1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/memremap.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/export.h> 56 #include <linux/delayacct.h> 57 #include <linux/init.h> 58 #include <linux/pfn_t.h> 59 #include <linux/writeback.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 73 #include <asm/io.h> 74 #include <asm/mmu_context.h> 75 #include <asm/pgalloc.h> 76 #include <linux/uaccess.h> 77 #include <asm/tlb.h> 78 #include <asm/tlbflush.h> 79 #include <asm/pgtable.h> 80 81 #include "internal.h" 82 83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 85 #endif 86 87 #ifndef CONFIG_NEED_MULTIPLE_NODES 88 /* use the per-pgdat data instead for discontigmem - mbligh */ 89 unsigned long max_mapnr; 90 EXPORT_SYMBOL(max_mapnr); 91 92 struct page *mem_map; 93 EXPORT_SYMBOL(mem_map); 94 #endif 95 96 /* 97 * A number of key systems in x86 including ioremap() rely on the assumption 98 * that high_memory defines the upper bound on direct map memory, then end 99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 101 * and ZONE_HIGHMEM. 102 */ 103 void *high_memory; 104 EXPORT_SYMBOL(high_memory); 105 106 /* 107 * Randomize the address space (stacks, mmaps, brk, etc.). 108 * 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 110 * as ancient (libc5 based) binaries can segfault. ) 111 */ 112 int randomize_va_space __read_mostly = 113 #ifdef CONFIG_COMPAT_BRK 114 1; 115 #else 116 2; 117 #endif 118 119 static int __init disable_randmaps(char *s) 120 { 121 randomize_va_space = 0; 122 return 1; 123 } 124 __setup("norandmaps", disable_randmaps); 125 126 unsigned long zero_pfn __read_mostly; 127 EXPORT_SYMBOL(zero_pfn); 128 129 unsigned long highest_memmap_pfn __read_mostly; 130 131 /* 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 133 */ 134 static int __init init_zero_pfn(void) 135 { 136 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 137 return 0; 138 } 139 core_initcall(init_zero_pfn); 140 141 142 #if defined(SPLIT_RSS_COUNTING) 143 144 void sync_mm_rss(struct mm_struct *mm) 145 { 146 int i; 147 148 for (i = 0; i < NR_MM_COUNTERS; i++) { 149 if (current->rss_stat.count[i]) { 150 add_mm_counter(mm, i, current->rss_stat.count[i]); 151 current->rss_stat.count[i] = 0; 152 } 153 } 154 current->rss_stat.events = 0; 155 } 156 157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 158 { 159 struct task_struct *task = current; 160 161 if (likely(task->mm == mm)) 162 task->rss_stat.count[member] += val; 163 else 164 add_mm_counter(mm, member, val); 165 } 166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 168 169 /* sync counter once per 64 page faults */ 170 #define TASK_RSS_EVENTS_THRESH (64) 171 static void check_sync_rss_stat(struct task_struct *task) 172 { 173 if (unlikely(task != current)) 174 return; 175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 176 sync_mm_rss(task->mm); 177 } 178 #else /* SPLIT_RSS_COUNTING */ 179 180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 182 183 static void check_sync_rss_stat(struct task_struct *task) 184 { 185 } 186 187 #endif /* SPLIT_RSS_COUNTING */ 188 189 #ifdef HAVE_GENERIC_MMU_GATHER 190 191 static bool tlb_next_batch(struct mmu_gather *tlb) 192 { 193 struct mmu_gather_batch *batch; 194 195 batch = tlb->active; 196 if (batch->next) { 197 tlb->active = batch->next; 198 return true; 199 } 200 201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 202 return false; 203 204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 205 if (!batch) 206 return false; 207 208 tlb->batch_count++; 209 batch->next = NULL; 210 batch->nr = 0; 211 batch->max = MAX_GATHER_BATCH; 212 213 tlb->active->next = batch; 214 tlb->active = batch; 215 216 return true; 217 } 218 219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 220 unsigned long start, unsigned long end) 221 { 222 tlb->mm = mm; 223 224 /* Is it from 0 to ~0? */ 225 tlb->fullmm = !(start | (end+1)); 226 tlb->need_flush_all = 0; 227 tlb->local.next = NULL; 228 tlb->local.nr = 0; 229 tlb->local.max = ARRAY_SIZE(tlb->__pages); 230 tlb->active = &tlb->local; 231 tlb->batch_count = 0; 232 233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 234 tlb->batch = NULL; 235 #endif 236 tlb->page_size = 0; 237 238 __tlb_reset_range(tlb); 239 } 240 241 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 242 { 243 struct mmu_gather_batch *batch; 244 245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 246 tlb_table_flush(tlb); 247 #endif 248 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 249 free_pages_and_swap_cache(batch->pages, batch->nr); 250 batch->nr = 0; 251 } 252 tlb->active = &tlb->local; 253 } 254 255 void tlb_flush_mmu(struct mmu_gather *tlb) 256 { 257 tlb_flush_mmu_tlbonly(tlb); 258 tlb_flush_mmu_free(tlb); 259 } 260 261 /* tlb_finish_mmu 262 * Called at the end of the shootdown operation to free up any resources 263 * that were required. 264 */ 265 void arch_tlb_finish_mmu(struct mmu_gather *tlb, 266 unsigned long start, unsigned long end, bool force) 267 { 268 struct mmu_gather_batch *batch, *next; 269 270 if (force) 271 __tlb_adjust_range(tlb, start, end - start); 272 273 tlb_flush_mmu(tlb); 274 275 /* keep the page table cache within bounds */ 276 check_pgt_cache(); 277 278 for (batch = tlb->local.next; batch; batch = next) { 279 next = batch->next; 280 free_pages((unsigned long)batch, 0); 281 } 282 tlb->local.next = NULL; 283 } 284 285 /* __tlb_remove_page 286 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 287 * handling the additional races in SMP caused by other CPUs caching valid 288 * mappings in their TLBs. Returns the number of free page slots left. 289 * When out of page slots we must call tlb_flush_mmu(). 290 *returns true if the caller should flush. 291 */ 292 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) 293 { 294 struct mmu_gather_batch *batch; 295 296 VM_BUG_ON(!tlb->end); 297 VM_WARN_ON(tlb->page_size != page_size); 298 299 batch = tlb->active; 300 /* 301 * Add the page and check if we are full. If so 302 * force a flush. 303 */ 304 batch->pages[batch->nr++] = page; 305 if (batch->nr == batch->max) { 306 if (!tlb_next_batch(tlb)) 307 return true; 308 batch = tlb->active; 309 } 310 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 311 312 return false; 313 } 314 315 #endif /* HAVE_GENERIC_MMU_GATHER */ 316 317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 318 319 /* 320 * See the comment near struct mmu_table_batch. 321 */ 322 323 /* 324 * If we want tlb_remove_table() to imply TLB invalidates. 325 */ 326 static inline void tlb_table_invalidate(struct mmu_gather *tlb) 327 { 328 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE 329 /* 330 * Invalidate page-table caches used by hardware walkers. Then we still 331 * need to RCU-sched wait while freeing the pages because software 332 * walkers can still be in-flight. 333 */ 334 tlb_flush_mmu_tlbonly(tlb); 335 #endif 336 } 337 338 static void tlb_remove_table_smp_sync(void *arg) 339 { 340 /* Simply deliver the interrupt */ 341 } 342 343 static void tlb_remove_table_one(void *table) 344 { 345 /* 346 * This isn't an RCU grace period and hence the page-tables cannot be 347 * assumed to be actually RCU-freed. 348 * 349 * It is however sufficient for software page-table walkers that rely on 350 * IRQ disabling. See the comment near struct mmu_table_batch. 351 */ 352 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 353 __tlb_remove_table(table); 354 } 355 356 static void tlb_remove_table_rcu(struct rcu_head *head) 357 { 358 struct mmu_table_batch *batch; 359 int i; 360 361 batch = container_of(head, struct mmu_table_batch, rcu); 362 363 for (i = 0; i < batch->nr; i++) 364 __tlb_remove_table(batch->tables[i]); 365 366 free_page((unsigned long)batch); 367 } 368 369 void tlb_table_flush(struct mmu_gather *tlb) 370 { 371 struct mmu_table_batch **batch = &tlb->batch; 372 373 if (*batch) { 374 tlb_table_invalidate(tlb); 375 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 376 *batch = NULL; 377 } 378 } 379 380 void tlb_remove_table(struct mmu_gather *tlb, void *table) 381 { 382 struct mmu_table_batch **batch = &tlb->batch; 383 384 if (*batch == NULL) { 385 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 386 if (*batch == NULL) { 387 tlb_table_invalidate(tlb); 388 tlb_remove_table_one(table); 389 return; 390 } 391 (*batch)->nr = 0; 392 } 393 394 (*batch)->tables[(*batch)->nr++] = table; 395 if ((*batch)->nr == MAX_TABLE_BATCH) 396 tlb_table_flush(tlb); 397 } 398 399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 400 401 /** 402 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down 403 * @tlb: the mmu_gather structure to initialize 404 * @mm: the mm_struct of the target address space 405 * @start: start of the region that will be removed from the page-table 406 * @end: end of the region that will be removed from the page-table 407 * 408 * Called to initialize an (on-stack) mmu_gather structure for page-table 409 * tear-down from @mm. The @start and @end are set to 0 and -1 410 * respectively when @mm is without users and we're going to destroy 411 * the full address space (exit/execve). 412 */ 413 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 414 unsigned long start, unsigned long end) 415 { 416 arch_tlb_gather_mmu(tlb, mm, start, end); 417 inc_tlb_flush_pending(tlb->mm); 418 } 419 420 void tlb_finish_mmu(struct mmu_gather *tlb, 421 unsigned long start, unsigned long end) 422 { 423 /* 424 * If there are parallel threads are doing PTE changes on same range 425 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB 426 * flush by batching, a thread has stable TLB entry can fail to flush 427 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB 428 * forcefully if we detect parallel PTE batching threads. 429 */ 430 bool force = mm_tlb_flush_nested(tlb->mm); 431 432 arch_tlb_finish_mmu(tlb, start, end, force); 433 dec_tlb_flush_pending(tlb->mm); 434 } 435 436 /* 437 * Note: this doesn't free the actual pages themselves. That 438 * has been handled earlier when unmapping all the memory regions. 439 */ 440 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 441 unsigned long addr) 442 { 443 pgtable_t token = pmd_pgtable(*pmd); 444 pmd_clear(pmd); 445 pte_free_tlb(tlb, token, addr); 446 mm_dec_nr_ptes(tlb->mm); 447 } 448 449 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 450 unsigned long addr, unsigned long end, 451 unsigned long floor, unsigned long ceiling) 452 { 453 pmd_t *pmd; 454 unsigned long next; 455 unsigned long start; 456 457 start = addr; 458 pmd = pmd_offset(pud, addr); 459 do { 460 next = pmd_addr_end(addr, end); 461 if (pmd_none_or_clear_bad(pmd)) 462 continue; 463 free_pte_range(tlb, pmd, addr); 464 } while (pmd++, addr = next, addr != end); 465 466 start &= PUD_MASK; 467 if (start < floor) 468 return; 469 if (ceiling) { 470 ceiling &= PUD_MASK; 471 if (!ceiling) 472 return; 473 } 474 if (end - 1 > ceiling - 1) 475 return; 476 477 pmd = pmd_offset(pud, start); 478 pud_clear(pud); 479 pmd_free_tlb(tlb, pmd, start); 480 mm_dec_nr_pmds(tlb->mm); 481 } 482 483 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 484 unsigned long addr, unsigned long end, 485 unsigned long floor, unsigned long ceiling) 486 { 487 pud_t *pud; 488 unsigned long next; 489 unsigned long start; 490 491 start = addr; 492 pud = pud_offset(p4d, addr); 493 do { 494 next = pud_addr_end(addr, end); 495 if (pud_none_or_clear_bad(pud)) 496 continue; 497 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 498 } while (pud++, addr = next, addr != end); 499 500 start &= P4D_MASK; 501 if (start < floor) 502 return; 503 if (ceiling) { 504 ceiling &= P4D_MASK; 505 if (!ceiling) 506 return; 507 } 508 if (end - 1 > ceiling - 1) 509 return; 510 511 pud = pud_offset(p4d, start); 512 p4d_clear(p4d); 513 pud_free_tlb(tlb, pud, start); 514 mm_dec_nr_puds(tlb->mm); 515 } 516 517 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 518 unsigned long addr, unsigned long end, 519 unsigned long floor, unsigned long ceiling) 520 { 521 p4d_t *p4d; 522 unsigned long next; 523 unsigned long start; 524 525 start = addr; 526 p4d = p4d_offset(pgd, addr); 527 do { 528 next = p4d_addr_end(addr, end); 529 if (p4d_none_or_clear_bad(p4d)) 530 continue; 531 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 532 } while (p4d++, addr = next, addr != end); 533 534 start &= PGDIR_MASK; 535 if (start < floor) 536 return; 537 if (ceiling) { 538 ceiling &= PGDIR_MASK; 539 if (!ceiling) 540 return; 541 } 542 if (end - 1 > ceiling - 1) 543 return; 544 545 p4d = p4d_offset(pgd, start); 546 pgd_clear(pgd); 547 p4d_free_tlb(tlb, p4d, start); 548 } 549 550 /* 551 * This function frees user-level page tables of a process. 552 */ 553 void free_pgd_range(struct mmu_gather *tlb, 554 unsigned long addr, unsigned long end, 555 unsigned long floor, unsigned long ceiling) 556 { 557 pgd_t *pgd; 558 unsigned long next; 559 560 /* 561 * The next few lines have given us lots of grief... 562 * 563 * Why are we testing PMD* at this top level? Because often 564 * there will be no work to do at all, and we'd prefer not to 565 * go all the way down to the bottom just to discover that. 566 * 567 * Why all these "- 1"s? Because 0 represents both the bottom 568 * of the address space and the top of it (using -1 for the 569 * top wouldn't help much: the masks would do the wrong thing). 570 * The rule is that addr 0 and floor 0 refer to the bottom of 571 * the address space, but end 0 and ceiling 0 refer to the top 572 * Comparisons need to use "end - 1" and "ceiling - 1" (though 573 * that end 0 case should be mythical). 574 * 575 * Wherever addr is brought up or ceiling brought down, we must 576 * be careful to reject "the opposite 0" before it confuses the 577 * subsequent tests. But what about where end is brought down 578 * by PMD_SIZE below? no, end can't go down to 0 there. 579 * 580 * Whereas we round start (addr) and ceiling down, by different 581 * masks at different levels, in order to test whether a table 582 * now has no other vmas using it, so can be freed, we don't 583 * bother to round floor or end up - the tests don't need that. 584 */ 585 586 addr &= PMD_MASK; 587 if (addr < floor) { 588 addr += PMD_SIZE; 589 if (!addr) 590 return; 591 } 592 if (ceiling) { 593 ceiling &= PMD_MASK; 594 if (!ceiling) 595 return; 596 } 597 if (end - 1 > ceiling - 1) 598 end -= PMD_SIZE; 599 if (addr > end - 1) 600 return; 601 /* 602 * We add page table cache pages with PAGE_SIZE, 603 * (see pte_free_tlb()), flush the tlb if we need 604 */ 605 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 606 pgd = pgd_offset(tlb->mm, addr); 607 do { 608 next = pgd_addr_end(addr, end); 609 if (pgd_none_or_clear_bad(pgd)) 610 continue; 611 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 612 } while (pgd++, addr = next, addr != end); 613 } 614 615 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 616 unsigned long floor, unsigned long ceiling) 617 { 618 while (vma) { 619 struct vm_area_struct *next = vma->vm_next; 620 unsigned long addr = vma->vm_start; 621 622 /* 623 * Hide vma from rmap and truncate_pagecache before freeing 624 * pgtables 625 */ 626 unlink_anon_vmas(vma); 627 unlink_file_vma(vma); 628 629 if (is_vm_hugetlb_page(vma)) { 630 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 631 floor, next ? next->vm_start : ceiling); 632 } else { 633 /* 634 * Optimization: gather nearby vmas into one call down 635 */ 636 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 637 && !is_vm_hugetlb_page(next)) { 638 vma = next; 639 next = vma->vm_next; 640 unlink_anon_vmas(vma); 641 unlink_file_vma(vma); 642 } 643 free_pgd_range(tlb, addr, vma->vm_end, 644 floor, next ? next->vm_start : ceiling); 645 } 646 vma = next; 647 } 648 } 649 650 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 651 { 652 spinlock_t *ptl; 653 pgtable_t new = pte_alloc_one(mm, address); 654 if (!new) 655 return -ENOMEM; 656 657 /* 658 * Ensure all pte setup (eg. pte page lock and page clearing) are 659 * visible before the pte is made visible to other CPUs by being 660 * put into page tables. 661 * 662 * The other side of the story is the pointer chasing in the page 663 * table walking code (when walking the page table without locking; 664 * ie. most of the time). Fortunately, these data accesses consist 665 * of a chain of data-dependent loads, meaning most CPUs (alpha 666 * being the notable exception) will already guarantee loads are 667 * seen in-order. See the alpha page table accessors for the 668 * smp_read_barrier_depends() barriers in page table walking code. 669 */ 670 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 671 672 ptl = pmd_lock(mm, pmd); 673 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 674 mm_inc_nr_ptes(mm); 675 pmd_populate(mm, pmd, new); 676 new = NULL; 677 } 678 spin_unlock(ptl); 679 if (new) 680 pte_free(mm, new); 681 return 0; 682 } 683 684 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 685 { 686 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 687 if (!new) 688 return -ENOMEM; 689 690 smp_wmb(); /* See comment in __pte_alloc */ 691 692 spin_lock(&init_mm.page_table_lock); 693 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 694 pmd_populate_kernel(&init_mm, pmd, new); 695 new = NULL; 696 } 697 spin_unlock(&init_mm.page_table_lock); 698 if (new) 699 pte_free_kernel(&init_mm, new); 700 return 0; 701 } 702 703 static inline void init_rss_vec(int *rss) 704 { 705 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 706 } 707 708 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 709 { 710 int i; 711 712 if (current->mm == mm) 713 sync_mm_rss(mm); 714 for (i = 0; i < NR_MM_COUNTERS; i++) 715 if (rss[i]) 716 add_mm_counter(mm, i, rss[i]); 717 } 718 719 /* 720 * This function is called to print an error when a bad pte 721 * is found. For example, we might have a PFN-mapped pte in 722 * a region that doesn't allow it. 723 * 724 * The calling function must still handle the error. 725 */ 726 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 727 pte_t pte, struct page *page) 728 { 729 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 730 p4d_t *p4d = p4d_offset(pgd, addr); 731 pud_t *pud = pud_offset(p4d, addr); 732 pmd_t *pmd = pmd_offset(pud, addr); 733 struct address_space *mapping; 734 pgoff_t index; 735 static unsigned long resume; 736 static unsigned long nr_shown; 737 static unsigned long nr_unshown; 738 739 /* 740 * Allow a burst of 60 reports, then keep quiet for that minute; 741 * or allow a steady drip of one report per second. 742 */ 743 if (nr_shown == 60) { 744 if (time_before(jiffies, resume)) { 745 nr_unshown++; 746 return; 747 } 748 if (nr_unshown) { 749 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 750 nr_unshown); 751 nr_unshown = 0; 752 } 753 nr_shown = 0; 754 } 755 if (nr_shown++ == 0) 756 resume = jiffies + 60 * HZ; 757 758 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 759 index = linear_page_index(vma, addr); 760 761 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 762 current->comm, 763 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 764 if (page) 765 dump_page(page, "bad pte"); 766 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 767 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 768 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 769 vma->vm_file, 770 vma->vm_ops ? vma->vm_ops->fault : NULL, 771 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 772 mapping ? mapping->a_ops->readpage : NULL); 773 dump_stack(); 774 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 775 } 776 777 /* 778 * vm_normal_page -- This function gets the "struct page" associated with a pte. 779 * 780 * "Special" mappings do not wish to be associated with a "struct page" (either 781 * it doesn't exist, or it exists but they don't want to touch it). In this 782 * case, NULL is returned here. "Normal" mappings do have a struct page. 783 * 784 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 785 * pte bit, in which case this function is trivial. Secondly, an architecture 786 * may not have a spare pte bit, which requires a more complicated scheme, 787 * described below. 788 * 789 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 790 * special mapping (even if there are underlying and valid "struct pages"). 791 * COWed pages of a VM_PFNMAP are always normal. 792 * 793 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 794 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 795 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 796 * mapping will always honor the rule 797 * 798 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 799 * 800 * And for normal mappings this is false. 801 * 802 * This restricts such mappings to be a linear translation from virtual address 803 * to pfn. To get around this restriction, we allow arbitrary mappings so long 804 * as the vma is not a COW mapping; in that case, we know that all ptes are 805 * special (because none can have been COWed). 806 * 807 * 808 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 809 * 810 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 811 * page" backing, however the difference is that _all_ pages with a struct 812 * page (that is, those where pfn_valid is true) are refcounted and considered 813 * normal pages by the VM. The disadvantage is that pages are refcounted 814 * (which can be slower and simply not an option for some PFNMAP users). The 815 * advantage is that we don't have to follow the strict linearity rule of 816 * PFNMAP mappings in order to support COWable mappings. 817 * 818 */ 819 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 820 pte_t pte, bool with_public_device) 821 { 822 unsigned long pfn = pte_pfn(pte); 823 824 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 825 if (likely(!pte_special(pte))) 826 goto check_pfn; 827 if (vma->vm_ops && vma->vm_ops->find_special_page) 828 return vma->vm_ops->find_special_page(vma, addr); 829 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 830 return NULL; 831 if (is_zero_pfn(pfn)) 832 return NULL; 833 834 /* 835 * Device public pages are special pages (they are ZONE_DEVICE 836 * pages but different from persistent memory). They behave 837 * allmost like normal pages. The difference is that they are 838 * not on the lru and thus should never be involve with any- 839 * thing that involve lru manipulation (mlock, numa balancing, 840 * ...). 841 * 842 * This is why we still want to return NULL for such page from 843 * vm_normal_page() so that we do not have to special case all 844 * call site of vm_normal_page(). 845 */ 846 if (likely(pfn <= highest_memmap_pfn)) { 847 struct page *page = pfn_to_page(pfn); 848 849 if (is_device_public_page(page)) { 850 if (with_public_device) 851 return page; 852 return NULL; 853 } 854 } 855 856 if (pte_devmap(pte)) 857 return NULL; 858 859 print_bad_pte(vma, addr, pte, NULL); 860 return NULL; 861 } 862 863 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 864 865 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 866 if (vma->vm_flags & VM_MIXEDMAP) { 867 if (!pfn_valid(pfn)) 868 return NULL; 869 goto out; 870 } else { 871 unsigned long off; 872 off = (addr - vma->vm_start) >> PAGE_SHIFT; 873 if (pfn == vma->vm_pgoff + off) 874 return NULL; 875 if (!is_cow_mapping(vma->vm_flags)) 876 return NULL; 877 } 878 } 879 880 if (is_zero_pfn(pfn)) 881 return NULL; 882 883 check_pfn: 884 if (unlikely(pfn > highest_memmap_pfn)) { 885 print_bad_pte(vma, addr, pte, NULL); 886 return NULL; 887 } 888 889 /* 890 * NOTE! We still have PageReserved() pages in the page tables. 891 * eg. VDSO mappings can cause them to exist. 892 */ 893 out: 894 return pfn_to_page(pfn); 895 } 896 897 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 898 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 899 pmd_t pmd) 900 { 901 unsigned long pfn = pmd_pfn(pmd); 902 903 /* 904 * There is no pmd_special() but there may be special pmds, e.g. 905 * in a direct-access (dax) mapping, so let's just replicate the 906 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 907 */ 908 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 909 if (vma->vm_flags & VM_MIXEDMAP) { 910 if (!pfn_valid(pfn)) 911 return NULL; 912 goto out; 913 } else { 914 unsigned long off; 915 off = (addr - vma->vm_start) >> PAGE_SHIFT; 916 if (pfn == vma->vm_pgoff + off) 917 return NULL; 918 if (!is_cow_mapping(vma->vm_flags)) 919 return NULL; 920 } 921 } 922 923 if (pmd_devmap(pmd)) 924 return NULL; 925 if (is_zero_pfn(pfn)) 926 return NULL; 927 if (unlikely(pfn > highest_memmap_pfn)) 928 return NULL; 929 930 /* 931 * NOTE! We still have PageReserved() pages in the page tables. 932 * eg. VDSO mappings can cause them to exist. 933 */ 934 out: 935 return pfn_to_page(pfn); 936 } 937 #endif 938 939 /* 940 * copy one vm_area from one task to the other. Assumes the page tables 941 * already present in the new task to be cleared in the whole range 942 * covered by this vma. 943 */ 944 945 static inline unsigned long 946 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 947 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 948 unsigned long addr, int *rss) 949 { 950 unsigned long vm_flags = vma->vm_flags; 951 pte_t pte = *src_pte; 952 struct page *page; 953 954 /* pte contains position in swap or file, so copy. */ 955 if (unlikely(!pte_present(pte))) { 956 swp_entry_t entry = pte_to_swp_entry(pte); 957 958 if (likely(!non_swap_entry(entry))) { 959 if (swap_duplicate(entry) < 0) 960 return entry.val; 961 962 /* make sure dst_mm is on swapoff's mmlist. */ 963 if (unlikely(list_empty(&dst_mm->mmlist))) { 964 spin_lock(&mmlist_lock); 965 if (list_empty(&dst_mm->mmlist)) 966 list_add(&dst_mm->mmlist, 967 &src_mm->mmlist); 968 spin_unlock(&mmlist_lock); 969 } 970 rss[MM_SWAPENTS]++; 971 } else if (is_migration_entry(entry)) { 972 page = migration_entry_to_page(entry); 973 974 rss[mm_counter(page)]++; 975 976 if (is_write_migration_entry(entry) && 977 is_cow_mapping(vm_flags)) { 978 /* 979 * COW mappings require pages in both 980 * parent and child to be set to read. 981 */ 982 make_migration_entry_read(&entry); 983 pte = swp_entry_to_pte(entry); 984 if (pte_swp_soft_dirty(*src_pte)) 985 pte = pte_swp_mksoft_dirty(pte); 986 set_pte_at(src_mm, addr, src_pte, pte); 987 } 988 } else if (is_device_private_entry(entry)) { 989 page = device_private_entry_to_page(entry); 990 991 /* 992 * Update rss count even for unaddressable pages, as 993 * they should treated just like normal pages in this 994 * respect. 995 * 996 * We will likely want to have some new rss counters 997 * for unaddressable pages, at some point. But for now 998 * keep things as they are. 999 */ 1000 get_page(page); 1001 rss[mm_counter(page)]++; 1002 page_dup_rmap(page, false); 1003 1004 /* 1005 * We do not preserve soft-dirty information, because so 1006 * far, checkpoint/restore is the only feature that 1007 * requires that. And checkpoint/restore does not work 1008 * when a device driver is involved (you cannot easily 1009 * save and restore device driver state). 1010 */ 1011 if (is_write_device_private_entry(entry) && 1012 is_cow_mapping(vm_flags)) { 1013 make_device_private_entry_read(&entry); 1014 pte = swp_entry_to_pte(entry); 1015 set_pte_at(src_mm, addr, src_pte, pte); 1016 } 1017 } 1018 goto out_set_pte; 1019 } 1020 1021 /* 1022 * If it's a COW mapping, write protect it both 1023 * in the parent and the child 1024 */ 1025 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 1026 ptep_set_wrprotect(src_mm, addr, src_pte); 1027 pte = pte_wrprotect(pte); 1028 } 1029 1030 /* 1031 * If it's a shared mapping, mark it clean in 1032 * the child 1033 */ 1034 if (vm_flags & VM_SHARED) 1035 pte = pte_mkclean(pte); 1036 pte = pte_mkold(pte); 1037 1038 page = vm_normal_page(vma, addr, pte); 1039 if (page) { 1040 get_page(page); 1041 page_dup_rmap(page, false); 1042 rss[mm_counter(page)]++; 1043 } else if (pte_devmap(pte)) { 1044 page = pte_page(pte); 1045 1046 /* 1047 * Cache coherent device memory behave like regular page and 1048 * not like persistent memory page. For more informations see 1049 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 1050 */ 1051 if (is_device_public_page(page)) { 1052 get_page(page); 1053 page_dup_rmap(page, false); 1054 rss[mm_counter(page)]++; 1055 } 1056 } 1057 1058 out_set_pte: 1059 set_pte_at(dst_mm, addr, dst_pte, pte); 1060 return 0; 1061 } 1062 1063 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1064 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 1065 unsigned long addr, unsigned long end) 1066 { 1067 pte_t *orig_src_pte, *orig_dst_pte; 1068 pte_t *src_pte, *dst_pte; 1069 spinlock_t *src_ptl, *dst_ptl; 1070 int progress = 0; 1071 int rss[NR_MM_COUNTERS]; 1072 swp_entry_t entry = (swp_entry_t){0}; 1073 1074 again: 1075 init_rss_vec(rss); 1076 1077 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1078 if (!dst_pte) 1079 return -ENOMEM; 1080 src_pte = pte_offset_map(src_pmd, addr); 1081 src_ptl = pte_lockptr(src_mm, src_pmd); 1082 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1083 orig_src_pte = src_pte; 1084 orig_dst_pte = dst_pte; 1085 arch_enter_lazy_mmu_mode(); 1086 1087 do { 1088 /* 1089 * We are holding two locks at this point - either of them 1090 * could generate latencies in another task on another CPU. 1091 */ 1092 if (progress >= 32) { 1093 progress = 0; 1094 if (need_resched() || 1095 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1096 break; 1097 } 1098 if (pte_none(*src_pte)) { 1099 progress++; 1100 continue; 1101 } 1102 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 1103 vma, addr, rss); 1104 if (entry.val) 1105 break; 1106 progress += 8; 1107 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1108 1109 arch_leave_lazy_mmu_mode(); 1110 spin_unlock(src_ptl); 1111 pte_unmap(orig_src_pte); 1112 add_mm_rss_vec(dst_mm, rss); 1113 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1114 cond_resched(); 1115 1116 if (entry.val) { 1117 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 1118 return -ENOMEM; 1119 progress = 0; 1120 } 1121 if (addr != end) 1122 goto again; 1123 return 0; 1124 } 1125 1126 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1127 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 1128 unsigned long addr, unsigned long end) 1129 { 1130 pmd_t *src_pmd, *dst_pmd; 1131 unsigned long next; 1132 1133 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1134 if (!dst_pmd) 1135 return -ENOMEM; 1136 src_pmd = pmd_offset(src_pud, addr); 1137 do { 1138 next = pmd_addr_end(addr, end); 1139 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1140 || pmd_devmap(*src_pmd)) { 1141 int err; 1142 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 1143 err = copy_huge_pmd(dst_mm, src_mm, 1144 dst_pmd, src_pmd, addr, vma); 1145 if (err == -ENOMEM) 1146 return -ENOMEM; 1147 if (!err) 1148 continue; 1149 /* fall through */ 1150 } 1151 if (pmd_none_or_clear_bad(src_pmd)) 1152 continue; 1153 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1154 vma, addr, next)) 1155 return -ENOMEM; 1156 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1157 return 0; 1158 } 1159 1160 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1161 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 1162 unsigned long addr, unsigned long end) 1163 { 1164 pud_t *src_pud, *dst_pud; 1165 unsigned long next; 1166 1167 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1168 if (!dst_pud) 1169 return -ENOMEM; 1170 src_pud = pud_offset(src_p4d, addr); 1171 do { 1172 next = pud_addr_end(addr, end); 1173 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1174 int err; 1175 1176 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 1177 err = copy_huge_pud(dst_mm, src_mm, 1178 dst_pud, src_pud, addr, vma); 1179 if (err == -ENOMEM) 1180 return -ENOMEM; 1181 if (!err) 1182 continue; 1183 /* fall through */ 1184 } 1185 if (pud_none_or_clear_bad(src_pud)) 1186 continue; 1187 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1188 vma, addr, next)) 1189 return -ENOMEM; 1190 } while (dst_pud++, src_pud++, addr = next, addr != end); 1191 return 0; 1192 } 1193 1194 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1195 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1196 unsigned long addr, unsigned long end) 1197 { 1198 p4d_t *src_p4d, *dst_p4d; 1199 unsigned long next; 1200 1201 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1202 if (!dst_p4d) 1203 return -ENOMEM; 1204 src_p4d = p4d_offset(src_pgd, addr); 1205 do { 1206 next = p4d_addr_end(addr, end); 1207 if (p4d_none_or_clear_bad(src_p4d)) 1208 continue; 1209 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 1210 vma, addr, next)) 1211 return -ENOMEM; 1212 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1213 return 0; 1214 } 1215 1216 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1217 struct vm_area_struct *vma) 1218 { 1219 pgd_t *src_pgd, *dst_pgd; 1220 unsigned long next; 1221 unsigned long addr = vma->vm_start; 1222 unsigned long end = vma->vm_end; 1223 unsigned long mmun_start; /* For mmu_notifiers */ 1224 unsigned long mmun_end; /* For mmu_notifiers */ 1225 bool is_cow; 1226 int ret; 1227 1228 /* 1229 * Don't copy ptes where a page fault will fill them correctly. 1230 * Fork becomes much lighter when there are big shared or private 1231 * readonly mappings. The tradeoff is that copy_page_range is more 1232 * efficient than faulting. 1233 */ 1234 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1235 !vma->anon_vma) 1236 return 0; 1237 1238 if (is_vm_hugetlb_page(vma)) 1239 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1240 1241 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1242 /* 1243 * We do not free on error cases below as remove_vma 1244 * gets called on error from higher level routine 1245 */ 1246 ret = track_pfn_copy(vma); 1247 if (ret) 1248 return ret; 1249 } 1250 1251 /* 1252 * We need to invalidate the secondary MMU mappings only when 1253 * there could be a permission downgrade on the ptes of the 1254 * parent mm. And a permission downgrade will only happen if 1255 * is_cow_mapping() returns true. 1256 */ 1257 is_cow = is_cow_mapping(vma->vm_flags); 1258 mmun_start = addr; 1259 mmun_end = end; 1260 if (is_cow) 1261 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1262 mmun_end); 1263 1264 ret = 0; 1265 dst_pgd = pgd_offset(dst_mm, addr); 1266 src_pgd = pgd_offset(src_mm, addr); 1267 do { 1268 next = pgd_addr_end(addr, end); 1269 if (pgd_none_or_clear_bad(src_pgd)) 1270 continue; 1271 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1272 vma, addr, next))) { 1273 ret = -ENOMEM; 1274 break; 1275 } 1276 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1277 1278 if (is_cow) 1279 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1280 return ret; 1281 } 1282 1283 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1284 struct vm_area_struct *vma, pmd_t *pmd, 1285 unsigned long addr, unsigned long end, 1286 struct zap_details *details) 1287 { 1288 struct mm_struct *mm = tlb->mm; 1289 int force_flush = 0; 1290 int rss[NR_MM_COUNTERS]; 1291 spinlock_t *ptl; 1292 pte_t *start_pte; 1293 pte_t *pte; 1294 swp_entry_t entry; 1295 1296 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1297 again: 1298 init_rss_vec(rss); 1299 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1300 pte = start_pte; 1301 flush_tlb_batched_pending(mm); 1302 arch_enter_lazy_mmu_mode(); 1303 do { 1304 pte_t ptent = *pte; 1305 if (pte_none(ptent)) 1306 continue; 1307 1308 if (pte_present(ptent)) { 1309 struct page *page; 1310 1311 page = _vm_normal_page(vma, addr, ptent, true); 1312 if (unlikely(details) && page) { 1313 /* 1314 * unmap_shared_mapping_pages() wants to 1315 * invalidate cache without truncating: 1316 * unmap shared but keep private pages. 1317 */ 1318 if (details->check_mapping && 1319 details->check_mapping != page_rmapping(page)) 1320 continue; 1321 } 1322 ptent = ptep_get_and_clear_full(mm, addr, pte, 1323 tlb->fullmm); 1324 tlb_remove_tlb_entry(tlb, pte, addr); 1325 if (unlikely(!page)) 1326 continue; 1327 1328 if (!PageAnon(page)) { 1329 if (pte_dirty(ptent)) { 1330 force_flush = 1; 1331 set_page_dirty(page); 1332 } 1333 if (pte_young(ptent) && 1334 likely(!(vma->vm_flags & VM_SEQ_READ))) 1335 mark_page_accessed(page); 1336 } 1337 rss[mm_counter(page)]--; 1338 page_remove_rmap(page, false); 1339 if (unlikely(page_mapcount(page) < 0)) 1340 print_bad_pte(vma, addr, ptent, page); 1341 if (unlikely(__tlb_remove_page(tlb, page))) { 1342 force_flush = 1; 1343 addr += PAGE_SIZE; 1344 break; 1345 } 1346 continue; 1347 } 1348 1349 entry = pte_to_swp_entry(ptent); 1350 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1351 struct page *page = device_private_entry_to_page(entry); 1352 1353 if (unlikely(details && details->check_mapping)) { 1354 /* 1355 * unmap_shared_mapping_pages() wants to 1356 * invalidate cache without truncating: 1357 * unmap shared but keep private pages. 1358 */ 1359 if (details->check_mapping != 1360 page_rmapping(page)) 1361 continue; 1362 } 1363 1364 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1365 rss[mm_counter(page)]--; 1366 page_remove_rmap(page, false); 1367 put_page(page); 1368 continue; 1369 } 1370 1371 /* If details->check_mapping, we leave swap entries. */ 1372 if (unlikely(details)) 1373 continue; 1374 1375 entry = pte_to_swp_entry(ptent); 1376 if (!non_swap_entry(entry)) 1377 rss[MM_SWAPENTS]--; 1378 else if (is_migration_entry(entry)) { 1379 struct page *page; 1380 1381 page = migration_entry_to_page(entry); 1382 rss[mm_counter(page)]--; 1383 } 1384 if (unlikely(!free_swap_and_cache(entry))) 1385 print_bad_pte(vma, addr, ptent, NULL); 1386 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1387 } while (pte++, addr += PAGE_SIZE, addr != end); 1388 1389 add_mm_rss_vec(mm, rss); 1390 arch_leave_lazy_mmu_mode(); 1391 1392 /* Do the actual TLB flush before dropping ptl */ 1393 if (force_flush) 1394 tlb_flush_mmu_tlbonly(tlb); 1395 pte_unmap_unlock(start_pte, ptl); 1396 1397 /* 1398 * If we forced a TLB flush (either due to running out of 1399 * batch buffers or because we needed to flush dirty TLB 1400 * entries before releasing the ptl), free the batched 1401 * memory too. Restart if we didn't do everything. 1402 */ 1403 if (force_flush) { 1404 force_flush = 0; 1405 tlb_flush_mmu_free(tlb); 1406 if (addr != end) 1407 goto again; 1408 } 1409 1410 return addr; 1411 } 1412 1413 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1414 struct vm_area_struct *vma, pud_t *pud, 1415 unsigned long addr, unsigned long end, 1416 struct zap_details *details) 1417 { 1418 pmd_t *pmd; 1419 unsigned long next; 1420 1421 pmd = pmd_offset(pud, addr); 1422 do { 1423 next = pmd_addr_end(addr, end); 1424 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1425 if (next - addr != HPAGE_PMD_SIZE) 1426 __split_huge_pmd(vma, pmd, addr, false, NULL); 1427 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1428 goto next; 1429 /* fall through */ 1430 } 1431 /* 1432 * Here there can be other concurrent MADV_DONTNEED or 1433 * trans huge page faults running, and if the pmd is 1434 * none or trans huge it can change under us. This is 1435 * because MADV_DONTNEED holds the mmap_sem in read 1436 * mode. 1437 */ 1438 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1439 goto next; 1440 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1441 next: 1442 cond_resched(); 1443 } while (pmd++, addr = next, addr != end); 1444 1445 return addr; 1446 } 1447 1448 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1449 struct vm_area_struct *vma, p4d_t *p4d, 1450 unsigned long addr, unsigned long end, 1451 struct zap_details *details) 1452 { 1453 pud_t *pud; 1454 unsigned long next; 1455 1456 pud = pud_offset(p4d, addr); 1457 do { 1458 next = pud_addr_end(addr, end); 1459 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1460 if (next - addr != HPAGE_PUD_SIZE) { 1461 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1462 split_huge_pud(vma, pud, addr); 1463 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1464 goto next; 1465 /* fall through */ 1466 } 1467 if (pud_none_or_clear_bad(pud)) 1468 continue; 1469 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1470 next: 1471 cond_resched(); 1472 } while (pud++, addr = next, addr != end); 1473 1474 return addr; 1475 } 1476 1477 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1478 struct vm_area_struct *vma, pgd_t *pgd, 1479 unsigned long addr, unsigned long end, 1480 struct zap_details *details) 1481 { 1482 p4d_t *p4d; 1483 unsigned long next; 1484 1485 p4d = p4d_offset(pgd, addr); 1486 do { 1487 next = p4d_addr_end(addr, end); 1488 if (p4d_none_or_clear_bad(p4d)) 1489 continue; 1490 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1491 } while (p4d++, addr = next, addr != end); 1492 1493 return addr; 1494 } 1495 1496 void unmap_page_range(struct mmu_gather *tlb, 1497 struct vm_area_struct *vma, 1498 unsigned long addr, unsigned long end, 1499 struct zap_details *details) 1500 { 1501 pgd_t *pgd; 1502 unsigned long next; 1503 1504 BUG_ON(addr >= end); 1505 tlb_start_vma(tlb, vma); 1506 pgd = pgd_offset(vma->vm_mm, addr); 1507 do { 1508 next = pgd_addr_end(addr, end); 1509 if (pgd_none_or_clear_bad(pgd)) 1510 continue; 1511 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1512 } while (pgd++, addr = next, addr != end); 1513 tlb_end_vma(tlb, vma); 1514 } 1515 1516 1517 static void unmap_single_vma(struct mmu_gather *tlb, 1518 struct vm_area_struct *vma, unsigned long start_addr, 1519 unsigned long end_addr, 1520 struct zap_details *details) 1521 { 1522 unsigned long start = max(vma->vm_start, start_addr); 1523 unsigned long end; 1524 1525 if (start >= vma->vm_end) 1526 return; 1527 end = min(vma->vm_end, end_addr); 1528 if (end <= vma->vm_start) 1529 return; 1530 1531 if (vma->vm_file) 1532 uprobe_munmap(vma, start, end); 1533 1534 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1535 untrack_pfn(vma, 0, 0); 1536 1537 if (start != end) { 1538 if (unlikely(is_vm_hugetlb_page(vma))) { 1539 /* 1540 * It is undesirable to test vma->vm_file as it 1541 * should be non-null for valid hugetlb area. 1542 * However, vm_file will be NULL in the error 1543 * cleanup path of mmap_region. When 1544 * hugetlbfs ->mmap method fails, 1545 * mmap_region() nullifies vma->vm_file 1546 * before calling this function to clean up. 1547 * Since no pte has actually been setup, it is 1548 * safe to do nothing in this case. 1549 */ 1550 if (vma->vm_file) { 1551 i_mmap_lock_write(vma->vm_file->f_mapping); 1552 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1553 i_mmap_unlock_write(vma->vm_file->f_mapping); 1554 } 1555 } else 1556 unmap_page_range(tlb, vma, start, end, details); 1557 } 1558 } 1559 1560 /** 1561 * unmap_vmas - unmap a range of memory covered by a list of vma's 1562 * @tlb: address of the caller's struct mmu_gather 1563 * @vma: the starting vma 1564 * @start_addr: virtual address at which to start unmapping 1565 * @end_addr: virtual address at which to end unmapping 1566 * 1567 * Unmap all pages in the vma list. 1568 * 1569 * Only addresses between `start' and `end' will be unmapped. 1570 * 1571 * The VMA list must be sorted in ascending virtual address order. 1572 * 1573 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1574 * range after unmap_vmas() returns. So the only responsibility here is to 1575 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1576 * drops the lock and schedules. 1577 */ 1578 void unmap_vmas(struct mmu_gather *tlb, 1579 struct vm_area_struct *vma, unsigned long start_addr, 1580 unsigned long end_addr) 1581 { 1582 struct mm_struct *mm = vma->vm_mm; 1583 1584 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1585 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1586 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1587 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1588 } 1589 1590 /** 1591 * zap_page_range - remove user pages in a given range 1592 * @vma: vm_area_struct holding the applicable pages 1593 * @start: starting address of pages to zap 1594 * @size: number of bytes to zap 1595 * 1596 * Caller must protect the VMA list 1597 */ 1598 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1599 unsigned long size) 1600 { 1601 struct mm_struct *mm = vma->vm_mm; 1602 struct mmu_gather tlb; 1603 unsigned long end = start + size; 1604 1605 lru_add_drain(); 1606 tlb_gather_mmu(&tlb, mm, start, end); 1607 update_hiwater_rss(mm); 1608 mmu_notifier_invalidate_range_start(mm, start, end); 1609 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1610 unmap_single_vma(&tlb, vma, start, end, NULL); 1611 mmu_notifier_invalidate_range_end(mm, start, end); 1612 tlb_finish_mmu(&tlb, start, end); 1613 } 1614 1615 /** 1616 * zap_page_range_single - remove user pages in a given range 1617 * @vma: vm_area_struct holding the applicable pages 1618 * @address: starting address of pages to zap 1619 * @size: number of bytes to zap 1620 * @details: details of shared cache invalidation 1621 * 1622 * The range must fit into one VMA. 1623 */ 1624 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1625 unsigned long size, struct zap_details *details) 1626 { 1627 struct mm_struct *mm = vma->vm_mm; 1628 struct mmu_gather tlb; 1629 unsigned long end = address + size; 1630 1631 lru_add_drain(); 1632 tlb_gather_mmu(&tlb, mm, address, end); 1633 update_hiwater_rss(mm); 1634 mmu_notifier_invalidate_range_start(mm, address, end); 1635 unmap_single_vma(&tlb, vma, address, end, details); 1636 mmu_notifier_invalidate_range_end(mm, address, end); 1637 tlb_finish_mmu(&tlb, address, end); 1638 } 1639 1640 /** 1641 * zap_vma_ptes - remove ptes mapping the vma 1642 * @vma: vm_area_struct holding ptes to be zapped 1643 * @address: starting address of pages to zap 1644 * @size: number of bytes to zap 1645 * 1646 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1647 * 1648 * The entire address range must be fully contained within the vma. 1649 * 1650 */ 1651 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1652 unsigned long size) 1653 { 1654 if (address < vma->vm_start || address + size > vma->vm_end || 1655 !(vma->vm_flags & VM_PFNMAP)) 1656 return; 1657 1658 zap_page_range_single(vma, address, size, NULL); 1659 } 1660 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1661 1662 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1663 spinlock_t **ptl) 1664 { 1665 pgd_t *pgd; 1666 p4d_t *p4d; 1667 pud_t *pud; 1668 pmd_t *pmd; 1669 1670 pgd = pgd_offset(mm, addr); 1671 p4d = p4d_alloc(mm, pgd, addr); 1672 if (!p4d) 1673 return NULL; 1674 pud = pud_alloc(mm, p4d, addr); 1675 if (!pud) 1676 return NULL; 1677 pmd = pmd_alloc(mm, pud, addr); 1678 if (!pmd) 1679 return NULL; 1680 1681 VM_BUG_ON(pmd_trans_huge(*pmd)); 1682 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1683 } 1684 1685 /* 1686 * This is the old fallback for page remapping. 1687 * 1688 * For historical reasons, it only allows reserved pages. Only 1689 * old drivers should use this, and they needed to mark their 1690 * pages reserved for the old functions anyway. 1691 */ 1692 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1693 struct page *page, pgprot_t prot) 1694 { 1695 struct mm_struct *mm = vma->vm_mm; 1696 int retval; 1697 pte_t *pte; 1698 spinlock_t *ptl; 1699 1700 retval = -EINVAL; 1701 if (PageAnon(page)) 1702 goto out; 1703 retval = -ENOMEM; 1704 flush_dcache_page(page); 1705 pte = get_locked_pte(mm, addr, &ptl); 1706 if (!pte) 1707 goto out; 1708 retval = -EBUSY; 1709 if (!pte_none(*pte)) 1710 goto out_unlock; 1711 1712 /* Ok, finally just insert the thing.. */ 1713 get_page(page); 1714 inc_mm_counter_fast(mm, mm_counter_file(page)); 1715 page_add_file_rmap(page, false); 1716 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1717 1718 retval = 0; 1719 pte_unmap_unlock(pte, ptl); 1720 return retval; 1721 out_unlock: 1722 pte_unmap_unlock(pte, ptl); 1723 out: 1724 return retval; 1725 } 1726 1727 /** 1728 * vm_insert_page - insert single page into user vma 1729 * @vma: user vma to map to 1730 * @addr: target user address of this page 1731 * @page: source kernel page 1732 * 1733 * This allows drivers to insert individual pages they've allocated 1734 * into a user vma. 1735 * 1736 * The page has to be a nice clean _individual_ kernel allocation. 1737 * If you allocate a compound page, you need to have marked it as 1738 * such (__GFP_COMP), or manually just split the page up yourself 1739 * (see split_page()). 1740 * 1741 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1742 * took an arbitrary page protection parameter. This doesn't allow 1743 * that. Your vma protection will have to be set up correctly, which 1744 * means that if you want a shared writable mapping, you'd better 1745 * ask for a shared writable mapping! 1746 * 1747 * The page does not need to be reserved. 1748 * 1749 * Usually this function is called from f_op->mmap() handler 1750 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1751 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1752 * function from other places, for example from page-fault handler. 1753 */ 1754 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1755 struct page *page) 1756 { 1757 if (addr < vma->vm_start || addr >= vma->vm_end) 1758 return -EFAULT; 1759 if (!page_count(page)) 1760 return -EINVAL; 1761 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1762 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1763 BUG_ON(vma->vm_flags & VM_PFNMAP); 1764 vma->vm_flags |= VM_MIXEDMAP; 1765 } 1766 return insert_page(vma, addr, page, vma->vm_page_prot); 1767 } 1768 EXPORT_SYMBOL(vm_insert_page); 1769 1770 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1771 pfn_t pfn, pgprot_t prot, bool mkwrite) 1772 { 1773 struct mm_struct *mm = vma->vm_mm; 1774 int retval; 1775 pte_t *pte, entry; 1776 spinlock_t *ptl; 1777 1778 retval = -ENOMEM; 1779 pte = get_locked_pte(mm, addr, &ptl); 1780 if (!pte) 1781 goto out; 1782 retval = -EBUSY; 1783 if (!pte_none(*pte)) { 1784 if (mkwrite) { 1785 /* 1786 * For read faults on private mappings the PFN passed 1787 * in may not match the PFN we have mapped if the 1788 * mapped PFN is a writeable COW page. In the mkwrite 1789 * case we are creating a writable PTE for a shared 1790 * mapping and we expect the PFNs to match. 1791 */ 1792 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn))) 1793 goto out_unlock; 1794 entry = *pte; 1795 goto out_mkwrite; 1796 } else 1797 goto out_unlock; 1798 } 1799 1800 /* Ok, finally just insert the thing.. */ 1801 if (pfn_t_devmap(pfn)) 1802 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1803 else 1804 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1805 1806 out_mkwrite: 1807 if (mkwrite) { 1808 entry = pte_mkyoung(entry); 1809 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1810 } 1811 1812 set_pte_at(mm, addr, pte, entry); 1813 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1814 1815 retval = 0; 1816 out_unlock: 1817 pte_unmap_unlock(pte, ptl); 1818 out: 1819 return retval; 1820 } 1821 1822 /** 1823 * vm_insert_pfn - insert single pfn into user vma 1824 * @vma: user vma to map to 1825 * @addr: target user address of this page 1826 * @pfn: source kernel pfn 1827 * 1828 * Similar to vm_insert_page, this allows drivers to insert individual pages 1829 * they've allocated into a user vma. Same comments apply. 1830 * 1831 * This function should only be called from a vm_ops->fault handler, and 1832 * in that case the handler should return NULL. 1833 * 1834 * vma cannot be a COW mapping. 1835 * 1836 * As this is called only for pages that do not currently exist, we 1837 * do not need to flush old virtual caches or the TLB. 1838 */ 1839 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1840 unsigned long pfn) 1841 { 1842 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1843 } 1844 EXPORT_SYMBOL(vm_insert_pfn); 1845 1846 /** 1847 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1848 * @vma: user vma to map to 1849 * @addr: target user address of this page 1850 * @pfn: source kernel pfn 1851 * @pgprot: pgprot flags for the inserted page 1852 * 1853 * This is exactly like vm_insert_pfn, except that it allows drivers to 1854 * to override pgprot on a per-page basis. 1855 * 1856 * This only makes sense for IO mappings, and it makes no sense for 1857 * cow mappings. In general, using multiple vmas is preferable; 1858 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1859 * impractical. 1860 */ 1861 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1862 unsigned long pfn, pgprot_t pgprot) 1863 { 1864 int ret; 1865 /* 1866 * Technically, architectures with pte_special can avoid all these 1867 * restrictions (same for remap_pfn_range). However we would like 1868 * consistency in testing and feature parity among all, so we should 1869 * try to keep these invariants in place for everybody. 1870 */ 1871 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1872 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1873 (VM_PFNMAP|VM_MIXEDMAP)); 1874 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1875 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1876 1877 if (addr < vma->vm_start || addr >= vma->vm_end) 1878 return -EFAULT; 1879 1880 if (!pfn_modify_allowed(pfn, pgprot)) 1881 return -EACCES; 1882 1883 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1884 1885 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1886 false); 1887 1888 return ret; 1889 } 1890 EXPORT_SYMBOL(vm_insert_pfn_prot); 1891 1892 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1893 { 1894 /* these checks mirror the abort conditions in vm_normal_page */ 1895 if (vma->vm_flags & VM_MIXEDMAP) 1896 return true; 1897 if (pfn_t_devmap(pfn)) 1898 return true; 1899 if (pfn_t_special(pfn)) 1900 return true; 1901 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1902 return true; 1903 return false; 1904 } 1905 1906 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1907 pfn_t pfn, bool mkwrite) 1908 { 1909 pgprot_t pgprot = vma->vm_page_prot; 1910 1911 BUG_ON(!vm_mixed_ok(vma, pfn)); 1912 1913 if (addr < vma->vm_start || addr >= vma->vm_end) 1914 return -EFAULT; 1915 1916 track_pfn_insert(vma, &pgprot, pfn); 1917 1918 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1919 return -EACCES; 1920 1921 /* 1922 * If we don't have pte special, then we have to use the pfn_valid() 1923 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1924 * refcount the page if pfn_valid is true (hence insert_page rather 1925 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1926 * without pte special, it would there be refcounted as a normal page. 1927 */ 1928 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1929 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1930 struct page *page; 1931 1932 /* 1933 * At this point we are committed to insert_page() 1934 * regardless of whether the caller specified flags that 1935 * result in pfn_t_has_page() == false. 1936 */ 1937 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1938 return insert_page(vma, addr, page, pgprot); 1939 } 1940 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1941 } 1942 1943 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1944 pfn_t pfn) 1945 { 1946 return __vm_insert_mixed(vma, addr, pfn, false); 1947 1948 } 1949 EXPORT_SYMBOL(vm_insert_mixed); 1950 1951 /* 1952 * If the insertion of PTE failed because someone else already added a 1953 * different entry in the mean time, we treat that as success as we assume 1954 * the same entry was actually inserted. 1955 */ 1956 1957 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1958 unsigned long addr, pfn_t pfn) 1959 { 1960 int err; 1961 1962 err = __vm_insert_mixed(vma, addr, pfn, true); 1963 if (err == -ENOMEM) 1964 return VM_FAULT_OOM; 1965 if (err < 0 && err != -EBUSY) 1966 return VM_FAULT_SIGBUS; 1967 return VM_FAULT_NOPAGE; 1968 } 1969 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1970 1971 /* 1972 * maps a range of physical memory into the requested pages. the old 1973 * mappings are removed. any references to nonexistent pages results 1974 * in null mappings (currently treated as "copy-on-access") 1975 */ 1976 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1977 unsigned long addr, unsigned long end, 1978 unsigned long pfn, pgprot_t prot) 1979 { 1980 pte_t *pte; 1981 spinlock_t *ptl; 1982 int err = 0; 1983 1984 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1985 if (!pte) 1986 return -ENOMEM; 1987 arch_enter_lazy_mmu_mode(); 1988 do { 1989 BUG_ON(!pte_none(*pte)); 1990 if (!pfn_modify_allowed(pfn, prot)) { 1991 err = -EACCES; 1992 break; 1993 } 1994 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1995 pfn++; 1996 } while (pte++, addr += PAGE_SIZE, addr != end); 1997 arch_leave_lazy_mmu_mode(); 1998 pte_unmap_unlock(pte - 1, ptl); 1999 return err; 2000 } 2001 2002 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2003 unsigned long addr, unsigned long end, 2004 unsigned long pfn, pgprot_t prot) 2005 { 2006 pmd_t *pmd; 2007 unsigned long next; 2008 int err; 2009 2010 pfn -= addr >> PAGE_SHIFT; 2011 pmd = pmd_alloc(mm, pud, addr); 2012 if (!pmd) 2013 return -ENOMEM; 2014 VM_BUG_ON(pmd_trans_huge(*pmd)); 2015 do { 2016 next = pmd_addr_end(addr, end); 2017 err = remap_pte_range(mm, pmd, addr, next, 2018 pfn + (addr >> PAGE_SHIFT), prot); 2019 if (err) 2020 return err; 2021 } while (pmd++, addr = next, addr != end); 2022 return 0; 2023 } 2024 2025 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2026 unsigned long addr, unsigned long end, 2027 unsigned long pfn, pgprot_t prot) 2028 { 2029 pud_t *pud; 2030 unsigned long next; 2031 int err; 2032 2033 pfn -= addr >> PAGE_SHIFT; 2034 pud = pud_alloc(mm, p4d, addr); 2035 if (!pud) 2036 return -ENOMEM; 2037 do { 2038 next = pud_addr_end(addr, end); 2039 err = remap_pmd_range(mm, pud, addr, next, 2040 pfn + (addr >> PAGE_SHIFT), prot); 2041 if (err) 2042 return err; 2043 } while (pud++, addr = next, addr != end); 2044 return 0; 2045 } 2046 2047 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2048 unsigned long addr, unsigned long end, 2049 unsigned long pfn, pgprot_t prot) 2050 { 2051 p4d_t *p4d; 2052 unsigned long next; 2053 int err; 2054 2055 pfn -= addr >> PAGE_SHIFT; 2056 p4d = p4d_alloc(mm, pgd, addr); 2057 if (!p4d) 2058 return -ENOMEM; 2059 do { 2060 next = p4d_addr_end(addr, end); 2061 err = remap_pud_range(mm, p4d, addr, next, 2062 pfn + (addr >> PAGE_SHIFT), prot); 2063 if (err) 2064 return err; 2065 } while (p4d++, addr = next, addr != end); 2066 return 0; 2067 } 2068 2069 /** 2070 * remap_pfn_range - remap kernel memory to userspace 2071 * @vma: user vma to map to 2072 * @addr: target user address to start at 2073 * @pfn: physical address of kernel memory 2074 * @size: size of map area 2075 * @prot: page protection flags for this mapping 2076 * 2077 * Note: this is only safe if the mm semaphore is held when called. 2078 */ 2079 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2080 unsigned long pfn, unsigned long size, pgprot_t prot) 2081 { 2082 pgd_t *pgd; 2083 unsigned long next; 2084 unsigned long end = addr + PAGE_ALIGN(size); 2085 struct mm_struct *mm = vma->vm_mm; 2086 unsigned long remap_pfn = pfn; 2087 int err; 2088 2089 /* 2090 * Physically remapped pages are special. Tell the 2091 * rest of the world about it: 2092 * VM_IO tells people not to look at these pages 2093 * (accesses can have side effects). 2094 * VM_PFNMAP tells the core MM that the base pages are just 2095 * raw PFN mappings, and do not have a "struct page" associated 2096 * with them. 2097 * VM_DONTEXPAND 2098 * Disable vma merging and expanding with mremap(). 2099 * VM_DONTDUMP 2100 * Omit vma from core dump, even when VM_IO turned off. 2101 * 2102 * There's a horrible special case to handle copy-on-write 2103 * behaviour that some programs depend on. We mark the "original" 2104 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2105 * See vm_normal_page() for details. 2106 */ 2107 if (is_cow_mapping(vma->vm_flags)) { 2108 if (addr != vma->vm_start || end != vma->vm_end) 2109 return -EINVAL; 2110 vma->vm_pgoff = pfn; 2111 } 2112 2113 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2114 if (err) 2115 return -EINVAL; 2116 2117 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2118 2119 BUG_ON(addr >= end); 2120 pfn -= addr >> PAGE_SHIFT; 2121 pgd = pgd_offset(mm, addr); 2122 flush_cache_range(vma, addr, end); 2123 do { 2124 next = pgd_addr_end(addr, end); 2125 err = remap_p4d_range(mm, pgd, addr, next, 2126 pfn + (addr >> PAGE_SHIFT), prot); 2127 if (err) 2128 break; 2129 } while (pgd++, addr = next, addr != end); 2130 2131 if (err) 2132 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2133 2134 return err; 2135 } 2136 EXPORT_SYMBOL(remap_pfn_range); 2137 2138 /** 2139 * vm_iomap_memory - remap memory to userspace 2140 * @vma: user vma to map to 2141 * @start: start of area 2142 * @len: size of area 2143 * 2144 * This is a simplified io_remap_pfn_range() for common driver use. The 2145 * driver just needs to give us the physical memory range to be mapped, 2146 * we'll figure out the rest from the vma information. 2147 * 2148 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2149 * whatever write-combining details or similar. 2150 */ 2151 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2152 { 2153 unsigned long vm_len, pfn, pages; 2154 2155 /* Check that the physical memory area passed in looks valid */ 2156 if (start + len < start) 2157 return -EINVAL; 2158 /* 2159 * You *really* shouldn't map things that aren't page-aligned, 2160 * but we've historically allowed it because IO memory might 2161 * just have smaller alignment. 2162 */ 2163 len += start & ~PAGE_MASK; 2164 pfn = start >> PAGE_SHIFT; 2165 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2166 if (pfn + pages < pfn) 2167 return -EINVAL; 2168 2169 /* We start the mapping 'vm_pgoff' pages into the area */ 2170 if (vma->vm_pgoff > pages) 2171 return -EINVAL; 2172 pfn += vma->vm_pgoff; 2173 pages -= vma->vm_pgoff; 2174 2175 /* Can we fit all of the mapping? */ 2176 vm_len = vma->vm_end - vma->vm_start; 2177 if (vm_len >> PAGE_SHIFT > pages) 2178 return -EINVAL; 2179 2180 /* Ok, let it rip */ 2181 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2182 } 2183 EXPORT_SYMBOL(vm_iomap_memory); 2184 2185 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2186 unsigned long addr, unsigned long end, 2187 pte_fn_t fn, void *data) 2188 { 2189 pte_t *pte; 2190 int err; 2191 pgtable_t token; 2192 spinlock_t *uninitialized_var(ptl); 2193 2194 pte = (mm == &init_mm) ? 2195 pte_alloc_kernel(pmd, addr) : 2196 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2197 if (!pte) 2198 return -ENOMEM; 2199 2200 BUG_ON(pmd_huge(*pmd)); 2201 2202 arch_enter_lazy_mmu_mode(); 2203 2204 token = pmd_pgtable(*pmd); 2205 2206 do { 2207 err = fn(pte++, token, addr, data); 2208 if (err) 2209 break; 2210 } while (addr += PAGE_SIZE, addr != end); 2211 2212 arch_leave_lazy_mmu_mode(); 2213 2214 if (mm != &init_mm) 2215 pte_unmap_unlock(pte-1, ptl); 2216 return err; 2217 } 2218 2219 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2220 unsigned long addr, unsigned long end, 2221 pte_fn_t fn, void *data) 2222 { 2223 pmd_t *pmd; 2224 unsigned long next; 2225 int err; 2226 2227 BUG_ON(pud_huge(*pud)); 2228 2229 pmd = pmd_alloc(mm, pud, addr); 2230 if (!pmd) 2231 return -ENOMEM; 2232 do { 2233 next = pmd_addr_end(addr, end); 2234 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2235 if (err) 2236 break; 2237 } while (pmd++, addr = next, addr != end); 2238 return err; 2239 } 2240 2241 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2242 unsigned long addr, unsigned long end, 2243 pte_fn_t fn, void *data) 2244 { 2245 pud_t *pud; 2246 unsigned long next; 2247 int err; 2248 2249 pud = pud_alloc(mm, p4d, addr); 2250 if (!pud) 2251 return -ENOMEM; 2252 do { 2253 next = pud_addr_end(addr, end); 2254 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2255 if (err) 2256 break; 2257 } while (pud++, addr = next, addr != end); 2258 return err; 2259 } 2260 2261 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2262 unsigned long addr, unsigned long end, 2263 pte_fn_t fn, void *data) 2264 { 2265 p4d_t *p4d; 2266 unsigned long next; 2267 int err; 2268 2269 p4d = p4d_alloc(mm, pgd, addr); 2270 if (!p4d) 2271 return -ENOMEM; 2272 do { 2273 next = p4d_addr_end(addr, end); 2274 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2275 if (err) 2276 break; 2277 } while (p4d++, addr = next, addr != end); 2278 return err; 2279 } 2280 2281 /* 2282 * Scan a region of virtual memory, filling in page tables as necessary 2283 * and calling a provided function on each leaf page table. 2284 */ 2285 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2286 unsigned long size, pte_fn_t fn, void *data) 2287 { 2288 pgd_t *pgd; 2289 unsigned long next; 2290 unsigned long end = addr + size; 2291 int err; 2292 2293 if (WARN_ON(addr >= end)) 2294 return -EINVAL; 2295 2296 pgd = pgd_offset(mm, addr); 2297 do { 2298 next = pgd_addr_end(addr, end); 2299 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2300 if (err) 2301 break; 2302 } while (pgd++, addr = next, addr != end); 2303 2304 return err; 2305 } 2306 EXPORT_SYMBOL_GPL(apply_to_page_range); 2307 2308 /* 2309 * handle_pte_fault chooses page fault handler according to an entry which was 2310 * read non-atomically. Before making any commitment, on those architectures 2311 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2312 * parts, do_swap_page must check under lock before unmapping the pte and 2313 * proceeding (but do_wp_page is only called after already making such a check; 2314 * and do_anonymous_page can safely check later on). 2315 */ 2316 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2317 pte_t *page_table, pte_t orig_pte) 2318 { 2319 int same = 1; 2320 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2321 if (sizeof(pte_t) > sizeof(unsigned long)) { 2322 spinlock_t *ptl = pte_lockptr(mm, pmd); 2323 spin_lock(ptl); 2324 same = pte_same(*page_table, orig_pte); 2325 spin_unlock(ptl); 2326 } 2327 #endif 2328 pte_unmap(page_table); 2329 return same; 2330 } 2331 2332 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2333 { 2334 debug_dma_assert_idle(src); 2335 2336 /* 2337 * If the source page was a PFN mapping, we don't have 2338 * a "struct page" for it. We do a best-effort copy by 2339 * just copying from the original user address. If that 2340 * fails, we just zero-fill it. Live with it. 2341 */ 2342 if (unlikely(!src)) { 2343 void *kaddr = kmap_atomic(dst); 2344 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2345 2346 /* 2347 * This really shouldn't fail, because the page is there 2348 * in the page tables. But it might just be unreadable, 2349 * in which case we just give up and fill the result with 2350 * zeroes. 2351 */ 2352 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2353 clear_page(kaddr); 2354 kunmap_atomic(kaddr); 2355 flush_dcache_page(dst); 2356 } else 2357 copy_user_highpage(dst, src, va, vma); 2358 } 2359 2360 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2361 { 2362 struct file *vm_file = vma->vm_file; 2363 2364 if (vm_file) 2365 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2366 2367 /* 2368 * Special mappings (e.g. VDSO) do not have any file so fake 2369 * a default GFP_KERNEL for them. 2370 */ 2371 return GFP_KERNEL; 2372 } 2373 2374 /* 2375 * Notify the address space that the page is about to become writable so that 2376 * it can prohibit this or wait for the page to get into an appropriate state. 2377 * 2378 * We do this without the lock held, so that it can sleep if it needs to. 2379 */ 2380 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2381 { 2382 vm_fault_t ret; 2383 struct page *page = vmf->page; 2384 unsigned int old_flags = vmf->flags; 2385 2386 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2387 2388 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2389 /* Restore original flags so that caller is not surprised */ 2390 vmf->flags = old_flags; 2391 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2392 return ret; 2393 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2394 lock_page(page); 2395 if (!page->mapping) { 2396 unlock_page(page); 2397 return 0; /* retry */ 2398 } 2399 ret |= VM_FAULT_LOCKED; 2400 } else 2401 VM_BUG_ON_PAGE(!PageLocked(page), page); 2402 return ret; 2403 } 2404 2405 /* 2406 * Handle dirtying of a page in shared file mapping on a write fault. 2407 * 2408 * The function expects the page to be locked and unlocks it. 2409 */ 2410 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2411 struct page *page) 2412 { 2413 struct address_space *mapping; 2414 bool dirtied; 2415 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2416 2417 dirtied = set_page_dirty(page); 2418 VM_BUG_ON_PAGE(PageAnon(page), page); 2419 /* 2420 * Take a local copy of the address_space - page.mapping may be zeroed 2421 * by truncate after unlock_page(). The address_space itself remains 2422 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2423 * release semantics to prevent the compiler from undoing this copying. 2424 */ 2425 mapping = page_rmapping(page); 2426 unlock_page(page); 2427 2428 if ((dirtied || page_mkwrite) && mapping) { 2429 /* 2430 * Some device drivers do not set page.mapping 2431 * but still dirty their pages 2432 */ 2433 balance_dirty_pages_ratelimited(mapping); 2434 } 2435 2436 if (!page_mkwrite) 2437 file_update_time(vma->vm_file); 2438 } 2439 2440 /* 2441 * Handle write page faults for pages that can be reused in the current vma 2442 * 2443 * This can happen either due to the mapping being with the VM_SHARED flag, 2444 * or due to us being the last reference standing to the page. In either 2445 * case, all we need to do here is to mark the page as writable and update 2446 * any related book-keeping. 2447 */ 2448 static inline void wp_page_reuse(struct vm_fault *vmf) 2449 __releases(vmf->ptl) 2450 { 2451 struct vm_area_struct *vma = vmf->vma; 2452 struct page *page = vmf->page; 2453 pte_t entry; 2454 /* 2455 * Clear the pages cpupid information as the existing 2456 * information potentially belongs to a now completely 2457 * unrelated process. 2458 */ 2459 if (page) 2460 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2461 2462 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2463 entry = pte_mkyoung(vmf->orig_pte); 2464 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2465 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2466 update_mmu_cache(vma, vmf->address, vmf->pte); 2467 pte_unmap_unlock(vmf->pte, vmf->ptl); 2468 } 2469 2470 /* 2471 * Handle the case of a page which we actually need to copy to a new page. 2472 * 2473 * Called with mmap_sem locked and the old page referenced, but 2474 * without the ptl held. 2475 * 2476 * High level logic flow: 2477 * 2478 * - Allocate a page, copy the content of the old page to the new one. 2479 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2480 * - Take the PTL. If the pte changed, bail out and release the allocated page 2481 * - If the pte is still the way we remember it, update the page table and all 2482 * relevant references. This includes dropping the reference the page-table 2483 * held to the old page, as well as updating the rmap. 2484 * - In any case, unlock the PTL and drop the reference we took to the old page. 2485 */ 2486 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2487 { 2488 struct vm_area_struct *vma = vmf->vma; 2489 struct mm_struct *mm = vma->vm_mm; 2490 struct page *old_page = vmf->page; 2491 struct page *new_page = NULL; 2492 pte_t entry; 2493 int page_copied = 0; 2494 const unsigned long mmun_start = vmf->address & PAGE_MASK; 2495 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 2496 struct mem_cgroup *memcg; 2497 2498 if (unlikely(anon_vma_prepare(vma))) 2499 goto oom; 2500 2501 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2502 new_page = alloc_zeroed_user_highpage_movable(vma, 2503 vmf->address); 2504 if (!new_page) 2505 goto oom; 2506 } else { 2507 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2508 vmf->address); 2509 if (!new_page) 2510 goto oom; 2511 cow_user_page(new_page, old_page, vmf->address, vma); 2512 } 2513 2514 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2515 goto oom_free_new; 2516 2517 __SetPageUptodate(new_page); 2518 2519 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2520 2521 /* 2522 * Re-check the pte - we dropped the lock 2523 */ 2524 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2525 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2526 if (old_page) { 2527 if (!PageAnon(old_page)) { 2528 dec_mm_counter_fast(mm, 2529 mm_counter_file(old_page)); 2530 inc_mm_counter_fast(mm, MM_ANONPAGES); 2531 } 2532 } else { 2533 inc_mm_counter_fast(mm, MM_ANONPAGES); 2534 } 2535 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2536 entry = mk_pte(new_page, vma->vm_page_prot); 2537 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2538 /* 2539 * Clear the pte entry and flush it first, before updating the 2540 * pte with the new entry. This will avoid a race condition 2541 * seen in the presence of one thread doing SMC and another 2542 * thread doing COW. 2543 */ 2544 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2545 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2546 mem_cgroup_commit_charge(new_page, memcg, false, false); 2547 lru_cache_add_active_or_unevictable(new_page, vma); 2548 /* 2549 * We call the notify macro here because, when using secondary 2550 * mmu page tables (such as kvm shadow page tables), we want the 2551 * new page to be mapped directly into the secondary page table. 2552 */ 2553 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2554 update_mmu_cache(vma, vmf->address, vmf->pte); 2555 if (old_page) { 2556 /* 2557 * Only after switching the pte to the new page may 2558 * we remove the mapcount here. Otherwise another 2559 * process may come and find the rmap count decremented 2560 * before the pte is switched to the new page, and 2561 * "reuse" the old page writing into it while our pte 2562 * here still points into it and can be read by other 2563 * threads. 2564 * 2565 * The critical issue is to order this 2566 * page_remove_rmap with the ptp_clear_flush above. 2567 * Those stores are ordered by (if nothing else,) 2568 * the barrier present in the atomic_add_negative 2569 * in page_remove_rmap. 2570 * 2571 * Then the TLB flush in ptep_clear_flush ensures that 2572 * no process can access the old page before the 2573 * decremented mapcount is visible. And the old page 2574 * cannot be reused until after the decremented 2575 * mapcount is visible. So transitively, TLBs to 2576 * old page will be flushed before it can be reused. 2577 */ 2578 page_remove_rmap(old_page, false); 2579 } 2580 2581 /* Free the old page.. */ 2582 new_page = old_page; 2583 page_copied = 1; 2584 } else { 2585 mem_cgroup_cancel_charge(new_page, memcg, false); 2586 } 2587 2588 if (new_page) 2589 put_page(new_page); 2590 2591 pte_unmap_unlock(vmf->pte, vmf->ptl); 2592 /* 2593 * No need to double call mmu_notifier->invalidate_range() callback as 2594 * the above ptep_clear_flush_notify() did already call it. 2595 */ 2596 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end); 2597 if (old_page) { 2598 /* 2599 * Don't let another task, with possibly unlocked vma, 2600 * keep the mlocked page. 2601 */ 2602 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2603 lock_page(old_page); /* LRU manipulation */ 2604 if (PageMlocked(old_page)) 2605 munlock_vma_page(old_page); 2606 unlock_page(old_page); 2607 } 2608 put_page(old_page); 2609 } 2610 return page_copied ? VM_FAULT_WRITE : 0; 2611 oom_free_new: 2612 put_page(new_page); 2613 oom: 2614 if (old_page) 2615 put_page(old_page); 2616 return VM_FAULT_OOM; 2617 } 2618 2619 /** 2620 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2621 * writeable once the page is prepared 2622 * 2623 * @vmf: structure describing the fault 2624 * 2625 * This function handles all that is needed to finish a write page fault in a 2626 * shared mapping due to PTE being read-only once the mapped page is prepared. 2627 * It handles locking of PTE and modifying it. The function returns 2628 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2629 * lock. 2630 * 2631 * The function expects the page to be locked or other protection against 2632 * concurrent faults / writeback (such as DAX radix tree locks). 2633 */ 2634 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2635 { 2636 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2637 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2638 &vmf->ptl); 2639 /* 2640 * We might have raced with another page fault while we released the 2641 * pte_offset_map_lock. 2642 */ 2643 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2644 pte_unmap_unlock(vmf->pte, vmf->ptl); 2645 return VM_FAULT_NOPAGE; 2646 } 2647 wp_page_reuse(vmf); 2648 return 0; 2649 } 2650 2651 /* 2652 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2653 * mapping 2654 */ 2655 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2656 { 2657 struct vm_area_struct *vma = vmf->vma; 2658 2659 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2660 vm_fault_t ret; 2661 2662 pte_unmap_unlock(vmf->pte, vmf->ptl); 2663 vmf->flags |= FAULT_FLAG_MKWRITE; 2664 ret = vma->vm_ops->pfn_mkwrite(vmf); 2665 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2666 return ret; 2667 return finish_mkwrite_fault(vmf); 2668 } 2669 wp_page_reuse(vmf); 2670 return VM_FAULT_WRITE; 2671 } 2672 2673 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2674 __releases(vmf->ptl) 2675 { 2676 struct vm_area_struct *vma = vmf->vma; 2677 2678 get_page(vmf->page); 2679 2680 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2681 vm_fault_t tmp; 2682 2683 pte_unmap_unlock(vmf->pte, vmf->ptl); 2684 tmp = do_page_mkwrite(vmf); 2685 if (unlikely(!tmp || (tmp & 2686 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2687 put_page(vmf->page); 2688 return tmp; 2689 } 2690 tmp = finish_mkwrite_fault(vmf); 2691 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2692 unlock_page(vmf->page); 2693 put_page(vmf->page); 2694 return tmp; 2695 } 2696 } else { 2697 wp_page_reuse(vmf); 2698 lock_page(vmf->page); 2699 } 2700 fault_dirty_shared_page(vma, vmf->page); 2701 put_page(vmf->page); 2702 2703 return VM_FAULT_WRITE; 2704 } 2705 2706 /* 2707 * This routine handles present pages, when users try to write 2708 * to a shared page. It is done by copying the page to a new address 2709 * and decrementing the shared-page counter for the old page. 2710 * 2711 * Note that this routine assumes that the protection checks have been 2712 * done by the caller (the low-level page fault routine in most cases). 2713 * Thus we can safely just mark it writable once we've done any necessary 2714 * COW. 2715 * 2716 * We also mark the page dirty at this point even though the page will 2717 * change only once the write actually happens. This avoids a few races, 2718 * and potentially makes it more efficient. 2719 * 2720 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2721 * but allow concurrent faults), with pte both mapped and locked. 2722 * We return with mmap_sem still held, but pte unmapped and unlocked. 2723 */ 2724 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2725 __releases(vmf->ptl) 2726 { 2727 struct vm_area_struct *vma = vmf->vma; 2728 2729 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2730 if (!vmf->page) { 2731 /* 2732 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2733 * VM_PFNMAP VMA. 2734 * 2735 * We should not cow pages in a shared writeable mapping. 2736 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2737 */ 2738 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2739 (VM_WRITE|VM_SHARED)) 2740 return wp_pfn_shared(vmf); 2741 2742 pte_unmap_unlock(vmf->pte, vmf->ptl); 2743 return wp_page_copy(vmf); 2744 } 2745 2746 /* 2747 * Take out anonymous pages first, anonymous shared vmas are 2748 * not dirty accountable. 2749 */ 2750 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 2751 int total_map_swapcount; 2752 if (!trylock_page(vmf->page)) { 2753 get_page(vmf->page); 2754 pte_unmap_unlock(vmf->pte, vmf->ptl); 2755 lock_page(vmf->page); 2756 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2757 vmf->address, &vmf->ptl); 2758 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2759 unlock_page(vmf->page); 2760 pte_unmap_unlock(vmf->pte, vmf->ptl); 2761 put_page(vmf->page); 2762 return 0; 2763 } 2764 put_page(vmf->page); 2765 } 2766 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2767 if (total_map_swapcount == 1) { 2768 /* 2769 * The page is all ours. Move it to 2770 * our anon_vma so the rmap code will 2771 * not search our parent or siblings. 2772 * Protected against the rmap code by 2773 * the page lock. 2774 */ 2775 page_move_anon_rmap(vmf->page, vma); 2776 } 2777 unlock_page(vmf->page); 2778 wp_page_reuse(vmf); 2779 return VM_FAULT_WRITE; 2780 } 2781 unlock_page(vmf->page); 2782 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2783 (VM_WRITE|VM_SHARED))) { 2784 return wp_page_shared(vmf); 2785 } 2786 2787 /* 2788 * Ok, we need to copy. Oh, well.. 2789 */ 2790 get_page(vmf->page); 2791 2792 pte_unmap_unlock(vmf->pte, vmf->ptl); 2793 return wp_page_copy(vmf); 2794 } 2795 2796 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2797 unsigned long start_addr, unsigned long end_addr, 2798 struct zap_details *details) 2799 { 2800 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2801 } 2802 2803 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2804 struct zap_details *details) 2805 { 2806 struct vm_area_struct *vma; 2807 pgoff_t vba, vea, zba, zea; 2808 2809 vma_interval_tree_foreach(vma, root, 2810 details->first_index, details->last_index) { 2811 2812 vba = vma->vm_pgoff; 2813 vea = vba + vma_pages(vma) - 1; 2814 zba = details->first_index; 2815 if (zba < vba) 2816 zba = vba; 2817 zea = details->last_index; 2818 if (zea > vea) 2819 zea = vea; 2820 2821 unmap_mapping_range_vma(vma, 2822 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2823 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2824 details); 2825 } 2826 } 2827 2828 /** 2829 * unmap_mapping_pages() - Unmap pages from processes. 2830 * @mapping: The address space containing pages to be unmapped. 2831 * @start: Index of first page to be unmapped. 2832 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2833 * @even_cows: Whether to unmap even private COWed pages. 2834 * 2835 * Unmap the pages in this address space from any userspace process which 2836 * has them mmaped. Generally, you want to remove COWed pages as well when 2837 * a file is being truncated, but not when invalidating pages from the page 2838 * cache. 2839 */ 2840 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2841 pgoff_t nr, bool even_cows) 2842 { 2843 struct zap_details details = { }; 2844 2845 details.check_mapping = even_cows ? NULL : mapping; 2846 details.first_index = start; 2847 details.last_index = start + nr - 1; 2848 if (details.last_index < details.first_index) 2849 details.last_index = ULONG_MAX; 2850 2851 i_mmap_lock_write(mapping); 2852 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2853 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2854 i_mmap_unlock_write(mapping); 2855 } 2856 2857 /** 2858 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2859 * address_space corresponding to the specified byte range in the underlying 2860 * file. 2861 * 2862 * @mapping: the address space containing mmaps to be unmapped. 2863 * @holebegin: byte in first page to unmap, relative to the start of 2864 * the underlying file. This will be rounded down to a PAGE_SIZE 2865 * boundary. Note that this is different from truncate_pagecache(), which 2866 * must keep the partial page. In contrast, we must get rid of 2867 * partial pages. 2868 * @holelen: size of prospective hole in bytes. This will be rounded 2869 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2870 * end of the file. 2871 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2872 * but 0 when invalidating pagecache, don't throw away private data. 2873 */ 2874 void unmap_mapping_range(struct address_space *mapping, 2875 loff_t const holebegin, loff_t const holelen, int even_cows) 2876 { 2877 pgoff_t hba = holebegin >> PAGE_SHIFT; 2878 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2879 2880 /* Check for overflow. */ 2881 if (sizeof(holelen) > sizeof(hlen)) { 2882 long long holeend = 2883 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2884 if (holeend & ~(long long)ULONG_MAX) 2885 hlen = ULONG_MAX - hba + 1; 2886 } 2887 2888 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2889 } 2890 EXPORT_SYMBOL(unmap_mapping_range); 2891 2892 /* 2893 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2894 * but allow concurrent faults), and pte mapped but not yet locked. 2895 * We return with pte unmapped and unlocked. 2896 * 2897 * We return with the mmap_sem locked or unlocked in the same cases 2898 * as does filemap_fault(). 2899 */ 2900 vm_fault_t do_swap_page(struct vm_fault *vmf) 2901 { 2902 struct vm_area_struct *vma = vmf->vma; 2903 struct page *page = NULL, *swapcache; 2904 struct mem_cgroup *memcg; 2905 swp_entry_t entry; 2906 pte_t pte; 2907 int locked; 2908 int exclusive = 0; 2909 vm_fault_t ret = 0; 2910 2911 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2912 goto out; 2913 2914 entry = pte_to_swp_entry(vmf->orig_pte); 2915 if (unlikely(non_swap_entry(entry))) { 2916 if (is_migration_entry(entry)) { 2917 migration_entry_wait(vma->vm_mm, vmf->pmd, 2918 vmf->address); 2919 } else if (is_device_private_entry(entry)) { 2920 /* 2921 * For un-addressable device memory we call the pgmap 2922 * fault handler callback. The callback must migrate 2923 * the page back to some CPU accessible page. 2924 */ 2925 ret = device_private_entry_fault(vma, vmf->address, entry, 2926 vmf->flags, vmf->pmd); 2927 } else if (is_hwpoison_entry(entry)) { 2928 ret = VM_FAULT_HWPOISON; 2929 } else { 2930 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2931 ret = VM_FAULT_SIGBUS; 2932 } 2933 goto out; 2934 } 2935 2936 2937 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2938 page = lookup_swap_cache(entry, vma, vmf->address); 2939 swapcache = page; 2940 2941 if (!page) { 2942 struct swap_info_struct *si = swp_swap_info(entry); 2943 2944 if (si->flags & SWP_SYNCHRONOUS_IO && 2945 __swap_count(si, entry) == 1) { 2946 /* skip swapcache */ 2947 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2948 vmf->address); 2949 if (page) { 2950 __SetPageLocked(page); 2951 __SetPageSwapBacked(page); 2952 set_page_private(page, entry.val); 2953 lru_cache_add_anon(page); 2954 swap_readpage(page, true); 2955 } 2956 } else { 2957 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2958 vmf); 2959 swapcache = page; 2960 } 2961 2962 if (!page) { 2963 /* 2964 * Back out if somebody else faulted in this pte 2965 * while we released the pte lock. 2966 */ 2967 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2968 vmf->address, &vmf->ptl); 2969 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2970 ret = VM_FAULT_OOM; 2971 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2972 goto unlock; 2973 } 2974 2975 /* Had to read the page from swap area: Major fault */ 2976 ret = VM_FAULT_MAJOR; 2977 count_vm_event(PGMAJFAULT); 2978 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2979 } else if (PageHWPoison(page)) { 2980 /* 2981 * hwpoisoned dirty swapcache pages are kept for killing 2982 * owner processes (which may be unknown at hwpoison time) 2983 */ 2984 ret = VM_FAULT_HWPOISON; 2985 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2986 goto out_release; 2987 } 2988 2989 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2990 2991 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2992 if (!locked) { 2993 ret |= VM_FAULT_RETRY; 2994 goto out_release; 2995 } 2996 2997 /* 2998 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2999 * release the swapcache from under us. The page pin, and pte_same 3000 * test below, are not enough to exclude that. Even if it is still 3001 * swapcache, we need to check that the page's swap has not changed. 3002 */ 3003 if (unlikely((!PageSwapCache(page) || 3004 page_private(page) != entry.val)) && swapcache) 3005 goto out_page; 3006 3007 page = ksm_might_need_to_copy(page, vma, vmf->address); 3008 if (unlikely(!page)) { 3009 ret = VM_FAULT_OOM; 3010 page = swapcache; 3011 goto out_page; 3012 } 3013 3014 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 3015 &memcg, false)) { 3016 ret = VM_FAULT_OOM; 3017 goto out_page; 3018 } 3019 3020 /* 3021 * Back out if somebody else already faulted in this pte. 3022 */ 3023 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3024 &vmf->ptl); 3025 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3026 goto out_nomap; 3027 3028 if (unlikely(!PageUptodate(page))) { 3029 ret = VM_FAULT_SIGBUS; 3030 goto out_nomap; 3031 } 3032 3033 /* 3034 * The page isn't present yet, go ahead with the fault. 3035 * 3036 * Be careful about the sequence of operations here. 3037 * To get its accounting right, reuse_swap_page() must be called 3038 * while the page is counted on swap but not yet in mapcount i.e. 3039 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3040 * must be called after the swap_free(), or it will never succeed. 3041 */ 3042 3043 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3044 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3045 pte = mk_pte(page, vma->vm_page_prot); 3046 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3047 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3048 vmf->flags &= ~FAULT_FLAG_WRITE; 3049 ret |= VM_FAULT_WRITE; 3050 exclusive = RMAP_EXCLUSIVE; 3051 } 3052 flush_icache_page(vma, page); 3053 if (pte_swp_soft_dirty(vmf->orig_pte)) 3054 pte = pte_mksoft_dirty(pte); 3055 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3056 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3057 vmf->orig_pte = pte; 3058 3059 /* ksm created a completely new copy */ 3060 if (unlikely(page != swapcache && swapcache)) { 3061 page_add_new_anon_rmap(page, vma, vmf->address, false); 3062 mem_cgroup_commit_charge(page, memcg, false, false); 3063 lru_cache_add_active_or_unevictable(page, vma); 3064 } else { 3065 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3066 mem_cgroup_commit_charge(page, memcg, true, false); 3067 activate_page(page); 3068 } 3069 3070 swap_free(entry); 3071 if (mem_cgroup_swap_full(page) || 3072 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3073 try_to_free_swap(page); 3074 unlock_page(page); 3075 if (page != swapcache && swapcache) { 3076 /* 3077 * Hold the lock to avoid the swap entry to be reused 3078 * until we take the PT lock for the pte_same() check 3079 * (to avoid false positives from pte_same). For 3080 * further safety release the lock after the swap_free 3081 * so that the swap count won't change under a 3082 * parallel locked swapcache. 3083 */ 3084 unlock_page(swapcache); 3085 put_page(swapcache); 3086 } 3087 3088 if (vmf->flags & FAULT_FLAG_WRITE) { 3089 ret |= do_wp_page(vmf); 3090 if (ret & VM_FAULT_ERROR) 3091 ret &= VM_FAULT_ERROR; 3092 goto out; 3093 } 3094 3095 /* No need to invalidate - it was non-present before */ 3096 update_mmu_cache(vma, vmf->address, vmf->pte); 3097 unlock: 3098 pte_unmap_unlock(vmf->pte, vmf->ptl); 3099 out: 3100 return ret; 3101 out_nomap: 3102 mem_cgroup_cancel_charge(page, memcg, false); 3103 pte_unmap_unlock(vmf->pte, vmf->ptl); 3104 out_page: 3105 unlock_page(page); 3106 out_release: 3107 put_page(page); 3108 if (page != swapcache && swapcache) { 3109 unlock_page(swapcache); 3110 put_page(swapcache); 3111 } 3112 return ret; 3113 } 3114 3115 /* 3116 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3117 * but allow concurrent faults), and pte mapped but not yet locked. 3118 * We return with mmap_sem still held, but pte unmapped and unlocked. 3119 */ 3120 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3121 { 3122 struct vm_area_struct *vma = vmf->vma; 3123 struct mem_cgroup *memcg; 3124 struct page *page; 3125 vm_fault_t ret = 0; 3126 pte_t entry; 3127 3128 /* File mapping without ->vm_ops ? */ 3129 if (vma->vm_flags & VM_SHARED) 3130 return VM_FAULT_SIGBUS; 3131 3132 /* 3133 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3134 * pte_offset_map() on pmds where a huge pmd might be created 3135 * from a different thread. 3136 * 3137 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 3138 * parallel threads are excluded by other means. 3139 * 3140 * Here we only have down_read(mmap_sem). 3141 */ 3142 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) 3143 return VM_FAULT_OOM; 3144 3145 /* See the comment in pte_alloc_one_map() */ 3146 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3147 return 0; 3148 3149 /* Use the zero-page for reads */ 3150 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3151 !mm_forbids_zeropage(vma->vm_mm)) { 3152 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3153 vma->vm_page_prot)); 3154 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3155 vmf->address, &vmf->ptl); 3156 if (!pte_none(*vmf->pte)) 3157 goto unlock; 3158 ret = check_stable_address_space(vma->vm_mm); 3159 if (ret) 3160 goto unlock; 3161 /* Deliver the page fault to userland, check inside PT lock */ 3162 if (userfaultfd_missing(vma)) { 3163 pte_unmap_unlock(vmf->pte, vmf->ptl); 3164 return handle_userfault(vmf, VM_UFFD_MISSING); 3165 } 3166 goto setpte; 3167 } 3168 3169 /* Allocate our own private page. */ 3170 if (unlikely(anon_vma_prepare(vma))) 3171 goto oom; 3172 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3173 if (!page) 3174 goto oom; 3175 3176 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 3177 false)) 3178 goto oom_free_page; 3179 3180 /* 3181 * The memory barrier inside __SetPageUptodate makes sure that 3182 * preceeding stores to the page contents become visible before 3183 * the set_pte_at() write. 3184 */ 3185 __SetPageUptodate(page); 3186 3187 entry = mk_pte(page, vma->vm_page_prot); 3188 if (vma->vm_flags & VM_WRITE) 3189 entry = pte_mkwrite(pte_mkdirty(entry)); 3190 3191 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3192 &vmf->ptl); 3193 if (!pte_none(*vmf->pte)) 3194 goto release; 3195 3196 ret = check_stable_address_space(vma->vm_mm); 3197 if (ret) 3198 goto release; 3199 3200 /* Deliver the page fault to userland, check inside PT lock */ 3201 if (userfaultfd_missing(vma)) { 3202 pte_unmap_unlock(vmf->pte, vmf->ptl); 3203 mem_cgroup_cancel_charge(page, memcg, false); 3204 put_page(page); 3205 return handle_userfault(vmf, VM_UFFD_MISSING); 3206 } 3207 3208 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3209 page_add_new_anon_rmap(page, vma, vmf->address, false); 3210 mem_cgroup_commit_charge(page, memcg, false, false); 3211 lru_cache_add_active_or_unevictable(page, vma); 3212 setpte: 3213 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3214 3215 /* No need to invalidate - it was non-present before */ 3216 update_mmu_cache(vma, vmf->address, vmf->pte); 3217 unlock: 3218 pte_unmap_unlock(vmf->pte, vmf->ptl); 3219 return ret; 3220 release: 3221 mem_cgroup_cancel_charge(page, memcg, false); 3222 put_page(page); 3223 goto unlock; 3224 oom_free_page: 3225 put_page(page); 3226 oom: 3227 return VM_FAULT_OOM; 3228 } 3229 3230 /* 3231 * The mmap_sem must have been held on entry, and may have been 3232 * released depending on flags and vma->vm_ops->fault() return value. 3233 * See filemap_fault() and __lock_page_retry(). 3234 */ 3235 static vm_fault_t __do_fault(struct vm_fault *vmf) 3236 { 3237 struct vm_area_struct *vma = vmf->vma; 3238 vm_fault_t ret; 3239 3240 ret = vma->vm_ops->fault(vmf); 3241 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3242 VM_FAULT_DONE_COW))) 3243 return ret; 3244 3245 if (unlikely(PageHWPoison(vmf->page))) { 3246 if (ret & VM_FAULT_LOCKED) 3247 unlock_page(vmf->page); 3248 put_page(vmf->page); 3249 vmf->page = NULL; 3250 return VM_FAULT_HWPOISON; 3251 } 3252 3253 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3254 lock_page(vmf->page); 3255 else 3256 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3257 3258 return ret; 3259 } 3260 3261 /* 3262 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3263 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3264 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3265 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3266 */ 3267 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3268 { 3269 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3270 } 3271 3272 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3273 { 3274 struct vm_area_struct *vma = vmf->vma; 3275 3276 if (!pmd_none(*vmf->pmd)) 3277 goto map_pte; 3278 if (vmf->prealloc_pte) { 3279 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3280 if (unlikely(!pmd_none(*vmf->pmd))) { 3281 spin_unlock(vmf->ptl); 3282 goto map_pte; 3283 } 3284 3285 mm_inc_nr_ptes(vma->vm_mm); 3286 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3287 spin_unlock(vmf->ptl); 3288 vmf->prealloc_pte = NULL; 3289 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { 3290 return VM_FAULT_OOM; 3291 } 3292 map_pte: 3293 /* 3294 * If a huge pmd materialized under us just retry later. Use 3295 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3296 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3297 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3298 * running immediately after a huge pmd fault in a different thread of 3299 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3300 * All we have to ensure is that it is a regular pmd that we can walk 3301 * with pte_offset_map() and we can do that through an atomic read in 3302 * C, which is what pmd_trans_unstable() provides. 3303 */ 3304 if (pmd_devmap_trans_unstable(vmf->pmd)) 3305 return VM_FAULT_NOPAGE; 3306 3307 /* 3308 * At this point we know that our vmf->pmd points to a page of ptes 3309 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3310 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3311 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3312 * be valid and we will re-check to make sure the vmf->pte isn't 3313 * pte_none() under vmf->ptl protection when we return to 3314 * alloc_set_pte(). 3315 */ 3316 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3317 &vmf->ptl); 3318 return 0; 3319 } 3320 3321 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3322 3323 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3324 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3325 unsigned long haddr) 3326 { 3327 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3328 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3329 return false; 3330 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3331 return false; 3332 return true; 3333 } 3334 3335 static void deposit_prealloc_pte(struct vm_fault *vmf) 3336 { 3337 struct vm_area_struct *vma = vmf->vma; 3338 3339 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3340 /* 3341 * We are going to consume the prealloc table, 3342 * count that as nr_ptes. 3343 */ 3344 mm_inc_nr_ptes(vma->vm_mm); 3345 vmf->prealloc_pte = NULL; 3346 } 3347 3348 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3349 { 3350 struct vm_area_struct *vma = vmf->vma; 3351 bool write = vmf->flags & FAULT_FLAG_WRITE; 3352 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3353 pmd_t entry; 3354 int i; 3355 vm_fault_t ret; 3356 3357 if (!transhuge_vma_suitable(vma, haddr)) 3358 return VM_FAULT_FALLBACK; 3359 3360 ret = VM_FAULT_FALLBACK; 3361 page = compound_head(page); 3362 3363 /* 3364 * Archs like ppc64 need additonal space to store information 3365 * related to pte entry. Use the preallocated table for that. 3366 */ 3367 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3368 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); 3369 if (!vmf->prealloc_pte) 3370 return VM_FAULT_OOM; 3371 smp_wmb(); /* See comment in __pte_alloc() */ 3372 } 3373 3374 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3375 if (unlikely(!pmd_none(*vmf->pmd))) 3376 goto out; 3377 3378 for (i = 0; i < HPAGE_PMD_NR; i++) 3379 flush_icache_page(vma, page + i); 3380 3381 entry = mk_huge_pmd(page, vma->vm_page_prot); 3382 if (write) 3383 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3384 3385 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3386 page_add_file_rmap(page, true); 3387 /* 3388 * deposit and withdraw with pmd lock held 3389 */ 3390 if (arch_needs_pgtable_deposit()) 3391 deposit_prealloc_pte(vmf); 3392 3393 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3394 3395 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3396 3397 /* fault is handled */ 3398 ret = 0; 3399 count_vm_event(THP_FILE_MAPPED); 3400 out: 3401 spin_unlock(vmf->ptl); 3402 return ret; 3403 } 3404 #else 3405 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3406 { 3407 BUILD_BUG(); 3408 return 0; 3409 } 3410 #endif 3411 3412 /** 3413 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3414 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3415 * 3416 * @vmf: fault environment 3417 * @memcg: memcg to charge page (only for private mappings) 3418 * @page: page to map 3419 * 3420 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3421 * return. 3422 * 3423 * Target users are page handler itself and implementations of 3424 * vm_ops->map_pages. 3425 */ 3426 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3427 struct page *page) 3428 { 3429 struct vm_area_struct *vma = vmf->vma; 3430 bool write = vmf->flags & FAULT_FLAG_WRITE; 3431 pte_t entry; 3432 vm_fault_t ret; 3433 3434 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3435 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3436 /* THP on COW? */ 3437 VM_BUG_ON_PAGE(memcg, page); 3438 3439 ret = do_set_pmd(vmf, page); 3440 if (ret != VM_FAULT_FALLBACK) 3441 return ret; 3442 } 3443 3444 if (!vmf->pte) { 3445 ret = pte_alloc_one_map(vmf); 3446 if (ret) 3447 return ret; 3448 } 3449 3450 /* Re-check under ptl */ 3451 if (unlikely(!pte_none(*vmf->pte))) 3452 return VM_FAULT_NOPAGE; 3453 3454 flush_icache_page(vma, page); 3455 entry = mk_pte(page, vma->vm_page_prot); 3456 if (write) 3457 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3458 /* copy-on-write page */ 3459 if (write && !(vma->vm_flags & VM_SHARED)) { 3460 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3461 page_add_new_anon_rmap(page, vma, vmf->address, false); 3462 mem_cgroup_commit_charge(page, memcg, false, false); 3463 lru_cache_add_active_or_unevictable(page, vma); 3464 } else { 3465 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3466 page_add_file_rmap(page, false); 3467 } 3468 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3469 3470 /* no need to invalidate: a not-present page won't be cached */ 3471 update_mmu_cache(vma, vmf->address, vmf->pte); 3472 3473 return 0; 3474 } 3475 3476 3477 /** 3478 * finish_fault - finish page fault once we have prepared the page to fault 3479 * 3480 * @vmf: structure describing the fault 3481 * 3482 * This function handles all that is needed to finish a page fault once the 3483 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3484 * given page, adds reverse page mapping, handles memcg charges and LRU 3485 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3486 * error. 3487 * 3488 * The function expects the page to be locked and on success it consumes a 3489 * reference of a page being mapped (for the PTE which maps it). 3490 */ 3491 vm_fault_t finish_fault(struct vm_fault *vmf) 3492 { 3493 struct page *page; 3494 vm_fault_t ret = 0; 3495 3496 /* Did we COW the page? */ 3497 if ((vmf->flags & FAULT_FLAG_WRITE) && 3498 !(vmf->vma->vm_flags & VM_SHARED)) 3499 page = vmf->cow_page; 3500 else 3501 page = vmf->page; 3502 3503 /* 3504 * check even for read faults because we might have lost our CoWed 3505 * page 3506 */ 3507 if (!(vmf->vma->vm_flags & VM_SHARED)) 3508 ret = check_stable_address_space(vmf->vma->vm_mm); 3509 if (!ret) 3510 ret = alloc_set_pte(vmf, vmf->memcg, page); 3511 if (vmf->pte) 3512 pte_unmap_unlock(vmf->pte, vmf->ptl); 3513 return ret; 3514 } 3515 3516 static unsigned long fault_around_bytes __read_mostly = 3517 rounddown_pow_of_two(65536); 3518 3519 #ifdef CONFIG_DEBUG_FS 3520 static int fault_around_bytes_get(void *data, u64 *val) 3521 { 3522 *val = fault_around_bytes; 3523 return 0; 3524 } 3525 3526 /* 3527 * fault_around_bytes must be rounded down to the nearest page order as it's 3528 * what do_fault_around() expects to see. 3529 */ 3530 static int fault_around_bytes_set(void *data, u64 val) 3531 { 3532 if (val / PAGE_SIZE > PTRS_PER_PTE) 3533 return -EINVAL; 3534 if (val > PAGE_SIZE) 3535 fault_around_bytes = rounddown_pow_of_two(val); 3536 else 3537 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3538 return 0; 3539 } 3540 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3541 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3542 3543 static int __init fault_around_debugfs(void) 3544 { 3545 void *ret; 3546 3547 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3548 &fault_around_bytes_fops); 3549 if (!ret) 3550 pr_warn("Failed to create fault_around_bytes in debugfs"); 3551 return 0; 3552 } 3553 late_initcall(fault_around_debugfs); 3554 #endif 3555 3556 /* 3557 * do_fault_around() tries to map few pages around the fault address. The hope 3558 * is that the pages will be needed soon and this will lower the number of 3559 * faults to handle. 3560 * 3561 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3562 * not ready to be mapped: not up-to-date, locked, etc. 3563 * 3564 * This function is called with the page table lock taken. In the split ptlock 3565 * case the page table lock only protects only those entries which belong to 3566 * the page table corresponding to the fault address. 3567 * 3568 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3569 * only once. 3570 * 3571 * fault_around_bytes defines how many bytes we'll try to map. 3572 * do_fault_around() expects it to be set to a power of two less than or equal 3573 * to PTRS_PER_PTE. 3574 * 3575 * The virtual address of the area that we map is naturally aligned to 3576 * fault_around_bytes rounded down to the machine page size 3577 * (and therefore to page order). This way it's easier to guarantee 3578 * that we don't cross page table boundaries. 3579 */ 3580 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3581 { 3582 unsigned long address = vmf->address, nr_pages, mask; 3583 pgoff_t start_pgoff = vmf->pgoff; 3584 pgoff_t end_pgoff; 3585 int off; 3586 vm_fault_t ret = 0; 3587 3588 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3589 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3590 3591 vmf->address = max(address & mask, vmf->vma->vm_start); 3592 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3593 start_pgoff -= off; 3594 3595 /* 3596 * end_pgoff is either the end of the page table, the end of 3597 * the vma or nr_pages from start_pgoff, depending what is nearest. 3598 */ 3599 end_pgoff = start_pgoff - 3600 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3601 PTRS_PER_PTE - 1; 3602 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3603 start_pgoff + nr_pages - 1); 3604 3605 if (pmd_none(*vmf->pmd)) { 3606 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, 3607 vmf->address); 3608 if (!vmf->prealloc_pte) 3609 goto out; 3610 smp_wmb(); /* See comment in __pte_alloc() */ 3611 } 3612 3613 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3614 3615 /* Huge page is mapped? Page fault is solved */ 3616 if (pmd_trans_huge(*vmf->pmd)) { 3617 ret = VM_FAULT_NOPAGE; 3618 goto out; 3619 } 3620 3621 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3622 if (!vmf->pte) 3623 goto out; 3624 3625 /* check if the page fault is solved */ 3626 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3627 if (!pte_none(*vmf->pte)) 3628 ret = VM_FAULT_NOPAGE; 3629 pte_unmap_unlock(vmf->pte, vmf->ptl); 3630 out: 3631 vmf->address = address; 3632 vmf->pte = NULL; 3633 return ret; 3634 } 3635 3636 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3637 { 3638 struct vm_area_struct *vma = vmf->vma; 3639 vm_fault_t ret = 0; 3640 3641 /* 3642 * Let's call ->map_pages() first and use ->fault() as fallback 3643 * if page by the offset is not ready to be mapped (cold cache or 3644 * something). 3645 */ 3646 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3647 ret = do_fault_around(vmf); 3648 if (ret) 3649 return ret; 3650 } 3651 3652 ret = __do_fault(vmf); 3653 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3654 return ret; 3655 3656 ret |= finish_fault(vmf); 3657 unlock_page(vmf->page); 3658 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3659 put_page(vmf->page); 3660 return ret; 3661 } 3662 3663 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3664 { 3665 struct vm_area_struct *vma = vmf->vma; 3666 vm_fault_t ret; 3667 3668 if (unlikely(anon_vma_prepare(vma))) 3669 return VM_FAULT_OOM; 3670 3671 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3672 if (!vmf->cow_page) 3673 return VM_FAULT_OOM; 3674 3675 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3676 &vmf->memcg, false)) { 3677 put_page(vmf->cow_page); 3678 return VM_FAULT_OOM; 3679 } 3680 3681 ret = __do_fault(vmf); 3682 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3683 goto uncharge_out; 3684 if (ret & VM_FAULT_DONE_COW) 3685 return ret; 3686 3687 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3688 __SetPageUptodate(vmf->cow_page); 3689 3690 ret |= finish_fault(vmf); 3691 unlock_page(vmf->page); 3692 put_page(vmf->page); 3693 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3694 goto uncharge_out; 3695 return ret; 3696 uncharge_out: 3697 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3698 put_page(vmf->cow_page); 3699 return ret; 3700 } 3701 3702 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3703 { 3704 struct vm_area_struct *vma = vmf->vma; 3705 vm_fault_t ret, tmp; 3706 3707 ret = __do_fault(vmf); 3708 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3709 return ret; 3710 3711 /* 3712 * Check if the backing address space wants to know that the page is 3713 * about to become writable 3714 */ 3715 if (vma->vm_ops->page_mkwrite) { 3716 unlock_page(vmf->page); 3717 tmp = do_page_mkwrite(vmf); 3718 if (unlikely(!tmp || 3719 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3720 put_page(vmf->page); 3721 return tmp; 3722 } 3723 } 3724 3725 ret |= finish_fault(vmf); 3726 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3727 VM_FAULT_RETRY))) { 3728 unlock_page(vmf->page); 3729 put_page(vmf->page); 3730 return ret; 3731 } 3732 3733 fault_dirty_shared_page(vma, vmf->page); 3734 return ret; 3735 } 3736 3737 /* 3738 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3739 * but allow concurrent faults). 3740 * The mmap_sem may have been released depending on flags and our 3741 * return value. See filemap_fault() and __lock_page_or_retry(). 3742 */ 3743 static vm_fault_t do_fault(struct vm_fault *vmf) 3744 { 3745 struct vm_area_struct *vma = vmf->vma; 3746 vm_fault_t ret; 3747 3748 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3749 if (!vma->vm_ops->fault) 3750 ret = VM_FAULT_SIGBUS; 3751 else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3752 ret = do_read_fault(vmf); 3753 else if (!(vma->vm_flags & VM_SHARED)) 3754 ret = do_cow_fault(vmf); 3755 else 3756 ret = do_shared_fault(vmf); 3757 3758 /* preallocated pagetable is unused: free it */ 3759 if (vmf->prealloc_pte) { 3760 pte_free(vma->vm_mm, vmf->prealloc_pte); 3761 vmf->prealloc_pte = NULL; 3762 } 3763 return ret; 3764 } 3765 3766 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3767 unsigned long addr, int page_nid, 3768 int *flags) 3769 { 3770 get_page(page); 3771 3772 count_vm_numa_event(NUMA_HINT_FAULTS); 3773 if (page_nid == numa_node_id()) { 3774 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3775 *flags |= TNF_FAULT_LOCAL; 3776 } 3777 3778 return mpol_misplaced(page, vma, addr); 3779 } 3780 3781 static vm_fault_t do_numa_page(struct vm_fault *vmf) 3782 { 3783 struct vm_area_struct *vma = vmf->vma; 3784 struct page *page = NULL; 3785 int page_nid = -1; 3786 int last_cpupid; 3787 int target_nid; 3788 bool migrated = false; 3789 pte_t pte; 3790 bool was_writable = pte_savedwrite(vmf->orig_pte); 3791 int flags = 0; 3792 3793 /* 3794 * The "pte" at this point cannot be used safely without 3795 * validation through pte_unmap_same(). It's of NUMA type but 3796 * the pfn may be screwed if the read is non atomic. 3797 */ 3798 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3799 spin_lock(vmf->ptl); 3800 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3801 pte_unmap_unlock(vmf->pte, vmf->ptl); 3802 goto out; 3803 } 3804 3805 /* 3806 * Make it present again, Depending on how arch implementes non 3807 * accessible ptes, some can allow access by kernel mode. 3808 */ 3809 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); 3810 pte = pte_modify(pte, vma->vm_page_prot); 3811 pte = pte_mkyoung(pte); 3812 if (was_writable) 3813 pte = pte_mkwrite(pte); 3814 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); 3815 update_mmu_cache(vma, vmf->address, vmf->pte); 3816 3817 page = vm_normal_page(vma, vmf->address, pte); 3818 if (!page) { 3819 pte_unmap_unlock(vmf->pte, vmf->ptl); 3820 return 0; 3821 } 3822 3823 /* TODO: handle PTE-mapped THP */ 3824 if (PageCompound(page)) { 3825 pte_unmap_unlock(vmf->pte, vmf->ptl); 3826 return 0; 3827 } 3828 3829 /* 3830 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3831 * much anyway since they can be in shared cache state. This misses 3832 * the case where a mapping is writable but the process never writes 3833 * to it but pte_write gets cleared during protection updates and 3834 * pte_dirty has unpredictable behaviour between PTE scan updates, 3835 * background writeback, dirty balancing and application behaviour. 3836 */ 3837 if (!pte_write(pte)) 3838 flags |= TNF_NO_GROUP; 3839 3840 /* 3841 * Flag if the page is shared between multiple address spaces. This 3842 * is later used when determining whether to group tasks together 3843 */ 3844 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3845 flags |= TNF_SHARED; 3846 3847 last_cpupid = page_cpupid_last(page); 3848 page_nid = page_to_nid(page); 3849 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3850 &flags); 3851 pte_unmap_unlock(vmf->pte, vmf->ptl); 3852 if (target_nid == -1) { 3853 put_page(page); 3854 goto out; 3855 } 3856 3857 /* Migrate to the requested node */ 3858 migrated = migrate_misplaced_page(page, vma, target_nid); 3859 if (migrated) { 3860 page_nid = target_nid; 3861 flags |= TNF_MIGRATED; 3862 } else 3863 flags |= TNF_MIGRATE_FAIL; 3864 3865 out: 3866 if (page_nid != -1) 3867 task_numa_fault(last_cpupid, page_nid, 1, flags); 3868 return 0; 3869 } 3870 3871 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 3872 { 3873 if (vma_is_anonymous(vmf->vma)) 3874 return do_huge_pmd_anonymous_page(vmf); 3875 if (vmf->vma->vm_ops->huge_fault) 3876 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3877 return VM_FAULT_FALLBACK; 3878 } 3879 3880 /* `inline' is required to avoid gcc 4.1.2 build error */ 3881 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3882 { 3883 if (vma_is_anonymous(vmf->vma)) 3884 return do_huge_pmd_wp_page(vmf, orig_pmd); 3885 if (vmf->vma->vm_ops->huge_fault) 3886 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3887 3888 /* COW handled on pte level: split pmd */ 3889 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3890 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3891 3892 return VM_FAULT_FALLBACK; 3893 } 3894 3895 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3896 { 3897 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3898 } 3899 3900 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 3901 { 3902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3903 /* No support for anonymous transparent PUD pages yet */ 3904 if (vma_is_anonymous(vmf->vma)) 3905 return VM_FAULT_FALLBACK; 3906 if (vmf->vma->vm_ops->huge_fault) 3907 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3908 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3909 return VM_FAULT_FALLBACK; 3910 } 3911 3912 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3913 { 3914 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3915 /* No support for anonymous transparent PUD pages yet */ 3916 if (vma_is_anonymous(vmf->vma)) 3917 return VM_FAULT_FALLBACK; 3918 if (vmf->vma->vm_ops->huge_fault) 3919 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3920 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3921 return VM_FAULT_FALLBACK; 3922 } 3923 3924 /* 3925 * These routines also need to handle stuff like marking pages dirty 3926 * and/or accessed for architectures that don't do it in hardware (most 3927 * RISC architectures). The early dirtying is also good on the i386. 3928 * 3929 * There is also a hook called "update_mmu_cache()" that architectures 3930 * with external mmu caches can use to update those (ie the Sparc or 3931 * PowerPC hashed page tables that act as extended TLBs). 3932 * 3933 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3934 * concurrent faults). 3935 * 3936 * The mmap_sem may have been released depending on flags and our return value. 3937 * See filemap_fault() and __lock_page_or_retry(). 3938 */ 3939 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 3940 { 3941 pte_t entry; 3942 3943 if (unlikely(pmd_none(*vmf->pmd))) { 3944 /* 3945 * Leave __pte_alloc() until later: because vm_ops->fault may 3946 * want to allocate huge page, and if we expose page table 3947 * for an instant, it will be difficult to retract from 3948 * concurrent faults and from rmap lookups. 3949 */ 3950 vmf->pte = NULL; 3951 } else { 3952 /* See comment in pte_alloc_one_map() */ 3953 if (pmd_devmap_trans_unstable(vmf->pmd)) 3954 return 0; 3955 /* 3956 * A regular pmd is established and it can't morph into a huge 3957 * pmd from under us anymore at this point because we hold the 3958 * mmap_sem read mode and khugepaged takes it in write mode. 3959 * So now it's safe to run pte_offset_map(). 3960 */ 3961 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3962 vmf->orig_pte = *vmf->pte; 3963 3964 /* 3965 * some architectures can have larger ptes than wordsize, 3966 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3967 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3968 * accesses. The code below just needs a consistent view 3969 * for the ifs and we later double check anyway with the 3970 * ptl lock held. So here a barrier will do. 3971 */ 3972 barrier(); 3973 if (pte_none(vmf->orig_pte)) { 3974 pte_unmap(vmf->pte); 3975 vmf->pte = NULL; 3976 } 3977 } 3978 3979 if (!vmf->pte) { 3980 if (vma_is_anonymous(vmf->vma)) 3981 return do_anonymous_page(vmf); 3982 else 3983 return do_fault(vmf); 3984 } 3985 3986 if (!pte_present(vmf->orig_pte)) 3987 return do_swap_page(vmf); 3988 3989 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3990 return do_numa_page(vmf); 3991 3992 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3993 spin_lock(vmf->ptl); 3994 entry = vmf->orig_pte; 3995 if (unlikely(!pte_same(*vmf->pte, entry))) 3996 goto unlock; 3997 if (vmf->flags & FAULT_FLAG_WRITE) { 3998 if (!pte_write(entry)) 3999 return do_wp_page(vmf); 4000 entry = pte_mkdirty(entry); 4001 } 4002 entry = pte_mkyoung(entry); 4003 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4004 vmf->flags & FAULT_FLAG_WRITE)) { 4005 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4006 } else { 4007 /* 4008 * This is needed only for protection faults but the arch code 4009 * is not yet telling us if this is a protection fault or not. 4010 * This still avoids useless tlb flushes for .text page faults 4011 * with threads. 4012 */ 4013 if (vmf->flags & FAULT_FLAG_WRITE) 4014 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4015 } 4016 unlock: 4017 pte_unmap_unlock(vmf->pte, vmf->ptl); 4018 return 0; 4019 } 4020 4021 /* 4022 * By the time we get here, we already hold the mm semaphore 4023 * 4024 * The mmap_sem may have been released depending on flags and our 4025 * return value. See filemap_fault() and __lock_page_or_retry(). 4026 */ 4027 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4028 unsigned long address, unsigned int flags) 4029 { 4030 struct vm_fault vmf = { 4031 .vma = vma, 4032 .address = address & PAGE_MASK, 4033 .flags = flags, 4034 .pgoff = linear_page_index(vma, address), 4035 .gfp_mask = __get_fault_gfp_mask(vma), 4036 }; 4037 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4038 struct mm_struct *mm = vma->vm_mm; 4039 pgd_t *pgd; 4040 p4d_t *p4d; 4041 vm_fault_t ret; 4042 4043 pgd = pgd_offset(mm, address); 4044 p4d = p4d_alloc(mm, pgd, address); 4045 if (!p4d) 4046 return VM_FAULT_OOM; 4047 4048 vmf.pud = pud_alloc(mm, p4d, address); 4049 if (!vmf.pud) 4050 return VM_FAULT_OOM; 4051 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) { 4052 ret = create_huge_pud(&vmf); 4053 if (!(ret & VM_FAULT_FALLBACK)) 4054 return ret; 4055 } else { 4056 pud_t orig_pud = *vmf.pud; 4057 4058 barrier(); 4059 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4060 4061 /* NUMA case for anonymous PUDs would go here */ 4062 4063 if (dirty && !pud_write(orig_pud)) { 4064 ret = wp_huge_pud(&vmf, orig_pud); 4065 if (!(ret & VM_FAULT_FALLBACK)) 4066 return ret; 4067 } else { 4068 huge_pud_set_accessed(&vmf, orig_pud); 4069 return 0; 4070 } 4071 } 4072 } 4073 4074 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4075 if (!vmf.pmd) 4076 return VM_FAULT_OOM; 4077 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { 4078 ret = create_huge_pmd(&vmf); 4079 if (!(ret & VM_FAULT_FALLBACK)) 4080 return ret; 4081 } else { 4082 pmd_t orig_pmd = *vmf.pmd; 4083 4084 barrier(); 4085 if (unlikely(is_swap_pmd(orig_pmd))) { 4086 VM_BUG_ON(thp_migration_supported() && 4087 !is_pmd_migration_entry(orig_pmd)); 4088 if (is_pmd_migration_entry(orig_pmd)) 4089 pmd_migration_entry_wait(mm, vmf.pmd); 4090 return 0; 4091 } 4092 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4093 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4094 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4095 4096 if (dirty && !pmd_write(orig_pmd)) { 4097 ret = wp_huge_pmd(&vmf, orig_pmd); 4098 if (!(ret & VM_FAULT_FALLBACK)) 4099 return ret; 4100 } else { 4101 huge_pmd_set_accessed(&vmf, orig_pmd); 4102 return 0; 4103 } 4104 } 4105 } 4106 4107 return handle_pte_fault(&vmf); 4108 } 4109 4110 /* 4111 * By the time we get here, we already hold the mm semaphore 4112 * 4113 * The mmap_sem may have been released depending on flags and our 4114 * return value. See filemap_fault() and __lock_page_or_retry(). 4115 */ 4116 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4117 unsigned int flags) 4118 { 4119 vm_fault_t ret; 4120 4121 __set_current_state(TASK_RUNNING); 4122 4123 count_vm_event(PGFAULT); 4124 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4125 4126 /* do counter updates before entering really critical section. */ 4127 check_sync_rss_stat(current); 4128 4129 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4130 flags & FAULT_FLAG_INSTRUCTION, 4131 flags & FAULT_FLAG_REMOTE)) 4132 return VM_FAULT_SIGSEGV; 4133 4134 /* 4135 * Enable the memcg OOM handling for faults triggered in user 4136 * space. Kernel faults are handled more gracefully. 4137 */ 4138 if (flags & FAULT_FLAG_USER) 4139 mem_cgroup_enter_user_fault(); 4140 4141 if (unlikely(is_vm_hugetlb_page(vma))) 4142 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4143 else 4144 ret = __handle_mm_fault(vma, address, flags); 4145 4146 if (flags & FAULT_FLAG_USER) { 4147 mem_cgroup_exit_user_fault(); 4148 /* 4149 * The task may have entered a memcg OOM situation but 4150 * if the allocation error was handled gracefully (no 4151 * VM_FAULT_OOM), there is no need to kill anything. 4152 * Just clean up the OOM state peacefully. 4153 */ 4154 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4155 mem_cgroup_oom_synchronize(false); 4156 } 4157 4158 return ret; 4159 } 4160 EXPORT_SYMBOL_GPL(handle_mm_fault); 4161 4162 #ifndef __PAGETABLE_P4D_FOLDED 4163 /* 4164 * Allocate p4d page table. 4165 * We've already handled the fast-path in-line. 4166 */ 4167 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4168 { 4169 p4d_t *new = p4d_alloc_one(mm, address); 4170 if (!new) 4171 return -ENOMEM; 4172 4173 smp_wmb(); /* See comment in __pte_alloc */ 4174 4175 spin_lock(&mm->page_table_lock); 4176 if (pgd_present(*pgd)) /* Another has populated it */ 4177 p4d_free(mm, new); 4178 else 4179 pgd_populate(mm, pgd, new); 4180 spin_unlock(&mm->page_table_lock); 4181 return 0; 4182 } 4183 #endif /* __PAGETABLE_P4D_FOLDED */ 4184 4185 #ifndef __PAGETABLE_PUD_FOLDED 4186 /* 4187 * Allocate page upper directory. 4188 * We've already handled the fast-path in-line. 4189 */ 4190 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4191 { 4192 pud_t *new = pud_alloc_one(mm, address); 4193 if (!new) 4194 return -ENOMEM; 4195 4196 smp_wmb(); /* See comment in __pte_alloc */ 4197 4198 spin_lock(&mm->page_table_lock); 4199 #ifndef __ARCH_HAS_5LEVEL_HACK 4200 if (!p4d_present(*p4d)) { 4201 mm_inc_nr_puds(mm); 4202 p4d_populate(mm, p4d, new); 4203 } else /* Another has populated it */ 4204 pud_free(mm, new); 4205 #else 4206 if (!pgd_present(*p4d)) { 4207 mm_inc_nr_puds(mm); 4208 pgd_populate(mm, p4d, new); 4209 } else /* Another has populated it */ 4210 pud_free(mm, new); 4211 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4212 spin_unlock(&mm->page_table_lock); 4213 return 0; 4214 } 4215 #endif /* __PAGETABLE_PUD_FOLDED */ 4216 4217 #ifndef __PAGETABLE_PMD_FOLDED 4218 /* 4219 * Allocate page middle directory. 4220 * We've already handled the fast-path in-line. 4221 */ 4222 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4223 { 4224 spinlock_t *ptl; 4225 pmd_t *new = pmd_alloc_one(mm, address); 4226 if (!new) 4227 return -ENOMEM; 4228 4229 smp_wmb(); /* See comment in __pte_alloc */ 4230 4231 ptl = pud_lock(mm, pud); 4232 #ifndef __ARCH_HAS_4LEVEL_HACK 4233 if (!pud_present(*pud)) { 4234 mm_inc_nr_pmds(mm); 4235 pud_populate(mm, pud, new); 4236 } else /* Another has populated it */ 4237 pmd_free(mm, new); 4238 #else 4239 if (!pgd_present(*pud)) { 4240 mm_inc_nr_pmds(mm); 4241 pgd_populate(mm, pud, new); 4242 } else /* Another has populated it */ 4243 pmd_free(mm, new); 4244 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4245 spin_unlock(ptl); 4246 return 0; 4247 } 4248 #endif /* __PAGETABLE_PMD_FOLDED */ 4249 4250 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4251 unsigned long *start, unsigned long *end, 4252 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4253 { 4254 pgd_t *pgd; 4255 p4d_t *p4d; 4256 pud_t *pud; 4257 pmd_t *pmd; 4258 pte_t *ptep; 4259 4260 pgd = pgd_offset(mm, address); 4261 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4262 goto out; 4263 4264 p4d = p4d_offset(pgd, address); 4265 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4266 goto out; 4267 4268 pud = pud_offset(p4d, address); 4269 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4270 goto out; 4271 4272 pmd = pmd_offset(pud, address); 4273 VM_BUG_ON(pmd_trans_huge(*pmd)); 4274 4275 if (pmd_huge(*pmd)) { 4276 if (!pmdpp) 4277 goto out; 4278 4279 if (start && end) { 4280 *start = address & PMD_MASK; 4281 *end = *start + PMD_SIZE; 4282 mmu_notifier_invalidate_range_start(mm, *start, *end); 4283 } 4284 *ptlp = pmd_lock(mm, pmd); 4285 if (pmd_huge(*pmd)) { 4286 *pmdpp = pmd; 4287 return 0; 4288 } 4289 spin_unlock(*ptlp); 4290 if (start && end) 4291 mmu_notifier_invalidate_range_end(mm, *start, *end); 4292 } 4293 4294 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4295 goto out; 4296 4297 if (start && end) { 4298 *start = address & PAGE_MASK; 4299 *end = *start + PAGE_SIZE; 4300 mmu_notifier_invalidate_range_start(mm, *start, *end); 4301 } 4302 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4303 if (!pte_present(*ptep)) 4304 goto unlock; 4305 *ptepp = ptep; 4306 return 0; 4307 unlock: 4308 pte_unmap_unlock(ptep, *ptlp); 4309 if (start && end) 4310 mmu_notifier_invalidate_range_end(mm, *start, *end); 4311 out: 4312 return -EINVAL; 4313 } 4314 4315 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4316 pte_t **ptepp, spinlock_t **ptlp) 4317 { 4318 int res; 4319 4320 /* (void) is needed to make gcc happy */ 4321 (void) __cond_lock(*ptlp, 4322 !(res = __follow_pte_pmd(mm, address, NULL, NULL, 4323 ptepp, NULL, ptlp))); 4324 return res; 4325 } 4326 4327 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4328 unsigned long *start, unsigned long *end, 4329 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4330 { 4331 int res; 4332 4333 /* (void) is needed to make gcc happy */ 4334 (void) __cond_lock(*ptlp, 4335 !(res = __follow_pte_pmd(mm, address, start, end, 4336 ptepp, pmdpp, ptlp))); 4337 return res; 4338 } 4339 EXPORT_SYMBOL(follow_pte_pmd); 4340 4341 /** 4342 * follow_pfn - look up PFN at a user virtual address 4343 * @vma: memory mapping 4344 * @address: user virtual address 4345 * @pfn: location to store found PFN 4346 * 4347 * Only IO mappings and raw PFN mappings are allowed. 4348 * 4349 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4350 */ 4351 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4352 unsigned long *pfn) 4353 { 4354 int ret = -EINVAL; 4355 spinlock_t *ptl; 4356 pte_t *ptep; 4357 4358 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4359 return ret; 4360 4361 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4362 if (ret) 4363 return ret; 4364 *pfn = pte_pfn(*ptep); 4365 pte_unmap_unlock(ptep, ptl); 4366 return 0; 4367 } 4368 EXPORT_SYMBOL(follow_pfn); 4369 4370 #ifdef CONFIG_HAVE_IOREMAP_PROT 4371 int follow_phys(struct vm_area_struct *vma, 4372 unsigned long address, unsigned int flags, 4373 unsigned long *prot, resource_size_t *phys) 4374 { 4375 int ret = -EINVAL; 4376 pte_t *ptep, pte; 4377 spinlock_t *ptl; 4378 4379 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4380 goto out; 4381 4382 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4383 goto out; 4384 pte = *ptep; 4385 4386 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4387 goto unlock; 4388 4389 *prot = pgprot_val(pte_pgprot(pte)); 4390 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4391 4392 ret = 0; 4393 unlock: 4394 pte_unmap_unlock(ptep, ptl); 4395 out: 4396 return ret; 4397 } 4398 4399 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4400 void *buf, int len, int write) 4401 { 4402 resource_size_t phys_addr; 4403 unsigned long prot = 0; 4404 void __iomem *maddr; 4405 int offset = addr & (PAGE_SIZE-1); 4406 4407 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4408 return -EINVAL; 4409 4410 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4411 if (!maddr) 4412 return -ENOMEM; 4413 4414 if (write) 4415 memcpy_toio(maddr + offset, buf, len); 4416 else 4417 memcpy_fromio(buf, maddr + offset, len); 4418 iounmap(maddr); 4419 4420 return len; 4421 } 4422 EXPORT_SYMBOL_GPL(generic_access_phys); 4423 #endif 4424 4425 /* 4426 * Access another process' address space as given in mm. If non-NULL, use the 4427 * given task for page fault accounting. 4428 */ 4429 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4430 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4431 { 4432 struct vm_area_struct *vma; 4433 void *old_buf = buf; 4434 int write = gup_flags & FOLL_WRITE; 4435 4436 down_read(&mm->mmap_sem); 4437 /* ignore errors, just check how much was successfully transferred */ 4438 while (len) { 4439 int bytes, ret, offset; 4440 void *maddr; 4441 struct page *page = NULL; 4442 4443 ret = get_user_pages_remote(tsk, mm, addr, 1, 4444 gup_flags, &page, &vma, NULL); 4445 if (ret <= 0) { 4446 #ifndef CONFIG_HAVE_IOREMAP_PROT 4447 break; 4448 #else 4449 /* 4450 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4451 * we can access using slightly different code. 4452 */ 4453 vma = find_vma(mm, addr); 4454 if (!vma || vma->vm_start > addr) 4455 break; 4456 if (vma->vm_ops && vma->vm_ops->access) 4457 ret = vma->vm_ops->access(vma, addr, buf, 4458 len, write); 4459 if (ret <= 0) 4460 break; 4461 bytes = ret; 4462 #endif 4463 } else { 4464 bytes = len; 4465 offset = addr & (PAGE_SIZE-1); 4466 if (bytes > PAGE_SIZE-offset) 4467 bytes = PAGE_SIZE-offset; 4468 4469 maddr = kmap(page); 4470 if (write) { 4471 copy_to_user_page(vma, page, addr, 4472 maddr + offset, buf, bytes); 4473 set_page_dirty_lock(page); 4474 } else { 4475 copy_from_user_page(vma, page, addr, 4476 buf, maddr + offset, bytes); 4477 } 4478 kunmap(page); 4479 put_page(page); 4480 } 4481 len -= bytes; 4482 buf += bytes; 4483 addr += bytes; 4484 } 4485 up_read(&mm->mmap_sem); 4486 4487 return buf - old_buf; 4488 } 4489 4490 /** 4491 * access_remote_vm - access another process' address space 4492 * @mm: the mm_struct of the target address space 4493 * @addr: start address to access 4494 * @buf: source or destination buffer 4495 * @len: number of bytes to transfer 4496 * @gup_flags: flags modifying lookup behaviour 4497 * 4498 * The caller must hold a reference on @mm. 4499 */ 4500 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4501 void *buf, int len, unsigned int gup_flags) 4502 { 4503 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4504 } 4505 4506 /* 4507 * Access another process' address space. 4508 * Source/target buffer must be kernel space, 4509 * Do not walk the page table directly, use get_user_pages 4510 */ 4511 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4512 void *buf, int len, unsigned int gup_flags) 4513 { 4514 struct mm_struct *mm; 4515 int ret; 4516 4517 mm = get_task_mm(tsk); 4518 if (!mm) 4519 return 0; 4520 4521 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4522 4523 mmput(mm); 4524 4525 return ret; 4526 } 4527 EXPORT_SYMBOL_GPL(access_process_vm); 4528 4529 /* 4530 * Print the name of a VMA. 4531 */ 4532 void print_vma_addr(char *prefix, unsigned long ip) 4533 { 4534 struct mm_struct *mm = current->mm; 4535 struct vm_area_struct *vma; 4536 4537 /* 4538 * we might be running from an atomic context so we cannot sleep 4539 */ 4540 if (!down_read_trylock(&mm->mmap_sem)) 4541 return; 4542 4543 vma = find_vma(mm, ip); 4544 if (vma && vma->vm_file) { 4545 struct file *f = vma->vm_file; 4546 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4547 if (buf) { 4548 char *p; 4549 4550 p = file_path(f, buf, PAGE_SIZE); 4551 if (IS_ERR(p)) 4552 p = "?"; 4553 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4554 vma->vm_start, 4555 vma->vm_end - vma->vm_start); 4556 free_page((unsigned long)buf); 4557 } 4558 } 4559 up_read(&mm->mmap_sem); 4560 } 4561 4562 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4563 void __might_fault(const char *file, int line) 4564 { 4565 /* 4566 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4567 * holding the mmap_sem, this is safe because kernel memory doesn't 4568 * get paged out, therefore we'll never actually fault, and the 4569 * below annotations will generate false positives. 4570 */ 4571 if (uaccess_kernel()) 4572 return; 4573 if (pagefault_disabled()) 4574 return; 4575 __might_sleep(file, line, 0); 4576 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4577 if (current->mm) 4578 might_lock_read(¤t->mm->mmap_sem); 4579 #endif 4580 } 4581 EXPORT_SYMBOL(__might_fault); 4582 #endif 4583 4584 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4585 /* 4586 * Process all subpages of the specified huge page with the specified 4587 * operation. The target subpage will be processed last to keep its 4588 * cache lines hot. 4589 */ 4590 static inline void process_huge_page( 4591 unsigned long addr_hint, unsigned int pages_per_huge_page, 4592 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4593 void *arg) 4594 { 4595 int i, n, base, l; 4596 unsigned long addr = addr_hint & 4597 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4598 4599 /* Process target subpage last to keep its cache lines hot */ 4600 might_sleep(); 4601 n = (addr_hint - addr) / PAGE_SIZE; 4602 if (2 * n <= pages_per_huge_page) { 4603 /* If target subpage in first half of huge page */ 4604 base = 0; 4605 l = n; 4606 /* Process subpages at the end of huge page */ 4607 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4608 cond_resched(); 4609 process_subpage(addr + i * PAGE_SIZE, i, arg); 4610 } 4611 } else { 4612 /* If target subpage in second half of huge page */ 4613 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4614 l = pages_per_huge_page - n; 4615 /* Process subpages at the begin of huge page */ 4616 for (i = 0; i < base; i++) { 4617 cond_resched(); 4618 process_subpage(addr + i * PAGE_SIZE, i, arg); 4619 } 4620 } 4621 /* 4622 * Process remaining subpages in left-right-left-right pattern 4623 * towards the target subpage 4624 */ 4625 for (i = 0; i < l; i++) { 4626 int left_idx = base + i; 4627 int right_idx = base + 2 * l - 1 - i; 4628 4629 cond_resched(); 4630 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4631 cond_resched(); 4632 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4633 } 4634 } 4635 4636 static void clear_gigantic_page(struct page *page, 4637 unsigned long addr, 4638 unsigned int pages_per_huge_page) 4639 { 4640 int i; 4641 struct page *p = page; 4642 4643 might_sleep(); 4644 for (i = 0; i < pages_per_huge_page; 4645 i++, p = mem_map_next(p, page, i)) { 4646 cond_resched(); 4647 clear_user_highpage(p, addr + i * PAGE_SIZE); 4648 } 4649 } 4650 4651 static void clear_subpage(unsigned long addr, int idx, void *arg) 4652 { 4653 struct page *page = arg; 4654 4655 clear_user_highpage(page + idx, addr); 4656 } 4657 4658 void clear_huge_page(struct page *page, 4659 unsigned long addr_hint, unsigned int pages_per_huge_page) 4660 { 4661 unsigned long addr = addr_hint & 4662 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4663 4664 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4665 clear_gigantic_page(page, addr, pages_per_huge_page); 4666 return; 4667 } 4668 4669 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4670 } 4671 4672 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4673 unsigned long addr, 4674 struct vm_area_struct *vma, 4675 unsigned int pages_per_huge_page) 4676 { 4677 int i; 4678 struct page *dst_base = dst; 4679 struct page *src_base = src; 4680 4681 for (i = 0; i < pages_per_huge_page; ) { 4682 cond_resched(); 4683 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4684 4685 i++; 4686 dst = mem_map_next(dst, dst_base, i); 4687 src = mem_map_next(src, src_base, i); 4688 } 4689 } 4690 4691 struct copy_subpage_arg { 4692 struct page *dst; 4693 struct page *src; 4694 struct vm_area_struct *vma; 4695 }; 4696 4697 static void copy_subpage(unsigned long addr, int idx, void *arg) 4698 { 4699 struct copy_subpage_arg *copy_arg = arg; 4700 4701 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4702 addr, copy_arg->vma); 4703 } 4704 4705 void copy_user_huge_page(struct page *dst, struct page *src, 4706 unsigned long addr_hint, struct vm_area_struct *vma, 4707 unsigned int pages_per_huge_page) 4708 { 4709 unsigned long addr = addr_hint & 4710 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4711 struct copy_subpage_arg arg = { 4712 .dst = dst, 4713 .src = src, 4714 .vma = vma, 4715 }; 4716 4717 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4718 copy_user_gigantic_page(dst, src, addr, vma, 4719 pages_per_huge_page); 4720 return; 4721 } 4722 4723 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4724 } 4725 4726 long copy_huge_page_from_user(struct page *dst_page, 4727 const void __user *usr_src, 4728 unsigned int pages_per_huge_page, 4729 bool allow_pagefault) 4730 { 4731 void *src = (void *)usr_src; 4732 void *page_kaddr; 4733 unsigned long i, rc = 0; 4734 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4735 4736 for (i = 0; i < pages_per_huge_page; i++) { 4737 if (allow_pagefault) 4738 page_kaddr = kmap(dst_page + i); 4739 else 4740 page_kaddr = kmap_atomic(dst_page + i); 4741 rc = copy_from_user(page_kaddr, 4742 (const void __user *)(src + i * PAGE_SIZE), 4743 PAGE_SIZE); 4744 if (allow_pagefault) 4745 kunmap(dst_page + i); 4746 else 4747 kunmap_atomic(page_kaddr); 4748 4749 ret_val -= (PAGE_SIZE - rc); 4750 if (rc) 4751 break; 4752 4753 cond_resched(); 4754 } 4755 return ret_val; 4756 } 4757 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4758 4759 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4760 4761 static struct kmem_cache *page_ptl_cachep; 4762 4763 void __init ptlock_cache_init(void) 4764 { 4765 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4766 SLAB_PANIC, NULL); 4767 } 4768 4769 bool ptlock_alloc(struct page *page) 4770 { 4771 spinlock_t *ptl; 4772 4773 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4774 if (!ptl) 4775 return false; 4776 page->ptl = ptl; 4777 return true; 4778 } 4779 4780 void ptlock_free(struct page *page) 4781 { 4782 kmem_cache_free(page_ptl_cachep, page->ptl); 4783 } 4784 #endif 4785