xref: /openbmc/linux/mm/memory.c (revision 94bfe85b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77 
78 #include <trace/events/kmem.h>
79 
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86 
87 #include "pgalloc-track.h"
88 #include "internal.h"
89 
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93 
94 #ifndef CONFIG_NUMA
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97 
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101 
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111 
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120 					1;
121 #else
122 					2;
123 #endif
124 
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128 	/*
129 	 * Those arches which don't have hw access flag feature need to
130 	 * implement their own helper. By default, "true" means pagefault
131 	 * will be hit on old pte.
132 	 */
133 	return true;
134 }
135 #endif
136 
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
139 {
140 	/*
141 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 	 * some architectures, even if it's performed in hardware. By
143 	 * default, "false" means prefaulted entries will be 'young'.
144 	 */
145 	return false;
146 }
147 #endif
148 
149 static int __init disable_randmaps(char *s)
150 {
151 	randomize_va_space = 0;
152 	return 1;
153 }
154 __setup("norandmaps", disable_randmaps);
155 
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
158 
159 unsigned long highest_memmap_pfn __read_mostly;
160 
161 /*
162  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163  */
164 static int __init init_zero_pfn(void)
165 {
166 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 	return 0;
168 }
169 early_initcall(init_zero_pfn);
170 
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 {
173 	trace_rss_stat(mm, member, count);
174 }
175 
176 #if defined(SPLIT_RSS_COUNTING)
177 
178 void sync_mm_rss(struct mm_struct *mm)
179 {
180 	int i;
181 
182 	for (i = 0; i < NR_MM_COUNTERS; i++) {
183 		if (current->rss_stat.count[i]) {
184 			add_mm_counter(mm, i, current->rss_stat.count[i]);
185 			current->rss_stat.count[i] = 0;
186 		}
187 	}
188 	current->rss_stat.events = 0;
189 }
190 
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 {
193 	struct task_struct *task = current;
194 
195 	if (likely(task->mm == mm))
196 		task->rss_stat.count[member] += val;
197 	else
198 		add_mm_counter(mm, member, val);
199 }
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202 
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH	(64)
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 	if (unlikely(task != current))
208 		return;
209 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210 		sync_mm_rss(task->mm);
211 }
212 #else /* SPLIT_RSS_COUNTING */
213 
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216 
217 static void check_sync_rss_stat(struct task_struct *task)
218 {
219 }
220 
221 #endif /* SPLIT_RSS_COUNTING */
222 
223 /*
224  * Note: this doesn't free the actual pages themselves. That
225  * has been handled earlier when unmapping all the memory regions.
226  */
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 			   unsigned long addr)
229 {
230 	pgtable_t token = pmd_pgtable(*pmd);
231 	pmd_clear(pmd);
232 	pte_free_tlb(tlb, token, addr);
233 	mm_dec_nr_ptes(tlb->mm);
234 }
235 
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 				unsigned long addr, unsigned long end,
238 				unsigned long floor, unsigned long ceiling)
239 {
240 	pmd_t *pmd;
241 	unsigned long next;
242 	unsigned long start;
243 
244 	start = addr;
245 	pmd = pmd_offset(pud, addr);
246 	do {
247 		next = pmd_addr_end(addr, end);
248 		if (pmd_none_or_clear_bad(pmd))
249 			continue;
250 		free_pte_range(tlb, pmd, addr);
251 	} while (pmd++, addr = next, addr != end);
252 
253 	start &= PUD_MASK;
254 	if (start < floor)
255 		return;
256 	if (ceiling) {
257 		ceiling &= PUD_MASK;
258 		if (!ceiling)
259 			return;
260 	}
261 	if (end - 1 > ceiling - 1)
262 		return;
263 
264 	pmd = pmd_offset(pud, start);
265 	pud_clear(pud);
266 	pmd_free_tlb(tlb, pmd, start);
267 	mm_dec_nr_pmds(tlb->mm);
268 }
269 
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271 				unsigned long addr, unsigned long end,
272 				unsigned long floor, unsigned long ceiling)
273 {
274 	pud_t *pud;
275 	unsigned long next;
276 	unsigned long start;
277 
278 	start = addr;
279 	pud = pud_offset(p4d, addr);
280 	do {
281 		next = pud_addr_end(addr, end);
282 		if (pud_none_or_clear_bad(pud))
283 			continue;
284 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285 	} while (pud++, addr = next, addr != end);
286 
287 	start &= P4D_MASK;
288 	if (start < floor)
289 		return;
290 	if (ceiling) {
291 		ceiling &= P4D_MASK;
292 		if (!ceiling)
293 			return;
294 	}
295 	if (end - 1 > ceiling - 1)
296 		return;
297 
298 	pud = pud_offset(p4d, start);
299 	p4d_clear(p4d);
300 	pud_free_tlb(tlb, pud, start);
301 	mm_dec_nr_puds(tlb->mm);
302 }
303 
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 				unsigned long addr, unsigned long end,
306 				unsigned long floor, unsigned long ceiling)
307 {
308 	p4d_t *p4d;
309 	unsigned long next;
310 	unsigned long start;
311 
312 	start = addr;
313 	p4d = p4d_offset(pgd, addr);
314 	do {
315 		next = p4d_addr_end(addr, end);
316 		if (p4d_none_or_clear_bad(p4d))
317 			continue;
318 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 	} while (p4d++, addr = next, addr != end);
320 
321 	start &= PGDIR_MASK;
322 	if (start < floor)
323 		return;
324 	if (ceiling) {
325 		ceiling &= PGDIR_MASK;
326 		if (!ceiling)
327 			return;
328 	}
329 	if (end - 1 > ceiling - 1)
330 		return;
331 
332 	p4d = p4d_offset(pgd, start);
333 	pgd_clear(pgd);
334 	p4d_free_tlb(tlb, p4d, start);
335 }
336 
337 /*
338  * This function frees user-level page tables of a process.
339  */
340 void free_pgd_range(struct mmu_gather *tlb,
341 			unsigned long addr, unsigned long end,
342 			unsigned long floor, unsigned long ceiling)
343 {
344 	pgd_t *pgd;
345 	unsigned long next;
346 
347 	/*
348 	 * The next few lines have given us lots of grief...
349 	 *
350 	 * Why are we testing PMD* at this top level?  Because often
351 	 * there will be no work to do at all, and we'd prefer not to
352 	 * go all the way down to the bottom just to discover that.
353 	 *
354 	 * Why all these "- 1"s?  Because 0 represents both the bottom
355 	 * of the address space and the top of it (using -1 for the
356 	 * top wouldn't help much: the masks would do the wrong thing).
357 	 * The rule is that addr 0 and floor 0 refer to the bottom of
358 	 * the address space, but end 0 and ceiling 0 refer to the top
359 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 	 * that end 0 case should be mythical).
361 	 *
362 	 * Wherever addr is brought up or ceiling brought down, we must
363 	 * be careful to reject "the opposite 0" before it confuses the
364 	 * subsequent tests.  But what about where end is brought down
365 	 * by PMD_SIZE below? no, end can't go down to 0 there.
366 	 *
367 	 * Whereas we round start (addr) and ceiling down, by different
368 	 * masks at different levels, in order to test whether a table
369 	 * now has no other vmas using it, so can be freed, we don't
370 	 * bother to round floor or end up - the tests don't need that.
371 	 */
372 
373 	addr &= PMD_MASK;
374 	if (addr < floor) {
375 		addr += PMD_SIZE;
376 		if (!addr)
377 			return;
378 	}
379 	if (ceiling) {
380 		ceiling &= PMD_MASK;
381 		if (!ceiling)
382 			return;
383 	}
384 	if (end - 1 > ceiling - 1)
385 		end -= PMD_SIZE;
386 	if (addr > end - 1)
387 		return;
388 	/*
389 	 * We add page table cache pages with PAGE_SIZE,
390 	 * (see pte_free_tlb()), flush the tlb if we need
391 	 */
392 	tlb_change_page_size(tlb, PAGE_SIZE);
393 	pgd = pgd_offset(tlb->mm, addr);
394 	do {
395 		next = pgd_addr_end(addr, end);
396 		if (pgd_none_or_clear_bad(pgd))
397 			continue;
398 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399 	} while (pgd++, addr = next, addr != end);
400 }
401 
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403 		unsigned long floor, unsigned long ceiling)
404 {
405 	while (vma) {
406 		struct vm_area_struct *next = vma->vm_next;
407 		unsigned long addr = vma->vm_start;
408 
409 		/*
410 		 * Hide vma from rmap and truncate_pagecache before freeing
411 		 * pgtables
412 		 */
413 		unlink_anon_vmas(vma);
414 		unlink_file_vma(vma);
415 
416 		if (is_vm_hugetlb_page(vma)) {
417 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418 				floor, next ? next->vm_start : ceiling);
419 		} else {
420 			/*
421 			 * Optimization: gather nearby vmas into one call down
422 			 */
423 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424 			       && !is_vm_hugetlb_page(next)) {
425 				vma = next;
426 				next = vma->vm_next;
427 				unlink_anon_vmas(vma);
428 				unlink_file_vma(vma);
429 			}
430 			free_pgd_range(tlb, addr, vma->vm_end,
431 				floor, next ? next->vm_start : ceiling);
432 		}
433 		vma = next;
434 	}
435 }
436 
437 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
438 {
439 	spinlock_t *ptl = pmd_lock(mm, pmd);
440 
441 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
442 		mm_inc_nr_ptes(mm);
443 		/*
444 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 		 * visible before the pte is made visible to other CPUs by being
446 		 * put into page tables.
447 		 *
448 		 * The other side of the story is the pointer chasing in the page
449 		 * table walking code (when walking the page table without locking;
450 		 * ie. most of the time). Fortunately, these data accesses consist
451 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 		 * being the notable exception) will already guarantee loads are
453 		 * seen in-order. See the alpha page table accessors for the
454 		 * smp_rmb() barriers in page table walking code.
455 		 */
456 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457 		pmd_populate(mm, pmd, *pte);
458 		*pte = NULL;
459 	}
460 	spin_unlock(ptl);
461 }
462 
463 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
464 {
465 	pgtable_t new = pte_alloc_one(mm);
466 	if (!new)
467 		return -ENOMEM;
468 
469 	pmd_install(mm, pmd, &new);
470 	if (new)
471 		pte_free(mm, new);
472 	return 0;
473 }
474 
475 int __pte_alloc_kernel(pmd_t *pmd)
476 {
477 	pte_t *new = pte_alloc_one_kernel(&init_mm);
478 	if (!new)
479 		return -ENOMEM;
480 
481 	spin_lock(&init_mm.page_table_lock);
482 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
483 		smp_wmb(); /* See comment in pmd_install() */
484 		pmd_populate_kernel(&init_mm, pmd, new);
485 		new = NULL;
486 	}
487 	spin_unlock(&init_mm.page_table_lock);
488 	if (new)
489 		pte_free_kernel(&init_mm, new);
490 	return 0;
491 }
492 
493 static inline void init_rss_vec(int *rss)
494 {
495 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
496 }
497 
498 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
499 {
500 	int i;
501 
502 	if (current->mm == mm)
503 		sync_mm_rss(mm);
504 	for (i = 0; i < NR_MM_COUNTERS; i++)
505 		if (rss[i])
506 			add_mm_counter(mm, i, rss[i]);
507 }
508 
509 /*
510  * This function is called to print an error when a bad pte
511  * is found. For example, we might have a PFN-mapped pte in
512  * a region that doesn't allow it.
513  *
514  * The calling function must still handle the error.
515  */
516 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517 			  pte_t pte, struct page *page)
518 {
519 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
520 	p4d_t *p4d = p4d_offset(pgd, addr);
521 	pud_t *pud = pud_offset(p4d, addr);
522 	pmd_t *pmd = pmd_offset(pud, addr);
523 	struct address_space *mapping;
524 	pgoff_t index;
525 	static unsigned long resume;
526 	static unsigned long nr_shown;
527 	static unsigned long nr_unshown;
528 
529 	/*
530 	 * Allow a burst of 60 reports, then keep quiet for that minute;
531 	 * or allow a steady drip of one report per second.
532 	 */
533 	if (nr_shown == 60) {
534 		if (time_before(jiffies, resume)) {
535 			nr_unshown++;
536 			return;
537 		}
538 		if (nr_unshown) {
539 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
540 				 nr_unshown);
541 			nr_unshown = 0;
542 		}
543 		nr_shown = 0;
544 	}
545 	if (nr_shown++ == 0)
546 		resume = jiffies + 60 * HZ;
547 
548 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549 	index = linear_page_index(vma, addr);
550 
551 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
552 		 current->comm,
553 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
554 	if (page)
555 		dump_page(page, "bad pte");
556 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
557 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
558 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
559 		 vma->vm_file,
560 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
561 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562 		 mapping ? mapping->a_ops->readpage : NULL);
563 	dump_stack();
564 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
565 }
566 
567 /*
568  * vm_normal_page -- This function gets the "struct page" associated with a pte.
569  *
570  * "Special" mappings do not wish to be associated with a "struct page" (either
571  * it doesn't exist, or it exists but they don't want to touch it). In this
572  * case, NULL is returned here. "Normal" mappings do have a struct page.
573  *
574  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575  * pte bit, in which case this function is trivial. Secondly, an architecture
576  * may not have a spare pte bit, which requires a more complicated scheme,
577  * described below.
578  *
579  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580  * special mapping (even if there are underlying and valid "struct pages").
581  * COWed pages of a VM_PFNMAP are always normal.
582  *
583  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
585  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586  * mapping will always honor the rule
587  *
588  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
589  *
590  * And for normal mappings this is false.
591  *
592  * This restricts such mappings to be a linear translation from virtual address
593  * to pfn. To get around this restriction, we allow arbitrary mappings so long
594  * as the vma is not a COW mapping; in that case, we know that all ptes are
595  * special (because none can have been COWed).
596  *
597  *
598  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
599  *
600  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601  * page" backing, however the difference is that _all_ pages with a struct
602  * page (that is, those where pfn_valid is true) are refcounted and considered
603  * normal pages by the VM. The disadvantage is that pages are refcounted
604  * (which can be slower and simply not an option for some PFNMAP users). The
605  * advantage is that we don't have to follow the strict linearity rule of
606  * PFNMAP mappings in order to support COWable mappings.
607  *
608  */
609 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
610 			    pte_t pte)
611 {
612 	unsigned long pfn = pte_pfn(pte);
613 
614 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
615 		if (likely(!pte_special(pte)))
616 			goto check_pfn;
617 		if (vma->vm_ops && vma->vm_ops->find_special_page)
618 			return vma->vm_ops->find_special_page(vma, addr);
619 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
620 			return NULL;
621 		if (is_zero_pfn(pfn))
622 			return NULL;
623 		if (pte_devmap(pte))
624 			return NULL;
625 
626 		print_bad_pte(vma, addr, pte, NULL);
627 		return NULL;
628 	}
629 
630 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
631 
632 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633 		if (vma->vm_flags & VM_MIXEDMAP) {
634 			if (!pfn_valid(pfn))
635 				return NULL;
636 			goto out;
637 		} else {
638 			unsigned long off;
639 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
640 			if (pfn == vma->vm_pgoff + off)
641 				return NULL;
642 			if (!is_cow_mapping(vma->vm_flags))
643 				return NULL;
644 		}
645 	}
646 
647 	if (is_zero_pfn(pfn))
648 		return NULL;
649 
650 check_pfn:
651 	if (unlikely(pfn > highest_memmap_pfn)) {
652 		print_bad_pte(vma, addr, pte, NULL);
653 		return NULL;
654 	}
655 
656 	/*
657 	 * NOTE! We still have PageReserved() pages in the page tables.
658 	 * eg. VDSO mappings can cause them to exist.
659 	 */
660 out:
661 	return pfn_to_page(pfn);
662 }
663 
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
666 				pmd_t pmd)
667 {
668 	unsigned long pfn = pmd_pfn(pmd);
669 
670 	/*
671 	 * There is no pmd_special() but there may be special pmds, e.g.
672 	 * in a direct-access (dax) mapping, so let's just replicate the
673 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
674 	 */
675 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676 		if (vma->vm_flags & VM_MIXEDMAP) {
677 			if (!pfn_valid(pfn))
678 				return NULL;
679 			goto out;
680 		} else {
681 			unsigned long off;
682 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
683 			if (pfn == vma->vm_pgoff + off)
684 				return NULL;
685 			if (!is_cow_mapping(vma->vm_flags))
686 				return NULL;
687 		}
688 	}
689 
690 	if (pmd_devmap(pmd))
691 		return NULL;
692 	if (is_huge_zero_pmd(pmd))
693 		return NULL;
694 	if (unlikely(pfn > highest_memmap_pfn))
695 		return NULL;
696 
697 	/*
698 	 * NOTE! We still have PageReserved() pages in the page tables.
699 	 * eg. VDSO mappings can cause them to exist.
700 	 */
701 out:
702 	return pfn_to_page(pfn);
703 }
704 #endif
705 
706 static void restore_exclusive_pte(struct vm_area_struct *vma,
707 				  struct page *page, unsigned long address,
708 				  pte_t *ptep)
709 {
710 	pte_t pte;
711 	swp_entry_t entry;
712 
713 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714 	if (pte_swp_soft_dirty(*ptep))
715 		pte = pte_mksoft_dirty(pte);
716 
717 	entry = pte_to_swp_entry(*ptep);
718 	if (pte_swp_uffd_wp(*ptep))
719 		pte = pte_mkuffd_wp(pte);
720 	else if (is_writable_device_exclusive_entry(entry))
721 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
722 
723 	/*
724 	 * No need to take a page reference as one was already
725 	 * created when the swap entry was made.
726 	 */
727 	if (PageAnon(page))
728 		page_add_anon_rmap(page, vma, address, false);
729 	else
730 		/*
731 		 * Currently device exclusive access only supports anonymous
732 		 * memory so the entry shouldn't point to a filebacked page.
733 		 */
734 		WARN_ON_ONCE(!PageAnon(page));
735 
736 	set_pte_at(vma->vm_mm, address, ptep, pte);
737 
738 	/*
739 	 * No need to invalidate - it was non-present before. However
740 	 * secondary CPUs may have mappings that need invalidating.
741 	 */
742 	update_mmu_cache(vma, address, ptep);
743 }
744 
745 /*
746  * Tries to restore an exclusive pte if the page lock can be acquired without
747  * sleeping.
748  */
749 static int
750 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
751 			unsigned long addr)
752 {
753 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
754 	struct page *page = pfn_swap_entry_to_page(entry);
755 
756 	if (trylock_page(page)) {
757 		restore_exclusive_pte(vma, page, addr, src_pte);
758 		unlock_page(page);
759 		return 0;
760 	}
761 
762 	return -EBUSY;
763 }
764 
765 /*
766  * copy one vm_area from one task to the other. Assumes the page tables
767  * already present in the new task to be cleared in the whole range
768  * covered by this vma.
769  */
770 
771 static unsigned long
772 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
773 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
774 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
775 {
776 	unsigned long vm_flags = dst_vma->vm_flags;
777 	pte_t pte = *src_pte;
778 	struct page *page;
779 	swp_entry_t entry = pte_to_swp_entry(pte);
780 
781 	if (likely(!non_swap_entry(entry))) {
782 		if (swap_duplicate(entry) < 0)
783 			return -EIO;
784 
785 		/* make sure dst_mm is on swapoff's mmlist. */
786 		if (unlikely(list_empty(&dst_mm->mmlist))) {
787 			spin_lock(&mmlist_lock);
788 			if (list_empty(&dst_mm->mmlist))
789 				list_add(&dst_mm->mmlist,
790 						&src_mm->mmlist);
791 			spin_unlock(&mmlist_lock);
792 		}
793 		rss[MM_SWAPENTS]++;
794 	} else if (is_migration_entry(entry)) {
795 		page = pfn_swap_entry_to_page(entry);
796 
797 		rss[mm_counter(page)]++;
798 
799 		if (is_writable_migration_entry(entry) &&
800 				is_cow_mapping(vm_flags)) {
801 			/*
802 			 * COW mappings require pages in both
803 			 * parent and child to be set to read.
804 			 */
805 			entry = make_readable_migration_entry(
806 							swp_offset(entry));
807 			pte = swp_entry_to_pte(entry);
808 			if (pte_swp_soft_dirty(*src_pte))
809 				pte = pte_swp_mksoft_dirty(pte);
810 			if (pte_swp_uffd_wp(*src_pte))
811 				pte = pte_swp_mkuffd_wp(pte);
812 			set_pte_at(src_mm, addr, src_pte, pte);
813 		}
814 	} else if (is_device_private_entry(entry)) {
815 		page = pfn_swap_entry_to_page(entry);
816 
817 		/*
818 		 * Update rss count even for unaddressable pages, as
819 		 * they should treated just like normal pages in this
820 		 * respect.
821 		 *
822 		 * We will likely want to have some new rss counters
823 		 * for unaddressable pages, at some point. But for now
824 		 * keep things as they are.
825 		 */
826 		get_page(page);
827 		rss[mm_counter(page)]++;
828 		page_dup_rmap(page, false);
829 
830 		/*
831 		 * We do not preserve soft-dirty information, because so
832 		 * far, checkpoint/restore is the only feature that
833 		 * requires that. And checkpoint/restore does not work
834 		 * when a device driver is involved (you cannot easily
835 		 * save and restore device driver state).
836 		 */
837 		if (is_writable_device_private_entry(entry) &&
838 		    is_cow_mapping(vm_flags)) {
839 			entry = make_readable_device_private_entry(
840 							swp_offset(entry));
841 			pte = swp_entry_to_pte(entry);
842 			if (pte_swp_uffd_wp(*src_pte))
843 				pte = pte_swp_mkuffd_wp(pte);
844 			set_pte_at(src_mm, addr, src_pte, pte);
845 		}
846 	} else if (is_device_exclusive_entry(entry)) {
847 		/*
848 		 * Make device exclusive entries present by restoring the
849 		 * original entry then copying as for a present pte. Device
850 		 * exclusive entries currently only support private writable
851 		 * (ie. COW) mappings.
852 		 */
853 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
854 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
855 			return -EBUSY;
856 		return -ENOENT;
857 	}
858 	if (!userfaultfd_wp(dst_vma))
859 		pte = pte_swp_clear_uffd_wp(pte);
860 	set_pte_at(dst_mm, addr, dst_pte, pte);
861 	return 0;
862 }
863 
864 /*
865  * Copy a present and normal page if necessary.
866  *
867  * NOTE! The usual case is that this doesn't need to do
868  * anything, and can just return a positive value. That
869  * will let the caller know that it can just increase
870  * the page refcount and re-use the pte the traditional
871  * way.
872  *
873  * But _if_ we need to copy it because it needs to be
874  * pinned in the parent (and the child should get its own
875  * copy rather than just a reference to the same page),
876  * we'll do that here and return zero to let the caller
877  * know we're done.
878  *
879  * And if we need a pre-allocated page but don't yet have
880  * one, return a negative error to let the preallocation
881  * code know so that it can do so outside the page table
882  * lock.
883  */
884 static inline int
885 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
886 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
887 		  struct page **prealloc, pte_t pte, struct page *page)
888 {
889 	struct page *new_page;
890 
891 	/*
892 	 * What we want to do is to check whether this page may
893 	 * have been pinned by the parent process.  If so,
894 	 * instead of wrprotect the pte on both sides, we copy
895 	 * the page immediately so that we'll always guarantee
896 	 * the pinned page won't be randomly replaced in the
897 	 * future.
898 	 *
899 	 * The page pinning checks are just "has this mm ever
900 	 * seen pinning", along with the (inexact) check of
901 	 * the page count. That might give false positives for
902 	 * for pinning, but it will work correctly.
903 	 */
904 	if (likely(!page_needs_cow_for_dma(src_vma, page)))
905 		return 1;
906 
907 	new_page = *prealloc;
908 	if (!new_page)
909 		return -EAGAIN;
910 
911 	/*
912 	 * We have a prealloc page, all good!  Take it
913 	 * over and copy the page & arm it.
914 	 */
915 	*prealloc = NULL;
916 	copy_user_highpage(new_page, page, addr, src_vma);
917 	__SetPageUptodate(new_page);
918 	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
919 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
920 	rss[mm_counter(new_page)]++;
921 
922 	/* All done, just insert the new page copy in the child */
923 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
924 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
925 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
926 		/* Uffd-wp needs to be delivered to dest pte as well */
927 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
928 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
929 	return 0;
930 }
931 
932 /*
933  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
934  * is required to copy this pte.
935  */
936 static inline int
937 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
938 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
939 		 struct page **prealloc)
940 {
941 	struct mm_struct *src_mm = src_vma->vm_mm;
942 	unsigned long vm_flags = src_vma->vm_flags;
943 	pte_t pte = *src_pte;
944 	struct page *page;
945 
946 	page = vm_normal_page(src_vma, addr, pte);
947 	if (page) {
948 		int retval;
949 
950 		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
951 					   addr, rss, prealloc, pte, page);
952 		if (retval <= 0)
953 			return retval;
954 
955 		get_page(page);
956 		page_dup_rmap(page, false);
957 		rss[mm_counter(page)]++;
958 	}
959 
960 	/*
961 	 * If it's a COW mapping, write protect it both
962 	 * in the parent and the child
963 	 */
964 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
965 		ptep_set_wrprotect(src_mm, addr, src_pte);
966 		pte = pte_wrprotect(pte);
967 	}
968 
969 	/*
970 	 * If it's a shared mapping, mark it clean in
971 	 * the child
972 	 */
973 	if (vm_flags & VM_SHARED)
974 		pte = pte_mkclean(pte);
975 	pte = pte_mkold(pte);
976 
977 	if (!userfaultfd_wp(dst_vma))
978 		pte = pte_clear_uffd_wp(pte);
979 
980 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
981 	return 0;
982 }
983 
984 static inline struct page *
985 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
986 		   unsigned long addr)
987 {
988 	struct page *new_page;
989 
990 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
991 	if (!new_page)
992 		return NULL;
993 
994 	if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
995 		put_page(new_page);
996 		return NULL;
997 	}
998 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
999 
1000 	return new_page;
1001 }
1002 
1003 static int
1004 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1005 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1006 	       unsigned long end)
1007 {
1008 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1009 	struct mm_struct *src_mm = src_vma->vm_mm;
1010 	pte_t *orig_src_pte, *orig_dst_pte;
1011 	pte_t *src_pte, *dst_pte;
1012 	spinlock_t *src_ptl, *dst_ptl;
1013 	int progress, ret = 0;
1014 	int rss[NR_MM_COUNTERS];
1015 	swp_entry_t entry = (swp_entry_t){0};
1016 	struct page *prealloc = NULL;
1017 
1018 again:
1019 	progress = 0;
1020 	init_rss_vec(rss);
1021 
1022 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1023 	if (!dst_pte) {
1024 		ret = -ENOMEM;
1025 		goto out;
1026 	}
1027 	src_pte = pte_offset_map(src_pmd, addr);
1028 	src_ptl = pte_lockptr(src_mm, src_pmd);
1029 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1030 	orig_src_pte = src_pte;
1031 	orig_dst_pte = dst_pte;
1032 	arch_enter_lazy_mmu_mode();
1033 
1034 	do {
1035 		/*
1036 		 * We are holding two locks at this point - either of them
1037 		 * could generate latencies in another task on another CPU.
1038 		 */
1039 		if (progress >= 32) {
1040 			progress = 0;
1041 			if (need_resched() ||
1042 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1043 				break;
1044 		}
1045 		if (pte_none(*src_pte)) {
1046 			progress++;
1047 			continue;
1048 		}
1049 		if (unlikely(!pte_present(*src_pte))) {
1050 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1051 						  dst_pte, src_pte,
1052 						  dst_vma, src_vma,
1053 						  addr, rss);
1054 			if (ret == -EIO) {
1055 				entry = pte_to_swp_entry(*src_pte);
1056 				break;
1057 			} else if (ret == -EBUSY) {
1058 				break;
1059 			} else if (!ret) {
1060 				progress += 8;
1061 				continue;
1062 			}
1063 
1064 			/*
1065 			 * Device exclusive entry restored, continue by copying
1066 			 * the now present pte.
1067 			 */
1068 			WARN_ON_ONCE(ret != -ENOENT);
1069 		}
1070 		/* copy_present_pte() will clear `*prealloc' if consumed */
1071 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1072 				       addr, rss, &prealloc);
1073 		/*
1074 		 * If we need a pre-allocated page for this pte, drop the
1075 		 * locks, allocate, and try again.
1076 		 */
1077 		if (unlikely(ret == -EAGAIN))
1078 			break;
1079 		if (unlikely(prealloc)) {
1080 			/*
1081 			 * pre-alloc page cannot be reused by next time so as
1082 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1083 			 * will allocate page according to address).  This
1084 			 * could only happen if one pinned pte changed.
1085 			 */
1086 			put_page(prealloc);
1087 			prealloc = NULL;
1088 		}
1089 		progress += 8;
1090 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1091 
1092 	arch_leave_lazy_mmu_mode();
1093 	spin_unlock(src_ptl);
1094 	pte_unmap(orig_src_pte);
1095 	add_mm_rss_vec(dst_mm, rss);
1096 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1097 	cond_resched();
1098 
1099 	if (ret == -EIO) {
1100 		VM_WARN_ON_ONCE(!entry.val);
1101 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1102 			ret = -ENOMEM;
1103 			goto out;
1104 		}
1105 		entry.val = 0;
1106 	} else if (ret == -EBUSY) {
1107 		goto out;
1108 	} else if (ret ==  -EAGAIN) {
1109 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1110 		if (!prealloc)
1111 			return -ENOMEM;
1112 	} else if (ret) {
1113 		VM_WARN_ON_ONCE(1);
1114 	}
1115 
1116 	/* We've captured and resolved the error. Reset, try again. */
1117 	ret = 0;
1118 
1119 	if (addr != end)
1120 		goto again;
1121 out:
1122 	if (unlikely(prealloc))
1123 		put_page(prealloc);
1124 	return ret;
1125 }
1126 
1127 static inline int
1128 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1129 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1130 	       unsigned long end)
1131 {
1132 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1133 	struct mm_struct *src_mm = src_vma->vm_mm;
1134 	pmd_t *src_pmd, *dst_pmd;
1135 	unsigned long next;
1136 
1137 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1138 	if (!dst_pmd)
1139 		return -ENOMEM;
1140 	src_pmd = pmd_offset(src_pud, addr);
1141 	do {
1142 		next = pmd_addr_end(addr, end);
1143 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1144 			|| pmd_devmap(*src_pmd)) {
1145 			int err;
1146 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1147 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1148 					    addr, dst_vma, src_vma);
1149 			if (err == -ENOMEM)
1150 				return -ENOMEM;
1151 			if (!err)
1152 				continue;
1153 			/* fall through */
1154 		}
1155 		if (pmd_none_or_clear_bad(src_pmd))
1156 			continue;
1157 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1158 				   addr, next))
1159 			return -ENOMEM;
1160 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1161 	return 0;
1162 }
1163 
1164 static inline int
1165 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1166 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1167 	       unsigned long end)
1168 {
1169 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1170 	struct mm_struct *src_mm = src_vma->vm_mm;
1171 	pud_t *src_pud, *dst_pud;
1172 	unsigned long next;
1173 
1174 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1175 	if (!dst_pud)
1176 		return -ENOMEM;
1177 	src_pud = pud_offset(src_p4d, addr);
1178 	do {
1179 		next = pud_addr_end(addr, end);
1180 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1181 			int err;
1182 
1183 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1184 			err = copy_huge_pud(dst_mm, src_mm,
1185 					    dst_pud, src_pud, addr, src_vma);
1186 			if (err == -ENOMEM)
1187 				return -ENOMEM;
1188 			if (!err)
1189 				continue;
1190 			/* fall through */
1191 		}
1192 		if (pud_none_or_clear_bad(src_pud))
1193 			continue;
1194 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1195 				   addr, next))
1196 			return -ENOMEM;
1197 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1198 	return 0;
1199 }
1200 
1201 static inline int
1202 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1203 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1204 	       unsigned long end)
1205 {
1206 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1207 	p4d_t *src_p4d, *dst_p4d;
1208 	unsigned long next;
1209 
1210 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1211 	if (!dst_p4d)
1212 		return -ENOMEM;
1213 	src_p4d = p4d_offset(src_pgd, addr);
1214 	do {
1215 		next = p4d_addr_end(addr, end);
1216 		if (p4d_none_or_clear_bad(src_p4d))
1217 			continue;
1218 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1219 				   addr, next))
1220 			return -ENOMEM;
1221 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1222 	return 0;
1223 }
1224 
1225 int
1226 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1227 {
1228 	pgd_t *src_pgd, *dst_pgd;
1229 	unsigned long next;
1230 	unsigned long addr = src_vma->vm_start;
1231 	unsigned long end = src_vma->vm_end;
1232 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1233 	struct mm_struct *src_mm = src_vma->vm_mm;
1234 	struct mmu_notifier_range range;
1235 	bool is_cow;
1236 	int ret;
1237 
1238 	/*
1239 	 * Don't copy ptes where a page fault will fill them correctly.
1240 	 * Fork becomes much lighter when there are big shared or private
1241 	 * readonly mappings. The tradeoff is that copy_page_range is more
1242 	 * efficient than faulting.
1243 	 */
1244 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1245 	    !src_vma->anon_vma)
1246 		return 0;
1247 
1248 	if (is_vm_hugetlb_page(src_vma))
1249 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1250 
1251 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1252 		/*
1253 		 * We do not free on error cases below as remove_vma
1254 		 * gets called on error from higher level routine
1255 		 */
1256 		ret = track_pfn_copy(src_vma);
1257 		if (ret)
1258 			return ret;
1259 	}
1260 
1261 	/*
1262 	 * We need to invalidate the secondary MMU mappings only when
1263 	 * there could be a permission downgrade on the ptes of the
1264 	 * parent mm. And a permission downgrade will only happen if
1265 	 * is_cow_mapping() returns true.
1266 	 */
1267 	is_cow = is_cow_mapping(src_vma->vm_flags);
1268 
1269 	if (is_cow) {
1270 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1271 					0, src_vma, src_mm, addr, end);
1272 		mmu_notifier_invalidate_range_start(&range);
1273 		/*
1274 		 * Disabling preemption is not needed for the write side, as
1275 		 * the read side doesn't spin, but goes to the mmap_lock.
1276 		 *
1277 		 * Use the raw variant of the seqcount_t write API to avoid
1278 		 * lockdep complaining about preemptibility.
1279 		 */
1280 		mmap_assert_write_locked(src_mm);
1281 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1282 	}
1283 
1284 	ret = 0;
1285 	dst_pgd = pgd_offset(dst_mm, addr);
1286 	src_pgd = pgd_offset(src_mm, addr);
1287 	do {
1288 		next = pgd_addr_end(addr, end);
1289 		if (pgd_none_or_clear_bad(src_pgd))
1290 			continue;
1291 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1292 					    addr, next))) {
1293 			ret = -ENOMEM;
1294 			break;
1295 		}
1296 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1297 
1298 	if (is_cow) {
1299 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1300 		mmu_notifier_invalidate_range_end(&range);
1301 	}
1302 	return ret;
1303 }
1304 
1305 /*
1306  * Parameter block passed down to zap_pte_range in exceptional cases.
1307  */
1308 struct zap_details {
1309 	struct folio *single_folio;	/* Locked folio to be unmapped */
1310 	bool even_cows;			/* Zap COWed private pages too? */
1311 };
1312 
1313 /* Whether we should zap all COWed (private) pages too */
1314 static inline bool should_zap_cows(struct zap_details *details)
1315 {
1316 	/* By default, zap all pages */
1317 	if (!details)
1318 		return true;
1319 
1320 	/* Or, we zap COWed pages only if the caller wants to */
1321 	return details->even_cows;
1322 }
1323 
1324 /* Decides whether we should zap this page with the page pointer specified */
1325 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1326 {
1327 	/* If we can make a decision without *page.. */
1328 	if (should_zap_cows(details))
1329 		return true;
1330 
1331 	/* E.g. the caller passes NULL for the case of a zero page */
1332 	if (!page)
1333 		return true;
1334 
1335 	/* Otherwise we should only zap non-anon pages */
1336 	return !PageAnon(page);
1337 }
1338 
1339 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1340 				struct vm_area_struct *vma, pmd_t *pmd,
1341 				unsigned long addr, unsigned long end,
1342 				struct zap_details *details)
1343 {
1344 	struct mm_struct *mm = tlb->mm;
1345 	int force_flush = 0;
1346 	int rss[NR_MM_COUNTERS];
1347 	spinlock_t *ptl;
1348 	pte_t *start_pte;
1349 	pte_t *pte;
1350 	swp_entry_t entry;
1351 
1352 	tlb_change_page_size(tlb, PAGE_SIZE);
1353 again:
1354 	init_rss_vec(rss);
1355 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1356 	pte = start_pte;
1357 	flush_tlb_batched_pending(mm);
1358 	arch_enter_lazy_mmu_mode();
1359 	do {
1360 		pte_t ptent = *pte;
1361 		struct page *page;
1362 
1363 		if (pte_none(ptent))
1364 			continue;
1365 
1366 		if (need_resched())
1367 			break;
1368 
1369 		if (pte_present(ptent)) {
1370 			page = vm_normal_page(vma, addr, ptent);
1371 			if (unlikely(!should_zap_page(details, page)))
1372 				continue;
1373 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1374 							tlb->fullmm);
1375 			tlb_remove_tlb_entry(tlb, pte, addr);
1376 			if (unlikely(!page))
1377 				continue;
1378 
1379 			if (!PageAnon(page)) {
1380 				if (pte_dirty(ptent)) {
1381 					force_flush = 1;
1382 					set_page_dirty(page);
1383 				}
1384 				if (pte_young(ptent) &&
1385 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1386 					mark_page_accessed(page);
1387 			}
1388 			rss[mm_counter(page)]--;
1389 			page_remove_rmap(page, vma, false);
1390 			if (unlikely(page_mapcount(page) < 0))
1391 				print_bad_pte(vma, addr, ptent, page);
1392 			if (unlikely(__tlb_remove_page(tlb, page))) {
1393 				force_flush = 1;
1394 				addr += PAGE_SIZE;
1395 				break;
1396 			}
1397 			continue;
1398 		}
1399 
1400 		entry = pte_to_swp_entry(ptent);
1401 		if (is_device_private_entry(entry) ||
1402 		    is_device_exclusive_entry(entry)) {
1403 			page = pfn_swap_entry_to_page(entry);
1404 			if (unlikely(!should_zap_page(details, page)))
1405 				continue;
1406 			rss[mm_counter(page)]--;
1407 			if (is_device_private_entry(entry))
1408 				page_remove_rmap(page, vma, false);
1409 			put_page(page);
1410 		} else if (!non_swap_entry(entry)) {
1411 			/* Genuine swap entry, hence a private anon page */
1412 			if (!should_zap_cows(details))
1413 				continue;
1414 			rss[MM_SWAPENTS]--;
1415 			if (unlikely(!free_swap_and_cache(entry)))
1416 				print_bad_pte(vma, addr, ptent, NULL);
1417 		} else if (is_migration_entry(entry)) {
1418 			page = pfn_swap_entry_to_page(entry);
1419 			if (!should_zap_page(details, page))
1420 				continue;
1421 			rss[mm_counter(page)]--;
1422 		} else if (is_hwpoison_entry(entry)) {
1423 			if (!should_zap_cows(details))
1424 				continue;
1425 		} else {
1426 			/* We should have covered all the swap entry types */
1427 			WARN_ON_ONCE(1);
1428 		}
1429 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1430 	} while (pte++, addr += PAGE_SIZE, addr != end);
1431 
1432 	add_mm_rss_vec(mm, rss);
1433 	arch_leave_lazy_mmu_mode();
1434 
1435 	/* Do the actual TLB flush before dropping ptl */
1436 	if (force_flush)
1437 		tlb_flush_mmu_tlbonly(tlb);
1438 	pte_unmap_unlock(start_pte, ptl);
1439 
1440 	/*
1441 	 * If we forced a TLB flush (either due to running out of
1442 	 * batch buffers or because we needed to flush dirty TLB
1443 	 * entries before releasing the ptl), free the batched
1444 	 * memory too. Restart if we didn't do everything.
1445 	 */
1446 	if (force_flush) {
1447 		force_flush = 0;
1448 		tlb_flush_mmu(tlb);
1449 	}
1450 
1451 	if (addr != end) {
1452 		cond_resched();
1453 		goto again;
1454 	}
1455 
1456 	return addr;
1457 }
1458 
1459 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1460 				struct vm_area_struct *vma, pud_t *pud,
1461 				unsigned long addr, unsigned long end,
1462 				struct zap_details *details)
1463 {
1464 	pmd_t *pmd;
1465 	unsigned long next;
1466 
1467 	pmd = pmd_offset(pud, addr);
1468 	do {
1469 		next = pmd_addr_end(addr, end);
1470 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1471 			if (next - addr != HPAGE_PMD_SIZE)
1472 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1473 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1474 				goto next;
1475 			/* fall through */
1476 		} else if (details && details->single_folio &&
1477 			   folio_test_pmd_mappable(details->single_folio) &&
1478 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1479 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1480 			/*
1481 			 * Take and drop THP pmd lock so that we cannot return
1482 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1483 			 * but not yet decremented compound_mapcount().
1484 			 */
1485 			spin_unlock(ptl);
1486 		}
1487 
1488 		/*
1489 		 * Here there can be other concurrent MADV_DONTNEED or
1490 		 * trans huge page faults running, and if the pmd is
1491 		 * none or trans huge it can change under us. This is
1492 		 * because MADV_DONTNEED holds the mmap_lock in read
1493 		 * mode.
1494 		 */
1495 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1496 			goto next;
1497 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1498 next:
1499 		cond_resched();
1500 	} while (pmd++, addr = next, addr != end);
1501 
1502 	return addr;
1503 }
1504 
1505 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1506 				struct vm_area_struct *vma, p4d_t *p4d,
1507 				unsigned long addr, unsigned long end,
1508 				struct zap_details *details)
1509 {
1510 	pud_t *pud;
1511 	unsigned long next;
1512 
1513 	pud = pud_offset(p4d, addr);
1514 	do {
1515 		next = pud_addr_end(addr, end);
1516 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1517 			if (next - addr != HPAGE_PUD_SIZE) {
1518 				mmap_assert_locked(tlb->mm);
1519 				split_huge_pud(vma, pud, addr);
1520 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1521 				goto next;
1522 			/* fall through */
1523 		}
1524 		if (pud_none_or_clear_bad(pud))
1525 			continue;
1526 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1527 next:
1528 		cond_resched();
1529 	} while (pud++, addr = next, addr != end);
1530 
1531 	return addr;
1532 }
1533 
1534 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1535 				struct vm_area_struct *vma, pgd_t *pgd,
1536 				unsigned long addr, unsigned long end,
1537 				struct zap_details *details)
1538 {
1539 	p4d_t *p4d;
1540 	unsigned long next;
1541 
1542 	p4d = p4d_offset(pgd, addr);
1543 	do {
1544 		next = p4d_addr_end(addr, end);
1545 		if (p4d_none_or_clear_bad(p4d))
1546 			continue;
1547 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1548 	} while (p4d++, addr = next, addr != end);
1549 
1550 	return addr;
1551 }
1552 
1553 void unmap_page_range(struct mmu_gather *tlb,
1554 			     struct vm_area_struct *vma,
1555 			     unsigned long addr, unsigned long end,
1556 			     struct zap_details *details)
1557 {
1558 	pgd_t *pgd;
1559 	unsigned long next;
1560 
1561 	BUG_ON(addr >= end);
1562 	tlb_start_vma(tlb, vma);
1563 	pgd = pgd_offset(vma->vm_mm, addr);
1564 	do {
1565 		next = pgd_addr_end(addr, end);
1566 		if (pgd_none_or_clear_bad(pgd))
1567 			continue;
1568 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1569 	} while (pgd++, addr = next, addr != end);
1570 	tlb_end_vma(tlb, vma);
1571 }
1572 
1573 
1574 static void unmap_single_vma(struct mmu_gather *tlb,
1575 		struct vm_area_struct *vma, unsigned long start_addr,
1576 		unsigned long end_addr,
1577 		struct zap_details *details)
1578 {
1579 	unsigned long start = max(vma->vm_start, start_addr);
1580 	unsigned long end;
1581 
1582 	if (start >= vma->vm_end)
1583 		return;
1584 	end = min(vma->vm_end, end_addr);
1585 	if (end <= vma->vm_start)
1586 		return;
1587 
1588 	if (vma->vm_file)
1589 		uprobe_munmap(vma, start, end);
1590 
1591 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1592 		untrack_pfn(vma, 0, 0);
1593 
1594 	if (start != end) {
1595 		if (unlikely(is_vm_hugetlb_page(vma))) {
1596 			/*
1597 			 * It is undesirable to test vma->vm_file as it
1598 			 * should be non-null for valid hugetlb area.
1599 			 * However, vm_file will be NULL in the error
1600 			 * cleanup path of mmap_region. When
1601 			 * hugetlbfs ->mmap method fails,
1602 			 * mmap_region() nullifies vma->vm_file
1603 			 * before calling this function to clean up.
1604 			 * Since no pte has actually been setup, it is
1605 			 * safe to do nothing in this case.
1606 			 */
1607 			if (vma->vm_file) {
1608 				i_mmap_lock_write(vma->vm_file->f_mapping);
1609 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1610 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1611 			}
1612 		} else
1613 			unmap_page_range(tlb, vma, start, end, details);
1614 	}
1615 }
1616 
1617 /**
1618  * unmap_vmas - unmap a range of memory covered by a list of vma's
1619  * @tlb: address of the caller's struct mmu_gather
1620  * @vma: the starting vma
1621  * @start_addr: virtual address at which to start unmapping
1622  * @end_addr: virtual address at which to end unmapping
1623  *
1624  * Unmap all pages in the vma list.
1625  *
1626  * Only addresses between `start' and `end' will be unmapped.
1627  *
1628  * The VMA list must be sorted in ascending virtual address order.
1629  *
1630  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1631  * range after unmap_vmas() returns.  So the only responsibility here is to
1632  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1633  * drops the lock and schedules.
1634  */
1635 void unmap_vmas(struct mmu_gather *tlb,
1636 		struct vm_area_struct *vma, unsigned long start_addr,
1637 		unsigned long end_addr)
1638 {
1639 	struct mmu_notifier_range range;
1640 
1641 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1642 				start_addr, end_addr);
1643 	mmu_notifier_invalidate_range_start(&range);
1644 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1645 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1646 	mmu_notifier_invalidate_range_end(&range);
1647 }
1648 
1649 /**
1650  * zap_page_range - remove user pages in a given range
1651  * @vma: vm_area_struct holding the applicable pages
1652  * @start: starting address of pages to zap
1653  * @size: number of bytes to zap
1654  *
1655  * Caller must protect the VMA list
1656  */
1657 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1658 		unsigned long size)
1659 {
1660 	struct mmu_notifier_range range;
1661 	struct mmu_gather tlb;
1662 
1663 	lru_add_drain();
1664 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1665 				start, start + size);
1666 	tlb_gather_mmu(&tlb, vma->vm_mm);
1667 	update_hiwater_rss(vma->vm_mm);
1668 	mmu_notifier_invalidate_range_start(&range);
1669 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1670 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1671 	mmu_notifier_invalidate_range_end(&range);
1672 	tlb_finish_mmu(&tlb);
1673 }
1674 
1675 /**
1676  * zap_page_range_single - remove user pages in a given range
1677  * @vma: vm_area_struct holding the applicable pages
1678  * @address: starting address of pages to zap
1679  * @size: number of bytes to zap
1680  * @details: details of shared cache invalidation
1681  *
1682  * The range must fit into one VMA.
1683  */
1684 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1685 		unsigned long size, struct zap_details *details)
1686 {
1687 	struct mmu_notifier_range range;
1688 	struct mmu_gather tlb;
1689 
1690 	lru_add_drain();
1691 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1692 				address, address + size);
1693 	tlb_gather_mmu(&tlb, vma->vm_mm);
1694 	update_hiwater_rss(vma->vm_mm);
1695 	mmu_notifier_invalidate_range_start(&range);
1696 	unmap_single_vma(&tlb, vma, address, range.end, details);
1697 	mmu_notifier_invalidate_range_end(&range);
1698 	tlb_finish_mmu(&tlb);
1699 }
1700 
1701 /**
1702  * zap_vma_ptes - remove ptes mapping the vma
1703  * @vma: vm_area_struct holding ptes to be zapped
1704  * @address: starting address of pages to zap
1705  * @size: number of bytes to zap
1706  *
1707  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1708  *
1709  * The entire address range must be fully contained within the vma.
1710  *
1711  */
1712 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1713 		unsigned long size)
1714 {
1715 	if (!range_in_vma(vma, address, address + size) ||
1716 	    		!(vma->vm_flags & VM_PFNMAP))
1717 		return;
1718 
1719 	zap_page_range_single(vma, address, size, NULL);
1720 }
1721 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1722 
1723 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1724 {
1725 	pgd_t *pgd;
1726 	p4d_t *p4d;
1727 	pud_t *pud;
1728 	pmd_t *pmd;
1729 
1730 	pgd = pgd_offset(mm, addr);
1731 	p4d = p4d_alloc(mm, pgd, addr);
1732 	if (!p4d)
1733 		return NULL;
1734 	pud = pud_alloc(mm, p4d, addr);
1735 	if (!pud)
1736 		return NULL;
1737 	pmd = pmd_alloc(mm, pud, addr);
1738 	if (!pmd)
1739 		return NULL;
1740 
1741 	VM_BUG_ON(pmd_trans_huge(*pmd));
1742 	return pmd;
1743 }
1744 
1745 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1746 			spinlock_t **ptl)
1747 {
1748 	pmd_t *pmd = walk_to_pmd(mm, addr);
1749 
1750 	if (!pmd)
1751 		return NULL;
1752 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1753 }
1754 
1755 static int validate_page_before_insert(struct page *page)
1756 {
1757 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1758 		return -EINVAL;
1759 	flush_dcache_page(page);
1760 	return 0;
1761 }
1762 
1763 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1764 			unsigned long addr, struct page *page, pgprot_t prot)
1765 {
1766 	if (!pte_none(*pte))
1767 		return -EBUSY;
1768 	/* Ok, finally just insert the thing.. */
1769 	get_page(page);
1770 	inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1771 	page_add_file_rmap(page, vma, false);
1772 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1773 	return 0;
1774 }
1775 
1776 /*
1777  * This is the old fallback for page remapping.
1778  *
1779  * For historical reasons, it only allows reserved pages. Only
1780  * old drivers should use this, and they needed to mark their
1781  * pages reserved for the old functions anyway.
1782  */
1783 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1784 			struct page *page, pgprot_t prot)
1785 {
1786 	int retval;
1787 	pte_t *pte;
1788 	spinlock_t *ptl;
1789 
1790 	retval = validate_page_before_insert(page);
1791 	if (retval)
1792 		goto out;
1793 	retval = -ENOMEM;
1794 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1795 	if (!pte)
1796 		goto out;
1797 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1798 	pte_unmap_unlock(pte, ptl);
1799 out:
1800 	return retval;
1801 }
1802 
1803 #ifdef pte_index
1804 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1805 			unsigned long addr, struct page *page, pgprot_t prot)
1806 {
1807 	int err;
1808 
1809 	if (!page_count(page))
1810 		return -EINVAL;
1811 	err = validate_page_before_insert(page);
1812 	if (err)
1813 		return err;
1814 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1815 }
1816 
1817 /* insert_pages() amortizes the cost of spinlock operations
1818  * when inserting pages in a loop. Arch *must* define pte_index.
1819  */
1820 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1821 			struct page **pages, unsigned long *num, pgprot_t prot)
1822 {
1823 	pmd_t *pmd = NULL;
1824 	pte_t *start_pte, *pte;
1825 	spinlock_t *pte_lock;
1826 	struct mm_struct *const mm = vma->vm_mm;
1827 	unsigned long curr_page_idx = 0;
1828 	unsigned long remaining_pages_total = *num;
1829 	unsigned long pages_to_write_in_pmd;
1830 	int ret;
1831 more:
1832 	ret = -EFAULT;
1833 	pmd = walk_to_pmd(mm, addr);
1834 	if (!pmd)
1835 		goto out;
1836 
1837 	pages_to_write_in_pmd = min_t(unsigned long,
1838 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1839 
1840 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1841 	ret = -ENOMEM;
1842 	if (pte_alloc(mm, pmd))
1843 		goto out;
1844 
1845 	while (pages_to_write_in_pmd) {
1846 		int pte_idx = 0;
1847 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1848 
1849 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1850 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1851 			int err = insert_page_in_batch_locked(vma, pte,
1852 				addr, pages[curr_page_idx], prot);
1853 			if (unlikely(err)) {
1854 				pte_unmap_unlock(start_pte, pte_lock);
1855 				ret = err;
1856 				remaining_pages_total -= pte_idx;
1857 				goto out;
1858 			}
1859 			addr += PAGE_SIZE;
1860 			++curr_page_idx;
1861 		}
1862 		pte_unmap_unlock(start_pte, pte_lock);
1863 		pages_to_write_in_pmd -= batch_size;
1864 		remaining_pages_total -= batch_size;
1865 	}
1866 	if (remaining_pages_total)
1867 		goto more;
1868 	ret = 0;
1869 out:
1870 	*num = remaining_pages_total;
1871 	return ret;
1872 }
1873 #endif  /* ifdef pte_index */
1874 
1875 /**
1876  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1877  * @vma: user vma to map to
1878  * @addr: target start user address of these pages
1879  * @pages: source kernel pages
1880  * @num: in: number of pages to map. out: number of pages that were *not*
1881  * mapped. (0 means all pages were successfully mapped).
1882  *
1883  * Preferred over vm_insert_page() when inserting multiple pages.
1884  *
1885  * In case of error, we may have mapped a subset of the provided
1886  * pages. It is the caller's responsibility to account for this case.
1887  *
1888  * The same restrictions apply as in vm_insert_page().
1889  */
1890 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1891 			struct page **pages, unsigned long *num)
1892 {
1893 #ifdef pte_index
1894 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1895 
1896 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1897 		return -EFAULT;
1898 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1899 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1900 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1901 		vma->vm_flags |= VM_MIXEDMAP;
1902 	}
1903 	/* Defer page refcount checking till we're about to map that page. */
1904 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1905 #else
1906 	unsigned long idx = 0, pgcount = *num;
1907 	int err = -EINVAL;
1908 
1909 	for (; idx < pgcount; ++idx) {
1910 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1911 		if (err)
1912 			break;
1913 	}
1914 	*num = pgcount - idx;
1915 	return err;
1916 #endif  /* ifdef pte_index */
1917 }
1918 EXPORT_SYMBOL(vm_insert_pages);
1919 
1920 /**
1921  * vm_insert_page - insert single page into user vma
1922  * @vma: user vma to map to
1923  * @addr: target user address of this page
1924  * @page: source kernel page
1925  *
1926  * This allows drivers to insert individual pages they've allocated
1927  * into a user vma.
1928  *
1929  * The page has to be a nice clean _individual_ kernel allocation.
1930  * If you allocate a compound page, you need to have marked it as
1931  * such (__GFP_COMP), or manually just split the page up yourself
1932  * (see split_page()).
1933  *
1934  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1935  * took an arbitrary page protection parameter. This doesn't allow
1936  * that. Your vma protection will have to be set up correctly, which
1937  * means that if you want a shared writable mapping, you'd better
1938  * ask for a shared writable mapping!
1939  *
1940  * The page does not need to be reserved.
1941  *
1942  * Usually this function is called from f_op->mmap() handler
1943  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1944  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1945  * function from other places, for example from page-fault handler.
1946  *
1947  * Return: %0 on success, negative error code otherwise.
1948  */
1949 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1950 			struct page *page)
1951 {
1952 	if (addr < vma->vm_start || addr >= vma->vm_end)
1953 		return -EFAULT;
1954 	if (!page_count(page))
1955 		return -EINVAL;
1956 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1957 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1958 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1959 		vma->vm_flags |= VM_MIXEDMAP;
1960 	}
1961 	return insert_page(vma, addr, page, vma->vm_page_prot);
1962 }
1963 EXPORT_SYMBOL(vm_insert_page);
1964 
1965 /*
1966  * __vm_map_pages - maps range of kernel pages into user vma
1967  * @vma: user vma to map to
1968  * @pages: pointer to array of source kernel pages
1969  * @num: number of pages in page array
1970  * @offset: user's requested vm_pgoff
1971  *
1972  * This allows drivers to map range of kernel pages into a user vma.
1973  *
1974  * Return: 0 on success and error code otherwise.
1975  */
1976 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1977 				unsigned long num, unsigned long offset)
1978 {
1979 	unsigned long count = vma_pages(vma);
1980 	unsigned long uaddr = vma->vm_start;
1981 	int ret, i;
1982 
1983 	/* Fail if the user requested offset is beyond the end of the object */
1984 	if (offset >= num)
1985 		return -ENXIO;
1986 
1987 	/* Fail if the user requested size exceeds available object size */
1988 	if (count > num - offset)
1989 		return -ENXIO;
1990 
1991 	for (i = 0; i < count; i++) {
1992 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1993 		if (ret < 0)
1994 			return ret;
1995 		uaddr += PAGE_SIZE;
1996 	}
1997 
1998 	return 0;
1999 }
2000 
2001 /**
2002  * vm_map_pages - maps range of kernel pages starts with non zero offset
2003  * @vma: user vma to map to
2004  * @pages: pointer to array of source kernel pages
2005  * @num: number of pages in page array
2006  *
2007  * Maps an object consisting of @num pages, catering for the user's
2008  * requested vm_pgoff
2009  *
2010  * If we fail to insert any page into the vma, the function will return
2011  * immediately leaving any previously inserted pages present.  Callers
2012  * from the mmap handler may immediately return the error as their caller
2013  * will destroy the vma, removing any successfully inserted pages. Other
2014  * callers should make their own arrangements for calling unmap_region().
2015  *
2016  * Context: Process context. Called by mmap handlers.
2017  * Return: 0 on success and error code otherwise.
2018  */
2019 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2020 				unsigned long num)
2021 {
2022 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2023 }
2024 EXPORT_SYMBOL(vm_map_pages);
2025 
2026 /**
2027  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2028  * @vma: user vma to map to
2029  * @pages: pointer to array of source kernel pages
2030  * @num: number of pages in page array
2031  *
2032  * Similar to vm_map_pages(), except that it explicitly sets the offset
2033  * to 0. This function is intended for the drivers that did not consider
2034  * vm_pgoff.
2035  *
2036  * Context: Process context. Called by mmap handlers.
2037  * Return: 0 on success and error code otherwise.
2038  */
2039 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2040 				unsigned long num)
2041 {
2042 	return __vm_map_pages(vma, pages, num, 0);
2043 }
2044 EXPORT_SYMBOL(vm_map_pages_zero);
2045 
2046 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2047 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2048 {
2049 	struct mm_struct *mm = vma->vm_mm;
2050 	pte_t *pte, entry;
2051 	spinlock_t *ptl;
2052 
2053 	pte = get_locked_pte(mm, addr, &ptl);
2054 	if (!pte)
2055 		return VM_FAULT_OOM;
2056 	if (!pte_none(*pte)) {
2057 		if (mkwrite) {
2058 			/*
2059 			 * For read faults on private mappings the PFN passed
2060 			 * in may not match the PFN we have mapped if the
2061 			 * mapped PFN is a writeable COW page.  In the mkwrite
2062 			 * case we are creating a writable PTE for a shared
2063 			 * mapping and we expect the PFNs to match. If they
2064 			 * don't match, we are likely racing with block
2065 			 * allocation and mapping invalidation so just skip the
2066 			 * update.
2067 			 */
2068 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2069 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2070 				goto out_unlock;
2071 			}
2072 			entry = pte_mkyoung(*pte);
2073 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2074 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2075 				update_mmu_cache(vma, addr, pte);
2076 		}
2077 		goto out_unlock;
2078 	}
2079 
2080 	/* Ok, finally just insert the thing.. */
2081 	if (pfn_t_devmap(pfn))
2082 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2083 	else
2084 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2085 
2086 	if (mkwrite) {
2087 		entry = pte_mkyoung(entry);
2088 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2089 	}
2090 
2091 	set_pte_at(mm, addr, pte, entry);
2092 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2093 
2094 out_unlock:
2095 	pte_unmap_unlock(pte, ptl);
2096 	return VM_FAULT_NOPAGE;
2097 }
2098 
2099 /**
2100  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2101  * @vma: user vma to map to
2102  * @addr: target user address of this page
2103  * @pfn: source kernel pfn
2104  * @pgprot: pgprot flags for the inserted page
2105  *
2106  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2107  * to override pgprot on a per-page basis.
2108  *
2109  * This only makes sense for IO mappings, and it makes no sense for
2110  * COW mappings.  In general, using multiple vmas is preferable;
2111  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2112  * impractical.
2113  *
2114  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2115  * a value of @pgprot different from that of @vma->vm_page_prot.
2116  *
2117  * Context: Process context.  May allocate using %GFP_KERNEL.
2118  * Return: vm_fault_t value.
2119  */
2120 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2121 			unsigned long pfn, pgprot_t pgprot)
2122 {
2123 	/*
2124 	 * Technically, architectures with pte_special can avoid all these
2125 	 * restrictions (same for remap_pfn_range).  However we would like
2126 	 * consistency in testing and feature parity among all, so we should
2127 	 * try to keep these invariants in place for everybody.
2128 	 */
2129 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2130 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2131 						(VM_PFNMAP|VM_MIXEDMAP));
2132 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2133 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2134 
2135 	if (addr < vma->vm_start || addr >= vma->vm_end)
2136 		return VM_FAULT_SIGBUS;
2137 
2138 	if (!pfn_modify_allowed(pfn, pgprot))
2139 		return VM_FAULT_SIGBUS;
2140 
2141 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2142 
2143 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2144 			false);
2145 }
2146 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2147 
2148 /**
2149  * vmf_insert_pfn - insert single pfn into user vma
2150  * @vma: user vma to map to
2151  * @addr: target user address of this page
2152  * @pfn: source kernel pfn
2153  *
2154  * Similar to vm_insert_page, this allows drivers to insert individual pages
2155  * they've allocated into a user vma. Same comments apply.
2156  *
2157  * This function should only be called from a vm_ops->fault handler, and
2158  * in that case the handler should return the result of this function.
2159  *
2160  * vma cannot be a COW mapping.
2161  *
2162  * As this is called only for pages that do not currently exist, we
2163  * do not need to flush old virtual caches or the TLB.
2164  *
2165  * Context: Process context.  May allocate using %GFP_KERNEL.
2166  * Return: vm_fault_t value.
2167  */
2168 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2169 			unsigned long pfn)
2170 {
2171 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2172 }
2173 EXPORT_SYMBOL(vmf_insert_pfn);
2174 
2175 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2176 {
2177 	/* these checks mirror the abort conditions in vm_normal_page */
2178 	if (vma->vm_flags & VM_MIXEDMAP)
2179 		return true;
2180 	if (pfn_t_devmap(pfn))
2181 		return true;
2182 	if (pfn_t_special(pfn))
2183 		return true;
2184 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2185 		return true;
2186 	return false;
2187 }
2188 
2189 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2190 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2191 		bool mkwrite)
2192 {
2193 	int err;
2194 
2195 	BUG_ON(!vm_mixed_ok(vma, pfn));
2196 
2197 	if (addr < vma->vm_start || addr >= vma->vm_end)
2198 		return VM_FAULT_SIGBUS;
2199 
2200 	track_pfn_insert(vma, &pgprot, pfn);
2201 
2202 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2203 		return VM_FAULT_SIGBUS;
2204 
2205 	/*
2206 	 * If we don't have pte special, then we have to use the pfn_valid()
2207 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2208 	 * refcount the page if pfn_valid is true (hence insert_page rather
2209 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2210 	 * without pte special, it would there be refcounted as a normal page.
2211 	 */
2212 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2213 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2214 		struct page *page;
2215 
2216 		/*
2217 		 * At this point we are committed to insert_page()
2218 		 * regardless of whether the caller specified flags that
2219 		 * result in pfn_t_has_page() == false.
2220 		 */
2221 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2222 		err = insert_page(vma, addr, page, pgprot);
2223 	} else {
2224 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2225 	}
2226 
2227 	if (err == -ENOMEM)
2228 		return VM_FAULT_OOM;
2229 	if (err < 0 && err != -EBUSY)
2230 		return VM_FAULT_SIGBUS;
2231 
2232 	return VM_FAULT_NOPAGE;
2233 }
2234 
2235 /**
2236  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2237  * @vma: user vma to map to
2238  * @addr: target user address of this page
2239  * @pfn: source kernel pfn
2240  * @pgprot: pgprot flags for the inserted page
2241  *
2242  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2243  * to override pgprot on a per-page basis.
2244  *
2245  * Typically this function should be used by drivers to set caching- and
2246  * encryption bits different than those of @vma->vm_page_prot, because
2247  * the caching- or encryption mode may not be known at mmap() time.
2248  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2249  * to set caching and encryption bits for those vmas (except for COW pages).
2250  * This is ensured by core vm only modifying these page table entries using
2251  * functions that don't touch caching- or encryption bits, using pte_modify()
2252  * if needed. (See for example mprotect()).
2253  * Also when new page-table entries are created, this is only done using the
2254  * fault() callback, and never using the value of vma->vm_page_prot,
2255  * except for page-table entries that point to anonymous pages as the result
2256  * of COW.
2257  *
2258  * Context: Process context.  May allocate using %GFP_KERNEL.
2259  * Return: vm_fault_t value.
2260  */
2261 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2262 				 pfn_t pfn, pgprot_t pgprot)
2263 {
2264 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2265 }
2266 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2267 
2268 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2269 		pfn_t pfn)
2270 {
2271 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2272 }
2273 EXPORT_SYMBOL(vmf_insert_mixed);
2274 
2275 /*
2276  *  If the insertion of PTE failed because someone else already added a
2277  *  different entry in the mean time, we treat that as success as we assume
2278  *  the same entry was actually inserted.
2279  */
2280 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2281 		unsigned long addr, pfn_t pfn)
2282 {
2283 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2284 }
2285 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2286 
2287 /*
2288  * maps a range of physical memory into the requested pages. the old
2289  * mappings are removed. any references to nonexistent pages results
2290  * in null mappings (currently treated as "copy-on-access")
2291  */
2292 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2293 			unsigned long addr, unsigned long end,
2294 			unsigned long pfn, pgprot_t prot)
2295 {
2296 	pte_t *pte, *mapped_pte;
2297 	spinlock_t *ptl;
2298 	int err = 0;
2299 
2300 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2301 	if (!pte)
2302 		return -ENOMEM;
2303 	arch_enter_lazy_mmu_mode();
2304 	do {
2305 		BUG_ON(!pte_none(*pte));
2306 		if (!pfn_modify_allowed(pfn, prot)) {
2307 			err = -EACCES;
2308 			break;
2309 		}
2310 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2311 		pfn++;
2312 	} while (pte++, addr += PAGE_SIZE, addr != end);
2313 	arch_leave_lazy_mmu_mode();
2314 	pte_unmap_unlock(mapped_pte, ptl);
2315 	return err;
2316 }
2317 
2318 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2319 			unsigned long addr, unsigned long end,
2320 			unsigned long pfn, pgprot_t prot)
2321 {
2322 	pmd_t *pmd;
2323 	unsigned long next;
2324 	int err;
2325 
2326 	pfn -= addr >> PAGE_SHIFT;
2327 	pmd = pmd_alloc(mm, pud, addr);
2328 	if (!pmd)
2329 		return -ENOMEM;
2330 	VM_BUG_ON(pmd_trans_huge(*pmd));
2331 	do {
2332 		next = pmd_addr_end(addr, end);
2333 		err = remap_pte_range(mm, pmd, addr, next,
2334 				pfn + (addr >> PAGE_SHIFT), prot);
2335 		if (err)
2336 			return err;
2337 	} while (pmd++, addr = next, addr != end);
2338 	return 0;
2339 }
2340 
2341 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2342 			unsigned long addr, unsigned long end,
2343 			unsigned long pfn, pgprot_t prot)
2344 {
2345 	pud_t *pud;
2346 	unsigned long next;
2347 	int err;
2348 
2349 	pfn -= addr >> PAGE_SHIFT;
2350 	pud = pud_alloc(mm, p4d, addr);
2351 	if (!pud)
2352 		return -ENOMEM;
2353 	do {
2354 		next = pud_addr_end(addr, end);
2355 		err = remap_pmd_range(mm, pud, addr, next,
2356 				pfn + (addr >> PAGE_SHIFT), prot);
2357 		if (err)
2358 			return err;
2359 	} while (pud++, addr = next, addr != end);
2360 	return 0;
2361 }
2362 
2363 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2364 			unsigned long addr, unsigned long end,
2365 			unsigned long pfn, pgprot_t prot)
2366 {
2367 	p4d_t *p4d;
2368 	unsigned long next;
2369 	int err;
2370 
2371 	pfn -= addr >> PAGE_SHIFT;
2372 	p4d = p4d_alloc(mm, pgd, addr);
2373 	if (!p4d)
2374 		return -ENOMEM;
2375 	do {
2376 		next = p4d_addr_end(addr, end);
2377 		err = remap_pud_range(mm, p4d, addr, next,
2378 				pfn + (addr >> PAGE_SHIFT), prot);
2379 		if (err)
2380 			return err;
2381 	} while (p4d++, addr = next, addr != end);
2382 	return 0;
2383 }
2384 
2385 /*
2386  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2387  * must have pre-validated the caching bits of the pgprot_t.
2388  */
2389 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2390 		unsigned long pfn, unsigned long size, pgprot_t prot)
2391 {
2392 	pgd_t *pgd;
2393 	unsigned long next;
2394 	unsigned long end = addr + PAGE_ALIGN(size);
2395 	struct mm_struct *mm = vma->vm_mm;
2396 	int err;
2397 
2398 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2399 		return -EINVAL;
2400 
2401 	/*
2402 	 * Physically remapped pages are special. Tell the
2403 	 * rest of the world about it:
2404 	 *   VM_IO tells people not to look at these pages
2405 	 *	(accesses can have side effects).
2406 	 *   VM_PFNMAP tells the core MM that the base pages are just
2407 	 *	raw PFN mappings, and do not have a "struct page" associated
2408 	 *	with them.
2409 	 *   VM_DONTEXPAND
2410 	 *      Disable vma merging and expanding with mremap().
2411 	 *   VM_DONTDUMP
2412 	 *      Omit vma from core dump, even when VM_IO turned off.
2413 	 *
2414 	 * There's a horrible special case to handle copy-on-write
2415 	 * behaviour that some programs depend on. We mark the "original"
2416 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2417 	 * See vm_normal_page() for details.
2418 	 */
2419 	if (is_cow_mapping(vma->vm_flags)) {
2420 		if (addr != vma->vm_start || end != vma->vm_end)
2421 			return -EINVAL;
2422 		vma->vm_pgoff = pfn;
2423 	}
2424 
2425 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2426 
2427 	BUG_ON(addr >= end);
2428 	pfn -= addr >> PAGE_SHIFT;
2429 	pgd = pgd_offset(mm, addr);
2430 	flush_cache_range(vma, addr, end);
2431 	do {
2432 		next = pgd_addr_end(addr, end);
2433 		err = remap_p4d_range(mm, pgd, addr, next,
2434 				pfn + (addr >> PAGE_SHIFT), prot);
2435 		if (err)
2436 			return err;
2437 	} while (pgd++, addr = next, addr != end);
2438 
2439 	return 0;
2440 }
2441 
2442 /**
2443  * remap_pfn_range - remap kernel memory to userspace
2444  * @vma: user vma to map to
2445  * @addr: target page aligned user address to start at
2446  * @pfn: page frame number of kernel physical memory address
2447  * @size: size of mapping area
2448  * @prot: page protection flags for this mapping
2449  *
2450  * Note: this is only safe if the mm semaphore is held when called.
2451  *
2452  * Return: %0 on success, negative error code otherwise.
2453  */
2454 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2455 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2456 {
2457 	int err;
2458 
2459 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2460 	if (err)
2461 		return -EINVAL;
2462 
2463 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2464 	if (err)
2465 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2466 	return err;
2467 }
2468 EXPORT_SYMBOL(remap_pfn_range);
2469 
2470 /**
2471  * vm_iomap_memory - remap memory to userspace
2472  * @vma: user vma to map to
2473  * @start: start of the physical memory to be mapped
2474  * @len: size of area
2475  *
2476  * This is a simplified io_remap_pfn_range() for common driver use. The
2477  * driver just needs to give us the physical memory range to be mapped,
2478  * we'll figure out the rest from the vma information.
2479  *
2480  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2481  * whatever write-combining details or similar.
2482  *
2483  * Return: %0 on success, negative error code otherwise.
2484  */
2485 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2486 {
2487 	unsigned long vm_len, pfn, pages;
2488 
2489 	/* Check that the physical memory area passed in looks valid */
2490 	if (start + len < start)
2491 		return -EINVAL;
2492 	/*
2493 	 * You *really* shouldn't map things that aren't page-aligned,
2494 	 * but we've historically allowed it because IO memory might
2495 	 * just have smaller alignment.
2496 	 */
2497 	len += start & ~PAGE_MASK;
2498 	pfn = start >> PAGE_SHIFT;
2499 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2500 	if (pfn + pages < pfn)
2501 		return -EINVAL;
2502 
2503 	/* We start the mapping 'vm_pgoff' pages into the area */
2504 	if (vma->vm_pgoff > pages)
2505 		return -EINVAL;
2506 	pfn += vma->vm_pgoff;
2507 	pages -= vma->vm_pgoff;
2508 
2509 	/* Can we fit all of the mapping? */
2510 	vm_len = vma->vm_end - vma->vm_start;
2511 	if (vm_len >> PAGE_SHIFT > pages)
2512 		return -EINVAL;
2513 
2514 	/* Ok, let it rip */
2515 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2516 }
2517 EXPORT_SYMBOL(vm_iomap_memory);
2518 
2519 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2520 				     unsigned long addr, unsigned long end,
2521 				     pte_fn_t fn, void *data, bool create,
2522 				     pgtbl_mod_mask *mask)
2523 {
2524 	pte_t *pte, *mapped_pte;
2525 	int err = 0;
2526 	spinlock_t *ptl;
2527 
2528 	if (create) {
2529 		mapped_pte = pte = (mm == &init_mm) ?
2530 			pte_alloc_kernel_track(pmd, addr, mask) :
2531 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2532 		if (!pte)
2533 			return -ENOMEM;
2534 	} else {
2535 		mapped_pte = pte = (mm == &init_mm) ?
2536 			pte_offset_kernel(pmd, addr) :
2537 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2538 	}
2539 
2540 	BUG_ON(pmd_huge(*pmd));
2541 
2542 	arch_enter_lazy_mmu_mode();
2543 
2544 	if (fn) {
2545 		do {
2546 			if (create || !pte_none(*pte)) {
2547 				err = fn(pte++, addr, data);
2548 				if (err)
2549 					break;
2550 			}
2551 		} while (addr += PAGE_SIZE, addr != end);
2552 	}
2553 	*mask |= PGTBL_PTE_MODIFIED;
2554 
2555 	arch_leave_lazy_mmu_mode();
2556 
2557 	if (mm != &init_mm)
2558 		pte_unmap_unlock(mapped_pte, ptl);
2559 	return err;
2560 }
2561 
2562 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2563 				     unsigned long addr, unsigned long end,
2564 				     pte_fn_t fn, void *data, bool create,
2565 				     pgtbl_mod_mask *mask)
2566 {
2567 	pmd_t *pmd;
2568 	unsigned long next;
2569 	int err = 0;
2570 
2571 	BUG_ON(pud_huge(*pud));
2572 
2573 	if (create) {
2574 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2575 		if (!pmd)
2576 			return -ENOMEM;
2577 	} else {
2578 		pmd = pmd_offset(pud, addr);
2579 	}
2580 	do {
2581 		next = pmd_addr_end(addr, end);
2582 		if (pmd_none(*pmd) && !create)
2583 			continue;
2584 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2585 			return -EINVAL;
2586 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2587 			if (!create)
2588 				continue;
2589 			pmd_clear_bad(pmd);
2590 		}
2591 		err = apply_to_pte_range(mm, pmd, addr, next,
2592 					 fn, data, create, mask);
2593 		if (err)
2594 			break;
2595 	} while (pmd++, addr = next, addr != end);
2596 
2597 	return err;
2598 }
2599 
2600 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2601 				     unsigned long addr, unsigned long end,
2602 				     pte_fn_t fn, void *data, bool create,
2603 				     pgtbl_mod_mask *mask)
2604 {
2605 	pud_t *pud;
2606 	unsigned long next;
2607 	int err = 0;
2608 
2609 	if (create) {
2610 		pud = pud_alloc_track(mm, p4d, addr, mask);
2611 		if (!pud)
2612 			return -ENOMEM;
2613 	} else {
2614 		pud = pud_offset(p4d, addr);
2615 	}
2616 	do {
2617 		next = pud_addr_end(addr, end);
2618 		if (pud_none(*pud) && !create)
2619 			continue;
2620 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2621 			return -EINVAL;
2622 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2623 			if (!create)
2624 				continue;
2625 			pud_clear_bad(pud);
2626 		}
2627 		err = apply_to_pmd_range(mm, pud, addr, next,
2628 					 fn, data, create, mask);
2629 		if (err)
2630 			break;
2631 	} while (pud++, addr = next, addr != end);
2632 
2633 	return err;
2634 }
2635 
2636 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2637 				     unsigned long addr, unsigned long end,
2638 				     pte_fn_t fn, void *data, bool create,
2639 				     pgtbl_mod_mask *mask)
2640 {
2641 	p4d_t *p4d;
2642 	unsigned long next;
2643 	int err = 0;
2644 
2645 	if (create) {
2646 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2647 		if (!p4d)
2648 			return -ENOMEM;
2649 	} else {
2650 		p4d = p4d_offset(pgd, addr);
2651 	}
2652 	do {
2653 		next = p4d_addr_end(addr, end);
2654 		if (p4d_none(*p4d) && !create)
2655 			continue;
2656 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2657 			return -EINVAL;
2658 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2659 			if (!create)
2660 				continue;
2661 			p4d_clear_bad(p4d);
2662 		}
2663 		err = apply_to_pud_range(mm, p4d, addr, next,
2664 					 fn, data, create, mask);
2665 		if (err)
2666 			break;
2667 	} while (p4d++, addr = next, addr != end);
2668 
2669 	return err;
2670 }
2671 
2672 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2673 				 unsigned long size, pte_fn_t fn,
2674 				 void *data, bool create)
2675 {
2676 	pgd_t *pgd;
2677 	unsigned long start = addr, next;
2678 	unsigned long end = addr + size;
2679 	pgtbl_mod_mask mask = 0;
2680 	int err = 0;
2681 
2682 	if (WARN_ON(addr >= end))
2683 		return -EINVAL;
2684 
2685 	pgd = pgd_offset(mm, addr);
2686 	do {
2687 		next = pgd_addr_end(addr, end);
2688 		if (pgd_none(*pgd) && !create)
2689 			continue;
2690 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2691 			return -EINVAL;
2692 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2693 			if (!create)
2694 				continue;
2695 			pgd_clear_bad(pgd);
2696 		}
2697 		err = apply_to_p4d_range(mm, pgd, addr, next,
2698 					 fn, data, create, &mask);
2699 		if (err)
2700 			break;
2701 	} while (pgd++, addr = next, addr != end);
2702 
2703 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2704 		arch_sync_kernel_mappings(start, start + size);
2705 
2706 	return err;
2707 }
2708 
2709 /*
2710  * Scan a region of virtual memory, filling in page tables as necessary
2711  * and calling a provided function on each leaf page table.
2712  */
2713 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2714 			unsigned long size, pte_fn_t fn, void *data)
2715 {
2716 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2717 }
2718 EXPORT_SYMBOL_GPL(apply_to_page_range);
2719 
2720 /*
2721  * Scan a region of virtual memory, calling a provided function on
2722  * each leaf page table where it exists.
2723  *
2724  * Unlike apply_to_page_range, this does _not_ fill in page tables
2725  * where they are absent.
2726  */
2727 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2728 				 unsigned long size, pte_fn_t fn, void *data)
2729 {
2730 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2731 }
2732 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2733 
2734 /*
2735  * handle_pte_fault chooses page fault handler according to an entry which was
2736  * read non-atomically.  Before making any commitment, on those architectures
2737  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2738  * parts, do_swap_page must check under lock before unmapping the pte and
2739  * proceeding (but do_wp_page is only called after already making such a check;
2740  * and do_anonymous_page can safely check later on).
2741  */
2742 static inline int pte_unmap_same(struct vm_fault *vmf)
2743 {
2744 	int same = 1;
2745 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2746 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2747 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2748 		spin_lock(ptl);
2749 		same = pte_same(*vmf->pte, vmf->orig_pte);
2750 		spin_unlock(ptl);
2751 	}
2752 #endif
2753 	pte_unmap(vmf->pte);
2754 	vmf->pte = NULL;
2755 	return same;
2756 }
2757 
2758 static inline bool cow_user_page(struct page *dst, struct page *src,
2759 				 struct vm_fault *vmf)
2760 {
2761 	bool ret;
2762 	void *kaddr;
2763 	void __user *uaddr;
2764 	bool locked = false;
2765 	struct vm_area_struct *vma = vmf->vma;
2766 	struct mm_struct *mm = vma->vm_mm;
2767 	unsigned long addr = vmf->address;
2768 
2769 	if (likely(src)) {
2770 		copy_user_highpage(dst, src, addr, vma);
2771 		return true;
2772 	}
2773 
2774 	/*
2775 	 * If the source page was a PFN mapping, we don't have
2776 	 * a "struct page" for it. We do a best-effort copy by
2777 	 * just copying from the original user address. If that
2778 	 * fails, we just zero-fill it. Live with it.
2779 	 */
2780 	kaddr = kmap_atomic(dst);
2781 	uaddr = (void __user *)(addr & PAGE_MASK);
2782 
2783 	/*
2784 	 * On architectures with software "accessed" bits, we would
2785 	 * take a double page fault, so mark it accessed here.
2786 	 */
2787 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2788 		pte_t entry;
2789 
2790 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2791 		locked = true;
2792 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2793 			/*
2794 			 * Other thread has already handled the fault
2795 			 * and update local tlb only
2796 			 */
2797 			update_mmu_tlb(vma, addr, vmf->pte);
2798 			ret = false;
2799 			goto pte_unlock;
2800 		}
2801 
2802 		entry = pte_mkyoung(vmf->orig_pte);
2803 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2804 			update_mmu_cache(vma, addr, vmf->pte);
2805 	}
2806 
2807 	/*
2808 	 * This really shouldn't fail, because the page is there
2809 	 * in the page tables. But it might just be unreadable,
2810 	 * in which case we just give up and fill the result with
2811 	 * zeroes.
2812 	 */
2813 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2814 		if (locked)
2815 			goto warn;
2816 
2817 		/* Re-validate under PTL if the page is still mapped */
2818 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2819 		locked = true;
2820 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2821 			/* The PTE changed under us, update local tlb */
2822 			update_mmu_tlb(vma, addr, vmf->pte);
2823 			ret = false;
2824 			goto pte_unlock;
2825 		}
2826 
2827 		/*
2828 		 * The same page can be mapped back since last copy attempt.
2829 		 * Try to copy again under PTL.
2830 		 */
2831 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2832 			/*
2833 			 * Give a warn in case there can be some obscure
2834 			 * use-case
2835 			 */
2836 warn:
2837 			WARN_ON_ONCE(1);
2838 			clear_page(kaddr);
2839 		}
2840 	}
2841 
2842 	ret = true;
2843 
2844 pte_unlock:
2845 	if (locked)
2846 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2847 	kunmap_atomic(kaddr);
2848 	flush_dcache_page(dst);
2849 
2850 	return ret;
2851 }
2852 
2853 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2854 {
2855 	struct file *vm_file = vma->vm_file;
2856 
2857 	if (vm_file)
2858 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2859 
2860 	/*
2861 	 * Special mappings (e.g. VDSO) do not have any file so fake
2862 	 * a default GFP_KERNEL for them.
2863 	 */
2864 	return GFP_KERNEL;
2865 }
2866 
2867 /*
2868  * Notify the address space that the page is about to become writable so that
2869  * it can prohibit this or wait for the page to get into an appropriate state.
2870  *
2871  * We do this without the lock held, so that it can sleep if it needs to.
2872  */
2873 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2874 {
2875 	vm_fault_t ret;
2876 	struct page *page = vmf->page;
2877 	unsigned int old_flags = vmf->flags;
2878 
2879 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2880 
2881 	if (vmf->vma->vm_file &&
2882 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2883 		return VM_FAULT_SIGBUS;
2884 
2885 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2886 	/* Restore original flags so that caller is not surprised */
2887 	vmf->flags = old_flags;
2888 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2889 		return ret;
2890 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2891 		lock_page(page);
2892 		if (!page->mapping) {
2893 			unlock_page(page);
2894 			return 0; /* retry */
2895 		}
2896 		ret |= VM_FAULT_LOCKED;
2897 	} else
2898 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2899 	return ret;
2900 }
2901 
2902 /*
2903  * Handle dirtying of a page in shared file mapping on a write fault.
2904  *
2905  * The function expects the page to be locked and unlocks it.
2906  */
2907 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2908 {
2909 	struct vm_area_struct *vma = vmf->vma;
2910 	struct address_space *mapping;
2911 	struct page *page = vmf->page;
2912 	bool dirtied;
2913 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2914 
2915 	dirtied = set_page_dirty(page);
2916 	VM_BUG_ON_PAGE(PageAnon(page), page);
2917 	/*
2918 	 * Take a local copy of the address_space - page.mapping may be zeroed
2919 	 * by truncate after unlock_page().   The address_space itself remains
2920 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2921 	 * release semantics to prevent the compiler from undoing this copying.
2922 	 */
2923 	mapping = page_rmapping(page);
2924 	unlock_page(page);
2925 
2926 	if (!page_mkwrite)
2927 		file_update_time(vma->vm_file);
2928 
2929 	/*
2930 	 * Throttle page dirtying rate down to writeback speed.
2931 	 *
2932 	 * mapping may be NULL here because some device drivers do not
2933 	 * set page.mapping but still dirty their pages
2934 	 *
2935 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2936 	 * is pinning the mapping, as per above.
2937 	 */
2938 	if ((dirtied || page_mkwrite) && mapping) {
2939 		struct file *fpin;
2940 
2941 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2942 		balance_dirty_pages_ratelimited(mapping);
2943 		if (fpin) {
2944 			fput(fpin);
2945 			return VM_FAULT_RETRY;
2946 		}
2947 	}
2948 
2949 	return 0;
2950 }
2951 
2952 /*
2953  * Handle write page faults for pages that can be reused in the current vma
2954  *
2955  * This can happen either due to the mapping being with the VM_SHARED flag,
2956  * or due to us being the last reference standing to the page. In either
2957  * case, all we need to do here is to mark the page as writable and update
2958  * any related book-keeping.
2959  */
2960 static inline void wp_page_reuse(struct vm_fault *vmf)
2961 	__releases(vmf->ptl)
2962 {
2963 	struct vm_area_struct *vma = vmf->vma;
2964 	struct page *page = vmf->page;
2965 	pte_t entry;
2966 	/*
2967 	 * Clear the pages cpupid information as the existing
2968 	 * information potentially belongs to a now completely
2969 	 * unrelated process.
2970 	 */
2971 	if (page)
2972 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2973 
2974 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2975 	entry = pte_mkyoung(vmf->orig_pte);
2976 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2977 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2978 		update_mmu_cache(vma, vmf->address, vmf->pte);
2979 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2980 	count_vm_event(PGREUSE);
2981 }
2982 
2983 /*
2984  * Handle the case of a page which we actually need to copy to a new page.
2985  *
2986  * Called with mmap_lock locked and the old page referenced, but
2987  * without the ptl held.
2988  *
2989  * High level logic flow:
2990  *
2991  * - Allocate a page, copy the content of the old page to the new one.
2992  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2993  * - Take the PTL. If the pte changed, bail out and release the allocated page
2994  * - If the pte is still the way we remember it, update the page table and all
2995  *   relevant references. This includes dropping the reference the page-table
2996  *   held to the old page, as well as updating the rmap.
2997  * - In any case, unlock the PTL and drop the reference we took to the old page.
2998  */
2999 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3000 {
3001 	struct vm_area_struct *vma = vmf->vma;
3002 	struct mm_struct *mm = vma->vm_mm;
3003 	struct page *old_page = vmf->page;
3004 	struct page *new_page = NULL;
3005 	pte_t entry;
3006 	int page_copied = 0;
3007 	struct mmu_notifier_range range;
3008 
3009 	if (unlikely(anon_vma_prepare(vma)))
3010 		goto oom;
3011 
3012 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3013 		new_page = alloc_zeroed_user_highpage_movable(vma,
3014 							      vmf->address);
3015 		if (!new_page)
3016 			goto oom;
3017 	} else {
3018 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3019 				vmf->address);
3020 		if (!new_page)
3021 			goto oom;
3022 
3023 		if (!cow_user_page(new_page, old_page, vmf)) {
3024 			/*
3025 			 * COW failed, if the fault was solved by other,
3026 			 * it's fine. If not, userspace would re-fault on
3027 			 * the same address and we will handle the fault
3028 			 * from the second attempt.
3029 			 */
3030 			put_page(new_page);
3031 			if (old_page)
3032 				put_page(old_page);
3033 			return 0;
3034 		}
3035 	}
3036 
3037 	if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3038 		goto oom_free_new;
3039 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3040 
3041 	__SetPageUptodate(new_page);
3042 
3043 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3044 				vmf->address & PAGE_MASK,
3045 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3046 	mmu_notifier_invalidate_range_start(&range);
3047 
3048 	/*
3049 	 * Re-check the pte - we dropped the lock
3050 	 */
3051 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3052 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3053 		if (old_page) {
3054 			if (!PageAnon(old_page)) {
3055 				dec_mm_counter_fast(mm,
3056 						mm_counter_file(old_page));
3057 				inc_mm_counter_fast(mm, MM_ANONPAGES);
3058 			}
3059 		} else {
3060 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3061 		}
3062 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3063 		entry = mk_pte(new_page, vma->vm_page_prot);
3064 		entry = pte_sw_mkyoung(entry);
3065 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3066 
3067 		/*
3068 		 * Clear the pte entry and flush it first, before updating the
3069 		 * pte with the new entry, to keep TLBs on different CPUs in
3070 		 * sync. This code used to set the new PTE then flush TLBs, but
3071 		 * that left a window where the new PTE could be loaded into
3072 		 * some TLBs while the old PTE remains in others.
3073 		 */
3074 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3075 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3076 		lru_cache_add_inactive_or_unevictable(new_page, vma);
3077 		/*
3078 		 * We call the notify macro here because, when using secondary
3079 		 * mmu page tables (such as kvm shadow page tables), we want the
3080 		 * new page to be mapped directly into the secondary page table.
3081 		 */
3082 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3083 		update_mmu_cache(vma, vmf->address, vmf->pte);
3084 		if (old_page) {
3085 			/*
3086 			 * Only after switching the pte to the new page may
3087 			 * we remove the mapcount here. Otherwise another
3088 			 * process may come and find the rmap count decremented
3089 			 * before the pte is switched to the new page, and
3090 			 * "reuse" the old page writing into it while our pte
3091 			 * here still points into it and can be read by other
3092 			 * threads.
3093 			 *
3094 			 * The critical issue is to order this
3095 			 * page_remove_rmap with the ptp_clear_flush above.
3096 			 * Those stores are ordered by (if nothing else,)
3097 			 * the barrier present in the atomic_add_negative
3098 			 * in page_remove_rmap.
3099 			 *
3100 			 * Then the TLB flush in ptep_clear_flush ensures that
3101 			 * no process can access the old page before the
3102 			 * decremented mapcount is visible. And the old page
3103 			 * cannot be reused until after the decremented
3104 			 * mapcount is visible. So transitively, TLBs to
3105 			 * old page will be flushed before it can be reused.
3106 			 */
3107 			page_remove_rmap(old_page, vma, false);
3108 		}
3109 
3110 		/* Free the old page.. */
3111 		new_page = old_page;
3112 		page_copied = 1;
3113 	} else {
3114 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3115 	}
3116 
3117 	if (new_page)
3118 		put_page(new_page);
3119 
3120 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3121 	/*
3122 	 * No need to double call mmu_notifier->invalidate_range() callback as
3123 	 * the above ptep_clear_flush_notify() did already call it.
3124 	 */
3125 	mmu_notifier_invalidate_range_only_end(&range);
3126 	if (old_page) {
3127 		if (page_copied)
3128 			free_swap_cache(old_page);
3129 		put_page(old_page);
3130 	}
3131 	return page_copied ? VM_FAULT_WRITE : 0;
3132 oom_free_new:
3133 	put_page(new_page);
3134 oom:
3135 	if (old_page)
3136 		put_page(old_page);
3137 	return VM_FAULT_OOM;
3138 }
3139 
3140 /**
3141  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3142  *			  writeable once the page is prepared
3143  *
3144  * @vmf: structure describing the fault
3145  *
3146  * This function handles all that is needed to finish a write page fault in a
3147  * shared mapping due to PTE being read-only once the mapped page is prepared.
3148  * It handles locking of PTE and modifying it.
3149  *
3150  * The function expects the page to be locked or other protection against
3151  * concurrent faults / writeback (such as DAX radix tree locks).
3152  *
3153  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3154  * we acquired PTE lock.
3155  */
3156 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3157 {
3158 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3159 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3160 				       &vmf->ptl);
3161 	/*
3162 	 * We might have raced with another page fault while we released the
3163 	 * pte_offset_map_lock.
3164 	 */
3165 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3166 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3167 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3168 		return VM_FAULT_NOPAGE;
3169 	}
3170 	wp_page_reuse(vmf);
3171 	return 0;
3172 }
3173 
3174 /*
3175  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3176  * mapping
3177  */
3178 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3179 {
3180 	struct vm_area_struct *vma = vmf->vma;
3181 
3182 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3183 		vm_fault_t ret;
3184 
3185 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3186 		vmf->flags |= FAULT_FLAG_MKWRITE;
3187 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3188 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3189 			return ret;
3190 		return finish_mkwrite_fault(vmf);
3191 	}
3192 	wp_page_reuse(vmf);
3193 	return VM_FAULT_WRITE;
3194 }
3195 
3196 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3197 	__releases(vmf->ptl)
3198 {
3199 	struct vm_area_struct *vma = vmf->vma;
3200 	vm_fault_t ret = VM_FAULT_WRITE;
3201 
3202 	get_page(vmf->page);
3203 
3204 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3205 		vm_fault_t tmp;
3206 
3207 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3208 		tmp = do_page_mkwrite(vmf);
3209 		if (unlikely(!tmp || (tmp &
3210 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3211 			put_page(vmf->page);
3212 			return tmp;
3213 		}
3214 		tmp = finish_mkwrite_fault(vmf);
3215 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3216 			unlock_page(vmf->page);
3217 			put_page(vmf->page);
3218 			return tmp;
3219 		}
3220 	} else {
3221 		wp_page_reuse(vmf);
3222 		lock_page(vmf->page);
3223 	}
3224 	ret |= fault_dirty_shared_page(vmf);
3225 	put_page(vmf->page);
3226 
3227 	return ret;
3228 }
3229 
3230 /*
3231  * This routine handles present pages, when users try to write
3232  * to a shared page. It is done by copying the page to a new address
3233  * and decrementing the shared-page counter for the old page.
3234  *
3235  * Note that this routine assumes that the protection checks have been
3236  * done by the caller (the low-level page fault routine in most cases).
3237  * Thus we can safely just mark it writable once we've done any necessary
3238  * COW.
3239  *
3240  * We also mark the page dirty at this point even though the page will
3241  * change only once the write actually happens. This avoids a few races,
3242  * and potentially makes it more efficient.
3243  *
3244  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3245  * but allow concurrent faults), with pte both mapped and locked.
3246  * We return with mmap_lock still held, but pte unmapped and unlocked.
3247  */
3248 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3249 	__releases(vmf->ptl)
3250 {
3251 	struct vm_area_struct *vma = vmf->vma;
3252 
3253 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3254 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3255 		return handle_userfault(vmf, VM_UFFD_WP);
3256 	}
3257 
3258 	/*
3259 	 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3260 	 * is flushed in this case before copying.
3261 	 */
3262 	if (unlikely(userfaultfd_wp(vmf->vma) &&
3263 		     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3264 		flush_tlb_page(vmf->vma, vmf->address);
3265 
3266 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3267 	if (!vmf->page) {
3268 		/*
3269 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3270 		 * VM_PFNMAP VMA.
3271 		 *
3272 		 * We should not cow pages in a shared writeable mapping.
3273 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3274 		 */
3275 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3276 				     (VM_WRITE|VM_SHARED))
3277 			return wp_pfn_shared(vmf);
3278 
3279 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3280 		return wp_page_copy(vmf);
3281 	}
3282 
3283 	/*
3284 	 * Take out anonymous pages first, anonymous shared vmas are
3285 	 * not dirty accountable.
3286 	 */
3287 	if (PageAnon(vmf->page)) {
3288 		struct page *page = vmf->page;
3289 
3290 		/*
3291 		 * We have to verify under page lock: these early checks are
3292 		 * just an optimization to avoid locking the page and freeing
3293 		 * the swapcache if there is little hope that we can reuse.
3294 		 *
3295 		 * PageKsm() doesn't necessarily raise the page refcount.
3296 		 */
3297 		if (PageKsm(page) || page_count(page) > 3)
3298 			goto copy;
3299 		if (!PageLRU(page))
3300 			/*
3301 			 * Note: We cannot easily detect+handle references from
3302 			 * remote LRU pagevecs or references to PageLRU() pages.
3303 			 */
3304 			lru_add_drain();
3305 		if (page_count(page) > 1 + PageSwapCache(page))
3306 			goto copy;
3307 		if (!trylock_page(page))
3308 			goto copy;
3309 		if (PageSwapCache(page))
3310 			try_to_free_swap(page);
3311 		if (PageKsm(page) || page_count(page) != 1) {
3312 			unlock_page(page);
3313 			goto copy;
3314 		}
3315 		/*
3316 		 * Ok, we've got the only page reference from our mapping
3317 		 * and the page is locked, it's dark out, and we're wearing
3318 		 * sunglasses. Hit it.
3319 		 */
3320 		unlock_page(page);
3321 		wp_page_reuse(vmf);
3322 		return VM_FAULT_WRITE;
3323 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3324 					(VM_WRITE|VM_SHARED))) {
3325 		return wp_page_shared(vmf);
3326 	}
3327 copy:
3328 	/*
3329 	 * Ok, we need to copy. Oh, well..
3330 	 */
3331 	get_page(vmf->page);
3332 
3333 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3334 #ifdef CONFIG_KSM
3335 	if (PageKsm(vmf->page))
3336 		count_vm_event(COW_KSM);
3337 #endif
3338 	return wp_page_copy(vmf);
3339 }
3340 
3341 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3342 		unsigned long start_addr, unsigned long end_addr,
3343 		struct zap_details *details)
3344 {
3345 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3346 }
3347 
3348 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3349 					    pgoff_t first_index,
3350 					    pgoff_t last_index,
3351 					    struct zap_details *details)
3352 {
3353 	struct vm_area_struct *vma;
3354 	pgoff_t vba, vea, zba, zea;
3355 
3356 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3357 		vba = vma->vm_pgoff;
3358 		vea = vba + vma_pages(vma) - 1;
3359 		zba = max(first_index, vba);
3360 		zea = min(last_index, vea);
3361 
3362 		unmap_mapping_range_vma(vma,
3363 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3364 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3365 				details);
3366 	}
3367 }
3368 
3369 /**
3370  * unmap_mapping_folio() - Unmap single folio from processes.
3371  * @folio: The locked folio to be unmapped.
3372  *
3373  * Unmap this folio from any userspace process which still has it mmaped.
3374  * Typically, for efficiency, the range of nearby pages has already been
3375  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3376  * truncation or invalidation holds the lock on a folio, it may find that
3377  * the page has been remapped again: and then uses unmap_mapping_folio()
3378  * to unmap it finally.
3379  */
3380 void unmap_mapping_folio(struct folio *folio)
3381 {
3382 	struct address_space *mapping = folio->mapping;
3383 	struct zap_details details = { };
3384 	pgoff_t	first_index;
3385 	pgoff_t	last_index;
3386 
3387 	VM_BUG_ON(!folio_test_locked(folio));
3388 
3389 	first_index = folio->index;
3390 	last_index = folio->index + folio_nr_pages(folio) - 1;
3391 
3392 	details.even_cows = false;
3393 	details.single_folio = folio;
3394 
3395 	i_mmap_lock_read(mapping);
3396 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3397 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3398 					 last_index, &details);
3399 	i_mmap_unlock_read(mapping);
3400 }
3401 
3402 /**
3403  * unmap_mapping_pages() - Unmap pages from processes.
3404  * @mapping: The address space containing pages to be unmapped.
3405  * @start: Index of first page to be unmapped.
3406  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3407  * @even_cows: Whether to unmap even private COWed pages.
3408  *
3409  * Unmap the pages in this address space from any userspace process which
3410  * has them mmaped.  Generally, you want to remove COWed pages as well when
3411  * a file is being truncated, but not when invalidating pages from the page
3412  * cache.
3413  */
3414 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3415 		pgoff_t nr, bool even_cows)
3416 {
3417 	struct zap_details details = { };
3418 	pgoff_t	first_index = start;
3419 	pgoff_t	last_index = start + nr - 1;
3420 
3421 	details.even_cows = even_cows;
3422 	if (last_index < first_index)
3423 		last_index = ULONG_MAX;
3424 
3425 	i_mmap_lock_read(mapping);
3426 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3427 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3428 					 last_index, &details);
3429 	i_mmap_unlock_read(mapping);
3430 }
3431 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3432 
3433 /**
3434  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3435  * address_space corresponding to the specified byte range in the underlying
3436  * file.
3437  *
3438  * @mapping: the address space containing mmaps to be unmapped.
3439  * @holebegin: byte in first page to unmap, relative to the start of
3440  * the underlying file.  This will be rounded down to a PAGE_SIZE
3441  * boundary.  Note that this is different from truncate_pagecache(), which
3442  * must keep the partial page.  In contrast, we must get rid of
3443  * partial pages.
3444  * @holelen: size of prospective hole in bytes.  This will be rounded
3445  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3446  * end of the file.
3447  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3448  * but 0 when invalidating pagecache, don't throw away private data.
3449  */
3450 void unmap_mapping_range(struct address_space *mapping,
3451 		loff_t const holebegin, loff_t const holelen, int even_cows)
3452 {
3453 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3454 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3455 
3456 	/* Check for overflow. */
3457 	if (sizeof(holelen) > sizeof(hlen)) {
3458 		long long holeend =
3459 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3460 		if (holeend & ~(long long)ULONG_MAX)
3461 			hlen = ULONG_MAX - hba + 1;
3462 	}
3463 
3464 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3465 }
3466 EXPORT_SYMBOL(unmap_mapping_range);
3467 
3468 /*
3469  * Restore a potential device exclusive pte to a working pte entry
3470  */
3471 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3472 {
3473 	struct page *page = vmf->page;
3474 	struct vm_area_struct *vma = vmf->vma;
3475 	struct mmu_notifier_range range;
3476 
3477 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3478 		return VM_FAULT_RETRY;
3479 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3480 				vma->vm_mm, vmf->address & PAGE_MASK,
3481 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3482 	mmu_notifier_invalidate_range_start(&range);
3483 
3484 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3485 				&vmf->ptl);
3486 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3487 		restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3488 
3489 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3490 	unlock_page(page);
3491 
3492 	mmu_notifier_invalidate_range_end(&range);
3493 	return 0;
3494 }
3495 
3496 static inline bool should_try_to_free_swap(struct page *page,
3497 					   struct vm_area_struct *vma,
3498 					   unsigned int fault_flags)
3499 {
3500 	if (!PageSwapCache(page))
3501 		return false;
3502 	if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3503 	    PageMlocked(page))
3504 		return true;
3505 	/*
3506 	 * If we want to map a page that's in the swapcache writable, we
3507 	 * have to detect via the refcount if we're really the exclusive
3508 	 * user. Try freeing the swapcache to get rid of the swapcache
3509 	 * reference only in case it's likely that we'll be the exlusive user.
3510 	 */
3511 	return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3512 		page_count(page) == 2;
3513 }
3514 
3515 /*
3516  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3517  * but allow concurrent faults), and pte mapped but not yet locked.
3518  * We return with pte unmapped and unlocked.
3519  *
3520  * We return with the mmap_lock locked or unlocked in the same cases
3521  * as does filemap_fault().
3522  */
3523 vm_fault_t do_swap_page(struct vm_fault *vmf)
3524 {
3525 	struct vm_area_struct *vma = vmf->vma;
3526 	struct page *page = NULL, *swapcache;
3527 	struct swap_info_struct *si = NULL;
3528 	swp_entry_t entry;
3529 	pte_t pte;
3530 	int locked;
3531 	int exclusive = 0;
3532 	vm_fault_t ret = 0;
3533 	void *shadow = NULL;
3534 
3535 	if (!pte_unmap_same(vmf))
3536 		goto out;
3537 
3538 	entry = pte_to_swp_entry(vmf->orig_pte);
3539 	if (unlikely(non_swap_entry(entry))) {
3540 		if (is_migration_entry(entry)) {
3541 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3542 					     vmf->address);
3543 		} else if (is_device_exclusive_entry(entry)) {
3544 			vmf->page = pfn_swap_entry_to_page(entry);
3545 			ret = remove_device_exclusive_entry(vmf);
3546 		} else if (is_device_private_entry(entry)) {
3547 			vmf->page = pfn_swap_entry_to_page(entry);
3548 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3549 		} else if (is_hwpoison_entry(entry)) {
3550 			ret = VM_FAULT_HWPOISON;
3551 		} else {
3552 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3553 			ret = VM_FAULT_SIGBUS;
3554 		}
3555 		goto out;
3556 	}
3557 
3558 	/* Prevent swapoff from happening to us. */
3559 	si = get_swap_device(entry);
3560 	if (unlikely(!si))
3561 		goto out;
3562 
3563 	page = lookup_swap_cache(entry, vma, vmf->address);
3564 	swapcache = page;
3565 
3566 	if (!page) {
3567 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3568 		    __swap_count(entry) == 1) {
3569 			/* skip swapcache */
3570 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3571 							vmf->address);
3572 			if (page) {
3573 				__SetPageLocked(page);
3574 				__SetPageSwapBacked(page);
3575 
3576 				if (mem_cgroup_swapin_charge_page(page,
3577 					vma->vm_mm, GFP_KERNEL, entry)) {
3578 					ret = VM_FAULT_OOM;
3579 					goto out_page;
3580 				}
3581 				mem_cgroup_swapin_uncharge_swap(entry);
3582 
3583 				shadow = get_shadow_from_swap_cache(entry);
3584 				if (shadow)
3585 					workingset_refault(page_folio(page),
3586 								shadow);
3587 
3588 				lru_cache_add(page);
3589 
3590 				/* To provide entry to swap_readpage() */
3591 				set_page_private(page, entry.val);
3592 				swap_readpage(page, true);
3593 				set_page_private(page, 0);
3594 			}
3595 		} else {
3596 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3597 						vmf);
3598 			swapcache = page;
3599 		}
3600 
3601 		if (!page) {
3602 			/*
3603 			 * Back out if somebody else faulted in this pte
3604 			 * while we released the pte lock.
3605 			 */
3606 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3607 					vmf->address, &vmf->ptl);
3608 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3609 				ret = VM_FAULT_OOM;
3610 			goto unlock;
3611 		}
3612 
3613 		/* Had to read the page from swap area: Major fault */
3614 		ret = VM_FAULT_MAJOR;
3615 		count_vm_event(PGMAJFAULT);
3616 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3617 	} else if (PageHWPoison(page)) {
3618 		/*
3619 		 * hwpoisoned dirty swapcache pages are kept for killing
3620 		 * owner processes (which may be unknown at hwpoison time)
3621 		 */
3622 		ret = VM_FAULT_HWPOISON;
3623 		goto out_release;
3624 	}
3625 
3626 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3627 
3628 	if (!locked) {
3629 		ret |= VM_FAULT_RETRY;
3630 		goto out_release;
3631 	}
3632 
3633 	if (swapcache) {
3634 		/*
3635 		 * Make sure try_to_free_swap or swapoff did not release the
3636 		 * swapcache from under us.  The page pin, and pte_same test
3637 		 * below, are not enough to exclude that.  Even if it is still
3638 		 * swapcache, we need to check that the page's swap has not
3639 		 * changed.
3640 		 */
3641 		if (unlikely(!PageSwapCache(page) ||
3642 			     page_private(page) != entry.val))
3643 			goto out_page;
3644 
3645 		/*
3646 		 * KSM sometimes has to copy on read faults, for example, if
3647 		 * page->index of !PageKSM() pages would be nonlinear inside the
3648 		 * anon VMA -- PageKSM() is lost on actual swapout.
3649 		 */
3650 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3651 		if (unlikely(!page)) {
3652 			ret = VM_FAULT_OOM;
3653 			page = swapcache;
3654 			goto out_page;
3655 		}
3656 
3657 		/*
3658 		 * If we want to map a page that's in the swapcache writable, we
3659 		 * have to detect via the refcount if we're really the exclusive
3660 		 * owner. Try removing the extra reference from the local LRU
3661 		 * pagevecs if required.
3662 		 */
3663 		if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3664 		    !PageKsm(page) && !PageLRU(page))
3665 			lru_add_drain();
3666 	}
3667 
3668 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3669 
3670 	/*
3671 	 * Back out if somebody else already faulted in this pte.
3672 	 */
3673 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3674 			&vmf->ptl);
3675 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3676 		goto out_nomap;
3677 
3678 	if (unlikely(!PageUptodate(page))) {
3679 		ret = VM_FAULT_SIGBUS;
3680 		goto out_nomap;
3681 	}
3682 
3683 	/*
3684 	 * Remove the swap entry and conditionally try to free up the swapcache.
3685 	 * We're already holding a reference on the page but haven't mapped it
3686 	 * yet.
3687 	 */
3688 	swap_free(entry);
3689 	if (should_try_to_free_swap(page, vma, vmf->flags))
3690 		try_to_free_swap(page);
3691 
3692 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3693 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3694 	pte = mk_pte(page, vma->vm_page_prot);
3695 
3696 	/*
3697 	 * Same logic as in do_wp_page(); however, optimize for fresh pages
3698 	 * that are certainly not shared because we just allocated them without
3699 	 * exposing them to the swapcache.
3700 	 */
3701 	if ((vmf->flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3702 	    (page != swapcache || page_count(page) == 1)) {
3703 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3704 		vmf->flags &= ~FAULT_FLAG_WRITE;
3705 		ret |= VM_FAULT_WRITE;
3706 		exclusive = RMAP_EXCLUSIVE;
3707 	}
3708 	flush_icache_page(vma, page);
3709 	if (pte_swp_soft_dirty(vmf->orig_pte))
3710 		pte = pte_mksoft_dirty(pte);
3711 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3712 		pte = pte_mkuffd_wp(pte);
3713 		pte = pte_wrprotect(pte);
3714 	}
3715 	vmf->orig_pte = pte;
3716 
3717 	/* ksm created a completely new copy */
3718 	if (unlikely(page != swapcache && swapcache)) {
3719 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3720 		lru_cache_add_inactive_or_unevictable(page, vma);
3721 	} else {
3722 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3723 	}
3724 
3725 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3726 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3727 
3728 	unlock_page(page);
3729 	if (page != swapcache && swapcache) {
3730 		/*
3731 		 * Hold the lock to avoid the swap entry to be reused
3732 		 * until we take the PT lock for the pte_same() check
3733 		 * (to avoid false positives from pte_same). For
3734 		 * further safety release the lock after the swap_free
3735 		 * so that the swap count won't change under a
3736 		 * parallel locked swapcache.
3737 		 */
3738 		unlock_page(swapcache);
3739 		put_page(swapcache);
3740 	}
3741 
3742 	if (vmf->flags & FAULT_FLAG_WRITE) {
3743 		ret |= do_wp_page(vmf);
3744 		if (ret & VM_FAULT_ERROR)
3745 			ret &= VM_FAULT_ERROR;
3746 		goto out;
3747 	}
3748 
3749 	/* No need to invalidate - it was non-present before */
3750 	update_mmu_cache(vma, vmf->address, vmf->pte);
3751 unlock:
3752 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3753 out:
3754 	if (si)
3755 		put_swap_device(si);
3756 	return ret;
3757 out_nomap:
3758 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3759 out_page:
3760 	unlock_page(page);
3761 out_release:
3762 	put_page(page);
3763 	if (page != swapcache && swapcache) {
3764 		unlock_page(swapcache);
3765 		put_page(swapcache);
3766 	}
3767 	if (si)
3768 		put_swap_device(si);
3769 	return ret;
3770 }
3771 
3772 /*
3773  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3774  * but allow concurrent faults), and pte mapped but not yet locked.
3775  * We return with mmap_lock still held, but pte unmapped and unlocked.
3776  */
3777 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3778 {
3779 	struct vm_area_struct *vma = vmf->vma;
3780 	struct page *page;
3781 	vm_fault_t ret = 0;
3782 	pte_t entry;
3783 
3784 	/* File mapping without ->vm_ops ? */
3785 	if (vma->vm_flags & VM_SHARED)
3786 		return VM_FAULT_SIGBUS;
3787 
3788 	/*
3789 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3790 	 * pte_offset_map() on pmds where a huge pmd might be created
3791 	 * from a different thread.
3792 	 *
3793 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3794 	 * parallel threads are excluded by other means.
3795 	 *
3796 	 * Here we only have mmap_read_lock(mm).
3797 	 */
3798 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3799 		return VM_FAULT_OOM;
3800 
3801 	/* See comment in handle_pte_fault() */
3802 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3803 		return 0;
3804 
3805 	/* Use the zero-page for reads */
3806 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3807 			!mm_forbids_zeropage(vma->vm_mm)) {
3808 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3809 						vma->vm_page_prot));
3810 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3811 				vmf->address, &vmf->ptl);
3812 		if (!pte_none(*vmf->pte)) {
3813 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3814 			goto unlock;
3815 		}
3816 		ret = check_stable_address_space(vma->vm_mm);
3817 		if (ret)
3818 			goto unlock;
3819 		/* Deliver the page fault to userland, check inside PT lock */
3820 		if (userfaultfd_missing(vma)) {
3821 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3822 			return handle_userfault(vmf, VM_UFFD_MISSING);
3823 		}
3824 		goto setpte;
3825 	}
3826 
3827 	/* Allocate our own private page. */
3828 	if (unlikely(anon_vma_prepare(vma)))
3829 		goto oom;
3830 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3831 	if (!page)
3832 		goto oom;
3833 
3834 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3835 		goto oom_free_page;
3836 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3837 
3838 	/*
3839 	 * The memory barrier inside __SetPageUptodate makes sure that
3840 	 * preceding stores to the page contents become visible before
3841 	 * the set_pte_at() write.
3842 	 */
3843 	__SetPageUptodate(page);
3844 
3845 	entry = mk_pte(page, vma->vm_page_prot);
3846 	entry = pte_sw_mkyoung(entry);
3847 	if (vma->vm_flags & VM_WRITE)
3848 		entry = pte_mkwrite(pte_mkdirty(entry));
3849 
3850 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3851 			&vmf->ptl);
3852 	if (!pte_none(*vmf->pte)) {
3853 		update_mmu_cache(vma, vmf->address, vmf->pte);
3854 		goto release;
3855 	}
3856 
3857 	ret = check_stable_address_space(vma->vm_mm);
3858 	if (ret)
3859 		goto release;
3860 
3861 	/* Deliver the page fault to userland, check inside PT lock */
3862 	if (userfaultfd_missing(vma)) {
3863 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3864 		put_page(page);
3865 		return handle_userfault(vmf, VM_UFFD_MISSING);
3866 	}
3867 
3868 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3869 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3870 	lru_cache_add_inactive_or_unevictable(page, vma);
3871 setpte:
3872 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3873 
3874 	/* No need to invalidate - it was non-present before */
3875 	update_mmu_cache(vma, vmf->address, vmf->pte);
3876 unlock:
3877 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3878 	return ret;
3879 release:
3880 	put_page(page);
3881 	goto unlock;
3882 oom_free_page:
3883 	put_page(page);
3884 oom:
3885 	return VM_FAULT_OOM;
3886 }
3887 
3888 /*
3889  * The mmap_lock must have been held on entry, and may have been
3890  * released depending on flags and vma->vm_ops->fault() return value.
3891  * See filemap_fault() and __lock_page_retry().
3892  */
3893 static vm_fault_t __do_fault(struct vm_fault *vmf)
3894 {
3895 	struct vm_area_struct *vma = vmf->vma;
3896 	vm_fault_t ret;
3897 
3898 	/*
3899 	 * Preallocate pte before we take page_lock because this might lead to
3900 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3901 	 *				lock_page(A)
3902 	 *				SetPageWriteback(A)
3903 	 *				unlock_page(A)
3904 	 * lock_page(B)
3905 	 *				lock_page(B)
3906 	 * pte_alloc_one
3907 	 *   shrink_page_list
3908 	 *     wait_on_page_writeback(A)
3909 	 *				SetPageWriteback(B)
3910 	 *				unlock_page(B)
3911 	 *				# flush A, B to clear the writeback
3912 	 */
3913 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3914 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3915 		if (!vmf->prealloc_pte)
3916 			return VM_FAULT_OOM;
3917 	}
3918 
3919 	ret = vma->vm_ops->fault(vmf);
3920 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3921 			    VM_FAULT_DONE_COW)))
3922 		return ret;
3923 
3924 	if (unlikely(PageHWPoison(vmf->page))) {
3925 		struct page *page = vmf->page;
3926 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
3927 		if (ret & VM_FAULT_LOCKED) {
3928 			if (page_mapped(page))
3929 				unmap_mapping_pages(page_mapping(page),
3930 						    page->index, 1, false);
3931 			/* Retry if a clean page was removed from the cache. */
3932 			if (invalidate_inode_page(page))
3933 				poisonret = VM_FAULT_NOPAGE;
3934 			unlock_page(page);
3935 		}
3936 		put_page(page);
3937 		vmf->page = NULL;
3938 		return poisonret;
3939 	}
3940 
3941 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3942 		lock_page(vmf->page);
3943 	else
3944 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3945 
3946 	return ret;
3947 }
3948 
3949 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3950 static void deposit_prealloc_pte(struct vm_fault *vmf)
3951 {
3952 	struct vm_area_struct *vma = vmf->vma;
3953 
3954 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3955 	/*
3956 	 * We are going to consume the prealloc table,
3957 	 * count that as nr_ptes.
3958 	 */
3959 	mm_inc_nr_ptes(vma->vm_mm);
3960 	vmf->prealloc_pte = NULL;
3961 }
3962 
3963 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3964 {
3965 	struct vm_area_struct *vma = vmf->vma;
3966 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3967 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3968 	pmd_t entry;
3969 	int i;
3970 	vm_fault_t ret = VM_FAULT_FALLBACK;
3971 
3972 	if (!transhuge_vma_suitable(vma, haddr))
3973 		return ret;
3974 
3975 	page = compound_head(page);
3976 	if (compound_order(page) != HPAGE_PMD_ORDER)
3977 		return ret;
3978 
3979 	/*
3980 	 * Just backoff if any subpage of a THP is corrupted otherwise
3981 	 * the corrupted page may mapped by PMD silently to escape the
3982 	 * check.  This kind of THP just can be PTE mapped.  Access to
3983 	 * the corrupted subpage should trigger SIGBUS as expected.
3984 	 */
3985 	if (unlikely(PageHasHWPoisoned(page)))
3986 		return ret;
3987 
3988 	/*
3989 	 * Archs like ppc64 need additional space to store information
3990 	 * related to pte entry. Use the preallocated table for that.
3991 	 */
3992 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3993 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3994 		if (!vmf->prealloc_pte)
3995 			return VM_FAULT_OOM;
3996 	}
3997 
3998 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3999 	if (unlikely(!pmd_none(*vmf->pmd)))
4000 		goto out;
4001 
4002 	for (i = 0; i < HPAGE_PMD_NR; i++)
4003 		flush_icache_page(vma, page + i);
4004 
4005 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4006 	if (write)
4007 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4008 
4009 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4010 	page_add_file_rmap(page, vma, true);
4011 
4012 	/*
4013 	 * deposit and withdraw with pmd lock held
4014 	 */
4015 	if (arch_needs_pgtable_deposit())
4016 		deposit_prealloc_pte(vmf);
4017 
4018 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4019 
4020 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4021 
4022 	/* fault is handled */
4023 	ret = 0;
4024 	count_vm_event(THP_FILE_MAPPED);
4025 out:
4026 	spin_unlock(vmf->ptl);
4027 	return ret;
4028 }
4029 #else
4030 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4031 {
4032 	return VM_FAULT_FALLBACK;
4033 }
4034 #endif
4035 
4036 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4037 {
4038 	struct vm_area_struct *vma = vmf->vma;
4039 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4040 	bool prefault = vmf->address != addr;
4041 	pte_t entry;
4042 
4043 	flush_icache_page(vma, page);
4044 	entry = mk_pte(page, vma->vm_page_prot);
4045 
4046 	if (prefault && arch_wants_old_prefaulted_pte())
4047 		entry = pte_mkold(entry);
4048 	else
4049 		entry = pte_sw_mkyoung(entry);
4050 
4051 	if (write)
4052 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4053 	/* copy-on-write page */
4054 	if (write && !(vma->vm_flags & VM_SHARED)) {
4055 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4056 		page_add_new_anon_rmap(page, vma, addr, false);
4057 		lru_cache_add_inactive_or_unevictable(page, vma);
4058 	} else {
4059 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4060 		page_add_file_rmap(page, vma, false);
4061 	}
4062 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4063 }
4064 
4065 /**
4066  * finish_fault - finish page fault once we have prepared the page to fault
4067  *
4068  * @vmf: structure describing the fault
4069  *
4070  * This function handles all that is needed to finish a page fault once the
4071  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4072  * given page, adds reverse page mapping, handles memcg charges and LRU
4073  * addition.
4074  *
4075  * The function expects the page to be locked and on success it consumes a
4076  * reference of a page being mapped (for the PTE which maps it).
4077  *
4078  * Return: %0 on success, %VM_FAULT_ code in case of error.
4079  */
4080 vm_fault_t finish_fault(struct vm_fault *vmf)
4081 {
4082 	struct vm_area_struct *vma = vmf->vma;
4083 	struct page *page;
4084 	vm_fault_t ret;
4085 
4086 	/* Did we COW the page? */
4087 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4088 		page = vmf->cow_page;
4089 	else
4090 		page = vmf->page;
4091 
4092 	/*
4093 	 * check even for read faults because we might have lost our CoWed
4094 	 * page
4095 	 */
4096 	if (!(vma->vm_flags & VM_SHARED)) {
4097 		ret = check_stable_address_space(vma->vm_mm);
4098 		if (ret)
4099 			return ret;
4100 	}
4101 
4102 	if (pmd_none(*vmf->pmd)) {
4103 		if (PageTransCompound(page)) {
4104 			ret = do_set_pmd(vmf, page);
4105 			if (ret != VM_FAULT_FALLBACK)
4106 				return ret;
4107 		}
4108 
4109 		if (vmf->prealloc_pte)
4110 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4111 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4112 			return VM_FAULT_OOM;
4113 	}
4114 
4115 	/* See comment in handle_pte_fault() */
4116 	if (pmd_devmap_trans_unstable(vmf->pmd))
4117 		return 0;
4118 
4119 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4120 				      vmf->address, &vmf->ptl);
4121 	ret = 0;
4122 	/* Re-check under ptl */
4123 	if (likely(pte_none(*vmf->pte)))
4124 		do_set_pte(vmf, page, vmf->address);
4125 	else
4126 		ret = VM_FAULT_NOPAGE;
4127 
4128 	update_mmu_tlb(vma, vmf->address, vmf->pte);
4129 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4130 	return ret;
4131 }
4132 
4133 static unsigned long fault_around_bytes __read_mostly =
4134 	rounddown_pow_of_two(65536);
4135 
4136 #ifdef CONFIG_DEBUG_FS
4137 static int fault_around_bytes_get(void *data, u64 *val)
4138 {
4139 	*val = fault_around_bytes;
4140 	return 0;
4141 }
4142 
4143 /*
4144  * fault_around_bytes must be rounded down to the nearest page order as it's
4145  * what do_fault_around() expects to see.
4146  */
4147 static int fault_around_bytes_set(void *data, u64 val)
4148 {
4149 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4150 		return -EINVAL;
4151 	if (val > PAGE_SIZE)
4152 		fault_around_bytes = rounddown_pow_of_two(val);
4153 	else
4154 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4155 	return 0;
4156 }
4157 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4158 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4159 
4160 static int __init fault_around_debugfs(void)
4161 {
4162 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4163 				   &fault_around_bytes_fops);
4164 	return 0;
4165 }
4166 late_initcall(fault_around_debugfs);
4167 #endif
4168 
4169 /*
4170  * do_fault_around() tries to map few pages around the fault address. The hope
4171  * is that the pages will be needed soon and this will lower the number of
4172  * faults to handle.
4173  *
4174  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4175  * not ready to be mapped: not up-to-date, locked, etc.
4176  *
4177  * This function is called with the page table lock taken. In the split ptlock
4178  * case the page table lock only protects only those entries which belong to
4179  * the page table corresponding to the fault address.
4180  *
4181  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4182  * only once.
4183  *
4184  * fault_around_bytes defines how many bytes we'll try to map.
4185  * do_fault_around() expects it to be set to a power of two less than or equal
4186  * to PTRS_PER_PTE.
4187  *
4188  * The virtual address of the area that we map is naturally aligned to
4189  * fault_around_bytes rounded down to the machine page size
4190  * (and therefore to page order).  This way it's easier to guarantee
4191  * that we don't cross page table boundaries.
4192  */
4193 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4194 {
4195 	unsigned long address = vmf->address, nr_pages, mask;
4196 	pgoff_t start_pgoff = vmf->pgoff;
4197 	pgoff_t end_pgoff;
4198 	int off;
4199 
4200 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4201 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4202 
4203 	address = max(address & mask, vmf->vma->vm_start);
4204 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4205 	start_pgoff -= off;
4206 
4207 	/*
4208 	 *  end_pgoff is either the end of the page table, the end of
4209 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4210 	 */
4211 	end_pgoff = start_pgoff -
4212 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4213 		PTRS_PER_PTE - 1;
4214 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4215 			start_pgoff + nr_pages - 1);
4216 
4217 	if (pmd_none(*vmf->pmd)) {
4218 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4219 		if (!vmf->prealloc_pte)
4220 			return VM_FAULT_OOM;
4221 	}
4222 
4223 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4224 }
4225 
4226 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4227 {
4228 	struct vm_area_struct *vma = vmf->vma;
4229 	vm_fault_t ret = 0;
4230 
4231 	/*
4232 	 * Let's call ->map_pages() first and use ->fault() as fallback
4233 	 * if page by the offset is not ready to be mapped (cold cache or
4234 	 * something).
4235 	 */
4236 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4237 		if (likely(!userfaultfd_minor(vmf->vma))) {
4238 			ret = do_fault_around(vmf);
4239 			if (ret)
4240 				return ret;
4241 		}
4242 	}
4243 
4244 	ret = __do_fault(vmf);
4245 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4246 		return ret;
4247 
4248 	ret |= finish_fault(vmf);
4249 	unlock_page(vmf->page);
4250 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4251 		put_page(vmf->page);
4252 	return ret;
4253 }
4254 
4255 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4256 {
4257 	struct vm_area_struct *vma = vmf->vma;
4258 	vm_fault_t ret;
4259 
4260 	if (unlikely(anon_vma_prepare(vma)))
4261 		return VM_FAULT_OOM;
4262 
4263 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4264 	if (!vmf->cow_page)
4265 		return VM_FAULT_OOM;
4266 
4267 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4268 				GFP_KERNEL)) {
4269 		put_page(vmf->cow_page);
4270 		return VM_FAULT_OOM;
4271 	}
4272 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4273 
4274 	ret = __do_fault(vmf);
4275 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4276 		goto uncharge_out;
4277 	if (ret & VM_FAULT_DONE_COW)
4278 		return ret;
4279 
4280 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4281 	__SetPageUptodate(vmf->cow_page);
4282 
4283 	ret |= finish_fault(vmf);
4284 	unlock_page(vmf->page);
4285 	put_page(vmf->page);
4286 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4287 		goto uncharge_out;
4288 	return ret;
4289 uncharge_out:
4290 	put_page(vmf->cow_page);
4291 	return ret;
4292 }
4293 
4294 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4295 {
4296 	struct vm_area_struct *vma = vmf->vma;
4297 	vm_fault_t ret, tmp;
4298 
4299 	ret = __do_fault(vmf);
4300 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4301 		return ret;
4302 
4303 	/*
4304 	 * Check if the backing address space wants to know that the page is
4305 	 * about to become writable
4306 	 */
4307 	if (vma->vm_ops->page_mkwrite) {
4308 		unlock_page(vmf->page);
4309 		tmp = do_page_mkwrite(vmf);
4310 		if (unlikely(!tmp ||
4311 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4312 			put_page(vmf->page);
4313 			return tmp;
4314 		}
4315 	}
4316 
4317 	ret |= finish_fault(vmf);
4318 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4319 					VM_FAULT_RETRY))) {
4320 		unlock_page(vmf->page);
4321 		put_page(vmf->page);
4322 		return ret;
4323 	}
4324 
4325 	ret |= fault_dirty_shared_page(vmf);
4326 	return ret;
4327 }
4328 
4329 /*
4330  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4331  * but allow concurrent faults).
4332  * The mmap_lock may have been released depending on flags and our
4333  * return value.  See filemap_fault() and __folio_lock_or_retry().
4334  * If mmap_lock is released, vma may become invalid (for example
4335  * by other thread calling munmap()).
4336  */
4337 static vm_fault_t do_fault(struct vm_fault *vmf)
4338 {
4339 	struct vm_area_struct *vma = vmf->vma;
4340 	struct mm_struct *vm_mm = vma->vm_mm;
4341 	vm_fault_t ret;
4342 
4343 	/*
4344 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4345 	 */
4346 	if (!vma->vm_ops->fault) {
4347 		/*
4348 		 * If we find a migration pmd entry or a none pmd entry, which
4349 		 * should never happen, return SIGBUS
4350 		 */
4351 		if (unlikely(!pmd_present(*vmf->pmd)))
4352 			ret = VM_FAULT_SIGBUS;
4353 		else {
4354 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4355 						       vmf->pmd,
4356 						       vmf->address,
4357 						       &vmf->ptl);
4358 			/*
4359 			 * Make sure this is not a temporary clearing of pte
4360 			 * by holding ptl and checking again. A R/M/W update
4361 			 * of pte involves: take ptl, clearing the pte so that
4362 			 * we don't have concurrent modification by hardware
4363 			 * followed by an update.
4364 			 */
4365 			if (unlikely(pte_none(*vmf->pte)))
4366 				ret = VM_FAULT_SIGBUS;
4367 			else
4368 				ret = VM_FAULT_NOPAGE;
4369 
4370 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4371 		}
4372 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4373 		ret = do_read_fault(vmf);
4374 	else if (!(vma->vm_flags & VM_SHARED))
4375 		ret = do_cow_fault(vmf);
4376 	else
4377 		ret = do_shared_fault(vmf);
4378 
4379 	/* preallocated pagetable is unused: free it */
4380 	if (vmf->prealloc_pte) {
4381 		pte_free(vm_mm, vmf->prealloc_pte);
4382 		vmf->prealloc_pte = NULL;
4383 	}
4384 	return ret;
4385 }
4386 
4387 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4388 		      unsigned long addr, int page_nid, int *flags)
4389 {
4390 	get_page(page);
4391 
4392 	count_vm_numa_event(NUMA_HINT_FAULTS);
4393 	if (page_nid == numa_node_id()) {
4394 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4395 		*flags |= TNF_FAULT_LOCAL;
4396 	}
4397 
4398 	return mpol_misplaced(page, vma, addr);
4399 }
4400 
4401 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4402 {
4403 	struct vm_area_struct *vma = vmf->vma;
4404 	struct page *page = NULL;
4405 	int page_nid = NUMA_NO_NODE;
4406 	int last_cpupid;
4407 	int target_nid;
4408 	pte_t pte, old_pte;
4409 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4410 	int flags = 0;
4411 
4412 	/*
4413 	 * The "pte" at this point cannot be used safely without
4414 	 * validation through pte_unmap_same(). It's of NUMA type but
4415 	 * the pfn may be screwed if the read is non atomic.
4416 	 */
4417 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4418 	spin_lock(vmf->ptl);
4419 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4420 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4421 		goto out;
4422 	}
4423 
4424 	/* Get the normal PTE  */
4425 	old_pte = ptep_get(vmf->pte);
4426 	pte = pte_modify(old_pte, vma->vm_page_prot);
4427 
4428 	page = vm_normal_page(vma, vmf->address, pte);
4429 	if (!page)
4430 		goto out_map;
4431 
4432 	/* TODO: handle PTE-mapped THP */
4433 	if (PageCompound(page))
4434 		goto out_map;
4435 
4436 	/*
4437 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4438 	 * much anyway since they can be in shared cache state. This misses
4439 	 * the case where a mapping is writable but the process never writes
4440 	 * to it but pte_write gets cleared during protection updates and
4441 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4442 	 * background writeback, dirty balancing and application behaviour.
4443 	 */
4444 	if (!was_writable)
4445 		flags |= TNF_NO_GROUP;
4446 
4447 	/*
4448 	 * Flag if the page is shared between multiple address spaces. This
4449 	 * is later used when determining whether to group tasks together
4450 	 */
4451 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4452 		flags |= TNF_SHARED;
4453 
4454 	last_cpupid = page_cpupid_last(page);
4455 	page_nid = page_to_nid(page);
4456 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4457 			&flags);
4458 	if (target_nid == NUMA_NO_NODE) {
4459 		put_page(page);
4460 		goto out_map;
4461 	}
4462 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4463 
4464 	/* Migrate to the requested node */
4465 	if (migrate_misplaced_page(page, vma, target_nid)) {
4466 		page_nid = target_nid;
4467 		flags |= TNF_MIGRATED;
4468 	} else {
4469 		flags |= TNF_MIGRATE_FAIL;
4470 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4471 		spin_lock(vmf->ptl);
4472 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4473 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4474 			goto out;
4475 		}
4476 		goto out_map;
4477 	}
4478 
4479 out:
4480 	if (page_nid != NUMA_NO_NODE)
4481 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4482 	return 0;
4483 out_map:
4484 	/*
4485 	 * Make it present again, depending on how arch implements
4486 	 * non-accessible ptes, some can allow access by kernel mode.
4487 	 */
4488 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4489 	pte = pte_modify(old_pte, vma->vm_page_prot);
4490 	pte = pte_mkyoung(pte);
4491 	if (was_writable)
4492 		pte = pte_mkwrite(pte);
4493 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4494 	update_mmu_cache(vma, vmf->address, vmf->pte);
4495 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4496 	goto out;
4497 }
4498 
4499 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4500 {
4501 	if (vma_is_anonymous(vmf->vma))
4502 		return do_huge_pmd_anonymous_page(vmf);
4503 	if (vmf->vma->vm_ops->huge_fault)
4504 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4505 	return VM_FAULT_FALLBACK;
4506 }
4507 
4508 /* `inline' is required to avoid gcc 4.1.2 build error */
4509 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4510 {
4511 	if (vma_is_anonymous(vmf->vma)) {
4512 		if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4513 			return handle_userfault(vmf, VM_UFFD_WP);
4514 		return do_huge_pmd_wp_page(vmf);
4515 	}
4516 	if (vmf->vma->vm_ops->huge_fault) {
4517 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4518 
4519 		if (!(ret & VM_FAULT_FALLBACK))
4520 			return ret;
4521 	}
4522 
4523 	/* COW or write-notify handled on pte level: split pmd. */
4524 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4525 
4526 	return VM_FAULT_FALLBACK;
4527 }
4528 
4529 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4530 {
4531 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4532 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4533 	/* No support for anonymous transparent PUD pages yet */
4534 	if (vma_is_anonymous(vmf->vma))
4535 		goto split;
4536 	if (vmf->vma->vm_ops->huge_fault) {
4537 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4538 
4539 		if (!(ret & VM_FAULT_FALLBACK))
4540 			return ret;
4541 	}
4542 split:
4543 	/* COW or write-notify not handled on PUD level: split pud.*/
4544 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4545 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4546 	return VM_FAULT_FALLBACK;
4547 }
4548 
4549 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4550 {
4551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4552 	/* No support for anonymous transparent PUD pages yet */
4553 	if (vma_is_anonymous(vmf->vma))
4554 		return VM_FAULT_FALLBACK;
4555 	if (vmf->vma->vm_ops->huge_fault)
4556 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4557 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4558 	return VM_FAULT_FALLBACK;
4559 }
4560 
4561 /*
4562  * These routines also need to handle stuff like marking pages dirty
4563  * and/or accessed for architectures that don't do it in hardware (most
4564  * RISC architectures).  The early dirtying is also good on the i386.
4565  *
4566  * There is also a hook called "update_mmu_cache()" that architectures
4567  * with external mmu caches can use to update those (ie the Sparc or
4568  * PowerPC hashed page tables that act as extended TLBs).
4569  *
4570  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4571  * concurrent faults).
4572  *
4573  * The mmap_lock may have been released depending on flags and our return value.
4574  * See filemap_fault() and __folio_lock_or_retry().
4575  */
4576 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4577 {
4578 	pte_t entry;
4579 
4580 	if (unlikely(pmd_none(*vmf->pmd))) {
4581 		/*
4582 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4583 		 * want to allocate huge page, and if we expose page table
4584 		 * for an instant, it will be difficult to retract from
4585 		 * concurrent faults and from rmap lookups.
4586 		 */
4587 		vmf->pte = NULL;
4588 	} else {
4589 		/*
4590 		 * If a huge pmd materialized under us just retry later.  Use
4591 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4592 		 * of pmd_trans_huge() to ensure the pmd didn't become
4593 		 * pmd_trans_huge under us and then back to pmd_none, as a
4594 		 * result of MADV_DONTNEED running immediately after a huge pmd
4595 		 * fault in a different thread of this mm, in turn leading to a
4596 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4597 		 * that it is a regular pmd that we can walk with
4598 		 * pte_offset_map() and we can do that through an atomic read
4599 		 * in C, which is what pmd_trans_unstable() provides.
4600 		 */
4601 		if (pmd_devmap_trans_unstable(vmf->pmd))
4602 			return 0;
4603 		/*
4604 		 * A regular pmd is established and it can't morph into a huge
4605 		 * pmd from under us anymore at this point because we hold the
4606 		 * mmap_lock read mode and khugepaged takes it in write mode.
4607 		 * So now it's safe to run pte_offset_map().
4608 		 */
4609 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4610 		vmf->orig_pte = *vmf->pte;
4611 
4612 		/*
4613 		 * some architectures can have larger ptes than wordsize,
4614 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4615 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4616 		 * accesses.  The code below just needs a consistent view
4617 		 * for the ifs and we later double check anyway with the
4618 		 * ptl lock held. So here a barrier will do.
4619 		 */
4620 		barrier();
4621 		if (pte_none(vmf->orig_pte)) {
4622 			pte_unmap(vmf->pte);
4623 			vmf->pte = NULL;
4624 		}
4625 	}
4626 
4627 	if (!vmf->pte) {
4628 		if (vma_is_anonymous(vmf->vma))
4629 			return do_anonymous_page(vmf);
4630 		else
4631 			return do_fault(vmf);
4632 	}
4633 
4634 	if (!pte_present(vmf->orig_pte))
4635 		return do_swap_page(vmf);
4636 
4637 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4638 		return do_numa_page(vmf);
4639 
4640 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4641 	spin_lock(vmf->ptl);
4642 	entry = vmf->orig_pte;
4643 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4644 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4645 		goto unlock;
4646 	}
4647 	if (vmf->flags & FAULT_FLAG_WRITE) {
4648 		if (!pte_write(entry))
4649 			return do_wp_page(vmf);
4650 		entry = pte_mkdirty(entry);
4651 	}
4652 	entry = pte_mkyoung(entry);
4653 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4654 				vmf->flags & FAULT_FLAG_WRITE)) {
4655 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4656 	} else {
4657 		/* Skip spurious TLB flush for retried page fault */
4658 		if (vmf->flags & FAULT_FLAG_TRIED)
4659 			goto unlock;
4660 		/*
4661 		 * This is needed only for protection faults but the arch code
4662 		 * is not yet telling us if this is a protection fault or not.
4663 		 * This still avoids useless tlb flushes for .text page faults
4664 		 * with threads.
4665 		 */
4666 		if (vmf->flags & FAULT_FLAG_WRITE)
4667 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4668 	}
4669 unlock:
4670 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4671 	return 0;
4672 }
4673 
4674 /*
4675  * By the time we get here, we already hold the mm semaphore
4676  *
4677  * The mmap_lock may have been released depending on flags and our
4678  * return value.  See filemap_fault() and __folio_lock_or_retry().
4679  */
4680 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4681 		unsigned long address, unsigned int flags)
4682 {
4683 	struct vm_fault vmf = {
4684 		.vma = vma,
4685 		.address = address & PAGE_MASK,
4686 		.real_address = address,
4687 		.flags = flags,
4688 		.pgoff = linear_page_index(vma, address),
4689 		.gfp_mask = __get_fault_gfp_mask(vma),
4690 	};
4691 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4692 	struct mm_struct *mm = vma->vm_mm;
4693 	pgd_t *pgd;
4694 	p4d_t *p4d;
4695 	vm_fault_t ret;
4696 
4697 	pgd = pgd_offset(mm, address);
4698 	p4d = p4d_alloc(mm, pgd, address);
4699 	if (!p4d)
4700 		return VM_FAULT_OOM;
4701 
4702 	vmf.pud = pud_alloc(mm, p4d, address);
4703 	if (!vmf.pud)
4704 		return VM_FAULT_OOM;
4705 retry_pud:
4706 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4707 		ret = create_huge_pud(&vmf);
4708 		if (!(ret & VM_FAULT_FALLBACK))
4709 			return ret;
4710 	} else {
4711 		pud_t orig_pud = *vmf.pud;
4712 
4713 		barrier();
4714 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4715 
4716 			/* NUMA case for anonymous PUDs would go here */
4717 
4718 			if (dirty && !pud_write(orig_pud)) {
4719 				ret = wp_huge_pud(&vmf, orig_pud);
4720 				if (!(ret & VM_FAULT_FALLBACK))
4721 					return ret;
4722 			} else {
4723 				huge_pud_set_accessed(&vmf, orig_pud);
4724 				return 0;
4725 			}
4726 		}
4727 	}
4728 
4729 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4730 	if (!vmf.pmd)
4731 		return VM_FAULT_OOM;
4732 
4733 	/* Huge pud page fault raced with pmd_alloc? */
4734 	if (pud_trans_unstable(vmf.pud))
4735 		goto retry_pud;
4736 
4737 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4738 		ret = create_huge_pmd(&vmf);
4739 		if (!(ret & VM_FAULT_FALLBACK))
4740 			return ret;
4741 	} else {
4742 		vmf.orig_pmd = *vmf.pmd;
4743 
4744 		barrier();
4745 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4746 			VM_BUG_ON(thp_migration_supported() &&
4747 					  !is_pmd_migration_entry(vmf.orig_pmd));
4748 			if (is_pmd_migration_entry(vmf.orig_pmd))
4749 				pmd_migration_entry_wait(mm, vmf.pmd);
4750 			return 0;
4751 		}
4752 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4753 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4754 				return do_huge_pmd_numa_page(&vmf);
4755 
4756 			if (dirty && !pmd_write(vmf.orig_pmd)) {
4757 				ret = wp_huge_pmd(&vmf);
4758 				if (!(ret & VM_FAULT_FALLBACK))
4759 					return ret;
4760 			} else {
4761 				huge_pmd_set_accessed(&vmf);
4762 				return 0;
4763 			}
4764 		}
4765 	}
4766 
4767 	return handle_pte_fault(&vmf);
4768 }
4769 
4770 /**
4771  * mm_account_fault - Do page fault accounting
4772  *
4773  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4774  *        of perf event counters, but we'll still do the per-task accounting to
4775  *        the task who triggered this page fault.
4776  * @address: the faulted address.
4777  * @flags: the fault flags.
4778  * @ret: the fault retcode.
4779  *
4780  * This will take care of most of the page fault accounting.  Meanwhile, it
4781  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4782  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4783  * still be in per-arch page fault handlers at the entry of page fault.
4784  */
4785 static inline void mm_account_fault(struct pt_regs *regs,
4786 				    unsigned long address, unsigned int flags,
4787 				    vm_fault_t ret)
4788 {
4789 	bool major;
4790 
4791 	/*
4792 	 * We don't do accounting for some specific faults:
4793 	 *
4794 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4795 	 *   includes arch_vma_access_permitted() failing before reaching here.
4796 	 *   So this is not a "this many hardware page faults" counter.  We
4797 	 *   should use the hw profiling for that.
4798 	 *
4799 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4800 	 *   once they're completed.
4801 	 */
4802 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4803 		return;
4804 
4805 	/*
4806 	 * We define the fault as a major fault when the final successful fault
4807 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4808 	 * handle it immediately previously).
4809 	 */
4810 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4811 
4812 	if (major)
4813 		current->maj_flt++;
4814 	else
4815 		current->min_flt++;
4816 
4817 	/*
4818 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4819 	 * accounting for the per thread fault counters who triggered the
4820 	 * fault, and we skip the perf event updates.
4821 	 */
4822 	if (!regs)
4823 		return;
4824 
4825 	if (major)
4826 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4827 	else
4828 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4829 }
4830 
4831 /*
4832  * By the time we get here, we already hold the mm semaphore
4833  *
4834  * The mmap_lock may have been released depending on flags and our
4835  * return value.  See filemap_fault() and __folio_lock_or_retry().
4836  */
4837 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4838 			   unsigned int flags, struct pt_regs *regs)
4839 {
4840 	vm_fault_t ret;
4841 
4842 	__set_current_state(TASK_RUNNING);
4843 
4844 	count_vm_event(PGFAULT);
4845 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4846 
4847 	/* do counter updates before entering really critical section. */
4848 	check_sync_rss_stat(current);
4849 
4850 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4851 					    flags & FAULT_FLAG_INSTRUCTION,
4852 					    flags & FAULT_FLAG_REMOTE))
4853 		return VM_FAULT_SIGSEGV;
4854 
4855 	/*
4856 	 * Enable the memcg OOM handling for faults triggered in user
4857 	 * space.  Kernel faults are handled more gracefully.
4858 	 */
4859 	if (flags & FAULT_FLAG_USER)
4860 		mem_cgroup_enter_user_fault();
4861 
4862 	if (unlikely(is_vm_hugetlb_page(vma)))
4863 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4864 	else
4865 		ret = __handle_mm_fault(vma, address, flags);
4866 
4867 	if (flags & FAULT_FLAG_USER) {
4868 		mem_cgroup_exit_user_fault();
4869 		/*
4870 		 * The task may have entered a memcg OOM situation but
4871 		 * if the allocation error was handled gracefully (no
4872 		 * VM_FAULT_OOM), there is no need to kill anything.
4873 		 * Just clean up the OOM state peacefully.
4874 		 */
4875 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4876 			mem_cgroup_oom_synchronize(false);
4877 	}
4878 
4879 	mm_account_fault(regs, address, flags, ret);
4880 
4881 	return ret;
4882 }
4883 EXPORT_SYMBOL_GPL(handle_mm_fault);
4884 
4885 #ifndef __PAGETABLE_P4D_FOLDED
4886 /*
4887  * Allocate p4d page table.
4888  * We've already handled the fast-path in-line.
4889  */
4890 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4891 {
4892 	p4d_t *new = p4d_alloc_one(mm, address);
4893 	if (!new)
4894 		return -ENOMEM;
4895 
4896 	spin_lock(&mm->page_table_lock);
4897 	if (pgd_present(*pgd)) {	/* Another has populated it */
4898 		p4d_free(mm, new);
4899 	} else {
4900 		smp_wmb(); /* See comment in pmd_install() */
4901 		pgd_populate(mm, pgd, new);
4902 	}
4903 	spin_unlock(&mm->page_table_lock);
4904 	return 0;
4905 }
4906 #endif /* __PAGETABLE_P4D_FOLDED */
4907 
4908 #ifndef __PAGETABLE_PUD_FOLDED
4909 /*
4910  * Allocate page upper directory.
4911  * We've already handled the fast-path in-line.
4912  */
4913 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4914 {
4915 	pud_t *new = pud_alloc_one(mm, address);
4916 	if (!new)
4917 		return -ENOMEM;
4918 
4919 	spin_lock(&mm->page_table_lock);
4920 	if (!p4d_present(*p4d)) {
4921 		mm_inc_nr_puds(mm);
4922 		smp_wmb(); /* See comment in pmd_install() */
4923 		p4d_populate(mm, p4d, new);
4924 	} else	/* Another has populated it */
4925 		pud_free(mm, new);
4926 	spin_unlock(&mm->page_table_lock);
4927 	return 0;
4928 }
4929 #endif /* __PAGETABLE_PUD_FOLDED */
4930 
4931 #ifndef __PAGETABLE_PMD_FOLDED
4932 /*
4933  * Allocate page middle directory.
4934  * We've already handled the fast-path in-line.
4935  */
4936 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4937 {
4938 	spinlock_t *ptl;
4939 	pmd_t *new = pmd_alloc_one(mm, address);
4940 	if (!new)
4941 		return -ENOMEM;
4942 
4943 	ptl = pud_lock(mm, pud);
4944 	if (!pud_present(*pud)) {
4945 		mm_inc_nr_pmds(mm);
4946 		smp_wmb(); /* See comment in pmd_install() */
4947 		pud_populate(mm, pud, new);
4948 	} else {	/* Another has populated it */
4949 		pmd_free(mm, new);
4950 	}
4951 	spin_unlock(ptl);
4952 	return 0;
4953 }
4954 #endif /* __PAGETABLE_PMD_FOLDED */
4955 
4956 /**
4957  * follow_pte - look up PTE at a user virtual address
4958  * @mm: the mm_struct of the target address space
4959  * @address: user virtual address
4960  * @ptepp: location to store found PTE
4961  * @ptlp: location to store the lock for the PTE
4962  *
4963  * On a successful return, the pointer to the PTE is stored in @ptepp;
4964  * the corresponding lock is taken and its location is stored in @ptlp.
4965  * The contents of the PTE are only stable until @ptlp is released;
4966  * any further use, if any, must be protected against invalidation
4967  * with MMU notifiers.
4968  *
4969  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4970  * should be taken for read.
4971  *
4972  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4973  * it is not a good general-purpose API.
4974  *
4975  * Return: zero on success, -ve otherwise.
4976  */
4977 int follow_pte(struct mm_struct *mm, unsigned long address,
4978 	       pte_t **ptepp, spinlock_t **ptlp)
4979 {
4980 	pgd_t *pgd;
4981 	p4d_t *p4d;
4982 	pud_t *pud;
4983 	pmd_t *pmd;
4984 	pte_t *ptep;
4985 
4986 	pgd = pgd_offset(mm, address);
4987 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4988 		goto out;
4989 
4990 	p4d = p4d_offset(pgd, address);
4991 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4992 		goto out;
4993 
4994 	pud = pud_offset(p4d, address);
4995 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4996 		goto out;
4997 
4998 	pmd = pmd_offset(pud, address);
4999 	VM_BUG_ON(pmd_trans_huge(*pmd));
5000 
5001 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5002 		goto out;
5003 
5004 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5005 	if (!pte_present(*ptep))
5006 		goto unlock;
5007 	*ptepp = ptep;
5008 	return 0;
5009 unlock:
5010 	pte_unmap_unlock(ptep, *ptlp);
5011 out:
5012 	return -EINVAL;
5013 }
5014 EXPORT_SYMBOL_GPL(follow_pte);
5015 
5016 /**
5017  * follow_pfn - look up PFN at a user virtual address
5018  * @vma: memory mapping
5019  * @address: user virtual address
5020  * @pfn: location to store found PFN
5021  *
5022  * Only IO mappings and raw PFN mappings are allowed.
5023  *
5024  * This function does not allow the caller to read the permissions
5025  * of the PTE.  Do not use it.
5026  *
5027  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5028  */
5029 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5030 	unsigned long *pfn)
5031 {
5032 	int ret = -EINVAL;
5033 	spinlock_t *ptl;
5034 	pte_t *ptep;
5035 
5036 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5037 		return ret;
5038 
5039 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5040 	if (ret)
5041 		return ret;
5042 	*pfn = pte_pfn(*ptep);
5043 	pte_unmap_unlock(ptep, ptl);
5044 	return 0;
5045 }
5046 EXPORT_SYMBOL(follow_pfn);
5047 
5048 #ifdef CONFIG_HAVE_IOREMAP_PROT
5049 int follow_phys(struct vm_area_struct *vma,
5050 		unsigned long address, unsigned int flags,
5051 		unsigned long *prot, resource_size_t *phys)
5052 {
5053 	int ret = -EINVAL;
5054 	pte_t *ptep, pte;
5055 	spinlock_t *ptl;
5056 
5057 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5058 		goto out;
5059 
5060 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5061 		goto out;
5062 	pte = *ptep;
5063 
5064 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5065 		goto unlock;
5066 
5067 	*prot = pgprot_val(pte_pgprot(pte));
5068 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5069 
5070 	ret = 0;
5071 unlock:
5072 	pte_unmap_unlock(ptep, ptl);
5073 out:
5074 	return ret;
5075 }
5076 
5077 /**
5078  * generic_access_phys - generic implementation for iomem mmap access
5079  * @vma: the vma to access
5080  * @addr: userspace address, not relative offset within @vma
5081  * @buf: buffer to read/write
5082  * @len: length of transfer
5083  * @write: set to FOLL_WRITE when writing, otherwise reading
5084  *
5085  * This is a generic implementation for &vm_operations_struct.access for an
5086  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5087  * not page based.
5088  */
5089 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5090 			void *buf, int len, int write)
5091 {
5092 	resource_size_t phys_addr;
5093 	unsigned long prot = 0;
5094 	void __iomem *maddr;
5095 	pte_t *ptep, pte;
5096 	spinlock_t *ptl;
5097 	int offset = offset_in_page(addr);
5098 	int ret = -EINVAL;
5099 
5100 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5101 		return -EINVAL;
5102 
5103 retry:
5104 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5105 		return -EINVAL;
5106 	pte = *ptep;
5107 	pte_unmap_unlock(ptep, ptl);
5108 
5109 	prot = pgprot_val(pte_pgprot(pte));
5110 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5111 
5112 	if ((write & FOLL_WRITE) && !pte_write(pte))
5113 		return -EINVAL;
5114 
5115 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5116 	if (!maddr)
5117 		return -ENOMEM;
5118 
5119 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5120 		goto out_unmap;
5121 
5122 	if (!pte_same(pte, *ptep)) {
5123 		pte_unmap_unlock(ptep, ptl);
5124 		iounmap(maddr);
5125 
5126 		goto retry;
5127 	}
5128 
5129 	if (write)
5130 		memcpy_toio(maddr + offset, buf, len);
5131 	else
5132 		memcpy_fromio(buf, maddr + offset, len);
5133 	ret = len;
5134 	pte_unmap_unlock(ptep, ptl);
5135 out_unmap:
5136 	iounmap(maddr);
5137 
5138 	return ret;
5139 }
5140 EXPORT_SYMBOL_GPL(generic_access_phys);
5141 #endif
5142 
5143 /*
5144  * Access another process' address space as given in mm.
5145  */
5146 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5147 		       int len, unsigned int gup_flags)
5148 {
5149 	struct vm_area_struct *vma;
5150 	void *old_buf = buf;
5151 	int write = gup_flags & FOLL_WRITE;
5152 
5153 	if (mmap_read_lock_killable(mm))
5154 		return 0;
5155 
5156 	/* ignore errors, just check how much was successfully transferred */
5157 	while (len) {
5158 		int bytes, ret, offset;
5159 		void *maddr;
5160 		struct page *page = NULL;
5161 
5162 		ret = get_user_pages_remote(mm, addr, 1,
5163 				gup_flags, &page, &vma, NULL);
5164 		if (ret <= 0) {
5165 #ifndef CONFIG_HAVE_IOREMAP_PROT
5166 			break;
5167 #else
5168 			/*
5169 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5170 			 * we can access using slightly different code.
5171 			 */
5172 			vma = vma_lookup(mm, addr);
5173 			if (!vma)
5174 				break;
5175 			if (vma->vm_ops && vma->vm_ops->access)
5176 				ret = vma->vm_ops->access(vma, addr, buf,
5177 							  len, write);
5178 			if (ret <= 0)
5179 				break;
5180 			bytes = ret;
5181 #endif
5182 		} else {
5183 			bytes = len;
5184 			offset = addr & (PAGE_SIZE-1);
5185 			if (bytes > PAGE_SIZE-offset)
5186 				bytes = PAGE_SIZE-offset;
5187 
5188 			maddr = kmap(page);
5189 			if (write) {
5190 				copy_to_user_page(vma, page, addr,
5191 						  maddr + offset, buf, bytes);
5192 				set_page_dirty_lock(page);
5193 			} else {
5194 				copy_from_user_page(vma, page, addr,
5195 						    buf, maddr + offset, bytes);
5196 			}
5197 			kunmap(page);
5198 			put_page(page);
5199 		}
5200 		len -= bytes;
5201 		buf += bytes;
5202 		addr += bytes;
5203 	}
5204 	mmap_read_unlock(mm);
5205 
5206 	return buf - old_buf;
5207 }
5208 
5209 /**
5210  * access_remote_vm - access another process' address space
5211  * @mm:		the mm_struct of the target address space
5212  * @addr:	start address to access
5213  * @buf:	source or destination buffer
5214  * @len:	number of bytes to transfer
5215  * @gup_flags:	flags modifying lookup behaviour
5216  *
5217  * The caller must hold a reference on @mm.
5218  *
5219  * Return: number of bytes copied from source to destination.
5220  */
5221 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5222 		void *buf, int len, unsigned int gup_flags)
5223 {
5224 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5225 }
5226 
5227 /*
5228  * Access another process' address space.
5229  * Source/target buffer must be kernel space,
5230  * Do not walk the page table directly, use get_user_pages
5231  */
5232 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5233 		void *buf, int len, unsigned int gup_flags)
5234 {
5235 	struct mm_struct *mm;
5236 	int ret;
5237 
5238 	mm = get_task_mm(tsk);
5239 	if (!mm)
5240 		return 0;
5241 
5242 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5243 
5244 	mmput(mm);
5245 
5246 	return ret;
5247 }
5248 EXPORT_SYMBOL_GPL(access_process_vm);
5249 
5250 /*
5251  * Print the name of a VMA.
5252  */
5253 void print_vma_addr(char *prefix, unsigned long ip)
5254 {
5255 	struct mm_struct *mm = current->mm;
5256 	struct vm_area_struct *vma;
5257 
5258 	/*
5259 	 * we might be running from an atomic context so we cannot sleep
5260 	 */
5261 	if (!mmap_read_trylock(mm))
5262 		return;
5263 
5264 	vma = find_vma(mm, ip);
5265 	if (vma && vma->vm_file) {
5266 		struct file *f = vma->vm_file;
5267 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5268 		if (buf) {
5269 			char *p;
5270 
5271 			p = file_path(f, buf, PAGE_SIZE);
5272 			if (IS_ERR(p))
5273 				p = "?";
5274 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5275 					vma->vm_start,
5276 					vma->vm_end - vma->vm_start);
5277 			free_page((unsigned long)buf);
5278 		}
5279 	}
5280 	mmap_read_unlock(mm);
5281 }
5282 
5283 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5284 void __might_fault(const char *file, int line)
5285 {
5286 	if (pagefault_disabled())
5287 		return;
5288 	__might_sleep(file, line);
5289 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5290 	if (current->mm)
5291 		might_lock_read(&current->mm->mmap_lock);
5292 #endif
5293 }
5294 EXPORT_SYMBOL(__might_fault);
5295 #endif
5296 
5297 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5298 /*
5299  * Process all subpages of the specified huge page with the specified
5300  * operation.  The target subpage will be processed last to keep its
5301  * cache lines hot.
5302  */
5303 static inline void process_huge_page(
5304 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5305 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5306 	void *arg)
5307 {
5308 	int i, n, base, l;
5309 	unsigned long addr = addr_hint &
5310 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5311 
5312 	/* Process target subpage last to keep its cache lines hot */
5313 	might_sleep();
5314 	n = (addr_hint - addr) / PAGE_SIZE;
5315 	if (2 * n <= pages_per_huge_page) {
5316 		/* If target subpage in first half of huge page */
5317 		base = 0;
5318 		l = n;
5319 		/* Process subpages at the end of huge page */
5320 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5321 			cond_resched();
5322 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5323 		}
5324 	} else {
5325 		/* If target subpage in second half of huge page */
5326 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5327 		l = pages_per_huge_page - n;
5328 		/* Process subpages at the begin of huge page */
5329 		for (i = 0; i < base; i++) {
5330 			cond_resched();
5331 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5332 		}
5333 	}
5334 	/*
5335 	 * Process remaining subpages in left-right-left-right pattern
5336 	 * towards the target subpage
5337 	 */
5338 	for (i = 0; i < l; i++) {
5339 		int left_idx = base + i;
5340 		int right_idx = base + 2 * l - 1 - i;
5341 
5342 		cond_resched();
5343 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5344 		cond_resched();
5345 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5346 	}
5347 }
5348 
5349 static void clear_gigantic_page(struct page *page,
5350 				unsigned long addr,
5351 				unsigned int pages_per_huge_page)
5352 {
5353 	int i;
5354 	struct page *p = page;
5355 
5356 	might_sleep();
5357 	for (i = 0; i < pages_per_huge_page;
5358 	     i++, p = mem_map_next(p, page, i)) {
5359 		cond_resched();
5360 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5361 	}
5362 }
5363 
5364 static void clear_subpage(unsigned long addr, int idx, void *arg)
5365 {
5366 	struct page *page = arg;
5367 
5368 	clear_user_highpage(page + idx, addr);
5369 }
5370 
5371 void clear_huge_page(struct page *page,
5372 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5373 {
5374 	unsigned long addr = addr_hint &
5375 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5376 
5377 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5378 		clear_gigantic_page(page, addr, pages_per_huge_page);
5379 		return;
5380 	}
5381 
5382 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5383 }
5384 
5385 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5386 				    unsigned long addr,
5387 				    struct vm_area_struct *vma,
5388 				    unsigned int pages_per_huge_page)
5389 {
5390 	int i;
5391 	struct page *dst_base = dst;
5392 	struct page *src_base = src;
5393 
5394 	for (i = 0; i < pages_per_huge_page; ) {
5395 		cond_resched();
5396 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5397 
5398 		i++;
5399 		dst = mem_map_next(dst, dst_base, i);
5400 		src = mem_map_next(src, src_base, i);
5401 	}
5402 }
5403 
5404 struct copy_subpage_arg {
5405 	struct page *dst;
5406 	struct page *src;
5407 	struct vm_area_struct *vma;
5408 };
5409 
5410 static void copy_subpage(unsigned long addr, int idx, void *arg)
5411 {
5412 	struct copy_subpage_arg *copy_arg = arg;
5413 
5414 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5415 			   addr, copy_arg->vma);
5416 }
5417 
5418 void copy_user_huge_page(struct page *dst, struct page *src,
5419 			 unsigned long addr_hint, struct vm_area_struct *vma,
5420 			 unsigned int pages_per_huge_page)
5421 {
5422 	unsigned long addr = addr_hint &
5423 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5424 	struct copy_subpage_arg arg = {
5425 		.dst = dst,
5426 		.src = src,
5427 		.vma = vma,
5428 	};
5429 
5430 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5431 		copy_user_gigantic_page(dst, src, addr, vma,
5432 					pages_per_huge_page);
5433 		return;
5434 	}
5435 
5436 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5437 }
5438 
5439 long copy_huge_page_from_user(struct page *dst_page,
5440 				const void __user *usr_src,
5441 				unsigned int pages_per_huge_page,
5442 				bool allow_pagefault)
5443 {
5444 	void *page_kaddr;
5445 	unsigned long i, rc = 0;
5446 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5447 	struct page *subpage = dst_page;
5448 
5449 	for (i = 0; i < pages_per_huge_page;
5450 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5451 		if (allow_pagefault)
5452 			page_kaddr = kmap(subpage);
5453 		else
5454 			page_kaddr = kmap_atomic(subpage);
5455 		rc = copy_from_user(page_kaddr,
5456 				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5457 		if (allow_pagefault)
5458 			kunmap(subpage);
5459 		else
5460 			kunmap_atomic(page_kaddr);
5461 
5462 		ret_val -= (PAGE_SIZE - rc);
5463 		if (rc)
5464 			break;
5465 
5466 		flush_dcache_page(subpage);
5467 
5468 		cond_resched();
5469 	}
5470 	return ret_val;
5471 }
5472 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5473 
5474 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5475 
5476 static struct kmem_cache *page_ptl_cachep;
5477 
5478 void __init ptlock_cache_init(void)
5479 {
5480 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5481 			SLAB_PANIC, NULL);
5482 }
5483 
5484 bool ptlock_alloc(struct page *page)
5485 {
5486 	spinlock_t *ptl;
5487 
5488 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5489 	if (!ptl)
5490 		return false;
5491 	page->ptl = ptl;
5492 	return true;
5493 }
5494 
5495 void ptlock_free(struct page *page)
5496 {
5497 	kmem_cache_free(page_ptl_cachep, page->ptl);
5498 }
5499 #endif
5500