xref: /openbmc/linux/mm/memory.c (revision 996d5b4d)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80 
81 #include "internal.h"
82 
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86 
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91 
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95 
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105 
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114 					1;
115 #else
116 					2;
117 #endif
118 
119 static int __init disable_randmaps(char *s)
120 {
121 	randomize_va_space = 0;
122 	return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125 
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128 
129 unsigned long highest_memmap_pfn __read_mostly;
130 
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 	return 0;
138 }
139 core_initcall(init_zero_pfn);
140 
141 
142 #if defined(SPLIT_RSS_COUNTING)
143 
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146 	int i;
147 
148 	for (i = 0; i < NR_MM_COUNTERS; i++) {
149 		if (current->rss_stat.count[i]) {
150 			add_mm_counter(mm, i, current->rss_stat.count[i]);
151 			current->rss_stat.count[i] = 0;
152 		}
153 	}
154 	current->rss_stat.events = 0;
155 }
156 
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159 	struct task_struct *task = current;
160 
161 	if (likely(task->mm == mm))
162 		task->rss_stat.count[member] += val;
163 	else
164 		add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168 
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH	(64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 	if (unlikely(task != current))
174 		return;
175 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 		sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179 
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182 
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186 
187 #endif /* SPLIT_RSS_COUNTING */
188 
189 #ifdef HAVE_GENERIC_MMU_GATHER
190 
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193 	struct mmu_gather_batch *batch;
194 
195 	batch = tlb->active;
196 	if (batch->next) {
197 		tlb->active = batch->next;
198 		return true;
199 	}
200 
201 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 		return false;
203 
204 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 	if (!batch)
206 		return false;
207 
208 	tlb->batch_count++;
209 	batch->next = NULL;
210 	batch->nr   = 0;
211 	batch->max  = MAX_GATHER_BATCH;
212 
213 	tlb->active->next = batch;
214 	tlb->active = batch;
215 
216 	return true;
217 }
218 
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 				unsigned long start, unsigned long end)
221 {
222 	tlb->mm = mm;
223 
224 	/* Is it from 0 to ~0? */
225 	tlb->fullmm     = !(start | (end+1));
226 	tlb->need_flush_all = 0;
227 	tlb->local.next = NULL;
228 	tlb->local.nr   = 0;
229 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230 	tlb->active     = &tlb->local;
231 	tlb->batch_count = 0;
232 
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 	tlb->batch = NULL;
235 #endif
236 	tlb->page_size = 0;
237 
238 	__tlb_reset_range(tlb);
239 }
240 
241 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
242 {
243 	struct mmu_gather_batch *batch;
244 
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246 	tlb_table_flush(tlb);
247 #endif
248 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
249 		free_pages_and_swap_cache(batch->pages, batch->nr);
250 		batch->nr = 0;
251 	}
252 	tlb->active = &tlb->local;
253 }
254 
255 void tlb_flush_mmu(struct mmu_gather *tlb)
256 {
257 	tlb_flush_mmu_tlbonly(tlb);
258 	tlb_flush_mmu_free(tlb);
259 }
260 
261 /* tlb_finish_mmu
262  *	Called at the end of the shootdown operation to free up any resources
263  *	that were required.
264  */
265 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
266 		unsigned long start, unsigned long end, bool force)
267 {
268 	struct mmu_gather_batch *batch, *next;
269 
270 	if (force)
271 		__tlb_adjust_range(tlb, start, end - start);
272 
273 	tlb_flush_mmu(tlb);
274 
275 	/* keep the page table cache within bounds */
276 	check_pgt_cache();
277 
278 	for (batch = tlb->local.next; batch; batch = next) {
279 		next = batch->next;
280 		free_pages((unsigned long)batch, 0);
281 	}
282 	tlb->local.next = NULL;
283 }
284 
285 /* __tlb_remove_page
286  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287  *	handling the additional races in SMP caused by other CPUs caching valid
288  *	mappings in their TLBs. Returns the number of free page slots left.
289  *	When out of page slots we must call tlb_flush_mmu().
290  *returns true if the caller should flush.
291  */
292 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
293 {
294 	struct mmu_gather_batch *batch;
295 
296 	VM_BUG_ON(!tlb->end);
297 	VM_WARN_ON(tlb->page_size != page_size);
298 
299 	batch = tlb->active;
300 	/*
301 	 * Add the page and check if we are full. If so
302 	 * force a flush.
303 	 */
304 	batch->pages[batch->nr++] = page;
305 	if (batch->nr == batch->max) {
306 		if (!tlb_next_batch(tlb))
307 			return true;
308 		batch = tlb->active;
309 	}
310 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
311 
312 	return false;
313 }
314 
315 #endif /* HAVE_GENERIC_MMU_GATHER */
316 
317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
318 
319 /*
320  * See the comment near struct mmu_table_batch.
321  */
322 
323 /*
324  * If we want tlb_remove_table() to imply TLB invalidates.
325  */
326 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
327 {
328 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
329 	/*
330 	 * Invalidate page-table caches used by hardware walkers. Then we still
331 	 * need to RCU-sched wait while freeing the pages because software
332 	 * walkers can still be in-flight.
333 	 */
334 	tlb_flush_mmu_tlbonly(tlb);
335 #endif
336 }
337 
338 static void tlb_remove_table_smp_sync(void *arg)
339 {
340 	/* Simply deliver the interrupt */
341 }
342 
343 static void tlb_remove_table_one(void *table)
344 {
345 	/*
346 	 * This isn't an RCU grace period and hence the page-tables cannot be
347 	 * assumed to be actually RCU-freed.
348 	 *
349 	 * It is however sufficient for software page-table walkers that rely on
350 	 * IRQ disabling. See the comment near struct mmu_table_batch.
351 	 */
352 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
353 	__tlb_remove_table(table);
354 }
355 
356 static void tlb_remove_table_rcu(struct rcu_head *head)
357 {
358 	struct mmu_table_batch *batch;
359 	int i;
360 
361 	batch = container_of(head, struct mmu_table_batch, rcu);
362 
363 	for (i = 0; i < batch->nr; i++)
364 		__tlb_remove_table(batch->tables[i]);
365 
366 	free_page((unsigned long)batch);
367 }
368 
369 void tlb_table_flush(struct mmu_gather *tlb)
370 {
371 	struct mmu_table_batch **batch = &tlb->batch;
372 
373 	if (*batch) {
374 		tlb_table_invalidate(tlb);
375 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
376 		*batch = NULL;
377 	}
378 }
379 
380 void tlb_remove_table(struct mmu_gather *tlb, void *table)
381 {
382 	struct mmu_table_batch **batch = &tlb->batch;
383 
384 	if (*batch == NULL) {
385 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
386 		if (*batch == NULL) {
387 			tlb_table_invalidate(tlb);
388 			tlb_remove_table_one(table);
389 			return;
390 		}
391 		(*batch)->nr = 0;
392 	}
393 
394 	(*batch)->tables[(*batch)->nr++] = table;
395 	if ((*batch)->nr == MAX_TABLE_BATCH)
396 		tlb_table_flush(tlb);
397 }
398 
399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
400 
401 /**
402  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
403  * @tlb: the mmu_gather structure to initialize
404  * @mm: the mm_struct of the target address space
405  * @start: start of the region that will be removed from the page-table
406  * @end: end of the region that will be removed from the page-table
407  *
408  * Called to initialize an (on-stack) mmu_gather structure for page-table
409  * tear-down from @mm. The @start and @end are set to 0 and -1
410  * respectively when @mm is without users and we're going to destroy
411  * the full address space (exit/execve).
412  */
413 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
414 			unsigned long start, unsigned long end)
415 {
416 	arch_tlb_gather_mmu(tlb, mm, start, end);
417 	inc_tlb_flush_pending(tlb->mm);
418 }
419 
420 void tlb_finish_mmu(struct mmu_gather *tlb,
421 		unsigned long start, unsigned long end)
422 {
423 	/*
424 	 * If there are parallel threads are doing PTE changes on same range
425 	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
426 	 * flush by batching, a thread has stable TLB entry can fail to flush
427 	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
428 	 * forcefully if we detect parallel PTE batching threads.
429 	 */
430 	bool force = mm_tlb_flush_nested(tlb->mm);
431 
432 	arch_tlb_finish_mmu(tlb, start, end, force);
433 	dec_tlb_flush_pending(tlb->mm);
434 }
435 
436 /*
437  * Note: this doesn't free the actual pages themselves. That
438  * has been handled earlier when unmapping all the memory regions.
439  */
440 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
441 			   unsigned long addr)
442 {
443 	pgtable_t token = pmd_pgtable(*pmd);
444 	pmd_clear(pmd);
445 	pte_free_tlb(tlb, token, addr);
446 	mm_dec_nr_ptes(tlb->mm);
447 }
448 
449 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
450 				unsigned long addr, unsigned long end,
451 				unsigned long floor, unsigned long ceiling)
452 {
453 	pmd_t *pmd;
454 	unsigned long next;
455 	unsigned long start;
456 
457 	start = addr;
458 	pmd = pmd_offset(pud, addr);
459 	do {
460 		next = pmd_addr_end(addr, end);
461 		if (pmd_none_or_clear_bad(pmd))
462 			continue;
463 		free_pte_range(tlb, pmd, addr);
464 	} while (pmd++, addr = next, addr != end);
465 
466 	start &= PUD_MASK;
467 	if (start < floor)
468 		return;
469 	if (ceiling) {
470 		ceiling &= PUD_MASK;
471 		if (!ceiling)
472 			return;
473 	}
474 	if (end - 1 > ceiling - 1)
475 		return;
476 
477 	pmd = pmd_offset(pud, start);
478 	pud_clear(pud);
479 	pmd_free_tlb(tlb, pmd, start);
480 	mm_dec_nr_pmds(tlb->mm);
481 }
482 
483 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
484 				unsigned long addr, unsigned long end,
485 				unsigned long floor, unsigned long ceiling)
486 {
487 	pud_t *pud;
488 	unsigned long next;
489 	unsigned long start;
490 
491 	start = addr;
492 	pud = pud_offset(p4d, addr);
493 	do {
494 		next = pud_addr_end(addr, end);
495 		if (pud_none_or_clear_bad(pud))
496 			continue;
497 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
498 	} while (pud++, addr = next, addr != end);
499 
500 	start &= P4D_MASK;
501 	if (start < floor)
502 		return;
503 	if (ceiling) {
504 		ceiling &= P4D_MASK;
505 		if (!ceiling)
506 			return;
507 	}
508 	if (end - 1 > ceiling - 1)
509 		return;
510 
511 	pud = pud_offset(p4d, start);
512 	p4d_clear(p4d);
513 	pud_free_tlb(tlb, pud, start);
514 	mm_dec_nr_puds(tlb->mm);
515 }
516 
517 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
518 				unsigned long addr, unsigned long end,
519 				unsigned long floor, unsigned long ceiling)
520 {
521 	p4d_t *p4d;
522 	unsigned long next;
523 	unsigned long start;
524 
525 	start = addr;
526 	p4d = p4d_offset(pgd, addr);
527 	do {
528 		next = p4d_addr_end(addr, end);
529 		if (p4d_none_or_clear_bad(p4d))
530 			continue;
531 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
532 	} while (p4d++, addr = next, addr != end);
533 
534 	start &= PGDIR_MASK;
535 	if (start < floor)
536 		return;
537 	if (ceiling) {
538 		ceiling &= PGDIR_MASK;
539 		if (!ceiling)
540 			return;
541 	}
542 	if (end - 1 > ceiling - 1)
543 		return;
544 
545 	p4d = p4d_offset(pgd, start);
546 	pgd_clear(pgd);
547 	p4d_free_tlb(tlb, p4d, start);
548 }
549 
550 /*
551  * This function frees user-level page tables of a process.
552  */
553 void free_pgd_range(struct mmu_gather *tlb,
554 			unsigned long addr, unsigned long end,
555 			unsigned long floor, unsigned long ceiling)
556 {
557 	pgd_t *pgd;
558 	unsigned long next;
559 
560 	/*
561 	 * The next few lines have given us lots of grief...
562 	 *
563 	 * Why are we testing PMD* at this top level?  Because often
564 	 * there will be no work to do at all, and we'd prefer not to
565 	 * go all the way down to the bottom just to discover that.
566 	 *
567 	 * Why all these "- 1"s?  Because 0 represents both the bottom
568 	 * of the address space and the top of it (using -1 for the
569 	 * top wouldn't help much: the masks would do the wrong thing).
570 	 * The rule is that addr 0 and floor 0 refer to the bottom of
571 	 * the address space, but end 0 and ceiling 0 refer to the top
572 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
573 	 * that end 0 case should be mythical).
574 	 *
575 	 * Wherever addr is brought up or ceiling brought down, we must
576 	 * be careful to reject "the opposite 0" before it confuses the
577 	 * subsequent tests.  But what about where end is brought down
578 	 * by PMD_SIZE below? no, end can't go down to 0 there.
579 	 *
580 	 * Whereas we round start (addr) and ceiling down, by different
581 	 * masks at different levels, in order to test whether a table
582 	 * now has no other vmas using it, so can be freed, we don't
583 	 * bother to round floor or end up - the tests don't need that.
584 	 */
585 
586 	addr &= PMD_MASK;
587 	if (addr < floor) {
588 		addr += PMD_SIZE;
589 		if (!addr)
590 			return;
591 	}
592 	if (ceiling) {
593 		ceiling &= PMD_MASK;
594 		if (!ceiling)
595 			return;
596 	}
597 	if (end - 1 > ceiling - 1)
598 		end -= PMD_SIZE;
599 	if (addr > end - 1)
600 		return;
601 	/*
602 	 * We add page table cache pages with PAGE_SIZE,
603 	 * (see pte_free_tlb()), flush the tlb if we need
604 	 */
605 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
606 	pgd = pgd_offset(tlb->mm, addr);
607 	do {
608 		next = pgd_addr_end(addr, end);
609 		if (pgd_none_or_clear_bad(pgd))
610 			continue;
611 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
612 	} while (pgd++, addr = next, addr != end);
613 }
614 
615 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
616 		unsigned long floor, unsigned long ceiling)
617 {
618 	while (vma) {
619 		struct vm_area_struct *next = vma->vm_next;
620 		unsigned long addr = vma->vm_start;
621 
622 		/*
623 		 * Hide vma from rmap and truncate_pagecache before freeing
624 		 * pgtables
625 		 */
626 		unlink_anon_vmas(vma);
627 		unlink_file_vma(vma);
628 
629 		if (is_vm_hugetlb_page(vma)) {
630 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
631 				floor, next ? next->vm_start : ceiling);
632 		} else {
633 			/*
634 			 * Optimization: gather nearby vmas into one call down
635 			 */
636 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
637 			       && !is_vm_hugetlb_page(next)) {
638 				vma = next;
639 				next = vma->vm_next;
640 				unlink_anon_vmas(vma);
641 				unlink_file_vma(vma);
642 			}
643 			free_pgd_range(tlb, addr, vma->vm_end,
644 				floor, next ? next->vm_start : ceiling);
645 		}
646 		vma = next;
647 	}
648 }
649 
650 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
651 {
652 	spinlock_t *ptl;
653 	pgtable_t new = pte_alloc_one(mm, address);
654 	if (!new)
655 		return -ENOMEM;
656 
657 	/*
658 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
659 	 * visible before the pte is made visible to other CPUs by being
660 	 * put into page tables.
661 	 *
662 	 * The other side of the story is the pointer chasing in the page
663 	 * table walking code (when walking the page table without locking;
664 	 * ie. most of the time). Fortunately, these data accesses consist
665 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
666 	 * being the notable exception) will already guarantee loads are
667 	 * seen in-order. See the alpha page table accessors for the
668 	 * smp_read_barrier_depends() barriers in page table walking code.
669 	 */
670 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
671 
672 	ptl = pmd_lock(mm, pmd);
673 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
674 		mm_inc_nr_ptes(mm);
675 		pmd_populate(mm, pmd, new);
676 		new = NULL;
677 	}
678 	spin_unlock(ptl);
679 	if (new)
680 		pte_free(mm, new);
681 	return 0;
682 }
683 
684 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
685 {
686 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
687 	if (!new)
688 		return -ENOMEM;
689 
690 	smp_wmb(); /* See comment in __pte_alloc */
691 
692 	spin_lock(&init_mm.page_table_lock);
693 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
694 		pmd_populate_kernel(&init_mm, pmd, new);
695 		new = NULL;
696 	}
697 	spin_unlock(&init_mm.page_table_lock);
698 	if (new)
699 		pte_free_kernel(&init_mm, new);
700 	return 0;
701 }
702 
703 static inline void init_rss_vec(int *rss)
704 {
705 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
706 }
707 
708 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
709 {
710 	int i;
711 
712 	if (current->mm == mm)
713 		sync_mm_rss(mm);
714 	for (i = 0; i < NR_MM_COUNTERS; i++)
715 		if (rss[i])
716 			add_mm_counter(mm, i, rss[i]);
717 }
718 
719 /*
720  * This function is called to print an error when a bad pte
721  * is found. For example, we might have a PFN-mapped pte in
722  * a region that doesn't allow it.
723  *
724  * The calling function must still handle the error.
725  */
726 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
727 			  pte_t pte, struct page *page)
728 {
729 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
730 	p4d_t *p4d = p4d_offset(pgd, addr);
731 	pud_t *pud = pud_offset(p4d, addr);
732 	pmd_t *pmd = pmd_offset(pud, addr);
733 	struct address_space *mapping;
734 	pgoff_t index;
735 	static unsigned long resume;
736 	static unsigned long nr_shown;
737 	static unsigned long nr_unshown;
738 
739 	/*
740 	 * Allow a burst of 60 reports, then keep quiet for that minute;
741 	 * or allow a steady drip of one report per second.
742 	 */
743 	if (nr_shown == 60) {
744 		if (time_before(jiffies, resume)) {
745 			nr_unshown++;
746 			return;
747 		}
748 		if (nr_unshown) {
749 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
750 				 nr_unshown);
751 			nr_unshown = 0;
752 		}
753 		nr_shown = 0;
754 	}
755 	if (nr_shown++ == 0)
756 		resume = jiffies + 60 * HZ;
757 
758 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
759 	index = linear_page_index(vma, addr);
760 
761 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
762 		 current->comm,
763 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
764 	if (page)
765 		dump_page(page, "bad pte");
766 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
767 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
768 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
769 		 vma->vm_file,
770 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
771 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
772 		 mapping ? mapping->a_ops->readpage : NULL);
773 	dump_stack();
774 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
775 }
776 
777 /*
778  * vm_normal_page -- This function gets the "struct page" associated with a pte.
779  *
780  * "Special" mappings do not wish to be associated with a "struct page" (either
781  * it doesn't exist, or it exists but they don't want to touch it). In this
782  * case, NULL is returned here. "Normal" mappings do have a struct page.
783  *
784  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
785  * pte bit, in which case this function is trivial. Secondly, an architecture
786  * may not have a spare pte bit, which requires a more complicated scheme,
787  * described below.
788  *
789  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
790  * special mapping (even if there are underlying and valid "struct pages").
791  * COWed pages of a VM_PFNMAP are always normal.
792  *
793  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
794  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
795  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
796  * mapping will always honor the rule
797  *
798  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
799  *
800  * And for normal mappings this is false.
801  *
802  * This restricts such mappings to be a linear translation from virtual address
803  * to pfn. To get around this restriction, we allow arbitrary mappings so long
804  * as the vma is not a COW mapping; in that case, we know that all ptes are
805  * special (because none can have been COWed).
806  *
807  *
808  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
809  *
810  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
811  * page" backing, however the difference is that _all_ pages with a struct
812  * page (that is, those where pfn_valid is true) are refcounted and considered
813  * normal pages by the VM. The disadvantage is that pages are refcounted
814  * (which can be slower and simply not an option for some PFNMAP users). The
815  * advantage is that we don't have to follow the strict linearity rule of
816  * PFNMAP mappings in order to support COWable mappings.
817  *
818  */
819 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
820 			     pte_t pte, bool with_public_device)
821 {
822 	unsigned long pfn = pte_pfn(pte);
823 
824 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
825 		if (likely(!pte_special(pte)))
826 			goto check_pfn;
827 		if (vma->vm_ops && vma->vm_ops->find_special_page)
828 			return vma->vm_ops->find_special_page(vma, addr);
829 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
830 			return NULL;
831 		if (is_zero_pfn(pfn))
832 			return NULL;
833 
834 		/*
835 		 * Device public pages are special pages (they are ZONE_DEVICE
836 		 * pages but different from persistent memory). They behave
837 		 * allmost like normal pages. The difference is that they are
838 		 * not on the lru and thus should never be involve with any-
839 		 * thing that involve lru manipulation (mlock, numa balancing,
840 		 * ...).
841 		 *
842 		 * This is why we still want to return NULL for such page from
843 		 * vm_normal_page() so that we do not have to special case all
844 		 * call site of vm_normal_page().
845 		 */
846 		if (likely(pfn <= highest_memmap_pfn)) {
847 			struct page *page = pfn_to_page(pfn);
848 
849 			if (is_device_public_page(page)) {
850 				if (with_public_device)
851 					return page;
852 				return NULL;
853 			}
854 		}
855 
856 		if (pte_devmap(pte))
857 			return NULL;
858 
859 		print_bad_pte(vma, addr, pte, NULL);
860 		return NULL;
861 	}
862 
863 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
864 
865 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
866 		if (vma->vm_flags & VM_MIXEDMAP) {
867 			if (!pfn_valid(pfn))
868 				return NULL;
869 			goto out;
870 		} else {
871 			unsigned long off;
872 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
873 			if (pfn == vma->vm_pgoff + off)
874 				return NULL;
875 			if (!is_cow_mapping(vma->vm_flags))
876 				return NULL;
877 		}
878 	}
879 
880 	if (is_zero_pfn(pfn))
881 		return NULL;
882 
883 check_pfn:
884 	if (unlikely(pfn > highest_memmap_pfn)) {
885 		print_bad_pte(vma, addr, pte, NULL);
886 		return NULL;
887 	}
888 
889 	/*
890 	 * NOTE! We still have PageReserved() pages in the page tables.
891 	 * eg. VDSO mappings can cause them to exist.
892 	 */
893 out:
894 	return pfn_to_page(pfn);
895 }
896 
897 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
898 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
899 				pmd_t pmd)
900 {
901 	unsigned long pfn = pmd_pfn(pmd);
902 
903 	/*
904 	 * There is no pmd_special() but there may be special pmds, e.g.
905 	 * in a direct-access (dax) mapping, so let's just replicate the
906 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
907 	 */
908 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
909 		if (vma->vm_flags & VM_MIXEDMAP) {
910 			if (!pfn_valid(pfn))
911 				return NULL;
912 			goto out;
913 		} else {
914 			unsigned long off;
915 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
916 			if (pfn == vma->vm_pgoff + off)
917 				return NULL;
918 			if (!is_cow_mapping(vma->vm_flags))
919 				return NULL;
920 		}
921 	}
922 
923 	if (pmd_devmap(pmd))
924 		return NULL;
925 	if (is_zero_pfn(pfn))
926 		return NULL;
927 	if (unlikely(pfn > highest_memmap_pfn))
928 		return NULL;
929 
930 	/*
931 	 * NOTE! We still have PageReserved() pages in the page tables.
932 	 * eg. VDSO mappings can cause them to exist.
933 	 */
934 out:
935 	return pfn_to_page(pfn);
936 }
937 #endif
938 
939 /*
940  * copy one vm_area from one task to the other. Assumes the page tables
941  * already present in the new task to be cleared in the whole range
942  * covered by this vma.
943  */
944 
945 static inline unsigned long
946 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
947 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
948 		unsigned long addr, int *rss)
949 {
950 	unsigned long vm_flags = vma->vm_flags;
951 	pte_t pte = *src_pte;
952 	struct page *page;
953 
954 	/* pte contains position in swap or file, so copy. */
955 	if (unlikely(!pte_present(pte))) {
956 		swp_entry_t entry = pte_to_swp_entry(pte);
957 
958 		if (likely(!non_swap_entry(entry))) {
959 			if (swap_duplicate(entry) < 0)
960 				return entry.val;
961 
962 			/* make sure dst_mm is on swapoff's mmlist. */
963 			if (unlikely(list_empty(&dst_mm->mmlist))) {
964 				spin_lock(&mmlist_lock);
965 				if (list_empty(&dst_mm->mmlist))
966 					list_add(&dst_mm->mmlist,
967 							&src_mm->mmlist);
968 				spin_unlock(&mmlist_lock);
969 			}
970 			rss[MM_SWAPENTS]++;
971 		} else if (is_migration_entry(entry)) {
972 			page = migration_entry_to_page(entry);
973 
974 			rss[mm_counter(page)]++;
975 
976 			if (is_write_migration_entry(entry) &&
977 					is_cow_mapping(vm_flags)) {
978 				/*
979 				 * COW mappings require pages in both
980 				 * parent and child to be set to read.
981 				 */
982 				make_migration_entry_read(&entry);
983 				pte = swp_entry_to_pte(entry);
984 				if (pte_swp_soft_dirty(*src_pte))
985 					pte = pte_swp_mksoft_dirty(pte);
986 				set_pte_at(src_mm, addr, src_pte, pte);
987 			}
988 		} else if (is_device_private_entry(entry)) {
989 			page = device_private_entry_to_page(entry);
990 
991 			/*
992 			 * Update rss count even for unaddressable pages, as
993 			 * they should treated just like normal pages in this
994 			 * respect.
995 			 *
996 			 * We will likely want to have some new rss counters
997 			 * for unaddressable pages, at some point. But for now
998 			 * keep things as they are.
999 			 */
1000 			get_page(page);
1001 			rss[mm_counter(page)]++;
1002 			page_dup_rmap(page, false);
1003 
1004 			/*
1005 			 * We do not preserve soft-dirty information, because so
1006 			 * far, checkpoint/restore is the only feature that
1007 			 * requires that. And checkpoint/restore does not work
1008 			 * when a device driver is involved (you cannot easily
1009 			 * save and restore device driver state).
1010 			 */
1011 			if (is_write_device_private_entry(entry) &&
1012 			    is_cow_mapping(vm_flags)) {
1013 				make_device_private_entry_read(&entry);
1014 				pte = swp_entry_to_pte(entry);
1015 				set_pte_at(src_mm, addr, src_pte, pte);
1016 			}
1017 		}
1018 		goto out_set_pte;
1019 	}
1020 
1021 	/*
1022 	 * If it's a COW mapping, write protect it both
1023 	 * in the parent and the child
1024 	 */
1025 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1026 		ptep_set_wrprotect(src_mm, addr, src_pte);
1027 		pte = pte_wrprotect(pte);
1028 	}
1029 
1030 	/*
1031 	 * If it's a shared mapping, mark it clean in
1032 	 * the child
1033 	 */
1034 	if (vm_flags & VM_SHARED)
1035 		pte = pte_mkclean(pte);
1036 	pte = pte_mkold(pte);
1037 
1038 	page = vm_normal_page(vma, addr, pte);
1039 	if (page) {
1040 		get_page(page);
1041 		page_dup_rmap(page, false);
1042 		rss[mm_counter(page)]++;
1043 	} else if (pte_devmap(pte)) {
1044 		page = pte_page(pte);
1045 
1046 		/*
1047 		 * Cache coherent device memory behave like regular page and
1048 		 * not like persistent memory page. For more informations see
1049 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1050 		 */
1051 		if (is_device_public_page(page)) {
1052 			get_page(page);
1053 			page_dup_rmap(page, false);
1054 			rss[mm_counter(page)]++;
1055 		}
1056 	}
1057 
1058 out_set_pte:
1059 	set_pte_at(dst_mm, addr, dst_pte, pte);
1060 	return 0;
1061 }
1062 
1063 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1064 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1065 		   unsigned long addr, unsigned long end)
1066 {
1067 	pte_t *orig_src_pte, *orig_dst_pte;
1068 	pte_t *src_pte, *dst_pte;
1069 	spinlock_t *src_ptl, *dst_ptl;
1070 	int progress = 0;
1071 	int rss[NR_MM_COUNTERS];
1072 	swp_entry_t entry = (swp_entry_t){0};
1073 
1074 again:
1075 	init_rss_vec(rss);
1076 
1077 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1078 	if (!dst_pte)
1079 		return -ENOMEM;
1080 	src_pte = pte_offset_map(src_pmd, addr);
1081 	src_ptl = pte_lockptr(src_mm, src_pmd);
1082 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1083 	orig_src_pte = src_pte;
1084 	orig_dst_pte = dst_pte;
1085 	arch_enter_lazy_mmu_mode();
1086 
1087 	do {
1088 		/*
1089 		 * We are holding two locks at this point - either of them
1090 		 * could generate latencies in another task on another CPU.
1091 		 */
1092 		if (progress >= 32) {
1093 			progress = 0;
1094 			if (need_resched() ||
1095 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1096 				break;
1097 		}
1098 		if (pte_none(*src_pte)) {
1099 			progress++;
1100 			continue;
1101 		}
1102 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1103 							vma, addr, rss);
1104 		if (entry.val)
1105 			break;
1106 		progress += 8;
1107 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1108 
1109 	arch_leave_lazy_mmu_mode();
1110 	spin_unlock(src_ptl);
1111 	pte_unmap(orig_src_pte);
1112 	add_mm_rss_vec(dst_mm, rss);
1113 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1114 	cond_resched();
1115 
1116 	if (entry.val) {
1117 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1118 			return -ENOMEM;
1119 		progress = 0;
1120 	}
1121 	if (addr != end)
1122 		goto again;
1123 	return 0;
1124 }
1125 
1126 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1127 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1128 		unsigned long addr, unsigned long end)
1129 {
1130 	pmd_t *src_pmd, *dst_pmd;
1131 	unsigned long next;
1132 
1133 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1134 	if (!dst_pmd)
1135 		return -ENOMEM;
1136 	src_pmd = pmd_offset(src_pud, addr);
1137 	do {
1138 		next = pmd_addr_end(addr, end);
1139 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1140 			|| pmd_devmap(*src_pmd)) {
1141 			int err;
1142 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1143 			err = copy_huge_pmd(dst_mm, src_mm,
1144 					    dst_pmd, src_pmd, addr, vma);
1145 			if (err == -ENOMEM)
1146 				return -ENOMEM;
1147 			if (!err)
1148 				continue;
1149 			/* fall through */
1150 		}
1151 		if (pmd_none_or_clear_bad(src_pmd))
1152 			continue;
1153 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1154 						vma, addr, next))
1155 			return -ENOMEM;
1156 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1157 	return 0;
1158 }
1159 
1160 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1161 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1162 		unsigned long addr, unsigned long end)
1163 {
1164 	pud_t *src_pud, *dst_pud;
1165 	unsigned long next;
1166 
1167 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1168 	if (!dst_pud)
1169 		return -ENOMEM;
1170 	src_pud = pud_offset(src_p4d, addr);
1171 	do {
1172 		next = pud_addr_end(addr, end);
1173 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1174 			int err;
1175 
1176 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1177 			err = copy_huge_pud(dst_mm, src_mm,
1178 					    dst_pud, src_pud, addr, vma);
1179 			if (err == -ENOMEM)
1180 				return -ENOMEM;
1181 			if (!err)
1182 				continue;
1183 			/* fall through */
1184 		}
1185 		if (pud_none_or_clear_bad(src_pud))
1186 			continue;
1187 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1188 						vma, addr, next))
1189 			return -ENOMEM;
1190 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1191 	return 0;
1192 }
1193 
1194 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1195 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1196 		unsigned long addr, unsigned long end)
1197 {
1198 	p4d_t *src_p4d, *dst_p4d;
1199 	unsigned long next;
1200 
1201 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1202 	if (!dst_p4d)
1203 		return -ENOMEM;
1204 	src_p4d = p4d_offset(src_pgd, addr);
1205 	do {
1206 		next = p4d_addr_end(addr, end);
1207 		if (p4d_none_or_clear_bad(src_p4d))
1208 			continue;
1209 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1210 						vma, addr, next))
1211 			return -ENOMEM;
1212 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1213 	return 0;
1214 }
1215 
1216 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1217 		struct vm_area_struct *vma)
1218 {
1219 	pgd_t *src_pgd, *dst_pgd;
1220 	unsigned long next;
1221 	unsigned long addr = vma->vm_start;
1222 	unsigned long end = vma->vm_end;
1223 	unsigned long mmun_start;	/* For mmu_notifiers */
1224 	unsigned long mmun_end;		/* For mmu_notifiers */
1225 	bool is_cow;
1226 	int ret;
1227 
1228 	/*
1229 	 * Don't copy ptes where a page fault will fill them correctly.
1230 	 * Fork becomes much lighter when there are big shared or private
1231 	 * readonly mappings. The tradeoff is that copy_page_range is more
1232 	 * efficient than faulting.
1233 	 */
1234 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1235 			!vma->anon_vma)
1236 		return 0;
1237 
1238 	if (is_vm_hugetlb_page(vma))
1239 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1240 
1241 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1242 		/*
1243 		 * We do not free on error cases below as remove_vma
1244 		 * gets called on error from higher level routine
1245 		 */
1246 		ret = track_pfn_copy(vma);
1247 		if (ret)
1248 			return ret;
1249 	}
1250 
1251 	/*
1252 	 * We need to invalidate the secondary MMU mappings only when
1253 	 * there could be a permission downgrade on the ptes of the
1254 	 * parent mm. And a permission downgrade will only happen if
1255 	 * is_cow_mapping() returns true.
1256 	 */
1257 	is_cow = is_cow_mapping(vma->vm_flags);
1258 	mmun_start = addr;
1259 	mmun_end   = end;
1260 	if (is_cow)
1261 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1262 						    mmun_end);
1263 
1264 	ret = 0;
1265 	dst_pgd = pgd_offset(dst_mm, addr);
1266 	src_pgd = pgd_offset(src_mm, addr);
1267 	do {
1268 		next = pgd_addr_end(addr, end);
1269 		if (pgd_none_or_clear_bad(src_pgd))
1270 			continue;
1271 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1272 					    vma, addr, next))) {
1273 			ret = -ENOMEM;
1274 			break;
1275 		}
1276 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1277 
1278 	if (is_cow)
1279 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1280 	return ret;
1281 }
1282 
1283 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1284 				struct vm_area_struct *vma, pmd_t *pmd,
1285 				unsigned long addr, unsigned long end,
1286 				struct zap_details *details)
1287 {
1288 	struct mm_struct *mm = tlb->mm;
1289 	int force_flush = 0;
1290 	int rss[NR_MM_COUNTERS];
1291 	spinlock_t *ptl;
1292 	pte_t *start_pte;
1293 	pte_t *pte;
1294 	swp_entry_t entry;
1295 
1296 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1297 again:
1298 	init_rss_vec(rss);
1299 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1300 	pte = start_pte;
1301 	flush_tlb_batched_pending(mm);
1302 	arch_enter_lazy_mmu_mode();
1303 	do {
1304 		pte_t ptent = *pte;
1305 		if (pte_none(ptent))
1306 			continue;
1307 
1308 		if (pte_present(ptent)) {
1309 			struct page *page;
1310 
1311 			page = _vm_normal_page(vma, addr, ptent, true);
1312 			if (unlikely(details) && page) {
1313 				/*
1314 				 * unmap_shared_mapping_pages() wants to
1315 				 * invalidate cache without truncating:
1316 				 * unmap shared but keep private pages.
1317 				 */
1318 				if (details->check_mapping &&
1319 				    details->check_mapping != page_rmapping(page))
1320 					continue;
1321 			}
1322 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1323 							tlb->fullmm);
1324 			tlb_remove_tlb_entry(tlb, pte, addr);
1325 			if (unlikely(!page))
1326 				continue;
1327 
1328 			if (!PageAnon(page)) {
1329 				if (pte_dirty(ptent)) {
1330 					force_flush = 1;
1331 					set_page_dirty(page);
1332 				}
1333 				if (pte_young(ptent) &&
1334 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1335 					mark_page_accessed(page);
1336 			}
1337 			rss[mm_counter(page)]--;
1338 			page_remove_rmap(page, false);
1339 			if (unlikely(page_mapcount(page) < 0))
1340 				print_bad_pte(vma, addr, ptent, page);
1341 			if (unlikely(__tlb_remove_page(tlb, page))) {
1342 				force_flush = 1;
1343 				addr += PAGE_SIZE;
1344 				break;
1345 			}
1346 			continue;
1347 		}
1348 
1349 		entry = pte_to_swp_entry(ptent);
1350 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1351 			struct page *page = device_private_entry_to_page(entry);
1352 
1353 			if (unlikely(details && details->check_mapping)) {
1354 				/*
1355 				 * unmap_shared_mapping_pages() wants to
1356 				 * invalidate cache without truncating:
1357 				 * unmap shared but keep private pages.
1358 				 */
1359 				if (details->check_mapping !=
1360 				    page_rmapping(page))
1361 					continue;
1362 			}
1363 
1364 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1365 			rss[mm_counter(page)]--;
1366 			page_remove_rmap(page, false);
1367 			put_page(page);
1368 			continue;
1369 		}
1370 
1371 		/* If details->check_mapping, we leave swap entries. */
1372 		if (unlikely(details))
1373 			continue;
1374 
1375 		entry = pte_to_swp_entry(ptent);
1376 		if (!non_swap_entry(entry))
1377 			rss[MM_SWAPENTS]--;
1378 		else if (is_migration_entry(entry)) {
1379 			struct page *page;
1380 
1381 			page = migration_entry_to_page(entry);
1382 			rss[mm_counter(page)]--;
1383 		}
1384 		if (unlikely(!free_swap_and_cache(entry)))
1385 			print_bad_pte(vma, addr, ptent, NULL);
1386 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1387 	} while (pte++, addr += PAGE_SIZE, addr != end);
1388 
1389 	add_mm_rss_vec(mm, rss);
1390 	arch_leave_lazy_mmu_mode();
1391 
1392 	/* Do the actual TLB flush before dropping ptl */
1393 	if (force_flush)
1394 		tlb_flush_mmu_tlbonly(tlb);
1395 	pte_unmap_unlock(start_pte, ptl);
1396 
1397 	/*
1398 	 * If we forced a TLB flush (either due to running out of
1399 	 * batch buffers or because we needed to flush dirty TLB
1400 	 * entries before releasing the ptl), free the batched
1401 	 * memory too. Restart if we didn't do everything.
1402 	 */
1403 	if (force_flush) {
1404 		force_flush = 0;
1405 		tlb_flush_mmu_free(tlb);
1406 		if (addr != end)
1407 			goto again;
1408 	}
1409 
1410 	return addr;
1411 }
1412 
1413 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1414 				struct vm_area_struct *vma, pud_t *pud,
1415 				unsigned long addr, unsigned long end,
1416 				struct zap_details *details)
1417 {
1418 	pmd_t *pmd;
1419 	unsigned long next;
1420 
1421 	pmd = pmd_offset(pud, addr);
1422 	do {
1423 		next = pmd_addr_end(addr, end);
1424 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1425 			if (next - addr != HPAGE_PMD_SIZE)
1426 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1427 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1428 				goto next;
1429 			/* fall through */
1430 		}
1431 		/*
1432 		 * Here there can be other concurrent MADV_DONTNEED or
1433 		 * trans huge page faults running, and if the pmd is
1434 		 * none or trans huge it can change under us. This is
1435 		 * because MADV_DONTNEED holds the mmap_sem in read
1436 		 * mode.
1437 		 */
1438 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1439 			goto next;
1440 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1441 next:
1442 		cond_resched();
1443 	} while (pmd++, addr = next, addr != end);
1444 
1445 	return addr;
1446 }
1447 
1448 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1449 				struct vm_area_struct *vma, p4d_t *p4d,
1450 				unsigned long addr, unsigned long end,
1451 				struct zap_details *details)
1452 {
1453 	pud_t *pud;
1454 	unsigned long next;
1455 
1456 	pud = pud_offset(p4d, addr);
1457 	do {
1458 		next = pud_addr_end(addr, end);
1459 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1460 			if (next - addr != HPAGE_PUD_SIZE) {
1461 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1462 				split_huge_pud(vma, pud, addr);
1463 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1464 				goto next;
1465 			/* fall through */
1466 		}
1467 		if (pud_none_or_clear_bad(pud))
1468 			continue;
1469 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1470 next:
1471 		cond_resched();
1472 	} while (pud++, addr = next, addr != end);
1473 
1474 	return addr;
1475 }
1476 
1477 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1478 				struct vm_area_struct *vma, pgd_t *pgd,
1479 				unsigned long addr, unsigned long end,
1480 				struct zap_details *details)
1481 {
1482 	p4d_t *p4d;
1483 	unsigned long next;
1484 
1485 	p4d = p4d_offset(pgd, addr);
1486 	do {
1487 		next = p4d_addr_end(addr, end);
1488 		if (p4d_none_or_clear_bad(p4d))
1489 			continue;
1490 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1491 	} while (p4d++, addr = next, addr != end);
1492 
1493 	return addr;
1494 }
1495 
1496 void unmap_page_range(struct mmu_gather *tlb,
1497 			     struct vm_area_struct *vma,
1498 			     unsigned long addr, unsigned long end,
1499 			     struct zap_details *details)
1500 {
1501 	pgd_t *pgd;
1502 	unsigned long next;
1503 
1504 	BUG_ON(addr >= end);
1505 	tlb_start_vma(tlb, vma);
1506 	pgd = pgd_offset(vma->vm_mm, addr);
1507 	do {
1508 		next = pgd_addr_end(addr, end);
1509 		if (pgd_none_or_clear_bad(pgd))
1510 			continue;
1511 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1512 	} while (pgd++, addr = next, addr != end);
1513 	tlb_end_vma(tlb, vma);
1514 }
1515 
1516 
1517 static void unmap_single_vma(struct mmu_gather *tlb,
1518 		struct vm_area_struct *vma, unsigned long start_addr,
1519 		unsigned long end_addr,
1520 		struct zap_details *details)
1521 {
1522 	unsigned long start = max(vma->vm_start, start_addr);
1523 	unsigned long end;
1524 
1525 	if (start >= vma->vm_end)
1526 		return;
1527 	end = min(vma->vm_end, end_addr);
1528 	if (end <= vma->vm_start)
1529 		return;
1530 
1531 	if (vma->vm_file)
1532 		uprobe_munmap(vma, start, end);
1533 
1534 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1535 		untrack_pfn(vma, 0, 0);
1536 
1537 	if (start != end) {
1538 		if (unlikely(is_vm_hugetlb_page(vma))) {
1539 			/*
1540 			 * It is undesirable to test vma->vm_file as it
1541 			 * should be non-null for valid hugetlb area.
1542 			 * However, vm_file will be NULL in the error
1543 			 * cleanup path of mmap_region. When
1544 			 * hugetlbfs ->mmap method fails,
1545 			 * mmap_region() nullifies vma->vm_file
1546 			 * before calling this function to clean up.
1547 			 * Since no pte has actually been setup, it is
1548 			 * safe to do nothing in this case.
1549 			 */
1550 			if (vma->vm_file) {
1551 				i_mmap_lock_write(vma->vm_file->f_mapping);
1552 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1553 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1554 			}
1555 		} else
1556 			unmap_page_range(tlb, vma, start, end, details);
1557 	}
1558 }
1559 
1560 /**
1561  * unmap_vmas - unmap a range of memory covered by a list of vma's
1562  * @tlb: address of the caller's struct mmu_gather
1563  * @vma: the starting vma
1564  * @start_addr: virtual address at which to start unmapping
1565  * @end_addr: virtual address at which to end unmapping
1566  *
1567  * Unmap all pages in the vma list.
1568  *
1569  * Only addresses between `start' and `end' will be unmapped.
1570  *
1571  * The VMA list must be sorted in ascending virtual address order.
1572  *
1573  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1574  * range after unmap_vmas() returns.  So the only responsibility here is to
1575  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1576  * drops the lock and schedules.
1577  */
1578 void unmap_vmas(struct mmu_gather *tlb,
1579 		struct vm_area_struct *vma, unsigned long start_addr,
1580 		unsigned long end_addr)
1581 {
1582 	struct mm_struct *mm = vma->vm_mm;
1583 
1584 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1585 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1586 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1587 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1588 }
1589 
1590 /**
1591  * zap_page_range - remove user pages in a given range
1592  * @vma: vm_area_struct holding the applicable pages
1593  * @start: starting address of pages to zap
1594  * @size: number of bytes to zap
1595  *
1596  * Caller must protect the VMA list
1597  */
1598 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1599 		unsigned long size)
1600 {
1601 	struct mm_struct *mm = vma->vm_mm;
1602 	struct mmu_gather tlb;
1603 	unsigned long end = start + size;
1604 
1605 	lru_add_drain();
1606 	tlb_gather_mmu(&tlb, mm, start, end);
1607 	update_hiwater_rss(mm);
1608 	mmu_notifier_invalidate_range_start(mm, start, end);
1609 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1610 		unmap_single_vma(&tlb, vma, start, end, NULL);
1611 	mmu_notifier_invalidate_range_end(mm, start, end);
1612 	tlb_finish_mmu(&tlb, start, end);
1613 }
1614 
1615 /**
1616  * zap_page_range_single - remove user pages in a given range
1617  * @vma: vm_area_struct holding the applicable pages
1618  * @address: starting address of pages to zap
1619  * @size: number of bytes to zap
1620  * @details: details of shared cache invalidation
1621  *
1622  * The range must fit into one VMA.
1623  */
1624 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1625 		unsigned long size, struct zap_details *details)
1626 {
1627 	struct mm_struct *mm = vma->vm_mm;
1628 	struct mmu_gather tlb;
1629 	unsigned long end = address + size;
1630 
1631 	lru_add_drain();
1632 	tlb_gather_mmu(&tlb, mm, address, end);
1633 	update_hiwater_rss(mm);
1634 	mmu_notifier_invalidate_range_start(mm, address, end);
1635 	unmap_single_vma(&tlb, vma, address, end, details);
1636 	mmu_notifier_invalidate_range_end(mm, address, end);
1637 	tlb_finish_mmu(&tlb, address, end);
1638 }
1639 
1640 /**
1641  * zap_vma_ptes - remove ptes mapping the vma
1642  * @vma: vm_area_struct holding ptes to be zapped
1643  * @address: starting address of pages to zap
1644  * @size: number of bytes to zap
1645  *
1646  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1647  *
1648  * The entire address range must be fully contained within the vma.
1649  *
1650  */
1651 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1652 		unsigned long size)
1653 {
1654 	if (address < vma->vm_start || address + size > vma->vm_end ||
1655 	    		!(vma->vm_flags & VM_PFNMAP))
1656 		return;
1657 
1658 	zap_page_range_single(vma, address, size, NULL);
1659 }
1660 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1661 
1662 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1663 			spinlock_t **ptl)
1664 {
1665 	pgd_t *pgd;
1666 	p4d_t *p4d;
1667 	pud_t *pud;
1668 	pmd_t *pmd;
1669 
1670 	pgd = pgd_offset(mm, addr);
1671 	p4d = p4d_alloc(mm, pgd, addr);
1672 	if (!p4d)
1673 		return NULL;
1674 	pud = pud_alloc(mm, p4d, addr);
1675 	if (!pud)
1676 		return NULL;
1677 	pmd = pmd_alloc(mm, pud, addr);
1678 	if (!pmd)
1679 		return NULL;
1680 
1681 	VM_BUG_ON(pmd_trans_huge(*pmd));
1682 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1683 }
1684 
1685 /*
1686  * This is the old fallback for page remapping.
1687  *
1688  * For historical reasons, it only allows reserved pages. Only
1689  * old drivers should use this, and they needed to mark their
1690  * pages reserved for the old functions anyway.
1691  */
1692 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1693 			struct page *page, pgprot_t prot)
1694 {
1695 	struct mm_struct *mm = vma->vm_mm;
1696 	int retval;
1697 	pte_t *pte;
1698 	spinlock_t *ptl;
1699 
1700 	retval = -EINVAL;
1701 	if (PageAnon(page))
1702 		goto out;
1703 	retval = -ENOMEM;
1704 	flush_dcache_page(page);
1705 	pte = get_locked_pte(mm, addr, &ptl);
1706 	if (!pte)
1707 		goto out;
1708 	retval = -EBUSY;
1709 	if (!pte_none(*pte))
1710 		goto out_unlock;
1711 
1712 	/* Ok, finally just insert the thing.. */
1713 	get_page(page);
1714 	inc_mm_counter_fast(mm, mm_counter_file(page));
1715 	page_add_file_rmap(page, false);
1716 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1717 
1718 	retval = 0;
1719 	pte_unmap_unlock(pte, ptl);
1720 	return retval;
1721 out_unlock:
1722 	pte_unmap_unlock(pte, ptl);
1723 out:
1724 	return retval;
1725 }
1726 
1727 /**
1728  * vm_insert_page - insert single page into user vma
1729  * @vma: user vma to map to
1730  * @addr: target user address of this page
1731  * @page: source kernel page
1732  *
1733  * This allows drivers to insert individual pages they've allocated
1734  * into a user vma.
1735  *
1736  * The page has to be a nice clean _individual_ kernel allocation.
1737  * If you allocate a compound page, you need to have marked it as
1738  * such (__GFP_COMP), or manually just split the page up yourself
1739  * (see split_page()).
1740  *
1741  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1742  * took an arbitrary page protection parameter. This doesn't allow
1743  * that. Your vma protection will have to be set up correctly, which
1744  * means that if you want a shared writable mapping, you'd better
1745  * ask for a shared writable mapping!
1746  *
1747  * The page does not need to be reserved.
1748  *
1749  * Usually this function is called from f_op->mmap() handler
1750  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1751  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1752  * function from other places, for example from page-fault handler.
1753  */
1754 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1755 			struct page *page)
1756 {
1757 	if (addr < vma->vm_start || addr >= vma->vm_end)
1758 		return -EFAULT;
1759 	if (!page_count(page))
1760 		return -EINVAL;
1761 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1762 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1763 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1764 		vma->vm_flags |= VM_MIXEDMAP;
1765 	}
1766 	return insert_page(vma, addr, page, vma->vm_page_prot);
1767 }
1768 EXPORT_SYMBOL(vm_insert_page);
1769 
1770 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1771 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1772 {
1773 	struct mm_struct *mm = vma->vm_mm;
1774 	int retval;
1775 	pte_t *pte, entry;
1776 	spinlock_t *ptl;
1777 
1778 	retval = -ENOMEM;
1779 	pte = get_locked_pte(mm, addr, &ptl);
1780 	if (!pte)
1781 		goto out;
1782 	retval = -EBUSY;
1783 	if (!pte_none(*pte)) {
1784 		if (mkwrite) {
1785 			/*
1786 			 * For read faults on private mappings the PFN passed
1787 			 * in may not match the PFN we have mapped if the
1788 			 * mapped PFN is a writeable COW page.  In the mkwrite
1789 			 * case we are creating a writable PTE for a shared
1790 			 * mapping and we expect the PFNs to match.
1791 			 */
1792 			if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1793 				goto out_unlock;
1794 			entry = *pte;
1795 			goto out_mkwrite;
1796 		} else
1797 			goto out_unlock;
1798 	}
1799 
1800 	/* Ok, finally just insert the thing.. */
1801 	if (pfn_t_devmap(pfn))
1802 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1803 	else
1804 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1805 
1806 out_mkwrite:
1807 	if (mkwrite) {
1808 		entry = pte_mkyoung(entry);
1809 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1810 	}
1811 
1812 	set_pte_at(mm, addr, pte, entry);
1813 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1814 
1815 	retval = 0;
1816 out_unlock:
1817 	pte_unmap_unlock(pte, ptl);
1818 out:
1819 	return retval;
1820 }
1821 
1822 /**
1823  * vm_insert_pfn - insert single pfn into user vma
1824  * @vma: user vma to map to
1825  * @addr: target user address of this page
1826  * @pfn: source kernel pfn
1827  *
1828  * Similar to vm_insert_page, this allows drivers to insert individual pages
1829  * they've allocated into a user vma. Same comments apply.
1830  *
1831  * This function should only be called from a vm_ops->fault handler, and
1832  * in that case the handler should return NULL.
1833  *
1834  * vma cannot be a COW mapping.
1835  *
1836  * As this is called only for pages that do not currently exist, we
1837  * do not need to flush old virtual caches or the TLB.
1838  */
1839 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1840 			unsigned long pfn)
1841 {
1842 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1843 }
1844 EXPORT_SYMBOL(vm_insert_pfn);
1845 
1846 /**
1847  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1848  * @vma: user vma to map to
1849  * @addr: target user address of this page
1850  * @pfn: source kernel pfn
1851  * @pgprot: pgprot flags for the inserted page
1852  *
1853  * This is exactly like vm_insert_pfn, except that it allows drivers to
1854  * to override pgprot on a per-page basis.
1855  *
1856  * This only makes sense for IO mappings, and it makes no sense for
1857  * cow mappings.  In general, using multiple vmas is preferable;
1858  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1859  * impractical.
1860  */
1861 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1862 			unsigned long pfn, pgprot_t pgprot)
1863 {
1864 	int ret;
1865 	/*
1866 	 * Technically, architectures with pte_special can avoid all these
1867 	 * restrictions (same for remap_pfn_range).  However we would like
1868 	 * consistency in testing and feature parity among all, so we should
1869 	 * try to keep these invariants in place for everybody.
1870 	 */
1871 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1872 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1873 						(VM_PFNMAP|VM_MIXEDMAP));
1874 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1875 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1876 
1877 	if (addr < vma->vm_start || addr >= vma->vm_end)
1878 		return -EFAULT;
1879 
1880 	if (!pfn_modify_allowed(pfn, pgprot))
1881 		return -EACCES;
1882 
1883 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1884 
1885 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1886 			false);
1887 
1888 	return ret;
1889 }
1890 EXPORT_SYMBOL(vm_insert_pfn_prot);
1891 
1892 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1893 {
1894 	/* these checks mirror the abort conditions in vm_normal_page */
1895 	if (vma->vm_flags & VM_MIXEDMAP)
1896 		return true;
1897 	if (pfn_t_devmap(pfn))
1898 		return true;
1899 	if (pfn_t_special(pfn))
1900 		return true;
1901 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1902 		return true;
1903 	return false;
1904 }
1905 
1906 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1907 			pfn_t pfn, bool mkwrite)
1908 {
1909 	pgprot_t pgprot = vma->vm_page_prot;
1910 
1911 	BUG_ON(!vm_mixed_ok(vma, pfn));
1912 
1913 	if (addr < vma->vm_start || addr >= vma->vm_end)
1914 		return -EFAULT;
1915 
1916 	track_pfn_insert(vma, &pgprot, pfn);
1917 
1918 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1919 		return -EACCES;
1920 
1921 	/*
1922 	 * If we don't have pte special, then we have to use the pfn_valid()
1923 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1924 	 * refcount the page if pfn_valid is true (hence insert_page rather
1925 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1926 	 * without pte special, it would there be refcounted as a normal page.
1927 	 */
1928 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1929 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1930 		struct page *page;
1931 
1932 		/*
1933 		 * At this point we are committed to insert_page()
1934 		 * regardless of whether the caller specified flags that
1935 		 * result in pfn_t_has_page() == false.
1936 		 */
1937 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1938 		return insert_page(vma, addr, page, pgprot);
1939 	}
1940 	return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1941 }
1942 
1943 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1944 			pfn_t pfn)
1945 {
1946 	return __vm_insert_mixed(vma, addr, pfn, false);
1947 
1948 }
1949 EXPORT_SYMBOL(vm_insert_mixed);
1950 
1951 /*
1952  *  If the insertion of PTE failed because someone else already added a
1953  *  different entry in the mean time, we treat that as success as we assume
1954  *  the same entry was actually inserted.
1955  */
1956 
1957 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1958 		unsigned long addr, pfn_t pfn)
1959 {
1960 	int err;
1961 
1962 	err =  __vm_insert_mixed(vma, addr, pfn, true);
1963 	if (err == -ENOMEM)
1964 		return VM_FAULT_OOM;
1965 	if (err < 0 && err != -EBUSY)
1966 		return VM_FAULT_SIGBUS;
1967 	return VM_FAULT_NOPAGE;
1968 }
1969 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1970 
1971 /*
1972  * maps a range of physical memory into the requested pages. the old
1973  * mappings are removed. any references to nonexistent pages results
1974  * in null mappings (currently treated as "copy-on-access")
1975  */
1976 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1977 			unsigned long addr, unsigned long end,
1978 			unsigned long pfn, pgprot_t prot)
1979 {
1980 	pte_t *pte;
1981 	spinlock_t *ptl;
1982 	int err = 0;
1983 
1984 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1985 	if (!pte)
1986 		return -ENOMEM;
1987 	arch_enter_lazy_mmu_mode();
1988 	do {
1989 		BUG_ON(!pte_none(*pte));
1990 		if (!pfn_modify_allowed(pfn, prot)) {
1991 			err = -EACCES;
1992 			break;
1993 		}
1994 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1995 		pfn++;
1996 	} while (pte++, addr += PAGE_SIZE, addr != end);
1997 	arch_leave_lazy_mmu_mode();
1998 	pte_unmap_unlock(pte - 1, ptl);
1999 	return err;
2000 }
2001 
2002 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2003 			unsigned long addr, unsigned long end,
2004 			unsigned long pfn, pgprot_t prot)
2005 {
2006 	pmd_t *pmd;
2007 	unsigned long next;
2008 	int err;
2009 
2010 	pfn -= addr >> PAGE_SHIFT;
2011 	pmd = pmd_alloc(mm, pud, addr);
2012 	if (!pmd)
2013 		return -ENOMEM;
2014 	VM_BUG_ON(pmd_trans_huge(*pmd));
2015 	do {
2016 		next = pmd_addr_end(addr, end);
2017 		err = remap_pte_range(mm, pmd, addr, next,
2018 				pfn + (addr >> PAGE_SHIFT), prot);
2019 		if (err)
2020 			return err;
2021 	} while (pmd++, addr = next, addr != end);
2022 	return 0;
2023 }
2024 
2025 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2026 			unsigned long addr, unsigned long end,
2027 			unsigned long pfn, pgprot_t prot)
2028 {
2029 	pud_t *pud;
2030 	unsigned long next;
2031 	int err;
2032 
2033 	pfn -= addr >> PAGE_SHIFT;
2034 	pud = pud_alloc(mm, p4d, addr);
2035 	if (!pud)
2036 		return -ENOMEM;
2037 	do {
2038 		next = pud_addr_end(addr, end);
2039 		err = remap_pmd_range(mm, pud, addr, next,
2040 				pfn + (addr >> PAGE_SHIFT), prot);
2041 		if (err)
2042 			return err;
2043 	} while (pud++, addr = next, addr != end);
2044 	return 0;
2045 }
2046 
2047 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2048 			unsigned long addr, unsigned long end,
2049 			unsigned long pfn, pgprot_t prot)
2050 {
2051 	p4d_t *p4d;
2052 	unsigned long next;
2053 	int err;
2054 
2055 	pfn -= addr >> PAGE_SHIFT;
2056 	p4d = p4d_alloc(mm, pgd, addr);
2057 	if (!p4d)
2058 		return -ENOMEM;
2059 	do {
2060 		next = p4d_addr_end(addr, end);
2061 		err = remap_pud_range(mm, p4d, addr, next,
2062 				pfn + (addr >> PAGE_SHIFT), prot);
2063 		if (err)
2064 			return err;
2065 	} while (p4d++, addr = next, addr != end);
2066 	return 0;
2067 }
2068 
2069 /**
2070  * remap_pfn_range - remap kernel memory to userspace
2071  * @vma: user vma to map to
2072  * @addr: target user address to start at
2073  * @pfn: physical address of kernel memory
2074  * @size: size of map area
2075  * @prot: page protection flags for this mapping
2076  *
2077  *  Note: this is only safe if the mm semaphore is held when called.
2078  */
2079 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2080 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2081 {
2082 	pgd_t *pgd;
2083 	unsigned long next;
2084 	unsigned long end = addr + PAGE_ALIGN(size);
2085 	struct mm_struct *mm = vma->vm_mm;
2086 	unsigned long remap_pfn = pfn;
2087 	int err;
2088 
2089 	/*
2090 	 * Physically remapped pages are special. Tell the
2091 	 * rest of the world about it:
2092 	 *   VM_IO tells people not to look at these pages
2093 	 *	(accesses can have side effects).
2094 	 *   VM_PFNMAP tells the core MM that the base pages are just
2095 	 *	raw PFN mappings, and do not have a "struct page" associated
2096 	 *	with them.
2097 	 *   VM_DONTEXPAND
2098 	 *      Disable vma merging and expanding with mremap().
2099 	 *   VM_DONTDUMP
2100 	 *      Omit vma from core dump, even when VM_IO turned off.
2101 	 *
2102 	 * There's a horrible special case to handle copy-on-write
2103 	 * behaviour that some programs depend on. We mark the "original"
2104 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2105 	 * See vm_normal_page() for details.
2106 	 */
2107 	if (is_cow_mapping(vma->vm_flags)) {
2108 		if (addr != vma->vm_start || end != vma->vm_end)
2109 			return -EINVAL;
2110 		vma->vm_pgoff = pfn;
2111 	}
2112 
2113 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2114 	if (err)
2115 		return -EINVAL;
2116 
2117 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2118 
2119 	BUG_ON(addr >= end);
2120 	pfn -= addr >> PAGE_SHIFT;
2121 	pgd = pgd_offset(mm, addr);
2122 	flush_cache_range(vma, addr, end);
2123 	do {
2124 		next = pgd_addr_end(addr, end);
2125 		err = remap_p4d_range(mm, pgd, addr, next,
2126 				pfn + (addr >> PAGE_SHIFT), prot);
2127 		if (err)
2128 			break;
2129 	} while (pgd++, addr = next, addr != end);
2130 
2131 	if (err)
2132 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2133 
2134 	return err;
2135 }
2136 EXPORT_SYMBOL(remap_pfn_range);
2137 
2138 /**
2139  * vm_iomap_memory - remap memory to userspace
2140  * @vma: user vma to map to
2141  * @start: start of area
2142  * @len: size of area
2143  *
2144  * This is a simplified io_remap_pfn_range() for common driver use. The
2145  * driver just needs to give us the physical memory range to be mapped,
2146  * we'll figure out the rest from the vma information.
2147  *
2148  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2149  * whatever write-combining details or similar.
2150  */
2151 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2152 {
2153 	unsigned long vm_len, pfn, pages;
2154 
2155 	/* Check that the physical memory area passed in looks valid */
2156 	if (start + len < start)
2157 		return -EINVAL;
2158 	/*
2159 	 * You *really* shouldn't map things that aren't page-aligned,
2160 	 * but we've historically allowed it because IO memory might
2161 	 * just have smaller alignment.
2162 	 */
2163 	len += start & ~PAGE_MASK;
2164 	pfn = start >> PAGE_SHIFT;
2165 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2166 	if (pfn + pages < pfn)
2167 		return -EINVAL;
2168 
2169 	/* We start the mapping 'vm_pgoff' pages into the area */
2170 	if (vma->vm_pgoff > pages)
2171 		return -EINVAL;
2172 	pfn += vma->vm_pgoff;
2173 	pages -= vma->vm_pgoff;
2174 
2175 	/* Can we fit all of the mapping? */
2176 	vm_len = vma->vm_end - vma->vm_start;
2177 	if (vm_len >> PAGE_SHIFT > pages)
2178 		return -EINVAL;
2179 
2180 	/* Ok, let it rip */
2181 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2182 }
2183 EXPORT_SYMBOL(vm_iomap_memory);
2184 
2185 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2186 				     unsigned long addr, unsigned long end,
2187 				     pte_fn_t fn, void *data)
2188 {
2189 	pte_t *pte;
2190 	int err;
2191 	pgtable_t token;
2192 	spinlock_t *uninitialized_var(ptl);
2193 
2194 	pte = (mm == &init_mm) ?
2195 		pte_alloc_kernel(pmd, addr) :
2196 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2197 	if (!pte)
2198 		return -ENOMEM;
2199 
2200 	BUG_ON(pmd_huge(*pmd));
2201 
2202 	arch_enter_lazy_mmu_mode();
2203 
2204 	token = pmd_pgtable(*pmd);
2205 
2206 	do {
2207 		err = fn(pte++, token, addr, data);
2208 		if (err)
2209 			break;
2210 	} while (addr += PAGE_SIZE, addr != end);
2211 
2212 	arch_leave_lazy_mmu_mode();
2213 
2214 	if (mm != &init_mm)
2215 		pte_unmap_unlock(pte-1, ptl);
2216 	return err;
2217 }
2218 
2219 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2220 				     unsigned long addr, unsigned long end,
2221 				     pte_fn_t fn, void *data)
2222 {
2223 	pmd_t *pmd;
2224 	unsigned long next;
2225 	int err;
2226 
2227 	BUG_ON(pud_huge(*pud));
2228 
2229 	pmd = pmd_alloc(mm, pud, addr);
2230 	if (!pmd)
2231 		return -ENOMEM;
2232 	do {
2233 		next = pmd_addr_end(addr, end);
2234 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2235 		if (err)
2236 			break;
2237 	} while (pmd++, addr = next, addr != end);
2238 	return err;
2239 }
2240 
2241 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2242 				     unsigned long addr, unsigned long end,
2243 				     pte_fn_t fn, void *data)
2244 {
2245 	pud_t *pud;
2246 	unsigned long next;
2247 	int err;
2248 
2249 	pud = pud_alloc(mm, p4d, addr);
2250 	if (!pud)
2251 		return -ENOMEM;
2252 	do {
2253 		next = pud_addr_end(addr, end);
2254 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2255 		if (err)
2256 			break;
2257 	} while (pud++, addr = next, addr != end);
2258 	return err;
2259 }
2260 
2261 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2262 				     unsigned long addr, unsigned long end,
2263 				     pte_fn_t fn, void *data)
2264 {
2265 	p4d_t *p4d;
2266 	unsigned long next;
2267 	int err;
2268 
2269 	p4d = p4d_alloc(mm, pgd, addr);
2270 	if (!p4d)
2271 		return -ENOMEM;
2272 	do {
2273 		next = p4d_addr_end(addr, end);
2274 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2275 		if (err)
2276 			break;
2277 	} while (p4d++, addr = next, addr != end);
2278 	return err;
2279 }
2280 
2281 /*
2282  * Scan a region of virtual memory, filling in page tables as necessary
2283  * and calling a provided function on each leaf page table.
2284  */
2285 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2286 			unsigned long size, pte_fn_t fn, void *data)
2287 {
2288 	pgd_t *pgd;
2289 	unsigned long next;
2290 	unsigned long end = addr + size;
2291 	int err;
2292 
2293 	if (WARN_ON(addr >= end))
2294 		return -EINVAL;
2295 
2296 	pgd = pgd_offset(mm, addr);
2297 	do {
2298 		next = pgd_addr_end(addr, end);
2299 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2300 		if (err)
2301 			break;
2302 	} while (pgd++, addr = next, addr != end);
2303 
2304 	return err;
2305 }
2306 EXPORT_SYMBOL_GPL(apply_to_page_range);
2307 
2308 /*
2309  * handle_pte_fault chooses page fault handler according to an entry which was
2310  * read non-atomically.  Before making any commitment, on those architectures
2311  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2312  * parts, do_swap_page must check under lock before unmapping the pte and
2313  * proceeding (but do_wp_page is only called after already making such a check;
2314  * and do_anonymous_page can safely check later on).
2315  */
2316 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2317 				pte_t *page_table, pte_t orig_pte)
2318 {
2319 	int same = 1;
2320 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2321 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2322 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2323 		spin_lock(ptl);
2324 		same = pte_same(*page_table, orig_pte);
2325 		spin_unlock(ptl);
2326 	}
2327 #endif
2328 	pte_unmap(page_table);
2329 	return same;
2330 }
2331 
2332 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2333 {
2334 	debug_dma_assert_idle(src);
2335 
2336 	/*
2337 	 * If the source page was a PFN mapping, we don't have
2338 	 * a "struct page" for it. We do a best-effort copy by
2339 	 * just copying from the original user address. If that
2340 	 * fails, we just zero-fill it. Live with it.
2341 	 */
2342 	if (unlikely(!src)) {
2343 		void *kaddr = kmap_atomic(dst);
2344 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2345 
2346 		/*
2347 		 * This really shouldn't fail, because the page is there
2348 		 * in the page tables. But it might just be unreadable,
2349 		 * in which case we just give up and fill the result with
2350 		 * zeroes.
2351 		 */
2352 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2353 			clear_page(kaddr);
2354 		kunmap_atomic(kaddr);
2355 		flush_dcache_page(dst);
2356 	} else
2357 		copy_user_highpage(dst, src, va, vma);
2358 }
2359 
2360 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2361 {
2362 	struct file *vm_file = vma->vm_file;
2363 
2364 	if (vm_file)
2365 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2366 
2367 	/*
2368 	 * Special mappings (e.g. VDSO) do not have any file so fake
2369 	 * a default GFP_KERNEL for them.
2370 	 */
2371 	return GFP_KERNEL;
2372 }
2373 
2374 /*
2375  * Notify the address space that the page is about to become writable so that
2376  * it can prohibit this or wait for the page to get into an appropriate state.
2377  *
2378  * We do this without the lock held, so that it can sleep if it needs to.
2379  */
2380 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2381 {
2382 	vm_fault_t ret;
2383 	struct page *page = vmf->page;
2384 	unsigned int old_flags = vmf->flags;
2385 
2386 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2387 
2388 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2389 	/* Restore original flags so that caller is not surprised */
2390 	vmf->flags = old_flags;
2391 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2392 		return ret;
2393 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2394 		lock_page(page);
2395 		if (!page->mapping) {
2396 			unlock_page(page);
2397 			return 0; /* retry */
2398 		}
2399 		ret |= VM_FAULT_LOCKED;
2400 	} else
2401 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2402 	return ret;
2403 }
2404 
2405 /*
2406  * Handle dirtying of a page in shared file mapping on a write fault.
2407  *
2408  * The function expects the page to be locked and unlocks it.
2409  */
2410 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2411 				    struct page *page)
2412 {
2413 	struct address_space *mapping;
2414 	bool dirtied;
2415 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2416 
2417 	dirtied = set_page_dirty(page);
2418 	VM_BUG_ON_PAGE(PageAnon(page), page);
2419 	/*
2420 	 * Take a local copy of the address_space - page.mapping may be zeroed
2421 	 * by truncate after unlock_page().   The address_space itself remains
2422 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2423 	 * release semantics to prevent the compiler from undoing this copying.
2424 	 */
2425 	mapping = page_rmapping(page);
2426 	unlock_page(page);
2427 
2428 	if ((dirtied || page_mkwrite) && mapping) {
2429 		/*
2430 		 * Some device drivers do not set page.mapping
2431 		 * but still dirty their pages
2432 		 */
2433 		balance_dirty_pages_ratelimited(mapping);
2434 	}
2435 
2436 	if (!page_mkwrite)
2437 		file_update_time(vma->vm_file);
2438 }
2439 
2440 /*
2441  * Handle write page faults for pages that can be reused in the current vma
2442  *
2443  * This can happen either due to the mapping being with the VM_SHARED flag,
2444  * or due to us being the last reference standing to the page. In either
2445  * case, all we need to do here is to mark the page as writable and update
2446  * any related book-keeping.
2447  */
2448 static inline void wp_page_reuse(struct vm_fault *vmf)
2449 	__releases(vmf->ptl)
2450 {
2451 	struct vm_area_struct *vma = vmf->vma;
2452 	struct page *page = vmf->page;
2453 	pte_t entry;
2454 	/*
2455 	 * Clear the pages cpupid information as the existing
2456 	 * information potentially belongs to a now completely
2457 	 * unrelated process.
2458 	 */
2459 	if (page)
2460 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2461 
2462 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2463 	entry = pte_mkyoung(vmf->orig_pte);
2464 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2465 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2466 		update_mmu_cache(vma, vmf->address, vmf->pte);
2467 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2468 }
2469 
2470 /*
2471  * Handle the case of a page which we actually need to copy to a new page.
2472  *
2473  * Called with mmap_sem locked and the old page referenced, but
2474  * without the ptl held.
2475  *
2476  * High level logic flow:
2477  *
2478  * - Allocate a page, copy the content of the old page to the new one.
2479  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2480  * - Take the PTL. If the pte changed, bail out and release the allocated page
2481  * - If the pte is still the way we remember it, update the page table and all
2482  *   relevant references. This includes dropping the reference the page-table
2483  *   held to the old page, as well as updating the rmap.
2484  * - In any case, unlock the PTL and drop the reference we took to the old page.
2485  */
2486 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2487 {
2488 	struct vm_area_struct *vma = vmf->vma;
2489 	struct mm_struct *mm = vma->vm_mm;
2490 	struct page *old_page = vmf->page;
2491 	struct page *new_page = NULL;
2492 	pte_t entry;
2493 	int page_copied = 0;
2494 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2495 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2496 	struct mem_cgroup *memcg;
2497 
2498 	if (unlikely(anon_vma_prepare(vma)))
2499 		goto oom;
2500 
2501 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2502 		new_page = alloc_zeroed_user_highpage_movable(vma,
2503 							      vmf->address);
2504 		if (!new_page)
2505 			goto oom;
2506 	} else {
2507 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2508 				vmf->address);
2509 		if (!new_page)
2510 			goto oom;
2511 		cow_user_page(new_page, old_page, vmf->address, vma);
2512 	}
2513 
2514 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2515 		goto oom_free_new;
2516 
2517 	__SetPageUptodate(new_page);
2518 
2519 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2520 
2521 	/*
2522 	 * Re-check the pte - we dropped the lock
2523 	 */
2524 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2525 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2526 		if (old_page) {
2527 			if (!PageAnon(old_page)) {
2528 				dec_mm_counter_fast(mm,
2529 						mm_counter_file(old_page));
2530 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2531 			}
2532 		} else {
2533 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2534 		}
2535 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2536 		entry = mk_pte(new_page, vma->vm_page_prot);
2537 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2538 		/*
2539 		 * Clear the pte entry and flush it first, before updating the
2540 		 * pte with the new entry. This will avoid a race condition
2541 		 * seen in the presence of one thread doing SMC and another
2542 		 * thread doing COW.
2543 		 */
2544 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2545 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2546 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2547 		lru_cache_add_active_or_unevictable(new_page, vma);
2548 		/*
2549 		 * We call the notify macro here because, when using secondary
2550 		 * mmu page tables (such as kvm shadow page tables), we want the
2551 		 * new page to be mapped directly into the secondary page table.
2552 		 */
2553 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2554 		update_mmu_cache(vma, vmf->address, vmf->pte);
2555 		if (old_page) {
2556 			/*
2557 			 * Only after switching the pte to the new page may
2558 			 * we remove the mapcount here. Otherwise another
2559 			 * process may come and find the rmap count decremented
2560 			 * before the pte is switched to the new page, and
2561 			 * "reuse" the old page writing into it while our pte
2562 			 * here still points into it and can be read by other
2563 			 * threads.
2564 			 *
2565 			 * The critical issue is to order this
2566 			 * page_remove_rmap with the ptp_clear_flush above.
2567 			 * Those stores are ordered by (if nothing else,)
2568 			 * the barrier present in the atomic_add_negative
2569 			 * in page_remove_rmap.
2570 			 *
2571 			 * Then the TLB flush in ptep_clear_flush ensures that
2572 			 * no process can access the old page before the
2573 			 * decremented mapcount is visible. And the old page
2574 			 * cannot be reused until after the decremented
2575 			 * mapcount is visible. So transitively, TLBs to
2576 			 * old page will be flushed before it can be reused.
2577 			 */
2578 			page_remove_rmap(old_page, false);
2579 		}
2580 
2581 		/* Free the old page.. */
2582 		new_page = old_page;
2583 		page_copied = 1;
2584 	} else {
2585 		mem_cgroup_cancel_charge(new_page, memcg, false);
2586 	}
2587 
2588 	if (new_page)
2589 		put_page(new_page);
2590 
2591 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2592 	/*
2593 	 * No need to double call mmu_notifier->invalidate_range() callback as
2594 	 * the above ptep_clear_flush_notify() did already call it.
2595 	 */
2596 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2597 	if (old_page) {
2598 		/*
2599 		 * Don't let another task, with possibly unlocked vma,
2600 		 * keep the mlocked page.
2601 		 */
2602 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2603 			lock_page(old_page);	/* LRU manipulation */
2604 			if (PageMlocked(old_page))
2605 				munlock_vma_page(old_page);
2606 			unlock_page(old_page);
2607 		}
2608 		put_page(old_page);
2609 	}
2610 	return page_copied ? VM_FAULT_WRITE : 0;
2611 oom_free_new:
2612 	put_page(new_page);
2613 oom:
2614 	if (old_page)
2615 		put_page(old_page);
2616 	return VM_FAULT_OOM;
2617 }
2618 
2619 /**
2620  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2621  *			  writeable once the page is prepared
2622  *
2623  * @vmf: structure describing the fault
2624  *
2625  * This function handles all that is needed to finish a write page fault in a
2626  * shared mapping due to PTE being read-only once the mapped page is prepared.
2627  * It handles locking of PTE and modifying it. The function returns
2628  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2629  * lock.
2630  *
2631  * The function expects the page to be locked or other protection against
2632  * concurrent faults / writeback (such as DAX radix tree locks).
2633  */
2634 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2635 {
2636 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2637 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2638 				       &vmf->ptl);
2639 	/*
2640 	 * We might have raced with another page fault while we released the
2641 	 * pte_offset_map_lock.
2642 	 */
2643 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2644 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2645 		return VM_FAULT_NOPAGE;
2646 	}
2647 	wp_page_reuse(vmf);
2648 	return 0;
2649 }
2650 
2651 /*
2652  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2653  * mapping
2654  */
2655 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2656 {
2657 	struct vm_area_struct *vma = vmf->vma;
2658 
2659 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2660 		vm_fault_t ret;
2661 
2662 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2663 		vmf->flags |= FAULT_FLAG_MKWRITE;
2664 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2665 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2666 			return ret;
2667 		return finish_mkwrite_fault(vmf);
2668 	}
2669 	wp_page_reuse(vmf);
2670 	return VM_FAULT_WRITE;
2671 }
2672 
2673 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2674 	__releases(vmf->ptl)
2675 {
2676 	struct vm_area_struct *vma = vmf->vma;
2677 
2678 	get_page(vmf->page);
2679 
2680 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2681 		vm_fault_t tmp;
2682 
2683 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2684 		tmp = do_page_mkwrite(vmf);
2685 		if (unlikely(!tmp || (tmp &
2686 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2687 			put_page(vmf->page);
2688 			return tmp;
2689 		}
2690 		tmp = finish_mkwrite_fault(vmf);
2691 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2692 			unlock_page(vmf->page);
2693 			put_page(vmf->page);
2694 			return tmp;
2695 		}
2696 	} else {
2697 		wp_page_reuse(vmf);
2698 		lock_page(vmf->page);
2699 	}
2700 	fault_dirty_shared_page(vma, vmf->page);
2701 	put_page(vmf->page);
2702 
2703 	return VM_FAULT_WRITE;
2704 }
2705 
2706 /*
2707  * This routine handles present pages, when users try to write
2708  * to a shared page. It is done by copying the page to a new address
2709  * and decrementing the shared-page counter for the old page.
2710  *
2711  * Note that this routine assumes that the protection checks have been
2712  * done by the caller (the low-level page fault routine in most cases).
2713  * Thus we can safely just mark it writable once we've done any necessary
2714  * COW.
2715  *
2716  * We also mark the page dirty at this point even though the page will
2717  * change only once the write actually happens. This avoids a few races,
2718  * and potentially makes it more efficient.
2719  *
2720  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2721  * but allow concurrent faults), with pte both mapped and locked.
2722  * We return with mmap_sem still held, but pte unmapped and unlocked.
2723  */
2724 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2725 	__releases(vmf->ptl)
2726 {
2727 	struct vm_area_struct *vma = vmf->vma;
2728 
2729 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2730 	if (!vmf->page) {
2731 		/*
2732 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2733 		 * VM_PFNMAP VMA.
2734 		 *
2735 		 * We should not cow pages in a shared writeable mapping.
2736 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2737 		 */
2738 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2739 				     (VM_WRITE|VM_SHARED))
2740 			return wp_pfn_shared(vmf);
2741 
2742 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2743 		return wp_page_copy(vmf);
2744 	}
2745 
2746 	/*
2747 	 * Take out anonymous pages first, anonymous shared vmas are
2748 	 * not dirty accountable.
2749 	 */
2750 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2751 		int total_map_swapcount;
2752 		if (!trylock_page(vmf->page)) {
2753 			get_page(vmf->page);
2754 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2755 			lock_page(vmf->page);
2756 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2757 					vmf->address, &vmf->ptl);
2758 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2759 				unlock_page(vmf->page);
2760 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2761 				put_page(vmf->page);
2762 				return 0;
2763 			}
2764 			put_page(vmf->page);
2765 		}
2766 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2767 			if (total_map_swapcount == 1) {
2768 				/*
2769 				 * The page is all ours. Move it to
2770 				 * our anon_vma so the rmap code will
2771 				 * not search our parent or siblings.
2772 				 * Protected against the rmap code by
2773 				 * the page lock.
2774 				 */
2775 				page_move_anon_rmap(vmf->page, vma);
2776 			}
2777 			unlock_page(vmf->page);
2778 			wp_page_reuse(vmf);
2779 			return VM_FAULT_WRITE;
2780 		}
2781 		unlock_page(vmf->page);
2782 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2783 					(VM_WRITE|VM_SHARED))) {
2784 		return wp_page_shared(vmf);
2785 	}
2786 
2787 	/*
2788 	 * Ok, we need to copy. Oh, well..
2789 	 */
2790 	get_page(vmf->page);
2791 
2792 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2793 	return wp_page_copy(vmf);
2794 }
2795 
2796 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2797 		unsigned long start_addr, unsigned long end_addr,
2798 		struct zap_details *details)
2799 {
2800 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2801 }
2802 
2803 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2804 					    struct zap_details *details)
2805 {
2806 	struct vm_area_struct *vma;
2807 	pgoff_t vba, vea, zba, zea;
2808 
2809 	vma_interval_tree_foreach(vma, root,
2810 			details->first_index, details->last_index) {
2811 
2812 		vba = vma->vm_pgoff;
2813 		vea = vba + vma_pages(vma) - 1;
2814 		zba = details->first_index;
2815 		if (zba < vba)
2816 			zba = vba;
2817 		zea = details->last_index;
2818 		if (zea > vea)
2819 			zea = vea;
2820 
2821 		unmap_mapping_range_vma(vma,
2822 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2823 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2824 				details);
2825 	}
2826 }
2827 
2828 /**
2829  * unmap_mapping_pages() - Unmap pages from processes.
2830  * @mapping: The address space containing pages to be unmapped.
2831  * @start: Index of first page to be unmapped.
2832  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2833  * @even_cows: Whether to unmap even private COWed pages.
2834  *
2835  * Unmap the pages in this address space from any userspace process which
2836  * has them mmaped.  Generally, you want to remove COWed pages as well when
2837  * a file is being truncated, but not when invalidating pages from the page
2838  * cache.
2839  */
2840 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2841 		pgoff_t nr, bool even_cows)
2842 {
2843 	struct zap_details details = { };
2844 
2845 	details.check_mapping = even_cows ? NULL : mapping;
2846 	details.first_index = start;
2847 	details.last_index = start + nr - 1;
2848 	if (details.last_index < details.first_index)
2849 		details.last_index = ULONG_MAX;
2850 
2851 	i_mmap_lock_write(mapping);
2852 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2853 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2854 	i_mmap_unlock_write(mapping);
2855 }
2856 
2857 /**
2858  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2859  * address_space corresponding to the specified byte range in the underlying
2860  * file.
2861  *
2862  * @mapping: the address space containing mmaps to be unmapped.
2863  * @holebegin: byte in first page to unmap, relative to the start of
2864  * the underlying file.  This will be rounded down to a PAGE_SIZE
2865  * boundary.  Note that this is different from truncate_pagecache(), which
2866  * must keep the partial page.  In contrast, we must get rid of
2867  * partial pages.
2868  * @holelen: size of prospective hole in bytes.  This will be rounded
2869  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2870  * end of the file.
2871  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2872  * but 0 when invalidating pagecache, don't throw away private data.
2873  */
2874 void unmap_mapping_range(struct address_space *mapping,
2875 		loff_t const holebegin, loff_t const holelen, int even_cows)
2876 {
2877 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2878 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2879 
2880 	/* Check for overflow. */
2881 	if (sizeof(holelen) > sizeof(hlen)) {
2882 		long long holeend =
2883 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2884 		if (holeend & ~(long long)ULONG_MAX)
2885 			hlen = ULONG_MAX - hba + 1;
2886 	}
2887 
2888 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2889 }
2890 EXPORT_SYMBOL(unmap_mapping_range);
2891 
2892 /*
2893  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2894  * but allow concurrent faults), and pte mapped but not yet locked.
2895  * We return with pte unmapped and unlocked.
2896  *
2897  * We return with the mmap_sem locked or unlocked in the same cases
2898  * as does filemap_fault().
2899  */
2900 vm_fault_t do_swap_page(struct vm_fault *vmf)
2901 {
2902 	struct vm_area_struct *vma = vmf->vma;
2903 	struct page *page = NULL, *swapcache;
2904 	struct mem_cgroup *memcg;
2905 	swp_entry_t entry;
2906 	pte_t pte;
2907 	int locked;
2908 	int exclusive = 0;
2909 	vm_fault_t ret = 0;
2910 
2911 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2912 		goto out;
2913 
2914 	entry = pte_to_swp_entry(vmf->orig_pte);
2915 	if (unlikely(non_swap_entry(entry))) {
2916 		if (is_migration_entry(entry)) {
2917 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2918 					     vmf->address);
2919 		} else if (is_device_private_entry(entry)) {
2920 			/*
2921 			 * For un-addressable device memory we call the pgmap
2922 			 * fault handler callback. The callback must migrate
2923 			 * the page back to some CPU accessible page.
2924 			 */
2925 			ret = device_private_entry_fault(vma, vmf->address, entry,
2926 						 vmf->flags, vmf->pmd);
2927 		} else if (is_hwpoison_entry(entry)) {
2928 			ret = VM_FAULT_HWPOISON;
2929 		} else {
2930 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2931 			ret = VM_FAULT_SIGBUS;
2932 		}
2933 		goto out;
2934 	}
2935 
2936 
2937 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2938 	page = lookup_swap_cache(entry, vma, vmf->address);
2939 	swapcache = page;
2940 
2941 	if (!page) {
2942 		struct swap_info_struct *si = swp_swap_info(entry);
2943 
2944 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2945 				__swap_count(si, entry) == 1) {
2946 			/* skip swapcache */
2947 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2948 							vmf->address);
2949 			if (page) {
2950 				__SetPageLocked(page);
2951 				__SetPageSwapBacked(page);
2952 				set_page_private(page, entry.val);
2953 				lru_cache_add_anon(page);
2954 				swap_readpage(page, true);
2955 			}
2956 		} else {
2957 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2958 						vmf);
2959 			swapcache = page;
2960 		}
2961 
2962 		if (!page) {
2963 			/*
2964 			 * Back out if somebody else faulted in this pte
2965 			 * while we released the pte lock.
2966 			 */
2967 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2968 					vmf->address, &vmf->ptl);
2969 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2970 				ret = VM_FAULT_OOM;
2971 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2972 			goto unlock;
2973 		}
2974 
2975 		/* Had to read the page from swap area: Major fault */
2976 		ret = VM_FAULT_MAJOR;
2977 		count_vm_event(PGMAJFAULT);
2978 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2979 	} else if (PageHWPoison(page)) {
2980 		/*
2981 		 * hwpoisoned dirty swapcache pages are kept for killing
2982 		 * owner processes (which may be unknown at hwpoison time)
2983 		 */
2984 		ret = VM_FAULT_HWPOISON;
2985 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2986 		goto out_release;
2987 	}
2988 
2989 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2990 
2991 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2992 	if (!locked) {
2993 		ret |= VM_FAULT_RETRY;
2994 		goto out_release;
2995 	}
2996 
2997 	/*
2998 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2999 	 * release the swapcache from under us.  The page pin, and pte_same
3000 	 * test below, are not enough to exclude that.  Even if it is still
3001 	 * swapcache, we need to check that the page's swap has not changed.
3002 	 */
3003 	if (unlikely((!PageSwapCache(page) ||
3004 			page_private(page) != entry.val)) && swapcache)
3005 		goto out_page;
3006 
3007 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3008 	if (unlikely(!page)) {
3009 		ret = VM_FAULT_OOM;
3010 		page = swapcache;
3011 		goto out_page;
3012 	}
3013 
3014 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3015 					&memcg, false)) {
3016 		ret = VM_FAULT_OOM;
3017 		goto out_page;
3018 	}
3019 
3020 	/*
3021 	 * Back out if somebody else already faulted in this pte.
3022 	 */
3023 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3024 			&vmf->ptl);
3025 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3026 		goto out_nomap;
3027 
3028 	if (unlikely(!PageUptodate(page))) {
3029 		ret = VM_FAULT_SIGBUS;
3030 		goto out_nomap;
3031 	}
3032 
3033 	/*
3034 	 * The page isn't present yet, go ahead with the fault.
3035 	 *
3036 	 * Be careful about the sequence of operations here.
3037 	 * To get its accounting right, reuse_swap_page() must be called
3038 	 * while the page is counted on swap but not yet in mapcount i.e.
3039 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3040 	 * must be called after the swap_free(), or it will never succeed.
3041 	 */
3042 
3043 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3044 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3045 	pte = mk_pte(page, vma->vm_page_prot);
3046 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3047 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3048 		vmf->flags &= ~FAULT_FLAG_WRITE;
3049 		ret |= VM_FAULT_WRITE;
3050 		exclusive = RMAP_EXCLUSIVE;
3051 	}
3052 	flush_icache_page(vma, page);
3053 	if (pte_swp_soft_dirty(vmf->orig_pte))
3054 		pte = pte_mksoft_dirty(pte);
3055 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3056 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3057 	vmf->orig_pte = pte;
3058 
3059 	/* ksm created a completely new copy */
3060 	if (unlikely(page != swapcache && swapcache)) {
3061 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3062 		mem_cgroup_commit_charge(page, memcg, false, false);
3063 		lru_cache_add_active_or_unevictable(page, vma);
3064 	} else {
3065 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3066 		mem_cgroup_commit_charge(page, memcg, true, false);
3067 		activate_page(page);
3068 	}
3069 
3070 	swap_free(entry);
3071 	if (mem_cgroup_swap_full(page) ||
3072 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3073 		try_to_free_swap(page);
3074 	unlock_page(page);
3075 	if (page != swapcache && swapcache) {
3076 		/*
3077 		 * Hold the lock to avoid the swap entry to be reused
3078 		 * until we take the PT lock for the pte_same() check
3079 		 * (to avoid false positives from pte_same). For
3080 		 * further safety release the lock after the swap_free
3081 		 * so that the swap count won't change under a
3082 		 * parallel locked swapcache.
3083 		 */
3084 		unlock_page(swapcache);
3085 		put_page(swapcache);
3086 	}
3087 
3088 	if (vmf->flags & FAULT_FLAG_WRITE) {
3089 		ret |= do_wp_page(vmf);
3090 		if (ret & VM_FAULT_ERROR)
3091 			ret &= VM_FAULT_ERROR;
3092 		goto out;
3093 	}
3094 
3095 	/* No need to invalidate - it was non-present before */
3096 	update_mmu_cache(vma, vmf->address, vmf->pte);
3097 unlock:
3098 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3099 out:
3100 	return ret;
3101 out_nomap:
3102 	mem_cgroup_cancel_charge(page, memcg, false);
3103 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3104 out_page:
3105 	unlock_page(page);
3106 out_release:
3107 	put_page(page);
3108 	if (page != swapcache && swapcache) {
3109 		unlock_page(swapcache);
3110 		put_page(swapcache);
3111 	}
3112 	return ret;
3113 }
3114 
3115 /*
3116  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3117  * but allow concurrent faults), and pte mapped but not yet locked.
3118  * We return with mmap_sem still held, but pte unmapped and unlocked.
3119  */
3120 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3121 {
3122 	struct vm_area_struct *vma = vmf->vma;
3123 	struct mem_cgroup *memcg;
3124 	struct page *page;
3125 	vm_fault_t ret = 0;
3126 	pte_t entry;
3127 
3128 	/* File mapping without ->vm_ops ? */
3129 	if (vma->vm_flags & VM_SHARED)
3130 		return VM_FAULT_SIGBUS;
3131 
3132 	/*
3133 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3134 	 * pte_offset_map() on pmds where a huge pmd might be created
3135 	 * from a different thread.
3136 	 *
3137 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3138 	 * parallel threads are excluded by other means.
3139 	 *
3140 	 * Here we only have down_read(mmap_sem).
3141 	 */
3142 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3143 		return VM_FAULT_OOM;
3144 
3145 	/* See the comment in pte_alloc_one_map() */
3146 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3147 		return 0;
3148 
3149 	/* Use the zero-page for reads */
3150 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3151 			!mm_forbids_zeropage(vma->vm_mm)) {
3152 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3153 						vma->vm_page_prot));
3154 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3155 				vmf->address, &vmf->ptl);
3156 		if (!pte_none(*vmf->pte))
3157 			goto unlock;
3158 		ret = check_stable_address_space(vma->vm_mm);
3159 		if (ret)
3160 			goto unlock;
3161 		/* Deliver the page fault to userland, check inside PT lock */
3162 		if (userfaultfd_missing(vma)) {
3163 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3164 			return handle_userfault(vmf, VM_UFFD_MISSING);
3165 		}
3166 		goto setpte;
3167 	}
3168 
3169 	/* Allocate our own private page. */
3170 	if (unlikely(anon_vma_prepare(vma)))
3171 		goto oom;
3172 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3173 	if (!page)
3174 		goto oom;
3175 
3176 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3177 					false))
3178 		goto oom_free_page;
3179 
3180 	/*
3181 	 * The memory barrier inside __SetPageUptodate makes sure that
3182 	 * preceeding stores to the page contents become visible before
3183 	 * the set_pte_at() write.
3184 	 */
3185 	__SetPageUptodate(page);
3186 
3187 	entry = mk_pte(page, vma->vm_page_prot);
3188 	if (vma->vm_flags & VM_WRITE)
3189 		entry = pte_mkwrite(pte_mkdirty(entry));
3190 
3191 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3192 			&vmf->ptl);
3193 	if (!pte_none(*vmf->pte))
3194 		goto release;
3195 
3196 	ret = check_stable_address_space(vma->vm_mm);
3197 	if (ret)
3198 		goto release;
3199 
3200 	/* Deliver the page fault to userland, check inside PT lock */
3201 	if (userfaultfd_missing(vma)) {
3202 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3203 		mem_cgroup_cancel_charge(page, memcg, false);
3204 		put_page(page);
3205 		return handle_userfault(vmf, VM_UFFD_MISSING);
3206 	}
3207 
3208 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3209 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3210 	mem_cgroup_commit_charge(page, memcg, false, false);
3211 	lru_cache_add_active_or_unevictable(page, vma);
3212 setpte:
3213 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3214 
3215 	/* No need to invalidate - it was non-present before */
3216 	update_mmu_cache(vma, vmf->address, vmf->pte);
3217 unlock:
3218 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3219 	return ret;
3220 release:
3221 	mem_cgroup_cancel_charge(page, memcg, false);
3222 	put_page(page);
3223 	goto unlock;
3224 oom_free_page:
3225 	put_page(page);
3226 oom:
3227 	return VM_FAULT_OOM;
3228 }
3229 
3230 /*
3231  * The mmap_sem must have been held on entry, and may have been
3232  * released depending on flags and vma->vm_ops->fault() return value.
3233  * See filemap_fault() and __lock_page_retry().
3234  */
3235 static vm_fault_t __do_fault(struct vm_fault *vmf)
3236 {
3237 	struct vm_area_struct *vma = vmf->vma;
3238 	vm_fault_t ret;
3239 
3240 	ret = vma->vm_ops->fault(vmf);
3241 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3242 			    VM_FAULT_DONE_COW)))
3243 		return ret;
3244 
3245 	if (unlikely(PageHWPoison(vmf->page))) {
3246 		if (ret & VM_FAULT_LOCKED)
3247 			unlock_page(vmf->page);
3248 		put_page(vmf->page);
3249 		vmf->page = NULL;
3250 		return VM_FAULT_HWPOISON;
3251 	}
3252 
3253 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3254 		lock_page(vmf->page);
3255 	else
3256 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3257 
3258 	return ret;
3259 }
3260 
3261 /*
3262  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3263  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3264  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3265  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3266  */
3267 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3268 {
3269 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3270 }
3271 
3272 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3273 {
3274 	struct vm_area_struct *vma = vmf->vma;
3275 
3276 	if (!pmd_none(*vmf->pmd))
3277 		goto map_pte;
3278 	if (vmf->prealloc_pte) {
3279 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3280 		if (unlikely(!pmd_none(*vmf->pmd))) {
3281 			spin_unlock(vmf->ptl);
3282 			goto map_pte;
3283 		}
3284 
3285 		mm_inc_nr_ptes(vma->vm_mm);
3286 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3287 		spin_unlock(vmf->ptl);
3288 		vmf->prealloc_pte = NULL;
3289 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3290 		return VM_FAULT_OOM;
3291 	}
3292 map_pte:
3293 	/*
3294 	 * If a huge pmd materialized under us just retry later.  Use
3295 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3296 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3297 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3298 	 * running immediately after a huge pmd fault in a different thread of
3299 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3300 	 * All we have to ensure is that it is a regular pmd that we can walk
3301 	 * with pte_offset_map() and we can do that through an atomic read in
3302 	 * C, which is what pmd_trans_unstable() provides.
3303 	 */
3304 	if (pmd_devmap_trans_unstable(vmf->pmd))
3305 		return VM_FAULT_NOPAGE;
3306 
3307 	/*
3308 	 * At this point we know that our vmf->pmd points to a page of ptes
3309 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3310 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3311 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3312 	 * be valid and we will re-check to make sure the vmf->pte isn't
3313 	 * pte_none() under vmf->ptl protection when we return to
3314 	 * alloc_set_pte().
3315 	 */
3316 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3317 			&vmf->ptl);
3318 	return 0;
3319 }
3320 
3321 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3322 
3323 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3324 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3325 		unsigned long haddr)
3326 {
3327 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3328 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3329 		return false;
3330 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3331 		return false;
3332 	return true;
3333 }
3334 
3335 static void deposit_prealloc_pte(struct vm_fault *vmf)
3336 {
3337 	struct vm_area_struct *vma = vmf->vma;
3338 
3339 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3340 	/*
3341 	 * We are going to consume the prealloc table,
3342 	 * count that as nr_ptes.
3343 	 */
3344 	mm_inc_nr_ptes(vma->vm_mm);
3345 	vmf->prealloc_pte = NULL;
3346 }
3347 
3348 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3349 {
3350 	struct vm_area_struct *vma = vmf->vma;
3351 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3352 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3353 	pmd_t entry;
3354 	int i;
3355 	vm_fault_t ret;
3356 
3357 	if (!transhuge_vma_suitable(vma, haddr))
3358 		return VM_FAULT_FALLBACK;
3359 
3360 	ret = VM_FAULT_FALLBACK;
3361 	page = compound_head(page);
3362 
3363 	/*
3364 	 * Archs like ppc64 need additonal space to store information
3365 	 * related to pte entry. Use the preallocated table for that.
3366 	 */
3367 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3368 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3369 		if (!vmf->prealloc_pte)
3370 			return VM_FAULT_OOM;
3371 		smp_wmb(); /* See comment in __pte_alloc() */
3372 	}
3373 
3374 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3375 	if (unlikely(!pmd_none(*vmf->pmd)))
3376 		goto out;
3377 
3378 	for (i = 0; i < HPAGE_PMD_NR; i++)
3379 		flush_icache_page(vma, page + i);
3380 
3381 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3382 	if (write)
3383 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3384 
3385 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3386 	page_add_file_rmap(page, true);
3387 	/*
3388 	 * deposit and withdraw with pmd lock held
3389 	 */
3390 	if (arch_needs_pgtable_deposit())
3391 		deposit_prealloc_pte(vmf);
3392 
3393 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3394 
3395 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3396 
3397 	/* fault is handled */
3398 	ret = 0;
3399 	count_vm_event(THP_FILE_MAPPED);
3400 out:
3401 	spin_unlock(vmf->ptl);
3402 	return ret;
3403 }
3404 #else
3405 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3406 {
3407 	BUILD_BUG();
3408 	return 0;
3409 }
3410 #endif
3411 
3412 /**
3413  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3414  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3415  *
3416  * @vmf: fault environment
3417  * @memcg: memcg to charge page (only for private mappings)
3418  * @page: page to map
3419  *
3420  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3421  * return.
3422  *
3423  * Target users are page handler itself and implementations of
3424  * vm_ops->map_pages.
3425  */
3426 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3427 		struct page *page)
3428 {
3429 	struct vm_area_struct *vma = vmf->vma;
3430 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3431 	pte_t entry;
3432 	vm_fault_t ret;
3433 
3434 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3435 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3436 		/* THP on COW? */
3437 		VM_BUG_ON_PAGE(memcg, page);
3438 
3439 		ret = do_set_pmd(vmf, page);
3440 		if (ret != VM_FAULT_FALLBACK)
3441 			return ret;
3442 	}
3443 
3444 	if (!vmf->pte) {
3445 		ret = pte_alloc_one_map(vmf);
3446 		if (ret)
3447 			return ret;
3448 	}
3449 
3450 	/* Re-check under ptl */
3451 	if (unlikely(!pte_none(*vmf->pte)))
3452 		return VM_FAULT_NOPAGE;
3453 
3454 	flush_icache_page(vma, page);
3455 	entry = mk_pte(page, vma->vm_page_prot);
3456 	if (write)
3457 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3458 	/* copy-on-write page */
3459 	if (write && !(vma->vm_flags & VM_SHARED)) {
3460 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3461 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3462 		mem_cgroup_commit_charge(page, memcg, false, false);
3463 		lru_cache_add_active_or_unevictable(page, vma);
3464 	} else {
3465 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3466 		page_add_file_rmap(page, false);
3467 	}
3468 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3469 
3470 	/* no need to invalidate: a not-present page won't be cached */
3471 	update_mmu_cache(vma, vmf->address, vmf->pte);
3472 
3473 	return 0;
3474 }
3475 
3476 
3477 /**
3478  * finish_fault - finish page fault once we have prepared the page to fault
3479  *
3480  * @vmf: structure describing the fault
3481  *
3482  * This function handles all that is needed to finish a page fault once the
3483  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3484  * given page, adds reverse page mapping, handles memcg charges and LRU
3485  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3486  * error.
3487  *
3488  * The function expects the page to be locked and on success it consumes a
3489  * reference of a page being mapped (for the PTE which maps it).
3490  */
3491 vm_fault_t finish_fault(struct vm_fault *vmf)
3492 {
3493 	struct page *page;
3494 	vm_fault_t ret = 0;
3495 
3496 	/* Did we COW the page? */
3497 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3498 	    !(vmf->vma->vm_flags & VM_SHARED))
3499 		page = vmf->cow_page;
3500 	else
3501 		page = vmf->page;
3502 
3503 	/*
3504 	 * check even for read faults because we might have lost our CoWed
3505 	 * page
3506 	 */
3507 	if (!(vmf->vma->vm_flags & VM_SHARED))
3508 		ret = check_stable_address_space(vmf->vma->vm_mm);
3509 	if (!ret)
3510 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3511 	if (vmf->pte)
3512 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3513 	return ret;
3514 }
3515 
3516 static unsigned long fault_around_bytes __read_mostly =
3517 	rounddown_pow_of_two(65536);
3518 
3519 #ifdef CONFIG_DEBUG_FS
3520 static int fault_around_bytes_get(void *data, u64 *val)
3521 {
3522 	*val = fault_around_bytes;
3523 	return 0;
3524 }
3525 
3526 /*
3527  * fault_around_bytes must be rounded down to the nearest page order as it's
3528  * what do_fault_around() expects to see.
3529  */
3530 static int fault_around_bytes_set(void *data, u64 val)
3531 {
3532 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3533 		return -EINVAL;
3534 	if (val > PAGE_SIZE)
3535 		fault_around_bytes = rounddown_pow_of_two(val);
3536 	else
3537 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3538 	return 0;
3539 }
3540 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3541 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3542 
3543 static int __init fault_around_debugfs(void)
3544 {
3545 	void *ret;
3546 
3547 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3548 			&fault_around_bytes_fops);
3549 	if (!ret)
3550 		pr_warn("Failed to create fault_around_bytes in debugfs");
3551 	return 0;
3552 }
3553 late_initcall(fault_around_debugfs);
3554 #endif
3555 
3556 /*
3557  * do_fault_around() tries to map few pages around the fault address. The hope
3558  * is that the pages will be needed soon and this will lower the number of
3559  * faults to handle.
3560  *
3561  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3562  * not ready to be mapped: not up-to-date, locked, etc.
3563  *
3564  * This function is called with the page table lock taken. In the split ptlock
3565  * case the page table lock only protects only those entries which belong to
3566  * the page table corresponding to the fault address.
3567  *
3568  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3569  * only once.
3570  *
3571  * fault_around_bytes defines how many bytes we'll try to map.
3572  * do_fault_around() expects it to be set to a power of two less than or equal
3573  * to PTRS_PER_PTE.
3574  *
3575  * The virtual address of the area that we map is naturally aligned to
3576  * fault_around_bytes rounded down to the machine page size
3577  * (and therefore to page order).  This way it's easier to guarantee
3578  * that we don't cross page table boundaries.
3579  */
3580 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3581 {
3582 	unsigned long address = vmf->address, nr_pages, mask;
3583 	pgoff_t start_pgoff = vmf->pgoff;
3584 	pgoff_t end_pgoff;
3585 	int off;
3586 	vm_fault_t ret = 0;
3587 
3588 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3589 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3590 
3591 	vmf->address = max(address & mask, vmf->vma->vm_start);
3592 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3593 	start_pgoff -= off;
3594 
3595 	/*
3596 	 *  end_pgoff is either the end of the page table, the end of
3597 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3598 	 */
3599 	end_pgoff = start_pgoff -
3600 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3601 		PTRS_PER_PTE - 1;
3602 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3603 			start_pgoff + nr_pages - 1);
3604 
3605 	if (pmd_none(*vmf->pmd)) {
3606 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3607 						  vmf->address);
3608 		if (!vmf->prealloc_pte)
3609 			goto out;
3610 		smp_wmb(); /* See comment in __pte_alloc() */
3611 	}
3612 
3613 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3614 
3615 	/* Huge page is mapped? Page fault is solved */
3616 	if (pmd_trans_huge(*vmf->pmd)) {
3617 		ret = VM_FAULT_NOPAGE;
3618 		goto out;
3619 	}
3620 
3621 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3622 	if (!vmf->pte)
3623 		goto out;
3624 
3625 	/* check if the page fault is solved */
3626 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3627 	if (!pte_none(*vmf->pte))
3628 		ret = VM_FAULT_NOPAGE;
3629 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3630 out:
3631 	vmf->address = address;
3632 	vmf->pte = NULL;
3633 	return ret;
3634 }
3635 
3636 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3637 {
3638 	struct vm_area_struct *vma = vmf->vma;
3639 	vm_fault_t ret = 0;
3640 
3641 	/*
3642 	 * Let's call ->map_pages() first and use ->fault() as fallback
3643 	 * if page by the offset is not ready to be mapped (cold cache or
3644 	 * something).
3645 	 */
3646 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3647 		ret = do_fault_around(vmf);
3648 		if (ret)
3649 			return ret;
3650 	}
3651 
3652 	ret = __do_fault(vmf);
3653 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3654 		return ret;
3655 
3656 	ret |= finish_fault(vmf);
3657 	unlock_page(vmf->page);
3658 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3659 		put_page(vmf->page);
3660 	return ret;
3661 }
3662 
3663 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3664 {
3665 	struct vm_area_struct *vma = vmf->vma;
3666 	vm_fault_t ret;
3667 
3668 	if (unlikely(anon_vma_prepare(vma)))
3669 		return VM_FAULT_OOM;
3670 
3671 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3672 	if (!vmf->cow_page)
3673 		return VM_FAULT_OOM;
3674 
3675 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3676 				&vmf->memcg, false)) {
3677 		put_page(vmf->cow_page);
3678 		return VM_FAULT_OOM;
3679 	}
3680 
3681 	ret = __do_fault(vmf);
3682 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3683 		goto uncharge_out;
3684 	if (ret & VM_FAULT_DONE_COW)
3685 		return ret;
3686 
3687 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3688 	__SetPageUptodate(vmf->cow_page);
3689 
3690 	ret |= finish_fault(vmf);
3691 	unlock_page(vmf->page);
3692 	put_page(vmf->page);
3693 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3694 		goto uncharge_out;
3695 	return ret;
3696 uncharge_out:
3697 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3698 	put_page(vmf->cow_page);
3699 	return ret;
3700 }
3701 
3702 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3703 {
3704 	struct vm_area_struct *vma = vmf->vma;
3705 	vm_fault_t ret, tmp;
3706 
3707 	ret = __do_fault(vmf);
3708 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3709 		return ret;
3710 
3711 	/*
3712 	 * Check if the backing address space wants to know that the page is
3713 	 * about to become writable
3714 	 */
3715 	if (vma->vm_ops->page_mkwrite) {
3716 		unlock_page(vmf->page);
3717 		tmp = do_page_mkwrite(vmf);
3718 		if (unlikely(!tmp ||
3719 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3720 			put_page(vmf->page);
3721 			return tmp;
3722 		}
3723 	}
3724 
3725 	ret |= finish_fault(vmf);
3726 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3727 					VM_FAULT_RETRY))) {
3728 		unlock_page(vmf->page);
3729 		put_page(vmf->page);
3730 		return ret;
3731 	}
3732 
3733 	fault_dirty_shared_page(vma, vmf->page);
3734 	return ret;
3735 }
3736 
3737 /*
3738  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3739  * but allow concurrent faults).
3740  * The mmap_sem may have been released depending on flags and our
3741  * return value.  See filemap_fault() and __lock_page_or_retry().
3742  */
3743 static vm_fault_t do_fault(struct vm_fault *vmf)
3744 {
3745 	struct vm_area_struct *vma = vmf->vma;
3746 	vm_fault_t ret;
3747 
3748 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3749 	if (!vma->vm_ops->fault)
3750 		ret = VM_FAULT_SIGBUS;
3751 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3752 		ret = do_read_fault(vmf);
3753 	else if (!(vma->vm_flags & VM_SHARED))
3754 		ret = do_cow_fault(vmf);
3755 	else
3756 		ret = do_shared_fault(vmf);
3757 
3758 	/* preallocated pagetable is unused: free it */
3759 	if (vmf->prealloc_pte) {
3760 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3761 		vmf->prealloc_pte = NULL;
3762 	}
3763 	return ret;
3764 }
3765 
3766 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3767 				unsigned long addr, int page_nid,
3768 				int *flags)
3769 {
3770 	get_page(page);
3771 
3772 	count_vm_numa_event(NUMA_HINT_FAULTS);
3773 	if (page_nid == numa_node_id()) {
3774 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3775 		*flags |= TNF_FAULT_LOCAL;
3776 	}
3777 
3778 	return mpol_misplaced(page, vma, addr);
3779 }
3780 
3781 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3782 {
3783 	struct vm_area_struct *vma = vmf->vma;
3784 	struct page *page = NULL;
3785 	int page_nid = -1;
3786 	int last_cpupid;
3787 	int target_nid;
3788 	bool migrated = false;
3789 	pte_t pte;
3790 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3791 	int flags = 0;
3792 
3793 	/*
3794 	 * The "pte" at this point cannot be used safely without
3795 	 * validation through pte_unmap_same(). It's of NUMA type but
3796 	 * the pfn may be screwed if the read is non atomic.
3797 	 */
3798 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3799 	spin_lock(vmf->ptl);
3800 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3801 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3802 		goto out;
3803 	}
3804 
3805 	/*
3806 	 * Make it present again, Depending on how arch implementes non
3807 	 * accessible ptes, some can allow access by kernel mode.
3808 	 */
3809 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3810 	pte = pte_modify(pte, vma->vm_page_prot);
3811 	pte = pte_mkyoung(pte);
3812 	if (was_writable)
3813 		pte = pte_mkwrite(pte);
3814 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3815 	update_mmu_cache(vma, vmf->address, vmf->pte);
3816 
3817 	page = vm_normal_page(vma, vmf->address, pte);
3818 	if (!page) {
3819 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3820 		return 0;
3821 	}
3822 
3823 	/* TODO: handle PTE-mapped THP */
3824 	if (PageCompound(page)) {
3825 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3826 		return 0;
3827 	}
3828 
3829 	/*
3830 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3831 	 * much anyway since they can be in shared cache state. This misses
3832 	 * the case where a mapping is writable but the process never writes
3833 	 * to it but pte_write gets cleared during protection updates and
3834 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3835 	 * background writeback, dirty balancing and application behaviour.
3836 	 */
3837 	if (!pte_write(pte))
3838 		flags |= TNF_NO_GROUP;
3839 
3840 	/*
3841 	 * Flag if the page is shared between multiple address spaces. This
3842 	 * is later used when determining whether to group tasks together
3843 	 */
3844 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3845 		flags |= TNF_SHARED;
3846 
3847 	last_cpupid = page_cpupid_last(page);
3848 	page_nid = page_to_nid(page);
3849 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3850 			&flags);
3851 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3852 	if (target_nid == -1) {
3853 		put_page(page);
3854 		goto out;
3855 	}
3856 
3857 	/* Migrate to the requested node */
3858 	migrated = migrate_misplaced_page(page, vma, target_nid);
3859 	if (migrated) {
3860 		page_nid = target_nid;
3861 		flags |= TNF_MIGRATED;
3862 	} else
3863 		flags |= TNF_MIGRATE_FAIL;
3864 
3865 out:
3866 	if (page_nid != -1)
3867 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3868 	return 0;
3869 }
3870 
3871 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3872 {
3873 	if (vma_is_anonymous(vmf->vma))
3874 		return do_huge_pmd_anonymous_page(vmf);
3875 	if (vmf->vma->vm_ops->huge_fault)
3876 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3877 	return VM_FAULT_FALLBACK;
3878 }
3879 
3880 /* `inline' is required to avoid gcc 4.1.2 build error */
3881 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3882 {
3883 	if (vma_is_anonymous(vmf->vma))
3884 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3885 	if (vmf->vma->vm_ops->huge_fault)
3886 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3887 
3888 	/* COW handled on pte level: split pmd */
3889 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3890 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3891 
3892 	return VM_FAULT_FALLBACK;
3893 }
3894 
3895 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3896 {
3897 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3898 }
3899 
3900 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3901 {
3902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3903 	/* No support for anonymous transparent PUD pages yet */
3904 	if (vma_is_anonymous(vmf->vma))
3905 		return VM_FAULT_FALLBACK;
3906 	if (vmf->vma->vm_ops->huge_fault)
3907 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3908 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3909 	return VM_FAULT_FALLBACK;
3910 }
3911 
3912 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3913 {
3914 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3915 	/* No support for anonymous transparent PUD pages yet */
3916 	if (vma_is_anonymous(vmf->vma))
3917 		return VM_FAULT_FALLBACK;
3918 	if (vmf->vma->vm_ops->huge_fault)
3919 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3920 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3921 	return VM_FAULT_FALLBACK;
3922 }
3923 
3924 /*
3925  * These routines also need to handle stuff like marking pages dirty
3926  * and/or accessed for architectures that don't do it in hardware (most
3927  * RISC architectures).  The early dirtying is also good on the i386.
3928  *
3929  * There is also a hook called "update_mmu_cache()" that architectures
3930  * with external mmu caches can use to update those (ie the Sparc or
3931  * PowerPC hashed page tables that act as extended TLBs).
3932  *
3933  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3934  * concurrent faults).
3935  *
3936  * The mmap_sem may have been released depending on flags and our return value.
3937  * See filemap_fault() and __lock_page_or_retry().
3938  */
3939 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3940 {
3941 	pte_t entry;
3942 
3943 	if (unlikely(pmd_none(*vmf->pmd))) {
3944 		/*
3945 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3946 		 * want to allocate huge page, and if we expose page table
3947 		 * for an instant, it will be difficult to retract from
3948 		 * concurrent faults and from rmap lookups.
3949 		 */
3950 		vmf->pte = NULL;
3951 	} else {
3952 		/* See comment in pte_alloc_one_map() */
3953 		if (pmd_devmap_trans_unstable(vmf->pmd))
3954 			return 0;
3955 		/*
3956 		 * A regular pmd is established and it can't morph into a huge
3957 		 * pmd from under us anymore at this point because we hold the
3958 		 * mmap_sem read mode and khugepaged takes it in write mode.
3959 		 * So now it's safe to run pte_offset_map().
3960 		 */
3961 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3962 		vmf->orig_pte = *vmf->pte;
3963 
3964 		/*
3965 		 * some architectures can have larger ptes than wordsize,
3966 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3967 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3968 		 * accesses.  The code below just needs a consistent view
3969 		 * for the ifs and we later double check anyway with the
3970 		 * ptl lock held. So here a barrier will do.
3971 		 */
3972 		barrier();
3973 		if (pte_none(vmf->orig_pte)) {
3974 			pte_unmap(vmf->pte);
3975 			vmf->pte = NULL;
3976 		}
3977 	}
3978 
3979 	if (!vmf->pte) {
3980 		if (vma_is_anonymous(vmf->vma))
3981 			return do_anonymous_page(vmf);
3982 		else
3983 			return do_fault(vmf);
3984 	}
3985 
3986 	if (!pte_present(vmf->orig_pte))
3987 		return do_swap_page(vmf);
3988 
3989 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3990 		return do_numa_page(vmf);
3991 
3992 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3993 	spin_lock(vmf->ptl);
3994 	entry = vmf->orig_pte;
3995 	if (unlikely(!pte_same(*vmf->pte, entry)))
3996 		goto unlock;
3997 	if (vmf->flags & FAULT_FLAG_WRITE) {
3998 		if (!pte_write(entry))
3999 			return do_wp_page(vmf);
4000 		entry = pte_mkdirty(entry);
4001 	}
4002 	entry = pte_mkyoung(entry);
4003 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4004 				vmf->flags & FAULT_FLAG_WRITE)) {
4005 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4006 	} else {
4007 		/*
4008 		 * This is needed only for protection faults but the arch code
4009 		 * is not yet telling us if this is a protection fault or not.
4010 		 * This still avoids useless tlb flushes for .text page faults
4011 		 * with threads.
4012 		 */
4013 		if (vmf->flags & FAULT_FLAG_WRITE)
4014 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4015 	}
4016 unlock:
4017 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4018 	return 0;
4019 }
4020 
4021 /*
4022  * By the time we get here, we already hold the mm semaphore
4023  *
4024  * The mmap_sem may have been released depending on flags and our
4025  * return value.  See filemap_fault() and __lock_page_or_retry().
4026  */
4027 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4028 		unsigned long address, unsigned int flags)
4029 {
4030 	struct vm_fault vmf = {
4031 		.vma = vma,
4032 		.address = address & PAGE_MASK,
4033 		.flags = flags,
4034 		.pgoff = linear_page_index(vma, address),
4035 		.gfp_mask = __get_fault_gfp_mask(vma),
4036 	};
4037 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4038 	struct mm_struct *mm = vma->vm_mm;
4039 	pgd_t *pgd;
4040 	p4d_t *p4d;
4041 	vm_fault_t ret;
4042 
4043 	pgd = pgd_offset(mm, address);
4044 	p4d = p4d_alloc(mm, pgd, address);
4045 	if (!p4d)
4046 		return VM_FAULT_OOM;
4047 
4048 	vmf.pud = pud_alloc(mm, p4d, address);
4049 	if (!vmf.pud)
4050 		return VM_FAULT_OOM;
4051 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4052 		ret = create_huge_pud(&vmf);
4053 		if (!(ret & VM_FAULT_FALLBACK))
4054 			return ret;
4055 	} else {
4056 		pud_t orig_pud = *vmf.pud;
4057 
4058 		barrier();
4059 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4060 
4061 			/* NUMA case for anonymous PUDs would go here */
4062 
4063 			if (dirty && !pud_write(orig_pud)) {
4064 				ret = wp_huge_pud(&vmf, orig_pud);
4065 				if (!(ret & VM_FAULT_FALLBACK))
4066 					return ret;
4067 			} else {
4068 				huge_pud_set_accessed(&vmf, orig_pud);
4069 				return 0;
4070 			}
4071 		}
4072 	}
4073 
4074 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4075 	if (!vmf.pmd)
4076 		return VM_FAULT_OOM;
4077 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4078 		ret = create_huge_pmd(&vmf);
4079 		if (!(ret & VM_FAULT_FALLBACK))
4080 			return ret;
4081 	} else {
4082 		pmd_t orig_pmd = *vmf.pmd;
4083 
4084 		barrier();
4085 		if (unlikely(is_swap_pmd(orig_pmd))) {
4086 			VM_BUG_ON(thp_migration_supported() &&
4087 					  !is_pmd_migration_entry(orig_pmd));
4088 			if (is_pmd_migration_entry(orig_pmd))
4089 				pmd_migration_entry_wait(mm, vmf.pmd);
4090 			return 0;
4091 		}
4092 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4093 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4094 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4095 
4096 			if (dirty && !pmd_write(orig_pmd)) {
4097 				ret = wp_huge_pmd(&vmf, orig_pmd);
4098 				if (!(ret & VM_FAULT_FALLBACK))
4099 					return ret;
4100 			} else {
4101 				huge_pmd_set_accessed(&vmf, orig_pmd);
4102 				return 0;
4103 			}
4104 		}
4105 	}
4106 
4107 	return handle_pte_fault(&vmf);
4108 }
4109 
4110 /*
4111  * By the time we get here, we already hold the mm semaphore
4112  *
4113  * The mmap_sem may have been released depending on flags and our
4114  * return value.  See filemap_fault() and __lock_page_or_retry().
4115  */
4116 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4117 		unsigned int flags)
4118 {
4119 	vm_fault_t ret;
4120 
4121 	__set_current_state(TASK_RUNNING);
4122 
4123 	count_vm_event(PGFAULT);
4124 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4125 
4126 	/* do counter updates before entering really critical section. */
4127 	check_sync_rss_stat(current);
4128 
4129 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4130 					    flags & FAULT_FLAG_INSTRUCTION,
4131 					    flags & FAULT_FLAG_REMOTE))
4132 		return VM_FAULT_SIGSEGV;
4133 
4134 	/*
4135 	 * Enable the memcg OOM handling for faults triggered in user
4136 	 * space.  Kernel faults are handled more gracefully.
4137 	 */
4138 	if (flags & FAULT_FLAG_USER)
4139 		mem_cgroup_enter_user_fault();
4140 
4141 	if (unlikely(is_vm_hugetlb_page(vma)))
4142 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4143 	else
4144 		ret = __handle_mm_fault(vma, address, flags);
4145 
4146 	if (flags & FAULT_FLAG_USER) {
4147 		mem_cgroup_exit_user_fault();
4148 		/*
4149 		 * The task may have entered a memcg OOM situation but
4150 		 * if the allocation error was handled gracefully (no
4151 		 * VM_FAULT_OOM), there is no need to kill anything.
4152 		 * Just clean up the OOM state peacefully.
4153 		 */
4154 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4155 			mem_cgroup_oom_synchronize(false);
4156 	}
4157 
4158 	return ret;
4159 }
4160 EXPORT_SYMBOL_GPL(handle_mm_fault);
4161 
4162 #ifndef __PAGETABLE_P4D_FOLDED
4163 /*
4164  * Allocate p4d page table.
4165  * We've already handled the fast-path in-line.
4166  */
4167 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4168 {
4169 	p4d_t *new = p4d_alloc_one(mm, address);
4170 	if (!new)
4171 		return -ENOMEM;
4172 
4173 	smp_wmb(); /* See comment in __pte_alloc */
4174 
4175 	spin_lock(&mm->page_table_lock);
4176 	if (pgd_present(*pgd))		/* Another has populated it */
4177 		p4d_free(mm, new);
4178 	else
4179 		pgd_populate(mm, pgd, new);
4180 	spin_unlock(&mm->page_table_lock);
4181 	return 0;
4182 }
4183 #endif /* __PAGETABLE_P4D_FOLDED */
4184 
4185 #ifndef __PAGETABLE_PUD_FOLDED
4186 /*
4187  * Allocate page upper directory.
4188  * We've already handled the fast-path in-line.
4189  */
4190 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4191 {
4192 	pud_t *new = pud_alloc_one(mm, address);
4193 	if (!new)
4194 		return -ENOMEM;
4195 
4196 	smp_wmb(); /* See comment in __pte_alloc */
4197 
4198 	spin_lock(&mm->page_table_lock);
4199 #ifndef __ARCH_HAS_5LEVEL_HACK
4200 	if (!p4d_present(*p4d)) {
4201 		mm_inc_nr_puds(mm);
4202 		p4d_populate(mm, p4d, new);
4203 	} else	/* Another has populated it */
4204 		pud_free(mm, new);
4205 #else
4206 	if (!pgd_present(*p4d)) {
4207 		mm_inc_nr_puds(mm);
4208 		pgd_populate(mm, p4d, new);
4209 	} else	/* Another has populated it */
4210 		pud_free(mm, new);
4211 #endif /* __ARCH_HAS_5LEVEL_HACK */
4212 	spin_unlock(&mm->page_table_lock);
4213 	return 0;
4214 }
4215 #endif /* __PAGETABLE_PUD_FOLDED */
4216 
4217 #ifndef __PAGETABLE_PMD_FOLDED
4218 /*
4219  * Allocate page middle directory.
4220  * We've already handled the fast-path in-line.
4221  */
4222 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4223 {
4224 	spinlock_t *ptl;
4225 	pmd_t *new = pmd_alloc_one(mm, address);
4226 	if (!new)
4227 		return -ENOMEM;
4228 
4229 	smp_wmb(); /* See comment in __pte_alloc */
4230 
4231 	ptl = pud_lock(mm, pud);
4232 #ifndef __ARCH_HAS_4LEVEL_HACK
4233 	if (!pud_present(*pud)) {
4234 		mm_inc_nr_pmds(mm);
4235 		pud_populate(mm, pud, new);
4236 	} else	/* Another has populated it */
4237 		pmd_free(mm, new);
4238 #else
4239 	if (!pgd_present(*pud)) {
4240 		mm_inc_nr_pmds(mm);
4241 		pgd_populate(mm, pud, new);
4242 	} else /* Another has populated it */
4243 		pmd_free(mm, new);
4244 #endif /* __ARCH_HAS_4LEVEL_HACK */
4245 	spin_unlock(ptl);
4246 	return 0;
4247 }
4248 #endif /* __PAGETABLE_PMD_FOLDED */
4249 
4250 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4251 			    unsigned long *start, unsigned long *end,
4252 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4253 {
4254 	pgd_t *pgd;
4255 	p4d_t *p4d;
4256 	pud_t *pud;
4257 	pmd_t *pmd;
4258 	pte_t *ptep;
4259 
4260 	pgd = pgd_offset(mm, address);
4261 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4262 		goto out;
4263 
4264 	p4d = p4d_offset(pgd, address);
4265 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4266 		goto out;
4267 
4268 	pud = pud_offset(p4d, address);
4269 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4270 		goto out;
4271 
4272 	pmd = pmd_offset(pud, address);
4273 	VM_BUG_ON(pmd_trans_huge(*pmd));
4274 
4275 	if (pmd_huge(*pmd)) {
4276 		if (!pmdpp)
4277 			goto out;
4278 
4279 		if (start && end) {
4280 			*start = address & PMD_MASK;
4281 			*end = *start + PMD_SIZE;
4282 			mmu_notifier_invalidate_range_start(mm, *start, *end);
4283 		}
4284 		*ptlp = pmd_lock(mm, pmd);
4285 		if (pmd_huge(*pmd)) {
4286 			*pmdpp = pmd;
4287 			return 0;
4288 		}
4289 		spin_unlock(*ptlp);
4290 		if (start && end)
4291 			mmu_notifier_invalidate_range_end(mm, *start, *end);
4292 	}
4293 
4294 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4295 		goto out;
4296 
4297 	if (start && end) {
4298 		*start = address & PAGE_MASK;
4299 		*end = *start + PAGE_SIZE;
4300 		mmu_notifier_invalidate_range_start(mm, *start, *end);
4301 	}
4302 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4303 	if (!pte_present(*ptep))
4304 		goto unlock;
4305 	*ptepp = ptep;
4306 	return 0;
4307 unlock:
4308 	pte_unmap_unlock(ptep, *ptlp);
4309 	if (start && end)
4310 		mmu_notifier_invalidate_range_end(mm, *start, *end);
4311 out:
4312 	return -EINVAL;
4313 }
4314 
4315 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4316 			     pte_t **ptepp, spinlock_t **ptlp)
4317 {
4318 	int res;
4319 
4320 	/* (void) is needed to make gcc happy */
4321 	(void) __cond_lock(*ptlp,
4322 			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4323 						    ptepp, NULL, ptlp)));
4324 	return res;
4325 }
4326 
4327 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4328 			     unsigned long *start, unsigned long *end,
4329 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4330 {
4331 	int res;
4332 
4333 	/* (void) is needed to make gcc happy */
4334 	(void) __cond_lock(*ptlp,
4335 			   !(res = __follow_pte_pmd(mm, address, start, end,
4336 						    ptepp, pmdpp, ptlp)));
4337 	return res;
4338 }
4339 EXPORT_SYMBOL(follow_pte_pmd);
4340 
4341 /**
4342  * follow_pfn - look up PFN at a user virtual address
4343  * @vma: memory mapping
4344  * @address: user virtual address
4345  * @pfn: location to store found PFN
4346  *
4347  * Only IO mappings and raw PFN mappings are allowed.
4348  *
4349  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4350  */
4351 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4352 	unsigned long *pfn)
4353 {
4354 	int ret = -EINVAL;
4355 	spinlock_t *ptl;
4356 	pte_t *ptep;
4357 
4358 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4359 		return ret;
4360 
4361 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4362 	if (ret)
4363 		return ret;
4364 	*pfn = pte_pfn(*ptep);
4365 	pte_unmap_unlock(ptep, ptl);
4366 	return 0;
4367 }
4368 EXPORT_SYMBOL(follow_pfn);
4369 
4370 #ifdef CONFIG_HAVE_IOREMAP_PROT
4371 int follow_phys(struct vm_area_struct *vma,
4372 		unsigned long address, unsigned int flags,
4373 		unsigned long *prot, resource_size_t *phys)
4374 {
4375 	int ret = -EINVAL;
4376 	pte_t *ptep, pte;
4377 	spinlock_t *ptl;
4378 
4379 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4380 		goto out;
4381 
4382 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4383 		goto out;
4384 	pte = *ptep;
4385 
4386 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4387 		goto unlock;
4388 
4389 	*prot = pgprot_val(pte_pgprot(pte));
4390 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4391 
4392 	ret = 0;
4393 unlock:
4394 	pte_unmap_unlock(ptep, ptl);
4395 out:
4396 	return ret;
4397 }
4398 
4399 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4400 			void *buf, int len, int write)
4401 {
4402 	resource_size_t phys_addr;
4403 	unsigned long prot = 0;
4404 	void __iomem *maddr;
4405 	int offset = addr & (PAGE_SIZE-1);
4406 
4407 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4408 		return -EINVAL;
4409 
4410 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4411 	if (!maddr)
4412 		return -ENOMEM;
4413 
4414 	if (write)
4415 		memcpy_toio(maddr + offset, buf, len);
4416 	else
4417 		memcpy_fromio(buf, maddr + offset, len);
4418 	iounmap(maddr);
4419 
4420 	return len;
4421 }
4422 EXPORT_SYMBOL_GPL(generic_access_phys);
4423 #endif
4424 
4425 /*
4426  * Access another process' address space as given in mm.  If non-NULL, use the
4427  * given task for page fault accounting.
4428  */
4429 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4430 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4431 {
4432 	struct vm_area_struct *vma;
4433 	void *old_buf = buf;
4434 	int write = gup_flags & FOLL_WRITE;
4435 
4436 	down_read(&mm->mmap_sem);
4437 	/* ignore errors, just check how much was successfully transferred */
4438 	while (len) {
4439 		int bytes, ret, offset;
4440 		void *maddr;
4441 		struct page *page = NULL;
4442 
4443 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4444 				gup_flags, &page, &vma, NULL);
4445 		if (ret <= 0) {
4446 #ifndef CONFIG_HAVE_IOREMAP_PROT
4447 			break;
4448 #else
4449 			/*
4450 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4451 			 * we can access using slightly different code.
4452 			 */
4453 			vma = find_vma(mm, addr);
4454 			if (!vma || vma->vm_start > addr)
4455 				break;
4456 			if (vma->vm_ops && vma->vm_ops->access)
4457 				ret = vma->vm_ops->access(vma, addr, buf,
4458 							  len, write);
4459 			if (ret <= 0)
4460 				break;
4461 			bytes = ret;
4462 #endif
4463 		} else {
4464 			bytes = len;
4465 			offset = addr & (PAGE_SIZE-1);
4466 			if (bytes > PAGE_SIZE-offset)
4467 				bytes = PAGE_SIZE-offset;
4468 
4469 			maddr = kmap(page);
4470 			if (write) {
4471 				copy_to_user_page(vma, page, addr,
4472 						  maddr + offset, buf, bytes);
4473 				set_page_dirty_lock(page);
4474 			} else {
4475 				copy_from_user_page(vma, page, addr,
4476 						    buf, maddr + offset, bytes);
4477 			}
4478 			kunmap(page);
4479 			put_page(page);
4480 		}
4481 		len -= bytes;
4482 		buf += bytes;
4483 		addr += bytes;
4484 	}
4485 	up_read(&mm->mmap_sem);
4486 
4487 	return buf - old_buf;
4488 }
4489 
4490 /**
4491  * access_remote_vm - access another process' address space
4492  * @mm:		the mm_struct of the target address space
4493  * @addr:	start address to access
4494  * @buf:	source or destination buffer
4495  * @len:	number of bytes to transfer
4496  * @gup_flags:	flags modifying lookup behaviour
4497  *
4498  * The caller must hold a reference on @mm.
4499  */
4500 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4501 		void *buf, int len, unsigned int gup_flags)
4502 {
4503 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4504 }
4505 
4506 /*
4507  * Access another process' address space.
4508  * Source/target buffer must be kernel space,
4509  * Do not walk the page table directly, use get_user_pages
4510  */
4511 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4512 		void *buf, int len, unsigned int gup_flags)
4513 {
4514 	struct mm_struct *mm;
4515 	int ret;
4516 
4517 	mm = get_task_mm(tsk);
4518 	if (!mm)
4519 		return 0;
4520 
4521 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4522 
4523 	mmput(mm);
4524 
4525 	return ret;
4526 }
4527 EXPORT_SYMBOL_GPL(access_process_vm);
4528 
4529 /*
4530  * Print the name of a VMA.
4531  */
4532 void print_vma_addr(char *prefix, unsigned long ip)
4533 {
4534 	struct mm_struct *mm = current->mm;
4535 	struct vm_area_struct *vma;
4536 
4537 	/*
4538 	 * we might be running from an atomic context so we cannot sleep
4539 	 */
4540 	if (!down_read_trylock(&mm->mmap_sem))
4541 		return;
4542 
4543 	vma = find_vma(mm, ip);
4544 	if (vma && vma->vm_file) {
4545 		struct file *f = vma->vm_file;
4546 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4547 		if (buf) {
4548 			char *p;
4549 
4550 			p = file_path(f, buf, PAGE_SIZE);
4551 			if (IS_ERR(p))
4552 				p = "?";
4553 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4554 					vma->vm_start,
4555 					vma->vm_end - vma->vm_start);
4556 			free_page((unsigned long)buf);
4557 		}
4558 	}
4559 	up_read(&mm->mmap_sem);
4560 }
4561 
4562 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4563 void __might_fault(const char *file, int line)
4564 {
4565 	/*
4566 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4567 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4568 	 * get paged out, therefore we'll never actually fault, and the
4569 	 * below annotations will generate false positives.
4570 	 */
4571 	if (uaccess_kernel())
4572 		return;
4573 	if (pagefault_disabled())
4574 		return;
4575 	__might_sleep(file, line, 0);
4576 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4577 	if (current->mm)
4578 		might_lock_read(&current->mm->mmap_sem);
4579 #endif
4580 }
4581 EXPORT_SYMBOL(__might_fault);
4582 #endif
4583 
4584 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4585 /*
4586  * Process all subpages of the specified huge page with the specified
4587  * operation.  The target subpage will be processed last to keep its
4588  * cache lines hot.
4589  */
4590 static inline void process_huge_page(
4591 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4592 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4593 	void *arg)
4594 {
4595 	int i, n, base, l;
4596 	unsigned long addr = addr_hint &
4597 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4598 
4599 	/* Process target subpage last to keep its cache lines hot */
4600 	might_sleep();
4601 	n = (addr_hint - addr) / PAGE_SIZE;
4602 	if (2 * n <= pages_per_huge_page) {
4603 		/* If target subpage in first half of huge page */
4604 		base = 0;
4605 		l = n;
4606 		/* Process subpages at the end of huge page */
4607 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4608 			cond_resched();
4609 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4610 		}
4611 	} else {
4612 		/* If target subpage in second half of huge page */
4613 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4614 		l = pages_per_huge_page - n;
4615 		/* Process subpages at the begin of huge page */
4616 		for (i = 0; i < base; i++) {
4617 			cond_resched();
4618 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4619 		}
4620 	}
4621 	/*
4622 	 * Process remaining subpages in left-right-left-right pattern
4623 	 * towards the target subpage
4624 	 */
4625 	for (i = 0; i < l; i++) {
4626 		int left_idx = base + i;
4627 		int right_idx = base + 2 * l - 1 - i;
4628 
4629 		cond_resched();
4630 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4631 		cond_resched();
4632 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4633 	}
4634 }
4635 
4636 static void clear_gigantic_page(struct page *page,
4637 				unsigned long addr,
4638 				unsigned int pages_per_huge_page)
4639 {
4640 	int i;
4641 	struct page *p = page;
4642 
4643 	might_sleep();
4644 	for (i = 0; i < pages_per_huge_page;
4645 	     i++, p = mem_map_next(p, page, i)) {
4646 		cond_resched();
4647 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4648 	}
4649 }
4650 
4651 static void clear_subpage(unsigned long addr, int idx, void *arg)
4652 {
4653 	struct page *page = arg;
4654 
4655 	clear_user_highpage(page + idx, addr);
4656 }
4657 
4658 void clear_huge_page(struct page *page,
4659 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4660 {
4661 	unsigned long addr = addr_hint &
4662 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4663 
4664 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4665 		clear_gigantic_page(page, addr, pages_per_huge_page);
4666 		return;
4667 	}
4668 
4669 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4670 }
4671 
4672 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4673 				    unsigned long addr,
4674 				    struct vm_area_struct *vma,
4675 				    unsigned int pages_per_huge_page)
4676 {
4677 	int i;
4678 	struct page *dst_base = dst;
4679 	struct page *src_base = src;
4680 
4681 	for (i = 0; i < pages_per_huge_page; ) {
4682 		cond_resched();
4683 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4684 
4685 		i++;
4686 		dst = mem_map_next(dst, dst_base, i);
4687 		src = mem_map_next(src, src_base, i);
4688 	}
4689 }
4690 
4691 struct copy_subpage_arg {
4692 	struct page *dst;
4693 	struct page *src;
4694 	struct vm_area_struct *vma;
4695 };
4696 
4697 static void copy_subpage(unsigned long addr, int idx, void *arg)
4698 {
4699 	struct copy_subpage_arg *copy_arg = arg;
4700 
4701 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4702 			   addr, copy_arg->vma);
4703 }
4704 
4705 void copy_user_huge_page(struct page *dst, struct page *src,
4706 			 unsigned long addr_hint, struct vm_area_struct *vma,
4707 			 unsigned int pages_per_huge_page)
4708 {
4709 	unsigned long addr = addr_hint &
4710 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4711 	struct copy_subpage_arg arg = {
4712 		.dst = dst,
4713 		.src = src,
4714 		.vma = vma,
4715 	};
4716 
4717 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4718 		copy_user_gigantic_page(dst, src, addr, vma,
4719 					pages_per_huge_page);
4720 		return;
4721 	}
4722 
4723 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4724 }
4725 
4726 long copy_huge_page_from_user(struct page *dst_page,
4727 				const void __user *usr_src,
4728 				unsigned int pages_per_huge_page,
4729 				bool allow_pagefault)
4730 {
4731 	void *src = (void *)usr_src;
4732 	void *page_kaddr;
4733 	unsigned long i, rc = 0;
4734 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4735 
4736 	for (i = 0; i < pages_per_huge_page; i++) {
4737 		if (allow_pagefault)
4738 			page_kaddr = kmap(dst_page + i);
4739 		else
4740 			page_kaddr = kmap_atomic(dst_page + i);
4741 		rc = copy_from_user(page_kaddr,
4742 				(const void __user *)(src + i * PAGE_SIZE),
4743 				PAGE_SIZE);
4744 		if (allow_pagefault)
4745 			kunmap(dst_page + i);
4746 		else
4747 			kunmap_atomic(page_kaddr);
4748 
4749 		ret_val -= (PAGE_SIZE - rc);
4750 		if (rc)
4751 			break;
4752 
4753 		cond_resched();
4754 	}
4755 	return ret_val;
4756 }
4757 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4758 
4759 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4760 
4761 static struct kmem_cache *page_ptl_cachep;
4762 
4763 void __init ptlock_cache_init(void)
4764 {
4765 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4766 			SLAB_PANIC, NULL);
4767 }
4768 
4769 bool ptlock_alloc(struct page *page)
4770 {
4771 	spinlock_t *ptl;
4772 
4773 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4774 	if (!ptl)
4775 		return false;
4776 	page->ptl = ptl;
4777 	return true;
4778 }
4779 
4780 void ptlock_free(struct page *page)
4781 {
4782 	kmem_cache_free(page_ptl_cachep, page->ptl);
4783 }
4784 #endif
4785