1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 #include <linux/migrate.h> 61 #include <linux/string.h> 62 63 #include <asm/io.h> 64 #include <asm/pgalloc.h> 65 #include <asm/uaccess.h> 66 #include <asm/tlb.h> 67 #include <asm/tlbflush.h> 68 #include <asm/pgtable.h> 69 70 #include "internal.h" 71 72 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 74 #endif 75 76 #ifndef CONFIG_NEED_MULTIPLE_NODES 77 /* use the per-pgdat data instead for discontigmem - mbligh */ 78 unsigned long max_mapnr; 79 struct page *mem_map; 80 81 EXPORT_SYMBOL(max_mapnr); 82 EXPORT_SYMBOL(mem_map); 83 #endif 84 85 /* 86 * A number of key systems in x86 including ioremap() rely on the assumption 87 * that high_memory defines the upper bound on direct map memory, then end 88 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 89 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 90 * and ZONE_HIGHMEM. 91 */ 92 void * high_memory; 93 94 EXPORT_SYMBOL(high_memory); 95 96 /* 97 * Randomize the address space (stacks, mmaps, brk, etc.). 98 * 99 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 100 * as ancient (libc5 based) binaries can segfault. ) 101 */ 102 int randomize_va_space __read_mostly = 103 #ifdef CONFIG_COMPAT_BRK 104 1; 105 #else 106 2; 107 #endif 108 109 static int __init disable_randmaps(char *s) 110 { 111 randomize_va_space = 0; 112 return 1; 113 } 114 __setup("norandmaps", disable_randmaps); 115 116 unsigned long zero_pfn __read_mostly; 117 unsigned long highest_memmap_pfn __read_mostly; 118 119 /* 120 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 121 */ 122 static int __init init_zero_pfn(void) 123 { 124 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 125 return 0; 126 } 127 core_initcall(init_zero_pfn); 128 129 130 #if defined(SPLIT_RSS_COUNTING) 131 132 void sync_mm_rss(struct mm_struct *mm) 133 { 134 int i; 135 136 for (i = 0; i < NR_MM_COUNTERS; i++) { 137 if (current->rss_stat.count[i]) { 138 add_mm_counter(mm, i, current->rss_stat.count[i]); 139 current->rss_stat.count[i] = 0; 140 } 141 } 142 current->rss_stat.events = 0; 143 } 144 145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 146 { 147 struct task_struct *task = current; 148 149 if (likely(task->mm == mm)) 150 task->rss_stat.count[member] += val; 151 else 152 add_mm_counter(mm, member, val); 153 } 154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 156 157 /* sync counter once per 64 page faults */ 158 #define TASK_RSS_EVENTS_THRESH (64) 159 static void check_sync_rss_stat(struct task_struct *task) 160 { 161 if (unlikely(task != current)) 162 return; 163 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 164 sync_mm_rss(task->mm); 165 } 166 #else /* SPLIT_RSS_COUNTING */ 167 168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 170 171 static void check_sync_rss_stat(struct task_struct *task) 172 { 173 } 174 175 #endif /* SPLIT_RSS_COUNTING */ 176 177 #ifdef HAVE_GENERIC_MMU_GATHER 178 179 static int tlb_next_batch(struct mmu_gather *tlb) 180 { 181 struct mmu_gather_batch *batch; 182 183 batch = tlb->active; 184 if (batch->next) { 185 tlb->active = batch->next; 186 return 1; 187 } 188 189 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 190 return 0; 191 192 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 193 if (!batch) 194 return 0; 195 196 tlb->batch_count++; 197 batch->next = NULL; 198 batch->nr = 0; 199 batch->max = MAX_GATHER_BATCH; 200 201 tlb->active->next = batch; 202 tlb->active = batch; 203 204 return 1; 205 } 206 207 /* tlb_gather_mmu 208 * Called to initialize an (on-stack) mmu_gather structure for page-table 209 * tear-down from @mm. The @fullmm argument is used when @mm is without 210 * users and we're going to destroy the full address space (exit/execve). 211 */ 212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 213 { 214 tlb->mm = mm; 215 216 /* Is it from 0 to ~0? */ 217 tlb->fullmm = !(start | (end+1)); 218 tlb->need_flush_all = 0; 219 tlb->start = start; 220 tlb->end = end; 221 tlb->need_flush = 0; 222 tlb->local.next = NULL; 223 tlb->local.nr = 0; 224 tlb->local.max = ARRAY_SIZE(tlb->__pages); 225 tlb->active = &tlb->local; 226 tlb->batch_count = 0; 227 228 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 229 tlb->batch = NULL; 230 #endif 231 } 232 233 void tlb_flush_mmu(struct mmu_gather *tlb) 234 { 235 struct mmu_gather_batch *batch; 236 237 if (!tlb->need_flush) 238 return; 239 tlb->need_flush = 0; 240 tlb_flush(tlb); 241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 242 tlb_table_flush(tlb); 243 #endif 244 245 for (batch = &tlb->local; batch; batch = batch->next) { 246 free_pages_and_swap_cache(batch->pages, batch->nr); 247 batch->nr = 0; 248 } 249 tlb->active = &tlb->local; 250 } 251 252 /* tlb_finish_mmu 253 * Called at the end of the shootdown operation to free up any resources 254 * that were required. 255 */ 256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 257 { 258 struct mmu_gather_batch *batch, *next; 259 260 tlb_flush_mmu(tlb); 261 262 /* keep the page table cache within bounds */ 263 check_pgt_cache(); 264 265 for (batch = tlb->local.next; batch; batch = next) { 266 next = batch->next; 267 free_pages((unsigned long)batch, 0); 268 } 269 tlb->local.next = NULL; 270 } 271 272 /* __tlb_remove_page 273 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 274 * handling the additional races in SMP caused by other CPUs caching valid 275 * mappings in their TLBs. Returns the number of free page slots left. 276 * When out of page slots we must call tlb_flush_mmu(). 277 */ 278 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 279 { 280 struct mmu_gather_batch *batch; 281 282 VM_BUG_ON(!tlb->need_flush); 283 284 batch = tlb->active; 285 batch->pages[batch->nr++] = page; 286 if (batch->nr == batch->max) { 287 if (!tlb_next_batch(tlb)) 288 return 0; 289 batch = tlb->active; 290 } 291 VM_BUG_ON(batch->nr > batch->max); 292 293 return batch->max - batch->nr; 294 } 295 296 #endif /* HAVE_GENERIC_MMU_GATHER */ 297 298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 299 300 /* 301 * See the comment near struct mmu_table_batch. 302 */ 303 304 static void tlb_remove_table_smp_sync(void *arg) 305 { 306 /* Simply deliver the interrupt */ 307 } 308 309 static void tlb_remove_table_one(void *table) 310 { 311 /* 312 * This isn't an RCU grace period and hence the page-tables cannot be 313 * assumed to be actually RCU-freed. 314 * 315 * It is however sufficient for software page-table walkers that rely on 316 * IRQ disabling. See the comment near struct mmu_table_batch. 317 */ 318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 319 __tlb_remove_table(table); 320 } 321 322 static void tlb_remove_table_rcu(struct rcu_head *head) 323 { 324 struct mmu_table_batch *batch; 325 int i; 326 327 batch = container_of(head, struct mmu_table_batch, rcu); 328 329 for (i = 0; i < batch->nr; i++) 330 __tlb_remove_table(batch->tables[i]); 331 332 free_page((unsigned long)batch); 333 } 334 335 void tlb_table_flush(struct mmu_gather *tlb) 336 { 337 struct mmu_table_batch **batch = &tlb->batch; 338 339 if (*batch) { 340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 341 *batch = NULL; 342 } 343 } 344 345 void tlb_remove_table(struct mmu_gather *tlb, void *table) 346 { 347 struct mmu_table_batch **batch = &tlb->batch; 348 349 tlb->need_flush = 1; 350 351 /* 352 * When there's less then two users of this mm there cannot be a 353 * concurrent page-table walk. 354 */ 355 if (atomic_read(&tlb->mm->mm_users) < 2) { 356 __tlb_remove_table(table); 357 return; 358 } 359 360 if (*batch == NULL) { 361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 362 if (*batch == NULL) { 363 tlb_remove_table_one(table); 364 return; 365 } 366 (*batch)->nr = 0; 367 } 368 (*batch)->tables[(*batch)->nr++] = table; 369 if ((*batch)->nr == MAX_TABLE_BATCH) 370 tlb_table_flush(tlb); 371 } 372 373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 374 375 /* 376 * Note: this doesn't free the actual pages themselves. That 377 * has been handled earlier when unmapping all the memory regions. 378 */ 379 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 380 unsigned long addr) 381 { 382 pgtable_t token = pmd_pgtable(*pmd); 383 pmd_clear(pmd); 384 pte_free_tlb(tlb, token, addr); 385 atomic_long_dec(&tlb->mm->nr_ptes); 386 } 387 388 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 389 unsigned long addr, unsigned long end, 390 unsigned long floor, unsigned long ceiling) 391 { 392 pmd_t *pmd; 393 unsigned long next; 394 unsigned long start; 395 396 start = addr; 397 pmd = pmd_offset(pud, addr); 398 do { 399 next = pmd_addr_end(addr, end); 400 if (pmd_none_or_clear_bad(pmd)) 401 continue; 402 free_pte_range(tlb, pmd, addr); 403 } while (pmd++, addr = next, addr != end); 404 405 start &= PUD_MASK; 406 if (start < floor) 407 return; 408 if (ceiling) { 409 ceiling &= PUD_MASK; 410 if (!ceiling) 411 return; 412 } 413 if (end - 1 > ceiling - 1) 414 return; 415 416 pmd = pmd_offset(pud, start); 417 pud_clear(pud); 418 pmd_free_tlb(tlb, pmd, start); 419 } 420 421 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 422 unsigned long addr, unsigned long end, 423 unsigned long floor, unsigned long ceiling) 424 { 425 pud_t *pud; 426 unsigned long next; 427 unsigned long start; 428 429 start = addr; 430 pud = pud_offset(pgd, addr); 431 do { 432 next = pud_addr_end(addr, end); 433 if (pud_none_or_clear_bad(pud)) 434 continue; 435 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 436 } while (pud++, addr = next, addr != end); 437 438 start &= PGDIR_MASK; 439 if (start < floor) 440 return; 441 if (ceiling) { 442 ceiling &= PGDIR_MASK; 443 if (!ceiling) 444 return; 445 } 446 if (end - 1 > ceiling - 1) 447 return; 448 449 pud = pud_offset(pgd, start); 450 pgd_clear(pgd); 451 pud_free_tlb(tlb, pud, start); 452 } 453 454 /* 455 * This function frees user-level page tables of a process. 456 */ 457 void free_pgd_range(struct mmu_gather *tlb, 458 unsigned long addr, unsigned long end, 459 unsigned long floor, unsigned long ceiling) 460 { 461 pgd_t *pgd; 462 unsigned long next; 463 464 /* 465 * The next few lines have given us lots of grief... 466 * 467 * Why are we testing PMD* at this top level? Because often 468 * there will be no work to do at all, and we'd prefer not to 469 * go all the way down to the bottom just to discover that. 470 * 471 * Why all these "- 1"s? Because 0 represents both the bottom 472 * of the address space and the top of it (using -1 for the 473 * top wouldn't help much: the masks would do the wrong thing). 474 * The rule is that addr 0 and floor 0 refer to the bottom of 475 * the address space, but end 0 and ceiling 0 refer to the top 476 * Comparisons need to use "end - 1" and "ceiling - 1" (though 477 * that end 0 case should be mythical). 478 * 479 * Wherever addr is brought up or ceiling brought down, we must 480 * be careful to reject "the opposite 0" before it confuses the 481 * subsequent tests. But what about where end is brought down 482 * by PMD_SIZE below? no, end can't go down to 0 there. 483 * 484 * Whereas we round start (addr) and ceiling down, by different 485 * masks at different levels, in order to test whether a table 486 * now has no other vmas using it, so can be freed, we don't 487 * bother to round floor or end up - the tests don't need that. 488 */ 489 490 addr &= PMD_MASK; 491 if (addr < floor) { 492 addr += PMD_SIZE; 493 if (!addr) 494 return; 495 } 496 if (ceiling) { 497 ceiling &= PMD_MASK; 498 if (!ceiling) 499 return; 500 } 501 if (end - 1 > ceiling - 1) 502 end -= PMD_SIZE; 503 if (addr > end - 1) 504 return; 505 506 pgd = pgd_offset(tlb->mm, addr); 507 do { 508 next = pgd_addr_end(addr, end); 509 if (pgd_none_or_clear_bad(pgd)) 510 continue; 511 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 512 } while (pgd++, addr = next, addr != end); 513 } 514 515 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 516 unsigned long floor, unsigned long ceiling) 517 { 518 while (vma) { 519 struct vm_area_struct *next = vma->vm_next; 520 unsigned long addr = vma->vm_start; 521 522 /* 523 * Hide vma from rmap and truncate_pagecache before freeing 524 * pgtables 525 */ 526 unlink_anon_vmas(vma); 527 unlink_file_vma(vma); 528 529 if (is_vm_hugetlb_page(vma)) { 530 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 531 floor, next? next->vm_start: ceiling); 532 } else { 533 /* 534 * Optimization: gather nearby vmas into one call down 535 */ 536 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 537 && !is_vm_hugetlb_page(next)) { 538 vma = next; 539 next = vma->vm_next; 540 unlink_anon_vmas(vma); 541 unlink_file_vma(vma); 542 } 543 free_pgd_range(tlb, addr, vma->vm_end, 544 floor, next? next->vm_start: ceiling); 545 } 546 vma = next; 547 } 548 } 549 550 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 551 pmd_t *pmd, unsigned long address) 552 { 553 spinlock_t *ptl; 554 pgtable_t new = pte_alloc_one(mm, address); 555 int wait_split_huge_page; 556 if (!new) 557 return -ENOMEM; 558 559 /* 560 * Ensure all pte setup (eg. pte page lock and page clearing) are 561 * visible before the pte is made visible to other CPUs by being 562 * put into page tables. 563 * 564 * The other side of the story is the pointer chasing in the page 565 * table walking code (when walking the page table without locking; 566 * ie. most of the time). Fortunately, these data accesses consist 567 * of a chain of data-dependent loads, meaning most CPUs (alpha 568 * being the notable exception) will already guarantee loads are 569 * seen in-order. See the alpha page table accessors for the 570 * smp_read_barrier_depends() barriers in page table walking code. 571 */ 572 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 573 574 ptl = pmd_lock(mm, pmd); 575 wait_split_huge_page = 0; 576 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 577 atomic_long_inc(&mm->nr_ptes); 578 pmd_populate(mm, pmd, new); 579 new = NULL; 580 } else if (unlikely(pmd_trans_splitting(*pmd))) 581 wait_split_huge_page = 1; 582 spin_unlock(ptl); 583 if (new) 584 pte_free(mm, new); 585 if (wait_split_huge_page) 586 wait_split_huge_page(vma->anon_vma, pmd); 587 return 0; 588 } 589 590 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 591 { 592 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 593 if (!new) 594 return -ENOMEM; 595 596 smp_wmb(); /* See comment in __pte_alloc */ 597 598 spin_lock(&init_mm.page_table_lock); 599 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 600 pmd_populate_kernel(&init_mm, pmd, new); 601 new = NULL; 602 } else 603 VM_BUG_ON(pmd_trans_splitting(*pmd)); 604 spin_unlock(&init_mm.page_table_lock); 605 if (new) 606 pte_free_kernel(&init_mm, new); 607 return 0; 608 } 609 610 static inline void init_rss_vec(int *rss) 611 { 612 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 613 } 614 615 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 616 { 617 int i; 618 619 if (current->mm == mm) 620 sync_mm_rss(mm); 621 for (i = 0; i < NR_MM_COUNTERS; i++) 622 if (rss[i]) 623 add_mm_counter(mm, i, rss[i]); 624 } 625 626 /* 627 * This function is called to print an error when a bad pte 628 * is found. For example, we might have a PFN-mapped pte in 629 * a region that doesn't allow it. 630 * 631 * The calling function must still handle the error. 632 */ 633 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 634 pte_t pte, struct page *page) 635 { 636 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 637 pud_t *pud = pud_offset(pgd, addr); 638 pmd_t *pmd = pmd_offset(pud, addr); 639 struct address_space *mapping; 640 pgoff_t index; 641 static unsigned long resume; 642 static unsigned long nr_shown; 643 static unsigned long nr_unshown; 644 645 /* 646 * Allow a burst of 60 reports, then keep quiet for that minute; 647 * or allow a steady drip of one report per second. 648 */ 649 if (nr_shown == 60) { 650 if (time_before(jiffies, resume)) { 651 nr_unshown++; 652 return; 653 } 654 if (nr_unshown) { 655 printk(KERN_ALERT 656 "BUG: Bad page map: %lu messages suppressed\n", 657 nr_unshown); 658 nr_unshown = 0; 659 } 660 nr_shown = 0; 661 } 662 if (nr_shown++ == 0) 663 resume = jiffies + 60 * HZ; 664 665 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 666 index = linear_page_index(vma, addr); 667 668 printk(KERN_ALERT 669 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 670 current->comm, 671 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 672 if (page) 673 dump_page(page); 674 printk(KERN_ALERT 675 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 676 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 677 /* 678 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 679 */ 680 if (vma->vm_ops) 681 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n", 682 vma->vm_ops->fault); 683 if (vma->vm_file) 684 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n", 685 vma->vm_file->f_op->mmap); 686 dump_stack(); 687 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 688 } 689 690 static inline bool is_cow_mapping(vm_flags_t flags) 691 { 692 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 693 } 694 695 /* 696 * vm_normal_page -- This function gets the "struct page" associated with a pte. 697 * 698 * "Special" mappings do not wish to be associated with a "struct page" (either 699 * it doesn't exist, or it exists but they don't want to touch it). In this 700 * case, NULL is returned here. "Normal" mappings do have a struct page. 701 * 702 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 703 * pte bit, in which case this function is trivial. Secondly, an architecture 704 * may not have a spare pte bit, which requires a more complicated scheme, 705 * described below. 706 * 707 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 708 * special mapping (even if there are underlying and valid "struct pages"). 709 * COWed pages of a VM_PFNMAP are always normal. 710 * 711 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 712 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 713 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 714 * mapping will always honor the rule 715 * 716 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 717 * 718 * And for normal mappings this is false. 719 * 720 * This restricts such mappings to be a linear translation from virtual address 721 * to pfn. To get around this restriction, we allow arbitrary mappings so long 722 * as the vma is not a COW mapping; in that case, we know that all ptes are 723 * special (because none can have been COWed). 724 * 725 * 726 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 727 * 728 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 729 * page" backing, however the difference is that _all_ pages with a struct 730 * page (that is, those where pfn_valid is true) are refcounted and considered 731 * normal pages by the VM. The disadvantage is that pages are refcounted 732 * (which can be slower and simply not an option for some PFNMAP users). The 733 * advantage is that we don't have to follow the strict linearity rule of 734 * PFNMAP mappings in order to support COWable mappings. 735 * 736 */ 737 #ifdef __HAVE_ARCH_PTE_SPECIAL 738 # define HAVE_PTE_SPECIAL 1 739 #else 740 # define HAVE_PTE_SPECIAL 0 741 #endif 742 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 743 pte_t pte) 744 { 745 unsigned long pfn = pte_pfn(pte); 746 747 if (HAVE_PTE_SPECIAL) { 748 if (likely(!pte_special(pte))) 749 goto check_pfn; 750 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 751 return NULL; 752 if (!is_zero_pfn(pfn)) 753 print_bad_pte(vma, addr, pte, NULL); 754 return NULL; 755 } 756 757 /* !HAVE_PTE_SPECIAL case follows: */ 758 759 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 760 if (vma->vm_flags & VM_MIXEDMAP) { 761 if (!pfn_valid(pfn)) 762 return NULL; 763 goto out; 764 } else { 765 unsigned long off; 766 off = (addr - vma->vm_start) >> PAGE_SHIFT; 767 if (pfn == vma->vm_pgoff + off) 768 return NULL; 769 if (!is_cow_mapping(vma->vm_flags)) 770 return NULL; 771 } 772 } 773 774 if (is_zero_pfn(pfn)) 775 return NULL; 776 check_pfn: 777 if (unlikely(pfn > highest_memmap_pfn)) { 778 print_bad_pte(vma, addr, pte, NULL); 779 return NULL; 780 } 781 782 /* 783 * NOTE! We still have PageReserved() pages in the page tables. 784 * eg. VDSO mappings can cause them to exist. 785 */ 786 out: 787 return pfn_to_page(pfn); 788 } 789 790 /* 791 * copy one vm_area from one task to the other. Assumes the page tables 792 * already present in the new task to be cleared in the whole range 793 * covered by this vma. 794 */ 795 796 static inline unsigned long 797 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 798 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 799 unsigned long addr, int *rss) 800 { 801 unsigned long vm_flags = vma->vm_flags; 802 pte_t pte = *src_pte; 803 struct page *page; 804 805 /* pte contains position in swap or file, so copy. */ 806 if (unlikely(!pte_present(pte))) { 807 if (!pte_file(pte)) { 808 swp_entry_t entry = pte_to_swp_entry(pte); 809 810 if (swap_duplicate(entry) < 0) 811 return entry.val; 812 813 /* make sure dst_mm is on swapoff's mmlist. */ 814 if (unlikely(list_empty(&dst_mm->mmlist))) { 815 spin_lock(&mmlist_lock); 816 if (list_empty(&dst_mm->mmlist)) 817 list_add(&dst_mm->mmlist, 818 &src_mm->mmlist); 819 spin_unlock(&mmlist_lock); 820 } 821 if (likely(!non_swap_entry(entry))) 822 rss[MM_SWAPENTS]++; 823 else if (is_migration_entry(entry)) { 824 page = migration_entry_to_page(entry); 825 826 if (PageAnon(page)) 827 rss[MM_ANONPAGES]++; 828 else 829 rss[MM_FILEPAGES]++; 830 831 if (is_write_migration_entry(entry) && 832 is_cow_mapping(vm_flags)) { 833 /* 834 * COW mappings require pages in both 835 * parent and child to be set to read. 836 */ 837 make_migration_entry_read(&entry); 838 pte = swp_entry_to_pte(entry); 839 if (pte_swp_soft_dirty(*src_pte)) 840 pte = pte_swp_mksoft_dirty(pte); 841 set_pte_at(src_mm, addr, src_pte, pte); 842 } 843 } 844 } 845 goto out_set_pte; 846 } 847 848 /* 849 * If it's a COW mapping, write protect it both 850 * in the parent and the child 851 */ 852 if (is_cow_mapping(vm_flags)) { 853 ptep_set_wrprotect(src_mm, addr, src_pte); 854 pte = pte_wrprotect(pte); 855 } 856 857 /* 858 * If it's a shared mapping, mark it clean in 859 * the child 860 */ 861 if (vm_flags & VM_SHARED) 862 pte = pte_mkclean(pte); 863 pte = pte_mkold(pte); 864 865 page = vm_normal_page(vma, addr, pte); 866 if (page) { 867 get_page(page); 868 page_dup_rmap(page); 869 if (PageAnon(page)) 870 rss[MM_ANONPAGES]++; 871 else 872 rss[MM_FILEPAGES]++; 873 } 874 875 out_set_pte: 876 set_pte_at(dst_mm, addr, dst_pte, pte); 877 return 0; 878 } 879 880 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 881 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 882 unsigned long addr, unsigned long end) 883 { 884 pte_t *orig_src_pte, *orig_dst_pte; 885 pte_t *src_pte, *dst_pte; 886 spinlock_t *src_ptl, *dst_ptl; 887 int progress = 0; 888 int rss[NR_MM_COUNTERS]; 889 swp_entry_t entry = (swp_entry_t){0}; 890 891 again: 892 init_rss_vec(rss); 893 894 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 895 if (!dst_pte) 896 return -ENOMEM; 897 src_pte = pte_offset_map(src_pmd, addr); 898 src_ptl = pte_lockptr(src_mm, src_pmd); 899 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 900 orig_src_pte = src_pte; 901 orig_dst_pte = dst_pte; 902 arch_enter_lazy_mmu_mode(); 903 904 do { 905 /* 906 * We are holding two locks at this point - either of them 907 * could generate latencies in another task on another CPU. 908 */ 909 if (progress >= 32) { 910 progress = 0; 911 if (need_resched() || 912 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 913 break; 914 } 915 if (pte_none(*src_pte)) { 916 progress++; 917 continue; 918 } 919 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 920 vma, addr, rss); 921 if (entry.val) 922 break; 923 progress += 8; 924 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 925 926 arch_leave_lazy_mmu_mode(); 927 spin_unlock(src_ptl); 928 pte_unmap(orig_src_pte); 929 add_mm_rss_vec(dst_mm, rss); 930 pte_unmap_unlock(orig_dst_pte, dst_ptl); 931 cond_resched(); 932 933 if (entry.val) { 934 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 935 return -ENOMEM; 936 progress = 0; 937 } 938 if (addr != end) 939 goto again; 940 return 0; 941 } 942 943 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 944 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 945 unsigned long addr, unsigned long end) 946 { 947 pmd_t *src_pmd, *dst_pmd; 948 unsigned long next; 949 950 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 951 if (!dst_pmd) 952 return -ENOMEM; 953 src_pmd = pmd_offset(src_pud, addr); 954 do { 955 next = pmd_addr_end(addr, end); 956 if (pmd_trans_huge(*src_pmd)) { 957 int err; 958 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 959 err = copy_huge_pmd(dst_mm, src_mm, 960 dst_pmd, src_pmd, addr, vma); 961 if (err == -ENOMEM) 962 return -ENOMEM; 963 if (!err) 964 continue; 965 /* fall through */ 966 } 967 if (pmd_none_or_clear_bad(src_pmd)) 968 continue; 969 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 970 vma, addr, next)) 971 return -ENOMEM; 972 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 973 return 0; 974 } 975 976 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 977 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 978 unsigned long addr, unsigned long end) 979 { 980 pud_t *src_pud, *dst_pud; 981 unsigned long next; 982 983 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 984 if (!dst_pud) 985 return -ENOMEM; 986 src_pud = pud_offset(src_pgd, addr); 987 do { 988 next = pud_addr_end(addr, end); 989 if (pud_none_or_clear_bad(src_pud)) 990 continue; 991 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 992 vma, addr, next)) 993 return -ENOMEM; 994 } while (dst_pud++, src_pud++, addr = next, addr != end); 995 return 0; 996 } 997 998 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 999 struct vm_area_struct *vma) 1000 { 1001 pgd_t *src_pgd, *dst_pgd; 1002 unsigned long next; 1003 unsigned long addr = vma->vm_start; 1004 unsigned long end = vma->vm_end; 1005 unsigned long mmun_start; /* For mmu_notifiers */ 1006 unsigned long mmun_end; /* For mmu_notifiers */ 1007 bool is_cow; 1008 int ret; 1009 1010 /* 1011 * Don't copy ptes where a page fault will fill them correctly. 1012 * Fork becomes much lighter when there are big shared or private 1013 * readonly mappings. The tradeoff is that copy_page_range is more 1014 * efficient than faulting. 1015 */ 1016 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR | 1017 VM_PFNMAP | VM_MIXEDMAP))) { 1018 if (!vma->anon_vma) 1019 return 0; 1020 } 1021 1022 if (is_vm_hugetlb_page(vma)) 1023 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1024 1025 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1026 /* 1027 * We do not free on error cases below as remove_vma 1028 * gets called on error from higher level routine 1029 */ 1030 ret = track_pfn_copy(vma); 1031 if (ret) 1032 return ret; 1033 } 1034 1035 /* 1036 * We need to invalidate the secondary MMU mappings only when 1037 * there could be a permission downgrade on the ptes of the 1038 * parent mm. And a permission downgrade will only happen if 1039 * is_cow_mapping() returns true. 1040 */ 1041 is_cow = is_cow_mapping(vma->vm_flags); 1042 mmun_start = addr; 1043 mmun_end = end; 1044 if (is_cow) 1045 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1046 mmun_end); 1047 1048 ret = 0; 1049 dst_pgd = pgd_offset(dst_mm, addr); 1050 src_pgd = pgd_offset(src_mm, addr); 1051 do { 1052 next = pgd_addr_end(addr, end); 1053 if (pgd_none_or_clear_bad(src_pgd)) 1054 continue; 1055 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1056 vma, addr, next))) { 1057 ret = -ENOMEM; 1058 break; 1059 } 1060 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1061 1062 if (is_cow) 1063 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1064 return ret; 1065 } 1066 1067 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1068 struct vm_area_struct *vma, pmd_t *pmd, 1069 unsigned long addr, unsigned long end, 1070 struct zap_details *details) 1071 { 1072 struct mm_struct *mm = tlb->mm; 1073 int force_flush = 0; 1074 int rss[NR_MM_COUNTERS]; 1075 spinlock_t *ptl; 1076 pte_t *start_pte; 1077 pte_t *pte; 1078 1079 again: 1080 init_rss_vec(rss); 1081 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1082 pte = start_pte; 1083 arch_enter_lazy_mmu_mode(); 1084 do { 1085 pte_t ptent = *pte; 1086 if (pte_none(ptent)) { 1087 continue; 1088 } 1089 1090 if (pte_present(ptent)) { 1091 struct page *page; 1092 1093 page = vm_normal_page(vma, addr, ptent); 1094 if (unlikely(details) && page) { 1095 /* 1096 * unmap_shared_mapping_pages() wants to 1097 * invalidate cache without truncating: 1098 * unmap shared but keep private pages. 1099 */ 1100 if (details->check_mapping && 1101 details->check_mapping != page->mapping) 1102 continue; 1103 /* 1104 * Each page->index must be checked when 1105 * invalidating or truncating nonlinear. 1106 */ 1107 if (details->nonlinear_vma && 1108 (page->index < details->first_index || 1109 page->index > details->last_index)) 1110 continue; 1111 } 1112 ptent = ptep_get_and_clear_full(mm, addr, pte, 1113 tlb->fullmm); 1114 tlb_remove_tlb_entry(tlb, pte, addr); 1115 if (unlikely(!page)) 1116 continue; 1117 if (unlikely(details) && details->nonlinear_vma 1118 && linear_page_index(details->nonlinear_vma, 1119 addr) != page->index) { 1120 pte_t ptfile = pgoff_to_pte(page->index); 1121 if (pte_soft_dirty(ptent)) 1122 pte_file_mksoft_dirty(ptfile); 1123 set_pte_at(mm, addr, pte, ptfile); 1124 } 1125 if (PageAnon(page)) 1126 rss[MM_ANONPAGES]--; 1127 else { 1128 if (pte_dirty(ptent)) 1129 set_page_dirty(page); 1130 if (pte_young(ptent) && 1131 likely(!(vma->vm_flags & VM_SEQ_READ))) 1132 mark_page_accessed(page); 1133 rss[MM_FILEPAGES]--; 1134 } 1135 page_remove_rmap(page); 1136 if (unlikely(page_mapcount(page) < 0)) 1137 print_bad_pte(vma, addr, ptent, page); 1138 force_flush = !__tlb_remove_page(tlb, page); 1139 if (force_flush) 1140 break; 1141 continue; 1142 } 1143 /* 1144 * If details->check_mapping, we leave swap entries; 1145 * if details->nonlinear_vma, we leave file entries. 1146 */ 1147 if (unlikely(details)) 1148 continue; 1149 if (pte_file(ptent)) { 1150 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1151 print_bad_pte(vma, addr, ptent, NULL); 1152 } else { 1153 swp_entry_t entry = pte_to_swp_entry(ptent); 1154 1155 if (!non_swap_entry(entry)) 1156 rss[MM_SWAPENTS]--; 1157 else if (is_migration_entry(entry)) { 1158 struct page *page; 1159 1160 page = migration_entry_to_page(entry); 1161 1162 if (PageAnon(page)) 1163 rss[MM_ANONPAGES]--; 1164 else 1165 rss[MM_FILEPAGES]--; 1166 } 1167 if (unlikely(!free_swap_and_cache(entry))) 1168 print_bad_pte(vma, addr, ptent, NULL); 1169 } 1170 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1171 } while (pte++, addr += PAGE_SIZE, addr != end); 1172 1173 add_mm_rss_vec(mm, rss); 1174 arch_leave_lazy_mmu_mode(); 1175 pte_unmap_unlock(start_pte, ptl); 1176 1177 /* 1178 * mmu_gather ran out of room to batch pages, we break out of 1179 * the PTE lock to avoid doing the potential expensive TLB invalidate 1180 * and page-free while holding it. 1181 */ 1182 if (force_flush) { 1183 unsigned long old_end; 1184 1185 force_flush = 0; 1186 1187 /* 1188 * Flush the TLB just for the previous segment, 1189 * then update the range to be the remaining 1190 * TLB range. 1191 */ 1192 old_end = tlb->end; 1193 tlb->end = addr; 1194 1195 tlb_flush_mmu(tlb); 1196 1197 tlb->start = addr; 1198 tlb->end = old_end; 1199 1200 if (addr != end) 1201 goto again; 1202 } 1203 1204 return addr; 1205 } 1206 1207 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1208 struct vm_area_struct *vma, pud_t *pud, 1209 unsigned long addr, unsigned long end, 1210 struct zap_details *details) 1211 { 1212 pmd_t *pmd; 1213 unsigned long next; 1214 1215 pmd = pmd_offset(pud, addr); 1216 do { 1217 next = pmd_addr_end(addr, end); 1218 if (pmd_trans_huge(*pmd)) { 1219 if (next - addr != HPAGE_PMD_SIZE) { 1220 #ifdef CONFIG_DEBUG_VM 1221 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1222 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1223 __func__, addr, end, 1224 vma->vm_start, 1225 vma->vm_end); 1226 BUG(); 1227 } 1228 #endif 1229 split_huge_page_pmd(vma, addr, pmd); 1230 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1231 goto next; 1232 /* fall through */ 1233 } 1234 /* 1235 * Here there can be other concurrent MADV_DONTNEED or 1236 * trans huge page faults running, and if the pmd is 1237 * none or trans huge it can change under us. This is 1238 * because MADV_DONTNEED holds the mmap_sem in read 1239 * mode. 1240 */ 1241 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1242 goto next; 1243 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1244 next: 1245 cond_resched(); 1246 } while (pmd++, addr = next, addr != end); 1247 1248 return addr; 1249 } 1250 1251 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1252 struct vm_area_struct *vma, pgd_t *pgd, 1253 unsigned long addr, unsigned long end, 1254 struct zap_details *details) 1255 { 1256 pud_t *pud; 1257 unsigned long next; 1258 1259 pud = pud_offset(pgd, addr); 1260 do { 1261 next = pud_addr_end(addr, end); 1262 if (pud_none_or_clear_bad(pud)) 1263 continue; 1264 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1265 } while (pud++, addr = next, addr != end); 1266 1267 return addr; 1268 } 1269 1270 static void unmap_page_range(struct mmu_gather *tlb, 1271 struct vm_area_struct *vma, 1272 unsigned long addr, unsigned long end, 1273 struct zap_details *details) 1274 { 1275 pgd_t *pgd; 1276 unsigned long next; 1277 1278 if (details && !details->check_mapping && !details->nonlinear_vma) 1279 details = NULL; 1280 1281 BUG_ON(addr >= end); 1282 mem_cgroup_uncharge_start(); 1283 tlb_start_vma(tlb, vma); 1284 pgd = pgd_offset(vma->vm_mm, addr); 1285 do { 1286 next = pgd_addr_end(addr, end); 1287 if (pgd_none_or_clear_bad(pgd)) 1288 continue; 1289 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1290 } while (pgd++, addr = next, addr != end); 1291 tlb_end_vma(tlb, vma); 1292 mem_cgroup_uncharge_end(); 1293 } 1294 1295 1296 static void unmap_single_vma(struct mmu_gather *tlb, 1297 struct vm_area_struct *vma, unsigned long start_addr, 1298 unsigned long end_addr, 1299 struct zap_details *details) 1300 { 1301 unsigned long start = max(vma->vm_start, start_addr); 1302 unsigned long end; 1303 1304 if (start >= vma->vm_end) 1305 return; 1306 end = min(vma->vm_end, end_addr); 1307 if (end <= vma->vm_start) 1308 return; 1309 1310 if (vma->vm_file) 1311 uprobe_munmap(vma, start, end); 1312 1313 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1314 untrack_pfn(vma, 0, 0); 1315 1316 if (start != end) { 1317 if (unlikely(is_vm_hugetlb_page(vma))) { 1318 /* 1319 * It is undesirable to test vma->vm_file as it 1320 * should be non-null for valid hugetlb area. 1321 * However, vm_file will be NULL in the error 1322 * cleanup path of do_mmap_pgoff. When 1323 * hugetlbfs ->mmap method fails, 1324 * do_mmap_pgoff() nullifies vma->vm_file 1325 * before calling this function to clean up. 1326 * Since no pte has actually been setup, it is 1327 * safe to do nothing in this case. 1328 */ 1329 if (vma->vm_file) { 1330 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 1331 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1332 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 1333 } 1334 } else 1335 unmap_page_range(tlb, vma, start, end, details); 1336 } 1337 } 1338 1339 /** 1340 * unmap_vmas - unmap a range of memory covered by a list of vma's 1341 * @tlb: address of the caller's struct mmu_gather 1342 * @vma: the starting vma 1343 * @start_addr: virtual address at which to start unmapping 1344 * @end_addr: virtual address at which to end unmapping 1345 * 1346 * Unmap all pages in the vma list. 1347 * 1348 * Only addresses between `start' and `end' will be unmapped. 1349 * 1350 * The VMA list must be sorted in ascending virtual address order. 1351 * 1352 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1353 * range after unmap_vmas() returns. So the only responsibility here is to 1354 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1355 * drops the lock and schedules. 1356 */ 1357 void unmap_vmas(struct mmu_gather *tlb, 1358 struct vm_area_struct *vma, unsigned long start_addr, 1359 unsigned long end_addr) 1360 { 1361 struct mm_struct *mm = vma->vm_mm; 1362 1363 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1364 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1365 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1366 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1367 } 1368 1369 /** 1370 * zap_page_range - remove user pages in a given range 1371 * @vma: vm_area_struct holding the applicable pages 1372 * @start: starting address of pages to zap 1373 * @size: number of bytes to zap 1374 * @details: details of nonlinear truncation or shared cache invalidation 1375 * 1376 * Caller must protect the VMA list 1377 */ 1378 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1379 unsigned long size, struct zap_details *details) 1380 { 1381 struct mm_struct *mm = vma->vm_mm; 1382 struct mmu_gather tlb; 1383 unsigned long end = start + size; 1384 1385 lru_add_drain(); 1386 tlb_gather_mmu(&tlb, mm, start, end); 1387 update_hiwater_rss(mm); 1388 mmu_notifier_invalidate_range_start(mm, start, end); 1389 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1390 unmap_single_vma(&tlb, vma, start, end, details); 1391 mmu_notifier_invalidate_range_end(mm, start, end); 1392 tlb_finish_mmu(&tlb, start, end); 1393 } 1394 1395 /** 1396 * zap_page_range_single - remove user pages in a given range 1397 * @vma: vm_area_struct holding the applicable pages 1398 * @address: starting address of pages to zap 1399 * @size: number of bytes to zap 1400 * @details: details of nonlinear truncation or shared cache invalidation 1401 * 1402 * The range must fit into one VMA. 1403 */ 1404 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1405 unsigned long size, struct zap_details *details) 1406 { 1407 struct mm_struct *mm = vma->vm_mm; 1408 struct mmu_gather tlb; 1409 unsigned long end = address + size; 1410 1411 lru_add_drain(); 1412 tlb_gather_mmu(&tlb, mm, address, end); 1413 update_hiwater_rss(mm); 1414 mmu_notifier_invalidate_range_start(mm, address, end); 1415 unmap_single_vma(&tlb, vma, address, end, details); 1416 mmu_notifier_invalidate_range_end(mm, address, end); 1417 tlb_finish_mmu(&tlb, address, end); 1418 } 1419 1420 /** 1421 * zap_vma_ptes - remove ptes mapping the vma 1422 * @vma: vm_area_struct holding ptes to be zapped 1423 * @address: starting address of pages to zap 1424 * @size: number of bytes to zap 1425 * 1426 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1427 * 1428 * The entire address range must be fully contained within the vma. 1429 * 1430 * Returns 0 if successful. 1431 */ 1432 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1433 unsigned long size) 1434 { 1435 if (address < vma->vm_start || address + size > vma->vm_end || 1436 !(vma->vm_flags & VM_PFNMAP)) 1437 return -1; 1438 zap_page_range_single(vma, address, size, NULL); 1439 return 0; 1440 } 1441 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1442 1443 /** 1444 * follow_page_mask - look up a page descriptor from a user-virtual address 1445 * @vma: vm_area_struct mapping @address 1446 * @address: virtual address to look up 1447 * @flags: flags modifying lookup behaviour 1448 * @page_mask: on output, *page_mask is set according to the size of the page 1449 * 1450 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1451 * 1452 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1453 * an error pointer if there is a mapping to something not represented 1454 * by a page descriptor (see also vm_normal_page()). 1455 */ 1456 struct page *follow_page_mask(struct vm_area_struct *vma, 1457 unsigned long address, unsigned int flags, 1458 unsigned int *page_mask) 1459 { 1460 pgd_t *pgd; 1461 pud_t *pud; 1462 pmd_t *pmd; 1463 pte_t *ptep, pte; 1464 spinlock_t *ptl; 1465 struct page *page; 1466 struct mm_struct *mm = vma->vm_mm; 1467 1468 *page_mask = 0; 1469 1470 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1471 if (!IS_ERR(page)) { 1472 BUG_ON(flags & FOLL_GET); 1473 goto out; 1474 } 1475 1476 page = NULL; 1477 pgd = pgd_offset(mm, address); 1478 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1479 goto no_page_table; 1480 1481 pud = pud_offset(pgd, address); 1482 if (pud_none(*pud)) 1483 goto no_page_table; 1484 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1485 if (flags & FOLL_GET) 1486 goto out; 1487 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1488 goto out; 1489 } 1490 if (unlikely(pud_bad(*pud))) 1491 goto no_page_table; 1492 1493 pmd = pmd_offset(pud, address); 1494 if (pmd_none(*pmd)) 1495 goto no_page_table; 1496 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1497 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1498 if (flags & FOLL_GET) { 1499 /* 1500 * Refcount on tail pages are not well-defined and 1501 * shouldn't be taken. The caller should handle a NULL 1502 * return when trying to follow tail pages. 1503 */ 1504 if (PageHead(page)) 1505 get_page(page); 1506 else { 1507 page = NULL; 1508 goto out; 1509 } 1510 } 1511 goto out; 1512 } 1513 if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) 1514 goto no_page_table; 1515 if (pmd_trans_huge(*pmd)) { 1516 if (flags & FOLL_SPLIT) { 1517 split_huge_page_pmd(vma, address, pmd); 1518 goto split_fallthrough; 1519 } 1520 ptl = pmd_lock(mm, pmd); 1521 if (likely(pmd_trans_huge(*pmd))) { 1522 if (unlikely(pmd_trans_splitting(*pmd))) { 1523 spin_unlock(ptl); 1524 wait_split_huge_page(vma->anon_vma, pmd); 1525 } else { 1526 page = follow_trans_huge_pmd(vma, address, 1527 pmd, flags); 1528 spin_unlock(ptl); 1529 *page_mask = HPAGE_PMD_NR - 1; 1530 goto out; 1531 } 1532 } else 1533 spin_unlock(ptl); 1534 /* fall through */ 1535 } 1536 split_fallthrough: 1537 if (unlikely(pmd_bad(*pmd))) 1538 goto no_page_table; 1539 1540 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1541 1542 pte = *ptep; 1543 if (!pte_present(pte)) { 1544 swp_entry_t entry; 1545 /* 1546 * KSM's break_ksm() relies upon recognizing a ksm page 1547 * even while it is being migrated, so for that case we 1548 * need migration_entry_wait(). 1549 */ 1550 if (likely(!(flags & FOLL_MIGRATION))) 1551 goto no_page; 1552 if (pte_none(pte) || pte_file(pte)) 1553 goto no_page; 1554 entry = pte_to_swp_entry(pte); 1555 if (!is_migration_entry(entry)) 1556 goto no_page; 1557 pte_unmap_unlock(ptep, ptl); 1558 migration_entry_wait(mm, pmd, address); 1559 goto split_fallthrough; 1560 } 1561 if ((flags & FOLL_NUMA) && pte_numa(pte)) 1562 goto no_page; 1563 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1564 goto unlock; 1565 1566 page = vm_normal_page(vma, address, pte); 1567 if (unlikely(!page)) { 1568 if ((flags & FOLL_DUMP) || 1569 !is_zero_pfn(pte_pfn(pte))) 1570 goto bad_page; 1571 page = pte_page(pte); 1572 } 1573 1574 if (flags & FOLL_GET) 1575 get_page_foll(page); 1576 if (flags & FOLL_TOUCH) { 1577 if ((flags & FOLL_WRITE) && 1578 !pte_dirty(pte) && !PageDirty(page)) 1579 set_page_dirty(page); 1580 /* 1581 * pte_mkyoung() would be more correct here, but atomic care 1582 * is needed to avoid losing the dirty bit: it is easier to use 1583 * mark_page_accessed(). 1584 */ 1585 mark_page_accessed(page); 1586 } 1587 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1588 /* 1589 * The preliminary mapping check is mainly to avoid the 1590 * pointless overhead of lock_page on the ZERO_PAGE 1591 * which might bounce very badly if there is contention. 1592 * 1593 * If the page is already locked, we don't need to 1594 * handle it now - vmscan will handle it later if and 1595 * when it attempts to reclaim the page. 1596 */ 1597 if (page->mapping && trylock_page(page)) { 1598 lru_add_drain(); /* push cached pages to LRU */ 1599 /* 1600 * Because we lock page here, and migration is 1601 * blocked by the pte's page reference, and we 1602 * know the page is still mapped, we don't even 1603 * need to check for file-cache page truncation. 1604 */ 1605 mlock_vma_page(page); 1606 unlock_page(page); 1607 } 1608 } 1609 unlock: 1610 pte_unmap_unlock(ptep, ptl); 1611 out: 1612 return page; 1613 1614 bad_page: 1615 pte_unmap_unlock(ptep, ptl); 1616 return ERR_PTR(-EFAULT); 1617 1618 no_page: 1619 pte_unmap_unlock(ptep, ptl); 1620 if (!pte_none(pte)) 1621 return page; 1622 1623 no_page_table: 1624 /* 1625 * When core dumping an enormous anonymous area that nobody 1626 * has touched so far, we don't want to allocate unnecessary pages or 1627 * page tables. Return error instead of NULL to skip handle_mm_fault, 1628 * then get_dump_page() will return NULL to leave a hole in the dump. 1629 * But we can only make this optimization where a hole would surely 1630 * be zero-filled if handle_mm_fault() actually did handle it. 1631 */ 1632 if ((flags & FOLL_DUMP) && 1633 (!vma->vm_ops || !vma->vm_ops->fault)) 1634 return ERR_PTR(-EFAULT); 1635 return page; 1636 } 1637 1638 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1639 { 1640 return stack_guard_page_start(vma, addr) || 1641 stack_guard_page_end(vma, addr+PAGE_SIZE); 1642 } 1643 1644 /** 1645 * __get_user_pages() - pin user pages in memory 1646 * @tsk: task_struct of target task 1647 * @mm: mm_struct of target mm 1648 * @start: starting user address 1649 * @nr_pages: number of pages from start to pin 1650 * @gup_flags: flags modifying pin behaviour 1651 * @pages: array that receives pointers to the pages pinned. 1652 * Should be at least nr_pages long. Or NULL, if caller 1653 * only intends to ensure the pages are faulted in. 1654 * @vmas: array of pointers to vmas corresponding to each page. 1655 * Or NULL if the caller does not require them. 1656 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1657 * 1658 * Returns number of pages pinned. This may be fewer than the number 1659 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1660 * were pinned, returns -errno. Each page returned must be released 1661 * with a put_page() call when it is finished with. vmas will only 1662 * remain valid while mmap_sem is held. 1663 * 1664 * Must be called with mmap_sem held for read or write. 1665 * 1666 * __get_user_pages walks a process's page tables and takes a reference to 1667 * each struct page that each user address corresponds to at a given 1668 * instant. That is, it takes the page that would be accessed if a user 1669 * thread accesses the given user virtual address at that instant. 1670 * 1671 * This does not guarantee that the page exists in the user mappings when 1672 * __get_user_pages returns, and there may even be a completely different 1673 * page there in some cases (eg. if mmapped pagecache has been invalidated 1674 * and subsequently re faulted). However it does guarantee that the page 1675 * won't be freed completely. And mostly callers simply care that the page 1676 * contains data that was valid *at some point in time*. Typically, an IO 1677 * or similar operation cannot guarantee anything stronger anyway because 1678 * locks can't be held over the syscall boundary. 1679 * 1680 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1681 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1682 * appropriate) must be called after the page is finished with, and 1683 * before put_page is called. 1684 * 1685 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1686 * or mmap_sem contention, and if waiting is needed to pin all pages, 1687 * *@nonblocking will be set to 0. 1688 * 1689 * In most cases, get_user_pages or get_user_pages_fast should be used 1690 * instead of __get_user_pages. __get_user_pages should be used only if 1691 * you need some special @gup_flags. 1692 */ 1693 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1694 unsigned long start, unsigned long nr_pages, 1695 unsigned int gup_flags, struct page **pages, 1696 struct vm_area_struct **vmas, int *nonblocking) 1697 { 1698 long i; 1699 unsigned long vm_flags; 1700 unsigned int page_mask; 1701 1702 if (!nr_pages) 1703 return 0; 1704 1705 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1706 1707 /* 1708 * Require read or write permissions. 1709 * If FOLL_FORCE is set, we only require the "MAY" flags. 1710 */ 1711 vm_flags = (gup_flags & FOLL_WRITE) ? 1712 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1713 vm_flags &= (gup_flags & FOLL_FORCE) ? 1714 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1715 1716 /* 1717 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault 1718 * would be called on PROT_NONE ranges. We must never invoke 1719 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting 1720 * page faults would unprotect the PROT_NONE ranges if 1721 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd 1722 * bitflag. So to avoid that, don't set FOLL_NUMA if 1723 * FOLL_FORCE is set. 1724 */ 1725 if (!(gup_flags & FOLL_FORCE)) 1726 gup_flags |= FOLL_NUMA; 1727 1728 i = 0; 1729 1730 do { 1731 struct vm_area_struct *vma; 1732 1733 vma = find_extend_vma(mm, start); 1734 if (!vma && in_gate_area(mm, start)) { 1735 unsigned long pg = start & PAGE_MASK; 1736 pgd_t *pgd; 1737 pud_t *pud; 1738 pmd_t *pmd; 1739 pte_t *pte; 1740 1741 /* user gate pages are read-only */ 1742 if (gup_flags & FOLL_WRITE) 1743 return i ? : -EFAULT; 1744 if (pg > TASK_SIZE) 1745 pgd = pgd_offset_k(pg); 1746 else 1747 pgd = pgd_offset_gate(mm, pg); 1748 BUG_ON(pgd_none(*pgd)); 1749 pud = pud_offset(pgd, pg); 1750 BUG_ON(pud_none(*pud)); 1751 pmd = pmd_offset(pud, pg); 1752 if (pmd_none(*pmd)) 1753 return i ? : -EFAULT; 1754 VM_BUG_ON(pmd_trans_huge(*pmd)); 1755 pte = pte_offset_map(pmd, pg); 1756 if (pte_none(*pte)) { 1757 pte_unmap(pte); 1758 return i ? : -EFAULT; 1759 } 1760 vma = get_gate_vma(mm); 1761 if (pages) { 1762 struct page *page; 1763 1764 page = vm_normal_page(vma, start, *pte); 1765 if (!page) { 1766 if (!(gup_flags & FOLL_DUMP) && 1767 is_zero_pfn(pte_pfn(*pte))) 1768 page = pte_page(*pte); 1769 else { 1770 pte_unmap(pte); 1771 return i ? : -EFAULT; 1772 } 1773 } 1774 pages[i] = page; 1775 get_page(page); 1776 } 1777 pte_unmap(pte); 1778 page_mask = 0; 1779 goto next_page; 1780 } 1781 1782 if (!vma || 1783 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1784 !(vm_flags & vma->vm_flags)) 1785 return i ? : -EFAULT; 1786 1787 if (is_vm_hugetlb_page(vma)) { 1788 i = follow_hugetlb_page(mm, vma, pages, vmas, 1789 &start, &nr_pages, i, gup_flags); 1790 continue; 1791 } 1792 1793 do { 1794 struct page *page; 1795 unsigned int foll_flags = gup_flags; 1796 unsigned int page_increm; 1797 1798 /* 1799 * If we have a pending SIGKILL, don't keep faulting 1800 * pages and potentially allocating memory. 1801 */ 1802 if (unlikely(fatal_signal_pending(current))) 1803 return i ? i : -ERESTARTSYS; 1804 1805 cond_resched(); 1806 while (!(page = follow_page_mask(vma, start, 1807 foll_flags, &page_mask))) { 1808 int ret; 1809 unsigned int fault_flags = 0; 1810 1811 /* For mlock, just skip the stack guard page. */ 1812 if (foll_flags & FOLL_MLOCK) { 1813 if (stack_guard_page(vma, start)) 1814 goto next_page; 1815 } 1816 if (foll_flags & FOLL_WRITE) 1817 fault_flags |= FAULT_FLAG_WRITE; 1818 if (nonblocking) 1819 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1820 if (foll_flags & FOLL_NOWAIT) 1821 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1822 1823 ret = handle_mm_fault(mm, vma, start, 1824 fault_flags); 1825 1826 if (ret & VM_FAULT_ERROR) { 1827 if (ret & VM_FAULT_OOM) 1828 return i ? i : -ENOMEM; 1829 if (ret & (VM_FAULT_HWPOISON | 1830 VM_FAULT_HWPOISON_LARGE)) { 1831 if (i) 1832 return i; 1833 else if (gup_flags & FOLL_HWPOISON) 1834 return -EHWPOISON; 1835 else 1836 return -EFAULT; 1837 } 1838 if (ret & VM_FAULT_SIGBUS) 1839 return i ? i : -EFAULT; 1840 BUG(); 1841 } 1842 1843 if (tsk) { 1844 if (ret & VM_FAULT_MAJOR) 1845 tsk->maj_flt++; 1846 else 1847 tsk->min_flt++; 1848 } 1849 1850 if (ret & VM_FAULT_RETRY) { 1851 if (nonblocking) 1852 *nonblocking = 0; 1853 return i; 1854 } 1855 1856 /* 1857 * The VM_FAULT_WRITE bit tells us that 1858 * do_wp_page has broken COW when necessary, 1859 * even if maybe_mkwrite decided not to set 1860 * pte_write. We can thus safely do subsequent 1861 * page lookups as if they were reads. But only 1862 * do so when looping for pte_write is futile: 1863 * in some cases userspace may also be wanting 1864 * to write to the gotten user page, which a 1865 * read fault here might prevent (a readonly 1866 * page might get reCOWed by userspace write). 1867 */ 1868 if ((ret & VM_FAULT_WRITE) && 1869 !(vma->vm_flags & VM_WRITE)) 1870 foll_flags &= ~FOLL_WRITE; 1871 1872 cond_resched(); 1873 } 1874 if (IS_ERR(page)) 1875 return i ? i : PTR_ERR(page); 1876 if (pages) { 1877 pages[i] = page; 1878 1879 flush_anon_page(vma, page, start); 1880 flush_dcache_page(page); 1881 page_mask = 0; 1882 } 1883 next_page: 1884 if (vmas) { 1885 vmas[i] = vma; 1886 page_mask = 0; 1887 } 1888 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 1889 if (page_increm > nr_pages) 1890 page_increm = nr_pages; 1891 i += page_increm; 1892 start += page_increm * PAGE_SIZE; 1893 nr_pages -= page_increm; 1894 } while (nr_pages && start < vma->vm_end); 1895 } while (nr_pages); 1896 return i; 1897 } 1898 EXPORT_SYMBOL(__get_user_pages); 1899 1900 /* 1901 * fixup_user_fault() - manually resolve a user page fault 1902 * @tsk: the task_struct to use for page fault accounting, or 1903 * NULL if faults are not to be recorded. 1904 * @mm: mm_struct of target mm 1905 * @address: user address 1906 * @fault_flags:flags to pass down to handle_mm_fault() 1907 * 1908 * This is meant to be called in the specific scenario where for locking reasons 1909 * we try to access user memory in atomic context (within a pagefault_disable() 1910 * section), this returns -EFAULT, and we want to resolve the user fault before 1911 * trying again. 1912 * 1913 * Typically this is meant to be used by the futex code. 1914 * 1915 * The main difference with get_user_pages() is that this function will 1916 * unconditionally call handle_mm_fault() which will in turn perform all the 1917 * necessary SW fixup of the dirty and young bits in the PTE, while 1918 * handle_mm_fault() only guarantees to update these in the struct page. 1919 * 1920 * This is important for some architectures where those bits also gate the 1921 * access permission to the page because they are maintained in software. On 1922 * such architectures, gup() will not be enough to make a subsequent access 1923 * succeed. 1924 * 1925 * This should be called with the mm_sem held for read. 1926 */ 1927 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1928 unsigned long address, unsigned int fault_flags) 1929 { 1930 struct vm_area_struct *vma; 1931 int ret; 1932 1933 vma = find_extend_vma(mm, address); 1934 if (!vma || address < vma->vm_start) 1935 return -EFAULT; 1936 1937 ret = handle_mm_fault(mm, vma, address, fault_flags); 1938 if (ret & VM_FAULT_ERROR) { 1939 if (ret & VM_FAULT_OOM) 1940 return -ENOMEM; 1941 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 1942 return -EHWPOISON; 1943 if (ret & VM_FAULT_SIGBUS) 1944 return -EFAULT; 1945 BUG(); 1946 } 1947 if (tsk) { 1948 if (ret & VM_FAULT_MAJOR) 1949 tsk->maj_flt++; 1950 else 1951 tsk->min_flt++; 1952 } 1953 return 0; 1954 } 1955 1956 /* 1957 * get_user_pages() - pin user pages in memory 1958 * @tsk: the task_struct to use for page fault accounting, or 1959 * NULL if faults are not to be recorded. 1960 * @mm: mm_struct of target mm 1961 * @start: starting user address 1962 * @nr_pages: number of pages from start to pin 1963 * @write: whether pages will be written to by the caller 1964 * @force: whether to force write access even if user mapping is 1965 * readonly. This will result in the page being COWed even 1966 * in MAP_SHARED mappings. You do not want this. 1967 * @pages: array that receives pointers to the pages pinned. 1968 * Should be at least nr_pages long. Or NULL, if caller 1969 * only intends to ensure the pages are faulted in. 1970 * @vmas: array of pointers to vmas corresponding to each page. 1971 * Or NULL if the caller does not require them. 1972 * 1973 * Returns number of pages pinned. This may be fewer than the number 1974 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1975 * were pinned, returns -errno. Each page returned must be released 1976 * with a put_page() call when it is finished with. vmas will only 1977 * remain valid while mmap_sem is held. 1978 * 1979 * Must be called with mmap_sem held for read or write. 1980 * 1981 * get_user_pages walks a process's page tables and takes a reference to 1982 * each struct page that each user address corresponds to at a given 1983 * instant. That is, it takes the page that would be accessed if a user 1984 * thread accesses the given user virtual address at that instant. 1985 * 1986 * This does not guarantee that the page exists in the user mappings when 1987 * get_user_pages returns, and there may even be a completely different 1988 * page there in some cases (eg. if mmapped pagecache has been invalidated 1989 * and subsequently re faulted). However it does guarantee that the page 1990 * won't be freed completely. And mostly callers simply care that the page 1991 * contains data that was valid *at some point in time*. Typically, an IO 1992 * or similar operation cannot guarantee anything stronger anyway because 1993 * locks can't be held over the syscall boundary. 1994 * 1995 * If write=0, the page must not be written to. If the page is written to, 1996 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1997 * after the page is finished with, and before put_page is called. 1998 * 1999 * get_user_pages is typically used for fewer-copy IO operations, to get a 2000 * handle on the memory by some means other than accesses via the user virtual 2001 * addresses. The pages may be submitted for DMA to devices or accessed via 2002 * their kernel linear mapping (via the kmap APIs). Care should be taken to 2003 * use the correct cache flushing APIs. 2004 * 2005 * See also get_user_pages_fast, for performance critical applications. 2006 */ 2007 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 2008 unsigned long start, unsigned long nr_pages, int write, 2009 int force, struct page **pages, struct vm_area_struct **vmas) 2010 { 2011 int flags = FOLL_TOUCH; 2012 2013 if (pages) 2014 flags |= FOLL_GET; 2015 if (write) 2016 flags |= FOLL_WRITE; 2017 if (force) 2018 flags |= FOLL_FORCE; 2019 2020 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 2021 NULL); 2022 } 2023 EXPORT_SYMBOL(get_user_pages); 2024 2025 /** 2026 * get_dump_page() - pin user page in memory while writing it to core dump 2027 * @addr: user address 2028 * 2029 * Returns struct page pointer of user page pinned for dump, 2030 * to be freed afterwards by page_cache_release() or put_page(). 2031 * 2032 * Returns NULL on any kind of failure - a hole must then be inserted into 2033 * the corefile, to preserve alignment with its headers; and also returns 2034 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2035 * allowing a hole to be left in the corefile to save diskspace. 2036 * 2037 * Called without mmap_sem, but after all other threads have been killed. 2038 */ 2039 #ifdef CONFIG_ELF_CORE 2040 struct page *get_dump_page(unsigned long addr) 2041 { 2042 struct vm_area_struct *vma; 2043 struct page *page; 2044 2045 if (__get_user_pages(current, current->mm, addr, 1, 2046 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 2047 NULL) < 1) 2048 return NULL; 2049 flush_cache_page(vma, addr, page_to_pfn(page)); 2050 return page; 2051 } 2052 #endif /* CONFIG_ELF_CORE */ 2053 2054 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2055 spinlock_t **ptl) 2056 { 2057 pgd_t * pgd = pgd_offset(mm, addr); 2058 pud_t * pud = pud_alloc(mm, pgd, addr); 2059 if (pud) { 2060 pmd_t * pmd = pmd_alloc(mm, pud, addr); 2061 if (pmd) { 2062 VM_BUG_ON(pmd_trans_huge(*pmd)); 2063 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2064 } 2065 } 2066 return NULL; 2067 } 2068 2069 /* 2070 * This is the old fallback for page remapping. 2071 * 2072 * For historical reasons, it only allows reserved pages. Only 2073 * old drivers should use this, and they needed to mark their 2074 * pages reserved for the old functions anyway. 2075 */ 2076 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2077 struct page *page, pgprot_t prot) 2078 { 2079 struct mm_struct *mm = vma->vm_mm; 2080 int retval; 2081 pte_t *pte; 2082 spinlock_t *ptl; 2083 2084 retval = -EINVAL; 2085 if (PageAnon(page)) 2086 goto out; 2087 retval = -ENOMEM; 2088 flush_dcache_page(page); 2089 pte = get_locked_pte(mm, addr, &ptl); 2090 if (!pte) 2091 goto out; 2092 retval = -EBUSY; 2093 if (!pte_none(*pte)) 2094 goto out_unlock; 2095 2096 /* Ok, finally just insert the thing.. */ 2097 get_page(page); 2098 inc_mm_counter_fast(mm, MM_FILEPAGES); 2099 page_add_file_rmap(page); 2100 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 2101 2102 retval = 0; 2103 pte_unmap_unlock(pte, ptl); 2104 return retval; 2105 out_unlock: 2106 pte_unmap_unlock(pte, ptl); 2107 out: 2108 return retval; 2109 } 2110 2111 /** 2112 * vm_insert_page - insert single page into user vma 2113 * @vma: user vma to map to 2114 * @addr: target user address of this page 2115 * @page: source kernel page 2116 * 2117 * This allows drivers to insert individual pages they've allocated 2118 * into a user vma. 2119 * 2120 * The page has to be a nice clean _individual_ kernel allocation. 2121 * If you allocate a compound page, you need to have marked it as 2122 * such (__GFP_COMP), or manually just split the page up yourself 2123 * (see split_page()). 2124 * 2125 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2126 * took an arbitrary page protection parameter. This doesn't allow 2127 * that. Your vma protection will have to be set up correctly, which 2128 * means that if you want a shared writable mapping, you'd better 2129 * ask for a shared writable mapping! 2130 * 2131 * The page does not need to be reserved. 2132 * 2133 * Usually this function is called from f_op->mmap() handler 2134 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 2135 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2136 * function from other places, for example from page-fault handler. 2137 */ 2138 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2139 struct page *page) 2140 { 2141 if (addr < vma->vm_start || addr >= vma->vm_end) 2142 return -EFAULT; 2143 if (!page_count(page)) 2144 return -EINVAL; 2145 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2146 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 2147 BUG_ON(vma->vm_flags & VM_PFNMAP); 2148 vma->vm_flags |= VM_MIXEDMAP; 2149 } 2150 return insert_page(vma, addr, page, vma->vm_page_prot); 2151 } 2152 EXPORT_SYMBOL(vm_insert_page); 2153 2154 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2155 unsigned long pfn, pgprot_t prot) 2156 { 2157 struct mm_struct *mm = vma->vm_mm; 2158 int retval; 2159 pte_t *pte, entry; 2160 spinlock_t *ptl; 2161 2162 retval = -ENOMEM; 2163 pte = get_locked_pte(mm, addr, &ptl); 2164 if (!pte) 2165 goto out; 2166 retval = -EBUSY; 2167 if (!pte_none(*pte)) 2168 goto out_unlock; 2169 2170 /* Ok, finally just insert the thing.. */ 2171 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2172 set_pte_at(mm, addr, pte, entry); 2173 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2174 2175 retval = 0; 2176 out_unlock: 2177 pte_unmap_unlock(pte, ptl); 2178 out: 2179 return retval; 2180 } 2181 2182 /** 2183 * vm_insert_pfn - insert single pfn into user vma 2184 * @vma: user vma to map to 2185 * @addr: target user address of this page 2186 * @pfn: source kernel pfn 2187 * 2188 * Similar to vm_insert_page, this allows drivers to insert individual pages 2189 * they've allocated into a user vma. Same comments apply. 2190 * 2191 * This function should only be called from a vm_ops->fault handler, and 2192 * in that case the handler should return NULL. 2193 * 2194 * vma cannot be a COW mapping. 2195 * 2196 * As this is called only for pages that do not currently exist, we 2197 * do not need to flush old virtual caches or the TLB. 2198 */ 2199 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2200 unsigned long pfn) 2201 { 2202 int ret; 2203 pgprot_t pgprot = vma->vm_page_prot; 2204 /* 2205 * Technically, architectures with pte_special can avoid all these 2206 * restrictions (same for remap_pfn_range). However we would like 2207 * consistency in testing and feature parity among all, so we should 2208 * try to keep these invariants in place for everybody. 2209 */ 2210 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2211 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2212 (VM_PFNMAP|VM_MIXEDMAP)); 2213 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2214 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2215 2216 if (addr < vma->vm_start || addr >= vma->vm_end) 2217 return -EFAULT; 2218 if (track_pfn_insert(vma, &pgprot, pfn)) 2219 return -EINVAL; 2220 2221 ret = insert_pfn(vma, addr, pfn, pgprot); 2222 2223 return ret; 2224 } 2225 EXPORT_SYMBOL(vm_insert_pfn); 2226 2227 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2228 unsigned long pfn) 2229 { 2230 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2231 2232 if (addr < vma->vm_start || addr >= vma->vm_end) 2233 return -EFAULT; 2234 2235 /* 2236 * If we don't have pte special, then we have to use the pfn_valid() 2237 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2238 * refcount the page if pfn_valid is true (hence insert_page rather 2239 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2240 * without pte special, it would there be refcounted as a normal page. 2241 */ 2242 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2243 struct page *page; 2244 2245 page = pfn_to_page(pfn); 2246 return insert_page(vma, addr, page, vma->vm_page_prot); 2247 } 2248 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2249 } 2250 EXPORT_SYMBOL(vm_insert_mixed); 2251 2252 /* 2253 * maps a range of physical memory into the requested pages. the old 2254 * mappings are removed. any references to nonexistent pages results 2255 * in null mappings (currently treated as "copy-on-access") 2256 */ 2257 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2258 unsigned long addr, unsigned long end, 2259 unsigned long pfn, pgprot_t prot) 2260 { 2261 pte_t *pte; 2262 spinlock_t *ptl; 2263 2264 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2265 if (!pte) 2266 return -ENOMEM; 2267 arch_enter_lazy_mmu_mode(); 2268 do { 2269 BUG_ON(!pte_none(*pte)); 2270 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2271 pfn++; 2272 } while (pte++, addr += PAGE_SIZE, addr != end); 2273 arch_leave_lazy_mmu_mode(); 2274 pte_unmap_unlock(pte - 1, ptl); 2275 return 0; 2276 } 2277 2278 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2279 unsigned long addr, unsigned long end, 2280 unsigned long pfn, pgprot_t prot) 2281 { 2282 pmd_t *pmd; 2283 unsigned long next; 2284 2285 pfn -= addr >> PAGE_SHIFT; 2286 pmd = pmd_alloc(mm, pud, addr); 2287 if (!pmd) 2288 return -ENOMEM; 2289 VM_BUG_ON(pmd_trans_huge(*pmd)); 2290 do { 2291 next = pmd_addr_end(addr, end); 2292 if (remap_pte_range(mm, pmd, addr, next, 2293 pfn + (addr >> PAGE_SHIFT), prot)) 2294 return -ENOMEM; 2295 } while (pmd++, addr = next, addr != end); 2296 return 0; 2297 } 2298 2299 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2300 unsigned long addr, unsigned long end, 2301 unsigned long pfn, pgprot_t prot) 2302 { 2303 pud_t *pud; 2304 unsigned long next; 2305 2306 pfn -= addr >> PAGE_SHIFT; 2307 pud = pud_alloc(mm, pgd, addr); 2308 if (!pud) 2309 return -ENOMEM; 2310 do { 2311 next = pud_addr_end(addr, end); 2312 if (remap_pmd_range(mm, pud, addr, next, 2313 pfn + (addr >> PAGE_SHIFT), prot)) 2314 return -ENOMEM; 2315 } while (pud++, addr = next, addr != end); 2316 return 0; 2317 } 2318 2319 /** 2320 * remap_pfn_range - remap kernel memory to userspace 2321 * @vma: user vma to map to 2322 * @addr: target user address to start at 2323 * @pfn: physical address of kernel memory 2324 * @size: size of map area 2325 * @prot: page protection flags for this mapping 2326 * 2327 * Note: this is only safe if the mm semaphore is held when called. 2328 */ 2329 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2330 unsigned long pfn, unsigned long size, pgprot_t prot) 2331 { 2332 pgd_t *pgd; 2333 unsigned long next; 2334 unsigned long end = addr + PAGE_ALIGN(size); 2335 struct mm_struct *mm = vma->vm_mm; 2336 int err; 2337 2338 /* 2339 * Physically remapped pages are special. Tell the 2340 * rest of the world about it: 2341 * VM_IO tells people not to look at these pages 2342 * (accesses can have side effects). 2343 * VM_PFNMAP tells the core MM that the base pages are just 2344 * raw PFN mappings, and do not have a "struct page" associated 2345 * with them. 2346 * VM_DONTEXPAND 2347 * Disable vma merging and expanding with mremap(). 2348 * VM_DONTDUMP 2349 * Omit vma from core dump, even when VM_IO turned off. 2350 * 2351 * There's a horrible special case to handle copy-on-write 2352 * behaviour that some programs depend on. We mark the "original" 2353 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2354 * See vm_normal_page() for details. 2355 */ 2356 if (is_cow_mapping(vma->vm_flags)) { 2357 if (addr != vma->vm_start || end != vma->vm_end) 2358 return -EINVAL; 2359 vma->vm_pgoff = pfn; 2360 } 2361 2362 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2363 if (err) 2364 return -EINVAL; 2365 2366 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2367 2368 BUG_ON(addr >= end); 2369 pfn -= addr >> PAGE_SHIFT; 2370 pgd = pgd_offset(mm, addr); 2371 flush_cache_range(vma, addr, end); 2372 do { 2373 next = pgd_addr_end(addr, end); 2374 err = remap_pud_range(mm, pgd, addr, next, 2375 pfn + (addr >> PAGE_SHIFT), prot); 2376 if (err) 2377 break; 2378 } while (pgd++, addr = next, addr != end); 2379 2380 if (err) 2381 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2382 2383 return err; 2384 } 2385 EXPORT_SYMBOL(remap_pfn_range); 2386 2387 /** 2388 * vm_iomap_memory - remap memory to userspace 2389 * @vma: user vma to map to 2390 * @start: start of area 2391 * @len: size of area 2392 * 2393 * This is a simplified io_remap_pfn_range() for common driver use. The 2394 * driver just needs to give us the physical memory range to be mapped, 2395 * we'll figure out the rest from the vma information. 2396 * 2397 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2398 * whatever write-combining details or similar. 2399 */ 2400 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2401 { 2402 unsigned long vm_len, pfn, pages; 2403 2404 /* Check that the physical memory area passed in looks valid */ 2405 if (start + len < start) 2406 return -EINVAL; 2407 /* 2408 * You *really* shouldn't map things that aren't page-aligned, 2409 * but we've historically allowed it because IO memory might 2410 * just have smaller alignment. 2411 */ 2412 len += start & ~PAGE_MASK; 2413 pfn = start >> PAGE_SHIFT; 2414 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2415 if (pfn + pages < pfn) 2416 return -EINVAL; 2417 2418 /* We start the mapping 'vm_pgoff' pages into the area */ 2419 if (vma->vm_pgoff > pages) 2420 return -EINVAL; 2421 pfn += vma->vm_pgoff; 2422 pages -= vma->vm_pgoff; 2423 2424 /* Can we fit all of the mapping? */ 2425 vm_len = vma->vm_end - vma->vm_start; 2426 if (vm_len >> PAGE_SHIFT > pages) 2427 return -EINVAL; 2428 2429 /* Ok, let it rip */ 2430 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2431 } 2432 EXPORT_SYMBOL(vm_iomap_memory); 2433 2434 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2435 unsigned long addr, unsigned long end, 2436 pte_fn_t fn, void *data) 2437 { 2438 pte_t *pte; 2439 int err; 2440 pgtable_t token; 2441 spinlock_t *uninitialized_var(ptl); 2442 2443 pte = (mm == &init_mm) ? 2444 pte_alloc_kernel(pmd, addr) : 2445 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2446 if (!pte) 2447 return -ENOMEM; 2448 2449 BUG_ON(pmd_huge(*pmd)); 2450 2451 arch_enter_lazy_mmu_mode(); 2452 2453 token = pmd_pgtable(*pmd); 2454 2455 do { 2456 err = fn(pte++, token, addr, data); 2457 if (err) 2458 break; 2459 } while (addr += PAGE_SIZE, addr != end); 2460 2461 arch_leave_lazy_mmu_mode(); 2462 2463 if (mm != &init_mm) 2464 pte_unmap_unlock(pte-1, ptl); 2465 return err; 2466 } 2467 2468 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2469 unsigned long addr, unsigned long end, 2470 pte_fn_t fn, void *data) 2471 { 2472 pmd_t *pmd; 2473 unsigned long next; 2474 int err; 2475 2476 BUG_ON(pud_huge(*pud)); 2477 2478 pmd = pmd_alloc(mm, pud, addr); 2479 if (!pmd) 2480 return -ENOMEM; 2481 do { 2482 next = pmd_addr_end(addr, end); 2483 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2484 if (err) 2485 break; 2486 } while (pmd++, addr = next, addr != end); 2487 return err; 2488 } 2489 2490 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2491 unsigned long addr, unsigned long end, 2492 pte_fn_t fn, void *data) 2493 { 2494 pud_t *pud; 2495 unsigned long next; 2496 int err; 2497 2498 pud = pud_alloc(mm, pgd, addr); 2499 if (!pud) 2500 return -ENOMEM; 2501 do { 2502 next = pud_addr_end(addr, end); 2503 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2504 if (err) 2505 break; 2506 } while (pud++, addr = next, addr != end); 2507 return err; 2508 } 2509 2510 /* 2511 * Scan a region of virtual memory, filling in page tables as necessary 2512 * and calling a provided function on each leaf page table. 2513 */ 2514 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2515 unsigned long size, pte_fn_t fn, void *data) 2516 { 2517 pgd_t *pgd; 2518 unsigned long next; 2519 unsigned long end = addr + size; 2520 int err; 2521 2522 BUG_ON(addr >= end); 2523 pgd = pgd_offset(mm, addr); 2524 do { 2525 next = pgd_addr_end(addr, end); 2526 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2527 if (err) 2528 break; 2529 } while (pgd++, addr = next, addr != end); 2530 2531 return err; 2532 } 2533 EXPORT_SYMBOL_GPL(apply_to_page_range); 2534 2535 /* 2536 * handle_pte_fault chooses page fault handler according to an entry 2537 * which was read non-atomically. Before making any commitment, on 2538 * those architectures or configurations (e.g. i386 with PAE) which 2539 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2540 * must check under lock before unmapping the pte and proceeding 2541 * (but do_wp_page is only called after already making such a check; 2542 * and do_anonymous_page can safely check later on). 2543 */ 2544 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2545 pte_t *page_table, pte_t orig_pte) 2546 { 2547 int same = 1; 2548 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2549 if (sizeof(pte_t) > sizeof(unsigned long)) { 2550 spinlock_t *ptl = pte_lockptr(mm, pmd); 2551 spin_lock(ptl); 2552 same = pte_same(*page_table, orig_pte); 2553 spin_unlock(ptl); 2554 } 2555 #endif 2556 pte_unmap(page_table); 2557 return same; 2558 } 2559 2560 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2561 { 2562 /* 2563 * If the source page was a PFN mapping, we don't have 2564 * a "struct page" for it. We do a best-effort copy by 2565 * just copying from the original user address. If that 2566 * fails, we just zero-fill it. Live with it. 2567 */ 2568 if (unlikely(!src)) { 2569 void *kaddr = kmap_atomic(dst); 2570 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2571 2572 /* 2573 * This really shouldn't fail, because the page is there 2574 * in the page tables. But it might just be unreadable, 2575 * in which case we just give up and fill the result with 2576 * zeroes. 2577 */ 2578 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2579 clear_page(kaddr); 2580 kunmap_atomic(kaddr); 2581 flush_dcache_page(dst); 2582 } else 2583 copy_user_highpage(dst, src, va, vma); 2584 } 2585 2586 /* 2587 * This routine handles present pages, when users try to write 2588 * to a shared page. It is done by copying the page to a new address 2589 * and decrementing the shared-page counter for the old page. 2590 * 2591 * Note that this routine assumes that the protection checks have been 2592 * done by the caller (the low-level page fault routine in most cases). 2593 * Thus we can safely just mark it writable once we've done any necessary 2594 * COW. 2595 * 2596 * We also mark the page dirty at this point even though the page will 2597 * change only once the write actually happens. This avoids a few races, 2598 * and potentially makes it more efficient. 2599 * 2600 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2601 * but allow concurrent faults), with pte both mapped and locked. 2602 * We return with mmap_sem still held, but pte unmapped and unlocked. 2603 */ 2604 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2605 unsigned long address, pte_t *page_table, pmd_t *pmd, 2606 spinlock_t *ptl, pte_t orig_pte) 2607 __releases(ptl) 2608 { 2609 struct page *old_page, *new_page = NULL; 2610 pte_t entry; 2611 int ret = 0; 2612 int page_mkwrite = 0; 2613 struct page *dirty_page = NULL; 2614 unsigned long mmun_start = 0; /* For mmu_notifiers */ 2615 unsigned long mmun_end = 0; /* For mmu_notifiers */ 2616 2617 old_page = vm_normal_page(vma, address, orig_pte); 2618 if (!old_page) { 2619 /* 2620 * VM_MIXEDMAP !pfn_valid() case 2621 * 2622 * We should not cow pages in a shared writeable mapping. 2623 * Just mark the pages writable as we can't do any dirty 2624 * accounting on raw pfn maps. 2625 */ 2626 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2627 (VM_WRITE|VM_SHARED)) 2628 goto reuse; 2629 goto gotten; 2630 } 2631 2632 /* 2633 * Take out anonymous pages first, anonymous shared vmas are 2634 * not dirty accountable. 2635 */ 2636 if (PageAnon(old_page) && !PageKsm(old_page)) { 2637 if (!trylock_page(old_page)) { 2638 page_cache_get(old_page); 2639 pte_unmap_unlock(page_table, ptl); 2640 lock_page(old_page); 2641 page_table = pte_offset_map_lock(mm, pmd, address, 2642 &ptl); 2643 if (!pte_same(*page_table, orig_pte)) { 2644 unlock_page(old_page); 2645 goto unlock; 2646 } 2647 page_cache_release(old_page); 2648 } 2649 if (reuse_swap_page(old_page)) { 2650 /* 2651 * The page is all ours. Move it to our anon_vma so 2652 * the rmap code will not search our parent or siblings. 2653 * Protected against the rmap code by the page lock. 2654 */ 2655 page_move_anon_rmap(old_page, vma, address); 2656 unlock_page(old_page); 2657 goto reuse; 2658 } 2659 unlock_page(old_page); 2660 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2661 (VM_WRITE|VM_SHARED))) { 2662 /* 2663 * Only catch write-faults on shared writable pages, 2664 * read-only shared pages can get COWed by 2665 * get_user_pages(.write=1, .force=1). 2666 */ 2667 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2668 struct vm_fault vmf; 2669 int tmp; 2670 2671 vmf.virtual_address = (void __user *)(address & 2672 PAGE_MASK); 2673 vmf.pgoff = old_page->index; 2674 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2675 vmf.page = old_page; 2676 2677 /* 2678 * Notify the address space that the page is about to 2679 * become writable so that it can prohibit this or wait 2680 * for the page to get into an appropriate state. 2681 * 2682 * We do this without the lock held, so that it can 2683 * sleep if it needs to. 2684 */ 2685 page_cache_get(old_page); 2686 pte_unmap_unlock(page_table, ptl); 2687 2688 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2689 if (unlikely(tmp & 2690 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2691 ret = tmp; 2692 goto unwritable_page; 2693 } 2694 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2695 lock_page(old_page); 2696 if (!old_page->mapping) { 2697 ret = 0; /* retry the fault */ 2698 unlock_page(old_page); 2699 goto unwritable_page; 2700 } 2701 } else 2702 VM_BUG_ON(!PageLocked(old_page)); 2703 2704 /* 2705 * Since we dropped the lock we need to revalidate 2706 * the PTE as someone else may have changed it. If 2707 * they did, we just return, as we can count on the 2708 * MMU to tell us if they didn't also make it writable. 2709 */ 2710 page_table = pte_offset_map_lock(mm, pmd, address, 2711 &ptl); 2712 if (!pte_same(*page_table, orig_pte)) { 2713 unlock_page(old_page); 2714 goto unlock; 2715 } 2716 2717 page_mkwrite = 1; 2718 } 2719 dirty_page = old_page; 2720 get_page(dirty_page); 2721 2722 reuse: 2723 /* 2724 * Clear the pages cpupid information as the existing 2725 * information potentially belongs to a now completely 2726 * unrelated process. 2727 */ 2728 if (old_page) 2729 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1); 2730 2731 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2732 entry = pte_mkyoung(orig_pte); 2733 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2734 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2735 update_mmu_cache(vma, address, page_table); 2736 pte_unmap_unlock(page_table, ptl); 2737 ret |= VM_FAULT_WRITE; 2738 2739 if (!dirty_page) 2740 return ret; 2741 2742 /* 2743 * Yes, Virginia, this is actually required to prevent a race 2744 * with clear_page_dirty_for_io() from clearing the page dirty 2745 * bit after it clear all dirty ptes, but before a racing 2746 * do_wp_page installs a dirty pte. 2747 * 2748 * __do_fault is protected similarly. 2749 */ 2750 if (!page_mkwrite) { 2751 wait_on_page_locked(dirty_page); 2752 set_page_dirty_balance(dirty_page, page_mkwrite); 2753 /* file_update_time outside page_lock */ 2754 if (vma->vm_file) 2755 file_update_time(vma->vm_file); 2756 } 2757 put_page(dirty_page); 2758 if (page_mkwrite) { 2759 struct address_space *mapping = dirty_page->mapping; 2760 2761 set_page_dirty(dirty_page); 2762 unlock_page(dirty_page); 2763 page_cache_release(dirty_page); 2764 if (mapping) { 2765 /* 2766 * Some device drivers do not set page.mapping 2767 * but still dirty their pages 2768 */ 2769 balance_dirty_pages_ratelimited(mapping); 2770 } 2771 } 2772 2773 return ret; 2774 } 2775 2776 /* 2777 * Ok, we need to copy. Oh, well.. 2778 */ 2779 page_cache_get(old_page); 2780 gotten: 2781 pte_unmap_unlock(page_table, ptl); 2782 2783 if (unlikely(anon_vma_prepare(vma))) 2784 goto oom; 2785 2786 if (is_zero_pfn(pte_pfn(orig_pte))) { 2787 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2788 if (!new_page) 2789 goto oom; 2790 } else { 2791 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2792 if (!new_page) 2793 goto oom; 2794 cow_user_page(new_page, old_page, address, vma); 2795 } 2796 __SetPageUptodate(new_page); 2797 2798 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2799 goto oom_free_new; 2800 2801 mmun_start = address & PAGE_MASK; 2802 mmun_end = mmun_start + PAGE_SIZE; 2803 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2804 2805 /* 2806 * Re-check the pte - we dropped the lock 2807 */ 2808 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2809 if (likely(pte_same(*page_table, orig_pte))) { 2810 if (old_page) { 2811 if (!PageAnon(old_page)) { 2812 dec_mm_counter_fast(mm, MM_FILEPAGES); 2813 inc_mm_counter_fast(mm, MM_ANONPAGES); 2814 } 2815 } else 2816 inc_mm_counter_fast(mm, MM_ANONPAGES); 2817 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2818 entry = mk_pte(new_page, vma->vm_page_prot); 2819 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2820 /* 2821 * Clear the pte entry and flush it first, before updating the 2822 * pte with the new entry. This will avoid a race condition 2823 * seen in the presence of one thread doing SMC and another 2824 * thread doing COW. 2825 */ 2826 ptep_clear_flush(vma, address, page_table); 2827 page_add_new_anon_rmap(new_page, vma, address); 2828 /* 2829 * We call the notify macro here because, when using secondary 2830 * mmu page tables (such as kvm shadow page tables), we want the 2831 * new page to be mapped directly into the secondary page table. 2832 */ 2833 set_pte_at_notify(mm, address, page_table, entry); 2834 update_mmu_cache(vma, address, page_table); 2835 if (old_page) { 2836 /* 2837 * Only after switching the pte to the new page may 2838 * we remove the mapcount here. Otherwise another 2839 * process may come and find the rmap count decremented 2840 * before the pte is switched to the new page, and 2841 * "reuse" the old page writing into it while our pte 2842 * here still points into it and can be read by other 2843 * threads. 2844 * 2845 * The critical issue is to order this 2846 * page_remove_rmap with the ptp_clear_flush above. 2847 * Those stores are ordered by (if nothing else,) 2848 * the barrier present in the atomic_add_negative 2849 * in page_remove_rmap. 2850 * 2851 * Then the TLB flush in ptep_clear_flush ensures that 2852 * no process can access the old page before the 2853 * decremented mapcount is visible. And the old page 2854 * cannot be reused until after the decremented 2855 * mapcount is visible. So transitively, TLBs to 2856 * old page will be flushed before it can be reused. 2857 */ 2858 page_remove_rmap(old_page); 2859 } 2860 2861 /* Free the old page.. */ 2862 new_page = old_page; 2863 ret |= VM_FAULT_WRITE; 2864 } else 2865 mem_cgroup_uncharge_page(new_page); 2866 2867 if (new_page) 2868 page_cache_release(new_page); 2869 unlock: 2870 pte_unmap_unlock(page_table, ptl); 2871 if (mmun_end > mmun_start) 2872 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2873 if (old_page) { 2874 /* 2875 * Don't let another task, with possibly unlocked vma, 2876 * keep the mlocked page. 2877 */ 2878 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2879 lock_page(old_page); /* LRU manipulation */ 2880 munlock_vma_page(old_page); 2881 unlock_page(old_page); 2882 } 2883 page_cache_release(old_page); 2884 } 2885 return ret; 2886 oom_free_new: 2887 page_cache_release(new_page); 2888 oom: 2889 if (old_page) 2890 page_cache_release(old_page); 2891 return VM_FAULT_OOM; 2892 2893 unwritable_page: 2894 page_cache_release(old_page); 2895 return ret; 2896 } 2897 2898 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2899 unsigned long start_addr, unsigned long end_addr, 2900 struct zap_details *details) 2901 { 2902 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2903 } 2904 2905 static inline void unmap_mapping_range_tree(struct rb_root *root, 2906 struct zap_details *details) 2907 { 2908 struct vm_area_struct *vma; 2909 pgoff_t vba, vea, zba, zea; 2910 2911 vma_interval_tree_foreach(vma, root, 2912 details->first_index, details->last_index) { 2913 2914 vba = vma->vm_pgoff; 2915 vea = vba + vma_pages(vma) - 1; 2916 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2917 zba = details->first_index; 2918 if (zba < vba) 2919 zba = vba; 2920 zea = details->last_index; 2921 if (zea > vea) 2922 zea = vea; 2923 2924 unmap_mapping_range_vma(vma, 2925 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2926 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2927 details); 2928 } 2929 } 2930 2931 static inline void unmap_mapping_range_list(struct list_head *head, 2932 struct zap_details *details) 2933 { 2934 struct vm_area_struct *vma; 2935 2936 /* 2937 * In nonlinear VMAs there is no correspondence between virtual address 2938 * offset and file offset. So we must perform an exhaustive search 2939 * across *all* the pages in each nonlinear VMA, not just the pages 2940 * whose virtual address lies outside the file truncation point. 2941 */ 2942 list_for_each_entry(vma, head, shared.nonlinear) { 2943 details->nonlinear_vma = vma; 2944 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2945 } 2946 } 2947 2948 /** 2949 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2950 * @mapping: the address space containing mmaps to be unmapped. 2951 * @holebegin: byte in first page to unmap, relative to the start of 2952 * the underlying file. This will be rounded down to a PAGE_SIZE 2953 * boundary. Note that this is different from truncate_pagecache(), which 2954 * must keep the partial page. In contrast, we must get rid of 2955 * partial pages. 2956 * @holelen: size of prospective hole in bytes. This will be rounded 2957 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2958 * end of the file. 2959 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2960 * but 0 when invalidating pagecache, don't throw away private data. 2961 */ 2962 void unmap_mapping_range(struct address_space *mapping, 2963 loff_t const holebegin, loff_t const holelen, int even_cows) 2964 { 2965 struct zap_details details; 2966 pgoff_t hba = holebegin >> PAGE_SHIFT; 2967 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2968 2969 /* Check for overflow. */ 2970 if (sizeof(holelen) > sizeof(hlen)) { 2971 long long holeend = 2972 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2973 if (holeend & ~(long long)ULONG_MAX) 2974 hlen = ULONG_MAX - hba + 1; 2975 } 2976 2977 details.check_mapping = even_cows? NULL: mapping; 2978 details.nonlinear_vma = NULL; 2979 details.first_index = hba; 2980 details.last_index = hba + hlen - 1; 2981 if (details.last_index < details.first_index) 2982 details.last_index = ULONG_MAX; 2983 2984 2985 mutex_lock(&mapping->i_mmap_mutex); 2986 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2987 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2988 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2989 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2990 mutex_unlock(&mapping->i_mmap_mutex); 2991 } 2992 EXPORT_SYMBOL(unmap_mapping_range); 2993 2994 /* 2995 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2996 * but allow concurrent faults), and pte mapped but not yet locked. 2997 * We return with mmap_sem still held, but pte unmapped and unlocked. 2998 */ 2999 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 3000 unsigned long address, pte_t *page_table, pmd_t *pmd, 3001 unsigned int flags, pte_t orig_pte) 3002 { 3003 spinlock_t *ptl; 3004 struct page *page, *swapcache; 3005 swp_entry_t entry; 3006 pte_t pte; 3007 int locked; 3008 struct mem_cgroup *ptr; 3009 int exclusive = 0; 3010 int ret = 0; 3011 3012 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3013 goto out; 3014 3015 entry = pte_to_swp_entry(orig_pte); 3016 if (unlikely(non_swap_entry(entry))) { 3017 if (is_migration_entry(entry)) { 3018 migration_entry_wait(mm, pmd, address); 3019 } else if (is_hwpoison_entry(entry)) { 3020 ret = VM_FAULT_HWPOISON; 3021 } else { 3022 print_bad_pte(vma, address, orig_pte, NULL); 3023 ret = VM_FAULT_SIGBUS; 3024 } 3025 goto out; 3026 } 3027 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3028 page = lookup_swap_cache(entry); 3029 if (!page) { 3030 page = swapin_readahead(entry, 3031 GFP_HIGHUSER_MOVABLE, vma, address); 3032 if (!page) { 3033 /* 3034 * Back out if somebody else faulted in this pte 3035 * while we released the pte lock. 3036 */ 3037 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3038 if (likely(pte_same(*page_table, orig_pte))) 3039 ret = VM_FAULT_OOM; 3040 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3041 goto unlock; 3042 } 3043 3044 /* Had to read the page from swap area: Major fault */ 3045 ret = VM_FAULT_MAJOR; 3046 count_vm_event(PGMAJFAULT); 3047 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 3048 } else if (PageHWPoison(page)) { 3049 /* 3050 * hwpoisoned dirty swapcache pages are kept for killing 3051 * owner processes (which may be unknown at hwpoison time) 3052 */ 3053 ret = VM_FAULT_HWPOISON; 3054 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3055 swapcache = page; 3056 goto out_release; 3057 } 3058 3059 swapcache = page; 3060 locked = lock_page_or_retry(page, mm, flags); 3061 3062 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3063 if (!locked) { 3064 ret |= VM_FAULT_RETRY; 3065 goto out_release; 3066 } 3067 3068 /* 3069 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3070 * release the swapcache from under us. The page pin, and pte_same 3071 * test below, are not enough to exclude that. Even if it is still 3072 * swapcache, we need to check that the page's swap has not changed. 3073 */ 3074 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 3075 goto out_page; 3076 3077 page = ksm_might_need_to_copy(page, vma, address); 3078 if (unlikely(!page)) { 3079 ret = VM_FAULT_OOM; 3080 page = swapcache; 3081 goto out_page; 3082 } 3083 3084 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 3085 ret = VM_FAULT_OOM; 3086 goto out_page; 3087 } 3088 3089 /* 3090 * Back out if somebody else already faulted in this pte. 3091 */ 3092 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3093 if (unlikely(!pte_same(*page_table, orig_pte))) 3094 goto out_nomap; 3095 3096 if (unlikely(!PageUptodate(page))) { 3097 ret = VM_FAULT_SIGBUS; 3098 goto out_nomap; 3099 } 3100 3101 /* 3102 * The page isn't present yet, go ahead with the fault. 3103 * 3104 * Be careful about the sequence of operations here. 3105 * To get its accounting right, reuse_swap_page() must be called 3106 * while the page is counted on swap but not yet in mapcount i.e. 3107 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3108 * must be called after the swap_free(), or it will never succeed. 3109 * Because delete_from_swap_page() may be called by reuse_swap_page(), 3110 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 3111 * in page->private. In this case, a record in swap_cgroup is silently 3112 * discarded at swap_free(). 3113 */ 3114 3115 inc_mm_counter_fast(mm, MM_ANONPAGES); 3116 dec_mm_counter_fast(mm, MM_SWAPENTS); 3117 pte = mk_pte(page, vma->vm_page_prot); 3118 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 3119 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3120 flags &= ~FAULT_FLAG_WRITE; 3121 ret |= VM_FAULT_WRITE; 3122 exclusive = 1; 3123 } 3124 flush_icache_page(vma, page); 3125 if (pte_swp_soft_dirty(orig_pte)) 3126 pte = pte_mksoft_dirty(pte); 3127 set_pte_at(mm, address, page_table, pte); 3128 if (page == swapcache) 3129 do_page_add_anon_rmap(page, vma, address, exclusive); 3130 else /* ksm created a completely new copy */ 3131 page_add_new_anon_rmap(page, vma, address); 3132 /* It's better to call commit-charge after rmap is established */ 3133 mem_cgroup_commit_charge_swapin(page, ptr); 3134 3135 swap_free(entry); 3136 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3137 try_to_free_swap(page); 3138 unlock_page(page); 3139 if (page != swapcache) { 3140 /* 3141 * Hold the lock to avoid the swap entry to be reused 3142 * until we take the PT lock for the pte_same() check 3143 * (to avoid false positives from pte_same). For 3144 * further safety release the lock after the swap_free 3145 * so that the swap count won't change under a 3146 * parallel locked swapcache. 3147 */ 3148 unlock_page(swapcache); 3149 page_cache_release(swapcache); 3150 } 3151 3152 if (flags & FAULT_FLAG_WRITE) { 3153 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 3154 if (ret & VM_FAULT_ERROR) 3155 ret &= VM_FAULT_ERROR; 3156 goto out; 3157 } 3158 3159 /* No need to invalidate - it was non-present before */ 3160 update_mmu_cache(vma, address, page_table); 3161 unlock: 3162 pte_unmap_unlock(page_table, ptl); 3163 out: 3164 return ret; 3165 out_nomap: 3166 mem_cgroup_cancel_charge_swapin(ptr); 3167 pte_unmap_unlock(page_table, ptl); 3168 out_page: 3169 unlock_page(page); 3170 out_release: 3171 page_cache_release(page); 3172 if (page != swapcache) { 3173 unlock_page(swapcache); 3174 page_cache_release(swapcache); 3175 } 3176 return ret; 3177 } 3178 3179 /* 3180 * This is like a special single-page "expand_{down|up}wards()", 3181 * except we must first make sure that 'address{-|+}PAGE_SIZE' 3182 * doesn't hit another vma. 3183 */ 3184 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 3185 { 3186 address &= PAGE_MASK; 3187 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 3188 struct vm_area_struct *prev = vma->vm_prev; 3189 3190 /* 3191 * Is there a mapping abutting this one below? 3192 * 3193 * That's only ok if it's the same stack mapping 3194 * that has gotten split.. 3195 */ 3196 if (prev && prev->vm_end == address) 3197 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3198 3199 expand_downwards(vma, address - PAGE_SIZE); 3200 } 3201 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3202 struct vm_area_struct *next = vma->vm_next; 3203 3204 /* As VM_GROWSDOWN but s/below/above/ */ 3205 if (next && next->vm_start == address + PAGE_SIZE) 3206 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3207 3208 expand_upwards(vma, address + PAGE_SIZE); 3209 } 3210 return 0; 3211 } 3212 3213 /* 3214 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3215 * but allow concurrent faults), and pte mapped but not yet locked. 3216 * We return with mmap_sem still held, but pte unmapped and unlocked. 3217 */ 3218 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3219 unsigned long address, pte_t *page_table, pmd_t *pmd, 3220 unsigned int flags) 3221 { 3222 struct page *page; 3223 spinlock_t *ptl; 3224 pte_t entry; 3225 3226 pte_unmap(page_table); 3227 3228 /* Check if we need to add a guard page to the stack */ 3229 if (check_stack_guard_page(vma, address) < 0) 3230 return VM_FAULT_SIGBUS; 3231 3232 /* Use the zero-page for reads */ 3233 if (!(flags & FAULT_FLAG_WRITE)) { 3234 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3235 vma->vm_page_prot)); 3236 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3237 if (!pte_none(*page_table)) 3238 goto unlock; 3239 goto setpte; 3240 } 3241 3242 /* Allocate our own private page. */ 3243 if (unlikely(anon_vma_prepare(vma))) 3244 goto oom; 3245 page = alloc_zeroed_user_highpage_movable(vma, address); 3246 if (!page) 3247 goto oom; 3248 /* 3249 * The memory barrier inside __SetPageUptodate makes sure that 3250 * preceeding stores to the page contents become visible before 3251 * the set_pte_at() write. 3252 */ 3253 __SetPageUptodate(page); 3254 3255 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3256 goto oom_free_page; 3257 3258 entry = mk_pte(page, vma->vm_page_prot); 3259 if (vma->vm_flags & VM_WRITE) 3260 entry = pte_mkwrite(pte_mkdirty(entry)); 3261 3262 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3263 if (!pte_none(*page_table)) 3264 goto release; 3265 3266 inc_mm_counter_fast(mm, MM_ANONPAGES); 3267 page_add_new_anon_rmap(page, vma, address); 3268 setpte: 3269 set_pte_at(mm, address, page_table, entry); 3270 3271 /* No need to invalidate - it was non-present before */ 3272 update_mmu_cache(vma, address, page_table); 3273 unlock: 3274 pte_unmap_unlock(page_table, ptl); 3275 return 0; 3276 release: 3277 mem_cgroup_uncharge_page(page); 3278 page_cache_release(page); 3279 goto unlock; 3280 oom_free_page: 3281 page_cache_release(page); 3282 oom: 3283 return VM_FAULT_OOM; 3284 } 3285 3286 /* 3287 * __do_fault() tries to create a new page mapping. It aggressively 3288 * tries to share with existing pages, but makes a separate copy if 3289 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3290 * the next page fault. 3291 * 3292 * As this is called only for pages that do not currently exist, we 3293 * do not need to flush old virtual caches or the TLB. 3294 * 3295 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3296 * but allow concurrent faults), and pte neither mapped nor locked. 3297 * We return with mmap_sem still held, but pte unmapped and unlocked. 3298 */ 3299 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3300 unsigned long address, pmd_t *pmd, 3301 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3302 { 3303 pte_t *page_table; 3304 spinlock_t *ptl; 3305 struct page *page; 3306 struct page *cow_page; 3307 pte_t entry; 3308 int anon = 0; 3309 struct page *dirty_page = NULL; 3310 struct vm_fault vmf; 3311 int ret; 3312 int page_mkwrite = 0; 3313 3314 /* 3315 * If we do COW later, allocate page befor taking lock_page() 3316 * on the file cache page. This will reduce lock holding time. 3317 */ 3318 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3319 3320 if (unlikely(anon_vma_prepare(vma))) 3321 return VM_FAULT_OOM; 3322 3323 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3324 if (!cow_page) 3325 return VM_FAULT_OOM; 3326 3327 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) { 3328 page_cache_release(cow_page); 3329 return VM_FAULT_OOM; 3330 } 3331 } else 3332 cow_page = NULL; 3333 3334 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3335 vmf.pgoff = pgoff; 3336 vmf.flags = flags; 3337 vmf.page = NULL; 3338 3339 ret = vma->vm_ops->fault(vma, &vmf); 3340 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3341 VM_FAULT_RETRY))) 3342 goto uncharge_out; 3343 3344 if (unlikely(PageHWPoison(vmf.page))) { 3345 if (ret & VM_FAULT_LOCKED) 3346 unlock_page(vmf.page); 3347 ret = VM_FAULT_HWPOISON; 3348 goto uncharge_out; 3349 } 3350 3351 /* 3352 * For consistency in subsequent calls, make the faulted page always 3353 * locked. 3354 */ 3355 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3356 lock_page(vmf.page); 3357 else 3358 VM_BUG_ON(!PageLocked(vmf.page)); 3359 3360 /* 3361 * Should we do an early C-O-W break? 3362 */ 3363 page = vmf.page; 3364 if (flags & FAULT_FLAG_WRITE) { 3365 if (!(vma->vm_flags & VM_SHARED)) { 3366 page = cow_page; 3367 anon = 1; 3368 copy_user_highpage(page, vmf.page, address, vma); 3369 __SetPageUptodate(page); 3370 } else { 3371 /* 3372 * If the page will be shareable, see if the backing 3373 * address space wants to know that the page is about 3374 * to become writable 3375 */ 3376 if (vma->vm_ops->page_mkwrite) { 3377 int tmp; 3378 3379 unlock_page(page); 3380 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3381 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3382 if (unlikely(tmp & 3383 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3384 ret = tmp; 3385 goto unwritable_page; 3386 } 3387 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3388 lock_page(page); 3389 if (!page->mapping) { 3390 ret = 0; /* retry the fault */ 3391 unlock_page(page); 3392 goto unwritable_page; 3393 } 3394 } else 3395 VM_BUG_ON(!PageLocked(page)); 3396 page_mkwrite = 1; 3397 } 3398 } 3399 3400 } 3401 3402 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3403 3404 /* 3405 * This silly early PAGE_DIRTY setting removes a race 3406 * due to the bad i386 page protection. But it's valid 3407 * for other architectures too. 3408 * 3409 * Note that if FAULT_FLAG_WRITE is set, we either now have 3410 * an exclusive copy of the page, or this is a shared mapping, 3411 * so we can make it writable and dirty to avoid having to 3412 * handle that later. 3413 */ 3414 /* Only go through if we didn't race with anybody else... */ 3415 if (likely(pte_same(*page_table, orig_pte))) { 3416 flush_icache_page(vma, page); 3417 entry = mk_pte(page, vma->vm_page_prot); 3418 if (flags & FAULT_FLAG_WRITE) 3419 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3420 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte)) 3421 pte_mksoft_dirty(entry); 3422 if (anon) { 3423 inc_mm_counter_fast(mm, MM_ANONPAGES); 3424 page_add_new_anon_rmap(page, vma, address); 3425 } else { 3426 inc_mm_counter_fast(mm, MM_FILEPAGES); 3427 page_add_file_rmap(page); 3428 if (flags & FAULT_FLAG_WRITE) { 3429 dirty_page = page; 3430 get_page(dirty_page); 3431 } 3432 } 3433 set_pte_at(mm, address, page_table, entry); 3434 3435 /* no need to invalidate: a not-present page won't be cached */ 3436 update_mmu_cache(vma, address, page_table); 3437 } else { 3438 if (cow_page) 3439 mem_cgroup_uncharge_page(cow_page); 3440 if (anon) 3441 page_cache_release(page); 3442 else 3443 anon = 1; /* no anon but release faulted_page */ 3444 } 3445 3446 pte_unmap_unlock(page_table, ptl); 3447 3448 if (dirty_page) { 3449 struct address_space *mapping = page->mapping; 3450 int dirtied = 0; 3451 3452 if (set_page_dirty(dirty_page)) 3453 dirtied = 1; 3454 unlock_page(dirty_page); 3455 put_page(dirty_page); 3456 if ((dirtied || page_mkwrite) && mapping) { 3457 /* 3458 * Some device drivers do not set page.mapping but still 3459 * dirty their pages 3460 */ 3461 balance_dirty_pages_ratelimited(mapping); 3462 } 3463 3464 /* file_update_time outside page_lock */ 3465 if (vma->vm_file && !page_mkwrite) 3466 file_update_time(vma->vm_file); 3467 } else { 3468 unlock_page(vmf.page); 3469 if (anon) 3470 page_cache_release(vmf.page); 3471 } 3472 3473 return ret; 3474 3475 unwritable_page: 3476 page_cache_release(page); 3477 return ret; 3478 uncharge_out: 3479 /* fs's fault handler get error */ 3480 if (cow_page) { 3481 mem_cgroup_uncharge_page(cow_page); 3482 page_cache_release(cow_page); 3483 } 3484 return ret; 3485 } 3486 3487 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3488 unsigned long address, pte_t *page_table, pmd_t *pmd, 3489 unsigned int flags, pte_t orig_pte) 3490 { 3491 pgoff_t pgoff = (((address & PAGE_MASK) 3492 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3493 3494 pte_unmap(page_table); 3495 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3496 } 3497 3498 /* 3499 * Fault of a previously existing named mapping. Repopulate the pte 3500 * from the encoded file_pte if possible. This enables swappable 3501 * nonlinear vmas. 3502 * 3503 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3504 * but allow concurrent faults), and pte mapped but not yet locked. 3505 * We return with mmap_sem still held, but pte unmapped and unlocked. 3506 */ 3507 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3508 unsigned long address, pte_t *page_table, pmd_t *pmd, 3509 unsigned int flags, pte_t orig_pte) 3510 { 3511 pgoff_t pgoff; 3512 3513 flags |= FAULT_FLAG_NONLINEAR; 3514 3515 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3516 return 0; 3517 3518 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3519 /* 3520 * Page table corrupted: show pte and kill process. 3521 */ 3522 print_bad_pte(vma, address, orig_pte, NULL); 3523 return VM_FAULT_SIGBUS; 3524 } 3525 3526 pgoff = pte_to_pgoff(orig_pte); 3527 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3528 } 3529 3530 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3531 unsigned long addr, int page_nid, 3532 int *flags) 3533 { 3534 get_page(page); 3535 3536 count_vm_numa_event(NUMA_HINT_FAULTS); 3537 if (page_nid == numa_node_id()) { 3538 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3539 *flags |= TNF_FAULT_LOCAL; 3540 } 3541 3542 return mpol_misplaced(page, vma, addr); 3543 } 3544 3545 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3546 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3547 { 3548 struct page *page = NULL; 3549 spinlock_t *ptl; 3550 int page_nid = -1; 3551 int last_cpupid; 3552 int target_nid; 3553 bool migrated = false; 3554 int flags = 0; 3555 3556 /* 3557 * The "pte" at this point cannot be used safely without 3558 * validation through pte_unmap_same(). It's of NUMA type but 3559 * the pfn may be screwed if the read is non atomic. 3560 * 3561 * ptep_modify_prot_start is not called as this is clearing 3562 * the _PAGE_NUMA bit and it is not really expected that there 3563 * would be concurrent hardware modifications to the PTE. 3564 */ 3565 ptl = pte_lockptr(mm, pmd); 3566 spin_lock(ptl); 3567 if (unlikely(!pte_same(*ptep, pte))) { 3568 pte_unmap_unlock(ptep, ptl); 3569 goto out; 3570 } 3571 3572 pte = pte_mknonnuma(pte); 3573 set_pte_at(mm, addr, ptep, pte); 3574 update_mmu_cache(vma, addr, ptep); 3575 3576 page = vm_normal_page(vma, addr, pte); 3577 if (!page) { 3578 pte_unmap_unlock(ptep, ptl); 3579 return 0; 3580 } 3581 BUG_ON(is_zero_pfn(page_to_pfn(page))); 3582 3583 /* 3584 * Avoid grouping on DSO/COW pages in specific and RO pages 3585 * in general, RO pages shouldn't hurt as much anyway since 3586 * they can be in shared cache state. 3587 */ 3588 if (!pte_write(pte)) 3589 flags |= TNF_NO_GROUP; 3590 3591 /* 3592 * Flag if the page is shared between multiple address spaces. This 3593 * is later used when determining whether to group tasks together 3594 */ 3595 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3596 flags |= TNF_SHARED; 3597 3598 last_cpupid = page_cpupid_last(page); 3599 page_nid = page_to_nid(page); 3600 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3601 pte_unmap_unlock(ptep, ptl); 3602 if (target_nid == -1) { 3603 put_page(page); 3604 goto out; 3605 } 3606 3607 /* Migrate to the requested node */ 3608 migrated = migrate_misplaced_page(page, vma, target_nid); 3609 if (migrated) { 3610 page_nid = target_nid; 3611 flags |= TNF_MIGRATED; 3612 } 3613 3614 out: 3615 if (page_nid != -1) 3616 task_numa_fault(last_cpupid, page_nid, 1, flags); 3617 return 0; 3618 } 3619 3620 /* 3621 * These routines also need to handle stuff like marking pages dirty 3622 * and/or accessed for architectures that don't do it in hardware (most 3623 * RISC architectures). The early dirtying is also good on the i386. 3624 * 3625 * There is also a hook called "update_mmu_cache()" that architectures 3626 * with external mmu caches can use to update those (ie the Sparc or 3627 * PowerPC hashed page tables that act as extended TLBs). 3628 * 3629 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3630 * but allow concurrent faults), and pte mapped but not yet locked. 3631 * We return with mmap_sem still held, but pte unmapped and unlocked. 3632 */ 3633 static int handle_pte_fault(struct mm_struct *mm, 3634 struct vm_area_struct *vma, unsigned long address, 3635 pte_t *pte, pmd_t *pmd, unsigned int flags) 3636 { 3637 pte_t entry; 3638 spinlock_t *ptl; 3639 3640 entry = *pte; 3641 if (!pte_present(entry)) { 3642 if (pte_none(entry)) { 3643 if (vma->vm_ops) { 3644 if (likely(vma->vm_ops->fault)) 3645 return do_linear_fault(mm, vma, address, 3646 pte, pmd, flags, entry); 3647 } 3648 return do_anonymous_page(mm, vma, address, 3649 pte, pmd, flags); 3650 } 3651 if (pte_file(entry)) 3652 return do_nonlinear_fault(mm, vma, address, 3653 pte, pmd, flags, entry); 3654 return do_swap_page(mm, vma, address, 3655 pte, pmd, flags, entry); 3656 } 3657 3658 if (pte_numa(entry)) 3659 return do_numa_page(mm, vma, address, entry, pte, pmd); 3660 3661 ptl = pte_lockptr(mm, pmd); 3662 spin_lock(ptl); 3663 if (unlikely(!pte_same(*pte, entry))) 3664 goto unlock; 3665 if (flags & FAULT_FLAG_WRITE) { 3666 if (!pte_write(entry)) 3667 return do_wp_page(mm, vma, address, 3668 pte, pmd, ptl, entry); 3669 entry = pte_mkdirty(entry); 3670 } 3671 entry = pte_mkyoung(entry); 3672 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3673 update_mmu_cache(vma, address, pte); 3674 } else { 3675 /* 3676 * This is needed only for protection faults but the arch code 3677 * is not yet telling us if this is a protection fault or not. 3678 * This still avoids useless tlb flushes for .text page faults 3679 * with threads. 3680 */ 3681 if (flags & FAULT_FLAG_WRITE) 3682 flush_tlb_fix_spurious_fault(vma, address); 3683 } 3684 unlock: 3685 pte_unmap_unlock(pte, ptl); 3686 return 0; 3687 } 3688 3689 /* 3690 * By the time we get here, we already hold the mm semaphore 3691 */ 3692 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3693 unsigned long address, unsigned int flags) 3694 { 3695 pgd_t *pgd; 3696 pud_t *pud; 3697 pmd_t *pmd; 3698 pte_t *pte; 3699 3700 if (unlikely(is_vm_hugetlb_page(vma))) 3701 return hugetlb_fault(mm, vma, address, flags); 3702 3703 retry: 3704 pgd = pgd_offset(mm, address); 3705 pud = pud_alloc(mm, pgd, address); 3706 if (!pud) 3707 return VM_FAULT_OOM; 3708 pmd = pmd_alloc(mm, pud, address); 3709 if (!pmd) 3710 return VM_FAULT_OOM; 3711 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3712 int ret = VM_FAULT_FALLBACK; 3713 if (!vma->vm_ops) 3714 ret = do_huge_pmd_anonymous_page(mm, vma, address, 3715 pmd, flags); 3716 if (!(ret & VM_FAULT_FALLBACK)) 3717 return ret; 3718 } else { 3719 pmd_t orig_pmd = *pmd; 3720 int ret; 3721 3722 barrier(); 3723 if (pmd_trans_huge(orig_pmd)) { 3724 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3725 3726 /* 3727 * If the pmd is splitting, return and retry the 3728 * the fault. Alternative: wait until the split 3729 * is done, and goto retry. 3730 */ 3731 if (pmd_trans_splitting(orig_pmd)) 3732 return 0; 3733 3734 if (pmd_numa(orig_pmd)) 3735 return do_huge_pmd_numa_page(mm, vma, address, 3736 orig_pmd, pmd); 3737 3738 if (dirty && !pmd_write(orig_pmd)) { 3739 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3740 orig_pmd); 3741 /* 3742 * If COW results in an oom, the huge pmd will 3743 * have been split, so retry the fault on the 3744 * pte for a smaller charge. 3745 */ 3746 if (unlikely(ret & VM_FAULT_OOM)) 3747 goto retry; 3748 return ret; 3749 } else { 3750 huge_pmd_set_accessed(mm, vma, address, pmd, 3751 orig_pmd, dirty); 3752 } 3753 3754 return 0; 3755 } 3756 } 3757 3758 /* THP should already have been handled */ 3759 BUG_ON(pmd_numa(*pmd)); 3760 3761 /* 3762 * Use __pte_alloc instead of pte_alloc_map, because we can't 3763 * run pte_offset_map on the pmd, if an huge pmd could 3764 * materialize from under us from a different thread. 3765 */ 3766 if (unlikely(pmd_none(*pmd)) && 3767 unlikely(__pte_alloc(mm, vma, pmd, address))) 3768 return VM_FAULT_OOM; 3769 /* if an huge pmd materialized from under us just retry later */ 3770 if (unlikely(pmd_trans_huge(*pmd))) 3771 return 0; 3772 /* 3773 * A regular pmd is established and it can't morph into a huge pmd 3774 * from under us anymore at this point because we hold the mmap_sem 3775 * read mode and khugepaged takes it in write mode. So now it's 3776 * safe to run pte_offset_map(). 3777 */ 3778 pte = pte_offset_map(pmd, address); 3779 3780 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3781 } 3782 3783 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3784 unsigned long address, unsigned int flags) 3785 { 3786 int ret; 3787 3788 __set_current_state(TASK_RUNNING); 3789 3790 count_vm_event(PGFAULT); 3791 mem_cgroup_count_vm_event(mm, PGFAULT); 3792 3793 /* do counter updates before entering really critical section. */ 3794 check_sync_rss_stat(current); 3795 3796 /* 3797 * Enable the memcg OOM handling for faults triggered in user 3798 * space. Kernel faults are handled more gracefully. 3799 */ 3800 if (flags & FAULT_FLAG_USER) 3801 mem_cgroup_oom_enable(); 3802 3803 ret = __handle_mm_fault(mm, vma, address, flags); 3804 3805 if (flags & FAULT_FLAG_USER) { 3806 mem_cgroup_oom_disable(); 3807 /* 3808 * The task may have entered a memcg OOM situation but 3809 * if the allocation error was handled gracefully (no 3810 * VM_FAULT_OOM), there is no need to kill anything. 3811 * Just clean up the OOM state peacefully. 3812 */ 3813 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3814 mem_cgroup_oom_synchronize(false); 3815 } 3816 3817 return ret; 3818 } 3819 3820 #ifndef __PAGETABLE_PUD_FOLDED 3821 /* 3822 * Allocate page upper directory. 3823 * We've already handled the fast-path in-line. 3824 */ 3825 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3826 { 3827 pud_t *new = pud_alloc_one(mm, address); 3828 if (!new) 3829 return -ENOMEM; 3830 3831 smp_wmb(); /* See comment in __pte_alloc */ 3832 3833 spin_lock(&mm->page_table_lock); 3834 if (pgd_present(*pgd)) /* Another has populated it */ 3835 pud_free(mm, new); 3836 else 3837 pgd_populate(mm, pgd, new); 3838 spin_unlock(&mm->page_table_lock); 3839 return 0; 3840 } 3841 #endif /* __PAGETABLE_PUD_FOLDED */ 3842 3843 #ifndef __PAGETABLE_PMD_FOLDED 3844 /* 3845 * Allocate page middle directory. 3846 * We've already handled the fast-path in-line. 3847 */ 3848 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3849 { 3850 pmd_t *new = pmd_alloc_one(mm, address); 3851 if (!new) 3852 return -ENOMEM; 3853 3854 smp_wmb(); /* See comment in __pte_alloc */ 3855 3856 spin_lock(&mm->page_table_lock); 3857 #ifndef __ARCH_HAS_4LEVEL_HACK 3858 if (pud_present(*pud)) /* Another has populated it */ 3859 pmd_free(mm, new); 3860 else 3861 pud_populate(mm, pud, new); 3862 #else 3863 if (pgd_present(*pud)) /* Another has populated it */ 3864 pmd_free(mm, new); 3865 else 3866 pgd_populate(mm, pud, new); 3867 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3868 spin_unlock(&mm->page_table_lock); 3869 return 0; 3870 } 3871 #endif /* __PAGETABLE_PMD_FOLDED */ 3872 3873 #if !defined(__HAVE_ARCH_GATE_AREA) 3874 3875 #if defined(AT_SYSINFO_EHDR) 3876 static struct vm_area_struct gate_vma; 3877 3878 static int __init gate_vma_init(void) 3879 { 3880 gate_vma.vm_mm = NULL; 3881 gate_vma.vm_start = FIXADDR_USER_START; 3882 gate_vma.vm_end = FIXADDR_USER_END; 3883 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3884 gate_vma.vm_page_prot = __P101; 3885 3886 return 0; 3887 } 3888 __initcall(gate_vma_init); 3889 #endif 3890 3891 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3892 { 3893 #ifdef AT_SYSINFO_EHDR 3894 return &gate_vma; 3895 #else 3896 return NULL; 3897 #endif 3898 } 3899 3900 int in_gate_area_no_mm(unsigned long addr) 3901 { 3902 #ifdef AT_SYSINFO_EHDR 3903 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3904 return 1; 3905 #endif 3906 return 0; 3907 } 3908 3909 #endif /* __HAVE_ARCH_GATE_AREA */ 3910 3911 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3912 pte_t **ptepp, spinlock_t **ptlp) 3913 { 3914 pgd_t *pgd; 3915 pud_t *pud; 3916 pmd_t *pmd; 3917 pte_t *ptep; 3918 3919 pgd = pgd_offset(mm, address); 3920 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3921 goto out; 3922 3923 pud = pud_offset(pgd, address); 3924 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3925 goto out; 3926 3927 pmd = pmd_offset(pud, address); 3928 VM_BUG_ON(pmd_trans_huge(*pmd)); 3929 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3930 goto out; 3931 3932 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3933 if (pmd_huge(*pmd)) 3934 goto out; 3935 3936 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3937 if (!ptep) 3938 goto out; 3939 if (!pte_present(*ptep)) 3940 goto unlock; 3941 *ptepp = ptep; 3942 return 0; 3943 unlock: 3944 pte_unmap_unlock(ptep, *ptlp); 3945 out: 3946 return -EINVAL; 3947 } 3948 3949 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3950 pte_t **ptepp, spinlock_t **ptlp) 3951 { 3952 int res; 3953 3954 /* (void) is needed to make gcc happy */ 3955 (void) __cond_lock(*ptlp, 3956 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3957 return res; 3958 } 3959 3960 /** 3961 * follow_pfn - look up PFN at a user virtual address 3962 * @vma: memory mapping 3963 * @address: user virtual address 3964 * @pfn: location to store found PFN 3965 * 3966 * Only IO mappings and raw PFN mappings are allowed. 3967 * 3968 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3969 */ 3970 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3971 unsigned long *pfn) 3972 { 3973 int ret = -EINVAL; 3974 spinlock_t *ptl; 3975 pte_t *ptep; 3976 3977 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3978 return ret; 3979 3980 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3981 if (ret) 3982 return ret; 3983 *pfn = pte_pfn(*ptep); 3984 pte_unmap_unlock(ptep, ptl); 3985 return 0; 3986 } 3987 EXPORT_SYMBOL(follow_pfn); 3988 3989 #ifdef CONFIG_HAVE_IOREMAP_PROT 3990 int follow_phys(struct vm_area_struct *vma, 3991 unsigned long address, unsigned int flags, 3992 unsigned long *prot, resource_size_t *phys) 3993 { 3994 int ret = -EINVAL; 3995 pte_t *ptep, pte; 3996 spinlock_t *ptl; 3997 3998 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3999 goto out; 4000 4001 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4002 goto out; 4003 pte = *ptep; 4004 4005 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4006 goto unlock; 4007 4008 *prot = pgprot_val(pte_pgprot(pte)); 4009 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4010 4011 ret = 0; 4012 unlock: 4013 pte_unmap_unlock(ptep, ptl); 4014 out: 4015 return ret; 4016 } 4017 4018 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4019 void *buf, int len, int write) 4020 { 4021 resource_size_t phys_addr; 4022 unsigned long prot = 0; 4023 void __iomem *maddr; 4024 int offset = addr & (PAGE_SIZE-1); 4025 4026 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4027 return -EINVAL; 4028 4029 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 4030 if (write) 4031 memcpy_toio(maddr + offset, buf, len); 4032 else 4033 memcpy_fromio(buf, maddr + offset, len); 4034 iounmap(maddr); 4035 4036 return len; 4037 } 4038 EXPORT_SYMBOL_GPL(generic_access_phys); 4039 #endif 4040 4041 /* 4042 * Access another process' address space as given in mm. If non-NULL, use the 4043 * given task for page fault accounting. 4044 */ 4045 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4046 unsigned long addr, void *buf, int len, int write) 4047 { 4048 struct vm_area_struct *vma; 4049 void *old_buf = buf; 4050 4051 down_read(&mm->mmap_sem); 4052 /* ignore errors, just check how much was successfully transferred */ 4053 while (len) { 4054 int bytes, ret, offset; 4055 void *maddr; 4056 struct page *page = NULL; 4057 4058 ret = get_user_pages(tsk, mm, addr, 1, 4059 write, 1, &page, &vma); 4060 if (ret <= 0) { 4061 /* 4062 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4063 * we can access using slightly different code. 4064 */ 4065 #ifdef CONFIG_HAVE_IOREMAP_PROT 4066 vma = find_vma(mm, addr); 4067 if (!vma || vma->vm_start > addr) 4068 break; 4069 if (vma->vm_ops && vma->vm_ops->access) 4070 ret = vma->vm_ops->access(vma, addr, buf, 4071 len, write); 4072 if (ret <= 0) 4073 #endif 4074 break; 4075 bytes = ret; 4076 } else { 4077 bytes = len; 4078 offset = addr & (PAGE_SIZE-1); 4079 if (bytes > PAGE_SIZE-offset) 4080 bytes = PAGE_SIZE-offset; 4081 4082 maddr = kmap(page); 4083 if (write) { 4084 copy_to_user_page(vma, page, addr, 4085 maddr + offset, buf, bytes); 4086 set_page_dirty_lock(page); 4087 } else { 4088 copy_from_user_page(vma, page, addr, 4089 buf, maddr + offset, bytes); 4090 } 4091 kunmap(page); 4092 page_cache_release(page); 4093 } 4094 len -= bytes; 4095 buf += bytes; 4096 addr += bytes; 4097 } 4098 up_read(&mm->mmap_sem); 4099 4100 return buf - old_buf; 4101 } 4102 4103 /** 4104 * access_remote_vm - access another process' address space 4105 * @mm: the mm_struct of the target address space 4106 * @addr: start address to access 4107 * @buf: source or destination buffer 4108 * @len: number of bytes to transfer 4109 * @write: whether the access is a write 4110 * 4111 * The caller must hold a reference on @mm. 4112 */ 4113 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4114 void *buf, int len, int write) 4115 { 4116 return __access_remote_vm(NULL, mm, addr, buf, len, write); 4117 } 4118 4119 /* 4120 * Access another process' address space. 4121 * Source/target buffer must be kernel space, 4122 * Do not walk the page table directly, use get_user_pages 4123 */ 4124 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4125 void *buf, int len, int write) 4126 { 4127 struct mm_struct *mm; 4128 int ret; 4129 4130 mm = get_task_mm(tsk); 4131 if (!mm) 4132 return 0; 4133 4134 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 4135 mmput(mm); 4136 4137 return ret; 4138 } 4139 4140 /* 4141 * Print the name of a VMA. 4142 */ 4143 void print_vma_addr(char *prefix, unsigned long ip) 4144 { 4145 struct mm_struct *mm = current->mm; 4146 struct vm_area_struct *vma; 4147 4148 /* 4149 * Do not print if we are in atomic 4150 * contexts (in exception stacks, etc.): 4151 */ 4152 if (preempt_count()) 4153 return; 4154 4155 down_read(&mm->mmap_sem); 4156 vma = find_vma(mm, ip); 4157 if (vma && vma->vm_file) { 4158 struct file *f = vma->vm_file; 4159 char *buf = (char *)__get_free_page(GFP_KERNEL); 4160 if (buf) { 4161 char *p; 4162 4163 p = d_path(&f->f_path, buf, PAGE_SIZE); 4164 if (IS_ERR(p)) 4165 p = "?"; 4166 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4167 vma->vm_start, 4168 vma->vm_end - vma->vm_start); 4169 free_page((unsigned long)buf); 4170 } 4171 } 4172 up_read(&mm->mmap_sem); 4173 } 4174 4175 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4176 void might_fault(void) 4177 { 4178 /* 4179 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4180 * holding the mmap_sem, this is safe because kernel memory doesn't 4181 * get paged out, therefore we'll never actually fault, and the 4182 * below annotations will generate false positives. 4183 */ 4184 if (segment_eq(get_fs(), KERNEL_DS)) 4185 return; 4186 4187 /* 4188 * it would be nicer only to annotate paths which are not under 4189 * pagefault_disable, however that requires a larger audit and 4190 * providing helpers like get_user_atomic. 4191 */ 4192 if (in_atomic()) 4193 return; 4194 4195 __might_sleep(__FILE__, __LINE__, 0); 4196 4197 if (current->mm) 4198 might_lock_read(¤t->mm->mmap_sem); 4199 } 4200 EXPORT_SYMBOL(might_fault); 4201 #endif 4202 4203 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4204 static void clear_gigantic_page(struct page *page, 4205 unsigned long addr, 4206 unsigned int pages_per_huge_page) 4207 { 4208 int i; 4209 struct page *p = page; 4210 4211 might_sleep(); 4212 for (i = 0; i < pages_per_huge_page; 4213 i++, p = mem_map_next(p, page, i)) { 4214 cond_resched(); 4215 clear_user_highpage(p, addr + i * PAGE_SIZE); 4216 } 4217 } 4218 void clear_huge_page(struct page *page, 4219 unsigned long addr, unsigned int pages_per_huge_page) 4220 { 4221 int i; 4222 4223 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4224 clear_gigantic_page(page, addr, pages_per_huge_page); 4225 return; 4226 } 4227 4228 might_sleep(); 4229 for (i = 0; i < pages_per_huge_page; i++) { 4230 cond_resched(); 4231 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4232 } 4233 } 4234 4235 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4236 unsigned long addr, 4237 struct vm_area_struct *vma, 4238 unsigned int pages_per_huge_page) 4239 { 4240 int i; 4241 struct page *dst_base = dst; 4242 struct page *src_base = src; 4243 4244 for (i = 0; i < pages_per_huge_page; ) { 4245 cond_resched(); 4246 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4247 4248 i++; 4249 dst = mem_map_next(dst, dst_base, i); 4250 src = mem_map_next(src, src_base, i); 4251 } 4252 } 4253 4254 void copy_user_huge_page(struct page *dst, struct page *src, 4255 unsigned long addr, struct vm_area_struct *vma, 4256 unsigned int pages_per_huge_page) 4257 { 4258 int i; 4259 4260 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4261 copy_user_gigantic_page(dst, src, addr, vma, 4262 pages_per_huge_page); 4263 return; 4264 } 4265 4266 might_sleep(); 4267 for (i = 0; i < pages_per_huge_page; i++) { 4268 cond_resched(); 4269 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4270 } 4271 } 4272 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4273 4274 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4275 bool ptlock_alloc(struct page *page) 4276 { 4277 spinlock_t *ptl; 4278 4279 ptl = kmalloc(sizeof(spinlock_t), GFP_KERNEL); 4280 if (!ptl) 4281 return false; 4282 page->ptl = ptl; 4283 return true; 4284 } 4285 4286 void ptlock_free(struct page *page) 4287 { 4288 kfree(page->ptl); 4289 } 4290 #endif 4291