1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/module.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (task->rss_stat.count[i]) { 134 add_mm_counter(mm, i, task->rss_stat.count[i]); 135 task->rss_stat.count[i] = 0; 136 } 137 } 138 task->rss_stat.events = 0; 139 } 140 141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 142 { 143 struct task_struct *task = current; 144 145 if (likely(task->mm == mm)) 146 task->rss_stat.count[member] += val; 147 else 148 add_mm_counter(mm, member, val); 149 } 150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 152 153 /* sync counter once per 64 page faults */ 154 #define TASK_RSS_EVENTS_THRESH (64) 155 static void check_sync_rss_stat(struct task_struct *task) 156 { 157 if (unlikely(task != current)) 158 return; 159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 160 __sync_task_rss_stat(task, task->mm); 161 } 162 163 unsigned long get_mm_counter(struct mm_struct *mm, int member) 164 { 165 long val = 0; 166 167 /* 168 * Don't use task->mm here...for avoiding to use task_get_mm().. 169 * The caller must guarantee task->mm is not invalid. 170 */ 171 val = atomic_long_read(&mm->rss_stat.count[member]); 172 /* 173 * counter is updated in asynchronous manner and may go to minus. 174 * But it's never be expected number for users. 175 */ 176 if (val < 0) 177 return 0; 178 return (unsigned long)val; 179 } 180 181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 182 { 183 __sync_task_rss_stat(task, mm); 184 } 185 #else /* SPLIT_RSS_COUNTING */ 186 187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 189 190 static void check_sync_rss_stat(struct task_struct *task) 191 { 192 } 193 194 #endif /* SPLIT_RSS_COUNTING */ 195 196 #ifdef HAVE_GENERIC_MMU_GATHER 197 198 static int tlb_next_batch(struct mmu_gather *tlb) 199 { 200 struct mmu_gather_batch *batch; 201 202 batch = tlb->active; 203 if (batch->next) { 204 tlb->active = batch->next; 205 return 1; 206 } 207 208 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 209 if (!batch) 210 return 0; 211 212 batch->next = NULL; 213 batch->nr = 0; 214 batch->max = MAX_GATHER_BATCH; 215 216 tlb->active->next = batch; 217 tlb->active = batch; 218 219 return 1; 220 } 221 222 /* tlb_gather_mmu 223 * Called to initialize an (on-stack) mmu_gather structure for page-table 224 * tear-down from @mm. The @fullmm argument is used when @mm is without 225 * users and we're going to destroy the full address space (exit/execve). 226 */ 227 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm) 228 { 229 tlb->mm = mm; 230 231 tlb->fullmm = fullmm; 232 tlb->need_flush = 0; 233 tlb->fast_mode = (num_possible_cpus() == 1); 234 tlb->local.next = NULL; 235 tlb->local.nr = 0; 236 tlb->local.max = ARRAY_SIZE(tlb->__pages); 237 tlb->active = &tlb->local; 238 239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 240 tlb->batch = NULL; 241 #endif 242 } 243 244 void tlb_flush_mmu(struct mmu_gather *tlb) 245 { 246 struct mmu_gather_batch *batch; 247 248 if (!tlb->need_flush) 249 return; 250 tlb->need_flush = 0; 251 tlb_flush(tlb); 252 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 253 tlb_table_flush(tlb); 254 #endif 255 256 if (tlb_fast_mode(tlb)) 257 return; 258 259 for (batch = &tlb->local; batch; batch = batch->next) { 260 free_pages_and_swap_cache(batch->pages, batch->nr); 261 batch->nr = 0; 262 } 263 tlb->active = &tlb->local; 264 } 265 266 /* tlb_finish_mmu 267 * Called at the end of the shootdown operation to free up any resources 268 * that were required. 269 */ 270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 271 { 272 struct mmu_gather_batch *batch, *next; 273 274 tlb_flush_mmu(tlb); 275 276 /* keep the page table cache within bounds */ 277 check_pgt_cache(); 278 279 for (batch = tlb->local.next; batch; batch = next) { 280 next = batch->next; 281 free_pages((unsigned long)batch, 0); 282 } 283 tlb->local.next = NULL; 284 } 285 286 /* __tlb_remove_page 287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 288 * handling the additional races in SMP caused by other CPUs caching valid 289 * mappings in their TLBs. Returns the number of free page slots left. 290 * When out of page slots we must call tlb_flush_mmu(). 291 */ 292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 293 { 294 struct mmu_gather_batch *batch; 295 296 tlb->need_flush = 1; 297 298 if (tlb_fast_mode(tlb)) { 299 free_page_and_swap_cache(page); 300 return 1; /* avoid calling tlb_flush_mmu() */ 301 } 302 303 batch = tlb->active; 304 batch->pages[batch->nr++] = page; 305 if (batch->nr == batch->max) { 306 if (!tlb_next_batch(tlb)) 307 return 0; 308 batch = tlb->active; 309 } 310 VM_BUG_ON(batch->nr > batch->max); 311 312 return batch->max - batch->nr; 313 } 314 315 #endif /* HAVE_GENERIC_MMU_GATHER */ 316 317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 318 319 /* 320 * See the comment near struct mmu_table_batch. 321 */ 322 323 static void tlb_remove_table_smp_sync(void *arg) 324 { 325 /* Simply deliver the interrupt */ 326 } 327 328 static void tlb_remove_table_one(void *table) 329 { 330 /* 331 * This isn't an RCU grace period and hence the page-tables cannot be 332 * assumed to be actually RCU-freed. 333 * 334 * It is however sufficient for software page-table walkers that rely on 335 * IRQ disabling. See the comment near struct mmu_table_batch. 336 */ 337 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 338 __tlb_remove_table(table); 339 } 340 341 static void tlb_remove_table_rcu(struct rcu_head *head) 342 { 343 struct mmu_table_batch *batch; 344 int i; 345 346 batch = container_of(head, struct mmu_table_batch, rcu); 347 348 for (i = 0; i < batch->nr; i++) 349 __tlb_remove_table(batch->tables[i]); 350 351 free_page((unsigned long)batch); 352 } 353 354 void tlb_table_flush(struct mmu_gather *tlb) 355 { 356 struct mmu_table_batch **batch = &tlb->batch; 357 358 if (*batch) { 359 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 360 *batch = NULL; 361 } 362 } 363 364 void tlb_remove_table(struct mmu_gather *tlb, void *table) 365 { 366 struct mmu_table_batch **batch = &tlb->batch; 367 368 tlb->need_flush = 1; 369 370 /* 371 * When there's less then two users of this mm there cannot be a 372 * concurrent page-table walk. 373 */ 374 if (atomic_read(&tlb->mm->mm_users) < 2) { 375 __tlb_remove_table(table); 376 return; 377 } 378 379 if (*batch == NULL) { 380 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 381 if (*batch == NULL) { 382 tlb_remove_table_one(table); 383 return; 384 } 385 (*batch)->nr = 0; 386 } 387 (*batch)->tables[(*batch)->nr++] = table; 388 if ((*batch)->nr == MAX_TABLE_BATCH) 389 tlb_table_flush(tlb); 390 } 391 392 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 393 394 /* 395 * If a p?d_bad entry is found while walking page tables, report 396 * the error, before resetting entry to p?d_none. Usually (but 397 * very seldom) called out from the p?d_none_or_clear_bad macros. 398 */ 399 400 void pgd_clear_bad(pgd_t *pgd) 401 { 402 pgd_ERROR(*pgd); 403 pgd_clear(pgd); 404 } 405 406 void pud_clear_bad(pud_t *pud) 407 { 408 pud_ERROR(*pud); 409 pud_clear(pud); 410 } 411 412 void pmd_clear_bad(pmd_t *pmd) 413 { 414 pmd_ERROR(*pmd); 415 pmd_clear(pmd); 416 } 417 418 /* 419 * Note: this doesn't free the actual pages themselves. That 420 * has been handled earlier when unmapping all the memory regions. 421 */ 422 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 423 unsigned long addr) 424 { 425 pgtable_t token = pmd_pgtable(*pmd); 426 pmd_clear(pmd); 427 pte_free_tlb(tlb, token, addr); 428 tlb->mm->nr_ptes--; 429 } 430 431 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 432 unsigned long addr, unsigned long end, 433 unsigned long floor, unsigned long ceiling) 434 { 435 pmd_t *pmd; 436 unsigned long next; 437 unsigned long start; 438 439 start = addr; 440 pmd = pmd_offset(pud, addr); 441 do { 442 next = pmd_addr_end(addr, end); 443 if (pmd_none_or_clear_bad(pmd)) 444 continue; 445 free_pte_range(tlb, pmd, addr); 446 } while (pmd++, addr = next, addr != end); 447 448 start &= PUD_MASK; 449 if (start < floor) 450 return; 451 if (ceiling) { 452 ceiling &= PUD_MASK; 453 if (!ceiling) 454 return; 455 } 456 if (end - 1 > ceiling - 1) 457 return; 458 459 pmd = pmd_offset(pud, start); 460 pud_clear(pud); 461 pmd_free_tlb(tlb, pmd, start); 462 } 463 464 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 465 unsigned long addr, unsigned long end, 466 unsigned long floor, unsigned long ceiling) 467 { 468 pud_t *pud; 469 unsigned long next; 470 unsigned long start; 471 472 start = addr; 473 pud = pud_offset(pgd, addr); 474 do { 475 next = pud_addr_end(addr, end); 476 if (pud_none_or_clear_bad(pud)) 477 continue; 478 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 479 } while (pud++, addr = next, addr != end); 480 481 start &= PGDIR_MASK; 482 if (start < floor) 483 return; 484 if (ceiling) { 485 ceiling &= PGDIR_MASK; 486 if (!ceiling) 487 return; 488 } 489 if (end - 1 > ceiling - 1) 490 return; 491 492 pud = pud_offset(pgd, start); 493 pgd_clear(pgd); 494 pud_free_tlb(tlb, pud, start); 495 } 496 497 /* 498 * This function frees user-level page tables of a process. 499 * 500 * Must be called with pagetable lock held. 501 */ 502 void free_pgd_range(struct mmu_gather *tlb, 503 unsigned long addr, unsigned long end, 504 unsigned long floor, unsigned long ceiling) 505 { 506 pgd_t *pgd; 507 unsigned long next; 508 509 /* 510 * The next few lines have given us lots of grief... 511 * 512 * Why are we testing PMD* at this top level? Because often 513 * there will be no work to do at all, and we'd prefer not to 514 * go all the way down to the bottom just to discover that. 515 * 516 * Why all these "- 1"s? Because 0 represents both the bottom 517 * of the address space and the top of it (using -1 for the 518 * top wouldn't help much: the masks would do the wrong thing). 519 * The rule is that addr 0 and floor 0 refer to the bottom of 520 * the address space, but end 0 and ceiling 0 refer to the top 521 * Comparisons need to use "end - 1" and "ceiling - 1" (though 522 * that end 0 case should be mythical). 523 * 524 * Wherever addr is brought up or ceiling brought down, we must 525 * be careful to reject "the opposite 0" before it confuses the 526 * subsequent tests. But what about where end is brought down 527 * by PMD_SIZE below? no, end can't go down to 0 there. 528 * 529 * Whereas we round start (addr) and ceiling down, by different 530 * masks at different levels, in order to test whether a table 531 * now has no other vmas using it, so can be freed, we don't 532 * bother to round floor or end up - the tests don't need that. 533 */ 534 535 addr &= PMD_MASK; 536 if (addr < floor) { 537 addr += PMD_SIZE; 538 if (!addr) 539 return; 540 } 541 if (ceiling) { 542 ceiling &= PMD_MASK; 543 if (!ceiling) 544 return; 545 } 546 if (end - 1 > ceiling - 1) 547 end -= PMD_SIZE; 548 if (addr > end - 1) 549 return; 550 551 pgd = pgd_offset(tlb->mm, addr); 552 do { 553 next = pgd_addr_end(addr, end); 554 if (pgd_none_or_clear_bad(pgd)) 555 continue; 556 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 557 } while (pgd++, addr = next, addr != end); 558 } 559 560 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 561 unsigned long floor, unsigned long ceiling) 562 { 563 while (vma) { 564 struct vm_area_struct *next = vma->vm_next; 565 unsigned long addr = vma->vm_start; 566 567 /* 568 * Hide vma from rmap and truncate_pagecache before freeing 569 * pgtables 570 */ 571 unlink_anon_vmas(vma); 572 unlink_file_vma(vma); 573 574 if (is_vm_hugetlb_page(vma)) { 575 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 576 floor, next? next->vm_start: ceiling); 577 } else { 578 /* 579 * Optimization: gather nearby vmas into one call down 580 */ 581 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 582 && !is_vm_hugetlb_page(next)) { 583 vma = next; 584 next = vma->vm_next; 585 unlink_anon_vmas(vma); 586 unlink_file_vma(vma); 587 } 588 free_pgd_range(tlb, addr, vma->vm_end, 589 floor, next? next->vm_start: ceiling); 590 } 591 vma = next; 592 } 593 } 594 595 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 596 pmd_t *pmd, unsigned long address) 597 { 598 pgtable_t new = pte_alloc_one(mm, address); 599 int wait_split_huge_page; 600 if (!new) 601 return -ENOMEM; 602 603 /* 604 * Ensure all pte setup (eg. pte page lock and page clearing) are 605 * visible before the pte is made visible to other CPUs by being 606 * put into page tables. 607 * 608 * The other side of the story is the pointer chasing in the page 609 * table walking code (when walking the page table without locking; 610 * ie. most of the time). Fortunately, these data accesses consist 611 * of a chain of data-dependent loads, meaning most CPUs (alpha 612 * being the notable exception) will already guarantee loads are 613 * seen in-order. See the alpha page table accessors for the 614 * smp_read_barrier_depends() barriers in page table walking code. 615 */ 616 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 617 618 spin_lock(&mm->page_table_lock); 619 wait_split_huge_page = 0; 620 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 621 mm->nr_ptes++; 622 pmd_populate(mm, pmd, new); 623 new = NULL; 624 } else if (unlikely(pmd_trans_splitting(*pmd))) 625 wait_split_huge_page = 1; 626 spin_unlock(&mm->page_table_lock); 627 if (new) 628 pte_free(mm, new); 629 if (wait_split_huge_page) 630 wait_split_huge_page(vma->anon_vma, pmd); 631 return 0; 632 } 633 634 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 635 { 636 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 637 if (!new) 638 return -ENOMEM; 639 640 smp_wmb(); /* See comment in __pte_alloc */ 641 642 spin_lock(&init_mm.page_table_lock); 643 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 644 pmd_populate_kernel(&init_mm, pmd, new); 645 new = NULL; 646 } else 647 VM_BUG_ON(pmd_trans_splitting(*pmd)); 648 spin_unlock(&init_mm.page_table_lock); 649 if (new) 650 pte_free_kernel(&init_mm, new); 651 return 0; 652 } 653 654 static inline void init_rss_vec(int *rss) 655 { 656 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 657 } 658 659 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 660 { 661 int i; 662 663 if (current->mm == mm) 664 sync_mm_rss(current, mm); 665 for (i = 0; i < NR_MM_COUNTERS; i++) 666 if (rss[i]) 667 add_mm_counter(mm, i, rss[i]); 668 } 669 670 /* 671 * This function is called to print an error when a bad pte 672 * is found. For example, we might have a PFN-mapped pte in 673 * a region that doesn't allow it. 674 * 675 * The calling function must still handle the error. 676 */ 677 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 678 pte_t pte, struct page *page) 679 { 680 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 681 pud_t *pud = pud_offset(pgd, addr); 682 pmd_t *pmd = pmd_offset(pud, addr); 683 struct address_space *mapping; 684 pgoff_t index; 685 static unsigned long resume; 686 static unsigned long nr_shown; 687 static unsigned long nr_unshown; 688 689 /* 690 * Allow a burst of 60 reports, then keep quiet for that minute; 691 * or allow a steady drip of one report per second. 692 */ 693 if (nr_shown == 60) { 694 if (time_before(jiffies, resume)) { 695 nr_unshown++; 696 return; 697 } 698 if (nr_unshown) { 699 printk(KERN_ALERT 700 "BUG: Bad page map: %lu messages suppressed\n", 701 nr_unshown); 702 nr_unshown = 0; 703 } 704 nr_shown = 0; 705 } 706 if (nr_shown++ == 0) 707 resume = jiffies + 60 * HZ; 708 709 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 710 index = linear_page_index(vma, addr); 711 712 printk(KERN_ALERT 713 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 714 current->comm, 715 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 716 if (page) 717 dump_page(page); 718 printk(KERN_ALERT 719 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 720 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 721 /* 722 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 723 */ 724 if (vma->vm_ops) 725 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 726 (unsigned long)vma->vm_ops->fault); 727 if (vma->vm_file && vma->vm_file->f_op) 728 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 729 (unsigned long)vma->vm_file->f_op->mmap); 730 dump_stack(); 731 add_taint(TAINT_BAD_PAGE); 732 } 733 734 static inline int is_cow_mapping(vm_flags_t flags) 735 { 736 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 737 } 738 739 #ifndef is_zero_pfn 740 static inline int is_zero_pfn(unsigned long pfn) 741 { 742 return pfn == zero_pfn; 743 } 744 #endif 745 746 #ifndef my_zero_pfn 747 static inline unsigned long my_zero_pfn(unsigned long addr) 748 { 749 return zero_pfn; 750 } 751 #endif 752 753 /* 754 * vm_normal_page -- This function gets the "struct page" associated with a pte. 755 * 756 * "Special" mappings do not wish to be associated with a "struct page" (either 757 * it doesn't exist, or it exists but they don't want to touch it). In this 758 * case, NULL is returned here. "Normal" mappings do have a struct page. 759 * 760 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 761 * pte bit, in which case this function is trivial. Secondly, an architecture 762 * may not have a spare pte bit, which requires a more complicated scheme, 763 * described below. 764 * 765 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 766 * special mapping (even if there are underlying and valid "struct pages"). 767 * COWed pages of a VM_PFNMAP are always normal. 768 * 769 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 770 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 771 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 772 * mapping will always honor the rule 773 * 774 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 775 * 776 * And for normal mappings this is false. 777 * 778 * This restricts such mappings to be a linear translation from virtual address 779 * to pfn. To get around this restriction, we allow arbitrary mappings so long 780 * as the vma is not a COW mapping; in that case, we know that all ptes are 781 * special (because none can have been COWed). 782 * 783 * 784 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 785 * 786 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 787 * page" backing, however the difference is that _all_ pages with a struct 788 * page (that is, those where pfn_valid is true) are refcounted and considered 789 * normal pages by the VM. The disadvantage is that pages are refcounted 790 * (which can be slower and simply not an option for some PFNMAP users). The 791 * advantage is that we don't have to follow the strict linearity rule of 792 * PFNMAP mappings in order to support COWable mappings. 793 * 794 */ 795 #ifdef __HAVE_ARCH_PTE_SPECIAL 796 # define HAVE_PTE_SPECIAL 1 797 #else 798 # define HAVE_PTE_SPECIAL 0 799 #endif 800 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 801 pte_t pte) 802 { 803 unsigned long pfn = pte_pfn(pte); 804 805 if (HAVE_PTE_SPECIAL) { 806 if (likely(!pte_special(pte))) 807 goto check_pfn; 808 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 809 return NULL; 810 if (!is_zero_pfn(pfn)) 811 print_bad_pte(vma, addr, pte, NULL); 812 return NULL; 813 } 814 815 /* !HAVE_PTE_SPECIAL case follows: */ 816 817 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 818 if (vma->vm_flags & VM_MIXEDMAP) { 819 if (!pfn_valid(pfn)) 820 return NULL; 821 goto out; 822 } else { 823 unsigned long off; 824 off = (addr - vma->vm_start) >> PAGE_SHIFT; 825 if (pfn == vma->vm_pgoff + off) 826 return NULL; 827 if (!is_cow_mapping(vma->vm_flags)) 828 return NULL; 829 } 830 } 831 832 if (is_zero_pfn(pfn)) 833 return NULL; 834 check_pfn: 835 if (unlikely(pfn > highest_memmap_pfn)) { 836 print_bad_pte(vma, addr, pte, NULL); 837 return NULL; 838 } 839 840 /* 841 * NOTE! We still have PageReserved() pages in the page tables. 842 * eg. VDSO mappings can cause them to exist. 843 */ 844 out: 845 return pfn_to_page(pfn); 846 } 847 848 /* 849 * copy one vm_area from one task to the other. Assumes the page tables 850 * already present in the new task to be cleared in the whole range 851 * covered by this vma. 852 */ 853 854 static inline unsigned long 855 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 856 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 857 unsigned long addr, int *rss) 858 { 859 unsigned long vm_flags = vma->vm_flags; 860 pte_t pte = *src_pte; 861 struct page *page; 862 863 /* pte contains position in swap or file, so copy. */ 864 if (unlikely(!pte_present(pte))) { 865 if (!pte_file(pte)) { 866 swp_entry_t entry = pte_to_swp_entry(pte); 867 868 if (swap_duplicate(entry) < 0) 869 return entry.val; 870 871 /* make sure dst_mm is on swapoff's mmlist. */ 872 if (unlikely(list_empty(&dst_mm->mmlist))) { 873 spin_lock(&mmlist_lock); 874 if (list_empty(&dst_mm->mmlist)) 875 list_add(&dst_mm->mmlist, 876 &src_mm->mmlist); 877 spin_unlock(&mmlist_lock); 878 } 879 if (likely(!non_swap_entry(entry))) 880 rss[MM_SWAPENTS]++; 881 else if (is_write_migration_entry(entry) && 882 is_cow_mapping(vm_flags)) { 883 /* 884 * COW mappings require pages in both parent 885 * and child to be set to read. 886 */ 887 make_migration_entry_read(&entry); 888 pte = swp_entry_to_pte(entry); 889 set_pte_at(src_mm, addr, src_pte, pte); 890 } 891 } 892 goto out_set_pte; 893 } 894 895 /* 896 * If it's a COW mapping, write protect it both 897 * in the parent and the child 898 */ 899 if (is_cow_mapping(vm_flags)) { 900 ptep_set_wrprotect(src_mm, addr, src_pte); 901 pte = pte_wrprotect(pte); 902 } 903 904 /* 905 * If it's a shared mapping, mark it clean in 906 * the child 907 */ 908 if (vm_flags & VM_SHARED) 909 pte = pte_mkclean(pte); 910 pte = pte_mkold(pte); 911 912 page = vm_normal_page(vma, addr, pte); 913 if (page) { 914 get_page(page); 915 page_dup_rmap(page); 916 if (PageAnon(page)) 917 rss[MM_ANONPAGES]++; 918 else 919 rss[MM_FILEPAGES]++; 920 } 921 922 out_set_pte: 923 set_pte_at(dst_mm, addr, dst_pte, pte); 924 return 0; 925 } 926 927 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 928 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 929 unsigned long addr, unsigned long end) 930 { 931 pte_t *orig_src_pte, *orig_dst_pte; 932 pte_t *src_pte, *dst_pte; 933 spinlock_t *src_ptl, *dst_ptl; 934 int progress = 0; 935 int rss[NR_MM_COUNTERS]; 936 swp_entry_t entry = (swp_entry_t){0}; 937 938 again: 939 init_rss_vec(rss); 940 941 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 942 if (!dst_pte) 943 return -ENOMEM; 944 src_pte = pte_offset_map(src_pmd, addr); 945 src_ptl = pte_lockptr(src_mm, src_pmd); 946 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 947 orig_src_pte = src_pte; 948 orig_dst_pte = dst_pte; 949 arch_enter_lazy_mmu_mode(); 950 951 do { 952 /* 953 * We are holding two locks at this point - either of them 954 * could generate latencies in another task on another CPU. 955 */ 956 if (progress >= 32) { 957 progress = 0; 958 if (need_resched() || 959 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 960 break; 961 } 962 if (pte_none(*src_pte)) { 963 progress++; 964 continue; 965 } 966 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 967 vma, addr, rss); 968 if (entry.val) 969 break; 970 progress += 8; 971 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 972 973 arch_leave_lazy_mmu_mode(); 974 spin_unlock(src_ptl); 975 pte_unmap(orig_src_pte); 976 add_mm_rss_vec(dst_mm, rss); 977 pte_unmap_unlock(orig_dst_pte, dst_ptl); 978 cond_resched(); 979 980 if (entry.val) { 981 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 982 return -ENOMEM; 983 progress = 0; 984 } 985 if (addr != end) 986 goto again; 987 return 0; 988 } 989 990 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 991 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 992 unsigned long addr, unsigned long end) 993 { 994 pmd_t *src_pmd, *dst_pmd; 995 unsigned long next; 996 997 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 998 if (!dst_pmd) 999 return -ENOMEM; 1000 src_pmd = pmd_offset(src_pud, addr); 1001 do { 1002 next = pmd_addr_end(addr, end); 1003 if (pmd_trans_huge(*src_pmd)) { 1004 int err; 1005 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 1006 err = copy_huge_pmd(dst_mm, src_mm, 1007 dst_pmd, src_pmd, addr, vma); 1008 if (err == -ENOMEM) 1009 return -ENOMEM; 1010 if (!err) 1011 continue; 1012 /* fall through */ 1013 } 1014 if (pmd_none_or_clear_bad(src_pmd)) 1015 continue; 1016 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1017 vma, addr, next)) 1018 return -ENOMEM; 1019 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1020 return 0; 1021 } 1022 1023 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1024 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1025 unsigned long addr, unsigned long end) 1026 { 1027 pud_t *src_pud, *dst_pud; 1028 unsigned long next; 1029 1030 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1031 if (!dst_pud) 1032 return -ENOMEM; 1033 src_pud = pud_offset(src_pgd, addr); 1034 do { 1035 next = pud_addr_end(addr, end); 1036 if (pud_none_or_clear_bad(src_pud)) 1037 continue; 1038 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1039 vma, addr, next)) 1040 return -ENOMEM; 1041 } while (dst_pud++, src_pud++, addr = next, addr != end); 1042 return 0; 1043 } 1044 1045 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1046 struct vm_area_struct *vma) 1047 { 1048 pgd_t *src_pgd, *dst_pgd; 1049 unsigned long next; 1050 unsigned long addr = vma->vm_start; 1051 unsigned long end = vma->vm_end; 1052 int ret; 1053 1054 /* 1055 * Don't copy ptes where a page fault will fill them correctly. 1056 * Fork becomes much lighter when there are big shared or private 1057 * readonly mappings. The tradeoff is that copy_page_range is more 1058 * efficient than faulting. 1059 */ 1060 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 1061 if (!vma->anon_vma) 1062 return 0; 1063 } 1064 1065 if (is_vm_hugetlb_page(vma)) 1066 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1067 1068 if (unlikely(is_pfn_mapping(vma))) { 1069 /* 1070 * We do not free on error cases below as remove_vma 1071 * gets called on error from higher level routine 1072 */ 1073 ret = track_pfn_vma_copy(vma); 1074 if (ret) 1075 return ret; 1076 } 1077 1078 /* 1079 * We need to invalidate the secondary MMU mappings only when 1080 * there could be a permission downgrade on the ptes of the 1081 * parent mm. And a permission downgrade will only happen if 1082 * is_cow_mapping() returns true. 1083 */ 1084 if (is_cow_mapping(vma->vm_flags)) 1085 mmu_notifier_invalidate_range_start(src_mm, addr, end); 1086 1087 ret = 0; 1088 dst_pgd = pgd_offset(dst_mm, addr); 1089 src_pgd = pgd_offset(src_mm, addr); 1090 do { 1091 next = pgd_addr_end(addr, end); 1092 if (pgd_none_or_clear_bad(src_pgd)) 1093 continue; 1094 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1095 vma, addr, next))) { 1096 ret = -ENOMEM; 1097 break; 1098 } 1099 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1100 1101 if (is_cow_mapping(vma->vm_flags)) 1102 mmu_notifier_invalidate_range_end(src_mm, 1103 vma->vm_start, end); 1104 return ret; 1105 } 1106 1107 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1108 struct vm_area_struct *vma, pmd_t *pmd, 1109 unsigned long addr, unsigned long end, 1110 struct zap_details *details) 1111 { 1112 struct mm_struct *mm = tlb->mm; 1113 int force_flush = 0; 1114 int rss[NR_MM_COUNTERS]; 1115 spinlock_t *ptl; 1116 pte_t *start_pte; 1117 pte_t *pte; 1118 1119 again: 1120 init_rss_vec(rss); 1121 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1122 pte = start_pte; 1123 arch_enter_lazy_mmu_mode(); 1124 do { 1125 pte_t ptent = *pte; 1126 if (pte_none(ptent)) { 1127 continue; 1128 } 1129 1130 if (pte_present(ptent)) { 1131 struct page *page; 1132 1133 page = vm_normal_page(vma, addr, ptent); 1134 if (unlikely(details) && page) { 1135 /* 1136 * unmap_shared_mapping_pages() wants to 1137 * invalidate cache without truncating: 1138 * unmap shared but keep private pages. 1139 */ 1140 if (details->check_mapping && 1141 details->check_mapping != page->mapping) 1142 continue; 1143 /* 1144 * Each page->index must be checked when 1145 * invalidating or truncating nonlinear. 1146 */ 1147 if (details->nonlinear_vma && 1148 (page->index < details->first_index || 1149 page->index > details->last_index)) 1150 continue; 1151 } 1152 ptent = ptep_get_and_clear_full(mm, addr, pte, 1153 tlb->fullmm); 1154 tlb_remove_tlb_entry(tlb, pte, addr); 1155 if (unlikely(!page)) 1156 continue; 1157 if (unlikely(details) && details->nonlinear_vma 1158 && linear_page_index(details->nonlinear_vma, 1159 addr) != page->index) 1160 set_pte_at(mm, addr, pte, 1161 pgoff_to_pte(page->index)); 1162 if (PageAnon(page)) 1163 rss[MM_ANONPAGES]--; 1164 else { 1165 if (pte_dirty(ptent)) 1166 set_page_dirty(page); 1167 if (pte_young(ptent) && 1168 likely(!VM_SequentialReadHint(vma))) 1169 mark_page_accessed(page); 1170 rss[MM_FILEPAGES]--; 1171 } 1172 page_remove_rmap(page); 1173 if (unlikely(page_mapcount(page) < 0)) 1174 print_bad_pte(vma, addr, ptent, page); 1175 force_flush = !__tlb_remove_page(tlb, page); 1176 if (force_flush) 1177 break; 1178 continue; 1179 } 1180 /* 1181 * If details->check_mapping, we leave swap entries; 1182 * if details->nonlinear_vma, we leave file entries. 1183 */ 1184 if (unlikely(details)) 1185 continue; 1186 if (pte_file(ptent)) { 1187 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1188 print_bad_pte(vma, addr, ptent, NULL); 1189 } else { 1190 swp_entry_t entry = pte_to_swp_entry(ptent); 1191 1192 if (!non_swap_entry(entry)) 1193 rss[MM_SWAPENTS]--; 1194 if (unlikely(!free_swap_and_cache(entry))) 1195 print_bad_pte(vma, addr, ptent, NULL); 1196 } 1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1198 } while (pte++, addr += PAGE_SIZE, addr != end); 1199 1200 add_mm_rss_vec(mm, rss); 1201 arch_leave_lazy_mmu_mode(); 1202 pte_unmap_unlock(start_pte, ptl); 1203 1204 /* 1205 * mmu_gather ran out of room to batch pages, we break out of 1206 * the PTE lock to avoid doing the potential expensive TLB invalidate 1207 * and page-free while holding it. 1208 */ 1209 if (force_flush) { 1210 force_flush = 0; 1211 tlb_flush_mmu(tlb); 1212 if (addr != end) 1213 goto again; 1214 } 1215 1216 return addr; 1217 } 1218 1219 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1220 struct vm_area_struct *vma, pud_t *pud, 1221 unsigned long addr, unsigned long end, 1222 struct zap_details *details) 1223 { 1224 pmd_t *pmd; 1225 unsigned long next; 1226 1227 pmd = pmd_offset(pud, addr); 1228 do { 1229 next = pmd_addr_end(addr, end); 1230 if (pmd_trans_huge(*pmd)) { 1231 if (next-addr != HPAGE_PMD_SIZE) { 1232 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); 1233 split_huge_page_pmd(vma->vm_mm, pmd); 1234 } else if (zap_huge_pmd(tlb, vma, pmd)) 1235 continue; 1236 /* fall through */ 1237 } 1238 if (pmd_none_or_clear_bad(pmd)) 1239 continue; 1240 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1241 cond_resched(); 1242 } while (pmd++, addr = next, addr != end); 1243 1244 return addr; 1245 } 1246 1247 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1248 struct vm_area_struct *vma, pgd_t *pgd, 1249 unsigned long addr, unsigned long end, 1250 struct zap_details *details) 1251 { 1252 pud_t *pud; 1253 unsigned long next; 1254 1255 pud = pud_offset(pgd, addr); 1256 do { 1257 next = pud_addr_end(addr, end); 1258 if (pud_none_or_clear_bad(pud)) 1259 continue; 1260 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1261 } while (pud++, addr = next, addr != end); 1262 1263 return addr; 1264 } 1265 1266 static unsigned long unmap_page_range(struct mmu_gather *tlb, 1267 struct vm_area_struct *vma, 1268 unsigned long addr, unsigned long end, 1269 struct zap_details *details) 1270 { 1271 pgd_t *pgd; 1272 unsigned long next; 1273 1274 if (details && !details->check_mapping && !details->nonlinear_vma) 1275 details = NULL; 1276 1277 BUG_ON(addr >= end); 1278 mem_cgroup_uncharge_start(); 1279 tlb_start_vma(tlb, vma); 1280 pgd = pgd_offset(vma->vm_mm, addr); 1281 do { 1282 next = pgd_addr_end(addr, end); 1283 if (pgd_none_or_clear_bad(pgd)) 1284 continue; 1285 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1286 } while (pgd++, addr = next, addr != end); 1287 tlb_end_vma(tlb, vma); 1288 mem_cgroup_uncharge_end(); 1289 1290 return addr; 1291 } 1292 1293 #ifdef CONFIG_PREEMPT 1294 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 1295 #else 1296 /* No preempt: go for improved straight-line efficiency */ 1297 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 1298 #endif 1299 1300 /** 1301 * unmap_vmas - unmap a range of memory covered by a list of vma's 1302 * @tlb: address of the caller's struct mmu_gather 1303 * @vma: the starting vma 1304 * @start_addr: virtual address at which to start unmapping 1305 * @end_addr: virtual address at which to end unmapping 1306 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 1307 * @details: details of nonlinear truncation or shared cache invalidation 1308 * 1309 * Returns the end address of the unmapping (restart addr if interrupted). 1310 * 1311 * Unmap all pages in the vma list. 1312 * 1313 * We aim to not hold locks for too long (for scheduling latency reasons). 1314 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 1315 * return the ending mmu_gather to the caller. 1316 * 1317 * Only addresses between `start' and `end' will be unmapped. 1318 * 1319 * The VMA list must be sorted in ascending virtual address order. 1320 * 1321 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1322 * range after unmap_vmas() returns. So the only responsibility here is to 1323 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1324 * drops the lock and schedules. 1325 */ 1326 unsigned long unmap_vmas(struct mmu_gather *tlb, 1327 struct vm_area_struct *vma, unsigned long start_addr, 1328 unsigned long end_addr, unsigned long *nr_accounted, 1329 struct zap_details *details) 1330 { 1331 unsigned long start = start_addr; 1332 struct mm_struct *mm = vma->vm_mm; 1333 1334 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1335 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 1336 unsigned long end; 1337 1338 start = max(vma->vm_start, start_addr); 1339 if (start >= vma->vm_end) 1340 continue; 1341 end = min(vma->vm_end, end_addr); 1342 if (end <= vma->vm_start) 1343 continue; 1344 1345 if (vma->vm_flags & VM_ACCOUNT) 1346 *nr_accounted += (end - start) >> PAGE_SHIFT; 1347 1348 if (unlikely(is_pfn_mapping(vma))) 1349 untrack_pfn_vma(vma, 0, 0); 1350 1351 while (start != end) { 1352 if (unlikely(is_vm_hugetlb_page(vma))) { 1353 /* 1354 * It is undesirable to test vma->vm_file as it 1355 * should be non-null for valid hugetlb area. 1356 * However, vm_file will be NULL in the error 1357 * cleanup path of do_mmap_pgoff. When 1358 * hugetlbfs ->mmap method fails, 1359 * do_mmap_pgoff() nullifies vma->vm_file 1360 * before calling this function to clean up. 1361 * Since no pte has actually been setup, it is 1362 * safe to do nothing in this case. 1363 */ 1364 if (vma->vm_file) 1365 unmap_hugepage_range(vma, start, end, NULL); 1366 1367 start = end; 1368 } else 1369 start = unmap_page_range(tlb, vma, start, end, details); 1370 } 1371 } 1372 1373 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1374 return start; /* which is now the end (or restart) address */ 1375 } 1376 1377 /** 1378 * zap_page_range - remove user pages in a given range 1379 * @vma: vm_area_struct holding the applicable pages 1380 * @address: starting address of pages to zap 1381 * @size: number of bytes to zap 1382 * @details: details of nonlinear truncation or shared cache invalidation 1383 */ 1384 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1385 unsigned long size, struct zap_details *details) 1386 { 1387 struct mm_struct *mm = vma->vm_mm; 1388 struct mmu_gather tlb; 1389 unsigned long end = address + size; 1390 unsigned long nr_accounted = 0; 1391 1392 lru_add_drain(); 1393 tlb_gather_mmu(&tlb, mm, 0); 1394 update_hiwater_rss(mm); 1395 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1396 tlb_finish_mmu(&tlb, address, end); 1397 return end; 1398 } 1399 1400 /** 1401 * zap_vma_ptes - remove ptes mapping the vma 1402 * @vma: vm_area_struct holding ptes to be zapped 1403 * @address: starting address of pages to zap 1404 * @size: number of bytes to zap 1405 * 1406 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1407 * 1408 * The entire address range must be fully contained within the vma. 1409 * 1410 * Returns 0 if successful. 1411 */ 1412 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1413 unsigned long size) 1414 { 1415 if (address < vma->vm_start || address + size > vma->vm_end || 1416 !(vma->vm_flags & VM_PFNMAP)) 1417 return -1; 1418 zap_page_range(vma, address, size, NULL); 1419 return 0; 1420 } 1421 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1422 1423 /** 1424 * follow_page - look up a page descriptor from a user-virtual address 1425 * @vma: vm_area_struct mapping @address 1426 * @address: virtual address to look up 1427 * @flags: flags modifying lookup behaviour 1428 * 1429 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1430 * 1431 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1432 * an error pointer if there is a mapping to something not represented 1433 * by a page descriptor (see also vm_normal_page()). 1434 */ 1435 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1436 unsigned int flags) 1437 { 1438 pgd_t *pgd; 1439 pud_t *pud; 1440 pmd_t *pmd; 1441 pte_t *ptep, pte; 1442 spinlock_t *ptl; 1443 struct page *page; 1444 struct mm_struct *mm = vma->vm_mm; 1445 1446 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1447 if (!IS_ERR(page)) { 1448 BUG_ON(flags & FOLL_GET); 1449 goto out; 1450 } 1451 1452 page = NULL; 1453 pgd = pgd_offset(mm, address); 1454 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1455 goto no_page_table; 1456 1457 pud = pud_offset(pgd, address); 1458 if (pud_none(*pud)) 1459 goto no_page_table; 1460 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1461 BUG_ON(flags & FOLL_GET); 1462 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1463 goto out; 1464 } 1465 if (unlikely(pud_bad(*pud))) 1466 goto no_page_table; 1467 1468 pmd = pmd_offset(pud, address); 1469 if (pmd_none(*pmd)) 1470 goto no_page_table; 1471 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1472 BUG_ON(flags & FOLL_GET); 1473 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1474 goto out; 1475 } 1476 if (pmd_trans_huge(*pmd)) { 1477 if (flags & FOLL_SPLIT) { 1478 split_huge_page_pmd(mm, pmd); 1479 goto split_fallthrough; 1480 } 1481 spin_lock(&mm->page_table_lock); 1482 if (likely(pmd_trans_huge(*pmd))) { 1483 if (unlikely(pmd_trans_splitting(*pmd))) { 1484 spin_unlock(&mm->page_table_lock); 1485 wait_split_huge_page(vma->anon_vma, pmd); 1486 } else { 1487 page = follow_trans_huge_pmd(mm, address, 1488 pmd, flags); 1489 spin_unlock(&mm->page_table_lock); 1490 goto out; 1491 } 1492 } else 1493 spin_unlock(&mm->page_table_lock); 1494 /* fall through */ 1495 } 1496 split_fallthrough: 1497 if (unlikely(pmd_bad(*pmd))) 1498 goto no_page_table; 1499 1500 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1501 1502 pte = *ptep; 1503 if (!pte_present(pte)) 1504 goto no_page; 1505 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1506 goto unlock; 1507 1508 page = vm_normal_page(vma, address, pte); 1509 if (unlikely(!page)) { 1510 if ((flags & FOLL_DUMP) || 1511 !is_zero_pfn(pte_pfn(pte))) 1512 goto bad_page; 1513 page = pte_page(pte); 1514 } 1515 1516 if (flags & FOLL_GET) 1517 get_page(page); 1518 if (flags & FOLL_TOUCH) { 1519 if ((flags & FOLL_WRITE) && 1520 !pte_dirty(pte) && !PageDirty(page)) 1521 set_page_dirty(page); 1522 /* 1523 * pte_mkyoung() would be more correct here, but atomic care 1524 * is needed to avoid losing the dirty bit: it is easier to use 1525 * mark_page_accessed(). 1526 */ 1527 mark_page_accessed(page); 1528 } 1529 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1530 /* 1531 * The preliminary mapping check is mainly to avoid the 1532 * pointless overhead of lock_page on the ZERO_PAGE 1533 * which might bounce very badly if there is contention. 1534 * 1535 * If the page is already locked, we don't need to 1536 * handle it now - vmscan will handle it later if and 1537 * when it attempts to reclaim the page. 1538 */ 1539 if (page->mapping && trylock_page(page)) { 1540 lru_add_drain(); /* push cached pages to LRU */ 1541 /* 1542 * Because we lock page here and migration is 1543 * blocked by the pte's page reference, we need 1544 * only check for file-cache page truncation. 1545 */ 1546 if (page->mapping) 1547 mlock_vma_page(page); 1548 unlock_page(page); 1549 } 1550 } 1551 unlock: 1552 pte_unmap_unlock(ptep, ptl); 1553 out: 1554 return page; 1555 1556 bad_page: 1557 pte_unmap_unlock(ptep, ptl); 1558 return ERR_PTR(-EFAULT); 1559 1560 no_page: 1561 pte_unmap_unlock(ptep, ptl); 1562 if (!pte_none(pte)) 1563 return page; 1564 1565 no_page_table: 1566 /* 1567 * When core dumping an enormous anonymous area that nobody 1568 * has touched so far, we don't want to allocate unnecessary pages or 1569 * page tables. Return error instead of NULL to skip handle_mm_fault, 1570 * then get_dump_page() will return NULL to leave a hole in the dump. 1571 * But we can only make this optimization where a hole would surely 1572 * be zero-filled if handle_mm_fault() actually did handle it. 1573 */ 1574 if ((flags & FOLL_DUMP) && 1575 (!vma->vm_ops || !vma->vm_ops->fault)) 1576 return ERR_PTR(-EFAULT); 1577 return page; 1578 } 1579 1580 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1581 { 1582 return stack_guard_page_start(vma, addr) || 1583 stack_guard_page_end(vma, addr+PAGE_SIZE); 1584 } 1585 1586 /** 1587 * __get_user_pages() - pin user pages in memory 1588 * @tsk: task_struct of target task 1589 * @mm: mm_struct of target mm 1590 * @start: starting user address 1591 * @nr_pages: number of pages from start to pin 1592 * @gup_flags: flags modifying pin behaviour 1593 * @pages: array that receives pointers to the pages pinned. 1594 * Should be at least nr_pages long. Or NULL, if caller 1595 * only intends to ensure the pages are faulted in. 1596 * @vmas: array of pointers to vmas corresponding to each page. 1597 * Or NULL if the caller does not require them. 1598 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1599 * 1600 * Returns number of pages pinned. This may be fewer than the number 1601 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1602 * were pinned, returns -errno. Each page returned must be released 1603 * with a put_page() call when it is finished with. vmas will only 1604 * remain valid while mmap_sem is held. 1605 * 1606 * Must be called with mmap_sem held for read or write. 1607 * 1608 * __get_user_pages walks a process's page tables and takes a reference to 1609 * each struct page that each user address corresponds to at a given 1610 * instant. That is, it takes the page that would be accessed if a user 1611 * thread accesses the given user virtual address at that instant. 1612 * 1613 * This does not guarantee that the page exists in the user mappings when 1614 * __get_user_pages returns, and there may even be a completely different 1615 * page there in some cases (eg. if mmapped pagecache has been invalidated 1616 * and subsequently re faulted). However it does guarantee that the page 1617 * won't be freed completely. And mostly callers simply care that the page 1618 * contains data that was valid *at some point in time*. Typically, an IO 1619 * or similar operation cannot guarantee anything stronger anyway because 1620 * locks can't be held over the syscall boundary. 1621 * 1622 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1623 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1624 * appropriate) must be called after the page is finished with, and 1625 * before put_page is called. 1626 * 1627 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1628 * or mmap_sem contention, and if waiting is needed to pin all pages, 1629 * *@nonblocking will be set to 0. 1630 * 1631 * In most cases, get_user_pages or get_user_pages_fast should be used 1632 * instead of __get_user_pages. __get_user_pages should be used only if 1633 * you need some special @gup_flags. 1634 */ 1635 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1636 unsigned long start, int nr_pages, unsigned int gup_flags, 1637 struct page **pages, struct vm_area_struct **vmas, 1638 int *nonblocking) 1639 { 1640 int i; 1641 unsigned long vm_flags; 1642 1643 if (nr_pages <= 0) 1644 return 0; 1645 1646 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1647 1648 /* 1649 * Require read or write permissions. 1650 * If FOLL_FORCE is set, we only require the "MAY" flags. 1651 */ 1652 vm_flags = (gup_flags & FOLL_WRITE) ? 1653 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1654 vm_flags &= (gup_flags & FOLL_FORCE) ? 1655 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1656 i = 0; 1657 1658 do { 1659 struct vm_area_struct *vma; 1660 1661 vma = find_extend_vma(mm, start); 1662 if (!vma && in_gate_area(mm, start)) { 1663 unsigned long pg = start & PAGE_MASK; 1664 pgd_t *pgd; 1665 pud_t *pud; 1666 pmd_t *pmd; 1667 pte_t *pte; 1668 1669 /* user gate pages are read-only */ 1670 if (gup_flags & FOLL_WRITE) 1671 return i ? : -EFAULT; 1672 if (pg > TASK_SIZE) 1673 pgd = pgd_offset_k(pg); 1674 else 1675 pgd = pgd_offset_gate(mm, pg); 1676 BUG_ON(pgd_none(*pgd)); 1677 pud = pud_offset(pgd, pg); 1678 BUG_ON(pud_none(*pud)); 1679 pmd = pmd_offset(pud, pg); 1680 if (pmd_none(*pmd)) 1681 return i ? : -EFAULT; 1682 VM_BUG_ON(pmd_trans_huge(*pmd)); 1683 pte = pte_offset_map(pmd, pg); 1684 if (pte_none(*pte)) { 1685 pte_unmap(pte); 1686 return i ? : -EFAULT; 1687 } 1688 vma = get_gate_vma(mm); 1689 if (pages) { 1690 struct page *page; 1691 1692 page = vm_normal_page(vma, start, *pte); 1693 if (!page) { 1694 if (!(gup_flags & FOLL_DUMP) && 1695 is_zero_pfn(pte_pfn(*pte))) 1696 page = pte_page(*pte); 1697 else { 1698 pte_unmap(pte); 1699 return i ? : -EFAULT; 1700 } 1701 } 1702 pages[i] = page; 1703 get_page(page); 1704 } 1705 pte_unmap(pte); 1706 goto next_page; 1707 } 1708 1709 if (!vma || 1710 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1711 !(vm_flags & vma->vm_flags)) 1712 return i ? : -EFAULT; 1713 1714 if (is_vm_hugetlb_page(vma)) { 1715 i = follow_hugetlb_page(mm, vma, pages, vmas, 1716 &start, &nr_pages, i, gup_flags); 1717 continue; 1718 } 1719 1720 do { 1721 struct page *page; 1722 unsigned int foll_flags = gup_flags; 1723 1724 /* 1725 * If we have a pending SIGKILL, don't keep faulting 1726 * pages and potentially allocating memory. 1727 */ 1728 if (unlikely(fatal_signal_pending(current))) 1729 return i ? i : -ERESTARTSYS; 1730 1731 cond_resched(); 1732 while (!(page = follow_page(vma, start, foll_flags))) { 1733 int ret; 1734 unsigned int fault_flags = 0; 1735 1736 /* For mlock, just skip the stack guard page. */ 1737 if (foll_flags & FOLL_MLOCK) { 1738 if (stack_guard_page(vma, start)) 1739 goto next_page; 1740 } 1741 if (foll_flags & FOLL_WRITE) 1742 fault_flags |= FAULT_FLAG_WRITE; 1743 if (nonblocking) 1744 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1745 if (foll_flags & FOLL_NOWAIT) 1746 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1747 1748 ret = handle_mm_fault(mm, vma, start, 1749 fault_flags); 1750 1751 if (ret & VM_FAULT_ERROR) { 1752 if (ret & VM_FAULT_OOM) 1753 return i ? i : -ENOMEM; 1754 if (ret & (VM_FAULT_HWPOISON | 1755 VM_FAULT_HWPOISON_LARGE)) { 1756 if (i) 1757 return i; 1758 else if (gup_flags & FOLL_HWPOISON) 1759 return -EHWPOISON; 1760 else 1761 return -EFAULT; 1762 } 1763 if (ret & VM_FAULT_SIGBUS) 1764 return i ? i : -EFAULT; 1765 BUG(); 1766 } 1767 1768 if (tsk) { 1769 if (ret & VM_FAULT_MAJOR) 1770 tsk->maj_flt++; 1771 else 1772 tsk->min_flt++; 1773 } 1774 1775 if (ret & VM_FAULT_RETRY) { 1776 if (nonblocking) 1777 *nonblocking = 0; 1778 return i; 1779 } 1780 1781 /* 1782 * The VM_FAULT_WRITE bit tells us that 1783 * do_wp_page has broken COW when necessary, 1784 * even if maybe_mkwrite decided not to set 1785 * pte_write. We can thus safely do subsequent 1786 * page lookups as if they were reads. But only 1787 * do so when looping for pte_write is futile: 1788 * in some cases userspace may also be wanting 1789 * to write to the gotten user page, which a 1790 * read fault here might prevent (a readonly 1791 * page might get reCOWed by userspace write). 1792 */ 1793 if ((ret & VM_FAULT_WRITE) && 1794 !(vma->vm_flags & VM_WRITE)) 1795 foll_flags &= ~FOLL_WRITE; 1796 1797 cond_resched(); 1798 } 1799 if (IS_ERR(page)) 1800 return i ? i : PTR_ERR(page); 1801 if (pages) { 1802 pages[i] = page; 1803 1804 flush_anon_page(vma, page, start); 1805 flush_dcache_page(page); 1806 } 1807 next_page: 1808 if (vmas) 1809 vmas[i] = vma; 1810 i++; 1811 start += PAGE_SIZE; 1812 nr_pages--; 1813 } while (nr_pages && start < vma->vm_end); 1814 } while (nr_pages); 1815 return i; 1816 } 1817 EXPORT_SYMBOL(__get_user_pages); 1818 1819 /** 1820 * get_user_pages() - pin user pages in memory 1821 * @tsk: the task_struct to use for page fault accounting, or 1822 * NULL if faults are not to be recorded. 1823 * @mm: mm_struct of target mm 1824 * @start: starting user address 1825 * @nr_pages: number of pages from start to pin 1826 * @write: whether pages will be written to by the caller 1827 * @force: whether to force write access even if user mapping is 1828 * readonly. This will result in the page being COWed even 1829 * in MAP_SHARED mappings. You do not want this. 1830 * @pages: array that receives pointers to the pages pinned. 1831 * Should be at least nr_pages long. Or NULL, if caller 1832 * only intends to ensure the pages are faulted in. 1833 * @vmas: array of pointers to vmas corresponding to each page. 1834 * Or NULL if the caller does not require them. 1835 * 1836 * Returns number of pages pinned. This may be fewer than the number 1837 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1838 * were pinned, returns -errno. Each page returned must be released 1839 * with a put_page() call when it is finished with. vmas will only 1840 * remain valid while mmap_sem is held. 1841 * 1842 * Must be called with mmap_sem held for read or write. 1843 * 1844 * get_user_pages walks a process's page tables and takes a reference to 1845 * each struct page that each user address corresponds to at a given 1846 * instant. That is, it takes the page that would be accessed if a user 1847 * thread accesses the given user virtual address at that instant. 1848 * 1849 * This does not guarantee that the page exists in the user mappings when 1850 * get_user_pages returns, and there may even be a completely different 1851 * page there in some cases (eg. if mmapped pagecache has been invalidated 1852 * and subsequently re faulted). However it does guarantee that the page 1853 * won't be freed completely. And mostly callers simply care that the page 1854 * contains data that was valid *at some point in time*. Typically, an IO 1855 * or similar operation cannot guarantee anything stronger anyway because 1856 * locks can't be held over the syscall boundary. 1857 * 1858 * If write=0, the page must not be written to. If the page is written to, 1859 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1860 * after the page is finished with, and before put_page is called. 1861 * 1862 * get_user_pages is typically used for fewer-copy IO operations, to get a 1863 * handle on the memory by some means other than accesses via the user virtual 1864 * addresses. The pages may be submitted for DMA to devices or accessed via 1865 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1866 * use the correct cache flushing APIs. 1867 * 1868 * See also get_user_pages_fast, for performance critical applications. 1869 */ 1870 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1871 unsigned long start, int nr_pages, int write, int force, 1872 struct page **pages, struct vm_area_struct **vmas) 1873 { 1874 int flags = FOLL_TOUCH; 1875 1876 if (pages) 1877 flags |= FOLL_GET; 1878 if (write) 1879 flags |= FOLL_WRITE; 1880 if (force) 1881 flags |= FOLL_FORCE; 1882 1883 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 1884 NULL); 1885 } 1886 EXPORT_SYMBOL(get_user_pages); 1887 1888 /** 1889 * get_dump_page() - pin user page in memory while writing it to core dump 1890 * @addr: user address 1891 * 1892 * Returns struct page pointer of user page pinned for dump, 1893 * to be freed afterwards by page_cache_release() or put_page(). 1894 * 1895 * Returns NULL on any kind of failure - a hole must then be inserted into 1896 * the corefile, to preserve alignment with its headers; and also returns 1897 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1898 * allowing a hole to be left in the corefile to save diskspace. 1899 * 1900 * Called without mmap_sem, but after all other threads have been killed. 1901 */ 1902 #ifdef CONFIG_ELF_CORE 1903 struct page *get_dump_page(unsigned long addr) 1904 { 1905 struct vm_area_struct *vma; 1906 struct page *page; 1907 1908 if (__get_user_pages(current, current->mm, addr, 1, 1909 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1910 NULL) < 1) 1911 return NULL; 1912 flush_cache_page(vma, addr, page_to_pfn(page)); 1913 return page; 1914 } 1915 #endif /* CONFIG_ELF_CORE */ 1916 1917 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1918 spinlock_t **ptl) 1919 { 1920 pgd_t * pgd = pgd_offset(mm, addr); 1921 pud_t * pud = pud_alloc(mm, pgd, addr); 1922 if (pud) { 1923 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1924 if (pmd) { 1925 VM_BUG_ON(pmd_trans_huge(*pmd)); 1926 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1927 } 1928 } 1929 return NULL; 1930 } 1931 1932 /* 1933 * This is the old fallback for page remapping. 1934 * 1935 * For historical reasons, it only allows reserved pages. Only 1936 * old drivers should use this, and they needed to mark their 1937 * pages reserved for the old functions anyway. 1938 */ 1939 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1940 struct page *page, pgprot_t prot) 1941 { 1942 struct mm_struct *mm = vma->vm_mm; 1943 int retval; 1944 pte_t *pte; 1945 spinlock_t *ptl; 1946 1947 retval = -EINVAL; 1948 if (PageAnon(page)) 1949 goto out; 1950 retval = -ENOMEM; 1951 flush_dcache_page(page); 1952 pte = get_locked_pte(mm, addr, &ptl); 1953 if (!pte) 1954 goto out; 1955 retval = -EBUSY; 1956 if (!pte_none(*pte)) 1957 goto out_unlock; 1958 1959 /* Ok, finally just insert the thing.. */ 1960 get_page(page); 1961 inc_mm_counter_fast(mm, MM_FILEPAGES); 1962 page_add_file_rmap(page); 1963 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1964 1965 retval = 0; 1966 pte_unmap_unlock(pte, ptl); 1967 return retval; 1968 out_unlock: 1969 pte_unmap_unlock(pte, ptl); 1970 out: 1971 return retval; 1972 } 1973 1974 /** 1975 * vm_insert_page - insert single page into user vma 1976 * @vma: user vma to map to 1977 * @addr: target user address of this page 1978 * @page: source kernel page 1979 * 1980 * This allows drivers to insert individual pages they've allocated 1981 * into a user vma. 1982 * 1983 * The page has to be a nice clean _individual_ kernel allocation. 1984 * If you allocate a compound page, you need to have marked it as 1985 * such (__GFP_COMP), or manually just split the page up yourself 1986 * (see split_page()). 1987 * 1988 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1989 * took an arbitrary page protection parameter. This doesn't allow 1990 * that. Your vma protection will have to be set up correctly, which 1991 * means that if you want a shared writable mapping, you'd better 1992 * ask for a shared writable mapping! 1993 * 1994 * The page does not need to be reserved. 1995 */ 1996 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1997 struct page *page) 1998 { 1999 if (addr < vma->vm_start || addr >= vma->vm_end) 2000 return -EFAULT; 2001 if (!page_count(page)) 2002 return -EINVAL; 2003 vma->vm_flags |= VM_INSERTPAGE; 2004 return insert_page(vma, addr, page, vma->vm_page_prot); 2005 } 2006 EXPORT_SYMBOL(vm_insert_page); 2007 2008 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2009 unsigned long pfn, pgprot_t prot) 2010 { 2011 struct mm_struct *mm = vma->vm_mm; 2012 int retval; 2013 pte_t *pte, entry; 2014 spinlock_t *ptl; 2015 2016 retval = -ENOMEM; 2017 pte = get_locked_pte(mm, addr, &ptl); 2018 if (!pte) 2019 goto out; 2020 retval = -EBUSY; 2021 if (!pte_none(*pte)) 2022 goto out_unlock; 2023 2024 /* Ok, finally just insert the thing.. */ 2025 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2026 set_pte_at(mm, addr, pte, entry); 2027 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2028 2029 retval = 0; 2030 out_unlock: 2031 pte_unmap_unlock(pte, ptl); 2032 out: 2033 return retval; 2034 } 2035 2036 /** 2037 * vm_insert_pfn - insert single pfn into user vma 2038 * @vma: user vma to map to 2039 * @addr: target user address of this page 2040 * @pfn: source kernel pfn 2041 * 2042 * Similar to vm_inert_page, this allows drivers to insert individual pages 2043 * they've allocated into a user vma. Same comments apply. 2044 * 2045 * This function should only be called from a vm_ops->fault handler, and 2046 * in that case the handler should return NULL. 2047 * 2048 * vma cannot be a COW mapping. 2049 * 2050 * As this is called only for pages that do not currently exist, we 2051 * do not need to flush old virtual caches or the TLB. 2052 */ 2053 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2054 unsigned long pfn) 2055 { 2056 int ret; 2057 pgprot_t pgprot = vma->vm_page_prot; 2058 /* 2059 * Technically, architectures with pte_special can avoid all these 2060 * restrictions (same for remap_pfn_range). However we would like 2061 * consistency in testing and feature parity among all, so we should 2062 * try to keep these invariants in place for everybody. 2063 */ 2064 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2065 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2066 (VM_PFNMAP|VM_MIXEDMAP)); 2067 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2068 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2069 2070 if (addr < vma->vm_start || addr >= vma->vm_end) 2071 return -EFAULT; 2072 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 2073 return -EINVAL; 2074 2075 ret = insert_pfn(vma, addr, pfn, pgprot); 2076 2077 if (ret) 2078 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 2079 2080 return ret; 2081 } 2082 EXPORT_SYMBOL(vm_insert_pfn); 2083 2084 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2085 unsigned long pfn) 2086 { 2087 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2088 2089 if (addr < vma->vm_start || addr >= vma->vm_end) 2090 return -EFAULT; 2091 2092 /* 2093 * If we don't have pte special, then we have to use the pfn_valid() 2094 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2095 * refcount the page if pfn_valid is true (hence insert_page rather 2096 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2097 * without pte special, it would there be refcounted as a normal page. 2098 */ 2099 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2100 struct page *page; 2101 2102 page = pfn_to_page(pfn); 2103 return insert_page(vma, addr, page, vma->vm_page_prot); 2104 } 2105 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2106 } 2107 EXPORT_SYMBOL(vm_insert_mixed); 2108 2109 /* 2110 * maps a range of physical memory into the requested pages. the old 2111 * mappings are removed. any references to nonexistent pages results 2112 * in null mappings (currently treated as "copy-on-access") 2113 */ 2114 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2115 unsigned long addr, unsigned long end, 2116 unsigned long pfn, pgprot_t prot) 2117 { 2118 pte_t *pte; 2119 spinlock_t *ptl; 2120 2121 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2122 if (!pte) 2123 return -ENOMEM; 2124 arch_enter_lazy_mmu_mode(); 2125 do { 2126 BUG_ON(!pte_none(*pte)); 2127 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2128 pfn++; 2129 } while (pte++, addr += PAGE_SIZE, addr != end); 2130 arch_leave_lazy_mmu_mode(); 2131 pte_unmap_unlock(pte - 1, ptl); 2132 return 0; 2133 } 2134 2135 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2136 unsigned long addr, unsigned long end, 2137 unsigned long pfn, pgprot_t prot) 2138 { 2139 pmd_t *pmd; 2140 unsigned long next; 2141 2142 pfn -= addr >> PAGE_SHIFT; 2143 pmd = pmd_alloc(mm, pud, addr); 2144 if (!pmd) 2145 return -ENOMEM; 2146 VM_BUG_ON(pmd_trans_huge(*pmd)); 2147 do { 2148 next = pmd_addr_end(addr, end); 2149 if (remap_pte_range(mm, pmd, addr, next, 2150 pfn + (addr >> PAGE_SHIFT), prot)) 2151 return -ENOMEM; 2152 } while (pmd++, addr = next, addr != end); 2153 return 0; 2154 } 2155 2156 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2157 unsigned long addr, unsigned long end, 2158 unsigned long pfn, pgprot_t prot) 2159 { 2160 pud_t *pud; 2161 unsigned long next; 2162 2163 pfn -= addr >> PAGE_SHIFT; 2164 pud = pud_alloc(mm, pgd, addr); 2165 if (!pud) 2166 return -ENOMEM; 2167 do { 2168 next = pud_addr_end(addr, end); 2169 if (remap_pmd_range(mm, pud, addr, next, 2170 pfn + (addr >> PAGE_SHIFT), prot)) 2171 return -ENOMEM; 2172 } while (pud++, addr = next, addr != end); 2173 return 0; 2174 } 2175 2176 /** 2177 * remap_pfn_range - remap kernel memory to userspace 2178 * @vma: user vma to map to 2179 * @addr: target user address to start at 2180 * @pfn: physical address of kernel memory 2181 * @size: size of map area 2182 * @prot: page protection flags for this mapping 2183 * 2184 * Note: this is only safe if the mm semaphore is held when called. 2185 */ 2186 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2187 unsigned long pfn, unsigned long size, pgprot_t prot) 2188 { 2189 pgd_t *pgd; 2190 unsigned long next; 2191 unsigned long end = addr + PAGE_ALIGN(size); 2192 struct mm_struct *mm = vma->vm_mm; 2193 int err; 2194 2195 /* 2196 * Physically remapped pages are special. Tell the 2197 * rest of the world about it: 2198 * VM_IO tells people not to look at these pages 2199 * (accesses can have side effects). 2200 * VM_RESERVED is specified all over the place, because 2201 * in 2.4 it kept swapout's vma scan off this vma; but 2202 * in 2.6 the LRU scan won't even find its pages, so this 2203 * flag means no more than count its pages in reserved_vm, 2204 * and omit it from core dump, even when VM_IO turned off. 2205 * VM_PFNMAP tells the core MM that the base pages are just 2206 * raw PFN mappings, and do not have a "struct page" associated 2207 * with them. 2208 * 2209 * There's a horrible special case to handle copy-on-write 2210 * behaviour that some programs depend on. We mark the "original" 2211 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2212 */ 2213 if (addr == vma->vm_start && end == vma->vm_end) { 2214 vma->vm_pgoff = pfn; 2215 vma->vm_flags |= VM_PFN_AT_MMAP; 2216 } else if (is_cow_mapping(vma->vm_flags)) 2217 return -EINVAL; 2218 2219 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 2220 2221 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 2222 if (err) { 2223 /* 2224 * To indicate that track_pfn related cleanup is not 2225 * needed from higher level routine calling unmap_vmas 2226 */ 2227 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 2228 vma->vm_flags &= ~VM_PFN_AT_MMAP; 2229 return -EINVAL; 2230 } 2231 2232 BUG_ON(addr >= end); 2233 pfn -= addr >> PAGE_SHIFT; 2234 pgd = pgd_offset(mm, addr); 2235 flush_cache_range(vma, addr, end); 2236 do { 2237 next = pgd_addr_end(addr, end); 2238 err = remap_pud_range(mm, pgd, addr, next, 2239 pfn + (addr >> PAGE_SHIFT), prot); 2240 if (err) 2241 break; 2242 } while (pgd++, addr = next, addr != end); 2243 2244 if (err) 2245 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 2246 2247 return err; 2248 } 2249 EXPORT_SYMBOL(remap_pfn_range); 2250 2251 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2252 unsigned long addr, unsigned long end, 2253 pte_fn_t fn, void *data) 2254 { 2255 pte_t *pte; 2256 int err; 2257 pgtable_t token; 2258 spinlock_t *uninitialized_var(ptl); 2259 2260 pte = (mm == &init_mm) ? 2261 pte_alloc_kernel(pmd, addr) : 2262 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2263 if (!pte) 2264 return -ENOMEM; 2265 2266 BUG_ON(pmd_huge(*pmd)); 2267 2268 arch_enter_lazy_mmu_mode(); 2269 2270 token = pmd_pgtable(*pmd); 2271 2272 do { 2273 err = fn(pte++, token, addr, data); 2274 if (err) 2275 break; 2276 } while (addr += PAGE_SIZE, addr != end); 2277 2278 arch_leave_lazy_mmu_mode(); 2279 2280 if (mm != &init_mm) 2281 pte_unmap_unlock(pte-1, ptl); 2282 return err; 2283 } 2284 2285 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2286 unsigned long addr, unsigned long end, 2287 pte_fn_t fn, void *data) 2288 { 2289 pmd_t *pmd; 2290 unsigned long next; 2291 int err; 2292 2293 BUG_ON(pud_huge(*pud)); 2294 2295 pmd = pmd_alloc(mm, pud, addr); 2296 if (!pmd) 2297 return -ENOMEM; 2298 do { 2299 next = pmd_addr_end(addr, end); 2300 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2301 if (err) 2302 break; 2303 } while (pmd++, addr = next, addr != end); 2304 return err; 2305 } 2306 2307 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2308 unsigned long addr, unsigned long end, 2309 pte_fn_t fn, void *data) 2310 { 2311 pud_t *pud; 2312 unsigned long next; 2313 int err; 2314 2315 pud = pud_alloc(mm, pgd, addr); 2316 if (!pud) 2317 return -ENOMEM; 2318 do { 2319 next = pud_addr_end(addr, end); 2320 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2321 if (err) 2322 break; 2323 } while (pud++, addr = next, addr != end); 2324 return err; 2325 } 2326 2327 /* 2328 * Scan a region of virtual memory, filling in page tables as necessary 2329 * and calling a provided function on each leaf page table. 2330 */ 2331 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2332 unsigned long size, pte_fn_t fn, void *data) 2333 { 2334 pgd_t *pgd; 2335 unsigned long next; 2336 unsigned long end = addr + size; 2337 int err; 2338 2339 BUG_ON(addr >= end); 2340 pgd = pgd_offset(mm, addr); 2341 do { 2342 next = pgd_addr_end(addr, end); 2343 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2344 if (err) 2345 break; 2346 } while (pgd++, addr = next, addr != end); 2347 2348 return err; 2349 } 2350 EXPORT_SYMBOL_GPL(apply_to_page_range); 2351 2352 /* 2353 * handle_pte_fault chooses page fault handler according to an entry 2354 * which was read non-atomically. Before making any commitment, on 2355 * those architectures or configurations (e.g. i386 with PAE) which 2356 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2357 * must check under lock before unmapping the pte and proceeding 2358 * (but do_wp_page is only called after already making such a check; 2359 * and do_anonymous_page can safely check later on). 2360 */ 2361 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2362 pte_t *page_table, pte_t orig_pte) 2363 { 2364 int same = 1; 2365 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2366 if (sizeof(pte_t) > sizeof(unsigned long)) { 2367 spinlock_t *ptl = pte_lockptr(mm, pmd); 2368 spin_lock(ptl); 2369 same = pte_same(*page_table, orig_pte); 2370 spin_unlock(ptl); 2371 } 2372 #endif 2373 pte_unmap(page_table); 2374 return same; 2375 } 2376 2377 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2378 { 2379 /* 2380 * If the source page was a PFN mapping, we don't have 2381 * a "struct page" for it. We do a best-effort copy by 2382 * just copying from the original user address. If that 2383 * fails, we just zero-fill it. Live with it. 2384 */ 2385 if (unlikely(!src)) { 2386 void *kaddr = kmap_atomic(dst, KM_USER0); 2387 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2388 2389 /* 2390 * This really shouldn't fail, because the page is there 2391 * in the page tables. But it might just be unreadable, 2392 * in which case we just give up and fill the result with 2393 * zeroes. 2394 */ 2395 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2396 clear_page(kaddr); 2397 kunmap_atomic(kaddr, KM_USER0); 2398 flush_dcache_page(dst); 2399 } else 2400 copy_user_highpage(dst, src, va, vma); 2401 } 2402 2403 /* 2404 * This routine handles present pages, when users try to write 2405 * to a shared page. It is done by copying the page to a new address 2406 * and decrementing the shared-page counter for the old page. 2407 * 2408 * Note that this routine assumes that the protection checks have been 2409 * done by the caller (the low-level page fault routine in most cases). 2410 * Thus we can safely just mark it writable once we've done any necessary 2411 * COW. 2412 * 2413 * We also mark the page dirty at this point even though the page will 2414 * change only once the write actually happens. This avoids a few races, 2415 * and potentially makes it more efficient. 2416 * 2417 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2418 * but allow concurrent faults), with pte both mapped and locked. 2419 * We return with mmap_sem still held, but pte unmapped and unlocked. 2420 */ 2421 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2422 unsigned long address, pte_t *page_table, pmd_t *pmd, 2423 spinlock_t *ptl, pte_t orig_pte) 2424 __releases(ptl) 2425 { 2426 struct page *old_page, *new_page; 2427 pte_t entry; 2428 int ret = 0; 2429 int page_mkwrite = 0; 2430 struct page *dirty_page = NULL; 2431 2432 old_page = vm_normal_page(vma, address, orig_pte); 2433 if (!old_page) { 2434 /* 2435 * VM_MIXEDMAP !pfn_valid() case 2436 * 2437 * We should not cow pages in a shared writeable mapping. 2438 * Just mark the pages writable as we can't do any dirty 2439 * accounting on raw pfn maps. 2440 */ 2441 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2442 (VM_WRITE|VM_SHARED)) 2443 goto reuse; 2444 goto gotten; 2445 } 2446 2447 /* 2448 * Take out anonymous pages first, anonymous shared vmas are 2449 * not dirty accountable. 2450 */ 2451 if (PageAnon(old_page) && !PageKsm(old_page)) { 2452 if (!trylock_page(old_page)) { 2453 page_cache_get(old_page); 2454 pte_unmap_unlock(page_table, ptl); 2455 lock_page(old_page); 2456 page_table = pte_offset_map_lock(mm, pmd, address, 2457 &ptl); 2458 if (!pte_same(*page_table, orig_pte)) { 2459 unlock_page(old_page); 2460 goto unlock; 2461 } 2462 page_cache_release(old_page); 2463 } 2464 if (reuse_swap_page(old_page)) { 2465 /* 2466 * The page is all ours. Move it to our anon_vma so 2467 * the rmap code will not search our parent or siblings. 2468 * Protected against the rmap code by the page lock. 2469 */ 2470 page_move_anon_rmap(old_page, vma, address); 2471 unlock_page(old_page); 2472 goto reuse; 2473 } 2474 unlock_page(old_page); 2475 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2476 (VM_WRITE|VM_SHARED))) { 2477 /* 2478 * Only catch write-faults on shared writable pages, 2479 * read-only shared pages can get COWed by 2480 * get_user_pages(.write=1, .force=1). 2481 */ 2482 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2483 struct vm_fault vmf; 2484 int tmp; 2485 2486 vmf.virtual_address = (void __user *)(address & 2487 PAGE_MASK); 2488 vmf.pgoff = old_page->index; 2489 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2490 vmf.page = old_page; 2491 2492 /* 2493 * Notify the address space that the page is about to 2494 * become writable so that it can prohibit this or wait 2495 * for the page to get into an appropriate state. 2496 * 2497 * We do this without the lock held, so that it can 2498 * sleep if it needs to. 2499 */ 2500 page_cache_get(old_page); 2501 pte_unmap_unlock(page_table, ptl); 2502 2503 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2504 if (unlikely(tmp & 2505 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2506 ret = tmp; 2507 goto unwritable_page; 2508 } 2509 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2510 lock_page(old_page); 2511 if (!old_page->mapping) { 2512 ret = 0; /* retry the fault */ 2513 unlock_page(old_page); 2514 goto unwritable_page; 2515 } 2516 } else 2517 VM_BUG_ON(!PageLocked(old_page)); 2518 2519 /* 2520 * Since we dropped the lock we need to revalidate 2521 * the PTE as someone else may have changed it. If 2522 * they did, we just return, as we can count on the 2523 * MMU to tell us if they didn't also make it writable. 2524 */ 2525 page_table = pte_offset_map_lock(mm, pmd, address, 2526 &ptl); 2527 if (!pte_same(*page_table, orig_pte)) { 2528 unlock_page(old_page); 2529 goto unlock; 2530 } 2531 2532 page_mkwrite = 1; 2533 } 2534 dirty_page = old_page; 2535 get_page(dirty_page); 2536 2537 reuse: 2538 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2539 entry = pte_mkyoung(orig_pte); 2540 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2541 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2542 update_mmu_cache(vma, address, page_table); 2543 pte_unmap_unlock(page_table, ptl); 2544 ret |= VM_FAULT_WRITE; 2545 2546 if (!dirty_page) 2547 return ret; 2548 2549 /* 2550 * Yes, Virginia, this is actually required to prevent a race 2551 * with clear_page_dirty_for_io() from clearing the page dirty 2552 * bit after it clear all dirty ptes, but before a racing 2553 * do_wp_page installs a dirty pte. 2554 * 2555 * __do_fault is protected similarly. 2556 */ 2557 if (!page_mkwrite) { 2558 wait_on_page_locked(dirty_page); 2559 set_page_dirty_balance(dirty_page, page_mkwrite); 2560 } 2561 put_page(dirty_page); 2562 if (page_mkwrite) { 2563 struct address_space *mapping = dirty_page->mapping; 2564 2565 set_page_dirty(dirty_page); 2566 unlock_page(dirty_page); 2567 page_cache_release(dirty_page); 2568 if (mapping) { 2569 /* 2570 * Some device drivers do not set page.mapping 2571 * but still dirty their pages 2572 */ 2573 balance_dirty_pages_ratelimited(mapping); 2574 } 2575 } 2576 2577 /* file_update_time outside page_lock */ 2578 if (vma->vm_file) 2579 file_update_time(vma->vm_file); 2580 2581 return ret; 2582 } 2583 2584 /* 2585 * Ok, we need to copy. Oh, well.. 2586 */ 2587 page_cache_get(old_page); 2588 gotten: 2589 pte_unmap_unlock(page_table, ptl); 2590 2591 if (unlikely(anon_vma_prepare(vma))) 2592 goto oom; 2593 2594 if (is_zero_pfn(pte_pfn(orig_pte))) { 2595 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2596 if (!new_page) 2597 goto oom; 2598 } else { 2599 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2600 if (!new_page) 2601 goto oom; 2602 cow_user_page(new_page, old_page, address, vma); 2603 } 2604 __SetPageUptodate(new_page); 2605 2606 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2607 goto oom_free_new; 2608 2609 /* 2610 * Re-check the pte - we dropped the lock 2611 */ 2612 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2613 if (likely(pte_same(*page_table, orig_pte))) { 2614 if (old_page) { 2615 if (!PageAnon(old_page)) { 2616 dec_mm_counter_fast(mm, MM_FILEPAGES); 2617 inc_mm_counter_fast(mm, MM_ANONPAGES); 2618 } 2619 } else 2620 inc_mm_counter_fast(mm, MM_ANONPAGES); 2621 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2622 entry = mk_pte(new_page, vma->vm_page_prot); 2623 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2624 /* 2625 * Clear the pte entry and flush it first, before updating the 2626 * pte with the new entry. This will avoid a race condition 2627 * seen in the presence of one thread doing SMC and another 2628 * thread doing COW. 2629 */ 2630 ptep_clear_flush(vma, address, page_table); 2631 page_add_new_anon_rmap(new_page, vma, address); 2632 /* 2633 * We call the notify macro here because, when using secondary 2634 * mmu page tables (such as kvm shadow page tables), we want the 2635 * new page to be mapped directly into the secondary page table. 2636 */ 2637 set_pte_at_notify(mm, address, page_table, entry); 2638 update_mmu_cache(vma, address, page_table); 2639 if (old_page) { 2640 /* 2641 * Only after switching the pte to the new page may 2642 * we remove the mapcount here. Otherwise another 2643 * process may come and find the rmap count decremented 2644 * before the pte is switched to the new page, and 2645 * "reuse" the old page writing into it while our pte 2646 * here still points into it and can be read by other 2647 * threads. 2648 * 2649 * The critical issue is to order this 2650 * page_remove_rmap with the ptp_clear_flush above. 2651 * Those stores are ordered by (if nothing else,) 2652 * the barrier present in the atomic_add_negative 2653 * in page_remove_rmap. 2654 * 2655 * Then the TLB flush in ptep_clear_flush ensures that 2656 * no process can access the old page before the 2657 * decremented mapcount is visible. And the old page 2658 * cannot be reused until after the decremented 2659 * mapcount is visible. So transitively, TLBs to 2660 * old page will be flushed before it can be reused. 2661 */ 2662 page_remove_rmap(old_page); 2663 } 2664 2665 /* Free the old page.. */ 2666 new_page = old_page; 2667 ret |= VM_FAULT_WRITE; 2668 } else 2669 mem_cgroup_uncharge_page(new_page); 2670 2671 if (new_page) 2672 page_cache_release(new_page); 2673 unlock: 2674 pte_unmap_unlock(page_table, ptl); 2675 if (old_page) { 2676 /* 2677 * Don't let another task, with possibly unlocked vma, 2678 * keep the mlocked page. 2679 */ 2680 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2681 lock_page(old_page); /* LRU manipulation */ 2682 munlock_vma_page(old_page); 2683 unlock_page(old_page); 2684 } 2685 page_cache_release(old_page); 2686 } 2687 return ret; 2688 oom_free_new: 2689 page_cache_release(new_page); 2690 oom: 2691 if (old_page) { 2692 if (page_mkwrite) { 2693 unlock_page(old_page); 2694 page_cache_release(old_page); 2695 } 2696 page_cache_release(old_page); 2697 } 2698 return VM_FAULT_OOM; 2699 2700 unwritable_page: 2701 page_cache_release(old_page); 2702 return ret; 2703 } 2704 2705 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2706 unsigned long start_addr, unsigned long end_addr, 2707 struct zap_details *details) 2708 { 2709 zap_page_range(vma, start_addr, end_addr - start_addr, details); 2710 } 2711 2712 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2713 struct zap_details *details) 2714 { 2715 struct vm_area_struct *vma; 2716 struct prio_tree_iter iter; 2717 pgoff_t vba, vea, zba, zea; 2718 2719 vma_prio_tree_foreach(vma, &iter, root, 2720 details->first_index, details->last_index) { 2721 2722 vba = vma->vm_pgoff; 2723 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2724 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2725 zba = details->first_index; 2726 if (zba < vba) 2727 zba = vba; 2728 zea = details->last_index; 2729 if (zea > vea) 2730 zea = vea; 2731 2732 unmap_mapping_range_vma(vma, 2733 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2734 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2735 details); 2736 } 2737 } 2738 2739 static inline void unmap_mapping_range_list(struct list_head *head, 2740 struct zap_details *details) 2741 { 2742 struct vm_area_struct *vma; 2743 2744 /* 2745 * In nonlinear VMAs there is no correspondence between virtual address 2746 * offset and file offset. So we must perform an exhaustive search 2747 * across *all* the pages in each nonlinear VMA, not just the pages 2748 * whose virtual address lies outside the file truncation point. 2749 */ 2750 list_for_each_entry(vma, head, shared.vm_set.list) { 2751 details->nonlinear_vma = vma; 2752 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2753 } 2754 } 2755 2756 /** 2757 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2758 * @mapping: the address space containing mmaps to be unmapped. 2759 * @holebegin: byte in first page to unmap, relative to the start of 2760 * the underlying file. This will be rounded down to a PAGE_SIZE 2761 * boundary. Note that this is different from truncate_pagecache(), which 2762 * must keep the partial page. In contrast, we must get rid of 2763 * partial pages. 2764 * @holelen: size of prospective hole in bytes. This will be rounded 2765 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2766 * end of the file. 2767 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2768 * but 0 when invalidating pagecache, don't throw away private data. 2769 */ 2770 void unmap_mapping_range(struct address_space *mapping, 2771 loff_t const holebegin, loff_t const holelen, int even_cows) 2772 { 2773 struct zap_details details; 2774 pgoff_t hba = holebegin >> PAGE_SHIFT; 2775 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2776 2777 /* Check for overflow. */ 2778 if (sizeof(holelen) > sizeof(hlen)) { 2779 long long holeend = 2780 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2781 if (holeend & ~(long long)ULONG_MAX) 2782 hlen = ULONG_MAX - hba + 1; 2783 } 2784 2785 details.check_mapping = even_cows? NULL: mapping; 2786 details.nonlinear_vma = NULL; 2787 details.first_index = hba; 2788 details.last_index = hba + hlen - 1; 2789 if (details.last_index < details.first_index) 2790 details.last_index = ULONG_MAX; 2791 2792 2793 mutex_lock(&mapping->i_mmap_mutex); 2794 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2795 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2796 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2797 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2798 mutex_unlock(&mapping->i_mmap_mutex); 2799 } 2800 EXPORT_SYMBOL(unmap_mapping_range); 2801 2802 /* 2803 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2804 * but allow concurrent faults), and pte mapped but not yet locked. 2805 * We return with mmap_sem still held, but pte unmapped and unlocked. 2806 */ 2807 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2808 unsigned long address, pte_t *page_table, pmd_t *pmd, 2809 unsigned int flags, pte_t orig_pte) 2810 { 2811 spinlock_t *ptl; 2812 struct page *page, *swapcache = NULL; 2813 swp_entry_t entry; 2814 pte_t pte; 2815 int locked; 2816 struct mem_cgroup *ptr; 2817 int exclusive = 0; 2818 int ret = 0; 2819 2820 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2821 goto out; 2822 2823 entry = pte_to_swp_entry(orig_pte); 2824 if (unlikely(non_swap_entry(entry))) { 2825 if (is_migration_entry(entry)) { 2826 migration_entry_wait(mm, pmd, address); 2827 } else if (is_hwpoison_entry(entry)) { 2828 ret = VM_FAULT_HWPOISON; 2829 } else { 2830 print_bad_pte(vma, address, orig_pte, NULL); 2831 ret = VM_FAULT_SIGBUS; 2832 } 2833 goto out; 2834 } 2835 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2836 page = lookup_swap_cache(entry); 2837 if (!page) { 2838 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2839 page = swapin_readahead(entry, 2840 GFP_HIGHUSER_MOVABLE, vma, address); 2841 if (!page) { 2842 /* 2843 * Back out if somebody else faulted in this pte 2844 * while we released the pte lock. 2845 */ 2846 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2847 if (likely(pte_same(*page_table, orig_pte))) 2848 ret = VM_FAULT_OOM; 2849 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2850 goto unlock; 2851 } 2852 2853 /* Had to read the page from swap area: Major fault */ 2854 ret = VM_FAULT_MAJOR; 2855 count_vm_event(PGMAJFAULT); 2856 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2857 } else if (PageHWPoison(page)) { 2858 /* 2859 * hwpoisoned dirty swapcache pages are kept for killing 2860 * owner processes (which may be unknown at hwpoison time) 2861 */ 2862 ret = VM_FAULT_HWPOISON; 2863 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2864 goto out_release; 2865 } 2866 2867 locked = lock_page_or_retry(page, mm, flags); 2868 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2869 if (!locked) { 2870 ret |= VM_FAULT_RETRY; 2871 goto out_release; 2872 } 2873 2874 /* 2875 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2876 * release the swapcache from under us. The page pin, and pte_same 2877 * test below, are not enough to exclude that. Even if it is still 2878 * swapcache, we need to check that the page's swap has not changed. 2879 */ 2880 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2881 goto out_page; 2882 2883 if (ksm_might_need_to_copy(page, vma, address)) { 2884 swapcache = page; 2885 page = ksm_does_need_to_copy(page, vma, address); 2886 2887 if (unlikely(!page)) { 2888 ret = VM_FAULT_OOM; 2889 page = swapcache; 2890 swapcache = NULL; 2891 goto out_page; 2892 } 2893 } 2894 2895 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2896 ret = VM_FAULT_OOM; 2897 goto out_page; 2898 } 2899 2900 /* 2901 * Back out if somebody else already faulted in this pte. 2902 */ 2903 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2904 if (unlikely(!pte_same(*page_table, orig_pte))) 2905 goto out_nomap; 2906 2907 if (unlikely(!PageUptodate(page))) { 2908 ret = VM_FAULT_SIGBUS; 2909 goto out_nomap; 2910 } 2911 2912 /* 2913 * The page isn't present yet, go ahead with the fault. 2914 * 2915 * Be careful about the sequence of operations here. 2916 * To get its accounting right, reuse_swap_page() must be called 2917 * while the page is counted on swap but not yet in mapcount i.e. 2918 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2919 * must be called after the swap_free(), or it will never succeed. 2920 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2921 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2922 * in page->private. In this case, a record in swap_cgroup is silently 2923 * discarded at swap_free(). 2924 */ 2925 2926 inc_mm_counter_fast(mm, MM_ANONPAGES); 2927 dec_mm_counter_fast(mm, MM_SWAPENTS); 2928 pte = mk_pte(page, vma->vm_page_prot); 2929 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2930 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2931 flags &= ~FAULT_FLAG_WRITE; 2932 ret |= VM_FAULT_WRITE; 2933 exclusive = 1; 2934 } 2935 flush_icache_page(vma, page); 2936 set_pte_at(mm, address, page_table, pte); 2937 do_page_add_anon_rmap(page, vma, address, exclusive); 2938 /* It's better to call commit-charge after rmap is established */ 2939 mem_cgroup_commit_charge_swapin(page, ptr); 2940 2941 swap_free(entry); 2942 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2943 try_to_free_swap(page); 2944 unlock_page(page); 2945 if (swapcache) { 2946 /* 2947 * Hold the lock to avoid the swap entry to be reused 2948 * until we take the PT lock for the pte_same() check 2949 * (to avoid false positives from pte_same). For 2950 * further safety release the lock after the swap_free 2951 * so that the swap count won't change under a 2952 * parallel locked swapcache. 2953 */ 2954 unlock_page(swapcache); 2955 page_cache_release(swapcache); 2956 } 2957 2958 if (flags & FAULT_FLAG_WRITE) { 2959 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2960 if (ret & VM_FAULT_ERROR) 2961 ret &= VM_FAULT_ERROR; 2962 goto out; 2963 } 2964 2965 /* No need to invalidate - it was non-present before */ 2966 update_mmu_cache(vma, address, page_table); 2967 unlock: 2968 pte_unmap_unlock(page_table, ptl); 2969 out: 2970 return ret; 2971 out_nomap: 2972 mem_cgroup_cancel_charge_swapin(ptr); 2973 pte_unmap_unlock(page_table, ptl); 2974 out_page: 2975 unlock_page(page); 2976 out_release: 2977 page_cache_release(page); 2978 if (swapcache) { 2979 unlock_page(swapcache); 2980 page_cache_release(swapcache); 2981 } 2982 return ret; 2983 } 2984 2985 /* 2986 * This is like a special single-page "expand_{down|up}wards()", 2987 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2988 * doesn't hit another vma. 2989 */ 2990 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2991 { 2992 address &= PAGE_MASK; 2993 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2994 struct vm_area_struct *prev = vma->vm_prev; 2995 2996 /* 2997 * Is there a mapping abutting this one below? 2998 * 2999 * That's only ok if it's the same stack mapping 3000 * that has gotten split.. 3001 */ 3002 if (prev && prev->vm_end == address) 3003 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3004 3005 expand_downwards(vma, address - PAGE_SIZE); 3006 } 3007 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3008 struct vm_area_struct *next = vma->vm_next; 3009 3010 /* As VM_GROWSDOWN but s/below/above/ */ 3011 if (next && next->vm_start == address + PAGE_SIZE) 3012 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3013 3014 expand_upwards(vma, address + PAGE_SIZE); 3015 } 3016 return 0; 3017 } 3018 3019 /* 3020 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3021 * but allow concurrent faults), and pte mapped but not yet locked. 3022 * We return with mmap_sem still held, but pte unmapped and unlocked. 3023 */ 3024 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3025 unsigned long address, pte_t *page_table, pmd_t *pmd, 3026 unsigned int flags) 3027 { 3028 struct page *page; 3029 spinlock_t *ptl; 3030 pte_t entry; 3031 3032 pte_unmap(page_table); 3033 3034 /* Check if we need to add a guard page to the stack */ 3035 if (check_stack_guard_page(vma, address) < 0) 3036 return VM_FAULT_SIGBUS; 3037 3038 /* Use the zero-page for reads */ 3039 if (!(flags & FAULT_FLAG_WRITE)) { 3040 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3041 vma->vm_page_prot)); 3042 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3043 if (!pte_none(*page_table)) 3044 goto unlock; 3045 goto setpte; 3046 } 3047 3048 /* Allocate our own private page. */ 3049 if (unlikely(anon_vma_prepare(vma))) 3050 goto oom; 3051 page = alloc_zeroed_user_highpage_movable(vma, address); 3052 if (!page) 3053 goto oom; 3054 __SetPageUptodate(page); 3055 3056 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3057 goto oom_free_page; 3058 3059 entry = mk_pte(page, vma->vm_page_prot); 3060 if (vma->vm_flags & VM_WRITE) 3061 entry = pte_mkwrite(pte_mkdirty(entry)); 3062 3063 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3064 if (!pte_none(*page_table)) 3065 goto release; 3066 3067 inc_mm_counter_fast(mm, MM_ANONPAGES); 3068 page_add_new_anon_rmap(page, vma, address); 3069 setpte: 3070 set_pte_at(mm, address, page_table, entry); 3071 3072 /* No need to invalidate - it was non-present before */ 3073 update_mmu_cache(vma, address, page_table); 3074 unlock: 3075 pte_unmap_unlock(page_table, ptl); 3076 return 0; 3077 release: 3078 mem_cgroup_uncharge_page(page); 3079 page_cache_release(page); 3080 goto unlock; 3081 oom_free_page: 3082 page_cache_release(page); 3083 oom: 3084 return VM_FAULT_OOM; 3085 } 3086 3087 /* 3088 * __do_fault() tries to create a new page mapping. It aggressively 3089 * tries to share with existing pages, but makes a separate copy if 3090 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3091 * the next page fault. 3092 * 3093 * As this is called only for pages that do not currently exist, we 3094 * do not need to flush old virtual caches or the TLB. 3095 * 3096 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3097 * but allow concurrent faults), and pte neither mapped nor locked. 3098 * We return with mmap_sem still held, but pte unmapped and unlocked. 3099 */ 3100 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3101 unsigned long address, pmd_t *pmd, 3102 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3103 { 3104 pte_t *page_table; 3105 spinlock_t *ptl; 3106 struct page *page; 3107 pte_t entry; 3108 int anon = 0; 3109 int charged = 0; 3110 struct page *dirty_page = NULL; 3111 struct vm_fault vmf; 3112 int ret; 3113 int page_mkwrite = 0; 3114 3115 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3116 vmf.pgoff = pgoff; 3117 vmf.flags = flags; 3118 vmf.page = NULL; 3119 3120 ret = vma->vm_ops->fault(vma, &vmf); 3121 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3122 VM_FAULT_RETRY))) 3123 return ret; 3124 3125 if (unlikely(PageHWPoison(vmf.page))) { 3126 if (ret & VM_FAULT_LOCKED) 3127 unlock_page(vmf.page); 3128 return VM_FAULT_HWPOISON; 3129 } 3130 3131 /* 3132 * For consistency in subsequent calls, make the faulted page always 3133 * locked. 3134 */ 3135 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3136 lock_page(vmf.page); 3137 else 3138 VM_BUG_ON(!PageLocked(vmf.page)); 3139 3140 /* 3141 * Should we do an early C-O-W break? 3142 */ 3143 page = vmf.page; 3144 if (flags & FAULT_FLAG_WRITE) { 3145 if (!(vma->vm_flags & VM_SHARED)) { 3146 anon = 1; 3147 if (unlikely(anon_vma_prepare(vma))) { 3148 ret = VM_FAULT_OOM; 3149 goto out; 3150 } 3151 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 3152 vma, address); 3153 if (!page) { 3154 ret = VM_FAULT_OOM; 3155 goto out; 3156 } 3157 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 3158 ret = VM_FAULT_OOM; 3159 page_cache_release(page); 3160 goto out; 3161 } 3162 charged = 1; 3163 copy_user_highpage(page, vmf.page, address, vma); 3164 __SetPageUptodate(page); 3165 } else { 3166 /* 3167 * If the page will be shareable, see if the backing 3168 * address space wants to know that the page is about 3169 * to become writable 3170 */ 3171 if (vma->vm_ops->page_mkwrite) { 3172 int tmp; 3173 3174 unlock_page(page); 3175 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3176 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3177 if (unlikely(tmp & 3178 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3179 ret = tmp; 3180 goto unwritable_page; 3181 } 3182 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3183 lock_page(page); 3184 if (!page->mapping) { 3185 ret = 0; /* retry the fault */ 3186 unlock_page(page); 3187 goto unwritable_page; 3188 } 3189 } else 3190 VM_BUG_ON(!PageLocked(page)); 3191 page_mkwrite = 1; 3192 } 3193 } 3194 3195 } 3196 3197 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3198 3199 /* 3200 * This silly early PAGE_DIRTY setting removes a race 3201 * due to the bad i386 page protection. But it's valid 3202 * for other architectures too. 3203 * 3204 * Note that if FAULT_FLAG_WRITE is set, we either now have 3205 * an exclusive copy of the page, or this is a shared mapping, 3206 * so we can make it writable and dirty to avoid having to 3207 * handle that later. 3208 */ 3209 /* Only go through if we didn't race with anybody else... */ 3210 if (likely(pte_same(*page_table, orig_pte))) { 3211 flush_icache_page(vma, page); 3212 entry = mk_pte(page, vma->vm_page_prot); 3213 if (flags & FAULT_FLAG_WRITE) 3214 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3215 if (anon) { 3216 inc_mm_counter_fast(mm, MM_ANONPAGES); 3217 page_add_new_anon_rmap(page, vma, address); 3218 } else { 3219 inc_mm_counter_fast(mm, MM_FILEPAGES); 3220 page_add_file_rmap(page); 3221 if (flags & FAULT_FLAG_WRITE) { 3222 dirty_page = page; 3223 get_page(dirty_page); 3224 } 3225 } 3226 set_pte_at(mm, address, page_table, entry); 3227 3228 /* no need to invalidate: a not-present page won't be cached */ 3229 update_mmu_cache(vma, address, page_table); 3230 } else { 3231 if (charged) 3232 mem_cgroup_uncharge_page(page); 3233 if (anon) 3234 page_cache_release(page); 3235 else 3236 anon = 1; /* no anon but release faulted_page */ 3237 } 3238 3239 pte_unmap_unlock(page_table, ptl); 3240 3241 out: 3242 if (dirty_page) { 3243 struct address_space *mapping = page->mapping; 3244 3245 if (set_page_dirty(dirty_page)) 3246 page_mkwrite = 1; 3247 unlock_page(dirty_page); 3248 put_page(dirty_page); 3249 if (page_mkwrite && mapping) { 3250 /* 3251 * Some device drivers do not set page.mapping but still 3252 * dirty their pages 3253 */ 3254 balance_dirty_pages_ratelimited(mapping); 3255 } 3256 3257 /* file_update_time outside page_lock */ 3258 if (vma->vm_file) 3259 file_update_time(vma->vm_file); 3260 } else { 3261 unlock_page(vmf.page); 3262 if (anon) 3263 page_cache_release(vmf.page); 3264 } 3265 3266 return ret; 3267 3268 unwritable_page: 3269 page_cache_release(page); 3270 return ret; 3271 } 3272 3273 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3274 unsigned long address, pte_t *page_table, pmd_t *pmd, 3275 unsigned int flags, pte_t orig_pte) 3276 { 3277 pgoff_t pgoff = (((address & PAGE_MASK) 3278 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3279 3280 pte_unmap(page_table); 3281 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3282 } 3283 3284 /* 3285 * Fault of a previously existing named mapping. Repopulate the pte 3286 * from the encoded file_pte if possible. This enables swappable 3287 * nonlinear vmas. 3288 * 3289 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3290 * but allow concurrent faults), and pte mapped but not yet locked. 3291 * We return with mmap_sem still held, but pte unmapped and unlocked. 3292 */ 3293 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3294 unsigned long address, pte_t *page_table, pmd_t *pmd, 3295 unsigned int flags, pte_t orig_pte) 3296 { 3297 pgoff_t pgoff; 3298 3299 flags |= FAULT_FLAG_NONLINEAR; 3300 3301 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3302 return 0; 3303 3304 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3305 /* 3306 * Page table corrupted: show pte and kill process. 3307 */ 3308 print_bad_pte(vma, address, orig_pte, NULL); 3309 return VM_FAULT_SIGBUS; 3310 } 3311 3312 pgoff = pte_to_pgoff(orig_pte); 3313 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3314 } 3315 3316 /* 3317 * These routines also need to handle stuff like marking pages dirty 3318 * and/or accessed for architectures that don't do it in hardware (most 3319 * RISC architectures). The early dirtying is also good on the i386. 3320 * 3321 * There is also a hook called "update_mmu_cache()" that architectures 3322 * with external mmu caches can use to update those (ie the Sparc or 3323 * PowerPC hashed page tables that act as extended TLBs). 3324 * 3325 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3326 * but allow concurrent faults), and pte mapped but not yet locked. 3327 * We return with mmap_sem still held, but pte unmapped and unlocked. 3328 */ 3329 int handle_pte_fault(struct mm_struct *mm, 3330 struct vm_area_struct *vma, unsigned long address, 3331 pte_t *pte, pmd_t *pmd, unsigned int flags) 3332 { 3333 pte_t entry; 3334 spinlock_t *ptl; 3335 3336 entry = *pte; 3337 if (!pte_present(entry)) { 3338 if (pte_none(entry)) { 3339 if (vma->vm_ops) { 3340 if (likely(vma->vm_ops->fault)) 3341 return do_linear_fault(mm, vma, address, 3342 pte, pmd, flags, entry); 3343 } 3344 return do_anonymous_page(mm, vma, address, 3345 pte, pmd, flags); 3346 } 3347 if (pte_file(entry)) 3348 return do_nonlinear_fault(mm, vma, address, 3349 pte, pmd, flags, entry); 3350 return do_swap_page(mm, vma, address, 3351 pte, pmd, flags, entry); 3352 } 3353 3354 ptl = pte_lockptr(mm, pmd); 3355 spin_lock(ptl); 3356 if (unlikely(!pte_same(*pte, entry))) 3357 goto unlock; 3358 if (flags & FAULT_FLAG_WRITE) { 3359 if (!pte_write(entry)) 3360 return do_wp_page(mm, vma, address, 3361 pte, pmd, ptl, entry); 3362 entry = pte_mkdirty(entry); 3363 } 3364 entry = pte_mkyoung(entry); 3365 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3366 update_mmu_cache(vma, address, pte); 3367 } else { 3368 /* 3369 * This is needed only for protection faults but the arch code 3370 * is not yet telling us if this is a protection fault or not. 3371 * This still avoids useless tlb flushes for .text page faults 3372 * with threads. 3373 */ 3374 if (flags & FAULT_FLAG_WRITE) 3375 flush_tlb_fix_spurious_fault(vma, address); 3376 } 3377 unlock: 3378 pte_unmap_unlock(pte, ptl); 3379 return 0; 3380 } 3381 3382 /* 3383 * By the time we get here, we already hold the mm semaphore 3384 */ 3385 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3386 unsigned long address, unsigned int flags) 3387 { 3388 pgd_t *pgd; 3389 pud_t *pud; 3390 pmd_t *pmd; 3391 pte_t *pte; 3392 3393 __set_current_state(TASK_RUNNING); 3394 3395 count_vm_event(PGFAULT); 3396 mem_cgroup_count_vm_event(mm, PGFAULT); 3397 3398 /* do counter updates before entering really critical section. */ 3399 check_sync_rss_stat(current); 3400 3401 if (unlikely(is_vm_hugetlb_page(vma))) 3402 return hugetlb_fault(mm, vma, address, flags); 3403 3404 pgd = pgd_offset(mm, address); 3405 pud = pud_alloc(mm, pgd, address); 3406 if (!pud) 3407 return VM_FAULT_OOM; 3408 pmd = pmd_alloc(mm, pud, address); 3409 if (!pmd) 3410 return VM_FAULT_OOM; 3411 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3412 if (!vma->vm_ops) 3413 return do_huge_pmd_anonymous_page(mm, vma, address, 3414 pmd, flags); 3415 } else { 3416 pmd_t orig_pmd = *pmd; 3417 barrier(); 3418 if (pmd_trans_huge(orig_pmd)) { 3419 if (flags & FAULT_FLAG_WRITE && 3420 !pmd_write(orig_pmd) && 3421 !pmd_trans_splitting(orig_pmd)) 3422 return do_huge_pmd_wp_page(mm, vma, address, 3423 pmd, orig_pmd); 3424 return 0; 3425 } 3426 } 3427 3428 /* 3429 * Use __pte_alloc instead of pte_alloc_map, because we can't 3430 * run pte_offset_map on the pmd, if an huge pmd could 3431 * materialize from under us from a different thread. 3432 */ 3433 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address)) 3434 return VM_FAULT_OOM; 3435 /* if an huge pmd materialized from under us just retry later */ 3436 if (unlikely(pmd_trans_huge(*pmd))) 3437 return 0; 3438 /* 3439 * A regular pmd is established and it can't morph into a huge pmd 3440 * from under us anymore at this point because we hold the mmap_sem 3441 * read mode and khugepaged takes it in write mode. So now it's 3442 * safe to run pte_offset_map(). 3443 */ 3444 pte = pte_offset_map(pmd, address); 3445 3446 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3447 } 3448 3449 #ifndef __PAGETABLE_PUD_FOLDED 3450 /* 3451 * Allocate page upper directory. 3452 * We've already handled the fast-path in-line. 3453 */ 3454 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3455 { 3456 pud_t *new = pud_alloc_one(mm, address); 3457 if (!new) 3458 return -ENOMEM; 3459 3460 smp_wmb(); /* See comment in __pte_alloc */ 3461 3462 spin_lock(&mm->page_table_lock); 3463 if (pgd_present(*pgd)) /* Another has populated it */ 3464 pud_free(mm, new); 3465 else 3466 pgd_populate(mm, pgd, new); 3467 spin_unlock(&mm->page_table_lock); 3468 return 0; 3469 } 3470 #endif /* __PAGETABLE_PUD_FOLDED */ 3471 3472 #ifndef __PAGETABLE_PMD_FOLDED 3473 /* 3474 * Allocate page middle directory. 3475 * We've already handled the fast-path in-line. 3476 */ 3477 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3478 { 3479 pmd_t *new = pmd_alloc_one(mm, address); 3480 if (!new) 3481 return -ENOMEM; 3482 3483 smp_wmb(); /* See comment in __pte_alloc */ 3484 3485 spin_lock(&mm->page_table_lock); 3486 #ifndef __ARCH_HAS_4LEVEL_HACK 3487 if (pud_present(*pud)) /* Another has populated it */ 3488 pmd_free(mm, new); 3489 else 3490 pud_populate(mm, pud, new); 3491 #else 3492 if (pgd_present(*pud)) /* Another has populated it */ 3493 pmd_free(mm, new); 3494 else 3495 pgd_populate(mm, pud, new); 3496 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3497 spin_unlock(&mm->page_table_lock); 3498 return 0; 3499 } 3500 #endif /* __PAGETABLE_PMD_FOLDED */ 3501 3502 int make_pages_present(unsigned long addr, unsigned long end) 3503 { 3504 int ret, len, write; 3505 struct vm_area_struct * vma; 3506 3507 vma = find_vma(current->mm, addr); 3508 if (!vma) 3509 return -ENOMEM; 3510 /* 3511 * We want to touch writable mappings with a write fault in order 3512 * to break COW, except for shared mappings because these don't COW 3513 * and we would not want to dirty them for nothing. 3514 */ 3515 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE; 3516 BUG_ON(addr >= end); 3517 BUG_ON(end > vma->vm_end); 3518 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3519 ret = get_user_pages(current, current->mm, addr, 3520 len, write, 0, NULL, NULL); 3521 if (ret < 0) 3522 return ret; 3523 return ret == len ? 0 : -EFAULT; 3524 } 3525 3526 #if !defined(__HAVE_ARCH_GATE_AREA) 3527 3528 #if defined(AT_SYSINFO_EHDR) 3529 static struct vm_area_struct gate_vma; 3530 3531 static int __init gate_vma_init(void) 3532 { 3533 gate_vma.vm_mm = NULL; 3534 gate_vma.vm_start = FIXADDR_USER_START; 3535 gate_vma.vm_end = FIXADDR_USER_END; 3536 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3537 gate_vma.vm_page_prot = __P101; 3538 /* 3539 * Make sure the vDSO gets into every core dump. 3540 * Dumping its contents makes post-mortem fully interpretable later 3541 * without matching up the same kernel and hardware config to see 3542 * what PC values meant. 3543 */ 3544 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3545 return 0; 3546 } 3547 __initcall(gate_vma_init); 3548 #endif 3549 3550 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3551 { 3552 #ifdef AT_SYSINFO_EHDR 3553 return &gate_vma; 3554 #else 3555 return NULL; 3556 #endif 3557 } 3558 3559 int in_gate_area_no_mm(unsigned long addr) 3560 { 3561 #ifdef AT_SYSINFO_EHDR 3562 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3563 return 1; 3564 #endif 3565 return 0; 3566 } 3567 3568 #endif /* __HAVE_ARCH_GATE_AREA */ 3569 3570 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3571 pte_t **ptepp, spinlock_t **ptlp) 3572 { 3573 pgd_t *pgd; 3574 pud_t *pud; 3575 pmd_t *pmd; 3576 pte_t *ptep; 3577 3578 pgd = pgd_offset(mm, address); 3579 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3580 goto out; 3581 3582 pud = pud_offset(pgd, address); 3583 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3584 goto out; 3585 3586 pmd = pmd_offset(pud, address); 3587 VM_BUG_ON(pmd_trans_huge(*pmd)); 3588 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3589 goto out; 3590 3591 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3592 if (pmd_huge(*pmd)) 3593 goto out; 3594 3595 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3596 if (!ptep) 3597 goto out; 3598 if (!pte_present(*ptep)) 3599 goto unlock; 3600 *ptepp = ptep; 3601 return 0; 3602 unlock: 3603 pte_unmap_unlock(ptep, *ptlp); 3604 out: 3605 return -EINVAL; 3606 } 3607 3608 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3609 pte_t **ptepp, spinlock_t **ptlp) 3610 { 3611 int res; 3612 3613 /* (void) is needed to make gcc happy */ 3614 (void) __cond_lock(*ptlp, 3615 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3616 return res; 3617 } 3618 3619 /** 3620 * follow_pfn - look up PFN at a user virtual address 3621 * @vma: memory mapping 3622 * @address: user virtual address 3623 * @pfn: location to store found PFN 3624 * 3625 * Only IO mappings and raw PFN mappings are allowed. 3626 * 3627 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3628 */ 3629 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3630 unsigned long *pfn) 3631 { 3632 int ret = -EINVAL; 3633 spinlock_t *ptl; 3634 pte_t *ptep; 3635 3636 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3637 return ret; 3638 3639 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3640 if (ret) 3641 return ret; 3642 *pfn = pte_pfn(*ptep); 3643 pte_unmap_unlock(ptep, ptl); 3644 return 0; 3645 } 3646 EXPORT_SYMBOL(follow_pfn); 3647 3648 #ifdef CONFIG_HAVE_IOREMAP_PROT 3649 int follow_phys(struct vm_area_struct *vma, 3650 unsigned long address, unsigned int flags, 3651 unsigned long *prot, resource_size_t *phys) 3652 { 3653 int ret = -EINVAL; 3654 pte_t *ptep, pte; 3655 spinlock_t *ptl; 3656 3657 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3658 goto out; 3659 3660 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3661 goto out; 3662 pte = *ptep; 3663 3664 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3665 goto unlock; 3666 3667 *prot = pgprot_val(pte_pgprot(pte)); 3668 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3669 3670 ret = 0; 3671 unlock: 3672 pte_unmap_unlock(ptep, ptl); 3673 out: 3674 return ret; 3675 } 3676 3677 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3678 void *buf, int len, int write) 3679 { 3680 resource_size_t phys_addr; 3681 unsigned long prot = 0; 3682 void __iomem *maddr; 3683 int offset = addr & (PAGE_SIZE-1); 3684 3685 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3686 return -EINVAL; 3687 3688 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3689 if (write) 3690 memcpy_toio(maddr + offset, buf, len); 3691 else 3692 memcpy_fromio(buf, maddr + offset, len); 3693 iounmap(maddr); 3694 3695 return len; 3696 } 3697 #endif 3698 3699 /* 3700 * Access another process' address space as given in mm. If non-NULL, use the 3701 * given task for page fault accounting. 3702 */ 3703 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3704 unsigned long addr, void *buf, int len, int write) 3705 { 3706 struct vm_area_struct *vma; 3707 void *old_buf = buf; 3708 3709 down_read(&mm->mmap_sem); 3710 /* ignore errors, just check how much was successfully transferred */ 3711 while (len) { 3712 int bytes, ret, offset; 3713 void *maddr; 3714 struct page *page = NULL; 3715 3716 ret = get_user_pages(tsk, mm, addr, 1, 3717 write, 1, &page, &vma); 3718 if (ret <= 0) { 3719 /* 3720 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3721 * we can access using slightly different code. 3722 */ 3723 #ifdef CONFIG_HAVE_IOREMAP_PROT 3724 vma = find_vma(mm, addr); 3725 if (!vma || vma->vm_start > addr) 3726 break; 3727 if (vma->vm_ops && vma->vm_ops->access) 3728 ret = vma->vm_ops->access(vma, addr, buf, 3729 len, write); 3730 if (ret <= 0) 3731 #endif 3732 break; 3733 bytes = ret; 3734 } else { 3735 bytes = len; 3736 offset = addr & (PAGE_SIZE-1); 3737 if (bytes > PAGE_SIZE-offset) 3738 bytes = PAGE_SIZE-offset; 3739 3740 maddr = kmap(page); 3741 if (write) { 3742 copy_to_user_page(vma, page, addr, 3743 maddr + offset, buf, bytes); 3744 set_page_dirty_lock(page); 3745 } else { 3746 copy_from_user_page(vma, page, addr, 3747 buf, maddr + offset, bytes); 3748 } 3749 kunmap(page); 3750 page_cache_release(page); 3751 } 3752 len -= bytes; 3753 buf += bytes; 3754 addr += bytes; 3755 } 3756 up_read(&mm->mmap_sem); 3757 3758 return buf - old_buf; 3759 } 3760 3761 /** 3762 * access_remote_vm - access another process' address space 3763 * @mm: the mm_struct of the target address space 3764 * @addr: start address to access 3765 * @buf: source or destination buffer 3766 * @len: number of bytes to transfer 3767 * @write: whether the access is a write 3768 * 3769 * The caller must hold a reference on @mm. 3770 */ 3771 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3772 void *buf, int len, int write) 3773 { 3774 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3775 } 3776 3777 /* 3778 * Access another process' address space. 3779 * Source/target buffer must be kernel space, 3780 * Do not walk the page table directly, use get_user_pages 3781 */ 3782 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3783 void *buf, int len, int write) 3784 { 3785 struct mm_struct *mm; 3786 int ret; 3787 3788 mm = get_task_mm(tsk); 3789 if (!mm) 3790 return 0; 3791 3792 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3793 mmput(mm); 3794 3795 return ret; 3796 } 3797 3798 /* 3799 * Print the name of a VMA. 3800 */ 3801 void print_vma_addr(char *prefix, unsigned long ip) 3802 { 3803 struct mm_struct *mm = current->mm; 3804 struct vm_area_struct *vma; 3805 3806 /* 3807 * Do not print if we are in atomic 3808 * contexts (in exception stacks, etc.): 3809 */ 3810 if (preempt_count()) 3811 return; 3812 3813 down_read(&mm->mmap_sem); 3814 vma = find_vma(mm, ip); 3815 if (vma && vma->vm_file) { 3816 struct file *f = vma->vm_file; 3817 char *buf = (char *)__get_free_page(GFP_KERNEL); 3818 if (buf) { 3819 char *p, *s; 3820 3821 p = d_path(&f->f_path, buf, PAGE_SIZE); 3822 if (IS_ERR(p)) 3823 p = "?"; 3824 s = strrchr(p, '/'); 3825 if (s) 3826 p = s+1; 3827 printk("%s%s[%lx+%lx]", prefix, p, 3828 vma->vm_start, 3829 vma->vm_end - vma->vm_start); 3830 free_page((unsigned long)buf); 3831 } 3832 } 3833 up_read(¤t->mm->mmap_sem); 3834 } 3835 3836 #ifdef CONFIG_PROVE_LOCKING 3837 void might_fault(void) 3838 { 3839 /* 3840 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3841 * holding the mmap_sem, this is safe because kernel memory doesn't 3842 * get paged out, therefore we'll never actually fault, and the 3843 * below annotations will generate false positives. 3844 */ 3845 if (segment_eq(get_fs(), KERNEL_DS)) 3846 return; 3847 3848 might_sleep(); 3849 /* 3850 * it would be nicer only to annotate paths which are not under 3851 * pagefault_disable, however that requires a larger audit and 3852 * providing helpers like get_user_atomic. 3853 */ 3854 if (!in_atomic() && current->mm) 3855 might_lock_read(¤t->mm->mmap_sem); 3856 } 3857 EXPORT_SYMBOL(might_fault); 3858 #endif 3859 3860 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3861 static void clear_gigantic_page(struct page *page, 3862 unsigned long addr, 3863 unsigned int pages_per_huge_page) 3864 { 3865 int i; 3866 struct page *p = page; 3867 3868 might_sleep(); 3869 for (i = 0; i < pages_per_huge_page; 3870 i++, p = mem_map_next(p, page, i)) { 3871 cond_resched(); 3872 clear_user_highpage(p, addr + i * PAGE_SIZE); 3873 } 3874 } 3875 void clear_huge_page(struct page *page, 3876 unsigned long addr, unsigned int pages_per_huge_page) 3877 { 3878 int i; 3879 3880 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3881 clear_gigantic_page(page, addr, pages_per_huge_page); 3882 return; 3883 } 3884 3885 might_sleep(); 3886 for (i = 0; i < pages_per_huge_page; i++) { 3887 cond_resched(); 3888 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3889 } 3890 } 3891 3892 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3893 unsigned long addr, 3894 struct vm_area_struct *vma, 3895 unsigned int pages_per_huge_page) 3896 { 3897 int i; 3898 struct page *dst_base = dst; 3899 struct page *src_base = src; 3900 3901 for (i = 0; i < pages_per_huge_page; ) { 3902 cond_resched(); 3903 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3904 3905 i++; 3906 dst = mem_map_next(dst, dst_base, i); 3907 src = mem_map_next(src, src_base, i); 3908 } 3909 } 3910 3911 void copy_user_huge_page(struct page *dst, struct page *src, 3912 unsigned long addr, struct vm_area_struct *vma, 3913 unsigned int pages_per_huge_page) 3914 { 3915 int i; 3916 3917 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3918 copy_user_gigantic_page(dst, src, addr, vma, 3919 pages_per_huge_page); 3920 return; 3921 } 3922 3923 might_sleep(); 3924 for (i = 0; i < pages_per_huge_page; i++) { 3925 cond_resched(); 3926 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3927 } 3928 } 3929 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3930