xref: /openbmc/linux/mm/memory.c (revision 87c2ce3b)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51 
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65 
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69 
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80 
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84 
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90 
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93 	pgd_ERROR(*pgd);
94 	pgd_clear(pgd);
95 }
96 
97 void pud_clear_bad(pud_t *pud)
98 {
99 	pud_ERROR(*pud);
100 	pud_clear(pud);
101 }
102 
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105 	pmd_ERROR(*pmd);
106 	pmd_clear(pmd);
107 }
108 
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115 	struct page *page = pmd_page(*pmd);
116 	pmd_clear(pmd);
117 	pte_lock_deinit(page);
118 	pte_free_tlb(tlb, page);
119 	dec_page_state(nr_page_table_pages);
120 	tlb->mm->nr_ptes--;
121 }
122 
123 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
124 				unsigned long addr, unsigned long end,
125 				unsigned long floor, unsigned long ceiling)
126 {
127 	pmd_t *pmd;
128 	unsigned long next;
129 	unsigned long start;
130 
131 	start = addr;
132 	pmd = pmd_offset(pud, addr);
133 	do {
134 		next = pmd_addr_end(addr, end);
135 		if (pmd_none_or_clear_bad(pmd))
136 			continue;
137 		free_pte_range(tlb, pmd);
138 	} while (pmd++, addr = next, addr != end);
139 
140 	start &= PUD_MASK;
141 	if (start < floor)
142 		return;
143 	if (ceiling) {
144 		ceiling &= PUD_MASK;
145 		if (!ceiling)
146 			return;
147 	}
148 	if (end - 1 > ceiling - 1)
149 		return;
150 
151 	pmd = pmd_offset(pud, start);
152 	pud_clear(pud);
153 	pmd_free_tlb(tlb, pmd);
154 }
155 
156 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
157 				unsigned long addr, unsigned long end,
158 				unsigned long floor, unsigned long ceiling)
159 {
160 	pud_t *pud;
161 	unsigned long next;
162 	unsigned long start;
163 
164 	start = addr;
165 	pud = pud_offset(pgd, addr);
166 	do {
167 		next = pud_addr_end(addr, end);
168 		if (pud_none_or_clear_bad(pud))
169 			continue;
170 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
171 	} while (pud++, addr = next, addr != end);
172 
173 	start &= PGDIR_MASK;
174 	if (start < floor)
175 		return;
176 	if (ceiling) {
177 		ceiling &= PGDIR_MASK;
178 		if (!ceiling)
179 			return;
180 	}
181 	if (end - 1 > ceiling - 1)
182 		return;
183 
184 	pud = pud_offset(pgd, start);
185 	pgd_clear(pgd);
186 	pud_free_tlb(tlb, pud);
187 }
188 
189 /*
190  * This function frees user-level page tables of a process.
191  *
192  * Must be called with pagetable lock held.
193  */
194 void free_pgd_range(struct mmu_gather **tlb,
195 			unsigned long addr, unsigned long end,
196 			unsigned long floor, unsigned long ceiling)
197 {
198 	pgd_t *pgd;
199 	unsigned long next;
200 	unsigned long start;
201 
202 	/*
203 	 * The next few lines have given us lots of grief...
204 	 *
205 	 * Why are we testing PMD* at this top level?  Because often
206 	 * there will be no work to do at all, and we'd prefer not to
207 	 * go all the way down to the bottom just to discover that.
208 	 *
209 	 * Why all these "- 1"s?  Because 0 represents both the bottom
210 	 * of the address space and the top of it (using -1 for the
211 	 * top wouldn't help much: the masks would do the wrong thing).
212 	 * The rule is that addr 0 and floor 0 refer to the bottom of
213 	 * the address space, but end 0 and ceiling 0 refer to the top
214 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
215 	 * that end 0 case should be mythical).
216 	 *
217 	 * Wherever addr is brought up or ceiling brought down, we must
218 	 * be careful to reject "the opposite 0" before it confuses the
219 	 * subsequent tests.  But what about where end is brought down
220 	 * by PMD_SIZE below? no, end can't go down to 0 there.
221 	 *
222 	 * Whereas we round start (addr) and ceiling down, by different
223 	 * masks at different levels, in order to test whether a table
224 	 * now has no other vmas using it, so can be freed, we don't
225 	 * bother to round floor or end up - the tests don't need that.
226 	 */
227 
228 	addr &= PMD_MASK;
229 	if (addr < floor) {
230 		addr += PMD_SIZE;
231 		if (!addr)
232 			return;
233 	}
234 	if (ceiling) {
235 		ceiling &= PMD_MASK;
236 		if (!ceiling)
237 			return;
238 	}
239 	if (end - 1 > ceiling - 1)
240 		end -= PMD_SIZE;
241 	if (addr > end - 1)
242 		return;
243 
244 	start = addr;
245 	pgd = pgd_offset((*tlb)->mm, addr);
246 	do {
247 		next = pgd_addr_end(addr, end);
248 		if (pgd_none_or_clear_bad(pgd))
249 			continue;
250 		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
251 	} while (pgd++, addr = next, addr != end);
252 
253 	if (!(*tlb)->fullmm)
254 		flush_tlb_pgtables((*tlb)->mm, start, end);
255 }
256 
257 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
258 		unsigned long floor, unsigned long ceiling)
259 {
260 	while (vma) {
261 		struct vm_area_struct *next = vma->vm_next;
262 		unsigned long addr = vma->vm_start;
263 
264 		/*
265 		 * Hide vma from rmap and vmtruncate before freeing pgtables
266 		 */
267 		anon_vma_unlink(vma);
268 		unlink_file_vma(vma);
269 
270 		if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
271 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
272 				floor, next? next->vm_start: ceiling);
273 		} else {
274 			/*
275 			 * Optimization: gather nearby vmas into one call down
276 			 */
277 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
278 			  && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
279 							HPAGE_SIZE)) {
280 				vma = next;
281 				next = vma->vm_next;
282 				anon_vma_unlink(vma);
283 				unlink_file_vma(vma);
284 			}
285 			free_pgd_range(tlb, addr, vma->vm_end,
286 				floor, next? next->vm_start: ceiling);
287 		}
288 		vma = next;
289 	}
290 }
291 
292 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
293 {
294 	struct page *new = pte_alloc_one(mm, address);
295 	if (!new)
296 		return -ENOMEM;
297 
298 	pte_lock_init(new);
299 	spin_lock(&mm->page_table_lock);
300 	if (pmd_present(*pmd)) {	/* Another has populated it */
301 		pte_lock_deinit(new);
302 		pte_free(new);
303 	} else {
304 		mm->nr_ptes++;
305 		inc_page_state(nr_page_table_pages);
306 		pmd_populate(mm, pmd, new);
307 	}
308 	spin_unlock(&mm->page_table_lock);
309 	return 0;
310 }
311 
312 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
313 {
314 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
315 	if (!new)
316 		return -ENOMEM;
317 
318 	spin_lock(&init_mm.page_table_lock);
319 	if (pmd_present(*pmd))		/* Another has populated it */
320 		pte_free_kernel(new);
321 	else
322 		pmd_populate_kernel(&init_mm, pmd, new);
323 	spin_unlock(&init_mm.page_table_lock);
324 	return 0;
325 }
326 
327 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
328 {
329 	if (file_rss)
330 		add_mm_counter(mm, file_rss, file_rss);
331 	if (anon_rss)
332 		add_mm_counter(mm, anon_rss, anon_rss);
333 }
334 
335 /*
336  * This function is called to print an error when a bad pte
337  * is found. For example, we might have a PFN-mapped pte in
338  * a region that doesn't allow it.
339  *
340  * The calling function must still handle the error.
341  */
342 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
343 {
344 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
345 			"vm_flags = %lx, vaddr = %lx\n",
346 		(long long)pte_val(pte),
347 		(vma->vm_mm == current->mm ? current->comm : "???"),
348 		vma->vm_flags, vaddr);
349 	dump_stack();
350 }
351 
352 static inline int is_cow_mapping(unsigned int flags)
353 {
354 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
355 }
356 
357 /*
358  * This function gets the "struct page" associated with a pte.
359  *
360  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
361  * will have each page table entry just pointing to a raw page frame
362  * number, and as far as the VM layer is concerned, those do not have
363  * pages associated with them - even if the PFN might point to memory
364  * that otherwise is perfectly fine and has a "struct page".
365  *
366  * The way we recognize those mappings is through the rules set up
367  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
368  * and the vm_pgoff will point to the first PFN mapped: thus every
369  * page that is a raw mapping will always honor the rule
370  *
371  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
372  *
373  * and if that isn't true, the page has been COW'ed (in which case it
374  * _does_ have a "struct page" associated with it even if it is in a
375  * VM_PFNMAP range).
376  */
377 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
378 {
379 	unsigned long pfn = pte_pfn(pte);
380 
381 	if (vma->vm_flags & VM_PFNMAP) {
382 		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
383 		if (pfn == vma->vm_pgoff + off)
384 			return NULL;
385 		if (!is_cow_mapping(vma->vm_flags))
386 			return NULL;
387 	}
388 
389 	/*
390 	 * Add some anal sanity checks for now. Eventually,
391 	 * we should just do "return pfn_to_page(pfn)", but
392 	 * in the meantime we check that we get a valid pfn,
393 	 * and that the resulting page looks ok.
394 	 *
395 	 * Remove this test eventually!
396 	 */
397 	if (unlikely(!pfn_valid(pfn))) {
398 		print_bad_pte(vma, pte, addr);
399 		return NULL;
400 	}
401 
402 	/*
403 	 * NOTE! We still have PageReserved() pages in the page
404 	 * tables.
405 	 *
406 	 * The PAGE_ZERO() pages and various VDSO mappings can
407 	 * cause them to exist.
408 	 */
409 	return pfn_to_page(pfn);
410 }
411 
412 /*
413  * copy one vm_area from one task to the other. Assumes the page tables
414  * already present in the new task to be cleared in the whole range
415  * covered by this vma.
416  */
417 
418 static inline void
419 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
420 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
421 		unsigned long addr, int *rss)
422 {
423 	unsigned long vm_flags = vma->vm_flags;
424 	pte_t pte = *src_pte;
425 	struct page *page;
426 
427 	/* pte contains position in swap or file, so copy. */
428 	if (unlikely(!pte_present(pte))) {
429 		if (!pte_file(pte)) {
430 			swap_duplicate(pte_to_swp_entry(pte));
431 			/* make sure dst_mm is on swapoff's mmlist. */
432 			if (unlikely(list_empty(&dst_mm->mmlist))) {
433 				spin_lock(&mmlist_lock);
434 				if (list_empty(&dst_mm->mmlist))
435 					list_add(&dst_mm->mmlist,
436 						 &src_mm->mmlist);
437 				spin_unlock(&mmlist_lock);
438 			}
439 		}
440 		goto out_set_pte;
441 	}
442 
443 	/*
444 	 * If it's a COW mapping, write protect it both
445 	 * in the parent and the child
446 	 */
447 	if (is_cow_mapping(vm_flags)) {
448 		ptep_set_wrprotect(src_mm, addr, src_pte);
449 		pte = *src_pte;
450 	}
451 
452 	/*
453 	 * If it's a shared mapping, mark it clean in
454 	 * the child
455 	 */
456 	if (vm_flags & VM_SHARED)
457 		pte = pte_mkclean(pte);
458 	pte = pte_mkold(pte);
459 
460 	page = vm_normal_page(vma, addr, pte);
461 	if (page) {
462 		get_page(page);
463 		page_dup_rmap(page);
464 		rss[!!PageAnon(page)]++;
465 	}
466 
467 out_set_pte:
468 	set_pte_at(dst_mm, addr, dst_pte, pte);
469 }
470 
471 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
472 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
473 		unsigned long addr, unsigned long end)
474 {
475 	pte_t *src_pte, *dst_pte;
476 	spinlock_t *src_ptl, *dst_ptl;
477 	int progress = 0;
478 	int rss[2];
479 
480 again:
481 	rss[1] = rss[0] = 0;
482 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
483 	if (!dst_pte)
484 		return -ENOMEM;
485 	src_pte = pte_offset_map_nested(src_pmd, addr);
486 	src_ptl = pte_lockptr(src_mm, src_pmd);
487 	spin_lock(src_ptl);
488 
489 	do {
490 		/*
491 		 * We are holding two locks at this point - either of them
492 		 * could generate latencies in another task on another CPU.
493 		 */
494 		if (progress >= 32) {
495 			progress = 0;
496 			if (need_resched() ||
497 			    need_lockbreak(src_ptl) ||
498 			    need_lockbreak(dst_ptl))
499 				break;
500 		}
501 		if (pte_none(*src_pte)) {
502 			progress++;
503 			continue;
504 		}
505 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
506 		progress += 8;
507 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
508 
509 	spin_unlock(src_ptl);
510 	pte_unmap_nested(src_pte - 1);
511 	add_mm_rss(dst_mm, rss[0], rss[1]);
512 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
513 	cond_resched();
514 	if (addr != end)
515 		goto again;
516 	return 0;
517 }
518 
519 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
520 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
521 		unsigned long addr, unsigned long end)
522 {
523 	pmd_t *src_pmd, *dst_pmd;
524 	unsigned long next;
525 
526 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
527 	if (!dst_pmd)
528 		return -ENOMEM;
529 	src_pmd = pmd_offset(src_pud, addr);
530 	do {
531 		next = pmd_addr_end(addr, end);
532 		if (pmd_none_or_clear_bad(src_pmd))
533 			continue;
534 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
535 						vma, addr, next))
536 			return -ENOMEM;
537 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
538 	return 0;
539 }
540 
541 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
542 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
543 		unsigned long addr, unsigned long end)
544 {
545 	pud_t *src_pud, *dst_pud;
546 	unsigned long next;
547 
548 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
549 	if (!dst_pud)
550 		return -ENOMEM;
551 	src_pud = pud_offset(src_pgd, addr);
552 	do {
553 		next = pud_addr_end(addr, end);
554 		if (pud_none_or_clear_bad(src_pud))
555 			continue;
556 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
557 						vma, addr, next))
558 			return -ENOMEM;
559 	} while (dst_pud++, src_pud++, addr = next, addr != end);
560 	return 0;
561 }
562 
563 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
564 		struct vm_area_struct *vma)
565 {
566 	pgd_t *src_pgd, *dst_pgd;
567 	unsigned long next;
568 	unsigned long addr = vma->vm_start;
569 	unsigned long end = vma->vm_end;
570 
571 	/*
572 	 * Don't copy ptes where a page fault will fill them correctly.
573 	 * Fork becomes much lighter when there are big shared or private
574 	 * readonly mappings. The tradeoff is that copy_page_range is more
575 	 * efficient than faulting.
576 	 */
577 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
578 		if (!vma->anon_vma)
579 			return 0;
580 	}
581 
582 	if (is_vm_hugetlb_page(vma))
583 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
584 
585 	dst_pgd = pgd_offset(dst_mm, addr);
586 	src_pgd = pgd_offset(src_mm, addr);
587 	do {
588 		next = pgd_addr_end(addr, end);
589 		if (pgd_none_or_clear_bad(src_pgd))
590 			continue;
591 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
592 						vma, addr, next))
593 			return -ENOMEM;
594 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
595 	return 0;
596 }
597 
598 static unsigned long zap_pte_range(struct mmu_gather *tlb,
599 				struct vm_area_struct *vma, pmd_t *pmd,
600 				unsigned long addr, unsigned long end,
601 				long *zap_work, struct zap_details *details)
602 {
603 	struct mm_struct *mm = tlb->mm;
604 	pte_t *pte;
605 	spinlock_t *ptl;
606 	int file_rss = 0;
607 	int anon_rss = 0;
608 
609 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
610 	do {
611 		pte_t ptent = *pte;
612 		if (pte_none(ptent)) {
613 			(*zap_work)--;
614 			continue;
615 		}
616 		if (pte_present(ptent)) {
617 			struct page *page;
618 
619 			(*zap_work) -= PAGE_SIZE;
620 
621 			page = vm_normal_page(vma, addr, ptent);
622 			if (unlikely(details) && page) {
623 				/*
624 				 * unmap_shared_mapping_pages() wants to
625 				 * invalidate cache without truncating:
626 				 * unmap shared but keep private pages.
627 				 */
628 				if (details->check_mapping &&
629 				    details->check_mapping != page->mapping)
630 					continue;
631 				/*
632 				 * Each page->index must be checked when
633 				 * invalidating or truncating nonlinear.
634 				 */
635 				if (details->nonlinear_vma &&
636 				    (page->index < details->first_index ||
637 				     page->index > details->last_index))
638 					continue;
639 			}
640 			ptent = ptep_get_and_clear_full(mm, addr, pte,
641 							tlb->fullmm);
642 			tlb_remove_tlb_entry(tlb, pte, addr);
643 			if (unlikely(!page))
644 				continue;
645 			if (unlikely(details) && details->nonlinear_vma
646 			    && linear_page_index(details->nonlinear_vma,
647 						addr) != page->index)
648 				set_pte_at(mm, addr, pte,
649 					   pgoff_to_pte(page->index));
650 			if (PageAnon(page))
651 				anon_rss--;
652 			else {
653 				if (pte_dirty(ptent))
654 					set_page_dirty(page);
655 				if (pte_young(ptent))
656 					mark_page_accessed(page);
657 				file_rss--;
658 			}
659 			page_remove_rmap(page);
660 			tlb_remove_page(tlb, page);
661 			continue;
662 		}
663 		/*
664 		 * If details->check_mapping, we leave swap entries;
665 		 * if details->nonlinear_vma, we leave file entries.
666 		 */
667 		if (unlikely(details))
668 			continue;
669 		if (!pte_file(ptent))
670 			free_swap_and_cache(pte_to_swp_entry(ptent));
671 		pte_clear_full(mm, addr, pte, tlb->fullmm);
672 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
673 
674 	add_mm_rss(mm, file_rss, anon_rss);
675 	pte_unmap_unlock(pte - 1, ptl);
676 
677 	return addr;
678 }
679 
680 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
681 				struct vm_area_struct *vma, pud_t *pud,
682 				unsigned long addr, unsigned long end,
683 				long *zap_work, struct zap_details *details)
684 {
685 	pmd_t *pmd;
686 	unsigned long next;
687 
688 	pmd = pmd_offset(pud, addr);
689 	do {
690 		next = pmd_addr_end(addr, end);
691 		if (pmd_none_or_clear_bad(pmd)) {
692 			(*zap_work)--;
693 			continue;
694 		}
695 		next = zap_pte_range(tlb, vma, pmd, addr, next,
696 						zap_work, details);
697 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
698 
699 	return addr;
700 }
701 
702 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
703 				struct vm_area_struct *vma, pgd_t *pgd,
704 				unsigned long addr, unsigned long end,
705 				long *zap_work, struct zap_details *details)
706 {
707 	pud_t *pud;
708 	unsigned long next;
709 
710 	pud = pud_offset(pgd, addr);
711 	do {
712 		next = pud_addr_end(addr, end);
713 		if (pud_none_or_clear_bad(pud)) {
714 			(*zap_work)--;
715 			continue;
716 		}
717 		next = zap_pmd_range(tlb, vma, pud, addr, next,
718 						zap_work, details);
719 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
720 
721 	return addr;
722 }
723 
724 static unsigned long unmap_page_range(struct mmu_gather *tlb,
725 				struct vm_area_struct *vma,
726 				unsigned long addr, unsigned long end,
727 				long *zap_work, struct zap_details *details)
728 {
729 	pgd_t *pgd;
730 	unsigned long next;
731 
732 	if (details && !details->check_mapping && !details->nonlinear_vma)
733 		details = NULL;
734 
735 	BUG_ON(addr >= end);
736 	tlb_start_vma(tlb, vma);
737 	pgd = pgd_offset(vma->vm_mm, addr);
738 	do {
739 		next = pgd_addr_end(addr, end);
740 		if (pgd_none_or_clear_bad(pgd)) {
741 			(*zap_work)--;
742 			continue;
743 		}
744 		next = zap_pud_range(tlb, vma, pgd, addr, next,
745 						zap_work, details);
746 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
747 	tlb_end_vma(tlb, vma);
748 
749 	return addr;
750 }
751 
752 #ifdef CONFIG_PREEMPT
753 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
754 #else
755 /* No preempt: go for improved straight-line efficiency */
756 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
757 #endif
758 
759 /**
760  * unmap_vmas - unmap a range of memory covered by a list of vma's
761  * @tlbp: address of the caller's struct mmu_gather
762  * @vma: the starting vma
763  * @start_addr: virtual address at which to start unmapping
764  * @end_addr: virtual address at which to end unmapping
765  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
766  * @details: details of nonlinear truncation or shared cache invalidation
767  *
768  * Returns the end address of the unmapping (restart addr if interrupted).
769  *
770  * Unmap all pages in the vma list.
771  *
772  * We aim to not hold locks for too long (for scheduling latency reasons).
773  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
774  * return the ending mmu_gather to the caller.
775  *
776  * Only addresses between `start' and `end' will be unmapped.
777  *
778  * The VMA list must be sorted in ascending virtual address order.
779  *
780  * unmap_vmas() assumes that the caller will flush the whole unmapped address
781  * range after unmap_vmas() returns.  So the only responsibility here is to
782  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
783  * drops the lock and schedules.
784  */
785 unsigned long unmap_vmas(struct mmu_gather **tlbp,
786 		struct vm_area_struct *vma, unsigned long start_addr,
787 		unsigned long end_addr, unsigned long *nr_accounted,
788 		struct zap_details *details)
789 {
790 	long zap_work = ZAP_BLOCK_SIZE;
791 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
792 	int tlb_start_valid = 0;
793 	unsigned long start = start_addr;
794 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
795 	int fullmm = (*tlbp)->fullmm;
796 
797 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
798 		unsigned long end;
799 
800 		start = max(vma->vm_start, start_addr);
801 		if (start >= vma->vm_end)
802 			continue;
803 		end = min(vma->vm_end, end_addr);
804 		if (end <= vma->vm_start)
805 			continue;
806 
807 		if (vma->vm_flags & VM_ACCOUNT)
808 			*nr_accounted += (end - start) >> PAGE_SHIFT;
809 
810 		while (start != end) {
811 			if (!tlb_start_valid) {
812 				tlb_start = start;
813 				tlb_start_valid = 1;
814 			}
815 
816 			if (unlikely(is_vm_hugetlb_page(vma))) {
817 				unmap_hugepage_range(vma, start, end);
818 				zap_work -= (end - start) /
819 						(HPAGE_SIZE / PAGE_SIZE);
820 				start = end;
821 			} else
822 				start = unmap_page_range(*tlbp, vma,
823 						start, end, &zap_work, details);
824 
825 			if (zap_work > 0) {
826 				BUG_ON(start != end);
827 				break;
828 			}
829 
830 			tlb_finish_mmu(*tlbp, tlb_start, start);
831 
832 			if (need_resched() ||
833 				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
834 				if (i_mmap_lock) {
835 					*tlbp = NULL;
836 					goto out;
837 				}
838 				cond_resched();
839 			}
840 
841 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
842 			tlb_start_valid = 0;
843 			zap_work = ZAP_BLOCK_SIZE;
844 		}
845 	}
846 out:
847 	return start;	/* which is now the end (or restart) address */
848 }
849 
850 /**
851  * zap_page_range - remove user pages in a given range
852  * @vma: vm_area_struct holding the applicable pages
853  * @address: starting address of pages to zap
854  * @size: number of bytes to zap
855  * @details: details of nonlinear truncation or shared cache invalidation
856  */
857 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
858 		unsigned long size, struct zap_details *details)
859 {
860 	struct mm_struct *mm = vma->vm_mm;
861 	struct mmu_gather *tlb;
862 	unsigned long end = address + size;
863 	unsigned long nr_accounted = 0;
864 
865 	lru_add_drain();
866 	tlb = tlb_gather_mmu(mm, 0);
867 	update_hiwater_rss(mm);
868 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
869 	if (tlb)
870 		tlb_finish_mmu(tlb, address, end);
871 	return end;
872 }
873 
874 /*
875  * Do a quick page-table lookup for a single page.
876  */
877 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
878 			unsigned int flags)
879 {
880 	pgd_t *pgd;
881 	pud_t *pud;
882 	pmd_t *pmd;
883 	pte_t *ptep, pte;
884 	spinlock_t *ptl;
885 	struct page *page;
886 	struct mm_struct *mm = vma->vm_mm;
887 
888 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
889 	if (!IS_ERR(page)) {
890 		BUG_ON(flags & FOLL_GET);
891 		goto out;
892 	}
893 
894 	page = NULL;
895 	pgd = pgd_offset(mm, address);
896 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
897 		goto no_page_table;
898 
899 	pud = pud_offset(pgd, address);
900 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
901 		goto no_page_table;
902 
903 	pmd = pmd_offset(pud, address);
904 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
905 		goto no_page_table;
906 
907 	if (pmd_huge(*pmd)) {
908 		BUG_ON(flags & FOLL_GET);
909 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
910 		goto out;
911 	}
912 
913 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
914 	if (!ptep)
915 		goto out;
916 
917 	pte = *ptep;
918 	if (!pte_present(pte))
919 		goto unlock;
920 	if ((flags & FOLL_WRITE) && !pte_write(pte))
921 		goto unlock;
922 	page = vm_normal_page(vma, address, pte);
923 	if (unlikely(!page))
924 		goto unlock;
925 
926 	if (flags & FOLL_GET)
927 		get_page(page);
928 	if (flags & FOLL_TOUCH) {
929 		if ((flags & FOLL_WRITE) &&
930 		    !pte_dirty(pte) && !PageDirty(page))
931 			set_page_dirty(page);
932 		mark_page_accessed(page);
933 	}
934 unlock:
935 	pte_unmap_unlock(ptep, ptl);
936 out:
937 	return page;
938 
939 no_page_table:
940 	/*
941 	 * When core dumping an enormous anonymous area that nobody
942 	 * has touched so far, we don't want to allocate page tables.
943 	 */
944 	if (flags & FOLL_ANON) {
945 		page = ZERO_PAGE(address);
946 		if (flags & FOLL_GET)
947 			get_page(page);
948 		BUG_ON(flags & FOLL_WRITE);
949 	}
950 	return page;
951 }
952 
953 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
954 		unsigned long start, int len, int write, int force,
955 		struct page **pages, struct vm_area_struct **vmas)
956 {
957 	int i;
958 	unsigned int vm_flags;
959 
960 	/*
961 	 * Require read or write permissions.
962 	 * If 'force' is set, we only require the "MAY" flags.
963 	 */
964 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
965 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
966 	i = 0;
967 
968 	do {
969 		struct vm_area_struct *vma;
970 		unsigned int foll_flags;
971 
972 		vma = find_extend_vma(mm, start);
973 		if (!vma && in_gate_area(tsk, start)) {
974 			unsigned long pg = start & PAGE_MASK;
975 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
976 			pgd_t *pgd;
977 			pud_t *pud;
978 			pmd_t *pmd;
979 			pte_t *pte;
980 			if (write) /* user gate pages are read-only */
981 				return i ? : -EFAULT;
982 			if (pg > TASK_SIZE)
983 				pgd = pgd_offset_k(pg);
984 			else
985 				pgd = pgd_offset_gate(mm, pg);
986 			BUG_ON(pgd_none(*pgd));
987 			pud = pud_offset(pgd, pg);
988 			BUG_ON(pud_none(*pud));
989 			pmd = pmd_offset(pud, pg);
990 			if (pmd_none(*pmd))
991 				return i ? : -EFAULT;
992 			pte = pte_offset_map(pmd, pg);
993 			if (pte_none(*pte)) {
994 				pte_unmap(pte);
995 				return i ? : -EFAULT;
996 			}
997 			if (pages) {
998 				struct page *page = vm_normal_page(gate_vma, start, *pte);
999 				pages[i] = page;
1000 				if (page)
1001 					get_page(page);
1002 			}
1003 			pte_unmap(pte);
1004 			if (vmas)
1005 				vmas[i] = gate_vma;
1006 			i++;
1007 			start += PAGE_SIZE;
1008 			len--;
1009 			continue;
1010 		}
1011 
1012 		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1013 				|| !(vm_flags & vma->vm_flags))
1014 			return i ? : -EFAULT;
1015 
1016 		if (is_vm_hugetlb_page(vma)) {
1017 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1018 						&start, &len, i);
1019 			continue;
1020 		}
1021 
1022 		foll_flags = FOLL_TOUCH;
1023 		if (pages)
1024 			foll_flags |= FOLL_GET;
1025 		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1026 		    (!vma->vm_ops || !vma->vm_ops->nopage))
1027 			foll_flags |= FOLL_ANON;
1028 
1029 		do {
1030 			struct page *page;
1031 
1032 			if (write)
1033 				foll_flags |= FOLL_WRITE;
1034 
1035 			cond_resched();
1036 			while (!(page = follow_page(vma, start, foll_flags))) {
1037 				int ret;
1038 				ret = __handle_mm_fault(mm, vma, start,
1039 						foll_flags & FOLL_WRITE);
1040 				/*
1041 				 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1042 				 * broken COW when necessary, even if maybe_mkwrite
1043 				 * decided not to set pte_write. We can thus safely do
1044 				 * subsequent page lookups as if they were reads.
1045 				 */
1046 				if (ret & VM_FAULT_WRITE)
1047 					foll_flags &= ~FOLL_WRITE;
1048 
1049 				switch (ret & ~VM_FAULT_WRITE) {
1050 				case VM_FAULT_MINOR:
1051 					tsk->min_flt++;
1052 					break;
1053 				case VM_FAULT_MAJOR:
1054 					tsk->maj_flt++;
1055 					break;
1056 				case VM_FAULT_SIGBUS:
1057 					return i ? i : -EFAULT;
1058 				case VM_FAULT_OOM:
1059 					return i ? i : -ENOMEM;
1060 				default:
1061 					BUG();
1062 				}
1063 			}
1064 			if (pages) {
1065 				pages[i] = page;
1066 				flush_dcache_page(page);
1067 			}
1068 			if (vmas)
1069 				vmas[i] = vma;
1070 			i++;
1071 			start += PAGE_SIZE;
1072 			len--;
1073 		} while (len && start < vma->vm_end);
1074 	} while (len);
1075 	return i;
1076 }
1077 EXPORT_SYMBOL(get_user_pages);
1078 
1079 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1080 			unsigned long addr, unsigned long end, pgprot_t prot)
1081 {
1082 	pte_t *pte;
1083 	spinlock_t *ptl;
1084 
1085 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1086 	if (!pte)
1087 		return -ENOMEM;
1088 	do {
1089 		struct page *page = ZERO_PAGE(addr);
1090 		pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1091 		page_cache_get(page);
1092 		page_add_file_rmap(page);
1093 		inc_mm_counter(mm, file_rss);
1094 		BUG_ON(!pte_none(*pte));
1095 		set_pte_at(mm, addr, pte, zero_pte);
1096 	} while (pte++, addr += PAGE_SIZE, addr != end);
1097 	pte_unmap_unlock(pte - 1, ptl);
1098 	return 0;
1099 }
1100 
1101 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1102 			unsigned long addr, unsigned long end, pgprot_t prot)
1103 {
1104 	pmd_t *pmd;
1105 	unsigned long next;
1106 
1107 	pmd = pmd_alloc(mm, pud, addr);
1108 	if (!pmd)
1109 		return -ENOMEM;
1110 	do {
1111 		next = pmd_addr_end(addr, end);
1112 		if (zeromap_pte_range(mm, pmd, addr, next, prot))
1113 			return -ENOMEM;
1114 	} while (pmd++, addr = next, addr != end);
1115 	return 0;
1116 }
1117 
1118 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1119 			unsigned long addr, unsigned long end, pgprot_t prot)
1120 {
1121 	pud_t *pud;
1122 	unsigned long next;
1123 
1124 	pud = pud_alloc(mm, pgd, addr);
1125 	if (!pud)
1126 		return -ENOMEM;
1127 	do {
1128 		next = pud_addr_end(addr, end);
1129 		if (zeromap_pmd_range(mm, pud, addr, next, prot))
1130 			return -ENOMEM;
1131 	} while (pud++, addr = next, addr != end);
1132 	return 0;
1133 }
1134 
1135 int zeromap_page_range(struct vm_area_struct *vma,
1136 			unsigned long addr, unsigned long size, pgprot_t prot)
1137 {
1138 	pgd_t *pgd;
1139 	unsigned long next;
1140 	unsigned long end = addr + size;
1141 	struct mm_struct *mm = vma->vm_mm;
1142 	int err;
1143 
1144 	BUG_ON(addr >= end);
1145 	pgd = pgd_offset(mm, addr);
1146 	flush_cache_range(vma, addr, end);
1147 	do {
1148 		next = pgd_addr_end(addr, end);
1149 		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1150 		if (err)
1151 			break;
1152 	} while (pgd++, addr = next, addr != end);
1153 	return err;
1154 }
1155 
1156 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1157 {
1158 	pgd_t * pgd = pgd_offset(mm, addr);
1159 	pud_t * pud = pud_alloc(mm, pgd, addr);
1160 	if (pud) {
1161 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1162 		if (pmd)
1163 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1164 	}
1165 	return NULL;
1166 }
1167 
1168 /*
1169  * This is the old fallback for page remapping.
1170  *
1171  * For historical reasons, it only allows reserved pages. Only
1172  * old drivers should use this, and they needed to mark their
1173  * pages reserved for the old functions anyway.
1174  */
1175 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1176 {
1177 	int retval;
1178 	pte_t *pte;
1179 	spinlock_t *ptl;
1180 
1181 	retval = -EINVAL;
1182 	if (PageAnon(page))
1183 		goto out;
1184 	retval = -ENOMEM;
1185 	flush_dcache_page(page);
1186 	pte = get_locked_pte(mm, addr, &ptl);
1187 	if (!pte)
1188 		goto out;
1189 	retval = -EBUSY;
1190 	if (!pte_none(*pte))
1191 		goto out_unlock;
1192 
1193 	/* Ok, finally just insert the thing.. */
1194 	get_page(page);
1195 	inc_mm_counter(mm, file_rss);
1196 	page_add_file_rmap(page);
1197 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1198 
1199 	retval = 0;
1200 out_unlock:
1201 	pte_unmap_unlock(pte, ptl);
1202 out:
1203 	return retval;
1204 }
1205 
1206 /*
1207  * This allows drivers to insert individual pages they've allocated
1208  * into a user vma.
1209  *
1210  * The page has to be a nice clean _individual_ kernel allocation.
1211  * If you allocate a compound page, you need to have marked it as
1212  * such (__GFP_COMP), or manually just split the page up yourself
1213  * (which is mainly an issue of doing "set_page_count(page, 1)" for
1214  * each sub-page, and then freeing them one by one when you free
1215  * them rather than freeing it as a compound page).
1216  *
1217  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1218  * took an arbitrary page protection parameter. This doesn't allow
1219  * that. Your vma protection will have to be set up correctly, which
1220  * means that if you want a shared writable mapping, you'd better
1221  * ask for a shared writable mapping!
1222  *
1223  * The page does not need to be reserved.
1224  */
1225 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1226 {
1227 	if (addr < vma->vm_start || addr >= vma->vm_end)
1228 		return -EFAULT;
1229 	if (!page_count(page))
1230 		return -EINVAL;
1231 	vma->vm_flags |= VM_INSERTPAGE;
1232 	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1233 }
1234 EXPORT_SYMBOL(vm_insert_page);
1235 
1236 /*
1237  * maps a range of physical memory into the requested pages. the old
1238  * mappings are removed. any references to nonexistent pages results
1239  * in null mappings (currently treated as "copy-on-access")
1240  */
1241 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1242 			unsigned long addr, unsigned long end,
1243 			unsigned long pfn, pgprot_t prot)
1244 {
1245 	pte_t *pte;
1246 	spinlock_t *ptl;
1247 
1248 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1249 	if (!pte)
1250 		return -ENOMEM;
1251 	do {
1252 		BUG_ON(!pte_none(*pte));
1253 		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1254 		pfn++;
1255 	} while (pte++, addr += PAGE_SIZE, addr != end);
1256 	pte_unmap_unlock(pte - 1, ptl);
1257 	return 0;
1258 }
1259 
1260 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1261 			unsigned long addr, unsigned long end,
1262 			unsigned long pfn, pgprot_t prot)
1263 {
1264 	pmd_t *pmd;
1265 	unsigned long next;
1266 
1267 	pfn -= addr >> PAGE_SHIFT;
1268 	pmd = pmd_alloc(mm, pud, addr);
1269 	if (!pmd)
1270 		return -ENOMEM;
1271 	do {
1272 		next = pmd_addr_end(addr, end);
1273 		if (remap_pte_range(mm, pmd, addr, next,
1274 				pfn + (addr >> PAGE_SHIFT), prot))
1275 			return -ENOMEM;
1276 	} while (pmd++, addr = next, addr != end);
1277 	return 0;
1278 }
1279 
1280 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1281 			unsigned long addr, unsigned long end,
1282 			unsigned long pfn, pgprot_t prot)
1283 {
1284 	pud_t *pud;
1285 	unsigned long next;
1286 
1287 	pfn -= addr >> PAGE_SHIFT;
1288 	pud = pud_alloc(mm, pgd, addr);
1289 	if (!pud)
1290 		return -ENOMEM;
1291 	do {
1292 		next = pud_addr_end(addr, end);
1293 		if (remap_pmd_range(mm, pud, addr, next,
1294 				pfn + (addr >> PAGE_SHIFT), prot))
1295 			return -ENOMEM;
1296 	} while (pud++, addr = next, addr != end);
1297 	return 0;
1298 }
1299 
1300 /*  Note: this is only safe if the mm semaphore is held when called. */
1301 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1302 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1303 {
1304 	pgd_t *pgd;
1305 	unsigned long next;
1306 	unsigned long end = addr + PAGE_ALIGN(size);
1307 	struct mm_struct *mm = vma->vm_mm;
1308 	int err;
1309 
1310 	/*
1311 	 * Physically remapped pages are special. Tell the
1312 	 * rest of the world about it:
1313 	 *   VM_IO tells people not to look at these pages
1314 	 *	(accesses can have side effects).
1315 	 *   VM_RESERVED is specified all over the place, because
1316 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1317 	 *	in 2.6 the LRU scan won't even find its pages, so this
1318 	 *	flag means no more than count its pages in reserved_vm,
1319 	 * 	and omit it from core dump, even when VM_IO turned off.
1320 	 *   VM_PFNMAP tells the core MM that the base pages are just
1321 	 *	raw PFN mappings, and do not have a "struct page" associated
1322 	 *	with them.
1323 	 *
1324 	 * There's a horrible special case to handle copy-on-write
1325 	 * behaviour that some programs depend on. We mark the "original"
1326 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1327 	 */
1328 	if (is_cow_mapping(vma->vm_flags)) {
1329 		if (addr != vma->vm_start || end != vma->vm_end)
1330 			return -EINVAL;
1331 		vma->vm_pgoff = pfn;
1332 	}
1333 
1334 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1335 
1336 	BUG_ON(addr >= end);
1337 	pfn -= addr >> PAGE_SHIFT;
1338 	pgd = pgd_offset(mm, addr);
1339 	flush_cache_range(vma, addr, end);
1340 	do {
1341 		next = pgd_addr_end(addr, end);
1342 		err = remap_pud_range(mm, pgd, addr, next,
1343 				pfn + (addr >> PAGE_SHIFT), prot);
1344 		if (err)
1345 			break;
1346 	} while (pgd++, addr = next, addr != end);
1347 	return err;
1348 }
1349 EXPORT_SYMBOL(remap_pfn_range);
1350 
1351 /*
1352  * handle_pte_fault chooses page fault handler according to an entry
1353  * which was read non-atomically.  Before making any commitment, on
1354  * those architectures or configurations (e.g. i386 with PAE) which
1355  * might give a mix of unmatched parts, do_swap_page and do_file_page
1356  * must check under lock before unmapping the pte and proceeding
1357  * (but do_wp_page is only called after already making such a check;
1358  * and do_anonymous_page and do_no_page can safely check later on).
1359  */
1360 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1361 				pte_t *page_table, pte_t orig_pte)
1362 {
1363 	int same = 1;
1364 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1365 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1366 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1367 		spin_lock(ptl);
1368 		same = pte_same(*page_table, orig_pte);
1369 		spin_unlock(ptl);
1370 	}
1371 #endif
1372 	pte_unmap(page_table);
1373 	return same;
1374 }
1375 
1376 /*
1377  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1378  * servicing faults for write access.  In the normal case, do always want
1379  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1380  * that do not have writing enabled, when used by access_process_vm.
1381  */
1382 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1383 {
1384 	if (likely(vma->vm_flags & VM_WRITE))
1385 		pte = pte_mkwrite(pte);
1386 	return pte;
1387 }
1388 
1389 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1390 {
1391 	/*
1392 	 * If the source page was a PFN mapping, we don't have
1393 	 * a "struct page" for it. We do a best-effort copy by
1394 	 * just copying from the original user address. If that
1395 	 * fails, we just zero-fill it. Live with it.
1396 	 */
1397 	if (unlikely(!src)) {
1398 		void *kaddr = kmap_atomic(dst, KM_USER0);
1399 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1400 
1401 		/*
1402 		 * This really shouldn't fail, because the page is there
1403 		 * in the page tables. But it might just be unreadable,
1404 		 * in which case we just give up and fill the result with
1405 		 * zeroes.
1406 		 */
1407 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1408 			memset(kaddr, 0, PAGE_SIZE);
1409 		kunmap_atomic(kaddr, KM_USER0);
1410 		return;
1411 
1412 	}
1413 	copy_user_highpage(dst, src, va);
1414 }
1415 
1416 /*
1417  * This routine handles present pages, when users try to write
1418  * to a shared page. It is done by copying the page to a new address
1419  * and decrementing the shared-page counter for the old page.
1420  *
1421  * Note that this routine assumes that the protection checks have been
1422  * done by the caller (the low-level page fault routine in most cases).
1423  * Thus we can safely just mark it writable once we've done any necessary
1424  * COW.
1425  *
1426  * We also mark the page dirty at this point even though the page will
1427  * change only once the write actually happens. This avoids a few races,
1428  * and potentially makes it more efficient.
1429  *
1430  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1431  * but allow concurrent faults), with pte both mapped and locked.
1432  * We return with mmap_sem still held, but pte unmapped and unlocked.
1433  */
1434 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1435 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1436 		spinlock_t *ptl, pte_t orig_pte)
1437 {
1438 	struct page *old_page, *new_page;
1439 	pte_t entry;
1440 	int ret = VM_FAULT_MINOR;
1441 
1442 	old_page = vm_normal_page(vma, address, orig_pte);
1443 	if (!old_page)
1444 		goto gotten;
1445 
1446 	if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1447 		int reuse = can_share_swap_page(old_page);
1448 		unlock_page(old_page);
1449 		if (reuse) {
1450 			flush_cache_page(vma, address, pte_pfn(orig_pte));
1451 			entry = pte_mkyoung(orig_pte);
1452 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1453 			ptep_set_access_flags(vma, address, page_table, entry, 1);
1454 			update_mmu_cache(vma, address, entry);
1455 			lazy_mmu_prot_update(entry);
1456 			ret |= VM_FAULT_WRITE;
1457 			goto unlock;
1458 		}
1459 	}
1460 
1461 	/*
1462 	 * Ok, we need to copy. Oh, well..
1463 	 */
1464 	page_cache_get(old_page);
1465 gotten:
1466 	pte_unmap_unlock(page_table, ptl);
1467 
1468 	if (unlikely(anon_vma_prepare(vma)))
1469 		goto oom;
1470 	if (old_page == ZERO_PAGE(address)) {
1471 		new_page = alloc_zeroed_user_highpage(vma, address);
1472 		if (!new_page)
1473 			goto oom;
1474 	} else {
1475 		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1476 		if (!new_page)
1477 			goto oom;
1478 		cow_user_page(new_page, old_page, address);
1479 	}
1480 
1481 	/*
1482 	 * Re-check the pte - we dropped the lock
1483 	 */
1484 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1485 	if (likely(pte_same(*page_table, orig_pte))) {
1486 		if (old_page) {
1487 			page_remove_rmap(old_page);
1488 			if (!PageAnon(old_page)) {
1489 				dec_mm_counter(mm, file_rss);
1490 				inc_mm_counter(mm, anon_rss);
1491 			}
1492 		} else
1493 			inc_mm_counter(mm, anon_rss);
1494 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1495 		entry = mk_pte(new_page, vma->vm_page_prot);
1496 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1497 		ptep_establish(vma, address, page_table, entry);
1498 		update_mmu_cache(vma, address, entry);
1499 		lazy_mmu_prot_update(entry);
1500 		lru_cache_add_active(new_page);
1501 		page_add_new_anon_rmap(new_page, vma, address);
1502 
1503 		/* Free the old page.. */
1504 		new_page = old_page;
1505 		ret |= VM_FAULT_WRITE;
1506 	}
1507 	if (new_page)
1508 		page_cache_release(new_page);
1509 	if (old_page)
1510 		page_cache_release(old_page);
1511 unlock:
1512 	pte_unmap_unlock(page_table, ptl);
1513 	return ret;
1514 oom:
1515 	if (old_page)
1516 		page_cache_release(old_page);
1517 	return VM_FAULT_OOM;
1518 }
1519 
1520 /*
1521  * Helper functions for unmap_mapping_range().
1522  *
1523  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1524  *
1525  * We have to restart searching the prio_tree whenever we drop the lock,
1526  * since the iterator is only valid while the lock is held, and anyway
1527  * a later vma might be split and reinserted earlier while lock dropped.
1528  *
1529  * The list of nonlinear vmas could be handled more efficiently, using
1530  * a placeholder, but handle it in the same way until a need is shown.
1531  * It is important to search the prio_tree before nonlinear list: a vma
1532  * may become nonlinear and be shifted from prio_tree to nonlinear list
1533  * while the lock is dropped; but never shifted from list to prio_tree.
1534  *
1535  * In order to make forward progress despite restarting the search,
1536  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1537  * quickly skip it next time around.  Since the prio_tree search only
1538  * shows us those vmas affected by unmapping the range in question, we
1539  * can't efficiently keep all vmas in step with mapping->truncate_count:
1540  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1541  * mapping->truncate_count and vma->vm_truncate_count are protected by
1542  * i_mmap_lock.
1543  *
1544  * In order to make forward progress despite repeatedly restarting some
1545  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1546  * and restart from that address when we reach that vma again.  It might
1547  * have been split or merged, shrunk or extended, but never shifted: so
1548  * restart_addr remains valid so long as it remains in the vma's range.
1549  * unmap_mapping_range forces truncate_count to leap over page-aligned
1550  * values so we can save vma's restart_addr in its truncate_count field.
1551  */
1552 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1553 
1554 static void reset_vma_truncate_counts(struct address_space *mapping)
1555 {
1556 	struct vm_area_struct *vma;
1557 	struct prio_tree_iter iter;
1558 
1559 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1560 		vma->vm_truncate_count = 0;
1561 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1562 		vma->vm_truncate_count = 0;
1563 }
1564 
1565 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1566 		unsigned long start_addr, unsigned long end_addr,
1567 		struct zap_details *details)
1568 {
1569 	unsigned long restart_addr;
1570 	int need_break;
1571 
1572 again:
1573 	restart_addr = vma->vm_truncate_count;
1574 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1575 		start_addr = restart_addr;
1576 		if (start_addr >= end_addr) {
1577 			/* Top of vma has been split off since last time */
1578 			vma->vm_truncate_count = details->truncate_count;
1579 			return 0;
1580 		}
1581 	}
1582 
1583 	restart_addr = zap_page_range(vma, start_addr,
1584 					end_addr - start_addr, details);
1585 	need_break = need_resched() ||
1586 			need_lockbreak(details->i_mmap_lock);
1587 
1588 	if (restart_addr >= end_addr) {
1589 		/* We have now completed this vma: mark it so */
1590 		vma->vm_truncate_count = details->truncate_count;
1591 		if (!need_break)
1592 			return 0;
1593 	} else {
1594 		/* Note restart_addr in vma's truncate_count field */
1595 		vma->vm_truncate_count = restart_addr;
1596 		if (!need_break)
1597 			goto again;
1598 	}
1599 
1600 	spin_unlock(details->i_mmap_lock);
1601 	cond_resched();
1602 	spin_lock(details->i_mmap_lock);
1603 	return -EINTR;
1604 }
1605 
1606 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1607 					    struct zap_details *details)
1608 {
1609 	struct vm_area_struct *vma;
1610 	struct prio_tree_iter iter;
1611 	pgoff_t vba, vea, zba, zea;
1612 
1613 restart:
1614 	vma_prio_tree_foreach(vma, &iter, root,
1615 			details->first_index, details->last_index) {
1616 		/* Skip quickly over those we have already dealt with */
1617 		if (vma->vm_truncate_count == details->truncate_count)
1618 			continue;
1619 
1620 		vba = vma->vm_pgoff;
1621 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1622 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1623 		zba = details->first_index;
1624 		if (zba < vba)
1625 			zba = vba;
1626 		zea = details->last_index;
1627 		if (zea > vea)
1628 			zea = vea;
1629 
1630 		if (unmap_mapping_range_vma(vma,
1631 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1632 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1633 				details) < 0)
1634 			goto restart;
1635 	}
1636 }
1637 
1638 static inline void unmap_mapping_range_list(struct list_head *head,
1639 					    struct zap_details *details)
1640 {
1641 	struct vm_area_struct *vma;
1642 
1643 	/*
1644 	 * In nonlinear VMAs there is no correspondence between virtual address
1645 	 * offset and file offset.  So we must perform an exhaustive search
1646 	 * across *all* the pages in each nonlinear VMA, not just the pages
1647 	 * whose virtual address lies outside the file truncation point.
1648 	 */
1649 restart:
1650 	list_for_each_entry(vma, head, shared.vm_set.list) {
1651 		/* Skip quickly over those we have already dealt with */
1652 		if (vma->vm_truncate_count == details->truncate_count)
1653 			continue;
1654 		details->nonlinear_vma = vma;
1655 		if (unmap_mapping_range_vma(vma, vma->vm_start,
1656 					vma->vm_end, details) < 0)
1657 			goto restart;
1658 	}
1659 }
1660 
1661 /**
1662  * unmap_mapping_range - unmap the portion of all mmaps
1663  * in the specified address_space corresponding to the specified
1664  * page range in the underlying file.
1665  * @mapping: the address space containing mmaps to be unmapped.
1666  * @holebegin: byte in first page to unmap, relative to the start of
1667  * the underlying file.  This will be rounded down to a PAGE_SIZE
1668  * boundary.  Note that this is different from vmtruncate(), which
1669  * must keep the partial page.  In contrast, we must get rid of
1670  * partial pages.
1671  * @holelen: size of prospective hole in bytes.  This will be rounded
1672  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1673  * end of the file.
1674  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1675  * but 0 when invalidating pagecache, don't throw away private data.
1676  */
1677 void unmap_mapping_range(struct address_space *mapping,
1678 		loff_t const holebegin, loff_t const holelen, int even_cows)
1679 {
1680 	struct zap_details details;
1681 	pgoff_t hba = holebegin >> PAGE_SHIFT;
1682 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1683 
1684 	/* Check for overflow. */
1685 	if (sizeof(holelen) > sizeof(hlen)) {
1686 		long long holeend =
1687 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1688 		if (holeend & ~(long long)ULONG_MAX)
1689 			hlen = ULONG_MAX - hba + 1;
1690 	}
1691 
1692 	details.check_mapping = even_cows? NULL: mapping;
1693 	details.nonlinear_vma = NULL;
1694 	details.first_index = hba;
1695 	details.last_index = hba + hlen - 1;
1696 	if (details.last_index < details.first_index)
1697 		details.last_index = ULONG_MAX;
1698 	details.i_mmap_lock = &mapping->i_mmap_lock;
1699 
1700 	spin_lock(&mapping->i_mmap_lock);
1701 
1702 	/* serialize i_size write against truncate_count write */
1703 	smp_wmb();
1704 	/* Protect against page faults, and endless unmapping loops */
1705 	mapping->truncate_count++;
1706 	/*
1707 	 * For archs where spin_lock has inclusive semantics like ia64
1708 	 * this smp_mb() will prevent to read pagetable contents
1709 	 * before the truncate_count increment is visible to
1710 	 * other cpus.
1711 	 */
1712 	smp_mb();
1713 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1714 		if (mapping->truncate_count == 0)
1715 			reset_vma_truncate_counts(mapping);
1716 		mapping->truncate_count++;
1717 	}
1718 	details.truncate_count = mapping->truncate_count;
1719 
1720 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1721 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1722 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1723 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1724 	spin_unlock(&mapping->i_mmap_lock);
1725 }
1726 EXPORT_SYMBOL(unmap_mapping_range);
1727 
1728 /*
1729  * Handle all mappings that got truncated by a "truncate()"
1730  * system call.
1731  *
1732  * NOTE! We have to be ready to update the memory sharing
1733  * between the file and the memory map for a potential last
1734  * incomplete page.  Ugly, but necessary.
1735  */
1736 int vmtruncate(struct inode * inode, loff_t offset)
1737 {
1738 	struct address_space *mapping = inode->i_mapping;
1739 	unsigned long limit;
1740 
1741 	if (inode->i_size < offset)
1742 		goto do_expand;
1743 	/*
1744 	 * truncation of in-use swapfiles is disallowed - it would cause
1745 	 * subsequent swapout to scribble on the now-freed blocks.
1746 	 */
1747 	if (IS_SWAPFILE(inode))
1748 		goto out_busy;
1749 	i_size_write(inode, offset);
1750 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1751 	truncate_inode_pages(mapping, offset);
1752 	goto out_truncate;
1753 
1754 do_expand:
1755 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1756 	if (limit != RLIM_INFINITY && offset > limit)
1757 		goto out_sig;
1758 	if (offset > inode->i_sb->s_maxbytes)
1759 		goto out_big;
1760 	i_size_write(inode, offset);
1761 
1762 out_truncate:
1763 	if (inode->i_op && inode->i_op->truncate)
1764 		inode->i_op->truncate(inode);
1765 	return 0;
1766 out_sig:
1767 	send_sig(SIGXFSZ, current, 0);
1768 out_big:
1769 	return -EFBIG;
1770 out_busy:
1771 	return -ETXTBSY;
1772 }
1773 EXPORT_SYMBOL(vmtruncate);
1774 
1775 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1776 {
1777 	struct address_space *mapping = inode->i_mapping;
1778 
1779 	/*
1780 	 * If the underlying filesystem is not going to provide
1781 	 * a way to truncate a range of blocks (punch a hole) -
1782 	 * we should return failure right now.
1783 	 */
1784 	if (!inode->i_op || !inode->i_op->truncate_range)
1785 		return -ENOSYS;
1786 
1787 	mutex_lock(&inode->i_mutex);
1788 	down_write(&inode->i_alloc_sem);
1789 	unmap_mapping_range(mapping, offset, (end - offset), 1);
1790 	truncate_inode_pages_range(mapping, offset, end);
1791 	inode->i_op->truncate_range(inode, offset, end);
1792 	up_write(&inode->i_alloc_sem);
1793 	mutex_unlock(&inode->i_mutex);
1794 
1795 	return 0;
1796 }
1797 EXPORT_SYMBOL(vmtruncate_range);
1798 
1799 /*
1800  * Primitive swap readahead code. We simply read an aligned block of
1801  * (1 << page_cluster) entries in the swap area. This method is chosen
1802  * because it doesn't cost us any seek time.  We also make sure to queue
1803  * the 'original' request together with the readahead ones...
1804  *
1805  * This has been extended to use the NUMA policies from the mm triggering
1806  * the readahead.
1807  *
1808  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1809  */
1810 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1811 {
1812 #ifdef CONFIG_NUMA
1813 	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1814 #endif
1815 	int i, num;
1816 	struct page *new_page;
1817 	unsigned long offset;
1818 
1819 	/*
1820 	 * Get the number of handles we should do readahead io to.
1821 	 */
1822 	num = valid_swaphandles(entry, &offset);
1823 	for (i = 0; i < num; offset++, i++) {
1824 		/* Ok, do the async read-ahead now */
1825 		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1826 							   offset), vma, addr);
1827 		if (!new_page)
1828 			break;
1829 		page_cache_release(new_page);
1830 #ifdef CONFIG_NUMA
1831 		/*
1832 		 * Find the next applicable VMA for the NUMA policy.
1833 		 */
1834 		addr += PAGE_SIZE;
1835 		if (addr == 0)
1836 			vma = NULL;
1837 		if (vma) {
1838 			if (addr >= vma->vm_end) {
1839 				vma = next_vma;
1840 				next_vma = vma ? vma->vm_next : NULL;
1841 			}
1842 			if (vma && addr < vma->vm_start)
1843 				vma = NULL;
1844 		} else {
1845 			if (next_vma && addr >= next_vma->vm_start) {
1846 				vma = next_vma;
1847 				next_vma = vma->vm_next;
1848 			}
1849 		}
1850 #endif
1851 	}
1852 	lru_add_drain();	/* Push any new pages onto the LRU now */
1853 }
1854 
1855 /*
1856  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1857  * but allow concurrent faults), and pte mapped but not yet locked.
1858  * We return with mmap_sem still held, but pte unmapped and unlocked.
1859  */
1860 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1861 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1862 		int write_access, pte_t orig_pte)
1863 {
1864 	spinlock_t *ptl;
1865 	struct page *page;
1866 	swp_entry_t entry;
1867 	pte_t pte;
1868 	int ret = VM_FAULT_MINOR;
1869 
1870 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1871 		goto out;
1872 
1873 	entry = pte_to_swp_entry(orig_pte);
1874 	page = lookup_swap_cache(entry);
1875 	if (!page) {
1876  		swapin_readahead(entry, address, vma);
1877  		page = read_swap_cache_async(entry, vma, address);
1878 		if (!page) {
1879 			/*
1880 			 * Back out if somebody else faulted in this pte
1881 			 * while we released the pte lock.
1882 			 */
1883 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1884 			if (likely(pte_same(*page_table, orig_pte)))
1885 				ret = VM_FAULT_OOM;
1886 			goto unlock;
1887 		}
1888 
1889 		/* Had to read the page from swap area: Major fault */
1890 		ret = VM_FAULT_MAJOR;
1891 		inc_page_state(pgmajfault);
1892 		grab_swap_token();
1893 	}
1894 
1895 	mark_page_accessed(page);
1896 	lock_page(page);
1897 
1898 	/*
1899 	 * Back out if somebody else already faulted in this pte.
1900 	 */
1901 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1902 	if (unlikely(!pte_same(*page_table, orig_pte)))
1903 		goto out_nomap;
1904 
1905 	if (unlikely(!PageUptodate(page))) {
1906 		ret = VM_FAULT_SIGBUS;
1907 		goto out_nomap;
1908 	}
1909 
1910 	/* The page isn't present yet, go ahead with the fault. */
1911 
1912 	inc_mm_counter(mm, anon_rss);
1913 	pte = mk_pte(page, vma->vm_page_prot);
1914 	if (write_access && can_share_swap_page(page)) {
1915 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1916 		write_access = 0;
1917 	}
1918 
1919 	flush_icache_page(vma, page);
1920 	set_pte_at(mm, address, page_table, pte);
1921 	page_add_anon_rmap(page, vma, address);
1922 
1923 	swap_free(entry);
1924 	if (vm_swap_full())
1925 		remove_exclusive_swap_page(page);
1926 	unlock_page(page);
1927 
1928 	if (write_access) {
1929 		if (do_wp_page(mm, vma, address,
1930 				page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1931 			ret = VM_FAULT_OOM;
1932 		goto out;
1933 	}
1934 
1935 	/* No need to invalidate - it was non-present before */
1936 	update_mmu_cache(vma, address, pte);
1937 	lazy_mmu_prot_update(pte);
1938 unlock:
1939 	pte_unmap_unlock(page_table, ptl);
1940 out:
1941 	return ret;
1942 out_nomap:
1943 	pte_unmap_unlock(page_table, ptl);
1944 	unlock_page(page);
1945 	page_cache_release(page);
1946 	return ret;
1947 }
1948 
1949 /*
1950  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1951  * but allow concurrent faults), and pte mapped but not yet locked.
1952  * We return with mmap_sem still held, but pte unmapped and unlocked.
1953  */
1954 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1955 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1956 		int write_access)
1957 {
1958 	struct page *page;
1959 	spinlock_t *ptl;
1960 	pte_t entry;
1961 
1962 	if (write_access) {
1963 		/* Allocate our own private page. */
1964 		pte_unmap(page_table);
1965 
1966 		if (unlikely(anon_vma_prepare(vma)))
1967 			goto oom;
1968 		page = alloc_zeroed_user_highpage(vma, address);
1969 		if (!page)
1970 			goto oom;
1971 
1972 		entry = mk_pte(page, vma->vm_page_prot);
1973 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1974 
1975 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1976 		if (!pte_none(*page_table))
1977 			goto release;
1978 		inc_mm_counter(mm, anon_rss);
1979 		lru_cache_add_active(page);
1980 		page_add_new_anon_rmap(page, vma, address);
1981 	} else {
1982 		/* Map the ZERO_PAGE - vm_page_prot is readonly */
1983 		page = ZERO_PAGE(address);
1984 		page_cache_get(page);
1985 		entry = mk_pte(page, vma->vm_page_prot);
1986 
1987 		ptl = pte_lockptr(mm, pmd);
1988 		spin_lock(ptl);
1989 		if (!pte_none(*page_table))
1990 			goto release;
1991 		inc_mm_counter(mm, file_rss);
1992 		page_add_file_rmap(page);
1993 	}
1994 
1995 	set_pte_at(mm, address, page_table, entry);
1996 
1997 	/* No need to invalidate - it was non-present before */
1998 	update_mmu_cache(vma, address, entry);
1999 	lazy_mmu_prot_update(entry);
2000 unlock:
2001 	pte_unmap_unlock(page_table, ptl);
2002 	return VM_FAULT_MINOR;
2003 release:
2004 	page_cache_release(page);
2005 	goto unlock;
2006 oom:
2007 	return VM_FAULT_OOM;
2008 }
2009 
2010 /*
2011  * do_no_page() tries to create a new page mapping. It aggressively
2012  * tries to share with existing pages, but makes a separate copy if
2013  * the "write_access" parameter is true in order to avoid the next
2014  * page fault.
2015  *
2016  * As this is called only for pages that do not currently exist, we
2017  * do not need to flush old virtual caches or the TLB.
2018  *
2019  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2020  * but allow concurrent faults), and pte mapped but not yet locked.
2021  * We return with mmap_sem still held, but pte unmapped and unlocked.
2022  */
2023 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2024 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2025 		int write_access)
2026 {
2027 	spinlock_t *ptl;
2028 	struct page *new_page;
2029 	struct address_space *mapping = NULL;
2030 	pte_t entry;
2031 	unsigned int sequence = 0;
2032 	int ret = VM_FAULT_MINOR;
2033 	int anon = 0;
2034 
2035 	pte_unmap(page_table);
2036 	BUG_ON(vma->vm_flags & VM_PFNMAP);
2037 
2038 	if (vma->vm_file) {
2039 		mapping = vma->vm_file->f_mapping;
2040 		sequence = mapping->truncate_count;
2041 		smp_rmb(); /* serializes i_size against truncate_count */
2042 	}
2043 retry:
2044 	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2045 	/*
2046 	 * No smp_rmb is needed here as long as there's a full
2047 	 * spin_lock/unlock sequence inside the ->nopage callback
2048 	 * (for the pagecache lookup) that acts as an implicit
2049 	 * smp_mb() and prevents the i_size read to happen
2050 	 * after the next truncate_count read.
2051 	 */
2052 
2053 	/* no page was available -- either SIGBUS or OOM */
2054 	if (new_page == NOPAGE_SIGBUS)
2055 		return VM_FAULT_SIGBUS;
2056 	if (new_page == NOPAGE_OOM)
2057 		return VM_FAULT_OOM;
2058 
2059 	/*
2060 	 * Should we do an early C-O-W break?
2061 	 */
2062 	if (write_access && !(vma->vm_flags & VM_SHARED)) {
2063 		struct page *page;
2064 
2065 		if (unlikely(anon_vma_prepare(vma)))
2066 			goto oom;
2067 		page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2068 		if (!page)
2069 			goto oom;
2070 		copy_user_highpage(page, new_page, address);
2071 		page_cache_release(new_page);
2072 		new_page = page;
2073 		anon = 1;
2074 	}
2075 
2076 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2077 	/*
2078 	 * For a file-backed vma, someone could have truncated or otherwise
2079 	 * invalidated this page.  If unmap_mapping_range got called,
2080 	 * retry getting the page.
2081 	 */
2082 	if (mapping && unlikely(sequence != mapping->truncate_count)) {
2083 		pte_unmap_unlock(page_table, ptl);
2084 		page_cache_release(new_page);
2085 		cond_resched();
2086 		sequence = mapping->truncate_count;
2087 		smp_rmb();
2088 		goto retry;
2089 	}
2090 
2091 	/*
2092 	 * This silly early PAGE_DIRTY setting removes a race
2093 	 * due to the bad i386 page protection. But it's valid
2094 	 * for other architectures too.
2095 	 *
2096 	 * Note that if write_access is true, we either now have
2097 	 * an exclusive copy of the page, or this is a shared mapping,
2098 	 * so we can make it writable and dirty to avoid having to
2099 	 * handle that later.
2100 	 */
2101 	/* Only go through if we didn't race with anybody else... */
2102 	if (pte_none(*page_table)) {
2103 		flush_icache_page(vma, new_page);
2104 		entry = mk_pte(new_page, vma->vm_page_prot);
2105 		if (write_access)
2106 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2107 		set_pte_at(mm, address, page_table, entry);
2108 		if (anon) {
2109 			inc_mm_counter(mm, anon_rss);
2110 			lru_cache_add_active(new_page);
2111 			page_add_new_anon_rmap(new_page, vma, address);
2112 		} else {
2113 			inc_mm_counter(mm, file_rss);
2114 			page_add_file_rmap(new_page);
2115 		}
2116 	} else {
2117 		/* One of our sibling threads was faster, back out. */
2118 		page_cache_release(new_page);
2119 		goto unlock;
2120 	}
2121 
2122 	/* no need to invalidate: a not-present page shouldn't be cached */
2123 	update_mmu_cache(vma, address, entry);
2124 	lazy_mmu_prot_update(entry);
2125 unlock:
2126 	pte_unmap_unlock(page_table, ptl);
2127 	return ret;
2128 oom:
2129 	page_cache_release(new_page);
2130 	return VM_FAULT_OOM;
2131 }
2132 
2133 /*
2134  * Fault of a previously existing named mapping. Repopulate the pte
2135  * from the encoded file_pte if possible. This enables swappable
2136  * nonlinear vmas.
2137  *
2138  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2139  * but allow concurrent faults), and pte mapped but not yet locked.
2140  * We return with mmap_sem still held, but pte unmapped and unlocked.
2141  */
2142 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2143 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2144 		int write_access, pte_t orig_pte)
2145 {
2146 	pgoff_t pgoff;
2147 	int err;
2148 
2149 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2150 		return VM_FAULT_MINOR;
2151 
2152 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2153 		/*
2154 		 * Page table corrupted: show pte and kill process.
2155 		 */
2156 		print_bad_pte(vma, orig_pte, address);
2157 		return VM_FAULT_OOM;
2158 	}
2159 	/* We can then assume vm->vm_ops && vma->vm_ops->populate */
2160 
2161 	pgoff = pte_to_pgoff(orig_pte);
2162 	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2163 					vma->vm_page_prot, pgoff, 0);
2164 	if (err == -ENOMEM)
2165 		return VM_FAULT_OOM;
2166 	if (err)
2167 		return VM_FAULT_SIGBUS;
2168 	return VM_FAULT_MAJOR;
2169 }
2170 
2171 /*
2172  * These routines also need to handle stuff like marking pages dirty
2173  * and/or accessed for architectures that don't do it in hardware (most
2174  * RISC architectures).  The early dirtying is also good on the i386.
2175  *
2176  * There is also a hook called "update_mmu_cache()" that architectures
2177  * with external mmu caches can use to update those (ie the Sparc or
2178  * PowerPC hashed page tables that act as extended TLBs).
2179  *
2180  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2181  * but allow concurrent faults), and pte mapped but not yet locked.
2182  * We return with mmap_sem still held, but pte unmapped and unlocked.
2183  */
2184 static inline int handle_pte_fault(struct mm_struct *mm,
2185 		struct vm_area_struct *vma, unsigned long address,
2186 		pte_t *pte, pmd_t *pmd, int write_access)
2187 {
2188 	pte_t entry;
2189 	pte_t old_entry;
2190 	spinlock_t *ptl;
2191 
2192 	old_entry = entry = *pte;
2193 	if (!pte_present(entry)) {
2194 		if (pte_none(entry)) {
2195 			if (!vma->vm_ops || !vma->vm_ops->nopage)
2196 				return do_anonymous_page(mm, vma, address,
2197 					pte, pmd, write_access);
2198 			return do_no_page(mm, vma, address,
2199 					pte, pmd, write_access);
2200 		}
2201 		if (pte_file(entry))
2202 			return do_file_page(mm, vma, address,
2203 					pte, pmd, write_access, entry);
2204 		return do_swap_page(mm, vma, address,
2205 					pte, pmd, write_access, entry);
2206 	}
2207 
2208 	ptl = pte_lockptr(mm, pmd);
2209 	spin_lock(ptl);
2210 	if (unlikely(!pte_same(*pte, entry)))
2211 		goto unlock;
2212 	if (write_access) {
2213 		if (!pte_write(entry))
2214 			return do_wp_page(mm, vma, address,
2215 					pte, pmd, ptl, entry);
2216 		entry = pte_mkdirty(entry);
2217 	}
2218 	entry = pte_mkyoung(entry);
2219 	if (!pte_same(old_entry, entry)) {
2220 		ptep_set_access_flags(vma, address, pte, entry, write_access);
2221 		update_mmu_cache(vma, address, entry);
2222 		lazy_mmu_prot_update(entry);
2223 	} else {
2224 		/*
2225 		 * This is needed only for protection faults but the arch code
2226 		 * is not yet telling us if this is a protection fault or not.
2227 		 * This still avoids useless tlb flushes for .text page faults
2228 		 * with threads.
2229 		 */
2230 		if (write_access)
2231 			flush_tlb_page(vma, address);
2232 	}
2233 unlock:
2234 	pte_unmap_unlock(pte, ptl);
2235 	return VM_FAULT_MINOR;
2236 }
2237 
2238 /*
2239  * By the time we get here, we already hold the mm semaphore
2240  */
2241 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2242 		unsigned long address, int write_access)
2243 {
2244 	pgd_t *pgd;
2245 	pud_t *pud;
2246 	pmd_t *pmd;
2247 	pte_t *pte;
2248 
2249 	__set_current_state(TASK_RUNNING);
2250 
2251 	inc_page_state(pgfault);
2252 
2253 	if (unlikely(is_vm_hugetlb_page(vma)))
2254 		return hugetlb_fault(mm, vma, address, write_access);
2255 
2256 	pgd = pgd_offset(mm, address);
2257 	pud = pud_alloc(mm, pgd, address);
2258 	if (!pud)
2259 		return VM_FAULT_OOM;
2260 	pmd = pmd_alloc(mm, pud, address);
2261 	if (!pmd)
2262 		return VM_FAULT_OOM;
2263 	pte = pte_alloc_map(mm, pmd, address);
2264 	if (!pte)
2265 		return VM_FAULT_OOM;
2266 
2267 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2268 }
2269 
2270 EXPORT_SYMBOL_GPL(__handle_mm_fault);
2271 
2272 #ifndef __PAGETABLE_PUD_FOLDED
2273 /*
2274  * Allocate page upper directory.
2275  * We've already handled the fast-path in-line.
2276  */
2277 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2278 {
2279 	pud_t *new = pud_alloc_one(mm, address);
2280 	if (!new)
2281 		return -ENOMEM;
2282 
2283 	spin_lock(&mm->page_table_lock);
2284 	if (pgd_present(*pgd))		/* Another has populated it */
2285 		pud_free(new);
2286 	else
2287 		pgd_populate(mm, pgd, new);
2288 	spin_unlock(&mm->page_table_lock);
2289 	return 0;
2290 }
2291 #else
2292 /* Workaround for gcc 2.96 */
2293 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2294 {
2295 	return 0;
2296 }
2297 #endif /* __PAGETABLE_PUD_FOLDED */
2298 
2299 #ifndef __PAGETABLE_PMD_FOLDED
2300 /*
2301  * Allocate page middle directory.
2302  * We've already handled the fast-path in-line.
2303  */
2304 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2305 {
2306 	pmd_t *new = pmd_alloc_one(mm, address);
2307 	if (!new)
2308 		return -ENOMEM;
2309 
2310 	spin_lock(&mm->page_table_lock);
2311 #ifndef __ARCH_HAS_4LEVEL_HACK
2312 	if (pud_present(*pud))		/* Another has populated it */
2313 		pmd_free(new);
2314 	else
2315 		pud_populate(mm, pud, new);
2316 #else
2317 	if (pgd_present(*pud))		/* Another has populated it */
2318 		pmd_free(new);
2319 	else
2320 		pgd_populate(mm, pud, new);
2321 #endif /* __ARCH_HAS_4LEVEL_HACK */
2322 	spin_unlock(&mm->page_table_lock);
2323 	return 0;
2324 }
2325 #else
2326 /* Workaround for gcc 2.96 */
2327 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2328 {
2329 	return 0;
2330 }
2331 #endif /* __PAGETABLE_PMD_FOLDED */
2332 
2333 int make_pages_present(unsigned long addr, unsigned long end)
2334 {
2335 	int ret, len, write;
2336 	struct vm_area_struct * vma;
2337 
2338 	vma = find_vma(current->mm, addr);
2339 	if (!vma)
2340 		return -1;
2341 	write = (vma->vm_flags & VM_WRITE) != 0;
2342 	if (addr >= end)
2343 		BUG();
2344 	if (end > vma->vm_end)
2345 		BUG();
2346 	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2347 	ret = get_user_pages(current, current->mm, addr,
2348 			len, write, 0, NULL, NULL);
2349 	if (ret < 0)
2350 		return ret;
2351 	return ret == len ? 0 : -1;
2352 }
2353 
2354 /*
2355  * Map a vmalloc()-space virtual address to the physical page.
2356  */
2357 struct page * vmalloc_to_page(void * vmalloc_addr)
2358 {
2359 	unsigned long addr = (unsigned long) vmalloc_addr;
2360 	struct page *page = NULL;
2361 	pgd_t *pgd = pgd_offset_k(addr);
2362 	pud_t *pud;
2363 	pmd_t *pmd;
2364 	pte_t *ptep, pte;
2365 
2366 	if (!pgd_none(*pgd)) {
2367 		pud = pud_offset(pgd, addr);
2368 		if (!pud_none(*pud)) {
2369 			pmd = pmd_offset(pud, addr);
2370 			if (!pmd_none(*pmd)) {
2371 				ptep = pte_offset_map(pmd, addr);
2372 				pte = *ptep;
2373 				if (pte_present(pte))
2374 					page = pte_page(pte);
2375 				pte_unmap(ptep);
2376 			}
2377 		}
2378 	}
2379 	return page;
2380 }
2381 
2382 EXPORT_SYMBOL(vmalloc_to_page);
2383 
2384 /*
2385  * Map a vmalloc()-space virtual address to the physical page frame number.
2386  */
2387 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2388 {
2389 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2390 }
2391 
2392 EXPORT_SYMBOL(vmalloc_to_pfn);
2393 
2394 #if !defined(__HAVE_ARCH_GATE_AREA)
2395 
2396 #if defined(AT_SYSINFO_EHDR)
2397 static struct vm_area_struct gate_vma;
2398 
2399 static int __init gate_vma_init(void)
2400 {
2401 	gate_vma.vm_mm = NULL;
2402 	gate_vma.vm_start = FIXADDR_USER_START;
2403 	gate_vma.vm_end = FIXADDR_USER_END;
2404 	gate_vma.vm_page_prot = PAGE_READONLY;
2405 	gate_vma.vm_flags = 0;
2406 	return 0;
2407 }
2408 __initcall(gate_vma_init);
2409 #endif
2410 
2411 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2412 {
2413 #ifdef AT_SYSINFO_EHDR
2414 	return &gate_vma;
2415 #else
2416 	return NULL;
2417 #endif
2418 }
2419 
2420 int in_gate_area_no_task(unsigned long addr)
2421 {
2422 #ifdef AT_SYSINFO_EHDR
2423 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2424 		return 1;
2425 #endif
2426 	return 0;
2427 }
2428 
2429 #endif	/* __HAVE_ARCH_GATE_AREA */
2430