 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2545 /* 2546 * Clear the pte entry and flush it first, before updating the 2547 * pte with the new entry. This will avoid a race condition 2548 * seen in the presence of one thread doing SMC and another 2549 * thread doing COW. 2550 */ 2551 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2552 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2553 mem_cgroup_commit_charge(new_page, memcg, false, false); 2554 lru_cache_add_active_or_unevictable(new_page, vma); 2555 /* 2556 * We call the notify macro here because, when using secondary 2557 * mmu page tables (such as kvm shadow page tables), we want the 2558 * new page to be mapped directly into the secondary page table. 2559 */ 2560 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2561 update_mmu_cache(vma, vmf->address, vmf->pte); 2562 if (old_page) { 2563 /* 2564 * Only after switching the pte to the new page may 2565 * we remove the mapcount here. Otherwise another 2566 * process may come and find the rmap count decremented 2567 * before the pte is switched to the new page, and 2568 * "reuse" the old page writing into it while our pte 2569 * here still points into it and can be read by other 2570 * threads. 2571 * 2572 * The critical issue is to order this 2573 * page_remove_rmap with the ptp_clear_flush above. 2574 * Those stores are ordered by (if nothing else,) 2575 * the barrier present in the atomic_add_negative 2576 * in page_remove_rmap. 2577 * 2578 * Then the TLB flush in ptep_clear_flush ensures that 2579 * no process can access the old page before the 2580 * decremented mapcount is visible. And the old page 2581 * cannot be reused until after the decremented 2582 * mapcount is visible. So transitively, TLBs to 2583 * old page will be flushed before it can be reused. 2584 */ 2585 page_remove_rmap(old_page, false); 2586 } 2587 2588 /* Free the old page.. */ 2589 new_page = old_page; 2590 page_copied = 1; 2591 } else { 2592 mem_cgroup_cancel_charge(new_page, memcg, false); 2593 } 2594 2595 if (new_page) 2596 put_page(new_page); 2597 2598 pte_unmap_unlock(vmf->pte, vmf->ptl); 2599 /* 2600 * No need to double call mmu_notifier->invalidate_range() callback as 2601 * the above ptep_clear_flush_notify() did already call it. 2602 */ 2603 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end); 2604 if (old_page) { 2605 /* 2606 * Don't let another task, with possibly unlocked vma, 2607 * keep the mlocked page. 2608 */ 2609 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2610 lock_page(old_page); /* LRU manipulation */ 2611 if (PageMlocked(old_page)) 2612 munlock_vma_page(old_page); 2613 unlock_page(old_page); 2614 } 2615 put_page(old_page); 2616 } 2617 return page_copied ? VM_FAULT_WRITE : 0; 2618 oom_free_new: 2619 put_page(new_page); 2620 oom: 2621 if (old_page) 2622 put_page(old_page); 2623 return VM_FAULT_OOM; 2624 } 2625 2626 /** 2627 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2628 * writeable once the page is prepared 2629 * 2630 * @vmf: structure describing the fault 2631 * 2632 * This function handles all that is needed to finish a write page fault in a 2633 * shared mapping due to PTE being read-only once the mapped page is prepared. 2634 * It handles locking of PTE and modifying it. The function returns 2635 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2636 * lock. 2637 * 2638 * The function expects the page to be locked or other protection against 2639 * concurrent faults / writeback (such as DAX radix tree locks). 2640 */ 2641 int finish_mkwrite_fault(struct vm_fault *vmf) 2642 { 2643 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2644 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2645 &vmf->ptl); 2646 /* 2647 * We might have raced with another page fault while we released the 2648 * pte_offset_map_lock. 2649 */ 2650 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2651 pte_unmap_unlock(vmf->pte, vmf->ptl); 2652 return VM_FAULT_NOPAGE; 2653 } 2654 wp_page_reuse(vmf); 2655 return 0; 2656 } 2657 2658 /* 2659 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2660 * mapping 2661 */ 2662 static int wp_pfn_shared(struct vm_fault *vmf) 2663 { 2664 struct vm_area_struct *vma = vmf->vma; 2665 2666 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2667 int ret; 2668 2669 pte_unmap_unlock(vmf->pte, vmf->ptl); 2670 vmf->flags |= FAULT_FLAG_MKWRITE; 2671 ret = vma->vm_ops->pfn_mkwrite(vmf); 2672 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2673 return ret; 2674 return finish_mkwrite_fault(vmf); 2675 } 2676 wp_page_reuse(vmf); 2677 return VM_FAULT_WRITE; 2678 } 2679 2680 static int wp_page_shared(struct vm_fault *vmf) 2681 __releases(vmf->ptl) 2682 { 2683 struct vm_area_struct *vma = vmf->vma; 2684 2685 get_page(vmf->page); 2686 2687 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2688 int tmp; 2689 2690 pte_unmap_unlock(vmf->pte, vmf->ptl); 2691 tmp = do_page_mkwrite(vmf); 2692 if (unlikely(!tmp || (tmp & 2693 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2694 put_page(vmf->page); 2695 return tmp; 2696 } 2697 tmp = finish_mkwrite_fault(vmf); 2698 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2699 unlock_page(vmf->page); 2700 put_page(vmf->page); 2701 return tmp; 2702 } 2703 } else { 2704 wp_page_reuse(vmf); 2705 lock_page(vmf->page); 2706 } 2707 fault_dirty_shared_page(vma, vmf->page); 2708 put_page(vmf->page); 2709 2710 return VM_FAULT_WRITE; 2711 } 2712 2713 /* 2714 * This routine handles present pages, when users try to write 2715 * to a shared page. It is done by copying the page to a new address 2716 * and decrementing the shared-page counter for the old page. 2717 * 2718 * Note that this routine assumes that the protection checks have been 2719 * done by the caller (the low-level page fault routine in most cases). 2720 * Thus we can safely just mark it writable once we've done any necessary 2721 * COW. 2722 * 2723 * We also mark the page dirty at this point even though the page will 2724 * change only once the write actually happens. This avoids a few races, 2725 * and potentially makes it more efficient. 2726 * 2727 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2728 * but allow concurrent faults), with pte both mapped and locked. 2729 * We return with mmap_sem still held, but pte unmapped and unlocked. 2730 */ 2731 static int do_wp_page(struct vm_fault *vmf) 2732 __releases(vmf->ptl) 2733 { 2734 struct vm_area_struct *vma = vmf->vma; 2735 2736 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2737 if (!vmf->page) { 2738 /* 2739 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2740 * VM_PFNMAP VMA. 2741 * 2742 * We should not cow pages in a shared writeable mapping. 2743 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2744 */ 2745 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2746 (VM_WRITE|VM_SHARED)) 2747 return wp_pfn_shared(vmf); 2748 2749 pte_unmap_unlock(vmf->pte, vmf->ptl); 2750 return wp_page_copy(vmf); 2751 } 2752 2753 /* 2754 * Take out anonymous pages first, anonymous shared vmas are 2755 * not dirty accountable. 2756 */ 2757 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 2758 int total_map_swapcount; 2759 if (!trylock_page(vmf->page)) { 2760 get_page(vmf->page); 2761 pte_unmap_unlock(vmf->pte, vmf->ptl); 2762 lock_page(vmf->page); 2763 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2764 vmf->address, &vmf->ptl); 2765 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2766 unlock_page(vmf->page); 2767 pte_unmap_unlock(vmf->pte, vmf->ptl); 2768 put_page(vmf->page); 2769 return 0; 2770 } 2771 put_page(vmf->page); 2772 } 2773 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2774 if (total_map_swapcount == 1) { 2775 /* 2776 * The page is all ours. Move it to 2777 * our anon_vma so the rmap code will 2778 * not search our parent or siblings. 2779 * Protected against the rmap code by 2780 * the page lock. 2781 */ 2782 page_move_anon_rmap(vmf->page, vma); 2783 } 2784 unlock_page(vmf->page); 2785 wp_page_reuse(vmf); 2786 return VM_FAULT_WRITE; 2787 } 2788 unlock_page(vmf->page); 2789 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2790 (VM_WRITE|VM_SHARED))) { 2791 return wp_page_shared(vmf); 2792 } 2793 2794 /* 2795 * Ok, we need to copy. Oh, well.. 2796 */ 2797 get_page(vmf->page); 2798 2799 pte_unmap_unlock(vmf->pte, vmf->ptl); 2800 return wp_page_copy(vmf); 2801 } 2802 2803 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2804 unsigned long start_addr, unsigned long end_addr, 2805 struct zap_details *details) 2806 { 2807 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2808 } 2809 2810 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2811 struct zap_details *details) 2812 { 2813 struct vm_area_struct *vma; 2814 pgoff_t vba, vea, zba, zea; 2815 2816 vma_interval_tree_foreach(vma, root, 2817 details->first_index, details->last_index) { 2818 2819 vba = vma->vm_pgoff; 2820 vea = vba + vma_pages(vma) - 1; 2821 zba = details->first_index; 2822 if (zba < vba) 2823 zba = vba; 2824 zea = details->last_index; 2825 if (zea > vea) 2826 zea = vea; 2827 2828 unmap_mapping_range_vma(vma, 2829 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2830 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2831 details); 2832 } 2833 } 2834 2835 /** 2836 * unmap_mapping_pages() - Unmap pages from processes. 2837 * @mapping: The address space containing pages to be unmapped. 2838 * @start: Index of first page to be unmapped. 2839 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2840 * @even_cows: Whether to unmap even private COWed pages. 2841 * 2842 * Unmap the pages in this address space from any userspace process which 2843 * has them mmaped. Generally, you want to remove COWed pages as well when 2844 * a file is being truncated, but not when invalidating pages from the page 2845 * cache. 2846 */ 2847 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2848 pgoff_t nr, bool even_cows) 2849 { 2850 struct zap_details details = { }; 2851 2852 details.check_mapping = even_cows ? NULL : mapping; 2853 details.first_index = start; 2854 details.last_index = start + nr - 1; 2855 if (details.last_index < details.first_index) 2856 details.last_index = ULONG_MAX; 2857 2858 i_mmap_lock_write(mapping); 2859 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2860 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2861 i_mmap_unlock_write(mapping); 2862 } 2863 2864 /** 2865 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2866 * address_space corresponding to the specified byte range in the underlying 2867 * file. 2868 * 2869 * @mapping: the address space containing mmaps to be unmapped. 2870 * @holebegin: byte in first page to unmap, relative to the start of 2871 * the underlying file. This will be rounded down to a PAGE_SIZE 2872 * boundary. Note that this is different from truncate_pagecache(), which 2873 * must keep the partial page. In contrast, we must get rid of 2874 * partial pages. 2875 * @holelen: size of prospective hole in bytes. This will be rounded 2876 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2877 * end of the file. 2878 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2879 * but 0 when invalidating pagecache, don't throw away private data. 2880 */ 2881 void unmap_mapping_range(struct address_space *mapping, 2882 loff_t const holebegin, loff_t const holelen, int even_cows) 2883 { 2884 pgoff_t hba = holebegin >> PAGE_SHIFT; 2885 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2886 2887 /* Check for overflow. */ 2888 if (sizeof(holelen) > sizeof(hlen)) { 2889 long long holeend = 2890 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2891 if (holeend & ~(long long)ULONG_MAX) 2892 hlen = ULONG_MAX - hba + 1; 2893 } 2894 2895 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2896 } 2897 EXPORT_SYMBOL(unmap_mapping_range); 2898 2899 /* 2900 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2901 * but allow concurrent faults), and pte mapped but not yet locked. 2902 * We return with pte unmapped and unlocked. 2903 * 2904 * We return with the mmap_sem locked or unlocked in the same cases 2905 * as does filemap_fault(). 2906 */ 2907 int do_swap_page(struct vm_fault *vmf) 2908 { 2909 struct vm_area_struct *vma = vmf->vma; 2910 struct page *page = NULL, *swapcache; 2911 struct mem_cgroup *memcg; 2912 swp_entry_t entry; 2913 pte_t pte; 2914 int locked; 2915 int exclusive = 0; 2916 int ret = 0; 2917 2918 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2919 goto out; 2920 2921 entry = pte_to_swp_entry(vmf->orig_pte); 2922 if (unlikely(non_swap_entry(entry))) { 2923 if (is_migration_entry(entry)) { 2924 migration_entry_wait(vma->vm_mm, vmf->pmd, 2925 vmf->address); 2926 } else if (is_device_private_entry(entry)) { 2927 /* 2928 * For un-addressable device memory we call the pgmap 2929 * fault handler callback. The callback must migrate 2930 * the page back to some CPU accessible page. 2931 */ 2932 ret = device_private_entry_fault(vma, vmf->address, entry, 2933 vmf->flags, vmf->pmd); 2934 } else if (is_hwpoison_entry(entry)) { 2935 ret = VM_FAULT_HWPOISON; 2936 } else { 2937 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2938 ret = VM_FAULT_SIGBUS; 2939 } 2940 goto out; 2941 } 2942 2943 2944 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2945 page = lookup_swap_cache(entry, vma, vmf->address); 2946 swapcache = page; 2947 2948 if (!page) { 2949 struct swap_info_struct *si = swp_swap_info(entry); 2950 2951 if (si->flags & SWP_SYNCHRONOUS_IO && 2952 __swap_count(si, entry) == 1) { 2953 /* skip swapcache */ 2954 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2955 vmf->address); 2956 if (page) { 2957 __SetPageLocked(page); 2958 __SetPageSwapBacked(page); 2959 set_page_private(page, entry.val); 2960 lru_cache_add_anon(page); 2961 swap_readpage(page, true); 2962 } 2963 } else { 2964 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2965 vmf); 2966 swapcache = page; 2967 } 2968 2969 if (!page) { 2970 /* 2971 * Back out if somebody else faulted in this pte 2972 * while we released the pte lock. 2973 */ 2974 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2975 vmf->address, &vmf->ptl); 2976 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2977 ret = VM_FAULT_OOM; 2978 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2979 goto unlock; 2980 } 2981 2982 /* Had to read the page from swap area: Major fault */ 2983 ret = VM_FAULT_MAJOR; 2984 count_vm_event(PGMAJFAULT); 2985 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2986 } else if (PageHWPoison(page)) { 2987 /* 2988 * hwpoisoned dirty swapcache pages are kept for killing 2989 * owner processes (which may be unknown at hwpoison time) 2990 */ 2991 ret = VM_FAULT_HWPOISON; 2992 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2993 goto out_release; 2994 } 2995 2996 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2997 2998 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2999 if (!locked) { 3000 ret |= VM_FAULT_RETRY; 3001 goto out_release; 3002 } 3003 3004 /* 3005 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3006 * release the swapcache from under us. The page pin, and pte_same 3007 * test below, are not enough to exclude that. Even if it is still 3008 * swapcache, we need to check that the page's swap has not changed. 3009 */ 3010 if (unlikely((!PageSwapCache(page) || 3011 page_private(page) != entry.val)) && swapcache) 3012 goto out_page; 3013 3014 page = ksm_might_need_to_copy(page, vma, vmf->address); 3015 if (unlikely(!page)) { 3016 ret = VM_FAULT_OOM; 3017 page = swapcache; 3018 goto out_page; 3019 } 3020 3021 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 3022 &memcg, false)) { 3023 ret = VM_FAULT_OOM; 3024 goto out_page; 3025 } 3026 3027 /* 3028 * Back out if somebody else already faulted in this pte. 3029 */ 3030 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3031 &vmf->ptl); 3032 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3033 goto out_nomap; 3034 3035 if (unlikely(!PageUptodate(page))) { 3036 ret = VM_FAULT_SIGBUS; 3037 goto out_nomap; 3038 } 3039 3040 /* 3041 * The page isn't present yet, go ahead with the fault. 3042 * 3043 * Be careful about the sequence of operations here. 3044 * To get its accounting right, reuse_swap_page() must be called 3045 * while the page is counted on swap but not yet in mapcount i.e. 3046 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3047 * must be called after the swap_free(), or it will never succeed. 3048 */ 3049 3050 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3051 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3052 pte = mk_pte(page, vma->vm_page_prot); 3053 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3054 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3055 vmf->flags &= ~FAULT_FLAG_WRITE; 3056 ret |= VM_FAULT_WRITE; 3057 exclusive = RMAP_EXCLUSIVE; 3058 } 3059 flush_icache_page(vma, page); 3060 if (pte_swp_soft_dirty(vmf->orig_pte)) 3061 pte = pte_mksoft_dirty(pte); 3062 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3063 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3064 vmf->orig_pte = pte; 3065 3066 /* ksm created a completely new copy */ 3067 if (unlikely(page != swapcache && swapcache)) { 3068 page_add_new_anon_rmap(page, vma, vmf->address, false); 3069 mem_cgroup_commit_charge(page, memcg, false, false); 3070 lru_cache_add_active_or_unevictable(page, vma); 3071 } else { 3072 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3073 mem_cgroup_commit_charge(page, memcg, true, false); 3074 activate_page(page); 3075 } 3076 3077 swap_free(entry); 3078 if (mem_cgroup_swap_full(page) || 3079 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3080 try_to_free_swap(page); 3081 unlock_page(page); 3082 if (page != swapcache && swapcache) { 3083 /* 3084 * Hold the lock to avoid the swap entry to be reused 3085 * until we take the PT lock for the pte_same() check 3086 * (to avoid false positives from pte_same). For 3087 * further safety release the lock after the swap_free 3088 * so that the swap count won't change under a 3089 * parallel locked swapcache. 3090 */ 3091 unlock_page(swapcache); 3092 put_page(swapcache); 3093 } 3094 3095 if (vmf->flags & FAULT_FLAG_WRITE) { 3096 ret |= do_wp_page(vmf); 3097 if (ret & VM_FAULT_ERROR) 3098 ret &= VM_FAULT_ERROR; 3099 goto out; 3100 } 3101 3102 /* No need to invalidate - it was non-present before */ 3103 update_mmu_cache(vma, vmf->address, vmf->pte); 3104 unlock: 3105 pte_unmap_unlock(vmf->pte, vmf->ptl); 3106 out: 3107 return ret; 3108 out_nomap: 3109 mem_cgroup_cancel_charge(page, memcg, false); 3110 pte_unmap_unlock(vmf->pte, vmf->ptl); 3111 out_page: 3112 unlock_page(page); 3113 out_release: 3114 put_page(page); 3115 if (page != swapcache && swapcache) { 3116 unlock_page(swapcache); 3117 put_page(swapcache); 3118 } 3119 return ret; 3120 } 3121 3122 /* 3123 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3124 * but allow concurrent faults), and pte mapped but not yet locked. 3125 * We return with mmap_sem still held, but pte unmapped and unlocked. 3126 */ 3127 static int do_anonymous_page(struct vm_fault *vmf) 3128 { 3129 struct vm_area_struct *vma = vmf->vma; 3130 struct mem_cgroup *memcg; 3131 struct page *page; 3132 int ret = 0; 3133 pte_t entry; 3134 3135 /* File mapping without ->vm_ops ? */ 3136 if (vma->vm_flags & VM_SHARED) 3137 return VM_FAULT_SIGBUS; 3138 3139 /* 3140 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3141 * pte_offset_map() on pmds where a huge pmd might be created 3142 * from a different thread. 3143 * 3144 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 3145 * parallel threads are excluded by other means. 3146 * 3147 * Here we only have down_read(mmap_sem). 3148 */ 3149 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) 3150 return VM_FAULT_OOM; 3151 3152 /* See the comment in pte_alloc_one_map() */ 3153 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3154 return 0; 3155 3156 /* Use the zero-page for reads */ 3157 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3158 !mm_forbids_zeropage(vma->vm_mm)) { 3159 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3160 vma->vm_page_prot)); 3161 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3162 vmf->address, &vmf->ptl); 3163 if (!pte_none(*vmf->pte)) 3164 goto unlock; 3165 ret = check_stable_address_space(vma->vm_mm); 3166 if (ret) 3167 goto unlock; 3168 /* Deliver the page fault to userland, check inside PT lock */ 3169 if (userfaultfd_missing(vma)) { 3170 pte_unmap_unlock(vmf->pte, vmf->ptl); 3171 return handle_userfault(vmf, VM_UFFD_MISSING); 3172 } 3173 goto setpte; 3174 } 3175 3176 /* Allocate our own private page. */ 3177 if (unlikely(anon_vma_prepare(vma))) 3178 goto oom; 3179 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3180 if (!page) 3181 goto oom; 3182 3183 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 3184 false)) 3185 goto oom_free_page; 3186 3187 /* 3188 * The memory barrier inside __SetPageUptodate makes sure that 3189 * preceeding stores to the page contents become visible before 3190 * the set_pte_at() write. 3191 */ 3192 __SetPageUptodate(page); 3193 3194 entry = mk_pte(page, vma->vm_page_prot); 3195 if (vma->vm_flags & VM_WRITE) 3196 entry = pte_mkwrite(pte_mkdirty(entry)); 3197 3198 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3199 &vmf->ptl); 3200 if (!pte_none(*vmf->pte)) 3201 goto release; 3202 3203 ret = check_stable_address_space(vma->vm_mm); 3204 if (ret) 3205 goto release; 3206 3207 /* Deliver the page fault to userland, check inside PT lock */ 3208 if (userfaultfd_missing(vma)) { 3209 pte_unmap_unlock(vmf->pte, vmf->ptl); 3210 mem_cgroup_cancel_charge(page, memcg, false); 3211 put_page(page); 3212 return handle_userfault(vmf, VM_UFFD_MISSING); 3213 } 3214 3215 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3216 page_add_new_anon_rmap(page, vma, vmf->address, false); 3217 mem_cgroup_commit_charge(page, memcg, false, false); 3218 lru_cache_add_active_or_unevictable(page, vma); 3219 setpte: 3220 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3221 3222 /* No need to invalidate - it was non-present before */ 3223 update_mmu_cache(vma, vmf->address, vmf->pte); 3224 unlock: 3225 pte_unmap_unlock(vmf->pte, vmf->ptl); 3226 return ret; 3227 release: 3228 mem_cgroup_cancel_charge(page, memcg, false); 3229 put_page(page); 3230 goto unlock; 3231 oom_free_page: 3232 put_page(page); 3233 oom: 3234 return VM_FAULT_OOM; 3235 } 3236 3237 /* 3238 * The mmap_sem must have been held on entry, and may have been 3239 * released depending on flags and vma->vm_ops->fault() return value. 3240 * See filemap_fault() and __lock_page_retry(). 3241 */ 3242 static int __do_fault(struct vm_fault *vmf) 3243 { 3244 struct vm_area_struct *vma = vmf->vma; 3245 int ret; 3246 3247 ret = vma->vm_ops->fault(vmf); 3248 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3249 VM_FAULT_DONE_COW))) 3250 return ret; 3251 3252 if (unlikely(PageHWPoison(vmf->page))) { 3253 if (ret & VM_FAULT_LOCKED) 3254 unlock_page(vmf->page); 3255 put_page(vmf->page); 3256 vmf->page = NULL; 3257 return VM_FAULT_HWPOISON; 3258 } 3259 3260 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3261 lock_page(vmf->page); 3262 else 3263 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3264 3265 return ret; 3266 } 3267 3268 /* 3269 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3270 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3271 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3272 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3273 */ 3274 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3275 { 3276 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3277 } 3278 3279 static int pte_alloc_one_map(struct vm_fault *vmf) 3280 { 3281 struct vm_area_struct *vma = vmf->vma; 3282 3283 if (!pmd_none(*vmf->pmd)) 3284 goto map_pte; 3285 if (vmf->prealloc_pte) { 3286 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3287 if (unlikely(!pmd_none(*vmf->pmd))) { 3288 spin_unlock(vmf->ptl); 3289 goto map_pte; 3290 } 3291 3292 mm_inc_nr_ptes(vma->vm_mm); 3293 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3294 spin_unlock(vmf->ptl); 3295 vmf->prealloc_pte = NULL; 3296 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { 3297 return VM_FAULT_OOM; 3298 } 3299 map_pte: 3300 /* 3301 * If a huge pmd materialized under us just retry later. Use 3302 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3303 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3304 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3305 * running immediately after a huge pmd fault in a different thread of 3306 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3307 * All we have to ensure is that it is a regular pmd that we can walk 3308 * with pte_offset_map() and we can do that through an atomic read in 3309 * C, which is what pmd_trans_unstable() provides. 3310 */ 3311 if (pmd_devmap_trans_unstable(vmf->pmd)) 3312 return VM_FAULT_NOPAGE; 3313 3314 /* 3315 * At this point we know that our vmf->pmd points to a page of ptes 3316 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3317 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3318 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3319 * be valid and we will re-check to make sure the vmf->pte isn't 3320 * pte_none() under vmf->ptl protection when we return to 3321 * alloc_set_pte(). 3322 */ 3323 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3324 &vmf->ptl); 3325 return 0; 3326 } 3327 3328 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3329 3330 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3331 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3332 unsigned long haddr) 3333 { 3334 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3335 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3336 return false; 3337 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3338 return false; 3339 return true; 3340 } 3341 3342 static void deposit_prealloc_pte(struct vm_fault *vmf) 3343 { 3344 struct vm_area_struct *vma = vmf->vma; 3345 3346 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3347 /* 3348 * We are going to consume the prealloc table, 3349 * count that as nr_ptes. 3350 */ 3351 mm_inc_nr_ptes(vma->vm_mm); 3352 vmf->prealloc_pte = NULL; 3353 } 3354 3355 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3356 { 3357 struct vm_area_struct *vma = vmf->vma; 3358 bool write = vmf->flags & FAULT_FLAG_WRITE; 3359 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3360 pmd_t entry; 3361 int i, ret; 3362 3363 if (!transhuge_vma_suitable(vma, haddr)) 3364 return VM_FAULT_FALLBACK; 3365 3366 ret = VM_FAULT_FALLBACK; 3367 page = compound_head(page); 3368 3369 /* 3370 * Archs like ppc64 need additonal space to store information 3371 * related to pte entry. Use the preallocated table for that. 3372 */ 3373 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3374 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); 3375 if (!vmf->prealloc_pte) 3376 return VM_FAULT_OOM; 3377 smp_wmb(); /* See comment in __pte_alloc() */ 3378 } 3379 3380 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3381 if (unlikely(!pmd_none(*vmf->pmd))) 3382 goto out; 3383 3384 for (i = 0; i < HPAGE_PMD_NR; i++) 3385 flush_icache_page(vma, page + i); 3386 3387 entry = mk_huge_pmd(page, vma->vm_page_prot); 3388 if (write) 3389 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3390 3391 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3392 page_add_file_rmap(page, true); 3393 /* 3394 * deposit and withdraw with pmd lock held 3395 */ 3396 if (arch_needs_pgtable_deposit()) 3397 deposit_prealloc_pte(vmf); 3398 3399 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3400 3401 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3402 3403 /* fault is handled */ 3404 ret = 0; 3405 count_vm_event(THP_FILE_MAPPED); 3406 out: 3407 spin_unlock(vmf->ptl); 3408 return ret; 3409 } 3410 #else 3411 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3412 { 3413 BUILD_BUG(); 3414 return 0; 3415 } 3416 #endif 3417 3418 /** 3419 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3420 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3421 * 3422 * @vmf: fault environment 3423 * @memcg: memcg to charge page (only for private mappings) 3424 * @page: page to map 3425 * 3426 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3427 * return. 3428 * 3429 * Target users are page handler itself and implementations of 3430 * vm_ops->map_pages. 3431 */ 3432 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3433 struct page *page) 3434 { 3435 struct vm_area_struct *vma = vmf->vma; 3436 bool write = vmf->flags & FAULT_FLAG_WRITE; 3437 pte_t entry; 3438 int ret; 3439 3440 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3441 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3442 /* THP on COW? */ 3443 VM_BUG_ON_PAGE(memcg, page); 3444 3445 ret = do_set_pmd(vmf, page); 3446 if (ret != VM_FAULT_FALLBACK) 3447 return ret; 3448 } 3449 3450 if (!vmf->pte) { 3451 ret = pte_alloc_one_map(vmf); 3452 if (ret) 3453 return ret; 3454 } 3455 3456 /* Re-check under ptl */ 3457 if (unlikely(!pte_none(*vmf->pte))) 3458 return VM_FAULT_NOPAGE; 3459 3460 flush_icache_page(vma, page); 3461 entry = mk_pte(page, vma->vm_page_prot); 3462 if (write) 3463 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3464 /* copy-on-write page */ 3465 if (write && !(vma->vm_flags & VM_SHARED)) { 3466 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3467 page_add_new_anon_rmap(page, vma, vmf->address, false); 3468 mem_cgroup_commit_charge(page, memcg, false, false); 3469 lru_cache_add_active_or_unevictable(page, vma); 3470 } else { 3471 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3472 page_add_file_rmap(page, false); 3473 } 3474 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3475 3476 /* no need to invalidate: a not-present page won't be cached */ 3477 update_mmu_cache(vma, vmf->address, vmf->pte); 3478 3479 return 0; 3480 } 3481 3482 3483 /** 3484 * finish_fault - finish page fault once we have prepared the page to fault 3485 * 3486 * @vmf: structure describing the fault 3487 * 3488 * This function handles all that is needed to finish a page fault once the 3489 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3490 * given page, adds reverse page mapping, handles memcg charges and LRU 3491 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3492 * error. 3493 * 3494 * The function expects the page to be locked and on success it consumes a 3495 * reference of a page being mapped (for the PTE which maps it). 3496 */ 3497 int finish_fault(struct vm_fault *vmf) 3498 { 3499 struct page *page; 3500 int ret = 0; 3501 3502 /* Did we COW the page? */ 3503 if ((vmf->flags & FAULT_FLAG_WRITE) && 3504 !(vmf->vma->vm_flags & VM_SHARED)) 3505 page = vmf->cow_page; 3506 else 3507 page = vmf->page; 3508 3509 /* 3510 * check even for read faults because we might have lost our CoWed 3511 * page 3512 */ 3513 if (!(vmf->vma->vm_flags & VM_SHARED)) 3514 ret = check_stable_address_space(vmf->vma->vm_mm); 3515 if (!ret) 3516 ret = alloc_set_pte(vmf, vmf->memcg, page); 3517 if (vmf->pte) 3518 pte_unmap_unlock(vmf->pte, vmf->ptl); 3519 return ret; 3520 } 3521 3522 static unsigned long fault_around_bytes __read_mostly = 3523 rounddown_pow_of_two(65536); 3524 3525 #ifdef CONFIG_DEBUG_FS 3526 static int fault_around_bytes_get(void *data, u64 *val) 3527 { 3528 *val = fault_around_bytes; 3529 return 0; 3530 } 3531 3532 /* 3533 * fault_around_bytes must be rounded down to the nearest page order as it's 3534 * what do_fault_around() expects to see. 3535 */ 3536 static int fault_around_bytes_set(void *data, u64 val) 3537 { 3538 if (val / PAGE_SIZE > PTRS_PER_PTE) 3539 return -EINVAL; 3540 if (val > PAGE_SIZE) 3541 fault_around_bytes = rounddown_pow_of_two(val); 3542 else 3543 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3544 return 0; 3545 } 3546 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3547 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3548 3549 static int __init fault_around_debugfs(void) 3550 { 3551 void *ret; 3552 3553 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3554 &fault_around_bytes_fops); 3555 if (!ret) 3556 pr_warn("Failed to create fault_around_bytes in debugfs"); 3557 return 0; 3558 } 3559 late_initcall(fault_around_debugfs); 3560 #endif 3561 3562 /* 3563 * do_fault_around() tries to map few pages around the fault address. The hope 3564 * is that the pages will be needed soon and this will lower the number of 3565 * faults to handle. 3566 * 3567 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3568 * not ready to be mapped: not up-to-date, locked, etc. 3569 * 3570 * This function is called with the page table lock taken. In the split ptlock 3571 * case the page table lock only protects only those entries which belong to 3572 * the page table corresponding to the fault address. 3573 * 3574 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3575 * only once. 3576 * 3577 * fault_around_bytes defines how many bytes we'll try to map. 3578 * do_fault_around() expects it to be set to a power of two less than or equal 3579 * to PTRS_PER_PTE. 3580 * 3581 * The virtual address of the area that we map is naturally aligned to 3582 * fault_around_bytes rounded down to the machine page size 3583 * (and therefore to page order). This way it's easier to guarantee 3584 * that we don't cross page table boundaries. 3585 */ 3586 static int do_fault_around(struct vm_fault *vmf) 3587 { 3588 unsigned long address = vmf->address, nr_pages, mask; 3589 pgoff_t start_pgoff = vmf->pgoff; 3590 pgoff_t end_pgoff; 3591 int off, ret = 0; 3592 3593 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3594 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3595 3596 vmf->address = max(address & mask, vmf->vma->vm_start); 3597 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3598 start_pgoff -= off; 3599 3600 /* 3601 * end_pgoff is either the end of the page table, the end of 3602 * the vma or nr_pages from start_pgoff, depending what is nearest. 3603 */ 3604 end_pgoff = start_pgoff - 3605 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3606 PTRS_PER_PTE - 1; 3607 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3608 start_pgoff + nr_pages - 1); 3609 3610 if (pmd_none(*vmf->pmd)) { 3611 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, 3612 vmf->address); 3613 if (!vmf->prealloc_pte) 3614 goto out; 3615 smp_wmb(); /* See comment in __pte_alloc() */ 3616 } 3617 3618 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3619 3620 /* Huge page is mapped? Page fault is solved */ 3621 if (pmd_trans_huge(*vmf->pmd)) { 3622 ret = VM_FAULT_NOPAGE; 3623 goto out; 3624 } 3625 3626 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3627 if (!vmf->pte) 3628 goto out; 3629 3630 /* check if the page fault is solved */ 3631 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3632 if (!pte_none(*vmf->pte)) 3633 ret = VM_FAULT_NOPAGE; 3634 pte_unmap_unlock(vmf->pte, vmf->ptl); 3635 out: 3636 vmf->address = address; 3637 vmf->pte = NULL; 3638 return ret; 3639 } 3640 3641 static int do_read_fault(struct vm_fault *vmf) 3642 { 3643 struct vm_area_struct *vma = vmf->vma; 3644 int ret = 0; 3645 3646 /* 3647 * Let's call ->map_pages() first and use ->fault() as fallback 3648 * if page by the offset is not ready to be mapped (cold cache or 3649 * something). 3650 */ 3651 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3652 ret = do_fault_around(vmf); 3653 if (ret) 3654 return ret; 3655 } 3656 3657 ret = __do_fault(vmf); 3658 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3659 return ret; 3660 3661 ret |= finish_fault(vmf); 3662 unlock_page(vmf->page); 3663 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3664 put_page(vmf->page); 3665 return ret; 3666 } 3667 3668 static int do_cow_fault(struct vm_fault *vmf) 3669 { 3670 struct vm_area_struct *vma = vmf->vma; 3671 int ret; 3672 3673 if (unlikely(anon_vma_prepare(vma))) 3674 return VM_FAULT_OOM; 3675 3676 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3677 if (!vmf->cow_page) 3678 return VM_FAULT_OOM; 3679 3680 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3681 &vmf->memcg, false)) { 3682 put_page(vmf->cow_page); 3683 return VM_FAULT_OOM; 3684 } 3685 3686 ret = __do_fault(vmf); 3687 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3688 goto uncharge_out; 3689 if (ret & VM_FAULT_DONE_COW) 3690 return ret; 3691 3692 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3693 __SetPageUptodate(vmf->cow_page); 3694 3695 ret |= finish_fault(vmf); 3696 unlock_page(vmf->page); 3697 put_page(vmf->page); 3698 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3699 goto uncharge_out; 3700 return ret; 3701 uncharge_out: 3702 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3703 put_page(vmf->cow_page); 3704 return ret; 3705 } 3706 3707 static int do_shared_fault(struct vm_fault *vmf) 3708 { 3709 struct vm_area_struct *vma = vmf->vma; 3710 int ret, tmp; 3711 3712 ret = __do_fault(vmf); 3713 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3714 return ret; 3715 3716 /* 3717 * Check if the backing address space wants to know that the page is 3718 * about to become writable 3719 */ 3720 if (vma->vm_ops->page_mkwrite) { 3721 unlock_page(vmf->page); 3722 tmp = do_page_mkwrite(vmf); 3723 if (unlikely(!tmp || 3724 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3725 put_page(vmf->page); 3726 return tmp; 3727 } 3728 } 3729 3730 ret |= finish_fault(vmf); 3731 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3732 VM_FAULT_RETRY))) { 3733 unlock_page(vmf->page); 3734 put_page(vmf->page); 3735 return ret; 3736 } 3737 3738 fault_dirty_shared_page(vma, vmf->page); 3739 return ret; 3740 } 3741 3742 /* 3743 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3744 * but allow concurrent faults). 3745 * The mmap_sem may have been released depending on flags and our 3746 * return value. See filemap_fault() and __lock_page_or_retry(). 3747 */ 3748 static int do_fault(struct vm_fault *vmf) 3749 { 3750 struct vm_area_struct *vma = vmf->vma; 3751 int ret; 3752 3753 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3754 if (!vma->vm_ops->fault) 3755 ret = VM_FAULT_SIGBUS; 3756 else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3757 ret = do_read_fault(vmf); 3758 else if (!(vma->vm_flags & VM_SHARED)) 3759 ret = do_cow_fault(vmf); 3760 else 3761 ret = do_shared_fault(vmf); 3762 3763 /* preallocated pagetable is unused: free it */ 3764 if (vmf->prealloc_pte) { 3765 pte_free(vma->vm_mm, vmf->prealloc_pte); 3766 vmf->prealloc_pte = NULL; 3767 } 3768 return ret; 3769 } 3770 3771 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3772 unsigned long addr, int page_nid, 3773 int *flags) 3774 { 3775 get_page(page); 3776 3777 count_vm_numa_event(NUMA_HINT_FAULTS); 3778 if (page_nid == numa_node_id()) { 3779 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3780 *flags |= TNF_FAULT_LOCAL; 3781 } 3782 3783 return mpol_misplaced(page, vma, addr); 3784 } 3785 3786 static int do_numa_page(struct vm_fault *vmf) 3787 { 3788 struct vm_area_struct *vma = vmf->vma; 3789 struct page *page = NULL; 3790 int page_nid = -1; 3791 int last_cpupid; 3792 int target_nid; 3793 bool migrated = false; 3794 pte_t pte; 3795 bool was_writable = pte_savedwrite(vmf->orig_pte); 3796 int flags = 0; 3797 3798 /* 3799 * The "pte" at this point cannot be used safely without 3800 * validation through pte_unmap_same(). It's of NUMA type but 3801 * the pfn may be screwed if the read is non atomic. 3802 */ 3803 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3804 spin_lock(vmf->ptl); 3805 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3806 pte_unmap_unlock(vmf->pte, vmf->ptl); 3807 goto out; 3808 } 3809 3810 /* 3811 * Make it present again, Depending on how arch implementes non 3812 * accessible ptes, some can allow access by kernel mode. 3813 */ 3814 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); 3815 pte = pte_modify(pte, vma->vm_page_prot); 3816 pte = pte_mkyoung(pte); 3817 if (was_writable) 3818 pte = pte_mkwrite(pte); 3819 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); 3820 update_mmu_cache(vma, vmf->address, vmf->pte); 3821 3822 page = vm_normal_page(vma, vmf->address, pte); 3823 if (!page) { 3824 pte_unmap_unlock(vmf->pte, vmf->ptl); 3825 return 0; 3826 } 3827 3828 /* TODO: handle PTE-mapped THP */ 3829 if (PageCompound(page)) { 3830 pte_unmap_unlock(vmf->pte, vmf->ptl); 3831 return 0; 3832 } 3833 3834 /* 3835 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3836 * much anyway since they can be in shared cache state. This misses 3837 * the case where a mapping is writable but the process never writes 3838 * to it but pte_write gets cleared during protection updates and 3839 * pte_dirty has unpredictable behaviour between PTE scan updates, 3840 * background writeback, dirty balancing and application behaviour. 3841 */ 3842 if (!pte_write(pte)) 3843 flags |= TNF_NO_GROUP; 3844 3845 /* 3846 * Flag if the page is shared between multiple address spaces. This 3847 * is later used when determining whether to group tasks together 3848 */ 3849 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3850 flags |= TNF_SHARED; 3851 3852 last_cpupid = page_cpupid_last(page); 3853 page_nid = page_to_nid(page); 3854 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3855 &flags); 3856 pte_unmap_unlock(vmf->pte, vmf->ptl); 3857 if (target_nid == -1) { 3858 put_page(page); 3859 goto out; 3860 } 3861 3862 /* Migrate to the requested node */ 3863 migrated = migrate_misplaced_page(page, vma, target_nid); 3864 if (migrated) { 3865 page_nid = target_nid; 3866 flags |= TNF_MIGRATED; 3867 } else 3868 flags |= TNF_MIGRATE_FAIL; 3869 3870 out: 3871 if (page_nid != -1) 3872 task_numa_fault(last_cpupid, page_nid, 1, flags); 3873 return 0; 3874 } 3875 3876 static inline int create_huge_pmd(struct vm_fault *vmf) 3877 { 3878 if (vma_is_anonymous(vmf->vma)) 3879 return do_huge_pmd_anonymous_page(vmf); 3880 if (vmf->vma->vm_ops->huge_fault) 3881 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3882 return VM_FAULT_FALLBACK; 3883 } 3884 3885 /* `inline' is required to avoid gcc 4.1.2 build error */ 3886 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3887 { 3888 if (vma_is_anonymous(vmf->vma)) 3889 return do_huge_pmd_wp_page(vmf, orig_pmd); 3890 if (vmf->vma->vm_ops->huge_fault) 3891 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3892 3893 /* COW handled on pte level: split pmd */ 3894 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3895 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3896 3897 return VM_FAULT_FALLBACK; 3898 } 3899 3900 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3901 { 3902 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3903 } 3904 3905 static int create_huge_pud(struct vm_fault *vmf) 3906 { 3907 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3908 /* No support for anonymous transparent PUD pages yet */ 3909 if (vma_is_anonymous(vmf->vma)) 3910 return VM_FAULT_FALLBACK; 3911 if (vmf->vma->vm_ops->huge_fault) 3912 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3913 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3914 return VM_FAULT_FALLBACK; 3915 } 3916 3917 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3918 { 3919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3920 /* No support for anonymous transparent PUD pages yet */ 3921 if (vma_is_anonymous(vmf->vma)) 3922 return VM_FAULT_FALLBACK; 3923 if (vmf->vma->vm_ops->huge_fault) 3924 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3926 return VM_FAULT_FALLBACK; 3927 } 3928 3929 /* 3930 * These routines also need to handle stuff like marking pages dirty 3931 * and/or accessed for architectures that don't do it in hardware (most 3932 * RISC architectures). The early dirtying is also good on the i386. 3933 * 3934 * There is also a hook called "update_mmu_cache()" that architectures 3935 * with external mmu caches can use to update those (ie the Sparc or 3936 * PowerPC hashed page tables that act as extended TLBs). 3937 * 3938 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3939 * concurrent faults). 3940 * 3941 * The mmap_sem may have been released depending on flags and our return value. 3942 * See filemap_fault() and __lock_page_or_retry(). 3943 */ 3944 static int handle_pte_fault(struct vm_fault *vmf) 3945 { 3946 pte_t entry; 3947 3948 if (unlikely(pmd_none(*vmf->pmd))) { 3949 /* 3950 * Leave __pte_alloc() until later: because vm_ops->fault may 3951 * want to allocate huge page, and if we expose page table 3952 * for an instant, it will be difficult to retract from 3953 * concurrent faults and from rmap lookups. 3954 */ 3955 vmf->pte = NULL; 3956 } else { 3957 /* See comment in pte_alloc_one_map() */ 3958 if (pmd_devmap_trans_unstable(vmf->pmd)) 3959 return 0; 3960 /* 3961 * A regular pmd is established and it can't morph into a huge 3962 * pmd from under us anymore at this point because we hold the 3963 * mmap_sem read mode and khugepaged takes it in write mode. 3964 * So now it's safe to run pte_offset_map(). 3965 */ 3966 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3967 vmf->orig_pte = *vmf->pte; 3968 3969 /* 3970 * some architectures can have larger ptes than wordsize, 3971 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3972 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3973 * accesses. The code below just needs a consistent view 3974 * for the ifs and we later double check anyway with the 3975 * ptl lock held. So here a barrier will do. 3976 */ 3977 barrier(); 3978 if (pte_none(vmf->orig_pte)) { 3979 pte_unmap(vmf->pte); 3980 vmf->pte = NULL; 3981 } 3982 } 3983 3984 if (!vmf->pte) { 3985 if (vma_is_anonymous(vmf->vma)) 3986 return do_anonymous_page(vmf); 3987 else 3988 return do_fault(vmf); 3989 } 3990 3991 if (!pte_present(vmf->orig_pte)) 3992 return do_swap_page(vmf); 3993 3994 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3995 return do_numa_page(vmf); 3996 3997 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3998 spin_lock(vmf->ptl); 3999 entry = vmf->orig_pte; 4000 if (unlikely(!pte_same(*vmf->pte, entry))) 4001 goto unlock; 4002 if (vmf->flags & FAULT_FLAG_WRITE) { 4003 if (!pte_write(entry)) 4004 return do_wp_page(vmf); 4005 entry = pte_mkdirty(entry); 4006 } 4007 entry = pte_mkyoung(entry); 4008 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4009 vmf->flags & FAULT_FLAG_WRITE)) { 4010 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4011 } else { 4012 /* 4013 * This is needed only for protection faults but the arch code 4014 * is not yet telling us if this is a protection fault or not. 4015 * This still avoids useless tlb flushes for .text page faults 4016 * with threads. 4017 */ 4018 if (vmf->flags & FAULT_FLAG_WRITE) 4019 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4020 } 4021 unlock: 4022 pte_unmap_unlock(vmf->pte, vmf->ptl); 4023 return 0; 4024 } 4025 4026 /* 4027 * By the time we get here, we already hold the mm semaphore 4028 * 4029 * The mmap_sem may have been released depending on flags and our 4030 * return value. See filemap_fault() and __lock_page_or_retry(). 4031 */ 4032 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4033 unsigned int flags) 4034 { 4035 struct vm_fault vmf = { 4036 .vma = vma, 4037 .address = address & PAGE_MASK, 4038 .flags = flags, 4039 .pgoff = linear_page_index(vma, address), 4040 .gfp_mask = __get_fault_gfp_mask(vma), 4041 }; 4042 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4043 struct mm_struct *mm = vma->vm_mm; 4044 pgd_t *pgd; 4045 p4d_t *p4d; 4046 int ret; 4047 4048 pgd = pgd_offset(mm, address); 4049 p4d = p4d_alloc(mm, pgd, address); 4050 if (!p4d) 4051 return VM_FAULT_OOM; 4052 4053 vmf.pud = pud_alloc(mm, p4d, address); 4054 if (!vmf.pud) 4055 return VM_FAULT_OOM; 4056 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) { 4057 ret = create_huge_pud(&vmf); 4058 if (!(ret & VM_FAULT_FALLBACK)) 4059 return ret; 4060 } else { 4061 pud_t orig_pud = *vmf.pud; 4062 4063 barrier(); 4064 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4065 4066 /* NUMA case for anonymous PUDs would go here */ 4067 4068 if (dirty && !pud_write(orig_pud)) { 4069 ret = wp_huge_pud(&vmf, orig_pud); 4070 if (!(ret & VM_FAULT_FALLBACK)) 4071 return ret; 4072 } else { 4073 huge_pud_set_accessed(&vmf, orig_pud); 4074 return 0; 4075 } 4076 } 4077 } 4078 4079 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4080 if (!vmf.pmd) 4081 return VM_FAULT_OOM; 4082 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { 4083 ret = create_huge_pmd(&vmf); 4084 if (!(ret & VM_FAULT_FALLBACK)) 4085 return ret; 4086 } else { 4087 pmd_t orig_pmd = *vmf.pmd; 4088 4089 barrier(); 4090 if (unlikely(is_swap_pmd(orig_pmd))) { 4091 VM_BUG_ON(thp_migration_supported() && 4092 !is_pmd_migration_entry(orig_pmd)); 4093 if (is_pmd_migration_entry(orig_pmd)) 4094 pmd_migration_entry_wait(mm, vmf.pmd); 4095 return 0; 4096 } 4097 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4098 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4099 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4100 4101 if (dirty && !pmd_write(orig_pmd)) { 4102 ret = wp_huge_pmd(&vmf, orig_pmd); 4103 if (!(ret & VM_FAULT_FALLBACK)) 4104 return ret; 4105 } else { 4106 huge_pmd_set_accessed(&vmf, orig_pmd); 4107 return 0; 4108 } 4109 } 4110 } 4111 4112 return handle_pte_fault(&vmf); 4113 } 4114 4115 /* 4116 * By the time we get here, we already hold the mm semaphore 4117 * 4118 * The mmap_sem may have been released depending on flags and our 4119 * return value. See filemap_fault() and __lock_page_or_retry(). 4120 */ 4121 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4122 unsigned int flags) 4123 { 4124 int ret; 4125 4126 __set_current_state(TASK_RUNNING); 4127 4128 count_vm_event(PGFAULT); 4129 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4130 4131 /* do counter updates before entering really critical section. */ 4132 check_sync_rss_stat(current); 4133 4134 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4135 flags & FAULT_FLAG_INSTRUCTION, 4136 flags & FAULT_FLAG_REMOTE)) 4137 return VM_FAULT_SIGSEGV; 4138 4139 /* 4140 * Enable the memcg OOM handling for faults triggered in user 4141 * space. Kernel faults are handled more gracefully. 4142 */ 4143 if (flags & FAULT_FLAG_USER) 4144 mem_cgroup_enter_user_fault(); 4145 4146 if (unlikely(is_vm_hugetlb_page(vma))) 4147 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4148 else 4149 ret = __handle_mm_fault(vma, address, flags); 4150 4151 if (flags & FAULT_FLAG_USER) { 4152 mem_cgroup_exit_user_fault(); 4153 /* 4154 * The task may have entered a memcg OOM situation but 4155 * if the allocation error was handled gracefully (no 4156 * VM_FAULT_OOM), there is no need to kill anything. 4157 * Just clean up the OOM state peacefully. 4158 */ 4159 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4160 mem_cgroup_oom_synchronize(false); 4161 } 4162 4163 return ret; 4164 } 4165 EXPORT_SYMBOL_GPL(handle_mm_fault); 4166 4167 #ifndef __PAGETABLE_P4D_FOLDED 4168 /* 4169 * Allocate p4d page table. 4170 * We've already handled the fast-path in-line. 4171 */ 4172 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4173 { 4174 p4d_t *new = p4d_alloc_one(mm, address); 4175 if (!new) 4176 return -ENOMEM; 4177 4178 smp_wmb(); /* See comment in __pte_alloc */ 4179 4180 spin_lock(&mm->page_table_lock); 4181 if (pgd_present(*pgd)) /* Another has populated it */ 4182 p4d_free(mm, new); 4183 else 4184 pgd_populate(mm, pgd, new); 4185 spin_unlock(&mm->page_table_lock); 4186 return 0; 4187 } 4188 #endif /* __PAGETABLE_P4D_FOLDED */ 4189 4190 #ifndef __PAGETABLE_PUD_FOLDED 4191 /* 4192 * Allocate page upper directory. 4193 * We've already handled the fast-path in-line. 4194 */ 4195 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4196 { 4197 pud_t *new = pud_alloc_one(mm, address); 4198 if (!new) 4199 return -ENOMEM; 4200 4201 smp_wmb(); /* See comment in __pte_alloc */ 4202 4203 spin_lock(&mm->page_table_lock); 4204 #ifndef __ARCH_HAS_5LEVEL_HACK 4205 if (!p4d_present(*p4d)) { 4206 mm_inc_nr_puds(mm); 4207 p4d_populate(mm, p4d, new); 4208 } else /* Another has populated it */ 4209 pud_free(mm, new); 4210 #else 4211 if (!pgd_present(*p4d)) { 4212 mm_inc_nr_puds(mm); 4213 pgd_populate(mm, p4d, new); 4214 } else /* Another has populated it */ 4215 pud_free(mm, new); 4216 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4217 spin_unlock(&mm->page_table_lock); 4218 return 0; 4219 } 4220 #endif /* __PAGETABLE_PUD_FOLDED */ 4221 4222 #ifndef __PAGETABLE_PMD_FOLDED 4223 /* 4224 * Allocate page middle directory. 4225 * We've already handled the fast-path in-line. 4226 */ 4227 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4228 { 4229 spinlock_t *ptl; 4230 pmd_t *new = pmd_alloc_one(mm, address); 4231 if (!new) 4232 return -ENOMEM; 4233 4234 smp_wmb(); /* See comment in __pte_alloc */ 4235 4236 ptl = pud_lock(mm, pud); 4237 #ifndef __ARCH_HAS_4LEVEL_HACK 4238 if (!pud_present(*pud)) { 4239 mm_inc_nr_pmds(mm); 4240 pud_populate(mm, pud, new); 4241 } else /* Another has populated it */ 4242 pmd_free(mm, new); 4243 #else 4244 if (!pgd_present(*pud)) { 4245 mm_inc_nr_pmds(mm); 4246 pgd_populate(mm, pud, new); 4247 } else /* Another has populated it */ 4248 pmd_free(mm, new); 4249 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4250 spin_unlock(ptl); 4251 return 0; 4252 } 4253 #endif /* __PAGETABLE_PMD_FOLDED */ 4254 4255 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4256 unsigned long *start, unsigned long *end, 4257 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4258 { 4259 pgd_t *pgd; 4260 p4d_t *p4d; 4261 pud_t *pud; 4262 pmd_t *pmd; 4263 pte_t *ptep; 4264 4265 pgd = pgd_offset(mm, address); 4266 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4267 goto out; 4268 4269 p4d = p4d_offset(pgd, address); 4270 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4271 goto out; 4272 4273 pud = pud_offset(p4d, address); 4274 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4275 goto out; 4276 4277 pmd = pmd_offset(pud, address); 4278 VM_BUG_ON(pmd_trans_huge(*pmd)); 4279 4280 if (pmd_huge(*pmd)) { 4281 if (!pmdpp) 4282 goto out; 4283 4284 if (start && end) { 4285 *start = address & PMD_MASK; 4286 *end = *start + PMD_SIZE; 4287 mmu_notifier_invalidate_range_start(mm, *start, *end); 4288 } 4289 *ptlp = pmd_lock(mm, pmd); 4290 if (pmd_huge(*pmd)) { 4291 *pmdpp = pmd; 4292 return 0; 4293 } 4294 spin_unlock(*ptlp); 4295 if (start && end) 4296 mmu_notifier_invalidate_range_end(mm, *start, *end); 4297 } 4298 4299 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4300 goto out; 4301 4302 if (start && end) { 4303 *start = address & PAGE_MASK; 4304 *end = *start + PAGE_SIZE; 4305 mmu_notifier_invalidate_range_start(mm, *start, *end); 4306 } 4307 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4308 if (!pte_present(*ptep)) 4309 goto unlock; 4310 *ptepp = ptep; 4311 return 0; 4312 unlock: 4313 pte_unmap_unlock(ptep, *ptlp); 4314 if (start && end) 4315 mmu_notifier_invalidate_range_end(mm, *start, *end); 4316 out: 4317 return -EINVAL; 4318 } 4319 4320 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4321 pte_t **ptepp, spinlock_t **ptlp) 4322 { 4323 int res; 4324 4325 /* (void) is needed to make gcc happy */ 4326 (void) __cond_lock(*ptlp, 4327 !(res = __follow_pte_pmd(mm, address, NULL, NULL, 4328 ptepp, NULL, ptlp))); 4329 return res; 4330 } 4331 4332 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4333 unsigned long *start, unsigned long *end, 4334 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4335 { 4336 int res; 4337 4338 /* (void) is needed to make gcc happy */ 4339 (void) __cond_lock(*ptlp, 4340 !(res = __follow_pte_pmd(mm, address, start, end, 4341 ptepp, pmdpp, ptlp))); 4342 return res; 4343 } 4344 EXPORT_SYMBOL(follow_pte_pmd); 4345 4346 /** 4347 * follow_pfn - look up PFN at a user virtual address 4348 * @vma: memory mapping 4349 * @address: user virtual address 4350 * @pfn: location to store found PFN 4351 * 4352 * Only IO mappings and raw PFN mappings are allowed. 4353 * 4354 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4355 */ 4356 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4357 unsigned long *pfn) 4358 { 4359 int ret = -EINVAL; 4360 spinlock_t *ptl; 4361 pte_t *ptep; 4362 4363 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4364 return ret; 4365 4366 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4367 if (ret) 4368 return ret; 4369 *pfn = pte_pfn(*ptep); 4370 pte_unmap_unlock(ptep, ptl); 4371 return 0; 4372 } 4373 EXPORT_SYMBOL(follow_pfn); 4374 4375 #ifdef CONFIG_HAVE_IOREMAP_PROT 4376 int follow_phys(struct vm_area_struct *vma, 4377 unsigned long address, unsigned int flags, 4378 unsigned long *prot, resource_size_t *phys) 4379 { 4380 int ret = -EINVAL; 4381 pte_t *ptep, pte; 4382 spinlock_t *ptl; 4383 4384 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4385 goto out; 4386 4387 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4388 goto out; 4389 pte = *ptep; 4390 4391 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4392 goto unlock; 4393 4394 *prot = pgprot_val(pte_pgprot(pte)); 4395 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4396 4397 ret = 0; 4398 unlock: 4399 pte_unmap_unlock(ptep, ptl); 4400 out: 4401 return ret; 4402 } 4403 4404 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4405 void *buf, int len, int write) 4406 { 4407 resource_size_t phys_addr; 4408 unsigned long prot = 0; 4409 void __iomem *maddr; 4410 int offset = addr & (PAGE_SIZE-1); 4411 4412 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4413 return -EINVAL; 4414 4415 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4416 if (!maddr) 4417 return -ENOMEM; 4418 4419 if (write) 4420 memcpy_toio(maddr + offset, buf, len); 4421 else 4422 memcpy_fromio(buf, maddr + offset, len); 4423 iounmap(maddr); 4424 4425 return len; 4426 } 4427 EXPORT_SYMBOL_GPL(generic_access_phys); 4428 #endif 4429 4430 /* 4431 * Access another process' address space as given in mm. If non-NULL, use the 4432 * given task for page fault accounting. 4433 */ 4434 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4435 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4436 { 4437 struct vm_area_struct *vma; 4438 void *old_buf = buf; 4439 int write = gup_flags & FOLL_WRITE; 4440 4441 down_read(&mm->mmap_sem); 4442 /* ignore errors, just check how much was successfully transferred */ 4443 while (len) { 4444 int bytes, ret, offset; 4445 void *maddr; 4446 struct page *page = NULL; 4447 4448 ret = get_user_pages_remote(tsk, mm, addr, 1, 4449 gup_flags, &page, &vma, NULL); 4450 if (ret <= 0) { 4451 #ifndef CONFIG_HAVE_IOREMAP_PROT 4452 break; 4453 #else 4454 /* 4455 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4456 * we can access using slightly different code. 4457 */ 4458 vma = find_vma(mm, addr); 4459 if (!vma || vma->vm_start > addr) 4460 break; 4461 if (vma->vm_ops && vma->vm_ops->access) 4462 ret = vma->vm_ops->access(vma, addr, buf, 4463 len, write); 4464 if (ret <= 0) 4465 break; 4466 bytes = ret; 4467 #endif 4468 } else { 4469 bytes = len; 4470 offset = addr & (PAGE_SIZE-1); 4471 if (bytes > PAGE_SIZE-offset) 4472 bytes = PAGE_SIZE-offset; 4473 4474 maddr = kmap(page); 4475 if (write) { 4476 copy_to_user_page(vma, page, addr, 4477 maddr + offset, buf, bytes); 4478 set_page_dirty_lock(page); 4479 } else { 4480 copy_from_user_page(vma, page, addr, 4481 buf, maddr + offset, bytes); 4482 } 4483 kunmap(page); 4484 put_page(page); 4485 } 4486 len -= bytes; 4487 buf += bytes; 4488 addr += bytes; 4489 } 4490 up_read(&mm->mmap_sem); 4491 4492 return buf - old_buf; 4493 } 4494 4495 /** 4496 * access_remote_vm - access another process' address space 4497 * @mm: the mm_struct of the target address space 4498 * @addr: start address to access 4499 * @buf: source or destination buffer 4500 * @len: number of bytes to transfer 4501 * @gup_flags: flags modifying lookup behaviour 4502 * 4503 * The caller must hold a reference on @mm. 4504 */ 4505 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4506 void *buf, int len, unsigned int gup_flags) 4507 { 4508 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4509 } 4510 4511 /* 4512 * Access another process' address space. 4513 * Source/target buffer must be kernel space, 4514 * Do not walk the page table directly, use get_user_pages 4515 */ 4516 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4517 void *buf, int len, unsigned int gup_flags) 4518 { 4519 struct mm_struct *mm; 4520 int ret; 4521 4522 mm = get_task_mm(tsk); 4523 if (!mm) 4524 return 0; 4525 4526 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4527 4528 mmput(mm); 4529 4530 return ret; 4531 } 4532 EXPORT_SYMBOL_GPL(access_process_vm); 4533 4534 /* 4535 * Print the name of a VMA. 4536 */ 4537 void print_vma_addr(char *prefix, unsigned long ip) 4538 { 4539 struct mm_struct *mm = current->mm; 4540 struct vm_area_struct *vma; 4541 4542 /* 4543 * we might be running from an atomic context so we cannot sleep 4544 */ 4545 if (!down_read_trylock(&mm->mmap_sem)) 4546 return; 4547 4548 vma = find_vma(mm, ip); 4549 if (vma && vma->vm_file) { 4550 struct file *f = vma->vm_file; 4551 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4552 if (buf) { 4553 char *p; 4554 4555 p = file_path(f, buf, PAGE_SIZE); 4556 if (IS_ERR(p)) 4557 p = "?"; 4558 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4559 vma->vm_start, 4560 vma->vm_end - vma->vm_start); 4561 free_page((unsigned long)buf); 4562 } 4563 } 4564 up_read(&mm->mmap_sem); 4565 } 4566 4567 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4568 void __might_fault(const char *file, int line) 4569 { 4570 /* 4571 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4572 * holding the mmap_sem, this is safe because kernel memory doesn't 4573 * get paged out, therefore we'll never actually fault, and the 4574 * below annotations will generate false positives. 4575 */ 4576 if (uaccess_kernel()) 4577 return; 4578 if (pagefault_disabled()) 4579 return; 4580 __might_sleep(file, line, 0); 4581 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4582 if (current->mm) 4583 might_lock_read(¤t->mm->mmap_sem); 4584 #endif 4585 } 4586 EXPORT_SYMBOL(__might_fault); 4587 #endif 4588 4589 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4590 /* 4591 * Process all subpages of the specified huge page with the specified 4592 * operation. The target subpage will be processed last to keep its 4593 * cache lines hot. 4594 */ 4595 static inline void process_huge_page( 4596 unsigned long addr_hint, unsigned int pages_per_huge_page, 4597 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4598 void *arg) 4599 { 4600 int i, n, base, l; 4601 unsigned long addr = addr_hint & 4602 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4603 4604 /* Process target subpage last to keep its cache lines hot */ 4605 might_sleep(); 4606 n = (addr_hint - addr) / PAGE_SIZE; 4607 if (2 * n <= pages_per_huge_page) { 4608 /* If target subpage in first half of huge page */ 4609 base = 0; 4610 l = n; 4611 /* Process subpages at the end of huge page */ 4612 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4613 cond_resched(); 4614 process_subpage(addr + i * PAGE_SIZE, i, arg); 4615 } 4616 } else { 4617 /* If target subpage in second half of huge page */ 4618 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4619 l = pages_per_huge_page - n; 4620 /* Process subpages at the begin of huge page */ 4621 for (i = 0; i < base; i++) { 4622 cond_resched(); 4623 process_subpage(addr + i * PAGE_SIZE, i, arg); 4624 } 4625 } 4626 /* 4627 * Process remaining subpages in left-right-left-right pattern 4628 * towards the target subpage 4629 */ 4630 for (i = 0; i < l; i++) { 4631 int left_idx = base + i; 4632 int right_idx = base + 2 * l - 1 - i; 4633 4634 cond_resched(); 4635 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4636 cond_resched(); 4637 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4638 } 4639 } 4640 4641 static void clear_gigantic_page(struct page *page, 4642 unsigned long addr, 4643 unsigned int pages_per_huge_page) 4644 { 4645 int i; 4646 struct page *p = page; 4647 4648 might_sleep(); 4649 for (i = 0; i < pages_per_huge_page; 4650 i++, p = mem_map_next(p, page, i)) { 4651 cond_resched(); 4652 clear_user_highpage(p, addr + i * PAGE_SIZE); 4653 } 4654 } 4655 4656 static void clear_subpage(unsigned long addr, int idx, void *arg) 4657 { 4658 struct page *page = arg; 4659 4660 clear_user_highpage(page + idx, addr); 4661 } 4662 4663 void clear_huge_page(struct page *page, 4664 unsigned long addr_hint, unsigned int pages_per_huge_page) 4665 { 4666 unsigned long addr = addr_hint & 4667 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4668 4669 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4670 clear_gigantic_page(page, addr, pages_per_huge_page); 4671 return; 4672 } 4673 4674 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4675 } 4676 4677 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4678 unsigned long addr, 4679 struct vm_area_struct *vma, 4680 unsigned int pages_per_huge_page) 4681 { 4682 int i; 4683 struct page *dst_base = dst; 4684 struct page *src_base = src; 4685 4686 for (i = 0; i < pages_per_huge_page; ) { 4687 cond_resched(); 4688 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4689 4690 i++; 4691 dst = mem_map_next(dst, dst_base, i); 4692 src = mem_map_next(src, src_base, i); 4693 } 4694 } 4695 4696 struct copy_subpage_arg { 4697 struct page *dst; 4698 struct page *src; 4699 struct vm_area_struct *vma; 4700 }; 4701 4702 static void copy_subpage(unsigned long addr, int idx, void *arg) 4703 { 4704 struct copy_subpage_arg *copy_arg = arg; 4705 4706 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4707 addr, copy_arg->vma); 4708 } 4709 4710 void copy_user_huge_page(struct page *dst, struct page *src, 4711 unsigned long addr_hint, struct vm_area_struct *vma, 4712 unsigned int pages_per_huge_page) 4713 { 4714 unsigned long addr = addr_hint & 4715 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4716 struct copy_subpage_arg arg = { 4717 .dst = dst, 4718 .src = src, 4719 .vma = vma, 4720 }; 4721 4722 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4723 copy_user_gigantic_page(dst, src, addr, vma, 4724 pages_per_huge_page); 4725 return; 4726 } 4727 4728 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4729 } 4730 4731 long copy_huge_page_from_user(struct page *dst_page, 4732 const void __user *usr_src, 4733 unsigned int pages_per_huge_page, 4734 bool allow_pagefault) 4735 { 4736 void *src = (void *)usr_src; 4737 void *page_kaddr; 4738 unsigned long i, rc = 0; 4739 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4740 4741 for (i = 0; i < pages_per_huge_page; i++) { 4742 if (allow_pagefault) 4743 page_kaddr = kmap(dst_page + i); 4744 else 4745 page_kaddr = kmap_atomic(dst_page + i); 4746 rc = copy_from_user(page_kaddr, 4747 (const void __user *)(src + i * PAGE_SIZE), 4748 PAGE_SIZE); 4749 if (allow_pagefault) 4750 kunmap(dst_page + i); 4751 else 4752 kunmap_atomic(page_kaddr); 4753 4754 ret_val -= (PAGE_SIZE - rc); 4755 if (rc) 4756 break; 4757 4758 cond_resched(); 4759 } 4760 return ret_val; 4761 } 4762 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4763 4764 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4765 4766 static struct kmem_cache *page_ptl_cachep; 4767 4768 void __init ptlock_cache_init(void) 4769 { 4770 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4771 SLAB_PANIC, NULL); 4772 } 4773 4774 bool ptlock_alloc(struct page *page) 4775 { 4776 spinlock_t *ptl; 4777 4778 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4779 if (!ptl) 4780 return false; 4781 page->ptl = ptl; 4782 return true; 4783 } 4784 4785 void ptlock_free(struct page *page) 4786 { 4787 kmem_cache_free(page_ptl_cachep, page->ptl); 4788 } 4789 #endif 4790