xref: /openbmc/linux/mm/memory.c (revision 981ab3f1)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/export.h>
55 #include <linux/delayacct.h>
56 #include <linux/init.h>
57 #include <linux/pfn_t.h>
58 #include <linux/writeback.h>
59 #include <linux/memcontrol.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/kallsyms.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 
72 #include <asm/io.h>
73 #include <asm/mmu_context.h>
74 #include <asm/pgalloc.h>
75 #include <linux/uaccess.h>
76 #include <asm/tlb.h>
77 #include <asm/tlbflush.h>
78 #include <asm/pgtable.h>
79 
80 #include "internal.h"
81 
82 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
83 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
84 #endif
85 
86 #ifndef CONFIG_NEED_MULTIPLE_NODES
87 /* use the per-pgdat data instead for discontigmem - mbligh */
88 unsigned long max_mapnr;
89 EXPORT_SYMBOL(max_mapnr);
90 
91 struct page *mem_map;
92 EXPORT_SYMBOL(mem_map);
93 #endif
94 
95 /*
96  * A number of key systems in x86 including ioremap() rely on the assumption
97  * that high_memory defines the upper bound on direct map memory, then end
98  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
99  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
100  * and ZONE_HIGHMEM.
101  */
102 void *high_memory;
103 EXPORT_SYMBOL(high_memory);
104 
105 /*
106  * Randomize the address space (stacks, mmaps, brk, etc.).
107  *
108  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
109  *   as ancient (libc5 based) binaries can segfault. )
110  */
111 int randomize_va_space __read_mostly =
112 #ifdef CONFIG_COMPAT_BRK
113 					1;
114 #else
115 					2;
116 #endif
117 
118 static int __init disable_randmaps(char *s)
119 {
120 	randomize_va_space = 0;
121 	return 1;
122 }
123 __setup("norandmaps", disable_randmaps);
124 
125 unsigned long zero_pfn __read_mostly;
126 EXPORT_SYMBOL(zero_pfn);
127 
128 unsigned long highest_memmap_pfn __read_mostly;
129 
130 /*
131  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
132  */
133 static int __init init_zero_pfn(void)
134 {
135 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
136 	return 0;
137 }
138 core_initcall(init_zero_pfn);
139 
140 
141 #if defined(SPLIT_RSS_COUNTING)
142 
143 void sync_mm_rss(struct mm_struct *mm)
144 {
145 	int i;
146 
147 	for (i = 0; i < NR_MM_COUNTERS; i++) {
148 		if (current->rss_stat.count[i]) {
149 			add_mm_counter(mm, i, current->rss_stat.count[i]);
150 			current->rss_stat.count[i] = 0;
151 		}
152 	}
153 	current->rss_stat.events = 0;
154 }
155 
156 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
157 {
158 	struct task_struct *task = current;
159 
160 	if (likely(task->mm == mm))
161 		task->rss_stat.count[member] += val;
162 	else
163 		add_mm_counter(mm, member, val);
164 }
165 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
166 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
167 
168 /* sync counter once per 64 page faults */
169 #define TASK_RSS_EVENTS_THRESH	(64)
170 static void check_sync_rss_stat(struct task_struct *task)
171 {
172 	if (unlikely(task != current))
173 		return;
174 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
175 		sync_mm_rss(task->mm);
176 }
177 #else /* SPLIT_RSS_COUNTING */
178 
179 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
180 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
181 
182 static void check_sync_rss_stat(struct task_struct *task)
183 {
184 }
185 
186 #endif /* SPLIT_RSS_COUNTING */
187 
188 #ifdef HAVE_GENERIC_MMU_GATHER
189 
190 static bool tlb_next_batch(struct mmu_gather *tlb)
191 {
192 	struct mmu_gather_batch *batch;
193 
194 	batch = tlb->active;
195 	if (batch->next) {
196 		tlb->active = batch->next;
197 		return true;
198 	}
199 
200 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
201 		return false;
202 
203 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
204 	if (!batch)
205 		return false;
206 
207 	tlb->batch_count++;
208 	batch->next = NULL;
209 	batch->nr   = 0;
210 	batch->max  = MAX_GATHER_BATCH;
211 
212 	tlb->active->next = batch;
213 	tlb->active = batch;
214 
215 	return true;
216 }
217 
218 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
219 				unsigned long start, unsigned long end)
220 {
221 	tlb->mm = mm;
222 
223 	/* Is it from 0 to ~0? */
224 	tlb->fullmm     = !(start | (end+1));
225 	tlb->need_flush_all = 0;
226 	tlb->local.next = NULL;
227 	tlb->local.nr   = 0;
228 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
229 	tlb->active     = &tlb->local;
230 	tlb->batch_count = 0;
231 
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 	tlb->batch = NULL;
234 #endif
235 	tlb->page_size = 0;
236 
237 	__tlb_reset_range(tlb);
238 }
239 
240 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
241 {
242 	if (!tlb->end)
243 		return;
244 
245 	tlb_flush(tlb);
246 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
247 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
248 	tlb_table_flush(tlb);
249 #endif
250 	__tlb_reset_range(tlb);
251 }
252 
253 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
254 {
255 	struct mmu_gather_batch *batch;
256 
257 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
258 		free_pages_and_swap_cache(batch->pages, batch->nr);
259 		batch->nr = 0;
260 	}
261 	tlb->active = &tlb->local;
262 }
263 
264 void tlb_flush_mmu(struct mmu_gather *tlb)
265 {
266 	tlb_flush_mmu_tlbonly(tlb);
267 	tlb_flush_mmu_free(tlb);
268 }
269 
270 /* tlb_finish_mmu
271  *	Called at the end of the shootdown operation to free up any resources
272  *	that were required.
273  */
274 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
275 		unsigned long start, unsigned long end, bool force)
276 {
277 	struct mmu_gather_batch *batch, *next;
278 
279 	if (force)
280 		__tlb_adjust_range(tlb, start, end - start);
281 
282 	tlb_flush_mmu(tlb);
283 
284 	/* keep the page table cache within bounds */
285 	check_pgt_cache();
286 
287 	for (batch = tlb->local.next; batch; batch = next) {
288 		next = batch->next;
289 		free_pages((unsigned long)batch, 0);
290 	}
291 	tlb->local.next = NULL;
292 }
293 
294 /* __tlb_remove_page
295  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
296  *	handling the additional races in SMP caused by other CPUs caching valid
297  *	mappings in their TLBs. Returns the number of free page slots left.
298  *	When out of page slots we must call tlb_flush_mmu().
299  *returns true if the caller should flush.
300  */
301 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
302 {
303 	struct mmu_gather_batch *batch;
304 
305 	VM_BUG_ON(!tlb->end);
306 	VM_WARN_ON(tlb->page_size != page_size);
307 
308 	batch = tlb->active;
309 	/*
310 	 * Add the page and check if we are full. If so
311 	 * force a flush.
312 	 */
313 	batch->pages[batch->nr++] = page;
314 	if (batch->nr == batch->max) {
315 		if (!tlb_next_batch(tlb))
316 			return true;
317 		batch = tlb->active;
318 	}
319 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
320 
321 	return false;
322 }
323 
324 #endif /* HAVE_GENERIC_MMU_GATHER */
325 
326 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
327 
328 /*
329  * See the comment near struct mmu_table_batch.
330  */
331 
332 static void tlb_remove_table_smp_sync(void *arg)
333 {
334 	/* Simply deliver the interrupt */
335 }
336 
337 static void tlb_remove_table_one(void *table)
338 {
339 	/*
340 	 * This isn't an RCU grace period and hence the page-tables cannot be
341 	 * assumed to be actually RCU-freed.
342 	 *
343 	 * It is however sufficient for software page-table walkers that rely on
344 	 * IRQ disabling. See the comment near struct mmu_table_batch.
345 	 */
346 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
347 	__tlb_remove_table(table);
348 }
349 
350 static void tlb_remove_table_rcu(struct rcu_head *head)
351 {
352 	struct mmu_table_batch *batch;
353 	int i;
354 
355 	batch = container_of(head, struct mmu_table_batch, rcu);
356 
357 	for (i = 0; i < batch->nr; i++)
358 		__tlb_remove_table(batch->tables[i]);
359 
360 	free_page((unsigned long)batch);
361 }
362 
363 void tlb_table_flush(struct mmu_gather *tlb)
364 {
365 	struct mmu_table_batch **batch = &tlb->batch;
366 
367 	if (*batch) {
368 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
369 		*batch = NULL;
370 	}
371 }
372 
373 void tlb_remove_table(struct mmu_gather *tlb, void *table)
374 {
375 	struct mmu_table_batch **batch = &tlb->batch;
376 
377 	/*
378 	 * When there's less then two users of this mm there cannot be a
379 	 * concurrent page-table walk.
380 	 */
381 	if (atomic_read(&tlb->mm->mm_users) < 2) {
382 		__tlb_remove_table(table);
383 		return;
384 	}
385 
386 	if (*batch == NULL) {
387 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
388 		if (*batch == NULL) {
389 			tlb_remove_table_one(table);
390 			return;
391 		}
392 		(*batch)->nr = 0;
393 	}
394 	(*batch)->tables[(*batch)->nr++] = table;
395 	if ((*batch)->nr == MAX_TABLE_BATCH)
396 		tlb_table_flush(tlb);
397 }
398 
399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
400 
401 /* tlb_gather_mmu
402  *	Called to initialize an (on-stack) mmu_gather structure for page-table
403  *	tear-down from @mm. The @fullmm argument is used when @mm is without
404  *	users and we're going to destroy the full address space (exit/execve).
405  */
406 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
407 			unsigned long start, unsigned long end)
408 {
409 	arch_tlb_gather_mmu(tlb, mm, start, end);
410 	inc_tlb_flush_pending(tlb->mm);
411 }
412 
413 void tlb_finish_mmu(struct mmu_gather *tlb,
414 		unsigned long start, unsigned long end)
415 {
416 	/*
417 	 * If there are parallel threads are doing PTE changes on same range
418 	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
419 	 * flush by batching, a thread has stable TLB entry can fail to flush
420 	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
421 	 * forcefully if we detect parallel PTE batching threads.
422 	 */
423 	bool force = mm_tlb_flush_nested(tlb->mm);
424 
425 	arch_tlb_finish_mmu(tlb, start, end, force);
426 	dec_tlb_flush_pending(tlb->mm);
427 }
428 
429 /*
430  * Note: this doesn't free the actual pages themselves. That
431  * has been handled earlier when unmapping all the memory regions.
432  */
433 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
434 			   unsigned long addr)
435 {
436 	pgtable_t token = pmd_pgtable(*pmd);
437 	pmd_clear(pmd);
438 	pte_free_tlb(tlb, token, addr);
439 	atomic_long_dec(&tlb->mm->nr_ptes);
440 }
441 
442 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
443 				unsigned long addr, unsigned long end,
444 				unsigned long floor, unsigned long ceiling)
445 {
446 	pmd_t *pmd;
447 	unsigned long next;
448 	unsigned long start;
449 
450 	start = addr;
451 	pmd = pmd_offset(pud, addr);
452 	do {
453 		next = pmd_addr_end(addr, end);
454 		if (pmd_none_or_clear_bad(pmd))
455 			continue;
456 		free_pte_range(tlb, pmd, addr);
457 	} while (pmd++, addr = next, addr != end);
458 
459 	start &= PUD_MASK;
460 	if (start < floor)
461 		return;
462 	if (ceiling) {
463 		ceiling &= PUD_MASK;
464 		if (!ceiling)
465 			return;
466 	}
467 	if (end - 1 > ceiling - 1)
468 		return;
469 
470 	pmd = pmd_offset(pud, start);
471 	pud_clear(pud);
472 	pmd_free_tlb(tlb, pmd, start);
473 	mm_dec_nr_pmds(tlb->mm);
474 }
475 
476 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
477 				unsigned long addr, unsigned long end,
478 				unsigned long floor, unsigned long ceiling)
479 {
480 	pud_t *pud;
481 	unsigned long next;
482 	unsigned long start;
483 
484 	start = addr;
485 	pud = pud_offset(p4d, addr);
486 	do {
487 		next = pud_addr_end(addr, end);
488 		if (pud_none_or_clear_bad(pud))
489 			continue;
490 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
491 	} while (pud++, addr = next, addr != end);
492 
493 	start &= P4D_MASK;
494 	if (start < floor)
495 		return;
496 	if (ceiling) {
497 		ceiling &= P4D_MASK;
498 		if (!ceiling)
499 			return;
500 	}
501 	if (end - 1 > ceiling - 1)
502 		return;
503 
504 	pud = pud_offset(p4d, start);
505 	p4d_clear(p4d);
506 	pud_free_tlb(tlb, pud, start);
507 }
508 
509 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
510 				unsigned long addr, unsigned long end,
511 				unsigned long floor, unsigned long ceiling)
512 {
513 	p4d_t *p4d;
514 	unsigned long next;
515 	unsigned long start;
516 
517 	start = addr;
518 	p4d = p4d_offset(pgd, addr);
519 	do {
520 		next = p4d_addr_end(addr, end);
521 		if (p4d_none_or_clear_bad(p4d))
522 			continue;
523 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
524 	} while (p4d++, addr = next, addr != end);
525 
526 	start &= PGDIR_MASK;
527 	if (start < floor)
528 		return;
529 	if (ceiling) {
530 		ceiling &= PGDIR_MASK;
531 		if (!ceiling)
532 			return;
533 	}
534 	if (end - 1 > ceiling - 1)
535 		return;
536 
537 	p4d = p4d_offset(pgd, start);
538 	pgd_clear(pgd);
539 	p4d_free_tlb(tlb, p4d, start);
540 }
541 
542 /*
543  * This function frees user-level page tables of a process.
544  */
545 void free_pgd_range(struct mmu_gather *tlb,
546 			unsigned long addr, unsigned long end,
547 			unsigned long floor, unsigned long ceiling)
548 {
549 	pgd_t *pgd;
550 	unsigned long next;
551 
552 	/*
553 	 * The next few lines have given us lots of grief...
554 	 *
555 	 * Why are we testing PMD* at this top level?  Because often
556 	 * there will be no work to do at all, and we'd prefer not to
557 	 * go all the way down to the bottom just to discover that.
558 	 *
559 	 * Why all these "- 1"s?  Because 0 represents both the bottom
560 	 * of the address space and the top of it (using -1 for the
561 	 * top wouldn't help much: the masks would do the wrong thing).
562 	 * The rule is that addr 0 and floor 0 refer to the bottom of
563 	 * the address space, but end 0 and ceiling 0 refer to the top
564 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
565 	 * that end 0 case should be mythical).
566 	 *
567 	 * Wherever addr is brought up or ceiling brought down, we must
568 	 * be careful to reject "the opposite 0" before it confuses the
569 	 * subsequent tests.  But what about where end is brought down
570 	 * by PMD_SIZE below? no, end can't go down to 0 there.
571 	 *
572 	 * Whereas we round start (addr) and ceiling down, by different
573 	 * masks at different levels, in order to test whether a table
574 	 * now has no other vmas using it, so can be freed, we don't
575 	 * bother to round floor or end up - the tests don't need that.
576 	 */
577 
578 	addr &= PMD_MASK;
579 	if (addr < floor) {
580 		addr += PMD_SIZE;
581 		if (!addr)
582 			return;
583 	}
584 	if (ceiling) {
585 		ceiling &= PMD_MASK;
586 		if (!ceiling)
587 			return;
588 	}
589 	if (end - 1 > ceiling - 1)
590 		end -= PMD_SIZE;
591 	if (addr > end - 1)
592 		return;
593 	/*
594 	 * We add page table cache pages with PAGE_SIZE,
595 	 * (see pte_free_tlb()), flush the tlb if we need
596 	 */
597 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
598 	pgd = pgd_offset(tlb->mm, addr);
599 	do {
600 		next = pgd_addr_end(addr, end);
601 		if (pgd_none_or_clear_bad(pgd))
602 			continue;
603 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
604 	} while (pgd++, addr = next, addr != end);
605 }
606 
607 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
608 		unsigned long floor, unsigned long ceiling)
609 {
610 	while (vma) {
611 		struct vm_area_struct *next = vma->vm_next;
612 		unsigned long addr = vma->vm_start;
613 
614 		/*
615 		 * Hide vma from rmap and truncate_pagecache before freeing
616 		 * pgtables
617 		 */
618 		unlink_anon_vmas(vma);
619 		unlink_file_vma(vma);
620 
621 		if (is_vm_hugetlb_page(vma)) {
622 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
623 				floor, next ? next->vm_start : ceiling);
624 		} else {
625 			/*
626 			 * Optimization: gather nearby vmas into one call down
627 			 */
628 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
629 			       && !is_vm_hugetlb_page(next)) {
630 				vma = next;
631 				next = vma->vm_next;
632 				unlink_anon_vmas(vma);
633 				unlink_file_vma(vma);
634 			}
635 			free_pgd_range(tlb, addr, vma->vm_end,
636 				floor, next ? next->vm_start : ceiling);
637 		}
638 		vma = next;
639 	}
640 }
641 
642 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
643 {
644 	spinlock_t *ptl;
645 	pgtable_t new = pte_alloc_one(mm, address);
646 	if (!new)
647 		return -ENOMEM;
648 
649 	/*
650 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
651 	 * visible before the pte is made visible to other CPUs by being
652 	 * put into page tables.
653 	 *
654 	 * The other side of the story is the pointer chasing in the page
655 	 * table walking code (when walking the page table without locking;
656 	 * ie. most of the time). Fortunately, these data accesses consist
657 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
658 	 * being the notable exception) will already guarantee loads are
659 	 * seen in-order. See the alpha page table accessors for the
660 	 * smp_read_barrier_depends() barriers in page table walking code.
661 	 */
662 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
663 
664 	ptl = pmd_lock(mm, pmd);
665 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
666 		atomic_long_inc(&mm->nr_ptes);
667 		pmd_populate(mm, pmd, new);
668 		new = NULL;
669 	}
670 	spin_unlock(ptl);
671 	if (new)
672 		pte_free(mm, new);
673 	return 0;
674 }
675 
676 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
677 {
678 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
679 	if (!new)
680 		return -ENOMEM;
681 
682 	smp_wmb(); /* See comment in __pte_alloc */
683 
684 	spin_lock(&init_mm.page_table_lock);
685 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
686 		pmd_populate_kernel(&init_mm, pmd, new);
687 		new = NULL;
688 	}
689 	spin_unlock(&init_mm.page_table_lock);
690 	if (new)
691 		pte_free_kernel(&init_mm, new);
692 	return 0;
693 }
694 
695 static inline void init_rss_vec(int *rss)
696 {
697 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
698 }
699 
700 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
701 {
702 	int i;
703 
704 	if (current->mm == mm)
705 		sync_mm_rss(mm);
706 	for (i = 0; i < NR_MM_COUNTERS; i++)
707 		if (rss[i])
708 			add_mm_counter(mm, i, rss[i]);
709 }
710 
711 /*
712  * This function is called to print an error when a bad pte
713  * is found. For example, we might have a PFN-mapped pte in
714  * a region that doesn't allow it.
715  *
716  * The calling function must still handle the error.
717  */
718 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
719 			  pte_t pte, struct page *page)
720 {
721 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
722 	p4d_t *p4d = p4d_offset(pgd, addr);
723 	pud_t *pud = pud_offset(p4d, addr);
724 	pmd_t *pmd = pmd_offset(pud, addr);
725 	struct address_space *mapping;
726 	pgoff_t index;
727 	static unsigned long resume;
728 	static unsigned long nr_shown;
729 	static unsigned long nr_unshown;
730 
731 	/*
732 	 * Allow a burst of 60 reports, then keep quiet for that minute;
733 	 * or allow a steady drip of one report per second.
734 	 */
735 	if (nr_shown == 60) {
736 		if (time_before(jiffies, resume)) {
737 			nr_unshown++;
738 			return;
739 		}
740 		if (nr_unshown) {
741 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
742 				 nr_unshown);
743 			nr_unshown = 0;
744 		}
745 		nr_shown = 0;
746 	}
747 	if (nr_shown++ == 0)
748 		resume = jiffies + 60 * HZ;
749 
750 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
751 	index = linear_page_index(vma, addr);
752 
753 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
754 		 current->comm,
755 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
756 	if (page)
757 		dump_page(page, "bad pte");
758 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
759 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
760 	/*
761 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
762 	 */
763 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
764 		 vma->vm_file,
765 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
766 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
767 		 mapping ? mapping->a_ops->readpage : NULL);
768 	dump_stack();
769 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
770 }
771 
772 /*
773  * vm_normal_page -- This function gets the "struct page" associated with a pte.
774  *
775  * "Special" mappings do not wish to be associated with a "struct page" (either
776  * it doesn't exist, or it exists but they don't want to touch it). In this
777  * case, NULL is returned here. "Normal" mappings do have a struct page.
778  *
779  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
780  * pte bit, in which case this function is trivial. Secondly, an architecture
781  * may not have a spare pte bit, which requires a more complicated scheme,
782  * described below.
783  *
784  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
785  * special mapping (even if there are underlying and valid "struct pages").
786  * COWed pages of a VM_PFNMAP are always normal.
787  *
788  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
789  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
790  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
791  * mapping will always honor the rule
792  *
793  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
794  *
795  * And for normal mappings this is false.
796  *
797  * This restricts such mappings to be a linear translation from virtual address
798  * to pfn. To get around this restriction, we allow arbitrary mappings so long
799  * as the vma is not a COW mapping; in that case, we know that all ptes are
800  * special (because none can have been COWed).
801  *
802  *
803  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
804  *
805  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
806  * page" backing, however the difference is that _all_ pages with a struct
807  * page (that is, those where pfn_valid is true) are refcounted and considered
808  * normal pages by the VM. The disadvantage is that pages are refcounted
809  * (which can be slower and simply not an option for some PFNMAP users). The
810  * advantage is that we don't have to follow the strict linearity rule of
811  * PFNMAP mappings in order to support COWable mappings.
812  *
813  */
814 #ifdef __HAVE_ARCH_PTE_SPECIAL
815 # define HAVE_PTE_SPECIAL 1
816 #else
817 # define HAVE_PTE_SPECIAL 0
818 #endif
819 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
820 				pte_t pte)
821 {
822 	unsigned long pfn = pte_pfn(pte);
823 
824 	if (HAVE_PTE_SPECIAL) {
825 		if (likely(!pte_special(pte)))
826 			goto check_pfn;
827 		if (vma->vm_ops && vma->vm_ops->find_special_page)
828 			return vma->vm_ops->find_special_page(vma, addr);
829 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
830 			return NULL;
831 		if (!is_zero_pfn(pfn))
832 			print_bad_pte(vma, addr, pte, NULL);
833 		return NULL;
834 	}
835 
836 	/* !HAVE_PTE_SPECIAL case follows: */
837 
838 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
839 		if (vma->vm_flags & VM_MIXEDMAP) {
840 			if (!pfn_valid(pfn))
841 				return NULL;
842 			goto out;
843 		} else {
844 			unsigned long off;
845 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
846 			if (pfn == vma->vm_pgoff + off)
847 				return NULL;
848 			if (!is_cow_mapping(vma->vm_flags))
849 				return NULL;
850 		}
851 	}
852 
853 	if (is_zero_pfn(pfn))
854 		return NULL;
855 check_pfn:
856 	if (unlikely(pfn > highest_memmap_pfn)) {
857 		print_bad_pte(vma, addr, pte, NULL);
858 		return NULL;
859 	}
860 
861 	/*
862 	 * NOTE! We still have PageReserved() pages in the page tables.
863 	 * eg. VDSO mappings can cause them to exist.
864 	 */
865 out:
866 	return pfn_to_page(pfn);
867 }
868 
869 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
870 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
871 				pmd_t pmd)
872 {
873 	unsigned long pfn = pmd_pfn(pmd);
874 
875 	/*
876 	 * There is no pmd_special() but there may be special pmds, e.g.
877 	 * in a direct-access (dax) mapping, so let's just replicate the
878 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
879 	 */
880 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
881 		if (vma->vm_flags & VM_MIXEDMAP) {
882 			if (!pfn_valid(pfn))
883 				return NULL;
884 			goto out;
885 		} else {
886 			unsigned long off;
887 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
888 			if (pfn == vma->vm_pgoff + off)
889 				return NULL;
890 			if (!is_cow_mapping(vma->vm_flags))
891 				return NULL;
892 		}
893 	}
894 
895 	if (is_zero_pfn(pfn))
896 		return NULL;
897 	if (unlikely(pfn > highest_memmap_pfn))
898 		return NULL;
899 
900 	/*
901 	 * NOTE! We still have PageReserved() pages in the page tables.
902 	 * eg. VDSO mappings can cause them to exist.
903 	 */
904 out:
905 	return pfn_to_page(pfn);
906 }
907 #endif
908 
909 /*
910  * copy one vm_area from one task to the other. Assumes the page tables
911  * already present in the new task to be cleared in the whole range
912  * covered by this vma.
913  */
914 
915 static inline unsigned long
916 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
917 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
918 		unsigned long addr, int *rss)
919 {
920 	unsigned long vm_flags = vma->vm_flags;
921 	pte_t pte = *src_pte;
922 	struct page *page;
923 
924 	/* pte contains position in swap or file, so copy. */
925 	if (unlikely(!pte_present(pte))) {
926 		swp_entry_t entry = pte_to_swp_entry(pte);
927 
928 		if (likely(!non_swap_entry(entry))) {
929 			if (swap_duplicate(entry) < 0)
930 				return entry.val;
931 
932 			/* make sure dst_mm is on swapoff's mmlist. */
933 			if (unlikely(list_empty(&dst_mm->mmlist))) {
934 				spin_lock(&mmlist_lock);
935 				if (list_empty(&dst_mm->mmlist))
936 					list_add(&dst_mm->mmlist,
937 							&src_mm->mmlist);
938 				spin_unlock(&mmlist_lock);
939 			}
940 			rss[MM_SWAPENTS]++;
941 		} else if (is_migration_entry(entry)) {
942 			page = migration_entry_to_page(entry);
943 
944 			rss[mm_counter(page)]++;
945 
946 			if (is_write_migration_entry(entry) &&
947 					is_cow_mapping(vm_flags)) {
948 				/*
949 				 * COW mappings require pages in both
950 				 * parent and child to be set to read.
951 				 */
952 				make_migration_entry_read(&entry);
953 				pte = swp_entry_to_pte(entry);
954 				if (pte_swp_soft_dirty(*src_pte))
955 					pte = pte_swp_mksoft_dirty(pte);
956 				set_pte_at(src_mm, addr, src_pte, pte);
957 			}
958 		}
959 		goto out_set_pte;
960 	}
961 
962 	/*
963 	 * If it's a COW mapping, write protect it both
964 	 * in the parent and the child
965 	 */
966 	if (is_cow_mapping(vm_flags)) {
967 		ptep_set_wrprotect(src_mm, addr, src_pte);
968 		pte = pte_wrprotect(pte);
969 	}
970 
971 	/*
972 	 * If it's a shared mapping, mark it clean in
973 	 * the child
974 	 */
975 	if (vm_flags & VM_SHARED)
976 		pte = pte_mkclean(pte);
977 	pte = pte_mkold(pte);
978 
979 	page = vm_normal_page(vma, addr, pte);
980 	if (page) {
981 		get_page(page);
982 		page_dup_rmap(page, false);
983 		rss[mm_counter(page)]++;
984 	}
985 
986 out_set_pte:
987 	set_pte_at(dst_mm, addr, dst_pte, pte);
988 	return 0;
989 }
990 
991 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
992 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
993 		   unsigned long addr, unsigned long end)
994 {
995 	pte_t *orig_src_pte, *orig_dst_pte;
996 	pte_t *src_pte, *dst_pte;
997 	spinlock_t *src_ptl, *dst_ptl;
998 	int progress = 0;
999 	int rss[NR_MM_COUNTERS];
1000 	swp_entry_t entry = (swp_entry_t){0};
1001 
1002 again:
1003 	init_rss_vec(rss);
1004 
1005 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1006 	if (!dst_pte)
1007 		return -ENOMEM;
1008 	src_pte = pte_offset_map(src_pmd, addr);
1009 	src_ptl = pte_lockptr(src_mm, src_pmd);
1010 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1011 	orig_src_pte = src_pte;
1012 	orig_dst_pte = dst_pte;
1013 	arch_enter_lazy_mmu_mode();
1014 
1015 	do {
1016 		/*
1017 		 * We are holding two locks at this point - either of them
1018 		 * could generate latencies in another task on another CPU.
1019 		 */
1020 		if (progress >= 32) {
1021 			progress = 0;
1022 			if (need_resched() ||
1023 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1024 				break;
1025 		}
1026 		if (pte_none(*src_pte)) {
1027 			progress++;
1028 			continue;
1029 		}
1030 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1031 							vma, addr, rss);
1032 		if (entry.val)
1033 			break;
1034 		progress += 8;
1035 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1036 
1037 	arch_leave_lazy_mmu_mode();
1038 	spin_unlock(src_ptl);
1039 	pte_unmap(orig_src_pte);
1040 	add_mm_rss_vec(dst_mm, rss);
1041 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1042 	cond_resched();
1043 
1044 	if (entry.val) {
1045 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1046 			return -ENOMEM;
1047 		progress = 0;
1048 	}
1049 	if (addr != end)
1050 		goto again;
1051 	return 0;
1052 }
1053 
1054 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1055 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1056 		unsigned long addr, unsigned long end)
1057 {
1058 	pmd_t *src_pmd, *dst_pmd;
1059 	unsigned long next;
1060 
1061 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1062 	if (!dst_pmd)
1063 		return -ENOMEM;
1064 	src_pmd = pmd_offset(src_pud, addr);
1065 	do {
1066 		next = pmd_addr_end(addr, end);
1067 		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1068 			int err;
1069 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1070 			err = copy_huge_pmd(dst_mm, src_mm,
1071 					    dst_pmd, src_pmd, addr, vma);
1072 			if (err == -ENOMEM)
1073 				return -ENOMEM;
1074 			if (!err)
1075 				continue;
1076 			/* fall through */
1077 		}
1078 		if (pmd_none_or_clear_bad(src_pmd))
1079 			continue;
1080 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1081 						vma, addr, next))
1082 			return -ENOMEM;
1083 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1084 	return 0;
1085 }
1086 
1087 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1088 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1089 		unsigned long addr, unsigned long end)
1090 {
1091 	pud_t *src_pud, *dst_pud;
1092 	unsigned long next;
1093 
1094 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1095 	if (!dst_pud)
1096 		return -ENOMEM;
1097 	src_pud = pud_offset(src_p4d, addr);
1098 	do {
1099 		next = pud_addr_end(addr, end);
1100 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1101 			int err;
1102 
1103 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1104 			err = copy_huge_pud(dst_mm, src_mm,
1105 					    dst_pud, src_pud, addr, vma);
1106 			if (err == -ENOMEM)
1107 				return -ENOMEM;
1108 			if (!err)
1109 				continue;
1110 			/* fall through */
1111 		}
1112 		if (pud_none_or_clear_bad(src_pud))
1113 			continue;
1114 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1115 						vma, addr, next))
1116 			return -ENOMEM;
1117 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1118 	return 0;
1119 }
1120 
1121 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1122 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1123 		unsigned long addr, unsigned long end)
1124 {
1125 	p4d_t *src_p4d, *dst_p4d;
1126 	unsigned long next;
1127 
1128 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1129 	if (!dst_p4d)
1130 		return -ENOMEM;
1131 	src_p4d = p4d_offset(src_pgd, addr);
1132 	do {
1133 		next = p4d_addr_end(addr, end);
1134 		if (p4d_none_or_clear_bad(src_p4d))
1135 			continue;
1136 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1137 						vma, addr, next))
1138 			return -ENOMEM;
1139 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1140 	return 0;
1141 }
1142 
1143 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1144 		struct vm_area_struct *vma)
1145 {
1146 	pgd_t *src_pgd, *dst_pgd;
1147 	unsigned long next;
1148 	unsigned long addr = vma->vm_start;
1149 	unsigned long end = vma->vm_end;
1150 	unsigned long mmun_start;	/* For mmu_notifiers */
1151 	unsigned long mmun_end;		/* For mmu_notifiers */
1152 	bool is_cow;
1153 	int ret;
1154 
1155 	/*
1156 	 * Don't copy ptes where a page fault will fill them correctly.
1157 	 * Fork becomes much lighter when there are big shared or private
1158 	 * readonly mappings. The tradeoff is that copy_page_range is more
1159 	 * efficient than faulting.
1160 	 */
1161 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1162 			!vma->anon_vma)
1163 		return 0;
1164 
1165 	if (is_vm_hugetlb_page(vma))
1166 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1167 
1168 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1169 		/*
1170 		 * We do not free on error cases below as remove_vma
1171 		 * gets called on error from higher level routine
1172 		 */
1173 		ret = track_pfn_copy(vma);
1174 		if (ret)
1175 			return ret;
1176 	}
1177 
1178 	/*
1179 	 * We need to invalidate the secondary MMU mappings only when
1180 	 * there could be a permission downgrade on the ptes of the
1181 	 * parent mm. And a permission downgrade will only happen if
1182 	 * is_cow_mapping() returns true.
1183 	 */
1184 	is_cow = is_cow_mapping(vma->vm_flags);
1185 	mmun_start = addr;
1186 	mmun_end   = end;
1187 	if (is_cow)
1188 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1189 						    mmun_end);
1190 
1191 	ret = 0;
1192 	dst_pgd = pgd_offset(dst_mm, addr);
1193 	src_pgd = pgd_offset(src_mm, addr);
1194 	do {
1195 		next = pgd_addr_end(addr, end);
1196 		if (pgd_none_or_clear_bad(src_pgd))
1197 			continue;
1198 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1199 					    vma, addr, next))) {
1200 			ret = -ENOMEM;
1201 			break;
1202 		}
1203 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1204 
1205 	if (is_cow)
1206 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1207 	return ret;
1208 }
1209 
1210 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1211 				struct vm_area_struct *vma, pmd_t *pmd,
1212 				unsigned long addr, unsigned long end,
1213 				struct zap_details *details)
1214 {
1215 	struct mm_struct *mm = tlb->mm;
1216 	int force_flush = 0;
1217 	int rss[NR_MM_COUNTERS];
1218 	spinlock_t *ptl;
1219 	pte_t *start_pte;
1220 	pte_t *pte;
1221 	swp_entry_t entry;
1222 
1223 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1224 again:
1225 	init_rss_vec(rss);
1226 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1227 	pte = start_pte;
1228 	flush_tlb_batched_pending(mm);
1229 	arch_enter_lazy_mmu_mode();
1230 	do {
1231 		pte_t ptent = *pte;
1232 		if (pte_none(ptent))
1233 			continue;
1234 
1235 		if (pte_present(ptent)) {
1236 			struct page *page;
1237 
1238 			page = vm_normal_page(vma, addr, ptent);
1239 			if (unlikely(details) && page) {
1240 				/*
1241 				 * unmap_shared_mapping_pages() wants to
1242 				 * invalidate cache without truncating:
1243 				 * unmap shared but keep private pages.
1244 				 */
1245 				if (details->check_mapping &&
1246 				    details->check_mapping != page_rmapping(page))
1247 					continue;
1248 			}
1249 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1250 							tlb->fullmm);
1251 			tlb_remove_tlb_entry(tlb, pte, addr);
1252 			if (unlikely(!page))
1253 				continue;
1254 
1255 			if (!PageAnon(page)) {
1256 				if (pte_dirty(ptent)) {
1257 					force_flush = 1;
1258 					set_page_dirty(page);
1259 				}
1260 				if (pte_young(ptent) &&
1261 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1262 					mark_page_accessed(page);
1263 			}
1264 			rss[mm_counter(page)]--;
1265 			page_remove_rmap(page, false);
1266 			if (unlikely(page_mapcount(page) < 0))
1267 				print_bad_pte(vma, addr, ptent, page);
1268 			if (unlikely(__tlb_remove_page(tlb, page))) {
1269 				force_flush = 1;
1270 				addr += PAGE_SIZE;
1271 				break;
1272 			}
1273 			continue;
1274 		}
1275 		/* If details->check_mapping, we leave swap entries. */
1276 		if (unlikely(details))
1277 			continue;
1278 
1279 		entry = pte_to_swp_entry(ptent);
1280 		if (!non_swap_entry(entry))
1281 			rss[MM_SWAPENTS]--;
1282 		else if (is_migration_entry(entry)) {
1283 			struct page *page;
1284 
1285 			page = migration_entry_to_page(entry);
1286 			rss[mm_counter(page)]--;
1287 		}
1288 		if (unlikely(!free_swap_and_cache(entry)))
1289 			print_bad_pte(vma, addr, ptent, NULL);
1290 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1291 	} while (pte++, addr += PAGE_SIZE, addr != end);
1292 
1293 	add_mm_rss_vec(mm, rss);
1294 	arch_leave_lazy_mmu_mode();
1295 
1296 	/* Do the actual TLB flush before dropping ptl */
1297 	if (force_flush)
1298 		tlb_flush_mmu_tlbonly(tlb);
1299 	pte_unmap_unlock(start_pte, ptl);
1300 
1301 	/*
1302 	 * If we forced a TLB flush (either due to running out of
1303 	 * batch buffers or because we needed to flush dirty TLB
1304 	 * entries before releasing the ptl), free the batched
1305 	 * memory too. Restart if we didn't do everything.
1306 	 */
1307 	if (force_flush) {
1308 		force_flush = 0;
1309 		tlb_flush_mmu_free(tlb);
1310 		if (addr != end)
1311 			goto again;
1312 	}
1313 
1314 	return addr;
1315 }
1316 
1317 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1318 				struct vm_area_struct *vma, pud_t *pud,
1319 				unsigned long addr, unsigned long end,
1320 				struct zap_details *details)
1321 {
1322 	pmd_t *pmd;
1323 	unsigned long next;
1324 
1325 	pmd = pmd_offset(pud, addr);
1326 	do {
1327 		next = pmd_addr_end(addr, end);
1328 		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1329 			if (next - addr != HPAGE_PMD_SIZE) {
1330 				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1331 				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1332 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1333 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1334 				goto next;
1335 			/* fall through */
1336 		}
1337 		/*
1338 		 * Here there can be other concurrent MADV_DONTNEED or
1339 		 * trans huge page faults running, and if the pmd is
1340 		 * none or trans huge it can change under us. This is
1341 		 * because MADV_DONTNEED holds the mmap_sem in read
1342 		 * mode.
1343 		 */
1344 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1345 			goto next;
1346 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1347 next:
1348 		cond_resched();
1349 	} while (pmd++, addr = next, addr != end);
1350 
1351 	return addr;
1352 }
1353 
1354 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1355 				struct vm_area_struct *vma, p4d_t *p4d,
1356 				unsigned long addr, unsigned long end,
1357 				struct zap_details *details)
1358 {
1359 	pud_t *pud;
1360 	unsigned long next;
1361 
1362 	pud = pud_offset(p4d, addr);
1363 	do {
1364 		next = pud_addr_end(addr, end);
1365 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1366 			if (next - addr != HPAGE_PUD_SIZE) {
1367 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1368 				split_huge_pud(vma, pud, addr);
1369 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1370 				goto next;
1371 			/* fall through */
1372 		}
1373 		if (pud_none_or_clear_bad(pud))
1374 			continue;
1375 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1376 next:
1377 		cond_resched();
1378 	} while (pud++, addr = next, addr != end);
1379 
1380 	return addr;
1381 }
1382 
1383 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1384 				struct vm_area_struct *vma, pgd_t *pgd,
1385 				unsigned long addr, unsigned long end,
1386 				struct zap_details *details)
1387 {
1388 	p4d_t *p4d;
1389 	unsigned long next;
1390 
1391 	p4d = p4d_offset(pgd, addr);
1392 	do {
1393 		next = p4d_addr_end(addr, end);
1394 		if (p4d_none_or_clear_bad(p4d))
1395 			continue;
1396 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1397 	} while (p4d++, addr = next, addr != end);
1398 
1399 	return addr;
1400 }
1401 
1402 void unmap_page_range(struct mmu_gather *tlb,
1403 			     struct vm_area_struct *vma,
1404 			     unsigned long addr, unsigned long end,
1405 			     struct zap_details *details)
1406 {
1407 	pgd_t *pgd;
1408 	unsigned long next;
1409 
1410 	BUG_ON(addr >= end);
1411 	tlb_start_vma(tlb, vma);
1412 	pgd = pgd_offset(vma->vm_mm, addr);
1413 	do {
1414 		next = pgd_addr_end(addr, end);
1415 		if (pgd_none_or_clear_bad(pgd))
1416 			continue;
1417 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1418 	} while (pgd++, addr = next, addr != end);
1419 	tlb_end_vma(tlb, vma);
1420 }
1421 
1422 
1423 static void unmap_single_vma(struct mmu_gather *tlb,
1424 		struct vm_area_struct *vma, unsigned long start_addr,
1425 		unsigned long end_addr,
1426 		struct zap_details *details)
1427 {
1428 	unsigned long start = max(vma->vm_start, start_addr);
1429 	unsigned long end;
1430 
1431 	if (start >= vma->vm_end)
1432 		return;
1433 	end = min(vma->vm_end, end_addr);
1434 	if (end <= vma->vm_start)
1435 		return;
1436 
1437 	if (vma->vm_file)
1438 		uprobe_munmap(vma, start, end);
1439 
1440 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1441 		untrack_pfn(vma, 0, 0);
1442 
1443 	if (start != end) {
1444 		if (unlikely(is_vm_hugetlb_page(vma))) {
1445 			/*
1446 			 * It is undesirable to test vma->vm_file as it
1447 			 * should be non-null for valid hugetlb area.
1448 			 * However, vm_file will be NULL in the error
1449 			 * cleanup path of mmap_region. When
1450 			 * hugetlbfs ->mmap method fails,
1451 			 * mmap_region() nullifies vma->vm_file
1452 			 * before calling this function to clean up.
1453 			 * Since no pte has actually been setup, it is
1454 			 * safe to do nothing in this case.
1455 			 */
1456 			if (vma->vm_file) {
1457 				i_mmap_lock_write(vma->vm_file->f_mapping);
1458 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1459 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1460 			}
1461 		} else
1462 			unmap_page_range(tlb, vma, start, end, details);
1463 	}
1464 }
1465 
1466 /**
1467  * unmap_vmas - unmap a range of memory covered by a list of vma's
1468  * @tlb: address of the caller's struct mmu_gather
1469  * @vma: the starting vma
1470  * @start_addr: virtual address at which to start unmapping
1471  * @end_addr: virtual address at which to end unmapping
1472  *
1473  * Unmap all pages in the vma list.
1474  *
1475  * Only addresses between `start' and `end' will be unmapped.
1476  *
1477  * The VMA list must be sorted in ascending virtual address order.
1478  *
1479  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1480  * range after unmap_vmas() returns.  So the only responsibility here is to
1481  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1482  * drops the lock and schedules.
1483  */
1484 void unmap_vmas(struct mmu_gather *tlb,
1485 		struct vm_area_struct *vma, unsigned long start_addr,
1486 		unsigned long end_addr)
1487 {
1488 	struct mm_struct *mm = vma->vm_mm;
1489 
1490 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1491 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1492 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1493 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1494 }
1495 
1496 /**
1497  * zap_page_range - remove user pages in a given range
1498  * @vma: vm_area_struct holding the applicable pages
1499  * @start: starting address of pages to zap
1500  * @size: number of bytes to zap
1501  *
1502  * Caller must protect the VMA list
1503  */
1504 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1505 		unsigned long size)
1506 {
1507 	struct mm_struct *mm = vma->vm_mm;
1508 	struct mmu_gather tlb;
1509 	unsigned long end = start + size;
1510 
1511 	lru_add_drain();
1512 	tlb_gather_mmu(&tlb, mm, start, end);
1513 	update_hiwater_rss(mm);
1514 	mmu_notifier_invalidate_range_start(mm, start, end);
1515 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1516 		unmap_single_vma(&tlb, vma, start, end, NULL);
1517 	mmu_notifier_invalidate_range_end(mm, start, end);
1518 	tlb_finish_mmu(&tlb, start, end);
1519 }
1520 
1521 /**
1522  * zap_page_range_single - remove user pages in a given range
1523  * @vma: vm_area_struct holding the applicable pages
1524  * @address: starting address of pages to zap
1525  * @size: number of bytes to zap
1526  * @details: details of shared cache invalidation
1527  *
1528  * The range must fit into one VMA.
1529  */
1530 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1531 		unsigned long size, struct zap_details *details)
1532 {
1533 	struct mm_struct *mm = vma->vm_mm;
1534 	struct mmu_gather tlb;
1535 	unsigned long end = address + size;
1536 
1537 	lru_add_drain();
1538 	tlb_gather_mmu(&tlb, mm, address, end);
1539 	update_hiwater_rss(mm);
1540 	mmu_notifier_invalidate_range_start(mm, address, end);
1541 	unmap_single_vma(&tlb, vma, address, end, details);
1542 	mmu_notifier_invalidate_range_end(mm, address, end);
1543 	tlb_finish_mmu(&tlb, address, end);
1544 }
1545 
1546 /**
1547  * zap_vma_ptes - remove ptes mapping the vma
1548  * @vma: vm_area_struct holding ptes to be zapped
1549  * @address: starting address of pages to zap
1550  * @size: number of bytes to zap
1551  *
1552  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1553  *
1554  * The entire address range must be fully contained within the vma.
1555  *
1556  * Returns 0 if successful.
1557  */
1558 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1559 		unsigned long size)
1560 {
1561 	if (address < vma->vm_start || address + size > vma->vm_end ||
1562 	    		!(vma->vm_flags & VM_PFNMAP))
1563 		return -1;
1564 	zap_page_range_single(vma, address, size, NULL);
1565 	return 0;
1566 }
1567 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1568 
1569 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1570 			spinlock_t **ptl)
1571 {
1572 	pgd_t *pgd;
1573 	p4d_t *p4d;
1574 	pud_t *pud;
1575 	pmd_t *pmd;
1576 
1577 	pgd = pgd_offset(mm, addr);
1578 	p4d = p4d_alloc(mm, pgd, addr);
1579 	if (!p4d)
1580 		return NULL;
1581 	pud = pud_alloc(mm, p4d, addr);
1582 	if (!pud)
1583 		return NULL;
1584 	pmd = pmd_alloc(mm, pud, addr);
1585 	if (!pmd)
1586 		return NULL;
1587 
1588 	VM_BUG_ON(pmd_trans_huge(*pmd));
1589 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1590 }
1591 
1592 /*
1593  * This is the old fallback for page remapping.
1594  *
1595  * For historical reasons, it only allows reserved pages. Only
1596  * old drivers should use this, and they needed to mark their
1597  * pages reserved for the old functions anyway.
1598  */
1599 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1600 			struct page *page, pgprot_t prot)
1601 {
1602 	struct mm_struct *mm = vma->vm_mm;
1603 	int retval;
1604 	pte_t *pte;
1605 	spinlock_t *ptl;
1606 
1607 	retval = -EINVAL;
1608 	if (PageAnon(page))
1609 		goto out;
1610 	retval = -ENOMEM;
1611 	flush_dcache_page(page);
1612 	pte = get_locked_pte(mm, addr, &ptl);
1613 	if (!pte)
1614 		goto out;
1615 	retval = -EBUSY;
1616 	if (!pte_none(*pte))
1617 		goto out_unlock;
1618 
1619 	/* Ok, finally just insert the thing.. */
1620 	get_page(page);
1621 	inc_mm_counter_fast(mm, mm_counter_file(page));
1622 	page_add_file_rmap(page, false);
1623 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1624 
1625 	retval = 0;
1626 	pte_unmap_unlock(pte, ptl);
1627 	return retval;
1628 out_unlock:
1629 	pte_unmap_unlock(pte, ptl);
1630 out:
1631 	return retval;
1632 }
1633 
1634 /**
1635  * vm_insert_page - insert single page into user vma
1636  * @vma: user vma to map to
1637  * @addr: target user address of this page
1638  * @page: source kernel page
1639  *
1640  * This allows drivers to insert individual pages they've allocated
1641  * into a user vma.
1642  *
1643  * The page has to be a nice clean _individual_ kernel allocation.
1644  * If you allocate a compound page, you need to have marked it as
1645  * such (__GFP_COMP), or manually just split the page up yourself
1646  * (see split_page()).
1647  *
1648  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1649  * took an arbitrary page protection parameter. This doesn't allow
1650  * that. Your vma protection will have to be set up correctly, which
1651  * means that if you want a shared writable mapping, you'd better
1652  * ask for a shared writable mapping!
1653  *
1654  * The page does not need to be reserved.
1655  *
1656  * Usually this function is called from f_op->mmap() handler
1657  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1658  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1659  * function from other places, for example from page-fault handler.
1660  */
1661 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1662 			struct page *page)
1663 {
1664 	if (addr < vma->vm_start || addr >= vma->vm_end)
1665 		return -EFAULT;
1666 	if (!page_count(page))
1667 		return -EINVAL;
1668 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1669 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1670 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1671 		vma->vm_flags |= VM_MIXEDMAP;
1672 	}
1673 	return insert_page(vma, addr, page, vma->vm_page_prot);
1674 }
1675 EXPORT_SYMBOL(vm_insert_page);
1676 
1677 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1678 			pfn_t pfn, pgprot_t prot)
1679 {
1680 	struct mm_struct *mm = vma->vm_mm;
1681 	int retval;
1682 	pte_t *pte, entry;
1683 	spinlock_t *ptl;
1684 
1685 	retval = -ENOMEM;
1686 	pte = get_locked_pte(mm, addr, &ptl);
1687 	if (!pte)
1688 		goto out;
1689 	retval = -EBUSY;
1690 	if (!pte_none(*pte))
1691 		goto out_unlock;
1692 
1693 	/* Ok, finally just insert the thing.. */
1694 	if (pfn_t_devmap(pfn))
1695 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1696 	else
1697 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1698 	set_pte_at(mm, addr, pte, entry);
1699 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1700 
1701 	retval = 0;
1702 out_unlock:
1703 	pte_unmap_unlock(pte, ptl);
1704 out:
1705 	return retval;
1706 }
1707 
1708 /**
1709  * vm_insert_pfn - insert single pfn into user vma
1710  * @vma: user vma to map to
1711  * @addr: target user address of this page
1712  * @pfn: source kernel pfn
1713  *
1714  * Similar to vm_insert_page, this allows drivers to insert individual pages
1715  * they've allocated into a user vma. Same comments apply.
1716  *
1717  * This function should only be called from a vm_ops->fault handler, and
1718  * in that case the handler should return NULL.
1719  *
1720  * vma cannot be a COW mapping.
1721  *
1722  * As this is called only for pages that do not currently exist, we
1723  * do not need to flush old virtual caches or the TLB.
1724  */
1725 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1726 			unsigned long pfn)
1727 {
1728 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1729 }
1730 EXPORT_SYMBOL(vm_insert_pfn);
1731 
1732 /**
1733  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1734  * @vma: user vma to map to
1735  * @addr: target user address of this page
1736  * @pfn: source kernel pfn
1737  * @pgprot: pgprot flags for the inserted page
1738  *
1739  * This is exactly like vm_insert_pfn, except that it allows drivers to
1740  * to override pgprot on a per-page basis.
1741  *
1742  * This only makes sense for IO mappings, and it makes no sense for
1743  * cow mappings.  In general, using multiple vmas is preferable;
1744  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1745  * impractical.
1746  */
1747 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1748 			unsigned long pfn, pgprot_t pgprot)
1749 {
1750 	int ret;
1751 	/*
1752 	 * Technically, architectures with pte_special can avoid all these
1753 	 * restrictions (same for remap_pfn_range).  However we would like
1754 	 * consistency in testing and feature parity among all, so we should
1755 	 * try to keep these invariants in place for everybody.
1756 	 */
1757 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1758 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1759 						(VM_PFNMAP|VM_MIXEDMAP));
1760 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1761 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1762 
1763 	if (addr < vma->vm_start || addr >= vma->vm_end)
1764 		return -EFAULT;
1765 
1766 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1767 
1768 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1769 
1770 	return ret;
1771 }
1772 EXPORT_SYMBOL(vm_insert_pfn_prot);
1773 
1774 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1775 			pfn_t pfn)
1776 {
1777 	pgprot_t pgprot = vma->vm_page_prot;
1778 
1779 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1780 
1781 	if (addr < vma->vm_start || addr >= vma->vm_end)
1782 		return -EFAULT;
1783 
1784 	track_pfn_insert(vma, &pgprot, pfn);
1785 
1786 	/*
1787 	 * If we don't have pte special, then we have to use the pfn_valid()
1788 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1789 	 * refcount the page if pfn_valid is true (hence insert_page rather
1790 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1791 	 * without pte special, it would there be refcounted as a normal page.
1792 	 */
1793 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1794 		struct page *page;
1795 
1796 		/*
1797 		 * At this point we are committed to insert_page()
1798 		 * regardless of whether the caller specified flags that
1799 		 * result in pfn_t_has_page() == false.
1800 		 */
1801 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1802 		return insert_page(vma, addr, page, pgprot);
1803 	}
1804 	return insert_pfn(vma, addr, pfn, pgprot);
1805 }
1806 EXPORT_SYMBOL(vm_insert_mixed);
1807 
1808 /*
1809  * maps a range of physical memory into the requested pages. the old
1810  * mappings are removed. any references to nonexistent pages results
1811  * in null mappings (currently treated as "copy-on-access")
1812  */
1813 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1814 			unsigned long addr, unsigned long end,
1815 			unsigned long pfn, pgprot_t prot)
1816 {
1817 	pte_t *pte;
1818 	spinlock_t *ptl;
1819 
1820 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1821 	if (!pte)
1822 		return -ENOMEM;
1823 	arch_enter_lazy_mmu_mode();
1824 	do {
1825 		BUG_ON(!pte_none(*pte));
1826 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1827 		pfn++;
1828 	} while (pte++, addr += PAGE_SIZE, addr != end);
1829 	arch_leave_lazy_mmu_mode();
1830 	pte_unmap_unlock(pte - 1, ptl);
1831 	return 0;
1832 }
1833 
1834 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1835 			unsigned long addr, unsigned long end,
1836 			unsigned long pfn, pgprot_t prot)
1837 {
1838 	pmd_t *pmd;
1839 	unsigned long next;
1840 
1841 	pfn -= addr >> PAGE_SHIFT;
1842 	pmd = pmd_alloc(mm, pud, addr);
1843 	if (!pmd)
1844 		return -ENOMEM;
1845 	VM_BUG_ON(pmd_trans_huge(*pmd));
1846 	do {
1847 		next = pmd_addr_end(addr, end);
1848 		if (remap_pte_range(mm, pmd, addr, next,
1849 				pfn + (addr >> PAGE_SHIFT), prot))
1850 			return -ENOMEM;
1851 	} while (pmd++, addr = next, addr != end);
1852 	return 0;
1853 }
1854 
1855 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1856 			unsigned long addr, unsigned long end,
1857 			unsigned long pfn, pgprot_t prot)
1858 {
1859 	pud_t *pud;
1860 	unsigned long next;
1861 
1862 	pfn -= addr >> PAGE_SHIFT;
1863 	pud = pud_alloc(mm, p4d, addr);
1864 	if (!pud)
1865 		return -ENOMEM;
1866 	do {
1867 		next = pud_addr_end(addr, end);
1868 		if (remap_pmd_range(mm, pud, addr, next,
1869 				pfn + (addr >> PAGE_SHIFT), prot))
1870 			return -ENOMEM;
1871 	} while (pud++, addr = next, addr != end);
1872 	return 0;
1873 }
1874 
1875 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1876 			unsigned long addr, unsigned long end,
1877 			unsigned long pfn, pgprot_t prot)
1878 {
1879 	p4d_t *p4d;
1880 	unsigned long next;
1881 
1882 	pfn -= addr >> PAGE_SHIFT;
1883 	p4d = p4d_alloc(mm, pgd, addr);
1884 	if (!p4d)
1885 		return -ENOMEM;
1886 	do {
1887 		next = p4d_addr_end(addr, end);
1888 		if (remap_pud_range(mm, p4d, addr, next,
1889 				pfn + (addr >> PAGE_SHIFT), prot))
1890 			return -ENOMEM;
1891 	} while (p4d++, addr = next, addr != end);
1892 	return 0;
1893 }
1894 
1895 /**
1896  * remap_pfn_range - remap kernel memory to userspace
1897  * @vma: user vma to map to
1898  * @addr: target user address to start at
1899  * @pfn: physical address of kernel memory
1900  * @size: size of map area
1901  * @prot: page protection flags for this mapping
1902  *
1903  *  Note: this is only safe if the mm semaphore is held when called.
1904  */
1905 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1906 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1907 {
1908 	pgd_t *pgd;
1909 	unsigned long next;
1910 	unsigned long end = addr + PAGE_ALIGN(size);
1911 	struct mm_struct *mm = vma->vm_mm;
1912 	unsigned long remap_pfn = pfn;
1913 	int err;
1914 
1915 	/*
1916 	 * Physically remapped pages are special. Tell the
1917 	 * rest of the world about it:
1918 	 *   VM_IO tells people not to look at these pages
1919 	 *	(accesses can have side effects).
1920 	 *   VM_PFNMAP tells the core MM that the base pages are just
1921 	 *	raw PFN mappings, and do not have a "struct page" associated
1922 	 *	with them.
1923 	 *   VM_DONTEXPAND
1924 	 *      Disable vma merging and expanding with mremap().
1925 	 *   VM_DONTDUMP
1926 	 *      Omit vma from core dump, even when VM_IO turned off.
1927 	 *
1928 	 * There's a horrible special case to handle copy-on-write
1929 	 * behaviour that some programs depend on. We mark the "original"
1930 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1931 	 * See vm_normal_page() for details.
1932 	 */
1933 	if (is_cow_mapping(vma->vm_flags)) {
1934 		if (addr != vma->vm_start || end != vma->vm_end)
1935 			return -EINVAL;
1936 		vma->vm_pgoff = pfn;
1937 	}
1938 
1939 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1940 	if (err)
1941 		return -EINVAL;
1942 
1943 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1944 
1945 	BUG_ON(addr >= end);
1946 	pfn -= addr >> PAGE_SHIFT;
1947 	pgd = pgd_offset(mm, addr);
1948 	flush_cache_range(vma, addr, end);
1949 	do {
1950 		next = pgd_addr_end(addr, end);
1951 		err = remap_p4d_range(mm, pgd, addr, next,
1952 				pfn + (addr >> PAGE_SHIFT), prot);
1953 		if (err)
1954 			break;
1955 	} while (pgd++, addr = next, addr != end);
1956 
1957 	if (err)
1958 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1959 
1960 	return err;
1961 }
1962 EXPORT_SYMBOL(remap_pfn_range);
1963 
1964 /**
1965  * vm_iomap_memory - remap memory to userspace
1966  * @vma: user vma to map to
1967  * @start: start of area
1968  * @len: size of area
1969  *
1970  * This is a simplified io_remap_pfn_range() for common driver use. The
1971  * driver just needs to give us the physical memory range to be mapped,
1972  * we'll figure out the rest from the vma information.
1973  *
1974  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1975  * whatever write-combining details or similar.
1976  */
1977 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1978 {
1979 	unsigned long vm_len, pfn, pages;
1980 
1981 	/* Check that the physical memory area passed in looks valid */
1982 	if (start + len < start)
1983 		return -EINVAL;
1984 	/*
1985 	 * You *really* shouldn't map things that aren't page-aligned,
1986 	 * but we've historically allowed it because IO memory might
1987 	 * just have smaller alignment.
1988 	 */
1989 	len += start & ~PAGE_MASK;
1990 	pfn = start >> PAGE_SHIFT;
1991 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1992 	if (pfn + pages < pfn)
1993 		return -EINVAL;
1994 
1995 	/* We start the mapping 'vm_pgoff' pages into the area */
1996 	if (vma->vm_pgoff > pages)
1997 		return -EINVAL;
1998 	pfn += vma->vm_pgoff;
1999 	pages -= vma->vm_pgoff;
2000 
2001 	/* Can we fit all of the mapping? */
2002 	vm_len = vma->vm_end - vma->vm_start;
2003 	if (vm_len >> PAGE_SHIFT > pages)
2004 		return -EINVAL;
2005 
2006 	/* Ok, let it rip */
2007 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2008 }
2009 EXPORT_SYMBOL(vm_iomap_memory);
2010 
2011 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2012 				     unsigned long addr, unsigned long end,
2013 				     pte_fn_t fn, void *data)
2014 {
2015 	pte_t *pte;
2016 	int err;
2017 	pgtable_t token;
2018 	spinlock_t *uninitialized_var(ptl);
2019 
2020 	pte = (mm == &init_mm) ?
2021 		pte_alloc_kernel(pmd, addr) :
2022 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2023 	if (!pte)
2024 		return -ENOMEM;
2025 
2026 	BUG_ON(pmd_huge(*pmd));
2027 
2028 	arch_enter_lazy_mmu_mode();
2029 
2030 	token = pmd_pgtable(*pmd);
2031 
2032 	do {
2033 		err = fn(pte++, token, addr, data);
2034 		if (err)
2035 			break;
2036 	} while (addr += PAGE_SIZE, addr != end);
2037 
2038 	arch_leave_lazy_mmu_mode();
2039 
2040 	if (mm != &init_mm)
2041 		pte_unmap_unlock(pte-1, ptl);
2042 	return err;
2043 }
2044 
2045 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2046 				     unsigned long addr, unsigned long end,
2047 				     pte_fn_t fn, void *data)
2048 {
2049 	pmd_t *pmd;
2050 	unsigned long next;
2051 	int err;
2052 
2053 	BUG_ON(pud_huge(*pud));
2054 
2055 	pmd = pmd_alloc(mm, pud, addr);
2056 	if (!pmd)
2057 		return -ENOMEM;
2058 	do {
2059 		next = pmd_addr_end(addr, end);
2060 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2061 		if (err)
2062 			break;
2063 	} while (pmd++, addr = next, addr != end);
2064 	return err;
2065 }
2066 
2067 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2068 				     unsigned long addr, unsigned long end,
2069 				     pte_fn_t fn, void *data)
2070 {
2071 	pud_t *pud;
2072 	unsigned long next;
2073 	int err;
2074 
2075 	pud = pud_alloc(mm, p4d, addr);
2076 	if (!pud)
2077 		return -ENOMEM;
2078 	do {
2079 		next = pud_addr_end(addr, end);
2080 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2081 		if (err)
2082 			break;
2083 	} while (pud++, addr = next, addr != end);
2084 	return err;
2085 }
2086 
2087 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2088 				     unsigned long addr, unsigned long end,
2089 				     pte_fn_t fn, void *data)
2090 {
2091 	p4d_t *p4d;
2092 	unsigned long next;
2093 	int err;
2094 
2095 	p4d = p4d_alloc(mm, pgd, addr);
2096 	if (!p4d)
2097 		return -ENOMEM;
2098 	do {
2099 		next = p4d_addr_end(addr, end);
2100 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2101 		if (err)
2102 			break;
2103 	} while (p4d++, addr = next, addr != end);
2104 	return err;
2105 }
2106 
2107 /*
2108  * Scan a region of virtual memory, filling in page tables as necessary
2109  * and calling a provided function on each leaf page table.
2110  */
2111 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2112 			unsigned long size, pte_fn_t fn, void *data)
2113 {
2114 	pgd_t *pgd;
2115 	unsigned long next;
2116 	unsigned long end = addr + size;
2117 	int err;
2118 
2119 	if (WARN_ON(addr >= end))
2120 		return -EINVAL;
2121 
2122 	pgd = pgd_offset(mm, addr);
2123 	do {
2124 		next = pgd_addr_end(addr, end);
2125 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2126 		if (err)
2127 			break;
2128 	} while (pgd++, addr = next, addr != end);
2129 
2130 	return err;
2131 }
2132 EXPORT_SYMBOL_GPL(apply_to_page_range);
2133 
2134 /*
2135  * handle_pte_fault chooses page fault handler according to an entry which was
2136  * read non-atomically.  Before making any commitment, on those architectures
2137  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2138  * parts, do_swap_page must check under lock before unmapping the pte and
2139  * proceeding (but do_wp_page is only called after already making such a check;
2140  * and do_anonymous_page can safely check later on).
2141  */
2142 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2143 				pte_t *page_table, pte_t orig_pte)
2144 {
2145 	int same = 1;
2146 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2147 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2148 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2149 		spin_lock(ptl);
2150 		same = pte_same(*page_table, orig_pte);
2151 		spin_unlock(ptl);
2152 	}
2153 #endif
2154 	pte_unmap(page_table);
2155 	return same;
2156 }
2157 
2158 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2159 {
2160 	debug_dma_assert_idle(src);
2161 
2162 	/*
2163 	 * If the source page was a PFN mapping, we don't have
2164 	 * a "struct page" for it. We do a best-effort copy by
2165 	 * just copying from the original user address. If that
2166 	 * fails, we just zero-fill it. Live with it.
2167 	 */
2168 	if (unlikely(!src)) {
2169 		void *kaddr = kmap_atomic(dst);
2170 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2171 
2172 		/*
2173 		 * This really shouldn't fail, because the page is there
2174 		 * in the page tables. But it might just be unreadable,
2175 		 * in which case we just give up and fill the result with
2176 		 * zeroes.
2177 		 */
2178 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2179 			clear_page(kaddr);
2180 		kunmap_atomic(kaddr);
2181 		flush_dcache_page(dst);
2182 	} else
2183 		copy_user_highpage(dst, src, va, vma);
2184 }
2185 
2186 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2187 {
2188 	struct file *vm_file = vma->vm_file;
2189 
2190 	if (vm_file)
2191 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2192 
2193 	/*
2194 	 * Special mappings (e.g. VDSO) do not have any file so fake
2195 	 * a default GFP_KERNEL for them.
2196 	 */
2197 	return GFP_KERNEL;
2198 }
2199 
2200 /*
2201  * Notify the address space that the page is about to become writable so that
2202  * it can prohibit this or wait for the page to get into an appropriate state.
2203  *
2204  * We do this without the lock held, so that it can sleep if it needs to.
2205  */
2206 static int do_page_mkwrite(struct vm_fault *vmf)
2207 {
2208 	int ret;
2209 	struct page *page = vmf->page;
2210 	unsigned int old_flags = vmf->flags;
2211 
2212 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2213 
2214 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2215 	/* Restore original flags so that caller is not surprised */
2216 	vmf->flags = old_flags;
2217 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2218 		return ret;
2219 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2220 		lock_page(page);
2221 		if (!page->mapping) {
2222 			unlock_page(page);
2223 			return 0; /* retry */
2224 		}
2225 		ret |= VM_FAULT_LOCKED;
2226 	} else
2227 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2228 	return ret;
2229 }
2230 
2231 /*
2232  * Handle dirtying of a page in shared file mapping on a write fault.
2233  *
2234  * The function expects the page to be locked and unlocks it.
2235  */
2236 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2237 				    struct page *page)
2238 {
2239 	struct address_space *mapping;
2240 	bool dirtied;
2241 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2242 
2243 	dirtied = set_page_dirty(page);
2244 	VM_BUG_ON_PAGE(PageAnon(page), page);
2245 	/*
2246 	 * Take a local copy of the address_space - page.mapping may be zeroed
2247 	 * by truncate after unlock_page().   The address_space itself remains
2248 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2249 	 * release semantics to prevent the compiler from undoing this copying.
2250 	 */
2251 	mapping = page_rmapping(page);
2252 	unlock_page(page);
2253 
2254 	if ((dirtied || page_mkwrite) && mapping) {
2255 		/*
2256 		 * Some device drivers do not set page.mapping
2257 		 * but still dirty their pages
2258 		 */
2259 		balance_dirty_pages_ratelimited(mapping);
2260 	}
2261 
2262 	if (!page_mkwrite)
2263 		file_update_time(vma->vm_file);
2264 }
2265 
2266 /*
2267  * Handle write page faults for pages that can be reused in the current vma
2268  *
2269  * This can happen either due to the mapping being with the VM_SHARED flag,
2270  * or due to us being the last reference standing to the page. In either
2271  * case, all we need to do here is to mark the page as writable and update
2272  * any related book-keeping.
2273  */
2274 static inline void wp_page_reuse(struct vm_fault *vmf)
2275 	__releases(vmf->ptl)
2276 {
2277 	struct vm_area_struct *vma = vmf->vma;
2278 	struct page *page = vmf->page;
2279 	pte_t entry;
2280 	/*
2281 	 * Clear the pages cpupid information as the existing
2282 	 * information potentially belongs to a now completely
2283 	 * unrelated process.
2284 	 */
2285 	if (page)
2286 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2287 
2288 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2289 	entry = pte_mkyoung(vmf->orig_pte);
2290 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2291 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2292 		update_mmu_cache(vma, vmf->address, vmf->pte);
2293 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2294 }
2295 
2296 /*
2297  * Handle the case of a page which we actually need to copy to a new page.
2298  *
2299  * Called with mmap_sem locked and the old page referenced, but
2300  * without the ptl held.
2301  *
2302  * High level logic flow:
2303  *
2304  * - Allocate a page, copy the content of the old page to the new one.
2305  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2306  * - Take the PTL. If the pte changed, bail out and release the allocated page
2307  * - If the pte is still the way we remember it, update the page table and all
2308  *   relevant references. This includes dropping the reference the page-table
2309  *   held to the old page, as well as updating the rmap.
2310  * - In any case, unlock the PTL and drop the reference we took to the old page.
2311  */
2312 static int wp_page_copy(struct vm_fault *vmf)
2313 {
2314 	struct vm_area_struct *vma = vmf->vma;
2315 	struct mm_struct *mm = vma->vm_mm;
2316 	struct page *old_page = vmf->page;
2317 	struct page *new_page = NULL;
2318 	pte_t entry;
2319 	int page_copied = 0;
2320 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2321 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2322 	struct mem_cgroup *memcg;
2323 
2324 	if (unlikely(anon_vma_prepare(vma)))
2325 		goto oom;
2326 
2327 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2328 		new_page = alloc_zeroed_user_highpage_movable(vma,
2329 							      vmf->address);
2330 		if (!new_page)
2331 			goto oom;
2332 	} else {
2333 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2334 				vmf->address);
2335 		if (!new_page)
2336 			goto oom;
2337 		cow_user_page(new_page, old_page, vmf->address, vma);
2338 	}
2339 
2340 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2341 		goto oom_free_new;
2342 
2343 	__SetPageUptodate(new_page);
2344 
2345 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2346 
2347 	/*
2348 	 * Re-check the pte - we dropped the lock
2349 	 */
2350 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2351 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2352 		if (old_page) {
2353 			if (!PageAnon(old_page)) {
2354 				dec_mm_counter_fast(mm,
2355 						mm_counter_file(old_page));
2356 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2357 			}
2358 		} else {
2359 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2360 		}
2361 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2362 		entry = mk_pte(new_page, vma->vm_page_prot);
2363 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2364 		/*
2365 		 * Clear the pte entry and flush it first, before updating the
2366 		 * pte with the new entry. This will avoid a race condition
2367 		 * seen in the presence of one thread doing SMC and another
2368 		 * thread doing COW.
2369 		 */
2370 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2371 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2372 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2373 		lru_cache_add_active_or_unevictable(new_page, vma);
2374 		/*
2375 		 * We call the notify macro here because, when using secondary
2376 		 * mmu page tables (such as kvm shadow page tables), we want the
2377 		 * new page to be mapped directly into the secondary page table.
2378 		 */
2379 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2380 		update_mmu_cache(vma, vmf->address, vmf->pte);
2381 		if (old_page) {
2382 			/*
2383 			 * Only after switching the pte to the new page may
2384 			 * we remove the mapcount here. Otherwise another
2385 			 * process may come and find the rmap count decremented
2386 			 * before the pte is switched to the new page, and
2387 			 * "reuse" the old page writing into it while our pte
2388 			 * here still points into it and can be read by other
2389 			 * threads.
2390 			 *
2391 			 * The critical issue is to order this
2392 			 * page_remove_rmap with the ptp_clear_flush above.
2393 			 * Those stores are ordered by (if nothing else,)
2394 			 * the barrier present in the atomic_add_negative
2395 			 * in page_remove_rmap.
2396 			 *
2397 			 * Then the TLB flush in ptep_clear_flush ensures that
2398 			 * no process can access the old page before the
2399 			 * decremented mapcount is visible. And the old page
2400 			 * cannot be reused until after the decremented
2401 			 * mapcount is visible. So transitively, TLBs to
2402 			 * old page will be flushed before it can be reused.
2403 			 */
2404 			page_remove_rmap(old_page, false);
2405 		}
2406 
2407 		/* Free the old page.. */
2408 		new_page = old_page;
2409 		page_copied = 1;
2410 	} else {
2411 		mem_cgroup_cancel_charge(new_page, memcg, false);
2412 	}
2413 
2414 	if (new_page)
2415 		put_page(new_page);
2416 
2417 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2418 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2419 	if (old_page) {
2420 		/*
2421 		 * Don't let another task, with possibly unlocked vma,
2422 		 * keep the mlocked page.
2423 		 */
2424 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2425 			lock_page(old_page);	/* LRU manipulation */
2426 			if (PageMlocked(old_page))
2427 				munlock_vma_page(old_page);
2428 			unlock_page(old_page);
2429 		}
2430 		put_page(old_page);
2431 	}
2432 	return page_copied ? VM_FAULT_WRITE : 0;
2433 oom_free_new:
2434 	put_page(new_page);
2435 oom:
2436 	if (old_page)
2437 		put_page(old_page);
2438 	return VM_FAULT_OOM;
2439 }
2440 
2441 /**
2442  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2443  *			  writeable once the page is prepared
2444  *
2445  * @vmf: structure describing the fault
2446  *
2447  * This function handles all that is needed to finish a write page fault in a
2448  * shared mapping due to PTE being read-only once the mapped page is prepared.
2449  * It handles locking of PTE and modifying it. The function returns
2450  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2451  * lock.
2452  *
2453  * The function expects the page to be locked or other protection against
2454  * concurrent faults / writeback (such as DAX radix tree locks).
2455  */
2456 int finish_mkwrite_fault(struct vm_fault *vmf)
2457 {
2458 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2459 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2460 				       &vmf->ptl);
2461 	/*
2462 	 * We might have raced with another page fault while we released the
2463 	 * pte_offset_map_lock.
2464 	 */
2465 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2466 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2467 		return VM_FAULT_NOPAGE;
2468 	}
2469 	wp_page_reuse(vmf);
2470 	return 0;
2471 }
2472 
2473 /*
2474  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2475  * mapping
2476  */
2477 static int wp_pfn_shared(struct vm_fault *vmf)
2478 {
2479 	struct vm_area_struct *vma = vmf->vma;
2480 
2481 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2482 		int ret;
2483 
2484 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2485 		vmf->flags |= FAULT_FLAG_MKWRITE;
2486 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2487 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2488 			return ret;
2489 		return finish_mkwrite_fault(vmf);
2490 	}
2491 	wp_page_reuse(vmf);
2492 	return VM_FAULT_WRITE;
2493 }
2494 
2495 static int wp_page_shared(struct vm_fault *vmf)
2496 	__releases(vmf->ptl)
2497 {
2498 	struct vm_area_struct *vma = vmf->vma;
2499 
2500 	get_page(vmf->page);
2501 
2502 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2503 		int tmp;
2504 
2505 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2506 		tmp = do_page_mkwrite(vmf);
2507 		if (unlikely(!tmp || (tmp &
2508 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2509 			put_page(vmf->page);
2510 			return tmp;
2511 		}
2512 		tmp = finish_mkwrite_fault(vmf);
2513 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2514 			unlock_page(vmf->page);
2515 			put_page(vmf->page);
2516 			return tmp;
2517 		}
2518 	} else {
2519 		wp_page_reuse(vmf);
2520 		lock_page(vmf->page);
2521 	}
2522 	fault_dirty_shared_page(vma, vmf->page);
2523 	put_page(vmf->page);
2524 
2525 	return VM_FAULT_WRITE;
2526 }
2527 
2528 /*
2529  * This routine handles present pages, when users try to write
2530  * to a shared page. It is done by copying the page to a new address
2531  * and decrementing the shared-page counter for the old page.
2532  *
2533  * Note that this routine assumes that the protection checks have been
2534  * done by the caller (the low-level page fault routine in most cases).
2535  * Thus we can safely just mark it writable once we've done any necessary
2536  * COW.
2537  *
2538  * We also mark the page dirty at this point even though the page will
2539  * change only once the write actually happens. This avoids a few races,
2540  * and potentially makes it more efficient.
2541  *
2542  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2543  * but allow concurrent faults), with pte both mapped and locked.
2544  * We return with mmap_sem still held, but pte unmapped and unlocked.
2545  */
2546 static int do_wp_page(struct vm_fault *vmf)
2547 	__releases(vmf->ptl)
2548 {
2549 	struct vm_area_struct *vma = vmf->vma;
2550 
2551 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2552 	if (!vmf->page) {
2553 		/*
2554 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2555 		 * VM_PFNMAP VMA.
2556 		 *
2557 		 * We should not cow pages in a shared writeable mapping.
2558 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2559 		 */
2560 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2561 				     (VM_WRITE|VM_SHARED))
2562 			return wp_pfn_shared(vmf);
2563 
2564 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2565 		return wp_page_copy(vmf);
2566 	}
2567 
2568 	/*
2569 	 * Take out anonymous pages first, anonymous shared vmas are
2570 	 * not dirty accountable.
2571 	 */
2572 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2573 		int total_mapcount;
2574 		if (!trylock_page(vmf->page)) {
2575 			get_page(vmf->page);
2576 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2577 			lock_page(vmf->page);
2578 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2579 					vmf->address, &vmf->ptl);
2580 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2581 				unlock_page(vmf->page);
2582 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2583 				put_page(vmf->page);
2584 				return 0;
2585 			}
2586 			put_page(vmf->page);
2587 		}
2588 		if (reuse_swap_page(vmf->page, &total_mapcount)) {
2589 			if (total_mapcount == 1) {
2590 				/*
2591 				 * The page is all ours. Move it to
2592 				 * our anon_vma so the rmap code will
2593 				 * not search our parent or siblings.
2594 				 * Protected against the rmap code by
2595 				 * the page lock.
2596 				 */
2597 				page_move_anon_rmap(vmf->page, vma);
2598 			}
2599 			unlock_page(vmf->page);
2600 			wp_page_reuse(vmf);
2601 			return VM_FAULT_WRITE;
2602 		}
2603 		unlock_page(vmf->page);
2604 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2605 					(VM_WRITE|VM_SHARED))) {
2606 		return wp_page_shared(vmf);
2607 	}
2608 
2609 	/*
2610 	 * Ok, we need to copy. Oh, well..
2611 	 */
2612 	get_page(vmf->page);
2613 
2614 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2615 	return wp_page_copy(vmf);
2616 }
2617 
2618 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2619 		unsigned long start_addr, unsigned long end_addr,
2620 		struct zap_details *details)
2621 {
2622 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2623 }
2624 
2625 static inline void unmap_mapping_range_tree(struct rb_root *root,
2626 					    struct zap_details *details)
2627 {
2628 	struct vm_area_struct *vma;
2629 	pgoff_t vba, vea, zba, zea;
2630 
2631 	vma_interval_tree_foreach(vma, root,
2632 			details->first_index, details->last_index) {
2633 
2634 		vba = vma->vm_pgoff;
2635 		vea = vba + vma_pages(vma) - 1;
2636 		zba = details->first_index;
2637 		if (zba < vba)
2638 			zba = vba;
2639 		zea = details->last_index;
2640 		if (zea > vea)
2641 			zea = vea;
2642 
2643 		unmap_mapping_range_vma(vma,
2644 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2645 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2646 				details);
2647 	}
2648 }
2649 
2650 /**
2651  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2652  * address_space corresponding to the specified page range in the underlying
2653  * file.
2654  *
2655  * @mapping: the address space containing mmaps to be unmapped.
2656  * @holebegin: byte in first page to unmap, relative to the start of
2657  * the underlying file.  This will be rounded down to a PAGE_SIZE
2658  * boundary.  Note that this is different from truncate_pagecache(), which
2659  * must keep the partial page.  In contrast, we must get rid of
2660  * partial pages.
2661  * @holelen: size of prospective hole in bytes.  This will be rounded
2662  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2663  * end of the file.
2664  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2665  * but 0 when invalidating pagecache, don't throw away private data.
2666  */
2667 void unmap_mapping_range(struct address_space *mapping,
2668 		loff_t const holebegin, loff_t const holelen, int even_cows)
2669 {
2670 	struct zap_details details = { };
2671 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2672 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2673 
2674 	/* Check for overflow. */
2675 	if (sizeof(holelen) > sizeof(hlen)) {
2676 		long long holeend =
2677 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2678 		if (holeend & ~(long long)ULONG_MAX)
2679 			hlen = ULONG_MAX - hba + 1;
2680 	}
2681 
2682 	details.check_mapping = even_cows ? NULL : mapping;
2683 	details.first_index = hba;
2684 	details.last_index = hba + hlen - 1;
2685 	if (details.last_index < details.first_index)
2686 		details.last_index = ULONG_MAX;
2687 
2688 	i_mmap_lock_write(mapping);
2689 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2690 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2691 	i_mmap_unlock_write(mapping);
2692 }
2693 EXPORT_SYMBOL(unmap_mapping_range);
2694 
2695 /*
2696  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2697  * but allow concurrent faults), and pte mapped but not yet locked.
2698  * We return with pte unmapped and unlocked.
2699  *
2700  * We return with the mmap_sem locked or unlocked in the same cases
2701  * as does filemap_fault().
2702  */
2703 int do_swap_page(struct vm_fault *vmf)
2704 {
2705 	struct vm_area_struct *vma = vmf->vma;
2706 	struct page *page, *swapcache;
2707 	struct mem_cgroup *memcg;
2708 	swp_entry_t entry;
2709 	pte_t pte;
2710 	int locked;
2711 	int exclusive = 0;
2712 	int ret = 0;
2713 
2714 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2715 		goto out;
2716 
2717 	entry = pte_to_swp_entry(vmf->orig_pte);
2718 	if (unlikely(non_swap_entry(entry))) {
2719 		if (is_migration_entry(entry)) {
2720 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2721 					     vmf->address);
2722 		} else if (is_hwpoison_entry(entry)) {
2723 			ret = VM_FAULT_HWPOISON;
2724 		} else {
2725 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2726 			ret = VM_FAULT_SIGBUS;
2727 		}
2728 		goto out;
2729 	}
2730 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2731 	page = lookup_swap_cache(entry);
2732 	if (!page) {
2733 		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2734 					vmf->address);
2735 		if (!page) {
2736 			/*
2737 			 * Back out if somebody else faulted in this pte
2738 			 * while we released the pte lock.
2739 			 */
2740 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2741 					vmf->address, &vmf->ptl);
2742 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2743 				ret = VM_FAULT_OOM;
2744 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2745 			goto unlock;
2746 		}
2747 
2748 		/* Had to read the page from swap area: Major fault */
2749 		ret = VM_FAULT_MAJOR;
2750 		count_vm_event(PGMAJFAULT);
2751 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2752 	} else if (PageHWPoison(page)) {
2753 		/*
2754 		 * hwpoisoned dirty swapcache pages are kept for killing
2755 		 * owner processes (which may be unknown at hwpoison time)
2756 		 */
2757 		ret = VM_FAULT_HWPOISON;
2758 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2759 		swapcache = page;
2760 		goto out_release;
2761 	}
2762 
2763 	swapcache = page;
2764 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2765 
2766 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2767 	if (!locked) {
2768 		ret |= VM_FAULT_RETRY;
2769 		goto out_release;
2770 	}
2771 
2772 	/*
2773 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2774 	 * release the swapcache from under us.  The page pin, and pte_same
2775 	 * test below, are not enough to exclude that.  Even if it is still
2776 	 * swapcache, we need to check that the page's swap has not changed.
2777 	 */
2778 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2779 		goto out_page;
2780 
2781 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2782 	if (unlikely(!page)) {
2783 		ret = VM_FAULT_OOM;
2784 		page = swapcache;
2785 		goto out_page;
2786 	}
2787 
2788 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2789 				&memcg, false)) {
2790 		ret = VM_FAULT_OOM;
2791 		goto out_page;
2792 	}
2793 
2794 	/*
2795 	 * Back out if somebody else already faulted in this pte.
2796 	 */
2797 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2798 			&vmf->ptl);
2799 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2800 		goto out_nomap;
2801 
2802 	if (unlikely(!PageUptodate(page))) {
2803 		ret = VM_FAULT_SIGBUS;
2804 		goto out_nomap;
2805 	}
2806 
2807 	/*
2808 	 * The page isn't present yet, go ahead with the fault.
2809 	 *
2810 	 * Be careful about the sequence of operations here.
2811 	 * To get its accounting right, reuse_swap_page() must be called
2812 	 * while the page is counted on swap but not yet in mapcount i.e.
2813 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2814 	 * must be called after the swap_free(), or it will never succeed.
2815 	 */
2816 
2817 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2818 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2819 	pte = mk_pte(page, vma->vm_page_prot);
2820 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2821 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2822 		vmf->flags &= ~FAULT_FLAG_WRITE;
2823 		ret |= VM_FAULT_WRITE;
2824 		exclusive = RMAP_EXCLUSIVE;
2825 	}
2826 	flush_icache_page(vma, page);
2827 	if (pte_swp_soft_dirty(vmf->orig_pte))
2828 		pte = pte_mksoft_dirty(pte);
2829 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2830 	vmf->orig_pte = pte;
2831 	if (page == swapcache) {
2832 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2833 		mem_cgroup_commit_charge(page, memcg, true, false);
2834 		activate_page(page);
2835 	} else { /* ksm created a completely new copy */
2836 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2837 		mem_cgroup_commit_charge(page, memcg, false, false);
2838 		lru_cache_add_active_or_unevictable(page, vma);
2839 	}
2840 
2841 	swap_free(entry);
2842 	if (mem_cgroup_swap_full(page) ||
2843 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2844 		try_to_free_swap(page);
2845 	unlock_page(page);
2846 	if (page != swapcache) {
2847 		/*
2848 		 * Hold the lock to avoid the swap entry to be reused
2849 		 * until we take the PT lock for the pte_same() check
2850 		 * (to avoid false positives from pte_same). For
2851 		 * further safety release the lock after the swap_free
2852 		 * so that the swap count won't change under a
2853 		 * parallel locked swapcache.
2854 		 */
2855 		unlock_page(swapcache);
2856 		put_page(swapcache);
2857 	}
2858 
2859 	if (vmf->flags & FAULT_FLAG_WRITE) {
2860 		ret |= do_wp_page(vmf);
2861 		if (ret & VM_FAULT_ERROR)
2862 			ret &= VM_FAULT_ERROR;
2863 		goto out;
2864 	}
2865 
2866 	/* No need to invalidate - it was non-present before */
2867 	update_mmu_cache(vma, vmf->address, vmf->pte);
2868 unlock:
2869 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2870 out:
2871 	return ret;
2872 out_nomap:
2873 	mem_cgroup_cancel_charge(page, memcg, false);
2874 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2875 out_page:
2876 	unlock_page(page);
2877 out_release:
2878 	put_page(page);
2879 	if (page != swapcache) {
2880 		unlock_page(swapcache);
2881 		put_page(swapcache);
2882 	}
2883 	return ret;
2884 }
2885 
2886 /*
2887  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2888  * but allow concurrent faults), and pte mapped but not yet locked.
2889  * We return with mmap_sem still held, but pte unmapped and unlocked.
2890  */
2891 static int do_anonymous_page(struct vm_fault *vmf)
2892 {
2893 	struct vm_area_struct *vma = vmf->vma;
2894 	struct mem_cgroup *memcg;
2895 	struct page *page;
2896 	pte_t entry;
2897 
2898 	/* File mapping without ->vm_ops ? */
2899 	if (vma->vm_flags & VM_SHARED)
2900 		return VM_FAULT_SIGBUS;
2901 
2902 	/*
2903 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2904 	 * pte_offset_map() on pmds where a huge pmd might be created
2905 	 * from a different thread.
2906 	 *
2907 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2908 	 * parallel threads are excluded by other means.
2909 	 *
2910 	 * Here we only have down_read(mmap_sem).
2911 	 */
2912 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2913 		return VM_FAULT_OOM;
2914 
2915 	/* See the comment in pte_alloc_one_map() */
2916 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2917 		return 0;
2918 
2919 	/* Use the zero-page for reads */
2920 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2921 			!mm_forbids_zeropage(vma->vm_mm)) {
2922 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2923 						vma->vm_page_prot));
2924 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2925 				vmf->address, &vmf->ptl);
2926 		if (!pte_none(*vmf->pte))
2927 			goto unlock;
2928 		/* Deliver the page fault to userland, check inside PT lock */
2929 		if (userfaultfd_missing(vma)) {
2930 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2931 			return handle_userfault(vmf, VM_UFFD_MISSING);
2932 		}
2933 		goto setpte;
2934 	}
2935 
2936 	/* Allocate our own private page. */
2937 	if (unlikely(anon_vma_prepare(vma)))
2938 		goto oom;
2939 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2940 	if (!page)
2941 		goto oom;
2942 
2943 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2944 		goto oom_free_page;
2945 
2946 	/*
2947 	 * The memory barrier inside __SetPageUptodate makes sure that
2948 	 * preceeding stores to the page contents become visible before
2949 	 * the set_pte_at() write.
2950 	 */
2951 	__SetPageUptodate(page);
2952 
2953 	entry = mk_pte(page, vma->vm_page_prot);
2954 	if (vma->vm_flags & VM_WRITE)
2955 		entry = pte_mkwrite(pte_mkdirty(entry));
2956 
2957 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2958 			&vmf->ptl);
2959 	if (!pte_none(*vmf->pte))
2960 		goto release;
2961 
2962 	/* Deliver the page fault to userland, check inside PT lock */
2963 	if (userfaultfd_missing(vma)) {
2964 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2965 		mem_cgroup_cancel_charge(page, memcg, false);
2966 		put_page(page);
2967 		return handle_userfault(vmf, VM_UFFD_MISSING);
2968 	}
2969 
2970 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2971 	page_add_new_anon_rmap(page, vma, vmf->address, false);
2972 	mem_cgroup_commit_charge(page, memcg, false, false);
2973 	lru_cache_add_active_or_unevictable(page, vma);
2974 setpte:
2975 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2976 
2977 	/* No need to invalidate - it was non-present before */
2978 	update_mmu_cache(vma, vmf->address, vmf->pte);
2979 unlock:
2980 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2981 	return 0;
2982 release:
2983 	mem_cgroup_cancel_charge(page, memcg, false);
2984 	put_page(page);
2985 	goto unlock;
2986 oom_free_page:
2987 	put_page(page);
2988 oom:
2989 	return VM_FAULT_OOM;
2990 }
2991 
2992 /*
2993  * The mmap_sem must have been held on entry, and may have been
2994  * released depending on flags and vma->vm_ops->fault() return value.
2995  * See filemap_fault() and __lock_page_retry().
2996  */
2997 static int __do_fault(struct vm_fault *vmf)
2998 {
2999 	struct vm_area_struct *vma = vmf->vma;
3000 	int ret;
3001 
3002 	ret = vma->vm_ops->fault(vmf);
3003 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3004 			    VM_FAULT_DONE_COW)))
3005 		return ret;
3006 
3007 	if (unlikely(PageHWPoison(vmf->page))) {
3008 		if (ret & VM_FAULT_LOCKED)
3009 			unlock_page(vmf->page);
3010 		put_page(vmf->page);
3011 		vmf->page = NULL;
3012 		return VM_FAULT_HWPOISON;
3013 	}
3014 
3015 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3016 		lock_page(vmf->page);
3017 	else
3018 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3019 
3020 	return ret;
3021 }
3022 
3023 /*
3024  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3025  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3026  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3027  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3028  */
3029 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3030 {
3031 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3032 }
3033 
3034 static int pte_alloc_one_map(struct vm_fault *vmf)
3035 {
3036 	struct vm_area_struct *vma = vmf->vma;
3037 
3038 	if (!pmd_none(*vmf->pmd))
3039 		goto map_pte;
3040 	if (vmf->prealloc_pte) {
3041 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3042 		if (unlikely(!pmd_none(*vmf->pmd))) {
3043 			spin_unlock(vmf->ptl);
3044 			goto map_pte;
3045 		}
3046 
3047 		atomic_long_inc(&vma->vm_mm->nr_ptes);
3048 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3049 		spin_unlock(vmf->ptl);
3050 		vmf->prealloc_pte = NULL;
3051 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3052 		return VM_FAULT_OOM;
3053 	}
3054 map_pte:
3055 	/*
3056 	 * If a huge pmd materialized under us just retry later.  Use
3057 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3058 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3059 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3060 	 * running immediately after a huge pmd fault in a different thread of
3061 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3062 	 * All we have to ensure is that it is a regular pmd that we can walk
3063 	 * with pte_offset_map() and we can do that through an atomic read in
3064 	 * C, which is what pmd_trans_unstable() provides.
3065 	 */
3066 	if (pmd_devmap_trans_unstable(vmf->pmd))
3067 		return VM_FAULT_NOPAGE;
3068 
3069 	/*
3070 	 * At this point we know that our vmf->pmd points to a page of ptes
3071 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3072 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3073 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3074 	 * be valid and we will re-check to make sure the vmf->pte isn't
3075 	 * pte_none() under vmf->ptl protection when we return to
3076 	 * alloc_set_pte().
3077 	 */
3078 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3079 			&vmf->ptl);
3080 	return 0;
3081 }
3082 
3083 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3084 
3085 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3086 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3087 		unsigned long haddr)
3088 {
3089 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3090 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3091 		return false;
3092 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3093 		return false;
3094 	return true;
3095 }
3096 
3097 static void deposit_prealloc_pte(struct vm_fault *vmf)
3098 {
3099 	struct vm_area_struct *vma = vmf->vma;
3100 
3101 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3102 	/*
3103 	 * We are going to consume the prealloc table,
3104 	 * count that as nr_ptes.
3105 	 */
3106 	atomic_long_inc(&vma->vm_mm->nr_ptes);
3107 	vmf->prealloc_pte = NULL;
3108 }
3109 
3110 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3111 {
3112 	struct vm_area_struct *vma = vmf->vma;
3113 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3114 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3115 	pmd_t entry;
3116 	int i, ret;
3117 
3118 	if (!transhuge_vma_suitable(vma, haddr))
3119 		return VM_FAULT_FALLBACK;
3120 
3121 	ret = VM_FAULT_FALLBACK;
3122 	page = compound_head(page);
3123 
3124 	/*
3125 	 * Archs like ppc64 need additonal space to store information
3126 	 * related to pte entry. Use the preallocated table for that.
3127 	 */
3128 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3129 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3130 		if (!vmf->prealloc_pte)
3131 			return VM_FAULT_OOM;
3132 		smp_wmb(); /* See comment in __pte_alloc() */
3133 	}
3134 
3135 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3136 	if (unlikely(!pmd_none(*vmf->pmd)))
3137 		goto out;
3138 
3139 	for (i = 0; i < HPAGE_PMD_NR; i++)
3140 		flush_icache_page(vma, page + i);
3141 
3142 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3143 	if (write)
3144 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3145 
3146 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3147 	page_add_file_rmap(page, true);
3148 	/*
3149 	 * deposit and withdraw with pmd lock held
3150 	 */
3151 	if (arch_needs_pgtable_deposit())
3152 		deposit_prealloc_pte(vmf);
3153 
3154 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3155 
3156 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3157 
3158 	/* fault is handled */
3159 	ret = 0;
3160 	count_vm_event(THP_FILE_MAPPED);
3161 out:
3162 	spin_unlock(vmf->ptl);
3163 	return ret;
3164 }
3165 #else
3166 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3167 {
3168 	BUILD_BUG();
3169 	return 0;
3170 }
3171 #endif
3172 
3173 /**
3174  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3175  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3176  *
3177  * @vmf: fault environment
3178  * @memcg: memcg to charge page (only for private mappings)
3179  * @page: page to map
3180  *
3181  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3182  * return.
3183  *
3184  * Target users are page handler itself and implementations of
3185  * vm_ops->map_pages.
3186  */
3187 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3188 		struct page *page)
3189 {
3190 	struct vm_area_struct *vma = vmf->vma;
3191 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3192 	pte_t entry;
3193 	int ret;
3194 
3195 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3196 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3197 		/* THP on COW? */
3198 		VM_BUG_ON_PAGE(memcg, page);
3199 
3200 		ret = do_set_pmd(vmf, page);
3201 		if (ret != VM_FAULT_FALLBACK)
3202 			return ret;
3203 	}
3204 
3205 	if (!vmf->pte) {
3206 		ret = pte_alloc_one_map(vmf);
3207 		if (ret)
3208 			return ret;
3209 	}
3210 
3211 	/* Re-check under ptl */
3212 	if (unlikely(!pte_none(*vmf->pte)))
3213 		return VM_FAULT_NOPAGE;
3214 
3215 	flush_icache_page(vma, page);
3216 	entry = mk_pte(page, vma->vm_page_prot);
3217 	if (write)
3218 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3219 	/* copy-on-write page */
3220 	if (write && !(vma->vm_flags & VM_SHARED)) {
3221 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3222 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3223 		mem_cgroup_commit_charge(page, memcg, false, false);
3224 		lru_cache_add_active_or_unevictable(page, vma);
3225 	} else {
3226 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3227 		page_add_file_rmap(page, false);
3228 	}
3229 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3230 
3231 	/* no need to invalidate: a not-present page won't be cached */
3232 	update_mmu_cache(vma, vmf->address, vmf->pte);
3233 
3234 	return 0;
3235 }
3236 
3237 
3238 /**
3239  * finish_fault - finish page fault once we have prepared the page to fault
3240  *
3241  * @vmf: structure describing the fault
3242  *
3243  * This function handles all that is needed to finish a page fault once the
3244  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3245  * given page, adds reverse page mapping, handles memcg charges and LRU
3246  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3247  * error.
3248  *
3249  * The function expects the page to be locked and on success it consumes a
3250  * reference of a page being mapped (for the PTE which maps it).
3251  */
3252 int finish_fault(struct vm_fault *vmf)
3253 {
3254 	struct page *page;
3255 	int ret;
3256 
3257 	/* Did we COW the page? */
3258 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3259 	    !(vmf->vma->vm_flags & VM_SHARED))
3260 		page = vmf->cow_page;
3261 	else
3262 		page = vmf->page;
3263 	ret = alloc_set_pte(vmf, vmf->memcg, page);
3264 	if (vmf->pte)
3265 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3266 	return ret;
3267 }
3268 
3269 static unsigned long fault_around_bytes __read_mostly =
3270 	rounddown_pow_of_two(65536);
3271 
3272 #ifdef CONFIG_DEBUG_FS
3273 static int fault_around_bytes_get(void *data, u64 *val)
3274 {
3275 	*val = fault_around_bytes;
3276 	return 0;
3277 }
3278 
3279 /*
3280  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3281  * rounded down to nearest page order. It's what do_fault_around() expects to
3282  * see.
3283  */
3284 static int fault_around_bytes_set(void *data, u64 val)
3285 {
3286 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3287 		return -EINVAL;
3288 	if (val > PAGE_SIZE)
3289 		fault_around_bytes = rounddown_pow_of_two(val);
3290 	else
3291 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3292 	return 0;
3293 }
3294 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3295 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3296 
3297 static int __init fault_around_debugfs(void)
3298 {
3299 	void *ret;
3300 
3301 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3302 			&fault_around_bytes_fops);
3303 	if (!ret)
3304 		pr_warn("Failed to create fault_around_bytes in debugfs");
3305 	return 0;
3306 }
3307 late_initcall(fault_around_debugfs);
3308 #endif
3309 
3310 /*
3311  * do_fault_around() tries to map few pages around the fault address. The hope
3312  * is that the pages will be needed soon and this will lower the number of
3313  * faults to handle.
3314  *
3315  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3316  * not ready to be mapped: not up-to-date, locked, etc.
3317  *
3318  * This function is called with the page table lock taken. In the split ptlock
3319  * case the page table lock only protects only those entries which belong to
3320  * the page table corresponding to the fault address.
3321  *
3322  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3323  * only once.
3324  *
3325  * fault_around_pages() defines how many pages we'll try to map.
3326  * do_fault_around() expects it to return a power of two less than or equal to
3327  * PTRS_PER_PTE.
3328  *
3329  * The virtual address of the area that we map is naturally aligned to the
3330  * fault_around_pages() value (and therefore to page order).  This way it's
3331  * easier to guarantee that we don't cross page table boundaries.
3332  */
3333 static int do_fault_around(struct vm_fault *vmf)
3334 {
3335 	unsigned long address = vmf->address, nr_pages, mask;
3336 	pgoff_t start_pgoff = vmf->pgoff;
3337 	pgoff_t end_pgoff;
3338 	int off, ret = 0;
3339 
3340 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3341 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3342 
3343 	vmf->address = max(address & mask, vmf->vma->vm_start);
3344 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3345 	start_pgoff -= off;
3346 
3347 	/*
3348 	 *  end_pgoff is either end of page table or end of vma
3349 	 *  or fault_around_pages() from start_pgoff, depending what is nearest.
3350 	 */
3351 	end_pgoff = start_pgoff -
3352 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3353 		PTRS_PER_PTE - 1;
3354 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3355 			start_pgoff + nr_pages - 1);
3356 
3357 	if (pmd_none(*vmf->pmd)) {
3358 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3359 						  vmf->address);
3360 		if (!vmf->prealloc_pte)
3361 			goto out;
3362 		smp_wmb(); /* See comment in __pte_alloc() */
3363 	}
3364 
3365 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3366 
3367 	/* Huge page is mapped? Page fault is solved */
3368 	if (pmd_trans_huge(*vmf->pmd)) {
3369 		ret = VM_FAULT_NOPAGE;
3370 		goto out;
3371 	}
3372 
3373 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3374 	if (!vmf->pte)
3375 		goto out;
3376 
3377 	/* check if the page fault is solved */
3378 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3379 	if (!pte_none(*vmf->pte))
3380 		ret = VM_FAULT_NOPAGE;
3381 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3382 out:
3383 	vmf->address = address;
3384 	vmf->pte = NULL;
3385 	return ret;
3386 }
3387 
3388 static int do_read_fault(struct vm_fault *vmf)
3389 {
3390 	struct vm_area_struct *vma = vmf->vma;
3391 	int ret = 0;
3392 
3393 	/*
3394 	 * Let's call ->map_pages() first and use ->fault() as fallback
3395 	 * if page by the offset is not ready to be mapped (cold cache or
3396 	 * something).
3397 	 */
3398 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3399 		ret = do_fault_around(vmf);
3400 		if (ret)
3401 			return ret;
3402 	}
3403 
3404 	ret = __do_fault(vmf);
3405 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3406 		return ret;
3407 
3408 	ret |= finish_fault(vmf);
3409 	unlock_page(vmf->page);
3410 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3411 		put_page(vmf->page);
3412 	return ret;
3413 }
3414 
3415 static int do_cow_fault(struct vm_fault *vmf)
3416 {
3417 	struct vm_area_struct *vma = vmf->vma;
3418 	int ret;
3419 
3420 	if (unlikely(anon_vma_prepare(vma)))
3421 		return VM_FAULT_OOM;
3422 
3423 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3424 	if (!vmf->cow_page)
3425 		return VM_FAULT_OOM;
3426 
3427 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3428 				&vmf->memcg, false)) {
3429 		put_page(vmf->cow_page);
3430 		return VM_FAULT_OOM;
3431 	}
3432 
3433 	ret = __do_fault(vmf);
3434 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3435 		goto uncharge_out;
3436 	if (ret & VM_FAULT_DONE_COW)
3437 		return ret;
3438 
3439 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3440 	__SetPageUptodate(vmf->cow_page);
3441 
3442 	ret |= finish_fault(vmf);
3443 	unlock_page(vmf->page);
3444 	put_page(vmf->page);
3445 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3446 		goto uncharge_out;
3447 	return ret;
3448 uncharge_out:
3449 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3450 	put_page(vmf->cow_page);
3451 	return ret;
3452 }
3453 
3454 static int do_shared_fault(struct vm_fault *vmf)
3455 {
3456 	struct vm_area_struct *vma = vmf->vma;
3457 	int ret, tmp;
3458 
3459 	ret = __do_fault(vmf);
3460 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3461 		return ret;
3462 
3463 	/*
3464 	 * Check if the backing address space wants to know that the page is
3465 	 * about to become writable
3466 	 */
3467 	if (vma->vm_ops->page_mkwrite) {
3468 		unlock_page(vmf->page);
3469 		tmp = do_page_mkwrite(vmf);
3470 		if (unlikely(!tmp ||
3471 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3472 			put_page(vmf->page);
3473 			return tmp;
3474 		}
3475 	}
3476 
3477 	ret |= finish_fault(vmf);
3478 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3479 					VM_FAULT_RETRY))) {
3480 		unlock_page(vmf->page);
3481 		put_page(vmf->page);
3482 		return ret;
3483 	}
3484 
3485 	fault_dirty_shared_page(vma, vmf->page);
3486 	return ret;
3487 }
3488 
3489 /*
3490  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3491  * but allow concurrent faults).
3492  * The mmap_sem may have been released depending on flags and our
3493  * return value.  See filemap_fault() and __lock_page_or_retry().
3494  */
3495 static int do_fault(struct vm_fault *vmf)
3496 {
3497 	struct vm_area_struct *vma = vmf->vma;
3498 	int ret;
3499 
3500 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3501 	if (!vma->vm_ops->fault)
3502 		ret = VM_FAULT_SIGBUS;
3503 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3504 		ret = do_read_fault(vmf);
3505 	else if (!(vma->vm_flags & VM_SHARED))
3506 		ret = do_cow_fault(vmf);
3507 	else
3508 		ret = do_shared_fault(vmf);
3509 
3510 	/* preallocated pagetable is unused: free it */
3511 	if (vmf->prealloc_pte) {
3512 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3513 		vmf->prealloc_pte = NULL;
3514 	}
3515 	return ret;
3516 }
3517 
3518 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3519 				unsigned long addr, int page_nid,
3520 				int *flags)
3521 {
3522 	get_page(page);
3523 
3524 	count_vm_numa_event(NUMA_HINT_FAULTS);
3525 	if (page_nid == numa_node_id()) {
3526 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3527 		*flags |= TNF_FAULT_LOCAL;
3528 	}
3529 
3530 	return mpol_misplaced(page, vma, addr);
3531 }
3532 
3533 static int do_numa_page(struct vm_fault *vmf)
3534 {
3535 	struct vm_area_struct *vma = vmf->vma;
3536 	struct page *page = NULL;
3537 	int page_nid = -1;
3538 	int last_cpupid;
3539 	int target_nid;
3540 	bool migrated = false;
3541 	pte_t pte;
3542 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3543 	int flags = 0;
3544 
3545 	/*
3546 	 * The "pte" at this point cannot be used safely without
3547 	 * validation through pte_unmap_same(). It's of NUMA type but
3548 	 * the pfn may be screwed if the read is non atomic.
3549 	 */
3550 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3551 	spin_lock(vmf->ptl);
3552 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3553 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3554 		goto out;
3555 	}
3556 
3557 	/*
3558 	 * Make it present again, Depending on how arch implementes non
3559 	 * accessible ptes, some can allow access by kernel mode.
3560 	 */
3561 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3562 	pte = pte_modify(pte, vma->vm_page_prot);
3563 	pte = pte_mkyoung(pte);
3564 	if (was_writable)
3565 		pte = pte_mkwrite(pte);
3566 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3567 	update_mmu_cache(vma, vmf->address, vmf->pte);
3568 
3569 	page = vm_normal_page(vma, vmf->address, pte);
3570 	if (!page) {
3571 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3572 		return 0;
3573 	}
3574 
3575 	/* TODO: handle PTE-mapped THP */
3576 	if (PageCompound(page)) {
3577 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3578 		return 0;
3579 	}
3580 
3581 	/*
3582 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3583 	 * much anyway since they can be in shared cache state. This misses
3584 	 * the case where a mapping is writable but the process never writes
3585 	 * to it but pte_write gets cleared during protection updates and
3586 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3587 	 * background writeback, dirty balancing and application behaviour.
3588 	 */
3589 	if (!pte_write(pte))
3590 		flags |= TNF_NO_GROUP;
3591 
3592 	/*
3593 	 * Flag if the page is shared between multiple address spaces. This
3594 	 * is later used when determining whether to group tasks together
3595 	 */
3596 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3597 		flags |= TNF_SHARED;
3598 
3599 	last_cpupid = page_cpupid_last(page);
3600 	page_nid = page_to_nid(page);
3601 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3602 			&flags);
3603 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3604 	if (target_nid == -1) {
3605 		put_page(page);
3606 		goto out;
3607 	}
3608 
3609 	/* Migrate to the requested node */
3610 	migrated = migrate_misplaced_page(page, vma, target_nid);
3611 	if (migrated) {
3612 		page_nid = target_nid;
3613 		flags |= TNF_MIGRATED;
3614 	} else
3615 		flags |= TNF_MIGRATE_FAIL;
3616 
3617 out:
3618 	if (page_nid != -1)
3619 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3620 	return 0;
3621 }
3622 
3623 static inline int create_huge_pmd(struct vm_fault *vmf)
3624 {
3625 	if (vma_is_anonymous(vmf->vma))
3626 		return do_huge_pmd_anonymous_page(vmf);
3627 	if (vmf->vma->vm_ops->huge_fault)
3628 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3629 	return VM_FAULT_FALLBACK;
3630 }
3631 
3632 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3633 {
3634 	if (vma_is_anonymous(vmf->vma))
3635 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3636 	if (vmf->vma->vm_ops->huge_fault)
3637 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3638 
3639 	/* COW handled on pte level: split pmd */
3640 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3641 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3642 
3643 	return VM_FAULT_FALLBACK;
3644 }
3645 
3646 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3647 {
3648 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3649 }
3650 
3651 static int create_huge_pud(struct vm_fault *vmf)
3652 {
3653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3654 	/* No support for anonymous transparent PUD pages yet */
3655 	if (vma_is_anonymous(vmf->vma))
3656 		return VM_FAULT_FALLBACK;
3657 	if (vmf->vma->vm_ops->huge_fault)
3658 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3659 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3660 	return VM_FAULT_FALLBACK;
3661 }
3662 
3663 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3664 {
3665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3666 	/* No support for anonymous transparent PUD pages yet */
3667 	if (vma_is_anonymous(vmf->vma))
3668 		return VM_FAULT_FALLBACK;
3669 	if (vmf->vma->vm_ops->huge_fault)
3670 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3671 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3672 	return VM_FAULT_FALLBACK;
3673 }
3674 
3675 /*
3676  * These routines also need to handle stuff like marking pages dirty
3677  * and/or accessed for architectures that don't do it in hardware (most
3678  * RISC architectures).  The early dirtying is also good on the i386.
3679  *
3680  * There is also a hook called "update_mmu_cache()" that architectures
3681  * with external mmu caches can use to update those (ie the Sparc or
3682  * PowerPC hashed page tables that act as extended TLBs).
3683  *
3684  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3685  * concurrent faults).
3686  *
3687  * The mmap_sem may have been released depending on flags and our return value.
3688  * See filemap_fault() and __lock_page_or_retry().
3689  */
3690 static int handle_pte_fault(struct vm_fault *vmf)
3691 {
3692 	pte_t entry;
3693 
3694 	if (unlikely(pmd_none(*vmf->pmd))) {
3695 		/*
3696 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3697 		 * want to allocate huge page, and if we expose page table
3698 		 * for an instant, it will be difficult to retract from
3699 		 * concurrent faults and from rmap lookups.
3700 		 */
3701 		vmf->pte = NULL;
3702 	} else {
3703 		/* See comment in pte_alloc_one_map() */
3704 		if (pmd_devmap_trans_unstable(vmf->pmd))
3705 			return 0;
3706 		/*
3707 		 * A regular pmd is established and it can't morph into a huge
3708 		 * pmd from under us anymore at this point because we hold the
3709 		 * mmap_sem read mode and khugepaged takes it in write mode.
3710 		 * So now it's safe to run pte_offset_map().
3711 		 */
3712 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3713 		vmf->orig_pte = *vmf->pte;
3714 
3715 		/*
3716 		 * some architectures can have larger ptes than wordsize,
3717 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3718 		 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3719 		 * atomic accesses.  The code below just needs a consistent
3720 		 * view for the ifs and we later double check anyway with the
3721 		 * ptl lock held. So here a barrier will do.
3722 		 */
3723 		barrier();
3724 		if (pte_none(vmf->orig_pte)) {
3725 			pte_unmap(vmf->pte);
3726 			vmf->pte = NULL;
3727 		}
3728 	}
3729 
3730 	if (!vmf->pte) {
3731 		if (vma_is_anonymous(vmf->vma))
3732 			return do_anonymous_page(vmf);
3733 		else
3734 			return do_fault(vmf);
3735 	}
3736 
3737 	if (!pte_present(vmf->orig_pte))
3738 		return do_swap_page(vmf);
3739 
3740 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3741 		return do_numa_page(vmf);
3742 
3743 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3744 	spin_lock(vmf->ptl);
3745 	entry = vmf->orig_pte;
3746 	if (unlikely(!pte_same(*vmf->pte, entry)))
3747 		goto unlock;
3748 	if (vmf->flags & FAULT_FLAG_WRITE) {
3749 		if (!pte_write(entry))
3750 			return do_wp_page(vmf);
3751 		entry = pte_mkdirty(entry);
3752 	}
3753 	entry = pte_mkyoung(entry);
3754 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3755 				vmf->flags & FAULT_FLAG_WRITE)) {
3756 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3757 	} else {
3758 		/*
3759 		 * This is needed only for protection faults but the arch code
3760 		 * is not yet telling us if this is a protection fault or not.
3761 		 * This still avoids useless tlb flushes for .text page faults
3762 		 * with threads.
3763 		 */
3764 		if (vmf->flags & FAULT_FLAG_WRITE)
3765 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3766 	}
3767 unlock:
3768 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3769 	return 0;
3770 }
3771 
3772 /*
3773  * By the time we get here, we already hold the mm semaphore
3774  *
3775  * The mmap_sem may have been released depending on flags and our
3776  * return value.  See filemap_fault() and __lock_page_or_retry().
3777  */
3778 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3779 		unsigned int flags)
3780 {
3781 	struct vm_fault vmf = {
3782 		.vma = vma,
3783 		.address = address & PAGE_MASK,
3784 		.flags = flags,
3785 		.pgoff = linear_page_index(vma, address),
3786 		.gfp_mask = __get_fault_gfp_mask(vma),
3787 	};
3788 	struct mm_struct *mm = vma->vm_mm;
3789 	pgd_t *pgd;
3790 	p4d_t *p4d;
3791 	int ret;
3792 
3793 	pgd = pgd_offset(mm, address);
3794 	p4d = p4d_alloc(mm, pgd, address);
3795 	if (!p4d)
3796 		return VM_FAULT_OOM;
3797 
3798 	vmf.pud = pud_alloc(mm, p4d, address);
3799 	if (!vmf.pud)
3800 		return VM_FAULT_OOM;
3801 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3802 		ret = create_huge_pud(&vmf);
3803 		if (!(ret & VM_FAULT_FALLBACK))
3804 			return ret;
3805 	} else {
3806 		pud_t orig_pud = *vmf.pud;
3807 
3808 		barrier();
3809 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3810 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3811 
3812 			/* NUMA case for anonymous PUDs would go here */
3813 
3814 			if (dirty && !pud_write(orig_pud)) {
3815 				ret = wp_huge_pud(&vmf, orig_pud);
3816 				if (!(ret & VM_FAULT_FALLBACK))
3817 					return ret;
3818 			} else {
3819 				huge_pud_set_accessed(&vmf, orig_pud);
3820 				return 0;
3821 			}
3822 		}
3823 	}
3824 
3825 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3826 	if (!vmf.pmd)
3827 		return VM_FAULT_OOM;
3828 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3829 		ret = create_huge_pmd(&vmf);
3830 		if (!(ret & VM_FAULT_FALLBACK))
3831 			return ret;
3832 	} else {
3833 		pmd_t orig_pmd = *vmf.pmd;
3834 
3835 		barrier();
3836 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3837 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3838 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3839 
3840 			if ((vmf.flags & FAULT_FLAG_WRITE) &&
3841 					!pmd_write(orig_pmd)) {
3842 				ret = wp_huge_pmd(&vmf, orig_pmd);
3843 				if (!(ret & VM_FAULT_FALLBACK))
3844 					return ret;
3845 			} else {
3846 				huge_pmd_set_accessed(&vmf, orig_pmd);
3847 				return 0;
3848 			}
3849 		}
3850 	}
3851 
3852 	return handle_pte_fault(&vmf);
3853 }
3854 
3855 /*
3856  * By the time we get here, we already hold the mm semaphore
3857  *
3858  * The mmap_sem may have been released depending on flags and our
3859  * return value.  See filemap_fault() and __lock_page_or_retry().
3860  */
3861 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3862 		unsigned int flags)
3863 {
3864 	int ret;
3865 
3866 	__set_current_state(TASK_RUNNING);
3867 
3868 	count_vm_event(PGFAULT);
3869 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
3870 
3871 	/* do counter updates before entering really critical section. */
3872 	check_sync_rss_stat(current);
3873 
3874 	/*
3875 	 * Enable the memcg OOM handling for faults triggered in user
3876 	 * space.  Kernel faults are handled more gracefully.
3877 	 */
3878 	if (flags & FAULT_FLAG_USER)
3879 		mem_cgroup_oom_enable();
3880 
3881 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3882 					    flags & FAULT_FLAG_INSTRUCTION,
3883 					    flags & FAULT_FLAG_REMOTE))
3884 		return VM_FAULT_SIGSEGV;
3885 
3886 	if (unlikely(is_vm_hugetlb_page(vma)))
3887 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3888 	else
3889 		ret = __handle_mm_fault(vma, address, flags);
3890 
3891 	if (flags & FAULT_FLAG_USER) {
3892 		mem_cgroup_oom_disable();
3893 		/*
3894 		 * The task may have entered a memcg OOM situation but
3895 		 * if the allocation error was handled gracefully (no
3896 		 * VM_FAULT_OOM), there is no need to kill anything.
3897 		 * Just clean up the OOM state peacefully.
3898 		 */
3899 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3900 			mem_cgroup_oom_synchronize(false);
3901 	}
3902 
3903 	/*
3904 	 * This mm has been already reaped by the oom reaper and so the
3905 	 * refault cannot be trusted in general. Anonymous refaults would
3906 	 * lose data and give a zero page instead e.g. This is especially
3907 	 * problem for use_mm() because regular tasks will just die and
3908 	 * the corrupted data will not be visible anywhere while kthread
3909 	 * will outlive the oom victim and potentially propagate the date
3910 	 * further.
3911 	 */
3912 	if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3913 				&& test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3914 		ret = VM_FAULT_SIGBUS;
3915 
3916 	return ret;
3917 }
3918 EXPORT_SYMBOL_GPL(handle_mm_fault);
3919 
3920 #ifndef __PAGETABLE_P4D_FOLDED
3921 /*
3922  * Allocate p4d page table.
3923  * We've already handled the fast-path in-line.
3924  */
3925 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3926 {
3927 	p4d_t *new = p4d_alloc_one(mm, address);
3928 	if (!new)
3929 		return -ENOMEM;
3930 
3931 	smp_wmb(); /* See comment in __pte_alloc */
3932 
3933 	spin_lock(&mm->page_table_lock);
3934 	if (pgd_present(*pgd))		/* Another has populated it */
3935 		p4d_free(mm, new);
3936 	else
3937 		pgd_populate(mm, pgd, new);
3938 	spin_unlock(&mm->page_table_lock);
3939 	return 0;
3940 }
3941 #endif /* __PAGETABLE_P4D_FOLDED */
3942 
3943 #ifndef __PAGETABLE_PUD_FOLDED
3944 /*
3945  * Allocate page upper directory.
3946  * We've already handled the fast-path in-line.
3947  */
3948 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3949 {
3950 	pud_t *new = pud_alloc_one(mm, address);
3951 	if (!new)
3952 		return -ENOMEM;
3953 
3954 	smp_wmb(); /* See comment in __pte_alloc */
3955 
3956 	spin_lock(&mm->page_table_lock);
3957 #ifndef __ARCH_HAS_5LEVEL_HACK
3958 	if (p4d_present(*p4d))		/* Another has populated it */
3959 		pud_free(mm, new);
3960 	else
3961 		p4d_populate(mm, p4d, new);
3962 #else
3963 	if (pgd_present(*p4d))		/* Another has populated it */
3964 		pud_free(mm, new);
3965 	else
3966 		pgd_populate(mm, p4d, new);
3967 #endif /* __ARCH_HAS_5LEVEL_HACK */
3968 	spin_unlock(&mm->page_table_lock);
3969 	return 0;
3970 }
3971 #endif /* __PAGETABLE_PUD_FOLDED */
3972 
3973 #ifndef __PAGETABLE_PMD_FOLDED
3974 /*
3975  * Allocate page middle directory.
3976  * We've already handled the fast-path in-line.
3977  */
3978 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3979 {
3980 	spinlock_t *ptl;
3981 	pmd_t *new = pmd_alloc_one(mm, address);
3982 	if (!new)
3983 		return -ENOMEM;
3984 
3985 	smp_wmb(); /* See comment in __pte_alloc */
3986 
3987 	ptl = pud_lock(mm, pud);
3988 #ifndef __ARCH_HAS_4LEVEL_HACK
3989 	if (!pud_present(*pud)) {
3990 		mm_inc_nr_pmds(mm);
3991 		pud_populate(mm, pud, new);
3992 	} else	/* Another has populated it */
3993 		pmd_free(mm, new);
3994 #else
3995 	if (!pgd_present(*pud)) {
3996 		mm_inc_nr_pmds(mm);
3997 		pgd_populate(mm, pud, new);
3998 	} else /* Another has populated it */
3999 		pmd_free(mm, new);
4000 #endif /* __ARCH_HAS_4LEVEL_HACK */
4001 	spin_unlock(ptl);
4002 	return 0;
4003 }
4004 #endif /* __PAGETABLE_PMD_FOLDED */
4005 
4006 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4007 		pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4008 {
4009 	pgd_t *pgd;
4010 	p4d_t *p4d;
4011 	pud_t *pud;
4012 	pmd_t *pmd;
4013 	pte_t *ptep;
4014 
4015 	pgd = pgd_offset(mm, address);
4016 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4017 		goto out;
4018 
4019 	p4d = p4d_offset(pgd, address);
4020 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4021 		goto out;
4022 
4023 	pud = pud_offset(p4d, address);
4024 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4025 		goto out;
4026 
4027 	pmd = pmd_offset(pud, address);
4028 	VM_BUG_ON(pmd_trans_huge(*pmd));
4029 
4030 	if (pmd_huge(*pmd)) {
4031 		if (!pmdpp)
4032 			goto out;
4033 
4034 		*ptlp = pmd_lock(mm, pmd);
4035 		if (pmd_huge(*pmd)) {
4036 			*pmdpp = pmd;
4037 			return 0;
4038 		}
4039 		spin_unlock(*ptlp);
4040 	}
4041 
4042 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4043 		goto out;
4044 
4045 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4046 	if (!pte_present(*ptep))
4047 		goto unlock;
4048 	*ptepp = ptep;
4049 	return 0;
4050 unlock:
4051 	pte_unmap_unlock(ptep, *ptlp);
4052 out:
4053 	return -EINVAL;
4054 }
4055 
4056 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4057 			     pte_t **ptepp, spinlock_t **ptlp)
4058 {
4059 	int res;
4060 
4061 	/* (void) is needed to make gcc happy */
4062 	(void) __cond_lock(*ptlp,
4063 			   !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
4064 					   ptlp)));
4065 	return res;
4066 }
4067 
4068 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4069 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4070 {
4071 	int res;
4072 
4073 	/* (void) is needed to make gcc happy */
4074 	(void) __cond_lock(*ptlp,
4075 			   !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
4076 					   ptlp)));
4077 	return res;
4078 }
4079 EXPORT_SYMBOL(follow_pte_pmd);
4080 
4081 /**
4082  * follow_pfn - look up PFN at a user virtual address
4083  * @vma: memory mapping
4084  * @address: user virtual address
4085  * @pfn: location to store found PFN
4086  *
4087  * Only IO mappings and raw PFN mappings are allowed.
4088  *
4089  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4090  */
4091 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4092 	unsigned long *pfn)
4093 {
4094 	int ret = -EINVAL;
4095 	spinlock_t *ptl;
4096 	pte_t *ptep;
4097 
4098 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4099 		return ret;
4100 
4101 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4102 	if (ret)
4103 		return ret;
4104 	*pfn = pte_pfn(*ptep);
4105 	pte_unmap_unlock(ptep, ptl);
4106 	return 0;
4107 }
4108 EXPORT_SYMBOL(follow_pfn);
4109 
4110 #ifdef CONFIG_HAVE_IOREMAP_PROT
4111 int follow_phys(struct vm_area_struct *vma,
4112 		unsigned long address, unsigned int flags,
4113 		unsigned long *prot, resource_size_t *phys)
4114 {
4115 	int ret = -EINVAL;
4116 	pte_t *ptep, pte;
4117 	spinlock_t *ptl;
4118 
4119 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4120 		goto out;
4121 
4122 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4123 		goto out;
4124 	pte = *ptep;
4125 
4126 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4127 		goto unlock;
4128 
4129 	*prot = pgprot_val(pte_pgprot(pte));
4130 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4131 
4132 	ret = 0;
4133 unlock:
4134 	pte_unmap_unlock(ptep, ptl);
4135 out:
4136 	return ret;
4137 }
4138 
4139 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4140 			void *buf, int len, int write)
4141 {
4142 	resource_size_t phys_addr;
4143 	unsigned long prot = 0;
4144 	void __iomem *maddr;
4145 	int offset = addr & (PAGE_SIZE-1);
4146 
4147 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4148 		return -EINVAL;
4149 
4150 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4151 	if (write)
4152 		memcpy_toio(maddr + offset, buf, len);
4153 	else
4154 		memcpy_fromio(buf, maddr + offset, len);
4155 	iounmap(maddr);
4156 
4157 	return len;
4158 }
4159 EXPORT_SYMBOL_GPL(generic_access_phys);
4160 #endif
4161 
4162 /*
4163  * Access another process' address space as given in mm.  If non-NULL, use the
4164  * given task for page fault accounting.
4165  */
4166 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4167 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4168 {
4169 	struct vm_area_struct *vma;
4170 	void *old_buf = buf;
4171 	int write = gup_flags & FOLL_WRITE;
4172 
4173 	down_read(&mm->mmap_sem);
4174 	/* ignore errors, just check how much was successfully transferred */
4175 	while (len) {
4176 		int bytes, ret, offset;
4177 		void *maddr;
4178 		struct page *page = NULL;
4179 
4180 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4181 				gup_flags, &page, &vma, NULL);
4182 		if (ret <= 0) {
4183 #ifndef CONFIG_HAVE_IOREMAP_PROT
4184 			break;
4185 #else
4186 			/*
4187 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4188 			 * we can access using slightly different code.
4189 			 */
4190 			vma = find_vma(mm, addr);
4191 			if (!vma || vma->vm_start > addr)
4192 				break;
4193 			if (vma->vm_ops && vma->vm_ops->access)
4194 				ret = vma->vm_ops->access(vma, addr, buf,
4195 							  len, write);
4196 			if (ret <= 0)
4197 				break;
4198 			bytes = ret;
4199 #endif
4200 		} else {
4201 			bytes = len;
4202 			offset = addr & (PAGE_SIZE-1);
4203 			if (bytes > PAGE_SIZE-offset)
4204 				bytes = PAGE_SIZE-offset;
4205 
4206 			maddr = kmap(page);
4207 			if (write) {
4208 				copy_to_user_page(vma, page, addr,
4209 						  maddr + offset, buf, bytes);
4210 				set_page_dirty_lock(page);
4211 			} else {
4212 				copy_from_user_page(vma, page, addr,
4213 						    buf, maddr + offset, bytes);
4214 			}
4215 			kunmap(page);
4216 			put_page(page);
4217 		}
4218 		len -= bytes;
4219 		buf += bytes;
4220 		addr += bytes;
4221 	}
4222 	up_read(&mm->mmap_sem);
4223 
4224 	return buf - old_buf;
4225 }
4226 
4227 /**
4228  * access_remote_vm - access another process' address space
4229  * @mm:		the mm_struct of the target address space
4230  * @addr:	start address to access
4231  * @buf:	source or destination buffer
4232  * @len:	number of bytes to transfer
4233  * @gup_flags:	flags modifying lookup behaviour
4234  *
4235  * The caller must hold a reference on @mm.
4236  */
4237 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4238 		void *buf, int len, unsigned int gup_flags)
4239 {
4240 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4241 }
4242 
4243 /*
4244  * Access another process' address space.
4245  * Source/target buffer must be kernel space,
4246  * Do not walk the page table directly, use get_user_pages
4247  */
4248 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4249 		void *buf, int len, unsigned int gup_flags)
4250 {
4251 	struct mm_struct *mm;
4252 	int ret;
4253 
4254 	mm = get_task_mm(tsk);
4255 	if (!mm)
4256 		return 0;
4257 
4258 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4259 
4260 	mmput(mm);
4261 
4262 	return ret;
4263 }
4264 EXPORT_SYMBOL_GPL(access_process_vm);
4265 
4266 /*
4267  * Print the name of a VMA.
4268  */
4269 void print_vma_addr(char *prefix, unsigned long ip)
4270 {
4271 	struct mm_struct *mm = current->mm;
4272 	struct vm_area_struct *vma;
4273 
4274 	/*
4275 	 * Do not print if we are in atomic
4276 	 * contexts (in exception stacks, etc.):
4277 	 */
4278 	if (preempt_count())
4279 		return;
4280 
4281 	down_read(&mm->mmap_sem);
4282 	vma = find_vma(mm, ip);
4283 	if (vma && vma->vm_file) {
4284 		struct file *f = vma->vm_file;
4285 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4286 		if (buf) {
4287 			char *p;
4288 
4289 			p = file_path(f, buf, PAGE_SIZE);
4290 			if (IS_ERR(p))
4291 				p = "?";
4292 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4293 					vma->vm_start,
4294 					vma->vm_end - vma->vm_start);
4295 			free_page((unsigned long)buf);
4296 		}
4297 	}
4298 	up_read(&mm->mmap_sem);
4299 }
4300 
4301 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4302 void __might_fault(const char *file, int line)
4303 {
4304 	/*
4305 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4306 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4307 	 * get paged out, therefore we'll never actually fault, and the
4308 	 * below annotations will generate false positives.
4309 	 */
4310 	if (uaccess_kernel())
4311 		return;
4312 	if (pagefault_disabled())
4313 		return;
4314 	__might_sleep(file, line, 0);
4315 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4316 	if (current->mm)
4317 		might_lock_read(&current->mm->mmap_sem);
4318 #endif
4319 }
4320 EXPORT_SYMBOL(__might_fault);
4321 #endif
4322 
4323 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4324 static void clear_gigantic_page(struct page *page,
4325 				unsigned long addr,
4326 				unsigned int pages_per_huge_page)
4327 {
4328 	int i;
4329 	struct page *p = page;
4330 
4331 	might_sleep();
4332 	for (i = 0; i < pages_per_huge_page;
4333 	     i++, p = mem_map_next(p, page, i)) {
4334 		cond_resched();
4335 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4336 	}
4337 }
4338 void clear_huge_page(struct page *page,
4339 		     unsigned long addr, unsigned int pages_per_huge_page)
4340 {
4341 	int i;
4342 
4343 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4344 		clear_gigantic_page(page, addr, pages_per_huge_page);
4345 		return;
4346 	}
4347 
4348 	might_sleep();
4349 	for (i = 0; i < pages_per_huge_page; i++) {
4350 		cond_resched();
4351 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4352 	}
4353 }
4354 
4355 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4356 				    unsigned long addr,
4357 				    struct vm_area_struct *vma,
4358 				    unsigned int pages_per_huge_page)
4359 {
4360 	int i;
4361 	struct page *dst_base = dst;
4362 	struct page *src_base = src;
4363 
4364 	for (i = 0; i < pages_per_huge_page; ) {
4365 		cond_resched();
4366 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4367 
4368 		i++;
4369 		dst = mem_map_next(dst, dst_base, i);
4370 		src = mem_map_next(src, src_base, i);
4371 	}
4372 }
4373 
4374 void copy_user_huge_page(struct page *dst, struct page *src,
4375 			 unsigned long addr, struct vm_area_struct *vma,
4376 			 unsigned int pages_per_huge_page)
4377 {
4378 	int i;
4379 
4380 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4381 		copy_user_gigantic_page(dst, src, addr, vma,
4382 					pages_per_huge_page);
4383 		return;
4384 	}
4385 
4386 	might_sleep();
4387 	for (i = 0; i < pages_per_huge_page; i++) {
4388 		cond_resched();
4389 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4390 	}
4391 }
4392 
4393 long copy_huge_page_from_user(struct page *dst_page,
4394 				const void __user *usr_src,
4395 				unsigned int pages_per_huge_page,
4396 				bool allow_pagefault)
4397 {
4398 	void *src = (void *)usr_src;
4399 	void *page_kaddr;
4400 	unsigned long i, rc = 0;
4401 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4402 
4403 	for (i = 0; i < pages_per_huge_page; i++) {
4404 		if (allow_pagefault)
4405 			page_kaddr = kmap(dst_page + i);
4406 		else
4407 			page_kaddr = kmap_atomic(dst_page + i);
4408 		rc = copy_from_user(page_kaddr,
4409 				(const void __user *)(src + i * PAGE_SIZE),
4410 				PAGE_SIZE);
4411 		if (allow_pagefault)
4412 			kunmap(dst_page + i);
4413 		else
4414 			kunmap_atomic(page_kaddr);
4415 
4416 		ret_val -= (PAGE_SIZE - rc);
4417 		if (rc)
4418 			break;
4419 
4420 		cond_resched();
4421 	}
4422 	return ret_val;
4423 }
4424 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4425 
4426 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4427 
4428 static struct kmem_cache *page_ptl_cachep;
4429 
4430 void __init ptlock_cache_init(void)
4431 {
4432 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4433 			SLAB_PANIC, NULL);
4434 }
4435 
4436 bool ptlock_alloc(struct page *page)
4437 {
4438 	spinlock_t *ptl;
4439 
4440 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4441 	if (!ptl)
4442 		return false;
4443 	page->ptl = ptl;
4444 	return true;
4445 }
4446 
4447 void ptlock_free(struct page *page)
4448 {
4449 	kmem_cache_free(page_ptl_cachep, page->ptl);
4450 }
4451 #endif
4452