xref: /openbmc/linux/mm/memory.c (revision 95b384f9)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 #include <linux/dax.h>
67 
68 #include <asm/io.h>
69 #include <asm/mmu_context.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/tlb.h>
73 #include <asm/tlbflush.h>
74 #include <asm/pgtable.h>
75 
76 #include "internal.h"
77 
78 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
80 #endif
81 
82 #ifndef CONFIG_NEED_MULTIPLE_NODES
83 /* use the per-pgdat data instead for discontigmem - mbligh */
84 unsigned long max_mapnr;
85 struct page *mem_map;
86 
87 EXPORT_SYMBOL(max_mapnr);
88 EXPORT_SYMBOL(mem_map);
89 #endif
90 
91 /*
92  * A number of key systems in x86 including ioremap() rely on the assumption
93  * that high_memory defines the upper bound on direct map memory, then end
94  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
95  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96  * and ZONE_HIGHMEM.
97  */
98 void * high_memory;
99 
100 EXPORT_SYMBOL(high_memory);
101 
102 /*
103  * Randomize the address space (stacks, mmaps, brk, etc.).
104  *
105  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106  *   as ancient (libc5 based) binaries can segfault. )
107  */
108 int randomize_va_space __read_mostly =
109 #ifdef CONFIG_COMPAT_BRK
110 					1;
111 #else
112 					2;
113 #endif
114 
115 static int __init disable_randmaps(char *s)
116 {
117 	randomize_va_space = 0;
118 	return 1;
119 }
120 __setup("norandmaps", disable_randmaps);
121 
122 unsigned long zero_pfn __read_mostly;
123 unsigned long highest_memmap_pfn __read_mostly;
124 
125 EXPORT_SYMBOL(zero_pfn);
126 
127 /*
128  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
129  */
130 static int __init init_zero_pfn(void)
131 {
132 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
133 	return 0;
134 }
135 core_initcall(init_zero_pfn);
136 
137 
138 #if defined(SPLIT_RSS_COUNTING)
139 
140 void sync_mm_rss(struct mm_struct *mm)
141 {
142 	int i;
143 
144 	for (i = 0; i < NR_MM_COUNTERS; i++) {
145 		if (current->rss_stat.count[i]) {
146 			add_mm_counter(mm, i, current->rss_stat.count[i]);
147 			current->rss_stat.count[i] = 0;
148 		}
149 	}
150 	current->rss_stat.events = 0;
151 }
152 
153 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
154 {
155 	struct task_struct *task = current;
156 
157 	if (likely(task->mm == mm))
158 		task->rss_stat.count[member] += val;
159 	else
160 		add_mm_counter(mm, member, val);
161 }
162 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
164 
165 /* sync counter once per 64 page faults */
166 #define TASK_RSS_EVENTS_THRESH	(64)
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 	if (unlikely(task != current))
170 		return;
171 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
172 		sync_mm_rss(task->mm);
173 }
174 #else /* SPLIT_RSS_COUNTING */
175 
176 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
178 
179 static void check_sync_rss_stat(struct task_struct *task)
180 {
181 }
182 
183 #endif /* SPLIT_RSS_COUNTING */
184 
185 #ifdef HAVE_GENERIC_MMU_GATHER
186 
187 static bool tlb_next_batch(struct mmu_gather *tlb)
188 {
189 	struct mmu_gather_batch *batch;
190 
191 	batch = tlb->active;
192 	if (batch->next) {
193 		tlb->active = batch->next;
194 		return true;
195 	}
196 
197 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
198 		return false;
199 
200 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
201 	if (!batch)
202 		return false;
203 
204 	tlb->batch_count++;
205 	batch->next = NULL;
206 	batch->nr   = 0;
207 	batch->max  = MAX_GATHER_BATCH;
208 
209 	tlb->active->next = batch;
210 	tlb->active = batch;
211 
212 	return true;
213 }
214 
215 /* tlb_gather_mmu
216  *	Called to initialize an (on-stack) mmu_gather structure for page-table
217  *	tear-down from @mm. The @fullmm argument is used when @mm is without
218  *	users and we're going to destroy the full address space (exit/execve).
219  */
220 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
221 {
222 	tlb->mm = mm;
223 
224 	/* Is it from 0 to ~0? */
225 	tlb->fullmm     = !(start | (end+1));
226 	tlb->need_flush_all = 0;
227 	tlb->local.next = NULL;
228 	tlb->local.nr   = 0;
229 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230 	tlb->active     = &tlb->local;
231 	tlb->batch_count = 0;
232 
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 	tlb->batch = NULL;
235 #endif
236 
237 	__tlb_reset_range(tlb);
238 }
239 
240 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
241 {
242 	if (!tlb->end)
243 		return;
244 
245 	tlb_flush(tlb);
246 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
247 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
248 	tlb_table_flush(tlb);
249 #endif
250 	__tlb_reset_range(tlb);
251 }
252 
253 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
254 {
255 	struct mmu_gather_batch *batch;
256 
257 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
258 		free_pages_and_swap_cache(batch->pages, batch->nr);
259 		batch->nr = 0;
260 	}
261 	tlb->active = &tlb->local;
262 }
263 
264 void tlb_flush_mmu(struct mmu_gather *tlb)
265 {
266 	tlb_flush_mmu_tlbonly(tlb);
267 	tlb_flush_mmu_free(tlb);
268 }
269 
270 /* tlb_finish_mmu
271  *	Called at the end of the shootdown operation to free up any resources
272  *	that were required.
273  */
274 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
275 {
276 	struct mmu_gather_batch *batch, *next;
277 
278 	tlb_flush_mmu(tlb);
279 
280 	/* keep the page table cache within bounds */
281 	check_pgt_cache();
282 
283 	for (batch = tlb->local.next; batch; batch = next) {
284 		next = batch->next;
285 		free_pages((unsigned long)batch, 0);
286 	}
287 	tlb->local.next = NULL;
288 }
289 
290 /* __tlb_remove_page
291  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
292  *	handling the additional races in SMP caused by other CPUs caching valid
293  *	mappings in their TLBs. Returns the number of free page slots left.
294  *	When out of page slots we must call tlb_flush_mmu().
295  */
296 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
297 {
298 	struct mmu_gather_batch *batch;
299 
300 	VM_BUG_ON(!tlb->end);
301 
302 	batch = tlb->active;
303 	batch->pages[batch->nr++] = page;
304 	if (batch->nr == batch->max) {
305 		if (!tlb_next_batch(tlb))
306 			return 0;
307 		batch = tlb->active;
308 	}
309 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
310 
311 	return batch->max - batch->nr;
312 }
313 
314 #endif /* HAVE_GENERIC_MMU_GATHER */
315 
316 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
317 
318 /*
319  * See the comment near struct mmu_table_batch.
320  */
321 
322 static void tlb_remove_table_smp_sync(void *arg)
323 {
324 	/* Simply deliver the interrupt */
325 }
326 
327 static void tlb_remove_table_one(void *table)
328 {
329 	/*
330 	 * This isn't an RCU grace period and hence the page-tables cannot be
331 	 * assumed to be actually RCU-freed.
332 	 *
333 	 * It is however sufficient for software page-table walkers that rely on
334 	 * IRQ disabling. See the comment near struct mmu_table_batch.
335 	 */
336 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
337 	__tlb_remove_table(table);
338 }
339 
340 static void tlb_remove_table_rcu(struct rcu_head *head)
341 {
342 	struct mmu_table_batch *batch;
343 	int i;
344 
345 	batch = container_of(head, struct mmu_table_batch, rcu);
346 
347 	for (i = 0; i < batch->nr; i++)
348 		__tlb_remove_table(batch->tables[i]);
349 
350 	free_page((unsigned long)batch);
351 }
352 
353 void tlb_table_flush(struct mmu_gather *tlb)
354 {
355 	struct mmu_table_batch **batch = &tlb->batch;
356 
357 	if (*batch) {
358 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
359 		*batch = NULL;
360 	}
361 }
362 
363 void tlb_remove_table(struct mmu_gather *tlb, void *table)
364 {
365 	struct mmu_table_batch **batch = &tlb->batch;
366 
367 	/*
368 	 * When there's less then two users of this mm there cannot be a
369 	 * concurrent page-table walk.
370 	 */
371 	if (atomic_read(&tlb->mm->mm_users) < 2) {
372 		__tlb_remove_table(table);
373 		return;
374 	}
375 
376 	if (*batch == NULL) {
377 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
378 		if (*batch == NULL) {
379 			tlb_remove_table_one(table);
380 			return;
381 		}
382 		(*batch)->nr = 0;
383 	}
384 	(*batch)->tables[(*batch)->nr++] = table;
385 	if ((*batch)->nr == MAX_TABLE_BATCH)
386 		tlb_table_flush(tlb);
387 }
388 
389 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
390 
391 /*
392  * Note: this doesn't free the actual pages themselves. That
393  * has been handled earlier when unmapping all the memory regions.
394  */
395 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
396 			   unsigned long addr)
397 {
398 	pgtable_t token = pmd_pgtable(*pmd);
399 	pmd_clear(pmd);
400 	pte_free_tlb(tlb, token, addr);
401 	atomic_long_dec(&tlb->mm->nr_ptes);
402 }
403 
404 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
405 				unsigned long addr, unsigned long end,
406 				unsigned long floor, unsigned long ceiling)
407 {
408 	pmd_t *pmd;
409 	unsigned long next;
410 	unsigned long start;
411 
412 	start = addr;
413 	pmd = pmd_offset(pud, addr);
414 	do {
415 		next = pmd_addr_end(addr, end);
416 		if (pmd_none_or_clear_bad(pmd))
417 			continue;
418 		free_pte_range(tlb, pmd, addr);
419 	} while (pmd++, addr = next, addr != end);
420 
421 	start &= PUD_MASK;
422 	if (start < floor)
423 		return;
424 	if (ceiling) {
425 		ceiling &= PUD_MASK;
426 		if (!ceiling)
427 			return;
428 	}
429 	if (end - 1 > ceiling - 1)
430 		return;
431 
432 	pmd = pmd_offset(pud, start);
433 	pud_clear(pud);
434 	pmd_free_tlb(tlb, pmd, start);
435 	mm_dec_nr_pmds(tlb->mm);
436 }
437 
438 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
439 				unsigned long addr, unsigned long end,
440 				unsigned long floor, unsigned long ceiling)
441 {
442 	pud_t *pud;
443 	unsigned long next;
444 	unsigned long start;
445 
446 	start = addr;
447 	pud = pud_offset(pgd, addr);
448 	do {
449 		next = pud_addr_end(addr, end);
450 		if (pud_none_or_clear_bad(pud))
451 			continue;
452 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
453 	} while (pud++, addr = next, addr != end);
454 
455 	start &= PGDIR_MASK;
456 	if (start < floor)
457 		return;
458 	if (ceiling) {
459 		ceiling &= PGDIR_MASK;
460 		if (!ceiling)
461 			return;
462 	}
463 	if (end - 1 > ceiling - 1)
464 		return;
465 
466 	pud = pud_offset(pgd, start);
467 	pgd_clear(pgd);
468 	pud_free_tlb(tlb, pud, start);
469 }
470 
471 /*
472  * This function frees user-level page tables of a process.
473  */
474 void free_pgd_range(struct mmu_gather *tlb,
475 			unsigned long addr, unsigned long end,
476 			unsigned long floor, unsigned long ceiling)
477 {
478 	pgd_t *pgd;
479 	unsigned long next;
480 
481 	/*
482 	 * The next few lines have given us lots of grief...
483 	 *
484 	 * Why are we testing PMD* at this top level?  Because often
485 	 * there will be no work to do at all, and we'd prefer not to
486 	 * go all the way down to the bottom just to discover that.
487 	 *
488 	 * Why all these "- 1"s?  Because 0 represents both the bottom
489 	 * of the address space and the top of it (using -1 for the
490 	 * top wouldn't help much: the masks would do the wrong thing).
491 	 * The rule is that addr 0 and floor 0 refer to the bottom of
492 	 * the address space, but end 0 and ceiling 0 refer to the top
493 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
494 	 * that end 0 case should be mythical).
495 	 *
496 	 * Wherever addr is brought up or ceiling brought down, we must
497 	 * be careful to reject "the opposite 0" before it confuses the
498 	 * subsequent tests.  But what about where end is brought down
499 	 * by PMD_SIZE below? no, end can't go down to 0 there.
500 	 *
501 	 * Whereas we round start (addr) and ceiling down, by different
502 	 * masks at different levels, in order to test whether a table
503 	 * now has no other vmas using it, so can be freed, we don't
504 	 * bother to round floor or end up - the tests don't need that.
505 	 */
506 
507 	addr &= PMD_MASK;
508 	if (addr < floor) {
509 		addr += PMD_SIZE;
510 		if (!addr)
511 			return;
512 	}
513 	if (ceiling) {
514 		ceiling &= PMD_MASK;
515 		if (!ceiling)
516 			return;
517 	}
518 	if (end - 1 > ceiling - 1)
519 		end -= PMD_SIZE;
520 	if (addr > end - 1)
521 		return;
522 
523 	pgd = pgd_offset(tlb->mm, addr);
524 	do {
525 		next = pgd_addr_end(addr, end);
526 		if (pgd_none_or_clear_bad(pgd))
527 			continue;
528 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
529 	} while (pgd++, addr = next, addr != end);
530 }
531 
532 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
533 		unsigned long floor, unsigned long ceiling)
534 {
535 	while (vma) {
536 		struct vm_area_struct *next = vma->vm_next;
537 		unsigned long addr = vma->vm_start;
538 
539 		/*
540 		 * Hide vma from rmap and truncate_pagecache before freeing
541 		 * pgtables
542 		 */
543 		unlink_anon_vmas(vma);
544 		unlink_file_vma(vma);
545 
546 		if (is_vm_hugetlb_page(vma)) {
547 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
548 				floor, next? next->vm_start: ceiling);
549 		} else {
550 			/*
551 			 * Optimization: gather nearby vmas into one call down
552 			 */
553 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
554 			       && !is_vm_hugetlb_page(next)) {
555 				vma = next;
556 				next = vma->vm_next;
557 				unlink_anon_vmas(vma);
558 				unlink_file_vma(vma);
559 			}
560 			free_pgd_range(tlb, addr, vma->vm_end,
561 				floor, next? next->vm_start: ceiling);
562 		}
563 		vma = next;
564 	}
565 }
566 
567 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
568 {
569 	spinlock_t *ptl;
570 	pgtable_t new = pte_alloc_one(mm, address);
571 	if (!new)
572 		return -ENOMEM;
573 
574 	/*
575 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
576 	 * visible before the pte is made visible to other CPUs by being
577 	 * put into page tables.
578 	 *
579 	 * The other side of the story is the pointer chasing in the page
580 	 * table walking code (when walking the page table without locking;
581 	 * ie. most of the time). Fortunately, these data accesses consist
582 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
583 	 * being the notable exception) will already guarantee loads are
584 	 * seen in-order. See the alpha page table accessors for the
585 	 * smp_read_barrier_depends() barriers in page table walking code.
586 	 */
587 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
588 
589 	ptl = pmd_lock(mm, pmd);
590 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
591 		atomic_long_inc(&mm->nr_ptes);
592 		pmd_populate(mm, pmd, new);
593 		new = NULL;
594 	}
595 	spin_unlock(ptl);
596 	if (new)
597 		pte_free(mm, new);
598 	return 0;
599 }
600 
601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
602 {
603 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604 	if (!new)
605 		return -ENOMEM;
606 
607 	smp_wmb(); /* See comment in __pte_alloc */
608 
609 	spin_lock(&init_mm.page_table_lock);
610 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
611 		pmd_populate_kernel(&init_mm, pmd, new);
612 		new = NULL;
613 	}
614 	spin_unlock(&init_mm.page_table_lock);
615 	if (new)
616 		pte_free_kernel(&init_mm, new);
617 	return 0;
618 }
619 
620 static inline void init_rss_vec(int *rss)
621 {
622 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
623 }
624 
625 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
626 {
627 	int i;
628 
629 	if (current->mm == mm)
630 		sync_mm_rss(mm);
631 	for (i = 0; i < NR_MM_COUNTERS; i++)
632 		if (rss[i])
633 			add_mm_counter(mm, i, rss[i]);
634 }
635 
636 /*
637  * This function is called to print an error when a bad pte
638  * is found. For example, we might have a PFN-mapped pte in
639  * a region that doesn't allow it.
640  *
641  * The calling function must still handle the error.
642  */
643 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
644 			  pte_t pte, struct page *page)
645 {
646 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
647 	pud_t *pud = pud_offset(pgd, addr);
648 	pmd_t *pmd = pmd_offset(pud, addr);
649 	struct address_space *mapping;
650 	pgoff_t index;
651 	static unsigned long resume;
652 	static unsigned long nr_shown;
653 	static unsigned long nr_unshown;
654 
655 	/*
656 	 * Allow a burst of 60 reports, then keep quiet for that minute;
657 	 * or allow a steady drip of one report per second.
658 	 */
659 	if (nr_shown == 60) {
660 		if (time_before(jiffies, resume)) {
661 			nr_unshown++;
662 			return;
663 		}
664 		if (nr_unshown) {
665 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
666 				 nr_unshown);
667 			nr_unshown = 0;
668 		}
669 		nr_shown = 0;
670 	}
671 	if (nr_shown++ == 0)
672 		resume = jiffies + 60 * HZ;
673 
674 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
675 	index = linear_page_index(vma, addr);
676 
677 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
678 		 current->comm,
679 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
680 	if (page)
681 		dump_page(page, "bad pte");
682 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
683 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
684 	/*
685 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
686 	 */
687 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
688 		 vma->vm_file,
689 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
690 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
691 		 mapping ? mapping->a_ops->readpage : NULL);
692 	dump_stack();
693 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
694 }
695 
696 /*
697  * vm_normal_page -- This function gets the "struct page" associated with a pte.
698  *
699  * "Special" mappings do not wish to be associated with a "struct page" (either
700  * it doesn't exist, or it exists but they don't want to touch it). In this
701  * case, NULL is returned here. "Normal" mappings do have a struct page.
702  *
703  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704  * pte bit, in which case this function is trivial. Secondly, an architecture
705  * may not have a spare pte bit, which requires a more complicated scheme,
706  * described below.
707  *
708  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709  * special mapping (even if there are underlying and valid "struct pages").
710  * COWed pages of a VM_PFNMAP are always normal.
711  *
712  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
714  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715  * mapping will always honor the rule
716  *
717  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
718  *
719  * And for normal mappings this is false.
720  *
721  * This restricts such mappings to be a linear translation from virtual address
722  * to pfn. To get around this restriction, we allow arbitrary mappings so long
723  * as the vma is not a COW mapping; in that case, we know that all ptes are
724  * special (because none can have been COWed).
725  *
726  *
727  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
728  *
729  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730  * page" backing, however the difference is that _all_ pages with a struct
731  * page (that is, those where pfn_valid is true) are refcounted and considered
732  * normal pages by the VM. The disadvantage is that pages are refcounted
733  * (which can be slower and simply not an option for some PFNMAP users). The
734  * advantage is that we don't have to follow the strict linearity rule of
735  * PFNMAP mappings in order to support COWable mappings.
736  *
737  */
738 #ifdef __HAVE_ARCH_PTE_SPECIAL
739 # define HAVE_PTE_SPECIAL 1
740 #else
741 # define HAVE_PTE_SPECIAL 0
742 #endif
743 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
744 				pte_t pte)
745 {
746 	unsigned long pfn = pte_pfn(pte);
747 
748 	if (HAVE_PTE_SPECIAL) {
749 		if (likely(!pte_special(pte)))
750 			goto check_pfn;
751 		if (vma->vm_ops && vma->vm_ops->find_special_page)
752 			return vma->vm_ops->find_special_page(vma, addr);
753 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
754 			return NULL;
755 		if (!is_zero_pfn(pfn))
756 			print_bad_pte(vma, addr, pte, NULL);
757 		return NULL;
758 	}
759 
760 	/* !HAVE_PTE_SPECIAL case follows: */
761 
762 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
763 		if (vma->vm_flags & VM_MIXEDMAP) {
764 			if (!pfn_valid(pfn))
765 				return NULL;
766 			goto out;
767 		} else {
768 			unsigned long off;
769 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
770 			if (pfn == vma->vm_pgoff + off)
771 				return NULL;
772 			if (!is_cow_mapping(vma->vm_flags))
773 				return NULL;
774 		}
775 	}
776 
777 	if (is_zero_pfn(pfn))
778 		return NULL;
779 check_pfn:
780 	if (unlikely(pfn > highest_memmap_pfn)) {
781 		print_bad_pte(vma, addr, pte, NULL);
782 		return NULL;
783 	}
784 
785 	/*
786 	 * NOTE! We still have PageReserved() pages in the page tables.
787 	 * eg. VDSO mappings can cause them to exist.
788 	 */
789 out:
790 	return pfn_to_page(pfn);
791 }
792 
793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
794 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
795 				pmd_t pmd)
796 {
797 	unsigned long pfn = pmd_pfn(pmd);
798 
799 	/*
800 	 * There is no pmd_special() but there may be special pmds, e.g.
801 	 * in a direct-access (dax) mapping, so let's just replicate the
802 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
803 	 */
804 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
805 		if (vma->vm_flags & VM_MIXEDMAP) {
806 			if (!pfn_valid(pfn))
807 				return NULL;
808 			goto out;
809 		} else {
810 			unsigned long off;
811 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
812 			if (pfn == vma->vm_pgoff + off)
813 				return NULL;
814 			if (!is_cow_mapping(vma->vm_flags))
815 				return NULL;
816 		}
817 	}
818 
819 	if (is_zero_pfn(pfn))
820 		return NULL;
821 	if (unlikely(pfn > highest_memmap_pfn))
822 		return NULL;
823 
824 	/*
825 	 * NOTE! We still have PageReserved() pages in the page tables.
826 	 * eg. VDSO mappings can cause them to exist.
827 	 */
828 out:
829 	return pfn_to_page(pfn);
830 }
831 #endif
832 
833 /*
834  * copy one vm_area from one task to the other. Assumes the page tables
835  * already present in the new task to be cleared in the whole range
836  * covered by this vma.
837  */
838 
839 static inline unsigned long
840 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
841 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
842 		unsigned long addr, int *rss)
843 {
844 	unsigned long vm_flags = vma->vm_flags;
845 	pte_t pte = *src_pte;
846 	struct page *page;
847 
848 	/* pte contains position in swap or file, so copy. */
849 	if (unlikely(!pte_present(pte))) {
850 		swp_entry_t entry = pte_to_swp_entry(pte);
851 
852 		if (likely(!non_swap_entry(entry))) {
853 			if (swap_duplicate(entry) < 0)
854 				return entry.val;
855 
856 			/* make sure dst_mm is on swapoff's mmlist. */
857 			if (unlikely(list_empty(&dst_mm->mmlist))) {
858 				spin_lock(&mmlist_lock);
859 				if (list_empty(&dst_mm->mmlist))
860 					list_add(&dst_mm->mmlist,
861 							&src_mm->mmlist);
862 				spin_unlock(&mmlist_lock);
863 			}
864 			rss[MM_SWAPENTS]++;
865 		} else if (is_migration_entry(entry)) {
866 			page = migration_entry_to_page(entry);
867 
868 			rss[mm_counter(page)]++;
869 
870 			if (is_write_migration_entry(entry) &&
871 					is_cow_mapping(vm_flags)) {
872 				/*
873 				 * COW mappings require pages in both
874 				 * parent and child to be set to read.
875 				 */
876 				make_migration_entry_read(&entry);
877 				pte = swp_entry_to_pte(entry);
878 				if (pte_swp_soft_dirty(*src_pte))
879 					pte = pte_swp_mksoft_dirty(pte);
880 				set_pte_at(src_mm, addr, src_pte, pte);
881 			}
882 		}
883 		goto out_set_pte;
884 	}
885 
886 	/*
887 	 * If it's a COW mapping, write protect it both
888 	 * in the parent and the child
889 	 */
890 	if (is_cow_mapping(vm_flags)) {
891 		ptep_set_wrprotect(src_mm, addr, src_pte);
892 		pte = pte_wrprotect(pte);
893 	}
894 
895 	/*
896 	 * If it's a shared mapping, mark it clean in
897 	 * the child
898 	 */
899 	if (vm_flags & VM_SHARED)
900 		pte = pte_mkclean(pte);
901 	pte = pte_mkold(pte);
902 
903 	page = vm_normal_page(vma, addr, pte);
904 	if (page) {
905 		get_page(page);
906 		page_dup_rmap(page, false);
907 		rss[mm_counter(page)]++;
908 	}
909 
910 out_set_pte:
911 	set_pte_at(dst_mm, addr, dst_pte, pte);
912 	return 0;
913 }
914 
915 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
917 		   unsigned long addr, unsigned long end)
918 {
919 	pte_t *orig_src_pte, *orig_dst_pte;
920 	pte_t *src_pte, *dst_pte;
921 	spinlock_t *src_ptl, *dst_ptl;
922 	int progress = 0;
923 	int rss[NR_MM_COUNTERS];
924 	swp_entry_t entry = (swp_entry_t){0};
925 
926 again:
927 	init_rss_vec(rss);
928 
929 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
930 	if (!dst_pte)
931 		return -ENOMEM;
932 	src_pte = pte_offset_map(src_pmd, addr);
933 	src_ptl = pte_lockptr(src_mm, src_pmd);
934 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
935 	orig_src_pte = src_pte;
936 	orig_dst_pte = dst_pte;
937 	arch_enter_lazy_mmu_mode();
938 
939 	do {
940 		/*
941 		 * We are holding two locks at this point - either of them
942 		 * could generate latencies in another task on another CPU.
943 		 */
944 		if (progress >= 32) {
945 			progress = 0;
946 			if (need_resched() ||
947 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
948 				break;
949 		}
950 		if (pte_none(*src_pte)) {
951 			progress++;
952 			continue;
953 		}
954 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
955 							vma, addr, rss);
956 		if (entry.val)
957 			break;
958 		progress += 8;
959 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
960 
961 	arch_leave_lazy_mmu_mode();
962 	spin_unlock(src_ptl);
963 	pte_unmap(orig_src_pte);
964 	add_mm_rss_vec(dst_mm, rss);
965 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
966 	cond_resched();
967 
968 	if (entry.val) {
969 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
970 			return -ENOMEM;
971 		progress = 0;
972 	}
973 	if (addr != end)
974 		goto again;
975 	return 0;
976 }
977 
978 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
980 		unsigned long addr, unsigned long end)
981 {
982 	pmd_t *src_pmd, *dst_pmd;
983 	unsigned long next;
984 
985 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
986 	if (!dst_pmd)
987 		return -ENOMEM;
988 	src_pmd = pmd_offset(src_pud, addr);
989 	do {
990 		next = pmd_addr_end(addr, end);
991 		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
992 			int err;
993 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
994 			err = copy_huge_pmd(dst_mm, src_mm,
995 					    dst_pmd, src_pmd, addr, vma);
996 			if (err == -ENOMEM)
997 				return -ENOMEM;
998 			if (!err)
999 				continue;
1000 			/* fall through */
1001 		}
1002 		if (pmd_none_or_clear_bad(src_pmd))
1003 			continue;
1004 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1005 						vma, addr, next))
1006 			return -ENOMEM;
1007 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1008 	return 0;
1009 }
1010 
1011 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1012 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1013 		unsigned long addr, unsigned long end)
1014 {
1015 	pud_t *src_pud, *dst_pud;
1016 	unsigned long next;
1017 
1018 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1019 	if (!dst_pud)
1020 		return -ENOMEM;
1021 	src_pud = pud_offset(src_pgd, addr);
1022 	do {
1023 		next = pud_addr_end(addr, end);
1024 		if (pud_none_or_clear_bad(src_pud))
1025 			continue;
1026 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1027 						vma, addr, next))
1028 			return -ENOMEM;
1029 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1030 	return 0;
1031 }
1032 
1033 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1034 		struct vm_area_struct *vma)
1035 {
1036 	pgd_t *src_pgd, *dst_pgd;
1037 	unsigned long next;
1038 	unsigned long addr = vma->vm_start;
1039 	unsigned long end = vma->vm_end;
1040 	unsigned long mmun_start;	/* For mmu_notifiers */
1041 	unsigned long mmun_end;		/* For mmu_notifiers */
1042 	bool is_cow;
1043 	int ret;
1044 
1045 	/*
1046 	 * Don't copy ptes where a page fault will fill them correctly.
1047 	 * Fork becomes much lighter when there are big shared or private
1048 	 * readonly mappings. The tradeoff is that copy_page_range is more
1049 	 * efficient than faulting.
1050 	 */
1051 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1052 			!vma->anon_vma)
1053 		return 0;
1054 
1055 	if (is_vm_hugetlb_page(vma))
1056 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1057 
1058 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1059 		/*
1060 		 * We do not free on error cases below as remove_vma
1061 		 * gets called on error from higher level routine
1062 		 */
1063 		ret = track_pfn_copy(vma);
1064 		if (ret)
1065 			return ret;
1066 	}
1067 
1068 	/*
1069 	 * We need to invalidate the secondary MMU mappings only when
1070 	 * there could be a permission downgrade on the ptes of the
1071 	 * parent mm. And a permission downgrade will only happen if
1072 	 * is_cow_mapping() returns true.
1073 	 */
1074 	is_cow = is_cow_mapping(vma->vm_flags);
1075 	mmun_start = addr;
1076 	mmun_end   = end;
1077 	if (is_cow)
1078 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1079 						    mmun_end);
1080 
1081 	ret = 0;
1082 	dst_pgd = pgd_offset(dst_mm, addr);
1083 	src_pgd = pgd_offset(src_mm, addr);
1084 	do {
1085 		next = pgd_addr_end(addr, end);
1086 		if (pgd_none_or_clear_bad(src_pgd))
1087 			continue;
1088 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1089 					    vma, addr, next))) {
1090 			ret = -ENOMEM;
1091 			break;
1092 		}
1093 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1094 
1095 	if (is_cow)
1096 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1097 	return ret;
1098 }
1099 
1100 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1101 				struct vm_area_struct *vma, pmd_t *pmd,
1102 				unsigned long addr, unsigned long end,
1103 				struct zap_details *details)
1104 {
1105 	struct mm_struct *mm = tlb->mm;
1106 	int force_flush = 0;
1107 	int rss[NR_MM_COUNTERS];
1108 	spinlock_t *ptl;
1109 	pte_t *start_pte;
1110 	pte_t *pte;
1111 	swp_entry_t entry;
1112 
1113 again:
1114 	init_rss_vec(rss);
1115 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1116 	pte = start_pte;
1117 	arch_enter_lazy_mmu_mode();
1118 	do {
1119 		pte_t ptent = *pte;
1120 		if (pte_none(ptent)) {
1121 			continue;
1122 		}
1123 
1124 		if (pte_present(ptent)) {
1125 			struct page *page;
1126 
1127 			page = vm_normal_page(vma, addr, ptent);
1128 			if (unlikely(details) && page) {
1129 				/*
1130 				 * unmap_shared_mapping_pages() wants to
1131 				 * invalidate cache without truncating:
1132 				 * unmap shared but keep private pages.
1133 				 */
1134 				if (details->check_mapping &&
1135 				    details->check_mapping != page->mapping)
1136 					continue;
1137 			}
1138 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1139 							tlb->fullmm);
1140 			tlb_remove_tlb_entry(tlb, pte, addr);
1141 			if (unlikely(!page))
1142 				continue;
1143 
1144 			if (!PageAnon(page)) {
1145 				if (pte_dirty(ptent)) {
1146 					/*
1147 					 * oom_reaper cannot tear down dirty
1148 					 * pages
1149 					 */
1150 					if (unlikely(details && details->ignore_dirty))
1151 						continue;
1152 					force_flush = 1;
1153 					set_page_dirty(page);
1154 				}
1155 				if (pte_young(ptent) &&
1156 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1157 					mark_page_accessed(page);
1158 			}
1159 			rss[mm_counter(page)]--;
1160 			page_remove_rmap(page, false);
1161 			if (unlikely(page_mapcount(page) < 0))
1162 				print_bad_pte(vma, addr, ptent, page);
1163 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1164 				force_flush = 1;
1165 				addr += PAGE_SIZE;
1166 				break;
1167 			}
1168 			continue;
1169 		}
1170 		/* only check swap_entries if explicitly asked for in details */
1171 		if (unlikely(details && !details->check_swap_entries))
1172 			continue;
1173 
1174 		entry = pte_to_swp_entry(ptent);
1175 		if (!non_swap_entry(entry))
1176 			rss[MM_SWAPENTS]--;
1177 		else if (is_migration_entry(entry)) {
1178 			struct page *page;
1179 
1180 			page = migration_entry_to_page(entry);
1181 			rss[mm_counter(page)]--;
1182 		}
1183 		if (unlikely(!free_swap_and_cache(entry)))
1184 			print_bad_pte(vma, addr, ptent, NULL);
1185 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1186 	} while (pte++, addr += PAGE_SIZE, addr != end);
1187 
1188 	add_mm_rss_vec(mm, rss);
1189 	arch_leave_lazy_mmu_mode();
1190 
1191 	/* Do the actual TLB flush before dropping ptl */
1192 	if (force_flush)
1193 		tlb_flush_mmu_tlbonly(tlb);
1194 	pte_unmap_unlock(start_pte, ptl);
1195 
1196 	/*
1197 	 * If we forced a TLB flush (either due to running out of
1198 	 * batch buffers or because we needed to flush dirty TLB
1199 	 * entries before releasing the ptl), free the batched
1200 	 * memory too. Restart if we didn't do everything.
1201 	 */
1202 	if (force_flush) {
1203 		force_flush = 0;
1204 		tlb_flush_mmu_free(tlb);
1205 
1206 		if (addr != end)
1207 			goto again;
1208 	}
1209 
1210 	return addr;
1211 }
1212 
1213 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1214 				struct vm_area_struct *vma, pud_t *pud,
1215 				unsigned long addr, unsigned long end,
1216 				struct zap_details *details)
1217 {
1218 	pmd_t *pmd;
1219 	unsigned long next;
1220 
1221 	pmd = pmd_offset(pud, addr);
1222 	do {
1223 		next = pmd_addr_end(addr, end);
1224 		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1225 			if (next - addr != HPAGE_PMD_SIZE) {
1226 				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1227 				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1228 				split_huge_pmd(vma, pmd, addr);
1229 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1230 				goto next;
1231 			/* fall through */
1232 		}
1233 		/*
1234 		 * Here there can be other concurrent MADV_DONTNEED or
1235 		 * trans huge page faults running, and if the pmd is
1236 		 * none or trans huge it can change under us. This is
1237 		 * because MADV_DONTNEED holds the mmap_sem in read
1238 		 * mode.
1239 		 */
1240 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1241 			goto next;
1242 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1243 next:
1244 		cond_resched();
1245 	} while (pmd++, addr = next, addr != end);
1246 
1247 	return addr;
1248 }
1249 
1250 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1251 				struct vm_area_struct *vma, pgd_t *pgd,
1252 				unsigned long addr, unsigned long end,
1253 				struct zap_details *details)
1254 {
1255 	pud_t *pud;
1256 	unsigned long next;
1257 
1258 	pud = pud_offset(pgd, addr);
1259 	do {
1260 		next = pud_addr_end(addr, end);
1261 		if (pud_none_or_clear_bad(pud))
1262 			continue;
1263 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1264 	} while (pud++, addr = next, addr != end);
1265 
1266 	return addr;
1267 }
1268 
1269 void unmap_page_range(struct mmu_gather *tlb,
1270 			     struct vm_area_struct *vma,
1271 			     unsigned long addr, unsigned long end,
1272 			     struct zap_details *details)
1273 {
1274 	pgd_t *pgd;
1275 	unsigned long next;
1276 
1277 	BUG_ON(addr >= end);
1278 	tlb_start_vma(tlb, vma);
1279 	pgd = pgd_offset(vma->vm_mm, addr);
1280 	do {
1281 		next = pgd_addr_end(addr, end);
1282 		if (pgd_none_or_clear_bad(pgd))
1283 			continue;
1284 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1285 	} while (pgd++, addr = next, addr != end);
1286 	tlb_end_vma(tlb, vma);
1287 }
1288 
1289 
1290 static void unmap_single_vma(struct mmu_gather *tlb,
1291 		struct vm_area_struct *vma, unsigned long start_addr,
1292 		unsigned long end_addr,
1293 		struct zap_details *details)
1294 {
1295 	unsigned long start = max(vma->vm_start, start_addr);
1296 	unsigned long end;
1297 
1298 	if (start >= vma->vm_end)
1299 		return;
1300 	end = min(vma->vm_end, end_addr);
1301 	if (end <= vma->vm_start)
1302 		return;
1303 
1304 	if (vma->vm_file)
1305 		uprobe_munmap(vma, start, end);
1306 
1307 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1308 		untrack_pfn(vma, 0, 0);
1309 
1310 	if (start != end) {
1311 		if (unlikely(is_vm_hugetlb_page(vma))) {
1312 			/*
1313 			 * It is undesirable to test vma->vm_file as it
1314 			 * should be non-null for valid hugetlb area.
1315 			 * However, vm_file will be NULL in the error
1316 			 * cleanup path of mmap_region. When
1317 			 * hugetlbfs ->mmap method fails,
1318 			 * mmap_region() nullifies vma->vm_file
1319 			 * before calling this function to clean up.
1320 			 * Since no pte has actually been setup, it is
1321 			 * safe to do nothing in this case.
1322 			 */
1323 			if (vma->vm_file) {
1324 				i_mmap_lock_write(vma->vm_file->f_mapping);
1325 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1326 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1327 			}
1328 		} else
1329 			unmap_page_range(tlb, vma, start, end, details);
1330 	}
1331 }
1332 
1333 /**
1334  * unmap_vmas - unmap a range of memory covered by a list of vma's
1335  * @tlb: address of the caller's struct mmu_gather
1336  * @vma: the starting vma
1337  * @start_addr: virtual address at which to start unmapping
1338  * @end_addr: virtual address at which to end unmapping
1339  *
1340  * Unmap all pages in the vma list.
1341  *
1342  * Only addresses between `start' and `end' will be unmapped.
1343  *
1344  * The VMA list must be sorted in ascending virtual address order.
1345  *
1346  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1347  * range after unmap_vmas() returns.  So the only responsibility here is to
1348  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1349  * drops the lock and schedules.
1350  */
1351 void unmap_vmas(struct mmu_gather *tlb,
1352 		struct vm_area_struct *vma, unsigned long start_addr,
1353 		unsigned long end_addr)
1354 {
1355 	struct mm_struct *mm = vma->vm_mm;
1356 
1357 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1358 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1359 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1360 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1361 }
1362 
1363 /**
1364  * zap_page_range - remove user pages in a given range
1365  * @vma: vm_area_struct holding the applicable pages
1366  * @start: starting address of pages to zap
1367  * @size: number of bytes to zap
1368  * @details: details of shared cache invalidation
1369  *
1370  * Caller must protect the VMA list
1371  */
1372 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1373 		unsigned long size, struct zap_details *details)
1374 {
1375 	struct mm_struct *mm = vma->vm_mm;
1376 	struct mmu_gather tlb;
1377 	unsigned long end = start + size;
1378 
1379 	lru_add_drain();
1380 	tlb_gather_mmu(&tlb, mm, start, end);
1381 	update_hiwater_rss(mm);
1382 	mmu_notifier_invalidate_range_start(mm, start, end);
1383 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1384 		unmap_single_vma(&tlb, vma, start, end, details);
1385 	mmu_notifier_invalidate_range_end(mm, start, end);
1386 	tlb_finish_mmu(&tlb, start, end);
1387 }
1388 
1389 /**
1390  * zap_page_range_single - remove user pages in a given range
1391  * @vma: vm_area_struct holding the applicable pages
1392  * @address: starting address of pages to zap
1393  * @size: number of bytes to zap
1394  * @details: details of shared cache invalidation
1395  *
1396  * The range must fit into one VMA.
1397  */
1398 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1399 		unsigned long size, struct zap_details *details)
1400 {
1401 	struct mm_struct *mm = vma->vm_mm;
1402 	struct mmu_gather tlb;
1403 	unsigned long end = address + size;
1404 
1405 	lru_add_drain();
1406 	tlb_gather_mmu(&tlb, mm, address, end);
1407 	update_hiwater_rss(mm);
1408 	mmu_notifier_invalidate_range_start(mm, address, end);
1409 	unmap_single_vma(&tlb, vma, address, end, details);
1410 	mmu_notifier_invalidate_range_end(mm, address, end);
1411 	tlb_finish_mmu(&tlb, address, end);
1412 }
1413 
1414 /**
1415  * zap_vma_ptes - remove ptes mapping the vma
1416  * @vma: vm_area_struct holding ptes to be zapped
1417  * @address: starting address of pages to zap
1418  * @size: number of bytes to zap
1419  *
1420  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1421  *
1422  * The entire address range must be fully contained within the vma.
1423  *
1424  * Returns 0 if successful.
1425  */
1426 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1427 		unsigned long size)
1428 {
1429 	if (address < vma->vm_start || address + size > vma->vm_end ||
1430 	    		!(vma->vm_flags & VM_PFNMAP))
1431 		return -1;
1432 	zap_page_range_single(vma, address, size, NULL);
1433 	return 0;
1434 }
1435 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1436 
1437 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1438 			spinlock_t **ptl)
1439 {
1440 	pgd_t * pgd = pgd_offset(mm, addr);
1441 	pud_t * pud = pud_alloc(mm, pgd, addr);
1442 	if (pud) {
1443 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1444 		if (pmd) {
1445 			VM_BUG_ON(pmd_trans_huge(*pmd));
1446 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1447 		}
1448 	}
1449 	return NULL;
1450 }
1451 
1452 /*
1453  * This is the old fallback for page remapping.
1454  *
1455  * For historical reasons, it only allows reserved pages. Only
1456  * old drivers should use this, and they needed to mark their
1457  * pages reserved for the old functions anyway.
1458  */
1459 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1460 			struct page *page, pgprot_t prot)
1461 {
1462 	struct mm_struct *mm = vma->vm_mm;
1463 	int retval;
1464 	pte_t *pte;
1465 	spinlock_t *ptl;
1466 
1467 	retval = -EINVAL;
1468 	if (PageAnon(page))
1469 		goto out;
1470 	retval = -ENOMEM;
1471 	flush_dcache_page(page);
1472 	pte = get_locked_pte(mm, addr, &ptl);
1473 	if (!pte)
1474 		goto out;
1475 	retval = -EBUSY;
1476 	if (!pte_none(*pte))
1477 		goto out_unlock;
1478 
1479 	/* Ok, finally just insert the thing.. */
1480 	get_page(page);
1481 	inc_mm_counter_fast(mm, mm_counter_file(page));
1482 	page_add_file_rmap(page);
1483 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1484 
1485 	retval = 0;
1486 	pte_unmap_unlock(pte, ptl);
1487 	return retval;
1488 out_unlock:
1489 	pte_unmap_unlock(pte, ptl);
1490 out:
1491 	return retval;
1492 }
1493 
1494 /**
1495  * vm_insert_page - insert single page into user vma
1496  * @vma: user vma to map to
1497  * @addr: target user address of this page
1498  * @page: source kernel page
1499  *
1500  * This allows drivers to insert individual pages they've allocated
1501  * into a user vma.
1502  *
1503  * The page has to be a nice clean _individual_ kernel allocation.
1504  * If you allocate a compound page, you need to have marked it as
1505  * such (__GFP_COMP), or manually just split the page up yourself
1506  * (see split_page()).
1507  *
1508  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1509  * took an arbitrary page protection parameter. This doesn't allow
1510  * that. Your vma protection will have to be set up correctly, which
1511  * means that if you want a shared writable mapping, you'd better
1512  * ask for a shared writable mapping!
1513  *
1514  * The page does not need to be reserved.
1515  *
1516  * Usually this function is called from f_op->mmap() handler
1517  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1518  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1519  * function from other places, for example from page-fault handler.
1520  */
1521 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1522 			struct page *page)
1523 {
1524 	if (addr < vma->vm_start || addr >= vma->vm_end)
1525 		return -EFAULT;
1526 	if (!page_count(page))
1527 		return -EINVAL;
1528 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1529 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1530 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1531 		vma->vm_flags |= VM_MIXEDMAP;
1532 	}
1533 	return insert_page(vma, addr, page, vma->vm_page_prot);
1534 }
1535 EXPORT_SYMBOL(vm_insert_page);
1536 
1537 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1538 			pfn_t pfn, pgprot_t prot)
1539 {
1540 	struct mm_struct *mm = vma->vm_mm;
1541 	int retval;
1542 	pte_t *pte, entry;
1543 	spinlock_t *ptl;
1544 
1545 	retval = -ENOMEM;
1546 	pte = get_locked_pte(mm, addr, &ptl);
1547 	if (!pte)
1548 		goto out;
1549 	retval = -EBUSY;
1550 	if (!pte_none(*pte))
1551 		goto out_unlock;
1552 
1553 	/* Ok, finally just insert the thing.. */
1554 	if (pfn_t_devmap(pfn))
1555 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1556 	else
1557 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1558 	set_pte_at(mm, addr, pte, entry);
1559 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1560 
1561 	retval = 0;
1562 out_unlock:
1563 	pte_unmap_unlock(pte, ptl);
1564 out:
1565 	return retval;
1566 }
1567 
1568 /**
1569  * vm_insert_pfn - insert single pfn into user vma
1570  * @vma: user vma to map to
1571  * @addr: target user address of this page
1572  * @pfn: source kernel pfn
1573  *
1574  * Similar to vm_insert_page, this allows drivers to insert individual pages
1575  * they've allocated into a user vma. Same comments apply.
1576  *
1577  * This function should only be called from a vm_ops->fault handler, and
1578  * in that case the handler should return NULL.
1579  *
1580  * vma cannot be a COW mapping.
1581  *
1582  * As this is called only for pages that do not currently exist, we
1583  * do not need to flush old virtual caches or the TLB.
1584  */
1585 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1586 			unsigned long pfn)
1587 {
1588 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1589 }
1590 EXPORT_SYMBOL(vm_insert_pfn);
1591 
1592 /**
1593  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1594  * @vma: user vma to map to
1595  * @addr: target user address of this page
1596  * @pfn: source kernel pfn
1597  * @pgprot: pgprot flags for the inserted page
1598  *
1599  * This is exactly like vm_insert_pfn, except that it allows drivers to
1600  * to override pgprot on a per-page basis.
1601  *
1602  * This only makes sense for IO mappings, and it makes no sense for
1603  * cow mappings.  In general, using multiple vmas is preferable;
1604  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1605  * impractical.
1606  */
1607 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1608 			unsigned long pfn, pgprot_t pgprot)
1609 {
1610 	int ret;
1611 	/*
1612 	 * Technically, architectures with pte_special can avoid all these
1613 	 * restrictions (same for remap_pfn_range).  However we would like
1614 	 * consistency in testing and feature parity among all, so we should
1615 	 * try to keep these invariants in place for everybody.
1616 	 */
1617 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1618 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1619 						(VM_PFNMAP|VM_MIXEDMAP));
1620 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1621 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1622 
1623 	if (addr < vma->vm_start || addr >= vma->vm_end)
1624 		return -EFAULT;
1625 	if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1626 		return -EINVAL;
1627 
1628 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1629 
1630 	return ret;
1631 }
1632 EXPORT_SYMBOL(vm_insert_pfn_prot);
1633 
1634 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1635 			pfn_t pfn)
1636 {
1637 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1638 
1639 	if (addr < vma->vm_start || addr >= vma->vm_end)
1640 		return -EFAULT;
1641 
1642 	/*
1643 	 * If we don't have pte special, then we have to use the pfn_valid()
1644 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1645 	 * refcount the page if pfn_valid is true (hence insert_page rather
1646 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1647 	 * without pte special, it would there be refcounted as a normal page.
1648 	 */
1649 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1650 		struct page *page;
1651 
1652 		/*
1653 		 * At this point we are committed to insert_page()
1654 		 * regardless of whether the caller specified flags that
1655 		 * result in pfn_t_has_page() == false.
1656 		 */
1657 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1658 		return insert_page(vma, addr, page, vma->vm_page_prot);
1659 	}
1660 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1661 }
1662 EXPORT_SYMBOL(vm_insert_mixed);
1663 
1664 /*
1665  * maps a range of physical memory into the requested pages. the old
1666  * mappings are removed. any references to nonexistent pages results
1667  * in null mappings (currently treated as "copy-on-access")
1668  */
1669 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1670 			unsigned long addr, unsigned long end,
1671 			unsigned long pfn, pgprot_t prot)
1672 {
1673 	pte_t *pte;
1674 	spinlock_t *ptl;
1675 
1676 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1677 	if (!pte)
1678 		return -ENOMEM;
1679 	arch_enter_lazy_mmu_mode();
1680 	do {
1681 		BUG_ON(!pte_none(*pte));
1682 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1683 		pfn++;
1684 	} while (pte++, addr += PAGE_SIZE, addr != end);
1685 	arch_leave_lazy_mmu_mode();
1686 	pte_unmap_unlock(pte - 1, ptl);
1687 	return 0;
1688 }
1689 
1690 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1691 			unsigned long addr, unsigned long end,
1692 			unsigned long pfn, pgprot_t prot)
1693 {
1694 	pmd_t *pmd;
1695 	unsigned long next;
1696 
1697 	pfn -= addr >> PAGE_SHIFT;
1698 	pmd = pmd_alloc(mm, pud, addr);
1699 	if (!pmd)
1700 		return -ENOMEM;
1701 	VM_BUG_ON(pmd_trans_huge(*pmd));
1702 	do {
1703 		next = pmd_addr_end(addr, end);
1704 		if (remap_pte_range(mm, pmd, addr, next,
1705 				pfn + (addr >> PAGE_SHIFT), prot))
1706 			return -ENOMEM;
1707 	} while (pmd++, addr = next, addr != end);
1708 	return 0;
1709 }
1710 
1711 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1712 			unsigned long addr, unsigned long end,
1713 			unsigned long pfn, pgprot_t prot)
1714 {
1715 	pud_t *pud;
1716 	unsigned long next;
1717 
1718 	pfn -= addr >> PAGE_SHIFT;
1719 	pud = pud_alloc(mm, pgd, addr);
1720 	if (!pud)
1721 		return -ENOMEM;
1722 	do {
1723 		next = pud_addr_end(addr, end);
1724 		if (remap_pmd_range(mm, pud, addr, next,
1725 				pfn + (addr >> PAGE_SHIFT), prot))
1726 			return -ENOMEM;
1727 	} while (pud++, addr = next, addr != end);
1728 	return 0;
1729 }
1730 
1731 /**
1732  * remap_pfn_range - remap kernel memory to userspace
1733  * @vma: user vma to map to
1734  * @addr: target user address to start at
1735  * @pfn: physical address of kernel memory
1736  * @size: size of map area
1737  * @prot: page protection flags for this mapping
1738  *
1739  *  Note: this is only safe if the mm semaphore is held when called.
1740  */
1741 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1742 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1743 {
1744 	pgd_t *pgd;
1745 	unsigned long next;
1746 	unsigned long end = addr + PAGE_ALIGN(size);
1747 	struct mm_struct *mm = vma->vm_mm;
1748 	unsigned long remap_pfn = pfn;
1749 	int err;
1750 
1751 	/*
1752 	 * Physically remapped pages are special. Tell the
1753 	 * rest of the world about it:
1754 	 *   VM_IO tells people not to look at these pages
1755 	 *	(accesses can have side effects).
1756 	 *   VM_PFNMAP tells the core MM that the base pages are just
1757 	 *	raw PFN mappings, and do not have a "struct page" associated
1758 	 *	with them.
1759 	 *   VM_DONTEXPAND
1760 	 *      Disable vma merging and expanding with mremap().
1761 	 *   VM_DONTDUMP
1762 	 *      Omit vma from core dump, even when VM_IO turned off.
1763 	 *
1764 	 * There's a horrible special case to handle copy-on-write
1765 	 * behaviour that some programs depend on. We mark the "original"
1766 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1767 	 * See vm_normal_page() for details.
1768 	 */
1769 	if (is_cow_mapping(vma->vm_flags)) {
1770 		if (addr != vma->vm_start || end != vma->vm_end)
1771 			return -EINVAL;
1772 		vma->vm_pgoff = pfn;
1773 	}
1774 
1775 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1776 	if (err)
1777 		return -EINVAL;
1778 
1779 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1780 
1781 	BUG_ON(addr >= end);
1782 	pfn -= addr >> PAGE_SHIFT;
1783 	pgd = pgd_offset(mm, addr);
1784 	flush_cache_range(vma, addr, end);
1785 	do {
1786 		next = pgd_addr_end(addr, end);
1787 		err = remap_pud_range(mm, pgd, addr, next,
1788 				pfn + (addr >> PAGE_SHIFT), prot);
1789 		if (err)
1790 			break;
1791 	} while (pgd++, addr = next, addr != end);
1792 
1793 	if (err)
1794 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1795 
1796 	return err;
1797 }
1798 EXPORT_SYMBOL(remap_pfn_range);
1799 
1800 /**
1801  * vm_iomap_memory - remap memory to userspace
1802  * @vma: user vma to map to
1803  * @start: start of area
1804  * @len: size of area
1805  *
1806  * This is a simplified io_remap_pfn_range() for common driver use. The
1807  * driver just needs to give us the physical memory range to be mapped,
1808  * we'll figure out the rest from the vma information.
1809  *
1810  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1811  * whatever write-combining details or similar.
1812  */
1813 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1814 {
1815 	unsigned long vm_len, pfn, pages;
1816 
1817 	/* Check that the physical memory area passed in looks valid */
1818 	if (start + len < start)
1819 		return -EINVAL;
1820 	/*
1821 	 * You *really* shouldn't map things that aren't page-aligned,
1822 	 * but we've historically allowed it because IO memory might
1823 	 * just have smaller alignment.
1824 	 */
1825 	len += start & ~PAGE_MASK;
1826 	pfn = start >> PAGE_SHIFT;
1827 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1828 	if (pfn + pages < pfn)
1829 		return -EINVAL;
1830 
1831 	/* We start the mapping 'vm_pgoff' pages into the area */
1832 	if (vma->vm_pgoff > pages)
1833 		return -EINVAL;
1834 	pfn += vma->vm_pgoff;
1835 	pages -= vma->vm_pgoff;
1836 
1837 	/* Can we fit all of the mapping? */
1838 	vm_len = vma->vm_end - vma->vm_start;
1839 	if (vm_len >> PAGE_SHIFT > pages)
1840 		return -EINVAL;
1841 
1842 	/* Ok, let it rip */
1843 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1844 }
1845 EXPORT_SYMBOL(vm_iomap_memory);
1846 
1847 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1848 				     unsigned long addr, unsigned long end,
1849 				     pte_fn_t fn, void *data)
1850 {
1851 	pte_t *pte;
1852 	int err;
1853 	pgtable_t token;
1854 	spinlock_t *uninitialized_var(ptl);
1855 
1856 	pte = (mm == &init_mm) ?
1857 		pte_alloc_kernel(pmd, addr) :
1858 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1859 	if (!pte)
1860 		return -ENOMEM;
1861 
1862 	BUG_ON(pmd_huge(*pmd));
1863 
1864 	arch_enter_lazy_mmu_mode();
1865 
1866 	token = pmd_pgtable(*pmd);
1867 
1868 	do {
1869 		err = fn(pte++, token, addr, data);
1870 		if (err)
1871 			break;
1872 	} while (addr += PAGE_SIZE, addr != end);
1873 
1874 	arch_leave_lazy_mmu_mode();
1875 
1876 	if (mm != &init_mm)
1877 		pte_unmap_unlock(pte-1, ptl);
1878 	return err;
1879 }
1880 
1881 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1882 				     unsigned long addr, unsigned long end,
1883 				     pte_fn_t fn, void *data)
1884 {
1885 	pmd_t *pmd;
1886 	unsigned long next;
1887 	int err;
1888 
1889 	BUG_ON(pud_huge(*pud));
1890 
1891 	pmd = pmd_alloc(mm, pud, addr);
1892 	if (!pmd)
1893 		return -ENOMEM;
1894 	do {
1895 		next = pmd_addr_end(addr, end);
1896 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1897 		if (err)
1898 			break;
1899 	} while (pmd++, addr = next, addr != end);
1900 	return err;
1901 }
1902 
1903 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1904 				     unsigned long addr, unsigned long end,
1905 				     pte_fn_t fn, void *data)
1906 {
1907 	pud_t *pud;
1908 	unsigned long next;
1909 	int err;
1910 
1911 	pud = pud_alloc(mm, pgd, addr);
1912 	if (!pud)
1913 		return -ENOMEM;
1914 	do {
1915 		next = pud_addr_end(addr, end);
1916 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1917 		if (err)
1918 			break;
1919 	} while (pud++, addr = next, addr != end);
1920 	return err;
1921 }
1922 
1923 /*
1924  * Scan a region of virtual memory, filling in page tables as necessary
1925  * and calling a provided function on each leaf page table.
1926  */
1927 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1928 			unsigned long size, pte_fn_t fn, void *data)
1929 {
1930 	pgd_t *pgd;
1931 	unsigned long next;
1932 	unsigned long end = addr + size;
1933 	int err;
1934 
1935 	if (WARN_ON(addr >= end))
1936 		return -EINVAL;
1937 
1938 	pgd = pgd_offset(mm, addr);
1939 	do {
1940 		next = pgd_addr_end(addr, end);
1941 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1942 		if (err)
1943 			break;
1944 	} while (pgd++, addr = next, addr != end);
1945 
1946 	return err;
1947 }
1948 EXPORT_SYMBOL_GPL(apply_to_page_range);
1949 
1950 /*
1951  * handle_pte_fault chooses page fault handler according to an entry which was
1952  * read non-atomically.  Before making any commitment, on those architectures
1953  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1954  * parts, do_swap_page must check under lock before unmapping the pte and
1955  * proceeding (but do_wp_page is only called after already making such a check;
1956  * and do_anonymous_page can safely check later on).
1957  */
1958 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1959 				pte_t *page_table, pte_t orig_pte)
1960 {
1961 	int same = 1;
1962 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1963 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1964 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1965 		spin_lock(ptl);
1966 		same = pte_same(*page_table, orig_pte);
1967 		spin_unlock(ptl);
1968 	}
1969 #endif
1970 	pte_unmap(page_table);
1971 	return same;
1972 }
1973 
1974 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1975 {
1976 	debug_dma_assert_idle(src);
1977 
1978 	/*
1979 	 * If the source page was a PFN mapping, we don't have
1980 	 * a "struct page" for it. We do a best-effort copy by
1981 	 * just copying from the original user address. If that
1982 	 * fails, we just zero-fill it. Live with it.
1983 	 */
1984 	if (unlikely(!src)) {
1985 		void *kaddr = kmap_atomic(dst);
1986 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1987 
1988 		/*
1989 		 * This really shouldn't fail, because the page is there
1990 		 * in the page tables. But it might just be unreadable,
1991 		 * in which case we just give up and fill the result with
1992 		 * zeroes.
1993 		 */
1994 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1995 			clear_page(kaddr);
1996 		kunmap_atomic(kaddr);
1997 		flush_dcache_page(dst);
1998 	} else
1999 		copy_user_highpage(dst, src, va, vma);
2000 }
2001 
2002 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2003 {
2004 	struct file *vm_file = vma->vm_file;
2005 
2006 	if (vm_file)
2007 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2008 
2009 	/*
2010 	 * Special mappings (e.g. VDSO) do not have any file so fake
2011 	 * a default GFP_KERNEL for them.
2012 	 */
2013 	return GFP_KERNEL;
2014 }
2015 
2016 /*
2017  * Notify the address space that the page is about to become writable so that
2018  * it can prohibit this or wait for the page to get into an appropriate state.
2019  *
2020  * We do this without the lock held, so that it can sleep if it needs to.
2021  */
2022 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2023 	       unsigned long address)
2024 {
2025 	struct vm_fault vmf;
2026 	int ret;
2027 
2028 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2029 	vmf.pgoff = page->index;
2030 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2031 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2032 	vmf.page = page;
2033 	vmf.cow_page = NULL;
2034 
2035 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2036 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2037 		return ret;
2038 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2039 		lock_page(page);
2040 		if (!page->mapping) {
2041 			unlock_page(page);
2042 			return 0; /* retry */
2043 		}
2044 		ret |= VM_FAULT_LOCKED;
2045 	} else
2046 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2047 	return ret;
2048 }
2049 
2050 /*
2051  * Handle write page faults for pages that can be reused in the current vma
2052  *
2053  * This can happen either due to the mapping being with the VM_SHARED flag,
2054  * or due to us being the last reference standing to the page. In either
2055  * case, all we need to do here is to mark the page as writable and update
2056  * any related book-keeping.
2057  */
2058 static inline int wp_page_reuse(struct mm_struct *mm,
2059 			struct vm_area_struct *vma, unsigned long address,
2060 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2061 			struct page *page, int page_mkwrite,
2062 			int dirty_shared)
2063 	__releases(ptl)
2064 {
2065 	pte_t entry;
2066 	/*
2067 	 * Clear the pages cpupid information as the existing
2068 	 * information potentially belongs to a now completely
2069 	 * unrelated process.
2070 	 */
2071 	if (page)
2072 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2073 
2074 	flush_cache_page(vma, address, pte_pfn(orig_pte));
2075 	entry = pte_mkyoung(orig_pte);
2076 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2077 	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2078 		update_mmu_cache(vma, address, page_table);
2079 	pte_unmap_unlock(page_table, ptl);
2080 
2081 	if (dirty_shared) {
2082 		struct address_space *mapping;
2083 		int dirtied;
2084 
2085 		if (!page_mkwrite)
2086 			lock_page(page);
2087 
2088 		dirtied = set_page_dirty(page);
2089 		VM_BUG_ON_PAGE(PageAnon(page), page);
2090 		mapping = page->mapping;
2091 		unlock_page(page);
2092 		put_page(page);
2093 
2094 		if ((dirtied || page_mkwrite) && mapping) {
2095 			/*
2096 			 * Some device drivers do not set page.mapping
2097 			 * but still dirty their pages
2098 			 */
2099 			balance_dirty_pages_ratelimited(mapping);
2100 		}
2101 
2102 		if (!page_mkwrite)
2103 			file_update_time(vma->vm_file);
2104 	}
2105 
2106 	return VM_FAULT_WRITE;
2107 }
2108 
2109 /*
2110  * Handle the case of a page which we actually need to copy to a new page.
2111  *
2112  * Called with mmap_sem locked and the old page referenced, but
2113  * without the ptl held.
2114  *
2115  * High level logic flow:
2116  *
2117  * - Allocate a page, copy the content of the old page to the new one.
2118  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2119  * - Take the PTL. If the pte changed, bail out and release the allocated page
2120  * - If the pte is still the way we remember it, update the page table and all
2121  *   relevant references. This includes dropping the reference the page-table
2122  *   held to the old page, as well as updating the rmap.
2123  * - In any case, unlock the PTL and drop the reference we took to the old page.
2124  */
2125 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2126 			unsigned long address, pte_t *page_table, pmd_t *pmd,
2127 			pte_t orig_pte, struct page *old_page)
2128 {
2129 	struct page *new_page = NULL;
2130 	spinlock_t *ptl = NULL;
2131 	pte_t entry;
2132 	int page_copied = 0;
2133 	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
2134 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
2135 	struct mem_cgroup *memcg;
2136 
2137 	if (unlikely(anon_vma_prepare(vma)))
2138 		goto oom;
2139 
2140 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2141 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2142 		if (!new_page)
2143 			goto oom;
2144 	} else {
2145 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2146 		if (!new_page)
2147 			goto oom;
2148 		cow_user_page(new_page, old_page, address, vma);
2149 	}
2150 
2151 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2152 		goto oom_free_new;
2153 
2154 	__SetPageUptodate(new_page);
2155 
2156 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2157 
2158 	/*
2159 	 * Re-check the pte - we dropped the lock
2160 	 */
2161 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2162 	if (likely(pte_same(*page_table, orig_pte))) {
2163 		if (old_page) {
2164 			if (!PageAnon(old_page)) {
2165 				dec_mm_counter_fast(mm,
2166 						mm_counter_file(old_page));
2167 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2168 			}
2169 		} else {
2170 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2171 		}
2172 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2173 		entry = mk_pte(new_page, vma->vm_page_prot);
2174 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2175 		/*
2176 		 * Clear the pte entry and flush it first, before updating the
2177 		 * pte with the new entry. This will avoid a race condition
2178 		 * seen in the presence of one thread doing SMC and another
2179 		 * thread doing COW.
2180 		 */
2181 		ptep_clear_flush_notify(vma, address, page_table);
2182 		page_add_new_anon_rmap(new_page, vma, address, false);
2183 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2184 		lru_cache_add_active_or_unevictable(new_page, vma);
2185 		/*
2186 		 * We call the notify macro here because, when using secondary
2187 		 * mmu page tables (such as kvm shadow page tables), we want the
2188 		 * new page to be mapped directly into the secondary page table.
2189 		 */
2190 		set_pte_at_notify(mm, address, page_table, entry);
2191 		update_mmu_cache(vma, address, page_table);
2192 		if (old_page) {
2193 			/*
2194 			 * Only after switching the pte to the new page may
2195 			 * we remove the mapcount here. Otherwise another
2196 			 * process may come and find the rmap count decremented
2197 			 * before the pte is switched to the new page, and
2198 			 * "reuse" the old page writing into it while our pte
2199 			 * here still points into it and can be read by other
2200 			 * threads.
2201 			 *
2202 			 * The critical issue is to order this
2203 			 * page_remove_rmap with the ptp_clear_flush above.
2204 			 * Those stores are ordered by (if nothing else,)
2205 			 * the barrier present in the atomic_add_negative
2206 			 * in page_remove_rmap.
2207 			 *
2208 			 * Then the TLB flush in ptep_clear_flush ensures that
2209 			 * no process can access the old page before the
2210 			 * decremented mapcount is visible. And the old page
2211 			 * cannot be reused until after the decremented
2212 			 * mapcount is visible. So transitively, TLBs to
2213 			 * old page will be flushed before it can be reused.
2214 			 */
2215 			page_remove_rmap(old_page, false);
2216 		}
2217 
2218 		/* Free the old page.. */
2219 		new_page = old_page;
2220 		page_copied = 1;
2221 	} else {
2222 		mem_cgroup_cancel_charge(new_page, memcg, false);
2223 	}
2224 
2225 	if (new_page)
2226 		put_page(new_page);
2227 
2228 	pte_unmap_unlock(page_table, ptl);
2229 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2230 	if (old_page) {
2231 		/*
2232 		 * Don't let another task, with possibly unlocked vma,
2233 		 * keep the mlocked page.
2234 		 */
2235 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2236 			lock_page(old_page);	/* LRU manipulation */
2237 			if (PageMlocked(old_page))
2238 				munlock_vma_page(old_page);
2239 			unlock_page(old_page);
2240 		}
2241 		put_page(old_page);
2242 	}
2243 	return page_copied ? VM_FAULT_WRITE : 0;
2244 oom_free_new:
2245 	put_page(new_page);
2246 oom:
2247 	if (old_page)
2248 		put_page(old_page);
2249 	return VM_FAULT_OOM;
2250 }
2251 
2252 /*
2253  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2254  * mapping
2255  */
2256 static int wp_pfn_shared(struct mm_struct *mm,
2257 			struct vm_area_struct *vma, unsigned long address,
2258 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2259 			pmd_t *pmd)
2260 {
2261 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2262 		struct vm_fault vmf = {
2263 			.page = NULL,
2264 			.pgoff = linear_page_index(vma, address),
2265 			.virtual_address = (void __user *)(address & PAGE_MASK),
2266 			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2267 		};
2268 		int ret;
2269 
2270 		pte_unmap_unlock(page_table, ptl);
2271 		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2272 		if (ret & VM_FAULT_ERROR)
2273 			return ret;
2274 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2275 		/*
2276 		 * We might have raced with another page fault while we
2277 		 * released the pte_offset_map_lock.
2278 		 */
2279 		if (!pte_same(*page_table, orig_pte)) {
2280 			pte_unmap_unlock(page_table, ptl);
2281 			return 0;
2282 		}
2283 	}
2284 	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2285 			     NULL, 0, 0);
2286 }
2287 
2288 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2289 			  unsigned long address, pte_t *page_table,
2290 			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2291 			  struct page *old_page)
2292 	__releases(ptl)
2293 {
2294 	int page_mkwrite = 0;
2295 
2296 	get_page(old_page);
2297 
2298 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2299 		int tmp;
2300 
2301 		pte_unmap_unlock(page_table, ptl);
2302 		tmp = do_page_mkwrite(vma, old_page, address);
2303 		if (unlikely(!tmp || (tmp &
2304 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2305 			put_page(old_page);
2306 			return tmp;
2307 		}
2308 		/*
2309 		 * Since we dropped the lock we need to revalidate
2310 		 * the PTE as someone else may have changed it.  If
2311 		 * they did, we just return, as we can count on the
2312 		 * MMU to tell us if they didn't also make it writable.
2313 		 */
2314 		page_table = pte_offset_map_lock(mm, pmd, address,
2315 						 &ptl);
2316 		if (!pte_same(*page_table, orig_pte)) {
2317 			unlock_page(old_page);
2318 			pte_unmap_unlock(page_table, ptl);
2319 			put_page(old_page);
2320 			return 0;
2321 		}
2322 		page_mkwrite = 1;
2323 	}
2324 
2325 	return wp_page_reuse(mm, vma, address, page_table, ptl,
2326 			     orig_pte, old_page, page_mkwrite, 1);
2327 }
2328 
2329 /*
2330  * This routine handles present pages, when users try to write
2331  * to a shared page. It is done by copying the page to a new address
2332  * and decrementing the shared-page counter for the old page.
2333  *
2334  * Note that this routine assumes that the protection checks have been
2335  * done by the caller (the low-level page fault routine in most cases).
2336  * Thus we can safely just mark it writable once we've done any necessary
2337  * COW.
2338  *
2339  * We also mark the page dirty at this point even though the page will
2340  * change only once the write actually happens. This avoids a few races,
2341  * and potentially makes it more efficient.
2342  *
2343  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2344  * but allow concurrent faults), with pte both mapped and locked.
2345  * We return with mmap_sem still held, but pte unmapped and unlocked.
2346  */
2347 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2348 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2349 		spinlock_t *ptl, pte_t orig_pte)
2350 	__releases(ptl)
2351 {
2352 	struct page *old_page;
2353 
2354 	old_page = vm_normal_page(vma, address, orig_pte);
2355 	if (!old_page) {
2356 		/*
2357 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2358 		 * VM_PFNMAP VMA.
2359 		 *
2360 		 * We should not cow pages in a shared writeable mapping.
2361 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2362 		 */
2363 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2364 				     (VM_WRITE|VM_SHARED))
2365 			return wp_pfn_shared(mm, vma, address, page_table, ptl,
2366 					     orig_pte, pmd);
2367 
2368 		pte_unmap_unlock(page_table, ptl);
2369 		return wp_page_copy(mm, vma, address, page_table, pmd,
2370 				    orig_pte, old_page);
2371 	}
2372 
2373 	/*
2374 	 * Take out anonymous pages first, anonymous shared vmas are
2375 	 * not dirty accountable.
2376 	 */
2377 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2378 		int total_mapcount;
2379 		if (!trylock_page(old_page)) {
2380 			get_page(old_page);
2381 			pte_unmap_unlock(page_table, ptl);
2382 			lock_page(old_page);
2383 			page_table = pte_offset_map_lock(mm, pmd, address,
2384 							 &ptl);
2385 			if (!pte_same(*page_table, orig_pte)) {
2386 				unlock_page(old_page);
2387 				pte_unmap_unlock(page_table, ptl);
2388 				put_page(old_page);
2389 				return 0;
2390 			}
2391 			put_page(old_page);
2392 		}
2393 		if (reuse_swap_page(old_page, &total_mapcount)) {
2394 			if (total_mapcount == 1) {
2395 				/*
2396 				 * The page is all ours. Move it to
2397 				 * our anon_vma so the rmap code will
2398 				 * not search our parent or siblings.
2399 				 * Protected against the rmap code by
2400 				 * the page lock.
2401 				 */
2402 				page_move_anon_rmap(compound_head(old_page),
2403 						    vma, address);
2404 			}
2405 			unlock_page(old_page);
2406 			return wp_page_reuse(mm, vma, address, page_table, ptl,
2407 					     orig_pte, old_page, 0, 0);
2408 		}
2409 		unlock_page(old_page);
2410 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2411 					(VM_WRITE|VM_SHARED))) {
2412 		return wp_page_shared(mm, vma, address, page_table, pmd,
2413 				      ptl, orig_pte, old_page);
2414 	}
2415 
2416 	/*
2417 	 * Ok, we need to copy. Oh, well..
2418 	 */
2419 	get_page(old_page);
2420 
2421 	pte_unmap_unlock(page_table, ptl);
2422 	return wp_page_copy(mm, vma, address, page_table, pmd,
2423 			    orig_pte, old_page);
2424 }
2425 
2426 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2427 		unsigned long start_addr, unsigned long end_addr,
2428 		struct zap_details *details)
2429 {
2430 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2431 }
2432 
2433 static inline void unmap_mapping_range_tree(struct rb_root *root,
2434 					    struct zap_details *details)
2435 {
2436 	struct vm_area_struct *vma;
2437 	pgoff_t vba, vea, zba, zea;
2438 
2439 	vma_interval_tree_foreach(vma, root,
2440 			details->first_index, details->last_index) {
2441 
2442 		vba = vma->vm_pgoff;
2443 		vea = vba + vma_pages(vma) - 1;
2444 		zba = details->first_index;
2445 		if (zba < vba)
2446 			zba = vba;
2447 		zea = details->last_index;
2448 		if (zea > vea)
2449 			zea = vea;
2450 
2451 		unmap_mapping_range_vma(vma,
2452 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2453 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2454 				details);
2455 	}
2456 }
2457 
2458 /**
2459  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2460  * address_space corresponding to the specified page range in the underlying
2461  * file.
2462  *
2463  * @mapping: the address space containing mmaps to be unmapped.
2464  * @holebegin: byte in first page to unmap, relative to the start of
2465  * the underlying file.  This will be rounded down to a PAGE_SIZE
2466  * boundary.  Note that this is different from truncate_pagecache(), which
2467  * must keep the partial page.  In contrast, we must get rid of
2468  * partial pages.
2469  * @holelen: size of prospective hole in bytes.  This will be rounded
2470  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2471  * end of the file.
2472  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2473  * but 0 when invalidating pagecache, don't throw away private data.
2474  */
2475 void unmap_mapping_range(struct address_space *mapping,
2476 		loff_t const holebegin, loff_t const holelen, int even_cows)
2477 {
2478 	struct zap_details details = { };
2479 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2480 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2481 
2482 	/* Check for overflow. */
2483 	if (sizeof(holelen) > sizeof(hlen)) {
2484 		long long holeend =
2485 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2486 		if (holeend & ~(long long)ULONG_MAX)
2487 			hlen = ULONG_MAX - hba + 1;
2488 	}
2489 
2490 	details.check_mapping = even_cows? NULL: mapping;
2491 	details.first_index = hba;
2492 	details.last_index = hba + hlen - 1;
2493 	if (details.last_index < details.first_index)
2494 		details.last_index = ULONG_MAX;
2495 
2496 	i_mmap_lock_write(mapping);
2497 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2498 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2499 	i_mmap_unlock_write(mapping);
2500 }
2501 EXPORT_SYMBOL(unmap_mapping_range);
2502 
2503 /*
2504  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2505  * but allow concurrent faults), and pte mapped but not yet locked.
2506  * We return with pte unmapped and unlocked.
2507  *
2508  * We return with the mmap_sem locked or unlocked in the same cases
2509  * as does filemap_fault().
2510  */
2511 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2512 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2513 		unsigned int flags, pte_t orig_pte)
2514 {
2515 	spinlock_t *ptl;
2516 	struct page *page, *swapcache;
2517 	struct mem_cgroup *memcg;
2518 	swp_entry_t entry;
2519 	pte_t pte;
2520 	int locked;
2521 	int exclusive = 0;
2522 	int ret = 0;
2523 
2524 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2525 		goto out;
2526 
2527 	entry = pte_to_swp_entry(orig_pte);
2528 	if (unlikely(non_swap_entry(entry))) {
2529 		if (is_migration_entry(entry)) {
2530 			migration_entry_wait(mm, pmd, address);
2531 		} else if (is_hwpoison_entry(entry)) {
2532 			ret = VM_FAULT_HWPOISON;
2533 		} else {
2534 			print_bad_pte(vma, address, orig_pte, NULL);
2535 			ret = VM_FAULT_SIGBUS;
2536 		}
2537 		goto out;
2538 	}
2539 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2540 	page = lookup_swap_cache(entry);
2541 	if (!page) {
2542 		page = swapin_readahead(entry,
2543 					GFP_HIGHUSER_MOVABLE, vma, address);
2544 		if (!page) {
2545 			/*
2546 			 * Back out if somebody else faulted in this pte
2547 			 * while we released the pte lock.
2548 			 */
2549 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2550 			if (likely(pte_same(*page_table, orig_pte)))
2551 				ret = VM_FAULT_OOM;
2552 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2553 			goto unlock;
2554 		}
2555 
2556 		/* Had to read the page from swap area: Major fault */
2557 		ret = VM_FAULT_MAJOR;
2558 		count_vm_event(PGMAJFAULT);
2559 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2560 	} else if (PageHWPoison(page)) {
2561 		/*
2562 		 * hwpoisoned dirty swapcache pages are kept for killing
2563 		 * owner processes (which may be unknown at hwpoison time)
2564 		 */
2565 		ret = VM_FAULT_HWPOISON;
2566 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2567 		swapcache = page;
2568 		goto out_release;
2569 	}
2570 
2571 	swapcache = page;
2572 	locked = lock_page_or_retry(page, mm, flags);
2573 
2574 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2575 	if (!locked) {
2576 		ret |= VM_FAULT_RETRY;
2577 		goto out_release;
2578 	}
2579 
2580 	/*
2581 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2582 	 * release the swapcache from under us.  The page pin, and pte_same
2583 	 * test below, are not enough to exclude that.  Even if it is still
2584 	 * swapcache, we need to check that the page's swap has not changed.
2585 	 */
2586 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2587 		goto out_page;
2588 
2589 	page = ksm_might_need_to_copy(page, vma, address);
2590 	if (unlikely(!page)) {
2591 		ret = VM_FAULT_OOM;
2592 		page = swapcache;
2593 		goto out_page;
2594 	}
2595 
2596 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2597 		ret = VM_FAULT_OOM;
2598 		goto out_page;
2599 	}
2600 
2601 	/*
2602 	 * Back out if somebody else already faulted in this pte.
2603 	 */
2604 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2605 	if (unlikely(!pte_same(*page_table, orig_pte)))
2606 		goto out_nomap;
2607 
2608 	if (unlikely(!PageUptodate(page))) {
2609 		ret = VM_FAULT_SIGBUS;
2610 		goto out_nomap;
2611 	}
2612 
2613 	/*
2614 	 * The page isn't present yet, go ahead with the fault.
2615 	 *
2616 	 * Be careful about the sequence of operations here.
2617 	 * To get its accounting right, reuse_swap_page() must be called
2618 	 * while the page is counted on swap but not yet in mapcount i.e.
2619 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2620 	 * must be called after the swap_free(), or it will never succeed.
2621 	 */
2622 
2623 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2624 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2625 	pte = mk_pte(page, vma->vm_page_prot);
2626 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2627 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2628 		flags &= ~FAULT_FLAG_WRITE;
2629 		ret |= VM_FAULT_WRITE;
2630 		exclusive = RMAP_EXCLUSIVE;
2631 	}
2632 	flush_icache_page(vma, page);
2633 	if (pte_swp_soft_dirty(orig_pte))
2634 		pte = pte_mksoft_dirty(pte);
2635 	set_pte_at(mm, address, page_table, pte);
2636 	if (page == swapcache) {
2637 		do_page_add_anon_rmap(page, vma, address, exclusive);
2638 		mem_cgroup_commit_charge(page, memcg, true, false);
2639 	} else { /* ksm created a completely new copy */
2640 		page_add_new_anon_rmap(page, vma, address, false);
2641 		mem_cgroup_commit_charge(page, memcg, false, false);
2642 		lru_cache_add_active_or_unevictable(page, vma);
2643 	}
2644 
2645 	swap_free(entry);
2646 	if (mem_cgroup_swap_full(page) ||
2647 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2648 		try_to_free_swap(page);
2649 	unlock_page(page);
2650 	if (page != swapcache) {
2651 		/*
2652 		 * Hold the lock to avoid the swap entry to be reused
2653 		 * until we take the PT lock for the pte_same() check
2654 		 * (to avoid false positives from pte_same). For
2655 		 * further safety release the lock after the swap_free
2656 		 * so that the swap count won't change under a
2657 		 * parallel locked swapcache.
2658 		 */
2659 		unlock_page(swapcache);
2660 		put_page(swapcache);
2661 	}
2662 
2663 	if (flags & FAULT_FLAG_WRITE) {
2664 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2665 		if (ret & VM_FAULT_ERROR)
2666 			ret &= VM_FAULT_ERROR;
2667 		goto out;
2668 	}
2669 
2670 	/* No need to invalidate - it was non-present before */
2671 	update_mmu_cache(vma, address, page_table);
2672 unlock:
2673 	pte_unmap_unlock(page_table, ptl);
2674 out:
2675 	return ret;
2676 out_nomap:
2677 	mem_cgroup_cancel_charge(page, memcg, false);
2678 	pte_unmap_unlock(page_table, ptl);
2679 out_page:
2680 	unlock_page(page);
2681 out_release:
2682 	put_page(page);
2683 	if (page != swapcache) {
2684 		unlock_page(swapcache);
2685 		put_page(swapcache);
2686 	}
2687 	return ret;
2688 }
2689 
2690 /*
2691  * This is like a special single-page "expand_{down|up}wards()",
2692  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2693  * doesn't hit another vma.
2694  */
2695 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2696 {
2697 	address &= PAGE_MASK;
2698 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2699 		struct vm_area_struct *prev = vma->vm_prev;
2700 
2701 		/*
2702 		 * Is there a mapping abutting this one below?
2703 		 *
2704 		 * That's only ok if it's the same stack mapping
2705 		 * that has gotten split..
2706 		 */
2707 		if (prev && prev->vm_end == address)
2708 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2709 
2710 		return expand_downwards(vma, address - PAGE_SIZE);
2711 	}
2712 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2713 		struct vm_area_struct *next = vma->vm_next;
2714 
2715 		/* As VM_GROWSDOWN but s/below/above/ */
2716 		if (next && next->vm_start == address + PAGE_SIZE)
2717 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2718 
2719 		return expand_upwards(vma, address + PAGE_SIZE);
2720 	}
2721 	return 0;
2722 }
2723 
2724 /*
2725  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2726  * but allow concurrent faults), and pte mapped but not yet locked.
2727  * We return with mmap_sem still held, but pte unmapped and unlocked.
2728  */
2729 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2730 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2731 		unsigned int flags)
2732 {
2733 	struct mem_cgroup *memcg;
2734 	struct page *page;
2735 	spinlock_t *ptl;
2736 	pte_t entry;
2737 
2738 	pte_unmap(page_table);
2739 
2740 	/* File mapping without ->vm_ops ? */
2741 	if (vma->vm_flags & VM_SHARED)
2742 		return VM_FAULT_SIGBUS;
2743 
2744 	/* Check if we need to add a guard page to the stack */
2745 	if (check_stack_guard_page(vma, address) < 0)
2746 		return VM_FAULT_SIGSEGV;
2747 
2748 	/* Use the zero-page for reads */
2749 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2750 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2751 						vma->vm_page_prot));
2752 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2753 		if (!pte_none(*page_table))
2754 			goto unlock;
2755 		/* Deliver the page fault to userland, check inside PT lock */
2756 		if (userfaultfd_missing(vma)) {
2757 			pte_unmap_unlock(page_table, ptl);
2758 			return handle_userfault(vma, address, flags,
2759 						VM_UFFD_MISSING);
2760 		}
2761 		goto setpte;
2762 	}
2763 
2764 	/* Allocate our own private page. */
2765 	if (unlikely(anon_vma_prepare(vma)))
2766 		goto oom;
2767 	page = alloc_zeroed_user_highpage_movable(vma, address);
2768 	if (!page)
2769 		goto oom;
2770 
2771 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2772 		goto oom_free_page;
2773 
2774 	/*
2775 	 * The memory barrier inside __SetPageUptodate makes sure that
2776 	 * preceeding stores to the page contents become visible before
2777 	 * the set_pte_at() write.
2778 	 */
2779 	__SetPageUptodate(page);
2780 
2781 	entry = mk_pte(page, vma->vm_page_prot);
2782 	if (vma->vm_flags & VM_WRITE)
2783 		entry = pte_mkwrite(pte_mkdirty(entry));
2784 
2785 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2786 	if (!pte_none(*page_table))
2787 		goto release;
2788 
2789 	/* Deliver the page fault to userland, check inside PT lock */
2790 	if (userfaultfd_missing(vma)) {
2791 		pte_unmap_unlock(page_table, ptl);
2792 		mem_cgroup_cancel_charge(page, memcg, false);
2793 		put_page(page);
2794 		return handle_userfault(vma, address, flags,
2795 					VM_UFFD_MISSING);
2796 	}
2797 
2798 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2799 	page_add_new_anon_rmap(page, vma, address, false);
2800 	mem_cgroup_commit_charge(page, memcg, false, false);
2801 	lru_cache_add_active_or_unevictable(page, vma);
2802 setpte:
2803 	set_pte_at(mm, address, page_table, entry);
2804 
2805 	/* No need to invalidate - it was non-present before */
2806 	update_mmu_cache(vma, address, page_table);
2807 unlock:
2808 	pte_unmap_unlock(page_table, ptl);
2809 	return 0;
2810 release:
2811 	mem_cgroup_cancel_charge(page, memcg, false);
2812 	put_page(page);
2813 	goto unlock;
2814 oom_free_page:
2815 	put_page(page);
2816 oom:
2817 	return VM_FAULT_OOM;
2818 }
2819 
2820 /*
2821  * The mmap_sem must have been held on entry, and may have been
2822  * released depending on flags and vma->vm_ops->fault() return value.
2823  * See filemap_fault() and __lock_page_retry().
2824  */
2825 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2826 			pgoff_t pgoff, unsigned int flags,
2827 			struct page *cow_page, struct page **page,
2828 			void **entry)
2829 {
2830 	struct vm_fault vmf;
2831 	int ret;
2832 
2833 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2834 	vmf.pgoff = pgoff;
2835 	vmf.flags = flags;
2836 	vmf.page = NULL;
2837 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2838 	vmf.cow_page = cow_page;
2839 
2840 	ret = vma->vm_ops->fault(vma, &vmf);
2841 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2842 		return ret;
2843 	if (ret & VM_FAULT_DAX_LOCKED) {
2844 		*entry = vmf.entry;
2845 		return ret;
2846 	}
2847 
2848 	if (unlikely(PageHWPoison(vmf.page))) {
2849 		if (ret & VM_FAULT_LOCKED)
2850 			unlock_page(vmf.page);
2851 		put_page(vmf.page);
2852 		return VM_FAULT_HWPOISON;
2853 	}
2854 
2855 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2856 		lock_page(vmf.page);
2857 	else
2858 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2859 
2860 	*page = vmf.page;
2861 	return ret;
2862 }
2863 
2864 /**
2865  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2866  *
2867  * @vma: virtual memory area
2868  * @address: user virtual address
2869  * @page: page to map
2870  * @pte: pointer to target page table entry
2871  * @write: true, if new entry is writable
2872  * @anon: true, if it's anonymous page
2873  *
2874  * Caller must hold page table lock relevant for @pte.
2875  *
2876  * Target users are page handler itself and implementations of
2877  * vm_ops->map_pages.
2878  */
2879 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2880 		struct page *page, pte_t *pte, bool write, bool anon, bool old)
2881 {
2882 	pte_t entry;
2883 
2884 	flush_icache_page(vma, page);
2885 	entry = mk_pte(page, vma->vm_page_prot);
2886 	if (write)
2887 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2888 	if (old)
2889 		entry = pte_mkold(entry);
2890 	if (anon) {
2891 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2892 		page_add_new_anon_rmap(page, vma, address, false);
2893 	} else {
2894 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2895 		page_add_file_rmap(page);
2896 	}
2897 	set_pte_at(vma->vm_mm, address, pte, entry);
2898 
2899 	/* no need to invalidate: a not-present page won't be cached */
2900 	update_mmu_cache(vma, address, pte);
2901 }
2902 
2903 /*
2904  * If architecture emulates "accessed" or "young" bit without HW support,
2905  * there is no much gain with fault_around.
2906  */
2907 static unsigned long fault_around_bytes __read_mostly =
2908 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
2909 	PAGE_SIZE;
2910 #else
2911 	rounddown_pow_of_two(65536);
2912 #endif
2913 
2914 #ifdef CONFIG_DEBUG_FS
2915 static int fault_around_bytes_get(void *data, u64 *val)
2916 {
2917 	*val = fault_around_bytes;
2918 	return 0;
2919 }
2920 
2921 /*
2922  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2923  * rounded down to nearest page order. It's what do_fault_around() expects to
2924  * see.
2925  */
2926 static int fault_around_bytes_set(void *data, u64 val)
2927 {
2928 	if (val / PAGE_SIZE > PTRS_PER_PTE)
2929 		return -EINVAL;
2930 	if (val > PAGE_SIZE)
2931 		fault_around_bytes = rounddown_pow_of_two(val);
2932 	else
2933 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2934 	return 0;
2935 }
2936 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2937 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2938 
2939 static int __init fault_around_debugfs(void)
2940 {
2941 	void *ret;
2942 
2943 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2944 			&fault_around_bytes_fops);
2945 	if (!ret)
2946 		pr_warn("Failed to create fault_around_bytes in debugfs");
2947 	return 0;
2948 }
2949 late_initcall(fault_around_debugfs);
2950 #endif
2951 
2952 /*
2953  * do_fault_around() tries to map few pages around the fault address. The hope
2954  * is that the pages will be needed soon and this will lower the number of
2955  * faults to handle.
2956  *
2957  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2958  * not ready to be mapped: not up-to-date, locked, etc.
2959  *
2960  * This function is called with the page table lock taken. In the split ptlock
2961  * case the page table lock only protects only those entries which belong to
2962  * the page table corresponding to the fault address.
2963  *
2964  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2965  * only once.
2966  *
2967  * fault_around_pages() defines how many pages we'll try to map.
2968  * do_fault_around() expects it to return a power of two less than or equal to
2969  * PTRS_PER_PTE.
2970  *
2971  * The virtual address of the area that we map is naturally aligned to the
2972  * fault_around_pages() value (and therefore to page order).  This way it's
2973  * easier to guarantee that we don't cross page table boundaries.
2974  */
2975 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2976 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2977 {
2978 	unsigned long start_addr, nr_pages, mask;
2979 	pgoff_t max_pgoff;
2980 	struct vm_fault vmf;
2981 	int off;
2982 
2983 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2984 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2985 
2986 	start_addr = max(address & mask, vma->vm_start);
2987 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2988 	pte -= off;
2989 	pgoff -= off;
2990 
2991 	/*
2992 	 *  max_pgoff is either end of page table or end of vma
2993 	 *  or fault_around_pages() from pgoff, depending what is nearest.
2994 	 */
2995 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2996 		PTRS_PER_PTE - 1;
2997 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2998 			pgoff + nr_pages - 1);
2999 
3000 	/* Check if it makes any sense to call ->map_pages */
3001 	while (!pte_none(*pte)) {
3002 		if (++pgoff > max_pgoff)
3003 			return;
3004 		start_addr += PAGE_SIZE;
3005 		if (start_addr >= vma->vm_end)
3006 			return;
3007 		pte++;
3008 	}
3009 
3010 	vmf.virtual_address = (void __user *) start_addr;
3011 	vmf.pte = pte;
3012 	vmf.pgoff = pgoff;
3013 	vmf.max_pgoff = max_pgoff;
3014 	vmf.flags = flags;
3015 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
3016 	vma->vm_ops->map_pages(vma, &vmf);
3017 }
3018 
3019 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3020 		unsigned long address, pmd_t *pmd,
3021 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3022 {
3023 	struct page *fault_page;
3024 	spinlock_t *ptl;
3025 	pte_t *pte;
3026 	int ret = 0;
3027 
3028 	/*
3029 	 * Let's call ->map_pages() first and use ->fault() as fallback
3030 	 * if page by the offset is not ready to be mapped (cold cache or
3031 	 * something).
3032 	 */
3033 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3034 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3035 		if (!pte_same(*pte, orig_pte))
3036 			goto unlock_out;
3037 		do_fault_around(vma, address, pte, pgoff, flags);
3038 		/* Check if the fault is handled by faultaround */
3039 		if (!pte_same(*pte, orig_pte)) {
3040 			/*
3041 			 * Faultaround produce old pte, but the pte we've
3042 			 * handler fault for should be young.
3043 			 */
3044 			pte_t entry = pte_mkyoung(*pte);
3045 			if (ptep_set_access_flags(vma, address, pte, entry, 0))
3046 				update_mmu_cache(vma, address, pte);
3047 			goto unlock_out;
3048 		}
3049 		pte_unmap_unlock(pte, ptl);
3050 	}
3051 
3052 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page, NULL);
3053 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3054 		return ret;
3055 
3056 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3057 	if (unlikely(!pte_same(*pte, orig_pte))) {
3058 		pte_unmap_unlock(pte, ptl);
3059 		unlock_page(fault_page);
3060 		put_page(fault_page);
3061 		return ret;
3062 	}
3063 	do_set_pte(vma, address, fault_page, pte, false, false, false);
3064 	unlock_page(fault_page);
3065 unlock_out:
3066 	pte_unmap_unlock(pte, ptl);
3067 	return ret;
3068 }
3069 
3070 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3071 		unsigned long address, pmd_t *pmd,
3072 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3073 {
3074 	struct page *fault_page, *new_page;
3075 	void *fault_entry;
3076 	struct mem_cgroup *memcg;
3077 	spinlock_t *ptl;
3078 	pte_t *pte;
3079 	int ret;
3080 
3081 	if (unlikely(anon_vma_prepare(vma)))
3082 		return VM_FAULT_OOM;
3083 
3084 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3085 	if (!new_page)
3086 		return VM_FAULT_OOM;
3087 
3088 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3089 		put_page(new_page);
3090 		return VM_FAULT_OOM;
3091 	}
3092 
3093 	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page,
3094 			 &fault_entry);
3095 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3096 		goto uncharge_out;
3097 
3098 	if (!(ret & VM_FAULT_DAX_LOCKED))
3099 		copy_user_highpage(new_page, fault_page, address, vma);
3100 	__SetPageUptodate(new_page);
3101 
3102 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3103 	if (unlikely(!pte_same(*pte, orig_pte))) {
3104 		pte_unmap_unlock(pte, ptl);
3105 		if (!(ret & VM_FAULT_DAX_LOCKED)) {
3106 			unlock_page(fault_page);
3107 			put_page(fault_page);
3108 		} else {
3109 			dax_unlock_mapping_entry(vma->vm_file->f_mapping,
3110 						 pgoff);
3111 		}
3112 		goto uncharge_out;
3113 	}
3114 	do_set_pte(vma, address, new_page, pte, true, true, false);
3115 	mem_cgroup_commit_charge(new_page, memcg, false, false);
3116 	lru_cache_add_active_or_unevictable(new_page, vma);
3117 	pte_unmap_unlock(pte, ptl);
3118 	if (!(ret & VM_FAULT_DAX_LOCKED)) {
3119 		unlock_page(fault_page);
3120 		put_page(fault_page);
3121 	} else {
3122 		dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff);
3123 	}
3124 	return ret;
3125 uncharge_out:
3126 	mem_cgroup_cancel_charge(new_page, memcg, false);
3127 	put_page(new_page);
3128 	return ret;
3129 }
3130 
3131 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3132 		unsigned long address, pmd_t *pmd,
3133 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3134 {
3135 	struct page *fault_page;
3136 	struct address_space *mapping;
3137 	spinlock_t *ptl;
3138 	pte_t *pte;
3139 	int dirtied = 0;
3140 	int ret, tmp;
3141 
3142 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page, NULL);
3143 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3144 		return ret;
3145 
3146 	/*
3147 	 * Check if the backing address space wants to know that the page is
3148 	 * about to become writable
3149 	 */
3150 	if (vma->vm_ops->page_mkwrite) {
3151 		unlock_page(fault_page);
3152 		tmp = do_page_mkwrite(vma, fault_page, address);
3153 		if (unlikely(!tmp ||
3154 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3155 			put_page(fault_page);
3156 			return tmp;
3157 		}
3158 	}
3159 
3160 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3161 	if (unlikely(!pte_same(*pte, orig_pte))) {
3162 		pte_unmap_unlock(pte, ptl);
3163 		unlock_page(fault_page);
3164 		put_page(fault_page);
3165 		return ret;
3166 	}
3167 	do_set_pte(vma, address, fault_page, pte, true, false, false);
3168 	pte_unmap_unlock(pte, ptl);
3169 
3170 	if (set_page_dirty(fault_page))
3171 		dirtied = 1;
3172 	/*
3173 	 * Take a local copy of the address_space - page.mapping may be zeroed
3174 	 * by truncate after unlock_page().   The address_space itself remains
3175 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3176 	 * release semantics to prevent the compiler from undoing this copying.
3177 	 */
3178 	mapping = page_rmapping(fault_page);
3179 	unlock_page(fault_page);
3180 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3181 		/*
3182 		 * Some device drivers do not set page.mapping but still
3183 		 * dirty their pages
3184 		 */
3185 		balance_dirty_pages_ratelimited(mapping);
3186 	}
3187 
3188 	if (!vma->vm_ops->page_mkwrite)
3189 		file_update_time(vma->vm_file);
3190 
3191 	return ret;
3192 }
3193 
3194 /*
3195  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3196  * but allow concurrent faults).
3197  * The mmap_sem may have been released depending on flags and our
3198  * return value.  See filemap_fault() and __lock_page_or_retry().
3199  */
3200 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3201 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3202 		unsigned int flags, pte_t orig_pte)
3203 {
3204 	pgoff_t pgoff = linear_page_index(vma, address);
3205 
3206 	pte_unmap(page_table);
3207 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3208 	if (!vma->vm_ops->fault)
3209 		return VM_FAULT_SIGBUS;
3210 	if (!(flags & FAULT_FLAG_WRITE))
3211 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3212 				orig_pte);
3213 	if (!(vma->vm_flags & VM_SHARED))
3214 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3215 				orig_pte);
3216 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3217 }
3218 
3219 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3220 				unsigned long addr, int page_nid,
3221 				int *flags)
3222 {
3223 	get_page(page);
3224 
3225 	count_vm_numa_event(NUMA_HINT_FAULTS);
3226 	if (page_nid == numa_node_id()) {
3227 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3228 		*flags |= TNF_FAULT_LOCAL;
3229 	}
3230 
3231 	return mpol_misplaced(page, vma, addr);
3232 }
3233 
3234 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3235 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3236 {
3237 	struct page *page = NULL;
3238 	spinlock_t *ptl;
3239 	int page_nid = -1;
3240 	int last_cpupid;
3241 	int target_nid;
3242 	bool migrated = false;
3243 	bool was_writable = pte_write(pte);
3244 	int flags = 0;
3245 
3246 	/* A PROT_NONE fault should not end up here */
3247 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3248 
3249 	/*
3250 	* The "pte" at this point cannot be used safely without
3251 	* validation through pte_unmap_same(). It's of NUMA type but
3252 	* the pfn may be screwed if the read is non atomic.
3253 	*
3254 	* We can safely just do a "set_pte_at()", because the old
3255 	* page table entry is not accessible, so there would be no
3256 	* concurrent hardware modifications to the PTE.
3257 	*/
3258 	ptl = pte_lockptr(mm, pmd);
3259 	spin_lock(ptl);
3260 	if (unlikely(!pte_same(*ptep, pte))) {
3261 		pte_unmap_unlock(ptep, ptl);
3262 		goto out;
3263 	}
3264 
3265 	/* Make it present again */
3266 	pte = pte_modify(pte, vma->vm_page_prot);
3267 	pte = pte_mkyoung(pte);
3268 	if (was_writable)
3269 		pte = pte_mkwrite(pte);
3270 	set_pte_at(mm, addr, ptep, pte);
3271 	update_mmu_cache(vma, addr, ptep);
3272 
3273 	page = vm_normal_page(vma, addr, pte);
3274 	if (!page) {
3275 		pte_unmap_unlock(ptep, ptl);
3276 		return 0;
3277 	}
3278 
3279 	/* TODO: handle PTE-mapped THP */
3280 	if (PageCompound(page)) {
3281 		pte_unmap_unlock(ptep, ptl);
3282 		return 0;
3283 	}
3284 
3285 	/*
3286 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3287 	 * much anyway since they can be in shared cache state. This misses
3288 	 * the case where a mapping is writable but the process never writes
3289 	 * to it but pte_write gets cleared during protection updates and
3290 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3291 	 * background writeback, dirty balancing and application behaviour.
3292 	 */
3293 	if (!(vma->vm_flags & VM_WRITE))
3294 		flags |= TNF_NO_GROUP;
3295 
3296 	/*
3297 	 * Flag if the page is shared between multiple address spaces. This
3298 	 * is later used when determining whether to group tasks together
3299 	 */
3300 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3301 		flags |= TNF_SHARED;
3302 
3303 	last_cpupid = page_cpupid_last(page);
3304 	page_nid = page_to_nid(page);
3305 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3306 	pte_unmap_unlock(ptep, ptl);
3307 	if (target_nid == -1) {
3308 		put_page(page);
3309 		goto out;
3310 	}
3311 
3312 	/* Migrate to the requested node */
3313 	migrated = migrate_misplaced_page(page, vma, target_nid);
3314 	if (migrated) {
3315 		page_nid = target_nid;
3316 		flags |= TNF_MIGRATED;
3317 	} else
3318 		flags |= TNF_MIGRATE_FAIL;
3319 
3320 out:
3321 	if (page_nid != -1)
3322 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3323 	return 0;
3324 }
3325 
3326 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3327 			unsigned long address, pmd_t *pmd, unsigned int flags)
3328 {
3329 	if (vma_is_anonymous(vma))
3330 		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3331 	if (vma->vm_ops->pmd_fault)
3332 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3333 	return VM_FAULT_FALLBACK;
3334 }
3335 
3336 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3337 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3338 			unsigned int flags)
3339 {
3340 	if (vma_is_anonymous(vma))
3341 		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3342 	if (vma->vm_ops->pmd_fault)
3343 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3344 	return VM_FAULT_FALLBACK;
3345 }
3346 
3347 /*
3348  * These routines also need to handle stuff like marking pages dirty
3349  * and/or accessed for architectures that don't do it in hardware (most
3350  * RISC architectures).  The early dirtying is also good on the i386.
3351  *
3352  * There is also a hook called "update_mmu_cache()" that architectures
3353  * with external mmu caches can use to update those (ie the Sparc or
3354  * PowerPC hashed page tables that act as extended TLBs).
3355  *
3356  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3357  * but allow concurrent faults), and pte mapped but not yet locked.
3358  * We return with pte unmapped and unlocked.
3359  *
3360  * The mmap_sem may have been released depending on flags and our
3361  * return value.  See filemap_fault() and __lock_page_or_retry().
3362  */
3363 static int handle_pte_fault(struct mm_struct *mm,
3364 		     struct vm_area_struct *vma, unsigned long address,
3365 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3366 {
3367 	pte_t entry;
3368 	spinlock_t *ptl;
3369 
3370 	/*
3371 	 * some architectures can have larger ptes than wordsize,
3372 	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3373 	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3374 	 * The code below just needs a consistent view for the ifs and
3375 	 * we later double check anyway with the ptl lock held. So here
3376 	 * a barrier will do.
3377 	 */
3378 	entry = *pte;
3379 	barrier();
3380 	if (!pte_present(entry)) {
3381 		if (pte_none(entry)) {
3382 			if (vma_is_anonymous(vma))
3383 				return do_anonymous_page(mm, vma, address,
3384 							 pte, pmd, flags);
3385 			else
3386 				return do_fault(mm, vma, address, pte, pmd,
3387 						flags, entry);
3388 		}
3389 		return do_swap_page(mm, vma, address,
3390 					pte, pmd, flags, entry);
3391 	}
3392 
3393 	if (pte_protnone(entry))
3394 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3395 
3396 	ptl = pte_lockptr(mm, pmd);
3397 	spin_lock(ptl);
3398 	if (unlikely(!pte_same(*pte, entry)))
3399 		goto unlock;
3400 	if (flags & FAULT_FLAG_WRITE) {
3401 		if (!pte_write(entry))
3402 			return do_wp_page(mm, vma, address,
3403 					pte, pmd, ptl, entry);
3404 		entry = pte_mkdirty(entry);
3405 	}
3406 	entry = pte_mkyoung(entry);
3407 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3408 		update_mmu_cache(vma, address, pte);
3409 	} else {
3410 		/*
3411 		 * This is needed only for protection faults but the arch code
3412 		 * is not yet telling us if this is a protection fault or not.
3413 		 * This still avoids useless tlb flushes for .text page faults
3414 		 * with threads.
3415 		 */
3416 		if (flags & FAULT_FLAG_WRITE)
3417 			flush_tlb_fix_spurious_fault(vma, address);
3418 	}
3419 unlock:
3420 	pte_unmap_unlock(pte, ptl);
3421 	return 0;
3422 }
3423 
3424 /*
3425  * By the time we get here, we already hold the mm semaphore
3426  *
3427  * The mmap_sem may have been released depending on flags and our
3428  * return value.  See filemap_fault() and __lock_page_or_retry().
3429  */
3430 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3431 			     unsigned long address, unsigned int flags)
3432 {
3433 	pgd_t *pgd;
3434 	pud_t *pud;
3435 	pmd_t *pmd;
3436 	pte_t *pte;
3437 
3438 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3439 					    flags & FAULT_FLAG_INSTRUCTION,
3440 					    flags & FAULT_FLAG_REMOTE))
3441 		return VM_FAULT_SIGSEGV;
3442 
3443 	if (unlikely(is_vm_hugetlb_page(vma)))
3444 		return hugetlb_fault(mm, vma, address, flags);
3445 
3446 	pgd = pgd_offset(mm, address);
3447 	pud = pud_alloc(mm, pgd, address);
3448 	if (!pud)
3449 		return VM_FAULT_OOM;
3450 	pmd = pmd_alloc(mm, pud, address);
3451 	if (!pmd)
3452 		return VM_FAULT_OOM;
3453 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3454 		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3455 		if (!(ret & VM_FAULT_FALLBACK))
3456 			return ret;
3457 	} else {
3458 		pmd_t orig_pmd = *pmd;
3459 		int ret;
3460 
3461 		barrier();
3462 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3463 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3464 
3465 			if (pmd_protnone(orig_pmd))
3466 				return do_huge_pmd_numa_page(mm, vma, address,
3467 							     orig_pmd, pmd);
3468 
3469 			if (dirty && !pmd_write(orig_pmd)) {
3470 				ret = wp_huge_pmd(mm, vma, address, pmd,
3471 							orig_pmd, flags);
3472 				if (!(ret & VM_FAULT_FALLBACK))
3473 					return ret;
3474 			} else {
3475 				huge_pmd_set_accessed(mm, vma, address, pmd,
3476 						      orig_pmd, dirty);
3477 				return 0;
3478 			}
3479 		}
3480 	}
3481 
3482 	/*
3483 	 * Use pte_alloc() instead of pte_alloc_map, because we can't
3484 	 * run pte_offset_map on the pmd, if an huge pmd could
3485 	 * materialize from under us from a different thread.
3486 	 */
3487 	if (unlikely(pte_alloc(mm, pmd, address)))
3488 		return VM_FAULT_OOM;
3489 	/*
3490 	 * If a huge pmd materialized under us just retry later.  Use
3491 	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3492 	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3493 	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3494 	 * in a different thread of this mm, in turn leading to a misleading
3495 	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
3496 	 * regular pmd that we can walk with pte_offset_map() and we can do that
3497 	 * through an atomic read in C, which is what pmd_trans_unstable()
3498 	 * provides.
3499 	 */
3500 	if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3501 		return 0;
3502 	/*
3503 	 * A regular pmd is established and it can't morph into a huge pmd
3504 	 * from under us anymore at this point because we hold the mmap_sem
3505 	 * read mode and khugepaged takes it in write mode. So now it's
3506 	 * safe to run pte_offset_map().
3507 	 */
3508 	pte = pte_offset_map(pmd, address);
3509 
3510 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3511 }
3512 
3513 /*
3514  * By the time we get here, we already hold the mm semaphore
3515  *
3516  * The mmap_sem may have been released depending on flags and our
3517  * return value.  See filemap_fault() and __lock_page_or_retry().
3518  */
3519 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3520 		    unsigned long address, unsigned int flags)
3521 {
3522 	int ret;
3523 
3524 	__set_current_state(TASK_RUNNING);
3525 
3526 	count_vm_event(PGFAULT);
3527 	mem_cgroup_count_vm_event(mm, PGFAULT);
3528 
3529 	/* do counter updates before entering really critical section. */
3530 	check_sync_rss_stat(current);
3531 
3532 	/*
3533 	 * Enable the memcg OOM handling for faults triggered in user
3534 	 * space.  Kernel faults are handled more gracefully.
3535 	 */
3536 	if (flags & FAULT_FLAG_USER)
3537 		mem_cgroup_oom_enable();
3538 
3539 	ret = __handle_mm_fault(mm, vma, address, flags);
3540 
3541 	if (flags & FAULT_FLAG_USER) {
3542 		mem_cgroup_oom_disable();
3543                 /*
3544                  * The task may have entered a memcg OOM situation but
3545                  * if the allocation error was handled gracefully (no
3546                  * VM_FAULT_OOM), there is no need to kill anything.
3547                  * Just clean up the OOM state peacefully.
3548                  */
3549                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3550                         mem_cgroup_oom_synchronize(false);
3551 	}
3552 
3553 	return ret;
3554 }
3555 EXPORT_SYMBOL_GPL(handle_mm_fault);
3556 
3557 #ifndef __PAGETABLE_PUD_FOLDED
3558 /*
3559  * Allocate page upper directory.
3560  * We've already handled the fast-path in-line.
3561  */
3562 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3563 {
3564 	pud_t *new = pud_alloc_one(mm, address);
3565 	if (!new)
3566 		return -ENOMEM;
3567 
3568 	smp_wmb(); /* See comment in __pte_alloc */
3569 
3570 	spin_lock(&mm->page_table_lock);
3571 	if (pgd_present(*pgd))		/* Another has populated it */
3572 		pud_free(mm, new);
3573 	else
3574 		pgd_populate(mm, pgd, new);
3575 	spin_unlock(&mm->page_table_lock);
3576 	return 0;
3577 }
3578 #endif /* __PAGETABLE_PUD_FOLDED */
3579 
3580 #ifndef __PAGETABLE_PMD_FOLDED
3581 /*
3582  * Allocate page middle directory.
3583  * We've already handled the fast-path in-line.
3584  */
3585 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3586 {
3587 	pmd_t *new = pmd_alloc_one(mm, address);
3588 	if (!new)
3589 		return -ENOMEM;
3590 
3591 	smp_wmb(); /* See comment in __pte_alloc */
3592 
3593 	spin_lock(&mm->page_table_lock);
3594 #ifndef __ARCH_HAS_4LEVEL_HACK
3595 	if (!pud_present(*pud)) {
3596 		mm_inc_nr_pmds(mm);
3597 		pud_populate(mm, pud, new);
3598 	} else	/* Another has populated it */
3599 		pmd_free(mm, new);
3600 #else
3601 	if (!pgd_present(*pud)) {
3602 		mm_inc_nr_pmds(mm);
3603 		pgd_populate(mm, pud, new);
3604 	} else /* Another has populated it */
3605 		pmd_free(mm, new);
3606 #endif /* __ARCH_HAS_4LEVEL_HACK */
3607 	spin_unlock(&mm->page_table_lock);
3608 	return 0;
3609 }
3610 #endif /* __PAGETABLE_PMD_FOLDED */
3611 
3612 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3613 		pte_t **ptepp, spinlock_t **ptlp)
3614 {
3615 	pgd_t *pgd;
3616 	pud_t *pud;
3617 	pmd_t *pmd;
3618 	pte_t *ptep;
3619 
3620 	pgd = pgd_offset(mm, address);
3621 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3622 		goto out;
3623 
3624 	pud = pud_offset(pgd, address);
3625 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3626 		goto out;
3627 
3628 	pmd = pmd_offset(pud, address);
3629 	VM_BUG_ON(pmd_trans_huge(*pmd));
3630 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3631 		goto out;
3632 
3633 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3634 	if (pmd_huge(*pmd))
3635 		goto out;
3636 
3637 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3638 	if (!ptep)
3639 		goto out;
3640 	if (!pte_present(*ptep))
3641 		goto unlock;
3642 	*ptepp = ptep;
3643 	return 0;
3644 unlock:
3645 	pte_unmap_unlock(ptep, *ptlp);
3646 out:
3647 	return -EINVAL;
3648 }
3649 
3650 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3651 			     pte_t **ptepp, spinlock_t **ptlp)
3652 {
3653 	int res;
3654 
3655 	/* (void) is needed to make gcc happy */
3656 	(void) __cond_lock(*ptlp,
3657 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3658 	return res;
3659 }
3660 
3661 /**
3662  * follow_pfn - look up PFN at a user virtual address
3663  * @vma: memory mapping
3664  * @address: user virtual address
3665  * @pfn: location to store found PFN
3666  *
3667  * Only IO mappings and raw PFN mappings are allowed.
3668  *
3669  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3670  */
3671 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3672 	unsigned long *pfn)
3673 {
3674 	int ret = -EINVAL;
3675 	spinlock_t *ptl;
3676 	pte_t *ptep;
3677 
3678 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3679 		return ret;
3680 
3681 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3682 	if (ret)
3683 		return ret;
3684 	*pfn = pte_pfn(*ptep);
3685 	pte_unmap_unlock(ptep, ptl);
3686 	return 0;
3687 }
3688 EXPORT_SYMBOL(follow_pfn);
3689 
3690 #ifdef CONFIG_HAVE_IOREMAP_PROT
3691 int follow_phys(struct vm_area_struct *vma,
3692 		unsigned long address, unsigned int flags,
3693 		unsigned long *prot, resource_size_t *phys)
3694 {
3695 	int ret = -EINVAL;
3696 	pte_t *ptep, pte;
3697 	spinlock_t *ptl;
3698 
3699 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3700 		goto out;
3701 
3702 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3703 		goto out;
3704 	pte = *ptep;
3705 
3706 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3707 		goto unlock;
3708 
3709 	*prot = pgprot_val(pte_pgprot(pte));
3710 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3711 
3712 	ret = 0;
3713 unlock:
3714 	pte_unmap_unlock(ptep, ptl);
3715 out:
3716 	return ret;
3717 }
3718 
3719 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3720 			void *buf, int len, int write)
3721 {
3722 	resource_size_t phys_addr;
3723 	unsigned long prot = 0;
3724 	void __iomem *maddr;
3725 	int offset = addr & (PAGE_SIZE-1);
3726 
3727 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3728 		return -EINVAL;
3729 
3730 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3731 	if (write)
3732 		memcpy_toio(maddr + offset, buf, len);
3733 	else
3734 		memcpy_fromio(buf, maddr + offset, len);
3735 	iounmap(maddr);
3736 
3737 	return len;
3738 }
3739 EXPORT_SYMBOL_GPL(generic_access_phys);
3740 #endif
3741 
3742 /*
3743  * Access another process' address space as given in mm.  If non-NULL, use the
3744  * given task for page fault accounting.
3745  */
3746 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3747 		unsigned long addr, void *buf, int len, int write)
3748 {
3749 	struct vm_area_struct *vma;
3750 	void *old_buf = buf;
3751 
3752 	down_read(&mm->mmap_sem);
3753 	/* ignore errors, just check how much was successfully transferred */
3754 	while (len) {
3755 		int bytes, ret, offset;
3756 		void *maddr;
3757 		struct page *page = NULL;
3758 
3759 		ret = get_user_pages_remote(tsk, mm, addr, 1,
3760 				write, 1, &page, &vma);
3761 		if (ret <= 0) {
3762 #ifndef CONFIG_HAVE_IOREMAP_PROT
3763 			break;
3764 #else
3765 			/*
3766 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3767 			 * we can access using slightly different code.
3768 			 */
3769 			vma = find_vma(mm, addr);
3770 			if (!vma || vma->vm_start > addr)
3771 				break;
3772 			if (vma->vm_ops && vma->vm_ops->access)
3773 				ret = vma->vm_ops->access(vma, addr, buf,
3774 							  len, write);
3775 			if (ret <= 0)
3776 				break;
3777 			bytes = ret;
3778 #endif
3779 		} else {
3780 			bytes = len;
3781 			offset = addr & (PAGE_SIZE-1);
3782 			if (bytes > PAGE_SIZE-offset)
3783 				bytes = PAGE_SIZE-offset;
3784 
3785 			maddr = kmap(page);
3786 			if (write) {
3787 				copy_to_user_page(vma, page, addr,
3788 						  maddr + offset, buf, bytes);
3789 				set_page_dirty_lock(page);
3790 			} else {
3791 				copy_from_user_page(vma, page, addr,
3792 						    buf, maddr + offset, bytes);
3793 			}
3794 			kunmap(page);
3795 			put_page(page);
3796 		}
3797 		len -= bytes;
3798 		buf += bytes;
3799 		addr += bytes;
3800 	}
3801 	up_read(&mm->mmap_sem);
3802 
3803 	return buf - old_buf;
3804 }
3805 
3806 /**
3807  * access_remote_vm - access another process' address space
3808  * @mm:		the mm_struct of the target address space
3809  * @addr:	start address to access
3810  * @buf:	source or destination buffer
3811  * @len:	number of bytes to transfer
3812  * @write:	whether the access is a write
3813  *
3814  * The caller must hold a reference on @mm.
3815  */
3816 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3817 		void *buf, int len, int write)
3818 {
3819 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3820 }
3821 
3822 /*
3823  * Access another process' address space.
3824  * Source/target buffer must be kernel space,
3825  * Do not walk the page table directly, use get_user_pages
3826  */
3827 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3828 		void *buf, int len, int write)
3829 {
3830 	struct mm_struct *mm;
3831 	int ret;
3832 
3833 	mm = get_task_mm(tsk);
3834 	if (!mm)
3835 		return 0;
3836 
3837 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3838 	mmput(mm);
3839 
3840 	return ret;
3841 }
3842 
3843 /*
3844  * Print the name of a VMA.
3845  */
3846 void print_vma_addr(char *prefix, unsigned long ip)
3847 {
3848 	struct mm_struct *mm = current->mm;
3849 	struct vm_area_struct *vma;
3850 
3851 	/*
3852 	 * Do not print if we are in atomic
3853 	 * contexts (in exception stacks, etc.):
3854 	 */
3855 	if (preempt_count())
3856 		return;
3857 
3858 	down_read(&mm->mmap_sem);
3859 	vma = find_vma(mm, ip);
3860 	if (vma && vma->vm_file) {
3861 		struct file *f = vma->vm_file;
3862 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3863 		if (buf) {
3864 			char *p;
3865 
3866 			p = file_path(f, buf, PAGE_SIZE);
3867 			if (IS_ERR(p))
3868 				p = "?";
3869 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3870 					vma->vm_start,
3871 					vma->vm_end - vma->vm_start);
3872 			free_page((unsigned long)buf);
3873 		}
3874 	}
3875 	up_read(&mm->mmap_sem);
3876 }
3877 
3878 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3879 void __might_fault(const char *file, int line)
3880 {
3881 	/*
3882 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3883 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3884 	 * get paged out, therefore we'll never actually fault, and the
3885 	 * below annotations will generate false positives.
3886 	 */
3887 	if (segment_eq(get_fs(), KERNEL_DS))
3888 		return;
3889 	if (pagefault_disabled())
3890 		return;
3891 	__might_sleep(file, line, 0);
3892 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3893 	if (current->mm)
3894 		might_lock_read(&current->mm->mmap_sem);
3895 #endif
3896 }
3897 EXPORT_SYMBOL(__might_fault);
3898 #endif
3899 
3900 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3901 static void clear_gigantic_page(struct page *page,
3902 				unsigned long addr,
3903 				unsigned int pages_per_huge_page)
3904 {
3905 	int i;
3906 	struct page *p = page;
3907 
3908 	might_sleep();
3909 	for (i = 0; i < pages_per_huge_page;
3910 	     i++, p = mem_map_next(p, page, i)) {
3911 		cond_resched();
3912 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3913 	}
3914 }
3915 void clear_huge_page(struct page *page,
3916 		     unsigned long addr, unsigned int pages_per_huge_page)
3917 {
3918 	int i;
3919 
3920 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3921 		clear_gigantic_page(page, addr, pages_per_huge_page);
3922 		return;
3923 	}
3924 
3925 	might_sleep();
3926 	for (i = 0; i < pages_per_huge_page; i++) {
3927 		cond_resched();
3928 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3929 	}
3930 }
3931 
3932 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3933 				    unsigned long addr,
3934 				    struct vm_area_struct *vma,
3935 				    unsigned int pages_per_huge_page)
3936 {
3937 	int i;
3938 	struct page *dst_base = dst;
3939 	struct page *src_base = src;
3940 
3941 	for (i = 0; i < pages_per_huge_page; ) {
3942 		cond_resched();
3943 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3944 
3945 		i++;
3946 		dst = mem_map_next(dst, dst_base, i);
3947 		src = mem_map_next(src, src_base, i);
3948 	}
3949 }
3950 
3951 void copy_user_huge_page(struct page *dst, struct page *src,
3952 			 unsigned long addr, struct vm_area_struct *vma,
3953 			 unsigned int pages_per_huge_page)
3954 {
3955 	int i;
3956 
3957 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3958 		copy_user_gigantic_page(dst, src, addr, vma,
3959 					pages_per_huge_page);
3960 		return;
3961 	}
3962 
3963 	might_sleep();
3964 	for (i = 0; i < pages_per_huge_page; i++) {
3965 		cond_resched();
3966 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3967 	}
3968 }
3969 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3970 
3971 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3972 
3973 static struct kmem_cache *page_ptl_cachep;
3974 
3975 void __init ptlock_cache_init(void)
3976 {
3977 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3978 			SLAB_PANIC, NULL);
3979 }
3980 
3981 bool ptlock_alloc(struct page *page)
3982 {
3983 	spinlock_t *ptl;
3984 
3985 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3986 	if (!ptl)
3987 		return false;
3988 	page->ptl = ptl;
3989 	return true;
3990 }
3991 
3992 void ptlock_free(struct page *page)
3993 {
3994 	kmem_cache_free(page_ptl_cachep, page->ptl);
3995 }
3996 #endif
3997