xref: /openbmc/linux/mm/memory.c (revision 8b036556)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71 
72 #include "internal.h"
73 
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77 
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82 
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86 
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95 
96 EXPORT_SYMBOL(high_memory);
97 
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 					1;
107 #else
108 					2;
109 #endif
110 
111 static int __init disable_randmaps(char *s)
112 {
113 	randomize_va_space = 0;
114 	return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117 
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120 
121 EXPORT_SYMBOL(zero_pfn);
122 
123 /*
124  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125  */
126 static int __init init_zero_pfn(void)
127 {
128 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 	return 0;
130 }
131 core_initcall(init_zero_pfn);
132 
133 
134 #if defined(SPLIT_RSS_COUNTING)
135 
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138 	int i;
139 
140 	for (i = 0; i < NR_MM_COUNTERS; i++) {
141 		if (current->rss_stat.count[i]) {
142 			add_mm_counter(mm, i, current->rss_stat.count[i]);
143 			current->rss_stat.count[i] = 0;
144 		}
145 	}
146 	current->rss_stat.events = 0;
147 }
148 
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151 	struct task_struct *task = current;
152 
153 	if (likely(task->mm == mm))
154 		task->rss_stat.count[member] += val;
155 	else
156 		add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160 
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH	(64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165 	if (unlikely(task != current))
166 		return;
167 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168 		sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171 
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174 
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178 
179 #endif /* SPLIT_RSS_COUNTING */
180 
181 #ifdef HAVE_GENERIC_MMU_GATHER
182 
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185 	struct mmu_gather_batch *batch;
186 
187 	batch = tlb->active;
188 	if (batch->next) {
189 		tlb->active = batch->next;
190 		return 1;
191 	}
192 
193 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 		return 0;
195 
196 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 	if (!batch)
198 		return 0;
199 
200 	tlb->batch_count++;
201 	batch->next = NULL;
202 	batch->nr   = 0;
203 	batch->max  = MAX_GATHER_BATCH;
204 
205 	tlb->active->next = batch;
206 	tlb->active = batch;
207 
208 	return 1;
209 }
210 
211 /* tlb_gather_mmu
212  *	Called to initialize an (on-stack) mmu_gather structure for page-table
213  *	tear-down from @mm. The @fullmm argument is used when @mm is without
214  *	users and we're going to destroy the full address space (exit/execve).
215  */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218 	tlb->mm = mm;
219 
220 	/* Is it from 0 to ~0? */
221 	tlb->fullmm     = !(start | (end+1));
222 	tlb->need_flush_all = 0;
223 	tlb->local.next = NULL;
224 	tlb->local.nr   = 0;
225 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226 	tlb->active     = &tlb->local;
227 	tlb->batch_count = 0;
228 
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 	tlb->batch = NULL;
231 #endif
232 
233 	__tlb_reset_range(tlb);
234 }
235 
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 {
238 	if (!tlb->end)
239 		return;
240 
241 	tlb_flush(tlb);
242 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 	tlb_table_flush(tlb);
245 #endif
246 	__tlb_reset_range(tlb);
247 }
248 
249 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
250 {
251 	struct mmu_gather_batch *batch;
252 
253 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
254 		free_pages_and_swap_cache(batch->pages, batch->nr);
255 		batch->nr = 0;
256 	}
257 	tlb->active = &tlb->local;
258 }
259 
260 void tlb_flush_mmu(struct mmu_gather *tlb)
261 {
262 	tlb_flush_mmu_tlbonly(tlb);
263 	tlb_flush_mmu_free(tlb);
264 }
265 
266 /* tlb_finish_mmu
267  *	Called at the end of the shootdown operation to free up any resources
268  *	that were required.
269  */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272 	struct mmu_gather_batch *batch, *next;
273 
274 	tlb_flush_mmu(tlb);
275 
276 	/* keep the page table cache within bounds */
277 	check_pgt_cache();
278 
279 	for (batch = tlb->local.next; batch; batch = next) {
280 		next = batch->next;
281 		free_pages((unsigned long)batch, 0);
282 	}
283 	tlb->local.next = NULL;
284 }
285 
286 /* __tlb_remove_page
287  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *	handling the additional races in SMP caused by other CPUs caching valid
289  *	mappings in their TLBs. Returns the number of free page slots left.
290  *	When out of page slots we must call tlb_flush_mmu().
291  */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294 	struct mmu_gather_batch *batch;
295 
296 	VM_BUG_ON(!tlb->end);
297 
298 	batch = tlb->active;
299 	batch->pages[batch->nr++] = page;
300 	if (batch->nr == batch->max) {
301 		if (!tlb_next_batch(tlb))
302 			return 0;
303 		batch = tlb->active;
304 	}
305 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
306 
307 	return batch->max - batch->nr;
308 }
309 
310 #endif /* HAVE_GENERIC_MMU_GATHER */
311 
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
313 
314 /*
315  * See the comment near struct mmu_table_batch.
316  */
317 
318 static void tlb_remove_table_smp_sync(void *arg)
319 {
320 	/* Simply deliver the interrupt */
321 }
322 
323 static void tlb_remove_table_one(void *table)
324 {
325 	/*
326 	 * This isn't an RCU grace period and hence the page-tables cannot be
327 	 * assumed to be actually RCU-freed.
328 	 *
329 	 * It is however sufficient for software page-table walkers that rely on
330 	 * IRQ disabling. See the comment near struct mmu_table_batch.
331 	 */
332 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333 	__tlb_remove_table(table);
334 }
335 
336 static void tlb_remove_table_rcu(struct rcu_head *head)
337 {
338 	struct mmu_table_batch *batch;
339 	int i;
340 
341 	batch = container_of(head, struct mmu_table_batch, rcu);
342 
343 	for (i = 0; i < batch->nr; i++)
344 		__tlb_remove_table(batch->tables[i]);
345 
346 	free_page((unsigned long)batch);
347 }
348 
349 void tlb_table_flush(struct mmu_gather *tlb)
350 {
351 	struct mmu_table_batch **batch = &tlb->batch;
352 
353 	if (*batch) {
354 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355 		*batch = NULL;
356 	}
357 }
358 
359 void tlb_remove_table(struct mmu_gather *tlb, void *table)
360 {
361 	struct mmu_table_batch **batch = &tlb->batch;
362 
363 	/*
364 	 * When there's less then two users of this mm there cannot be a
365 	 * concurrent page-table walk.
366 	 */
367 	if (atomic_read(&tlb->mm->mm_users) < 2) {
368 		__tlb_remove_table(table);
369 		return;
370 	}
371 
372 	if (*batch == NULL) {
373 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374 		if (*batch == NULL) {
375 			tlb_remove_table_one(table);
376 			return;
377 		}
378 		(*batch)->nr = 0;
379 	}
380 	(*batch)->tables[(*batch)->nr++] = table;
381 	if ((*batch)->nr == MAX_TABLE_BATCH)
382 		tlb_table_flush(tlb);
383 }
384 
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386 
387 /*
388  * Note: this doesn't free the actual pages themselves. That
389  * has been handled earlier when unmapping all the memory regions.
390  */
391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392 			   unsigned long addr)
393 {
394 	pgtable_t token = pmd_pgtable(*pmd);
395 	pmd_clear(pmd);
396 	pte_free_tlb(tlb, token, addr);
397 	atomic_long_dec(&tlb->mm->nr_ptes);
398 }
399 
400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401 				unsigned long addr, unsigned long end,
402 				unsigned long floor, unsigned long ceiling)
403 {
404 	pmd_t *pmd;
405 	unsigned long next;
406 	unsigned long start;
407 
408 	start = addr;
409 	pmd = pmd_offset(pud, addr);
410 	do {
411 		next = pmd_addr_end(addr, end);
412 		if (pmd_none_or_clear_bad(pmd))
413 			continue;
414 		free_pte_range(tlb, pmd, addr);
415 	} while (pmd++, addr = next, addr != end);
416 
417 	start &= PUD_MASK;
418 	if (start < floor)
419 		return;
420 	if (ceiling) {
421 		ceiling &= PUD_MASK;
422 		if (!ceiling)
423 			return;
424 	}
425 	if (end - 1 > ceiling - 1)
426 		return;
427 
428 	pmd = pmd_offset(pud, start);
429 	pud_clear(pud);
430 	pmd_free_tlb(tlb, pmd, start);
431 	mm_dec_nr_pmds(tlb->mm);
432 }
433 
434 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
435 				unsigned long addr, unsigned long end,
436 				unsigned long floor, unsigned long ceiling)
437 {
438 	pud_t *pud;
439 	unsigned long next;
440 	unsigned long start;
441 
442 	start = addr;
443 	pud = pud_offset(pgd, addr);
444 	do {
445 		next = pud_addr_end(addr, end);
446 		if (pud_none_or_clear_bad(pud))
447 			continue;
448 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
449 	} while (pud++, addr = next, addr != end);
450 
451 	start &= PGDIR_MASK;
452 	if (start < floor)
453 		return;
454 	if (ceiling) {
455 		ceiling &= PGDIR_MASK;
456 		if (!ceiling)
457 			return;
458 	}
459 	if (end - 1 > ceiling - 1)
460 		return;
461 
462 	pud = pud_offset(pgd, start);
463 	pgd_clear(pgd);
464 	pud_free_tlb(tlb, pud, start);
465 }
466 
467 /*
468  * This function frees user-level page tables of a process.
469  */
470 void free_pgd_range(struct mmu_gather *tlb,
471 			unsigned long addr, unsigned long end,
472 			unsigned long floor, unsigned long ceiling)
473 {
474 	pgd_t *pgd;
475 	unsigned long next;
476 
477 	/*
478 	 * The next few lines have given us lots of grief...
479 	 *
480 	 * Why are we testing PMD* at this top level?  Because often
481 	 * there will be no work to do at all, and we'd prefer not to
482 	 * go all the way down to the bottom just to discover that.
483 	 *
484 	 * Why all these "- 1"s?  Because 0 represents both the bottom
485 	 * of the address space and the top of it (using -1 for the
486 	 * top wouldn't help much: the masks would do the wrong thing).
487 	 * The rule is that addr 0 and floor 0 refer to the bottom of
488 	 * the address space, but end 0 and ceiling 0 refer to the top
489 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
490 	 * that end 0 case should be mythical).
491 	 *
492 	 * Wherever addr is brought up or ceiling brought down, we must
493 	 * be careful to reject "the opposite 0" before it confuses the
494 	 * subsequent tests.  But what about where end is brought down
495 	 * by PMD_SIZE below? no, end can't go down to 0 there.
496 	 *
497 	 * Whereas we round start (addr) and ceiling down, by different
498 	 * masks at different levels, in order to test whether a table
499 	 * now has no other vmas using it, so can be freed, we don't
500 	 * bother to round floor or end up - the tests don't need that.
501 	 */
502 
503 	addr &= PMD_MASK;
504 	if (addr < floor) {
505 		addr += PMD_SIZE;
506 		if (!addr)
507 			return;
508 	}
509 	if (ceiling) {
510 		ceiling &= PMD_MASK;
511 		if (!ceiling)
512 			return;
513 	}
514 	if (end - 1 > ceiling - 1)
515 		end -= PMD_SIZE;
516 	if (addr > end - 1)
517 		return;
518 
519 	pgd = pgd_offset(tlb->mm, addr);
520 	do {
521 		next = pgd_addr_end(addr, end);
522 		if (pgd_none_or_clear_bad(pgd))
523 			continue;
524 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
525 	} while (pgd++, addr = next, addr != end);
526 }
527 
528 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
529 		unsigned long floor, unsigned long ceiling)
530 {
531 	while (vma) {
532 		struct vm_area_struct *next = vma->vm_next;
533 		unsigned long addr = vma->vm_start;
534 
535 		/*
536 		 * Hide vma from rmap and truncate_pagecache before freeing
537 		 * pgtables
538 		 */
539 		unlink_anon_vmas(vma);
540 		unlink_file_vma(vma);
541 
542 		if (is_vm_hugetlb_page(vma)) {
543 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
544 				floor, next? next->vm_start: ceiling);
545 		} else {
546 			/*
547 			 * Optimization: gather nearby vmas into one call down
548 			 */
549 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
550 			       && !is_vm_hugetlb_page(next)) {
551 				vma = next;
552 				next = vma->vm_next;
553 				unlink_anon_vmas(vma);
554 				unlink_file_vma(vma);
555 			}
556 			free_pgd_range(tlb, addr, vma->vm_end,
557 				floor, next? next->vm_start: ceiling);
558 		}
559 		vma = next;
560 	}
561 }
562 
563 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
564 		pmd_t *pmd, unsigned long address)
565 {
566 	spinlock_t *ptl;
567 	pgtable_t new = pte_alloc_one(mm, address);
568 	int wait_split_huge_page;
569 	if (!new)
570 		return -ENOMEM;
571 
572 	/*
573 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 	 * visible before the pte is made visible to other CPUs by being
575 	 * put into page tables.
576 	 *
577 	 * The other side of the story is the pointer chasing in the page
578 	 * table walking code (when walking the page table without locking;
579 	 * ie. most of the time). Fortunately, these data accesses consist
580 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 	 * being the notable exception) will already guarantee loads are
582 	 * seen in-order. See the alpha page table accessors for the
583 	 * smp_read_barrier_depends() barriers in page table walking code.
584 	 */
585 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586 
587 	ptl = pmd_lock(mm, pmd);
588 	wait_split_huge_page = 0;
589 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
590 		atomic_long_inc(&mm->nr_ptes);
591 		pmd_populate(mm, pmd, new);
592 		new = NULL;
593 	} else if (unlikely(pmd_trans_splitting(*pmd)))
594 		wait_split_huge_page = 1;
595 	spin_unlock(ptl);
596 	if (new)
597 		pte_free(mm, new);
598 	if (wait_split_huge_page)
599 		wait_split_huge_page(vma->anon_vma, pmd);
600 	return 0;
601 }
602 
603 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
604 {
605 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
606 	if (!new)
607 		return -ENOMEM;
608 
609 	smp_wmb(); /* See comment in __pte_alloc */
610 
611 	spin_lock(&init_mm.page_table_lock);
612 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
613 		pmd_populate_kernel(&init_mm, pmd, new);
614 		new = NULL;
615 	} else
616 		VM_BUG_ON(pmd_trans_splitting(*pmd));
617 	spin_unlock(&init_mm.page_table_lock);
618 	if (new)
619 		pte_free_kernel(&init_mm, new);
620 	return 0;
621 }
622 
623 static inline void init_rss_vec(int *rss)
624 {
625 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
626 }
627 
628 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
629 {
630 	int i;
631 
632 	if (current->mm == mm)
633 		sync_mm_rss(mm);
634 	for (i = 0; i < NR_MM_COUNTERS; i++)
635 		if (rss[i])
636 			add_mm_counter(mm, i, rss[i]);
637 }
638 
639 /*
640  * This function is called to print an error when a bad pte
641  * is found. For example, we might have a PFN-mapped pte in
642  * a region that doesn't allow it.
643  *
644  * The calling function must still handle the error.
645  */
646 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
647 			  pte_t pte, struct page *page)
648 {
649 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
650 	pud_t *pud = pud_offset(pgd, addr);
651 	pmd_t *pmd = pmd_offset(pud, addr);
652 	struct address_space *mapping;
653 	pgoff_t index;
654 	static unsigned long resume;
655 	static unsigned long nr_shown;
656 	static unsigned long nr_unshown;
657 
658 	/*
659 	 * Allow a burst of 60 reports, then keep quiet for that minute;
660 	 * or allow a steady drip of one report per second.
661 	 */
662 	if (nr_shown == 60) {
663 		if (time_before(jiffies, resume)) {
664 			nr_unshown++;
665 			return;
666 		}
667 		if (nr_unshown) {
668 			printk(KERN_ALERT
669 				"BUG: Bad page map: %lu messages suppressed\n",
670 				nr_unshown);
671 			nr_unshown = 0;
672 		}
673 		nr_shown = 0;
674 	}
675 	if (nr_shown++ == 0)
676 		resume = jiffies + 60 * HZ;
677 
678 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
679 	index = linear_page_index(vma, addr);
680 
681 	printk(KERN_ALERT
682 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
683 		current->comm,
684 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
685 	if (page)
686 		dump_page(page, "bad pte");
687 	printk(KERN_ALERT
688 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
689 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
690 	/*
691 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692 	 */
693 	if (vma->vm_ops)
694 		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
695 		       vma->vm_ops->fault);
696 	if (vma->vm_file)
697 		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
698 		       vma->vm_file->f_op->mmap);
699 	dump_stack();
700 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
701 }
702 
703 /*
704  * vm_normal_page -- This function gets the "struct page" associated with a pte.
705  *
706  * "Special" mappings do not wish to be associated with a "struct page" (either
707  * it doesn't exist, or it exists but they don't want to touch it). In this
708  * case, NULL is returned here. "Normal" mappings do have a struct page.
709  *
710  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711  * pte bit, in which case this function is trivial. Secondly, an architecture
712  * may not have a spare pte bit, which requires a more complicated scheme,
713  * described below.
714  *
715  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716  * special mapping (even if there are underlying and valid "struct pages").
717  * COWed pages of a VM_PFNMAP are always normal.
718  *
719  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722  * mapping will always honor the rule
723  *
724  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725  *
726  * And for normal mappings this is false.
727  *
728  * This restricts such mappings to be a linear translation from virtual address
729  * to pfn. To get around this restriction, we allow arbitrary mappings so long
730  * as the vma is not a COW mapping; in that case, we know that all ptes are
731  * special (because none can have been COWed).
732  *
733  *
734  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735  *
736  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737  * page" backing, however the difference is that _all_ pages with a struct
738  * page (that is, those where pfn_valid is true) are refcounted and considered
739  * normal pages by the VM. The disadvantage is that pages are refcounted
740  * (which can be slower and simply not an option for some PFNMAP users). The
741  * advantage is that we don't have to follow the strict linearity rule of
742  * PFNMAP mappings in order to support COWable mappings.
743  *
744  */
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
747 #else
748 # define HAVE_PTE_SPECIAL 0
749 #endif
750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751 				pte_t pte)
752 {
753 	unsigned long pfn = pte_pfn(pte);
754 
755 	if (HAVE_PTE_SPECIAL) {
756 		if (likely(!pte_special(pte)))
757 			goto check_pfn;
758 		if (vma->vm_ops && vma->vm_ops->find_special_page)
759 			return vma->vm_ops->find_special_page(vma, addr);
760 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
761 			return NULL;
762 		if (!is_zero_pfn(pfn))
763 			print_bad_pte(vma, addr, pte, NULL);
764 		return NULL;
765 	}
766 
767 	/* !HAVE_PTE_SPECIAL case follows: */
768 
769 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
770 		if (vma->vm_flags & VM_MIXEDMAP) {
771 			if (!pfn_valid(pfn))
772 				return NULL;
773 			goto out;
774 		} else {
775 			unsigned long off;
776 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
777 			if (pfn == vma->vm_pgoff + off)
778 				return NULL;
779 			if (!is_cow_mapping(vma->vm_flags))
780 				return NULL;
781 		}
782 	}
783 
784 	if (is_zero_pfn(pfn))
785 		return NULL;
786 check_pfn:
787 	if (unlikely(pfn > highest_memmap_pfn)) {
788 		print_bad_pte(vma, addr, pte, NULL);
789 		return NULL;
790 	}
791 
792 	/*
793 	 * NOTE! We still have PageReserved() pages in the page tables.
794 	 * eg. VDSO mappings can cause them to exist.
795 	 */
796 out:
797 	return pfn_to_page(pfn);
798 }
799 
800 /*
801  * copy one vm_area from one task to the other. Assumes the page tables
802  * already present in the new task to be cleared in the whole range
803  * covered by this vma.
804  */
805 
806 static inline unsigned long
807 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
808 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
809 		unsigned long addr, int *rss)
810 {
811 	unsigned long vm_flags = vma->vm_flags;
812 	pte_t pte = *src_pte;
813 	struct page *page;
814 
815 	/* pte contains position in swap or file, so copy. */
816 	if (unlikely(!pte_present(pte))) {
817 		swp_entry_t entry = pte_to_swp_entry(pte);
818 
819 		if (likely(!non_swap_entry(entry))) {
820 			if (swap_duplicate(entry) < 0)
821 				return entry.val;
822 
823 			/* make sure dst_mm is on swapoff's mmlist. */
824 			if (unlikely(list_empty(&dst_mm->mmlist))) {
825 				spin_lock(&mmlist_lock);
826 				if (list_empty(&dst_mm->mmlist))
827 					list_add(&dst_mm->mmlist,
828 							&src_mm->mmlist);
829 				spin_unlock(&mmlist_lock);
830 			}
831 			rss[MM_SWAPENTS]++;
832 		} else if (is_migration_entry(entry)) {
833 			page = migration_entry_to_page(entry);
834 
835 			if (PageAnon(page))
836 				rss[MM_ANONPAGES]++;
837 			else
838 				rss[MM_FILEPAGES]++;
839 
840 			if (is_write_migration_entry(entry) &&
841 					is_cow_mapping(vm_flags)) {
842 				/*
843 				 * COW mappings require pages in both
844 				 * parent and child to be set to read.
845 				 */
846 				make_migration_entry_read(&entry);
847 				pte = swp_entry_to_pte(entry);
848 				if (pte_swp_soft_dirty(*src_pte))
849 					pte = pte_swp_mksoft_dirty(pte);
850 				set_pte_at(src_mm, addr, src_pte, pte);
851 			}
852 		}
853 		goto out_set_pte;
854 	}
855 
856 	/*
857 	 * If it's a COW mapping, write protect it both
858 	 * in the parent and the child
859 	 */
860 	if (is_cow_mapping(vm_flags)) {
861 		ptep_set_wrprotect(src_mm, addr, src_pte);
862 		pte = pte_wrprotect(pte);
863 	}
864 
865 	/*
866 	 * If it's a shared mapping, mark it clean in
867 	 * the child
868 	 */
869 	if (vm_flags & VM_SHARED)
870 		pte = pte_mkclean(pte);
871 	pte = pte_mkold(pte);
872 
873 	page = vm_normal_page(vma, addr, pte);
874 	if (page) {
875 		get_page(page);
876 		page_dup_rmap(page);
877 		if (PageAnon(page))
878 			rss[MM_ANONPAGES]++;
879 		else
880 			rss[MM_FILEPAGES]++;
881 	}
882 
883 out_set_pte:
884 	set_pte_at(dst_mm, addr, dst_pte, pte);
885 	return 0;
886 }
887 
888 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
889 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
890 		   unsigned long addr, unsigned long end)
891 {
892 	pte_t *orig_src_pte, *orig_dst_pte;
893 	pte_t *src_pte, *dst_pte;
894 	spinlock_t *src_ptl, *dst_ptl;
895 	int progress = 0;
896 	int rss[NR_MM_COUNTERS];
897 	swp_entry_t entry = (swp_entry_t){0};
898 
899 again:
900 	init_rss_vec(rss);
901 
902 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
903 	if (!dst_pte)
904 		return -ENOMEM;
905 	src_pte = pte_offset_map(src_pmd, addr);
906 	src_ptl = pte_lockptr(src_mm, src_pmd);
907 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
908 	orig_src_pte = src_pte;
909 	orig_dst_pte = dst_pte;
910 	arch_enter_lazy_mmu_mode();
911 
912 	do {
913 		/*
914 		 * We are holding two locks at this point - either of them
915 		 * could generate latencies in another task on another CPU.
916 		 */
917 		if (progress >= 32) {
918 			progress = 0;
919 			if (need_resched() ||
920 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
921 				break;
922 		}
923 		if (pte_none(*src_pte)) {
924 			progress++;
925 			continue;
926 		}
927 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
928 							vma, addr, rss);
929 		if (entry.val)
930 			break;
931 		progress += 8;
932 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
933 
934 	arch_leave_lazy_mmu_mode();
935 	spin_unlock(src_ptl);
936 	pte_unmap(orig_src_pte);
937 	add_mm_rss_vec(dst_mm, rss);
938 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
939 	cond_resched();
940 
941 	if (entry.val) {
942 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
943 			return -ENOMEM;
944 		progress = 0;
945 	}
946 	if (addr != end)
947 		goto again;
948 	return 0;
949 }
950 
951 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
952 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
953 		unsigned long addr, unsigned long end)
954 {
955 	pmd_t *src_pmd, *dst_pmd;
956 	unsigned long next;
957 
958 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
959 	if (!dst_pmd)
960 		return -ENOMEM;
961 	src_pmd = pmd_offset(src_pud, addr);
962 	do {
963 		next = pmd_addr_end(addr, end);
964 		if (pmd_trans_huge(*src_pmd)) {
965 			int err;
966 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
967 			err = copy_huge_pmd(dst_mm, src_mm,
968 					    dst_pmd, src_pmd, addr, vma);
969 			if (err == -ENOMEM)
970 				return -ENOMEM;
971 			if (!err)
972 				continue;
973 			/* fall through */
974 		}
975 		if (pmd_none_or_clear_bad(src_pmd))
976 			continue;
977 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
978 						vma, addr, next))
979 			return -ENOMEM;
980 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
981 	return 0;
982 }
983 
984 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
985 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
986 		unsigned long addr, unsigned long end)
987 {
988 	pud_t *src_pud, *dst_pud;
989 	unsigned long next;
990 
991 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
992 	if (!dst_pud)
993 		return -ENOMEM;
994 	src_pud = pud_offset(src_pgd, addr);
995 	do {
996 		next = pud_addr_end(addr, end);
997 		if (pud_none_or_clear_bad(src_pud))
998 			continue;
999 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1000 						vma, addr, next))
1001 			return -ENOMEM;
1002 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1003 	return 0;
1004 }
1005 
1006 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007 		struct vm_area_struct *vma)
1008 {
1009 	pgd_t *src_pgd, *dst_pgd;
1010 	unsigned long next;
1011 	unsigned long addr = vma->vm_start;
1012 	unsigned long end = vma->vm_end;
1013 	unsigned long mmun_start;	/* For mmu_notifiers */
1014 	unsigned long mmun_end;		/* For mmu_notifiers */
1015 	bool is_cow;
1016 	int ret;
1017 
1018 	/*
1019 	 * Don't copy ptes where a page fault will fill them correctly.
1020 	 * Fork becomes much lighter when there are big shared or private
1021 	 * readonly mappings. The tradeoff is that copy_page_range is more
1022 	 * efficient than faulting.
1023 	 */
1024 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1025 			!vma->anon_vma)
1026 		return 0;
1027 
1028 	if (is_vm_hugetlb_page(vma))
1029 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1030 
1031 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1032 		/*
1033 		 * We do not free on error cases below as remove_vma
1034 		 * gets called on error from higher level routine
1035 		 */
1036 		ret = track_pfn_copy(vma);
1037 		if (ret)
1038 			return ret;
1039 	}
1040 
1041 	/*
1042 	 * We need to invalidate the secondary MMU mappings only when
1043 	 * there could be a permission downgrade on the ptes of the
1044 	 * parent mm. And a permission downgrade will only happen if
1045 	 * is_cow_mapping() returns true.
1046 	 */
1047 	is_cow = is_cow_mapping(vma->vm_flags);
1048 	mmun_start = addr;
1049 	mmun_end   = end;
1050 	if (is_cow)
1051 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1052 						    mmun_end);
1053 
1054 	ret = 0;
1055 	dst_pgd = pgd_offset(dst_mm, addr);
1056 	src_pgd = pgd_offset(src_mm, addr);
1057 	do {
1058 		next = pgd_addr_end(addr, end);
1059 		if (pgd_none_or_clear_bad(src_pgd))
1060 			continue;
1061 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1062 					    vma, addr, next))) {
1063 			ret = -ENOMEM;
1064 			break;
1065 		}
1066 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1067 
1068 	if (is_cow)
1069 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1070 	return ret;
1071 }
1072 
1073 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1074 				struct vm_area_struct *vma, pmd_t *pmd,
1075 				unsigned long addr, unsigned long end,
1076 				struct zap_details *details)
1077 {
1078 	struct mm_struct *mm = tlb->mm;
1079 	int force_flush = 0;
1080 	int rss[NR_MM_COUNTERS];
1081 	spinlock_t *ptl;
1082 	pte_t *start_pte;
1083 	pte_t *pte;
1084 	swp_entry_t entry;
1085 
1086 again:
1087 	init_rss_vec(rss);
1088 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1089 	pte = start_pte;
1090 	arch_enter_lazy_mmu_mode();
1091 	do {
1092 		pte_t ptent = *pte;
1093 		if (pte_none(ptent)) {
1094 			continue;
1095 		}
1096 
1097 		if (pte_present(ptent)) {
1098 			struct page *page;
1099 
1100 			page = vm_normal_page(vma, addr, ptent);
1101 			if (unlikely(details) && page) {
1102 				/*
1103 				 * unmap_shared_mapping_pages() wants to
1104 				 * invalidate cache without truncating:
1105 				 * unmap shared but keep private pages.
1106 				 */
1107 				if (details->check_mapping &&
1108 				    details->check_mapping != page->mapping)
1109 					continue;
1110 			}
1111 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1112 							tlb->fullmm);
1113 			tlb_remove_tlb_entry(tlb, pte, addr);
1114 			if (unlikely(!page))
1115 				continue;
1116 			if (PageAnon(page))
1117 				rss[MM_ANONPAGES]--;
1118 			else {
1119 				if (pte_dirty(ptent)) {
1120 					force_flush = 1;
1121 					set_page_dirty(page);
1122 				}
1123 				if (pte_young(ptent) &&
1124 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1125 					mark_page_accessed(page);
1126 				rss[MM_FILEPAGES]--;
1127 			}
1128 			page_remove_rmap(page);
1129 			if (unlikely(page_mapcount(page) < 0))
1130 				print_bad_pte(vma, addr, ptent, page);
1131 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1132 				force_flush = 1;
1133 				addr += PAGE_SIZE;
1134 				break;
1135 			}
1136 			continue;
1137 		}
1138 		/* If details->check_mapping, we leave swap entries. */
1139 		if (unlikely(details))
1140 			continue;
1141 
1142 		entry = pte_to_swp_entry(ptent);
1143 		if (!non_swap_entry(entry))
1144 			rss[MM_SWAPENTS]--;
1145 		else if (is_migration_entry(entry)) {
1146 			struct page *page;
1147 
1148 			page = migration_entry_to_page(entry);
1149 
1150 			if (PageAnon(page))
1151 				rss[MM_ANONPAGES]--;
1152 			else
1153 				rss[MM_FILEPAGES]--;
1154 		}
1155 		if (unlikely(!free_swap_and_cache(entry)))
1156 			print_bad_pte(vma, addr, ptent, NULL);
1157 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1158 	} while (pte++, addr += PAGE_SIZE, addr != end);
1159 
1160 	add_mm_rss_vec(mm, rss);
1161 	arch_leave_lazy_mmu_mode();
1162 
1163 	/* Do the actual TLB flush before dropping ptl */
1164 	if (force_flush)
1165 		tlb_flush_mmu_tlbonly(tlb);
1166 	pte_unmap_unlock(start_pte, ptl);
1167 
1168 	/*
1169 	 * If we forced a TLB flush (either due to running out of
1170 	 * batch buffers or because we needed to flush dirty TLB
1171 	 * entries before releasing the ptl), free the batched
1172 	 * memory too. Restart if we didn't do everything.
1173 	 */
1174 	if (force_flush) {
1175 		force_flush = 0;
1176 		tlb_flush_mmu_free(tlb);
1177 
1178 		if (addr != end)
1179 			goto again;
1180 	}
1181 
1182 	return addr;
1183 }
1184 
1185 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1186 				struct vm_area_struct *vma, pud_t *pud,
1187 				unsigned long addr, unsigned long end,
1188 				struct zap_details *details)
1189 {
1190 	pmd_t *pmd;
1191 	unsigned long next;
1192 
1193 	pmd = pmd_offset(pud, addr);
1194 	do {
1195 		next = pmd_addr_end(addr, end);
1196 		if (pmd_trans_huge(*pmd)) {
1197 			if (next - addr != HPAGE_PMD_SIZE) {
1198 #ifdef CONFIG_DEBUG_VM
1199 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1200 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1201 						__func__, addr, end,
1202 						vma->vm_start,
1203 						vma->vm_end);
1204 					BUG();
1205 				}
1206 #endif
1207 				split_huge_page_pmd(vma, addr, pmd);
1208 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1209 				goto next;
1210 			/* fall through */
1211 		}
1212 		/*
1213 		 * Here there can be other concurrent MADV_DONTNEED or
1214 		 * trans huge page faults running, and if the pmd is
1215 		 * none or trans huge it can change under us. This is
1216 		 * because MADV_DONTNEED holds the mmap_sem in read
1217 		 * mode.
1218 		 */
1219 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1220 			goto next;
1221 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1222 next:
1223 		cond_resched();
1224 	} while (pmd++, addr = next, addr != end);
1225 
1226 	return addr;
1227 }
1228 
1229 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1230 				struct vm_area_struct *vma, pgd_t *pgd,
1231 				unsigned long addr, unsigned long end,
1232 				struct zap_details *details)
1233 {
1234 	pud_t *pud;
1235 	unsigned long next;
1236 
1237 	pud = pud_offset(pgd, addr);
1238 	do {
1239 		next = pud_addr_end(addr, end);
1240 		if (pud_none_or_clear_bad(pud))
1241 			continue;
1242 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1243 	} while (pud++, addr = next, addr != end);
1244 
1245 	return addr;
1246 }
1247 
1248 static void unmap_page_range(struct mmu_gather *tlb,
1249 			     struct vm_area_struct *vma,
1250 			     unsigned long addr, unsigned long end,
1251 			     struct zap_details *details)
1252 {
1253 	pgd_t *pgd;
1254 	unsigned long next;
1255 
1256 	if (details && !details->check_mapping)
1257 		details = NULL;
1258 
1259 	BUG_ON(addr >= end);
1260 	tlb_start_vma(tlb, vma);
1261 	pgd = pgd_offset(vma->vm_mm, addr);
1262 	do {
1263 		next = pgd_addr_end(addr, end);
1264 		if (pgd_none_or_clear_bad(pgd))
1265 			continue;
1266 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1267 	} while (pgd++, addr = next, addr != end);
1268 	tlb_end_vma(tlb, vma);
1269 }
1270 
1271 
1272 static void unmap_single_vma(struct mmu_gather *tlb,
1273 		struct vm_area_struct *vma, unsigned long start_addr,
1274 		unsigned long end_addr,
1275 		struct zap_details *details)
1276 {
1277 	unsigned long start = max(vma->vm_start, start_addr);
1278 	unsigned long end;
1279 
1280 	if (start >= vma->vm_end)
1281 		return;
1282 	end = min(vma->vm_end, end_addr);
1283 	if (end <= vma->vm_start)
1284 		return;
1285 
1286 	if (vma->vm_file)
1287 		uprobe_munmap(vma, start, end);
1288 
1289 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1290 		untrack_pfn(vma, 0, 0);
1291 
1292 	if (start != end) {
1293 		if (unlikely(is_vm_hugetlb_page(vma))) {
1294 			/*
1295 			 * It is undesirable to test vma->vm_file as it
1296 			 * should be non-null for valid hugetlb area.
1297 			 * However, vm_file will be NULL in the error
1298 			 * cleanup path of mmap_region. When
1299 			 * hugetlbfs ->mmap method fails,
1300 			 * mmap_region() nullifies vma->vm_file
1301 			 * before calling this function to clean up.
1302 			 * Since no pte has actually been setup, it is
1303 			 * safe to do nothing in this case.
1304 			 */
1305 			if (vma->vm_file) {
1306 				i_mmap_lock_write(vma->vm_file->f_mapping);
1307 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1309 			}
1310 		} else
1311 			unmap_page_range(tlb, vma, start, end, details);
1312 	}
1313 }
1314 
1315 /**
1316  * unmap_vmas - unmap a range of memory covered by a list of vma's
1317  * @tlb: address of the caller's struct mmu_gather
1318  * @vma: the starting vma
1319  * @start_addr: virtual address at which to start unmapping
1320  * @end_addr: virtual address at which to end unmapping
1321  *
1322  * Unmap all pages in the vma list.
1323  *
1324  * Only addresses between `start' and `end' will be unmapped.
1325  *
1326  * The VMA list must be sorted in ascending virtual address order.
1327  *
1328  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329  * range after unmap_vmas() returns.  So the only responsibility here is to
1330  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331  * drops the lock and schedules.
1332  */
1333 void unmap_vmas(struct mmu_gather *tlb,
1334 		struct vm_area_struct *vma, unsigned long start_addr,
1335 		unsigned long end_addr)
1336 {
1337 	struct mm_struct *mm = vma->vm_mm;
1338 
1339 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1340 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1341 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1342 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1343 }
1344 
1345 /**
1346  * zap_page_range - remove user pages in a given range
1347  * @vma: vm_area_struct holding the applicable pages
1348  * @start: starting address of pages to zap
1349  * @size: number of bytes to zap
1350  * @details: details of shared cache invalidation
1351  *
1352  * Caller must protect the VMA list
1353  */
1354 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1355 		unsigned long size, struct zap_details *details)
1356 {
1357 	struct mm_struct *mm = vma->vm_mm;
1358 	struct mmu_gather tlb;
1359 	unsigned long end = start + size;
1360 
1361 	lru_add_drain();
1362 	tlb_gather_mmu(&tlb, mm, start, end);
1363 	update_hiwater_rss(mm);
1364 	mmu_notifier_invalidate_range_start(mm, start, end);
1365 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1366 		unmap_single_vma(&tlb, vma, start, end, details);
1367 	mmu_notifier_invalidate_range_end(mm, start, end);
1368 	tlb_finish_mmu(&tlb, start, end);
1369 }
1370 
1371 /**
1372  * zap_page_range_single - remove user pages in a given range
1373  * @vma: vm_area_struct holding the applicable pages
1374  * @address: starting address of pages to zap
1375  * @size: number of bytes to zap
1376  * @details: details of shared cache invalidation
1377  *
1378  * The range must fit into one VMA.
1379  */
1380 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1381 		unsigned long size, struct zap_details *details)
1382 {
1383 	struct mm_struct *mm = vma->vm_mm;
1384 	struct mmu_gather tlb;
1385 	unsigned long end = address + size;
1386 
1387 	lru_add_drain();
1388 	tlb_gather_mmu(&tlb, mm, address, end);
1389 	update_hiwater_rss(mm);
1390 	mmu_notifier_invalidate_range_start(mm, address, end);
1391 	unmap_single_vma(&tlb, vma, address, end, details);
1392 	mmu_notifier_invalidate_range_end(mm, address, end);
1393 	tlb_finish_mmu(&tlb, address, end);
1394 }
1395 
1396 /**
1397  * zap_vma_ptes - remove ptes mapping the vma
1398  * @vma: vm_area_struct holding ptes to be zapped
1399  * @address: starting address of pages to zap
1400  * @size: number of bytes to zap
1401  *
1402  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1403  *
1404  * The entire address range must be fully contained within the vma.
1405  *
1406  * Returns 0 if successful.
1407  */
1408 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1409 		unsigned long size)
1410 {
1411 	if (address < vma->vm_start || address + size > vma->vm_end ||
1412 	    		!(vma->vm_flags & VM_PFNMAP))
1413 		return -1;
1414 	zap_page_range_single(vma, address, size, NULL);
1415 	return 0;
1416 }
1417 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1418 
1419 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1420 			spinlock_t **ptl)
1421 {
1422 	pgd_t * pgd = pgd_offset(mm, addr);
1423 	pud_t * pud = pud_alloc(mm, pgd, addr);
1424 	if (pud) {
1425 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1426 		if (pmd) {
1427 			VM_BUG_ON(pmd_trans_huge(*pmd));
1428 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1429 		}
1430 	}
1431 	return NULL;
1432 }
1433 
1434 /*
1435  * This is the old fallback for page remapping.
1436  *
1437  * For historical reasons, it only allows reserved pages. Only
1438  * old drivers should use this, and they needed to mark their
1439  * pages reserved for the old functions anyway.
1440  */
1441 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1442 			struct page *page, pgprot_t prot)
1443 {
1444 	struct mm_struct *mm = vma->vm_mm;
1445 	int retval;
1446 	pte_t *pte;
1447 	spinlock_t *ptl;
1448 
1449 	retval = -EINVAL;
1450 	if (PageAnon(page))
1451 		goto out;
1452 	retval = -ENOMEM;
1453 	flush_dcache_page(page);
1454 	pte = get_locked_pte(mm, addr, &ptl);
1455 	if (!pte)
1456 		goto out;
1457 	retval = -EBUSY;
1458 	if (!pte_none(*pte))
1459 		goto out_unlock;
1460 
1461 	/* Ok, finally just insert the thing.. */
1462 	get_page(page);
1463 	inc_mm_counter_fast(mm, MM_FILEPAGES);
1464 	page_add_file_rmap(page);
1465 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1466 
1467 	retval = 0;
1468 	pte_unmap_unlock(pte, ptl);
1469 	return retval;
1470 out_unlock:
1471 	pte_unmap_unlock(pte, ptl);
1472 out:
1473 	return retval;
1474 }
1475 
1476 /**
1477  * vm_insert_page - insert single page into user vma
1478  * @vma: user vma to map to
1479  * @addr: target user address of this page
1480  * @page: source kernel page
1481  *
1482  * This allows drivers to insert individual pages they've allocated
1483  * into a user vma.
1484  *
1485  * The page has to be a nice clean _individual_ kernel allocation.
1486  * If you allocate a compound page, you need to have marked it as
1487  * such (__GFP_COMP), or manually just split the page up yourself
1488  * (see split_page()).
1489  *
1490  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1491  * took an arbitrary page protection parameter. This doesn't allow
1492  * that. Your vma protection will have to be set up correctly, which
1493  * means that if you want a shared writable mapping, you'd better
1494  * ask for a shared writable mapping!
1495  *
1496  * The page does not need to be reserved.
1497  *
1498  * Usually this function is called from f_op->mmap() handler
1499  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1500  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1501  * function from other places, for example from page-fault handler.
1502  */
1503 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1504 			struct page *page)
1505 {
1506 	if (addr < vma->vm_start || addr >= vma->vm_end)
1507 		return -EFAULT;
1508 	if (!page_count(page))
1509 		return -EINVAL;
1510 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1511 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1512 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1513 		vma->vm_flags |= VM_MIXEDMAP;
1514 	}
1515 	return insert_page(vma, addr, page, vma->vm_page_prot);
1516 }
1517 EXPORT_SYMBOL(vm_insert_page);
1518 
1519 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1520 			unsigned long pfn, pgprot_t prot)
1521 {
1522 	struct mm_struct *mm = vma->vm_mm;
1523 	int retval;
1524 	pte_t *pte, entry;
1525 	spinlock_t *ptl;
1526 
1527 	retval = -ENOMEM;
1528 	pte = get_locked_pte(mm, addr, &ptl);
1529 	if (!pte)
1530 		goto out;
1531 	retval = -EBUSY;
1532 	if (!pte_none(*pte))
1533 		goto out_unlock;
1534 
1535 	/* Ok, finally just insert the thing.. */
1536 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1537 	set_pte_at(mm, addr, pte, entry);
1538 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1539 
1540 	retval = 0;
1541 out_unlock:
1542 	pte_unmap_unlock(pte, ptl);
1543 out:
1544 	return retval;
1545 }
1546 
1547 /**
1548  * vm_insert_pfn - insert single pfn into user vma
1549  * @vma: user vma to map to
1550  * @addr: target user address of this page
1551  * @pfn: source kernel pfn
1552  *
1553  * Similar to vm_insert_page, this allows drivers to insert individual pages
1554  * they've allocated into a user vma. Same comments apply.
1555  *
1556  * This function should only be called from a vm_ops->fault handler, and
1557  * in that case the handler should return NULL.
1558  *
1559  * vma cannot be a COW mapping.
1560  *
1561  * As this is called only for pages that do not currently exist, we
1562  * do not need to flush old virtual caches or the TLB.
1563  */
1564 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1565 			unsigned long pfn)
1566 {
1567 	int ret;
1568 	pgprot_t pgprot = vma->vm_page_prot;
1569 	/*
1570 	 * Technically, architectures with pte_special can avoid all these
1571 	 * restrictions (same for remap_pfn_range).  However we would like
1572 	 * consistency in testing and feature parity among all, so we should
1573 	 * try to keep these invariants in place for everybody.
1574 	 */
1575 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1576 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1577 						(VM_PFNMAP|VM_MIXEDMAP));
1578 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1579 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1580 
1581 	if (addr < vma->vm_start || addr >= vma->vm_end)
1582 		return -EFAULT;
1583 	if (track_pfn_insert(vma, &pgprot, pfn))
1584 		return -EINVAL;
1585 
1586 	ret = insert_pfn(vma, addr, pfn, pgprot);
1587 
1588 	return ret;
1589 }
1590 EXPORT_SYMBOL(vm_insert_pfn);
1591 
1592 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1593 			unsigned long pfn)
1594 {
1595 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1596 
1597 	if (addr < vma->vm_start || addr >= vma->vm_end)
1598 		return -EFAULT;
1599 
1600 	/*
1601 	 * If we don't have pte special, then we have to use the pfn_valid()
1602 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1603 	 * refcount the page if pfn_valid is true (hence insert_page rather
1604 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1605 	 * without pte special, it would there be refcounted as a normal page.
1606 	 */
1607 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1608 		struct page *page;
1609 
1610 		page = pfn_to_page(pfn);
1611 		return insert_page(vma, addr, page, vma->vm_page_prot);
1612 	}
1613 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1614 }
1615 EXPORT_SYMBOL(vm_insert_mixed);
1616 
1617 /*
1618  * maps a range of physical memory into the requested pages. the old
1619  * mappings are removed. any references to nonexistent pages results
1620  * in null mappings (currently treated as "copy-on-access")
1621  */
1622 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1623 			unsigned long addr, unsigned long end,
1624 			unsigned long pfn, pgprot_t prot)
1625 {
1626 	pte_t *pte;
1627 	spinlock_t *ptl;
1628 
1629 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1630 	if (!pte)
1631 		return -ENOMEM;
1632 	arch_enter_lazy_mmu_mode();
1633 	do {
1634 		BUG_ON(!pte_none(*pte));
1635 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1636 		pfn++;
1637 	} while (pte++, addr += PAGE_SIZE, addr != end);
1638 	arch_leave_lazy_mmu_mode();
1639 	pte_unmap_unlock(pte - 1, ptl);
1640 	return 0;
1641 }
1642 
1643 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1644 			unsigned long addr, unsigned long end,
1645 			unsigned long pfn, pgprot_t prot)
1646 {
1647 	pmd_t *pmd;
1648 	unsigned long next;
1649 
1650 	pfn -= addr >> PAGE_SHIFT;
1651 	pmd = pmd_alloc(mm, pud, addr);
1652 	if (!pmd)
1653 		return -ENOMEM;
1654 	VM_BUG_ON(pmd_trans_huge(*pmd));
1655 	do {
1656 		next = pmd_addr_end(addr, end);
1657 		if (remap_pte_range(mm, pmd, addr, next,
1658 				pfn + (addr >> PAGE_SHIFT), prot))
1659 			return -ENOMEM;
1660 	} while (pmd++, addr = next, addr != end);
1661 	return 0;
1662 }
1663 
1664 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1665 			unsigned long addr, unsigned long end,
1666 			unsigned long pfn, pgprot_t prot)
1667 {
1668 	pud_t *pud;
1669 	unsigned long next;
1670 
1671 	pfn -= addr >> PAGE_SHIFT;
1672 	pud = pud_alloc(mm, pgd, addr);
1673 	if (!pud)
1674 		return -ENOMEM;
1675 	do {
1676 		next = pud_addr_end(addr, end);
1677 		if (remap_pmd_range(mm, pud, addr, next,
1678 				pfn + (addr >> PAGE_SHIFT), prot))
1679 			return -ENOMEM;
1680 	} while (pud++, addr = next, addr != end);
1681 	return 0;
1682 }
1683 
1684 /**
1685  * remap_pfn_range - remap kernel memory to userspace
1686  * @vma: user vma to map to
1687  * @addr: target user address to start at
1688  * @pfn: physical address of kernel memory
1689  * @size: size of map area
1690  * @prot: page protection flags for this mapping
1691  *
1692  *  Note: this is only safe if the mm semaphore is held when called.
1693  */
1694 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1695 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1696 {
1697 	pgd_t *pgd;
1698 	unsigned long next;
1699 	unsigned long end = addr + PAGE_ALIGN(size);
1700 	struct mm_struct *mm = vma->vm_mm;
1701 	int err;
1702 
1703 	/*
1704 	 * Physically remapped pages are special. Tell the
1705 	 * rest of the world about it:
1706 	 *   VM_IO tells people not to look at these pages
1707 	 *	(accesses can have side effects).
1708 	 *   VM_PFNMAP tells the core MM that the base pages are just
1709 	 *	raw PFN mappings, and do not have a "struct page" associated
1710 	 *	with them.
1711 	 *   VM_DONTEXPAND
1712 	 *      Disable vma merging and expanding with mremap().
1713 	 *   VM_DONTDUMP
1714 	 *      Omit vma from core dump, even when VM_IO turned off.
1715 	 *
1716 	 * There's a horrible special case to handle copy-on-write
1717 	 * behaviour that some programs depend on. We mark the "original"
1718 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1719 	 * See vm_normal_page() for details.
1720 	 */
1721 	if (is_cow_mapping(vma->vm_flags)) {
1722 		if (addr != vma->vm_start || end != vma->vm_end)
1723 			return -EINVAL;
1724 		vma->vm_pgoff = pfn;
1725 	}
1726 
1727 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1728 	if (err)
1729 		return -EINVAL;
1730 
1731 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1732 
1733 	BUG_ON(addr >= end);
1734 	pfn -= addr >> PAGE_SHIFT;
1735 	pgd = pgd_offset(mm, addr);
1736 	flush_cache_range(vma, addr, end);
1737 	do {
1738 		next = pgd_addr_end(addr, end);
1739 		err = remap_pud_range(mm, pgd, addr, next,
1740 				pfn + (addr >> PAGE_SHIFT), prot);
1741 		if (err)
1742 			break;
1743 	} while (pgd++, addr = next, addr != end);
1744 
1745 	if (err)
1746 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1747 
1748 	return err;
1749 }
1750 EXPORT_SYMBOL(remap_pfn_range);
1751 
1752 /**
1753  * vm_iomap_memory - remap memory to userspace
1754  * @vma: user vma to map to
1755  * @start: start of area
1756  * @len: size of area
1757  *
1758  * This is a simplified io_remap_pfn_range() for common driver use. The
1759  * driver just needs to give us the physical memory range to be mapped,
1760  * we'll figure out the rest from the vma information.
1761  *
1762  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1763  * whatever write-combining details or similar.
1764  */
1765 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1766 {
1767 	unsigned long vm_len, pfn, pages;
1768 
1769 	/* Check that the physical memory area passed in looks valid */
1770 	if (start + len < start)
1771 		return -EINVAL;
1772 	/*
1773 	 * You *really* shouldn't map things that aren't page-aligned,
1774 	 * but we've historically allowed it because IO memory might
1775 	 * just have smaller alignment.
1776 	 */
1777 	len += start & ~PAGE_MASK;
1778 	pfn = start >> PAGE_SHIFT;
1779 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1780 	if (pfn + pages < pfn)
1781 		return -EINVAL;
1782 
1783 	/* We start the mapping 'vm_pgoff' pages into the area */
1784 	if (vma->vm_pgoff > pages)
1785 		return -EINVAL;
1786 	pfn += vma->vm_pgoff;
1787 	pages -= vma->vm_pgoff;
1788 
1789 	/* Can we fit all of the mapping? */
1790 	vm_len = vma->vm_end - vma->vm_start;
1791 	if (vm_len >> PAGE_SHIFT > pages)
1792 		return -EINVAL;
1793 
1794 	/* Ok, let it rip */
1795 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1796 }
1797 EXPORT_SYMBOL(vm_iomap_memory);
1798 
1799 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1800 				     unsigned long addr, unsigned long end,
1801 				     pte_fn_t fn, void *data)
1802 {
1803 	pte_t *pte;
1804 	int err;
1805 	pgtable_t token;
1806 	spinlock_t *uninitialized_var(ptl);
1807 
1808 	pte = (mm == &init_mm) ?
1809 		pte_alloc_kernel(pmd, addr) :
1810 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1811 	if (!pte)
1812 		return -ENOMEM;
1813 
1814 	BUG_ON(pmd_huge(*pmd));
1815 
1816 	arch_enter_lazy_mmu_mode();
1817 
1818 	token = pmd_pgtable(*pmd);
1819 
1820 	do {
1821 		err = fn(pte++, token, addr, data);
1822 		if (err)
1823 			break;
1824 	} while (addr += PAGE_SIZE, addr != end);
1825 
1826 	arch_leave_lazy_mmu_mode();
1827 
1828 	if (mm != &init_mm)
1829 		pte_unmap_unlock(pte-1, ptl);
1830 	return err;
1831 }
1832 
1833 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1834 				     unsigned long addr, unsigned long end,
1835 				     pte_fn_t fn, void *data)
1836 {
1837 	pmd_t *pmd;
1838 	unsigned long next;
1839 	int err;
1840 
1841 	BUG_ON(pud_huge(*pud));
1842 
1843 	pmd = pmd_alloc(mm, pud, addr);
1844 	if (!pmd)
1845 		return -ENOMEM;
1846 	do {
1847 		next = pmd_addr_end(addr, end);
1848 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1849 		if (err)
1850 			break;
1851 	} while (pmd++, addr = next, addr != end);
1852 	return err;
1853 }
1854 
1855 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1856 				     unsigned long addr, unsigned long end,
1857 				     pte_fn_t fn, void *data)
1858 {
1859 	pud_t *pud;
1860 	unsigned long next;
1861 	int err;
1862 
1863 	pud = pud_alloc(mm, pgd, addr);
1864 	if (!pud)
1865 		return -ENOMEM;
1866 	do {
1867 		next = pud_addr_end(addr, end);
1868 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1869 		if (err)
1870 			break;
1871 	} while (pud++, addr = next, addr != end);
1872 	return err;
1873 }
1874 
1875 /*
1876  * Scan a region of virtual memory, filling in page tables as necessary
1877  * and calling a provided function on each leaf page table.
1878  */
1879 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1880 			unsigned long size, pte_fn_t fn, void *data)
1881 {
1882 	pgd_t *pgd;
1883 	unsigned long next;
1884 	unsigned long end = addr + size;
1885 	int err;
1886 
1887 	BUG_ON(addr >= end);
1888 	pgd = pgd_offset(mm, addr);
1889 	do {
1890 		next = pgd_addr_end(addr, end);
1891 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1892 		if (err)
1893 			break;
1894 	} while (pgd++, addr = next, addr != end);
1895 
1896 	return err;
1897 }
1898 EXPORT_SYMBOL_GPL(apply_to_page_range);
1899 
1900 /*
1901  * handle_pte_fault chooses page fault handler according to an entry which was
1902  * read non-atomically.  Before making any commitment, on those architectures
1903  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1904  * parts, do_swap_page must check under lock before unmapping the pte and
1905  * proceeding (but do_wp_page is only called after already making such a check;
1906  * and do_anonymous_page can safely check later on).
1907  */
1908 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1909 				pte_t *page_table, pte_t orig_pte)
1910 {
1911 	int same = 1;
1912 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1913 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1914 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1915 		spin_lock(ptl);
1916 		same = pte_same(*page_table, orig_pte);
1917 		spin_unlock(ptl);
1918 	}
1919 #endif
1920 	pte_unmap(page_table);
1921 	return same;
1922 }
1923 
1924 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1925 {
1926 	debug_dma_assert_idle(src);
1927 
1928 	/*
1929 	 * If the source page was a PFN mapping, we don't have
1930 	 * a "struct page" for it. We do a best-effort copy by
1931 	 * just copying from the original user address. If that
1932 	 * fails, we just zero-fill it. Live with it.
1933 	 */
1934 	if (unlikely(!src)) {
1935 		void *kaddr = kmap_atomic(dst);
1936 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1937 
1938 		/*
1939 		 * This really shouldn't fail, because the page is there
1940 		 * in the page tables. But it might just be unreadable,
1941 		 * in which case we just give up and fill the result with
1942 		 * zeroes.
1943 		 */
1944 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1945 			clear_page(kaddr);
1946 		kunmap_atomic(kaddr);
1947 		flush_dcache_page(dst);
1948 	} else
1949 		copy_user_highpage(dst, src, va, vma);
1950 }
1951 
1952 /*
1953  * Notify the address space that the page is about to become writable so that
1954  * it can prohibit this or wait for the page to get into an appropriate state.
1955  *
1956  * We do this without the lock held, so that it can sleep if it needs to.
1957  */
1958 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1959 	       unsigned long address)
1960 {
1961 	struct vm_fault vmf;
1962 	int ret;
1963 
1964 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1965 	vmf.pgoff = page->index;
1966 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1967 	vmf.page = page;
1968 	vmf.cow_page = NULL;
1969 
1970 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1971 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1972 		return ret;
1973 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1974 		lock_page(page);
1975 		if (!page->mapping) {
1976 			unlock_page(page);
1977 			return 0; /* retry */
1978 		}
1979 		ret |= VM_FAULT_LOCKED;
1980 	} else
1981 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1982 	return ret;
1983 }
1984 
1985 /*
1986  * This routine handles present pages, when users try to write
1987  * to a shared page. It is done by copying the page to a new address
1988  * and decrementing the shared-page counter for the old page.
1989  *
1990  * Note that this routine assumes that the protection checks have been
1991  * done by the caller (the low-level page fault routine in most cases).
1992  * Thus we can safely just mark it writable once we've done any necessary
1993  * COW.
1994  *
1995  * We also mark the page dirty at this point even though the page will
1996  * change only once the write actually happens. This avoids a few races,
1997  * and potentially makes it more efficient.
1998  *
1999  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2000  * but allow concurrent faults), with pte both mapped and locked.
2001  * We return with mmap_sem still held, but pte unmapped and unlocked.
2002  */
2003 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2004 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2005 		spinlock_t *ptl, pte_t orig_pte)
2006 	__releases(ptl)
2007 {
2008 	struct page *old_page, *new_page = NULL;
2009 	pte_t entry;
2010 	int ret = 0;
2011 	int page_mkwrite = 0;
2012 	bool dirty_shared = false;
2013 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2014 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2015 	struct mem_cgroup *memcg;
2016 
2017 	old_page = vm_normal_page(vma, address, orig_pte);
2018 	if (!old_page) {
2019 		/*
2020 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2021 		 * VM_PFNMAP VMA.
2022 		 *
2023 		 * We should not cow pages in a shared writeable mapping.
2024 		 * Just mark the pages writable as we can't do any dirty
2025 		 * accounting on raw pfn maps.
2026 		 */
2027 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2028 				     (VM_WRITE|VM_SHARED))
2029 			goto reuse;
2030 		goto gotten;
2031 	}
2032 
2033 	/*
2034 	 * Take out anonymous pages first, anonymous shared vmas are
2035 	 * not dirty accountable.
2036 	 */
2037 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2038 		if (!trylock_page(old_page)) {
2039 			page_cache_get(old_page);
2040 			pte_unmap_unlock(page_table, ptl);
2041 			lock_page(old_page);
2042 			page_table = pte_offset_map_lock(mm, pmd, address,
2043 							 &ptl);
2044 			if (!pte_same(*page_table, orig_pte)) {
2045 				unlock_page(old_page);
2046 				goto unlock;
2047 			}
2048 			page_cache_release(old_page);
2049 		}
2050 		if (reuse_swap_page(old_page)) {
2051 			/*
2052 			 * The page is all ours.  Move it to our anon_vma so
2053 			 * the rmap code will not search our parent or siblings.
2054 			 * Protected against the rmap code by the page lock.
2055 			 */
2056 			page_move_anon_rmap(old_page, vma, address);
2057 			unlock_page(old_page);
2058 			goto reuse;
2059 		}
2060 		unlock_page(old_page);
2061 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2062 					(VM_WRITE|VM_SHARED))) {
2063 		page_cache_get(old_page);
2064 		/*
2065 		 * Only catch write-faults on shared writable pages,
2066 		 * read-only shared pages can get COWed by
2067 		 * get_user_pages(.write=1, .force=1).
2068 		 */
2069 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2070 			int tmp;
2071 
2072 			pte_unmap_unlock(page_table, ptl);
2073 			tmp = do_page_mkwrite(vma, old_page, address);
2074 			if (unlikely(!tmp || (tmp &
2075 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2076 				page_cache_release(old_page);
2077 				return tmp;
2078 			}
2079 			/*
2080 			 * Since we dropped the lock we need to revalidate
2081 			 * the PTE as someone else may have changed it.  If
2082 			 * they did, we just return, as we can count on the
2083 			 * MMU to tell us if they didn't also make it writable.
2084 			 */
2085 			page_table = pte_offset_map_lock(mm, pmd, address,
2086 							 &ptl);
2087 			if (!pte_same(*page_table, orig_pte)) {
2088 				unlock_page(old_page);
2089 				goto unlock;
2090 			}
2091 			page_mkwrite = 1;
2092 		}
2093 
2094 		dirty_shared = true;
2095 
2096 reuse:
2097 		/*
2098 		 * Clear the pages cpupid information as the existing
2099 		 * information potentially belongs to a now completely
2100 		 * unrelated process.
2101 		 */
2102 		if (old_page)
2103 			page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2104 
2105 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2106 		entry = pte_mkyoung(orig_pte);
2107 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2108 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2109 			update_mmu_cache(vma, address, page_table);
2110 		pte_unmap_unlock(page_table, ptl);
2111 		ret |= VM_FAULT_WRITE;
2112 
2113 		if (dirty_shared) {
2114 			struct address_space *mapping;
2115 			int dirtied;
2116 
2117 			if (!page_mkwrite)
2118 				lock_page(old_page);
2119 
2120 			dirtied = set_page_dirty(old_page);
2121 			VM_BUG_ON_PAGE(PageAnon(old_page), old_page);
2122 			mapping = old_page->mapping;
2123 			unlock_page(old_page);
2124 			page_cache_release(old_page);
2125 
2126 			if ((dirtied || page_mkwrite) && mapping) {
2127 				/*
2128 				 * Some device drivers do not set page.mapping
2129 				 * but still dirty their pages
2130 				 */
2131 				balance_dirty_pages_ratelimited(mapping);
2132 			}
2133 
2134 			if (!page_mkwrite)
2135 				file_update_time(vma->vm_file);
2136 		}
2137 
2138 		return ret;
2139 	}
2140 
2141 	/*
2142 	 * Ok, we need to copy. Oh, well..
2143 	 */
2144 	page_cache_get(old_page);
2145 gotten:
2146 	pte_unmap_unlock(page_table, ptl);
2147 
2148 	if (unlikely(anon_vma_prepare(vma)))
2149 		goto oom;
2150 
2151 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2152 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2153 		if (!new_page)
2154 			goto oom;
2155 	} else {
2156 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2157 		if (!new_page)
2158 			goto oom;
2159 		cow_user_page(new_page, old_page, address, vma);
2160 	}
2161 	__SetPageUptodate(new_page);
2162 
2163 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2164 		goto oom_free_new;
2165 
2166 	mmun_start  = address & PAGE_MASK;
2167 	mmun_end    = mmun_start + PAGE_SIZE;
2168 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2169 
2170 	/*
2171 	 * Re-check the pte - we dropped the lock
2172 	 */
2173 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2174 	if (likely(pte_same(*page_table, orig_pte))) {
2175 		if (old_page) {
2176 			if (!PageAnon(old_page)) {
2177 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2178 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2179 			}
2180 		} else
2181 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2182 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2183 		entry = mk_pte(new_page, vma->vm_page_prot);
2184 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2185 		/*
2186 		 * Clear the pte entry and flush it first, before updating the
2187 		 * pte with the new entry. This will avoid a race condition
2188 		 * seen in the presence of one thread doing SMC and another
2189 		 * thread doing COW.
2190 		 */
2191 		ptep_clear_flush_notify(vma, address, page_table);
2192 		page_add_new_anon_rmap(new_page, vma, address);
2193 		mem_cgroup_commit_charge(new_page, memcg, false);
2194 		lru_cache_add_active_or_unevictable(new_page, vma);
2195 		/*
2196 		 * We call the notify macro here because, when using secondary
2197 		 * mmu page tables (such as kvm shadow page tables), we want the
2198 		 * new page to be mapped directly into the secondary page table.
2199 		 */
2200 		set_pte_at_notify(mm, address, page_table, entry);
2201 		update_mmu_cache(vma, address, page_table);
2202 		if (old_page) {
2203 			/*
2204 			 * Only after switching the pte to the new page may
2205 			 * we remove the mapcount here. Otherwise another
2206 			 * process may come and find the rmap count decremented
2207 			 * before the pte is switched to the new page, and
2208 			 * "reuse" the old page writing into it while our pte
2209 			 * here still points into it and can be read by other
2210 			 * threads.
2211 			 *
2212 			 * The critical issue is to order this
2213 			 * page_remove_rmap with the ptp_clear_flush above.
2214 			 * Those stores are ordered by (if nothing else,)
2215 			 * the barrier present in the atomic_add_negative
2216 			 * in page_remove_rmap.
2217 			 *
2218 			 * Then the TLB flush in ptep_clear_flush ensures that
2219 			 * no process can access the old page before the
2220 			 * decremented mapcount is visible. And the old page
2221 			 * cannot be reused until after the decremented
2222 			 * mapcount is visible. So transitively, TLBs to
2223 			 * old page will be flushed before it can be reused.
2224 			 */
2225 			page_remove_rmap(old_page);
2226 		}
2227 
2228 		/* Free the old page.. */
2229 		new_page = old_page;
2230 		ret |= VM_FAULT_WRITE;
2231 	} else
2232 		mem_cgroup_cancel_charge(new_page, memcg);
2233 
2234 	if (new_page)
2235 		page_cache_release(new_page);
2236 unlock:
2237 	pte_unmap_unlock(page_table, ptl);
2238 	if (mmun_end > mmun_start)
2239 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2240 	if (old_page) {
2241 		/*
2242 		 * Don't let another task, with possibly unlocked vma,
2243 		 * keep the mlocked page.
2244 		 */
2245 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2246 			lock_page(old_page);	/* LRU manipulation */
2247 			munlock_vma_page(old_page);
2248 			unlock_page(old_page);
2249 		}
2250 		page_cache_release(old_page);
2251 	}
2252 	return ret;
2253 oom_free_new:
2254 	page_cache_release(new_page);
2255 oom:
2256 	if (old_page)
2257 		page_cache_release(old_page);
2258 	return VM_FAULT_OOM;
2259 }
2260 
2261 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2262 		unsigned long start_addr, unsigned long end_addr,
2263 		struct zap_details *details)
2264 {
2265 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2266 }
2267 
2268 static inline void unmap_mapping_range_tree(struct rb_root *root,
2269 					    struct zap_details *details)
2270 {
2271 	struct vm_area_struct *vma;
2272 	pgoff_t vba, vea, zba, zea;
2273 
2274 	vma_interval_tree_foreach(vma, root,
2275 			details->first_index, details->last_index) {
2276 
2277 		vba = vma->vm_pgoff;
2278 		vea = vba + vma_pages(vma) - 1;
2279 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2280 		zba = details->first_index;
2281 		if (zba < vba)
2282 			zba = vba;
2283 		zea = details->last_index;
2284 		if (zea > vea)
2285 			zea = vea;
2286 
2287 		unmap_mapping_range_vma(vma,
2288 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2289 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2290 				details);
2291 	}
2292 }
2293 
2294 /**
2295  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2296  * address_space corresponding to the specified page range in the underlying
2297  * file.
2298  *
2299  * @mapping: the address space containing mmaps to be unmapped.
2300  * @holebegin: byte in first page to unmap, relative to the start of
2301  * the underlying file.  This will be rounded down to a PAGE_SIZE
2302  * boundary.  Note that this is different from truncate_pagecache(), which
2303  * must keep the partial page.  In contrast, we must get rid of
2304  * partial pages.
2305  * @holelen: size of prospective hole in bytes.  This will be rounded
2306  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2307  * end of the file.
2308  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2309  * but 0 when invalidating pagecache, don't throw away private data.
2310  */
2311 void unmap_mapping_range(struct address_space *mapping,
2312 		loff_t const holebegin, loff_t const holelen, int even_cows)
2313 {
2314 	struct zap_details details;
2315 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2316 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2317 
2318 	/* Check for overflow. */
2319 	if (sizeof(holelen) > sizeof(hlen)) {
2320 		long long holeend =
2321 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2322 		if (holeend & ~(long long)ULONG_MAX)
2323 			hlen = ULONG_MAX - hba + 1;
2324 	}
2325 
2326 	details.check_mapping = even_cows? NULL: mapping;
2327 	details.first_index = hba;
2328 	details.last_index = hba + hlen - 1;
2329 	if (details.last_index < details.first_index)
2330 		details.last_index = ULONG_MAX;
2331 
2332 
2333 	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2334 	i_mmap_lock_write(mapping);
2335 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2336 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2337 	i_mmap_unlock_write(mapping);
2338 }
2339 EXPORT_SYMBOL(unmap_mapping_range);
2340 
2341 /*
2342  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2343  * but allow concurrent faults), and pte mapped but not yet locked.
2344  * We return with pte unmapped and unlocked.
2345  *
2346  * We return with the mmap_sem locked or unlocked in the same cases
2347  * as does filemap_fault().
2348  */
2349 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2350 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2351 		unsigned int flags, pte_t orig_pte)
2352 {
2353 	spinlock_t *ptl;
2354 	struct page *page, *swapcache;
2355 	struct mem_cgroup *memcg;
2356 	swp_entry_t entry;
2357 	pte_t pte;
2358 	int locked;
2359 	int exclusive = 0;
2360 	int ret = 0;
2361 
2362 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2363 		goto out;
2364 
2365 	entry = pte_to_swp_entry(orig_pte);
2366 	if (unlikely(non_swap_entry(entry))) {
2367 		if (is_migration_entry(entry)) {
2368 			migration_entry_wait(mm, pmd, address);
2369 		} else if (is_hwpoison_entry(entry)) {
2370 			ret = VM_FAULT_HWPOISON;
2371 		} else {
2372 			print_bad_pte(vma, address, orig_pte, NULL);
2373 			ret = VM_FAULT_SIGBUS;
2374 		}
2375 		goto out;
2376 	}
2377 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2378 	page = lookup_swap_cache(entry);
2379 	if (!page) {
2380 		page = swapin_readahead(entry,
2381 					GFP_HIGHUSER_MOVABLE, vma, address);
2382 		if (!page) {
2383 			/*
2384 			 * Back out if somebody else faulted in this pte
2385 			 * while we released the pte lock.
2386 			 */
2387 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2388 			if (likely(pte_same(*page_table, orig_pte)))
2389 				ret = VM_FAULT_OOM;
2390 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2391 			goto unlock;
2392 		}
2393 
2394 		/* Had to read the page from swap area: Major fault */
2395 		ret = VM_FAULT_MAJOR;
2396 		count_vm_event(PGMAJFAULT);
2397 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2398 	} else if (PageHWPoison(page)) {
2399 		/*
2400 		 * hwpoisoned dirty swapcache pages are kept for killing
2401 		 * owner processes (which may be unknown at hwpoison time)
2402 		 */
2403 		ret = VM_FAULT_HWPOISON;
2404 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2405 		swapcache = page;
2406 		goto out_release;
2407 	}
2408 
2409 	swapcache = page;
2410 	locked = lock_page_or_retry(page, mm, flags);
2411 
2412 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2413 	if (!locked) {
2414 		ret |= VM_FAULT_RETRY;
2415 		goto out_release;
2416 	}
2417 
2418 	/*
2419 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2420 	 * release the swapcache from under us.  The page pin, and pte_same
2421 	 * test below, are not enough to exclude that.  Even if it is still
2422 	 * swapcache, we need to check that the page's swap has not changed.
2423 	 */
2424 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2425 		goto out_page;
2426 
2427 	page = ksm_might_need_to_copy(page, vma, address);
2428 	if (unlikely(!page)) {
2429 		ret = VM_FAULT_OOM;
2430 		page = swapcache;
2431 		goto out_page;
2432 	}
2433 
2434 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2435 		ret = VM_FAULT_OOM;
2436 		goto out_page;
2437 	}
2438 
2439 	/*
2440 	 * Back out if somebody else already faulted in this pte.
2441 	 */
2442 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2443 	if (unlikely(!pte_same(*page_table, orig_pte)))
2444 		goto out_nomap;
2445 
2446 	if (unlikely(!PageUptodate(page))) {
2447 		ret = VM_FAULT_SIGBUS;
2448 		goto out_nomap;
2449 	}
2450 
2451 	/*
2452 	 * The page isn't present yet, go ahead with the fault.
2453 	 *
2454 	 * Be careful about the sequence of operations here.
2455 	 * To get its accounting right, reuse_swap_page() must be called
2456 	 * while the page is counted on swap but not yet in mapcount i.e.
2457 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2458 	 * must be called after the swap_free(), or it will never succeed.
2459 	 */
2460 
2461 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2462 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2463 	pte = mk_pte(page, vma->vm_page_prot);
2464 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2465 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2466 		flags &= ~FAULT_FLAG_WRITE;
2467 		ret |= VM_FAULT_WRITE;
2468 		exclusive = 1;
2469 	}
2470 	flush_icache_page(vma, page);
2471 	if (pte_swp_soft_dirty(orig_pte))
2472 		pte = pte_mksoft_dirty(pte);
2473 	set_pte_at(mm, address, page_table, pte);
2474 	if (page == swapcache) {
2475 		do_page_add_anon_rmap(page, vma, address, exclusive);
2476 		mem_cgroup_commit_charge(page, memcg, true);
2477 	} else { /* ksm created a completely new copy */
2478 		page_add_new_anon_rmap(page, vma, address);
2479 		mem_cgroup_commit_charge(page, memcg, false);
2480 		lru_cache_add_active_or_unevictable(page, vma);
2481 	}
2482 
2483 	swap_free(entry);
2484 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2485 		try_to_free_swap(page);
2486 	unlock_page(page);
2487 	if (page != swapcache) {
2488 		/*
2489 		 * Hold the lock to avoid the swap entry to be reused
2490 		 * until we take the PT lock for the pte_same() check
2491 		 * (to avoid false positives from pte_same). For
2492 		 * further safety release the lock after the swap_free
2493 		 * so that the swap count won't change under a
2494 		 * parallel locked swapcache.
2495 		 */
2496 		unlock_page(swapcache);
2497 		page_cache_release(swapcache);
2498 	}
2499 
2500 	if (flags & FAULT_FLAG_WRITE) {
2501 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2502 		if (ret & VM_FAULT_ERROR)
2503 			ret &= VM_FAULT_ERROR;
2504 		goto out;
2505 	}
2506 
2507 	/* No need to invalidate - it was non-present before */
2508 	update_mmu_cache(vma, address, page_table);
2509 unlock:
2510 	pte_unmap_unlock(page_table, ptl);
2511 out:
2512 	return ret;
2513 out_nomap:
2514 	mem_cgroup_cancel_charge(page, memcg);
2515 	pte_unmap_unlock(page_table, ptl);
2516 out_page:
2517 	unlock_page(page);
2518 out_release:
2519 	page_cache_release(page);
2520 	if (page != swapcache) {
2521 		unlock_page(swapcache);
2522 		page_cache_release(swapcache);
2523 	}
2524 	return ret;
2525 }
2526 
2527 /*
2528  * This is like a special single-page "expand_{down|up}wards()",
2529  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2530  * doesn't hit another vma.
2531  */
2532 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2533 {
2534 	address &= PAGE_MASK;
2535 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2536 		struct vm_area_struct *prev = vma->vm_prev;
2537 
2538 		/*
2539 		 * Is there a mapping abutting this one below?
2540 		 *
2541 		 * That's only ok if it's the same stack mapping
2542 		 * that has gotten split..
2543 		 */
2544 		if (prev && prev->vm_end == address)
2545 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2546 
2547 		return expand_downwards(vma, address - PAGE_SIZE);
2548 	}
2549 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2550 		struct vm_area_struct *next = vma->vm_next;
2551 
2552 		/* As VM_GROWSDOWN but s/below/above/ */
2553 		if (next && next->vm_start == address + PAGE_SIZE)
2554 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2555 
2556 		return expand_upwards(vma, address + PAGE_SIZE);
2557 	}
2558 	return 0;
2559 }
2560 
2561 /*
2562  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2563  * but allow concurrent faults), and pte mapped but not yet locked.
2564  * We return with mmap_sem still held, but pte unmapped and unlocked.
2565  */
2566 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2567 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2568 		unsigned int flags)
2569 {
2570 	struct mem_cgroup *memcg;
2571 	struct page *page;
2572 	spinlock_t *ptl;
2573 	pte_t entry;
2574 
2575 	pte_unmap(page_table);
2576 
2577 	/* Check if we need to add a guard page to the stack */
2578 	if (check_stack_guard_page(vma, address) < 0)
2579 		return VM_FAULT_SIGSEGV;
2580 
2581 	/* Use the zero-page for reads */
2582 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2583 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2584 						vma->vm_page_prot));
2585 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2586 		if (!pte_none(*page_table))
2587 			goto unlock;
2588 		goto setpte;
2589 	}
2590 
2591 	/* Allocate our own private page. */
2592 	if (unlikely(anon_vma_prepare(vma)))
2593 		goto oom;
2594 	page = alloc_zeroed_user_highpage_movable(vma, address);
2595 	if (!page)
2596 		goto oom;
2597 	/*
2598 	 * The memory barrier inside __SetPageUptodate makes sure that
2599 	 * preceeding stores to the page contents become visible before
2600 	 * the set_pte_at() write.
2601 	 */
2602 	__SetPageUptodate(page);
2603 
2604 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2605 		goto oom_free_page;
2606 
2607 	entry = mk_pte(page, vma->vm_page_prot);
2608 	if (vma->vm_flags & VM_WRITE)
2609 		entry = pte_mkwrite(pte_mkdirty(entry));
2610 
2611 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2612 	if (!pte_none(*page_table))
2613 		goto release;
2614 
2615 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2616 	page_add_new_anon_rmap(page, vma, address);
2617 	mem_cgroup_commit_charge(page, memcg, false);
2618 	lru_cache_add_active_or_unevictable(page, vma);
2619 setpte:
2620 	set_pte_at(mm, address, page_table, entry);
2621 
2622 	/* No need to invalidate - it was non-present before */
2623 	update_mmu_cache(vma, address, page_table);
2624 unlock:
2625 	pte_unmap_unlock(page_table, ptl);
2626 	return 0;
2627 release:
2628 	mem_cgroup_cancel_charge(page, memcg);
2629 	page_cache_release(page);
2630 	goto unlock;
2631 oom_free_page:
2632 	page_cache_release(page);
2633 oom:
2634 	return VM_FAULT_OOM;
2635 }
2636 
2637 /*
2638  * The mmap_sem must have been held on entry, and may have been
2639  * released depending on flags and vma->vm_ops->fault() return value.
2640  * See filemap_fault() and __lock_page_retry().
2641  */
2642 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2643 			pgoff_t pgoff, unsigned int flags,
2644 			struct page *cow_page, struct page **page)
2645 {
2646 	struct vm_fault vmf;
2647 	int ret;
2648 
2649 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2650 	vmf.pgoff = pgoff;
2651 	vmf.flags = flags;
2652 	vmf.page = NULL;
2653 	vmf.cow_page = cow_page;
2654 
2655 	ret = vma->vm_ops->fault(vma, &vmf);
2656 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2657 		return ret;
2658 	if (!vmf.page)
2659 		goto out;
2660 
2661 	if (unlikely(PageHWPoison(vmf.page))) {
2662 		if (ret & VM_FAULT_LOCKED)
2663 			unlock_page(vmf.page);
2664 		page_cache_release(vmf.page);
2665 		return VM_FAULT_HWPOISON;
2666 	}
2667 
2668 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2669 		lock_page(vmf.page);
2670 	else
2671 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2672 
2673  out:
2674 	*page = vmf.page;
2675 	return ret;
2676 }
2677 
2678 /**
2679  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2680  *
2681  * @vma: virtual memory area
2682  * @address: user virtual address
2683  * @page: page to map
2684  * @pte: pointer to target page table entry
2685  * @write: true, if new entry is writable
2686  * @anon: true, if it's anonymous page
2687  *
2688  * Caller must hold page table lock relevant for @pte.
2689  *
2690  * Target users are page handler itself and implementations of
2691  * vm_ops->map_pages.
2692  */
2693 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2694 		struct page *page, pte_t *pte, bool write, bool anon)
2695 {
2696 	pte_t entry;
2697 
2698 	flush_icache_page(vma, page);
2699 	entry = mk_pte(page, vma->vm_page_prot);
2700 	if (write)
2701 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2702 	if (anon) {
2703 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2704 		page_add_new_anon_rmap(page, vma, address);
2705 	} else {
2706 		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2707 		page_add_file_rmap(page);
2708 	}
2709 	set_pte_at(vma->vm_mm, address, pte, entry);
2710 
2711 	/* no need to invalidate: a not-present page won't be cached */
2712 	update_mmu_cache(vma, address, pte);
2713 }
2714 
2715 static unsigned long fault_around_bytes __read_mostly =
2716 	rounddown_pow_of_two(65536);
2717 
2718 #ifdef CONFIG_DEBUG_FS
2719 static int fault_around_bytes_get(void *data, u64 *val)
2720 {
2721 	*val = fault_around_bytes;
2722 	return 0;
2723 }
2724 
2725 /*
2726  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2727  * rounded down to nearest page order. It's what do_fault_around() expects to
2728  * see.
2729  */
2730 static int fault_around_bytes_set(void *data, u64 val)
2731 {
2732 	if (val / PAGE_SIZE > PTRS_PER_PTE)
2733 		return -EINVAL;
2734 	if (val > PAGE_SIZE)
2735 		fault_around_bytes = rounddown_pow_of_two(val);
2736 	else
2737 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2738 	return 0;
2739 }
2740 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2741 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2742 
2743 static int __init fault_around_debugfs(void)
2744 {
2745 	void *ret;
2746 
2747 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2748 			&fault_around_bytes_fops);
2749 	if (!ret)
2750 		pr_warn("Failed to create fault_around_bytes in debugfs");
2751 	return 0;
2752 }
2753 late_initcall(fault_around_debugfs);
2754 #endif
2755 
2756 /*
2757  * do_fault_around() tries to map few pages around the fault address. The hope
2758  * is that the pages will be needed soon and this will lower the number of
2759  * faults to handle.
2760  *
2761  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2762  * not ready to be mapped: not up-to-date, locked, etc.
2763  *
2764  * This function is called with the page table lock taken. In the split ptlock
2765  * case the page table lock only protects only those entries which belong to
2766  * the page table corresponding to the fault address.
2767  *
2768  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2769  * only once.
2770  *
2771  * fault_around_pages() defines how many pages we'll try to map.
2772  * do_fault_around() expects it to return a power of two less than or equal to
2773  * PTRS_PER_PTE.
2774  *
2775  * The virtual address of the area that we map is naturally aligned to the
2776  * fault_around_pages() value (and therefore to page order).  This way it's
2777  * easier to guarantee that we don't cross page table boundaries.
2778  */
2779 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2780 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2781 {
2782 	unsigned long start_addr, nr_pages, mask;
2783 	pgoff_t max_pgoff;
2784 	struct vm_fault vmf;
2785 	int off;
2786 
2787 	nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2788 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2789 
2790 	start_addr = max(address & mask, vma->vm_start);
2791 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2792 	pte -= off;
2793 	pgoff -= off;
2794 
2795 	/*
2796 	 *  max_pgoff is either end of page table or end of vma
2797 	 *  or fault_around_pages() from pgoff, depending what is nearest.
2798 	 */
2799 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2800 		PTRS_PER_PTE - 1;
2801 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2802 			pgoff + nr_pages - 1);
2803 
2804 	/* Check if it makes any sense to call ->map_pages */
2805 	while (!pte_none(*pte)) {
2806 		if (++pgoff > max_pgoff)
2807 			return;
2808 		start_addr += PAGE_SIZE;
2809 		if (start_addr >= vma->vm_end)
2810 			return;
2811 		pte++;
2812 	}
2813 
2814 	vmf.virtual_address = (void __user *) start_addr;
2815 	vmf.pte = pte;
2816 	vmf.pgoff = pgoff;
2817 	vmf.max_pgoff = max_pgoff;
2818 	vmf.flags = flags;
2819 	vma->vm_ops->map_pages(vma, &vmf);
2820 }
2821 
2822 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2823 		unsigned long address, pmd_t *pmd,
2824 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2825 {
2826 	struct page *fault_page;
2827 	spinlock_t *ptl;
2828 	pte_t *pte;
2829 	int ret = 0;
2830 
2831 	/*
2832 	 * Let's call ->map_pages() first and use ->fault() as fallback
2833 	 * if page by the offset is not ready to be mapped (cold cache or
2834 	 * something).
2835 	 */
2836 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2837 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2838 		do_fault_around(vma, address, pte, pgoff, flags);
2839 		if (!pte_same(*pte, orig_pte))
2840 			goto unlock_out;
2841 		pte_unmap_unlock(pte, ptl);
2842 	}
2843 
2844 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2845 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2846 		return ret;
2847 
2848 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2849 	if (unlikely(!pte_same(*pte, orig_pte))) {
2850 		pte_unmap_unlock(pte, ptl);
2851 		unlock_page(fault_page);
2852 		page_cache_release(fault_page);
2853 		return ret;
2854 	}
2855 	do_set_pte(vma, address, fault_page, pte, false, false);
2856 	unlock_page(fault_page);
2857 unlock_out:
2858 	pte_unmap_unlock(pte, ptl);
2859 	return ret;
2860 }
2861 
2862 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2863 		unsigned long address, pmd_t *pmd,
2864 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2865 {
2866 	struct page *fault_page, *new_page;
2867 	struct mem_cgroup *memcg;
2868 	spinlock_t *ptl;
2869 	pte_t *pte;
2870 	int ret;
2871 
2872 	if (unlikely(anon_vma_prepare(vma)))
2873 		return VM_FAULT_OOM;
2874 
2875 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2876 	if (!new_page)
2877 		return VM_FAULT_OOM;
2878 
2879 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2880 		page_cache_release(new_page);
2881 		return VM_FAULT_OOM;
2882 	}
2883 
2884 	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
2885 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2886 		goto uncharge_out;
2887 
2888 	if (fault_page)
2889 		copy_user_highpage(new_page, fault_page, address, vma);
2890 	__SetPageUptodate(new_page);
2891 
2892 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2893 	if (unlikely(!pte_same(*pte, orig_pte))) {
2894 		pte_unmap_unlock(pte, ptl);
2895 		if (fault_page) {
2896 			unlock_page(fault_page);
2897 			page_cache_release(fault_page);
2898 		} else {
2899 			/*
2900 			 * The fault handler has no page to lock, so it holds
2901 			 * i_mmap_lock for read to protect against truncate.
2902 			 */
2903 			i_mmap_unlock_read(vma->vm_file->f_mapping);
2904 		}
2905 		goto uncharge_out;
2906 	}
2907 	do_set_pte(vma, address, new_page, pte, true, true);
2908 	mem_cgroup_commit_charge(new_page, memcg, false);
2909 	lru_cache_add_active_or_unevictable(new_page, vma);
2910 	pte_unmap_unlock(pte, ptl);
2911 	if (fault_page) {
2912 		unlock_page(fault_page);
2913 		page_cache_release(fault_page);
2914 	} else {
2915 		/*
2916 		 * The fault handler has no page to lock, so it holds
2917 		 * i_mmap_lock for read to protect against truncate.
2918 		 */
2919 		i_mmap_unlock_read(vma->vm_file->f_mapping);
2920 	}
2921 	return ret;
2922 uncharge_out:
2923 	mem_cgroup_cancel_charge(new_page, memcg);
2924 	page_cache_release(new_page);
2925 	return ret;
2926 }
2927 
2928 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2929 		unsigned long address, pmd_t *pmd,
2930 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2931 {
2932 	struct page *fault_page;
2933 	struct address_space *mapping;
2934 	spinlock_t *ptl;
2935 	pte_t *pte;
2936 	int dirtied = 0;
2937 	int ret, tmp;
2938 
2939 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2940 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2941 		return ret;
2942 
2943 	/*
2944 	 * Check if the backing address space wants to know that the page is
2945 	 * about to become writable
2946 	 */
2947 	if (vma->vm_ops->page_mkwrite) {
2948 		unlock_page(fault_page);
2949 		tmp = do_page_mkwrite(vma, fault_page, address);
2950 		if (unlikely(!tmp ||
2951 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2952 			page_cache_release(fault_page);
2953 			return tmp;
2954 		}
2955 	}
2956 
2957 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2958 	if (unlikely(!pte_same(*pte, orig_pte))) {
2959 		pte_unmap_unlock(pte, ptl);
2960 		unlock_page(fault_page);
2961 		page_cache_release(fault_page);
2962 		return ret;
2963 	}
2964 	do_set_pte(vma, address, fault_page, pte, true, false);
2965 	pte_unmap_unlock(pte, ptl);
2966 
2967 	if (set_page_dirty(fault_page))
2968 		dirtied = 1;
2969 	/*
2970 	 * Take a local copy of the address_space - page.mapping may be zeroed
2971 	 * by truncate after unlock_page().   The address_space itself remains
2972 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2973 	 * release semantics to prevent the compiler from undoing this copying.
2974 	 */
2975 	mapping = fault_page->mapping;
2976 	unlock_page(fault_page);
2977 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
2978 		/*
2979 		 * Some device drivers do not set page.mapping but still
2980 		 * dirty their pages
2981 		 */
2982 		balance_dirty_pages_ratelimited(mapping);
2983 	}
2984 
2985 	if (!vma->vm_ops->page_mkwrite)
2986 		file_update_time(vma->vm_file);
2987 
2988 	return ret;
2989 }
2990 
2991 /*
2992  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2993  * but allow concurrent faults).
2994  * The mmap_sem may have been released depending on flags and our
2995  * return value.  See filemap_fault() and __lock_page_or_retry().
2996  */
2997 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2998 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2999 		unsigned int flags, pte_t orig_pte)
3000 {
3001 	pgoff_t pgoff = (((address & PAGE_MASK)
3002 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3003 
3004 	pte_unmap(page_table);
3005 	if (!(flags & FAULT_FLAG_WRITE))
3006 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3007 				orig_pte);
3008 	if (!(vma->vm_flags & VM_SHARED))
3009 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3010 				orig_pte);
3011 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3012 }
3013 
3014 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3015 				unsigned long addr, int page_nid,
3016 				int *flags)
3017 {
3018 	get_page(page);
3019 
3020 	count_vm_numa_event(NUMA_HINT_FAULTS);
3021 	if (page_nid == numa_node_id()) {
3022 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3023 		*flags |= TNF_FAULT_LOCAL;
3024 	}
3025 
3026 	return mpol_misplaced(page, vma, addr);
3027 }
3028 
3029 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3030 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3031 {
3032 	struct page *page = NULL;
3033 	spinlock_t *ptl;
3034 	int page_nid = -1;
3035 	int last_cpupid;
3036 	int target_nid;
3037 	bool migrated = false;
3038 	int flags = 0;
3039 
3040 	/* A PROT_NONE fault should not end up here */
3041 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3042 
3043 	/*
3044 	* The "pte" at this point cannot be used safely without
3045 	* validation through pte_unmap_same(). It's of NUMA type but
3046 	* the pfn may be screwed if the read is non atomic.
3047 	*
3048 	* We can safely just do a "set_pte_at()", because the old
3049 	* page table entry is not accessible, so there would be no
3050 	* concurrent hardware modifications to the PTE.
3051 	*/
3052 	ptl = pte_lockptr(mm, pmd);
3053 	spin_lock(ptl);
3054 	if (unlikely(!pte_same(*ptep, pte))) {
3055 		pte_unmap_unlock(ptep, ptl);
3056 		goto out;
3057 	}
3058 
3059 	/* Make it present again */
3060 	pte = pte_modify(pte, vma->vm_page_prot);
3061 	pte = pte_mkyoung(pte);
3062 	set_pte_at(mm, addr, ptep, pte);
3063 	update_mmu_cache(vma, addr, ptep);
3064 
3065 	page = vm_normal_page(vma, addr, pte);
3066 	if (!page) {
3067 		pte_unmap_unlock(ptep, ptl);
3068 		return 0;
3069 	}
3070 
3071 	/*
3072 	 * Avoid grouping on DSO/COW pages in specific and RO pages
3073 	 * in general, RO pages shouldn't hurt as much anyway since
3074 	 * they can be in shared cache state.
3075 	 *
3076 	 * FIXME! This checks "pmd_dirty()" as an approximation of
3077 	 * "is this a read-only page", since checking "pmd_write()"
3078 	 * is even more broken. We haven't actually turned this into
3079 	 * a writable page, so pmd_write() will always be false.
3080 	 */
3081 	if (!pte_dirty(pte))
3082 		flags |= TNF_NO_GROUP;
3083 
3084 	/*
3085 	 * Flag if the page is shared between multiple address spaces. This
3086 	 * is later used when determining whether to group tasks together
3087 	 */
3088 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3089 		flags |= TNF_SHARED;
3090 
3091 	last_cpupid = page_cpupid_last(page);
3092 	page_nid = page_to_nid(page);
3093 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3094 	pte_unmap_unlock(ptep, ptl);
3095 	if (target_nid == -1) {
3096 		put_page(page);
3097 		goto out;
3098 	}
3099 
3100 	/* Migrate to the requested node */
3101 	migrated = migrate_misplaced_page(page, vma, target_nid);
3102 	if (migrated) {
3103 		page_nid = target_nid;
3104 		flags |= TNF_MIGRATED;
3105 	}
3106 
3107 out:
3108 	if (page_nid != -1)
3109 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3110 	return 0;
3111 }
3112 
3113 /*
3114  * These routines also need to handle stuff like marking pages dirty
3115  * and/or accessed for architectures that don't do it in hardware (most
3116  * RISC architectures).  The early dirtying is also good on the i386.
3117  *
3118  * There is also a hook called "update_mmu_cache()" that architectures
3119  * with external mmu caches can use to update those (ie the Sparc or
3120  * PowerPC hashed page tables that act as extended TLBs).
3121  *
3122  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3123  * but allow concurrent faults), and pte mapped but not yet locked.
3124  * We return with pte unmapped and unlocked.
3125  *
3126  * The mmap_sem may have been released depending on flags and our
3127  * return value.  See filemap_fault() and __lock_page_or_retry().
3128  */
3129 static int handle_pte_fault(struct mm_struct *mm,
3130 		     struct vm_area_struct *vma, unsigned long address,
3131 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3132 {
3133 	pte_t entry;
3134 	spinlock_t *ptl;
3135 
3136 	/*
3137 	 * some architectures can have larger ptes than wordsize,
3138 	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3139 	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3140 	 * The code below just needs a consistent view for the ifs and
3141 	 * we later double check anyway with the ptl lock held. So here
3142 	 * a barrier will do.
3143 	 */
3144 	entry = *pte;
3145 	barrier();
3146 	if (!pte_present(entry)) {
3147 		if (pte_none(entry)) {
3148 			if (vma->vm_ops) {
3149 				if (likely(vma->vm_ops->fault))
3150 					return do_fault(mm, vma, address, pte,
3151 							pmd, flags, entry);
3152 			}
3153 			return do_anonymous_page(mm, vma, address,
3154 						 pte, pmd, flags);
3155 		}
3156 		return do_swap_page(mm, vma, address,
3157 					pte, pmd, flags, entry);
3158 	}
3159 
3160 	if (pte_protnone(entry))
3161 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3162 
3163 	ptl = pte_lockptr(mm, pmd);
3164 	spin_lock(ptl);
3165 	if (unlikely(!pte_same(*pte, entry)))
3166 		goto unlock;
3167 	if (flags & FAULT_FLAG_WRITE) {
3168 		if (!pte_write(entry))
3169 			return do_wp_page(mm, vma, address,
3170 					pte, pmd, ptl, entry);
3171 		entry = pte_mkdirty(entry);
3172 	}
3173 	entry = pte_mkyoung(entry);
3174 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3175 		update_mmu_cache(vma, address, pte);
3176 	} else {
3177 		/*
3178 		 * This is needed only for protection faults but the arch code
3179 		 * is not yet telling us if this is a protection fault or not.
3180 		 * This still avoids useless tlb flushes for .text page faults
3181 		 * with threads.
3182 		 */
3183 		if (flags & FAULT_FLAG_WRITE)
3184 			flush_tlb_fix_spurious_fault(vma, address);
3185 	}
3186 unlock:
3187 	pte_unmap_unlock(pte, ptl);
3188 	return 0;
3189 }
3190 
3191 /*
3192  * By the time we get here, we already hold the mm semaphore
3193  *
3194  * The mmap_sem may have been released depending on flags and our
3195  * return value.  See filemap_fault() and __lock_page_or_retry().
3196  */
3197 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3198 			     unsigned long address, unsigned int flags)
3199 {
3200 	pgd_t *pgd;
3201 	pud_t *pud;
3202 	pmd_t *pmd;
3203 	pte_t *pte;
3204 
3205 	if (unlikely(is_vm_hugetlb_page(vma)))
3206 		return hugetlb_fault(mm, vma, address, flags);
3207 
3208 	pgd = pgd_offset(mm, address);
3209 	pud = pud_alloc(mm, pgd, address);
3210 	if (!pud)
3211 		return VM_FAULT_OOM;
3212 	pmd = pmd_alloc(mm, pud, address);
3213 	if (!pmd)
3214 		return VM_FAULT_OOM;
3215 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3216 		int ret = VM_FAULT_FALLBACK;
3217 		if (!vma->vm_ops)
3218 			ret = do_huge_pmd_anonymous_page(mm, vma, address,
3219 					pmd, flags);
3220 		if (!(ret & VM_FAULT_FALLBACK))
3221 			return ret;
3222 	} else {
3223 		pmd_t orig_pmd = *pmd;
3224 		int ret;
3225 
3226 		barrier();
3227 		if (pmd_trans_huge(orig_pmd)) {
3228 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3229 
3230 			/*
3231 			 * If the pmd is splitting, return and retry the
3232 			 * the fault.  Alternative: wait until the split
3233 			 * is done, and goto retry.
3234 			 */
3235 			if (pmd_trans_splitting(orig_pmd))
3236 				return 0;
3237 
3238 			if (pmd_protnone(orig_pmd))
3239 				return do_huge_pmd_numa_page(mm, vma, address,
3240 							     orig_pmd, pmd);
3241 
3242 			if (dirty && !pmd_write(orig_pmd)) {
3243 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3244 							  orig_pmd);
3245 				if (!(ret & VM_FAULT_FALLBACK))
3246 					return ret;
3247 			} else {
3248 				huge_pmd_set_accessed(mm, vma, address, pmd,
3249 						      orig_pmd, dirty);
3250 				return 0;
3251 			}
3252 		}
3253 	}
3254 
3255 	/*
3256 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3257 	 * run pte_offset_map on the pmd, if an huge pmd could
3258 	 * materialize from under us from a different thread.
3259 	 */
3260 	if (unlikely(pmd_none(*pmd)) &&
3261 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3262 		return VM_FAULT_OOM;
3263 	/* if an huge pmd materialized from under us just retry later */
3264 	if (unlikely(pmd_trans_huge(*pmd)))
3265 		return 0;
3266 	/*
3267 	 * A regular pmd is established and it can't morph into a huge pmd
3268 	 * from under us anymore at this point because we hold the mmap_sem
3269 	 * read mode and khugepaged takes it in write mode. So now it's
3270 	 * safe to run pte_offset_map().
3271 	 */
3272 	pte = pte_offset_map(pmd, address);
3273 
3274 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3275 }
3276 
3277 /*
3278  * By the time we get here, we already hold the mm semaphore
3279  *
3280  * The mmap_sem may have been released depending on flags and our
3281  * return value.  See filemap_fault() and __lock_page_or_retry().
3282  */
3283 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3284 		    unsigned long address, unsigned int flags)
3285 {
3286 	int ret;
3287 
3288 	__set_current_state(TASK_RUNNING);
3289 
3290 	count_vm_event(PGFAULT);
3291 	mem_cgroup_count_vm_event(mm, PGFAULT);
3292 
3293 	/* do counter updates before entering really critical section. */
3294 	check_sync_rss_stat(current);
3295 
3296 	/*
3297 	 * Enable the memcg OOM handling for faults triggered in user
3298 	 * space.  Kernel faults are handled more gracefully.
3299 	 */
3300 	if (flags & FAULT_FLAG_USER)
3301 		mem_cgroup_oom_enable();
3302 
3303 	ret = __handle_mm_fault(mm, vma, address, flags);
3304 
3305 	if (flags & FAULT_FLAG_USER) {
3306 		mem_cgroup_oom_disable();
3307                 /*
3308                  * The task may have entered a memcg OOM situation but
3309                  * if the allocation error was handled gracefully (no
3310                  * VM_FAULT_OOM), there is no need to kill anything.
3311                  * Just clean up the OOM state peacefully.
3312                  */
3313                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3314                         mem_cgroup_oom_synchronize(false);
3315 	}
3316 
3317 	return ret;
3318 }
3319 EXPORT_SYMBOL_GPL(handle_mm_fault);
3320 
3321 #ifndef __PAGETABLE_PUD_FOLDED
3322 /*
3323  * Allocate page upper directory.
3324  * We've already handled the fast-path in-line.
3325  */
3326 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3327 {
3328 	pud_t *new = pud_alloc_one(mm, address);
3329 	if (!new)
3330 		return -ENOMEM;
3331 
3332 	smp_wmb(); /* See comment in __pte_alloc */
3333 
3334 	spin_lock(&mm->page_table_lock);
3335 	if (pgd_present(*pgd))		/* Another has populated it */
3336 		pud_free(mm, new);
3337 	else
3338 		pgd_populate(mm, pgd, new);
3339 	spin_unlock(&mm->page_table_lock);
3340 	return 0;
3341 }
3342 #endif /* __PAGETABLE_PUD_FOLDED */
3343 
3344 #ifndef __PAGETABLE_PMD_FOLDED
3345 /*
3346  * Allocate page middle directory.
3347  * We've already handled the fast-path in-line.
3348  */
3349 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3350 {
3351 	pmd_t *new = pmd_alloc_one(mm, address);
3352 	if (!new)
3353 		return -ENOMEM;
3354 
3355 	smp_wmb(); /* See comment in __pte_alloc */
3356 
3357 	spin_lock(&mm->page_table_lock);
3358 #ifndef __ARCH_HAS_4LEVEL_HACK
3359 	if (!pud_present(*pud)) {
3360 		mm_inc_nr_pmds(mm);
3361 		pud_populate(mm, pud, new);
3362 	} else	/* Another has populated it */
3363 		pmd_free(mm, new);
3364 #else
3365 	if (!pgd_present(*pud)) {
3366 		mm_inc_nr_pmds(mm);
3367 		pgd_populate(mm, pud, new);
3368 	} else /* Another has populated it */
3369 		pmd_free(mm, new);
3370 #endif /* __ARCH_HAS_4LEVEL_HACK */
3371 	spin_unlock(&mm->page_table_lock);
3372 	return 0;
3373 }
3374 #endif /* __PAGETABLE_PMD_FOLDED */
3375 
3376 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3377 		pte_t **ptepp, spinlock_t **ptlp)
3378 {
3379 	pgd_t *pgd;
3380 	pud_t *pud;
3381 	pmd_t *pmd;
3382 	pte_t *ptep;
3383 
3384 	pgd = pgd_offset(mm, address);
3385 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3386 		goto out;
3387 
3388 	pud = pud_offset(pgd, address);
3389 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3390 		goto out;
3391 
3392 	pmd = pmd_offset(pud, address);
3393 	VM_BUG_ON(pmd_trans_huge(*pmd));
3394 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3395 		goto out;
3396 
3397 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3398 	if (pmd_huge(*pmd))
3399 		goto out;
3400 
3401 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3402 	if (!ptep)
3403 		goto out;
3404 	if (!pte_present(*ptep))
3405 		goto unlock;
3406 	*ptepp = ptep;
3407 	return 0;
3408 unlock:
3409 	pte_unmap_unlock(ptep, *ptlp);
3410 out:
3411 	return -EINVAL;
3412 }
3413 
3414 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3415 			     pte_t **ptepp, spinlock_t **ptlp)
3416 {
3417 	int res;
3418 
3419 	/* (void) is needed to make gcc happy */
3420 	(void) __cond_lock(*ptlp,
3421 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3422 	return res;
3423 }
3424 
3425 /**
3426  * follow_pfn - look up PFN at a user virtual address
3427  * @vma: memory mapping
3428  * @address: user virtual address
3429  * @pfn: location to store found PFN
3430  *
3431  * Only IO mappings and raw PFN mappings are allowed.
3432  *
3433  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3434  */
3435 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3436 	unsigned long *pfn)
3437 {
3438 	int ret = -EINVAL;
3439 	spinlock_t *ptl;
3440 	pte_t *ptep;
3441 
3442 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3443 		return ret;
3444 
3445 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3446 	if (ret)
3447 		return ret;
3448 	*pfn = pte_pfn(*ptep);
3449 	pte_unmap_unlock(ptep, ptl);
3450 	return 0;
3451 }
3452 EXPORT_SYMBOL(follow_pfn);
3453 
3454 #ifdef CONFIG_HAVE_IOREMAP_PROT
3455 int follow_phys(struct vm_area_struct *vma,
3456 		unsigned long address, unsigned int flags,
3457 		unsigned long *prot, resource_size_t *phys)
3458 {
3459 	int ret = -EINVAL;
3460 	pte_t *ptep, pte;
3461 	spinlock_t *ptl;
3462 
3463 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3464 		goto out;
3465 
3466 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3467 		goto out;
3468 	pte = *ptep;
3469 
3470 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3471 		goto unlock;
3472 
3473 	*prot = pgprot_val(pte_pgprot(pte));
3474 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3475 
3476 	ret = 0;
3477 unlock:
3478 	pte_unmap_unlock(ptep, ptl);
3479 out:
3480 	return ret;
3481 }
3482 
3483 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3484 			void *buf, int len, int write)
3485 {
3486 	resource_size_t phys_addr;
3487 	unsigned long prot = 0;
3488 	void __iomem *maddr;
3489 	int offset = addr & (PAGE_SIZE-1);
3490 
3491 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3492 		return -EINVAL;
3493 
3494 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3495 	if (write)
3496 		memcpy_toio(maddr + offset, buf, len);
3497 	else
3498 		memcpy_fromio(buf, maddr + offset, len);
3499 	iounmap(maddr);
3500 
3501 	return len;
3502 }
3503 EXPORT_SYMBOL_GPL(generic_access_phys);
3504 #endif
3505 
3506 /*
3507  * Access another process' address space as given in mm.  If non-NULL, use the
3508  * given task for page fault accounting.
3509  */
3510 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3511 		unsigned long addr, void *buf, int len, int write)
3512 {
3513 	struct vm_area_struct *vma;
3514 	void *old_buf = buf;
3515 
3516 	down_read(&mm->mmap_sem);
3517 	/* ignore errors, just check how much was successfully transferred */
3518 	while (len) {
3519 		int bytes, ret, offset;
3520 		void *maddr;
3521 		struct page *page = NULL;
3522 
3523 		ret = get_user_pages(tsk, mm, addr, 1,
3524 				write, 1, &page, &vma);
3525 		if (ret <= 0) {
3526 #ifndef CONFIG_HAVE_IOREMAP_PROT
3527 			break;
3528 #else
3529 			/*
3530 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3531 			 * we can access using slightly different code.
3532 			 */
3533 			vma = find_vma(mm, addr);
3534 			if (!vma || vma->vm_start > addr)
3535 				break;
3536 			if (vma->vm_ops && vma->vm_ops->access)
3537 				ret = vma->vm_ops->access(vma, addr, buf,
3538 							  len, write);
3539 			if (ret <= 0)
3540 				break;
3541 			bytes = ret;
3542 #endif
3543 		} else {
3544 			bytes = len;
3545 			offset = addr & (PAGE_SIZE-1);
3546 			if (bytes > PAGE_SIZE-offset)
3547 				bytes = PAGE_SIZE-offset;
3548 
3549 			maddr = kmap(page);
3550 			if (write) {
3551 				copy_to_user_page(vma, page, addr,
3552 						  maddr + offset, buf, bytes);
3553 				set_page_dirty_lock(page);
3554 			} else {
3555 				copy_from_user_page(vma, page, addr,
3556 						    buf, maddr + offset, bytes);
3557 			}
3558 			kunmap(page);
3559 			page_cache_release(page);
3560 		}
3561 		len -= bytes;
3562 		buf += bytes;
3563 		addr += bytes;
3564 	}
3565 	up_read(&mm->mmap_sem);
3566 
3567 	return buf - old_buf;
3568 }
3569 
3570 /**
3571  * access_remote_vm - access another process' address space
3572  * @mm:		the mm_struct of the target address space
3573  * @addr:	start address to access
3574  * @buf:	source or destination buffer
3575  * @len:	number of bytes to transfer
3576  * @write:	whether the access is a write
3577  *
3578  * The caller must hold a reference on @mm.
3579  */
3580 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3581 		void *buf, int len, int write)
3582 {
3583 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3584 }
3585 
3586 /*
3587  * Access another process' address space.
3588  * Source/target buffer must be kernel space,
3589  * Do not walk the page table directly, use get_user_pages
3590  */
3591 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3592 		void *buf, int len, int write)
3593 {
3594 	struct mm_struct *mm;
3595 	int ret;
3596 
3597 	mm = get_task_mm(tsk);
3598 	if (!mm)
3599 		return 0;
3600 
3601 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3602 	mmput(mm);
3603 
3604 	return ret;
3605 }
3606 
3607 /*
3608  * Print the name of a VMA.
3609  */
3610 void print_vma_addr(char *prefix, unsigned long ip)
3611 {
3612 	struct mm_struct *mm = current->mm;
3613 	struct vm_area_struct *vma;
3614 
3615 	/*
3616 	 * Do not print if we are in atomic
3617 	 * contexts (in exception stacks, etc.):
3618 	 */
3619 	if (preempt_count())
3620 		return;
3621 
3622 	down_read(&mm->mmap_sem);
3623 	vma = find_vma(mm, ip);
3624 	if (vma && vma->vm_file) {
3625 		struct file *f = vma->vm_file;
3626 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3627 		if (buf) {
3628 			char *p;
3629 
3630 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3631 			if (IS_ERR(p))
3632 				p = "?";
3633 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3634 					vma->vm_start,
3635 					vma->vm_end - vma->vm_start);
3636 			free_page((unsigned long)buf);
3637 		}
3638 	}
3639 	up_read(&mm->mmap_sem);
3640 }
3641 
3642 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3643 void might_fault(void)
3644 {
3645 	/*
3646 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3647 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3648 	 * get paged out, therefore we'll never actually fault, and the
3649 	 * below annotations will generate false positives.
3650 	 */
3651 	if (segment_eq(get_fs(), KERNEL_DS))
3652 		return;
3653 
3654 	/*
3655 	 * it would be nicer only to annotate paths which are not under
3656 	 * pagefault_disable, however that requires a larger audit and
3657 	 * providing helpers like get_user_atomic.
3658 	 */
3659 	if (in_atomic())
3660 		return;
3661 
3662 	__might_sleep(__FILE__, __LINE__, 0);
3663 
3664 	if (current->mm)
3665 		might_lock_read(&current->mm->mmap_sem);
3666 }
3667 EXPORT_SYMBOL(might_fault);
3668 #endif
3669 
3670 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3671 static void clear_gigantic_page(struct page *page,
3672 				unsigned long addr,
3673 				unsigned int pages_per_huge_page)
3674 {
3675 	int i;
3676 	struct page *p = page;
3677 
3678 	might_sleep();
3679 	for (i = 0; i < pages_per_huge_page;
3680 	     i++, p = mem_map_next(p, page, i)) {
3681 		cond_resched();
3682 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3683 	}
3684 }
3685 void clear_huge_page(struct page *page,
3686 		     unsigned long addr, unsigned int pages_per_huge_page)
3687 {
3688 	int i;
3689 
3690 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3691 		clear_gigantic_page(page, addr, pages_per_huge_page);
3692 		return;
3693 	}
3694 
3695 	might_sleep();
3696 	for (i = 0; i < pages_per_huge_page; i++) {
3697 		cond_resched();
3698 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3699 	}
3700 }
3701 
3702 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3703 				    unsigned long addr,
3704 				    struct vm_area_struct *vma,
3705 				    unsigned int pages_per_huge_page)
3706 {
3707 	int i;
3708 	struct page *dst_base = dst;
3709 	struct page *src_base = src;
3710 
3711 	for (i = 0; i < pages_per_huge_page; ) {
3712 		cond_resched();
3713 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3714 
3715 		i++;
3716 		dst = mem_map_next(dst, dst_base, i);
3717 		src = mem_map_next(src, src_base, i);
3718 	}
3719 }
3720 
3721 void copy_user_huge_page(struct page *dst, struct page *src,
3722 			 unsigned long addr, struct vm_area_struct *vma,
3723 			 unsigned int pages_per_huge_page)
3724 {
3725 	int i;
3726 
3727 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3728 		copy_user_gigantic_page(dst, src, addr, vma,
3729 					pages_per_huge_page);
3730 		return;
3731 	}
3732 
3733 	might_sleep();
3734 	for (i = 0; i < pages_per_huge_page; i++) {
3735 		cond_resched();
3736 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3737 	}
3738 }
3739 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3740 
3741 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3742 
3743 static struct kmem_cache *page_ptl_cachep;
3744 
3745 void __init ptlock_cache_init(void)
3746 {
3747 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3748 			SLAB_PANIC, NULL);
3749 }
3750 
3751 bool ptlock_alloc(struct page *page)
3752 {
3753 	spinlock_t *ptl;
3754 
3755 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3756 	if (!ptl)
3757 		return false;
3758 	page->ptl = ptl;
3759 	return true;
3760 }
3761 
3762 void ptlock_free(struct page *page)
3763 {
3764 	kmem_cache_free(page_ptl_cachep, page->ptl);
3765 }
3766 #endif
3767