1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 #include <linux/perf_event.h> 75 #include <linux/ptrace.h> 76 #include <linux/vmalloc.h> 77 78 #include <trace/events/kmem.h> 79 80 #include <asm/io.h> 81 #include <asm/mmu_context.h> 82 #include <asm/pgalloc.h> 83 #include <linux/uaccess.h> 84 #include <asm/tlb.h> 85 #include <asm/tlbflush.h> 86 87 #include "pgalloc-track.h" 88 #include "internal.h" 89 90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 92 #endif 93 94 #ifndef CONFIG_NEED_MULTIPLE_NODES 95 /* use the per-pgdat data instead for discontigmem - mbligh */ 96 unsigned long max_mapnr; 97 EXPORT_SYMBOL(max_mapnr); 98 99 struct page *mem_map; 100 EXPORT_SYMBOL(mem_map); 101 #endif 102 103 /* 104 * A number of key systems in x86 including ioremap() rely on the assumption 105 * that high_memory defines the upper bound on direct map memory, then end 106 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 107 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 108 * and ZONE_HIGHMEM. 109 */ 110 void *high_memory; 111 EXPORT_SYMBOL(high_memory); 112 113 /* 114 * Randomize the address space (stacks, mmaps, brk, etc.). 115 * 116 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 117 * as ancient (libc5 based) binaries can segfault. ) 118 */ 119 int randomize_va_space __read_mostly = 120 #ifdef CONFIG_COMPAT_BRK 121 1; 122 #else 123 2; 124 #endif 125 126 #ifndef arch_faults_on_old_pte 127 static inline bool arch_faults_on_old_pte(void) 128 { 129 /* 130 * Those arches which don't have hw access flag feature need to 131 * implement their own helper. By default, "true" means pagefault 132 * will be hit on old pte. 133 */ 134 return true; 135 } 136 #endif 137 138 static int __init disable_randmaps(char *s) 139 { 140 randomize_va_space = 0; 141 return 1; 142 } 143 __setup("norandmaps", disable_randmaps); 144 145 unsigned long zero_pfn __read_mostly; 146 EXPORT_SYMBOL(zero_pfn); 147 148 unsigned long highest_memmap_pfn __read_mostly; 149 150 /* 151 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 152 */ 153 static int __init init_zero_pfn(void) 154 { 155 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 156 return 0; 157 } 158 core_initcall(init_zero_pfn); 159 160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 161 { 162 trace_rss_stat(mm, member, count); 163 } 164 165 #if defined(SPLIT_RSS_COUNTING) 166 167 void sync_mm_rss(struct mm_struct *mm) 168 { 169 int i; 170 171 for (i = 0; i < NR_MM_COUNTERS; i++) { 172 if (current->rss_stat.count[i]) { 173 add_mm_counter(mm, i, current->rss_stat.count[i]); 174 current->rss_stat.count[i] = 0; 175 } 176 } 177 current->rss_stat.events = 0; 178 } 179 180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 181 { 182 struct task_struct *task = current; 183 184 if (likely(task->mm == mm)) 185 task->rss_stat.count[member] += val; 186 else 187 add_mm_counter(mm, member, val); 188 } 189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 191 192 /* sync counter once per 64 page faults */ 193 #define TASK_RSS_EVENTS_THRESH (64) 194 static void check_sync_rss_stat(struct task_struct *task) 195 { 196 if (unlikely(task != current)) 197 return; 198 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 199 sync_mm_rss(task->mm); 200 } 201 #else /* SPLIT_RSS_COUNTING */ 202 203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 205 206 static void check_sync_rss_stat(struct task_struct *task) 207 { 208 } 209 210 #endif /* SPLIT_RSS_COUNTING */ 211 212 /* 213 * Note: this doesn't free the actual pages themselves. That 214 * has been handled earlier when unmapping all the memory regions. 215 */ 216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 217 unsigned long addr) 218 { 219 pgtable_t token = pmd_pgtable(*pmd); 220 pmd_clear(pmd); 221 pte_free_tlb(tlb, token, addr); 222 mm_dec_nr_ptes(tlb->mm); 223 } 224 225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 226 unsigned long addr, unsigned long end, 227 unsigned long floor, unsigned long ceiling) 228 { 229 pmd_t *pmd; 230 unsigned long next; 231 unsigned long start; 232 233 start = addr; 234 pmd = pmd_offset(pud, addr); 235 do { 236 next = pmd_addr_end(addr, end); 237 if (pmd_none_or_clear_bad(pmd)) 238 continue; 239 free_pte_range(tlb, pmd, addr); 240 } while (pmd++, addr = next, addr != end); 241 242 start &= PUD_MASK; 243 if (start < floor) 244 return; 245 if (ceiling) { 246 ceiling &= PUD_MASK; 247 if (!ceiling) 248 return; 249 } 250 if (end - 1 > ceiling - 1) 251 return; 252 253 pmd = pmd_offset(pud, start); 254 pud_clear(pud); 255 pmd_free_tlb(tlb, pmd, start); 256 mm_dec_nr_pmds(tlb->mm); 257 } 258 259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 260 unsigned long addr, unsigned long end, 261 unsigned long floor, unsigned long ceiling) 262 { 263 pud_t *pud; 264 unsigned long next; 265 unsigned long start; 266 267 start = addr; 268 pud = pud_offset(p4d, addr); 269 do { 270 next = pud_addr_end(addr, end); 271 if (pud_none_or_clear_bad(pud)) 272 continue; 273 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 274 } while (pud++, addr = next, addr != end); 275 276 start &= P4D_MASK; 277 if (start < floor) 278 return; 279 if (ceiling) { 280 ceiling &= P4D_MASK; 281 if (!ceiling) 282 return; 283 } 284 if (end - 1 > ceiling - 1) 285 return; 286 287 pud = pud_offset(p4d, start); 288 p4d_clear(p4d); 289 pud_free_tlb(tlb, pud, start); 290 mm_dec_nr_puds(tlb->mm); 291 } 292 293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 294 unsigned long addr, unsigned long end, 295 unsigned long floor, unsigned long ceiling) 296 { 297 p4d_t *p4d; 298 unsigned long next; 299 unsigned long start; 300 301 start = addr; 302 p4d = p4d_offset(pgd, addr); 303 do { 304 next = p4d_addr_end(addr, end); 305 if (p4d_none_or_clear_bad(p4d)) 306 continue; 307 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 308 } while (p4d++, addr = next, addr != end); 309 310 start &= PGDIR_MASK; 311 if (start < floor) 312 return; 313 if (ceiling) { 314 ceiling &= PGDIR_MASK; 315 if (!ceiling) 316 return; 317 } 318 if (end - 1 > ceiling - 1) 319 return; 320 321 p4d = p4d_offset(pgd, start); 322 pgd_clear(pgd); 323 p4d_free_tlb(tlb, p4d, start); 324 } 325 326 /* 327 * This function frees user-level page tables of a process. 328 */ 329 void free_pgd_range(struct mmu_gather *tlb, 330 unsigned long addr, unsigned long end, 331 unsigned long floor, unsigned long ceiling) 332 { 333 pgd_t *pgd; 334 unsigned long next; 335 336 /* 337 * The next few lines have given us lots of grief... 338 * 339 * Why are we testing PMD* at this top level? Because often 340 * there will be no work to do at all, and we'd prefer not to 341 * go all the way down to the bottom just to discover that. 342 * 343 * Why all these "- 1"s? Because 0 represents both the bottom 344 * of the address space and the top of it (using -1 for the 345 * top wouldn't help much: the masks would do the wrong thing). 346 * The rule is that addr 0 and floor 0 refer to the bottom of 347 * the address space, but end 0 and ceiling 0 refer to the top 348 * Comparisons need to use "end - 1" and "ceiling - 1" (though 349 * that end 0 case should be mythical). 350 * 351 * Wherever addr is brought up or ceiling brought down, we must 352 * be careful to reject "the opposite 0" before it confuses the 353 * subsequent tests. But what about where end is brought down 354 * by PMD_SIZE below? no, end can't go down to 0 there. 355 * 356 * Whereas we round start (addr) and ceiling down, by different 357 * masks at different levels, in order to test whether a table 358 * now has no other vmas using it, so can be freed, we don't 359 * bother to round floor or end up - the tests don't need that. 360 */ 361 362 addr &= PMD_MASK; 363 if (addr < floor) { 364 addr += PMD_SIZE; 365 if (!addr) 366 return; 367 } 368 if (ceiling) { 369 ceiling &= PMD_MASK; 370 if (!ceiling) 371 return; 372 } 373 if (end - 1 > ceiling - 1) 374 end -= PMD_SIZE; 375 if (addr > end - 1) 376 return; 377 /* 378 * We add page table cache pages with PAGE_SIZE, 379 * (see pte_free_tlb()), flush the tlb if we need 380 */ 381 tlb_change_page_size(tlb, PAGE_SIZE); 382 pgd = pgd_offset(tlb->mm, addr); 383 do { 384 next = pgd_addr_end(addr, end); 385 if (pgd_none_or_clear_bad(pgd)) 386 continue; 387 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 388 } while (pgd++, addr = next, addr != end); 389 } 390 391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 392 unsigned long floor, unsigned long ceiling) 393 { 394 while (vma) { 395 struct vm_area_struct *next = vma->vm_next; 396 unsigned long addr = vma->vm_start; 397 398 /* 399 * Hide vma from rmap and truncate_pagecache before freeing 400 * pgtables 401 */ 402 unlink_anon_vmas(vma); 403 unlink_file_vma(vma); 404 405 if (is_vm_hugetlb_page(vma)) { 406 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 407 floor, next ? next->vm_start : ceiling); 408 } else { 409 /* 410 * Optimization: gather nearby vmas into one call down 411 */ 412 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 413 && !is_vm_hugetlb_page(next)) { 414 vma = next; 415 next = vma->vm_next; 416 unlink_anon_vmas(vma); 417 unlink_file_vma(vma); 418 } 419 free_pgd_range(tlb, addr, vma->vm_end, 420 floor, next ? next->vm_start : ceiling); 421 } 422 vma = next; 423 } 424 } 425 426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 427 { 428 spinlock_t *ptl; 429 pgtable_t new = pte_alloc_one(mm); 430 if (!new) 431 return -ENOMEM; 432 433 /* 434 * Ensure all pte setup (eg. pte page lock and page clearing) are 435 * visible before the pte is made visible to other CPUs by being 436 * put into page tables. 437 * 438 * The other side of the story is the pointer chasing in the page 439 * table walking code (when walking the page table without locking; 440 * ie. most of the time). Fortunately, these data accesses consist 441 * of a chain of data-dependent loads, meaning most CPUs (alpha 442 * being the notable exception) will already guarantee loads are 443 * seen in-order. See the alpha page table accessors for the 444 * smp_rmb() barriers in page table walking code. 445 */ 446 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 447 448 ptl = pmd_lock(mm, pmd); 449 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 450 mm_inc_nr_ptes(mm); 451 pmd_populate(mm, pmd, new); 452 new = NULL; 453 } 454 spin_unlock(ptl); 455 if (new) 456 pte_free(mm, new); 457 return 0; 458 } 459 460 int __pte_alloc_kernel(pmd_t *pmd) 461 { 462 pte_t *new = pte_alloc_one_kernel(&init_mm); 463 if (!new) 464 return -ENOMEM; 465 466 smp_wmb(); /* See comment in __pte_alloc */ 467 468 spin_lock(&init_mm.page_table_lock); 469 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 470 pmd_populate_kernel(&init_mm, pmd, new); 471 new = NULL; 472 } 473 spin_unlock(&init_mm.page_table_lock); 474 if (new) 475 pte_free_kernel(&init_mm, new); 476 return 0; 477 } 478 479 static inline void init_rss_vec(int *rss) 480 { 481 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 482 } 483 484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 485 { 486 int i; 487 488 if (current->mm == mm) 489 sync_mm_rss(mm); 490 for (i = 0; i < NR_MM_COUNTERS; i++) 491 if (rss[i]) 492 add_mm_counter(mm, i, rss[i]); 493 } 494 495 /* 496 * This function is called to print an error when a bad pte 497 * is found. For example, we might have a PFN-mapped pte in 498 * a region that doesn't allow it. 499 * 500 * The calling function must still handle the error. 501 */ 502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 503 pte_t pte, struct page *page) 504 { 505 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 506 p4d_t *p4d = p4d_offset(pgd, addr); 507 pud_t *pud = pud_offset(p4d, addr); 508 pmd_t *pmd = pmd_offset(pud, addr); 509 struct address_space *mapping; 510 pgoff_t index; 511 static unsigned long resume; 512 static unsigned long nr_shown; 513 static unsigned long nr_unshown; 514 515 /* 516 * Allow a burst of 60 reports, then keep quiet for that minute; 517 * or allow a steady drip of one report per second. 518 */ 519 if (nr_shown == 60) { 520 if (time_before(jiffies, resume)) { 521 nr_unshown++; 522 return; 523 } 524 if (nr_unshown) { 525 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 526 nr_unshown); 527 nr_unshown = 0; 528 } 529 nr_shown = 0; 530 } 531 if (nr_shown++ == 0) 532 resume = jiffies + 60 * HZ; 533 534 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 535 index = linear_page_index(vma, addr); 536 537 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 538 current->comm, 539 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 540 if (page) 541 dump_page(page, "bad pte"); 542 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 543 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 544 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 545 vma->vm_file, 546 vma->vm_ops ? vma->vm_ops->fault : NULL, 547 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 548 mapping ? mapping->a_ops->readpage : NULL); 549 dump_stack(); 550 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 551 } 552 553 /* 554 * vm_normal_page -- This function gets the "struct page" associated with a pte. 555 * 556 * "Special" mappings do not wish to be associated with a "struct page" (either 557 * it doesn't exist, or it exists but they don't want to touch it). In this 558 * case, NULL is returned here. "Normal" mappings do have a struct page. 559 * 560 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 561 * pte bit, in which case this function is trivial. Secondly, an architecture 562 * may not have a spare pte bit, which requires a more complicated scheme, 563 * described below. 564 * 565 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 566 * special mapping (even if there are underlying and valid "struct pages"). 567 * COWed pages of a VM_PFNMAP are always normal. 568 * 569 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 570 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 571 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 572 * mapping will always honor the rule 573 * 574 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 575 * 576 * And for normal mappings this is false. 577 * 578 * This restricts such mappings to be a linear translation from virtual address 579 * to pfn. To get around this restriction, we allow arbitrary mappings so long 580 * as the vma is not a COW mapping; in that case, we know that all ptes are 581 * special (because none can have been COWed). 582 * 583 * 584 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 585 * 586 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 587 * page" backing, however the difference is that _all_ pages with a struct 588 * page (that is, those where pfn_valid is true) are refcounted and considered 589 * normal pages by the VM. The disadvantage is that pages are refcounted 590 * (which can be slower and simply not an option for some PFNMAP users). The 591 * advantage is that we don't have to follow the strict linearity rule of 592 * PFNMAP mappings in order to support COWable mappings. 593 * 594 */ 595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 596 pte_t pte) 597 { 598 unsigned long pfn = pte_pfn(pte); 599 600 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 601 if (likely(!pte_special(pte))) 602 goto check_pfn; 603 if (vma->vm_ops && vma->vm_ops->find_special_page) 604 return vma->vm_ops->find_special_page(vma, addr); 605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 606 return NULL; 607 if (is_zero_pfn(pfn)) 608 return NULL; 609 if (pte_devmap(pte)) 610 return NULL; 611 612 print_bad_pte(vma, addr, pte, NULL); 613 return NULL; 614 } 615 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 617 618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 619 if (vma->vm_flags & VM_MIXEDMAP) { 620 if (!pfn_valid(pfn)) 621 return NULL; 622 goto out; 623 } else { 624 unsigned long off; 625 off = (addr - vma->vm_start) >> PAGE_SHIFT; 626 if (pfn == vma->vm_pgoff + off) 627 return NULL; 628 if (!is_cow_mapping(vma->vm_flags)) 629 return NULL; 630 } 631 } 632 633 if (is_zero_pfn(pfn)) 634 return NULL; 635 636 check_pfn: 637 if (unlikely(pfn > highest_memmap_pfn)) { 638 print_bad_pte(vma, addr, pte, NULL); 639 return NULL; 640 } 641 642 /* 643 * NOTE! We still have PageReserved() pages in the page tables. 644 * eg. VDSO mappings can cause them to exist. 645 */ 646 out: 647 return pfn_to_page(pfn); 648 } 649 650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 652 pmd_t pmd) 653 { 654 unsigned long pfn = pmd_pfn(pmd); 655 656 /* 657 * There is no pmd_special() but there may be special pmds, e.g. 658 * in a direct-access (dax) mapping, so let's just replicate the 659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 660 */ 661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 662 if (vma->vm_flags & VM_MIXEDMAP) { 663 if (!pfn_valid(pfn)) 664 return NULL; 665 goto out; 666 } else { 667 unsigned long off; 668 off = (addr - vma->vm_start) >> PAGE_SHIFT; 669 if (pfn == vma->vm_pgoff + off) 670 return NULL; 671 if (!is_cow_mapping(vma->vm_flags)) 672 return NULL; 673 } 674 } 675 676 if (pmd_devmap(pmd)) 677 return NULL; 678 if (is_huge_zero_pmd(pmd)) 679 return NULL; 680 if (unlikely(pfn > highest_memmap_pfn)) 681 return NULL; 682 683 /* 684 * NOTE! We still have PageReserved() pages in the page tables. 685 * eg. VDSO mappings can cause them to exist. 686 */ 687 out: 688 return pfn_to_page(pfn); 689 } 690 #endif 691 692 /* 693 * copy one vm_area from one task to the other. Assumes the page tables 694 * already present in the new task to be cleared in the whole range 695 * covered by this vma. 696 */ 697 698 static inline unsigned long 699 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 701 unsigned long addr, int *rss) 702 { 703 unsigned long vm_flags = vma->vm_flags; 704 pte_t pte = *src_pte; 705 struct page *page; 706 707 /* pte contains position in swap or file, so copy. */ 708 if (unlikely(!pte_present(pte))) { 709 swp_entry_t entry = pte_to_swp_entry(pte); 710 711 if (likely(!non_swap_entry(entry))) { 712 if (swap_duplicate(entry) < 0) 713 return entry.val; 714 715 /* make sure dst_mm is on swapoff's mmlist. */ 716 if (unlikely(list_empty(&dst_mm->mmlist))) { 717 spin_lock(&mmlist_lock); 718 if (list_empty(&dst_mm->mmlist)) 719 list_add(&dst_mm->mmlist, 720 &src_mm->mmlist); 721 spin_unlock(&mmlist_lock); 722 } 723 rss[MM_SWAPENTS]++; 724 } else if (is_migration_entry(entry)) { 725 page = migration_entry_to_page(entry); 726 727 rss[mm_counter(page)]++; 728 729 if (is_write_migration_entry(entry) && 730 is_cow_mapping(vm_flags)) { 731 /* 732 * COW mappings require pages in both 733 * parent and child to be set to read. 734 */ 735 make_migration_entry_read(&entry); 736 pte = swp_entry_to_pte(entry); 737 if (pte_swp_soft_dirty(*src_pte)) 738 pte = pte_swp_mksoft_dirty(pte); 739 if (pte_swp_uffd_wp(*src_pte)) 740 pte = pte_swp_mkuffd_wp(pte); 741 set_pte_at(src_mm, addr, src_pte, pte); 742 } 743 } else if (is_device_private_entry(entry)) { 744 page = device_private_entry_to_page(entry); 745 746 /* 747 * Update rss count even for unaddressable pages, as 748 * they should treated just like normal pages in this 749 * respect. 750 * 751 * We will likely want to have some new rss counters 752 * for unaddressable pages, at some point. But for now 753 * keep things as they are. 754 */ 755 get_page(page); 756 rss[mm_counter(page)]++; 757 page_dup_rmap(page, false); 758 759 /* 760 * We do not preserve soft-dirty information, because so 761 * far, checkpoint/restore is the only feature that 762 * requires that. And checkpoint/restore does not work 763 * when a device driver is involved (you cannot easily 764 * save and restore device driver state). 765 */ 766 if (is_write_device_private_entry(entry) && 767 is_cow_mapping(vm_flags)) { 768 make_device_private_entry_read(&entry); 769 pte = swp_entry_to_pte(entry); 770 if (pte_swp_uffd_wp(*src_pte)) 771 pte = pte_swp_mkuffd_wp(pte); 772 set_pte_at(src_mm, addr, src_pte, pte); 773 } 774 } 775 goto out_set_pte; 776 } 777 778 /* 779 * If it's a COW mapping, write protect it both 780 * in the parent and the child 781 */ 782 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 783 ptep_set_wrprotect(src_mm, addr, src_pte); 784 pte = pte_wrprotect(pte); 785 } 786 787 /* 788 * If it's a shared mapping, mark it clean in 789 * the child 790 */ 791 if (vm_flags & VM_SHARED) 792 pte = pte_mkclean(pte); 793 pte = pte_mkold(pte); 794 795 /* 796 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 797 * does not have the VM_UFFD_WP, which means that the uffd 798 * fork event is not enabled. 799 */ 800 if (!(vm_flags & VM_UFFD_WP)) 801 pte = pte_clear_uffd_wp(pte); 802 803 page = vm_normal_page(vma, addr, pte); 804 if (page) { 805 get_page(page); 806 page_dup_rmap(page, false); 807 rss[mm_counter(page)]++; 808 } 809 810 out_set_pte: 811 set_pte_at(dst_mm, addr, dst_pte, pte); 812 return 0; 813 } 814 815 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 816 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 817 unsigned long addr, unsigned long end) 818 { 819 pte_t *orig_src_pte, *orig_dst_pte; 820 pte_t *src_pte, *dst_pte; 821 spinlock_t *src_ptl, *dst_ptl; 822 int progress = 0; 823 int rss[NR_MM_COUNTERS]; 824 swp_entry_t entry = (swp_entry_t){0}; 825 826 again: 827 init_rss_vec(rss); 828 829 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 830 if (!dst_pte) 831 return -ENOMEM; 832 src_pte = pte_offset_map(src_pmd, addr); 833 src_ptl = pte_lockptr(src_mm, src_pmd); 834 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 835 orig_src_pte = src_pte; 836 orig_dst_pte = dst_pte; 837 arch_enter_lazy_mmu_mode(); 838 839 do { 840 /* 841 * We are holding two locks at this point - either of them 842 * could generate latencies in another task on another CPU. 843 */ 844 if (progress >= 32) { 845 progress = 0; 846 if (need_resched() || 847 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 848 break; 849 } 850 if (pte_none(*src_pte)) { 851 progress++; 852 continue; 853 } 854 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 855 vma, addr, rss); 856 if (entry.val) 857 break; 858 progress += 8; 859 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 860 861 arch_leave_lazy_mmu_mode(); 862 spin_unlock(src_ptl); 863 pte_unmap(orig_src_pte); 864 add_mm_rss_vec(dst_mm, rss); 865 pte_unmap_unlock(orig_dst_pte, dst_ptl); 866 cond_resched(); 867 868 if (entry.val) { 869 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 870 return -ENOMEM; 871 progress = 0; 872 } 873 if (addr != end) 874 goto again; 875 return 0; 876 } 877 878 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 879 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 880 unsigned long addr, unsigned long end) 881 { 882 pmd_t *src_pmd, *dst_pmd; 883 unsigned long next; 884 885 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 886 if (!dst_pmd) 887 return -ENOMEM; 888 src_pmd = pmd_offset(src_pud, addr); 889 do { 890 next = pmd_addr_end(addr, end); 891 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 892 || pmd_devmap(*src_pmd)) { 893 int err; 894 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 895 err = copy_huge_pmd(dst_mm, src_mm, 896 dst_pmd, src_pmd, addr, vma); 897 if (err == -ENOMEM) 898 return -ENOMEM; 899 if (!err) 900 continue; 901 /* fall through */ 902 } 903 if (pmd_none_or_clear_bad(src_pmd)) 904 continue; 905 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 906 vma, addr, next)) 907 return -ENOMEM; 908 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 909 return 0; 910 } 911 912 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 913 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 914 unsigned long addr, unsigned long end) 915 { 916 pud_t *src_pud, *dst_pud; 917 unsigned long next; 918 919 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 920 if (!dst_pud) 921 return -ENOMEM; 922 src_pud = pud_offset(src_p4d, addr); 923 do { 924 next = pud_addr_end(addr, end); 925 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 926 int err; 927 928 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 929 err = copy_huge_pud(dst_mm, src_mm, 930 dst_pud, src_pud, addr, vma); 931 if (err == -ENOMEM) 932 return -ENOMEM; 933 if (!err) 934 continue; 935 /* fall through */ 936 } 937 if (pud_none_or_clear_bad(src_pud)) 938 continue; 939 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 940 vma, addr, next)) 941 return -ENOMEM; 942 } while (dst_pud++, src_pud++, addr = next, addr != end); 943 return 0; 944 } 945 946 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 947 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 948 unsigned long addr, unsigned long end) 949 { 950 p4d_t *src_p4d, *dst_p4d; 951 unsigned long next; 952 953 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 954 if (!dst_p4d) 955 return -ENOMEM; 956 src_p4d = p4d_offset(src_pgd, addr); 957 do { 958 next = p4d_addr_end(addr, end); 959 if (p4d_none_or_clear_bad(src_p4d)) 960 continue; 961 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 962 vma, addr, next)) 963 return -ENOMEM; 964 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 965 return 0; 966 } 967 968 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 969 struct vm_area_struct *vma) 970 { 971 pgd_t *src_pgd, *dst_pgd; 972 unsigned long next; 973 unsigned long addr = vma->vm_start; 974 unsigned long end = vma->vm_end; 975 struct mmu_notifier_range range; 976 bool is_cow; 977 int ret; 978 979 /* 980 * Don't copy ptes where a page fault will fill them correctly. 981 * Fork becomes much lighter when there are big shared or private 982 * readonly mappings. The tradeoff is that copy_page_range is more 983 * efficient than faulting. 984 */ 985 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 986 !vma->anon_vma) 987 return 0; 988 989 if (is_vm_hugetlb_page(vma)) 990 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 991 992 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 993 /* 994 * We do not free on error cases below as remove_vma 995 * gets called on error from higher level routine 996 */ 997 ret = track_pfn_copy(vma); 998 if (ret) 999 return ret; 1000 } 1001 1002 /* 1003 * We need to invalidate the secondary MMU mappings only when 1004 * there could be a permission downgrade on the ptes of the 1005 * parent mm. And a permission downgrade will only happen if 1006 * is_cow_mapping() returns true. 1007 */ 1008 is_cow = is_cow_mapping(vma->vm_flags); 1009 1010 if (is_cow) { 1011 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1012 0, vma, src_mm, addr, end); 1013 mmu_notifier_invalidate_range_start(&range); 1014 } 1015 1016 ret = 0; 1017 dst_pgd = pgd_offset(dst_mm, addr); 1018 src_pgd = pgd_offset(src_mm, addr); 1019 do { 1020 next = pgd_addr_end(addr, end); 1021 if (pgd_none_or_clear_bad(src_pgd)) 1022 continue; 1023 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1024 vma, addr, next))) { 1025 ret = -ENOMEM; 1026 break; 1027 } 1028 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1029 1030 if (is_cow) 1031 mmu_notifier_invalidate_range_end(&range); 1032 return ret; 1033 } 1034 1035 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1036 struct vm_area_struct *vma, pmd_t *pmd, 1037 unsigned long addr, unsigned long end, 1038 struct zap_details *details) 1039 { 1040 struct mm_struct *mm = tlb->mm; 1041 int force_flush = 0; 1042 int rss[NR_MM_COUNTERS]; 1043 spinlock_t *ptl; 1044 pte_t *start_pte; 1045 pte_t *pte; 1046 swp_entry_t entry; 1047 1048 tlb_change_page_size(tlb, PAGE_SIZE); 1049 again: 1050 init_rss_vec(rss); 1051 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1052 pte = start_pte; 1053 flush_tlb_batched_pending(mm); 1054 arch_enter_lazy_mmu_mode(); 1055 do { 1056 pte_t ptent = *pte; 1057 if (pte_none(ptent)) 1058 continue; 1059 1060 if (need_resched()) 1061 break; 1062 1063 if (pte_present(ptent)) { 1064 struct page *page; 1065 1066 page = vm_normal_page(vma, addr, ptent); 1067 if (unlikely(details) && page) { 1068 /* 1069 * unmap_shared_mapping_pages() wants to 1070 * invalidate cache without truncating: 1071 * unmap shared but keep private pages. 1072 */ 1073 if (details->check_mapping && 1074 details->check_mapping != page_rmapping(page)) 1075 continue; 1076 } 1077 ptent = ptep_get_and_clear_full(mm, addr, pte, 1078 tlb->fullmm); 1079 tlb_remove_tlb_entry(tlb, pte, addr); 1080 if (unlikely(!page)) 1081 continue; 1082 1083 if (!PageAnon(page)) { 1084 if (pte_dirty(ptent)) { 1085 force_flush = 1; 1086 set_page_dirty(page); 1087 } 1088 if (pte_young(ptent) && 1089 likely(!(vma->vm_flags & VM_SEQ_READ))) 1090 mark_page_accessed(page); 1091 } 1092 rss[mm_counter(page)]--; 1093 page_remove_rmap(page, false); 1094 if (unlikely(page_mapcount(page) < 0)) 1095 print_bad_pte(vma, addr, ptent, page); 1096 if (unlikely(__tlb_remove_page(tlb, page))) { 1097 force_flush = 1; 1098 addr += PAGE_SIZE; 1099 break; 1100 } 1101 continue; 1102 } 1103 1104 entry = pte_to_swp_entry(ptent); 1105 if (is_device_private_entry(entry)) { 1106 struct page *page = device_private_entry_to_page(entry); 1107 1108 if (unlikely(details && details->check_mapping)) { 1109 /* 1110 * unmap_shared_mapping_pages() wants to 1111 * invalidate cache without truncating: 1112 * unmap shared but keep private pages. 1113 */ 1114 if (details->check_mapping != 1115 page_rmapping(page)) 1116 continue; 1117 } 1118 1119 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1120 rss[mm_counter(page)]--; 1121 page_remove_rmap(page, false); 1122 put_page(page); 1123 continue; 1124 } 1125 1126 /* If details->check_mapping, we leave swap entries. */ 1127 if (unlikely(details)) 1128 continue; 1129 1130 if (!non_swap_entry(entry)) 1131 rss[MM_SWAPENTS]--; 1132 else if (is_migration_entry(entry)) { 1133 struct page *page; 1134 1135 page = migration_entry_to_page(entry); 1136 rss[mm_counter(page)]--; 1137 } 1138 if (unlikely(!free_swap_and_cache(entry))) 1139 print_bad_pte(vma, addr, ptent, NULL); 1140 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1141 } while (pte++, addr += PAGE_SIZE, addr != end); 1142 1143 add_mm_rss_vec(mm, rss); 1144 arch_leave_lazy_mmu_mode(); 1145 1146 /* Do the actual TLB flush before dropping ptl */ 1147 if (force_flush) 1148 tlb_flush_mmu_tlbonly(tlb); 1149 pte_unmap_unlock(start_pte, ptl); 1150 1151 /* 1152 * If we forced a TLB flush (either due to running out of 1153 * batch buffers or because we needed to flush dirty TLB 1154 * entries before releasing the ptl), free the batched 1155 * memory too. Restart if we didn't do everything. 1156 */ 1157 if (force_flush) { 1158 force_flush = 0; 1159 tlb_flush_mmu(tlb); 1160 } 1161 1162 if (addr != end) { 1163 cond_resched(); 1164 goto again; 1165 } 1166 1167 return addr; 1168 } 1169 1170 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1171 struct vm_area_struct *vma, pud_t *pud, 1172 unsigned long addr, unsigned long end, 1173 struct zap_details *details) 1174 { 1175 pmd_t *pmd; 1176 unsigned long next; 1177 1178 pmd = pmd_offset(pud, addr); 1179 do { 1180 next = pmd_addr_end(addr, end); 1181 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1182 if (next - addr != HPAGE_PMD_SIZE) 1183 __split_huge_pmd(vma, pmd, addr, false, NULL); 1184 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1185 goto next; 1186 /* fall through */ 1187 } 1188 /* 1189 * Here there can be other concurrent MADV_DONTNEED or 1190 * trans huge page faults running, and if the pmd is 1191 * none or trans huge it can change under us. This is 1192 * because MADV_DONTNEED holds the mmap_lock in read 1193 * mode. 1194 */ 1195 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1196 goto next; 1197 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1198 next: 1199 cond_resched(); 1200 } while (pmd++, addr = next, addr != end); 1201 1202 return addr; 1203 } 1204 1205 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1206 struct vm_area_struct *vma, p4d_t *p4d, 1207 unsigned long addr, unsigned long end, 1208 struct zap_details *details) 1209 { 1210 pud_t *pud; 1211 unsigned long next; 1212 1213 pud = pud_offset(p4d, addr); 1214 do { 1215 next = pud_addr_end(addr, end); 1216 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1217 if (next - addr != HPAGE_PUD_SIZE) { 1218 mmap_assert_locked(tlb->mm); 1219 split_huge_pud(vma, pud, addr); 1220 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1221 goto next; 1222 /* fall through */ 1223 } 1224 if (pud_none_or_clear_bad(pud)) 1225 continue; 1226 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1227 next: 1228 cond_resched(); 1229 } while (pud++, addr = next, addr != end); 1230 1231 return addr; 1232 } 1233 1234 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1235 struct vm_area_struct *vma, pgd_t *pgd, 1236 unsigned long addr, unsigned long end, 1237 struct zap_details *details) 1238 { 1239 p4d_t *p4d; 1240 unsigned long next; 1241 1242 p4d = p4d_offset(pgd, addr); 1243 do { 1244 next = p4d_addr_end(addr, end); 1245 if (p4d_none_or_clear_bad(p4d)) 1246 continue; 1247 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1248 } while (p4d++, addr = next, addr != end); 1249 1250 return addr; 1251 } 1252 1253 void unmap_page_range(struct mmu_gather *tlb, 1254 struct vm_area_struct *vma, 1255 unsigned long addr, unsigned long end, 1256 struct zap_details *details) 1257 { 1258 pgd_t *pgd; 1259 unsigned long next; 1260 1261 BUG_ON(addr >= end); 1262 tlb_start_vma(tlb, vma); 1263 pgd = pgd_offset(vma->vm_mm, addr); 1264 do { 1265 next = pgd_addr_end(addr, end); 1266 if (pgd_none_or_clear_bad(pgd)) 1267 continue; 1268 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1269 } while (pgd++, addr = next, addr != end); 1270 tlb_end_vma(tlb, vma); 1271 } 1272 1273 1274 static void unmap_single_vma(struct mmu_gather *tlb, 1275 struct vm_area_struct *vma, unsigned long start_addr, 1276 unsigned long end_addr, 1277 struct zap_details *details) 1278 { 1279 unsigned long start = max(vma->vm_start, start_addr); 1280 unsigned long end; 1281 1282 if (start >= vma->vm_end) 1283 return; 1284 end = min(vma->vm_end, end_addr); 1285 if (end <= vma->vm_start) 1286 return; 1287 1288 if (vma->vm_file) 1289 uprobe_munmap(vma, start, end); 1290 1291 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1292 untrack_pfn(vma, 0, 0); 1293 1294 if (start != end) { 1295 if (unlikely(is_vm_hugetlb_page(vma))) { 1296 /* 1297 * It is undesirable to test vma->vm_file as it 1298 * should be non-null for valid hugetlb area. 1299 * However, vm_file will be NULL in the error 1300 * cleanup path of mmap_region. When 1301 * hugetlbfs ->mmap method fails, 1302 * mmap_region() nullifies vma->vm_file 1303 * before calling this function to clean up. 1304 * Since no pte has actually been setup, it is 1305 * safe to do nothing in this case. 1306 */ 1307 if (vma->vm_file) { 1308 i_mmap_lock_write(vma->vm_file->f_mapping); 1309 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1310 i_mmap_unlock_write(vma->vm_file->f_mapping); 1311 } 1312 } else 1313 unmap_page_range(tlb, vma, start, end, details); 1314 } 1315 } 1316 1317 /** 1318 * unmap_vmas - unmap a range of memory covered by a list of vma's 1319 * @tlb: address of the caller's struct mmu_gather 1320 * @vma: the starting vma 1321 * @start_addr: virtual address at which to start unmapping 1322 * @end_addr: virtual address at which to end unmapping 1323 * 1324 * Unmap all pages in the vma list. 1325 * 1326 * Only addresses between `start' and `end' will be unmapped. 1327 * 1328 * The VMA list must be sorted in ascending virtual address order. 1329 * 1330 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1331 * range after unmap_vmas() returns. So the only responsibility here is to 1332 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1333 * drops the lock and schedules. 1334 */ 1335 void unmap_vmas(struct mmu_gather *tlb, 1336 struct vm_area_struct *vma, unsigned long start_addr, 1337 unsigned long end_addr) 1338 { 1339 struct mmu_notifier_range range; 1340 1341 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1342 start_addr, end_addr); 1343 mmu_notifier_invalidate_range_start(&range); 1344 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1345 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1346 mmu_notifier_invalidate_range_end(&range); 1347 } 1348 1349 /** 1350 * zap_page_range - remove user pages in a given range 1351 * @vma: vm_area_struct holding the applicable pages 1352 * @start: starting address of pages to zap 1353 * @size: number of bytes to zap 1354 * 1355 * Caller must protect the VMA list 1356 */ 1357 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1358 unsigned long size) 1359 { 1360 struct mmu_notifier_range range; 1361 struct mmu_gather tlb; 1362 1363 lru_add_drain(); 1364 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1365 start, start + size); 1366 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1367 update_hiwater_rss(vma->vm_mm); 1368 mmu_notifier_invalidate_range_start(&range); 1369 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1370 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1371 mmu_notifier_invalidate_range_end(&range); 1372 tlb_finish_mmu(&tlb, start, range.end); 1373 } 1374 1375 /** 1376 * zap_page_range_single - remove user pages in a given range 1377 * @vma: vm_area_struct holding the applicable pages 1378 * @address: starting address of pages to zap 1379 * @size: number of bytes to zap 1380 * @details: details of shared cache invalidation 1381 * 1382 * The range must fit into one VMA. 1383 */ 1384 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1385 unsigned long size, struct zap_details *details) 1386 { 1387 struct mmu_notifier_range range; 1388 struct mmu_gather tlb; 1389 1390 lru_add_drain(); 1391 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1392 address, address + size); 1393 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1394 update_hiwater_rss(vma->vm_mm); 1395 mmu_notifier_invalidate_range_start(&range); 1396 unmap_single_vma(&tlb, vma, address, range.end, details); 1397 mmu_notifier_invalidate_range_end(&range); 1398 tlb_finish_mmu(&tlb, address, range.end); 1399 } 1400 1401 /** 1402 * zap_vma_ptes - remove ptes mapping the vma 1403 * @vma: vm_area_struct holding ptes to be zapped 1404 * @address: starting address of pages to zap 1405 * @size: number of bytes to zap 1406 * 1407 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1408 * 1409 * The entire address range must be fully contained within the vma. 1410 * 1411 */ 1412 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1413 unsigned long size) 1414 { 1415 if (address < vma->vm_start || address + size > vma->vm_end || 1416 !(vma->vm_flags & VM_PFNMAP)) 1417 return; 1418 1419 zap_page_range_single(vma, address, size, NULL); 1420 } 1421 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1422 1423 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1424 { 1425 pgd_t *pgd; 1426 p4d_t *p4d; 1427 pud_t *pud; 1428 pmd_t *pmd; 1429 1430 pgd = pgd_offset(mm, addr); 1431 p4d = p4d_alloc(mm, pgd, addr); 1432 if (!p4d) 1433 return NULL; 1434 pud = pud_alloc(mm, p4d, addr); 1435 if (!pud) 1436 return NULL; 1437 pmd = pmd_alloc(mm, pud, addr); 1438 if (!pmd) 1439 return NULL; 1440 1441 VM_BUG_ON(pmd_trans_huge(*pmd)); 1442 return pmd; 1443 } 1444 1445 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1446 spinlock_t **ptl) 1447 { 1448 pmd_t *pmd = walk_to_pmd(mm, addr); 1449 1450 if (!pmd) 1451 return NULL; 1452 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1453 } 1454 1455 static int validate_page_before_insert(struct page *page) 1456 { 1457 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1458 return -EINVAL; 1459 flush_dcache_page(page); 1460 return 0; 1461 } 1462 1463 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1464 unsigned long addr, struct page *page, pgprot_t prot) 1465 { 1466 if (!pte_none(*pte)) 1467 return -EBUSY; 1468 /* Ok, finally just insert the thing.. */ 1469 get_page(page); 1470 inc_mm_counter_fast(mm, mm_counter_file(page)); 1471 page_add_file_rmap(page, false); 1472 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1473 return 0; 1474 } 1475 1476 /* 1477 * This is the old fallback for page remapping. 1478 * 1479 * For historical reasons, it only allows reserved pages. Only 1480 * old drivers should use this, and they needed to mark their 1481 * pages reserved for the old functions anyway. 1482 */ 1483 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1484 struct page *page, pgprot_t prot) 1485 { 1486 struct mm_struct *mm = vma->vm_mm; 1487 int retval; 1488 pte_t *pte; 1489 spinlock_t *ptl; 1490 1491 retval = validate_page_before_insert(page); 1492 if (retval) 1493 goto out; 1494 retval = -ENOMEM; 1495 pte = get_locked_pte(mm, addr, &ptl); 1496 if (!pte) 1497 goto out; 1498 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1499 pte_unmap_unlock(pte, ptl); 1500 out: 1501 return retval; 1502 } 1503 1504 #ifdef pte_index 1505 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, 1506 unsigned long addr, struct page *page, pgprot_t prot) 1507 { 1508 int err; 1509 1510 if (!page_count(page)) 1511 return -EINVAL; 1512 err = validate_page_before_insert(page); 1513 if (err) 1514 return err; 1515 return insert_page_into_pte_locked(mm, pte, addr, page, prot); 1516 } 1517 1518 /* insert_pages() amortizes the cost of spinlock operations 1519 * when inserting pages in a loop. Arch *must* define pte_index. 1520 */ 1521 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1522 struct page **pages, unsigned long *num, pgprot_t prot) 1523 { 1524 pmd_t *pmd = NULL; 1525 pte_t *start_pte, *pte; 1526 spinlock_t *pte_lock; 1527 struct mm_struct *const mm = vma->vm_mm; 1528 unsigned long curr_page_idx = 0; 1529 unsigned long remaining_pages_total = *num; 1530 unsigned long pages_to_write_in_pmd; 1531 int ret; 1532 more: 1533 ret = -EFAULT; 1534 pmd = walk_to_pmd(mm, addr); 1535 if (!pmd) 1536 goto out; 1537 1538 pages_to_write_in_pmd = min_t(unsigned long, 1539 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1540 1541 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1542 ret = -ENOMEM; 1543 if (pte_alloc(mm, pmd)) 1544 goto out; 1545 1546 while (pages_to_write_in_pmd) { 1547 int pte_idx = 0; 1548 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1549 1550 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1551 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1552 int err = insert_page_in_batch_locked(mm, pte, 1553 addr, pages[curr_page_idx], prot); 1554 if (unlikely(err)) { 1555 pte_unmap_unlock(start_pte, pte_lock); 1556 ret = err; 1557 remaining_pages_total -= pte_idx; 1558 goto out; 1559 } 1560 addr += PAGE_SIZE; 1561 ++curr_page_idx; 1562 } 1563 pte_unmap_unlock(start_pte, pte_lock); 1564 pages_to_write_in_pmd -= batch_size; 1565 remaining_pages_total -= batch_size; 1566 } 1567 if (remaining_pages_total) 1568 goto more; 1569 ret = 0; 1570 out: 1571 *num = remaining_pages_total; 1572 return ret; 1573 } 1574 #endif /* ifdef pte_index */ 1575 1576 /** 1577 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1578 * @vma: user vma to map to 1579 * @addr: target start user address of these pages 1580 * @pages: source kernel pages 1581 * @num: in: number of pages to map. out: number of pages that were *not* 1582 * mapped. (0 means all pages were successfully mapped). 1583 * 1584 * Preferred over vm_insert_page() when inserting multiple pages. 1585 * 1586 * In case of error, we may have mapped a subset of the provided 1587 * pages. It is the caller's responsibility to account for this case. 1588 * 1589 * The same restrictions apply as in vm_insert_page(). 1590 */ 1591 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1592 struct page **pages, unsigned long *num) 1593 { 1594 #ifdef pte_index 1595 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1596 1597 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1598 return -EFAULT; 1599 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1600 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1601 BUG_ON(vma->vm_flags & VM_PFNMAP); 1602 vma->vm_flags |= VM_MIXEDMAP; 1603 } 1604 /* Defer page refcount checking till we're about to map that page. */ 1605 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1606 #else 1607 unsigned long idx = 0, pgcount = *num; 1608 int err = -EINVAL; 1609 1610 for (; idx < pgcount; ++idx) { 1611 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1612 if (err) 1613 break; 1614 } 1615 *num = pgcount - idx; 1616 return err; 1617 #endif /* ifdef pte_index */ 1618 } 1619 EXPORT_SYMBOL(vm_insert_pages); 1620 1621 /** 1622 * vm_insert_page - insert single page into user vma 1623 * @vma: user vma to map to 1624 * @addr: target user address of this page 1625 * @page: source kernel page 1626 * 1627 * This allows drivers to insert individual pages they've allocated 1628 * into a user vma. 1629 * 1630 * The page has to be a nice clean _individual_ kernel allocation. 1631 * If you allocate a compound page, you need to have marked it as 1632 * such (__GFP_COMP), or manually just split the page up yourself 1633 * (see split_page()). 1634 * 1635 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1636 * took an arbitrary page protection parameter. This doesn't allow 1637 * that. Your vma protection will have to be set up correctly, which 1638 * means that if you want a shared writable mapping, you'd better 1639 * ask for a shared writable mapping! 1640 * 1641 * The page does not need to be reserved. 1642 * 1643 * Usually this function is called from f_op->mmap() handler 1644 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1645 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1646 * function from other places, for example from page-fault handler. 1647 * 1648 * Return: %0 on success, negative error code otherwise. 1649 */ 1650 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1651 struct page *page) 1652 { 1653 if (addr < vma->vm_start || addr >= vma->vm_end) 1654 return -EFAULT; 1655 if (!page_count(page)) 1656 return -EINVAL; 1657 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1658 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1659 BUG_ON(vma->vm_flags & VM_PFNMAP); 1660 vma->vm_flags |= VM_MIXEDMAP; 1661 } 1662 return insert_page(vma, addr, page, vma->vm_page_prot); 1663 } 1664 EXPORT_SYMBOL(vm_insert_page); 1665 1666 /* 1667 * __vm_map_pages - maps range of kernel pages into user vma 1668 * @vma: user vma to map to 1669 * @pages: pointer to array of source kernel pages 1670 * @num: number of pages in page array 1671 * @offset: user's requested vm_pgoff 1672 * 1673 * This allows drivers to map range of kernel pages into a user vma. 1674 * 1675 * Return: 0 on success and error code otherwise. 1676 */ 1677 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1678 unsigned long num, unsigned long offset) 1679 { 1680 unsigned long count = vma_pages(vma); 1681 unsigned long uaddr = vma->vm_start; 1682 int ret, i; 1683 1684 /* Fail if the user requested offset is beyond the end of the object */ 1685 if (offset >= num) 1686 return -ENXIO; 1687 1688 /* Fail if the user requested size exceeds available object size */ 1689 if (count > num - offset) 1690 return -ENXIO; 1691 1692 for (i = 0; i < count; i++) { 1693 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1694 if (ret < 0) 1695 return ret; 1696 uaddr += PAGE_SIZE; 1697 } 1698 1699 return 0; 1700 } 1701 1702 /** 1703 * vm_map_pages - maps range of kernel pages starts with non zero offset 1704 * @vma: user vma to map to 1705 * @pages: pointer to array of source kernel pages 1706 * @num: number of pages in page array 1707 * 1708 * Maps an object consisting of @num pages, catering for the user's 1709 * requested vm_pgoff 1710 * 1711 * If we fail to insert any page into the vma, the function will return 1712 * immediately leaving any previously inserted pages present. Callers 1713 * from the mmap handler may immediately return the error as their caller 1714 * will destroy the vma, removing any successfully inserted pages. Other 1715 * callers should make their own arrangements for calling unmap_region(). 1716 * 1717 * Context: Process context. Called by mmap handlers. 1718 * Return: 0 on success and error code otherwise. 1719 */ 1720 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1721 unsigned long num) 1722 { 1723 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1724 } 1725 EXPORT_SYMBOL(vm_map_pages); 1726 1727 /** 1728 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1729 * @vma: user vma to map to 1730 * @pages: pointer to array of source kernel pages 1731 * @num: number of pages in page array 1732 * 1733 * Similar to vm_map_pages(), except that it explicitly sets the offset 1734 * to 0. This function is intended for the drivers that did not consider 1735 * vm_pgoff. 1736 * 1737 * Context: Process context. Called by mmap handlers. 1738 * Return: 0 on success and error code otherwise. 1739 */ 1740 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1741 unsigned long num) 1742 { 1743 return __vm_map_pages(vma, pages, num, 0); 1744 } 1745 EXPORT_SYMBOL(vm_map_pages_zero); 1746 1747 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1748 pfn_t pfn, pgprot_t prot, bool mkwrite) 1749 { 1750 struct mm_struct *mm = vma->vm_mm; 1751 pte_t *pte, entry; 1752 spinlock_t *ptl; 1753 1754 pte = get_locked_pte(mm, addr, &ptl); 1755 if (!pte) 1756 return VM_FAULT_OOM; 1757 if (!pte_none(*pte)) { 1758 if (mkwrite) { 1759 /* 1760 * For read faults on private mappings the PFN passed 1761 * in may not match the PFN we have mapped if the 1762 * mapped PFN is a writeable COW page. In the mkwrite 1763 * case we are creating a writable PTE for a shared 1764 * mapping and we expect the PFNs to match. If they 1765 * don't match, we are likely racing with block 1766 * allocation and mapping invalidation so just skip the 1767 * update. 1768 */ 1769 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1770 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1771 goto out_unlock; 1772 } 1773 entry = pte_mkyoung(*pte); 1774 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1775 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1776 update_mmu_cache(vma, addr, pte); 1777 } 1778 goto out_unlock; 1779 } 1780 1781 /* Ok, finally just insert the thing.. */ 1782 if (pfn_t_devmap(pfn)) 1783 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1784 else 1785 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1786 1787 if (mkwrite) { 1788 entry = pte_mkyoung(entry); 1789 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1790 } 1791 1792 set_pte_at(mm, addr, pte, entry); 1793 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1794 1795 out_unlock: 1796 pte_unmap_unlock(pte, ptl); 1797 return VM_FAULT_NOPAGE; 1798 } 1799 1800 /** 1801 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1802 * @vma: user vma to map to 1803 * @addr: target user address of this page 1804 * @pfn: source kernel pfn 1805 * @pgprot: pgprot flags for the inserted page 1806 * 1807 * This is exactly like vmf_insert_pfn(), except that it allows drivers 1808 * to override pgprot on a per-page basis. 1809 * 1810 * This only makes sense for IO mappings, and it makes no sense for 1811 * COW mappings. In general, using multiple vmas is preferable; 1812 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1813 * impractical. 1814 * 1815 * See vmf_insert_mixed_prot() for a discussion of the implication of using 1816 * a value of @pgprot different from that of @vma->vm_page_prot. 1817 * 1818 * Context: Process context. May allocate using %GFP_KERNEL. 1819 * Return: vm_fault_t value. 1820 */ 1821 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1822 unsigned long pfn, pgprot_t pgprot) 1823 { 1824 /* 1825 * Technically, architectures with pte_special can avoid all these 1826 * restrictions (same for remap_pfn_range). However we would like 1827 * consistency in testing and feature parity among all, so we should 1828 * try to keep these invariants in place for everybody. 1829 */ 1830 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1831 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1832 (VM_PFNMAP|VM_MIXEDMAP)); 1833 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1834 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1835 1836 if (addr < vma->vm_start || addr >= vma->vm_end) 1837 return VM_FAULT_SIGBUS; 1838 1839 if (!pfn_modify_allowed(pfn, pgprot)) 1840 return VM_FAULT_SIGBUS; 1841 1842 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1843 1844 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1845 false); 1846 } 1847 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1848 1849 /** 1850 * vmf_insert_pfn - insert single pfn into user vma 1851 * @vma: user vma to map to 1852 * @addr: target user address of this page 1853 * @pfn: source kernel pfn 1854 * 1855 * Similar to vm_insert_page, this allows drivers to insert individual pages 1856 * they've allocated into a user vma. Same comments apply. 1857 * 1858 * This function should only be called from a vm_ops->fault handler, and 1859 * in that case the handler should return the result of this function. 1860 * 1861 * vma cannot be a COW mapping. 1862 * 1863 * As this is called only for pages that do not currently exist, we 1864 * do not need to flush old virtual caches or the TLB. 1865 * 1866 * Context: Process context. May allocate using %GFP_KERNEL. 1867 * Return: vm_fault_t value. 1868 */ 1869 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1870 unsigned long pfn) 1871 { 1872 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1873 } 1874 EXPORT_SYMBOL(vmf_insert_pfn); 1875 1876 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1877 { 1878 /* these checks mirror the abort conditions in vm_normal_page */ 1879 if (vma->vm_flags & VM_MIXEDMAP) 1880 return true; 1881 if (pfn_t_devmap(pfn)) 1882 return true; 1883 if (pfn_t_special(pfn)) 1884 return true; 1885 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1886 return true; 1887 return false; 1888 } 1889 1890 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1891 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 1892 bool mkwrite) 1893 { 1894 int err; 1895 1896 BUG_ON(!vm_mixed_ok(vma, pfn)); 1897 1898 if (addr < vma->vm_start || addr >= vma->vm_end) 1899 return VM_FAULT_SIGBUS; 1900 1901 track_pfn_insert(vma, &pgprot, pfn); 1902 1903 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1904 return VM_FAULT_SIGBUS; 1905 1906 /* 1907 * If we don't have pte special, then we have to use the pfn_valid() 1908 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1909 * refcount the page if pfn_valid is true (hence insert_page rather 1910 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1911 * without pte special, it would there be refcounted as a normal page. 1912 */ 1913 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1914 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1915 struct page *page; 1916 1917 /* 1918 * At this point we are committed to insert_page() 1919 * regardless of whether the caller specified flags that 1920 * result in pfn_t_has_page() == false. 1921 */ 1922 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1923 err = insert_page(vma, addr, page, pgprot); 1924 } else { 1925 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1926 } 1927 1928 if (err == -ENOMEM) 1929 return VM_FAULT_OOM; 1930 if (err < 0 && err != -EBUSY) 1931 return VM_FAULT_SIGBUS; 1932 1933 return VM_FAULT_NOPAGE; 1934 } 1935 1936 /** 1937 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 1938 * @vma: user vma to map to 1939 * @addr: target user address of this page 1940 * @pfn: source kernel pfn 1941 * @pgprot: pgprot flags for the inserted page 1942 * 1943 * This is exactly like vmf_insert_mixed(), except that it allows drivers 1944 * to override pgprot on a per-page basis. 1945 * 1946 * Typically this function should be used by drivers to set caching- and 1947 * encryption bits different than those of @vma->vm_page_prot, because 1948 * the caching- or encryption mode may not be known at mmap() time. 1949 * This is ok as long as @vma->vm_page_prot is not used by the core vm 1950 * to set caching and encryption bits for those vmas (except for COW pages). 1951 * This is ensured by core vm only modifying these page table entries using 1952 * functions that don't touch caching- or encryption bits, using pte_modify() 1953 * if needed. (See for example mprotect()). 1954 * Also when new page-table entries are created, this is only done using the 1955 * fault() callback, and never using the value of vma->vm_page_prot, 1956 * except for page-table entries that point to anonymous pages as the result 1957 * of COW. 1958 * 1959 * Context: Process context. May allocate using %GFP_KERNEL. 1960 * Return: vm_fault_t value. 1961 */ 1962 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 1963 pfn_t pfn, pgprot_t pgprot) 1964 { 1965 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 1966 } 1967 EXPORT_SYMBOL(vmf_insert_mixed_prot); 1968 1969 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1970 pfn_t pfn) 1971 { 1972 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 1973 } 1974 EXPORT_SYMBOL(vmf_insert_mixed); 1975 1976 /* 1977 * If the insertion of PTE failed because someone else already added a 1978 * different entry in the mean time, we treat that as success as we assume 1979 * the same entry was actually inserted. 1980 */ 1981 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1982 unsigned long addr, pfn_t pfn) 1983 { 1984 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 1985 } 1986 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1987 1988 /* 1989 * maps a range of physical memory into the requested pages. the old 1990 * mappings are removed. any references to nonexistent pages results 1991 * in null mappings (currently treated as "copy-on-access") 1992 */ 1993 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1994 unsigned long addr, unsigned long end, 1995 unsigned long pfn, pgprot_t prot) 1996 { 1997 pte_t *pte; 1998 spinlock_t *ptl; 1999 int err = 0; 2000 2001 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2002 if (!pte) 2003 return -ENOMEM; 2004 arch_enter_lazy_mmu_mode(); 2005 do { 2006 BUG_ON(!pte_none(*pte)); 2007 if (!pfn_modify_allowed(pfn, prot)) { 2008 err = -EACCES; 2009 break; 2010 } 2011 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2012 pfn++; 2013 } while (pte++, addr += PAGE_SIZE, addr != end); 2014 arch_leave_lazy_mmu_mode(); 2015 pte_unmap_unlock(pte - 1, ptl); 2016 return err; 2017 } 2018 2019 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2020 unsigned long addr, unsigned long end, 2021 unsigned long pfn, pgprot_t prot) 2022 { 2023 pmd_t *pmd; 2024 unsigned long next; 2025 int err; 2026 2027 pfn -= addr >> PAGE_SHIFT; 2028 pmd = pmd_alloc(mm, pud, addr); 2029 if (!pmd) 2030 return -ENOMEM; 2031 VM_BUG_ON(pmd_trans_huge(*pmd)); 2032 do { 2033 next = pmd_addr_end(addr, end); 2034 err = remap_pte_range(mm, pmd, addr, next, 2035 pfn + (addr >> PAGE_SHIFT), prot); 2036 if (err) 2037 return err; 2038 } while (pmd++, addr = next, addr != end); 2039 return 0; 2040 } 2041 2042 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2043 unsigned long addr, unsigned long end, 2044 unsigned long pfn, pgprot_t prot) 2045 { 2046 pud_t *pud; 2047 unsigned long next; 2048 int err; 2049 2050 pfn -= addr >> PAGE_SHIFT; 2051 pud = pud_alloc(mm, p4d, addr); 2052 if (!pud) 2053 return -ENOMEM; 2054 do { 2055 next = pud_addr_end(addr, end); 2056 err = remap_pmd_range(mm, pud, addr, next, 2057 pfn + (addr >> PAGE_SHIFT), prot); 2058 if (err) 2059 return err; 2060 } while (pud++, addr = next, addr != end); 2061 return 0; 2062 } 2063 2064 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2065 unsigned long addr, unsigned long end, 2066 unsigned long pfn, pgprot_t prot) 2067 { 2068 p4d_t *p4d; 2069 unsigned long next; 2070 int err; 2071 2072 pfn -= addr >> PAGE_SHIFT; 2073 p4d = p4d_alloc(mm, pgd, addr); 2074 if (!p4d) 2075 return -ENOMEM; 2076 do { 2077 next = p4d_addr_end(addr, end); 2078 err = remap_pud_range(mm, p4d, addr, next, 2079 pfn + (addr >> PAGE_SHIFT), prot); 2080 if (err) 2081 return err; 2082 } while (p4d++, addr = next, addr != end); 2083 return 0; 2084 } 2085 2086 /** 2087 * remap_pfn_range - remap kernel memory to userspace 2088 * @vma: user vma to map to 2089 * @addr: target page aligned user address to start at 2090 * @pfn: page frame number of kernel physical memory address 2091 * @size: size of mapping area 2092 * @prot: page protection flags for this mapping 2093 * 2094 * Note: this is only safe if the mm semaphore is held when called. 2095 * 2096 * Return: %0 on success, negative error code otherwise. 2097 */ 2098 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2099 unsigned long pfn, unsigned long size, pgprot_t prot) 2100 { 2101 pgd_t *pgd; 2102 unsigned long next; 2103 unsigned long end = addr + PAGE_ALIGN(size); 2104 struct mm_struct *mm = vma->vm_mm; 2105 unsigned long remap_pfn = pfn; 2106 int err; 2107 2108 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2109 return -EINVAL; 2110 2111 /* 2112 * Physically remapped pages are special. Tell the 2113 * rest of the world about it: 2114 * VM_IO tells people not to look at these pages 2115 * (accesses can have side effects). 2116 * VM_PFNMAP tells the core MM that the base pages are just 2117 * raw PFN mappings, and do not have a "struct page" associated 2118 * with them. 2119 * VM_DONTEXPAND 2120 * Disable vma merging and expanding with mremap(). 2121 * VM_DONTDUMP 2122 * Omit vma from core dump, even when VM_IO turned off. 2123 * 2124 * There's a horrible special case to handle copy-on-write 2125 * behaviour that some programs depend on. We mark the "original" 2126 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2127 * See vm_normal_page() for details. 2128 */ 2129 if (is_cow_mapping(vma->vm_flags)) { 2130 if (addr != vma->vm_start || end != vma->vm_end) 2131 return -EINVAL; 2132 vma->vm_pgoff = pfn; 2133 } 2134 2135 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2136 if (err) 2137 return -EINVAL; 2138 2139 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2140 2141 BUG_ON(addr >= end); 2142 pfn -= addr >> PAGE_SHIFT; 2143 pgd = pgd_offset(mm, addr); 2144 flush_cache_range(vma, addr, end); 2145 do { 2146 next = pgd_addr_end(addr, end); 2147 err = remap_p4d_range(mm, pgd, addr, next, 2148 pfn + (addr >> PAGE_SHIFT), prot); 2149 if (err) 2150 break; 2151 } while (pgd++, addr = next, addr != end); 2152 2153 if (err) 2154 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2155 2156 return err; 2157 } 2158 EXPORT_SYMBOL(remap_pfn_range); 2159 2160 /** 2161 * vm_iomap_memory - remap memory to userspace 2162 * @vma: user vma to map to 2163 * @start: start of the physical memory to be mapped 2164 * @len: size of area 2165 * 2166 * This is a simplified io_remap_pfn_range() for common driver use. The 2167 * driver just needs to give us the physical memory range to be mapped, 2168 * we'll figure out the rest from the vma information. 2169 * 2170 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2171 * whatever write-combining details or similar. 2172 * 2173 * Return: %0 on success, negative error code otherwise. 2174 */ 2175 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2176 { 2177 unsigned long vm_len, pfn, pages; 2178 2179 /* Check that the physical memory area passed in looks valid */ 2180 if (start + len < start) 2181 return -EINVAL; 2182 /* 2183 * You *really* shouldn't map things that aren't page-aligned, 2184 * but we've historically allowed it because IO memory might 2185 * just have smaller alignment. 2186 */ 2187 len += start & ~PAGE_MASK; 2188 pfn = start >> PAGE_SHIFT; 2189 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2190 if (pfn + pages < pfn) 2191 return -EINVAL; 2192 2193 /* We start the mapping 'vm_pgoff' pages into the area */ 2194 if (vma->vm_pgoff > pages) 2195 return -EINVAL; 2196 pfn += vma->vm_pgoff; 2197 pages -= vma->vm_pgoff; 2198 2199 /* Can we fit all of the mapping? */ 2200 vm_len = vma->vm_end - vma->vm_start; 2201 if (vm_len >> PAGE_SHIFT > pages) 2202 return -EINVAL; 2203 2204 /* Ok, let it rip */ 2205 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2206 } 2207 EXPORT_SYMBOL(vm_iomap_memory); 2208 2209 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2210 unsigned long addr, unsigned long end, 2211 pte_fn_t fn, void *data, bool create, 2212 pgtbl_mod_mask *mask) 2213 { 2214 pte_t *pte; 2215 int err = 0; 2216 spinlock_t *ptl; 2217 2218 if (create) { 2219 pte = (mm == &init_mm) ? 2220 pte_alloc_kernel_track(pmd, addr, mask) : 2221 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2222 if (!pte) 2223 return -ENOMEM; 2224 } else { 2225 pte = (mm == &init_mm) ? 2226 pte_offset_kernel(pmd, addr) : 2227 pte_offset_map_lock(mm, pmd, addr, &ptl); 2228 } 2229 2230 BUG_ON(pmd_huge(*pmd)); 2231 2232 arch_enter_lazy_mmu_mode(); 2233 2234 do { 2235 if (create || !pte_none(*pte)) { 2236 err = fn(pte++, addr, data); 2237 if (err) 2238 break; 2239 } 2240 } while (addr += PAGE_SIZE, addr != end); 2241 *mask |= PGTBL_PTE_MODIFIED; 2242 2243 arch_leave_lazy_mmu_mode(); 2244 2245 if (mm != &init_mm) 2246 pte_unmap_unlock(pte-1, ptl); 2247 return err; 2248 } 2249 2250 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2251 unsigned long addr, unsigned long end, 2252 pte_fn_t fn, void *data, bool create, 2253 pgtbl_mod_mask *mask) 2254 { 2255 pmd_t *pmd; 2256 unsigned long next; 2257 int err = 0; 2258 2259 BUG_ON(pud_huge(*pud)); 2260 2261 if (create) { 2262 pmd = pmd_alloc_track(mm, pud, addr, mask); 2263 if (!pmd) 2264 return -ENOMEM; 2265 } else { 2266 pmd = pmd_offset(pud, addr); 2267 } 2268 do { 2269 next = pmd_addr_end(addr, end); 2270 if (create || !pmd_none_or_clear_bad(pmd)) { 2271 err = apply_to_pte_range(mm, pmd, addr, next, fn, data, 2272 create, mask); 2273 if (err) 2274 break; 2275 } 2276 } while (pmd++, addr = next, addr != end); 2277 return err; 2278 } 2279 2280 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2281 unsigned long addr, unsigned long end, 2282 pte_fn_t fn, void *data, bool create, 2283 pgtbl_mod_mask *mask) 2284 { 2285 pud_t *pud; 2286 unsigned long next; 2287 int err = 0; 2288 2289 if (create) { 2290 pud = pud_alloc_track(mm, p4d, addr, mask); 2291 if (!pud) 2292 return -ENOMEM; 2293 } else { 2294 pud = pud_offset(p4d, addr); 2295 } 2296 do { 2297 next = pud_addr_end(addr, end); 2298 if (create || !pud_none_or_clear_bad(pud)) { 2299 err = apply_to_pmd_range(mm, pud, addr, next, fn, data, 2300 create, mask); 2301 if (err) 2302 break; 2303 } 2304 } while (pud++, addr = next, addr != end); 2305 return err; 2306 } 2307 2308 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2309 unsigned long addr, unsigned long end, 2310 pte_fn_t fn, void *data, bool create, 2311 pgtbl_mod_mask *mask) 2312 { 2313 p4d_t *p4d; 2314 unsigned long next; 2315 int err = 0; 2316 2317 if (create) { 2318 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2319 if (!p4d) 2320 return -ENOMEM; 2321 } else { 2322 p4d = p4d_offset(pgd, addr); 2323 } 2324 do { 2325 next = p4d_addr_end(addr, end); 2326 if (create || !p4d_none_or_clear_bad(p4d)) { 2327 err = apply_to_pud_range(mm, p4d, addr, next, fn, data, 2328 create, mask); 2329 if (err) 2330 break; 2331 } 2332 } while (p4d++, addr = next, addr != end); 2333 return err; 2334 } 2335 2336 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2337 unsigned long size, pte_fn_t fn, 2338 void *data, bool create) 2339 { 2340 pgd_t *pgd; 2341 unsigned long start = addr, next; 2342 unsigned long end = addr + size; 2343 pgtbl_mod_mask mask = 0; 2344 int err = 0; 2345 2346 if (WARN_ON(addr >= end)) 2347 return -EINVAL; 2348 2349 pgd = pgd_offset(mm, addr); 2350 do { 2351 next = pgd_addr_end(addr, end); 2352 if (!create && pgd_none_or_clear_bad(pgd)) 2353 continue; 2354 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask); 2355 if (err) 2356 break; 2357 } while (pgd++, addr = next, addr != end); 2358 2359 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2360 arch_sync_kernel_mappings(start, start + size); 2361 2362 return err; 2363 } 2364 2365 /* 2366 * Scan a region of virtual memory, filling in page tables as necessary 2367 * and calling a provided function on each leaf page table. 2368 */ 2369 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2370 unsigned long size, pte_fn_t fn, void *data) 2371 { 2372 return __apply_to_page_range(mm, addr, size, fn, data, true); 2373 } 2374 EXPORT_SYMBOL_GPL(apply_to_page_range); 2375 2376 /* 2377 * Scan a region of virtual memory, calling a provided function on 2378 * each leaf page table where it exists. 2379 * 2380 * Unlike apply_to_page_range, this does _not_ fill in page tables 2381 * where they are absent. 2382 */ 2383 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2384 unsigned long size, pte_fn_t fn, void *data) 2385 { 2386 return __apply_to_page_range(mm, addr, size, fn, data, false); 2387 } 2388 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2389 2390 /* 2391 * handle_pte_fault chooses page fault handler according to an entry which was 2392 * read non-atomically. Before making any commitment, on those architectures 2393 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2394 * parts, do_swap_page must check under lock before unmapping the pte and 2395 * proceeding (but do_wp_page is only called after already making such a check; 2396 * and do_anonymous_page can safely check later on). 2397 */ 2398 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2399 pte_t *page_table, pte_t orig_pte) 2400 { 2401 int same = 1; 2402 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2403 if (sizeof(pte_t) > sizeof(unsigned long)) { 2404 spinlock_t *ptl = pte_lockptr(mm, pmd); 2405 spin_lock(ptl); 2406 same = pte_same(*page_table, orig_pte); 2407 spin_unlock(ptl); 2408 } 2409 #endif 2410 pte_unmap(page_table); 2411 return same; 2412 } 2413 2414 static inline bool cow_user_page(struct page *dst, struct page *src, 2415 struct vm_fault *vmf) 2416 { 2417 bool ret; 2418 void *kaddr; 2419 void __user *uaddr; 2420 bool locked = false; 2421 struct vm_area_struct *vma = vmf->vma; 2422 struct mm_struct *mm = vma->vm_mm; 2423 unsigned long addr = vmf->address; 2424 2425 if (likely(src)) { 2426 copy_user_highpage(dst, src, addr, vma); 2427 return true; 2428 } 2429 2430 /* 2431 * If the source page was a PFN mapping, we don't have 2432 * a "struct page" for it. We do a best-effort copy by 2433 * just copying from the original user address. If that 2434 * fails, we just zero-fill it. Live with it. 2435 */ 2436 kaddr = kmap_atomic(dst); 2437 uaddr = (void __user *)(addr & PAGE_MASK); 2438 2439 /* 2440 * On architectures with software "accessed" bits, we would 2441 * take a double page fault, so mark it accessed here. 2442 */ 2443 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2444 pte_t entry; 2445 2446 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2447 locked = true; 2448 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2449 /* 2450 * Other thread has already handled the fault 2451 * and update local tlb only 2452 */ 2453 update_mmu_tlb(vma, addr, vmf->pte); 2454 ret = false; 2455 goto pte_unlock; 2456 } 2457 2458 entry = pte_mkyoung(vmf->orig_pte); 2459 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2460 update_mmu_cache(vma, addr, vmf->pte); 2461 } 2462 2463 /* 2464 * This really shouldn't fail, because the page is there 2465 * in the page tables. But it might just be unreadable, 2466 * in which case we just give up and fill the result with 2467 * zeroes. 2468 */ 2469 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2470 if (locked) 2471 goto warn; 2472 2473 /* Re-validate under PTL if the page is still mapped */ 2474 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2475 locked = true; 2476 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2477 /* The PTE changed under us, update local tlb */ 2478 update_mmu_tlb(vma, addr, vmf->pte); 2479 ret = false; 2480 goto pte_unlock; 2481 } 2482 2483 /* 2484 * The same page can be mapped back since last copy attempt. 2485 * Try to copy again under PTL. 2486 */ 2487 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2488 /* 2489 * Give a warn in case there can be some obscure 2490 * use-case 2491 */ 2492 warn: 2493 WARN_ON_ONCE(1); 2494 clear_page(kaddr); 2495 } 2496 } 2497 2498 ret = true; 2499 2500 pte_unlock: 2501 if (locked) 2502 pte_unmap_unlock(vmf->pte, vmf->ptl); 2503 kunmap_atomic(kaddr); 2504 flush_dcache_page(dst); 2505 2506 return ret; 2507 } 2508 2509 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2510 { 2511 struct file *vm_file = vma->vm_file; 2512 2513 if (vm_file) 2514 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2515 2516 /* 2517 * Special mappings (e.g. VDSO) do not have any file so fake 2518 * a default GFP_KERNEL for them. 2519 */ 2520 return GFP_KERNEL; 2521 } 2522 2523 /* 2524 * Notify the address space that the page is about to become writable so that 2525 * it can prohibit this or wait for the page to get into an appropriate state. 2526 * 2527 * We do this without the lock held, so that it can sleep if it needs to. 2528 */ 2529 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2530 { 2531 vm_fault_t ret; 2532 struct page *page = vmf->page; 2533 unsigned int old_flags = vmf->flags; 2534 2535 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2536 2537 if (vmf->vma->vm_file && 2538 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2539 return VM_FAULT_SIGBUS; 2540 2541 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2542 /* Restore original flags so that caller is not surprised */ 2543 vmf->flags = old_flags; 2544 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2545 return ret; 2546 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2547 lock_page(page); 2548 if (!page->mapping) { 2549 unlock_page(page); 2550 return 0; /* retry */ 2551 } 2552 ret |= VM_FAULT_LOCKED; 2553 } else 2554 VM_BUG_ON_PAGE(!PageLocked(page), page); 2555 return ret; 2556 } 2557 2558 /* 2559 * Handle dirtying of a page in shared file mapping on a write fault. 2560 * 2561 * The function expects the page to be locked and unlocks it. 2562 */ 2563 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2564 { 2565 struct vm_area_struct *vma = vmf->vma; 2566 struct address_space *mapping; 2567 struct page *page = vmf->page; 2568 bool dirtied; 2569 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2570 2571 dirtied = set_page_dirty(page); 2572 VM_BUG_ON_PAGE(PageAnon(page), page); 2573 /* 2574 * Take a local copy of the address_space - page.mapping may be zeroed 2575 * by truncate after unlock_page(). The address_space itself remains 2576 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2577 * release semantics to prevent the compiler from undoing this copying. 2578 */ 2579 mapping = page_rmapping(page); 2580 unlock_page(page); 2581 2582 if (!page_mkwrite) 2583 file_update_time(vma->vm_file); 2584 2585 /* 2586 * Throttle page dirtying rate down to writeback speed. 2587 * 2588 * mapping may be NULL here because some device drivers do not 2589 * set page.mapping but still dirty their pages 2590 * 2591 * Drop the mmap_lock before waiting on IO, if we can. The file 2592 * is pinning the mapping, as per above. 2593 */ 2594 if ((dirtied || page_mkwrite) && mapping) { 2595 struct file *fpin; 2596 2597 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2598 balance_dirty_pages_ratelimited(mapping); 2599 if (fpin) { 2600 fput(fpin); 2601 return VM_FAULT_RETRY; 2602 } 2603 } 2604 2605 return 0; 2606 } 2607 2608 /* 2609 * Handle write page faults for pages that can be reused in the current vma 2610 * 2611 * This can happen either due to the mapping being with the VM_SHARED flag, 2612 * or due to us being the last reference standing to the page. In either 2613 * case, all we need to do here is to mark the page as writable and update 2614 * any related book-keeping. 2615 */ 2616 static inline void wp_page_reuse(struct vm_fault *vmf) 2617 __releases(vmf->ptl) 2618 { 2619 struct vm_area_struct *vma = vmf->vma; 2620 struct page *page = vmf->page; 2621 pte_t entry; 2622 /* 2623 * Clear the pages cpupid information as the existing 2624 * information potentially belongs to a now completely 2625 * unrelated process. 2626 */ 2627 if (page) 2628 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2629 2630 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2631 entry = pte_mkyoung(vmf->orig_pte); 2632 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2633 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2634 update_mmu_cache(vma, vmf->address, vmf->pte); 2635 pte_unmap_unlock(vmf->pte, vmf->ptl); 2636 count_vm_event(PGREUSE); 2637 } 2638 2639 /* 2640 * Handle the case of a page which we actually need to copy to a new page. 2641 * 2642 * Called with mmap_lock locked and the old page referenced, but 2643 * without the ptl held. 2644 * 2645 * High level logic flow: 2646 * 2647 * - Allocate a page, copy the content of the old page to the new one. 2648 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2649 * - Take the PTL. If the pte changed, bail out and release the allocated page 2650 * - If the pte is still the way we remember it, update the page table and all 2651 * relevant references. This includes dropping the reference the page-table 2652 * held to the old page, as well as updating the rmap. 2653 * - In any case, unlock the PTL and drop the reference we took to the old page. 2654 */ 2655 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2656 { 2657 struct vm_area_struct *vma = vmf->vma; 2658 struct mm_struct *mm = vma->vm_mm; 2659 struct page *old_page = vmf->page; 2660 struct page *new_page = NULL; 2661 pte_t entry; 2662 int page_copied = 0; 2663 struct mmu_notifier_range range; 2664 2665 if (unlikely(anon_vma_prepare(vma))) 2666 goto oom; 2667 2668 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2669 new_page = alloc_zeroed_user_highpage_movable(vma, 2670 vmf->address); 2671 if (!new_page) 2672 goto oom; 2673 } else { 2674 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2675 vmf->address); 2676 if (!new_page) 2677 goto oom; 2678 2679 if (!cow_user_page(new_page, old_page, vmf)) { 2680 /* 2681 * COW failed, if the fault was solved by other, 2682 * it's fine. If not, userspace would re-fault on 2683 * the same address and we will handle the fault 2684 * from the second attempt. 2685 */ 2686 put_page(new_page); 2687 if (old_page) 2688 put_page(old_page); 2689 return 0; 2690 } 2691 } 2692 2693 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 2694 goto oom_free_new; 2695 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 2696 2697 __SetPageUptodate(new_page); 2698 2699 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2700 vmf->address & PAGE_MASK, 2701 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2702 mmu_notifier_invalidate_range_start(&range); 2703 2704 /* 2705 * Re-check the pte - we dropped the lock 2706 */ 2707 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2708 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2709 if (old_page) { 2710 if (!PageAnon(old_page)) { 2711 dec_mm_counter_fast(mm, 2712 mm_counter_file(old_page)); 2713 inc_mm_counter_fast(mm, MM_ANONPAGES); 2714 } 2715 } else { 2716 inc_mm_counter_fast(mm, MM_ANONPAGES); 2717 } 2718 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2719 entry = mk_pte(new_page, vma->vm_page_prot); 2720 entry = pte_sw_mkyoung(entry); 2721 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2722 /* 2723 * Clear the pte entry and flush it first, before updating the 2724 * pte with the new entry. This will avoid a race condition 2725 * seen in the presence of one thread doing SMC and another 2726 * thread doing COW. 2727 */ 2728 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2729 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2730 lru_cache_add_inactive_or_unevictable(new_page, vma); 2731 /* 2732 * We call the notify macro here because, when using secondary 2733 * mmu page tables (such as kvm shadow page tables), we want the 2734 * new page to be mapped directly into the secondary page table. 2735 */ 2736 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2737 update_mmu_cache(vma, vmf->address, vmf->pte); 2738 if (old_page) { 2739 /* 2740 * Only after switching the pte to the new page may 2741 * we remove the mapcount here. Otherwise another 2742 * process may come and find the rmap count decremented 2743 * before the pte is switched to the new page, and 2744 * "reuse" the old page writing into it while our pte 2745 * here still points into it and can be read by other 2746 * threads. 2747 * 2748 * The critical issue is to order this 2749 * page_remove_rmap with the ptp_clear_flush above. 2750 * Those stores are ordered by (if nothing else,) 2751 * the barrier present in the atomic_add_negative 2752 * in page_remove_rmap. 2753 * 2754 * Then the TLB flush in ptep_clear_flush ensures that 2755 * no process can access the old page before the 2756 * decremented mapcount is visible. And the old page 2757 * cannot be reused until after the decremented 2758 * mapcount is visible. So transitively, TLBs to 2759 * old page will be flushed before it can be reused. 2760 */ 2761 page_remove_rmap(old_page, false); 2762 } 2763 2764 /* Free the old page.. */ 2765 new_page = old_page; 2766 page_copied = 1; 2767 } else { 2768 update_mmu_tlb(vma, vmf->address, vmf->pte); 2769 } 2770 2771 if (new_page) 2772 put_page(new_page); 2773 2774 pte_unmap_unlock(vmf->pte, vmf->ptl); 2775 /* 2776 * No need to double call mmu_notifier->invalidate_range() callback as 2777 * the above ptep_clear_flush_notify() did already call it. 2778 */ 2779 mmu_notifier_invalidate_range_only_end(&range); 2780 if (old_page) { 2781 /* 2782 * Don't let another task, with possibly unlocked vma, 2783 * keep the mlocked page. 2784 */ 2785 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2786 lock_page(old_page); /* LRU manipulation */ 2787 if (PageMlocked(old_page)) 2788 munlock_vma_page(old_page); 2789 unlock_page(old_page); 2790 } 2791 put_page(old_page); 2792 } 2793 return page_copied ? VM_FAULT_WRITE : 0; 2794 oom_free_new: 2795 put_page(new_page); 2796 oom: 2797 if (old_page) 2798 put_page(old_page); 2799 return VM_FAULT_OOM; 2800 } 2801 2802 /** 2803 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2804 * writeable once the page is prepared 2805 * 2806 * @vmf: structure describing the fault 2807 * 2808 * This function handles all that is needed to finish a write page fault in a 2809 * shared mapping due to PTE being read-only once the mapped page is prepared. 2810 * It handles locking of PTE and modifying it. 2811 * 2812 * The function expects the page to be locked or other protection against 2813 * concurrent faults / writeback (such as DAX radix tree locks). 2814 * 2815 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2816 * we acquired PTE lock. 2817 */ 2818 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2819 { 2820 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2821 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2822 &vmf->ptl); 2823 /* 2824 * We might have raced with another page fault while we released the 2825 * pte_offset_map_lock. 2826 */ 2827 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2828 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 2829 pte_unmap_unlock(vmf->pte, vmf->ptl); 2830 return VM_FAULT_NOPAGE; 2831 } 2832 wp_page_reuse(vmf); 2833 return 0; 2834 } 2835 2836 /* 2837 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2838 * mapping 2839 */ 2840 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2841 { 2842 struct vm_area_struct *vma = vmf->vma; 2843 2844 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2845 vm_fault_t ret; 2846 2847 pte_unmap_unlock(vmf->pte, vmf->ptl); 2848 vmf->flags |= FAULT_FLAG_MKWRITE; 2849 ret = vma->vm_ops->pfn_mkwrite(vmf); 2850 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2851 return ret; 2852 return finish_mkwrite_fault(vmf); 2853 } 2854 wp_page_reuse(vmf); 2855 return VM_FAULT_WRITE; 2856 } 2857 2858 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2859 __releases(vmf->ptl) 2860 { 2861 struct vm_area_struct *vma = vmf->vma; 2862 vm_fault_t ret = VM_FAULT_WRITE; 2863 2864 get_page(vmf->page); 2865 2866 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2867 vm_fault_t tmp; 2868 2869 pte_unmap_unlock(vmf->pte, vmf->ptl); 2870 tmp = do_page_mkwrite(vmf); 2871 if (unlikely(!tmp || (tmp & 2872 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2873 put_page(vmf->page); 2874 return tmp; 2875 } 2876 tmp = finish_mkwrite_fault(vmf); 2877 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2878 unlock_page(vmf->page); 2879 put_page(vmf->page); 2880 return tmp; 2881 } 2882 } else { 2883 wp_page_reuse(vmf); 2884 lock_page(vmf->page); 2885 } 2886 ret |= fault_dirty_shared_page(vmf); 2887 put_page(vmf->page); 2888 2889 return ret; 2890 } 2891 2892 /* 2893 * This routine handles present pages, when users try to write 2894 * to a shared page. It is done by copying the page to a new address 2895 * and decrementing the shared-page counter for the old page. 2896 * 2897 * Note that this routine assumes that the protection checks have been 2898 * done by the caller (the low-level page fault routine in most cases). 2899 * Thus we can safely just mark it writable once we've done any necessary 2900 * COW. 2901 * 2902 * We also mark the page dirty at this point even though the page will 2903 * change only once the write actually happens. This avoids a few races, 2904 * and potentially makes it more efficient. 2905 * 2906 * We enter with non-exclusive mmap_lock (to exclude vma changes, 2907 * but allow concurrent faults), with pte both mapped and locked. 2908 * We return with mmap_lock still held, but pte unmapped and unlocked. 2909 */ 2910 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2911 __releases(vmf->ptl) 2912 { 2913 struct vm_area_struct *vma = vmf->vma; 2914 2915 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 2916 pte_unmap_unlock(vmf->pte, vmf->ptl); 2917 return handle_userfault(vmf, VM_UFFD_WP); 2918 } 2919 2920 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2921 if (!vmf->page) { 2922 /* 2923 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2924 * VM_PFNMAP VMA. 2925 * 2926 * We should not cow pages in a shared writeable mapping. 2927 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2928 */ 2929 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2930 (VM_WRITE|VM_SHARED)) 2931 return wp_pfn_shared(vmf); 2932 2933 pte_unmap_unlock(vmf->pte, vmf->ptl); 2934 return wp_page_copy(vmf); 2935 } 2936 2937 /* 2938 * Take out anonymous pages first, anonymous shared vmas are 2939 * not dirty accountable. 2940 */ 2941 if (PageAnon(vmf->page)) { 2942 struct page *page = vmf->page; 2943 2944 /* PageKsm() doesn't necessarily raise the page refcount */ 2945 if (PageKsm(page) || page_count(page) != 1) 2946 goto copy; 2947 if (!trylock_page(page)) 2948 goto copy; 2949 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { 2950 unlock_page(page); 2951 goto copy; 2952 } 2953 /* 2954 * Ok, we've got the only map reference, and the only 2955 * page count reference, and the page is locked, 2956 * it's dark out, and we're wearing sunglasses. Hit it. 2957 */ 2958 wp_page_reuse(vmf); 2959 unlock_page(page); 2960 return VM_FAULT_WRITE; 2961 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2962 (VM_WRITE|VM_SHARED))) { 2963 return wp_page_shared(vmf); 2964 } 2965 copy: 2966 /* 2967 * Ok, we need to copy. Oh, well.. 2968 */ 2969 get_page(vmf->page); 2970 2971 pte_unmap_unlock(vmf->pte, vmf->ptl); 2972 return wp_page_copy(vmf); 2973 } 2974 2975 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2976 unsigned long start_addr, unsigned long end_addr, 2977 struct zap_details *details) 2978 { 2979 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2980 } 2981 2982 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2983 struct zap_details *details) 2984 { 2985 struct vm_area_struct *vma; 2986 pgoff_t vba, vea, zba, zea; 2987 2988 vma_interval_tree_foreach(vma, root, 2989 details->first_index, details->last_index) { 2990 2991 vba = vma->vm_pgoff; 2992 vea = vba + vma_pages(vma) - 1; 2993 zba = details->first_index; 2994 if (zba < vba) 2995 zba = vba; 2996 zea = details->last_index; 2997 if (zea > vea) 2998 zea = vea; 2999 3000 unmap_mapping_range_vma(vma, 3001 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3002 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3003 details); 3004 } 3005 } 3006 3007 /** 3008 * unmap_mapping_pages() - Unmap pages from processes. 3009 * @mapping: The address space containing pages to be unmapped. 3010 * @start: Index of first page to be unmapped. 3011 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3012 * @even_cows: Whether to unmap even private COWed pages. 3013 * 3014 * Unmap the pages in this address space from any userspace process which 3015 * has them mmaped. Generally, you want to remove COWed pages as well when 3016 * a file is being truncated, but not when invalidating pages from the page 3017 * cache. 3018 */ 3019 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3020 pgoff_t nr, bool even_cows) 3021 { 3022 struct zap_details details = { }; 3023 3024 details.check_mapping = even_cows ? NULL : mapping; 3025 details.first_index = start; 3026 details.last_index = start + nr - 1; 3027 if (details.last_index < details.first_index) 3028 details.last_index = ULONG_MAX; 3029 3030 i_mmap_lock_write(mapping); 3031 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3032 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3033 i_mmap_unlock_write(mapping); 3034 } 3035 3036 /** 3037 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3038 * address_space corresponding to the specified byte range in the underlying 3039 * file. 3040 * 3041 * @mapping: the address space containing mmaps to be unmapped. 3042 * @holebegin: byte in first page to unmap, relative to the start of 3043 * the underlying file. This will be rounded down to a PAGE_SIZE 3044 * boundary. Note that this is different from truncate_pagecache(), which 3045 * must keep the partial page. In contrast, we must get rid of 3046 * partial pages. 3047 * @holelen: size of prospective hole in bytes. This will be rounded 3048 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3049 * end of the file. 3050 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3051 * but 0 when invalidating pagecache, don't throw away private data. 3052 */ 3053 void unmap_mapping_range(struct address_space *mapping, 3054 loff_t const holebegin, loff_t const holelen, int even_cows) 3055 { 3056 pgoff_t hba = holebegin >> PAGE_SHIFT; 3057 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3058 3059 /* Check for overflow. */ 3060 if (sizeof(holelen) > sizeof(hlen)) { 3061 long long holeend = 3062 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3063 if (holeend & ~(long long)ULONG_MAX) 3064 hlen = ULONG_MAX - hba + 1; 3065 } 3066 3067 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3068 } 3069 EXPORT_SYMBOL(unmap_mapping_range); 3070 3071 /* 3072 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3073 * but allow concurrent faults), and pte mapped but not yet locked. 3074 * We return with pte unmapped and unlocked. 3075 * 3076 * We return with the mmap_lock locked or unlocked in the same cases 3077 * as does filemap_fault(). 3078 */ 3079 vm_fault_t do_swap_page(struct vm_fault *vmf) 3080 { 3081 struct vm_area_struct *vma = vmf->vma; 3082 struct page *page = NULL, *swapcache; 3083 swp_entry_t entry; 3084 pte_t pte; 3085 int locked; 3086 int exclusive = 0; 3087 vm_fault_t ret = 0; 3088 void *shadow = NULL; 3089 3090 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 3091 goto out; 3092 3093 entry = pte_to_swp_entry(vmf->orig_pte); 3094 if (unlikely(non_swap_entry(entry))) { 3095 if (is_migration_entry(entry)) { 3096 migration_entry_wait(vma->vm_mm, vmf->pmd, 3097 vmf->address); 3098 } else if (is_device_private_entry(entry)) { 3099 vmf->page = device_private_entry_to_page(entry); 3100 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3101 } else if (is_hwpoison_entry(entry)) { 3102 ret = VM_FAULT_HWPOISON; 3103 } else { 3104 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3105 ret = VM_FAULT_SIGBUS; 3106 } 3107 goto out; 3108 } 3109 3110 3111 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3112 page = lookup_swap_cache(entry, vma, vmf->address); 3113 swapcache = page; 3114 3115 if (!page) { 3116 struct swap_info_struct *si = swp_swap_info(entry); 3117 3118 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3119 __swap_count(entry) == 1) { 3120 /* skip swapcache */ 3121 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3122 vmf->address); 3123 if (page) { 3124 int err; 3125 3126 __SetPageLocked(page); 3127 __SetPageSwapBacked(page); 3128 set_page_private(page, entry.val); 3129 3130 /* Tell memcg to use swap ownership records */ 3131 SetPageSwapCache(page); 3132 err = mem_cgroup_charge(page, vma->vm_mm, 3133 GFP_KERNEL); 3134 ClearPageSwapCache(page); 3135 if (err) { 3136 ret = VM_FAULT_OOM; 3137 goto out_page; 3138 } 3139 3140 shadow = get_shadow_from_swap_cache(entry); 3141 if (shadow) 3142 workingset_refault(page, shadow); 3143 3144 lru_cache_add(page); 3145 swap_readpage(page, true); 3146 } 3147 } else { 3148 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3149 vmf); 3150 swapcache = page; 3151 } 3152 3153 if (!page) { 3154 /* 3155 * Back out if somebody else faulted in this pte 3156 * while we released the pte lock. 3157 */ 3158 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3159 vmf->address, &vmf->ptl); 3160 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3161 ret = VM_FAULT_OOM; 3162 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3163 goto unlock; 3164 } 3165 3166 /* Had to read the page from swap area: Major fault */ 3167 ret = VM_FAULT_MAJOR; 3168 count_vm_event(PGMAJFAULT); 3169 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3170 } else if (PageHWPoison(page)) { 3171 /* 3172 * hwpoisoned dirty swapcache pages are kept for killing 3173 * owner processes (which may be unknown at hwpoison time) 3174 */ 3175 ret = VM_FAULT_HWPOISON; 3176 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3177 goto out_release; 3178 } 3179 3180 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3181 3182 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3183 if (!locked) { 3184 ret |= VM_FAULT_RETRY; 3185 goto out_release; 3186 } 3187 3188 /* 3189 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3190 * release the swapcache from under us. The page pin, and pte_same 3191 * test below, are not enough to exclude that. Even if it is still 3192 * swapcache, we need to check that the page's swap has not changed. 3193 */ 3194 if (unlikely((!PageSwapCache(page) || 3195 page_private(page) != entry.val)) && swapcache) 3196 goto out_page; 3197 3198 page = ksm_might_need_to_copy(page, vma, vmf->address); 3199 if (unlikely(!page)) { 3200 ret = VM_FAULT_OOM; 3201 page = swapcache; 3202 goto out_page; 3203 } 3204 3205 cgroup_throttle_swaprate(page, GFP_KERNEL); 3206 3207 /* 3208 * Back out if somebody else already faulted in this pte. 3209 */ 3210 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3211 &vmf->ptl); 3212 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3213 goto out_nomap; 3214 3215 if (unlikely(!PageUptodate(page))) { 3216 ret = VM_FAULT_SIGBUS; 3217 goto out_nomap; 3218 } 3219 3220 /* 3221 * The page isn't present yet, go ahead with the fault. 3222 * 3223 * Be careful about the sequence of operations here. 3224 * To get its accounting right, reuse_swap_page() must be called 3225 * while the page is counted on swap but not yet in mapcount i.e. 3226 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3227 * must be called after the swap_free(), or it will never succeed. 3228 */ 3229 3230 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3231 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3232 pte = mk_pte(page, vma->vm_page_prot); 3233 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3234 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3235 vmf->flags &= ~FAULT_FLAG_WRITE; 3236 ret |= VM_FAULT_WRITE; 3237 exclusive = RMAP_EXCLUSIVE; 3238 } 3239 flush_icache_page(vma, page); 3240 if (pte_swp_soft_dirty(vmf->orig_pte)) 3241 pte = pte_mksoft_dirty(pte); 3242 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3243 pte = pte_mkuffd_wp(pte); 3244 pte = pte_wrprotect(pte); 3245 } 3246 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3247 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3248 vmf->orig_pte = pte; 3249 3250 /* ksm created a completely new copy */ 3251 if (unlikely(page != swapcache && swapcache)) { 3252 page_add_new_anon_rmap(page, vma, vmf->address, false); 3253 lru_cache_add_inactive_or_unevictable(page, vma); 3254 } else { 3255 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3256 } 3257 3258 swap_free(entry); 3259 if (mem_cgroup_swap_full(page) || 3260 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3261 try_to_free_swap(page); 3262 unlock_page(page); 3263 if (page != swapcache && swapcache) { 3264 /* 3265 * Hold the lock to avoid the swap entry to be reused 3266 * until we take the PT lock for the pte_same() check 3267 * (to avoid false positives from pte_same). For 3268 * further safety release the lock after the swap_free 3269 * so that the swap count won't change under a 3270 * parallel locked swapcache. 3271 */ 3272 unlock_page(swapcache); 3273 put_page(swapcache); 3274 } 3275 3276 if (vmf->flags & FAULT_FLAG_WRITE) { 3277 ret |= do_wp_page(vmf); 3278 if (ret & VM_FAULT_ERROR) 3279 ret &= VM_FAULT_ERROR; 3280 goto out; 3281 } 3282 3283 /* No need to invalidate - it was non-present before */ 3284 update_mmu_cache(vma, vmf->address, vmf->pte); 3285 unlock: 3286 pte_unmap_unlock(vmf->pte, vmf->ptl); 3287 out: 3288 return ret; 3289 out_nomap: 3290 pte_unmap_unlock(vmf->pte, vmf->ptl); 3291 out_page: 3292 unlock_page(page); 3293 out_release: 3294 put_page(page); 3295 if (page != swapcache && swapcache) { 3296 unlock_page(swapcache); 3297 put_page(swapcache); 3298 } 3299 return ret; 3300 } 3301 3302 /* 3303 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3304 * but allow concurrent faults), and pte mapped but not yet locked. 3305 * We return with mmap_lock still held, but pte unmapped and unlocked. 3306 */ 3307 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3308 { 3309 struct vm_area_struct *vma = vmf->vma; 3310 struct page *page; 3311 vm_fault_t ret = 0; 3312 pte_t entry; 3313 3314 /* File mapping without ->vm_ops ? */ 3315 if (vma->vm_flags & VM_SHARED) 3316 return VM_FAULT_SIGBUS; 3317 3318 /* 3319 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3320 * pte_offset_map() on pmds where a huge pmd might be created 3321 * from a different thread. 3322 * 3323 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 3324 * parallel threads are excluded by other means. 3325 * 3326 * Here we only have mmap_read_lock(mm). 3327 */ 3328 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3329 return VM_FAULT_OOM; 3330 3331 /* See the comment in pte_alloc_one_map() */ 3332 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3333 return 0; 3334 3335 /* Use the zero-page for reads */ 3336 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3337 !mm_forbids_zeropage(vma->vm_mm)) { 3338 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3339 vma->vm_page_prot)); 3340 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3341 vmf->address, &vmf->ptl); 3342 if (!pte_none(*vmf->pte)) { 3343 update_mmu_tlb(vma, vmf->address, vmf->pte); 3344 goto unlock; 3345 } 3346 ret = check_stable_address_space(vma->vm_mm); 3347 if (ret) 3348 goto unlock; 3349 /* Deliver the page fault to userland, check inside PT lock */ 3350 if (userfaultfd_missing(vma)) { 3351 pte_unmap_unlock(vmf->pte, vmf->ptl); 3352 return handle_userfault(vmf, VM_UFFD_MISSING); 3353 } 3354 goto setpte; 3355 } 3356 3357 /* Allocate our own private page. */ 3358 if (unlikely(anon_vma_prepare(vma))) 3359 goto oom; 3360 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3361 if (!page) 3362 goto oom; 3363 3364 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 3365 goto oom_free_page; 3366 cgroup_throttle_swaprate(page, GFP_KERNEL); 3367 3368 /* 3369 * The memory barrier inside __SetPageUptodate makes sure that 3370 * preceding stores to the page contents become visible before 3371 * the set_pte_at() write. 3372 */ 3373 __SetPageUptodate(page); 3374 3375 entry = mk_pte(page, vma->vm_page_prot); 3376 entry = pte_sw_mkyoung(entry); 3377 if (vma->vm_flags & VM_WRITE) 3378 entry = pte_mkwrite(pte_mkdirty(entry)); 3379 3380 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3381 &vmf->ptl); 3382 if (!pte_none(*vmf->pte)) { 3383 update_mmu_cache(vma, vmf->address, vmf->pte); 3384 goto release; 3385 } 3386 3387 ret = check_stable_address_space(vma->vm_mm); 3388 if (ret) 3389 goto release; 3390 3391 /* Deliver the page fault to userland, check inside PT lock */ 3392 if (userfaultfd_missing(vma)) { 3393 pte_unmap_unlock(vmf->pte, vmf->ptl); 3394 put_page(page); 3395 return handle_userfault(vmf, VM_UFFD_MISSING); 3396 } 3397 3398 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3399 page_add_new_anon_rmap(page, vma, vmf->address, false); 3400 lru_cache_add_inactive_or_unevictable(page, vma); 3401 setpte: 3402 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3403 3404 /* No need to invalidate - it was non-present before */ 3405 update_mmu_cache(vma, vmf->address, vmf->pte); 3406 unlock: 3407 pte_unmap_unlock(vmf->pte, vmf->ptl); 3408 return ret; 3409 release: 3410 put_page(page); 3411 goto unlock; 3412 oom_free_page: 3413 put_page(page); 3414 oom: 3415 return VM_FAULT_OOM; 3416 } 3417 3418 /* 3419 * The mmap_lock must have been held on entry, and may have been 3420 * released depending on flags and vma->vm_ops->fault() return value. 3421 * See filemap_fault() and __lock_page_retry(). 3422 */ 3423 static vm_fault_t __do_fault(struct vm_fault *vmf) 3424 { 3425 struct vm_area_struct *vma = vmf->vma; 3426 vm_fault_t ret; 3427 3428 /* 3429 * Preallocate pte before we take page_lock because this might lead to 3430 * deadlocks for memcg reclaim which waits for pages under writeback: 3431 * lock_page(A) 3432 * SetPageWriteback(A) 3433 * unlock_page(A) 3434 * lock_page(B) 3435 * lock_page(B) 3436 * pte_alloc_pne 3437 * shrink_page_list 3438 * wait_on_page_writeback(A) 3439 * SetPageWriteback(B) 3440 * unlock_page(B) 3441 * # flush A, B to clear the writeback 3442 */ 3443 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3444 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3445 if (!vmf->prealloc_pte) 3446 return VM_FAULT_OOM; 3447 smp_wmb(); /* See comment in __pte_alloc() */ 3448 } 3449 3450 ret = vma->vm_ops->fault(vmf); 3451 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3452 VM_FAULT_DONE_COW))) 3453 return ret; 3454 3455 if (unlikely(PageHWPoison(vmf->page))) { 3456 if (ret & VM_FAULT_LOCKED) 3457 unlock_page(vmf->page); 3458 put_page(vmf->page); 3459 vmf->page = NULL; 3460 return VM_FAULT_HWPOISON; 3461 } 3462 3463 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3464 lock_page(vmf->page); 3465 else 3466 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3467 3468 return ret; 3469 } 3470 3471 /* 3472 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3473 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3474 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3475 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3476 */ 3477 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3478 { 3479 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3480 } 3481 3482 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3483 { 3484 struct vm_area_struct *vma = vmf->vma; 3485 3486 if (!pmd_none(*vmf->pmd)) 3487 goto map_pte; 3488 if (vmf->prealloc_pte) { 3489 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3490 if (unlikely(!pmd_none(*vmf->pmd))) { 3491 spin_unlock(vmf->ptl); 3492 goto map_pte; 3493 } 3494 3495 mm_inc_nr_ptes(vma->vm_mm); 3496 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3497 spin_unlock(vmf->ptl); 3498 vmf->prealloc_pte = NULL; 3499 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3500 return VM_FAULT_OOM; 3501 } 3502 map_pte: 3503 /* 3504 * If a huge pmd materialized under us just retry later. Use 3505 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3506 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3507 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3508 * running immediately after a huge pmd fault in a different thread of 3509 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3510 * All we have to ensure is that it is a regular pmd that we can walk 3511 * with pte_offset_map() and we can do that through an atomic read in 3512 * C, which is what pmd_trans_unstable() provides. 3513 */ 3514 if (pmd_devmap_trans_unstable(vmf->pmd)) 3515 return VM_FAULT_NOPAGE; 3516 3517 /* 3518 * At this point we know that our vmf->pmd points to a page of ptes 3519 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3520 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3521 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3522 * be valid and we will re-check to make sure the vmf->pte isn't 3523 * pte_none() under vmf->ptl protection when we return to 3524 * alloc_set_pte(). 3525 */ 3526 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3527 &vmf->ptl); 3528 return 0; 3529 } 3530 3531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3532 static void deposit_prealloc_pte(struct vm_fault *vmf) 3533 { 3534 struct vm_area_struct *vma = vmf->vma; 3535 3536 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3537 /* 3538 * We are going to consume the prealloc table, 3539 * count that as nr_ptes. 3540 */ 3541 mm_inc_nr_ptes(vma->vm_mm); 3542 vmf->prealloc_pte = NULL; 3543 } 3544 3545 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3546 { 3547 struct vm_area_struct *vma = vmf->vma; 3548 bool write = vmf->flags & FAULT_FLAG_WRITE; 3549 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3550 pmd_t entry; 3551 int i; 3552 vm_fault_t ret; 3553 3554 if (!transhuge_vma_suitable(vma, haddr)) 3555 return VM_FAULT_FALLBACK; 3556 3557 ret = VM_FAULT_FALLBACK; 3558 page = compound_head(page); 3559 3560 /* 3561 * Archs like ppc64 need additonal space to store information 3562 * related to pte entry. Use the preallocated table for that. 3563 */ 3564 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3565 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3566 if (!vmf->prealloc_pte) 3567 return VM_FAULT_OOM; 3568 smp_wmb(); /* See comment in __pte_alloc() */ 3569 } 3570 3571 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3572 if (unlikely(!pmd_none(*vmf->pmd))) 3573 goto out; 3574 3575 for (i = 0; i < HPAGE_PMD_NR; i++) 3576 flush_icache_page(vma, page + i); 3577 3578 entry = mk_huge_pmd(page, vma->vm_page_prot); 3579 if (write) 3580 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3581 3582 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3583 page_add_file_rmap(page, true); 3584 /* 3585 * deposit and withdraw with pmd lock held 3586 */ 3587 if (arch_needs_pgtable_deposit()) 3588 deposit_prealloc_pte(vmf); 3589 3590 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3591 3592 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3593 3594 /* fault is handled */ 3595 ret = 0; 3596 count_vm_event(THP_FILE_MAPPED); 3597 out: 3598 spin_unlock(vmf->ptl); 3599 return ret; 3600 } 3601 #else 3602 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3603 { 3604 BUILD_BUG(); 3605 return 0; 3606 } 3607 #endif 3608 3609 /** 3610 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3611 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3612 * 3613 * @vmf: fault environment 3614 * @page: page to map 3615 * 3616 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3617 * return. 3618 * 3619 * Target users are page handler itself and implementations of 3620 * vm_ops->map_pages. 3621 * 3622 * Return: %0 on success, %VM_FAULT_ code in case of error. 3623 */ 3624 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) 3625 { 3626 struct vm_area_struct *vma = vmf->vma; 3627 bool write = vmf->flags & FAULT_FLAG_WRITE; 3628 pte_t entry; 3629 vm_fault_t ret; 3630 3631 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { 3632 ret = do_set_pmd(vmf, page); 3633 if (ret != VM_FAULT_FALLBACK) 3634 return ret; 3635 } 3636 3637 if (!vmf->pte) { 3638 ret = pte_alloc_one_map(vmf); 3639 if (ret) 3640 return ret; 3641 } 3642 3643 /* Re-check under ptl */ 3644 if (unlikely(!pte_none(*vmf->pte))) { 3645 update_mmu_tlb(vma, vmf->address, vmf->pte); 3646 return VM_FAULT_NOPAGE; 3647 } 3648 3649 flush_icache_page(vma, page); 3650 entry = mk_pte(page, vma->vm_page_prot); 3651 entry = pte_sw_mkyoung(entry); 3652 if (write) 3653 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3654 /* copy-on-write page */ 3655 if (write && !(vma->vm_flags & VM_SHARED)) { 3656 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3657 page_add_new_anon_rmap(page, vma, vmf->address, false); 3658 lru_cache_add_inactive_or_unevictable(page, vma); 3659 } else { 3660 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3661 page_add_file_rmap(page, false); 3662 } 3663 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3664 3665 /* no need to invalidate: a not-present page won't be cached */ 3666 update_mmu_cache(vma, vmf->address, vmf->pte); 3667 3668 return 0; 3669 } 3670 3671 3672 /** 3673 * finish_fault - finish page fault once we have prepared the page to fault 3674 * 3675 * @vmf: structure describing the fault 3676 * 3677 * This function handles all that is needed to finish a page fault once the 3678 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3679 * given page, adds reverse page mapping, handles memcg charges and LRU 3680 * addition. 3681 * 3682 * The function expects the page to be locked and on success it consumes a 3683 * reference of a page being mapped (for the PTE which maps it). 3684 * 3685 * Return: %0 on success, %VM_FAULT_ code in case of error. 3686 */ 3687 vm_fault_t finish_fault(struct vm_fault *vmf) 3688 { 3689 struct page *page; 3690 vm_fault_t ret = 0; 3691 3692 /* Did we COW the page? */ 3693 if ((vmf->flags & FAULT_FLAG_WRITE) && 3694 !(vmf->vma->vm_flags & VM_SHARED)) 3695 page = vmf->cow_page; 3696 else 3697 page = vmf->page; 3698 3699 /* 3700 * check even for read faults because we might have lost our CoWed 3701 * page 3702 */ 3703 if (!(vmf->vma->vm_flags & VM_SHARED)) 3704 ret = check_stable_address_space(vmf->vma->vm_mm); 3705 if (!ret) 3706 ret = alloc_set_pte(vmf, page); 3707 if (vmf->pte) 3708 pte_unmap_unlock(vmf->pte, vmf->ptl); 3709 return ret; 3710 } 3711 3712 static unsigned long fault_around_bytes __read_mostly = 3713 rounddown_pow_of_two(65536); 3714 3715 #ifdef CONFIG_DEBUG_FS 3716 static int fault_around_bytes_get(void *data, u64 *val) 3717 { 3718 *val = fault_around_bytes; 3719 return 0; 3720 } 3721 3722 /* 3723 * fault_around_bytes must be rounded down to the nearest page order as it's 3724 * what do_fault_around() expects to see. 3725 */ 3726 static int fault_around_bytes_set(void *data, u64 val) 3727 { 3728 if (val / PAGE_SIZE > PTRS_PER_PTE) 3729 return -EINVAL; 3730 if (val > PAGE_SIZE) 3731 fault_around_bytes = rounddown_pow_of_two(val); 3732 else 3733 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3734 return 0; 3735 } 3736 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3737 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3738 3739 static int __init fault_around_debugfs(void) 3740 { 3741 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3742 &fault_around_bytes_fops); 3743 return 0; 3744 } 3745 late_initcall(fault_around_debugfs); 3746 #endif 3747 3748 /* 3749 * do_fault_around() tries to map few pages around the fault address. The hope 3750 * is that the pages will be needed soon and this will lower the number of 3751 * faults to handle. 3752 * 3753 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3754 * not ready to be mapped: not up-to-date, locked, etc. 3755 * 3756 * This function is called with the page table lock taken. In the split ptlock 3757 * case the page table lock only protects only those entries which belong to 3758 * the page table corresponding to the fault address. 3759 * 3760 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3761 * only once. 3762 * 3763 * fault_around_bytes defines how many bytes we'll try to map. 3764 * do_fault_around() expects it to be set to a power of two less than or equal 3765 * to PTRS_PER_PTE. 3766 * 3767 * The virtual address of the area that we map is naturally aligned to 3768 * fault_around_bytes rounded down to the machine page size 3769 * (and therefore to page order). This way it's easier to guarantee 3770 * that we don't cross page table boundaries. 3771 */ 3772 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3773 { 3774 unsigned long address = vmf->address, nr_pages, mask; 3775 pgoff_t start_pgoff = vmf->pgoff; 3776 pgoff_t end_pgoff; 3777 int off; 3778 vm_fault_t ret = 0; 3779 3780 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3781 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3782 3783 vmf->address = max(address & mask, vmf->vma->vm_start); 3784 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3785 start_pgoff -= off; 3786 3787 /* 3788 * end_pgoff is either the end of the page table, the end of 3789 * the vma or nr_pages from start_pgoff, depending what is nearest. 3790 */ 3791 end_pgoff = start_pgoff - 3792 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3793 PTRS_PER_PTE - 1; 3794 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3795 start_pgoff + nr_pages - 1); 3796 3797 if (pmd_none(*vmf->pmd)) { 3798 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3799 if (!vmf->prealloc_pte) 3800 goto out; 3801 smp_wmb(); /* See comment in __pte_alloc() */ 3802 } 3803 3804 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3805 3806 /* Huge page is mapped? Page fault is solved */ 3807 if (pmd_trans_huge(*vmf->pmd)) { 3808 ret = VM_FAULT_NOPAGE; 3809 goto out; 3810 } 3811 3812 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3813 if (!vmf->pte) 3814 goto out; 3815 3816 /* check if the page fault is solved */ 3817 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3818 if (!pte_none(*vmf->pte)) 3819 ret = VM_FAULT_NOPAGE; 3820 pte_unmap_unlock(vmf->pte, vmf->ptl); 3821 out: 3822 vmf->address = address; 3823 vmf->pte = NULL; 3824 return ret; 3825 } 3826 3827 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3828 { 3829 struct vm_area_struct *vma = vmf->vma; 3830 vm_fault_t ret = 0; 3831 3832 /* 3833 * Let's call ->map_pages() first and use ->fault() as fallback 3834 * if page by the offset is not ready to be mapped (cold cache or 3835 * something). 3836 */ 3837 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3838 ret = do_fault_around(vmf); 3839 if (ret) 3840 return ret; 3841 } 3842 3843 ret = __do_fault(vmf); 3844 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3845 return ret; 3846 3847 ret |= finish_fault(vmf); 3848 unlock_page(vmf->page); 3849 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3850 put_page(vmf->page); 3851 return ret; 3852 } 3853 3854 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3855 { 3856 struct vm_area_struct *vma = vmf->vma; 3857 vm_fault_t ret; 3858 3859 if (unlikely(anon_vma_prepare(vma))) 3860 return VM_FAULT_OOM; 3861 3862 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3863 if (!vmf->cow_page) 3864 return VM_FAULT_OOM; 3865 3866 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { 3867 put_page(vmf->cow_page); 3868 return VM_FAULT_OOM; 3869 } 3870 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 3871 3872 ret = __do_fault(vmf); 3873 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3874 goto uncharge_out; 3875 if (ret & VM_FAULT_DONE_COW) 3876 return ret; 3877 3878 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3879 __SetPageUptodate(vmf->cow_page); 3880 3881 ret |= finish_fault(vmf); 3882 unlock_page(vmf->page); 3883 put_page(vmf->page); 3884 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3885 goto uncharge_out; 3886 return ret; 3887 uncharge_out: 3888 put_page(vmf->cow_page); 3889 return ret; 3890 } 3891 3892 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3893 { 3894 struct vm_area_struct *vma = vmf->vma; 3895 vm_fault_t ret, tmp; 3896 3897 ret = __do_fault(vmf); 3898 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3899 return ret; 3900 3901 /* 3902 * Check if the backing address space wants to know that the page is 3903 * about to become writable 3904 */ 3905 if (vma->vm_ops->page_mkwrite) { 3906 unlock_page(vmf->page); 3907 tmp = do_page_mkwrite(vmf); 3908 if (unlikely(!tmp || 3909 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3910 put_page(vmf->page); 3911 return tmp; 3912 } 3913 } 3914 3915 ret |= finish_fault(vmf); 3916 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3917 VM_FAULT_RETRY))) { 3918 unlock_page(vmf->page); 3919 put_page(vmf->page); 3920 return ret; 3921 } 3922 3923 ret |= fault_dirty_shared_page(vmf); 3924 return ret; 3925 } 3926 3927 /* 3928 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3929 * but allow concurrent faults). 3930 * The mmap_lock may have been released depending on flags and our 3931 * return value. See filemap_fault() and __lock_page_or_retry(). 3932 * If mmap_lock is released, vma may become invalid (for example 3933 * by other thread calling munmap()). 3934 */ 3935 static vm_fault_t do_fault(struct vm_fault *vmf) 3936 { 3937 struct vm_area_struct *vma = vmf->vma; 3938 struct mm_struct *vm_mm = vma->vm_mm; 3939 vm_fault_t ret; 3940 3941 /* 3942 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3943 */ 3944 if (!vma->vm_ops->fault) { 3945 /* 3946 * If we find a migration pmd entry or a none pmd entry, which 3947 * should never happen, return SIGBUS 3948 */ 3949 if (unlikely(!pmd_present(*vmf->pmd))) 3950 ret = VM_FAULT_SIGBUS; 3951 else { 3952 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3953 vmf->pmd, 3954 vmf->address, 3955 &vmf->ptl); 3956 /* 3957 * Make sure this is not a temporary clearing of pte 3958 * by holding ptl and checking again. A R/M/W update 3959 * of pte involves: take ptl, clearing the pte so that 3960 * we don't have concurrent modification by hardware 3961 * followed by an update. 3962 */ 3963 if (unlikely(pte_none(*vmf->pte))) 3964 ret = VM_FAULT_SIGBUS; 3965 else 3966 ret = VM_FAULT_NOPAGE; 3967 3968 pte_unmap_unlock(vmf->pte, vmf->ptl); 3969 } 3970 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3971 ret = do_read_fault(vmf); 3972 else if (!(vma->vm_flags & VM_SHARED)) 3973 ret = do_cow_fault(vmf); 3974 else 3975 ret = do_shared_fault(vmf); 3976 3977 /* preallocated pagetable is unused: free it */ 3978 if (vmf->prealloc_pte) { 3979 pte_free(vm_mm, vmf->prealloc_pte); 3980 vmf->prealloc_pte = NULL; 3981 } 3982 return ret; 3983 } 3984 3985 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3986 unsigned long addr, int page_nid, 3987 int *flags) 3988 { 3989 get_page(page); 3990 3991 count_vm_numa_event(NUMA_HINT_FAULTS); 3992 if (page_nid == numa_node_id()) { 3993 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3994 *flags |= TNF_FAULT_LOCAL; 3995 } 3996 3997 return mpol_misplaced(page, vma, addr); 3998 } 3999 4000 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4001 { 4002 struct vm_area_struct *vma = vmf->vma; 4003 struct page *page = NULL; 4004 int page_nid = NUMA_NO_NODE; 4005 int last_cpupid; 4006 int target_nid; 4007 bool migrated = false; 4008 pte_t pte, old_pte; 4009 bool was_writable = pte_savedwrite(vmf->orig_pte); 4010 int flags = 0; 4011 4012 /* 4013 * The "pte" at this point cannot be used safely without 4014 * validation through pte_unmap_same(). It's of NUMA type but 4015 * the pfn may be screwed if the read is non atomic. 4016 */ 4017 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4018 spin_lock(vmf->ptl); 4019 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4020 pte_unmap_unlock(vmf->pte, vmf->ptl); 4021 goto out; 4022 } 4023 4024 /* 4025 * Make it present again, Depending on how arch implementes non 4026 * accessible ptes, some can allow access by kernel mode. 4027 */ 4028 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4029 pte = pte_modify(old_pte, vma->vm_page_prot); 4030 pte = pte_mkyoung(pte); 4031 if (was_writable) 4032 pte = pte_mkwrite(pte); 4033 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4034 update_mmu_cache(vma, vmf->address, vmf->pte); 4035 4036 page = vm_normal_page(vma, vmf->address, pte); 4037 if (!page) { 4038 pte_unmap_unlock(vmf->pte, vmf->ptl); 4039 return 0; 4040 } 4041 4042 /* TODO: handle PTE-mapped THP */ 4043 if (PageCompound(page)) { 4044 pte_unmap_unlock(vmf->pte, vmf->ptl); 4045 return 0; 4046 } 4047 4048 /* 4049 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4050 * much anyway since they can be in shared cache state. This misses 4051 * the case where a mapping is writable but the process never writes 4052 * to it but pte_write gets cleared during protection updates and 4053 * pte_dirty has unpredictable behaviour between PTE scan updates, 4054 * background writeback, dirty balancing and application behaviour. 4055 */ 4056 if (!pte_write(pte)) 4057 flags |= TNF_NO_GROUP; 4058 4059 /* 4060 * Flag if the page is shared between multiple address spaces. This 4061 * is later used when determining whether to group tasks together 4062 */ 4063 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4064 flags |= TNF_SHARED; 4065 4066 last_cpupid = page_cpupid_last(page); 4067 page_nid = page_to_nid(page); 4068 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4069 &flags); 4070 pte_unmap_unlock(vmf->pte, vmf->ptl); 4071 if (target_nid == NUMA_NO_NODE) { 4072 put_page(page); 4073 goto out; 4074 } 4075 4076 /* Migrate to the requested node */ 4077 migrated = migrate_misplaced_page(page, vma, target_nid); 4078 if (migrated) { 4079 page_nid = target_nid; 4080 flags |= TNF_MIGRATED; 4081 } else 4082 flags |= TNF_MIGRATE_FAIL; 4083 4084 out: 4085 if (page_nid != NUMA_NO_NODE) 4086 task_numa_fault(last_cpupid, page_nid, 1, flags); 4087 return 0; 4088 } 4089 4090 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4091 { 4092 if (vma_is_anonymous(vmf->vma)) 4093 return do_huge_pmd_anonymous_page(vmf); 4094 if (vmf->vma->vm_ops->huge_fault) 4095 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4096 return VM_FAULT_FALLBACK; 4097 } 4098 4099 /* `inline' is required to avoid gcc 4.1.2 build error */ 4100 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 4101 { 4102 if (vma_is_anonymous(vmf->vma)) { 4103 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) 4104 return handle_userfault(vmf, VM_UFFD_WP); 4105 return do_huge_pmd_wp_page(vmf, orig_pmd); 4106 } 4107 if (vmf->vma->vm_ops->huge_fault) { 4108 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4109 4110 if (!(ret & VM_FAULT_FALLBACK)) 4111 return ret; 4112 } 4113 4114 /* COW or write-notify handled on pte level: split pmd. */ 4115 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4116 4117 return VM_FAULT_FALLBACK; 4118 } 4119 4120 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4121 { 4122 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4123 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4124 /* No support for anonymous transparent PUD pages yet */ 4125 if (vma_is_anonymous(vmf->vma)) 4126 goto split; 4127 if (vmf->vma->vm_ops->huge_fault) { 4128 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4129 4130 if (!(ret & VM_FAULT_FALLBACK)) 4131 return ret; 4132 } 4133 split: 4134 /* COW or write-notify not handled on PUD level: split pud.*/ 4135 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4136 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4137 return VM_FAULT_FALLBACK; 4138 } 4139 4140 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4141 { 4142 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4143 /* No support for anonymous transparent PUD pages yet */ 4144 if (vma_is_anonymous(vmf->vma)) 4145 return VM_FAULT_FALLBACK; 4146 if (vmf->vma->vm_ops->huge_fault) 4147 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4148 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4149 return VM_FAULT_FALLBACK; 4150 } 4151 4152 /* 4153 * These routines also need to handle stuff like marking pages dirty 4154 * and/or accessed for architectures that don't do it in hardware (most 4155 * RISC architectures). The early dirtying is also good on the i386. 4156 * 4157 * There is also a hook called "update_mmu_cache()" that architectures 4158 * with external mmu caches can use to update those (ie the Sparc or 4159 * PowerPC hashed page tables that act as extended TLBs). 4160 * 4161 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4162 * concurrent faults). 4163 * 4164 * The mmap_lock may have been released depending on flags and our return value. 4165 * See filemap_fault() and __lock_page_or_retry(). 4166 */ 4167 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4168 { 4169 pte_t entry; 4170 4171 if (unlikely(pmd_none(*vmf->pmd))) { 4172 /* 4173 * Leave __pte_alloc() until later: because vm_ops->fault may 4174 * want to allocate huge page, and if we expose page table 4175 * for an instant, it will be difficult to retract from 4176 * concurrent faults and from rmap lookups. 4177 */ 4178 vmf->pte = NULL; 4179 } else { 4180 /* See comment in pte_alloc_one_map() */ 4181 if (pmd_devmap_trans_unstable(vmf->pmd)) 4182 return 0; 4183 /* 4184 * A regular pmd is established and it can't morph into a huge 4185 * pmd from under us anymore at this point because we hold the 4186 * mmap_lock read mode and khugepaged takes it in write mode. 4187 * So now it's safe to run pte_offset_map(). 4188 */ 4189 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4190 vmf->orig_pte = *vmf->pte; 4191 4192 /* 4193 * some architectures can have larger ptes than wordsize, 4194 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4195 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4196 * accesses. The code below just needs a consistent view 4197 * for the ifs and we later double check anyway with the 4198 * ptl lock held. So here a barrier will do. 4199 */ 4200 barrier(); 4201 if (pte_none(vmf->orig_pte)) { 4202 pte_unmap(vmf->pte); 4203 vmf->pte = NULL; 4204 } 4205 } 4206 4207 if (!vmf->pte) { 4208 if (vma_is_anonymous(vmf->vma)) 4209 return do_anonymous_page(vmf); 4210 else 4211 return do_fault(vmf); 4212 } 4213 4214 if (!pte_present(vmf->orig_pte)) 4215 return do_swap_page(vmf); 4216 4217 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4218 return do_numa_page(vmf); 4219 4220 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4221 spin_lock(vmf->ptl); 4222 entry = vmf->orig_pte; 4223 if (unlikely(!pte_same(*vmf->pte, entry))) { 4224 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4225 goto unlock; 4226 } 4227 if (vmf->flags & FAULT_FLAG_WRITE) { 4228 if (!pte_write(entry)) 4229 return do_wp_page(vmf); 4230 entry = pte_mkdirty(entry); 4231 } 4232 entry = pte_mkyoung(entry); 4233 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4234 vmf->flags & FAULT_FLAG_WRITE)) { 4235 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4236 } else { 4237 /* Skip spurious TLB flush for retried page fault */ 4238 if (vmf->flags & FAULT_FLAG_TRIED) 4239 goto unlock; 4240 /* 4241 * This is needed only for protection faults but the arch code 4242 * is not yet telling us if this is a protection fault or not. 4243 * This still avoids useless tlb flushes for .text page faults 4244 * with threads. 4245 */ 4246 if (vmf->flags & FAULT_FLAG_WRITE) 4247 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4248 } 4249 unlock: 4250 pte_unmap_unlock(vmf->pte, vmf->ptl); 4251 return 0; 4252 } 4253 4254 /* 4255 * By the time we get here, we already hold the mm semaphore 4256 * 4257 * The mmap_lock may have been released depending on flags and our 4258 * return value. See filemap_fault() and __lock_page_or_retry(). 4259 */ 4260 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4261 unsigned long address, unsigned int flags) 4262 { 4263 struct vm_fault vmf = { 4264 .vma = vma, 4265 .address = address & PAGE_MASK, 4266 .flags = flags, 4267 .pgoff = linear_page_index(vma, address), 4268 .gfp_mask = __get_fault_gfp_mask(vma), 4269 }; 4270 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4271 struct mm_struct *mm = vma->vm_mm; 4272 pgd_t *pgd; 4273 p4d_t *p4d; 4274 vm_fault_t ret; 4275 4276 pgd = pgd_offset(mm, address); 4277 p4d = p4d_alloc(mm, pgd, address); 4278 if (!p4d) 4279 return VM_FAULT_OOM; 4280 4281 vmf.pud = pud_alloc(mm, p4d, address); 4282 if (!vmf.pud) 4283 return VM_FAULT_OOM; 4284 retry_pud: 4285 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4286 ret = create_huge_pud(&vmf); 4287 if (!(ret & VM_FAULT_FALLBACK)) 4288 return ret; 4289 } else { 4290 pud_t orig_pud = *vmf.pud; 4291 4292 barrier(); 4293 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4294 4295 /* NUMA case for anonymous PUDs would go here */ 4296 4297 if (dirty && !pud_write(orig_pud)) { 4298 ret = wp_huge_pud(&vmf, orig_pud); 4299 if (!(ret & VM_FAULT_FALLBACK)) 4300 return ret; 4301 } else { 4302 huge_pud_set_accessed(&vmf, orig_pud); 4303 return 0; 4304 } 4305 } 4306 } 4307 4308 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4309 if (!vmf.pmd) 4310 return VM_FAULT_OOM; 4311 4312 /* Huge pud page fault raced with pmd_alloc? */ 4313 if (pud_trans_unstable(vmf.pud)) 4314 goto retry_pud; 4315 4316 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4317 ret = create_huge_pmd(&vmf); 4318 if (!(ret & VM_FAULT_FALLBACK)) 4319 return ret; 4320 } else { 4321 pmd_t orig_pmd = *vmf.pmd; 4322 4323 barrier(); 4324 if (unlikely(is_swap_pmd(orig_pmd))) { 4325 VM_BUG_ON(thp_migration_supported() && 4326 !is_pmd_migration_entry(orig_pmd)); 4327 if (is_pmd_migration_entry(orig_pmd)) 4328 pmd_migration_entry_wait(mm, vmf.pmd); 4329 return 0; 4330 } 4331 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4332 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4333 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4334 4335 if (dirty && !pmd_write(orig_pmd)) { 4336 ret = wp_huge_pmd(&vmf, orig_pmd); 4337 if (!(ret & VM_FAULT_FALLBACK)) 4338 return ret; 4339 } else { 4340 huge_pmd_set_accessed(&vmf, orig_pmd); 4341 return 0; 4342 } 4343 } 4344 } 4345 4346 return handle_pte_fault(&vmf); 4347 } 4348 4349 /** 4350 * mm_account_fault - Do page fault accountings 4351 * 4352 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 4353 * of perf event counters, but we'll still do the per-task accounting to 4354 * the task who triggered this page fault. 4355 * @address: the faulted address. 4356 * @flags: the fault flags. 4357 * @ret: the fault retcode. 4358 * 4359 * This will take care of most of the page fault accountings. Meanwhile, it 4360 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 4361 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 4362 * still be in per-arch page fault handlers at the entry of page fault. 4363 */ 4364 static inline void mm_account_fault(struct pt_regs *regs, 4365 unsigned long address, unsigned int flags, 4366 vm_fault_t ret) 4367 { 4368 bool major; 4369 4370 /* 4371 * We don't do accounting for some specific faults: 4372 * 4373 * - Unsuccessful faults (e.g. when the address wasn't valid). That 4374 * includes arch_vma_access_permitted() failing before reaching here. 4375 * So this is not a "this many hardware page faults" counter. We 4376 * should use the hw profiling for that. 4377 * 4378 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 4379 * once they're completed. 4380 */ 4381 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 4382 return; 4383 4384 /* 4385 * We define the fault as a major fault when the final successful fault 4386 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 4387 * handle it immediately previously). 4388 */ 4389 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 4390 4391 if (major) 4392 current->maj_flt++; 4393 else 4394 current->min_flt++; 4395 4396 /* 4397 * If the fault is done for GUP, regs will be NULL. We only do the 4398 * accounting for the per thread fault counters who triggered the 4399 * fault, and we skip the perf event updates. 4400 */ 4401 if (!regs) 4402 return; 4403 4404 if (major) 4405 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 4406 else 4407 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 4408 } 4409 4410 /* 4411 * By the time we get here, we already hold the mm semaphore 4412 * 4413 * The mmap_lock may have been released depending on flags and our 4414 * return value. See filemap_fault() and __lock_page_or_retry(). 4415 */ 4416 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4417 unsigned int flags, struct pt_regs *regs) 4418 { 4419 vm_fault_t ret; 4420 4421 __set_current_state(TASK_RUNNING); 4422 4423 count_vm_event(PGFAULT); 4424 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4425 4426 /* do counter updates before entering really critical section. */ 4427 check_sync_rss_stat(current); 4428 4429 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4430 flags & FAULT_FLAG_INSTRUCTION, 4431 flags & FAULT_FLAG_REMOTE)) 4432 return VM_FAULT_SIGSEGV; 4433 4434 /* 4435 * Enable the memcg OOM handling for faults triggered in user 4436 * space. Kernel faults are handled more gracefully. 4437 */ 4438 if (flags & FAULT_FLAG_USER) 4439 mem_cgroup_enter_user_fault(); 4440 4441 if (unlikely(is_vm_hugetlb_page(vma))) 4442 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4443 else 4444 ret = __handle_mm_fault(vma, address, flags); 4445 4446 if (flags & FAULT_FLAG_USER) { 4447 mem_cgroup_exit_user_fault(); 4448 /* 4449 * The task may have entered a memcg OOM situation but 4450 * if the allocation error was handled gracefully (no 4451 * VM_FAULT_OOM), there is no need to kill anything. 4452 * Just clean up the OOM state peacefully. 4453 */ 4454 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4455 mem_cgroup_oom_synchronize(false); 4456 } 4457 4458 mm_account_fault(regs, address, flags, ret); 4459 4460 return ret; 4461 } 4462 EXPORT_SYMBOL_GPL(handle_mm_fault); 4463 4464 #ifndef __PAGETABLE_P4D_FOLDED 4465 /* 4466 * Allocate p4d page table. 4467 * We've already handled the fast-path in-line. 4468 */ 4469 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4470 { 4471 p4d_t *new = p4d_alloc_one(mm, address); 4472 if (!new) 4473 return -ENOMEM; 4474 4475 smp_wmb(); /* See comment in __pte_alloc */ 4476 4477 spin_lock(&mm->page_table_lock); 4478 if (pgd_present(*pgd)) /* Another has populated it */ 4479 p4d_free(mm, new); 4480 else 4481 pgd_populate(mm, pgd, new); 4482 spin_unlock(&mm->page_table_lock); 4483 return 0; 4484 } 4485 #endif /* __PAGETABLE_P4D_FOLDED */ 4486 4487 #ifndef __PAGETABLE_PUD_FOLDED 4488 /* 4489 * Allocate page upper directory. 4490 * We've already handled the fast-path in-line. 4491 */ 4492 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4493 { 4494 pud_t *new = pud_alloc_one(mm, address); 4495 if (!new) 4496 return -ENOMEM; 4497 4498 smp_wmb(); /* See comment in __pte_alloc */ 4499 4500 spin_lock(&mm->page_table_lock); 4501 if (!p4d_present(*p4d)) { 4502 mm_inc_nr_puds(mm); 4503 p4d_populate(mm, p4d, new); 4504 } else /* Another has populated it */ 4505 pud_free(mm, new); 4506 spin_unlock(&mm->page_table_lock); 4507 return 0; 4508 } 4509 #endif /* __PAGETABLE_PUD_FOLDED */ 4510 4511 #ifndef __PAGETABLE_PMD_FOLDED 4512 /* 4513 * Allocate page middle directory. 4514 * We've already handled the fast-path in-line. 4515 */ 4516 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4517 { 4518 spinlock_t *ptl; 4519 pmd_t *new = pmd_alloc_one(mm, address); 4520 if (!new) 4521 return -ENOMEM; 4522 4523 smp_wmb(); /* See comment in __pte_alloc */ 4524 4525 ptl = pud_lock(mm, pud); 4526 if (!pud_present(*pud)) { 4527 mm_inc_nr_pmds(mm); 4528 pud_populate(mm, pud, new); 4529 } else /* Another has populated it */ 4530 pmd_free(mm, new); 4531 spin_unlock(ptl); 4532 return 0; 4533 } 4534 #endif /* __PAGETABLE_PMD_FOLDED */ 4535 4536 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4537 struct mmu_notifier_range *range, 4538 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4539 { 4540 pgd_t *pgd; 4541 p4d_t *p4d; 4542 pud_t *pud; 4543 pmd_t *pmd; 4544 pte_t *ptep; 4545 4546 pgd = pgd_offset(mm, address); 4547 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4548 goto out; 4549 4550 p4d = p4d_offset(pgd, address); 4551 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4552 goto out; 4553 4554 pud = pud_offset(p4d, address); 4555 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4556 goto out; 4557 4558 pmd = pmd_offset(pud, address); 4559 VM_BUG_ON(pmd_trans_huge(*pmd)); 4560 4561 if (pmd_huge(*pmd)) { 4562 if (!pmdpp) 4563 goto out; 4564 4565 if (range) { 4566 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4567 NULL, mm, address & PMD_MASK, 4568 (address & PMD_MASK) + PMD_SIZE); 4569 mmu_notifier_invalidate_range_start(range); 4570 } 4571 *ptlp = pmd_lock(mm, pmd); 4572 if (pmd_huge(*pmd)) { 4573 *pmdpp = pmd; 4574 return 0; 4575 } 4576 spin_unlock(*ptlp); 4577 if (range) 4578 mmu_notifier_invalidate_range_end(range); 4579 } 4580 4581 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4582 goto out; 4583 4584 if (range) { 4585 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4586 address & PAGE_MASK, 4587 (address & PAGE_MASK) + PAGE_SIZE); 4588 mmu_notifier_invalidate_range_start(range); 4589 } 4590 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4591 if (!pte_present(*ptep)) 4592 goto unlock; 4593 *ptepp = ptep; 4594 return 0; 4595 unlock: 4596 pte_unmap_unlock(ptep, *ptlp); 4597 if (range) 4598 mmu_notifier_invalidate_range_end(range); 4599 out: 4600 return -EINVAL; 4601 } 4602 4603 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4604 pte_t **ptepp, spinlock_t **ptlp) 4605 { 4606 int res; 4607 4608 /* (void) is needed to make gcc happy */ 4609 (void) __cond_lock(*ptlp, 4610 !(res = __follow_pte_pmd(mm, address, NULL, 4611 ptepp, NULL, ptlp))); 4612 return res; 4613 } 4614 4615 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4616 struct mmu_notifier_range *range, 4617 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4618 { 4619 int res; 4620 4621 /* (void) is needed to make gcc happy */ 4622 (void) __cond_lock(*ptlp, 4623 !(res = __follow_pte_pmd(mm, address, range, 4624 ptepp, pmdpp, ptlp))); 4625 return res; 4626 } 4627 EXPORT_SYMBOL(follow_pte_pmd); 4628 4629 /** 4630 * follow_pfn - look up PFN at a user virtual address 4631 * @vma: memory mapping 4632 * @address: user virtual address 4633 * @pfn: location to store found PFN 4634 * 4635 * Only IO mappings and raw PFN mappings are allowed. 4636 * 4637 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4638 */ 4639 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4640 unsigned long *pfn) 4641 { 4642 int ret = -EINVAL; 4643 spinlock_t *ptl; 4644 pte_t *ptep; 4645 4646 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4647 return ret; 4648 4649 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4650 if (ret) 4651 return ret; 4652 *pfn = pte_pfn(*ptep); 4653 pte_unmap_unlock(ptep, ptl); 4654 return 0; 4655 } 4656 EXPORT_SYMBOL(follow_pfn); 4657 4658 #ifdef CONFIG_HAVE_IOREMAP_PROT 4659 int follow_phys(struct vm_area_struct *vma, 4660 unsigned long address, unsigned int flags, 4661 unsigned long *prot, resource_size_t *phys) 4662 { 4663 int ret = -EINVAL; 4664 pte_t *ptep, pte; 4665 spinlock_t *ptl; 4666 4667 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4668 goto out; 4669 4670 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4671 goto out; 4672 pte = *ptep; 4673 4674 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4675 goto unlock; 4676 4677 *prot = pgprot_val(pte_pgprot(pte)); 4678 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4679 4680 ret = 0; 4681 unlock: 4682 pte_unmap_unlock(ptep, ptl); 4683 out: 4684 return ret; 4685 } 4686 4687 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4688 void *buf, int len, int write) 4689 { 4690 resource_size_t phys_addr; 4691 unsigned long prot = 0; 4692 void __iomem *maddr; 4693 int offset = addr & (PAGE_SIZE-1); 4694 4695 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4696 return -EINVAL; 4697 4698 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4699 if (!maddr) 4700 return -ENOMEM; 4701 4702 if (write) 4703 memcpy_toio(maddr + offset, buf, len); 4704 else 4705 memcpy_fromio(buf, maddr + offset, len); 4706 iounmap(maddr); 4707 4708 return len; 4709 } 4710 EXPORT_SYMBOL_GPL(generic_access_phys); 4711 #endif 4712 4713 /* 4714 * Access another process' address space as given in mm. If non-NULL, use the 4715 * given task for page fault accounting. 4716 */ 4717 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4718 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4719 { 4720 struct vm_area_struct *vma; 4721 void *old_buf = buf; 4722 int write = gup_flags & FOLL_WRITE; 4723 4724 if (mmap_read_lock_killable(mm)) 4725 return 0; 4726 4727 /* ignore errors, just check how much was successfully transferred */ 4728 while (len) { 4729 int bytes, ret, offset; 4730 void *maddr; 4731 struct page *page = NULL; 4732 4733 ret = get_user_pages_remote(mm, addr, 1, 4734 gup_flags, &page, &vma, NULL); 4735 if (ret <= 0) { 4736 #ifndef CONFIG_HAVE_IOREMAP_PROT 4737 break; 4738 #else 4739 /* 4740 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4741 * we can access using slightly different code. 4742 */ 4743 vma = find_vma(mm, addr); 4744 if (!vma || vma->vm_start > addr) 4745 break; 4746 if (vma->vm_ops && vma->vm_ops->access) 4747 ret = vma->vm_ops->access(vma, addr, buf, 4748 len, write); 4749 if (ret <= 0) 4750 break; 4751 bytes = ret; 4752 #endif 4753 } else { 4754 bytes = len; 4755 offset = addr & (PAGE_SIZE-1); 4756 if (bytes > PAGE_SIZE-offset) 4757 bytes = PAGE_SIZE-offset; 4758 4759 maddr = kmap(page); 4760 if (write) { 4761 copy_to_user_page(vma, page, addr, 4762 maddr + offset, buf, bytes); 4763 set_page_dirty_lock(page); 4764 } else { 4765 copy_from_user_page(vma, page, addr, 4766 buf, maddr + offset, bytes); 4767 } 4768 kunmap(page); 4769 put_page(page); 4770 } 4771 len -= bytes; 4772 buf += bytes; 4773 addr += bytes; 4774 } 4775 mmap_read_unlock(mm); 4776 4777 return buf - old_buf; 4778 } 4779 4780 /** 4781 * access_remote_vm - access another process' address space 4782 * @mm: the mm_struct of the target address space 4783 * @addr: start address to access 4784 * @buf: source or destination buffer 4785 * @len: number of bytes to transfer 4786 * @gup_flags: flags modifying lookup behaviour 4787 * 4788 * The caller must hold a reference on @mm. 4789 * 4790 * Return: number of bytes copied from source to destination. 4791 */ 4792 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4793 void *buf, int len, unsigned int gup_flags) 4794 { 4795 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4796 } 4797 4798 /* 4799 * Access another process' address space. 4800 * Source/target buffer must be kernel space, 4801 * Do not walk the page table directly, use get_user_pages 4802 */ 4803 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4804 void *buf, int len, unsigned int gup_flags) 4805 { 4806 struct mm_struct *mm; 4807 int ret; 4808 4809 mm = get_task_mm(tsk); 4810 if (!mm) 4811 return 0; 4812 4813 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4814 4815 mmput(mm); 4816 4817 return ret; 4818 } 4819 EXPORT_SYMBOL_GPL(access_process_vm); 4820 4821 /* 4822 * Print the name of a VMA. 4823 */ 4824 void print_vma_addr(char *prefix, unsigned long ip) 4825 { 4826 struct mm_struct *mm = current->mm; 4827 struct vm_area_struct *vma; 4828 4829 /* 4830 * we might be running from an atomic context so we cannot sleep 4831 */ 4832 if (!mmap_read_trylock(mm)) 4833 return; 4834 4835 vma = find_vma(mm, ip); 4836 if (vma && vma->vm_file) { 4837 struct file *f = vma->vm_file; 4838 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4839 if (buf) { 4840 char *p; 4841 4842 p = file_path(f, buf, PAGE_SIZE); 4843 if (IS_ERR(p)) 4844 p = "?"; 4845 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4846 vma->vm_start, 4847 vma->vm_end - vma->vm_start); 4848 free_page((unsigned long)buf); 4849 } 4850 } 4851 mmap_read_unlock(mm); 4852 } 4853 4854 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4855 void __might_fault(const char *file, int line) 4856 { 4857 /* 4858 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4859 * holding the mmap_lock, this is safe because kernel memory doesn't 4860 * get paged out, therefore we'll never actually fault, and the 4861 * below annotations will generate false positives. 4862 */ 4863 if (uaccess_kernel()) 4864 return; 4865 if (pagefault_disabled()) 4866 return; 4867 __might_sleep(file, line, 0); 4868 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4869 if (current->mm) 4870 might_lock_read(¤t->mm->mmap_lock); 4871 #endif 4872 } 4873 EXPORT_SYMBOL(__might_fault); 4874 #endif 4875 4876 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4877 /* 4878 * Process all subpages of the specified huge page with the specified 4879 * operation. The target subpage will be processed last to keep its 4880 * cache lines hot. 4881 */ 4882 static inline void process_huge_page( 4883 unsigned long addr_hint, unsigned int pages_per_huge_page, 4884 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4885 void *arg) 4886 { 4887 int i, n, base, l; 4888 unsigned long addr = addr_hint & 4889 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4890 4891 /* Process target subpage last to keep its cache lines hot */ 4892 might_sleep(); 4893 n = (addr_hint - addr) / PAGE_SIZE; 4894 if (2 * n <= pages_per_huge_page) { 4895 /* If target subpage in first half of huge page */ 4896 base = 0; 4897 l = n; 4898 /* Process subpages at the end of huge page */ 4899 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4900 cond_resched(); 4901 process_subpage(addr + i * PAGE_SIZE, i, arg); 4902 } 4903 } else { 4904 /* If target subpage in second half of huge page */ 4905 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4906 l = pages_per_huge_page - n; 4907 /* Process subpages at the begin of huge page */ 4908 for (i = 0; i < base; i++) { 4909 cond_resched(); 4910 process_subpage(addr + i * PAGE_SIZE, i, arg); 4911 } 4912 } 4913 /* 4914 * Process remaining subpages in left-right-left-right pattern 4915 * towards the target subpage 4916 */ 4917 for (i = 0; i < l; i++) { 4918 int left_idx = base + i; 4919 int right_idx = base + 2 * l - 1 - i; 4920 4921 cond_resched(); 4922 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4923 cond_resched(); 4924 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4925 } 4926 } 4927 4928 static void clear_gigantic_page(struct page *page, 4929 unsigned long addr, 4930 unsigned int pages_per_huge_page) 4931 { 4932 int i; 4933 struct page *p = page; 4934 4935 might_sleep(); 4936 for (i = 0; i < pages_per_huge_page; 4937 i++, p = mem_map_next(p, page, i)) { 4938 cond_resched(); 4939 clear_user_highpage(p, addr + i * PAGE_SIZE); 4940 } 4941 } 4942 4943 static void clear_subpage(unsigned long addr, int idx, void *arg) 4944 { 4945 struct page *page = arg; 4946 4947 clear_user_highpage(page + idx, addr); 4948 } 4949 4950 void clear_huge_page(struct page *page, 4951 unsigned long addr_hint, unsigned int pages_per_huge_page) 4952 { 4953 unsigned long addr = addr_hint & 4954 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4955 4956 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4957 clear_gigantic_page(page, addr, pages_per_huge_page); 4958 return; 4959 } 4960 4961 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4962 } 4963 4964 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4965 unsigned long addr, 4966 struct vm_area_struct *vma, 4967 unsigned int pages_per_huge_page) 4968 { 4969 int i; 4970 struct page *dst_base = dst; 4971 struct page *src_base = src; 4972 4973 for (i = 0; i < pages_per_huge_page; ) { 4974 cond_resched(); 4975 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4976 4977 i++; 4978 dst = mem_map_next(dst, dst_base, i); 4979 src = mem_map_next(src, src_base, i); 4980 } 4981 } 4982 4983 struct copy_subpage_arg { 4984 struct page *dst; 4985 struct page *src; 4986 struct vm_area_struct *vma; 4987 }; 4988 4989 static void copy_subpage(unsigned long addr, int idx, void *arg) 4990 { 4991 struct copy_subpage_arg *copy_arg = arg; 4992 4993 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4994 addr, copy_arg->vma); 4995 } 4996 4997 void copy_user_huge_page(struct page *dst, struct page *src, 4998 unsigned long addr_hint, struct vm_area_struct *vma, 4999 unsigned int pages_per_huge_page) 5000 { 5001 unsigned long addr = addr_hint & 5002 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5003 struct copy_subpage_arg arg = { 5004 .dst = dst, 5005 .src = src, 5006 .vma = vma, 5007 }; 5008 5009 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5010 copy_user_gigantic_page(dst, src, addr, vma, 5011 pages_per_huge_page); 5012 return; 5013 } 5014 5015 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5016 } 5017 5018 long copy_huge_page_from_user(struct page *dst_page, 5019 const void __user *usr_src, 5020 unsigned int pages_per_huge_page, 5021 bool allow_pagefault) 5022 { 5023 void *src = (void *)usr_src; 5024 void *page_kaddr; 5025 unsigned long i, rc = 0; 5026 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5027 5028 for (i = 0; i < pages_per_huge_page; i++) { 5029 if (allow_pagefault) 5030 page_kaddr = kmap(dst_page + i); 5031 else 5032 page_kaddr = kmap_atomic(dst_page + i); 5033 rc = copy_from_user(page_kaddr, 5034 (const void __user *)(src + i * PAGE_SIZE), 5035 PAGE_SIZE); 5036 if (allow_pagefault) 5037 kunmap(dst_page + i); 5038 else 5039 kunmap_atomic(page_kaddr); 5040 5041 ret_val -= (PAGE_SIZE - rc); 5042 if (rc) 5043 break; 5044 5045 cond_resched(); 5046 } 5047 return ret_val; 5048 } 5049 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5050 5051 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5052 5053 static struct kmem_cache *page_ptl_cachep; 5054 5055 void __init ptlock_cache_init(void) 5056 { 5057 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5058 SLAB_PANIC, NULL); 5059 } 5060 5061 bool ptlock_alloc(struct page *page) 5062 { 5063 spinlock_t *ptl; 5064 5065 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5066 if (!ptl) 5067 return false; 5068 page->ptl = ptl; 5069 return true; 5070 } 5071 5072 void ptlock_free(struct page *page) 5073 { 5074 kmem_cache_free(page_ptl_cachep, page->ptl); 5075 } 5076 #endif 5077