1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 void sync_mm_rss(struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (current->rss_stat.count[i]) { 134 add_mm_counter(mm, i, current->rss_stat.count[i]); 135 current->rss_stat.count[i] = 0; 136 } 137 } 138 current->rss_stat.events = 0; 139 } 140 141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 142 { 143 struct task_struct *task = current; 144 145 if (likely(task->mm == mm)) 146 task->rss_stat.count[member] += val; 147 else 148 add_mm_counter(mm, member, val); 149 } 150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 152 153 /* sync counter once per 64 page faults */ 154 #define TASK_RSS_EVENTS_THRESH (64) 155 static void check_sync_rss_stat(struct task_struct *task) 156 { 157 if (unlikely(task != current)) 158 return; 159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 160 sync_mm_rss(task->mm); 161 } 162 #else /* SPLIT_RSS_COUNTING */ 163 164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 166 167 static void check_sync_rss_stat(struct task_struct *task) 168 { 169 } 170 171 #endif /* SPLIT_RSS_COUNTING */ 172 173 #ifdef HAVE_GENERIC_MMU_GATHER 174 175 static int tlb_next_batch(struct mmu_gather *tlb) 176 { 177 struct mmu_gather_batch *batch; 178 179 batch = tlb->active; 180 if (batch->next) { 181 tlb->active = batch->next; 182 return 1; 183 } 184 185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 186 if (!batch) 187 return 0; 188 189 batch->next = NULL; 190 batch->nr = 0; 191 batch->max = MAX_GATHER_BATCH; 192 193 tlb->active->next = batch; 194 tlb->active = batch; 195 196 return 1; 197 } 198 199 /* tlb_gather_mmu 200 * Called to initialize an (on-stack) mmu_gather structure for page-table 201 * tear-down from @mm. The @fullmm argument is used when @mm is without 202 * users and we're going to destroy the full address space (exit/execve). 203 */ 204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm) 205 { 206 tlb->mm = mm; 207 208 tlb->fullmm = fullmm; 209 tlb->start = -1UL; 210 tlb->end = 0; 211 tlb->need_flush = 0; 212 tlb->fast_mode = (num_possible_cpus() == 1); 213 tlb->local.next = NULL; 214 tlb->local.nr = 0; 215 tlb->local.max = ARRAY_SIZE(tlb->__pages); 216 tlb->active = &tlb->local; 217 218 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 219 tlb->batch = NULL; 220 #endif 221 } 222 223 void tlb_flush_mmu(struct mmu_gather *tlb) 224 { 225 struct mmu_gather_batch *batch; 226 227 if (!tlb->need_flush) 228 return; 229 tlb->need_flush = 0; 230 tlb_flush(tlb); 231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 232 tlb_table_flush(tlb); 233 #endif 234 235 if (tlb_fast_mode(tlb)) 236 return; 237 238 for (batch = &tlb->local; batch; batch = batch->next) { 239 free_pages_and_swap_cache(batch->pages, batch->nr); 240 batch->nr = 0; 241 } 242 tlb->active = &tlb->local; 243 } 244 245 /* tlb_finish_mmu 246 * Called at the end of the shootdown operation to free up any resources 247 * that were required. 248 */ 249 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 250 { 251 struct mmu_gather_batch *batch, *next; 252 253 tlb->start = start; 254 tlb->end = end; 255 tlb_flush_mmu(tlb); 256 257 /* keep the page table cache within bounds */ 258 check_pgt_cache(); 259 260 for (batch = tlb->local.next; batch; batch = next) { 261 next = batch->next; 262 free_pages((unsigned long)batch, 0); 263 } 264 tlb->local.next = NULL; 265 } 266 267 /* __tlb_remove_page 268 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 269 * handling the additional races in SMP caused by other CPUs caching valid 270 * mappings in their TLBs. Returns the number of free page slots left. 271 * When out of page slots we must call tlb_flush_mmu(). 272 */ 273 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 274 { 275 struct mmu_gather_batch *batch; 276 277 VM_BUG_ON(!tlb->need_flush); 278 279 if (tlb_fast_mode(tlb)) { 280 free_page_and_swap_cache(page); 281 return 1; /* avoid calling tlb_flush_mmu() */ 282 } 283 284 batch = tlb->active; 285 batch->pages[batch->nr++] = page; 286 if (batch->nr == batch->max) { 287 if (!tlb_next_batch(tlb)) 288 return 0; 289 batch = tlb->active; 290 } 291 VM_BUG_ON(batch->nr > batch->max); 292 293 return batch->max - batch->nr; 294 } 295 296 #endif /* HAVE_GENERIC_MMU_GATHER */ 297 298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 299 300 /* 301 * See the comment near struct mmu_table_batch. 302 */ 303 304 static void tlb_remove_table_smp_sync(void *arg) 305 { 306 /* Simply deliver the interrupt */ 307 } 308 309 static void tlb_remove_table_one(void *table) 310 { 311 /* 312 * This isn't an RCU grace period and hence the page-tables cannot be 313 * assumed to be actually RCU-freed. 314 * 315 * It is however sufficient for software page-table walkers that rely on 316 * IRQ disabling. See the comment near struct mmu_table_batch. 317 */ 318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 319 __tlb_remove_table(table); 320 } 321 322 static void tlb_remove_table_rcu(struct rcu_head *head) 323 { 324 struct mmu_table_batch *batch; 325 int i; 326 327 batch = container_of(head, struct mmu_table_batch, rcu); 328 329 for (i = 0; i < batch->nr; i++) 330 __tlb_remove_table(batch->tables[i]); 331 332 free_page((unsigned long)batch); 333 } 334 335 void tlb_table_flush(struct mmu_gather *tlb) 336 { 337 struct mmu_table_batch **batch = &tlb->batch; 338 339 if (*batch) { 340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 341 *batch = NULL; 342 } 343 } 344 345 void tlb_remove_table(struct mmu_gather *tlb, void *table) 346 { 347 struct mmu_table_batch **batch = &tlb->batch; 348 349 tlb->need_flush = 1; 350 351 /* 352 * When there's less then two users of this mm there cannot be a 353 * concurrent page-table walk. 354 */ 355 if (atomic_read(&tlb->mm->mm_users) < 2) { 356 __tlb_remove_table(table); 357 return; 358 } 359 360 if (*batch == NULL) { 361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 362 if (*batch == NULL) { 363 tlb_remove_table_one(table); 364 return; 365 } 366 (*batch)->nr = 0; 367 } 368 (*batch)->tables[(*batch)->nr++] = table; 369 if ((*batch)->nr == MAX_TABLE_BATCH) 370 tlb_table_flush(tlb); 371 } 372 373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 374 375 /* 376 * If a p?d_bad entry is found while walking page tables, report 377 * the error, before resetting entry to p?d_none. Usually (but 378 * very seldom) called out from the p?d_none_or_clear_bad macros. 379 */ 380 381 void pgd_clear_bad(pgd_t *pgd) 382 { 383 pgd_ERROR(*pgd); 384 pgd_clear(pgd); 385 } 386 387 void pud_clear_bad(pud_t *pud) 388 { 389 pud_ERROR(*pud); 390 pud_clear(pud); 391 } 392 393 void pmd_clear_bad(pmd_t *pmd) 394 { 395 pmd_ERROR(*pmd); 396 pmd_clear(pmd); 397 } 398 399 /* 400 * Note: this doesn't free the actual pages themselves. That 401 * has been handled earlier when unmapping all the memory regions. 402 */ 403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 404 unsigned long addr) 405 { 406 pgtable_t token = pmd_pgtable(*pmd); 407 pmd_clear(pmd); 408 pte_free_tlb(tlb, token, addr); 409 tlb->mm->nr_ptes--; 410 } 411 412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 413 unsigned long addr, unsigned long end, 414 unsigned long floor, unsigned long ceiling) 415 { 416 pmd_t *pmd; 417 unsigned long next; 418 unsigned long start; 419 420 start = addr; 421 pmd = pmd_offset(pud, addr); 422 do { 423 next = pmd_addr_end(addr, end); 424 if (pmd_none_or_clear_bad(pmd)) 425 continue; 426 free_pte_range(tlb, pmd, addr); 427 } while (pmd++, addr = next, addr != end); 428 429 start &= PUD_MASK; 430 if (start < floor) 431 return; 432 if (ceiling) { 433 ceiling &= PUD_MASK; 434 if (!ceiling) 435 return; 436 } 437 if (end - 1 > ceiling - 1) 438 return; 439 440 pmd = pmd_offset(pud, start); 441 pud_clear(pud); 442 pmd_free_tlb(tlb, pmd, start); 443 } 444 445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 446 unsigned long addr, unsigned long end, 447 unsigned long floor, unsigned long ceiling) 448 { 449 pud_t *pud; 450 unsigned long next; 451 unsigned long start; 452 453 start = addr; 454 pud = pud_offset(pgd, addr); 455 do { 456 next = pud_addr_end(addr, end); 457 if (pud_none_or_clear_bad(pud)) 458 continue; 459 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 460 } while (pud++, addr = next, addr != end); 461 462 start &= PGDIR_MASK; 463 if (start < floor) 464 return; 465 if (ceiling) { 466 ceiling &= PGDIR_MASK; 467 if (!ceiling) 468 return; 469 } 470 if (end - 1 > ceiling - 1) 471 return; 472 473 pud = pud_offset(pgd, start); 474 pgd_clear(pgd); 475 pud_free_tlb(tlb, pud, start); 476 } 477 478 /* 479 * This function frees user-level page tables of a process. 480 * 481 * Must be called with pagetable lock held. 482 */ 483 void free_pgd_range(struct mmu_gather *tlb, 484 unsigned long addr, unsigned long end, 485 unsigned long floor, unsigned long ceiling) 486 { 487 pgd_t *pgd; 488 unsigned long next; 489 490 /* 491 * The next few lines have given us lots of grief... 492 * 493 * Why are we testing PMD* at this top level? Because often 494 * there will be no work to do at all, and we'd prefer not to 495 * go all the way down to the bottom just to discover that. 496 * 497 * Why all these "- 1"s? Because 0 represents both the bottom 498 * of the address space and the top of it (using -1 for the 499 * top wouldn't help much: the masks would do the wrong thing). 500 * The rule is that addr 0 and floor 0 refer to the bottom of 501 * the address space, but end 0 and ceiling 0 refer to the top 502 * Comparisons need to use "end - 1" and "ceiling - 1" (though 503 * that end 0 case should be mythical). 504 * 505 * Wherever addr is brought up or ceiling brought down, we must 506 * be careful to reject "the opposite 0" before it confuses the 507 * subsequent tests. But what about where end is brought down 508 * by PMD_SIZE below? no, end can't go down to 0 there. 509 * 510 * Whereas we round start (addr) and ceiling down, by different 511 * masks at different levels, in order to test whether a table 512 * now has no other vmas using it, so can be freed, we don't 513 * bother to round floor or end up - the tests don't need that. 514 */ 515 516 addr &= PMD_MASK; 517 if (addr < floor) { 518 addr += PMD_SIZE; 519 if (!addr) 520 return; 521 } 522 if (ceiling) { 523 ceiling &= PMD_MASK; 524 if (!ceiling) 525 return; 526 } 527 if (end - 1 > ceiling - 1) 528 end -= PMD_SIZE; 529 if (addr > end - 1) 530 return; 531 532 pgd = pgd_offset(tlb->mm, addr); 533 do { 534 next = pgd_addr_end(addr, end); 535 if (pgd_none_or_clear_bad(pgd)) 536 continue; 537 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 538 } while (pgd++, addr = next, addr != end); 539 } 540 541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 542 unsigned long floor, unsigned long ceiling) 543 { 544 while (vma) { 545 struct vm_area_struct *next = vma->vm_next; 546 unsigned long addr = vma->vm_start; 547 548 /* 549 * Hide vma from rmap and truncate_pagecache before freeing 550 * pgtables 551 */ 552 unlink_anon_vmas(vma); 553 unlink_file_vma(vma); 554 555 if (is_vm_hugetlb_page(vma)) { 556 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 557 floor, next? next->vm_start: ceiling); 558 } else { 559 /* 560 * Optimization: gather nearby vmas into one call down 561 */ 562 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 563 && !is_vm_hugetlb_page(next)) { 564 vma = next; 565 next = vma->vm_next; 566 unlink_anon_vmas(vma); 567 unlink_file_vma(vma); 568 } 569 free_pgd_range(tlb, addr, vma->vm_end, 570 floor, next? next->vm_start: ceiling); 571 } 572 vma = next; 573 } 574 } 575 576 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 577 pmd_t *pmd, unsigned long address) 578 { 579 pgtable_t new = pte_alloc_one(mm, address); 580 int wait_split_huge_page; 581 if (!new) 582 return -ENOMEM; 583 584 /* 585 * Ensure all pte setup (eg. pte page lock and page clearing) are 586 * visible before the pte is made visible to other CPUs by being 587 * put into page tables. 588 * 589 * The other side of the story is the pointer chasing in the page 590 * table walking code (when walking the page table without locking; 591 * ie. most of the time). Fortunately, these data accesses consist 592 * of a chain of data-dependent loads, meaning most CPUs (alpha 593 * being the notable exception) will already guarantee loads are 594 * seen in-order. See the alpha page table accessors for the 595 * smp_read_barrier_depends() barriers in page table walking code. 596 */ 597 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 598 599 spin_lock(&mm->page_table_lock); 600 wait_split_huge_page = 0; 601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 602 mm->nr_ptes++; 603 pmd_populate(mm, pmd, new); 604 new = NULL; 605 } else if (unlikely(pmd_trans_splitting(*pmd))) 606 wait_split_huge_page = 1; 607 spin_unlock(&mm->page_table_lock); 608 if (new) 609 pte_free(mm, new); 610 if (wait_split_huge_page) 611 wait_split_huge_page(vma->anon_vma, pmd); 612 return 0; 613 } 614 615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 616 { 617 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 618 if (!new) 619 return -ENOMEM; 620 621 smp_wmb(); /* See comment in __pte_alloc */ 622 623 spin_lock(&init_mm.page_table_lock); 624 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 625 pmd_populate_kernel(&init_mm, pmd, new); 626 new = NULL; 627 } else 628 VM_BUG_ON(pmd_trans_splitting(*pmd)); 629 spin_unlock(&init_mm.page_table_lock); 630 if (new) 631 pte_free_kernel(&init_mm, new); 632 return 0; 633 } 634 635 static inline void init_rss_vec(int *rss) 636 { 637 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 638 } 639 640 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 641 { 642 int i; 643 644 if (current->mm == mm) 645 sync_mm_rss(mm); 646 for (i = 0; i < NR_MM_COUNTERS; i++) 647 if (rss[i]) 648 add_mm_counter(mm, i, rss[i]); 649 } 650 651 /* 652 * This function is called to print an error when a bad pte 653 * is found. For example, we might have a PFN-mapped pte in 654 * a region that doesn't allow it. 655 * 656 * The calling function must still handle the error. 657 */ 658 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 659 pte_t pte, struct page *page) 660 { 661 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 662 pud_t *pud = pud_offset(pgd, addr); 663 pmd_t *pmd = pmd_offset(pud, addr); 664 struct address_space *mapping; 665 pgoff_t index; 666 static unsigned long resume; 667 static unsigned long nr_shown; 668 static unsigned long nr_unshown; 669 670 /* 671 * Allow a burst of 60 reports, then keep quiet for that minute; 672 * or allow a steady drip of one report per second. 673 */ 674 if (nr_shown == 60) { 675 if (time_before(jiffies, resume)) { 676 nr_unshown++; 677 return; 678 } 679 if (nr_unshown) { 680 printk(KERN_ALERT 681 "BUG: Bad page map: %lu messages suppressed\n", 682 nr_unshown); 683 nr_unshown = 0; 684 } 685 nr_shown = 0; 686 } 687 if (nr_shown++ == 0) 688 resume = jiffies + 60 * HZ; 689 690 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 691 index = linear_page_index(vma, addr); 692 693 printk(KERN_ALERT 694 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 695 current->comm, 696 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 697 if (page) 698 dump_page(page); 699 printk(KERN_ALERT 700 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 701 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 702 /* 703 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 704 */ 705 if (vma->vm_ops) 706 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 707 (unsigned long)vma->vm_ops->fault); 708 if (vma->vm_file && vma->vm_file->f_op) 709 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 710 (unsigned long)vma->vm_file->f_op->mmap); 711 dump_stack(); 712 add_taint(TAINT_BAD_PAGE); 713 } 714 715 static inline int is_cow_mapping(vm_flags_t flags) 716 { 717 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 718 } 719 720 #ifndef is_zero_pfn 721 static inline int is_zero_pfn(unsigned long pfn) 722 { 723 return pfn == zero_pfn; 724 } 725 #endif 726 727 #ifndef my_zero_pfn 728 static inline unsigned long my_zero_pfn(unsigned long addr) 729 { 730 return zero_pfn; 731 } 732 #endif 733 734 /* 735 * vm_normal_page -- This function gets the "struct page" associated with a pte. 736 * 737 * "Special" mappings do not wish to be associated with a "struct page" (either 738 * it doesn't exist, or it exists but they don't want to touch it). In this 739 * case, NULL is returned here. "Normal" mappings do have a struct page. 740 * 741 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 742 * pte bit, in which case this function is trivial. Secondly, an architecture 743 * may not have a spare pte bit, which requires a more complicated scheme, 744 * described below. 745 * 746 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 747 * special mapping (even if there are underlying and valid "struct pages"). 748 * COWed pages of a VM_PFNMAP are always normal. 749 * 750 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 751 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 752 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 753 * mapping will always honor the rule 754 * 755 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 756 * 757 * And for normal mappings this is false. 758 * 759 * This restricts such mappings to be a linear translation from virtual address 760 * to pfn. To get around this restriction, we allow arbitrary mappings so long 761 * as the vma is not a COW mapping; in that case, we know that all ptes are 762 * special (because none can have been COWed). 763 * 764 * 765 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 766 * 767 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 768 * page" backing, however the difference is that _all_ pages with a struct 769 * page (that is, those where pfn_valid is true) are refcounted and considered 770 * normal pages by the VM. The disadvantage is that pages are refcounted 771 * (which can be slower and simply not an option for some PFNMAP users). The 772 * advantage is that we don't have to follow the strict linearity rule of 773 * PFNMAP mappings in order to support COWable mappings. 774 * 775 */ 776 #ifdef __HAVE_ARCH_PTE_SPECIAL 777 # define HAVE_PTE_SPECIAL 1 778 #else 779 # define HAVE_PTE_SPECIAL 0 780 #endif 781 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 782 pte_t pte) 783 { 784 unsigned long pfn = pte_pfn(pte); 785 786 if (HAVE_PTE_SPECIAL) { 787 if (likely(!pte_special(pte))) 788 goto check_pfn; 789 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 790 return NULL; 791 if (!is_zero_pfn(pfn)) 792 print_bad_pte(vma, addr, pte, NULL); 793 return NULL; 794 } 795 796 /* !HAVE_PTE_SPECIAL case follows: */ 797 798 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 799 if (vma->vm_flags & VM_MIXEDMAP) { 800 if (!pfn_valid(pfn)) 801 return NULL; 802 goto out; 803 } else { 804 unsigned long off; 805 off = (addr - vma->vm_start) >> PAGE_SHIFT; 806 if (pfn == vma->vm_pgoff + off) 807 return NULL; 808 if (!is_cow_mapping(vma->vm_flags)) 809 return NULL; 810 } 811 } 812 813 if (is_zero_pfn(pfn)) 814 return NULL; 815 check_pfn: 816 if (unlikely(pfn > highest_memmap_pfn)) { 817 print_bad_pte(vma, addr, pte, NULL); 818 return NULL; 819 } 820 821 /* 822 * NOTE! We still have PageReserved() pages in the page tables. 823 * eg. VDSO mappings can cause them to exist. 824 */ 825 out: 826 return pfn_to_page(pfn); 827 } 828 829 /* 830 * copy one vm_area from one task to the other. Assumes the page tables 831 * already present in the new task to be cleared in the whole range 832 * covered by this vma. 833 */ 834 835 static inline unsigned long 836 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 837 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 838 unsigned long addr, int *rss) 839 { 840 unsigned long vm_flags = vma->vm_flags; 841 pte_t pte = *src_pte; 842 struct page *page; 843 844 /* pte contains position in swap or file, so copy. */ 845 if (unlikely(!pte_present(pte))) { 846 if (!pte_file(pte)) { 847 swp_entry_t entry = pte_to_swp_entry(pte); 848 849 if (swap_duplicate(entry) < 0) 850 return entry.val; 851 852 /* make sure dst_mm is on swapoff's mmlist. */ 853 if (unlikely(list_empty(&dst_mm->mmlist))) { 854 spin_lock(&mmlist_lock); 855 if (list_empty(&dst_mm->mmlist)) 856 list_add(&dst_mm->mmlist, 857 &src_mm->mmlist); 858 spin_unlock(&mmlist_lock); 859 } 860 if (likely(!non_swap_entry(entry))) 861 rss[MM_SWAPENTS]++; 862 else if (is_migration_entry(entry)) { 863 page = migration_entry_to_page(entry); 864 865 if (PageAnon(page)) 866 rss[MM_ANONPAGES]++; 867 else 868 rss[MM_FILEPAGES]++; 869 870 if (is_write_migration_entry(entry) && 871 is_cow_mapping(vm_flags)) { 872 /* 873 * COW mappings require pages in both 874 * parent and child to be set to read. 875 */ 876 make_migration_entry_read(&entry); 877 pte = swp_entry_to_pte(entry); 878 set_pte_at(src_mm, addr, src_pte, pte); 879 } 880 } 881 } 882 goto out_set_pte; 883 } 884 885 /* 886 * If it's a COW mapping, write protect it both 887 * in the parent and the child 888 */ 889 if (is_cow_mapping(vm_flags)) { 890 ptep_set_wrprotect(src_mm, addr, src_pte); 891 pte = pte_wrprotect(pte); 892 } 893 894 /* 895 * If it's a shared mapping, mark it clean in 896 * the child 897 */ 898 if (vm_flags & VM_SHARED) 899 pte = pte_mkclean(pte); 900 pte = pte_mkold(pte); 901 902 page = vm_normal_page(vma, addr, pte); 903 if (page) { 904 get_page(page); 905 page_dup_rmap(page); 906 if (PageAnon(page)) 907 rss[MM_ANONPAGES]++; 908 else 909 rss[MM_FILEPAGES]++; 910 } 911 912 out_set_pte: 913 set_pte_at(dst_mm, addr, dst_pte, pte); 914 return 0; 915 } 916 917 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 918 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 919 unsigned long addr, unsigned long end) 920 { 921 pte_t *orig_src_pte, *orig_dst_pte; 922 pte_t *src_pte, *dst_pte; 923 spinlock_t *src_ptl, *dst_ptl; 924 int progress = 0; 925 int rss[NR_MM_COUNTERS]; 926 swp_entry_t entry = (swp_entry_t){0}; 927 928 again: 929 init_rss_vec(rss); 930 931 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 932 if (!dst_pte) 933 return -ENOMEM; 934 src_pte = pte_offset_map(src_pmd, addr); 935 src_ptl = pte_lockptr(src_mm, src_pmd); 936 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 937 orig_src_pte = src_pte; 938 orig_dst_pte = dst_pte; 939 arch_enter_lazy_mmu_mode(); 940 941 do { 942 /* 943 * We are holding two locks at this point - either of them 944 * could generate latencies in another task on another CPU. 945 */ 946 if (progress >= 32) { 947 progress = 0; 948 if (need_resched() || 949 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 950 break; 951 } 952 if (pte_none(*src_pte)) { 953 progress++; 954 continue; 955 } 956 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 957 vma, addr, rss); 958 if (entry.val) 959 break; 960 progress += 8; 961 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 962 963 arch_leave_lazy_mmu_mode(); 964 spin_unlock(src_ptl); 965 pte_unmap(orig_src_pte); 966 add_mm_rss_vec(dst_mm, rss); 967 pte_unmap_unlock(orig_dst_pte, dst_ptl); 968 cond_resched(); 969 970 if (entry.val) { 971 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 972 return -ENOMEM; 973 progress = 0; 974 } 975 if (addr != end) 976 goto again; 977 return 0; 978 } 979 980 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 981 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 982 unsigned long addr, unsigned long end) 983 { 984 pmd_t *src_pmd, *dst_pmd; 985 unsigned long next; 986 987 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 988 if (!dst_pmd) 989 return -ENOMEM; 990 src_pmd = pmd_offset(src_pud, addr); 991 do { 992 next = pmd_addr_end(addr, end); 993 if (pmd_trans_huge(*src_pmd)) { 994 int err; 995 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 996 err = copy_huge_pmd(dst_mm, src_mm, 997 dst_pmd, src_pmd, addr, vma); 998 if (err == -ENOMEM) 999 return -ENOMEM; 1000 if (!err) 1001 continue; 1002 /* fall through */ 1003 } 1004 if (pmd_none_or_clear_bad(src_pmd)) 1005 continue; 1006 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1007 vma, addr, next)) 1008 return -ENOMEM; 1009 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1010 return 0; 1011 } 1012 1013 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1014 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1015 unsigned long addr, unsigned long end) 1016 { 1017 pud_t *src_pud, *dst_pud; 1018 unsigned long next; 1019 1020 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1021 if (!dst_pud) 1022 return -ENOMEM; 1023 src_pud = pud_offset(src_pgd, addr); 1024 do { 1025 next = pud_addr_end(addr, end); 1026 if (pud_none_or_clear_bad(src_pud)) 1027 continue; 1028 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1029 vma, addr, next)) 1030 return -ENOMEM; 1031 } while (dst_pud++, src_pud++, addr = next, addr != end); 1032 return 0; 1033 } 1034 1035 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1036 struct vm_area_struct *vma) 1037 { 1038 pgd_t *src_pgd, *dst_pgd; 1039 unsigned long next; 1040 unsigned long addr = vma->vm_start; 1041 unsigned long end = vma->vm_end; 1042 int ret; 1043 1044 /* 1045 * Don't copy ptes where a page fault will fill them correctly. 1046 * Fork becomes much lighter when there are big shared or private 1047 * readonly mappings. The tradeoff is that copy_page_range is more 1048 * efficient than faulting. 1049 */ 1050 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 1051 if (!vma->anon_vma) 1052 return 0; 1053 } 1054 1055 if (is_vm_hugetlb_page(vma)) 1056 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1057 1058 if (unlikely(is_pfn_mapping(vma))) { 1059 /* 1060 * We do not free on error cases below as remove_vma 1061 * gets called on error from higher level routine 1062 */ 1063 ret = track_pfn_vma_copy(vma); 1064 if (ret) 1065 return ret; 1066 } 1067 1068 /* 1069 * We need to invalidate the secondary MMU mappings only when 1070 * there could be a permission downgrade on the ptes of the 1071 * parent mm. And a permission downgrade will only happen if 1072 * is_cow_mapping() returns true. 1073 */ 1074 if (is_cow_mapping(vma->vm_flags)) 1075 mmu_notifier_invalidate_range_start(src_mm, addr, end); 1076 1077 ret = 0; 1078 dst_pgd = pgd_offset(dst_mm, addr); 1079 src_pgd = pgd_offset(src_mm, addr); 1080 do { 1081 next = pgd_addr_end(addr, end); 1082 if (pgd_none_or_clear_bad(src_pgd)) 1083 continue; 1084 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1085 vma, addr, next))) { 1086 ret = -ENOMEM; 1087 break; 1088 } 1089 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1090 1091 if (is_cow_mapping(vma->vm_flags)) 1092 mmu_notifier_invalidate_range_end(src_mm, 1093 vma->vm_start, end); 1094 return ret; 1095 } 1096 1097 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1098 struct vm_area_struct *vma, pmd_t *pmd, 1099 unsigned long addr, unsigned long end, 1100 struct zap_details *details) 1101 { 1102 struct mm_struct *mm = tlb->mm; 1103 int force_flush = 0; 1104 int rss[NR_MM_COUNTERS]; 1105 spinlock_t *ptl; 1106 pte_t *start_pte; 1107 pte_t *pte; 1108 1109 again: 1110 init_rss_vec(rss); 1111 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1112 pte = start_pte; 1113 arch_enter_lazy_mmu_mode(); 1114 do { 1115 pte_t ptent = *pte; 1116 if (pte_none(ptent)) { 1117 continue; 1118 } 1119 1120 if (pte_present(ptent)) { 1121 struct page *page; 1122 1123 page = vm_normal_page(vma, addr, ptent); 1124 if (unlikely(details) && page) { 1125 /* 1126 * unmap_shared_mapping_pages() wants to 1127 * invalidate cache without truncating: 1128 * unmap shared but keep private pages. 1129 */ 1130 if (details->check_mapping && 1131 details->check_mapping != page->mapping) 1132 continue; 1133 /* 1134 * Each page->index must be checked when 1135 * invalidating or truncating nonlinear. 1136 */ 1137 if (details->nonlinear_vma && 1138 (page->index < details->first_index || 1139 page->index > details->last_index)) 1140 continue; 1141 } 1142 ptent = ptep_get_and_clear_full(mm, addr, pte, 1143 tlb->fullmm); 1144 tlb_remove_tlb_entry(tlb, pte, addr); 1145 if (unlikely(!page)) 1146 continue; 1147 if (unlikely(details) && details->nonlinear_vma 1148 && linear_page_index(details->nonlinear_vma, 1149 addr) != page->index) 1150 set_pte_at(mm, addr, pte, 1151 pgoff_to_pte(page->index)); 1152 if (PageAnon(page)) 1153 rss[MM_ANONPAGES]--; 1154 else { 1155 if (pte_dirty(ptent)) 1156 set_page_dirty(page); 1157 if (pte_young(ptent) && 1158 likely(!VM_SequentialReadHint(vma))) 1159 mark_page_accessed(page); 1160 rss[MM_FILEPAGES]--; 1161 } 1162 page_remove_rmap(page); 1163 if (unlikely(page_mapcount(page) < 0)) 1164 print_bad_pte(vma, addr, ptent, page); 1165 force_flush = !__tlb_remove_page(tlb, page); 1166 if (force_flush) 1167 break; 1168 continue; 1169 } 1170 /* 1171 * If details->check_mapping, we leave swap entries; 1172 * if details->nonlinear_vma, we leave file entries. 1173 */ 1174 if (unlikely(details)) 1175 continue; 1176 if (pte_file(ptent)) { 1177 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1178 print_bad_pte(vma, addr, ptent, NULL); 1179 } else { 1180 swp_entry_t entry = pte_to_swp_entry(ptent); 1181 1182 if (!non_swap_entry(entry)) 1183 rss[MM_SWAPENTS]--; 1184 else if (is_migration_entry(entry)) { 1185 struct page *page; 1186 1187 page = migration_entry_to_page(entry); 1188 1189 if (PageAnon(page)) 1190 rss[MM_ANONPAGES]--; 1191 else 1192 rss[MM_FILEPAGES]--; 1193 } 1194 if (unlikely(!free_swap_and_cache(entry))) 1195 print_bad_pte(vma, addr, ptent, NULL); 1196 } 1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1198 } while (pte++, addr += PAGE_SIZE, addr != end); 1199 1200 add_mm_rss_vec(mm, rss); 1201 arch_leave_lazy_mmu_mode(); 1202 pte_unmap_unlock(start_pte, ptl); 1203 1204 /* 1205 * mmu_gather ran out of room to batch pages, we break out of 1206 * the PTE lock to avoid doing the potential expensive TLB invalidate 1207 * and page-free while holding it. 1208 */ 1209 if (force_flush) { 1210 force_flush = 0; 1211 1212 #ifdef HAVE_GENERIC_MMU_GATHER 1213 tlb->start = addr; 1214 tlb->end = end; 1215 #endif 1216 tlb_flush_mmu(tlb); 1217 if (addr != end) 1218 goto again; 1219 } 1220 1221 return addr; 1222 } 1223 1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1225 struct vm_area_struct *vma, pud_t *pud, 1226 unsigned long addr, unsigned long end, 1227 struct zap_details *details) 1228 { 1229 pmd_t *pmd; 1230 unsigned long next; 1231 1232 pmd = pmd_offset(pud, addr); 1233 do { 1234 next = pmd_addr_end(addr, end); 1235 if (pmd_trans_huge(*pmd)) { 1236 if (next - addr != HPAGE_PMD_SIZE) { 1237 #ifdef CONFIG_DEBUG_VM 1238 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1239 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1240 __func__, addr, end, 1241 vma->vm_start, 1242 vma->vm_end); 1243 BUG(); 1244 } 1245 #endif 1246 split_huge_page_pmd(vma->vm_mm, pmd); 1247 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1248 goto next; 1249 /* fall through */ 1250 } 1251 /* 1252 * Here there can be other concurrent MADV_DONTNEED or 1253 * trans huge page faults running, and if the pmd is 1254 * none or trans huge it can change under us. This is 1255 * because MADV_DONTNEED holds the mmap_sem in read 1256 * mode. 1257 */ 1258 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1259 goto next; 1260 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1261 next: 1262 cond_resched(); 1263 } while (pmd++, addr = next, addr != end); 1264 1265 return addr; 1266 } 1267 1268 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1269 struct vm_area_struct *vma, pgd_t *pgd, 1270 unsigned long addr, unsigned long end, 1271 struct zap_details *details) 1272 { 1273 pud_t *pud; 1274 unsigned long next; 1275 1276 pud = pud_offset(pgd, addr); 1277 do { 1278 next = pud_addr_end(addr, end); 1279 if (pud_none_or_clear_bad(pud)) 1280 continue; 1281 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1282 } while (pud++, addr = next, addr != end); 1283 1284 return addr; 1285 } 1286 1287 static void unmap_page_range(struct mmu_gather *tlb, 1288 struct vm_area_struct *vma, 1289 unsigned long addr, unsigned long end, 1290 struct zap_details *details) 1291 { 1292 pgd_t *pgd; 1293 unsigned long next; 1294 1295 if (details && !details->check_mapping && !details->nonlinear_vma) 1296 details = NULL; 1297 1298 BUG_ON(addr >= end); 1299 mem_cgroup_uncharge_start(); 1300 tlb_start_vma(tlb, vma); 1301 pgd = pgd_offset(vma->vm_mm, addr); 1302 do { 1303 next = pgd_addr_end(addr, end); 1304 if (pgd_none_or_clear_bad(pgd)) 1305 continue; 1306 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1307 } while (pgd++, addr = next, addr != end); 1308 tlb_end_vma(tlb, vma); 1309 mem_cgroup_uncharge_end(); 1310 } 1311 1312 1313 static void unmap_single_vma(struct mmu_gather *tlb, 1314 struct vm_area_struct *vma, unsigned long start_addr, 1315 unsigned long end_addr, 1316 struct zap_details *details) 1317 { 1318 unsigned long start = max(vma->vm_start, start_addr); 1319 unsigned long end; 1320 1321 if (start >= vma->vm_end) 1322 return; 1323 end = min(vma->vm_end, end_addr); 1324 if (end <= vma->vm_start) 1325 return; 1326 1327 if (vma->vm_file) 1328 uprobe_munmap(vma, start, end); 1329 1330 if (unlikely(is_pfn_mapping(vma))) 1331 untrack_pfn_vma(vma, 0, 0); 1332 1333 if (start != end) { 1334 if (unlikely(is_vm_hugetlb_page(vma))) { 1335 /* 1336 * It is undesirable to test vma->vm_file as it 1337 * should be non-null for valid hugetlb area. 1338 * However, vm_file will be NULL in the error 1339 * cleanup path of do_mmap_pgoff. When 1340 * hugetlbfs ->mmap method fails, 1341 * do_mmap_pgoff() nullifies vma->vm_file 1342 * before calling this function to clean up. 1343 * Since no pte has actually been setup, it is 1344 * safe to do nothing in this case. 1345 */ 1346 if (vma->vm_file) { 1347 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 1348 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1349 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 1350 } 1351 } else 1352 unmap_page_range(tlb, vma, start, end, details); 1353 } 1354 } 1355 1356 /** 1357 * unmap_vmas - unmap a range of memory covered by a list of vma's 1358 * @tlb: address of the caller's struct mmu_gather 1359 * @vma: the starting vma 1360 * @start_addr: virtual address at which to start unmapping 1361 * @end_addr: virtual address at which to end unmapping 1362 * 1363 * Unmap all pages in the vma list. 1364 * 1365 * Only addresses between `start' and `end' will be unmapped. 1366 * 1367 * The VMA list must be sorted in ascending virtual address order. 1368 * 1369 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1370 * range after unmap_vmas() returns. So the only responsibility here is to 1371 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1372 * drops the lock and schedules. 1373 */ 1374 void unmap_vmas(struct mmu_gather *tlb, 1375 struct vm_area_struct *vma, unsigned long start_addr, 1376 unsigned long end_addr) 1377 { 1378 struct mm_struct *mm = vma->vm_mm; 1379 1380 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1381 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1382 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1383 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1384 } 1385 1386 /** 1387 * zap_page_range - remove user pages in a given range 1388 * @vma: vm_area_struct holding the applicable pages 1389 * @start: starting address of pages to zap 1390 * @size: number of bytes to zap 1391 * @details: details of nonlinear truncation or shared cache invalidation 1392 * 1393 * Caller must protect the VMA list 1394 */ 1395 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1396 unsigned long size, struct zap_details *details) 1397 { 1398 struct mm_struct *mm = vma->vm_mm; 1399 struct mmu_gather tlb; 1400 unsigned long end = start + size; 1401 1402 lru_add_drain(); 1403 tlb_gather_mmu(&tlb, mm, 0); 1404 update_hiwater_rss(mm); 1405 mmu_notifier_invalidate_range_start(mm, start, end); 1406 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1407 unmap_single_vma(&tlb, vma, start, end, details); 1408 mmu_notifier_invalidate_range_end(mm, start, end); 1409 tlb_finish_mmu(&tlb, start, end); 1410 } 1411 1412 /** 1413 * zap_page_range_single - remove user pages in a given range 1414 * @vma: vm_area_struct holding the applicable pages 1415 * @address: starting address of pages to zap 1416 * @size: number of bytes to zap 1417 * @details: details of nonlinear truncation or shared cache invalidation 1418 * 1419 * The range must fit into one VMA. 1420 */ 1421 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1422 unsigned long size, struct zap_details *details) 1423 { 1424 struct mm_struct *mm = vma->vm_mm; 1425 struct mmu_gather tlb; 1426 unsigned long end = address + size; 1427 1428 lru_add_drain(); 1429 tlb_gather_mmu(&tlb, mm, 0); 1430 update_hiwater_rss(mm); 1431 mmu_notifier_invalidate_range_start(mm, address, end); 1432 unmap_single_vma(&tlb, vma, address, end, details); 1433 mmu_notifier_invalidate_range_end(mm, address, end); 1434 tlb_finish_mmu(&tlb, address, end); 1435 } 1436 1437 /** 1438 * zap_vma_ptes - remove ptes mapping the vma 1439 * @vma: vm_area_struct holding ptes to be zapped 1440 * @address: starting address of pages to zap 1441 * @size: number of bytes to zap 1442 * 1443 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1444 * 1445 * The entire address range must be fully contained within the vma. 1446 * 1447 * Returns 0 if successful. 1448 */ 1449 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1450 unsigned long size) 1451 { 1452 if (address < vma->vm_start || address + size > vma->vm_end || 1453 !(vma->vm_flags & VM_PFNMAP)) 1454 return -1; 1455 zap_page_range_single(vma, address, size, NULL); 1456 return 0; 1457 } 1458 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1459 1460 /** 1461 * follow_page - look up a page descriptor from a user-virtual address 1462 * @vma: vm_area_struct mapping @address 1463 * @address: virtual address to look up 1464 * @flags: flags modifying lookup behaviour 1465 * 1466 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1467 * 1468 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1469 * an error pointer if there is a mapping to something not represented 1470 * by a page descriptor (see also vm_normal_page()). 1471 */ 1472 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1473 unsigned int flags) 1474 { 1475 pgd_t *pgd; 1476 pud_t *pud; 1477 pmd_t *pmd; 1478 pte_t *ptep, pte; 1479 spinlock_t *ptl; 1480 struct page *page; 1481 struct mm_struct *mm = vma->vm_mm; 1482 1483 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1484 if (!IS_ERR(page)) { 1485 BUG_ON(flags & FOLL_GET); 1486 goto out; 1487 } 1488 1489 page = NULL; 1490 pgd = pgd_offset(mm, address); 1491 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1492 goto no_page_table; 1493 1494 pud = pud_offset(pgd, address); 1495 if (pud_none(*pud)) 1496 goto no_page_table; 1497 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1498 BUG_ON(flags & FOLL_GET); 1499 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1500 goto out; 1501 } 1502 if (unlikely(pud_bad(*pud))) 1503 goto no_page_table; 1504 1505 pmd = pmd_offset(pud, address); 1506 if (pmd_none(*pmd)) 1507 goto no_page_table; 1508 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1509 BUG_ON(flags & FOLL_GET); 1510 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1511 goto out; 1512 } 1513 if (pmd_trans_huge(*pmd)) { 1514 if (flags & FOLL_SPLIT) { 1515 split_huge_page_pmd(mm, pmd); 1516 goto split_fallthrough; 1517 } 1518 spin_lock(&mm->page_table_lock); 1519 if (likely(pmd_trans_huge(*pmd))) { 1520 if (unlikely(pmd_trans_splitting(*pmd))) { 1521 spin_unlock(&mm->page_table_lock); 1522 wait_split_huge_page(vma->anon_vma, pmd); 1523 } else { 1524 page = follow_trans_huge_pmd(mm, address, 1525 pmd, flags); 1526 spin_unlock(&mm->page_table_lock); 1527 goto out; 1528 } 1529 } else 1530 spin_unlock(&mm->page_table_lock); 1531 /* fall through */ 1532 } 1533 split_fallthrough: 1534 if (unlikely(pmd_bad(*pmd))) 1535 goto no_page_table; 1536 1537 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1538 1539 pte = *ptep; 1540 if (!pte_present(pte)) 1541 goto no_page; 1542 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1543 goto unlock; 1544 1545 page = vm_normal_page(vma, address, pte); 1546 if (unlikely(!page)) { 1547 if ((flags & FOLL_DUMP) || 1548 !is_zero_pfn(pte_pfn(pte))) 1549 goto bad_page; 1550 page = pte_page(pte); 1551 } 1552 1553 if (flags & FOLL_GET) 1554 get_page_foll(page); 1555 if (flags & FOLL_TOUCH) { 1556 if ((flags & FOLL_WRITE) && 1557 !pte_dirty(pte) && !PageDirty(page)) 1558 set_page_dirty(page); 1559 /* 1560 * pte_mkyoung() would be more correct here, but atomic care 1561 * is needed to avoid losing the dirty bit: it is easier to use 1562 * mark_page_accessed(). 1563 */ 1564 mark_page_accessed(page); 1565 } 1566 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1567 /* 1568 * The preliminary mapping check is mainly to avoid the 1569 * pointless overhead of lock_page on the ZERO_PAGE 1570 * which might bounce very badly if there is contention. 1571 * 1572 * If the page is already locked, we don't need to 1573 * handle it now - vmscan will handle it later if and 1574 * when it attempts to reclaim the page. 1575 */ 1576 if (page->mapping && trylock_page(page)) { 1577 lru_add_drain(); /* push cached pages to LRU */ 1578 /* 1579 * Because we lock page here and migration is 1580 * blocked by the pte's page reference, we need 1581 * only check for file-cache page truncation. 1582 */ 1583 if (page->mapping) 1584 mlock_vma_page(page); 1585 unlock_page(page); 1586 } 1587 } 1588 unlock: 1589 pte_unmap_unlock(ptep, ptl); 1590 out: 1591 return page; 1592 1593 bad_page: 1594 pte_unmap_unlock(ptep, ptl); 1595 return ERR_PTR(-EFAULT); 1596 1597 no_page: 1598 pte_unmap_unlock(ptep, ptl); 1599 if (!pte_none(pte)) 1600 return page; 1601 1602 no_page_table: 1603 /* 1604 * When core dumping an enormous anonymous area that nobody 1605 * has touched so far, we don't want to allocate unnecessary pages or 1606 * page tables. Return error instead of NULL to skip handle_mm_fault, 1607 * then get_dump_page() will return NULL to leave a hole in the dump. 1608 * But we can only make this optimization where a hole would surely 1609 * be zero-filled if handle_mm_fault() actually did handle it. 1610 */ 1611 if ((flags & FOLL_DUMP) && 1612 (!vma->vm_ops || !vma->vm_ops->fault)) 1613 return ERR_PTR(-EFAULT); 1614 return page; 1615 } 1616 1617 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1618 { 1619 return stack_guard_page_start(vma, addr) || 1620 stack_guard_page_end(vma, addr+PAGE_SIZE); 1621 } 1622 1623 /** 1624 * __get_user_pages() - pin user pages in memory 1625 * @tsk: task_struct of target task 1626 * @mm: mm_struct of target mm 1627 * @start: starting user address 1628 * @nr_pages: number of pages from start to pin 1629 * @gup_flags: flags modifying pin behaviour 1630 * @pages: array that receives pointers to the pages pinned. 1631 * Should be at least nr_pages long. Or NULL, if caller 1632 * only intends to ensure the pages are faulted in. 1633 * @vmas: array of pointers to vmas corresponding to each page. 1634 * Or NULL if the caller does not require them. 1635 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1636 * 1637 * Returns number of pages pinned. This may be fewer than the number 1638 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1639 * were pinned, returns -errno. Each page returned must be released 1640 * with a put_page() call when it is finished with. vmas will only 1641 * remain valid while mmap_sem is held. 1642 * 1643 * Must be called with mmap_sem held for read or write. 1644 * 1645 * __get_user_pages walks a process's page tables and takes a reference to 1646 * each struct page that each user address corresponds to at a given 1647 * instant. That is, it takes the page that would be accessed if a user 1648 * thread accesses the given user virtual address at that instant. 1649 * 1650 * This does not guarantee that the page exists in the user mappings when 1651 * __get_user_pages returns, and there may even be a completely different 1652 * page there in some cases (eg. if mmapped pagecache has been invalidated 1653 * and subsequently re faulted). However it does guarantee that the page 1654 * won't be freed completely. And mostly callers simply care that the page 1655 * contains data that was valid *at some point in time*. Typically, an IO 1656 * or similar operation cannot guarantee anything stronger anyway because 1657 * locks can't be held over the syscall boundary. 1658 * 1659 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1660 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1661 * appropriate) must be called after the page is finished with, and 1662 * before put_page is called. 1663 * 1664 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1665 * or mmap_sem contention, and if waiting is needed to pin all pages, 1666 * *@nonblocking will be set to 0. 1667 * 1668 * In most cases, get_user_pages or get_user_pages_fast should be used 1669 * instead of __get_user_pages. __get_user_pages should be used only if 1670 * you need some special @gup_flags. 1671 */ 1672 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1673 unsigned long start, int nr_pages, unsigned int gup_flags, 1674 struct page **pages, struct vm_area_struct **vmas, 1675 int *nonblocking) 1676 { 1677 int i; 1678 unsigned long vm_flags; 1679 1680 if (nr_pages <= 0) 1681 return 0; 1682 1683 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1684 1685 /* 1686 * Require read or write permissions. 1687 * If FOLL_FORCE is set, we only require the "MAY" flags. 1688 */ 1689 vm_flags = (gup_flags & FOLL_WRITE) ? 1690 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1691 vm_flags &= (gup_flags & FOLL_FORCE) ? 1692 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1693 i = 0; 1694 1695 do { 1696 struct vm_area_struct *vma; 1697 1698 vma = find_extend_vma(mm, start); 1699 if (!vma && in_gate_area(mm, start)) { 1700 unsigned long pg = start & PAGE_MASK; 1701 pgd_t *pgd; 1702 pud_t *pud; 1703 pmd_t *pmd; 1704 pte_t *pte; 1705 1706 /* user gate pages are read-only */ 1707 if (gup_flags & FOLL_WRITE) 1708 return i ? : -EFAULT; 1709 if (pg > TASK_SIZE) 1710 pgd = pgd_offset_k(pg); 1711 else 1712 pgd = pgd_offset_gate(mm, pg); 1713 BUG_ON(pgd_none(*pgd)); 1714 pud = pud_offset(pgd, pg); 1715 BUG_ON(pud_none(*pud)); 1716 pmd = pmd_offset(pud, pg); 1717 if (pmd_none(*pmd)) 1718 return i ? : -EFAULT; 1719 VM_BUG_ON(pmd_trans_huge(*pmd)); 1720 pte = pte_offset_map(pmd, pg); 1721 if (pte_none(*pte)) { 1722 pte_unmap(pte); 1723 return i ? : -EFAULT; 1724 } 1725 vma = get_gate_vma(mm); 1726 if (pages) { 1727 struct page *page; 1728 1729 page = vm_normal_page(vma, start, *pte); 1730 if (!page) { 1731 if (!(gup_flags & FOLL_DUMP) && 1732 is_zero_pfn(pte_pfn(*pte))) 1733 page = pte_page(*pte); 1734 else { 1735 pte_unmap(pte); 1736 return i ? : -EFAULT; 1737 } 1738 } 1739 pages[i] = page; 1740 get_page(page); 1741 } 1742 pte_unmap(pte); 1743 goto next_page; 1744 } 1745 1746 if (!vma || 1747 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1748 !(vm_flags & vma->vm_flags)) 1749 return i ? : -EFAULT; 1750 1751 if (is_vm_hugetlb_page(vma)) { 1752 i = follow_hugetlb_page(mm, vma, pages, vmas, 1753 &start, &nr_pages, i, gup_flags); 1754 continue; 1755 } 1756 1757 do { 1758 struct page *page; 1759 unsigned int foll_flags = gup_flags; 1760 1761 /* 1762 * If we have a pending SIGKILL, don't keep faulting 1763 * pages and potentially allocating memory. 1764 */ 1765 if (unlikely(fatal_signal_pending(current))) 1766 return i ? i : -ERESTARTSYS; 1767 1768 cond_resched(); 1769 while (!(page = follow_page(vma, start, foll_flags))) { 1770 int ret; 1771 unsigned int fault_flags = 0; 1772 1773 /* For mlock, just skip the stack guard page. */ 1774 if (foll_flags & FOLL_MLOCK) { 1775 if (stack_guard_page(vma, start)) 1776 goto next_page; 1777 } 1778 if (foll_flags & FOLL_WRITE) 1779 fault_flags |= FAULT_FLAG_WRITE; 1780 if (nonblocking) 1781 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1782 if (foll_flags & FOLL_NOWAIT) 1783 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1784 1785 ret = handle_mm_fault(mm, vma, start, 1786 fault_flags); 1787 1788 if (ret & VM_FAULT_ERROR) { 1789 if (ret & VM_FAULT_OOM) 1790 return i ? i : -ENOMEM; 1791 if (ret & (VM_FAULT_HWPOISON | 1792 VM_FAULT_HWPOISON_LARGE)) { 1793 if (i) 1794 return i; 1795 else if (gup_flags & FOLL_HWPOISON) 1796 return -EHWPOISON; 1797 else 1798 return -EFAULT; 1799 } 1800 if (ret & VM_FAULT_SIGBUS) 1801 return i ? i : -EFAULT; 1802 BUG(); 1803 } 1804 1805 if (tsk) { 1806 if (ret & VM_FAULT_MAJOR) 1807 tsk->maj_flt++; 1808 else 1809 tsk->min_flt++; 1810 } 1811 1812 if (ret & VM_FAULT_RETRY) { 1813 if (nonblocking) 1814 *nonblocking = 0; 1815 return i; 1816 } 1817 1818 /* 1819 * The VM_FAULT_WRITE bit tells us that 1820 * do_wp_page has broken COW when necessary, 1821 * even if maybe_mkwrite decided not to set 1822 * pte_write. We can thus safely do subsequent 1823 * page lookups as if they were reads. But only 1824 * do so when looping for pte_write is futile: 1825 * in some cases userspace may also be wanting 1826 * to write to the gotten user page, which a 1827 * read fault here might prevent (a readonly 1828 * page might get reCOWed by userspace write). 1829 */ 1830 if ((ret & VM_FAULT_WRITE) && 1831 !(vma->vm_flags & VM_WRITE)) 1832 foll_flags &= ~FOLL_WRITE; 1833 1834 cond_resched(); 1835 } 1836 if (IS_ERR(page)) 1837 return i ? i : PTR_ERR(page); 1838 if (pages) { 1839 pages[i] = page; 1840 1841 flush_anon_page(vma, page, start); 1842 flush_dcache_page(page); 1843 } 1844 next_page: 1845 if (vmas) 1846 vmas[i] = vma; 1847 i++; 1848 start += PAGE_SIZE; 1849 nr_pages--; 1850 } while (nr_pages && start < vma->vm_end); 1851 } while (nr_pages); 1852 return i; 1853 } 1854 EXPORT_SYMBOL(__get_user_pages); 1855 1856 /* 1857 * fixup_user_fault() - manually resolve a user page fault 1858 * @tsk: the task_struct to use for page fault accounting, or 1859 * NULL if faults are not to be recorded. 1860 * @mm: mm_struct of target mm 1861 * @address: user address 1862 * @fault_flags:flags to pass down to handle_mm_fault() 1863 * 1864 * This is meant to be called in the specific scenario where for locking reasons 1865 * we try to access user memory in atomic context (within a pagefault_disable() 1866 * section), this returns -EFAULT, and we want to resolve the user fault before 1867 * trying again. 1868 * 1869 * Typically this is meant to be used by the futex code. 1870 * 1871 * The main difference with get_user_pages() is that this function will 1872 * unconditionally call handle_mm_fault() which will in turn perform all the 1873 * necessary SW fixup of the dirty and young bits in the PTE, while 1874 * handle_mm_fault() only guarantees to update these in the struct page. 1875 * 1876 * This is important for some architectures where those bits also gate the 1877 * access permission to the page because they are maintained in software. On 1878 * such architectures, gup() will not be enough to make a subsequent access 1879 * succeed. 1880 * 1881 * This should be called with the mm_sem held for read. 1882 */ 1883 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1884 unsigned long address, unsigned int fault_flags) 1885 { 1886 struct vm_area_struct *vma; 1887 int ret; 1888 1889 vma = find_extend_vma(mm, address); 1890 if (!vma || address < vma->vm_start) 1891 return -EFAULT; 1892 1893 ret = handle_mm_fault(mm, vma, address, fault_flags); 1894 if (ret & VM_FAULT_ERROR) { 1895 if (ret & VM_FAULT_OOM) 1896 return -ENOMEM; 1897 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 1898 return -EHWPOISON; 1899 if (ret & VM_FAULT_SIGBUS) 1900 return -EFAULT; 1901 BUG(); 1902 } 1903 if (tsk) { 1904 if (ret & VM_FAULT_MAJOR) 1905 tsk->maj_flt++; 1906 else 1907 tsk->min_flt++; 1908 } 1909 return 0; 1910 } 1911 1912 /* 1913 * get_user_pages() - pin user pages in memory 1914 * @tsk: the task_struct to use for page fault accounting, or 1915 * NULL if faults are not to be recorded. 1916 * @mm: mm_struct of target mm 1917 * @start: starting user address 1918 * @nr_pages: number of pages from start to pin 1919 * @write: whether pages will be written to by the caller 1920 * @force: whether to force write access even if user mapping is 1921 * readonly. This will result in the page being COWed even 1922 * in MAP_SHARED mappings. You do not want this. 1923 * @pages: array that receives pointers to the pages pinned. 1924 * Should be at least nr_pages long. Or NULL, if caller 1925 * only intends to ensure the pages are faulted in. 1926 * @vmas: array of pointers to vmas corresponding to each page. 1927 * Or NULL if the caller does not require them. 1928 * 1929 * Returns number of pages pinned. This may be fewer than the number 1930 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1931 * were pinned, returns -errno. Each page returned must be released 1932 * with a put_page() call when it is finished with. vmas will only 1933 * remain valid while mmap_sem is held. 1934 * 1935 * Must be called with mmap_sem held for read or write. 1936 * 1937 * get_user_pages walks a process's page tables and takes a reference to 1938 * each struct page that each user address corresponds to at a given 1939 * instant. That is, it takes the page that would be accessed if a user 1940 * thread accesses the given user virtual address at that instant. 1941 * 1942 * This does not guarantee that the page exists in the user mappings when 1943 * get_user_pages returns, and there may even be a completely different 1944 * page there in some cases (eg. if mmapped pagecache has been invalidated 1945 * and subsequently re faulted). However it does guarantee that the page 1946 * won't be freed completely. And mostly callers simply care that the page 1947 * contains data that was valid *at some point in time*. Typically, an IO 1948 * or similar operation cannot guarantee anything stronger anyway because 1949 * locks can't be held over the syscall boundary. 1950 * 1951 * If write=0, the page must not be written to. If the page is written to, 1952 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1953 * after the page is finished with, and before put_page is called. 1954 * 1955 * get_user_pages is typically used for fewer-copy IO operations, to get a 1956 * handle on the memory by some means other than accesses via the user virtual 1957 * addresses. The pages may be submitted for DMA to devices or accessed via 1958 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1959 * use the correct cache flushing APIs. 1960 * 1961 * See also get_user_pages_fast, for performance critical applications. 1962 */ 1963 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1964 unsigned long start, int nr_pages, int write, int force, 1965 struct page **pages, struct vm_area_struct **vmas) 1966 { 1967 int flags = FOLL_TOUCH; 1968 1969 if (pages) 1970 flags |= FOLL_GET; 1971 if (write) 1972 flags |= FOLL_WRITE; 1973 if (force) 1974 flags |= FOLL_FORCE; 1975 1976 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 1977 NULL); 1978 } 1979 EXPORT_SYMBOL(get_user_pages); 1980 1981 /** 1982 * get_dump_page() - pin user page in memory while writing it to core dump 1983 * @addr: user address 1984 * 1985 * Returns struct page pointer of user page pinned for dump, 1986 * to be freed afterwards by page_cache_release() or put_page(). 1987 * 1988 * Returns NULL on any kind of failure - a hole must then be inserted into 1989 * the corefile, to preserve alignment with its headers; and also returns 1990 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1991 * allowing a hole to be left in the corefile to save diskspace. 1992 * 1993 * Called without mmap_sem, but after all other threads have been killed. 1994 */ 1995 #ifdef CONFIG_ELF_CORE 1996 struct page *get_dump_page(unsigned long addr) 1997 { 1998 struct vm_area_struct *vma; 1999 struct page *page; 2000 2001 if (__get_user_pages(current, current->mm, addr, 1, 2002 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 2003 NULL) < 1) 2004 return NULL; 2005 flush_cache_page(vma, addr, page_to_pfn(page)); 2006 return page; 2007 } 2008 #endif /* CONFIG_ELF_CORE */ 2009 2010 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2011 spinlock_t **ptl) 2012 { 2013 pgd_t * pgd = pgd_offset(mm, addr); 2014 pud_t * pud = pud_alloc(mm, pgd, addr); 2015 if (pud) { 2016 pmd_t * pmd = pmd_alloc(mm, pud, addr); 2017 if (pmd) { 2018 VM_BUG_ON(pmd_trans_huge(*pmd)); 2019 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2020 } 2021 } 2022 return NULL; 2023 } 2024 2025 /* 2026 * This is the old fallback for page remapping. 2027 * 2028 * For historical reasons, it only allows reserved pages. Only 2029 * old drivers should use this, and they needed to mark their 2030 * pages reserved for the old functions anyway. 2031 */ 2032 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2033 struct page *page, pgprot_t prot) 2034 { 2035 struct mm_struct *mm = vma->vm_mm; 2036 int retval; 2037 pte_t *pte; 2038 spinlock_t *ptl; 2039 2040 retval = -EINVAL; 2041 if (PageAnon(page)) 2042 goto out; 2043 retval = -ENOMEM; 2044 flush_dcache_page(page); 2045 pte = get_locked_pte(mm, addr, &ptl); 2046 if (!pte) 2047 goto out; 2048 retval = -EBUSY; 2049 if (!pte_none(*pte)) 2050 goto out_unlock; 2051 2052 /* Ok, finally just insert the thing.. */ 2053 get_page(page); 2054 inc_mm_counter_fast(mm, MM_FILEPAGES); 2055 page_add_file_rmap(page); 2056 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 2057 2058 retval = 0; 2059 pte_unmap_unlock(pte, ptl); 2060 return retval; 2061 out_unlock: 2062 pte_unmap_unlock(pte, ptl); 2063 out: 2064 return retval; 2065 } 2066 2067 /** 2068 * vm_insert_page - insert single page into user vma 2069 * @vma: user vma to map to 2070 * @addr: target user address of this page 2071 * @page: source kernel page 2072 * 2073 * This allows drivers to insert individual pages they've allocated 2074 * into a user vma. 2075 * 2076 * The page has to be a nice clean _individual_ kernel allocation. 2077 * If you allocate a compound page, you need to have marked it as 2078 * such (__GFP_COMP), or manually just split the page up yourself 2079 * (see split_page()). 2080 * 2081 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2082 * took an arbitrary page protection parameter. This doesn't allow 2083 * that. Your vma protection will have to be set up correctly, which 2084 * means that if you want a shared writable mapping, you'd better 2085 * ask for a shared writable mapping! 2086 * 2087 * The page does not need to be reserved. 2088 */ 2089 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2090 struct page *page) 2091 { 2092 if (addr < vma->vm_start || addr >= vma->vm_end) 2093 return -EFAULT; 2094 if (!page_count(page)) 2095 return -EINVAL; 2096 vma->vm_flags |= VM_INSERTPAGE; 2097 return insert_page(vma, addr, page, vma->vm_page_prot); 2098 } 2099 EXPORT_SYMBOL(vm_insert_page); 2100 2101 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2102 unsigned long pfn, pgprot_t prot) 2103 { 2104 struct mm_struct *mm = vma->vm_mm; 2105 int retval; 2106 pte_t *pte, entry; 2107 spinlock_t *ptl; 2108 2109 retval = -ENOMEM; 2110 pte = get_locked_pte(mm, addr, &ptl); 2111 if (!pte) 2112 goto out; 2113 retval = -EBUSY; 2114 if (!pte_none(*pte)) 2115 goto out_unlock; 2116 2117 /* Ok, finally just insert the thing.. */ 2118 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2119 set_pte_at(mm, addr, pte, entry); 2120 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2121 2122 retval = 0; 2123 out_unlock: 2124 pte_unmap_unlock(pte, ptl); 2125 out: 2126 return retval; 2127 } 2128 2129 /** 2130 * vm_insert_pfn - insert single pfn into user vma 2131 * @vma: user vma to map to 2132 * @addr: target user address of this page 2133 * @pfn: source kernel pfn 2134 * 2135 * Similar to vm_inert_page, this allows drivers to insert individual pages 2136 * they've allocated into a user vma. Same comments apply. 2137 * 2138 * This function should only be called from a vm_ops->fault handler, and 2139 * in that case the handler should return NULL. 2140 * 2141 * vma cannot be a COW mapping. 2142 * 2143 * As this is called only for pages that do not currently exist, we 2144 * do not need to flush old virtual caches or the TLB. 2145 */ 2146 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2147 unsigned long pfn) 2148 { 2149 int ret; 2150 pgprot_t pgprot = vma->vm_page_prot; 2151 /* 2152 * Technically, architectures with pte_special can avoid all these 2153 * restrictions (same for remap_pfn_range). However we would like 2154 * consistency in testing and feature parity among all, so we should 2155 * try to keep these invariants in place for everybody. 2156 */ 2157 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2158 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2159 (VM_PFNMAP|VM_MIXEDMAP)); 2160 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2161 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2162 2163 if (addr < vma->vm_start || addr >= vma->vm_end) 2164 return -EFAULT; 2165 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 2166 return -EINVAL; 2167 2168 ret = insert_pfn(vma, addr, pfn, pgprot); 2169 2170 if (ret) 2171 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 2172 2173 return ret; 2174 } 2175 EXPORT_SYMBOL(vm_insert_pfn); 2176 2177 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2178 unsigned long pfn) 2179 { 2180 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2181 2182 if (addr < vma->vm_start || addr >= vma->vm_end) 2183 return -EFAULT; 2184 2185 /* 2186 * If we don't have pte special, then we have to use the pfn_valid() 2187 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2188 * refcount the page if pfn_valid is true (hence insert_page rather 2189 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2190 * without pte special, it would there be refcounted as a normal page. 2191 */ 2192 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2193 struct page *page; 2194 2195 page = pfn_to_page(pfn); 2196 return insert_page(vma, addr, page, vma->vm_page_prot); 2197 } 2198 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2199 } 2200 EXPORT_SYMBOL(vm_insert_mixed); 2201 2202 /* 2203 * maps a range of physical memory into the requested pages. the old 2204 * mappings are removed. any references to nonexistent pages results 2205 * in null mappings (currently treated as "copy-on-access") 2206 */ 2207 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2208 unsigned long addr, unsigned long end, 2209 unsigned long pfn, pgprot_t prot) 2210 { 2211 pte_t *pte; 2212 spinlock_t *ptl; 2213 2214 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2215 if (!pte) 2216 return -ENOMEM; 2217 arch_enter_lazy_mmu_mode(); 2218 do { 2219 BUG_ON(!pte_none(*pte)); 2220 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2221 pfn++; 2222 } while (pte++, addr += PAGE_SIZE, addr != end); 2223 arch_leave_lazy_mmu_mode(); 2224 pte_unmap_unlock(pte - 1, ptl); 2225 return 0; 2226 } 2227 2228 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2229 unsigned long addr, unsigned long end, 2230 unsigned long pfn, pgprot_t prot) 2231 { 2232 pmd_t *pmd; 2233 unsigned long next; 2234 2235 pfn -= addr >> PAGE_SHIFT; 2236 pmd = pmd_alloc(mm, pud, addr); 2237 if (!pmd) 2238 return -ENOMEM; 2239 VM_BUG_ON(pmd_trans_huge(*pmd)); 2240 do { 2241 next = pmd_addr_end(addr, end); 2242 if (remap_pte_range(mm, pmd, addr, next, 2243 pfn + (addr >> PAGE_SHIFT), prot)) 2244 return -ENOMEM; 2245 } while (pmd++, addr = next, addr != end); 2246 return 0; 2247 } 2248 2249 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2250 unsigned long addr, unsigned long end, 2251 unsigned long pfn, pgprot_t prot) 2252 { 2253 pud_t *pud; 2254 unsigned long next; 2255 2256 pfn -= addr >> PAGE_SHIFT; 2257 pud = pud_alloc(mm, pgd, addr); 2258 if (!pud) 2259 return -ENOMEM; 2260 do { 2261 next = pud_addr_end(addr, end); 2262 if (remap_pmd_range(mm, pud, addr, next, 2263 pfn + (addr >> PAGE_SHIFT), prot)) 2264 return -ENOMEM; 2265 } while (pud++, addr = next, addr != end); 2266 return 0; 2267 } 2268 2269 /** 2270 * remap_pfn_range - remap kernel memory to userspace 2271 * @vma: user vma to map to 2272 * @addr: target user address to start at 2273 * @pfn: physical address of kernel memory 2274 * @size: size of map area 2275 * @prot: page protection flags for this mapping 2276 * 2277 * Note: this is only safe if the mm semaphore is held when called. 2278 */ 2279 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2280 unsigned long pfn, unsigned long size, pgprot_t prot) 2281 { 2282 pgd_t *pgd; 2283 unsigned long next; 2284 unsigned long end = addr + PAGE_ALIGN(size); 2285 struct mm_struct *mm = vma->vm_mm; 2286 int err; 2287 2288 /* 2289 * Physically remapped pages are special. Tell the 2290 * rest of the world about it: 2291 * VM_IO tells people not to look at these pages 2292 * (accesses can have side effects). 2293 * VM_RESERVED is specified all over the place, because 2294 * in 2.4 it kept swapout's vma scan off this vma; but 2295 * in 2.6 the LRU scan won't even find its pages, so this 2296 * flag means no more than count its pages in reserved_vm, 2297 * and omit it from core dump, even when VM_IO turned off. 2298 * VM_PFNMAP tells the core MM that the base pages are just 2299 * raw PFN mappings, and do not have a "struct page" associated 2300 * with them. 2301 * 2302 * There's a horrible special case to handle copy-on-write 2303 * behaviour that some programs depend on. We mark the "original" 2304 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2305 */ 2306 if (addr == vma->vm_start && end == vma->vm_end) { 2307 vma->vm_pgoff = pfn; 2308 vma->vm_flags |= VM_PFN_AT_MMAP; 2309 } else if (is_cow_mapping(vma->vm_flags)) 2310 return -EINVAL; 2311 2312 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 2313 2314 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 2315 if (err) { 2316 /* 2317 * To indicate that track_pfn related cleanup is not 2318 * needed from higher level routine calling unmap_vmas 2319 */ 2320 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 2321 vma->vm_flags &= ~VM_PFN_AT_MMAP; 2322 return -EINVAL; 2323 } 2324 2325 BUG_ON(addr >= end); 2326 pfn -= addr >> PAGE_SHIFT; 2327 pgd = pgd_offset(mm, addr); 2328 flush_cache_range(vma, addr, end); 2329 do { 2330 next = pgd_addr_end(addr, end); 2331 err = remap_pud_range(mm, pgd, addr, next, 2332 pfn + (addr >> PAGE_SHIFT), prot); 2333 if (err) 2334 break; 2335 } while (pgd++, addr = next, addr != end); 2336 2337 if (err) 2338 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 2339 2340 return err; 2341 } 2342 EXPORT_SYMBOL(remap_pfn_range); 2343 2344 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2345 unsigned long addr, unsigned long end, 2346 pte_fn_t fn, void *data) 2347 { 2348 pte_t *pte; 2349 int err; 2350 pgtable_t token; 2351 spinlock_t *uninitialized_var(ptl); 2352 2353 pte = (mm == &init_mm) ? 2354 pte_alloc_kernel(pmd, addr) : 2355 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2356 if (!pte) 2357 return -ENOMEM; 2358 2359 BUG_ON(pmd_huge(*pmd)); 2360 2361 arch_enter_lazy_mmu_mode(); 2362 2363 token = pmd_pgtable(*pmd); 2364 2365 do { 2366 err = fn(pte++, token, addr, data); 2367 if (err) 2368 break; 2369 } while (addr += PAGE_SIZE, addr != end); 2370 2371 arch_leave_lazy_mmu_mode(); 2372 2373 if (mm != &init_mm) 2374 pte_unmap_unlock(pte-1, ptl); 2375 return err; 2376 } 2377 2378 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2379 unsigned long addr, unsigned long end, 2380 pte_fn_t fn, void *data) 2381 { 2382 pmd_t *pmd; 2383 unsigned long next; 2384 int err; 2385 2386 BUG_ON(pud_huge(*pud)); 2387 2388 pmd = pmd_alloc(mm, pud, addr); 2389 if (!pmd) 2390 return -ENOMEM; 2391 do { 2392 next = pmd_addr_end(addr, end); 2393 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2394 if (err) 2395 break; 2396 } while (pmd++, addr = next, addr != end); 2397 return err; 2398 } 2399 2400 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2401 unsigned long addr, unsigned long end, 2402 pte_fn_t fn, void *data) 2403 { 2404 pud_t *pud; 2405 unsigned long next; 2406 int err; 2407 2408 pud = pud_alloc(mm, pgd, addr); 2409 if (!pud) 2410 return -ENOMEM; 2411 do { 2412 next = pud_addr_end(addr, end); 2413 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2414 if (err) 2415 break; 2416 } while (pud++, addr = next, addr != end); 2417 return err; 2418 } 2419 2420 /* 2421 * Scan a region of virtual memory, filling in page tables as necessary 2422 * and calling a provided function on each leaf page table. 2423 */ 2424 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2425 unsigned long size, pte_fn_t fn, void *data) 2426 { 2427 pgd_t *pgd; 2428 unsigned long next; 2429 unsigned long end = addr + size; 2430 int err; 2431 2432 BUG_ON(addr >= end); 2433 pgd = pgd_offset(mm, addr); 2434 do { 2435 next = pgd_addr_end(addr, end); 2436 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2437 if (err) 2438 break; 2439 } while (pgd++, addr = next, addr != end); 2440 2441 return err; 2442 } 2443 EXPORT_SYMBOL_GPL(apply_to_page_range); 2444 2445 /* 2446 * handle_pte_fault chooses page fault handler according to an entry 2447 * which was read non-atomically. Before making any commitment, on 2448 * those architectures or configurations (e.g. i386 with PAE) which 2449 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2450 * must check under lock before unmapping the pte and proceeding 2451 * (but do_wp_page is only called after already making such a check; 2452 * and do_anonymous_page can safely check later on). 2453 */ 2454 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2455 pte_t *page_table, pte_t orig_pte) 2456 { 2457 int same = 1; 2458 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2459 if (sizeof(pte_t) > sizeof(unsigned long)) { 2460 spinlock_t *ptl = pte_lockptr(mm, pmd); 2461 spin_lock(ptl); 2462 same = pte_same(*page_table, orig_pte); 2463 spin_unlock(ptl); 2464 } 2465 #endif 2466 pte_unmap(page_table); 2467 return same; 2468 } 2469 2470 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2471 { 2472 /* 2473 * If the source page was a PFN mapping, we don't have 2474 * a "struct page" for it. We do a best-effort copy by 2475 * just copying from the original user address. If that 2476 * fails, we just zero-fill it. Live with it. 2477 */ 2478 if (unlikely(!src)) { 2479 void *kaddr = kmap_atomic(dst); 2480 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2481 2482 /* 2483 * This really shouldn't fail, because the page is there 2484 * in the page tables. But it might just be unreadable, 2485 * in which case we just give up and fill the result with 2486 * zeroes. 2487 */ 2488 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2489 clear_page(kaddr); 2490 kunmap_atomic(kaddr); 2491 flush_dcache_page(dst); 2492 } else 2493 copy_user_highpage(dst, src, va, vma); 2494 } 2495 2496 /* 2497 * This routine handles present pages, when users try to write 2498 * to a shared page. It is done by copying the page to a new address 2499 * and decrementing the shared-page counter for the old page. 2500 * 2501 * Note that this routine assumes that the protection checks have been 2502 * done by the caller (the low-level page fault routine in most cases). 2503 * Thus we can safely just mark it writable once we've done any necessary 2504 * COW. 2505 * 2506 * We also mark the page dirty at this point even though the page will 2507 * change only once the write actually happens. This avoids a few races, 2508 * and potentially makes it more efficient. 2509 * 2510 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2511 * but allow concurrent faults), with pte both mapped and locked. 2512 * We return with mmap_sem still held, but pte unmapped and unlocked. 2513 */ 2514 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2515 unsigned long address, pte_t *page_table, pmd_t *pmd, 2516 spinlock_t *ptl, pte_t orig_pte) 2517 __releases(ptl) 2518 { 2519 struct page *old_page, *new_page; 2520 pte_t entry; 2521 int ret = 0; 2522 int page_mkwrite = 0; 2523 struct page *dirty_page = NULL; 2524 2525 old_page = vm_normal_page(vma, address, orig_pte); 2526 if (!old_page) { 2527 /* 2528 * VM_MIXEDMAP !pfn_valid() case 2529 * 2530 * We should not cow pages in a shared writeable mapping. 2531 * Just mark the pages writable as we can't do any dirty 2532 * accounting on raw pfn maps. 2533 */ 2534 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2535 (VM_WRITE|VM_SHARED)) 2536 goto reuse; 2537 goto gotten; 2538 } 2539 2540 /* 2541 * Take out anonymous pages first, anonymous shared vmas are 2542 * not dirty accountable. 2543 */ 2544 if (PageAnon(old_page) && !PageKsm(old_page)) { 2545 if (!trylock_page(old_page)) { 2546 page_cache_get(old_page); 2547 pte_unmap_unlock(page_table, ptl); 2548 lock_page(old_page); 2549 page_table = pte_offset_map_lock(mm, pmd, address, 2550 &ptl); 2551 if (!pte_same(*page_table, orig_pte)) { 2552 unlock_page(old_page); 2553 goto unlock; 2554 } 2555 page_cache_release(old_page); 2556 } 2557 if (reuse_swap_page(old_page)) { 2558 /* 2559 * The page is all ours. Move it to our anon_vma so 2560 * the rmap code will not search our parent or siblings. 2561 * Protected against the rmap code by the page lock. 2562 */ 2563 page_move_anon_rmap(old_page, vma, address); 2564 unlock_page(old_page); 2565 goto reuse; 2566 } 2567 unlock_page(old_page); 2568 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2569 (VM_WRITE|VM_SHARED))) { 2570 /* 2571 * Only catch write-faults on shared writable pages, 2572 * read-only shared pages can get COWed by 2573 * get_user_pages(.write=1, .force=1). 2574 */ 2575 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2576 struct vm_fault vmf; 2577 int tmp; 2578 2579 vmf.virtual_address = (void __user *)(address & 2580 PAGE_MASK); 2581 vmf.pgoff = old_page->index; 2582 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2583 vmf.page = old_page; 2584 2585 /* 2586 * Notify the address space that the page is about to 2587 * become writable so that it can prohibit this or wait 2588 * for the page to get into an appropriate state. 2589 * 2590 * We do this without the lock held, so that it can 2591 * sleep if it needs to. 2592 */ 2593 page_cache_get(old_page); 2594 pte_unmap_unlock(page_table, ptl); 2595 2596 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2597 if (unlikely(tmp & 2598 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2599 ret = tmp; 2600 goto unwritable_page; 2601 } 2602 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2603 lock_page(old_page); 2604 if (!old_page->mapping) { 2605 ret = 0; /* retry the fault */ 2606 unlock_page(old_page); 2607 goto unwritable_page; 2608 } 2609 } else 2610 VM_BUG_ON(!PageLocked(old_page)); 2611 2612 /* 2613 * Since we dropped the lock we need to revalidate 2614 * the PTE as someone else may have changed it. If 2615 * they did, we just return, as we can count on the 2616 * MMU to tell us if they didn't also make it writable. 2617 */ 2618 page_table = pte_offset_map_lock(mm, pmd, address, 2619 &ptl); 2620 if (!pte_same(*page_table, orig_pte)) { 2621 unlock_page(old_page); 2622 goto unlock; 2623 } 2624 2625 page_mkwrite = 1; 2626 } 2627 dirty_page = old_page; 2628 get_page(dirty_page); 2629 2630 reuse: 2631 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2632 entry = pte_mkyoung(orig_pte); 2633 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2634 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2635 update_mmu_cache(vma, address, page_table); 2636 pte_unmap_unlock(page_table, ptl); 2637 ret |= VM_FAULT_WRITE; 2638 2639 if (!dirty_page) 2640 return ret; 2641 2642 /* 2643 * Yes, Virginia, this is actually required to prevent a race 2644 * with clear_page_dirty_for_io() from clearing the page dirty 2645 * bit after it clear all dirty ptes, but before a racing 2646 * do_wp_page installs a dirty pte. 2647 * 2648 * __do_fault is protected similarly. 2649 */ 2650 if (!page_mkwrite) { 2651 wait_on_page_locked(dirty_page); 2652 set_page_dirty_balance(dirty_page, page_mkwrite); 2653 /* file_update_time outside page_lock */ 2654 if (vma->vm_file) 2655 file_update_time(vma->vm_file); 2656 } 2657 put_page(dirty_page); 2658 if (page_mkwrite) { 2659 struct address_space *mapping = dirty_page->mapping; 2660 2661 set_page_dirty(dirty_page); 2662 unlock_page(dirty_page); 2663 page_cache_release(dirty_page); 2664 if (mapping) { 2665 /* 2666 * Some device drivers do not set page.mapping 2667 * but still dirty their pages 2668 */ 2669 balance_dirty_pages_ratelimited(mapping); 2670 } 2671 } 2672 2673 return ret; 2674 } 2675 2676 /* 2677 * Ok, we need to copy. Oh, well.. 2678 */ 2679 page_cache_get(old_page); 2680 gotten: 2681 pte_unmap_unlock(page_table, ptl); 2682 2683 if (unlikely(anon_vma_prepare(vma))) 2684 goto oom; 2685 2686 if (is_zero_pfn(pte_pfn(orig_pte))) { 2687 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2688 if (!new_page) 2689 goto oom; 2690 } else { 2691 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2692 if (!new_page) 2693 goto oom; 2694 cow_user_page(new_page, old_page, address, vma); 2695 } 2696 __SetPageUptodate(new_page); 2697 2698 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2699 goto oom_free_new; 2700 2701 /* 2702 * Re-check the pte - we dropped the lock 2703 */ 2704 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2705 if (likely(pte_same(*page_table, orig_pte))) { 2706 if (old_page) { 2707 if (!PageAnon(old_page)) { 2708 dec_mm_counter_fast(mm, MM_FILEPAGES); 2709 inc_mm_counter_fast(mm, MM_ANONPAGES); 2710 } 2711 } else 2712 inc_mm_counter_fast(mm, MM_ANONPAGES); 2713 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2714 entry = mk_pte(new_page, vma->vm_page_prot); 2715 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2716 /* 2717 * Clear the pte entry and flush it first, before updating the 2718 * pte with the new entry. This will avoid a race condition 2719 * seen in the presence of one thread doing SMC and another 2720 * thread doing COW. 2721 */ 2722 ptep_clear_flush(vma, address, page_table); 2723 page_add_new_anon_rmap(new_page, vma, address); 2724 /* 2725 * We call the notify macro here because, when using secondary 2726 * mmu page tables (such as kvm shadow page tables), we want the 2727 * new page to be mapped directly into the secondary page table. 2728 */ 2729 set_pte_at_notify(mm, address, page_table, entry); 2730 update_mmu_cache(vma, address, page_table); 2731 if (old_page) { 2732 /* 2733 * Only after switching the pte to the new page may 2734 * we remove the mapcount here. Otherwise another 2735 * process may come and find the rmap count decremented 2736 * before the pte is switched to the new page, and 2737 * "reuse" the old page writing into it while our pte 2738 * here still points into it and can be read by other 2739 * threads. 2740 * 2741 * The critical issue is to order this 2742 * page_remove_rmap with the ptp_clear_flush above. 2743 * Those stores are ordered by (if nothing else,) 2744 * the barrier present in the atomic_add_negative 2745 * in page_remove_rmap. 2746 * 2747 * Then the TLB flush in ptep_clear_flush ensures that 2748 * no process can access the old page before the 2749 * decremented mapcount is visible. And the old page 2750 * cannot be reused until after the decremented 2751 * mapcount is visible. So transitively, TLBs to 2752 * old page will be flushed before it can be reused. 2753 */ 2754 page_remove_rmap(old_page); 2755 } 2756 2757 /* Free the old page.. */ 2758 new_page = old_page; 2759 ret |= VM_FAULT_WRITE; 2760 } else 2761 mem_cgroup_uncharge_page(new_page); 2762 2763 if (new_page) 2764 page_cache_release(new_page); 2765 unlock: 2766 pte_unmap_unlock(page_table, ptl); 2767 if (old_page) { 2768 /* 2769 * Don't let another task, with possibly unlocked vma, 2770 * keep the mlocked page. 2771 */ 2772 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2773 lock_page(old_page); /* LRU manipulation */ 2774 munlock_vma_page(old_page); 2775 unlock_page(old_page); 2776 } 2777 page_cache_release(old_page); 2778 } 2779 return ret; 2780 oom_free_new: 2781 page_cache_release(new_page); 2782 oom: 2783 if (old_page) { 2784 if (page_mkwrite) { 2785 unlock_page(old_page); 2786 page_cache_release(old_page); 2787 } 2788 page_cache_release(old_page); 2789 } 2790 return VM_FAULT_OOM; 2791 2792 unwritable_page: 2793 page_cache_release(old_page); 2794 return ret; 2795 } 2796 2797 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2798 unsigned long start_addr, unsigned long end_addr, 2799 struct zap_details *details) 2800 { 2801 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2802 } 2803 2804 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2805 struct zap_details *details) 2806 { 2807 struct vm_area_struct *vma; 2808 struct prio_tree_iter iter; 2809 pgoff_t vba, vea, zba, zea; 2810 2811 vma_prio_tree_foreach(vma, &iter, root, 2812 details->first_index, details->last_index) { 2813 2814 vba = vma->vm_pgoff; 2815 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2816 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2817 zba = details->first_index; 2818 if (zba < vba) 2819 zba = vba; 2820 zea = details->last_index; 2821 if (zea > vea) 2822 zea = vea; 2823 2824 unmap_mapping_range_vma(vma, 2825 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2826 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2827 details); 2828 } 2829 } 2830 2831 static inline void unmap_mapping_range_list(struct list_head *head, 2832 struct zap_details *details) 2833 { 2834 struct vm_area_struct *vma; 2835 2836 /* 2837 * In nonlinear VMAs there is no correspondence between virtual address 2838 * offset and file offset. So we must perform an exhaustive search 2839 * across *all* the pages in each nonlinear VMA, not just the pages 2840 * whose virtual address lies outside the file truncation point. 2841 */ 2842 list_for_each_entry(vma, head, shared.vm_set.list) { 2843 details->nonlinear_vma = vma; 2844 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2845 } 2846 } 2847 2848 /** 2849 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2850 * @mapping: the address space containing mmaps to be unmapped. 2851 * @holebegin: byte in first page to unmap, relative to the start of 2852 * the underlying file. This will be rounded down to a PAGE_SIZE 2853 * boundary. Note that this is different from truncate_pagecache(), which 2854 * must keep the partial page. In contrast, we must get rid of 2855 * partial pages. 2856 * @holelen: size of prospective hole in bytes. This will be rounded 2857 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2858 * end of the file. 2859 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2860 * but 0 when invalidating pagecache, don't throw away private data. 2861 */ 2862 void unmap_mapping_range(struct address_space *mapping, 2863 loff_t const holebegin, loff_t const holelen, int even_cows) 2864 { 2865 struct zap_details details; 2866 pgoff_t hba = holebegin >> PAGE_SHIFT; 2867 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2868 2869 /* Check for overflow. */ 2870 if (sizeof(holelen) > sizeof(hlen)) { 2871 long long holeend = 2872 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2873 if (holeend & ~(long long)ULONG_MAX) 2874 hlen = ULONG_MAX - hba + 1; 2875 } 2876 2877 details.check_mapping = even_cows? NULL: mapping; 2878 details.nonlinear_vma = NULL; 2879 details.first_index = hba; 2880 details.last_index = hba + hlen - 1; 2881 if (details.last_index < details.first_index) 2882 details.last_index = ULONG_MAX; 2883 2884 2885 mutex_lock(&mapping->i_mmap_mutex); 2886 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2887 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2888 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2889 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2890 mutex_unlock(&mapping->i_mmap_mutex); 2891 } 2892 EXPORT_SYMBOL(unmap_mapping_range); 2893 2894 /* 2895 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2896 * but allow concurrent faults), and pte mapped but not yet locked. 2897 * We return with mmap_sem still held, but pte unmapped and unlocked. 2898 */ 2899 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2900 unsigned long address, pte_t *page_table, pmd_t *pmd, 2901 unsigned int flags, pte_t orig_pte) 2902 { 2903 spinlock_t *ptl; 2904 struct page *page, *swapcache = NULL; 2905 swp_entry_t entry; 2906 pte_t pte; 2907 int locked; 2908 struct mem_cgroup *ptr; 2909 int exclusive = 0; 2910 int ret = 0; 2911 2912 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2913 goto out; 2914 2915 entry = pte_to_swp_entry(orig_pte); 2916 if (unlikely(non_swap_entry(entry))) { 2917 if (is_migration_entry(entry)) { 2918 migration_entry_wait(mm, pmd, address); 2919 } else if (is_hwpoison_entry(entry)) { 2920 ret = VM_FAULT_HWPOISON; 2921 } else { 2922 print_bad_pte(vma, address, orig_pte, NULL); 2923 ret = VM_FAULT_SIGBUS; 2924 } 2925 goto out; 2926 } 2927 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2928 page = lookup_swap_cache(entry); 2929 if (!page) { 2930 page = swapin_readahead(entry, 2931 GFP_HIGHUSER_MOVABLE, vma, address); 2932 if (!page) { 2933 /* 2934 * Back out if somebody else faulted in this pte 2935 * while we released the pte lock. 2936 */ 2937 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2938 if (likely(pte_same(*page_table, orig_pte))) 2939 ret = VM_FAULT_OOM; 2940 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2941 goto unlock; 2942 } 2943 2944 /* Had to read the page from swap area: Major fault */ 2945 ret = VM_FAULT_MAJOR; 2946 count_vm_event(PGMAJFAULT); 2947 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2948 } else if (PageHWPoison(page)) { 2949 /* 2950 * hwpoisoned dirty swapcache pages are kept for killing 2951 * owner processes (which may be unknown at hwpoison time) 2952 */ 2953 ret = VM_FAULT_HWPOISON; 2954 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2955 goto out_release; 2956 } 2957 2958 locked = lock_page_or_retry(page, mm, flags); 2959 2960 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2961 if (!locked) { 2962 ret |= VM_FAULT_RETRY; 2963 goto out_release; 2964 } 2965 2966 /* 2967 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2968 * release the swapcache from under us. The page pin, and pte_same 2969 * test below, are not enough to exclude that. Even if it is still 2970 * swapcache, we need to check that the page's swap has not changed. 2971 */ 2972 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2973 goto out_page; 2974 2975 if (ksm_might_need_to_copy(page, vma, address)) { 2976 swapcache = page; 2977 page = ksm_does_need_to_copy(page, vma, address); 2978 2979 if (unlikely(!page)) { 2980 ret = VM_FAULT_OOM; 2981 page = swapcache; 2982 swapcache = NULL; 2983 goto out_page; 2984 } 2985 } 2986 2987 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2988 ret = VM_FAULT_OOM; 2989 goto out_page; 2990 } 2991 2992 /* 2993 * Back out if somebody else already faulted in this pte. 2994 */ 2995 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2996 if (unlikely(!pte_same(*page_table, orig_pte))) 2997 goto out_nomap; 2998 2999 if (unlikely(!PageUptodate(page))) { 3000 ret = VM_FAULT_SIGBUS; 3001 goto out_nomap; 3002 } 3003 3004 /* 3005 * The page isn't present yet, go ahead with the fault. 3006 * 3007 * Be careful about the sequence of operations here. 3008 * To get its accounting right, reuse_swap_page() must be called 3009 * while the page is counted on swap but not yet in mapcount i.e. 3010 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3011 * must be called after the swap_free(), or it will never succeed. 3012 * Because delete_from_swap_page() may be called by reuse_swap_page(), 3013 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 3014 * in page->private. In this case, a record in swap_cgroup is silently 3015 * discarded at swap_free(). 3016 */ 3017 3018 inc_mm_counter_fast(mm, MM_ANONPAGES); 3019 dec_mm_counter_fast(mm, MM_SWAPENTS); 3020 pte = mk_pte(page, vma->vm_page_prot); 3021 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 3022 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3023 flags &= ~FAULT_FLAG_WRITE; 3024 ret |= VM_FAULT_WRITE; 3025 exclusive = 1; 3026 } 3027 flush_icache_page(vma, page); 3028 set_pte_at(mm, address, page_table, pte); 3029 do_page_add_anon_rmap(page, vma, address, exclusive); 3030 /* It's better to call commit-charge after rmap is established */ 3031 mem_cgroup_commit_charge_swapin(page, ptr); 3032 3033 swap_free(entry); 3034 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3035 try_to_free_swap(page); 3036 unlock_page(page); 3037 if (swapcache) { 3038 /* 3039 * Hold the lock to avoid the swap entry to be reused 3040 * until we take the PT lock for the pte_same() check 3041 * (to avoid false positives from pte_same). For 3042 * further safety release the lock after the swap_free 3043 * so that the swap count won't change under a 3044 * parallel locked swapcache. 3045 */ 3046 unlock_page(swapcache); 3047 page_cache_release(swapcache); 3048 } 3049 3050 if (flags & FAULT_FLAG_WRITE) { 3051 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 3052 if (ret & VM_FAULT_ERROR) 3053 ret &= VM_FAULT_ERROR; 3054 goto out; 3055 } 3056 3057 /* No need to invalidate - it was non-present before */ 3058 update_mmu_cache(vma, address, page_table); 3059 unlock: 3060 pte_unmap_unlock(page_table, ptl); 3061 out: 3062 return ret; 3063 out_nomap: 3064 mem_cgroup_cancel_charge_swapin(ptr); 3065 pte_unmap_unlock(page_table, ptl); 3066 out_page: 3067 unlock_page(page); 3068 out_release: 3069 page_cache_release(page); 3070 if (swapcache) { 3071 unlock_page(swapcache); 3072 page_cache_release(swapcache); 3073 } 3074 return ret; 3075 } 3076 3077 /* 3078 * This is like a special single-page "expand_{down|up}wards()", 3079 * except we must first make sure that 'address{-|+}PAGE_SIZE' 3080 * doesn't hit another vma. 3081 */ 3082 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 3083 { 3084 address &= PAGE_MASK; 3085 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 3086 struct vm_area_struct *prev = vma->vm_prev; 3087 3088 /* 3089 * Is there a mapping abutting this one below? 3090 * 3091 * That's only ok if it's the same stack mapping 3092 * that has gotten split.. 3093 */ 3094 if (prev && prev->vm_end == address) 3095 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3096 3097 expand_downwards(vma, address - PAGE_SIZE); 3098 } 3099 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3100 struct vm_area_struct *next = vma->vm_next; 3101 3102 /* As VM_GROWSDOWN but s/below/above/ */ 3103 if (next && next->vm_start == address + PAGE_SIZE) 3104 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3105 3106 expand_upwards(vma, address + PAGE_SIZE); 3107 } 3108 return 0; 3109 } 3110 3111 /* 3112 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3113 * but allow concurrent faults), and pte mapped but not yet locked. 3114 * We return with mmap_sem still held, but pte unmapped and unlocked. 3115 */ 3116 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3117 unsigned long address, pte_t *page_table, pmd_t *pmd, 3118 unsigned int flags) 3119 { 3120 struct page *page; 3121 spinlock_t *ptl; 3122 pte_t entry; 3123 3124 pte_unmap(page_table); 3125 3126 /* Check if we need to add a guard page to the stack */ 3127 if (check_stack_guard_page(vma, address) < 0) 3128 return VM_FAULT_SIGBUS; 3129 3130 /* Use the zero-page for reads */ 3131 if (!(flags & FAULT_FLAG_WRITE)) { 3132 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3133 vma->vm_page_prot)); 3134 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3135 if (!pte_none(*page_table)) 3136 goto unlock; 3137 goto setpte; 3138 } 3139 3140 /* Allocate our own private page. */ 3141 if (unlikely(anon_vma_prepare(vma))) 3142 goto oom; 3143 page = alloc_zeroed_user_highpage_movable(vma, address); 3144 if (!page) 3145 goto oom; 3146 __SetPageUptodate(page); 3147 3148 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3149 goto oom_free_page; 3150 3151 entry = mk_pte(page, vma->vm_page_prot); 3152 if (vma->vm_flags & VM_WRITE) 3153 entry = pte_mkwrite(pte_mkdirty(entry)); 3154 3155 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3156 if (!pte_none(*page_table)) 3157 goto release; 3158 3159 inc_mm_counter_fast(mm, MM_ANONPAGES); 3160 page_add_new_anon_rmap(page, vma, address); 3161 setpte: 3162 set_pte_at(mm, address, page_table, entry); 3163 3164 /* No need to invalidate - it was non-present before */ 3165 update_mmu_cache(vma, address, page_table); 3166 unlock: 3167 pte_unmap_unlock(page_table, ptl); 3168 return 0; 3169 release: 3170 mem_cgroup_uncharge_page(page); 3171 page_cache_release(page); 3172 goto unlock; 3173 oom_free_page: 3174 page_cache_release(page); 3175 oom: 3176 return VM_FAULT_OOM; 3177 } 3178 3179 /* 3180 * __do_fault() tries to create a new page mapping. It aggressively 3181 * tries to share with existing pages, but makes a separate copy if 3182 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3183 * the next page fault. 3184 * 3185 * As this is called only for pages that do not currently exist, we 3186 * do not need to flush old virtual caches or the TLB. 3187 * 3188 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3189 * but allow concurrent faults), and pte neither mapped nor locked. 3190 * We return with mmap_sem still held, but pte unmapped and unlocked. 3191 */ 3192 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3193 unsigned long address, pmd_t *pmd, 3194 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3195 { 3196 pte_t *page_table; 3197 spinlock_t *ptl; 3198 struct page *page; 3199 struct page *cow_page; 3200 pte_t entry; 3201 int anon = 0; 3202 struct page *dirty_page = NULL; 3203 struct vm_fault vmf; 3204 int ret; 3205 int page_mkwrite = 0; 3206 3207 /* 3208 * If we do COW later, allocate page befor taking lock_page() 3209 * on the file cache page. This will reduce lock holding time. 3210 */ 3211 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3212 3213 if (unlikely(anon_vma_prepare(vma))) 3214 return VM_FAULT_OOM; 3215 3216 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3217 if (!cow_page) 3218 return VM_FAULT_OOM; 3219 3220 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) { 3221 page_cache_release(cow_page); 3222 return VM_FAULT_OOM; 3223 } 3224 } else 3225 cow_page = NULL; 3226 3227 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3228 vmf.pgoff = pgoff; 3229 vmf.flags = flags; 3230 vmf.page = NULL; 3231 3232 ret = vma->vm_ops->fault(vma, &vmf); 3233 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3234 VM_FAULT_RETRY))) 3235 goto uncharge_out; 3236 3237 if (unlikely(PageHWPoison(vmf.page))) { 3238 if (ret & VM_FAULT_LOCKED) 3239 unlock_page(vmf.page); 3240 ret = VM_FAULT_HWPOISON; 3241 goto uncharge_out; 3242 } 3243 3244 /* 3245 * For consistency in subsequent calls, make the faulted page always 3246 * locked. 3247 */ 3248 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3249 lock_page(vmf.page); 3250 else 3251 VM_BUG_ON(!PageLocked(vmf.page)); 3252 3253 /* 3254 * Should we do an early C-O-W break? 3255 */ 3256 page = vmf.page; 3257 if (flags & FAULT_FLAG_WRITE) { 3258 if (!(vma->vm_flags & VM_SHARED)) { 3259 page = cow_page; 3260 anon = 1; 3261 copy_user_highpage(page, vmf.page, address, vma); 3262 __SetPageUptodate(page); 3263 } else { 3264 /* 3265 * If the page will be shareable, see if the backing 3266 * address space wants to know that the page is about 3267 * to become writable 3268 */ 3269 if (vma->vm_ops->page_mkwrite) { 3270 int tmp; 3271 3272 unlock_page(page); 3273 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3274 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3275 if (unlikely(tmp & 3276 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3277 ret = tmp; 3278 goto unwritable_page; 3279 } 3280 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3281 lock_page(page); 3282 if (!page->mapping) { 3283 ret = 0; /* retry the fault */ 3284 unlock_page(page); 3285 goto unwritable_page; 3286 } 3287 } else 3288 VM_BUG_ON(!PageLocked(page)); 3289 page_mkwrite = 1; 3290 } 3291 } 3292 3293 } 3294 3295 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3296 3297 /* 3298 * This silly early PAGE_DIRTY setting removes a race 3299 * due to the bad i386 page protection. But it's valid 3300 * for other architectures too. 3301 * 3302 * Note that if FAULT_FLAG_WRITE is set, we either now have 3303 * an exclusive copy of the page, or this is a shared mapping, 3304 * so we can make it writable and dirty to avoid having to 3305 * handle that later. 3306 */ 3307 /* Only go through if we didn't race with anybody else... */ 3308 if (likely(pte_same(*page_table, orig_pte))) { 3309 flush_icache_page(vma, page); 3310 entry = mk_pte(page, vma->vm_page_prot); 3311 if (flags & FAULT_FLAG_WRITE) 3312 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3313 if (anon) { 3314 inc_mm_counter_fast(mm, MM_ANONPAGES); 3315 page_add_new_anon_rmap(page, vma, address); 3316 } else { 3317 inc_mm_counter_fast(mm, MM_FILEPAGES); 3318 page_add_file_rmap(page); 3319 if (flags & FAULT_FLAG_WRITE) { 3320 dirty_page = page; 3321 get_page(dirty_page); 3322 } 3323 } 3324 set_pte_at(mm, address, page_table, entry); 3325 3326 /* no need to invalidate: a not-present page won't be cached */ 3327 update_mmu_cache(vma, address, page_table); 3328 } else { 3329 if (cow_page) 3330 mem_cgroup_uncharge_page(cow_page); 3331 if (anon) 3332 page_cache_release(page); 3333 else 3334 anon = 1; /* no anon but release faulted_page */ 3335 } 3336 3337 pte_unmap_unlock(page_table, ptl); 3338 3339 if (dirty_page) { 3340 struct address_space *mapping = page->mapping; 3341 int dirtied = 0; 3342 3343 if (set_page_dirty(dirty_page)) 3344 dirtied = 1; 3345 unlock_page(dirty_page); 3346 put_page(dirty_page); 3347 if ((dirtied || page_mkwrite) && mapping) { 3348 /* 3349 * Some device drivers do not set page.mapping but still 3350 * dirty their pages 3351 */ 3352 balance_dirty_pages_ratelimited(mapping); 3353 } 3354 3355 /* file_update_time outside page_lock */ 3356 if (vma->vm_file && !page_mkwrite) 3357 file_update_time(vma->vm_file); 3358 } else { 3359 unlock_page(vmf.page); 3360 if (anon) 3361 page_cache_release(vmf.page); 3362 } 3363 3364 return ret; 3365 3366 unwritable_page: 3367 page_cache_release(page); 3368 return ret; 3369 uncharge_out: 3370 /* fs's fault handler get error */ 3371 if (cow_page) { 3372 mem_cgroup_uncharge_page(cow_page); 3373 page_cache_release(cow_page); 3374 } 3375 return ret; 3376 } 3377 3378 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3379 unsigned long address, pte_t *page_table, pmd_t *pmd, 3380 unsigned int flags, pte_t orig_pte) 3381 { 3382 pgoff_t pgoff = (((address & PAGE_MASK) 3383 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3384 3385 pte_unmap(page_table); 3386 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3387 } 3388 3389 /* 3390 * Fault of a previously existing named mapping. Repopulate the pte 3391 * from the encoded file_pte if possible. This enables swappable 3392 * nonlinear vmas. 3393 * 3394 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3395 * but allow concurrent faults), and pte mapped but not yet locked. 3396 * We return with mmap_sem still held, but pte unmapped and unlocked. 3397 */ 3398 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3399 unsigned long address, pte_t *page_table, pmd_t *pmd, 3400 unsigned int flags, pte_t orig_pte) 3401 { 3402 pgoff_t pgoff; 3403 3404 flags |= FAULT_FLAG_NONLINEAR; 3405 3406 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3407 return 0; 3408 3409 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3410 /* 3411 * Page table corrupted: show pte and kill process. 3412 */ 3413 print_bad_pte(vma, address, orig_pte, NULL); 3414 return VM_FAULT_SIGBUS; 3415 } 3416 3417 pgoff = pte_to_pgoff(orig_pte); 3418 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3419 } 3420 3421 /* 3422 * These routines also need to handle stuff like marking pages dirty 3423 * and/or accessed for architectures that don't do it in hardware (most 3424 * RISC architectures). The early dirtying is also good on the i386. 3425 * 3426 * There is also a hook called "update_mmu_cache()" that architectures 3427 * with external mmu caches can use to update those (ie the Sparc or 3428 * PowerPC hashed page tables that act as extended TLBs). 3429 * 3430 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3431 * but allow concurrent faults), and pte mapped but not yet locked. 3432 * We return with mmap_sem still held, but pte unmapped and unlocked. 3433 */ 3434 int handle_pte_fault(struct mm_struct *mm, 3435 struct vm_area_struct *vma, unsigned long address, 3436 pte_t *pte, pmd_t *pmd, unsigned int flags) 3437 { 3438 pte_t entry; 3439 spinlock_t *ptl; 3440 3441 entry = *pte; 3442 if (!pte_present(entry)) { 3443 if (pte_none(entry)) { 3444 if (vma->vm_ops) { 3445 if (likely(vma->vm_ops->fault)) 3446 return do_linear_fault(mm, vma, address, 3447 pte, pmd, flags, entry); 3448 } 3449 return do_anonymous_page(mm, vma, address, 3450 pte, pmd, flags); 3451 } 3452 if (pte_file(entry)) 3453 return do_nonlinear_fault(mm, vma, address, 3454 pte, pmd, flags, entry); 3455 return do_swap_page(mm, vma, address, 3456 pte, pmd, flags, entry); 3457 } 3458 3459 ptl = pte_lockptr(mm, pmd); 3460 spin_lock(ptl); 3461 if (unlikely(!pte_same(*pte, entry))) 3462 goto unlock; 3463 if (flags & FAULT_FLAG_WRITE) { 3464 if (!pte_write(entry)) 3465 return do_wp_page(mm, vma, address, 3466 pte, pmd, ptl, entry); 3467 entry = pte_mkdirty(entry); 3468 } 3469 entry = pte_mkyoung(entry); 3470 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3471 update_mmu_cache(vma, address, pte); 3472 } else { 3473 /* 3474 * This is needed only for protection faults but the arch code 3475 * is not yet telling us if this is a protection fault or not. 3476 * This still avoids useless tlb flushes for .text page faults 3477 * with threads. 3478 */ 3479 if (flags & FAULT_FLAG_WRITE) 3480 flush_tlb_fix_spurious_fault(vma, address); 3481 } 3482 unlock: 3483 pte_unmap_unlock(pte, ptl); 3484 return 0; 3485 } 3486 3487 /* 3488 * By the time we get here, we already hold the mm semaphore 3489 */ 3490 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3491 unsigned long address, unsigned int flags) 3492 { 3493 pgd_t *pgd; 3494 pud_t *pud; 3495 pmd_t *pmd; 3496 pte_t *pte; 3497 3498 __set_current_state(TASK_RUNNING); 3499 3500 count_vm_event(PGFAULT); 3501 mem_cgroup_count_vm_event(mm, PGFAULT); 3502 3503 /* do counter updates before entering really critical section. */ 3504 check_sync_rss_stat(current); 3505 3506 if (unlikely(is_vm_hugetlb_page(vma))) 3507 return hugetlb_fault(mm, vma, address, flags); 3508 3509 retry: 3510 pgd = pgd_offset(mm, address); 3511 pud = pud_alloc(mm, pgd, address); 3512 if (!pud) 3513 return VM_FAULT_OOM; 3514 pmd = pmd_alloc(mm, pud, address); 3515 if (!pmd) 3516 return VM_FAULT_OOM; 3517 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3518 if (!vma->vm_ops) 3519 return do_huge_pmd_anonymous_page(mm, vma, address, 3520 pmd, flags); 3521 } else { 3522 pmd_t orig_pmd = *pmd; 3523 int ret; 3524 3525 barrier(); 3526 if (pmd_trans_huge(orig_pmd)) { 3527 if (flags & FAULT_FLAG_WRITE && 3528 !pmd_write(orig_pmd) && 3529 !pmd_trans_splitting(orig_pmd)) { 3530 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3531 orig_pmd); 3532 /* 3533 * If COW results in an oom, the huge pmd will 3534 * have been split, so retry the fault on the 3535 * pte for a smaller charge. 3536 */ 3537 if (unlikely(ret & VM_FAULT_OOM)) 3538 goto retry; 3539 return ret; 3540 } 3541 return 0; 3542 } 3543 } 3544 3545 /* 3546 * Use __pte_alloc instead of pte_alloc_map, because we can't 3547 * run pte_offset_map on the pmd, if an huge pmd could 3548 * materialize from under us from a different thread. 3549 */ 3550 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address)) 3551 return VM_FAULT_OOM; 3552 /* if an huge pmd materialized from under us just retry later */ 3553 if (unlikely(pmd_trans_huge(*pmd))) 3554 return 0; 3555 /* 3556 * A regular pmd is established and it can't morph into a huge pmd 3557 * from under us anymore at this point because we hold the mmap_sem 3558 * read mode and khugepaged takes it in write mode. So now it's 3559 * safe to run pte_offset_map(). 3560 */ 3561 pte = pte_offset_map(pmd, address); 3562 3563 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3564 } 3565 3566 #ifndef __PAGETABLE_PUD_FOLDED 3567 /* 3568 * Allocate page upper directory. 3569 * We've already handled the fast-path in-line. 3570 */ 3571 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3572 { 3573 pud_t *new = pud_alloc_one(mm, address); 3574 if (!new) 3575 return -ENOMEM; 3576 3577 smp_wmb(); /* See comment in __pte_alloc */ 3578 3579 spin_lock(&mm->page_table_lock); 3580 if (pgd_present(*pgd)) /* Another has populated it */ 3581 pud_free(mm, new); 3582 else 3583 pgd_populate(mm, pgd, new); 3584 spin_unlock(&mm->page_table_lock); 3585 return 0; 3586 } 3587 #endif /* __PAGETABLE_PUD_FOLDED */ 3588 3589 #ifndef __PAGETABLE_PMD_FOLDED 3590 /* 3591 * Allocate page middle directory. 3592 * We've already handled the fast-path in-line. 3593 */ 3594 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3595 { 3596 pmd_t *new = pmd_alloc_one(mm, address); 3597 if (!new) 3598 return -ENOMEM; 3599 3600 smp_wmb(); /* See comment in __pte_alloc */ 3601 3602 spin_lock(&mm->page_table_lock); 3603 #ifndef __ARCH_HAS_4LEVEL_HACK 3604 if (pud_present(*pud)) /* Another has populated it */ 3605 pmd_free(mm, new); 3606 else 3607 pud_populate(mm, pud, new); 3608 #else 3609 if (pgd_present(*pud)) /* Another has populated it */ 3610 pmd_free(mm, new); 3611 else 3612 pgd_populate(mm, pud, new); 3613 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3614 spin_unlock(&mm->page_table_lock); 3615 return 0; 3616 } 3617 #endif /* __PAGETABLE_PMD_FOLDED */ 3618 3619 int make_pages_present(unsigned long addr, unsigned long end) 3620 { 3621 int ret, len, write; 3622 struct vm_area_struct * vma; 3623 3624 vma = find_vma(current->mm, addr); 3625 if (!vma) 3626 return -ENOMEM; 3627 /* 3628 * We want to touch writable mappings with a write fault in order 3629 * to break COW, except for shared mappings because these don't COW 3630 * and we would not want to dirty them for nothing. 3631 */ 3632 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE; 3633 BUG_ON(addr >= end); 3634 BUG_ON(end > vma->vm_end); 3635 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3636 ret = get_user_pages(current, current->mm, addr, 3637 len, write, 0, NULL, NULL); 3638 if (ret < 0) 3639 return ret; 3640 return ret == len ? 0 : -EFAULT; 3641 } 3642 3643 #if !defined(__HAVE_ARCH_GATE_AREA) 3644 3645 #if defined(AT_SYSINFO_EHDR) 3646 static struct vm_area_struct gate_vma; 3647 3648 static int __init gate_vma_init(void) 3649 { 3650 gate_vma.vm_mm = NULL; 3651 gate_vma.vm_start = FIXADDR_USER_START; 3652 gate_vma.vm_end = FIXADDR_USER_END; 3653 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3654 gate_vma.vm_page_prot = __P101; 3655 3656 return 0; 3657 } 3658 __initcall(gate_vma_init); 3659 #endif 3660 3661 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3662 { 3663 #ifdef AT_SYSINFO_EHDR 3664 return &gate_vma; 3665 #else 3666 return NULL; 3667 #endif 3668 } 3669 3670 int in_gate_area_no_mm(unsigned long addr) 3671 { 3672 #ifdef AT_SYSINFO_EHDR 3673 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3674 return 1; 3675 #endif 3676 return 0; 3677 } 3678 3679 #endif /* __HAVE_ARCH_GATE_AREA */ 3680 3681 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3682 pte_t **ptepp, spinlock_t **ptlp) 3683 { 3684 pgd_t *pgd; 3685 pud_t *pud; 3686 pmd_t *pmd; 3687 pte_t *ptep; 3688 3689 pgd = pgd_offset(mm, address); 3690 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3691 goto out; 3692 3693 pud = pud_offset(pgd, address); 3694 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3695 goto out; 3696 3697 pmd = pmd_offset(pud, address); 3698 VM_BUG_ON(pmd_trans_huge(*pmd)); 3699 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3700 goto out; 3701 3702 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3703 if (pmd_huge(*pmd)) 3704 goto out; 3705 3706 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3707 if (!ptep) 3708 goto out; 3709 if (!pte_present(*ptep)) 3710 goto unlock; 3711 *ptepp = ptep; 3712 return 0; 3713 unlock: 3714 pte_unmap_unlock(ptep, *ptlp); 3715 out: 3716 return -EINVAL; 3717 } 3718 3719 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3720 pte_t **ptepp, spinlock_t **ptlp) 3721 { 3722 int res; 3723 3724 /* (void) is needed to make gcc happy */ 3725 (void) __cond_lock(*ptlp, 3726 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3727 return res; 3728 } 3729 3730 /** 3731 * follow_pfn - look up PFN at a user virtual address 3732 * @vma: memory mapping 3733 * @address: user virtual address 3734 * @pfn: location to store found PFN 3735 * 3736 * Only IO mappings and raw PFN mappings are allowed. 3737 * 3738 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3739 */ 3740 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3741 unsigned long *pfn) 3742 { 3743 int ret = -EINVAL; 3744 spinlock_t *ptl; 3745 pte_t *ptep; 3746 3747 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3748 return ret; 3749 3750 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3751 if (ret) 3752 return ret; 3753 *pfn = pte_pfn(*ptep); 3754 pte_unmap_unlock(ptep, ptl); 3755 return 0; 3756 } 3757 EXPORT_SYMBOL(follow_pfn); 3758 3759 #ifdef CONFIG_HAVE_IOREMAP_PROT 3760 int follow_phys(struct vm_area_struct *vma, 3761 unsigned long address, unsigned int flags, 3762 unsigned long *prot, resource_size_t *phys) 3763 { 3764 int ret = -EINVAL; 3765 pte_t *ptep, pte; 3766 spinlock_t *ptl; 3767 3768 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3769 goto out; 3770 3771 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3772 goto out; 3773 pte = *ptep; 3774 3775 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3776 goto unlock; 3777 3778 *prot = pgprot_val(pte_pgprot(pte)); 3779 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3780 3781 ret = 0; 3782 unlock: 3783 pte_unmap_unlock(ptep, ptl); 3784 out: 3785 return ret; 3786 } 3787 3788 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3789 void *buf, int len, int write) 3790 { 3791 resource_size_t phys_addr; 3792 unsigned long prot = 0; 3793 void __iomem *maddr; 3794 int offset = addr & (PAGE_SIZE-1); 3795 3796 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3797 return -EINVAL; 3798 3799 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3800 if (write) 3801 memcpy_toio(maddr + offset, buf, len); 3802 else 3803 memcpy_fromio(buf, maddr + offset, len); 3804 iounmap(maddr); 3805 3806 return len; 3807 } 3808 #endif 3809 3810 /* 3811 * Access another process' address space as given in mm. If non-NULL, use the 3812 * given task for page fault accounting. 3813 */ 3814 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3815 unsigned long addr, void *buf, int len, int write) 3816 { 3817 struct vm_area_struct *vma; 3818 void *old_buf = buf; 3819 3820 down_read(&mm->mmap_sem); 3821 /* ignore errors, just check how much was successfully transferred */ 3822 while (len) { 3823 int bytes, ret, offset; 3824 void *maddr; 3825 struct page *page = NULL; 3826 3827 ret = get_user_pages(tsk, mm, addr, 1, 3828 write, 1, &page, &vma); 3829 if (ret <= 0) { 3830 /* 3831 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3832 * we can access using slightly different code. 3833 */ 3834 #ifdef CONFIG_HAVE_IOREMAP_PROT 3835 vma = find_vma(mm, addr); 3836 if (!vma || vma->vm_start > addr) 3837 break; 3838 if (vma->vm_ops && vma->vm_ops->access) 3839 ret = vma->vm_ops->access(vma, addr, buf, 3840 len, write); 3841 if (ret <= 0) 3842 #endif 3843 break; 3844 bytes = ret; 3845 } else { 3846 bytes = len; 3847 offset = addr & (PAGE_SIZE-1); 3848 if (bytes > PAGE_SIZE-offset) 3849 bytes = PAGE_SIZE-offset; 3850 3851 maddr = kmap(page); 3852 if (write) { 3853 copy_to_user_page(vma, page, addr, 3854 maddr + offset, buf, bytes); 3855 set_page_dirty_lock(page); 3856 } else { 3857 copy_from_user_page(vma, page, addr, 3858 buf, maddr + offset, bytes); 3859 } 3860 kunmap(page); 3861 page_cache_release(page); 3862 } 3863 len -= bytes; 3864 buf += bytes; 3865 addr += bytes; 3866 } 3867 up_read(&mm->mmap_sem); 3868 3869 return buf - old_buf; 3870 } 3871 3872 /** 3873 * access_remote_vm - access another process' address space 3874 * @mm: the mm_struct of the target address space 3875 * @addr: start address to access 3876 * @buf: source or destination buffer 3877 * @len: number of bytes to transfer 3878 * @write: whether the access is a write 3879 * 3880 * The caller must hold a reference on @mm. 3881 */ 3882 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3883 void *buf, int len, int write) 3884 { 3885 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3886 } 3887 3888 /* 3889 * Access another process' address space. 3890 * Source/target buffer must be kernel space, 3891 * Do not walk the page table directly, use get_user_pages 3892 */ 3893 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3894 void *buf, int len, int write) 3895 { 3896 struct mm_struct *mm; 3897 int ret; 3898 3899 mm = get_task_mm(tsk); 3900 if (!mm) 3901 return 0; 3902 3903 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3904 mmput(mm); 3905 3906 return ret; 3907 } 3908 3909 /* 3910 * Print the name of a VMA. 3911 */ 3912 void print_vma_addr(char *prefix, unsigned long ip) 3913 { 3914 struct mm_struct *mm = current->mm; 3915 struct vm_area_struct *vma; 3916 3917 /* 3918 * Do not print if we are in atomic 3919 * contexts (in exception stacks, etc.): 3920 */ 3921 if (preempt_count()) 3922 return; 3923 3924 down_read(&mm->mmap_sem); 3925 vma = find_vma(mm, ip); 3926 if (vma && vma->vm_file) { 3927 struct file *f = vma->vm_file; 3928 char *buf = (char *)__get_free_page(GFP_KERNEL); 3929 if (buf) { 3930 char *p, *s; 3931 3932 p = d_path(&f->f_path, buf, PAGE_SIZE); 3933 if (IS_ERR(p)) 3934 p = "?"; 3935 s = strrchr(p, '/'); 3936 if (s) 3937 p = s+1; 3938 printk("%s%s[%lx+%lx]", prefix, p, 3939 vma->vm_start, 3940 vma->vm_end - vma->vm_start); 3941 free_page((unsigned long)buf); 3942 } 3943 } 3944 up_read(&mm->mmap_sem); 3945 } 3946 3947 #ifdef CONFIG_PROVE_LOCKING 3948 void might_fault(void) 3949 { 3950 /* 3951 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3952 * holding the mmap_sem, this is safe because kernel memory doesn't 3953 * get paged out, therefore we'll never actually fault, and the 3954 * below annotations will generate false positives. 3955 */ 3956 if (segment_eq(get_fs(), KERNEL_DS)) 3957 return; 3958 3959 might_sleep(); 3960 /* 3961 * it would be nicer only to annotate paths which are not under 3962 * pagefault_disable, however that requires a larger audit and 3963 * providing helpers like get_user_atomic. 3964 */ 3965 if (!in_atomic() && current->mm) 3966 might_lock_read(¤t->mm->mmap_sem); 3967 } 3968 EXPORT_SYMBOL(might_fault); 3969 #endif 3970 3971 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3972 static void clear_gigantic_page(struct page *page, 3973 unsigned long addr, 3974 unsigned int pages_per_huge_page) 3975 { 3976 int i; 3977 struct page *p = page; 3978 3979 might_sleep(); 3980 for (i = 0; i < pages_per_huge_page; 3981 i++, p = mem_map_next(p, page, i)) { 3982 cond_resched(); 3983 clear_user_highpage(p, addr + i * PAGE_SIZE); 3984 } 3985 } 3986 void clear_huge_page(struct page *page, 3987 unsigned long addr, unsigned int pages_per_huge_page) 3988 { 3989 int i; 3990 3991 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3992 clear_gigantic_page(page, addr, pages_per_huge_page); 3993 return; 3994 } 3995 3996 might_sleep(); 3997 for (i = 0; i < pages_per_huge_page; i++) { 3998 cond_resched(); 3999 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4000 } 4001 } 4002 4003 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4004 unsigned long addr, 4005 struct vm_area_struct *vma, 4006 unsigned int pages_per_huge_page) 4007 { 4008 int i; 4009 struct page *dst_base = dst; 4010 struct page *src_base = src; 4011 4012 for (i = 0; i < pages_per_huge_page; ) { 4013 cond_resched(); 4014 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4015 4016 i++; 4017 dst = mem_map_next(dst, dst_base, i); 4018 src = mem_map_next(src, src_base, i); 4019 } 4020 } 4021 4022 void copy_user_huge_page(struct page *dst, struct page *src, 4023 unsigned long addr, struct vm_area_struct *vma, 4024 unsigned int pages_per_huge_page) 4025 { 4026 int i; 4027 4028 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4029 copy_user_gigantic_page(dst, src, addr, vma, 4030 pages_per_huge_page); 4031 return; 4032 } 4033 4034 might_sleep(); 4035 for (i = 0; i < pages_per_huge_page; i++) { 4036 cond_resched(); 4037 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4038 } 4039 } 4040 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4041