1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/memremap.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/export.h> 56 #include <linux/delayacct.h> 57 #include <linux/init.h> 58 #include <linux/pfn_t.h> 59 #include <linux/writeback.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 #include <linux/numa.h> 73 74 #include <asm/io.h> 75 #include <asm/mmu_context.h> 76 #include <asm/pgalloc.h> 77 #include <linux/uaccess.h> 78 #include <asm/tlb.h> 79 #include <asm/tlbflush.h> 80 #include <asm/pgtable.h> 81 82 #include "internal.h" 83 84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 86 #endif 87 88 #ifndef CONFIG_NEED_MULTIPLE_NODES 89 /* use the per-pgdat data instead for discontigmem - mbligh */ 90 unsigned long max_mapnr; 91 EXPORT_SYMBOL(max_mapnr); 92 93 struct page *mem_map; 94 EXPORT_SYMBOL(mem_map); 95 #endif 96 97 /* 98 * A number of key systems in x86 including ioremap() rely on the assumption 99 * that high_memory defines the upper bound on direct map memory, then end 100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 102 * and ZONE_HIGHMEM. 103 */ 104 void *high_memory; 105 EXPORT_SYMBOL(high_memory); 106 107 /* 108 * Randomize the address space (stacks, mmaps, brk, etc.). 109 * 110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 111 * as ancient (libc5 based) binaries can segfault. ) 112 */ 113 int randomize_va_space __read_mostly = 114 #ifdef CONFIG_COMPAT_BRK 115 1; 116 #else 117 2; 118 #endif 119 120 static int __init disable_randmaps(char *s) 121 { 122 randomize_va_space = 0; 123 return 1; 124 } 125 __setup("norandmaps", disable_randmaps); 126 127 unsigned long zero_pfn __read_mostly; 128 EXPORT_SYMBOL(zero_pfn); 129 130 unsigned long highest_memmap_pfn __read_mostly; 131 132 /* 133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 134 */ 135 static int __init init_zero_pfn(void) 136 { 137 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 138 return 0; 139 } 140 core_initcall(init_zero_pfn); 141 142 143 #if defined(SPLIT_RSS_COUNTING) 144 145 void sync_mm_rss(struct mm_struct *mm) 146 { 147 int i; 148 149 for (i = 0; i < NR_MM_COUNTERS; i++) { 150 if (current->rss_stat.count[i]) { 151 add_mm_counter(mm, i, current->rss_stat.count[i]); 152 current->rss_stat.count[i] = 0; 153 } 154 } 155 current->rss_stat.events = 0; 156 } 157 158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 159 { 160 struct task_struct *task = current; 161 162 if (likely(task->mm == mm)) 163 task->rss_stat.count[member] += val; 164 else 165 add_mm_counter(mm, member, val); 166 } 167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 169 170 /* sync counter once per 64 page faults */ 171 #define TASK_RSS_EVENTS_THRESH (64) 172 static void check_sync_rss_stat(struct task_struct *task) 173 { 174 if (unlikely(task != current)) 175 return; 176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 177 sync_mm_rss(task->mm); 178 } 179 #else /* SPLIT_RSS_COUNTING */ 180 181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 183 184 static void check_sync_rss_stat(struct task_struct *task) 185 { 186 } 187 188 #endif /* SPLIT_RSS_COUNTING */ 189 190 /* 191 * Note: this doesn't free the actual pages themselves. That 192 * has been handled earlier when unmapping all the memory regions. 193 */ 194 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 195 unsigned long addr) 196 { 197 pgtable_t token = pmd_pgtable(*pmd); 198 pmd_clear(pmd); 199 pte_free_tlb(tlb, token, addr); 200 mm_dec_nr_ptes(tlb->mm); 201 } 202 203 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 204 unsigned long addr, unsigned long end, 205 unsigned long floor, unsigned long ceiling) 206 { 207 pmd_t *pmd; 208 unsigned long next; 209 unsigned long start; 210 211 start = addr; 212 pmd = pmd_offset(pud, addr); 213 do { 214 next = pmd_addr_end(addr, end); 215 if (pmd_none_or_clear_bad(pmd)) 216 continue; 217 free_pte_range(tlb, pmd, addr); 218 } while (pmd++, addr = next, addr != end); 219 220 start &= PUD_MASK; 221 if (start < floor) 222 return; 223 if (ceiling) { 224 ceiling &= PUD_MASK; 225 if (!ceiling) 226 return; 227 } 228 if (end - 1 > ceiling - 1) 229 return; 230 231 pmd = pmd_offset(pud, start); 232 pud_clear(pud); 233 pmd_free_tlb(tlb, pmd, start); 234 mm_dec_nr_pmds(tlb->mm); 235 } 236 237 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 238 unsigned long addr, unsigned long end, 239 unsigned long floor, unsigned long ceiling) 240 { 241 pud_t *pud; 242 unsigned long next; 243 unsigned long start; 244 245 start = addr; 246 pud = pud_offset(p4d, addr); 247 do { 248 next = pud_addr_end(addr, end); 249 if (pud_none_or_clear_bad(pud)) 250 continue; 251 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 252 } while (pud++, addr = next, addr != end); 253 254 start &= P4D_MASK; 255 if (start < floor) 256 return; 257 if (ceiling) { 258 ceiling &= P4D_MASK; 259 if (!ceiling) 260 return; 261 } 262 if (end - 1 > ceiling - 1) 263 return; 264 265 pud = pud_offset(p4d, start); 266 p4d_clear(p4d); 267 pud_free_tlb(tlb, pud, start); 268 mm_dec_nr_puds(tlb->mm); 269 } 270 271 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 272 unsigned long addr, unsigned long end, 273 unsigned long floor, unsigned long ceiling) 274 { 275 p4d_t *p4d; 276 unsigned long next; 277 unsigned long start; 278 279 start = addr; 280 p4d = p4d_offset(pgd, addr); 281 do { 282 next = p4d_addr_end(addr, end); 283 if (p4d_none_or_clear_bad(p4d)) 284 continue; 285 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 286 } while (p4d++, addr = next, addr != end); 287 288 start &= PGDIR_MASK; 289 if (start < floor) 290 return; 291 if (ceiling) { 292 ceiling &= PGDIR_MASK; 293 if (!ceiling) 294 return; 295 } 296 if (end - 1 > ceiling - 1) 297 return; 298 299 p4d = p4d_offset(pgd, start); 300 pgd_clear(pgd); 301 p4d_free_tlb(tlb, p4d, start); 302 } 303 304 /* 305 * This function frees user-level page tables of a process. 306 */ 307 void free_pgd_range(struct mmu_gather *tlb, 308 unsigned long addr, unsigned long end, 309 unsigned long floor, unsigned long ceiling) 310 { 311 pgd_t *pgd; 312 unsigned long next; 313 314 /* 315 * The next few lines have given us lots of grief... 316 * 317 * Why are we testing PMD* at this top level? Because often 318 * there will be no work to do at all, and we'd prefer not to 319 * go all the way down to the bottom just to discover that. 320 * 321 * Why all these "- 1"s? Because 0 represents both the bottom 322 * of the address space and the top of it (using -1 for the 323 * top wouldn't help much: the masks would do the wrong thing). 324 * The rule is that addr 0 and floor 0 refer to the bottom of 325 * the address space, but end 0 and ceiling 0 refer to the top 326 * Comparisons need to use "end - 1" and "ceiling - 1" (though 327 * that end 0 case should be mythical). 328 * 329 * Wherever addr is brought up or ceiling brought down, we must 330 * be careful to reject "the opposite 0" before it confuses the 331 * subsequent tests. But what about where end is brought down 332 * by PMD_SIZE below? no, end can't go down to 0 there. 333 * 334 * Whereas we round start (addr) and ceiling down, by different 335 * masks at different levels, in order to test whether a table 336 * now has no other vmas using it, so can be freed, we don't 337 * bother to round floor or end up - the tests don't need that. 338 */ 339 340 addr &= PMD_MASK; 341 if (addr < floor) { 342 addr += PMD_SIZE; 343 if (!addr) 344 return; 345 } 346 if (ceiling) { 347 ceiling &= PMD_MASK; 348 if (!ceiling) 349 return; 350 } 351 if (end - 1 > ceiling - 1) 352 end -= PMD_SIZE; 353 if (addr > end - 1) 354 return; 355 /* 356 * We add page table cache pages with PAGE_SIZE, 357 * (see pte_free_tlb()), flush the tlb if we need 358 */ 359 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 360 pgd = pgd_offset(tlb->mm, addr); 361 do { 362 next = pgd_addr_end(addr, end); 363 if (pgd_none_or_clear_bad(pgd)) 364 continue; 365 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 366 } while (pgd++, addr = next, addr != end); 367 } 368 369 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 370 unsigned long floor, unsigned long ceiling) 371 { 372 while (vma) { 373 struct vm_area_struct *next = vma->vm_next; 374 unsigned long addr = vma->vm_start; 375 376 /* 377 * Hide vma from rmap and truncate_pagecache before freeing 378 * pgtables 379 */ 380 unlink_anon_vmas(vma); 381 unlink_file_vma(vma); 382 383 if (is_vm_hugetlb_page(vma)) { 384 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 385 floor, next ? next->vm_start : ceiling); 386 } else { 387 /* 388 * Optimization: gather nearby vmas into one call down 389 */ 390 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 391 && !is_vm_hugetlb_page(next)) { 392 vma = next; 393 next = vma->vm_next; 394 unlink_anon_vmas(vma); 395 unlink_file_vma(vma); 396 } 397 free_pgd_range(tlb, addr, vma->vm_end, 398 floor, next ? next->vm_start : ceiling); 399 } 400 vma = next; 401 } 402 } 403 404 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 405 { 406 spinlock_t *ptl; 407 pgtable_t new = pte_alloc_one(mm); 408 if (!new) 409 return -ENOMEM; 410 411 /* 412 * Ensure all pte setup (eg. pte page lock and page clearing) are 413 * visible before the pte is made visible to other CPUs by being 414 * put into page tables. 415 * 416 * The other side of the story is the pointer chasing in the page 417 * table walking code (when walking the page table without locking; 418 * ie. most of the time). Fortunately, these data accesses consist 419 * of a chain of data-dependent loads, meaning most CPUs (alpha 420 * being the notable exception) will already guarantee loads are 421 * seen in-order. See the alpha page table accessors for the 422 * smp_read_barrier_depends() barriers in page table walking code. 423 */ 424 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 425 426 ptl = pmd_lock(mm, pmd); 427 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 428 mm_inc_nr_ptes(mm); 429 pmd_populate(mm, pmd, new); 430 new = NULL; 431 } 432 spin_unlock(ptl); 433 if (new) 434 pte_free(mm, new); 435 return 0; 436 } 437 438 int __pte_alloc_kernel(pmd_t *pmd) 439 { 440 pte_t *new = pte_alloc_one_kernel(&init_mm); 441 if (!new) 442 return -ENOMEM; 443 444 smp_wmb(); /* See comment in __pte_alloc */ 445 446 spin_lock(&init_mm.page_table_lock); 447 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 448 pmd_populate_kernel(&init_mm, pmd, new); 449 new = NULL; 450 } 451 spin_unlock(&init_mm.page_table_lock); 452 if (new) 453 pte_free_kernel(&init_mm, new); 454 return 0; 455 } 456 457 static inline void init_rss_vec(int *rss) 458 { 459 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 460 } 461 462 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 463 { 464 int i; 465 466 if (current->mm == mm) 467 sync_mm_rss(mm); 468 for (i = 0; i < NR_MM_COUNTERS; i++) 469 if (rss[i]) 470 add_mm_counter(mm, i, rss[i]); 471 } 472 473 /* 474 * This function is called to print an error when a bad pte 475 * is found. For example, we might have a PFN-mapped pte in 476 * a region that doesn't allow it. 477 * 478 * The calling function must still handle the error. 479 */ 480 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 481 pte_t pte, struct page *page) 482 { 483 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 484 p4d_t *p4d = p4d_offset(pgd, addr); 485 pud_t *pud = pud_offset(p4d, addr); 486 pmd_t *pmd = pmd_offset(pud, addr); 487 struct address_space *mapping; 488 pgoff_t index; 489 static unsigned long resume; 490 static unsigned long nr_shown; 491 static unsigned long nr_unshown; 492 493 /* 494 * Allow a burst of 60 reports, then keep quiet for that minute; 495 * or allow a steady drip of one report per second. 496 */ 497 if (nr_shown == 60) { 498 if (time_before(jiffies, resume)) { 499 nr_unshown++; 500 return; 501 } 502 if (nr_unshown) { 503 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 504 nr_unshown); 505 nr_unshown = 0; 506 } 507 nr_shown = 0; 508 } 509 if (nr_shown++ == 0) 510 resume = jiffies + 60 * HZ; 511 512 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 513 index = linear_page_index(vma, addr); 514 515 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 516 current->comm, 517 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 518 if (page) 519 dump_page(page, "bad pte"); 520 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 521 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 522 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 523 vma->vm_file, 524 vma->vm_ops ? vma->vm_ops->fault : NULL, 525 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 526 mapping ? mapping->a_ops->readpage : NULL); 527 dump_stack(); 528 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 529 } 530 531 /* 532 * vm_normal_page -- This function gets the "struct page" associated with a pte. 533 * 534 * "Special" mappings do not wish to be associated with a "struct page" (either 535 * it doesn't exist, or it exists but they don't want to touch it). In this 536 * case, NULL is returned here. "Normal" mappings do have a struct page. 537 * 538 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 539 * pte bit, in which case this function is trivial. Secondly, an architecture 540 * may not have a spare pte bit, which requires a more complicated scheme, 541 * described below. 542 * 543 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 544 * special mapping (even if there are underlying and valid "struct pages"). 545 * COWed pages of a VM_PFNMAP are always normal. 546 * 547 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 548 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 549 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 550 * mapping will always honor the rule 551 * 552 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 553 * 554 * And for normal mappings this is false. 555 * 556 * This restricts such mappings to be a linear translation from virtual address 557 * to pfn. To get around this restriction, we allow arbitrary mappings so long 558 * as the vma is not a COW mapping; in that case, we know that all ptes are 559 * special (because none can have been COWed). 560 * 561 * 562 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 563 * 564 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 565 * page" backing, however the difference is that _all_ pages with a struct 566 * page (that is, those where pfn_valid is true) are refcounted and considered 567 * normal pages by the VM. The disadvantage is that pages are refcounted 568 * (which can be slower and simply not an option for some PFNMAP users). The 569 * advantage is that we don't have to follow the strict linearity rule of 570 * PFNMAP mappings in order to support COWable mappings. 571 * 572 */ 573 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 574 pte_t pte, bool with_public_device) 575 { 576 unsigned long pfn = pte_pfn(pte); 577 578 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 579 if (likely(!pte_special(pte))) 580 goto check_pfn; 581 if (vma->vm_ops && vma->vm_ops->find_special_page) 582 return vma->vm_ops->find_special_page(vma, addr); 583 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 584 return NULL; 585 if (is_zero_pfn(pfn)) 586 return NULL; 587 588 /* 589 * Device public pages are special pages (they are ZONE_DEVICE 590 * pages but different from persistent memory). They behave 591 * allmost like normal pages. The difference is that they are 592 * not on the lru and thus should never be involve with any- 593 * thing that involve lru manipulation (mlock, numa balancing, 594 * ...). 595 * 596 * This is why we still want to return NULL for such page from 597 * vm_normal_page() so that we do not have to special case all 598 * call site of vm_normal_page(). 599 */ 600 if (likely(pfn <= highest_memmap_pfn)) { 601 struct page *page = pfn_to_page(pfn); 602 603 if (is_device_public_page(page)) { 604 if (with_public_device) 605 return page; 606 return NULL; 607 } 608 } 609 610 if (pte_devmap(pte)) 611 return NULL; 612 613 print_bad_pte(vma, addr, pte, NULL); 614 return NULL; 615 } 616 617 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 618 619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 620 if (vma->vm_flags & VM_MIXEDMAP) { 621 if (!pfn_valid(pfn)) 622 return NULL; 623 goto out; 624 } else { 625 unsigned long off; 626 off = (addr - vma->vm_start) >> PAGE_SHIFT; 627 if (pfn == vma->vm_pgoff + off) 628 return NULL; 629 if (!is_cow_mapping(vma->vm_flags)) 630 return NULL; 631 } 632 } 633 634 if (is_zero_pfn(pfn)) 635 return NULL; 636 637 check_pfn: 638 if (unlikely(pfn > highest_memmap_pfn)) { 639 print_bad_pte(vma, addr, pte, NULL); 640 return NULL; 641 } 642 643 /* 644 * NOTE! We still have PageReserved() pages in the page tables. 645 * eg. VDSO mappings can cause them to exist. 646 */ 647 out: 648 return pfn_to_page(pfn); 649 } 650 651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 652 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 653 pmd_t pmd) 654 { 655 unsigned long pfn = pmd_pfn(pmd); 656 657 /* 658 * There is no pmd_special() but there may be special pmds, e.g. 659 * in a direct-access (dax) mapping, so let's just replicate the 660 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 661 */ 662 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 663 if (vma->vm_flags & VM_MIXEDMAP) { 664 if (!pfn_valid(pfn)) 665 return NULL; 666 goto out; 667 } else { 668 unsigned long off; 669 off = (addr - vma->vm_start) >> PAGE_SHIFT; 670 if (pfn == vma->vm_pgoff + off) 671 return NULL; 672 if (!is_cow_mapping(vma->vm_flags)) 673 return NULL; 674 } 675 } 676 677 if (pmd_devmap(pmd)) 678 return NULL; 679 if (is_zero_pfn(pfn)) 680 return NULL; 681 if (unlikely(pfn > highest_memmap_pfn)) 682 return NULL; 683 684 /* 685 * NOTE! We still have PageReserved() pages in the page tables. 686 * eg. VDSO mappings can cause them to exist. 687 */ 688 out: 689 return pfn_to_page(pfn); 690 } 691 #endif 692 693 /* 694 * copy one vm_area from one task to the other. Assumes the page tables 695 * already present in the new task to be cleared in the whole range 696 * covered by this vma. 697 */ 698 699 static inline unsigned long 700 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 701 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 702 unsigned long addr, int *rss) 703 { 704 unsigned long vm_flags = vma->vm_flags; 705 pte_t pte = *src_pte; 706 struct page *page; 707 708 /* pte contains position in swap or file, so copy. */ 709 if (unlikely(!pte_present(pte))) { 710 swp_entry_t entry = pte_to_swp_entry(pte); 711 712 if (likely(!non_swap_entry(entry))) { 713 if (swap_duplicate(entry) < 0) 714 return entry.val; 715 716 /* make sure dst_mm is on swapoff's mmlist. */ 717 if (unlikely(list_empty(&dst_mm->mmlist))) { 718 spin_lock(&mmlist_lock); 719 if (list_empty(&dst_mm->mmlist)) 720 list_add(&dst_mm->mmlist, 721 &src_mm->mmlist); 722 spin_unlock(&mmlist_lock); 723 } 724 rss[MM_SWAPENTS]++; 725 } else if (is_migration_entry(entry)) { 726 page = migration_entry_to_page(entry); 727 728 rss[mm_counter(page)]++; 729 730 if (is_write_migration_entry(entry) && 731 is_cow_mapping(vm_flags)) { 732 /* 733 * COW mappings require pages in both 734 * parent and child to be set to read. 735 */ 736 make_migration_entry_read(&entry); 737 pte = swp_entry_to_pte(entry); 738 if (pte_swp_soft_dirty(*src_pte)) 739 pte = pte_swp_mksoft_dirty(pte); 740 set_pte_at(src_mm, addr, src_pte, pte); 741 } 742 } else if (is_device_private_entry(entry)) { 743 page = device_private_entry_to_page(entry); 744 745 /* 746 * Update rss count even for unaddressable pages, as 747 * they should treated just like normal pages in this 748 * respect. 749 * 750 * We will likely want to have some new rss counters 751 * for unaddressable pages, at some point. But for now 752 * keep things as they are. 753 */ 754 get_page(page); 755 rss[mm_counter(page)]++; 756 page_dup_rmap(page, false); 757 758 /* 759 * We do not preserve soft-dirty information, because so 760 * far, checkpoint/restore is the only feature that 761 * requires that. And checkpoint/restore does not work 762 * when a device driver is involved (you cannot easily 763 * save and restore device driver state). 764 */ 765 if (is_write_device_private_entry(entry) && 766 is_cow_mapping(vm_flags)) { 767 make_device_private_entry_read(&entry); 768 pte = swp_entry_to_pte(entry); 769 set_pte_at(src_mm, addr, src_pte, pte); 770 } 771 } 772 goto out_set_pte; 773 } 774 775 /* 776 * If it's a COW mapping, write protect it both 777 * in the parent and the child 778 */ 779 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 780 ptep_set_wrprotect(src_mm, addr, src_pte); 781 pte = pte_wrprotect(pte); 782 } 783 784 /* 785 * If it's a shared mapping, mark it clean in 786 * the child 787 */ 788 if (vm_flags & VM_SHARED) 789 pte = pte_mkclean(pte); 790 pte = pte_mkold(pte); 791 792 page = vm_normal_page(vma, addr, pte); 793 if (page) { 794 get_page(page); 795 page_dup_rmap(page, false); 796 rss[mm_counter(page)]++; 797 } else if (pte_devmap(pte)) { 798 page = pte_page(pte); 799 800 /* 801 * Cache coherent device memory behave like regular page and 802 * not like persistent memory page. For more informations see 803 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 804 */ 805 if (is_device_public_page(page)) { 806 get_page(page); 807 page_dup_rmap(page, false); 808 rss[mm_counter(page)]++; 809 } 810 } 811 812 out_set_pte: 813 set_pte_at(dst_mm, addr, dst_pte, pte); 814 return 0; 815 } 816 817 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 818 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 819 unsigned long addr, unsigned long end) 820 { 821 pte_t *orig_src_pte, *orig_dst_pte; 822 pte_t *src_pte, *dst_pte; 823 spinlock_t *src_ptl, *dst_ptl; 824 int progress = 0; 825 int rss[NR_MM_COUNTERS]; 826 swp_entry_t entry = (swp_entry_t){0}; 827 828 again: 829 init_rss_vec(rss); 830 831 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 832 if (!dst_pte) 833 return -ENOMEM; 834 src_pte = pte_offset_map(src_pmd, addr); 835 src_ptl = pte_lockptr(src_mm, src_pmd); 836 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 837 orig_src_pte = src_pte; 838 orig_dst_pte = dst_pte; 839 arch_enter_lazy_mmu_mode(); 840 841 do { 842 /* 843 * We are holding two locks at this point - either of them 844 * could generate latencies in another task on another CPU. 845 */ 846 if (progress >= 32) { 847 progress = 0; 848 if (need_resched() || 849 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 850 break; 851 } 852 if (pte_none(*src_pte)) { 853 progress++; 854 continue; 855 } 856 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 857 vma, addr, rss); 858 if (entry.val) 859 break; 860 progress += 8; 861 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 862 863 arch_leave_lazy_mmu_mode(); 864 spin_unlock(src_ptl); 865 pte_unmap(orig_src_pte); 866 add_mm_rss_vec(dst_mm, rss); 867 pte_unmap_unlock(orig_dst_pte, dst_ptl); 868 cond_resched(); 869 870 if (entry.val) { 871 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 872 return -ENOMEM; 873 progress = 0; 874 } 875 if (addr != end) 876 goto again; 877 return 0; 878 } 879 880 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 881 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 882 unsigned long addr, unsigned long end) 883 { 884 pmd_t *src_pmd, *dst_pmd; 885 unsigned long next; 886 887 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 888 if (!dst_pmd) 889 return -ENOMEM; 890 src_pmd = pmd_offset(src_pud, addr); 891 do { 892 next = pmd_addr_end(addr, end); 893 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 894 || pmd_devmap(*src_pmd)) { 895 int err; 896 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 897 err = copy_huge_pmd(dst_mm, src_mm, 898 dst_pmd, src_pmd, addr, vma); 899 if (err == -ENOMEM) 900 return -ENOMEM; 901 if (!err) 902 continue; 903 /* fall through */ 904 } 905 if (pmd_none_or_clear_bad(src_pmd)) 906 continue; 907 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 908 vma, addr, next)) 909 return -ENOMEM; 910 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 911 return 0; 912 } 913 914 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 915 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 916 unsigned long addr, unsigned long end) 917 { 918 pud_t *src_pud, *dst_pud; 919 unsigned long next; 920 921 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 922 if (!dst_pud) 923 return -ENOMEM; 924 src_pud = pud_offset(src_p4d, addr); 925 do { 926 next = pud_addr_end(addr, end); 927 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 928 int err; 929 930 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 931 err = copy_huge_pud(dst_mm, src_mm, 932 dst_pud, src_pud, addr, vma); 933 if (err == -ENOMEM) 934 return -ENOMEM; 935 if (!err) 936 continue; 937 /* fall through */ 938 } 939 if (pud_none_or_clear_bad(src_pud)) 940 continue; 941 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 942 vma, addr, next)) 943 return -ENOMEM; 944 } while (dst_pud++, src_pud++, addr = next, addr != end); 945 return 0; 946 } 947 948 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 949 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 950 unsigned long addr, unsigned long end) 951 { 952 p4d_t *src_p4d, *dst_p4d; 953 unsigned long next; 954 955 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 956 if (!dst_p4d) 957 return -ENOMEM; 958 src_p4d = p4d_offset(src_pgd, addr); 959 do { 960 next = p4d_addr_end(addr, end); 961 if (p4d_none_or_clear_bad(src_p4d)) 962 continue; 963 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 964 vma, addr, next)) 965 return -ENOMEM; 966 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 967 return 0; 968 } 969 970 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 971 struct vm_area_struct *vma) 972 { 973 pgd_t *src_pgd, *dst_pgd; 974 unsigned long next; 975 unsigned long addr = vma->vm_start; 976 unsigned long end = vma->vm_end; 977 struct mmu_notifier_range range; 978 bool is_cow; 979 int ret; 980 981 /* 982 * Don't copy ptes where a page fault will fill them correctly. 983 * Fork becomes much lighter when there are big shared or private 984 * readonly mappings. The tradeoff is that copy_page_range is more 985 * efficient than faulting. 986 */ 987 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 988 !vma->anon_vma) 989 return 0; 990 991 if (is_vm_hugetlb_page(vma)) 992 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 993 994 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 995 /* 996 * We do not free on error cases below as remove_vma 997 * gets called on error from higher level routine 998 */ 999 ret = track_pfn_copy(vma); 1000 if (ret) 1001 return ret; 1002 } 1003 1004 /* 1005 * We need to invalidate the secondary MMU mappings only when 1006 * there could be a permission downgrade on the ptes of the 1007 * parent mm. And a permission downgrade will only happen if 1008 * is_cow_mapping() returns true. 1009 */ 1010 is_cow = is_cow_mapping(vma->vm_flags); 1011 1012 if (is_cow) { 1013 mmu_notifier_range_init(&range, src_mm, addr, end); 1014 mmu_notifier_invalidate_range_start(&range); 1015 } 1016 1017 ret = 0; 1018 dst_pgd = pgd_offset(dst_mm, addr); 1019 src_pgd = pgd_offset(src_mm, addr); 1020 do { 1021 next = pgd_addr_end(addr, end); 1022 if (pgd_none_or_clear_bad(src_pgd)) 1023 continue; 1024 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1025 vma, addr, next))) { 1026 ret = -ENOMEM; 1027 break; 1028 } 1029 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1030 1031 if (is_cow) 1032 mmu_notifier_invalidate_range_end(&range); 1033 return ret; 1034 } 1035 1036 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1037 struct vm_area_struct *vma, pmd_t *pmd, 1038 unsigned long addr, unsigned long end, 1039 struct zap_details *details) 1040 { 1041 struct mm_struct *mm = tlb->mm; 1042 int force_flush = 0; 1043 int rss[NR_MM_COUNTERS]; 1044 spinlock_t *ptl; 1045 pte_t *start_pte; 1046 pte_t *pte; 1047 swp_entry_t entry; 1048 1049 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1050 again: 1051 init_rss_vec(rss); 1052 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1053 pte = start_pte; 1054 flush_tlb_batched_pending(mm); 1055 arch_enter_lazy_mmu_mode(); 1056 do { 1057 pte_t ptent = *pte; 1058 if (pte_none(ptent)) 1059 continue; 1060 1061 if (pte_present(ptent)) { 1062 struct page *page; 1063 1064 page = _vm_normal_page(vma, addr, ptent, true); 1065 if (unlikely(details) && page) { 1066 /* 1067 * unmap_shared_mapping_pages() wants to 1068 * invalidate cache without truncating: 1069 * unmap shared but keep private pages. 1070 */ 1071 if (details->check_mapping && 1072 details->check_mapping != page_rmapping(page)) 1073 continue; 1074 } 1075 ptent = ptep_get_and_clear_full(mm, addr, pte, 1076 tlb->fullmm); 1077 tlb_remove_tlb_entry(tlb, pte, addr); 1078 if (unlikely(!page)) 1079 continue; 1080 1081 if (!PageAnon(page)) { 1082 if (pte_dirty(ptent)) { 1083 force_flush = 1; 1084 set_page_dirty(page); 1085 } 1086 if (pte_young(ptent) && 1087 likely(!(vma->vm_flags & VM_SEQ_READ))) 1088 mark_page_accessed(page); 1089 } 1090 rss[mm_counter(page)]--; 1091 page_remove_rmap(page, false); 1092 if (unlikely(page_mapcount(page) < 0)) 1093 print_bad_pte(vma, addr, ptent, page); 1094 if (unlikely(__tlb_remove_page(tlb, page))) { 1095 force_flush = 1; 1096 addr += PAGE_SIZE; 1097 break; 1098 } 1099 continue; 1100 } 1101 1102 entry = pte_to_swp_entry(ptent); 1103 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1104 struct page *page = device_private_entry_to_page(entry); 1105 1106 if (unlikely(details && details->check_mapping)) { 1107 /* 1108 * unmap_shared_mapping_pages() wants to 1109 * invalidate cache without truncating: 1110 * unmap shared but keep private pages. 1111 */ 1112 if (details->check_mapping != 1113 page_rmapping(page)) 1114 continue; 1115 } 1116 1117 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1118 rss[mm_counter(page)]--; 1119 page_remove_rmap(page, false); 1120 put_page(page); 1121 continue; 1122 } 1123 1124 /* If details->check_mapping, we leave swap entries. */ 1125 if (unlikely(details)) 1126 continue; 1127 1128 entry = pte_to_swp_entry(ptent); 1129 if (!non_swap_entry(entry)) 1130 rss[MM_SWAPENTS]--; 1131 else if (is_migration_entry(entry)) { 1132 struct page *page; 1133 1134 page = migration_entry_to_page(entry); 1135 rss[mm_counter(page)]--; 1136 } 1137 if (unlikely(!free_swap_and_cache(entry))) 1138 print_bad_pte(vma, addr, ptent, NULL); 1139 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1140 } while (pte++, addr += PAGE_SIZE, addr != end); 1141 1142 add_mm_rss_vec(mm, rss); 1143 arch_leave_lazy_mmu_mode(); 1144 1145 /* Do the actual TLB flush before dropping ptl */ 1146 if (force_flush) 1147 tlb_flush_mmu_tlbonly(tlb); 1148 pte_unmap_unlock(start_pte, ptl); 1149 1150 /* 1151 * If we forced a TLB flush (either due to running out of 1152 * batch buffers or because we needed to flush dirty TLB 1153 * entries before releasing the ptl), free the batched 1154 * memory too. Restart if we didn't do everything. 1155 */ 1156 if (force_flush) { 1157 force_flush = 0; 1158 tlb_flush_mmu_free(tlb); 1159 if (addr != end) 1160 goto again; 1161 } 1162 1163 return addr; 1164 } 1165 1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1167 struct vm_area_struct *vma, pud_t *pud, 1168 unsigned long addr, unsigned long end, 1169 struct zap_details *details) 1170 { 1171 pmd_t *pmd; 1172 unsigned long next; 1173 1174 pmd = pmd_offset(pud, addr); 1175 do { 1176 next = pmd_addr_end(addr, end); 1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1178 if (next - addr != HPAGE_PMD_SIZE) 1179 __split_huge_pmd(vma, pmd, addr, false, NULL); 1180 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1181 goto next; 1182 /* fall through */ 1183 } 1184 /* 1185 * Here there can be other concurrent MADV_DONTNEED or 1186 * trans huge page faults running, and if the pmd is 1187 * none or trans huge it can change under us. This is 1188 * because MADV_DONTNEED holds the mmap_sem in read 1189 * mode. 1190 */ 1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1192 goto next; 1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1194 next: 1195 cond_resched(); 1196 } while (pmd++, addr = next, addr != end); 1197 1198 return addr; 1199 } 1200 1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1202 struct vm_area_struct *vma, p4d_t *p4d, 1203 unsigned long addr, unsigned long end, 1204 struct zap_details *details) 1205 { 1206 pud_t *pud; 1207 unsigned long next; 1208 1209 pud = pud_offset(p4d, addr); 1210 do { 1211 next = pud_addr_end(addr, end); 1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1213 if (next - addr != HPAGE_PUD_SIZE) { 1214 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1215 split_huge_pud(vma, pud, addr); 1216 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1217 goto next; 1218 /* fall through */ 1219 } 1220 if (pud_none_or_clear_bad(pud)) 1221 continue; 1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1223 next: 1224 cond_resched(); 1225 } while (pud++, addr = next, addr != end); 1226 1227 return addr; 1228 } 1229 1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1231 struct vm_area_struct *vma, pgd_t *pgd, 1232 unsigned long addr, unsigned long end, 1233 struct zap_details *details) 1234 { 1235 p4d_t *p4d; 1236 unsigned long next; 1237 1238 p4d = p4d_offset(pgd, addr); 1239 do { 1240 next = p4d_addr_end(addr, end); 1241 if (p4d_none_or_clear_bad(p4d)) 1242 continue; 1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1244 } while (p4d++, addr = next, addr != end); 1245 1246 return addr; 1247 } 1248 1249 void unmap_page_range(struct mmu_gather *tlb, 1250 struct vm_area_struct *vma, 1251 unsigned long addr, unsigned long end, 1252 struct zap_details *details) 1253 { 1254 pgd_t *pgd; 1255 unsigned long next; 1256 1257 BUG_ON(addr >= end); 1258 tlb_start_vma(tlb, vma); 1259 pgd = pgd_offset(vma->vm_mm, addr); 1260 do { 1261 next = pgd_addr_end(addr, end); 1262 if (pgd_none_or_clear_bad(pgd)) 1263 continue; 1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1265 } while (pgd++, addr = next, addr != end); 1266 tlb_end_vma(tlb, vma); 1267 } 1268 1269 1270 static void unmap_single_vma(struct mmu_gather *tlb, 1271 struct vm_area_struct *vma, unsigned long start_addr, 1272 unsigned long end_addr, 1273 struct zap_details *details) 1274 { 1275 unsigned long start = max(vma->vm_start, start_addr); 1276 unsigned long end; 1277 1278 if (start >= vma->vm_end) 1279 return; 1280 end = min(vma->vm_end, end_addr); 1281 if (end <= vma->vm_start) 1282 return; 1283 1284 if (vma->vm_file) 1285 uprobe_munmap(vma, start, end); 1286 1287 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1288 untrack_pfn(vma, 0, 0); 1289 1290 if (start != end) { 1291 if (unlikely(is_vm_hugetlb_page(vma))) { 1292 /* 1293 * It is undesirable to test vma->vm_file as it 1294 * should be non-null for valid hugetlb area. 1295 * However, vm_file will be NULL in the error 1296 * cleanup path of mmap_region. When 1297 * hugetlbfs ->mmap method fails, 1298 * mmap_region() nullifies vma->vm_file 1299 * before calling this function to clean up. 1300 * Since no pte has actually been setup, it is 1301 * safe to do nothing in this case. 1302 */ 1303 if (vma->vm_file) { 1304 i_mmap_lock_write(vma->vm_file->f_mapping); 1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1306 i_mmap_unlock_write(vma->vm_file->f_mapping); 1307 } 1308 } else 1309 unmap_page_range(tlb, vma, start, end, details); 1310 } 1311 } 1312 1313 /** 1314 * unmap_vmas - unmap a range of memory covered by a list of vma's 1315 * @tlb: address of the caller's struct mmu_gather 1316 * @vma: the starting vma 1317 * @start_addr: virtual address at which to start unmapping 1318 * @end_addr: virtual address at which to end unmapping 1319 * 1320 * Unmap all pages in the vma list. 1321 * 1322 * Only addresses between `start' and `end' will be unmapped. 1323 * 1324 * The VMA list must be sorted in ascending virtual address order. 1325 * 1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1327 * range after unmap_vmas() returns. So the only responsibility here is to 1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1329 * drops the lock and schedules. 1330 */ 1331 void unmap_vmas(struct mmu_gather *tlb, 1332 struct vm_area_struct *vma, unsigned long start_addr, 1333 unsigned long end_addr) 1334 { 1335 struct mmu_notifier_range range; 1336 1337 mmu_notifier_range_init(&range, vma->vm_mm, start_addr, end_addr); 1338 mmu_notifier_invalidate_range_start(&range); 1339 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1340 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1341 mmu_notifier_invalidate_range_end(&range); 1342 } 1343 1344 /** 1345 * zap_page_range - remove user pages in a given range 1346 * @vma: vm_area_struct holding the applicable pages 1347 * @start: starting address of pages to zap 1348 * @size: number of bytes to zap 1349 * 1350 * Caller must protect the VMA list 1351 */ 1352 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1353 unsigned long size) 1354 { 1355 struct mmu_notifier_range range; 1356 struct mmu_gather tlb; 1357 1358 lru_add_drain(); 1359 mmu_notifier_range_init(&range, vma->vm_mm, start, start + size); 1360 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1361 update_hiwater_rss(vma->vm_mm); 1362 mmu_notifier_invalidate_range_start(&range); 1363 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1364 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1365 mmu_notifier_invalidate_range_end(&range); 1366 tlb_finish_mmu(&tlb, start, range.end); 1367 } 1368 1369 /** 1370 * zap_page_range_single - remove user pages in a given range 1371 * @vma: vm_area_struct holding the applicable pages 1372 * @address: starting address of pages to zap 1373 * @size: number of bytes to zap 1374 * @details: details of shared cache invalidation 1375 * 1376 * The range must fit into one VMA. 1377 */ 1378 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1379 unsigned long size, struct zap_details *details) 1380 { 1381 struct mmu_notifier_range range; 1382 struct mmu_gather tlb; 1383 1384 lru_add_drain(); 1385 mmu_notifier_range_init(&range, vma->vm_mm, address, address + size); 1386 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1387 update_hiwater_rss(vma->vm_mm); 1388 mmu_notifier_invalidate_range_start(&range); 1389 unmap_single_vma(&tlb, vma, address, range.end, details); 1390 mmu_notifier_invalidate_range_end(&range); 1391 tlb_finish_mmu(&tlb, address, range.end); 1392 } 1393 1394 /** 1395 * zap_vma_ptes - remove ptes mapping the vma 1396 * @vma: vm_area_struct holding ptes to be zapped 1397 * @address: starting address of pages to zap 1398 * @size: number of bytes to zap 1399 * 1400 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1401 * 1402 * The entire address range must be fully contained within the vma. 1403 * 1404 */ 1405 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1406 unsigned long size) 1407 { 1408 if (address < vma->vm_start || address + size > vma->vm_end || 1409 !(vma->vm_flags & VM_PFNMAP)) 1410 return; 1411 1412 zap_page_range_single(vma, address, size, NULL); 1413 } 1414 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1415 1416 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1417 spinlock_t **ptl) 1418 { 1419 pgd_t *pgd; 1420 p4d_t *p4d; 1421 pud_t *pud; 1422 pmd_t *pmd; 1423 1424 pgd = pgd_offset(mm, addr); 1425 p4d = p4d_alloc(mm, pgd, addr); 1426 if (!p4d) 1427 return NULL; 1428 pud = pud_alloc(mm, p4d, addr); 1429 if (!pud) 1430 return NULL; 1431 pmd = pmd_alloc(mm, pud, addr); 1432 if (!pmd) 1433 return NULL; 1434 1435 VM_BUG_ON(pmd_trans_huge(*pmd)); 1436 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1437 } 1438 1439 /* 1440 * This is the old fallback for page remapping. 1441 * 1442 * For historical reasons, it only allows reserved pages. Only 1443 * old drivers should use this, and they needed to mark their 1444 * pages reserved for the old functions anyway. 1445 */ 1446 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1447 struct page *page, pgprot_t prot) 1448 { 1449 struct mm_struct *mm = vma->vm_mm; 1450 int retval; 1451 pte_t *pte; 1452 spinlock_t *ptl; 1453 1454 retval = -EINVAL; 1455 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1456 goto out; 1457 retval = -ENOMEM; 1458 flush_dcache_page(page); 1459 pte = get_locked_pte(mm, addr, &ptl); 1460 if (!pte) 1461 goto out; 1462 retval = -EBUSY; 1463 if (!pte_none(*pte)) 1464 goto out_unlock; 1465 1466 /* Ok, finally just insert the thing.. */ 1467 get_page(page); 1468 inc_mm_counter_fast(mm, mm_counter_file(page)); 1469 page_add_file_rmap(page, false); 1470 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1471 1472 retval = 0; 1473 pte_unmap_unlock(pte, ptl); 1474 return retval; 1475 out_unlock: 1476 pte_unmap_unlock(pte, ptl); 1477 out: 1478 return retval; 1479 } 1480 1481 /** 1482 * vm_insert_page - insert single page into user vma 1483 * @vma: user vma to map to 1484 * @addr: target user address of this page 1485 * @page: source kernel page 1486 * 1487 * This allows drivers to insert individual pages they've allocated 1488 * into a user vma. 1489 * 1490 * The page has to be a nice clean _individual_ kernel allocation. 1491 * If you allocate a compound page, you need to have marked it as 1492 * such (__GFP_COMP), or manually just split the page up yourself 1493 * (see split_page()). 1494 * 1495 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1496 * took an arbitrary page protection parameter. This doesn't allow 1497 * that. Your vma protection will have to be set up correctly, which 1498 * means that if you want a shared writable mapping, you'd better 1499 * ask for a shared writable mapping! 1500 * 1501 * The page does not need to be reserved. 1502 * 1503 * Usually this function is called from f_op->mmap() handler 1504 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1505 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1506 * function from other places, for example from page-fault handler. 1507 * 1508 * Return: %0 on success, negative error code otherwise. 1509 */ 1510 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1511 struct page *page) 1512 { 1513 if (addr < vma->vm_start || addr >= vma->vm_end) 1514 return -EFAULT; 1515 if (!page_count(page)) 1516 return -EINVAL; 1517 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1518 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1519 BUG_ON(vma->vm_flags & VM_PFNMAP); 1520 vma->vm_flags |= VM_MIXEDMAP; 1521 } 1522 return insert_page(vma, addr, page, vma->vm_page_prot); 1523 } 1524 EXPORT_SYMBOL(vm_insert_page); 1525 1526 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1527 pfn_t pfn, pgprot_t prot, bool mkwrite) 1528 { 1529 struct mm_struct *mm = vma->vm_mm; 1530 pte_t *pte, entry; 1531 spinlock_t *ptl; 1532 1533 pte = get_locked_pte(mm, addr, &ptl); 1534 if (!pte) 1535 return VM_FAULT_OOM; 1536 if (!pte_none(*pte)) { 1537 if (mkwrite) { 1538 /* 1539 * For read faults on private mappings the PFN passed 1540 * in may not match the PFN we have mapped if the 1541 * mapped PFN is a writeable COW page. In the mkwrite 1542 * case we are creating a writable PTE for a shared 1543 * mapping and we expect the PFNs to match. If they 1544 * don't match, we are likely racing with block 1545 * allocation and mapping invalidation so just skip the 1546 * update. 1547 */ 1548 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1549 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1550 goto out_unlock; 1551 } 1552 entry = *pte; 1553 goto out_mkwrite; 1554 } else 1555 goto out_unlock; 1556 } 1557 1558 /* Ok, finally just insert the thing.. */ 1559 if (pfn_t_devmap(pfn)) 1560 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1561 else 1562 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1563 1564 out_mkwrite: 1565 if (mkwrite) { 1566 entry = pte_mkyoung(entry); 1567 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1568 } 1569 1570 set_pte_at(mm, addr, pte, entry); 1571 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1572 1573 out_unlock: 1574 pte_unmap_unlock(pte, ptl); 1575 return VM_FAULT_NOPAGE; 1576 } 1577 1578 /** 1579 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1580 * @vma: user vma to map to 1581 * @addr: target user address of this page 1582 * @pfn: source kernel pfn 1583 * @pgprot: pgprot flags for the inserted page 1584 * 1585 * This is exactly like vmf_insert_pfn(), except that it allows drivers to 1586 * to override pgprot on a per-page basis. 1587 * 1588 * This only makes sense for IO mappings, and it makes no sense for 1589 * COW mappings. In general, using multiple vmas is preferable; 1590 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1591 * impractical. 1592 * 1593 * Context: Process context. May allocate using %GFP_KERNEL. 1594 * Return: vm_fault_t value. 1595 */ 1596 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1597 unsigned long pfn, pgprot_t pgprot) 1598 { 1599 /* 1600 * Technically, architectures with pte_special can avoid all these 1601 * restrictions (same for remap_pfn_range). However we would like 1602 * consistency in testing and feature parity among all, so we should 1603 * try to keep these invariants in place for everybody. 1604 */ 1605 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1606 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1607 (VM_PFNMAP|VM_MIXEDMAP)); 1608 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1609 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1610 1611 if (addr < vma->vm_start || addr >= vma->vm_end) 1612 return VM_FAULT_SIGBUS; 1613 1614 if (!pfn_modify_allowed(pfn, pgprot)) 1615 return VM_FAULT_SIGBUS; 1616 1617 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1618 1619 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1620 false); 1621 } 1622 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1623 1624 /** 1625 * vmf_insert_pfn - insert single pfn into user vma 1626 * @vma: user vma to map to 1627 * @addr: target user address of this page 1628 * @pfn: source kernel pfn 1629 * 1630 * Similar to vm_insert_page, this allows drivers to insert individual pages 1631 * they've allocated into a user vma. Same comments apply. 1632 * 1633 * This function should only be called from a vm_ops->fault handler, and 1634 * in that case the handler should return the result of this function. 1635 * 1636 * vma cannot be a COW mapping. 1637 * 1638 * As this is called only for pages that do not currently exist, we 1639 * do not need to flush old virtual caches or the TLB. 1640 * 1641 * Context: Process context. May allocate using %GFP_KERNEL. 1642 * Return: vm_fault_t value. 1643 */ 1644 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1645 unsigned long pfn) 1646 { 1647 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1648 } 1649 EXPORT_SYMBOL(vmf_insert_pfn); 1650 1651 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1652 { 1653 /* these checks mirror the abort conditions in vm_normal_page */ 1654 if (vma->vm_flags & VM_MIXEDMAP) 1655 return true; 1656 if (pfn_t_devmap(pfn)) 1657 return true; 1658 if (pfn_t_special(pfn)) 1659 return true; 1660 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1661 return true; 1662 return false; 1663 } 1664 1665 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1666 unsigned long addr, pfn_t pfn, bool mkwrite) 1667 { 1668 pgprot_t pgprot = vma->vm_page_prot; 1669 int err; 1670 1671 BUG_ON(!vm_mixed_ok(vma, pfn)); 1672 1673 if (addr < vma->vm_start || addr >= vma->vm_end) 1674 return VM_FAULT_SIGBUS; 1675 1676 track_pfn_insert(vma, &pgprot, pfn); 1677 1678 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1679 return VM_FAULT_SIGBUS; 1680 1681 /* 1682 * If we don't have pte special, then we have to use the pfn_valid() 1683 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1684 * refcount the page if pfn_valid is true (hence insert_page rather 1685 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1686 * without pte special, it would there be refcounted as a normal page. 1687 */ 1688 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1689 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1690 struct page *page; 1691 1692 /* 1693 * At this point we are committed to insert_page() 1694 * regardless of whether the caller specified flags that 1695 * result in pfn_t_has_page() == false. 1696 */ 1697 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1698 err = insert_page(vma, addr, page, pgprot); 1699 } else { 1700 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1701 } 1702 1703 if (err == -ENOMEM) 1704 return VM_FAULT_OOM; 1705 if (err < 0 && err != -EBUSY) 1706 return VM_FAULT_SIGBUS; 1707 1708 return VM_FAULT_NOPAGE; 1709 } 1710 1711 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1712 pfn_t pfn) 1713 { 1714 return __vm_insert_mixed(vma, addr, pfn, false); 1715 } 1716 EXPORT_SYMBOL(vmf_insert_mixed); 1717 1718 /* 1719 * If the insertion of PTE failed because someone else already added a 1720 * different entry in the mean time, we treat that as success as we assume 1721 * the same entry was actually inserted. 1722 */ 1723 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1724 unsigned long addr, pfn_t pfn) 1725 { 1726 return __vm_insert_mixed(vma, addr, pfn, true); 1727 } 1728 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1729 1730 /* 1731 * maps a range of physical memory into the requested pages. the old 1732 * mappings are removed. any references to nonexistent pages results 1733 * in null mappings (currently treated as "copy-on-access") 1734 */ 1735 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1736 unsigned long addr, unsigned long end, 1737 unsigned long pfn, pgprot_t prot) 1738 { 1739 pte_t *pte; 1740 spinlock_t *ptl; 1741 int err = 0; 1742 1743 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1744 if (!pte) 1745 return -ENOMEM; 1746 arch_enter_lazy_mmu_mode(); 1747 do { 1748 BUG_ON(!pte_none(*pte)); 1749 if (!pfn_modify_allowed(pfn, prot)) { 1750 err = -EACCES; 1751 break; 1752 } 1753 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1754 pfn++; 1755 } while (pte++, addr += PAGE_SIZE, addr != end); 1756 arch_leave_lazy_mmu_mode(); 1757 pte_unmap_unlock(pte - 1, ptl); 1758 return err; 1759 } 1760 1761 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1762 unsigned long addr, unsigned long end, 1763 unsigned long pfn, pgprot_t prot) 1764 { 1765 pmd_t *pmd; 1766 unsigned long next; 1767 int err; 1768 1769 pfn -= addr >> PAGE_SHIFT; 1770 pmd = pmd_alloc(mm, pud, addr); 1771 if (!pmd) 1772 return -ENOMEM; 1773 VM_BUG_ON(pmd_trans_huge(*pmd)); 1774 do { 1775 next = pmd_addr_end(addr, end); 1776 err = remap_pte_range(mm, pmd, addr, next, 1777 pfn + (addr >> PAGE_SHIFT), prot); 1778 if (err) 1779 return err; 1780 } while (pmd++, addr = next, addr != end); 1781 return 0; 1782 } 1783 1784 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 1785 unsigned long addr, unsigned long end, 1786 unsigned long pfn, pgprot_t prot) 1787 { 1788 pud_t *pud; 1789 unsigned long next; 1790 int err; 1791 1792 pfn -= addr >> PAGE_SHIFT; 1793 pud = pud_alloc(mm, p4d, addr); 1794 if (!pud) 1795 return -ENOMEM; 1796 do { 1797 next = pud_addr_end(addr, end); 1798 err = remap_pmd_range(mm, pud, addr, next, 1799 pfn + (addr >> PAGE_SHIFT), prot); 1800 if (err) 1801 return err; 1802 } while (pud++, addr = next, addr != end); 1803 return 0; 1804 } 1805 1806 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 1807 unsigned long addr, unsigned long end, 1808 unsigned long pfn, pgprot_t prot) 1809 { 1810 p4d_t *p4d; 1811 unsigned long next; 1812 int err; 1813 1814 pfn -= addr >> PAGE_SHIFT; 1815 p4d = p4d_alloc(mm, pgd, addr); 1816 if (!p4d) 1817 return -ENOMEM; 1818 do { 1819 next = p4d_addr_end(addr, end); 1820 err = remap_pud_range(mm, p4d, addr, next, 1821 pfn + (addr >> PAGE_SHIFT), prot); 1822 if (err) 1823 return err; 1824 } while (p4d++, addr = next, addr != end); 1825 return 0; 1826 } 1827 1828 /** 1829 * remap_pfn_range - remap kernel memory to userspace 1830 * @vma: user vma to map to 1831 * @addr: target user address to start at 1832 * @pfn: physical address of kernel memory 1833 * @size: size of map area 1834 * @prot: page protection flags for this mapping 1835 * 1836 * Note: this is only safe if the mm semaphore is held when called. 1837 * 1838 * Return: %0 on success, negative error code otherwise. 1839 */ 1840 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1841 unsigned long pfn, unsigned long size, pgprot_t prot) 1842 { 1843 pgd_t *pgd; 1844 unsigned long next; 1845 unsigned long end = addr + PAGE_ALIGN(size); 1846 struct mm_struct *mm = vma->vm_mm; 1847 unsigned long remap_pfn = pfn; 1848 int err; 1849 1850 /* 1851 * Physically remapped pages are special. Tell the 1852 * rest of the world about it: 1853 * VM_IO tells people not to look at these pages 1854 * (accesses can have side effects). 1855 * VM_PFNMAP tells the core MM that the base pages are just 1856 * raw PFN mappings, and do not have a "struct page" associated 1857 * with them. 1858 * VM_DONTEXPAND 1859 * Disable vma merging and expanding with mremap(). 1860 * VM_DONTDUMP 1861 * Omit vma from core dump, even when VM_IO turned off. 1862 * 1863 * There's a horrible special case to handle copy-on-write 1864 * behaviour that some programs depend on. We mark the "original" 1865 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1866 * See vm_normal_page() for details. 1867 */ 1868 if (is_cow_mapping(vma->vm_flags)) { 1869 if (addr != vma->vm_start || end != vma->vm_end) 1870 return -EINVAL; 1871 vma->vm_pgoff = pfn; 1872 } 1873 1874 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1875 if (err) 1876 return -EINVAL; 1877 1878 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1879 1880 BUG_ON(addr >= end); 1881 pfn -= addr >> PAGE_SHIFT; 1882 pgd = pgd_offset(mm, addr); 1883 flush_cache_range(vma, addr, end); 1884 do { 1885 next = pgd_addr_end(addr, end); 1886 err = remap_p4d_range(mm, pgd, addr, next, 1887 pfn + (addr >> PAGE_SHIFT), prot); 1888 if (err) 1889 break; 1890 } while (pgd++, addr = next, addr != end); 1891 1892 if (err) 1893 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1894 1895 return err; 1896 } 1897 EXPORT_SYMBOL(remap_pfn_range); 1898 1899 /** 1900 * vm_iomap_memory - remap memory to userspace 1901 * @vma: user vma to map to 1902 * @start: start of area 1903 * @len: size of area 1904 * 1905 * This is a simplified io_remap_pfn_range() for common driver use. The 1906 * driver just needs to give us the physical memory range to be mapped, 1907 * we'll figure out the rest from the vma information. 1908 * 1909 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1910 * whatever write-combining details or similar. 1911 * 1912 * Return: %0 on success, negative error code otherwise. 1913 */ 1914 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1915 { 1916 unsigned long vm_len, pfn, pages; 1917 1918 /* Check that the physical memory area passed in looks valid */ 1919 if (start + len < start) 1920 return -EINVAL; 1921 /* 1922 * You *really* shouldn't map things that aren't page-aligned, 1923 * but we've historically allowed it because IO memory might 1924 * just have smaller alignment. 1925 */ 1926 len += start & ~PAGE_MASK; 1927 pfn = start >> PAGE_SHIFT; 1928 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1929 if (pfn + pages < pfn) 1930 return -EINVAL; 1931 1932 /* We start the mapping 'vm_pgoff' pages into the area */ 1933 if (vma->vm_pgoff > pages) 1934 return -EINVAL; 1935 pfn += vma->vm_pgoff; 1936 pages -= vma->vm_pgoff; 1937 1938 /* Can we fit all of the mapping? */ 1939 vm_len = vma->vm_end - vma->vm_start; 1940 if (vm_len >> PAGE_SHIFT > pages) 1941 return -EINVAL; 1942 1943 /* Ok, let it rip */ 1944 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1945 } 1946 EXPORT_SYMBOL(vm_iomap_memory); 1947 1948 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1949 unsigned long addr, unsigned long end, 1950 pte_fn_t fn, void *data) 1951 { 1952 pte_t *pte; 1953 int err; 1954 pgtable_t token; 1955 spinlock_t *uninitialized_var(ptl); 1956 1957 pte = (mm == &init_mm) ? 1958 pte_alloc_kernel(pmd, addr) : 1959 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1960 if (!pte) 1961 return -ENOMEM; 1962 1963 BUG_ON(pmd_huge(*pmd)); 1964 1965 arch_enter_lazy_mmu_mode(); 1966 1967 token = pmd_pgtable(*pmd); 1968 1969 do { 1970 err = fn(pte++, token, addr, data); 1971 if (err) 1972 break; 1973 } while (addr += PAGE_SIZE, addr != end); 1974 1975 arch_leave_lazy_mmu_mode(); 1976 1977 if (mm != &init_mm) 1978 pte_unmap_unlock(pte-1, ptl); 1979 return err; 1980 } 1981 1982 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1983 unsigned long addr, unsigned long end, 1984 pte_fn_t fn, void *data) 1985 { 1986 pmd_t *pmd; 1987 unsigned long next; 1988 int err; 1989 1990 BUG_ON(pud_huge(*pud)); 1991 1992 pmd = pmd_alloc(mm, pud, addr); 1993 if (!pmd) 1994 return -ENOMEM; 1995 do { 1996 next = pmd_addr_end(addr, end); 1997 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1998 if (err) 1999 break; 2000 } while (pmd++, addr = next, addr != end); 2001 return err; 2002 } 2003 2004 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2005 unsigned long addr, unsigned long end, 2006 pte_fn_t fn, void *data) 2007 { 2008 pud_t *pud; 2009 unsigned long next; 2010 int err; 2011 2012 pud = pud_alloc(mm, p4d, addr); 2013 if (!pud) 2014 return -ENOMEM; 2015 do { 2016 next = pud_addr_end(addr, end); 2017 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2018 if (err) 2019 break; 2020 } while (pud++, addr = next, addr != end); 2021 return err; 2022 } 2023 2024 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2025 unsigned long addr, unsigned long end, 2026 pte_fn_t fn, void *data) 2027 { 2028 p4d_t *p4d; 2029 unsigned long next; 2030 int err; 2031 2032 p4d = p4d_alloc(mm, pgd, addr); 2033 if (!p4d) 2034 return -ENOMEM; 2035 do { 2036 next = p4d_addr_end(addr, end); 2037 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2038 if (err) 2039 break; 2040 } while (p4d++, addr = next, addr != end); 2041 return err; 2042 } 2043 2044 /* 2045 * Scan a region of virtual memory, filling in page tables as necessary 2046 * and calling a provided function on each leaf page table. 2047 */ 2048 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2049 unsigned long size, pte_fn_t fn, void *data) 2050 { 2051 pgd_t *pgd; 2052 unsigned long next; 2053 unsigned long end = addr + size; 2054 int err; 2055 2056 if (WARN_ON(addr >= end)) 2057 return -EINVAL; 2058 2059 pgd = pgd_offset(mm, addr); 2060 do { 2061 next = pgd_addr_end(addr, end); 2062 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2063 if (err) 2064 break; 2065 } while (pgd++, addr = next, addr != end); 2066 2067 return err; 2068 } 2069 EXPORT_SYMBOL_GPL(apply_to_page_range); 2070 2071 /* 2072 * handle_pte_fault chooses page fault handler according to an entry which was 2073 * read non-atomically. Before making any commitment, on those architectures 2074 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2075 * parts, do_swap_page must check under lock before unmapping the pte and 2076 * proceeding (but do_wp_page is only called after already making such a check; 2077 * and do_anonymous_page can safely check later on). 2078 */ 2079 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2080 pte_t *page_table, pte_t orig_pte) 2081 { 2082 int same = 1; 2083 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2084 if (sizeof(pte_t) > sizeof(unsigned long)) { 2085 spinlock_t *ptl = pte_lockptr(mm, pmd); 2086 spin_lock(ptl); 2087 same = pte_same(*page_table, orig_pte); 2088 spin_unlock(ptl); 2089 } 2090 #endif 2091 pte_unmap(page_table); 2092 return same; 2093 } 2094 2095 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2096 { 2097 debug_dma_assert_idle(src); 2098 2099 /* 2100 * If the source page was a PFN mapping, we don't have 2101 * a "struct page" for it. We do a best-effort copy by 2102 * just copying from the original user address. If that 2103 * fails, we just zero-fill it. Live with it. 2104 */ 2105 if (unlikely(!src)) { 2106 void *kaddr = kmap_atomic(dst); 2107 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2108 2109 /* 2110 * This really shouldn't fail, because the page is there 2111 * in the page tables. But it might just be unreadable, 2112 * in which case we just give up and fill the result with 2113 * zeroes. 2114 */ 2115 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2116 clear_page(kaddr); 2117 kunmap_atomic(kaddr); 2118 flush_dcache_page(dst); 2119 } else 2120 copy_user_highpage(dst, src, va, vma); 2121 } 2122 2123 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2124 { 2125 struct file *vm_file = vma->vm_file; 2126 2127 if (vm_file) 2128 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2129 2130 /* 2131 * Special mappings (e.g. VDSO) do not have any file so fake 2132 * a default GFP_KERNEL for them. 2133 */ 2134 return GFP_KERNEL; 2135 } 2136 2137 /* 2138 * Notify the address space that the page is about to become writable so that 2139 * it can prohibit this or wait for the page to get into an appropriate state. 2140 * 2141 * We do this without the lock held, so that it can sleep if it needs to. 2142 */ 2143 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2144 { 2145 vm_fault_t ret; 2146 struct page *page = vmf->page; 2147 unsigned int old_flags = vmf->flags; 2148 2149 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2150 2151 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2152 /* Restore original flags so that caller is not surprised */ 2153 vmf->flags = old_flags; 2154 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2155 return ret; 2156 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2157 lock_page(page); 2158 if (!page->mapping) { 2159 unlock_page(page); 2160 return 0; /* retry */ 2161 } 2162 ret |= VM_FAULT_LOCKED; 2163 } else 2164 VM_BUG_ON_PAGE(!PageLocked(page), page); 2165 return ret; 2166 } 2167 2168 /* 2169 * Handle dirtying of a page in shared file mapping on a write fault. 2170 * 2171 * The function expects the page to be locked and unlocks it. 2172 */ 2173 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2174 struct page *page) 2175 { 2176 struct address_space *mapping; 2177 bool dirtied; 2178 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2179 2180 dirtied = set_page_dirty(page); 2181 VM_BUG_ON_PAGE(PageAnon(page), page); 2182 /* 2183 * Take a local copy of the address_space - page.mapping may be zeroed 2184 * by truncate after unlock_page(). The address_space itself remains 2185 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2186 * release semantics to prevent the compiler from undoing this copying. 2187 */ 2188 mapping = page_rmapping(page); 2189 unlock_page(page); 2190 2191 if ((dirtied || page_mkwrite) && mapping) { 2192 /* 2193 * Some device drivers do not set page.mapping 2194 * but still dirty their pages 2195 */ 2196 balance_dirty_pages_ratelimited(mapping); 2197 } 2198 2199 if (!page_mkwrite) 2200 file_update_time(vma->vm_file); 2201 } 2202 2203 /* 2204 * Handle write page faults for pages that can be reused in the current vma 2205 * 2206 * This can happen either due to the mapping being with the VM_SHARED flag, 2207 * or due to us being the last reference standing to the page. In either 2208 * case, all we need to do here is to mark the page as writable and update 2209 * any related book-keeping. 2210 */ 2211 static inline void wp_page_reuse(struct vm_fault *vmf) 2212 __releases(vmf->ptl) 2213 { 2214 struct vm_area_struct *vma = vmf->vma; 2215 struct page *page = vmf->page; 2216 pte_t entry; 2217 /* 2218 * Clear the pages cpupid information as the existing 2219 * information potentially belongs to a now completely 2220 * unrelated process. 2221 */ 2222 if (page) 2223 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2224 2225 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2226 entry = pte_mkyoung(vmf->orig_pte); 2227 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2228 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2229 update_mmu_cache(vma, vmf->address, vmf->pte); 2230 pte_unmap_unlock(vmf->pte, vmf->ptl); 2231 } 2232 2233 /* 2234 * Handle the case of a page which we actually need to copy to a new page. 2235 * 2236 * Called with mmap_sem locked and the old page referenced, but 2237 * without the ptl held. 2238 * 2239 * High level logic flow: 2240 * 2241 * - Allocate a page, copy the content of the old page to the new one. 2242 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2243 * - Take the PTL. If the pte changed, bail out and release the allocated page 2244 * - If the pte is still the way we remember it, update the page table and all 2245 * relevant references. This includes dropping the reference the page-table 2246 * held to the old page, as well as updating the rmap. 2247 * - In any case, unlock the PTL and drop the reference we took to the old page. 2248 */ 2249 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2250 { 2251 struct vm_area_struct *vma = vmf->vma; 2252 struct mm_struct *mm = vma->vm_mm; 2253 struct page *old_page = vmf->page; 2254 struct page *new_page = NULL; 2255 pte_t entry; 2256 int page_copied = 0; 2257 struct mem_cgroup *memcg; 2258 struct mmu_notifier_range range; 2259 2260 if (unlikely(anon_vma_prepare(vma))) 2261 goto oom; 2262 2263 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2264 new_page = alloc_zeroed_user_highpage_movable(vma, 2265 vmf->address); 2266 if (!new_page) 2267 goto oom; 2268 } else { 2269 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2270 vmf->address); 2271 if (!new_page) 2272 goto oom; 2273 cow_user_page(new_page, old_page, vmf->address, vma); 2274 } 2275 2276 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2277 goto oom_free_new; 2278 2279 __SetPageUptodate(new_page); 2280 2281 mmu_notifier_range_init(&range, mm, vmf->address & PAGE_MASK, 2282 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2283 mmu_notifier_invalidate_range_start(&range); 2284 2285 /* 2286 * Re-check the pte - we dropped the lock 2287 */ 2288 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2289 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2290 if (old_page) { 2291 if (!PageAnon(old_page)) { 2292 dec_mm_counter_fast(mm, 2293 mm_counter_file(old_page)); 2294 inc_mm_counter_fast(mm, MM_ANONPAGES); 2295 } 2296 } else { 2297 inc_mm_counter_fast(mm, MM_ANONPAGES); 2298 } 2299 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2300 entry = mk_pte(new_page, vma->vm_page_prot); 2301 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2302 /* 2303 * Clear the pte entry and flush it first, before updating the 2304 * pte with the new entry. This will avoid a race condition 2305 * seen in the presence of one thread doing SMC and another 2306 * thread doing COW. 2307 */ 2308 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2309 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2310 mem_cgroup_commit_charge(new_page, memcg, false, false); 2311 lru_cache_add_active_or_unevictable(new_page, vma); 2312 /* 2313 * We call the notify macro here because, when using secondary 2314 * mmu page tables (such as kvm shadow page tables), we want the 2315 * new page to be mapped directly into the secondary page table. 2316 */ 2317 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2318 update_mmu_cache(vma, vmf->address, vmf->pte); 2319 if (old_page) { 2320 /* 2321 * Only after switching the pte to the new page may 2322 * we remove the mapcount here. Otherwise another 2323 * process may come and find the rmap count decremented 2324 * before the pte is switched to the new page, and 2325 * "reuse" the old page writing into it while our pte 2326 * here still points into it and can be read by other 2327 * threads. 2328 * 2329 * The critical issue is to order this 2330 * page_remove_rmap with the ptp_clear_flush above. 2331 * Those stores are ordered by (if nothing else,) 2332 * the barrier present in the atomic_add_negative 2333 * in page_remove_rmap. 2334 * 2335 * Then the TLB flush in ptep_clear_flush ensures that 2336 * no process can access the old page before the 2337 * decremented mapcount is visible. And the old page 2338 * cannot be reused until after the decremented 2339 * mapcount is visible. So transitively, TLBs to 2340 * old page will be flushed before it can be reused. 2341 */ 2342 page_remove_rmap(old_page, false); 2343 } 2344 2345 /* Free the old page.. */ 2346 new_page = old_page; 2347 page_copied = 1; 2348 } else { 2349 mem_cgroup_cancel_charge(new_page, memcg, false); 2350 } 2351 2352 if (new_page) 2353 put_page(new_page); 2354 2355 pte_unmap_unlock(vmf->pte, vmf->ptl); 2356 /* 2357 * No need to double call mmu_notifier->invalidate_range() callback as 2358 * the above ptep_clear_flush_notify() did already call it. 2359 */ 2360 mmu_notifier_invalidate_range_only_end(&range); 2361 if (old_page) { 2362 /* 2363 * Don't let another task, with possibly unlocked vma, 2364 * keep the mlocked page. 2365 */ 2366 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2367 lock_page(old_page); /* LRU manipulation */ 2368 if (PageMlocked(old_page)) 2369 munlock_vma_page(old_page); 2370 unlock_page(old_page); 2371 } 2372 put_page(old_page); 2373 } 2374 return page_copied ? VM_FAULT_WRITE : 0; 2375 oom_free_new: 2376 put_page(new_page); 2377 oom: 2378 if (old_page) 2379 put_page(old_page); 2380 return VM_FAULT_OOM; 2381 } 2382 2383 /** 2384 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2385 * writeable once the page is prepared 2386 * 2387 * @vmf: structure describing the fault 2388 * 2389 * This function handles all that is needed to finish a write page fault in a 2390 * shared mapping due to PTE being read-only once the mapped page is prepared. 2391 * It handles locking of PTE and modifying it. 2392 * 2393 * The function expects the page to be locked or other protection against 2394 * concurrent faults / writeback (such as DAX radix tree locks). 2395 * 2396 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2397 * we acquired PTE lock. 2398 */ 2399 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2400 { 2401 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2402 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2403 &vmf->ptl); 2404 /* 2405 * We might have raced with another page fault while we released the 2406 * pte_offset_map_lock. 2407 */ 2408 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2409 pte_unmap_unlock(vmf->pte, vmf->ptl); 2410 return VM_FAULT_NOPAGE; 2411 } 2412 wp_page_reuse(vmf); 2413 return 0; 2414 } 2415 2416 /* 2417 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2418 * mapping 2419 */ 2420 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2421 { 2422 struct vm_area_struct *vma = vmf->vma; 2423 2424 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2425 vm_fault_t ret; 2426 2427 pte_unmap_unlock(vmf->pte, vmf->ptl); 2428 vmf->flags |= FAULT_FLAG_MKWRITE; 2429 ret = vma->vm_ops->pfn_mkwrite(vmf); 2430 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2431 return ret; 2432 return finish_mkwrite_fault(vmf); 2433 } 2434 wp_page_reuse(vmf); 2435 return VM_FAULT_WRITE; 2436 } 2437 2438 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2439 __releases(vmf->ptl) 2440 { 2441 struct vm_area_struct *vma = vmf->vma; 2442 2443 get_page(vmf->page); 2444 2445 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2446 vm_fault_t tmp; 2447 2448 pte_unmap_unlock(vmf->pte, vmf->ptl); 2449 tmp = do_page_mkwrite(vmf); 2450 if (unlikely(!tmp || (tmp & 2451 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2452 put_page(vmf->page); 2453 return tmp; 2454 } 2455 tmp = finish_mkwrite_fault(vmf); 2456 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2457 unlock_page(vmf->page); 2458 put_page(vmf->page); 2459 return tmp; 2460 } 2461 } else { 2462 wp_page_reuse(vmf); 2463 lock_page(vmf->page); 2464 } 2465 fault_dirty_shared_page(vma, vmf->page); 2466 put_page(vmf->page); 2467 2468 return VM_FAULT_WRITE; 2469 } 2470 2471 /* 2472 * This routine handles present pages, when users try to write 2473 * to a shared page. It is done by copying the page to a new address 2474 * and decrementing the shared-page counter for the old page. 2475 * 2476 * Note that this routine assumes that the protection checks have been 2477 * done by the caller (the low-level page fault routine in most cases). 2478 * Thus we can safely just mark it writable once we've done any necessary 2479 * COW. 2480 * 2481 * We also mark the page dirty at this point even though the page will 2482 * change only once the write actually happens. This avoids a few races, 2483 * and potentially makes it more efficient. 2484 * 2485 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2486 * but allow concurrent faults), with pte both mapped and locked. 2487 * We return with mmap_sem still held, but pte unmapped and unlocked. 2488 */ 2489 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2490 __releases(vmf->ptl) 2491 { 2492 struct vm_area_struct *vma = vmf->vma; 2493 2494 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2495 if (!vmf->page) { 2496 /* 2497 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2498 * VM_PFNMAP VMA. 2499 * 2500 * We should not cow pages in a shared writeable mapping. 2501 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2502 */ 2503 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2504 (VM_WRITE|VM_SHARED)) 2505 return wp_pfn_shared(vmf); 2506 2507 pte_unmap_unlock(vmf->pte, vmf->ptl); 2508 return wp_page_copy(vmf); 2509 } 2510 2511 /* 2512 * Take out anonymous pages first, anonymous shared vmas are 2513 * not dirty accountable. 2514 */ 2515 if (PageAnon(vmf->page)) { 2516 int total_map_swapcount; 2517 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || 2518 page_count(vmf->page) != 1)) 2519 goto copy; 2520 if (!trylock_page(vmf->page)) { 2521 get_page(vmf->page); 2522 pte_unmap_unlock(vmf->pte, vmf->ptl); 2523 lock_page(vmf->page); 2524 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2525 vmf->address, &vmf->ptl); 2526 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2527 unlock_page(vmf->page); 2528 pte_unmap_unlock(vmf->pte, vmf->ptl); 2529 put_page(vmf->page); 2530 return 0; 2531 } 2532 put_page(vmf->page); 2533 } 2534 if (PageKsm(vmf->page)) { 2535 bool reused = reuse_ksm_page(vmf->page, vmf->vma, 2536 vmf->address); 2537 unlock_page(vmf->page); 2538 if (!reused) 2539 goto copy; 2540 wp_page_reuse(vmf); 2541 return VM_FAULT_WRITE; 2542 } 2543 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2544 if (total_map_swapcount == 1) { 2545 /* 2546 * The page is all ours. Move it to 2547 * our anon_vma so the rmap code will 2548 * not search our parent or siblings. 2549 * Protected against the rmap code by 2550 * the page lock. 2551 */ 2552 page_move_anon_rmap(vmf->page, vma); 2553 } 2554 unlock_page(vmf->page); 2555 wp_page_reuse(vmf); 2556 return VM_FAULT_WRITE; 2557 } 2558 unlock_page(vmf->page); 2559 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2560 (VM_WRITE|VM_SHARED))) { 2561 return wp_page_shared(vmf); 2562 } 2563 copy: 2564 /* 2565 * Ok, we need to copy. Oh, well.. 2566 */ 2567 get_page(vmf->page); 2568 2569 pte_unmap_unlock(vmf->pte, vmf->ptl); 2570 return wp_page_copy(vmf); 2571 } 2572 2573 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2574 unsigned long start_addr, unsigned long end_addr, 2575 struct zap_details *details) 2576 { 2577 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2578 } 2579 2580 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2581 struct zap_details *details) 2582 { 2583 struct vm_area_struct *vma; 2584 pgoff_t vba, vea, zba, zea; 2585 2586 vma_interval_tree_foreach(vma, root, 2587 details->first_index, details->last_index) { 2588 2589 vba = vma->vm_pgoff; 2590 vea = vba + vma_pages(vma) - 1; 2591 zba = details->first_index; 2592 if (zba < vba) 2593 zba = vba; 2594 zea = details->last_index; 2595 if (zea > vea) 2596 zea = vea; 2597 2598 unmap_mapping_range_vma(vma, 2599 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2600 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2601 details); 2602 } 2603 } 2604 2605 /** 2606 * unmap_mapping_pages() - Unmap pages from processes. 2607 * @mapping: The address space containing pages to be unmapped. 2608 * @start: Index of first page to be unmapped. 2609 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2610 * @even_cows: Whether to unmap even private COWed pages. 2611 * 2612 * Unmap the pages in this address space from any userspace process which 2613 * has them mmaped. Generally, you want to remove COWed pages as well when 2614 * a file is being truncated, but not when invalidating pages from the page 2615 * cache. 2616 */ 2617 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2618 pgoff_t nr, bool even_cows) 2619 { 2620 struct zap_details details = { }; 2621 2622 details.check_mapping = even_cows ? NULL : mapping; 2623 details.first_index = start; 2624 details.last_index = start + nr - 1; 2625 if (details.last_index < details.first_index) 2626 details.last_index = ULONG_MAX; 2627 2628 i_mmap_lock_write(mapping); 2629 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2630 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2631 i_mmap_unlock_write(mapping); 2632 } 2633 2634 /** 2635 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2636 * address_space corresponding to the specified byte range in the underlying 2637 * file. 2638 * 2639 * @mapping: the address space containing mmaps to be unmapped. 2640 * @holebegin: byte in first page to unmap, relative to the start of 2641 * the underlying file. This will be rounded down to a PAGE_SIZE 2642 * boundary. Note that this is different from truncate_pagecache(), which 2643 * must keep the partial page. In contrast, we must get rid of 2644 * partial pages. 2645 * @holelen: size of prospective hole in bytes. This will be rounded 2646 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2647 * end of the file. 2648 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2649 * but 0 when invalidating pagecache, don't throw away private data. 2650 */ 2651 void unmap_mapping_range(struct address_space *mapping, 2652 loff_t const holebegin, loff_t const holelen, int even_cows) 2653 { 2654 pgoff_t hba = holebegin >> PAGE_SHIFT; 2655 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2656 2657 /* Check for overflow. */ 2658 if (sizeof(holelen) > sizeof(hlen)) { 2659 long long holeend = 2660 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2661 if (holeend & ~(long long)ULONG_MAX) 2662 hlen = ULONG_MAX - hba + 1; 2663 } 2664 2665 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2666 } 2667 EXPORT_SYMBOL(unmap_mapping_range); 2668 2669 /* 2670 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2671 * but allow concurrent faults), and pte mapped but not yet locked. 2672 * We return with pte unmapped and unlocked. 2673 * 2674 * We return with the mmap_sem locked or unlocked in the same cases 2675 * as does filemap_fault(). 2676 */ 2677 vm_fault_t do_swap_page(struct vm_fault *vmf) 2678 { 2679 struct vm_area_struct *vma = vmf->vma; 2680 struct page *page = NULL, *swapcache; 2681 struct mem_cgroup *memcg; 2682 swp_entry_t entry; 2683 pte_t pte; 2684 int locked; 2685 int exclusive = 0; 2686 vm_fault_t ret = 0; 2687 2688 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2689 goto out; 2690 2691 entry = pte_to_swp_entry(vmf->orig_pte); 2692 if (unlikely(non_swap_entry(entry))) { 2693 if (is_migration_entry(entry)) { 2694 migration_entry_wait(vma->vm_mm, vmf->pmd, 2695 vmf->address); 2696 } else if (is_device_private_entry(entry)) { 2697 /* 2698 * For un-addressable device memory we call the pgmap 2699 * fault handler callback. The callback must migrate 2700 * the page back to some CPU accessible page. 2701 */ 2702 ret = device_private_entry_fault(vma, vmf->address, entry, 2703 vmf->flags, vmf->pmd); 2704 } else if (is_hwpoison_entry(entry)) { 2705 ret = VM_FAULT_HWPOISON; 2706 } else { 2707 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2708 ret = VM_FAULT_SIGBUS; 2709 } 2710 goto out; 2711 } 2712 2713 2714 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2715 page = lookup_swap_cache(entry, vma, vmf->address); 2716 swapcache = page; 2717 2718 if (!page) { 2719 struct swap_info_struct *si = swp_swap_info(entry); 2720 2721 if (si->flags & SWP_SYNCHRONOUS_IO && 2722 __swap_count(si, entry) == 1) { 2723 /* skip swapcache */ 2724 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2725 vmf->address); 2726 if (page) { 2727 __SetPageLocked(page); 2728 __SetPageSwapBacked(page); 2729 set_page_private(page, entry.val); 2730 lru_cache_add_anon(page); 2731 swap_readpage(page, true); 2732 } 2733 } else { 2734 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2735 vmf); 2736 swapcache = page; 2737 } 2738 2739 if (!page) { 2740 /* 2741 * Back out if somebody else faulted in this pte 2742 * while we released the pte lock. 2743 */ 2744 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2745 vmf->address, &vmf->ptl); 2746 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2747 ret = VM_FAULT_OOM; 2748 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2749 goto unlock; 2750 } 2751 2752 /* Had to read the page from swap area: Major fault */ 2753 ret = VM_FAULT_MAJOR; 2754 count_vm_event(PGMAJFAULT); 2755 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2756 } else if (PageHWPoison(page)) { 2757 /* 2758 * hwpoisoned dirty swapcache pages are kept for killing 2759 * owner processes (which may be unknown at hwpoison time) 2760 */ 2761 ret = VM_FAULT_HWPOISON; 2762 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2763 goto out_release; 2764 } 2765 2766 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2767 2768 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2769 if (!locked) { 2770 ret |= VM_FAULT_RETRY; 2771 goto out_release; 2772 } 2773 2774 /* 2775 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2776 * release the swapcache from under us. The page pin, and pte_same 2777 * test below, are not enough to exclude that. Even if it is still 2778 * swapcache, we need to check that the page's swap has not changed. 2779 */ 2780 if (unlikely((!PageSwapCache(page) || 2781 page_private(page) != entry.val)) && swapcache) 2782 goto out_page; 2783 2784 page = ksm_might_need_to_copy(page, vma, vmf->address); 2785 if (unlikely(!page)) { 2786 ret = VM_FAULT_OOM; 2787 page = swapcache; 2788 goto out_page; 2789 } 2790 2791 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 2792 &memcg, false)) { 2793 ret = VM_FAULT_OOM; 2794 goto out_page; 2795 } 2796 2797 /* 2798 * Back out if somebody else already faulted in this pte. 2799 */ 2800 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2801 &vmf->ptl); 2802 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2803 goto out_nomap; 2804 2805 if (unlikely(!PageUptodate(page))) { 2806 ret = VM_FAULT_SIGBUS; 2807 goto out_nomap; 2808 } 2809 2810 /* 2811 * The page isn't present yet, go ahead with the fault. 2812 * 2813 * Be careful about the sequence of operations here. 2814 * To get its accounting right, reuse_swap_page() must be called 2815 * while the page is counted on swap but not yet in mapcount i.e. 2816 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2817 * must be called after the swap_free(), or it will never succeed. 2818 */ 2819 2820 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2821 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2822 pte = mk_pte(page, vma->vm_page_prot); 2823 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2824 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2825 vmf->flags &= ~FAULT_FLAG_WRITE; 2826 ret |= VM_FAULT_WRITE; 2827 exclusive = RMAP_EXCLUSIVE; 2828 } 2829 flush_icache_page(vma, page); 2830 if (pte_swp_soft_dirty(vmf->orig_pte)) 2831 pte = pte_mksoft_dirty(pte); 2832 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2833 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 2834 vmf->orig_pte = pte; 2835 2836 /* ksm created a completely new copy */ 2837 if (unlikely(page != swapcache && swapcache)) { 2838 page_add_new_anon_rmap(page, vma, vmf->address, false); 2839 mem_cgroup_commit_charge(page, memcg, false, false); 2840 lru_cache_add_active_or_unevictable(page, vma); 2841 } else { 2842 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2843 mem_cgroup_commit_charge(page, memcg, true, false); 2844 activate_page(page); 2845 } 2846 2847 swap_free(entry); 2848 if (mem_cgroup_swap_full(page) || 2849 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2850 try_to_free_swap(page); 2851 unlock_page(page); 2852 if (page != swapcache && swapcache) { 2853 /* 2854 * Hold the lock to avoid the swap entry to be reused 2855 * until we take the PT lock for the pte_same() check 2856 * (to avoid false positives from pte_same). For 2857 * further safety release the lock after the swap_free 2858 * so that the swap count won't change under a 2859 * parallel locked swapcache. 2860 */ 2861 unlock_page(swapcache); 2862 put_page(swapcache); 2863 } 2864 2865 if (vmf->flags & FAULT_FLAG_WRITE) { 2866 ret |= do_wp_page(vmf); 2867 if (ret & VM_FAULT_ERROR) 2868 ret &= VM_FAULT_ERROR; 2869 goto out; 2870 } 2871 2872 /* No need to invalidate - it was non-present before */ 2873 update_mmu_cache(vma, vmf->address, vmf->pte); 2874 unlock: 2875 pte_unmap_unlock(vmf->pte, vmf->ptl); 2876 out: 2877 return ret; 2878 out_nomap: 2879 mem_cgroup_cancel_charge(page, memcg, false); 2880 pte_unmap_unlock(vmf->pte, vmf->ptl); 2881 out_page: 2882 unlock_page(page); 2883 out_release: 2884 put_page(page); 2885 if (page != swapcache && swapcache) { 2886 unlock_page(swapcache); 2887 put_page(swapcache); 2888 } 2889 return ret; 2890 } 2891 2892 /* 2893 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2894 * but allow concurrent faults), and pte mapped but not yet locked. 2895 * We return with mmap_sem still held, but pte unmapped and unlocked. 2896 */ 2897 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 2898 { 2899 struct vm_area_struct *vma = vmf->vma; 2900 struct mem_cgroup *memcg; 2901 struct page *page; 2902 vm_fault_t ret = 0; 2903 pte_t entry; 2904 2905 /* File mapping without ->vm_ops ? */ 2906 if (vma->vm_flags & VM_SHARED) 2907 return VM_FAULT_SIGBUS; 2908 2909 /* 2910 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2911 * pte_offset_map() on pmds where a huge pmd might be created 2912 * from a different thread. 2913 * 2914 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2915 * parallel threads are excluded by other means. 2916 * 2917 * Here we only have down_read(mmap_sem). 2918 */ 2919 if (pte_alloc(vma->vm_mm, vmf->pmd)) 2920 return VM_FAULT_OOM; 2921 2922 /* See the comment in pte_alloc_one_map() */ 2923 if (unlikely(pmd_trans_unstable(vmf->pmd))) 2924 return 0; 2925 2926 /* Use the zero-page for reads */ 2927 if (!(vmf->flags & FAULT_FLAG_WRITE) && 2928 !mm_forbids_zeropage(vma->vm_mm)) { 2929 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 2930 vma->vm_page_prot)); 2931 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2932 vmf->address, &vmf->ptl); 2933 if (!pte_none(*vmf->pte)) 2934 goto unlock; 2935 ret = check_stable_address_space(vma->vm_mm); 2936 if (ret) 2937 goto unlock; 2938 /* Deliver the page fault to userland, check inside PT lock */ 2939 if (userfaultfd_missing(vma)) { 2940 pte_unmap_unlock(vmf->pte, vmf->ptl); 2941 return handle_userfault(vmf, VM_UFFD_MISSING); 2942 } 2943 goto setpte; 2944 } 2945 2946 /* Allocate our own private page. */ 2947 if (unlikely(anon_vma_prepare(vma))) 2948 goto oom; 2949 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 2950 if (!page) 2951 goto oom; 2952 2953 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 2954 false)) 2955 goto oom_free_page; 2956 2957 /* 2958 * The memory barrier inside __SetPageUptodate makes sure that 2959 * preceeding stores to the page contents become visible before 2960 * the set_pte_at() write. 2961 */ 2962 __SetPageUptodate(page); 2963 2964 entry = mk_pte(page, vma->vm_page_prot); 2965 if (vma->vm_flags & VM_WRITE) 2966 entry = pte_mkwrite(pte_mkdirty(entry)); 2967 2968 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2969 &vmf->ptl); 2970 if (!pte_none(*vmf->pte)) 2971 goto release; 2972 2973 ret = check_stable_address_space(vma->vm_mm); 2974 if (ret) 2975 goto release; 2976 2977 /* Deliver the page fault to userland, check inside PT lock */ 2978 if (userfaultfd_missing(vma)) { 2979 pte_unmap_unlock(vmf->pte, vmf->ptl); 2980 mem_cgroup_cancel_charge(page, memcg, false); 2981 put_page(page); 2982 return handle_userfault(vmf, VM_UFFD_MISSING); 2983 } 2984 2985 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2986 page_add_new_anon_rmap(page, vma, vmf->address, false); 2987 mem_cgroup_commit_charge(page, memcg, false, false); 2988 lru_cache_add_active_or_unevictable(page, vma); 2989 setpte: 2990 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 2991 2992 /* No need to invalidate - it was non-present before */ 2993 update_mmu_cache(vma, vmf->address, vmf->pte); 2994 unlock: 2995 pte_unmap_unlock(vmf->pte, vmf->ptl); 2996 return ret; 2997 release: 2998 mem_cgroup_cancel_charge(page, memcg, false); 2999 put_page(page); 3000 goto unlock; 3001 oom_free_page: 3002 put_page(page); 3003 oom: 3004 return VM_FAULT_OOM; 3005 } 3006 3007 /* 3008 * The mmap_sem must have been held on entry, and may have been 3009 * released depending on flags and vma->vm_ops->fault() return value. 3010 * See filemap_fault() and __lock_page_retry(). 3011 */ 3012 static vm_fault_t __do_fault(struct vm_fault *vmf) 3013 { 3014 struct vm_area_struct *vma = vmf->vma; 3015 vm_fault_t ret; 3016 3017 /* 3018 * Preallocate pte before we take page_lock because this might lead to 3019 * deadlocks for memcg reclaim which waits for pages under writeback: 3020 * lock_page(A) 3021 * SetPageWriteback(A) 3022 * unlock_page(A) 3023 * lock_page(B) 3024 * lock_page(B) 3025 * pte_alloc_pne 3026 * shrink_page_list 3027 * wait_on_page_writeback(A) 3028 * SetPageWriteback(B) 3029 * unlock_page(B) 3030 * # flush A, B to clear the writeback 3031 */ 3032 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3033 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3034 if (!vmf->prealloc_pte) 3035 return VM_FAULT_OOM; 3036 smp_wmb(); /* See comment in __pte_alloc() */ 3037 } 3038 3039 ret = vma->vm_ops->fault(vmf); 3040 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3041 VM_FAULT_DONE_COW))) 3042 return ret; 3043 3044 if (unlikely(PageHWPoison(vmf->page))) { 3045 if (ret & VM_FAULT_LOCKED) 3046 unlock_page(vmf->page); 3047 put_page(vmf->page); 3048 vmf->page = NULL; 3049 return VM_FAULT_HWPOISON; 3050 } 3051 3052 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3053 lock_page(vmf->page); 3054 else 3055 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3056 3057 return ret; 3058 } 3059 3060 /* 3061 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3062 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3063 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3064 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3065 */ 3066 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3067 { 3068 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3069 } 3070 3071 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3072 { 3073 struct vm_area_struct *vma = vmf->vma; 3074 3075 if (!pmd_none(*vmf->pmd)) 3076 goto map_pte; 3077 if (vmf->prealloc_pte) { 3078 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3079 if (unlikely(!pmd_none(*vmf->pmd))) { 3080 spin_unlock(vmf->ptl); 3081 goto map_pte; 3082 } 3083 3084 mm_inc_nr_ptes(vma->vm_mm); 3085 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3086 spin_unlock(vmf->ptl); 3087 vmf->prealloc_pte = NULL; 3088 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3089 return VM_FAULT_OOM; 3090 } 3091 map_pte: 3092 /* 3093 * If a huge pmd materialized under us just retry later. Use 3094 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3095 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3096 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3097 * running immediately after a huge pmd fault in a different thread of 3098 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3099 * All we have to ensure is that it is a regular pmd that we can walk 3100 * with pte_offset_map() and we can do that through an atomic read in 3101 * C, which is what pmd_trans_unstable() provides. 3102 */ 3103 if (pmd_devmap_trans_unstable(vmf->pmd)) 3104 return VM_FAULT_NOPAGE; 3105 3106 /* 3107 * At this point we know that our vmf->pmd points to a page of ptes 3108 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3109 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3110 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3111 * be valid and we will re-check to make sure the vmf->pte isn't 3112 * pte_none() under vmf->ptl protection when we return to 3113 * alloc_set_pte(). 3114 */ 3115 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3116 &vmf->ptl); 3117 return 0; 3118 } 3119 3120 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3121 3122 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3123 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3124 unsigned long haddr) 3125 { 3126 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3127 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3128 return false; 3129 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3130 return false; 3131 return true; 3132 } 3133 3134 static void deposit_prealloc_pte(struct vm_fault *vmf) 3135 { 3136 struct vm_area_struct *vma = vmf->vma; 3137 3138 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3139 /* 3140 * We are going to consume the prealloc table, 3141 * count that as nr_ptes. 3142 */ 3143 mm_inc_nr_ptes(vma->vm_mm); 3144 vmf->prealloc_pte = NULL; 3145 } 3146 3147 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3148 { 3149 struct vm_area_struct *vma = vmf->vma; 3150 bool write = vmf->flags & FAULT_FLAG_WRITE; 3151 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3152 pmd_t entry; 3153 int i; 3154 vm_fault_t ret; 3155 3156 if (!transhuge_vma_suitable(vma, haddr)) 3157 return VM_FAULT_FALLBACK; 3158 3159 ret = VM_FAULT_FALLBACK; 3160 page = compound_head(page); 3161 3162 /* 3163 * Archs like ppc64 need additonal space to store information 3164 * related to pte entry. Use the preallocated table for that. 3165 */ 3166 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3167 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3168 if (!vmf->prealloc_pte) 3169 return VM_FAULT_OOM; 3170 smp_wmb(); /* See comment in __pte_alloc() */ 3171 } 3172 3173 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3174 if (unlikely(!pmd_none(*vmf->pmd))) 3175 goto out; 3176 3177 for (i = 0; i < HPAGE_PMD_NR; i++) 3178 flush_icache_page(vma, page + i); 3179 3180 entry = mk_huge_pmd(page, vma->vm_page_prot); 3181 if (write) 3182 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3183 3184 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3185 page_add_file_rmap(page, true); 3186 /* 3187 * deposit and withdraw with pmd lock held 3188 */ 3189 if (arch_needs_pgtable_deposit()) 3190 deposit_prealloc_pte(vmf); 3191 3192 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3193 3194 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3195 3196 /* fault is handled */ 3197 ret = 0; 3198 count_vm_event(THP_FILE_MAPPED); 3199 out: 3200 spin_unlock(vmf->ptl); 3201 return ret; 3202 } 3203 #else 3204 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3205 { 3206 BUILD_BUG(); 3207 return 0; 3208 } 3209 #endif 3210 3211 /** 3212 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3213 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3214 * 3215 * @vmf: fault environment 3216 * @memcg: memcg to charge page (only for private mappings) 3217 * @page: page to map 3218 * 3219 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3220 * return. 3221 * 3222 * Target users are page handler itself and implementations of 3223 * vm_ops->map_pages. 3224 * 3225 * Return: %0 on success, %VM_FAULT_ code in case of error. 3226 */ 3227 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3228 struct page *page) 3229 { 3230 struct vm_area_struct *vma = vmf->vma; 3231 bool write = vmf->flags & FAULT_FLAG_WRITE; 3232 pte_t entry; 3233 vm_fault_t ret; 3234 3235 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3236 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3237 /* THP on COW? */ 3238 VM_BUG_ON_PAGE(memcg, page); 3239 3240 ret = do_set_pmd(vmf, page); 3241 if (ret != VM_FAULT_FALLBACK) 3242 return ret; 3243 } 3244 3245 if (!vmf->pte) { 3246 ret = pte_alloc_one_map(vmf); 3247 if (ret) 3248 return ret; 3249 } 3250 3251 /* Re-check under ptl */ 3252 if (unlikely(!pte_none(*vmf->pte))) 3253 return VM_FAULT_NOPAGE; 3254 3255 flush_icache_page(vma, page); 3256 entry = mk_pte(page, vma->vm_page_prot); 3257 if (write) 3258 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3259 /* copy-on-write page */ 3260 if (write && !(vma->vm_flags & VM_SHARED)) { 3261 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3262 page_add_new_anon_rmap(page, vma, vmf->address, false); 3263 mem_cgroup_commit_charge(page, memcg, false, false); 3264 lru_cache_add_active_or_unevictable(page, vma); 3265 } else { 3266 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3267 page_add_file_rmap(page, false); 3268 } 3269 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3270 3271 /* no need to invalidate: a not-present page won't be cached */ 3272 update_mmu_cache(vma, vmf->address, vmf->pte); 3273 3274 return 0; 3275 } 3276 3277 3278 /** 3279 * finish_fault - finish page fault once we have prepared the page to fault 3280 * 3281 * @vmf: structure describing the fault 3282 * 3283 * This function handles all that is needed to finish a page fault once the 3284 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3285 * given page, adds reverse page mapping, handles memcg charges and LRU 3286 * addition. 3287 * 3288 * The function expects the page to be locked and on success it consumes a 3289 * reference of a page being mapped (for the PTE which maps it). 3290 * 3291 * Return: %0 on success, %VM_FAULT_ code in case of error. 3292 */ 3293 vm_fault_t finish_fault(struct vm_fault *vmf) 3294 { 3295 struct page *page; 3296 vm_fault_t ret = 0; 3297 3298 /* Did we COW the page? */ 3299 if ((vmf->flags & FAULT_FLAG_WRITE) && 3300 !(vmf->vma->vm_flags & VM_SHARED)) 3301 page = vmf->cow_page; 3302 else 3303 page = vmf->page; 3304 3305 /* 3306 * check even for read faults because we might have lost our CoWed 3307 * page 3308 */ 3309 if (!(vmf->vma->vm_flags & VM_SHARED)) 3310 ret = check_stable_address_space(vmf->vma->vm_mm); 3311 if (!ret) 3312 ret = alloc_set_pte(vmf, vmf->memcg, page); 3313 if (vmf->pte) 3314 pte_unmap_unlock(vmf->pte, vmf->ptl); 3315 return ret; 3316 } 3317 3318 static unsigned long fault_around_bytes __read_mostly = 3319 rounddown_pow_of_two(65536); 3320 3321 #ifdef CONFIG_DEBUG_FS 3322 static int fault_around_bytes_get(void *data, u64 *val) 3323 { 3324 *val = fault_around_bytes; 3325 return 0; 3326 } 3327 3328 /* 3329 * fault_around_bytes must be rounded down to the nearest page order as it's 3330 * what do_fault_around() expects to see. 3331 */ 3332 static int fault_around_bytes_set(void *data, u64 val) 3333 { 3334 if (val / PAGE_SIZE > PTRS_PER_PTE) 3335 return -EINVAL; 3336 if (val > PAGE_SIZE) 3337 fault_around_bytes = rounddown_pow_of_two(val); 3338 else 3339 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3340 return 0; 3341 } 3342 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3343 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3344 3345 static int __init fault_around_debugfs(void) 3346 { 3347 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3348 &fault_around_bytes_fops); 3349 return 0; 3350 } 3351 late_initcall(fault_around_debugfs); 3352 #endif 3353 3354 /* 3355 * do_fault_around() tries to map few pages around the fault address. The hope 3356 * is that the pages will be needed soon and this will lower the number of 3357 * faults to handle. 3358 * 3359 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3360 * not ready to be mapped: not up-to-date, locked, etc. 3361 * 3362 * This function is called with the page table lock taken. In the split ptlock 3363 * case the page table lock only protects only those entries which belong to 3364 * the page table corresponding to the fault address. 3365 * 3366 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3367 * only once. 3368 * 3369 * fault_around_bytes defines how many bytes we'll try to map. 3370 * do_fault_around() expects it to be set to a power of two less than or equal 3371 * to PTRS_PER_PTE. 3372 * 3373 * The virtual address of the area that we map is naturally aligned to 3374 * fault_around_bytes rounded down to the machine page size 3375 * (and therefore to page order). This way it's easier to guarantee 3376 * that we don't cross page table boundaries. 3377 */ 3378 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3379 { 3380 unsigned long address = vmf->address, nr_pages, mask; 3381 pgoff_t start_pgoff = vmf->pgoff; 3382 pgoff_t end_pgoff; 3383 int off; 3384 vm_fault_t ret = 0; 3385 3386 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3387 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3388 3389 vmf->address = max(address & mask, vmf->vma->vm_start); 3390 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3391 start_pgoff -= off; 3392 3393 /* 3394 * end_pgoff is either the end of the page table, the end of 3395 * the vma or nr_pages from start_pgoff, depending what is nearest. 3396 */ 3397 end_pgoff = start_pgoff - 3398 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3399 PTRS_PER_PTE - 1; 3400 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3401 start_pgoff + nr_pages - 1); 3402 3403 if (pmd_none(*vmf->pmd)) { 3404 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3405 if (!vmf->prealloc_pte) 3406 goto out; 3407 smp_wmb(); /* See comment in __pte_alloc() */ 3408 } 3409 3410 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3411 3412 /* Huge page is mapped? Page fault is solved */ 3413 if (pmd_trans_huge(*vmf->pmd)) { 3414 ret = VM_FAULT_NOPAGE; 3415 goto out; 3416 } 3417 3418 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3419 if (!vmf->pte) 3420 goto out; 3421 3422 /* check if the page fault is solved */ 3423 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3424 if (!pte_none(*vmf->pte)) 3425 ret = VM_FAULT_NOPAGE; 3426 pte_unmap_unlock(vmf->pte, vmf->ptl); 3427 out: 3428 vmf->address = address; 3429 vmf->pte = NULL; 3430 return ret; 3431 } 3432 3433 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3434 { 3435 struct vm_area_struct *vma = vmf->vma; 3436 vm_fault_t ret = 0; 3437 3438 /* 3439 * Let's call ->map_pages() first and use ->fault() as fallback 3440 * if page by the offset is not ready to be mapped (cold cache or 3441 * something). 3442 */ 3443 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3444 ret = do_fault_around(vmf); 3445 if (ret) 3446 return ret; 3447 } 3448 3449 ret = __do_fault(vmf); 3450 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3451 return ret; 3452 3453 ret |= finish_fault(vmf); 3454 unlock_page(vmf->page); 3455 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3456 put_page(vmf->page); 3457 return ret; 3458 } 3459 3460 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3461 { 3462 struct vm_area_struct *vma = vmf->vma; 3463 vm_fault_t ret; 3464 3465 if (unlikely(anon_vma_prepare(vma))) 3466 return VM_FAULT_OOM; 3467 3468 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3469 if (!vmf->cow_page) 3470 return VM_FAULT_OOM; 3471 3472 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3473 &vmf->memcg, false)) { 3474 put_page(vmf->cow_page); 3475 return VM_FAULT_OOM; 3476 } 3477 3478 ret = __do_fault(vmf); 3479 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3480 goto uncharge_out; 3481 if (ret & VM_FAULT_DONE_COW) 3482 return ret; 3483 3484 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3485 __SetPageUptodate(vmf->cow_page); 3486 3487 ret |= finish_fault(vmf); 3488 unlock_page(vmf->page); 3489 put_page(vmf->page); 3490 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3491 goto uncharge_out; 3492 return ret; 3493 uncharge_out: 3494 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3495 put_page(vmf->cow_page); 3496 return ret; 3497 } 3498 3499 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3500 { 3501 struct vm_area_struct *vma = vmf->vma; 3502 vm_fault_t ret, tmp; 3503 3504 ret = __do_fault(vmf); 3505 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3506 return ret; 3507 3508 /* 3509 * Check if the backing address space wants to know that the page is 3510 * about to become writable 3511 */ 3512 if (vma->vm_ops->page_mkwrite) { 3513 unlock_page(vmf->page); 3514 tmp = do_page_mkwrite(vmf); 3515 if (unlikely(!tmp || 3516 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3517 put_page(vmf->page); 3518 return tmp; 3519 } 3520 } 3521 3522 ret |= finish_fault(vmf); 3523 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3524 VM_FAULT_RETRY))) { 3525 unlock_page(vmf->page); 3526 put_page(vmf->page); 3527 return ret; 3528 } 3529 3530 fault_dirty_shared_page(vma, vmf->page); 3531 return ret; 3532 } 3533 3534 /* 3535 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3536 * but allow concurrent faults). 3537 * The mmap_sem may have been released depending on flags and our 3538 * return value. See filemap_fault() and __lock_page_or_retry(). 3539 * If mmap_sem is released, vma may become invalid (for example 3540 * by other thread calling munmap()). 3541 */ 3542 static vm_fault_t do_fault(struct vm_fault *vmf) 3543 { 3544 struct vm_area_struct *vma = vmf->vma; 3545 struct mm_struct *vm_mm = vma->vm_mm; 3546 vm_fault_t ret; 3547 3548 /* 3549 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3550 */ 3551 if (!vma->vm_ops->fault) { 3552 /* 3553 * If we find a migration pmd entry or a none pmd entry, which 3554 * should never happen, return SIGBUS 3555 */ 3556 if (unlikely(!pmd_present(*vmf->pmd))) 3557 ret = VM_FAULT_SIGBUS; 3558 else { 3559 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3560 vmf->pmd, 3561 vmf->address, 3562 &vmf->ptl); 3563 /* 3564 * Make sure this is not a temporary clearing of pte 3565 * by holding ptl and checking again. A R/M/W update 3566 * of pte involves: take ptl, clearing the pte so that 3567 * we don't have concurrent modification by hardware 3568 * followed by an update. 3569 */ 3570 if (unlikely(pte_none(*vmf->pte))) 3571 ret = VM_FAULT_SIGBUS; 3572 else 3573 ret = VM_FAULT_NOPAGE; 3574 3575 pte_unmap_unlock(vmf->pte, vmf->ptl); 3576 } 3577 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3578 ret = do_read_fault(vmf); 3579 else if (!(vma->vm_flags & VM_SHARED)) 3580 ret = do_cow_fault(vmf); 3581 else 3582 ret = do_shared_fault(vmf); 3583 3584 /* preallocated pagetable is unused: free it */ 3585 if (vmf->prealloc_pte) { 3586 pte_free(vm_mm, vmf->prealloc_pte); 3587 vmf->prealloc_pte = NULL; 3588 } 3589 return ret; 3590 } 3591 3592 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3593 unsigned long addr, int page_nid, 3594 int *flags) 3595 { 3596 get_page(page); 3597 3598 count_vm_numa_event(NUMA_HINT_FAULTS); 3599 if (page_nid == numa_node_id()) { 3600 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3601 *flags |= TNF_FAULT_LOCAL; 3602 } 3603 3604 return mpol_misplaced(page, vma, addr); 3605 } 3606 3607 static vm_fault_t do_numa_page(struct vm_fault *vmf) 3608 { 3609 struct vm_area_struct *vma = vmf->vma; 3610 struct page *page = NULL; 3611 int page_nid = NUMA_NO_NODE; 3612 int last_cpupid; 3613 int target_nid; 3614 bool migrated = false; 3615 pte_t pte, old_pte; 3616 bool was_writable = pte_savedwrite(vmf->orig_pte); 3617 int flags = 0; 3618 3619 /* 3620 * The "pte" at this point cannot be used safely without 3621 * validation through pte_unmap_same(). It's of NUMA type but 3622 * the pfn may be screwed if the read is non atomic. 3623 */ 3624 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3625 spin_lock(vmf->ptl); 3626 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3627 pte_unmap_unlock(vmf->pte, vmf->ptl); 3628 goto out; 3629 } 3630 3631 /* 3632 * Make it present again, Depending on how arch implementes non 3633 * accessible ptes, some can allow access by kernel mode. 3634 */ 3635 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 3636 pte = pte_modify(old_pte, vma->vm_page_prot); 3637 pte = pte_mkyoung(pte); 3638 if (was_writable) 3639 pte = pte_mkwrite(pte); 3640 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 3641 update_mmu_cache(vma, vmf->address, vmf->pte); 3642 3643 page = vm_normal_page(vma, vmf->address, pte); 3644 if (!page) { 3645 pte_unmap_unlock(vmf->pte, vmf->ptl); 3646 return 0; 3647 } 3648 3649 /* TODO: handle PTE-mapped THP */ 3650 if (PageCompound(page)) { 3651 pte_unmap_unlock(vmf->pte, vmf->ptl); 3652 return 0; 3653 } 3654 3655 /* 3656 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3657 * much anyway since they can be in shared cache state. This misses 3658 * the case where a mapping is writable but the process never writes 3659 * to it but pte_write gets cleared during protection updates and 3660 * pte_dirty has unpredictable behaviour between PTE scan updates, 3661 * background writeback, dirty balancing and application behaviour. 3662 */ 3663 if (!pte_write(pte)) 3664 flags |= TNF_NO_GROUP; 3665 3666 /* 3667 * Flag if the page is shared between multiple address spaces. This 3668 * is later used when determining whether to group tasks together 3669 */ 3670 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3671 flags |= TNF_SHARED; 3672 3673 last_cpupid = page_cpupid_last(page); 3674 page_nid = page_to_nid(page); 3675 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3676 &flags); 3677 pte_unmap_unlock(vmf->pte, vmf->ptl); 3678 if (target_nid == NUMA_NO_NODE) { 3679 put_page(page); 3680 goto out; 3681 } 3682 3683 /* Migrate to the requested node */ 3684 migrated = migrate_misplaced_page(page, vma, target_nid); 3685 if (migrated) { 3686 page_nid = target_nid; 3687 flags |= TNF_MIGRATED; 3688 } else 3689 flags |= TNF_MIGRATE_FAIL; 3690 3691 out: 3692 if (page_nid != NUMA_NO_NODE) 3693 task_numa_fault(last_cpupid, page_nid, 1, flags); 3694 return 0; 3695 } 3696 3697 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 3698 { 3699 if (vma_is_anonymous(vmf->vma)) 3700 return do_huge_pmd_anonymous_page(vmf); 3701 if (vmf->vma->vm_ops->huge_fault) 3702 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3703 return VM_FAULT_FALLBACK; 3704 } 3705 3706 /* `inline' is required to avoid gcc 4.1.2 build error */ 3707 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3708 { 3709 if (vma_is_anonymous(vmf->vma)) 3710 return do_huge_pmd_wp_page(vmf, orig_pmd); 3711 if (vmf->vma->vm_ops->huge_fault) 3712 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3713 3714 /* COW handled on pte level: split pmd */ 3715 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3716 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3717 3718 return VM_FAULT_FALLBACK; 3719 } 3720 3721 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3722 { 3723 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3724 } 3725 3726 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 3727 { 3728 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3729 /* No support for anonymous transparent PUD pages yet */ 3730 if (vma_is_anonymous(vmf->vma)) 3731 return VM_FAULT_FALLBACK; 3732 if (vmf->vma->vm_ops->huge_fault) 3733 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3734 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3735 return VM_FAULT_FALLBACK; 3736 } 3737 3738 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3739 { 3740 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3741 /* No support for anonymous transparent PUD pages yet */ 3742 if (vma_is_anonymous(vmf->vma)) 3743 return VM_FAULT_FALLBACK; 3744 if (vmf->vma->vm_ops->huge_fault) 3745 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3746 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3747 return VM_FAULT_FALLBACK; 3748 } 3749 3750 /* 3751 * These routines also need to handle stuff like marking pages dirty 3752 * and/or accessed for architectures that don't do it in hardware (most 3753 * RISC architectures). The early dirtying is also good on the i386. 3754 * 3755 * There is also a hook called "update_mmu_cache()" that architectures 3756 * with external mmu caches can use to update those (ie the Sparc or 3757 * PowerPC hashed page tables that act as extended TLBs). 3758 * 3759 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3760 * concurrent faults). 3761 * 3762 * The mmap_sem may have been released depending on flags and our return value. 3763 * See filemap_fault() and __lock_page_or_retry(). 3764 */ 3765 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 3766 { 3767 pte_t entry; 3768 3769 if (unlikely(pmd_none(*vmf->pmd))) { 3770 /* 3771 * Leave __pte_alloc() until later: because vm_ops->fault may 3772 * want to allocate huge page, and if we expose page table 3773 * for an instant, it will be difficult to retract from 3774 * concurrent faults and from rmap lookups. 3775 */ 3776 vmf->pte = NULL; 3777 } else { 3778 /* See comment in pte_alloc_one_map() */ 3779 if (pmd_devmap_trans_unstable(vmf->pmd)) 3780 return 0; 3781 /* 3782 * A regular pmd is established and it can't morph into a huge 3783 * pmd from under us anymore at this point because we hold the 3784 * mmap_sem read mode and khugepaged takes it in write mode. 3785 * So now it's safe to run pte_offset_map(). 3786 */ 3787 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3788 vmf->orig_pte = *vmf->pte; 3789 3790 /* 3791 * some architectures can have larger ptes than wordsize, 3792 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3793 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3794 * accesses. The code below just needs a consistent view 3795 * for the ifs and we later double check anyway with the 3796 * ptl lock held. So here a barrier will do. 3797 */ 3798 barrier(); 3799 if (pte_none(vmf->orig_pte)) { 3800 pte_unmap(vmf->pte); 3801 vmf->pte = NULL; 3802 } 3803 } 3804 3805 if (!vmf->pte) { 3806 if (vma_is_anonymous(vmf->vma)) 3807 return do_anonymous_page(vmf); 3808 else 3809 return do_fault(vmf); 3810 } 3811 3812 if (!pte_present(vmf->orig_pte)) 3813 return do_swap_page(vmf); 3814 3815 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3816 return do_numa_page(vmf); 3817 3818 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3819 spin_lock(vmf->ptl); 3820 entry = vmf->orig_pte; 3821 if (unlikely(!pte_same(*vmf->pte, entry))) 3822 goto unlock; 3823 if (vmf->flags & FAULT_FLAG_WRITE) { 3824 if (!pte_write(entry)) 3825 return do_wp_page(vmf); 3826 entry = pte_mkdirty(entry); 3827 } 3828 entry = pte_mkyoung(entry); 3829 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3830 vmf->flags & FAULT_FLAG_WRITE)) { 3831 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3832 } else { 3833 /* 3834 * This is needed only for protection faults but the arch code 3835 * is not yet telling us if this is a protection fault or not. 3836 * This still avoids useless tlb flushes for .text page faults 3837 * with threads. 3838 */ 3839 if (vmf->flags & FAULT_FLAG_WRITE) 3840 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3841 } 3842 unlock: 3843 pte_unmap_unlock(vmf->pte, vmf->ptl); 3844 return 0; 3845 } 3846 3847 /* 3848 * By the time we get here, we already hold the mm semaphore 3849 * 3850 * The mmap_sem may have been released depending on flags and our 3851 * return value. See filemap_fault() and __lock_page_or_retry(). 3852 */ 3853 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 3854 unsigned long address, unsigned int flags) 3855 { 3856 struct vm_fault vmf = { 3857 .vma = vma, 3858 .address = address & PAGE_MASK, 3859 .flags = flags, 3860 .pgoff = linear_page_index(vma, address), 3861 .gfp_mask = __get_fault_gfp_mask(vma), 3862 }; 3863 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3864 struct mm_struct *mm = vma->vm_mm; 3865 pgd_t *pgd; 3866 p4d_t *p4d; 3867 vm_fault_t ret; 3868 3869 pgd = pgd_offset(mm, address); 3870 p4d = p4d_alloc(mm, pgd, address); 3871 if (!p4d) 3872 return VM_FAULT_OOM; 3873 3874 vmf.pud = pud_alloc(mm, p4d, address); 3875 if (!vmf.pud) 3876 return VM_FAULT_OOM; 3877 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 3878 ret = create_huge_pud(&vmf); 3879 if (!(ret & VM_FAULT_FALLBACK)) 3880 return ret; 3881 } else { 3882 pud_t orig_pud = *vmf.pud; 3883 3884 barrier(); 3885 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 3886 3887 /* NUMA case for anonymous PUDs would go here */ 3888 3889 if (dirty && !pud_write(orig_pud)) { 3890 ret = wp_huge_pud(&vmf, orig_pud); 3891 if (!(ret & VM_FAULT_FALLBACK)) 3892 return ret; 3893 } else { 3894 huge_pud_set_accessed(&vmf, orig_pud); 3895 return 0; 3896 } 3897 } 3898 } 3899 3900 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 3901 if (!vmf.pmd) 3902 return VM_FAULT_OOM; 3903 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 3904 ret = create_huge_pmd(&vmf); 3905 if (!(ret & VM_FAULT_FALLBACK)) 3906 return ret; 3907 } else { 3908 pmd_t orig_pmd = *vmf.pmd; 3909 3910 barrier(); 3911 if (unlikely(is_swap_pmd(orig_pmd))) { 3912 VM_BUG_ON(thp_migration_supported() && 3913 !is_pmd_migration_entry(orig_pmd)); 3914 if (is_pmd_migration_entry(orig_pmd)) 3915 pmd_migration_entry_wait(mm, vmf.pmd); 3916 return 0; 3917 } 3918 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3919 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 3920 return do_huge_pmd_numa_page(&vmf, orig_pmd); 3921 3922 if (dirty && !pmd_write(orig_pmd)) { 3923 ret = wp_huge_pmd(&vmf, orig_pmd); 3924 if (!(ret & VM_FAULT_FALLBACK)) 3925 return ret; 3926 } else { 3927 huge_pmd_set_accessed(&vmf, orig_pmd); 3928 return 0; 3929 } 3930 } 3931 } 3932 3933 return handle_pte_fault(&vmf); 3934 } 3935 3936 /* 3937 * By the time we get here, we already hold the mm semaphore 3938 * 3939 * The mmap_sem may have been released depending on flags and our 3940 * return value. See filemap_fault() and __lock_page_or_retry(). 3941 */ 3942 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3943 unsigned int flags) 3944 { 3945 vm_fault_t ret; 3946 3947 __set_current_state(TASK_RUNNING); 3948 3949 count_vm_event(PGFAULT); 3950 count_memcg_event_mm(vma->vm_mm, PGFAULT); 3951 3952 /* do counter updates before entering really critical section. */ 3953 check_sync_rss_stat(current); 3954 3955 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3956 flags & FAULT_FLAG_INSTRUCTION, 3957 flags & FAULT_FLAG_REMOTE)) 3958 return VM_FAULT_SIGSEGV; 3959 3960 /* 3961 * Enable the memcg OOM handling for faults triggered in user 3962 * space. Kernel faults are handled more gracefully. 3963 */ 3964 if (flags & FAULT_FLAG_USER) 3965 mem_cgroup_enter_user_fault(); 3966 3967 if (unlikely(is_vm_hugetlb_page(vma))) 3968 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 3969 else 3970 ret = __handle_mm_fault(vma, address, flags); 3971 3972 if (flags & FAULT_FLAG_USER) { 3973 mem_cgroup_exit_user_fault(); 3974 /* 3975 * The task may have entered a memcg OOM situation but 3976 * if the allocation error was handled gracefully (no 3977 * VM_FAULT_OOM), there is no need to kill anything. 3978 * Just clean up the OOM state peacefully. 3979 */ 3980 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3981 mem_cgroup_oom_synchronize(false); 3982 } 3983 3984 return ret; 3985 } 3986 EXPORT_SYMBOL_GPL(handle_mm_fault); 3987 3988 #ifndef __PAGETABLE_P4D_FOLDED 3989 /* 3990 * Allocate p4d page table. 3991 * We've already handled the fast-path in-line. 3992 */ 3993 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3994 { 3995 p4d_t *new = p4d_alloc_one(mm, address); 3996 if (!new) 3997 return -ENOMEM; 3998 3999 smp_wmb(); /* See comment in __pte_alloc */ 4000 4001 spin_lock(&mm->page_table_lock); 4002 if (pgd_present(*pgd)) /* Another has populated it */ 4003 p4d_free(mm, new); 4004 else 4005 pgd_populate(mm, pgd, new); 4006 spin_unlock(&mm->page_table_lock); 4007 return 0; 4008 } 4009 #endif /* __PAGETABLE_P4D_FOLDED */ 4010 4011 #ifndef __PAGETABLE_PUD_FOLDED 4012 /* 4013 * Allocate page upper directory. 4014 * We've already handled the fast-path in-line. 4015 */ 4016 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4017 { 4018 pud_t *new = pud_alloc_one(mm, address); 4019 if (!new) 4020 return -ENOMEM; 4021 4022 smp_wmb(); /* See comment in __pte_alloc */ 4023 4024 spin_lock(&mm->page_table_lock); 4025 #ifndef __ARCH_HAS_5LEVEL_HACK 4026 if (!p4d_present(*p4d)) { 4027 mm_inc_nr_puds(mm); 4028 p4d_populate(mm, p4d, new); 4029 } else /* Another has populated it */ 4030 pud_free(mm, new); 4031 #else 4032 if (!pgd_present(*p4d)) { 4033 mm_inc_nr_puds(mm); 4034 pgd_populate(mm, p4d, new); 4035 } else /* Another has populated it */ 4036 pud_free(mm, new); 4037 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4038 spin_unlock(&mm->page_table_lock); 4039 return 0; 4040 } 4041 #endif /* __PAGETABLE_PUD_FOLDED */ 4042 4043 #ifndef __PAGETABLE_PMD_FOLDED 4044 /* 4045 * Allocate page middle directory. 4046 * We've already handled the fast-path in-line. 4047 */ 4048 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4049 { 4050 spinlock_t *ptl; 4051 pmd_t *new = pmd_alloc_one(mm, address); 4052 if (!new) 4053 return -ENOMEM; 4054 4055 smp_wmb(); /* See comment in __pte_alloc */ 4056 4057 ptl = pud_lock(mm, pud); 4058 #ifndef __ARCH_HAS_4LEVEL_HACK 4059 if (!pud_present(*pud)) { 4060 mm_inc_nr_pmds(mm); 4061 pud_populate(mm, pud, new); 4062 } else /* Another has populated it */ 4063 pmd_free(mm, new); 4064 #else 4065 if (!pgd_present(*pud)) { 4066 mm_inc_nr_pmds(mm); 4067 pgd_populate(mm, pud, new); 4068 } else /* Another has populated it */ 4069 pmd_free(mm, new); 4070 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4071 spin_unlock(ptl); 4072 return 0; 4073 } 4074 #endif /* __PAGETABLE_PMD_FOLDED */ 4075 4076 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4077 struct mmu_notifier_range *range, 4078 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4079 { 4080 pgd_t *pgd; 4081 p4d_t *p4d; 4082 pud_t *pud; 4083 pmd_t *pmd; 4084 pte_t *ptep; 4085 4086 pgd = pgd_offset(mm, address); 4087 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4088 goto out; 4089 4090 p4d = p4d_offset(pgd, address); 4091 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4092 goto out; 4093 4094 pud = pud_offset(p4d, address); 4095 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4096 goto out; 4097 4098 pmd = pmd_offset(pud, address); 4099 VM_BUG_ON(pmd_trans_huge(*pmd)); 4100 4101 if (pmd_huge(*pmd)) { 4102 if (!pmdpp) 4103 goto out; 4104 4105 if (range) { 4106 mmu_notifier_range_init(range, mm, address & PMD_MASK, 4107 (address & PMD_MASK) + PMD_SIZE); 4108 mmu_notifier_invalidate_range_start(range); 4109 } 4110 *ptlp = pmd_lock(mm, pmd); 4111 if (pmd_huge(*pmd)) { 4112 *pmdpp = pmd; 4113 return 0; 4114 } 4115 spin_unlock(*ptlp); 4116 if (range) 4117 mmu_notifier_invalidate_range_end(range); 4118 } 4119 4120 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4121 goto out; 4122 4123 if (range) { 4124 mmu_notifier_range_init(range, mm, address & PAGE_MASK, 4125 (address & PAGE_MASK) + PAGE_SIZE); 4126 mmu_notifier_invalidate_range_start(range); 4127 } 4128 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4129 if (!pte_present(*ptep)) 4130 goto unlock; 4131 *ptepp = ptep; 4132 return 0; 4133 unlock: 4134 pte_unmap_unlock(ptep, *ptlp); 4135 if (range) 4136 mmu_notifier_invalidate_range_end(range); 4137 out: 4138 return -EINVAL; 4139 } 4140 4141 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4142 pte_t **ptepp, spinlock_t **ptlp) 4143 { 4144 int res; 4145 4146 /* (void) is needed to make gcc happy */ 4147 (void) __cond_lock(*ptlp, 4148 !(res = __follow_pte_pmd(mm, address, NULL, 4149 ptepp, NULL, ptlp))); 4150 return res; 4151 } 4152 4153 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4154 struct mmu_notifier_range *range, 4155 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4156 { 4157 int res; 4158 4159 /* (void) is needed to make gcc happy */ 4160 (void) __cond_lock(*ptlp, 4161 !(res = __follow_pte_pmd(mm, address, range, 4162 ptepp, pmdpp, ptlp))); 4163 return res; 4164 } 4165 EXPORT_SYMBOL(follow_pte_pmd); 4166 4167 /** 4168 * follow_pfn - look up PFN at a user virtual address 4169 * @vma: memory mapping 4170 * @address: user virtual address 4171 * @pfn: location to store found PFN 4172 * 4173 * Only IO mappings and raw PFN mappings are allowed. 4174 * 4175 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4176 */ 4177 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4178 unsigned long *pfn) 4179 { 4180 int ret = -EINVAL; 4181 spinlock_t *ptl; 4182 pte_t *ptep; 4183 4184 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4185 return ret; 4186 4187 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4188 if (ret) 4189 return ret; 4190 *pfn = pte_pfn(*ptep); 4191 pte_unmap_unlock(ptep, ptl); 4192 return 0; 4193 } 4194 EXPORT_SYMBOL(follow_pfn); 4195 4196 #ifdef CONFIG_HAVE_IOREMAP_PROT 4197 int follow_phys(struct vm_area_struct *vma, 4198 unsigned long address, unsigned int flags, 4199 unsigned long *prot, resource_size_t *phys) 4200 { 4201 int ret = -EINVAL; 4202 pte_t *ptep, pte; 4203 spinlock_t *ptl; 4204 4205 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4206 goto out; 4207 4208 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4209 goto out; 4210 pte = *ptep; 4211 4212 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4213 goto unlock; 4214 4215 *prot = pgprot_val(pte_pgprot(pte)); 4216 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4217 4218 ret = 0; 4219 unlock: 4220 pte_unmap_unlock(ptep, ptl); 4221 out: 4222 return ret; 4223 } 4224 4225 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4226 void *buf, int len, int write) 4227 { 4228 resource_size_t phys_addr; 4229 unsigned long prot = 0; 4230 void __iomem *maddr; 4231 int offset = addr & (PAGE_SIZE-1); 4232 4233 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4234 return -EINVAL; 4235 4236 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4237 if (!maddr) 4238 return -ENOMEM; 4239 4240 if (write) 4241 memcpy_toio(maddr + offset, buf, len); 4242 else 4243 memcpy_fromio(buf, maddr + offset, len); 4244 iounmap(maddr); 4245 4246 return len; 4247 } 4248 EXPORT_SYMBOL_GPL(generic_access_phys); 4249 #endif 4250 4251 /* 4252 * Access another process' address space as given in mm. If non-NULL, use the 4253 * given task for page fault accounting. 4254 */ 4255 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4256 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4257 { 4258 struct vm_area_struct *vma; 4259 void *old_buf = buf; 4260 int write = gup_flags & FOLL_WRITE; 4261 4262 down_read(&mm->mmap_sem); 4263 /* ignore errors, just check how much was successfully transferred */ 4264 while (len) { 4265 int bytes, ret, offset; 4266 void *maddr; 4267 struct page *page = NULL; 4268 4269 ret = get_user_pages_remote(tsk, mm, addr, 1, 4270 gup_flags, &page, &vma, NULL); 4271 if (ret <= 0) { 4272 #ifndef CONFIG_HAVE_IOREMAP_PROT 4273 break; 4274 #else 4275 /* 4276 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4277 * we can access using slightly different code. 4278 */ 4279 vma = find_vma(mm, addr); 4280 if (!vma || vma->vm_start > addr) 4281 break; 4282 if (vma->vm_ops && vma->vm_ops->access) 4283 ret = vma->vm_ops->access(vma, addr, buf, 4284 len, write); 4285 if (ret <= 0) 4286 break; 4287 bytes = ret; 4288 #endif 4289 } else { 4290 bytes = len; 4291 offset = addr & (PAGE_SIZE-1); 4292 if (bytes > PAGE_SIZE-offset) 4293 bytes = PAGE_SIZE-offset; 4294 4295 maddr = kmap(page); 4296 if (write) { 4297 copy_to_user_page(vma, page, addr, 4298 maddr + offset, buf, bytes); 4299 set_page_dirty_lock(page); 4300 } else { 4301 copy_from_user_page(vma, page, addr, 4302 buf, maddr + offset, bytes); 4303 } 4304 kunmap(page); 4305 put_page(page); 4306 } 4307 len -= bytes; 4308 buf += bytes; 4309 addr += bytes; 4310 } 4311 up_read(&mm->mmap_sem); 4312 4313 return buf - old_buf; 4314 } 4315 4316 /** 4317 * access_remote_vm - access another process' address space 4318 * @mm: the mm_struct of the target address space 4319 * @addr: start address to access 4320 * @buf: source or destination buffer 4321 * @len: number of bytes to transfer 4322 * @gup_flags: flags modifying lookup behaviour 4323 * 4324 * The caller must hold a reference on @mm. 4325 * 4326 * Return: number of bytes copied from source to destination. 4327 */ 4328 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4329 void *buf, int len, unsigned int gup_flags) 4330 { 4331 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4332 } 4333 4334 /* 4335 * Access another process' address space. 4336 * Source/target buffer must be kernel space, 4337 * Do not walk the page table directly, use get_user_pages 4338 */ 4339 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4340 void *buf, int len, unsigned int gup_flags) 4341 { 4342 struct mm_struct *mm; 4343 int ret; 4344 4345 mm = get_task_mm(tsk); 4346 if (!mm) 4347 return 0; 4348 4349 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4350 4351 mmput(mm); 4352 4353 return ret; 4354 } 4355 EXPORT_SYMBOL_GPL(access_process_vm); 4356 4357 /* 4358 * Print the name of a VMA. 4359 */ 4360 void print_vma_addr(char *prefix, unsigned long ip) 4361 { 4362 struct mm_struct *mm = current->mm; 4363 struct vm_area_struct *vma; 4364 4365 /* 4366 * we might be running from an atomic context so we cannot sleep 4367 */ 4368 if (!down_read_trylock(&mm->mmap_sem)) 4369 return; 4370 4371 vma = find_vma(mm, ip); 4372 if (vma && vma->vm_file) { 4373 struct file *f = vma->vm_file; 4374 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4375 if (buf) { 4376 char *p; 4377 4378 p = file_path(f, buf, PAGE_SIZE); 4379 if (IS_ERR(p)) 4380 p = "?"; 4381 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4382 vma->vm_start, 4383 vma->vm_end - vma->vm_start); 4384 free_page((unsigned long)buf); 4385 } 4386 } 4387 up_read(&mm->mmap_sem); 4388 } 4389 4390 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4391 void __might_fault(const char *file, int line) 4392 { 4393 /* 4394 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4395 * holding the mmap_sem, this is safe because kernel memory doesn't 4396 * get paged out, therefore we'll never actually fault, and the 4397 * below annotations will generate false positives. 4398 */ 4399 if (uaccess_kernel()) 4400 return; 4401 if (pagefault_disabled()) 4402 return; 4403 __might_sleep(file, line, 0); 4404 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4405 if (current->mm) 4406 might_lock_read(¤t->mm->mmap_sem); 4407 #endif 4408 } 4409 EXPORT_SYMBOL(__might_fault); 4410 #endif 4411 4412 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4413 /* 4414 * Process all subpages of the specified huge page with the specified 4415 * operation. The target subpage will be processed last to keep its 4416 * cache lines hot. 4417 */ 4418 static inline void process_huge_page( 4419 unsigned long addr_hint, unsigned int pages_per_huge_page, 4420 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4421 void *arg) 4422 { 4423 int i, n, base, l; 4424 unsigned long addr = addr_hint & 4425 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4426 4427 /* Process target subpage last to keep its cache lines hot */ 4428 might_sleep(); 4429 n = (addr_hint - addr) / PAGE_SIZE; 4430 if (2 * n <= pages_per_huge_page) { 4431 /* If target subpage in first half of huge page */ 4432 base = 0; 4433 l = n; 4434 /* Process subpages at the end of huge page */ 4435 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4436 cond_resched(); 4437 process_subpage(addr + i * PAGE_SIZE, i, arg); 4438 } 4439 } else { 4440 /* If target subpage in second half of huge page */ 4441 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4442 l = pages_per_huge_page - n; 4443 /* Process subpages at the begin of huge page */ 4444 for (i = 0; i < base; i++) { 4445 cond_resched(); 4446 process_subpage(addr + i * PAGE_SIZE, i, arg); 4447 } 4448 } 4449 /* 4450 * Process remaining subpages in left-right-left-right pattern 4451 * towards the target subpage 4452 */ 4453 for (i = 0; i < l; i++) { 4454 int left_idx = base + i; 4455 int right_idx = base + 2 * l - 1 - i; 4456 4457 cond_resched(); 4458 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4459 cond_resched(); 4460 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4461 } 4462 } 4463 4464 static void clear_gigantic_page(struct page *page, 4465 unsigned long addr, 4466 unsigned int pages_per_huge_page) 4467 { 4468 int i; 4469 struct page *p = page; 4470 4471 might_sleep(); 4472 for (i = 0; i < pages_per_huge_page; 4473 i++, p = mem_map_next(p, page, i)) { 4474 cond_resched(); 4475 clear_user_highpage(p, addr + i * PAGE_SIZE); 4476 } 4477 } 4478 4479 static void clear_subpage(unsigned long addr, int idx, void *arg) 4480 { 4481 struct page *page = arg; 4482 4483 clear_user_highpage(page + idx, addr); 4484 } 4485 4486 void clear_huge_page(struct page *page, 4487 unsigned long addr_hint, unsigned int pages_per_huge_page) 4488 { 4489 unsigned long addr = addr_hint & 4490 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4491 4492 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4493 clear_gigantic_page(page, addr, pages_per_huge_page); 4494 return; 4495 } 4496 4497 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4498 } 4499 4500 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4501 unsigned long addr, 4502 struct vm_area_struct *vma, 4503 unsigned int pages_per_huge_page) 4504 { 4505 int i; 4506 struct page *dst_base = dst; 4507 struct page *src_base = src; 4508 4509 for (i = 0; i < pages_per_huge_page; ) { 4510 cond_resched(); 4511 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4512 4513 i++; 4514 dst = mem_map_next(dst, dst_base, i); 4515 src = mem_map_next(src, src_base, i); 4516 } 4517 } 4518 4519 struct copy_subpage_arg { 4520 struct page *dst; 4521 struct page *src; 4522 struct vm_area_struct *vma; 4523 }; 4524 4525 static void copy_subpage(unsigned long addr, int idx, void *arg) 4526 { 4527 struct copy_subpage_arg *copy_arg = arg; 4528 4529 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4530 addr, copy_arg->vma); 4531 } 4532 4533 void copy_user_huge_page(struct page *dst, struct page *src, 4534 unsigned long addr_hint, struct vm_area_struct *vma, 4535 unsigned int pages_per_huge_page) 4536 { 4537 unsigned long addr = addr_hint & 4538 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4539 struct copy_subpage_arg arg = { 4540 .dst = dst, 4541 .src = src, 4542 .vma = vma, 4543 }; 4544 4545 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4546 copy_user_gigantic_page(dst, src, addr, vma, 4547 pages_per_huge_page); 4548 return; 4549 } 4550 4551 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4552 } 4553 4554 long copy_huge_page_from_user(struct page *dst_page, 4555 const void __user *usr_src, 4556 unsigned int pages_per_huge_page, 4557 bool allow_pagefault) 4558 { 4559 void *src = (void *)usr_src; 4560 void *page_kaddr; 4561 unsigned long i, rc = 0; 4562 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4563 4564 for (i = 0; i < pages_per_huge_page; i++) { 4565 if (allow_pagefault) 4566 page_kaddr = kmap(dst_page + i); 4567 else 4568 page_kaddr = kmap_atomic(dst_page + i); 4569 rc = copy_from_user(page_kaddr, 4570 (const void __user *)(src + i * PAGE_SIZE), 4571 PAGE_SIZE); 4572 if (allow_pagefault) 4573 kunmap(dst_page + i); 4574 else 4575 kunmap_atomic(page_kaddr); 4576 4577 ret_val -= (PAGE_SIZE - rc); 4578 if (rc) 4579 break; 4580 4581 cond_resched(); 4582 } 4583 return ret_val; 4584 } 4585 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4586 4587 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4588 4589 static struct kmem_cache *page_ptl_cachep; 4590 4591 void __init ptlock_cache_init(void) 4592 { 4593 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4594 SLAB_PANIC, NULL); 4595 } 4596 4597 bool ptlock_alloc(struct page *page) 4598 { 4599 spinlock_t *ptl; 4600 4601 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4602 if (!ptl) 4603 return false; 4604 page->ptl = ptl; 4605 return true; 4606 } 4607 4608 void ptlock_free(struct page *page) 4609 { 4610 kmem_cache_free(page_ptl_cachep, page->ptl); 4611 } 4612 #endif 4613