xref: /openbmc/linux/mm/memory.c (revision 95e9fd10)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67 
68 #include "internal.h"
69 
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74 
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78 
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88 
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91 
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 					1;
101 #else
102 					2;
103 #endif
104 
105 static int __init disable_randmaps(char *s)
106 {
107 	randomize_va_space = 0;
108 	return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111 
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114 
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 	return 0;
122 }
123 core_initcall(init_zero_pfn);
124 
125 
126 #if defined(SPLIT_RSS_COUNTING)
127 
128 void sync_mm_rss(struct mm_struct *mm)
129 {
130 	int i;
131 
132 	for (i = 0; i < NR_MM_COUNTERS; i++) {
133 		if (current->rss_stat.count[i]) {
134 			add_mm_counter(mm, i, current->rss_stat.count[i]);
135 			current->rss_stat.count[i] = 0;
136 		}
137 	}
138 	current->rss_stat.events = 0;
139 }
140 
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 	struct task_struct *task = current;
144 
145 	if (likely(task->mm == mm))
146 		task->rss_stat.count[member] += val;
147 	else
148 		add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152 
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH	(64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 	if (unlikely(task != current))
158 		return;
159 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 		sync_mm_rss(task->mm);
161 }
162 #else /* SPLIT_RSS_COUNTING */
163 
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166 
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 }
170 
171 #endif /* SPLIT_RSS_COUNTING */
172 
173 #ifdef HAVE_GENERIC_MMU_GATHER
174 
175 static int tlb_next_batch(struct mmu_gather *tlb)
176 {
177 	struct mmu_gather_batch *batch;
178 
179 	batch = tlb->active;
180 	if (batch->next) {
181 		tlb->active = batch->next;
182 		return 1;
183 	}
184 
185 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186 	if (!batch)
187 		return 0;
188 
189 	batch->next = NULL;
190 	batch->nr   = 0;
191 	batch->max  = MAX_GATHER_BATCH;
192 
193 	tlb->active->next = batch;
194 	tlb->active = batch;
195 
196 	return 1;
197 }
198 
199 /* tlb_gather_mmu
200  *	Called to initialize an (on-stack) mmu_gather structure for page-table
201  *	tear-down from @mm. The @fullmm argument is used when @mm is without
202  *	users and we're going to destroy the full address space (exit/execve).
203  */
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205 {
206 	tlb->mm = mm;
207 
208 	tlb->fullmm     = fullmm;
209 	tlb->start	= -1UL;
210 	tlb->end	= 0;
211 	tlb->need_flush = 0;
212 	tlb->fast_mode  = (num_possible_cpus() == 1);
213 	tlb->local.next = NULL;
214 	tlb->local.nr   = 0;
215 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
216 	tlb->active     = &tlb->local;
217 
218 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
219 	tlb->batch = NULL;
220 #endif
221 }
222 
223 void tlb_flush_mmu(struct mmu_gather *tlb)
224 {
225 	struct mmu_gather_batch *batch;
226 
227 	if (!tlb->need_flush)
228 		return;
229 	tlb->need_flush = 0;
230 	tlb_flush(tlb);
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 	tlb_table_flush(tlb);
233 #endif
234 
235 	if (tlb_fast_mode(tlb))
236 		return;
237 
238 	for (batch = &tlb->local; batch; batch = batch->next) {
239 		free_pages_and_swap_cache(batch->pages, batch->nr);
240 		batch->nr = 0;
241 	}
242 	tlb->active = &tlb->local;
243 }
244 
245 /* tlb_finish_mmu
246  *	Called at the end of the shootdown operation to free up any resources
247  *	that were required.
248  */
249 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
250 {
251 	struct mmu_gather_batch *batch, *next;
252 
253 	tlb->start = start;
254 	tlb->end   = end;
255 	tlb_flush_mmu(tlb);
256 
257 	/* keep the page table cache within bounds */
258 	check_pgt_cache();
259 
260 	for (batch = tlb->local.next; batch; batch = next) {
261 		next = batch->next;
262 		free_pages((unsigned long)batch, 0);
263 	}
264 	tlb->local.next = NULL;
265 }
266 
267 /* __tlb_remove_page
268  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
269  *	handling the additional races in SMP caused by other CPUs caching valid
270  *	mappings in their TLBs. Returns the number of free page slots left.
271  *	When out of page slots we must call tlb_flush_mmu().
272  */
273 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
274 {
275 	struct mmu_gather_batch *batch;
276 
277 	VM_BUG_ON(!tlb->need_flush);
278 
279 	if (tlb_fast_mode(tlb)) {
280 		free_page_and_swap_cache(page);
281 		return 1; /* avoid calling tlb_flush_mmu() */
282 	}
283 
284 	batch = tlb->active;
285 	batch->pages[batch->nr++] = page;
286 	if (batch->nr == batch->max) {
287 		if (!tlb_next_batch(tlb))
288 			return 0;
289 		batch = tlb->active;
290 	}
291 	VM_BUG_ON(batch->nr > batch->max);
292 
293 	return batch->max - batch->nr;
294 }
295 
296 #endif /* HAVE_GENERIC_MMU_GATHER */
297 
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
299 
300 /*
301  * See the comment near struct mmu_table_batch.
302  */
303 
304 static void tlb_remove_table_smp_sync(void *arg)
305 {
306 	/* Simply deliver the interrupt */
307 }
308 
309 static void tlb_remove_table_one(void *table)
310 {
311 	/*
312 	 * This isn't an RCU grace period and hence the page-tables cannot be
313 	 * assumed to be actually RCU-freed.
314 	 *
315 	 * It is however sufficient for software page-table walkers that rely on
316 	 * IRQ disabling. See the comment near struct mmu_table_batch.
317 	 */
318 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 	__tlb_remove_table(table);
320 }
321 
322 static void tlb_remove_table_rcu(struct rcu_head *head)
323 {
324 	struct mmu_table_batch *batch;
325 	int i;
326 
327 	batch = container_of(head, struct mmu_table_batch, rcu);
328 
329 	for (i = 0; i < batch->nr; i++)
330 		__tlb_remove_table(batch->tables[i]);
331 
332 	free_page((unsigned long)batch);
333 }
334 
335 void tlb_table_flush(struct mmu_gather *tlb)
336 {
337 	struct mmu_table_batch **batch = &tlb->batch;
338 
339 	if (*batch) {
340 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 		*batch = NULL;
342 	}
343 }
344 
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
346 {
347 	struct mmu_table_batch **batch = &tlb->batch;
348 
349 	tlb->need_flush = 1;
350 
351 	/*
352 	 * When there's less then two users of this mm there cannot be a
353 	 * concurrent page-table walk.
354 	 */
355 	if (atomic_read(&tlb->mm->mm_users) < 2) {
356 		__tlb_remove_table(table);
357 		return;
358 	}
359 
360 	if (*batch == NULL) {
361 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 		if (*batch == NULL) {
363 			tlb_remove_table_one(table);
364 			return;
365 		}
366 		(*batch)->nr = 0;
367 	}
368 	(*batch)->tables[(*batch)->nr++] = table;
369 	if ((*batch)->nr == MAX_TABLE_BATCH)
370 		tlb_table_flush(tlb);
371 }
372 
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
374 
375 /*
376  * If a p?d_bad entry is found while walking page tables, report
377  * the error, before resetting entry to p?d_none.  Usually (but
378  * very seldom) called out from the p?d_none_or_clear_bad macros.
379  */
380 
381 void pgd_clear_bad(pgd_t *pgd)
382 {
383 	pgd_ERROR(*pgd);
384 	pgd_clear(pgd);
385 }
386 
387 void pud_clear_bad(pud_t *pud)
388 {
389 	pud_ERROR(*pud);
390 	pud_clear(pud);
391 }
392 
393 void pmd_clear_bad(pmd_t *pmd)
394 {
395 	pmd_ERROR(*pmd);
396 	pmd_clear(pmd);
397 }
398 
399 /*
400  * Note: this doesn't free the actual pages themselves. That
401  * has been handled earlier when unmapping all the memory regions.
402  */
403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404 			   unsigned long addr)
405 {
406 	pgtable_t token = pmd_pgtable(*pmd);
407 	pmd_clear(pmd);
408 	pte_free_tlb(tlb, token, addr);
409 	tlb->mm->nr_ptes--;
410 }
411 
412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413 				unsigned long addr, unsigned long end,
414 				unsigned long floor, unsigned long ceiling)
415 {
416 	pmd_t *pmd;
417 	unsigned long next;
418 	unsigned long start;
419 
420 	start = addr;
421 	pmd = pmd_offset(pud, addr);
422 	do {
423 		next = pmd_addr_end(addr, end);
424 		if (pmd_none_or_clear_bad(pmd))
425 			continue;
426 		free_pte_range(tlb, pmd, addr);
427 	} while (pmd++, addr = next, addr != end);
428 
429 	start &= PUD_MASK;
430 	if (start < floor)
431 		return;
432 	if (ceiling) {
433 		ceiling &= PUD_MASK;
434 		if (!ceiling)
435 			return;
436 	}
437 	if (end - 1 > ceiling - 1)
438 		return;
439 
440 	pmd = pmd_offset(pud, start);
441 	pud_clear(pud);
442 	pmd_free_tlb(tlb, pmd, start);
443 }
444 
445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446 				unsigned long addr, unsigned long end,
447 				unsigned long floor, unsigned long ceiling)
448 {
449 	pud_t *pud;
450 	unsigned long next;
451 	unsigned long start;
452 
453 	start = addr;
454 	pud = pud_offset(pgd, addr);
455 	do {
456 		next = pud_addr_end(addr, end);
457 		if (pud_none_or_clear_bad(pud))
458 			continue;
459 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
460 	} while (pud++, addr = next, addr != end);
461 
462 	start &= PGDIR_MASK;
463 	if (start < floor)
464 		return;
465 	if (ceiling) {
466 		ceiling &= PGDIR_MASK;
467 		if (!ceiling)
468 			return;
469 	}
470 	if (end - 1 > ceiling - 1)
471 		return;
472 
473 	pud = pud_offset(pgd, start);
474 	pgd_clear(pgd);
475 	pud_free_tlb(tlb, pud, start);
476 }
477 
478 /*
479  * This function frees user-level page tables of a process.
480  *
481  * Must be called with pagetable lock held.
482  */
483 void free_pgd_range(struct mmu_gather *tlb,
484 			unsigned long addr, unsigned long end,
485 			unsigned long floor, unsigned long ceiling)
486 {
487 	pgd_t *pgd;
488 	unsigned long next;
489 
490 	/*
491 	 * The next few lines have given us lots of grief...
492 	 *
493 	 * Why are we testing PMD* at this top level?  Because often
494 	 * there will be no work to do at all, and we'd prefer not to
495 	 * go all the way down to the bottom just to discover that.
496 	 *
497 	 * Why all these "- 1"s?  Because 0 represents both the bottom
498 	 * of the address space and the top of it (using -1 for the
499 	 * top wouldn't help much: the masks would do the wrong thing).
500 	 * The rule is that addr 0 and floor 0 refer to the bottom of
501 	 * the address space, but end 0 and ceiling 0 refer to the top
502 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 	 * that end 0 case should be mythical).
504 	 *
505 	 * Wherever addr is brought up or ceiling brought down, we must
506 	 * be careful to reject "the opposite 0" before it confuses the
507 	 * subsequent tests.  But what about where end is brought down
508 	 * by PMD_SIZE below? no, end can't go down to 0 there.
509 	 *
510 	 * Whereas we round start (addr) and ceiling down, by different
511 	 * masks at different levels, in order to test whether a table
512 	 * now has no other vmas using it, so can be freed, we don't
513 	 * bother to round floor or end up - the tests don't need that.
514 	 */
515 
516 	addr &= PMD_MASK;
517 	if (addr < floor) {
518 		addr += PMD_SIZE;
519 		if (!addr)
520 			return;
521 	}
522 	if (ceiling) {
523 		ceiling &= PMD_MASK;
524 		if (!ceiling)
525 			return;
526 	}
527 	if (end - 1 > ceiling - 1)
528 		end -= PMD_SIZE;
529 	if (addr > end - 1)
530 		return;
531 
532 	pgd = pgd_offset(tlb->mm, addr);
533 	do {
534 		next = pgd_addr_end(addr, end);
535 		if (pgd_none_or_clear_bad(pgd))
536 			continue;
537 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
538 	} while (pgd++, addr = next, addr != end);
539 }
540 
541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
542 		unsigned long floor, unsigned long ceiling)
543 {
544 	while (vma) {
545 		struct vm_area_struct *next = vma->vm_next;
546 		unsigned long addr = vma->vm_start;
547 
548 		/*
549 		 * Hide vma from rmap and truncate_pagecache before freeing
550 		 * pgtables
551 		 */
552 		unlink_anon_vmas(vma);
553 		unlink_file_vma(vma);
554 
555 		if (is_vm_hugetlb_page(vma)) {
556 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
557 				floor, next? next->vm_start: ceiling);
558 		} else {
559 			/*
560 			 * Optimization: gather nearby vmas into one call down
561 			 */
562 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
563 			       && !is_vm_hugetlb_page(next)) {
564 				vma = next;
565 				next = vma->vm_next;
566 				unlink_anon_vmas(vma);
567 				unlink_file_vma(vma);
568 			}
569 			free_pgd_range(tlb, addr, vma->vm_end,
570 				floor, next? next->vm_start: ceiling);
571 		}
572 		vma = next;
573 	}
574 }
575 
576 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
577 		pmd_t *pmd, unsigned long address)
578 {
579 	pgtable_t new = pte_alloc_one(mm, address);
580 	int wait_split_huge_page;
581 	if (!new)
582 		return -ENOMEM;
583 
584 	/*
585 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
586 	 * visible before the pte is made visible to other CPUs by being
587 	 * put into page tables.
588 	 *
589 	 * The other side of the story is the pointer chasing in the page
590 	 * table walking code (when walking the page table without locking;
591 	 * ie. most of the time). Fortunately, these data accesses consist
592 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
593 	 * being the notable exception) will already guarantee loads are
594 	 * seen in-order. See the alpha page table accessors for the
595 	 * smp_read_barrier_depends() barriers in page table walking code.
596 	 */
597 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
598 
599 	spin_lock(&mm->page_table_lock);
600 	wait_split_huge_page = 0;
601 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
602 		mm->nr_ptes++;
603 		pmd_populate(mm, pmd, new);
604 		new = NULL;
605 	} else if (unlikely(pmd_trans_splitting(*pmd)))
606 		wait_split_huge_page = 1;
607 	spin_unlock(&mm->page_table_lock);
608 	if (new)
609 		pte_free(mm, new);
610 	if (wait_split_huge_page)
611 		wait_split_huge_page(vma->anon_vma, pmd);
612 	return 0;
613 }
614 
615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
616 {
617 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618 	if (!new)
619 		return -ENOMEM;
620 
621 	smp_wmb(); /* See comment in __pte_alloc */
622 
623 	spin_lock(&init_mm.page_table_lock);
624 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
625 		pmd_populate_kernel(&init_mm, pmd, new);
626 		new = NULL;
627 	} else
628 		VM_BUG_ON(pmd_trans_splitting(*pmd));
629 	spin_unlock(&init_mm.page_table_lock);
630 	if (new)
631 		pte_free_kernel(&init_mm, new);
632 	return 0;
633 }
634 
635 static inline void init_rss_vec(int *rss)
636 {
637 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
638 }
639 
640 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
641 {
642 	int i;
643 
644 	if (current->mm == mm)
645 		sync_mm_rss(mm);
646 	for (i = 0; i < NR_MM_COUNTERS; i++)
647 		if (rss[i])
648 			add_mm_counter(mm, i, rss[i]);
649 }
650 
651 /*
652  * This function is called to print an error when a bad pte
653  * is found. For example, we might have a PFN-mapped pte in
654  * a region that doesn't allow it.
655  *
656  * The calling function must still handle the error.
657  */
658 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
659 			  pte_t pte, struct page *page)
660 {
661 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
662 	pud_t *pud = pud_offset(pgd, addr);
663 	pmd_t *pmd = pmd_offset(pud, addr);
664 	struct address_space *mapping;
665 	pgoff_t index;
666 	static unsigned long resume;
667 	static unsigned long nr_shown;
668 	static unsigned long nr_unshown;
669 
670 	/*
671 	 * Allow a burst of 60 reports, then keep quiet for that minute;
672 	 * or allow a steady drip of one report per second.
673 	 */
674 	if (nr_shown == 60) {
675 		if (time_before(jiffies, resume)) {
676 			nr_unshown++;
677 			return;
678 		}
679 		if (nr_unshown) {
680 			printk(KERN_ALERT
681 				"BUG: Bad page map: %lu messages suppressed\n",
682 				nr_unshown);
683 			nr_unshown = 0;
684 		}
685 		nr_shown = 0;
686 	}
687 	if (nr_shown++ == 0)
688 		resume = jiffies + 60 * HZ;
689 
690 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691 	index = linear_page_index(vma, addr);
692 
693 	printk(KERN_ALERT
694 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
695 		current->comm,
696 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
697 	if (page)
698 		dump_page(page);
699 	printk(KERN_ALERT
700 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
702 	/*
703 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
704 	 */
705 	if (vma->vm_ops)
706 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
707 				(unsigned long)vma->vm_ops->fault);
708 	if (vma->vm_file && vma->vm_file->f_op)
709 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
710 				(unsigned long)vma->vm_file->f_op->mmap);
711 	dump_stack();
712 	add_taint(TAINT_BAD_PAGE);
713 }
714 
715 static inline int is_cow_mapping(vm_flags_t flags)
716 {
717 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
718 }
719 
720 #ifndef is_zero_pfn
721 static inline int is_zero_pfn(unsigned long pfn)
722 {
723 	return pfn == zero_pfn;
724 }
725 #endif
726 
727 #ifndef my_zero_pfn
728 static inline unsigned long my_zero_pfn(unsigned long addr)
729 {
730 	return zero_pfn;
731 }
732 #endif
733 
734 /*
735  * vm_normal_page -- This function gets the "struct page" associated with a pte.
736  *
737  * "Special" mappings do not wish to be associated with a "struct page" (either
738  * it doesn't exist, or it exists but they don't want to touch it). In this
739  * case, NULL is returned here. "Normal" mappings do have a struct page.
740  *
741  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
742  * pte bit, in which case this function is trivial. Secondly, an architecture
743  * may not have a spare pte bit, which requires a more complicated scheme,
744  * described below.
745  *
746  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
747  * special mapping (even if there are underlying and valid "struct pages").
748  * COWed pages of a VM_PFNMAP are always normal.
749  *
750  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
751  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
752  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
753  * mapping will always honor the rule
754  *
755  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
756  *
757  * And for normal mappings this is false.
758  *
759  * This restricts such mappings to be a linear translation from virtual address
760  * to pfn. To get around this restriction, we allow arbitrary mappings so long
761  * as the vma is not a COW mapping; in that case, we know that all ptes are
762  * special (because none can have been COWed).
763  *
764  *
765  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
766  *
767  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
768  * page" backing, however the difference is that _all_ pages with a struct
769  * page (that is, those where pfn_valid is true) are refcounted and considered
770  * normal pages by the VM. The disadvantage is that pages are refcounted
771  * (which can be slower and simply not an option for some PFNMAP users). The
772  * advantage is that we don't have to follow the strict linearity rule of
773  * PFNMAP mappings in order to support COWable mappings.
774  *
775  */
776 #ifdef __HAVE_ARCH_PTE_SPECIAL
777 # define HAVE_PTE_SPECIAL 1
778 #else
779 # define HAVE_PTE_SPECIAL 0
780 #endif
781 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
782 				pte_t pte)
783 {
784 	unsigned long pfn = pte_pfn(pte);
785 
786 	if (HAVE_PTE_SPECIAL) {
787 		if (likely(!pte_special(pte)))
788 			goto check_pfn;
789 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
790 			return NULL;
791 		if (!is_zero_pfn(pfn))
792 			print_bad_pte(vma, addr, pte, NULL);
793 		return NULL;
794 	}
795 
796 	/* !HAVE_PTE_SPECIAL case follows: */
797 
798 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
799 		if (vma->vm_flags & VM_MIXEDMAP) {
800 			if (!pfn_valid(pfn))
801 				return NULL;
802 			goto out;
803 		} else {
804 			unsigned long off;
805 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
806 			if (pfn == vma->vm_pgoff + off)
807 				return NULL;
808 			if (!is_cow_mapping(vma->vm_flags))
809 				return NULL;
810 		}
811 	}
812 
813 	if (is_zero_pfn(pfn))
814 		return NULL;
815 check_pfn:
816 	if (unlikely(pfn > highest_memmap_pfn)) {
817 		print_bad_pte(vma, addr, pte, NULL);
818 		return NULL;
819 	}
820 
821 	/*
822 	 * NOTE! We still have PageReserved() pages in the page tables.
823 	 * eg. VDSO mappings can cause them to exist.
824 	 */
825 out:
826 	return pfn_to_page(pfn);
827 }
828 
829 /*
830  * copy one vm_area from one task to the other. Assumes the page tables
831  * already present in the new task to be cleared in the whole range
832  * covered by this vma.
833  */
834 
835 static inline unsigned long
836 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
837 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
838 		unsigned long addr, int *rss)
839 {
840 	unsigned long vm_flags = vma->vm_flags;
841 	pte_t pte = *src_pte;
842 	struct page *page;
843 
844 	/* pte contains position in swap or file, so copy. */
845 	if (unlikely(!pte_present(pte))) {
846 		if (!pte_file(pte)) {
847 			swp_entry_t entry = pte_to_swp_entry(pte);
848 
849 			if (swap_duplicate(entry) < 0)
850 				return entry.val;
851 
852 			/* make sure dst_mm is on swapoff's mmlist. */
853 			if (unlikely(list_empty(&dst_mm->mmlist))) {
854 				spin_lock(&mmlist_lock);
855 				if (list_empty(&dst_mm->mmlist))
856 					list_add(&dst_mm->mmlist,
857 						 &src_mm->mmlist);
858 				spin_unlock(&mmlist_lock);
859 			}
860 			if (likely(!non_swap_entry(entry)))
861 				rss[MM_SWAPENTS]++;
862 			else if (is_migration_entry(entry)) {
863 				page = migration_entry_to_page(entry);
864 
865 				if (PageAnon(page))
866 					rss[MM_ANONPAGES]++;
867 				else
868 					rss[MM_FILEPAGES]++;
869 
870 				if (is_write_migration_entry(entry) &&
871 				    is_cow_mapping(vm_flags)) {
872 					/*
873 					 * COW mappings require pages in both
874 					 * parent and child to be set to read.
875 					 */
876 					make_migration_entry_read(&entry);
877 					pte = swp_entry_to_pte(entry);
878 					set_pte_at(src_mm, addr, src_pte, pte);
879 				}
880 			}
881 		}
882 		goto out_set_pte;
883 	}
884 
885 	/*
886 	 * If it's a COW mapping, write protect it both
887 	 * in the parent and the child
888 	 */
889 	if (is_cow_mapping(vm_flags)) {
890 		ptep_set_wrprotect(src_mm, addr, src_pte);
891 		pte = pte_wrprotect(pte);
892 	}
893 
894 	/*
895 	 * If it's a shared mapping, mark it clean in
896 	 * the child
897 	 */
898 	if (vm_flags & VM_SHARED)
899 		pte = pte_mkclean(pte);
900 	pte = pte_mkold(pte);
901 
902 	page = vm_normal_page(vma, addr, pte);
903 	if (page) {
904 		get_page(page);
905 		page_dup_rmap(page);
906 		if (PageAnon(page))
907 			rss[MM_ANONPAGES]++;
908 		else
909 			rss[MM_FILEPAGES]++;
910 	}
911 
912 out_set_pte:
913 	set_pte_at(dst_mm, addr, dst_pte, pte);
914 	return 0;
915 }
916 
917 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
919 		   unsigned long addr, unsigned long end)
920 {
921 	pte_t *orig_src_pte, *orig_dst_pte;
922 	pte_t *src_pte, *dst_pte;
923 	spinlock_t *src_ptl, *dst_ptl;
924 	int progress = 0;
925 	int rss[NR_MM_COUNTERS];
926 	swp_entry_t entry = (swp_entry_t){0};
927 
928 again:
929 	init_rss_vec(rss);
930 
931 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
932 	if (!dst_pte)
933 		return -ENOMEM;
934 	src_pte = pte_offset_map(src_pmd, addr);
935 	src_ptl = pte_lockptr(src_mm, src_pmd);
936 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
937 	orig_src_pte = src_pte;
938 	orig_dst_pte = dst_pte;
939 	arch_enter_lazy_mmu_mode();
940 
941 	do {
942 		/*
943 		 * We are holding two locks at this point - either of them
944 		 * could generate latencies in another task on another CPU.
945 		 */
946 		if (progress >= 32) {
947 			progress = 0;
948 			if (need_resched() ||
949 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
950 				break;
951 		}
952 		if (pte_none(*src_pte)) {
953 			progress++;
954 			continue;
955 		}
956 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
957 							vma, addr, rss);
958 		if (entry.val)
959 			break;
960 		progress += 8;
961 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
962 
963 	arch_leave_lazy_mmu_mode();
964 	spin_unlock(src_ptl);
965 	pte_unmap(orig_src_pte);
966 	add_mm_rss_vec(dst_mm, rss);
967 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
968 	cond_resched();
969 
970 	if (entry.val) {
971 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
972 			return -ENOMEM;
973 		progress = 0;
974 	}
975 	if (addr != end)
976 		goto again;
977 	return 0;
978 }
979 
980 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
982 		unsigned long addr, unsigned long end)
983 {
984 	pmd_t *src_pmd, *dst_pmd;
985 	unsigned long next;
986 
987 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
988 	if (!dst_pmd)
989 		return -ENOMEM;
990 	src_pmd = pmd_offset(src_pud, addr);
991 	do {
992 		next = pmd_addr_end(addr, end);
993 		if (pmd_trans_huge(*src_pmd)) {
994 			int err;
995 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
996 			err = copy_huge_pmd(dst_mm, src_mm,
997 					    dst_pmd, src_pmd, addr, vma);
998 			if (err == -ENOMEM)
999 				return -ENOMEM;
1000 			if (!err)
1001 				continue;
1002 			/* fall through */
1003 		}
1004 		if (pmd_none_or_clear_bad(src_pmd))
1005 			continue;
1006 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1007 						vma, addr, next))
1008 			return -ENOMEM;
1009 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1010 	return 0;
1011 }
1012 
1013 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1014 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1015 		unsigned long addr, unsigned long end)
1016 {
1017 	pud_t *src_pud, *dst_pud;
1018 	unsigned long next;
1019 
1020 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1021 	if (!dst_pud)
1022 		return -ENOMEM;
1023 	src_pud = pud_offset(src_pgd, addr);
1024 	do {
1025 		next = pud_addr_end(addr, end);
1026 		if (pud_none_or_clear_bad(src_pud))
1027 			continue;
1028 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1029 						vma, addr, next))
1030 			return -ENOMEM;
1031 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1032 	return 0;
1033 }
1034 
1035 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1036 		struct vm_area_struct *vma)
1037 {
1038 	pgd_t *src_pgd, *dst_pgd;
1039 	unsigned long next;
1040 	unsigned long addr = vma->vm_start;
1041 	unsigned long end = vma->vm_end;
1042 	int ret;
1043 
1044 	/*
1045 	 * Don't copy ptes where a page fault will fill them correctly.
1046 	 * Fork becomes much lighter when there are big shared or private
1047 	 * readonly mappings. The tradeoff is that copy_page_range is more
1048 	 * efficient than faulting.
1049 	 */
1050 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1051 		if (!vma->anon_vma)
1052 			return 0;
1053 	}
1054 
1055 	if (is_vm_hugetlb_page(vma))
1056 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1057 
1058 	if (unlikely(is_pfn_mapping(vma))) {
1059 		/*
1060 		 * We do not free on error cases below as remove_vma
1061 		 * gets called on error from higher level routine
1062 		 */
1063 		ret = track_pfn_vma_copy(vma);
1064 		if (ret)
1065 			return ret;
1066 	}
1067 
1068 	/*
1069 	 * We need to invalidate the secondary MMU mappings only when
1070 	 * there could be a permission downgrade on the ptes of the
1071 	 * parent mm. And a permission downgrade will only happen if
1072 	 * is_cow_mapping() returns true.
1073 	 */
1074 	if (is_cow_mapping(vma->vm_flags))
1075 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
1076 
1077 	ret = 0;
1078 	dst_pgd = pgd_offset(dst_mm, addr);
1079 	src_pgd = pgd_offset(src_mm, addr);
1080 	do {
1081 		next = pgd_addr_end(addr, end);
1082 		if (pgd_none_or_clear_bad(src_pgd))
1083 			continue;
1084 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1085 					    vma, addr, next))) {
1086 			ret = -ENOMEM;
1087 			break;
1088 		}
1089 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1090 
1091 	if (is_cow_mapping(vma->vm_flags))
1092 		mmu_notifier_invalidate_range_end(src_mm,
1093 						  vma->vm_start, end);
1094 	return ret;
1095 }
1096 
1097 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1098 				struct vm_area_struct *vma, pmd_t *pmd,
1099 				unsigned long addr, unsigned long end,
1100 				struct zap_details *details)
1101 {
1102 	struct mm_struct *mm = tlb->mm;
1103 	int force_flush = 0;
1104 	int rss[NR_MM_COUNTERS];
1105 	spinlock_t *ptl;
1106 	pte_t *start_pte;
1107 	pte_t *pte;
1108 
1109 again:
1110 	init_rss_vec(rss);
1111 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1112 	pte = start_pte;
1113 	arch_enter_lazy_mmu_mode();
1114 	do {
1115 		pte_t ptent = *pte;
1116 		if (pte_none(ptent)) {
1117 			continue;
1118 		}
1119 
1120 		if (pte_present(ptent)) {
1121 			struct page *page;
1122 
1123 			page = vm_normal_page(vma, addr, ptent);
1124 			if (unlikely(details) && page) {
1125 				/*
1126 				 * unmap_shared_mapping_pages() wants to
1127 				 * invalidate cache without truncating:
1128 				 * unmap shared but keep private pages.
1129 				 */
1130 				if (details->check_mapping &&
1131 				    details->check_mapping != page->mapping)
1132 					continue;
1133 				/*
1134 				 * Each page->index must be checked when
1135 				 * invalidating or truncating nonlinear.
1136 				 */
1137 				if (details->nonlinear_vma &&
1138 				    (page->index < details->first_index ||
1139 				     page->index > details->last_index))
1140 					continue;
1141 			}
1142 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1143 							tlb->fullmm);
1144 			tlb_remove_tlb_entry(tlb, pte, addr);
1145 			if (unlikely(!page))
1146 				continue;
1147 			if (unlikely(details) && details->nonlinear_vma
1148 			    && linear_page_index(details->nonlinear_vma,
1149 						addr) != page->index)
1150 				set_pte_at(mm, addr, pte,
1151 					   pgoff_to_pte(page->index));
1152 			if (PageAnon(page))
1153 				rss[MM_ANONPAGES]--;
1154 			else {
1155 				if (pte_dirty(ptent))
1156 					set_page_dirty(page);
1157 				if (pte_young(ptent) &&
1158 				    likely(!VM_SequentialReadHint(vma)))
1159 					mark_page_accessed(page);
1160 				rss[MM_FILEPAGES]--;
1161 			}
1162 			page_remove_rmap(page);
1163 			if (unlikely(page_mapcount(page) < 0))
1164 				print_bad_pte(vma, addr, ptent, page);
1165 			force_flush = !__tlb_remove_page(tlb, page);
1166 			if (force_flush)
1167 				break;
1168 			continue;
1169 		}
1170 		/*
1171 		 * If details->check_mapping, we leave swap entries;
1172 		 * if details->nonlinear_vma, we leave file entries.
1173 		 */
1174 		if (unlikely(details))
1175 			continue;
1176 		if (pte_file(ptent)) {
1177 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1178 				print_bad_pte(vma, addr, ptent, NULL);
1179 		} else {
1180 			swp_entry_t entry = pte_to_swp_entry(ptent);
1181 
1182 			if (!non_swap_entry(entry))
1183 				rss[MM_SWAPENTS]--;
1184 			else if (is_migration_entry(entry)) {
1185 				struct page *page;
1186 
1187 				page = migration_entry_to_page(entry);
1188 
1189 				if (PageAnon(page))
1190 					rss[MM_ANONPAGES]--;
1191 				else
1192 					rss[MM_FILEPAGES]--;
1193 			}
1194 			if (unlikely(!free_swap_and_cache(entry)))
1195 				print_bad_pte(vma, addr, ptent, NULL);
1196 		}
1197 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198 	} while (pte++, addr += PAGE_SIZE, addr != end);
1199 
1200 	add_mm_rss_vec(mm, rss);
1201 	arch_leave_lazy_mmu_mode();
1202 	pte_unmap_unlock(start_pte, ptl);
1203 
1204 	/*
1205 	 * mmu_gather ran out of room to batch pages, we break out of
1206 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207 	 * and page-free while holding it.
1208 	 */
1209 	if (force_flush) {
1210 		force_flush = 0;
1211 
1212 #ifdef HAVE_GENERIC_MMU_GATHER
1213 		tlb->start = addr;
1214 		tlb->end = end;
1215 #endif
1216 		tlb_flush_mmu(tlb);
1217 		if (addr != end)
1218 			goto again;
1219 	}
1220 
1221 	return addr;
1222 }
1223 
1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225 				struct vm_area_struct *vma, pud_t *pud,
1226 				unsigned long addr, unsigned long end,
1227 				struct zap_details *details)
1228 {
1229 	pmd_t *pmd;
1230 	unsigned long next;
1231 
1232 	pmd = pmd_offset(pud, addr);
1233 	do {
1234 		next = pmd_addr_end(addr, end);
1235 		if (pmd_trans_huge(*pmd)) {
1236 			if (next - addr != HPAGE_PMD_SIZE) {
1237 #ifdef CONFIG_DEBUG_VM
1238 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1239 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1240 						__func__, addr, end,
1241 						vma->vm_start,
1242 						vma->vm_end);
1243 					BUG();
1244 				}
1245 #endif
1246 				split_huge_page_pmd(vma->vm_mm, pmd);
1247 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1248 				goto next;
1249 			/* fall through */
1250 		}
1251 		/*
1252 		 * Here there can be other concurrent MADV_DONTNEED or
1253 		 * trans huge page faults running, and if the pmd is
1254 		 * none or trans huge it can change under us. This is
1255 		 * because MADV_DONTNEED holds the mmap_sem in read
1256 		 * mode.
1257 		 */
1258 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259 			goto next;
1260 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1261 next:
1262 		cond_resched();
1263 	} while (pmd++, addr = next, addr != end);
1264 
1265 	return addr;
1266 }
1267 
1268 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1269 				struct vm_area_struct *vma, pgd_t *pgd,
1270 				unsigned long addr, unsigned long end,
1271 				struct zap_details *details)
1272 {
1273 	pud_t *pud;
1274 	unsigned long next;
1275 
1276 	pud = pud_offset(pgd, addr);
1277 	do {
1278 		next = pud_addr_end(addr, end);
1279 		if (pud_none_or_clear_bad(pud))
1280 			continue;
1281 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1282 	} while (pud++, addr = next, addr != end);
1283 
1284 	return addr;
1285 }
1286 
1287 static void unmap_page_range(struct mmu_gather *tlb,
1288 			     struct vm_area_struct *vma,
1289 			     unsigned long addr, unsigned long end,
1290 			     struct zap_details *details)
1291 {
1292 	pgd_t *pgd;
1293 	unsigned long next;
1294 
1295 	if (details && !details->check_mapping && !details->nonlinear_vma)
1296 		details = NULL;
1297 
1298 	BUG_ON(addr >= end);
1299 	mem_cgroup_uncharge_start();
1300 	tlb_start_vma(tlb, vma);
1301 	pgd = pgd_offset(vma->vm_mm, addr);
1302 	do {
1303 		next = pgd_addr_end(addr, end);
1304 		if (pgd_none_or_clear_bad(pgd))
1305 			continue;
1306 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307 	} while (pgd++, addr = next, addr != end);
1308 	tlb_end_vma(tlb, vma);
1309 	mem_cgroup_uncharge_end();
1310 }
1311 
1312 
1313 static void unmap_single_vma(struct mmu_gather *tlb,
1314 		struct vm_area_struct *vma, unsigned long start_addr,
1315 		unsigned long end_addr,
1316 		struct zap_details *details)
1317 {
1318 	unsigned long start = max(vma->vm_start, start_addr);
1319 	unsigned long end;
1320 
1321 	if (start >= vma->vm_end)
1322 		return;
1323 	end = min(vma->vm_end, end_addr);
1324 	if (end <= vma->vm_start)
1325 		return;
1326 
1327 	if (vma->vm_file)
1328 		uprobe_munmap(vma, start, end);
1329 
1330 	if (unlikely(is_pfn_mapping(vma)))
1331 		untrack_pfn_vma(vma, 0, 0);
1332 
1333 	if (start != end) {
1334 		if (unlikely(is_vm_hugetlb_page(vma))) {
1335 			/*
1336 			 * It is undesirable to test vma->vm_file as it
1337 			 * should be non-null for valid hugetlb area.
1338 			 * However, vm_file will be NULL in the error
1339 			 * cleanup path of do_mmap_pgoff. When
1340 			 * hugetlbfs ->mmap method fails,
1341 			 * do_mmap_pgoff() nullifies vma->vm_file
1342 			 * before calling this function to clean up.
1343 			 * Since no pte has actually been setup, it is
1344 			 * safe to do nothing in this case.
1345 			 */
1346 			if (vma->vm_file) {
1347 				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1348 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1349 				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1350 			}
1351 		} else
1352 			unmap_page_range(tlb, vma, start, end, details);
1353 	}
1354 }
1355 
1356 /**
1357  * unmap_vmas - unmap a range of memory covered by a list of vma's
1358  * @tlb: address of the caller's struct mmu_gather
1359  * @vma: the starting vma
1360  * @start_addr: virtual address at which to start unmapping
1361  * @end_addr: virtual address at which to end unmapping
1362  *
1363  * Unmap all pages in the vma list.
1364  *
1365  * Only addresses between `start' and `end' will be unmapped.
1366  *
1367  * The VMA list must be sorted in ascending virtual address order.
1368  *
1369  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370  * range after unmap_vmas() returns.  So the only responsibility here is to
1371  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372  * drops the lock and schedules.
1373  */
1374 void unmap_vmas(struct mmu_gather *tlb,
1375 		struct vm_area_struct *vma, unsigned long start_addr,
1376 		unsigned long end_addr)
1377 {
1378 	struct mm_struct *mm = vma->vm_mm;
1379 
1380 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1381 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1382 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1383 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1384 }
1385 
1386 /**
1387  * zap_page_range - remove user pages in a given range
1388  * @vma: vm_area_struct holding the applicable pages
1389  * @start: starting address of pages to zap
1390  * @size: number of bytes to zap
1391  * @details: details of nonlinear truncation or shared cache invalidation
1392  *
1393  * Caller must protect the VMA list
1394  */
1395 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1396 		unsigned long size, struct zap_details *details)
1397 {
1398 	struct mm_struct *mm = vma->vm_mm;
1399 	struct mmu_gather tlb;
1400 	unsigned long end = start + size;
1401 
1402 	lru_add_drain();
1403 	tlb_gather_mmu(&tlb, mm, 0);
1404 	update_hiwater_rss(mm);
1405 	mmu_notifier_invalidate_range_start(mm, start, end);
1406 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1407 		unmap_single_vma(&tlb, vma, start, end, details);
1408 	mmu_notifier_invalidate_range_end(mm, start, end);
1409 	tlb_finish_mmu(&tlb, start, end);
1410 }
1411 
1412 /**
1413  * zap_page_range_single - remove user pages in a given range
1414  * @vma: vm_area_struct holding the applicable pages
1415  * @address: starting address of pages to zap
1416  * @size: number of bytes to zap
1417  * @details: details of nonlinear truncation or shared cache invalidation
1418  *
1419  * The range must fit into one VMA.
1420  */
1421 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1422 		unsigned long size, struct zap_details *details)
1423 {
1424 	struct mm_struct *mm = vma->vm_mm;
1425 	struct mmu_gather tlb;
1426 	unsigned long end = address + size;
1427 
1428 	lru_add_drain();
1429 	tlb_gather_mmu(&tlb, mm, 0);
1430 	update_hiwater_rss(mm);
1431 	mmu_notifier_invalidate_range_start(mm, address, end);
1432 	unmap_single_vma(&tlb, vma, address, end, details);
1433 	mmu_notifier_invalidate_range_end(mm, address, end);
1434 	tlb_finish_mmu(&tlb, address, end);
1435 }
1436 
1437 /**
1438  * zap_vma_ptes - remove ptes mapping the vma
1439  * @vma: vm_area_struct holding ptes to be zapped
1440  * @address: starting address of pages to zap
1441  * @size: number of bytes to zap
1442  *
1443  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1444  *
1445  * The entire address range must be fully contained within the vma.
1446  *
1447  * Returns 0 if successful.
1448  */
1449 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450 		unsigned long size)
1451 {
1452 	if (address < vma->vm_start || address + size > vma->vm_end ||
1453 	    		!(vma->vm_flags & VM_PFNMAP))
1454 		return -1;
1455 	zap_page_range_single(vma, address, size, NULL);
1456 	return 0;
1457 }
1458 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1459 
1460 /**
1461  * follow_page - look up a page descriptor from a user-virtual address
1462  * @vma: vm_area_struct mapping @address
1463  * @address: virtual address to look up
1464  * @flags: flags modifying lookup behaviour
1465  *
1466  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1467  *
1468  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1469  * an error pointer if there is a mapping to something not represented
1470  * by a page descriptor (see also vm_normal_page()).
1471  */
1472 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1473 			unsigned int flags)
1474 {
1475 	pgd_t *pgd;
1476 	pud_t *pud;
1477 	pmd_t *pmd;
1478 	pte_t *ptep, pte;
1479 	spinlock_t *ptl;
1480 	struct page *page;
1481 	struct mm_struct *mm = vma->vm_mm;
1482 
1483 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1484 	if (!IS_ERR(page)) {
1485 		BUG_ON(flags & FOLL_GET);
1486 		goto out;
1487 	}
1488 
1489 	page = NULL;
1490 	pgd = pgd_offset(mm, address);
1491 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1492 		goto no_page_table;
1493 
1494 	pud = pud_offset(pgd, address);
1495 	if (pud_none(*pud))
1496 		goto no_page_table;
1497 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1498 		BUG_ON(flags & FOLL_GET);
1499 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1500 		goto out;
1501 	}
1502 	if (unlikely(pud_bad(*pud)))
1503 		goto no_page_table;
1504 
1505 	pmd = pmd_offset(pud, address);
1506 	if (pmd_none(*pmd))
1507 		goto no_page_table;
1508 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1509 		BUG_ON(flags & FOLL_GET);
1510 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1511 		goto out;
1512 	}
1513 	if (pmd_trans_huge(*pmd)) {
1514 		if (flags & FOLL_SPLIT) {
1515 			split_huge_page_pmd(mm, pmd);
1516 			goto split_fallthrough;
1517 		}
1518 		spin_lock(&mm->page_table_lock);
1519 		if (likely(pmd_trans_huge(*pmd))) {
1520 			if (unlikely(pmd_trans_splitting(*pmd))) {
1521 				spin_unlock(&mm->page_table_lock);
1522 				wait_split_huge_page(vma->anon_vma, pmd);
1523 			} else {
1524 				page = follow_trans_huge_pmd(mm, address,
1525 							     pmd, flags);
1526 				spin_unlock(&mm->page_table_lock);
1527 				goto out;
1528 			}
1529 		} else
1530 			spin_unlock(&mm->page_table_lock);
1531 		/* fall through */
1532 	}
1533 split_fallthrough:
1534 	if (unlikely(pmd_bad(*pmd)))
1535 		goto no_page_table;
1536 
1537 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1538 
1539 	pte = *ptep;
1540 	if (!pte_present(pte))
1541 		goto no_page;
1542 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1543 		goto unlock;
1544 
1545 	page = vm_normal_page(vma, address, pte);
1546 	if (unlikely(!page)) {
1547 		if ((flags & FOLL_DUMP) ||
1548 		    !is_zero_pfn(pte_pfn(pte)))
1549 			goto bad_page;
1550 		page = pte_page(pte);
1551 	}
1552 
1553 	if (flags & FOLL_GET)
1554 		get_page_foll(page);
1555 	if (flags & FOLL_TOUCH) {
1556 		if ((flags & FOLL_WRITE) &&
1557 		    !pte_dirty(pte) && !PageDirty(page))
1558 			set_page_dirty(page);
1559 		/*
1560 		 * pte_mkyoung() would be more correct here, but atomic care
1561 		 * is needed to avoid losing the dirty bit: it is easier to use
1562 		 * mark_page_accessed().
1563 		 */
1564 		mark_page_accessed(page);
1565 	}
1566 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1567 		/*
1568 		 * The preliminary mapping check is mainly to avoid the
1569 		 * pointless overhead of lock_page on the ZERO_PAGE
1570 		 * which might bounce very badly if there is contention.
1571 		 *
1572 		 * If the page is already locked, we don't need to
1573 		 * handle it now - vmscan will handle it later if and
1574 		 * when it attempts to reclaim the page.
1575 		 */
1576 		if (page->mapping && trylock_page(page)) {
1577 			lru_add_drain();  /* push cached pages to LRU */
1578 			/*
1579 			 * Because we lock page here and migration is
1580 			 * blocked by the pte's page reference, we need
1581 			 * only check for file-cache page truncation.
1582 			 */
1583 			if (page->mapping)
1584 				mlock_vma_page(page);
1585 			unlock_page(page);
1586 		}
1587 	}
1588 unlock:
1589 	pte_unmap_unlock(ptep, ptl);
1590 out:
1591 	return page;
1592 
1593 bad_page:
1594 	pte_unmap_unlock(ptep, ptl);
1595 	return ERR_PTR(-EFAULT);
1596 
1597 no_page:
1598 	pte_unmap_unlock(ptep, ptl);
1599 	if (!pte_none(pte))
1600 		return page;
1601 
1602 no_page_table:
1603 	/*
1604 	 * When core dumping an enormous anonymous area that nobody
1605 	 * has touched so far, we don't want to allocate unnecessary pages or
1606 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1607 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1608 	 * But we can only make this optimization where a hole would surely
1609 	 * be zero-filled if handle_mm_fault() actually did handle it.
1610 	 */
1611 	if ((flags & FOLL_DUMP) &&
1612 	    (!vma->vm_ops || !vma->vm_ops->fault))
1613 		return ERR_PTR(-EFAULT);
1614 	return page;
1615 }
1616 
1617 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1618 {
1619 	return stack_guard_page_start(vma, addr) ||
1620 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1621 }
1622 
1623 /**
1624  * __get_user_pages() - pin user pages in memory
1625  * @tsk:	task_struct of target task
1626  * @mm:		mm_struct of target mm
1627  * @start:	starting user address
1628  * @nr_pages:	number of pages from start to pin
1629  * @gup_flags:	flags modifying pin behaviour
1630  * @pages:	array that receives pointers to the pages pinned.
1631  *		Should be at least nr_pages long. Or NULL, if caller
1632  *		only intends to ensure the pages are faulted in.
1633  * @vmas:	array of pointers to vmas corresponding to each page.
1634  *		Or NULL if the caller does not require them.
1635  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1636  *
1637  * Returns number of pages pinned. This may be fewer than the number
1638  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1639  * were pinned, returns -errno. Each page returned must be released
1640  * with a put_page() call when it is finished with. vmas will only
1641  * remain valid while mmap_sem is held.
1642  *
1643  * Must be called with mmap_sem held for read or write.
1644  *
1645  * __get_user_pages walks a process's page tables and takes a reference to
1646  * each struct page that each user address corresponds to at a given
1647  * instant. That is, it takes the page that would be accessed if a user
1648  * thread accesses the given user virtual address at that instant.
1649  *
1650  * This does not guarantee that the page exists in the user mappings when
1651  * __get_user_pages returns, and there may even be a completely different
1652  * page there in some cases (eg. if mmapped pagecache has been invalidated
1653  * and subsequently re faulted). However it does guarantee that the page
1654  * won't be freed completely. And mostly callers simply care that the page
1655  * contains data that was valid *at some point in time*. Typically, an IO
1656  * or similar operation cannot guarantee anything stronger anyway because
1657  * locks can't be held over the syscall boundary.
1658  *
1659  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1660  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1661  * appropriate) must be called after the page is finished with, and
1662  * before put_page is called.
1663  *
1664  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1665  * or mmap_sem contention, and if waiting is needed to pin all pages,
1666  * *@nonblocking will be set to 0.
1667  *
1668  * In most cases, get_user_pages or get_user_pages_fast should be used
1669  * instead of __get_user_pages. __get_user_pages should be used only if
1670  * you need some special @gup_flags.
1671  */
1672 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1673 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1674 		     struct page **pages, struct vm_area_struct **vmas,
1675 		     int *nonblocking)
1676 {
1677 	int i;
1678 	unsigned long vm_flags;
1679 
1680 	if (nr_pages <= 0)
1681 		return 0;
1682 
1683 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1684 
1685 	/*
1686 	 * Require read or write permissions.
1687 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1688 	 */
1689 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1690 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1691 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1692 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1693 	i = 0;
1694 
1695 	do {
1696 		struct vm_area_struct *vma;
1697 
1698 		vma = find_extend_vma(mm, start);
1699 		if (!vma && in_gate_area(mm, start)) {
1700 			unsigned long pg = start & PAGE_MASK;
1701 			pgd_t *pgd;
1702 			pud_t *pud;
1703 			pmd_t *pmd;
1704 			pte_t *pte;
1705 
1706 			/* user gate pages are read-only */
1707 			if (gup_flags & FOLL_WRITE)
1708 				return i ? : -EFAULT;
1709 			if (pg > TASK_SIZE)
1710 				pgd = pgd_offset_k(pg);
1711 			else
1712 				pgd = pgd_offset_gate(mm, pg);
1713 			BUG_ON(pgd_none(*pgd));
1714 			pud = pud_offset(pgd, pg);
1715 			BUG_ON(pud_none(*pud));
1716 			pmd = pmd_offset(pud, pg);
1717 			if (pmd_none(*pmd))
1718 				return i ? : -EFAULT;
1719 			VM_BUG_ON(pmd_trans_huge(*pmd));
1720 			pte = pte_offset_map(pmd, pg);
1721 			if (pte_none(*pte)) {
1722 				pte_unmap(pte);
1723 				return i ? : -EFAULT;
1724 			}
1725 			vma = get_gate_vma(mm);
1726 			if (pages) {
1727 				struct page *page;
1728 
1729 				page = vm_normal_page(vma, start, *pte);
1730 				if (!page) {
1731 					if (!(gup_flags & FOLL_DUMP) &&
1732 					     is_zero_pfn(pte_pfn(*pte)))
1733 						page = pte_page(*pte);
1734 					else {
1735 						pte_unmap(pte);
1736 						return i ? : -EFAULT;
1737 					}
1738 				}
1739 				pages[i] = page;
1740 				get_page(page);
1741 			}
1742 			pte_unmap(pte);
1743 			goto next_page;
1744 		}
1745 
1746 		if (!vma ||
1747 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1748 		    !(vm_flags & vma->vm_flags))
1749 			return i ? : -EFAULT;
1750 
1751 		if (is_vm_hugetlb_page(vma)) {
1752 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1753 					&start, &nr_pages, i, gup_flags);
1754 			continue;
1755 		}
1756 
1757 		do {
1758 			struct page *page;
1759 			unsigned int foll_flags = gup_flags;
1760 
1761 			/*
1762 			 * If we have a pending SIGKILL, don't keep faulting
1763 			 * pages and potentially allocating memory.
1764 			 */
1765 			if (unlikely(fatal_signal_pending(current)))
1766 				return i ? i : -ERESTARTSYS;
1767 
1768 			cond_resched();
1769 			while (!(page = follow_page(vma, start, foll_flags))) {
1770 				int ret;
1771 				unsigned int fault_flags = 0;
1772 
1773 				/* For mlock, just skip the stack guard page. */
1774 				if (foll_flags & FOLL_MLOCK) {
1775 					if (stack_guard_page(vma, start))
1776 						goto next_page;
1777 				}
1778 				if (foll_flags & FOLL_WRITE)
1779 					fault_flags |= FAULT_FLAG_WRITE;
1780 				if (nonblocking)
1781 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1782 				if (foll_flags & FOLL_NOWAIT)
1783 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1784 
1785 				ret = handle_mm_fault(mm, vma, start,
1786 							fault_flags);
1787 
1788 				if (ret & VM_FAULT_ERROR) {
1789 					if (ret & VM_FAULT_OOM)
1790 						return i ? i : -ENOMEM;
1791 					if (ret & (VM_FAULT_HWPOISON |
1792 						   VM_FAULT_HWPOISON_LARGE)) {
1793 						if (i)
1794 							return i;
1795 						else if (gup_flags & FOLL_HWPOISON)
1796 							return -EHWPOISON;
1797 						else
1798 							return -EFAULT;
1799 					}
1800 					if (ret & VM_FAULT_SIGBUS)
1801 						return i ? i : -EFAULT;
1802 					BUG();
1803 				}
1804 
1805 				if (tsk) {
1806 					if (ret & VM_FAULT_MAJOR)
1807 						tsk->maj_flt++;
1808 					else
1809 						tsk->min_flt++;
1810 				}
1811 
1812 				if (ret & VM_FAULT_RETRY) {
1813 					if (nonblocking)
1814 						*nonblocking = 0;
1815 					return i;
1816 				}
1817 
1818 				/*
1819 				 * The VM_FAULT_WRITE bit tells us that
1820 				 * do_wp_page has broken COW when necessary,
1821 				 * even if maybe_mkwrite decided not to set
1822 				 * pte_write. We can thus safely do subsequent
1823 				 * page lookups as if they were reads. But only
1824 				 * do so when looping for pte_write is futile:
1825 				 * in some cases userspace may also be wanting
1826 				 * to write to the gotten user page, which a
1827 				 * read fault here might prevent (a readonly
1828 				 * page might get reCOWed by userspace write).
1829 				 */
1830 				if ((ret & VM_FAULT_WRITE) &&
1831 				    !(vma->vm_flags & VM_WRITE))
1832 					foll_flags &= ~FOLL_WRITE;
1833 
1834 				cond_resched();
1835 			}
1836 			if (IS_ERR(page))
1837 				return i ? i : PTR_ERR(page);
1838 			if (pages) {
1839 				pages[i] = page;
1840 
1841 				flush_anon_page(vma, page, start);
1842 				flush_dcache_page(page);
1843 			}
1844 next_page:
1845 			if (vmas)
1846 				vmas[i] = vma;
1847 			i++;
1848 			start += PAGE_SIZE;
1849 			nr_pages--;
1850 		} while (nr_pages && start < vma->vm_end);
1851 	} while (nr_pages);
1852 	return i;
1853 }
1854 EXPORT_SYMBOL(__get_user_pages);
1855 
1856 /*
1857  * fixup_user_fault() - manually resolve a user page fault
1858  * @tsk:	the task_struct to use for page fault accounting, or
1859  *		NULL if faults are not to be recorded.
1860  * @mm:		mm_struct of target mm
1861  * @address:	user address
1862  * @fault_flags:flags to pass down to handle_mm_fault()
1863  *
1864  * This is meant to be called in the specific scenario where for locking reasons
1865  * we try to access user memory in atomic context (within a pagefault_disable()
1866  * section), this returns -EFAULT, and we want to resolve the user fault before
1867  * trying again.
1868  *
1869  * Typically this is meant to be used by the futex code.
1870  *
1871  * The main difference with get_user_pages() is that this function will
1872  * unconditionally call handle_mm_fault() which will in turn perform all the
1873  * necessary SW fixup of the dirty and young bits in the PTE, while
1874  * handle_mm_fault() only guarantees to update these in the struct page.
1875  *
1876  * This is important for some architectures where those bits also gate the
1877  * access permission to the page because they are maintained in software.  On
1878  * such architectures, gup() will not be enough to make a subsequent access
1879  * succeed.
1880  *
1881  * This should be called with the mm_sem held for read.
1882  */
1883 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1884 		     unsigned long address, unsigned int fault_flags)
1885 {
1886 	struct vm_area_struct *vma;
1887 	int ret;
1888 
1889 	vma = find_extend_vma(mm, address);
1890 	if (!vma || address < vma->vm_start)
1891 		return -EFAULT;
1892 
1893 	ret = handle_mm_fault(mm, vma, address, fault_flags);
1894 	if (ret & VM_FAULT_ERROR) {
1895 		if (ret & VM_FAULT_OOM)
1896 			return -ENOMEM;
1897 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1898 			return -EHWPOISON;
1899 		if (ret & VM_FAULT_SIGBUS)
1900 			return -EFAULT;
1901 		BUG();
1902 	}
1903 	if (tsk) {
1904 		if (ret & VM_FAULT_MAJOR)
1905 			tsk->maj_flt++;
1906 		else
1907 			tsk->min_flt++;
1908 	}
1909 	return 0;
1910 }
1911 
1912 /*
1913  * get_user_pages() - pin user pages in memory
1914  * @tsk:	the task_struct to use for page fault accounting, or
1915  *		NULL if faults are not to be recorded.
1916  * @mm:		mm_struct of target mm
1917  * @start:	starting user address
1918  * @nr_pages:	number of pages from start to pin
1919  * @write:	whether pages will be written to by the caller
1920  * @force:	whether to force write access even if user mapping is
1921  *		readonly. This will result in the page being COWed even
1922  *		in MAP_SHARED mappings. You do not want this.
1923  * @pages:	array that receives pointers to the pages pinned.
1924  *		Should be at least nr_pages long. Or NULL, if caller
1925  *		only intends to ensure the pages are faulted in.
1926  * @vmas:	array of pointers to vmas corresponding to each page.
1927  *		Or NULL if the caller does not require them.
1928  *
1929  * Returns number of pages pinned. This may be fewer than the number
1930  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1931  * were pinned, returns -errno. Each page returned must be released
1932  * with a put_page() call when it is finished with. vmas will only
1933  * remain valid while mmap_sem is held.
1934  *
1935  * Must be called with mmap_sem held for read or write.
1936  *
1937  * get_user_pages walks a process's page tables and takes a reference to
1938  * each struct page that each user address corresponds to at a given
1939  * instant. That is, it takes the page that would be accessed if a user
1940  * thread accesses the given user virtual address at that instant.
1941  *
1942  * This does not guarantee that the page exists in the user mappings when
1943  * get_user_pages returns, and there may even be a completely different
1944  * page there in some cases (eg. if mmapped pagecache has been invalidated
1945  * and subsequently re faulted). However it does guarantee that the page
1946  * won't be freed completely. And mostly callers simply care that the page
1947  * contains data that was valid *at some point in time*. Typically, an IO
1948  * or similar operation cannot guarantee anything stronger anyway because
1949  * locks can't be held over the syscall boundary.
1950  *
1951  * If write=0, the page must not be written to. If the page is written to,
1952  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1953  * after the page is finished with, and before put_page is called.
1954  *
1955  * get_user_pages is typically used for fewer-copy IO operations, to get a
1956  * handle on the memory by some means other than accesses via the user virtual
1957  * addresses. The pages may be submitted for DMA to devices or accessed via
1958  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1959  * use the correct cache flushing APIs.
1960  *
1961  * See also get_user_pages_fast, for performance critical applications.
1962  */
1963 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1964 		unsigned long start, int nr_pages, int write, int force,
1965 		struct page **pages, struct vm_area_struct **vmas)
1966 {
1967 	int flags = FOLL_TOUCH;
1968 
1969 	if (pages)
1970 		flags |= FOLL_GET;
1971 	if (write)
1972 		flags |= FOLL_WRITE;
1973 	if (force)
1974 		flags |= FOLL_FORCE;
1975 
1976 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1977 				NULL);
1978 }
1979 EXPORT_SYMBOL(get_user_pages);
1980 
1981 /**
1982  * get_dump_page() - pin user page in memory while writing it to core dump
1983  * @addr: user address
1984  *
1985  * Returns struct page pointer of user page pinned for dump,
1986  * to be freed afterwards by page_cache_release() or put_page().
1987  *
1988  * Returns NULL on any kind of failure - a hole must then be inserted into
1989  * the corefile, to preserve alignment with its headers; and also returns
1990  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1991  * allowing a hole to be left in the corefile to save diskspace.
1992  *
1993  * Called without mmap_sem, but after all other threads have been killed.
1994  */
1995 #ifdef CONFIG_ELF_CORE
1996 struct page *get_dump_page(unsigned long addr)
1997 {
1998 	struct vm_area_struct *vma;
1999 	struct page *page;
2000 
2001 	if (__get_user_pages(current, current->mm, addr, 1,
2002 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2003 			     NULL) < 1)
2004 		return NULL;
2005 	flush_cache_page(vma, addr, page_to_pfn(page));
2006 	return page;
2007 }
2008 #endif /* CONFIG_ELF_CORE */
2009 
2010 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2011 			spinlock_t **ptl)
2012 {
2013 	pgd_t * pgd = pgd_offset(mm, addr);
2014 	pud_t * pud = pud_alloc(mm, pgd, addr);
2015 	if (pud) {
2016 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2017 		if (pmd) {
2018 			VM_BUG_ON(pmd_trans_huge(*pmd));
2019 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2020 		}
2021 	}
2022 	return NULL;
2023 }
2024 
2025 /*
2026  * This is the old fallback for page remapping.
2027  *
2028  * For historical reasons, it only allows reserved pages. Only
2029  * old drivers should use this, and they needed to mark their
2030  * pages reserved for the old functions anyway.
2031  */
2032 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2033 			struct page *page, pgprot_t prot)
2034 {
2035 	struct mm_struct *mm = vma->vm_mm;
2036 	int retval;
2037 	pte_t *pte;
2038 	spinlock_t *ptl;
2039 
2040 	retval = -EINVAL;
2041 	if (PageAnon(page))
2042 		goto out;
2043 	retval = -ENOMEM;
2044 	flush_dcache_page(page);
2045 	pte = get_locked_pte(mm, addr, &ptl);
2046 	if (!pte)
2047 		goto out;
2048 	retval = -EBUSY;
2049 	if (!pte_none(*pte))
2050 		goto out_unlock;
2051 
2052 	/* Ok, finally just insert the thing.. */
2053 	get_page(page);
2054 	inc_mm_counter_fast(mm, MM_FILEPAGES);
2055 	page_add_file_rmap(page);
2056 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2057 
2058 	retval = 0;
2059 	pte_unmap_unlock(pte, ptl);
2060 	return retval;
2061 out_unlock:
2062 	pte_unmap_unlock(pte, ptl);
2063 out:
2064 	return retval;
2065 }
2066 
2067 /**
2068  * vm_insert_page - insert single page into user vma
2069  * @vma: user vma to map to
2070  * @addr: target user address of this page
2071  * @page: source kernel page
2072  *
2073  * This allows drivers to insert individual pages they've allocated
2074  * into a user vma.
2075  *
2076  * The page has to be a nice clean _individual_ kernel allocation.
2077  * If you allocate a compound page, you need to have marked it as
2078  * such (__GFP_COMP), or manually just split the page up yourself
2079  * (see split_page()).
2080  *
2081  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2082  * took an arbitrary page protection parameter. This doesn't allow
2083  * that. Your vma protection will have to be set up correctly, which
2084  * means that if you want a shared writable mapping, you'd better
2085  * ask for a shared writable mapping!
2086  *
2087  * The page does not need to be reserved.
2088  */
2089 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2090 			struct page *page)
2091 {
2092 	if (addr < vma->vm_start || addr >= vma->vm_end)
2093 		return -EFAULT;
2094 	if (!page_count(page))
2095 		return -EINVAL;
2096 	vma->vm_flags |= VM_INSERTPAGE;
2097 	return insert_page(vma, addr, page, vma->vm_page_prot);
2098 }
2099 EXPORT_SYMBOL(vm_insert_page);
2100 
2101 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2102 			unsigned long pfn, pgprot_t prot)
2103 {
2104 	struct mm_struct *mm = vma->vm_mm;
2105 	int retval;
2106 	pte_t *pte, entry;
2107 	spinlock_t *ptl;
2108 
2109 	retval = -ENOMEM;
2110 	pte = get_locked_pte(mm, addr, &ptl);
2111 	if (!pte)
2112 		goto out;
2113 	retval = -EBUSY;
2114 	if (!pte_none(*pte))
2115 		goto out_unlock;
2116 
2117 	/* Ok, finally just insert the thing.. */
2118 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2119 	set_pte_at(mm, addr, pte, entry);
2120 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2121 
2122 	retval = 0;
2123 out_unlock:
2124 	pte_unmap_unlock(pte, ptl);
2125 out:
2126 	return retval;
2127 }
2128 
2129 /**
2130  * vm_insert_pfn - insert single pfn into user vma
2131  * @vma: user vma to map to
2132  * @addr: target user address of this page
2133  * @pfn: source kernel pfn
2134  *
2135  * Similar to vm_inert_page, this allows drivers to insert individual pages
2136  * they've allocated into a user vma. Same comments apply.
2137  *
2138  * This function should only be called from a vm_ops->fault handler, and
2139  * in that case the handler should return NULL.
2140  *
2141  * vma cannot be a COW mapping.
2142  *
2143  * As this is called only for pages that do not currently exist, we
2144  * do not need to flush old virtual caches or the TLB.
2145  */
2146 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2147 			unsigned long pfn)
2148 {
2149 	int ret;
2150 	pgprot_t pgprot = vma->vm_page_prot;
2151 	/*
2152 	 * Technically, architectures with pte_special can avoid all these
2153 	 * restrictions (same for remap_pfn_range).  However we would like
2154 	 * consistency in testing and feature parity among all, so we should
2155 	 * try to keep these invariants in place for everybody.
2156 	 */
2157 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2158 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2159 						(VM_PFNMAP|VM_MIXEDMAP));
2160 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2161 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2162 
2163 	if (addr < vma->vm_start || addr >= vma->vm_end)
2164 		return -EFAULT;
2165 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2166 		return -EINVAL;
2167 
2168 	ret = insert_pfn(vma, addr, pfn, pgprot);
2169 
2170 	if (ret)
2171 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2172 
2173 	return ret;
2174 }
2175 EXPORT_SYMBOL(vm_insert_pfn);
2176 
2177 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2178 			unsigned long pfn)
2179 {
2180 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2181 
2182 	if (addr < vma->vm_start || addr >= vma->vm_end)
2183 		return -EFAULT;
2184 
2185 	/*
2186 	 * If we don't have pte special, then we have to use the pfn_valid()
2187 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2188 	 * refcount the page if pfn_valid is true (hence insert_page rather
2189 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2190 	 * without pte special, it would there be refcounted as a normal page.
2191 	 */
2192 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2193 		struct page *page;
2194 
2195 		page = pfn_to_page(pfn);
2196 		return insert_page(vma, addr, page, vma->vm_page_prot);
2197 	}
2198 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2199 }
2200 EXPORT_SYMBOL(vm_insert_mixed);
2201 
2202 /*
2203  * maps a range of physical memory into the requested pages. the old
2204  * mappings are removed. any references to nonexistent pages results
2205  * in null mappings (currently treated as "copy-on-access")
2206  */
2207 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2208 			unsigned long addr, unsigned long end,
2209 			unsigned long pfn, pgprot_t prot)
2210 {
2211 	pte_t *pte;
2212 	spinlock_t *ptl;
2213 
2214 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2215 	if (!pte)
2216 		return -ENOMEM;
2217 	arch_enter_lazy_mmu_mode();
2218 	do {
2219 		BUG_ON(!pte_none(*pte));
2220 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2221 		pfn++;
2222 	} while (pte++, addr += PAGE_SIZE, addr != end);
2223 	arch_leave_lazy_mmu_mode();
2224 	pte_unmap_unlock(pte - 1, ptl);
2225 	return 0;
2226 }
2227 
2228 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2229 			unsigned long addr, unsigned long end,
2230 			unsigned long pfn, pgprot_t prot)
2231 {
2232 	pmd_t *pmd;
2233 	unsigned long next;
2234 
2235 	pfn -= addr >> PAGE_SHIFT;
2236 	pmd = pmd_alloc(mm, pud, addr);
2237 	if (!pmd)
2238 		return -ENOMEM;
2239 	VM_BUG_ON(pmd_trans_huge(*pmd));
2240 	do {
2241 		next = pmd_addr_end(addr, end);
2242 		if (remap_pte_range(mm, pmd, addr, next,
2243 				pfn + (addr >> PAGE_SHIFT), prot))
2244 			return -ENOMEM;
2245 	} while (pmd++, addr = next, addr != end);
2246 	return 0;
2247 }
2248 
2249 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2250 			unsigned long addr, unsigned long end,
2251 			unsigned long pfn, pgprot_t prot)
2252 {
2253 	pud_t *pud;
2254 	unsigned long next;
2255 
2256 	pfn -= addr >> PAGE_SHIFT;
2257 	pud = pud_alloc(mm, pgd, addr);
2258 	if (!pud)
2259 		return -ENOMEM;
2260 	do {
2261 		next = pud_addr_end(addr, end);
2262 		if (remap_pmd_range(mm, pud, addr, next,
2263 				pfn + (addr >> PAGE_SHIFT), prot))
2264 			return -ENOMEM;
2265 	} while (pud++, addr = next, addr != end);
2266 	return 0;
2267 }
2268 
2269 /**
2270  * remap_pfn_range - remap kernel memory to userspace
2271  * @vma: user vma to map to
2272  * @addr: target user address to start at
2273  * @pfn: physical address of kernel memory
2274  * @size: size of map area
2275  * @prot: page protection flags for this mapping
2276  *
2277  *  Note: this is only safe if the mm semaphore is held when called.
2278  */
2279 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2280 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2281 {
2282 	pgd_t *pgd;
2283 	unsigned long next;
2284 	unsigned long end = addr + PAGE_ALIGN(size);
2285 	struct mm_struct *mm = vma->vm_mm;
2286 	int err;
2287 
2288 	/*
2289 	 * Physically remapped pages are special. Tell the
2290 	 * rest of the world about it:
2291 	 *   VM_IO tells people not to look at these pages
2292 	 *	(accesses can have side effects).
2293 	 *   VM_RESERVED is specified all over the place, because
2294 	 *	in 2.4 it kept swapout's vma scan off this vma; but
2295 	 *	in 2.6 the LRU scan won't even find its pages, so this
2296 	 *	flag means no more than count its pages in reserved_vm,
2297 	 * 	and omit it from core dump, even when VM_IO turned off.
2298 	 *   VM_PFNMAP tells the core MM that the base pages are just
2299 	 *	raw PFN mappings, and do not have a "struct page" associated
2300 	 *	with them.
2301 	 *
2302 	 * There's a horrible special case to handle copy-on-write
2303 	 * behaviour that some programs depend on. We mark the "original"
2304 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2305 	 */
2306 	if (addr == vma->vm_start && end == vma->vm_end) {
2307 		vma->vm_pgoff = pfn;
2308 		vma->vm_flags |= VM_PFN_AT_MMAP;
2309 	} else if (is_cow_mapping(vma->vm_flags))
2310 		return -EINVAL;
2311 
2312 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2313 
2314 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2315 	if (err) {
2316 		/*
2317 		 * To indicate that track_pfn related cleanup is not
2318 		 * needed from higher level routine calling unmap_vmas
2319 		 */
2320 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2321 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
2322 		return -EINVAL;
2323 	}
2324 
2325 	BUG_ON(addr >= end);
2326 	pfn -= addr >> PAGE_SHIFT;
2327 	pgd = pgd_offset(mm, addr);
2328 	flush_cache_range(vma, addr, end);
2329 	do {
2330 		next = pgd_addr_end(addr, end);
2331 		err = remap_pud_range(mm, pgd, addr, next,
2332 				pfn + (addr >> PAGE_SHIFT), prot);
2333 		if (err)
2334 			break;
2335 	} while (pgd++, addr = next, addr != end);
2336 
2337 	if (err)
2338 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2339 
2340 	return err;
2341 }
2342 EXPORT_SYMBOL(remap_pfn_range);
2343 
2344 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2345 				     unsigned long addr, unsigned long end,
2346 				     pte_fn_t fn, void *data)
2347 {
2348 	pte_t *pte;
2349 	int err;
2350 	pgtable_t token;
2351 	spinlock_t *uninitialized_var(ptl);
2352 
2353 	pte = (mm == &init_mm) ?
2354 		pte_alloc_kernel(pmd, addr) :
2355 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2356 	if (!pte)
2357 		return -ENOMEM;
2358 
2359 	BUG_ON(pmd_huge(*pmd));
2360 
2361 	arch_enter_lazy_mmu_mode();
2362 
2363 	token = pmd_pgtable(*pmd);
2364 
2365 	do {
2366 		err = fn(pte++, token, addr, data);
2367 		if (err)
2368 			break;
2369 	} while (addr += PAGE_SIZE, addr != end);
2370 
2371 	arch_leave_lazy_mmu_mode();
2372 
2373 	if (mm != &init_mm)
2374 		pte_unmap_unlock(pte-1, ptl);
2375 	return err;
2376 }
2377 
2378 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2379 				     unsigned long addr, unsigned long end,
2380 				     pte_fn_t fn, void *data)
2381 {
2382 	pmd_t *pmd;
2383 	unsigned long next;
2384 	int err;
2385 
2386 	BUG_ON(pud_huge(*pud));
2387 
2388 	pmd = pmd_alloc(mm, pud, addr);
2389 	if (!pmd)
2390 		return -ENOMEM;
2391 	do {
2392 		next = pmd_addr_end(addr, end);
2393 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2394 		if (err)
2395 			break;
2396 	} while (pmd++, addr = next, addr != end);
2397 	return err;
2398 }
2399 
2400 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2401 				     unsigned long addr, unsigned long end,
2402 				     pte_fn_t fn, void *data)
2403 {
2404 	pud_t *pud;
2405 	unsigned long next;
2406 	int err;
2407 
2408 	pud = pud_alloc(mm, pgd, addr);
2409 	if (!pud)
2410 		return -ENOMEM;
2411 	do {
2412 		next = pud_addr_end(addr, end);
2413 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2414 		if (err)
2415 			break;
2416 	} while (pud++, addr = next, addr != end);
2417 	return err;
2418 }
2419 
2420 /*
2421  * Scan a region of virtual memory, filling in page tables as necessary
2422  * and calling a provided function on each leaf page table.
2423  */
2424 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2425 			unsigned long size, pte_fn_t fn, void *data)
2426 {
2427 	pgd_t *pgd;
2428 	unsigned long next;
2429 	unsigned long end = addr + size;
2430 	int err;
2431 
2432 	BUG_ON(addr >= end);
2433 	pgd = pgd_offset(mm, addr);
2434 	do {
2435 		next = pgd_addr_end(addr, end);
2436 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2437 		if (err)
2438 			break;
2439 	} while (pgd++, addr = next, addr != end);
2440 
2441 	return err;
2442 }
2443 EXPORT_SYMBOL_GPL(apply_to_page_range);
2444 
2445 /*
2446  * handle_pte_fault chooses page fault handler according to an entry
2447  * which was read non-atomically.  Before making any commitment, on
2448  * those architectures or configurations (e.g. i386 with PAE) which
2449  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2450  * must check under lock before unmapping the pte and proceeding
2451  * (but do_wp_page is only called after already making such a check;
2452  * and do_anonymous_page can safely check later on).
2453  */
2454 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2455 				pte_t *page_table, pte_t orig_pte)
2456 {
2457 	int same = 1;
2458 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2459 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2460 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2461 		spin_lock(ptl);
2462 		same = pte_same(*page_table, orig_pte);
2463 		spin_unlock(ptl);
2464 	}
2465 #endif
2466 	pte_unmap(page_table);
2467 	return same;
2468 }
2469 
2470 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2471 {
2472 	/*
2473 	 * If the source page was a PFN mapping, we don't have
2474 	 * a "struct page" for it. We do a best-effort copy by
2475 	 * just copying from the original user address. If that
2476 	 * fails, we just zero-fill it. Live with it.
2477 	 */
2478 	if (unlikely(!src)) {
2479 		void *kaddr = kmap_atomic(dst);
2480 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2481 
2482 		/*
2483 		 * This really shouldn't fail, because the page is there
2484 		 * in the page tables. But it might just be unreadable,
2485 		 * in which case we just give up and fill the result with
2486 		 * zeroes.
2487 		 */
2488 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2489 			clear_page(kaddr);
2490 		kunmap_atomic(kaddr);
2491 		flush_dcache_page(dst);
2492 	} else
2493 		copy_user_highpage(dst, src, va, vma);
2494 }
2495 
2496 /*
2497  * This routine handles present pages, when users try to write
2498  * to a shared page. It is done by copying the page to a new address
2499  * and decrementing the shared-page counter for the old page.
2500  *
2501  * Note that this routine assumes that the protection checks have been
2502  * done by the caller (the low-level page fault routine in most cases).
2503  * Thus we can safely just mark it writable once we've done any necessary
2504  * COW.
2505  *
2506  * We also mark the page dirty at this point even though the page will
2507  * change only once the write actually happens. This avoids a few races,
2508  * and potentially makes it more efficient.
2509  *
2510  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2511  * but allow concurrent faults), with pte both mapped and locked.
2512  * We return with mmap_sem still held, but pte unmapped and unlocked.
2513  */
2514 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2515 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2516 		spinlock_t *ptl, pte_t orig_pte)
2517 	__releases(ptl)
2518 {
2519 	struct page *old_page, *new_page;
2520 	pte_t entry;
2521 	int ret = 0;
2522 	int page_mkwrite = 0;
2523 	struct page *dirty_page = NULL;
2524 
2525 	old_page = vm_normal_page(vma, address, orig_pte);
2526 	if (!old_page) {
2527 		/*
2528 		 * VM_MIXEDMAP !pfn_valid() case
2529 		 *
2530 		 * We should not cow pages in a shared writeable mapping.
2531 		 * Just mark the pages writable as we can't do any dirty
2532 		 * accounting on raw pfn maps.
2533 		 */
2534 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2535 				     (VM_WRITE|VM_SHARED))
2536 			goto reuse;
2537 		goto gotten;
2538 	}
2539 
2540 	/*
2541 	 * Take out anonymous pages first, anonymous shared vmas are
2542 	 * not dirty accountable.
2543 	 */
2544 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2545 		if (!trylock_page(old_page)) {
2546 			page_cache_get(old_page);
2547 			pte_unmap_unlock(page_table, ptl);
2548 			lock_page(old_page);
2549 			page_table = pte_offset_map_lock(mm, pmd, address,
2550 							 &ptl);
2551 			if (!pte_same(*page_table, orig_pte)) {
2552 				unlock_page(old_page);
2553 				goto unlock;
2554 			}
2555 			page_cache_release(old_page);
2556 		}
2557 		if (reuse_swap_page(old_page)) {
2558 			/*
2559 			 * The page is all ours.  Move it to our anon_vma so
2560 			 * the rmap code will not search our parent or siblings.
2561 			 * Protected against the rmap code by the page lock.
2562 			 */
2563 			page_move_anon_rmap(old_page, vma, address);
2564 			unlock_page(old_page);
2565 			goto reuse;
2566 		}
2567 		unlock_page(old_page);
2568 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2569 					(VM_WRITE|VM_SHARED))) {
2570 		/*
2571 		 * Only catch write-faults on shared writable pages,
2572 		 * read-only shared pages can get COWed by
2573 		 * get_user_pages(.write=1, .force=1).
2574 		 */
2575 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2576 			struct vm_fault vmf;
2577 			int tmp;
2578 
2579 			vmf.virtual_address = (void __user *)(address &
2580 								PAGE_MASK);
2581 			vmf.pgoff = old_page->index;
2582 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2583 			vmf.page = old_page;
2584 
2585 			/*
2586 			 * Notify the address space that the page is about to
2587 			 * become writable so that it can prohibit this or wait
2588 			 * for the page to get into an appropriate state.
2589 			 *
2590 			 * We do this without the lock held, so that it can
2591 			 * sleep if it needs to.
2592 			 */
2593 			page_cache_get(old_page);
2594 			pte_unmap_unlock(page_table, ptl);
2595 
2596 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2597 			if (unlikely(tmp &
2598 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2599 				ret = tmp;
2600 				goto unwritable_page;
2601 			}
2602 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2603 				lock_page(old_page);
2604 				if (!old_page->mapping) {
2605 					ret = 0; /* retry the fault */
2606 					unlock_page(old_page);
2607 					goto unwritable_page;
2608 				}
2609 			} else
2610 				VM_BUG_ON(!PageLocked(old_page));
2611 
2612 			/*
2613 			 * Since we dropped the lock we need to revalidate
2614 			 * the PTE as someone else may have changed it.  If
2615 			 * they did, we just return, as we can count on the
2616 			 * MMU to tell us if they didn't also make it writable.
2617 			 */
2618 			page_table = pte_offset_map_lock(mm, pmd, address,
2619 							 &ptl);
2620 			if (!pte_same(*page_table, orig_pte)) {
2621 				unlock_page(old_page);
2622 				goto unlock;
2623 			}
2624 
2625 			page_mkwrite = 1;
2626 		}
2627 		dirty_page = old_page;
2628 		get_page(dirty_page);
2629 
2630 reuse:
2631 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2632 		entry = pte_mkyoung(orig_pte);
2633 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2634 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2635 			update_mmu_cache(vma, address, page_table);
2636 		pte_unmap_unlock(page_table, ptl);
2637 		ret |= VM_FAULT_WRITE;
2638 
2639 		if (!dirty_page)
2640 			return ret;
2641 
2642 		/*
2643 		 * Yes, Virginia, this is actually required to prevent a race
2644 		 * with clear_page_dirty_for_io() from clearing the page dirty
2645 		 * bit after it clear all dirty ptes, but before a racing
2646 		 * do_wp_page installs a dirty pte.
2647 		 *
2648 		 * __do_fault is protected similarly.
2649 		 */
2650 		if (!page_mkwrite) {
2651 			wait_on_page_locked(dirty_page);
2652 			set_page_dirty_balance(dirty_page, page_mkwrite);
2653 			/* file_update_time outside page_lock */
2654 			if (vma->vm_file)
2655 				file_update_time(vma->vm_file);
2656 		}
2657 		put_page(dirty_page);
2658 		if (page_mkwrite) {
2659 			struct address_space *mapping = dirty_page->mapping;
2660 
2661 			set_page_dirty(dirty_page);
2662 			unlock_page(dirty_page);
2663 			page_cache_release(dirty_page);
2664 			if (mapping)	{
2665 				/*
2666 				 * Some device drivers do not set page.mapping
2667 				 * but still dirty their pages
2668 				 */
2669 				balance_dirty_pages_ratelimited(mapping);
2670 			}
2671 		}
2672 
2673 		return ret;
2674 	}
2675 
2676 	/*
2677 	 * Ok, we need to copy. Oh, well..
2678 	 */
2679 	page_cache_get(old_page);
2680 gotten:
2681 	pte_unmap_unlock(page_table, ptl);
2682 
2683 	if (unlikely(anon_vma_prepare(vma)))
2684 		goto oom;
2685 
2686 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2687 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2688 		if (!new_page)
2689 			goto oom;
2690 	} else {
2691 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2692 		if (!new_page)
2693 			goto oom;
2694 		cow_user_page(new_page, old_page, address, vma);
2695 	}
2696 	__SetPageUptodate(new_page);
2697 
2698 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2699 		goto oom_free_new;
2700 
2701 	/*
2702 	 * Re-check the pte - we dropped the lock
2703 	 */
2704 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2705 	if (likely(pte_same(*page_table, orig_pte))) {
2706 		if (old_page) {
2707 			if (!PageAnon(old_page)) {
2708 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2709 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2710 			}
2711 		} else
2712 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2713 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2714 		entry = mk_pte(new_page, vma->vm_page_prot);
2715 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2716 		/*
2717 		 * Clear the pte entry and flush it first, before updating the
2718 		 * pte with the new entry. This will avoid a race condition
2719 		 * seen in the presence of one thread doing SMC and another
2720 		 * thread doing COW.
2721 		 */
2722 		ptep_clear_flush(vma, address, page_table);
2723 		page_add_new_anon_rmap(new_page, vma, address);
2724 		/*
2725 		 * We call the notify macro here because, when using secondary
2726 		 * mmu page tables (such as kvm shadow page tables), we want the
2727 		 * new page to be mapped directly into the secondary page table.
2728 		 */
2729 		set_pte_at_notify(mm, address, page_table, entry);
2730 		update_mmu_cache(vma, address, page_table);
2731 		if (old_page) {
2732 			/*
2733 			 * Only after switching the pte to the new page may
2734 			 * we remove the mapcount here. Otherwise another
2735 			 * process may come and find the rmap count decremented
2736 			 * before the pte is switched to the new page, and
2737 			 * "reuse" the old page writing into it while our pte
2738 			 * here still points into it and can be read by other
2739 			 * threads.
2740 			 *
2741 			 * The critical issue is to order this
2742 			 * page_remove_rmap with the ptp_clear_flush above.
2743 			 * Those stores are ordered by (if nothing else,)
2744 			 * the barrier present in the atomic_add_negative
2745 			 * in page_remove_rmap.
2746 			 *
2747 			 * Then the TLB flush in ptep_clear_flush ensures that
2748 			 * no process can access the old page before the
2749 			 * decremented mapcount is visible. And the old page
2750 			 * cannot be reused until after the decremented
2751 			 * mapcount is visible. So transitively, TLBs to
2752 			 * old page will be flushed before it can be reused.
2753 			 */
2754 			page_remove_rmap(old_page);
2755 		}
2756 
2757 		/* Free the old page.. */
2758 		new_page = old_page;
2759 		ret |= VM_FAULT_WRITE;
2760 	} else
2761 		mem_cgroup_uncharge_page(new_page);
2762 
2763 	if (new_page)
2764 		page_cache_release(new_page);
2765 unlock:
2766 	pte_unmap_unlock(page_table, ptl);
2767 	if (old_page) {
2768 		/*
2769 		 * Don't let another task, with possibly unlocked vma,
2770 		 * keep the mlocked page.
2771 		 */
2772 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2773 			lock_page(old_page);	/* LRU manipulation */
2774 			munlock_vma_page(old_page);
2775 			unlock_page(old_page);
2776 		}
2777 		page_cache_release(old_page);
2778 	}
2779 	return ret;
2780 oom_free_new:
2781 	page_cache_release(new_page);
2782 oom:
2783 	if (old_page) {
2784 		if (page_mkwrite) {
2785 			unlock_page(old_page);
2786 			page_cache_release(old_page);
2787 		}
2788 		page_cache_release(old_page);
2789 	}
2790 	return VM_FAULT_OOM;
2791 
2792 unwritable_page:
2793 	page_cache_release(old_page);
2794 	return ret;
2795 }
2796 
2797 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2798 		unsigned long start_addr, unsigned long end_addr,
2799 		struct zap_details *details)
2800 {
2801 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2802 }
2803 
2804 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2805 					    struct zap_details *details)
2806 {
2807 	struct vm_area_struct *vma;
2808 	struct prio_tree_iter iter;
2809 	pgoff_t vba, vea, zba, zea;
2810 
2811 	vma_prio_tree_foreach(vma, &iter, root,
2812 			details->first_index, details->last_index) {
2813 
2814 		vba = vma->vm_pgoff;
2815 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2816 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2817 		zba = details->first_index;
2818 		if (zba < vba)
2819 			zba = vba;
2820 		zea = details->last_index;
2821 		if (zea > vea)
2822 			zea = vea;
2823 
2824 		unmap_mapping_range_vma(vma,
2825 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2826 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2827 				details);
2828 	}
2829 }
2830 
2831 static inline void unmap_mapping_range_list(struct list_head *head,
2832 					    struct zap_details *details)
2833 {
2834 	struct vm_area_struct *vma;
2835 
2836 	/*
2837 	 * In nonlinear VMAs there is no correspondence between virtual address
2838 	 * offset and file offset.  So we must perform an exhaustive search
2839 	 * across *all* the pages in each nonlinear VMA, not just the pages
2840 	 * whose virtual address lies outside the file truncation point.
2841 	 */
2842 	list_for_each_entry(vma, head, shared.vm_set.list) {
2843 		details->nonlinear_vma = vma;
2844 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2845 	}
2846 }
2847 
2848 /**
2849  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2850  * @mapping: the address space containing mmaps to be unmapped.
2851  * @holebegin: byte in first page to unmap, relative to the start of
2852  * the underlying file.  This will be rounded down to a PAGE_SIZE
2853  * boundary.  Note that this is different from truncate_pagecache(), which
2854  * must keep the partial page.  In contrast, we must get rid of
2855  * partial pages.
2856  * @holelen: size of prospective hole in bytes.  This will be rounded
2857  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2858  * end of the file.
2859  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2860  * but 0 when invalidating pagecache, don't throw away private data.
2861  */
2862 void unmap_mapping_range(struct address_space *mapping,
2863 		loff_t const holebegin, loff_t const holelen, int even_cows)
2864 {
2865 	struct zap_details details;
2866 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2867 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2868 
2869 	/* Check for overflow. */
2870 	if (sizeof(holelen) > sizeof(hlen)) {
2871 		long long holeend =
2872 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2873 		if (holeend & ~(long long)ULONG_MAX)
2874 			hlen = ULONG_MAX - hba + 1;
2875 	}
2876 
2877 	details.check_mapping = even_cows? NULL: mapping;
2878 	details.nonlinear_vma = NULL;
2879 	details.first_index = hba;
2880 	details.last_index = hba + hlen - 1;
2881 	if (details.last_index < details.first_index)
2882 		details.last_index = ULONG_MAX;
2883 
2884 
2885 	mutex_lock(&mapping->i_mmap_mutex);
2886 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2887 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2888 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2889 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2890 	mutex_unlock(&mapping->i_mmap_mutex);
2891 }
2892 EXPORT_SYMBOL(unmap_mapping_range);
2893 
2894 /*
2895  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2896  * but allow concurrent faults), and pte mapped but not yet locked.
2897  * We return with mmap_sem still held, but pte unmapped and unlocked.
2898  */
2899 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2900 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2901 		unsigned int flags, pte_t orig_pte)
2902 {
2903 	spinlock_t *ptl;
2904 	struct page *page, *swapcache = NULL;
2905 	swp_entry_t entry;
2906 	pte_t pte;
2907 	int locked;
2908 	struct mem_cgroup *ptr;
2909 	int exclusive = 0;
2910 	int ret = 0;
2911 
2912 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2913 		goto out;
2914 
2915 	entry = pte_to_swp_entry(orig_pte);
2916 	if (unlikely(non_swap_entry(entry))) {
2917 		if (is_migration_entry(entry)) {
2918 			migration_entry_wait(mm, pmd, address);
2919 		} else if (is_hwpoison_entry(entry)) {
2920 			ret = VM_FAULT_HWPOISON;
2921 		} else {
2922 			print_bad_pte(vma, address, orig_pte, NULL);
2923 			ret = VM_FAULT_SIGBUS;
2924 		}
2925 		goto out;
2926 	}
2927 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2928 	page = lookup_swap_cache(entry);
2929 	if (!page) {
2930 		page = swapin_readahead(entry,
2931 					GFP_HIGHUSER_MOVABLE, vma, address);
2932 		if (!page) {
2933 			/*
2934 			 * Back out if somebody else faulted in this pte
2935 			 * while we released the pte lock.
2936 			 */
2937 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2938 			if (likely(pte_same(*page_table, orig_pte)))
2939 				ret = VM_FAULT_OOM;
2940 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2941 			goto unlock;
2942 		}
2943 
2944 		/* Had to read the page from swap area: Major fault */
2945 		ret = VM_FAULT_MAJOR;
2946 		count_vm_event(PGMAJFAULT);
2947 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2948 	} else if (PageHWPoison(page)) {
2949 		/*
2950 		 * hwpoisoned dirty swapcache pages are kept for killing
2951 		 * owner processes (which may be unknown at hwpoison time)
2952 		 */
2953 		ret = VM_FAULT_HWPOISON;
2954 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2955 		goto out_release;
2956 	}
2957 
2958 	locked = lock_page_or_retry(page, mm, flags);
2959 
2960 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2961 	if (!locked) {
2962 		ret |= VM_FAULT_RETRY;
2963 		goto out_release;
2964 	}
2965 
2966 	/*
2967 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2968 	 * release the swapcache from under us.  The page pin, and pte_same
2969 	 * test below, are not enough to exclude that.  Even if it is still
2970 	 * swapcache, we need to check that the page's swap has not changed.
2971 	 */
2972 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2973 		goto out_page;
2974 
2975 	if (ksm_might_need_to_copy(page, vma, address)) {
2976 		swapcache = page;
2977 		page = ksm_does_need_to_copy(page, vma, address);
2978 
2979 		if (unlikely(!page)) {
2980 			ret = VM_FAULT_OOM;
2981 			page = swapcache;
2982 			swapcache = NULL;
2983 			goto out_page;
2984 		}
2985 	}
2986 
2987 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2988 		ret = VM_FAULT_OOM;
2989 		goto out_page;
2990 	}
2991 
2992 	/*
2993 	 * Back out if somebody else already faulted in this pte.
2994 	 */
2995 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2996 	if (unlikely(!pte_same(*page_table, orig_pte)))
2997 		goto out_nomap;
2998 
2999 	if (unlikely(!PageUptodate(page))) {
3000 		ret = VM_FAULT_SIGBUS;
3001 		goto out_nomap;
3002 	}
3003 
3004 	/*
3005 	 * The page isn't present yet, go ahead with the fault.
3006 	 *
3007 	 * Be careful about the sequence of operations here.
3008 	 * To get its accounting right, reuse_swap_page() must be called
3009 	 * while the page is counted on swap but not yet in mapcount i.e.
3010 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3011 	 * must be called after the swap_free(), or it will never succeed.
3012 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3013 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3014 	 * in page->private. In this case, a record in swap_cgroup  is silently
3015 	 * discarded at swap_free().
3016 	 */
3017 
3018 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3019 	dec_mm_counter_fast(mm, MM_SWAPENTS);
3020 	pte = mk_pte(page, vma->vm_page_prot);
3021 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3022 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3023 		flags &= ~FAULT_FLAG_WRITE;
3024 		ret |= VM_FAULT_WRITE;
3025 		exclusive = 1;
3026 	}
3027 	flush_icache_page(vma, page);
3028 	set_pte_at(mm, address, page_table, pte);
3029 	do_page_add_anon_rmap(page, vma, address, exclusive);
3030 	/* It's better to call commit-charge after rmap is established */
3031 	mem_cgroup_commit_charge_swapin(page, ptr);
3032 
3033 	swap_free(entry);
3034 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3035 		try_to_free_swap(page);
3036 	unlock_page(page);
3037 	if (swapcache) {
3038 		/*
3039 		 * Hold the lock to avoid the swap entry to be reused
3040 		 * until we take the PT lock for the pte_same() check
3041 		 * (to avoid false positives from pte_same). For
3042 		 * further safety release the lock after the swap_free
3043 		 * so that the swap count won't change under a
3044 		 * parallel locked swapcache.
3045 		 */
3046 		unlock_page(swapcache);
3047 		page_cache_release(swapcache);
3048 	}
3049 
3050 	if (flags & FAULT_FLAG_WRITE) {
3051 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3052 		if (ret & VM_FAULT_ERROR)
3053 			ret &= VM_FAULT_ERROR;
3054 		goto out;
3055 	}
3056 
3057 	/* No need to invalidate - it was non-present before */
3058 	update_mmu_cache(vma, address, page_table);
3059 unlock:
3060 	pte_unmap_unlock(page_table, ptl);
3061 out:
3062 	return ret;
3063 out_nomap:
3064 	mem_cgroup_cancel_charge_swapin(ptr);
3065 	pte_unmap_unlock(page_table, ptl);
3066 out_page:
3067 	unlock_page(page);
3068 out_release:
3069 	page_cache_release(page);
3070 	if (swapcache) {
3071 		unlock_page(swapcache);
3072 		page_cache_release(swapcache);
3073 	}
3074 	return ret;
3075 }
3076 
3077 /*
3078  * This is like a special single-page "expand_{down|up}wards()",
3079  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3080  * doesn't hit another vma.
3081  */
3082 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3083 {
3084 	address &= PAGE_MASK;
3085 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3086 		struct vm_area_struct *prev = vma->vm_prev;
3087 
3088 		/*
3089 		 * Is there a mapping abutting this one below?
3090 		 *
3091 		 * That's only ok if it's the same stack mapping
3092 		 * that has gotten split..
3093 		 */
3094 		if (prev && prev->vm_end == address)
3095 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3096 
3097 		expand_downwards(vma, address - PAGE_SIZE);
3098 	}
3099 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3100 		struct vm_area_struct *next = vma->vm_next;
3101 
3102 		/* As VM_GROWSDOWN but s/below/above/ */
3103 		if (next && next->vm_start == address + PAGE_SIZE)
3104 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3105 
3106 		expand_upwards(vma, address + PAGE_SIZE);
3107 	}
3108 	return 0;
3109 }
3110 
3111 /*
3112  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3113  * but allow concurrent faults), and pte mapped but not yet locked.
3114  * We return with mmap_sem still held, but pte unmapped and unlocked.
3115  */
3116 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3117 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3118 		unsigned int flags)
3119 {
3120 	struct page *page;
3121 	spinlock_t *ptl;
3122 	pte_t entry;
3123 
3124 	pte_unmap(page_table);
3125 
3126 	/* Check if we need to add a guard page to the stack */
3127 	if (check_stack_guard_page(vma, address) < 0)
3128 		return VM_FAULT_SIGBUS;
3129 
3130 	/* Use the zero-page for reads */
3131 	if (!(flags & FAULT_FLAG_WRITE)) {
3132 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3133 						vma->vm_page_prot));
3134 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3135 		if (!pte_none(*page_table))
3136 			goto unlock;
3137 		goto setpte;
3138 	}
3139 
3140 	/* Allocate our own private page. */
3141 	if (unlikely(anon_vma_prepare(vma)))
3142 		goto oom;
3143 	page = alloc_zeroed_user_highpage_movable(vma, address);
3144 	if (!page)
3145 		goto oom;
3146 	__SetPageUptodate(page);
3147 
3148 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3149 		goto oom_free_page;
3150 
3151 	entry = mk_pte(page, vma->vm_page_prot);
3152 	if (vma->vm_flags & VM_WRITE)
3153 		entry = pte_mkwrite(pte_mkdirty(entry));
3154 
3155 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3156 	if (!pte_none(*page_table))
3157 		goto release;
3158 
3159 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3160 	page_add_new_anon_rmap(page, vma, address);
3161 setpte:
3162 	set_pte_at(mm, address, page_table, entry);
3163 
3164 	/* No need to invalidate - it was non-present before */
3165 	update_mmu_cache(vma, address, page_table);
3166 unlock:
3167 	pte_unmap_unlock(page_table, ptl);
3168 	return 0;
3169 release:
3170 	mem_cgroup_uncharge_page(page);
3171 	page_cache_release(page);
3172 	goto unlock;
3173 oom_free_page:
3174 	page_cache_release(page);
3175 oom:
3176 	return VM_FAULT_OOM;
3177 }
3178 
3179 /*
3180  * __do_fault() tries to create a new page mapping. It aggressively
3181  * tries to share with existing pages, but makes a separate copy if
3182  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3183  * the next page fault.
3184  *
3185  * As this is called only for pages that do not currently exist, we
3186  * do not need to flush old virtual caches or the TLB.
3187  *
3188  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3189  * but allow concurrent faults), and pte neither mapped nor locked.
3190  * We return with mmap_sem still held, but pte unmapped and unlocked.
3191  */
3192 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3193 		unsigned long address, pmd_t *pmd,
3194 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3195 {
3196 	pte_t *page_table;
3197 	spinlock_t *ptl;
3198 	struct page *page;
3199 	struct page *cow_page;
3200 	pte_t entry;
3201 	int anon = 0;
3202 	struct page *dirty_page = NULL;
3203 	struct vm_fault vmf;
3204 	int ret;
3205 	int page_mkwrite = 0;
3206 
3207 	/*
3208 	 * If we do COW later, allocate page befor taking lock_page()
3209 	 * on the file cache page. This will reduce lock holding time.
3210 	 */
3211 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3212 
3213 		if (unlikely(anon_vma_prepare(vma)))
3214 			return VM_FAULT_OOM;
3215 
3216 		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3217 		if (!cow_page)
3218 			return VM_FAULT_OOM;
3219 
3220 		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3221 			page_cache_release(cow_page);
3222 			return VM_FAULT_OOM;
3223 		}
3224 	} else
3225 		cow_page = NULL;
3226 
3227 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3228 	vmf.pgoff = pgoff;
3229 	vmf.flags = flags;
3230 	vmf.page = NULL;
3231 
3232 	ret = vma->vm_ops->fault(vma, &vmf);
3233 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3234 			    VM_FAULT_RETRY)))
3235 		goto uncharge_out;
3236 
3237 	if (unlikely(PageHWPoison(vmf.page))) {
3238 		if (ret & VM_FAULT_LOCKED)
3239 			unlock_page(vmf.page);
3240 		ret = VM_FAULT_HWPOISON;
3241 		goto uncharge_out;
3242 	}
3243 
3244 	/*
3245 	 * For consistency in subsequent calls, make the faulted page always
3246 	 * locked.
3247 	 */
3248 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3249 		lock_page(vmf.page);
3250 	else
3251 		VM_BUG_ON(!PageLocked(vmf.page));
3252 
3253 	/*
3254 	 * Should we do an early C-O-W break?
3255 	 */
3256 	page = vmf.page;
3257 	if (flags & FAULT_FLAG_WRITE) {
3258 		if (!(vma->vm_flags & VM_SHARED)) {
3259 			page = cow_page;
3260 			anon = 1;
3261 			copy_user_highpage(page, vmf.page, address, vma);
3262 			__SetPageUptodate(page);
3263 		} else {
3264 			/*
3265 			 * If the page will be shareable, see if the backing
3266 			 * address space wants to know that the page is about
3267 			 * to become writable
3268 			 */
3269 			if (vma->vm_ops->page_mkwrite) {
3270 				int tmp;
3271 
3272 				unlock_page(page);
3273 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3274 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3275 				if (unlikely(tmp &
3276 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3277 					ret = tmp;
3278 					goto unwritable_page;
3279 				}
3280 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3281 					lock_page(page);
3282 					if (!page->mapping) {
3283 						ret = 0; /* retry the fault */
3284 						unlock_page(page);
3285 						goto unwritable_page;
3286 					}
3287 				} else
3288 					VM_BUG_ON(!PageLocked(page));
3289 				page_mkwrite = 1;
3290 			}
3291 		}
3292 
3293 	}
3294 
3295 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3296 
3297 	/*
3298 	 * This silly early PAGE_DIRTY setting removes a race
3299 	 * due to the bad i386 page protection. But it's valid
3300 	 * for other architectures too.
3301 	 *
3302 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3303 	 * an exclusive copy of the page, or this is a shared mapping,
3304 	 * so we can make it writable and dirty to avoid having to
3305 	 * handle that later.
3306 	 */
3307 	/* Only go through if we didn't race with anybody else... */
3308 	if (likely(pte_same(*page_table, orig_pte))) {
3309 		flush_icache_page(vma, page);
3310 		entry = mk_pte(page, vma->vm_page_prot);
3311 		if (flags & FAULT_FLAG_WRITE)
3312 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3313 		if (anon) {
3314 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3315 			page_add_new_anon_rmap(page, vma, address);
3316 		} else {
3317 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3318 			page_add_file_rmap(page);
3319 			if (flags & FAULT_FLAG_WRITE) {
3320 				dirty_page = page;
3321 				get_page(dirty_page);
3322 			}
3323 		}
3324 		set_pte_at(mm, address, page_table, entry);
3325 
3326 		/* no need to invalidate: a not-present page won't be cached */
3327 		update_mmu_cache(vma, address, page_table);
3328 	} else {
3329 		if (cow_page)
3330 			mem_cgroup_uncharge_page(cow_page);
3331 		if (anon)
3332 			page_cache_release(page);
3333 		else
3334 			anon = 1; /* no anon but release faulted_page */
3335 	}
3336 
3337 	pte_unmap_unlock(page_table, ptl);
3338 
3339 	if (dirty_page) {
3340 		struct address_space *mapping = page->mapping;
3341 		int dirtied = 0;
3342 
3343 		if (set_page_dirty(dirty_page))
3344 			dirtied = 1;
3345 		unlock_page(dirty_page);
3346 		put_page(dirty_page);
3347 		if ((dirtied || page_mkwrite) && mapping) {
3348 			/*
3349 			 * Some device drivers do not set page.mapping but still
3350 			 * dirty their pages
3351 			 */
3352 			balance_dirty_pages_ratelimited(mapping);
3353 		}
3354 
3355 		/* file_update_time outside page_lock */
3356 		if (vma->vm_file && !page_mkwrite)
3357 			file_update_time(vma->vm_file);
3358 	} else {
3359 		unlock_page(vmf.page);
3360 		if (anon)
3361 			page_cache_release(vmf.page);
3362 	}
3363 
3364 	return ret;
3365 
3366 unwritable_page:
3367 	page_cache_release(page);
3368 	return ret;
3369 uncharge_out:
3370 	/* fs's fault handler get error */
3371 	if (cow_page) {
3372 		mem_cgroup_uncharge_page(cow_page);
3373 		page_cache_release(cow_page);
3374 	}
3375 	return ret;
3376 }
3377 
3378 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3379 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3380 		unsigned int flags, pte_t orig_pte)
3381 {
3382 	pgoff_t pgoff = (((address & PAGE_MASK)
3383 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3384 
3385 	pte_unmap(page_table);
3386 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3387 }
3388 
3389 /*
3390  * Fault of a previously existing named mapping. Repopulate the pte
3391  * from the encoded file_pte if possible. This enables swappable
3392  * nonlinear vmas.
3393  *
3394  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3395  * but allow concurrent faults), and pte mapped but not yet locked.
3396  * We return with mmap_sem still held, but pte unmapped and unlocked.
3397  */
3398 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3399 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3400 		unsigned int flags, pte_t orig_pte)
3401 {
3402 	pgoff_t pgoff;
3403 
3404 	flags |= FAULT_FLAG_NONLINEAR;
3405 
3406 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3407 		return 0;
3408 
3409 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3410 		/*
3411 		 * Page table corrupted: show pte and kill process.
3412 		 */
3413 		print_bad_pte(vma, address, orig_pte, NULL);
3414 		return VM_FAULT_SIGBUS;
3415 	}
3416 
3417 	pgoff = pte_to_pgoff(orig_pte);
3418 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3419 }
3420 
3421 /*
3422  * These routines also need to handle stuff like marking pages dirty
3423  * and/or accessed for architectures that don't do it in hardware (most
3424  * RISC architectures).  The early dirtying is also good on the i386.
3425  *
3426  * There is also a hook called "update_mmu_cache()" that architectures
3427  * with external mmu caches can use to update those (ie the Sparc or
3428  * PowerPC hashed page tables that act as extended TLBs).
3429  *
3430  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3431  * but allow concurrent faults), and pte mapped but not yet locked.
3432  * We return with mmap_sem still held, but pte unmapped and unlocked.
3433  */
3434 int handle_pte_fault(struct mm_struct *mm,
3435 		     struct vm_area_struct *vma, unsigned long address,
3436 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3437 {
3438 	pte_t entry;
3439 	spinlock_t *ptl;
3440 
3441 	entry = *pte;
3442 	if (!pte_present(entry)) {
3443 		if (pte_none(entry)) {
3444 			if (vma->vm_ops) {
3445 				if (likely(vma->vm_ops->fault))
3446 					return do_linear_fault(mm, vma, address,
3447 						pte, pmd, flags, entry);
3448 			}
3449 			return do_anonymous_page(mm, vma, address,
3450 						 pte, pmd, flags);
3451 		}
3452 		if (pte_file(entry))
3453 			return do_nonlinear_fault(mm, vma, address,
3454 					pte, pmd, flags, entry);
3455 		return do_swap_page(mm, vma, address,
3456 					pte, pmd, flags, entry);
3457 	}
3458 
3459 	ptl = pte_lockptr(mm, pmd);
3460 	spin_lock(ptl);
3461 	if (unlikely(!pte_same(*pte, entry)))
3462 		goto unlock;
3463 	if (flags & FAULT_FLAG_WRITE) {
3464 		if (!pte_write(entry))
3465 			return do_wp_page(mm, vma, address,
3466 					pte, pmd, ptl, entry);
3467 		entry = pte_mkdirty(entry);
3468 	}
3469 	entry = pte_mkyoung(entry);
3470 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3471 		update_mmu_cache(vma, address, pte);
3472 	} else {
3473 		/*
3474 		 * This is needed only for protection faults but the arch code
3475 		 * is not yet telling us if this is a protection fault or not.
3476 		 * This still avoids useless tlb flushes for .text page faults
3477 		 * with threads.
3478 		 */
3479 		if (flags & FAULT_FLAG_WRITE)
3480 			flush_tlb_fix_spurious_fault(vma, address);
3481 	}
3482 unlock:
3483 	pte_unmap_unlock(pte, ptl);
3484 	return 0;
3485 }
3486 
3487 /*
3488  * By the time we get here, we already hold the mm semaphore
3489  */
3490 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3491 		unsigned long address, unsigned int flags)
3492 {
3493 	pgd_t *pgd;
3494 	pud_t *pud;
3495 	pmd_t *pmd;
3496 	pte_t *pte;
3497 
3498 	__set_current_state(TASK_RUNNING);
3499 
3500 	count_vm_event(PGFAULT);
3501 	mem_cgroup_count_vm_event(mm, PGFAULT);
3502 
3503 	/* do counter updates before entering really critical section. */
3504 	check_sync_rss_stat(current);
3505 
3506 	if (unlikely(is_vm_hugetlb_page(vma)))
3507 		return hugetlb_fault(mm, vma, address, flags);
3508 
3509 retry:
3510 	pgd = pgd_offset(mm, address);
3511 	pud = pud_alloc(mm, pgd, address);
3512 	if (!pud)
3513 		return VM_FAULT_OOM;
3514 	pmd = pmd_alloc(mm, pud, address);
3515 	if (!pmd)
3516 		return VM_FAULT_OOM;
3517 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3518 		if (!vma->vm_ops)
3519 			return do_huge_pmd_anonymous_page(mm, vma, address,
3520 							  pmd, flags);
3521 	} else {
3522 		pmd_t orig_pmd = *pmd;
3523 		int ret;
3524 
3525 		barrier();
3526 		if (pmd_trans_huge(orig_pmd)) {
3527 			if (flags & FAULT_FLAG_WRITE &&
3528 			    !pmd_write(orig_pmd) &&
3529 			    !pmd_trans_splitting(orig_pmd)) {
3530 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3531 							  orig_pmd);
3532 				/*
3533 				 * If COW results in an oom, the huge pmd will
3534 				 * have been split, so retry the fault on the
3535 				 * pte for a smaller charge.
3536 				 */
3537 				if (unlikely(ret & VM_FAULT_OOM))
3538 					goto retry;
3539 				return ret;
3540 			}
3541 			return 0;
3542 		}
3543 	}
3544 
3545 	/*
3546 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3547 	 * run pte_offset_map on the pmd, if an huge pmd could
3548 	 * materialize from under us from a different thread.
3549 	 */
3550 	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3551 		return VM_FAULT_OOM;
3552 	/* if an huge pmd materialized from under us just retry later */
3553 	if (unlikely(pmd_trans_huge(*pmd)))
3554 		return 0;
3555 	/*
3556 	 * A regular pmd is established and it can't morph into a huge pmd
3557 	 * from under us anymore at this point because we hold the mmap_sem
3558 	 * read mode and khugepaged takes it in write mode. So now it's
3559 	 * safe to run pte_offset_map().
3560 	 */
3561 	pte = pte_offset_map(pmd, address);
3562 
3563 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3564 }
3565 
3566 #ifndef __PAGETABLE_PUD_FOLDED
3567 /*
3568  * Allocate page upper directory.
3569  * We've already handled the fast-path in-line.
3570  */
3571 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3572 {
3573 	pud_t *new = pud_alloc_one(mm, address);
3574 	if (!new)
3575 		return -ENOMEM;
3576 
3577 	smp_wmb(); /* See comment in __pte_alloc */
3578 
3579 	spin_lock(&mm->page_table_lock);
3580 	if (pgd_present(*pgd))		/* Another has populated it */
3581 		pud_free(mm, new);
3582 	else
3583 		pgd_populate(mm, pgd, new);
3584 	spin_unlock(&mm->page_table_lock);
3585 	return 0;
3586 }
3587 #endif /* __PAGETABLE_PUD_FOLDED */
3588 
3589 #ifndef __PAGETABLE_PMD_FOLDED
3590 /*
3591  * Allocate page middle directory.
3592  * We've already handled the fast-path in-line.
3593  */
3594 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3595 {
3596 	pmd_t *new = pmd_alloc_one(mm, address);
3597 	if (!new)
3598 		return -ENOMEM;
3599 
3600 	smp_wmb(); /* See comment in __pte_alloc */
3601 
3602 	spin_lock(&mm->page_table_lock);
3603 #ifndef __ARCH_HAS_4LEVEL_HACK
3604 	if (pud_present(*pud))		/* Another has populated it */
3605 		pmd_free(mm, new);
3606 	else
3607 		pud_populate(mm, pud, new);
3608 #else
3609 	if (pgd_present(*pud))		/* Another has populated it */
3610 		pmd_free(mm, new);
3611 	else
3612 		pgd_populate(mm, pud, new);
3613 #endif /* __ARCH_HAS_4LEVEL_HACK */
3614 	spin_unlock(&mm->page_table_lock);
3615 	return 0;
3616 }
3617 #endif /* __PAGETABLE_PMD_FOLDED */
3618 
3619 int make_pages_present(unsigned long addr, unsigned long end)
3620 {
3621 	int ret, len, write;
3622 	struct vm_area_struct * vma;
3623 
3624 	vma = find_vma(current->mm, addr);
3625 	if (!vma)
3626 		return -ENOMEM;
3627 	/*
3628 	 * We want to touch writable mappings with a write fault in order
3629 	 * to break COW, except for shared mappings because these don't COW
3630 	 * and we would not want to dirty them for nothing.
3631 	 */
3632 	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3633 	BUG_ON(addr >= end);
3634 	BUG_ON(end > vma->vm_end);
3635 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3636 	ret = get_user_pages(current, current->mm, addr,
3637 			len, write, 0, NULL, NULL);
3638 	if (ret < 0)
3639 		return ret;
3640 	return ret == len ? 0 : -EFAULT;
3641 }
3642 
3643 #if !defined(__HAVE_ARCH_GATE_AREA)
3644 
3645 #if defined(AT_SYSINFO_EHDR)
3646 static struct vm_area_struct gate_vma;
3647 
3648 static int __init gate_vma_init(void)
3649 {
3650 	gate_vma.vm_mm = NULL;
3651 	gate_vma.vm_start = FIXADDR_USER_START;
3652 	gate_vma.vm_end = FIXADDR_USER_END;
3653 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3654 	gate_vma.vm_page_prot = __P101;
3655 
3656 	return 0;
3657 }
3658 __initcall(gate_vma_init);
3659 #endif
3660 
3661 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3662 {
3663 #ifdef AT_SYSINFO_EHDR
3664 	return &gate_vma;
3665 #else
3666 	return NULL;
3667 #endif
3668 }
3669 
3670 int in_gate_area_no_mm(unsigned long addr)
3671 {
3672 #ifdef AT_SYSINFO_EHDR
3673 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3674 		return 1;
3675 #endif
3676 	return 0;
3677 }
3678 
3679 #endif	/* __HAVE_ARCH_GATE_AREA */
3680 
3681 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3682 		pte_t **ptepp, spinlock_t **ptlp)
3683 {
3684 	pgd_t *pgd;
3685 	pud_t *pud;
3686 	pmd_t *pmd;
3687 	pte_t *ptep;
3688 
3689 	pgd = pgd_offset(mm, address);
3690 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3691 		goto out;
3692 
3693 	pud = pud_offset(pgd, address);
3694 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3695 		goto out;
3696 
3697 	pmd = pmd_offset(pud, address);
3698 	VM_BUG_ON(pmd_trans_huge(*pmd));
3699 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3700 		goto out;
3701 
3702 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3703 	if (pmd_huge(*pmd))
3704 		goto out;
3705 
3706 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3707 	if (!ptep)
3708 		goto out;
3709 	if (!pte_present(*ptep))
3710 		goto unlock;
3711 	*ptepp = ptep;
3712 	return 0;
3713 unlock:
3714 	pte_unmap_unlock(ptep, *ptlp);
3715 out:
3716 	return -EINVAL;
3717 }
3718 
3719 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3720 			     pte_t **ptepp, spinlock_t **ptlp)
3721 {
3722 	int res;
3723 
3724 	/* (void) is needed to make gcc happy */
3725 	(void) __cond_lock(*ptlp,
3726 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3727 	return res;
3728 }
3729 
3730 /**
3731  * follow_pfn - look up PFN at a user virtual address
3732  * @vma: memory mapping
3733  * @address: user virtual address
3734  * @pfn: location to store found PFN
3735  *
3736  * Only IO mappings and raw PFN mappings are allowed.
3737  *
3738  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3739  */
3740 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3741 	unsigned long *pfn)
3742 {
3743 	int ret = -EINVAL;
3744 	spinlock_t *ptl;
3745 	pte_t *ptep;
3746 
3747 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3748 		return ret;
3749 
3750 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3751 	if (ret)
3752 		return ret;
3753 	*pfn = pte_pfn(*ptep);
3754 	pte_unmap_unlock(ptep, ptl);
3755 	return 0;
3756 }
3757 EXPORT_SYMBOL(follow_pfn);
3758 
3759 #ifdef CONFIG_HAVE_IOREMAP_PROT
3760 int follow_phys(struct vm_area_struct *vma,
3761 		unsigned long address, unsigned int flags,
3762 		unsigned long *prot, resource_size_t *phys)
3763 {
3764 	int ret = -EINVAL;
3765 	pte_t *ptep, pte;
3766 	spinlock_t *ptl;
3767 
3768 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3769 		goto out;
3770 
3771 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3772 		goto out;
3773 	pte = *ptep;
3774 
3775 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3776 		goto unlock;
3777 
3778 	*prot = pgprot_val(pte_pgprot(pte));
3779 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3780 
3781 	ret = 0;
3782 unlock:
3783 	pte_unmap_unlock(ptep, ptl);
3784 out:
3785 	return ret;
3786 }
3787 
3788 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3789 			void *buf, int len, int write)
3790 {
3791 	resource_size_t phys_addr;
3792 	unsigned long prot = 0;
3793 	void __iomem *maddr;
3794 	int offset = addr & (PAGE_SIZE-1);
3795 
3796 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3797 		return -EINVAL;
3798 
3799 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3800 	if (write)
3801 		memcpy_toio(maddr + offset, buf, len);
3802 	else
3803 		memcpy_fromio(buf, maddr + offset, len);
3804 	iounmap(maddr);
3805 
3806 	return len;
3807 }
3808 #endif
3809 
3810 /*
3811  * Access another process' address space as given in mm.  If non-NULL, use the
3812  * given task for page fault accounting.
3813  */
3814 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3815 		unsigned long addr, void *buf, int len, int write)
3816 {
3817 	struct vm_area_struct *vma;
3818 	void *old_buf = buf;
3819 
3820 	down_read(&mm->mmap_sem);
3821 	/* ignore errors, just check how much was successfully transferred */
3822 	while (len) {
3823 		int bytes, ret, offset;
3824 		void *maddr;
3825 		struct page *page = NULL;
3826 
3827 		ret = get_user_pages(tsk, mm, addr, 1,
3828 				write, 1, &page, &vma);
3829 		if (ret <= 0) {
3830 			/*
3831 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3832 			 * we can access using slightly different code.
3833 			 */
3834 #ifdef CONFIG_HAVE_IOREMAP_PROT
3835 			vma = find_vma(mm, addr);
3836 			if (!vma || vma->vm_start > addr)
3837 				break;
3838 			if (vma->vm_ops && vma->vm_ops->access)
3839 				ret = vma->vm_ops->access(vma, addr, buf,
3840 							  len, write);
3841 			if (ret <= 0)
3842 #endif
3843 				break;
3844 			bytes = ret;
3845 		} else {
3846 			bytes = len;
3847 			offset = addr & (PAGE_SIZE-1);
3848 			if (bytes > PAGE_SIZE-offset)
3849 				bytes = PAGE_SIZE-offset;
3850 
3851 			maddr = kmap(page);
3852 			if (write) {
3853 				copy_to_user_page(vma, page, addr,
3854 						  maddr + offset, buf, bytes);
3855 				set_page_dirty_lock(page);
3856 			} else {
3857 				copy_from_user_page(vma, page, addr,
3858 						    buf, maddr + offset, bytes);
3859 			}
3860 			kunmap(page);
3861 			page_cache_release(page);
3862 		}
3863 		len -= bytes;
3864 		buf += bytes;
3865 		addr += bytes;
3866 	}
3867 	up_read(&mm->mmap_sem);
3868 
3869 	return buf - old_buf;
3870 }
3871 
3872 /**
3873  * access_remote_vm - access another process' address space
3874  * @mm:		the mm_struct of the target address space
3875  * @addr:	start address to access
3876  * @buf:	source or destination buffer
3877  * @len:	number of bytes to transfer
3878  * @write:	whether the access is a write
3879  *
3880  * The caller must hold a reference on @mm.
3881  */
3882 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3883 		void *buf, int len, int write)
3884 {
3885 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3886 }
3887 
3888 /*
3889  * Access another process' address space.
3890  * Source/target buffer must be kernel space,
3891  * Do not walk the page table directly, use get_user_pages
3892  */
3893 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3894 		void *buf, int len, int write)
3895 {
3896 	struct mm_struct *mm;
3897 	int ret;
3898 
3899 	mm = get_task_mm(tsk);
3900 	if (!mm)
3901 		return 0;
3902 
3903 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3904 	mmput(mm);
3905 
3906 	return ret;
3907 }
3908 
3909 /*
3910  * Print the name of a VMA.
3911  */
3912 void print_vma_addr(char *prefix, unsigned long ip)
3913 {
3914 	struct mm_struct *mm = current->mm;
3915 	struct vm_area_struct *vma;
3916 
3917 	/*
3918 	 * Do not print if we are in atomic
3919 	 * contexts (in exception stacks, etc.):
3920 	 */
3921 	if (preempt_count())
3922 		return;
3923 
3924 	down_read(&mm->mmap_sem);
3925 	vma = find_vma(mm, ip);
3926 	if (vma && vma->vm_file) {
3927 		struct file *f = vma->vm_file;
3928 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3929 		if (buf) {
3930 			char *p, *s;
3931 
3932 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3933 			if (IS_ERR(p))
3934 				p = "?";
3935 			s = strrchr(p, '/');
3936 			if (s)
3937 				p = s+1;
3938 			printk("%s%s[%lx+%lx]", prefix, p,
3939 					vma->vm_start,
3940 					vma->vm_end - vma->vm_start);
3941 			free_page((unsigned long)buf);
3942 		}
3943 	}
3944 	up_read(&mm->mmap_sem);
3945 }
3946 
3947 #ifdef CONFIG_PROVE_LOCKING
3948 void might_fault(void)
3949 {
3950 	/*
3951 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3952 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3953 	 * get paged out, therefore we'll never actually fault, and the
3954 	 * below annotations will generate false positives.
3955 	 */
3956 	if (segment_eq(get_fs(), KERNEL_DS))
3957 		return;
3958 
3959 	might_sleep();
3960 	/*
3961 	 * it would be nicer only to annotate paths which are not under
3962 	 * pagefault_disable, however that requires a larger audit and
3963 	 * providing helpers like get_user_atomic.
3964 	 */
3965 	if (!in_atomic() && current->mm)
3966 		might_lock_read(&current->mm->mmap_sem);
3967 }
3968 EXPORT_SYMBOL(might_fault);
3969 #endif
3970 
3971 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3972 static void clear_gigantic_page(struct page *page,
3973 				unsigned long addr,
3974 				unsigned int pages_per_huge_page)
3975 {
3976 	int i;
3977 	struct page *p = page;
3978 
3979 	might_sleep();
3980 	for (i = 0; i < pages_per_huge_page;
3981 	     i++, p = mem_map_next(p, page, i)) {
3982 		cond_resched();
3983 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3984 	}
3985 }
3986 void clear_huge_page(struct page *page,
3987 		     unsigned long addr, unsigned int pages_per_huge_page)
3988 {
3989 	int i;
3990 
3991 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3992 		clear_gigantic_page(page, addr, pages_per_huge_page);
3993 		return;
3994 	}
3995 
3996 	might_sleep();
3997 	for (i = 0; i < pages_per_huge_page; i++) {
3998 		cond_resched();
3999 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4000 	}
4001 }
4002 
4003 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4004 				    unsigned long addr,
4005 				    struct vm_area_struct *vma,
4006 				    unsigned int pages_per_huge_page)
4007 {
4008 	int i;
4009 	struct page *dst_base = dst;
4010 	struct page *src_base = src;
4011 
4012 	for (i = 0; i < pages_per_huge_page; ) {
4013 		cond_resched();
4014 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4015 
4016 		i++;
4017 		dst = mem_map_next(dst, dst_base, i);
4018 		src = mem_map_next(src, src_base, i);
4019 	}
4020 }
4021 
4022 void copy_user_huge_page(struct page *dst, struct page *src,
4023 			 unsigned long addr, struct vm_area_struct *vma,
4024 			 unsigned int pages_per_huge_page)
4025 {
4026 	int i;
4027 
4028 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4029 		copy_user_gigantic_page(dst, src, addr, vma,
4030 					pages_per_huge_page);
4031 		return;
4032 	}
4033 
4034 	might_sleep();
4035 	for (i = 0; i < pages_per_huge_page; i++) {
4036 		cond_resched();
4037 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4038 	}
4039 }
4040 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4041