xref: /openbmc/linux/mm/memory.c (revision 80ecbd24)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69 
70 #include "internal.h"
71 
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
75 
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80 
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84 
85 /*
86  * A number of key systems in x86 including ioremap() rely on the assumption
87  * that high_memory defines the upper bound on direct map memory, then end
88  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
89  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
90  * and ZONE_HIGHMEM.
91  */
92 void * high_memory;
93 
94 EXPORT_SYMBOL(high_memory);
95 
96 /*
97  * Randomize the address space (stacks, mmaps, brk, etc.).
98  *
99  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
100  *   as ancient (libc5 based) binaries can segfault. )
101  */
102 int randomize_va_space __read_mostly =
103 #ifdef CONFIG_COMPAT_BRK
104 					1;
105 #else
106 					2;
107 #endif
108 
109 static int __init disable_randmaps(char *s)
110 {
111 	randomize_va_space = 0;
112 	return 1;
113 }
114 __setup("norandmaps", disable_randmaps);
115 
116 unsigned long zero_pfn __read_mostly;
117 unsigned long highest_memmap_pfn __read_mostly;
118 
119 /*
120  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
121  */
122 static int __init init_zero_pfn(void)
123 {
124 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
125 	return 0;
126 }
127 core_initcall(init_zero_pfn);
128 
129 
130 #if defined(SPLIT_RSS_COUNTING)
131 
132 void sync_mm_rss(struct mm_struct *mm)
133 {
134 	int i;
135 
136 	for (i = 0; i < NR_MM_COUNTERS; i++) {
137 		if (current->rss_stat.count[i]) {
138 			add_mm_counter(mm, i, current->rss_stat.count[i]);
139 			current->rss_stat.count[i] = 0;
140 		}
141 	}
142 	current->rss_stat.events = 0;
143 }
144 
145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
146 {
147 	struct task_struct *task = current;
148 
149 	if (likely(task->mm == mm))
150 		task->rss_stat.count[member] += val;
151 	else
152 		add_mm_counter(mm, member, val);
153 }
154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
156 
157 /* sync counter once per 64 page faults */
158 #define TASK_RSS_EVENTS_THRESH	(64)
159 static void check_sync_rss_stat(struct task_struct *task)
160 {
161 	if (unlikely(task != current))
162 		return;
163 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
164 		sync_mm_rss(task->mm);
165 }
166 #else /* SPLIT_RSS_COUNTING */
167 
168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
170 
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 }
174 
175 #endif /* SPLIT_RSS_COUNTING */
176 
177 #ifdef HAVE_GENERIC_MMU_GATHER
178 
179 static int tlb_next_batch(struct mmu_gather *tlb)
180 {
181 	struct mmu_gather_batch *batch;
182 
183 	batch = tlb->active;
184 	if (batch->next) {
185 		tlb->active = batch->next;
186 		return 1;
187 	}
188 
189 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
190 		return 0;
191 
192 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193 	if (!batch)
194 		return 0;
195 
196 	tlb->batch_count++;
197 	batch->next = NULL;
198 	batch->nr   = 0;
199 	batch->max  = MAX_GATHER_BATCH;
200 
201 	tlb->active->next = batch;
202 	tlb->active = batch;
203 
204 	return 1;
205 }
206 
207 /* tlb_gather_mmu
208  *	Called to initialize an (on-stack) mmu_gather structure for page-table
209  *	tear-down from @mm. The @fullmm argument is used when @mm is without
210  *	users and we're going to destroy the full address space (exit/execve).
211  */
212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
213 {
214 	tlb->mm = mm;
215 
216 	/* Is it from 0 to ~0? */
217 	tlb->fullmm     = !(start | (end+1));
218 	tlb->need_flush_all = 0;
219 	tlb->start	= start;
220 	tlb->end	= end;
221 	tlb->need_flush = 0;
222 	tlb->local.next = NULL;
223 	tlb->local.nr   = 0;
224 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
225 	tlb->active     = &tlb->local;
226 	tlb->batch_count = 0;
227 
228 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
229 	tlb->batch = NULL;
230 #endif
231 }
232 
233 void tlb_flush_mmu(struct mmu_gather *tlb)
234 {
235 	struct mmu_gather_batch *batch;
236 
237 	if (!tlb->need_flush)
238 		return;
239 	tlb->need_flush = 0;
240 	tlb_flush(tlb);
241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
242 	tlb_table_flush(tlb);
243 #endif
244 
245 	for (batch = &tlb->local; batch; batch = batch->next) {
246 		free_pages_and_swap_cache(batch->pages, batch->nr);
247 		batch->nr = 0;
248 	}
249 	tlb->active = &tlb->local;
250 }
251 
252 /* tlb_finish_mmu
253  *	Called at the end of the shootdown operation to free up any resources
254  *	that were required.
255  */
256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
257 {
258 	struct mmu_gather_batch *batch, *next;
259 
260 	tlb_flush_mmu(tlb);
261 
262 	/* keep the page table cache within bounds */
263 	check_pgt_cache();
264 
265 	for (batch = tlb->local.next; batch; batch = next) {
266 		next = batch->next;
267 		free_pages((unsigned long)batch, 0);
268 	}
269 	tlb->local.next = NULL;
270 }
271 
272 /* __tlb_remove_page
273  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
274  *	handling the additional races in SMP caused by other CPUs caching valid
275  *	mappings in their TLBs. Returns the number of free page slots left.
276  *	When out of page slots we must call tlb_flush_mmu().
277  */
278 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
279 {
280 	struct mmu_gather_batch *batch;
281 
282 	VM_BUG_ON(!tlb->need_flush);
283 
284 	batch = tlb->active;
285 	batch->pages[batch->nr++] = page;
286 	if (batch->nr == batch->max) {
287 		if (!tlb_next_batch(tlb))
288 			return 0;
289 		batch = tlb->active;
290 	}
291 	VM_BUG_ON(batch->nr > batch->max);
292 
293 	return batch->max - batch->nr;
294 }
295 
296 #endif /* HAVE_GENERIC_MMU_GATHER */
297 
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
299 
300 /*
301  * See the comment near struct mmu_table_batch.
302  */
303 
304 static void tlb_remove_table_smp_sync(void *arg)
305 {
306 	/* Simply deliver the interrupt */
307 }
308 
309 static void tlb_remove_table_one(void *table)
310 {
311 	/*
312 	 * This isn't an RCU grace period and hence the page-tables cannot be
313 	 * assumed to be actually RCU-freed.
314 	 *
315 	 * It is however sufficient for software page-table walkers that rely on
316 	 * IRQ disabling. See the comment near struct mmu_table_batch.
317 	 */
318 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 	__tlb_remove_table(table);
320 }
321 
322 static void tlb_remove_table_rcu(struct rcu_head *head)
323 {
324 	struct mmu_table_batch *batch;
325 	int i;
326 
327 	batch = container_of(head, struct mmu_table_batch, rcu);
328 
329 	for (i = 0; i < batch->nr; i++)
330 		__tlb_remove_table(batch->tables[i]);
331 
332 	free_page((unsigned long)batch);
333 }
334 
335 void tlb_table_flush(struct mmu_gather *tlb)
336 {
337 	struct mmu_table_batch **batch = &tlb->batch;
338 
339 	if (*batch) {
340 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 		*batch = NULL;
342 	}
343 }
344 
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
346 {
347 	struct mmu_table_batch **batch = &tlb->batch;
348 
349 	tlb->need_flush = 1;
350 
351 	/*
352 	 * When there's less then two users of this mm there cannot be a
353 	 * concurrent page-table walk.
354 	 */
355 	if (atomic_read(&tlb->mm->mm_users) < 2) {
356 		__tlb_remove_table(table);
357 		return;
358 	}
359 
360 	if (*batch == NULL) {
361 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 		if (*batch == NULL) {
363 			tlb_remove_table_one(table);
364 			return;
365 		}
366 		(*batch)->nr = 0;
367 	}
368 	(*batch)->tables[(*batch)->nr++] = table;
369 	if ((*batch)->nr == MAX_TABLE_BATCH)
370 		tlb_table_flush(tlb);
371 }
372 
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
374 
375 /*
376  * If a p?d_bad entry is found while walking page tables, report
377  * the error, before resetting entry to p?d_none.  Usually (but
378  * very seldom) called out from the p?d_none_or_clear_bad macros.
379  */
380 
381 void pgd_clear_bad(pgd_t *pgd)
382 {
383 	pgd_ERROR(*pgd);
384 	pgd_clear(pgd);
385 }
386 
387 void pud_clear_bad(pud_t *pud)
388 {
389 	pud_ERROR(*pud);
390 	pud_clear(pud);
391 }
392 
393 void pmd_clear_bad(pmd_t *pmd)
394 {
395 	pmd_ERROR(*pmd);
396 	pmd_clear(pmd);
397 }
398 
399 /*
400  * Note: this doesn't free the actual pages themselves. That
401  * has been handled earlier when unmapping all the memory regions.
402  */
403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404 			   unsigned long addr)
405 {
406 	pgtable_t token = pmd_pgtable(*pmd);
407 	pmd_clear(pmd);
408 	pte_free_tlb(tlb, token, addr);
409 	tlb->mm->nr_ptes--;
410 }
411 
412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413 				unsigned long addr, unsigned long end,
414 				unsigned long floor, unsigned long ceiling)
415 {
416 	pmd_t *pmd;
417 	unsigned long next;
418 	unsigned long start;
419 
420 	start = addr;
421 	pmd = pmd_offset(pud, addr);
422 	do {
423 		next = pmd_addr_end(addr, end);
424 		if (pmd_none_or_clear_bad(pmd))
425 			continue;
426 		free_pte_range(tlb, pmd, addr);
427 	} while (pmd++, addr = next, addr != end);
428 
429 	start &= PUD_MASK;
430 	if (start < floor)
431 		return;
432 	if (ceiling) {
433 		ceiling &= PUD_MASK;
434 		if (!ceiling)
435 			return;
436 	}
437 	if (end - 1 > ceiling - 1)
438 		return;
439 
440 	pmd = pmd_offset(pud, start);
441 	pud_clear(pud);
442 	pmd_free_tlb(tlb, pmd, start);
443 }
444 
445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446 				unsigned long addr, unsigned long end,
447 				unsigned long floor, unsigned long ceiling)
448 {
449 	pud_t *pud;
450 	unsigned long next;
451 	unsigned long start;
452 
453 	start = addr;
454 	pud = pud_offset(pgd, addr);
455 	do {
456 		next = pud_addr_end(addr, end);
457 		if (pud_none_or_clear_bad(pud))
458 			continue;
459 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
460 	} while (pud++, addr = next, addr != end);
461 
462 	start &= PGDIR_MASK;
463 	if (start < floor)
464 		return;
465 	if (ceiling) {
466 		ceiling &= PGDIR_MASK;
467 		if (!ceiling)
468 			return;
469 	}
470 	if (end - 1 > ceiling - 1)
471 		return;
472 
473 	pud = pud_offset(pgd, start);
474 	pgd_clear(pgd);
475 	pud_free_tlb(tlb, pud, start);
476 }
477 
478 /*
479  * This function frees user-level page tables of a process.
480  *
481  * Must be called with pagetable lock held.
482  */
483 void free_pgd_range(struct mmu_gather *tlb,
484 			unsigned long addr, unsigned long end,
485 			unsigned long floor, unsigned long ceiling)
486 {
487 	pgd_t *pgd;
488 	unsigned long next;
489 
490 	/*
491 	 * The next few lines have given us lots of grief...
492 	 *
493 	 * Why are we testing PMD* at this top level?  Because often
494 	 * there will be no work to do at all, and we'd prefer not to
495 	 * go all the way down to the bottom just to discover that.
496 	 *
497 	 * Why all these "- 1"s?  Because 0 represents both the bottom
498 	 * of the address space and the top of it (using -1 for the
499 	 * top wouldn't help much: the masks would do the wrong thing).
500 	 * The rule is that addr 0 and floor 0 refer to the bottom of
501 	 * the address space, but end 0 and ceiling 0 refer to the top
502 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 	 * that end 0 case should be mythical).
504 	 *
505 	 * Wherever addr is brought up or ceiling brought down, we must
506 	 * be careful to reject "the opposite 0" before it confuses the
507 	 * subsequent tests.  But what about where end is brought down
508 	 * by PMD_SIZE below? no, end can't go down to 0 there.
509 	 *
510 	 * Whereas we round start (addr) and ceiling down, by different
511 	 * masks at different levels, in order to test whether a table
512 	 * now has no other vmas using it, so can be freed, we don't
513 	 * bother to round floor or end up - the tests don't need that.
514 	 */
515 
516 	addr &= PMD_MASK;
517 	if (addr < floor) {
518 		addr += PMD_SIZE;
519 		if (!addr)
520 			return;
521 	}
522 	if (ceiling) {
523 		ceiling &= PMD_MASK;
524 		if (!ceiling)
525 			return;
526 	}
527 	if (end - 1 > ceiling - 1)
528 		end -= PMD_SIZE;
529 	if (addr > end - 1)
530 		return;
531 
532 	pgd = pgd_offset(tlb->mm, addr);
533 	do {
534 		next = pgd_addr_end(addr, end);
535 		if (pgd_none_or_clear_bad(pgd))
536 			continue;
537 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
538 	} while (pgd++, addr = next, addr != end);
539 }
540 
541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
542 		unsigned long floor, unsigned long ceiling)
543 {
544 	while (vma) {
545 		struct vm_area_struct *next = vma->vm_next;
546 		unsigned long addr = vma->vm_start;
547 
548 		/*
549 		 * Hide vma from rmap and truncate_pagecache before freeing
550 		 * pgtables
551 		 */
552 		unlink_anon_vmas(vma);
553 		unlink_file_vma(vma);
554 
555 		if (is_vm_hugetlb_page(vma)) {
556 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
557 				floor, next? next->vm_start: ceiling);
558 		} else {
559 			/*
560 			 * Optimization: gather nearby vmas into one call down
561 			 */
562 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
563 			       && !is_vm_hugetlb_page(next)) {
564 				vma = next;
565 				next = vma->vm_next;
566 				unlink_anon_vmas(vma);
567 				unlink_file_vma(vma);
568 			}
569 			free_pgd_range(tlb, addr, vma->vm_end,
570 				floor, next? next->vm_start: ceiling);
571 		}
572 		vma = next;
573 	}
574 }
575 
576 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
577 		pmd_t *pmd, unsigned long address)
578 {
579 	pgtable_t new = pte_alloc_one(mm, address);
580 	int wait_split_huge_page;
581 	if (!new)
582 		return -ENOMEM;
583 
584 	/*
585 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
586 	 * visible before the pte is made visible to other CPUs by being
587 	 * put into page tables.
588 	 *
589 	 * The other side of the story is the pointer chasing in the page
590 	 * table walking code (when walking the page table without locking;
591 	 * ie. most of the time). Fortunately, these data accesses consist
592 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
593 	 * being the notable exception) will already guarantee loads are
594 	 * seen in-order. See the alpha page table accessors for the
595 	 * smp_read_barrier_depends() barriers in page table walking code.
596 	 */
597 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
598 
599 	spin_lock(&mm->page_table_lock);
600 	wait_split_huge_page = 0;
601 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
602 		mm->nr_ptes++;
603 		pmd_populate(mm, pmd, new);
604 		new = NULL;
605 	} else if (unlikely(pmd_trans_splitting(*pmd)))
606 		wait_split_huge_page = 1;
607 	spin_unlock(&mm->page_table_lock);
608 	if (new)
609 		pte_free(mm, new);
610 	if (wait_split_huge_page)
611 		wait_split_huge_page(vma->anon_vma, pmd);
612 	return 0;
613 }
614 
615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
616 {
617 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618 	if (!new)
619 		return -ENOMEM;
620 
621 	smp_wmb(); /* See comment in __pte_alloc */
622 
623 	spin_lock(&init_mm.page_table_lock);
624 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
625 		pmd_populate_kernel(&init_mm, pmd, new);
626 		new = NULL;
627 	} else
628 		VM_BUG_ON(pmd_trans_splitting(*pmd));
629 	spin_unlock(&init_mm.page_table_lock);
630 	if (new)
631 		pte_free_kernel(&init_mm, new);
632 	return 0;
633 }
634 
635 static inline void init_rss_vec(int *rss)
636 {
637 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
638 }
639 
640 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
641 {
642 	int i;
643 
644 	if (current->mm == mm)
645 		sync_mm_rss(mm);
646 	for (i = 0; i < NR_MM_COUNTERS; i++)
647 		if (rss[i])
648 			add_mm_counter(mm, i, rss[i]);
649 }
650 
651 /*
652  * This function is called to print an error when a bad pte
653  * is found. For example, we might have a PFN-mapped pte in
654  * a region that doesn't allow it.
655  *
656  * The calling function must still handle the error.
657  */
658 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
659 			  pte_t pte, struct page *page)
660 {
661 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
662 	pud_t *pud = pud_offset(pgd, addr);
663 	pmd_t *pmd = pmd_offset(pud, addr);
664 	struct address_space *mapping;
665 	pgoff_t index;
666 	static unsigned long resume;
667 	static unsigned long nr_shown;
668 	static unsigned long nr_unshown;
669 
670 	/*
671 	 * Allow a burst of 60 reports, then keep quiet for that minute;
672 	 * or allow a steady drip of one report per second.
673 	 */
674 	if (nr_shown == 60) {
675 		if (time_before(jiffies, resume)) {
676 			nr_unshown++;
677 			return;
678 		}
679 		if (nr_unshown) {
680 			printk(KERN_ALERT
681 				"BUG: Bad page map: %lu messages suppressed\n",
682 				nr_unshown);
683 			nr_unshown = 0;
684 		}
685 		nr_shown = 0;
686 	}
687 	if (nr_shown++ == 0)
688 		resume = jiffies + 60 * HZ;
689 
690 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691 	index = linear_page_index(vma, addr);
692 
693 	printk(KERN_ALERT
694 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
695 		current->comm,
696 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
697 	if (page)
698 		dump_page(page);
699 	printk(KERN_ALERT
700 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
702 	/*
703 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
704 	 */
705 	if (vma->vm_ops)
706 		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
707 		       vma->vm_ops->fault);
708 	if (vma->vm_file && vma->vm_file->f_op)
709 		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
710 		       vma->vm_file->f_op->mmap);
711 	dump_stack();
712 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
713 }
714 
715 static inline bool is_cow_mapping(vm_flags_t flags)
716 {
717 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
718 }
719 
720 /*
721  * vm_normal_page -- This function gets the "struct page" associated with a pte.
722  *
723  * "Special" mappings do not wish to be associated with a "struct page" (either
724  * it doesn't exist, or it exists but they don't want to touch it). In this
725  * case, NULL is returned here. "Normal" mappings do have a struct page.
726  *
727  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
728  * pte bit, in which case this function is trivial. Secondly, an architecture
729  * may not have a spare pte bit, which requires a more complicated scheme,
730  * described below.
731  *
732  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
733  * special mapping (even if there are underlying and valid "struct pages").
734  * COWed pages of a VM_PFNMAP are always normal.
735  *
736  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
737  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
738  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
739  * mapping will always honor the rule
740  *
741  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
742  *
743  * And for normal mappings this is false.
744  *
745  * This restricts such mappings to be a linear translation from virtual address
746  * to pfn. To get around this restriction, we allow arbitrary mappings so long
747  * as the vma is not a COW mapping; in that case, we know that all ptes are
748  * special (because none can have been COWed).
749  *
750  *
751  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
752  *
753  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
754  * page" backing, however the difference is that _all_ pages with a struct
755  * page (that is, those where pfn_valid is true) are refcounted and considered
756  * normal pages by the VM. The disadvantage is that pages are refcounted
757  * (which can be slower and simply not an option for some PFNMAP users). The
758  * advantage is that we don't have to follow the strict linearity rule of
759  * PFNMAP mappings in order to support COWable mappings.
760  *
761  */
762 #ifdef __HAVE_ARCH_PTE_SPECIAL
763 # define HAVE_PTE_SPECIAL 1
764 #else
765 # define HAVE_PTE_SPECIAL 0
766 #endif
767 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
768 				pte_t pte)
769 {
770 	unsigned long pfn = pte_pfn(pte);
771 
772 	if (HAVE_PTE_SPECIAL) {
773 		if (likely(!pte_special(pte)))
774 			goto check_pfn;
775 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
776 			return NULL;
777 		if (!is_zero_pfn(pfn))
778 			print_bad_pte(vma, addr, pte, NULL);
779 		return NULL;
780 	}
781 
782 	/* !HAVE_PTE_SPECIAL case follows: */
783 
784 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
785 		if (vma->vm_flags & VM_MIXEDMAP) {
786 			if (!pfn_valid(pfn))
787 				return NULL;
788 			goto out;
789 		} else {
790 			unsigned long off;
791 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
792 			if (pfn == vma->vm_pgoff + off)
793 				return NULL;
794 			if (!is_cow_mapping(vma->vm_flags))
795 				return NULL;
796 		}
797 	}
798 
799 	if (is_zero_pfn(pfn))
800 		return NULL;
801 check_pfn:
802 	if (unlikely(pfn > highest_memmap_pfn)) {
803 		print_bad_pte(vma, addr, pte, NULL);
804 		return NULL;
805 	}
806 
807 	/*
808 	 * NOTE! We still have PageReserved() pages in the page tables.
809 	 * eg. VDSO mappings can cause them to exist.
810 	 */
811 out:
812 	return pfn_to_page(pfn);
813 }
814 
815 /*
816  * copy one vm_area from one task to the other. Assumes the page tables
817  * already present in the new task to be cleared in the whole range
818  * covered by this vma.
819  */
820 
821 static inline unsigned long
822 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
823 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
824 		unsigned long addr, int *rss)
825 {
826 	unsigned long vm_flags = vma->vm_flags;
827 	pte_t pte = *src_pte;
828 	struct page *page;
829 
830 	/* pte contains position in swap or file, so copy. */
831 	if (unlikely(!pte_present(pte))) {
832 		if (!pte_file(pte)) {
833 			swp_entry_t entry = pte_to_swp_entry(pte);
834 
835 			if (swap_duplicate(entry) < 0)
836 				return entry.val;
837 
838 			/* make sure dst_mm is on swapoff's mmlist. */
839 			if (unlikely(list_empty(&dst_mm->mmlist))) {
840 				spin_lock(&mmlist_lock);
841 				if (list_empty(&dst_mm->mmlist))
842 					list_add(&dst_mm->mmlist,
843 						 &src_mm->mmlist);
844 				spin_unlock(&mmlist_lock);
845 			}
846 			if (likely(!non_swap_entry(entry)))
847 				rss[MM_SWAPENTS]++;
848 			else if (is_migration_entry(entry)) {
849 				page = migration_entry_to_page(entry);
850 
851 				if (PageAnon(page))
852 					rss[MM_ANONPAGES]++;
853 				else
854 					rss[MM_FILEPAGES]++;
855 
856 				if (is_write_migration_entry(entry) &&
857 				    is_cow_mapping(vm_flags)) {
858 					/*
859 					 * COW mappings require pages in both
860 					 * parent and child to be set to read.
861 					 */
862 					make_migration_entry_read(&entry);
863 					pte = swp_entry_to_pte(entry);
864 					set_pte_at(src_mm, addr, src_pte, pte);
865 				}
866 			}
867 		}
868 		goto out_set_pte;
869 	}
870 
871 	/*
872 	 * If it's a COW mapping, write protect it both
873 	 * in the parent and the child
874 	 */
875 	if (is_cow_mapping(vm_flags)) {
876 		ptep_set_wrprotect(src_mm, addr, src_pte);
877 		pte = pte_wrprotect(pte);
878 	}
879 
880 	/*
881 	 * If it's a shared mapping, mark it clean in
882 	 * the child
883 	 */
884 	if (vm_flags & VM_SHARED)
885 		pte = pte_mkclean(pte);
886 	pte = pte_mkold(pte);
887 
888 	page = vm_normal_page(vma, addr, pte);
889 	if (page) {
890 		get_page(page);
891 		page_dup_rmap(page);
892 		if (PageAnon(page))
893 			rss[MM_ANONPAGES]++;
894 		else
895 			rss[MM_FILEPAGES]++;
896 	}
897 
898 out_set_pte:
899 	set_pte_at(dst_mm, addr, dst_pte, pte);
900 	return 0;
901 }
902 
903 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
904 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
905 		   unsigned long addr, unsigned long end)
906 {
907 	pte_t *orig_src_pte, *orig_dst_pte;
908 	pte_t *src_pte, *dst_pte;
909 	spinlock_t *src_ptl, *dst_ptl;
910 	int progress = 0;
911 	int rss[NR_MM_COUNTERS];
912 	swp_entry_t entry = (swp_entry_t){0};
913 
914 again:
915 	init_rss_vec(rss);
916 
917 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
918 	if (!dst_pte)
919 		return -ENOMEM;
920 	src_pte = pte_offset_map(src_pmd, addr);
921 	src_ptl = pte_lockptr(src_mm, src_pmd);
922 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
923 	orig_src_pte = src_pte;
924 	orig_dst_pte = dst_pte;
925 	arch_enter_lazy_mmu_mode();
926 
927 	do {
928 		/*
929 		 * We are holding two locks at this point - either of them
930 		 * could generate latencies in another task on another CPU.
931 		 */
932 		if (progress >= 32) {
933 			progress = 0;
934 			if (need_resched() ||
935 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
936 				break;
937 		}
938 		if (pte_none(*src_pte)) {
939 			progress++;
940 			continue;
941 		}
942 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
943 							vma, addr, rss);
944 		if (entry.val)
945 			break;
946 		progress += 8;
947 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
948 
949 	arch_leave_lazy_mmu_mode();
950 	spin_unlock(src_ptl);
951 	pte_unmap(orig_src_pte);
952 	add_mm_rss_vec(dst_mm, rss);
953 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
954 	cond_resched();
955 
956 	if (entry.val) {
957 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
958 			return -ENOMEM;
959 		progress = 0;
960 	}
961 	if (addr != end)
962 		goto again;
963 	return 0;
964 }
965 
966 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
967 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
968 		unsigned long addr, unsigned long end)
969 {
970 	pmd_t *src_pmd, *dst_pmd;
971 	unsigned long next;
972 
973 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
974 	if (!dst_pmd)
975 		return -ENOMEM;
976 	src_pmd = pmd_offset(src_pud, addr);
977 	do {
978 		next = pmd_addr_end(addr, end);
979 		if (pmd_trans_huge(*src_pmd)) {
980 			int err;
981 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
982 			err = copy_huge_pmd(dst_mm, src_mm,
983 					    dst_pmd, src_pmd, addr, vma);
984 			if (err == -ENOMEM)
985 				return -ENOMEM;
986 			if (!err)
987 				continue;
988 			/* fall through */
989 		}
990 		if (pmd_none_or_clear_bad(src_pmd))
991 			continue;
992 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
993 						vma, addr, next))
994 			return -ENOMEM;
995 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
996 	return 0;
997 }
998 
999 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1001 		unsigned long addr, unsigned long end)
1002 {
1003 	pud_t *src_pud, *dst_pud;
1004 	unsigned long next;
1005 
1006 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1007 	if (!dst_pud)
1008 		return -ENOMEM;
1009 	src_pud = pud_offset(src_pgd, addr);
1010 	do {
1011 		next = pud_addr_end(addr, end);
1012 		if (pud_none_or_clear_bad(src_pud))
1013 			continue;
1014 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1015 						vma, addr, next))
1016 			return -ENOMEM;
1017 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1018 	return 0;
1019 }
1020 
1021 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1022 		struct vm_area_struct *vma)
1023 {
1024 	pgd_t *src_pgd, *dst_pgd;
1025 	unsigned long next;
1026 	unsigned long addr = vma->vm_start;
1027 	unsigned long end = vma->vm_end;
1028 	unsigned long mmun_start;	/* For mmu_notifiers */
1029 	unsigned long mmun_end;		/* For mmu_notifiers */
1030 	bool is_cow;
1031 	int ret;
1032 
1033 	/*
1034 	 * Don't copy ptes where a page fault will fill them correctly.
1035 	 * Fork becomes much lighter when there are big shared or private
1036 	 * readonly mappings. The tradeoff is that copy_page_range is more
1037 	 * efficient than faulting.
1038 	 */
1039 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1040 			       VM_PFNMAP | VM_MIXEDMAP))) {
1041 		if (!vma->anon_vma)
1042 			return 0;
1043 	}
1044 
1045 	if (is_vm_hugetlb_page(vma))
1046 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1047 
1048 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1049 		/*
1050 		 * We do not free on error cases below as remove_vma
1051 		 * gets called on error from higher level routine
1052 		 */
1053 		ret = track_pfn_copy(vma);
1054 		if (ret)
1055 			return ret;
1056 	}
1057 
1058 	/*
1059 	 * We need to invalidate the secondary MMU mappings only when
1060 	 * there could be a permission downgrade on the ptes of the
1061 	 * parent mm. And a permission downgrade will only happen if
1062 	 * is_cow_mapping() returns true.
1063 	 */
1064 	is_cow = is_cow_mapping(vma->vm_flags);
1065 	mmun_start = addr;
1066 	mmun_end   = end;
1067 	if (is_cow)
1068 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1069 						    mmun_end);
1070 
1071 	ret = 0;
1072 	dst_pgd = pgd_offset(dst_mm, addr);
1073 	src_pgd = pgd_offset(src_mm, addr);
1074 	do {
1075 		next = pgd_addr_end(addr, end);
1076 		if (pgd_none_or_clear_bad(src_pgd))
1077 			continue;
1078 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1079 					    vma, addr, next))) {
1080 			ret = -ENOMEM;
1081 			break;
1082 		}
1083 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1084 
1085 	if (is_cow)
1086 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1087 	return ret;
1088 }
1089 
1090 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1091 				struct vm_area_struct *vma, pmd_t *pmd,
1092 				unsigned long addr, unsigned long end,
1093 				struct zap_details *details)
1094 {
1095 	struct mm_struct *mm = tlb->mm;
1096 	int force_flush = 0;
1097 	int rss[NR_MM_COUNTERS];
1098 	spinlock_t *ptl;
1099 	pte_t *start_pte;
1100 	pte_t *pte;
1101 
1102 again:
1103 	init_rss_vec(rss);
1104 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1105 	pte = start_pte;
1106 	arch_enter_lazy_mmu_mode();
1107 	do {
1108 		pte_t ptent = *pte;
1109 		if (pte_none(ptent)) {
1110 			continue;
1111 		}
1112 
1113 		if (pte_present(ptent)) {
1114 			struct page *page;
1115 
1116 			page = vm_normal_page(vma, addr, ptent);
1117 			if (unlikely(details) && page) {
1118 				/*
1119 				 * unmap_shared_mapping_pages() wants to
1120 				 * invalidate cache without truncating:
1121 				 * unmap shared but keep private pages.
1122 				 */
1123 				if (details->check_mapping &&
1124 				    details->check_mapping != page->mapping)
1125 					continue;
1126 				/*
1127 				 * Each page->index must be checked when
1128 				 * invalidating or truncating nonlinear.
1129 				 */
1130 				if (details->nonlinear_vma &&
1131 				    (page->index < details->first_index ||
1132 				     page->index > details->last_index))
1133 					continue;
1134 			}
1135 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1136 							tlb->fullmm);
1137 			tlb_remove_tlb_entry(tlb, pte, addr);
1138 			if (unlikely(!page))
1139 				continue;
1140 			if (unlikely(details) && details->nonlinear_vma
1141 			    && linear_page_index(details->nonlinear_vma,
1142 						addr) != page->index) {
1143 				pte_t ptfile = pgoff_to_pte(page->index);
1144 				if (pte_soft_dirty(ptent))
1145 					pte_file_mksoft_dirty(ptfile);
1146 				set_pte_at(mm, addr, pte, ptfile);
1147 			}
1148 			if (PageAnon(page))
1149 				rss[MM_ANONPAGES]--;
1150 			else {
1151 				if (pte_dirty(ptent))
1152 					set_page_dirty(page);
1153 				if (pte_young(ptent) &&
1154 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1155 					mark_page_accessed(page);
1156 				rss[MM_FILEPAGES]--;
1157 			}
1158 			page_remove_rmap(page);
1159 			if (unlikely(page_mapcount(page) < 0))
1160 				print_bad_pte(vma, addr, ptent, page);
1161 			force_flush = !__tlb_remove_page(tlb, page);
1162 			if (force_flush)
1163 				break;
1164 			continue;
1165 		}
1166 		/*
1167 		 * If details->check_mapping, we leave swap entries;
1168 		 * if details->nonlinear_vma, we leave file entries.
1169 		 */
1170 		if (unlikely(details))
1171 			continue;
1172 		if (pte_file(ptent)) {
1173 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1174 				print_bad_pte(vma, addr, ptent, NULL);
1175 		} else {
1176 			swp_entry_t entry = pte_to_swp_entry(ptent);
1177 
1178 			if (!non_swap_entry(entry))
1179 				rss[MM_SWAPENTS]--;
1180 			else if (is_migration_entry(entry)) {
1181 				struct page *page;
1182 
1183 				page = migration_entry_to_page(entry);
1184 
1185 				if (PageAnon(page))
1186 					rss[MM_ANONPAGES]--;
1187 				else
1188 					rss[MM_FILEPAGES]--;
1189 			}
1190 			if (unlikely(!free_swap_and_cache(entry)))
1191 				print_bad_pte(vma, addr, ptent, NULL);
1192 		}
1193 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1194 	} while (pte++, addr += PAGE_SIZE, addr != end);
1195 
1196 	add_mm_rss_vec(mm, rss);
1197 	arch_leave_lazy_mmu_mode();
1198 	pte_unmap_unlock(start_pte, ptl);
1199 
1200 	/*
1201 	 * mmu_gather ran out of room to batch pages, we break out of
1202 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1203 	 * and page-free while holding it.
1204 	 */
1205 	if (force_flush) {
1206 		unsigned long old_end;
1207 
1208 		force_flush = 0;
1209 
1210 		/*
1211 		 * Flush the TLB just for the previous segment,
1212 		 * then update the range to be the remaining
1213 		 * TLB range.
1214 		 */
1215 		old_end = tlb->end;
1216 		tlb->end = addr;
1217 
1218 		tlb_flush_mmu(tlb);
1219 
1220 		tlb->start = addr;
1221 		tlb->end = old_end;
1222 
1223 		if (addr != end)
1224 			goto again;
1225 	}
1226 
1227 	return addr;
1228 }
1229 
1230 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1231 				struct vm_area_struct *vma, pud_t *pud,
1232 				unsigned long addr, unsigned long end,
1233 				struct zap_details *details)
1234 {
1235 	pmd_t *pmd;
1236 	unsigned long next;
1237 
1238 	pmd = pmd_offset(pud, addr);
1239 	do {
1240 		next = pmd_addr_end(addr, end);
1241 		if (pmd_trans_huge(*pmd)) {
1242 			if (next - addr != HPAGE_PMD_SIZE) {
1243 #ifdef CONFIG_DEBUG_VM
1244 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1245 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1246 						__func__, addr, end,
1247 						vma->vm_start,
1248 						vma->vm_end);
1249 					BUG();
1250 				}
1251 #endif
1252 				split_huge_page_pmd(vma, addr, pmd);
1253 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1254 				goto next;
1255 			/* fall through */
1256 		}
1257 		/*
1258 		 * Here there can be other concurrent MADV_DONTNEED or
1259 		 * trans huge page faults running, and if the pmd is
1260 		 * none or trans huge it can change under us. This is
1261 		 * because MADV_DONTNEED holds the mmap_sem in read
1262 		 * mode.
1263 		 */
1264 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1265 			goto next;
1266 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1267 next:
1268 		cond_resched();
1269 	} while (pmd++, addr = next, addr != end);
1270 
1271 	return addr;
1272 }
1273 
1274 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1275 				struct vm_area_struct *vma, pgd_t *pgd,
1276 				unsigned long addr, unsigned long end,
1277 				struct zap_details *details)
1278 {
1279 	pud_t *pud;
1280 	unsigned long next;
1281 
1282 	pud = pud_offset(pgd, addr);
1283 	do {
1284 		next = pud_addr_end(addr, end);
1285 		if (pud_none_or_clear_bad(pud))
1286 			continue;
1287 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1288 	} while (pud++, addr = next, addr != end);
1289 
1290 	return addr;
1291 }
1292 
1293 static void unmap_page_range(struct mmu_gather *tlb,
1294 			     struct vm_area_struct *vma,
1295 			     unsigned long addr, unsigned long end,
1296 			     struct zap_details *details)
1297 {
1298 	pgd_t *pgd;
1299 	unsigned long next;
1300 
1301 	if (details && !details->check_mapping && !details->nonlinear_vma)
1302 		details = NULL;
1303 
1304 	BUG_ON(addr >= end);
1305 	mem_cgroup_uncharge_start();
1306 	tlb_start_vma(tlb, vma);
1307 	pgd = pgd_offset(vma->vm_mm, addr);
1308 	do {
1309 		next = pgd_addr_end(addr, end);
1310 		if (pgd_none_or_clear_bad(pgd))
1311 			continue;
1312 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1313 	} while (pgd++, addr = next, addr != end);
1314 	tlb_end_vma(tlb, vma);
1315 	mem_cgroup_uncharge_end();
1316 }
1317 
1318 
1319 static void unmap_single_vma(struct mmu_gather *tlb,
1320 		struct vm_area_struct *vma, unsigned long start_addr,
1321 		unsigned long end_addr,
1322 		struct zap_details *details)
1323 {
1324 	unsigned long start = max(vma->vm_start, start_addr);
1325 	unsigned long end;
1326 
1327 	if (start >= vma->vm_end)
1328 		return;
1329 	end = min(vma->vm_end, end_addr);
1330 	if (end <= vma->vm_start)
1331 		return;
1332 
1333 	if (vma->vm_file)
1334 		uprobe_munmap(vma, start, end);
1335 
1336 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1337 		untrack_pfn(vma, 0, 0);
1338 
1339 	if (start != end) {
1340 		if (unlikely(is_vm_hugetlb_page(vma))) {
1341 			/*
1342 			 * It is undesirable to test vma->vm_file as it
1343 			 * should be non-null for valid hugetlb area.
1344 			 * However, vm_file will be NULL in the error
1345 			 * cleanup path of do_mmap_pgoff. When
1346 			 * hugetlbfs ->mmap method fails,
1347 			 * do_mmap_pgoff() nullifies vma->vm_file
1348 			 * before calling this function to clean up.
1349 			 * Since no pte has actually been setup, it is
1350 			 * safe to do nothing in this case.
1351 			 */
1352 			if (vma->vm_file) {
1353 				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1354 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1355 				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1356 			}
1357 		} else
1358 			unmap_page_range(tlb, vma, start, end, details);
1359 	}
1360 }
1361 
1362 /**
1363  * unmap_vmas - unmap a range of memory covered by a list of vma's
1364  * @tlb: address of the caller's struct mmu_gather
1365  * @vma: the starting vma
1366  * @start_addr: virtual address at which to start unmapping
1367  * @end_addr: virtual address at which to end unmapping
1368  *
1369  * Unmap all pages in the vma list.
1370  *
1371  * Only addresses between `start' and `end' will be unmapped.
1372  *
1373  * The VMA list must be sorted in ascending virtual address order.
1374  *
1375  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1376  * range after unmap_vmas() returns.  So the only responsibility here is to
1377  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1378  * drops the lock and schedules.
1379  */
1380 void unmap_vmas(struct mmu_gather *tlb,
1381 		struct vm_area_struct *vma, unsigned long start_addr,
1382 		unsigned long end_addr)
1383 {
1384 	struct mm_struct *mm = vma->vm_mm;
1385 
1386 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1387 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1388 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1389 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1390 }
1391 
1392 /**
1393  * zap_page_range - remove user pages in a given range
1394  * @vma: vm_area_struct holding the applicable pages
1395  * @start: starting address of pages to zap
1396  * @size: number of bytes to zap
1397  * @details: details of nonlinear truncation or shared cache invalidation
1398  *
1399  * Caller must protect the VMA list
1400  */
1401 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1402 		unsigned long size, struct zap_details *details)
1403 {
1404 	struct mm_struct *mm = vma->vm_mm;
1405 	struct mmu_gather tlb;
1406 	unsigned long end = start + size;
1407 
1408 	lru_add_drain();
1409 	tlb_gather_mmu(&tlb, mm, start, end);
1410 	update_hiwater_rss(mm);
1411 	mmu_notifier_invalidate_range_start(mm, start, end);
1412 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1413 		unmap_single_vma(&tlb, vma, start, end, details);
1414 	mmu_notifier_invalidate_range_end(mm, start, end);
1415 	tlb_finish_mmu(&tlb, start, end);
1416 }
1417 
1418 /**
1419  * zap_page_range_single - remove user pages in a given range
1420  * @vma: vm_area_struct holding the applicable pages
1421  * @address: starting address of pages to zap
1422  * @size: number of bytes to zap
1423  * @details: details of nonlinear truncation or shared cache invalidation
1424  *
1425  * The range must fit into one VMA.
1426  */
1427 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1428 		unsigned long size, struct zap_details *details)
1429 {
1430 	struct mm_struct *mm = vma->vm_mm;
1431 	struct mmu_gather tlb;
1432 	unsigned long end = address + size;
1433 
1434 	lru_add_drain();
1435 	tlb_gather_mmu(&tlb, mm, address, end);
1436 	update_hiwater_rss(mm);
1437 	mmu_notifier_invalidate_range_start(mm, address, end);
1438 	unmap_single_vma(&tlb, vma, address, end, details);
1439 	mmu_notifier_invalidate_range_end(mm, address, end);
1440 	tlb_finish_mmu(&tlb, address, end);
1441 }
1442 
1443 /**
1444  * zap_vma_ptes - remove ptes mapping the vma
1445  * @vma: vm_area_struct holding ptes to be zapped
1446  * @address: starting address of pages to zap
1447  * @size: number of bytes to zap
1448  *
1449  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1450  *
1451  * The entire address range must be fully contained within the vma.
1452  *
1453  * Returns 0 if successful.
1454  */
1455 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1456 		unsigned long size)
1457 {
1458 	if (address < vma->vm_start || address + size > vma->vm_end ||
1459 	    		!(vma->vm_flags & VM_PFNMAP))
1460 		return -1;
1461 	zap_page_range_single(vma, address, size, NULL);
1462 	return 0;
1463 }
1464 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1465 
1466 /**
1467  * follow_page_mask - look up a page descriptor from a user-virtual address
1468  * @vma: vm_area_struct mapping @address
1469  * @address: virtual address to look up
1470  * @flags: flags modifying lookup behaviour
1471  * @page_mask: on output, *page_mask is set according to the size of the page
1472  *
1473  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1474  *
1475  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1476  * an error pointer if there is a mapping to something not represented
1477  * by a page descriptor (see also vm_normal_page()).
1478  */
1479 struct page *follow_page_mask(struct vm_area_struct *vma,
1480 			      unsigned long address, unsigned int flags,
1481 			      unsigned int *page_mask)
1482 {
1483 	pgd_t *pgd;
1484 	pud_t *pud;
1485 	pmd_t *pmd;
1486 	pte_t *ptep, pte;
1487 	spinlock_t *ptl;
1488 	struct page *page;
1489 	struct mm_struct *mm = vma->vm_mm;
1490 
1491 	*page_mask = 0;
1492 
1493 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1494 	if (!IS_ERR(page)) {
1495 		BUG_ON(flags & FOLL_GET);
1496 		goto out;
1497 	}
1498 
1499 	page = NULL;
1500 	pgd = pgd_offset(mm, address);
1501 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1502 		goto no_page_table;
1503 
1504 	pud = pud_offset(pgd, address);
1505 	if (pud_none(*pud))
1506 		goto no_page_table;
1507 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1508 		BUG_ON(flags & FOLL_GET);
1509 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1510 		goto out;
1511 	}
1512 	if (unlikely(pud_bad(*pud)))
1513 		goto no_page_table;
1514 
1515 	pmd = pmd_offset(pud, address);
1516 	if (pmd_none(*pmd))
1517 		goto no_page_table;
1518 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1519 		BUG_ON(flags & FOLL_GET);
1520 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1521 		goto out;
1522 	}
1523 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1524 		goto no_page_table;
1525 	if (pmd_trans_huge(*pmd)) {
1526 		if (flags & FOLL_SPLIT) {
1527 			split_huge_page_pmd(vma, address, pmd);
1528 			goto split_fallthrough;
1529 		}
1530 		spin_lock(&mm->page_table_lock);
1531 		if (likely(pmd_trans_huge(*pmd))) {
1532 			if (unlikely(pmd_trans_splitting(*pmd))) {
1533 				spin_unlock(&mm->page_table_lock);
1534 				wait_split_huge_page(vma->anon_vma, pmd);
1535 			} else {
1536 				page = follow_trans_huge_pmd(vma, address,
1537 							     pmd, flags);
1538 				spin_unlock(&mm->page_table_lock);
1539 				*page_mask = HPAGE_PMD_NR - 1;
1540 				goto out;
1541 			}
1542 		} else
1543 			spin_unlock(&mm->page_table_lock);
1544 		/* fall through */
1545 	}
1546 split_fallthrough:
1547 	if (unlikely(pmd_bad(*pmd)))
1548 		goto no_page_table;
1549 
1550 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1551 
1552 	pte = *ptep;
1553 	if (!pte_present(pte)) {
1554 		swp_entry_t entry;
1555 		/*
1556 		 * KSM's break_ksm() relies upon recognizing a ksm page
1557 		 * even while it is being migrated, so for that case we
1558 		 * need migration_entry_wait().
1559 		 */
1560 		if (likely(!(flags & FOLL_MIGRATION)))
1561 			goto no_page;
1562 		if (pte_none(pte) || pte_file(pte))
1563 			goto no_page;
1564 		entry = pte_to_swp_entry(pte);
1565 		if (!is_migration_entry(entry))
1566 			goto no_page;
1567 		pte_unmap_unlock(ptep, ptl);
1568 		migration_entry_wait(mm, pmd, address);
1569 		goto split_fallthrough;
1570 	}
1571 	if ((flags & FOLL_NUMA) && pte_numa(pte))
1572 		goto no_page;
1573 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1574 		goto unlock;
1575 
1576 	page = vm_normal_page(vma, address, pte);
1577 	if (unlikely(!page)) {
1578 		if ((flags & FOLL_DUMP) ||
1579 		    !is_zero_pfn(pte_pfn(pte)))
1580 			goto bad_page;
1581 		page = pte_page(pte);
1582 	}
1583 
1584 	if (flags & FOLL_GET)
1585 		get_page_foll(page);
1586 	if (flags & FOLL_TOUCH) {
1587 		if ((flags & FOLL_WRITE) &&
1588 		    !pte_dirty(pte) && !PageDirty(page))
1589 			set_page_dirty(page);
1590 		/*
1591 		 * pte_mkyoung() would be more correct here, but atomic care
1592 		 * is needed to avoid losing the dirty bit: it is easier to use
1593 		 * mark_page_accessed().
1594 		 */
1595 		mark_page_accessed(page);
1596 	}
1597 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1598 		/*
1599 		 * The preliminary mapping check is mainly to avoid the
1600 		 * pointless overhead of lock_page on the ZERO_PAGE
1601 		 * which might bounce very badly if there is contention.
1602 		 *
1603 		 * If the page is already locked, we don't need to
1604 		 * handle it now - vmscan will handle it later if and
1605 		 * when it attempts to reclaim the page.
1606 		 */
1607 		if (page->mapping && trylock_page(page)) {
1608 			lru_add_drain();  /* push cached pages to LRU */
1609 			/*
1610 			 * Because we lock page here, and migration is
1611 			 * blocked by the pte's page reference, and we
1612 			 * know the page is still mapped, we don't even
1613 			 * need to check for file-cache page truncation.
1614 			 */
1615 			mlock_vma_page(page);
1616 			unlock_page(page);
1617 		}
1618 	}
1619 unlock:
1620 	pte_unmap_unlock(ptep, ptl);
1621 out:
1622 	return page;
1623 
1624 bad_page:
1625 	pte_unmap_unlock(ptep, ptl);
1626 	return ERR_PTR(-EFAULT);
1627 
1628 no_page:
1629 	pte_unmap_unlock(ptep, ptl);
1630 	if (!pte_none(pte))
1631 		return page;
1632 
1633 no_page_table:
1634 	/*
1635 	 * When core dumping an enormous anonymous area that nobody
1636 	 * has touched so far, we don't want to allocate unnecessary pages or
1637 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1638 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1639 	 * But we can only make this optimization where a hole would surely
1640 	 * be zero-filled if handle_mm_fault() actually did handle it.
1641 	 */
1642 	if ((flags & FOLL_DUMP) &&
1643 	    (!vma->vm_ops || !vma->vm_ops->fault))
1644 		return ERR_PTR(-EFAULT);
1645 	return page;
1646 }
1647 
1648 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1649 {
1650 	return stack_guard_page_start(vma, addr) ||
1651 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1652 }
1653 
1654 /**
1655  * __get_user_pages() - pin user pages in memory
1656  * @tsk:	task_struct of target task
1657  * @mm:		mm_struct of target mm
1658  * @start:	starting user address
1659  * @nr_pages:	number of pages from start to pin
1660  * @gup_flags:	flags modifying pin behaviour
1661  * @pages:	array that receives pointers to the pages pinned.
1662  *		Should be at least nr_pages long. Or NULL, if caller
1663  *		only intends to ensure the pages are faulted in.
1664  * @vmas:	array of pointers to vmas corresponding to each page.
1665  *		Or NULL if the caller does not require them.
1666  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1667  *
1668  * Returns number of pages pinned. This may be fewer than the number
1669  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1670  * were pinned, returns -errno. Each page returned must be released
1671  * with a put_page() call when it is finished with. vmas will only
1672  * remain valid while mmap_sem is held.
1673  *
1674  * Must be called with mmap_sem held for read or write.
1675  *
1676  * __get_user_pages walks a process's page tables and takes a reference to
1677  * each struct page that each user address corresponds to at a given
1678  * instant. That is, it takes the page that would be accessed if a user
1679  * thread accesses the given user virtual address at that instant.
1680  *
1681  * This does not guarantee that the page exists in the user mappings when
1682  * __get_user_pages returns, and there may even be a completely different
1683  * page there in some cases (eg. if mmapped pagecache has been invalidated
1684  * and subsequently re faulted). However it does guarantee that the page
1685  * won't be freed completely. And mostly callers simply care that the page
1686  * contains data that was valid *at some point in time*. Typically, an IO
1687  * or similar operation cannot guarantee anything stronger anyway because
1688  * locks can't be held over the syscall boundary.
1689  *
1690  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1691  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1692  * appropriate) must be called after the page is finished with, and
1693  * before put_page is called.
1694  *
1695  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1696  * or mmap_sem contention, and if waiting is needed to pin all pages,
1697  * *@nonblocking will be set to 0.
1698  *
1699  * In most cases, get_user_pages or get_user_pages_fast should be used
1700  * instead of __get_user_pages. __get_user_pages should be used only if
1701  * you need some special @gup_flags.
1702  */
1703 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1704 		unsigned long start, unsigned long nr_pages,
1705 		unsigned int gup_flags, struct page **pages,
1706 		struct vm_area_struct **vmas, int *nonblocking)
1707 {
1708 	long i;
1709 	unsigned long vm_flags;
1710 	unsigned int page_mask;
1711 
1712 	if (!nr_pages)
1713 		return 0;
1714 
1715 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1716 
1717 	/*
1718 	 * Require read or write permissions.
1719 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1720 	 */
1721 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1722 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1723 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1724 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1725 
1726 	/*
1727 	 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1728 	 * would be called on PROT_NONE ranges. We must never invoke
1729 	 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1730 	 * page faults would unprotect the PROT_NONE ranges if
1731 	 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1732 	 * bitflag. So to avoid that, don't set FOLL_NUMA if
1733 	 * FOLL_FORCE is set.
1734 	 */
1735 	if (!(gup_flags & FOLL_FORCE))
1736 		gup_flags |= FOLL_NUMA;
1737 
1738 	i = 0;
1739 
1740 	do {
1741 		struct vm_area_struct *vma;
1742 
1743 		vma = find_extend_vma(mm, start);
1744 		if (!vma && in_gate_area(mm, start)) {
1745 			unsigned long pg = start & PAGE_MASK;
1746 			pgd_t *pgd;
1747 			pud_t *pud;
1748 			pmd_t *pmd;
1749 			pte_t *pte;
1750 
1751 			/* user gate pages are read-only */
1752 			if (gup_flags & FOLL_WRITE)
1753 				return i ? : -EFAULT;
1754 			if (pg > TASK_SIZE)
1755 				pgd = pgd_offset_k(pg);
1756 			else
1757 				pgd = pgd_offset_gate(mm, pg);
1758 			BUG_ON(pgd_none(*pgd));
1759 			pud = pud_offset(pgd, pg);
1760 			BUG_ON(pud_none(*pud));
1761 			pmd = pmd_offset(pud, pg);
1762 			if (pmd_none(*pmd))
1763 				return i ? : -EFAULT;
1764 			VM_BUG_ON(pmd_trans_huge(*pmd));
1765 			pte = pte_offset_map(pmd, pg);
1766 			if (pte_none(*pte)) {
1767 				pte_unmap(pte);
1768 				return i ? : -EFAULT;
1769 			}
1770 			vma = get_gate_vma(mm);
1771 			if (pages) {
1772 				struct page *page;
1773 
1774 				page = vm_normal_page(vma, start, *pte);
1775 				if (!page) {
1776 					if (!(gup_flags & FOLL_DUMP) &&
1777 					     is_zero_pfn(pte_pfn(*pte)))
1778 						page = pte_page(*pte);
1779 					else {
1780 						pte_unmap(pte);
1781 						return i ? : -EFAULT;
1782 					}
1783 				}
1784 				pages[i] = page;
1785 				get_page(page);
1786 			}
1787 			pte_unmap(pte);
1788 			page_mask = 0;
1789 			goto next_page;
1790 		}
1791 
1792 		if (!vma ||
1793 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1794 		    !(vm_flags & vma->vm_flags))
1795 			return i ? : -EFAULT;
1796 
1797 		if (is_vm_hugetlb_page(vma)) {
1798 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1799 					&start, &nr_pages, i, gup_flags);
1800 			continue;
1801 		}
1802 
1803 		do {
1804 			struct page *page;
1805 			unsigned int foll_flags = gup_flags;
1806 			unsigned int page_increm;
1807 
1808 			/*
1809 			 * If we have a pending SIGKILL, don't keep faulting
1810 			 * pages and potentially allocating memory.
1811 			 */
1812 			if (unlikely(fatal_signal_pending(current)))
1813 				return i ? i : -ERESTARTSYS;
1814 
1815 			cond_resched();
1816 			while (!(page = follow_page_mask(vma, start,
1817 						foll_flags, &page_mask))) {
1818 				int ret;
1819 				unsigned int fault_flags = 0;
1820 
1821 				/* For mlock, just skip the stack guard page. */
1822 				if (foll_flags & FOLL_MLOCK) {
1823 					if (stack_guard_page(vma, start))
1824 						goto next_page;
1825 				}
1826 				if (foll_flags & FOLL_WRITE)
1827 					fault_flags |= FAULT_FLAG_WRITE;
1828 				if (nonblocking)
1829 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1830 				if (foll_flags & FOLL_NOWAIT)
1831 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1832 
1833 				ret = handle_mm_fault(mm, vma, start,
1834 							fault_flags);
1835 
1836 				if (ret & VM_FAULT_ERROR) {
1837 					if (ret & VM_FAULT_OOM)
1838 						return i ? i : -ENOMEM;
1839 					if (ret & (VM_FAULT_HWPOISON |
1840 						   VM_FAULT_HWPOISON_LARGE)) {
1841 						if (i)
1842 							return i;
1843 						else if (gup_flags & FOLL_HWPOISON)
1844 							return -EHWPOISON;
1845 						else
1846 							return -EFAULT;
1847 					}
1848 					if (ret & VM_FAULT_SIGBUS)
1849 						return i ? i : -EFAULT;
1850 					BUG();
1851 				}
1852 
1853 				if (tsk) {
1854 					if (ret & VM_FAULT_MAJOR)
1855 						tsk->maj_flt++;
1856 					else
1857 						tsk->min_flt++;
1858 				}
1859 
1860 				if (ret & VM_FAULT_RETRY) {
1861 					if (nonblocking)
1862 						*nonblocking = 0;
1863 					return i;
1864 				}
1865 
1866 				/*
1867 				 * The VM_FAULT_WRITE bit tells us that
1868 				 * do_wp_page has broken COW when necessary,
1869 				 * even if maybe_mkwrite decided not to set
1870 				 * pte_write. We can thus safely do subsequent
1871 				 * page lookups as if they were reads. But only
1872 				 * do so when looping for pte_write is futile:
1873 				 * in some cases userspace may also be wanting
1874 				 * to write to the gotten user page, which a
1875 				 * read fault here might prevent (a readonly
1876 				 * page might get reCOWed by userspace write).
1877 				 */
1878 				if ((ret & VM_FAULT_WRITE) &&
1879 				    !(vma->vm_flags & VM_WRITE))
1880 					foll_flags &= ~FOLL_WRITE;
1881 
1882 				cond_resched();
1883 			}
1884 			if (IS_ERR(page))
1885 				return i ? i : PTR_ERR(page);
1886 			if (pages) {
1887 				pages[i] = page;
1888 
1889 				flush_anon_page(vma, page, start);
1890 				flush_dcache_page(page);
1891 				page_mask = 0;
1892 			}
1893 next_page:
1894 			if (vmas) {
1895 				vmas[i] = vma;
1896 				page_mask = 0;
1897 			}
1898 			page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1899 			if (page_increm > nr_pages)
1900 				page_increm = nr_pages;
1901 			i += page_increm;
1902 			start += page_increm * PAGE_SIZE;
1903 			nr_pages -= page_increm;
1904 		} while (nr_pages && start < vma->vm_end);
1905 	} while (nr_pages);
1906 	return i;
1907 }
1908 EXPORT_SYMBOL(__get_user_pages);
1909 
1910 /*
1911  * fixup_user_fault() - manually resolve a user page fault
1912  * @tsk:	the task_struct to use for page fault accounting, or
1913  *		NULL if faults are not to be recorded.
1914  * @mm:		mm_struct of target mm
1915  * @address:	user address
1916  * @fault_flags:flags to pass down to handle_mm_fault()
1917  *
1918  * This is meant to be called in the specific scenario where for locking reasons
1919  * we try to access user memory in atomic context (within a pagefault_disable()
1920  * section), this returns -EFAULT, and we want to resolve the user fault before
1921  * trying again.
1922  *
1923  * Typically this is meant to be used by the futex code.
1924  *
1925  * The main difference with get_user_pages() is that this function will
1926  * unconditionally call handle_mm_fault() which will in turn perform all the
1927  * necessary SW fixup of the dirty and young bits in the PTE, while
1928  * handle_mm_fault() only guarantees to update these in the struct page.
1929  *
1930  * This is important for some architectures where those bits also gate the
1931  * access permission to the page because they are maintained in software.  On
1932  * such architectures, gup() will not be enough to make a subsequent access
1933  * succeed.
1934  *
1935  * This should be called with the mm_sem held for read.
1936  */
1937 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1938 		     unsigned long address, unsigned int fault_flags)
1939 {
1940 	struct vm_area_struct *vma;
1941 	int ret;
1942 
1943 	vma = find_extend_vma(mm, address);
1944 	if (!vma || address < vma->vm_start)
1945 		return -EFAULT;
1946 
1947 	ret = handle_mm_fault(mm, vma, address, fault_flags);
1948 	if (ret & VM_FAULT_ERROR) {
1949 		if (ret & VM_FAULT_OOM)
1950 			return -ENOMEM;
1951 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1952 			return -EHWPOISON;
1953 		if (ret & VM_FAULT_SIGBUS)
1954 			return -EFAULT;
1955 		BUG();
1956 	}
1957 	if (tsk) {
1958 		if (ret & VM_FAULT_MAJOR)
1959 			tsk->maj_flt++;
1960 		else
1961 			tsk->min_flt++;
1962 	}
1963 	return 0;
1964 }
1965 
1966 /*
1967  * get_user_pages() - pin user pages in memory
1968  * @tsk:	the task_struct to use for page fault accounting, or
1969  *		NULL if faults are not to be recorded.
1970  * @mm:		mm_struct of target mm
1971  * @start:	starting user address
1972  * @nr_pages:	number of pages from start to pin
1973  * @write:	whether pages will be written to by the caller
1974  * @force:	whether to force write access even if user mapping is
1975  *		readonly. This will result in the page being COWed even
1976  *		in MAP_SHARED mappings. You do not want this.
1977  * @pages:	array that receives pointers to the pages pinned.
1978  *		Should be at least nr_pages long. Or NULL, if caller
1979  *		only intends to ensure the pages are faulted in.
1980  * @vmas:	array of pointers to vmas corresponding to each page.
1981  *		Or NULL if the caller does not require them.
1982  *
1983  * Returns number of pages pinned. This may be fewer than the number
1984  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1985  * were pinned, returns -errno. Each page returned must be released
1986  * with a put_page() call when it is finished with. vmas will only
1987  * remain valid while mmap_sem is held.
1988  *
1989  * Must be called with mmap_sem held for read or write.
1990  *
1991  * get_user_pages walks a process's page tables and takes a reference to
1992  * each struct page that each user address corresponds to at a given
1993  * instant. That is, it takes the page that would be accessed if a user
1994  * thread accesses the given user virtual address at that instant.
1995  *
1996  * This does not guarantee that the page exists in the user mappings when
1997  * get_user_pages returns, and there may even be a completely different
1998  * page there in some cases (eg. if mmapped pagecache has been invalidated
1999  * and subsequently re faulted). However it does guarantee that the page
2000  * won't be freed completely. And mostly callers simply care that the page
2001  * contains data that was valid *at some point in time*. Typically, an IO
2002  * or similar operation cannot guarantee anything stronger anyway because
2003  * locks can't be held over the syscall boundary.
2004  *
2005  * If write=0, the page must not be written to. If the page is written to,
2006  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2007  * after the page is finished with, and before put_page is called.
2008  *
2009  * get_user_pages is typically used for fewer-copy IO operations, to get a
2010  * handle on the memory by some means other than accesses via the user virtual
2011  * addresses. The pages may be submitted for DMA to devices or accessed via
2012  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2013  * use the correct cache flushing APIs.
2014  *
2015  * See also get_user_pages_fast, for performance critical applications.
2016  */
2017 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2018 		unsigned long start, unsigned long nr_pages, int write,
2019 		int force, struct page **pages, struct vm_area_struct **vmas)
2020 {
2021 	int flags = FOLL_TOUCH;
2022 
2023 	if (pages)
2024 		flags |= FOLL_GET;
2025 	if (write)
2026 		flags |= FOLL_WRITE;
2027 	if (force)
2028 		flags |= FOLL_FORCE;
2029 
2030 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2031 				NULL);
2032 }
2033 EXPORT_SYMBOL(get_user_pages);
2034 
2035 /**
2036  * get_dump_page() - pin user page in memory while writing it to core dump
2037  * @addr: user address
2038  *
2039  * Returns struct page pointer of user page pinned for dump,
2040  * to be freed afterwards by page_cache_release() or put_page().
2041  *
2042  * Returns NULL on any kind of failure - a hole must then be inserted into
2043  * the corefile, to preserve alignment with its headers; and also returns
2044  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2045  * allowing a hole to be left in the corefile to save diskspace.
2046  *
2047  * Called without mmap_sem, but after all other threads have been killed.
2048  */
2049 #ifdef CONFIG_ELF_CORE
2050 struct page *get_dump_page(unsigned long addr)
2051 {
2052 	struct vm_area_struct *vma;
2053 	struct page *page;
2054 
2055 	if (__get_user_pages(current, current->mm, addr, 1,
2056 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2057 			     NULL) < 1)
2058 		return NULL;
2059 	flush_cache_page(vma, addr, page_to_pfn(page));
2060 	return page;
2061 }
2062 #endif /* CONFIG_ELF_CORE */
2063 
2064 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2065 			spinlock_t **ptl)
2066 {
2067 	pgd_t * pgd = pgd_offset(mm, addr);
2068 	pud_t * pud = pud_alloc(mm, pgd, addr);
2069 	if (pud) {
2070 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2071 		if (pmd) {
2072 			VM_BUG_ON(pmd_trans_huge(*pmd));
2073 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2074 		}
2075 	}
2076 	return NULL;
2077 }
2078 
2079 /*
2080  * This is the old fallback for page remapping.
2081  *
2082  * For historical reasons, it only allows reserved pages. Only
2083  * old drivers should use this, and they needed to mark their
2084  * pages reserved for the old functions anyway.
2085  */
2086 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2087 			struct page *page, pgprot_t prot)
2088 {
2089 	struct mm_struct *mm = vma->vm_mm;
2090 	int retval;
2091 	pte_t *pte;
2092 	spinlock_t *ptl;
2093 
2094 	retval = -EINVAL;
2095 	if (PageAnon(page))
2096 		goto out;
2097 	retval = -ENOMEM;
2098 	flush_dcache_page(page);
2099 	pte = get_locked_pte(mm, addr, &ptl);
2100 	if (!pte)
2101 		goto out;
2102 	retval = -EBUSY;
2103 	if (!pte_none(*pte))
2104 		goto out_unlock;
2105 
2106 	/* Ok, finally just insert the thing.. */
2107 	get_page(page);
2108 	inc_mm_counter_fast(mm, MM_FILEPAGES);
2109 	page_add_file_rmap(page);
2110 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2111 
2112 	retval = 0;
2113 	pte_unmap_unlock(pte, ptl);
2114 	return retval;
2115 out_unlock:
2116 	pte_unmap_unlock(pte, ptl);
2117 out:
2118 	return retval;
2119 }
2120 
2121 /**
2122  * vm_insert_page - insert single page into user vma
2123  * @vma: user vma to map to
2124  * @addr: target user address of this page
2125  * @page: source kernel page
2126  *
2127  * This allows drivers to insert individual pages they've allocated
2128  * into a user vma.
2129  *
2130  * The page has to be a nice clean _individual_ kernel allocation.
2131  * If you allocate a compound page, you need to have marked it as
2132  * such (__GFP_COMP), or manually just split the page up yourself
2133  * (see split_page()).
2134  *
2135  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2136  * took an arbitrary page protection parameter. This doesn't allow
2137  * that. Your vma protection will have to be set up correctly, which
2138  * means that if you want a shared writable mapping, you'd better
2139  * ask for a shared writable mapping!
2140  *
2141  * The page does not need to be reserved.
2142  *
2143  * Usually this function is called from f_op->mmap() handler
2144  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2145  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2146  * function from other places, for example from page-fault handler.
2147  */
2148 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2149 			struct page *page)
2150 {
2151 	if (addr < vma->vm_start || addr >= vma->vm_end)
2152 		return -EFAULT;
2153 	if (!page_count(page))
2154 		return -EINVAL;
2155 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2156 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2157 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2158 		vma->vm_flags |= VM_MIXEDMAP;
2159 	}
2160 	return insert_page(vma, addr, page, vma->vm_page_prot);
2161 }
2162 EXPORT_SYMBOL(vm_insert_page);
2163 
2164 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2165 			unsigned long pfn, pgprot_t prot)
2166 {
2167 	struct mm_struct *mm = vma->vm_mm;
2168 	int retval;
2169 	pte_t *pte, entry;
2170 	spinlock_t *ptl;
2171 
2172 	retval = -ENOMEM;
2173 	pte = get_locked_pte(mm, addr, &ptl);
2174 	if (!pte)
2175 		goto out;
2176 	retval = -EBUSY;
2177 	if (!pte_none(*pte))
2178 		goto out_unlock;
2179 
2180 	/* Ok, finally just insert the thing.. */
2181 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2182 	set_pte_at(mm, addr, pte, entry);
2183 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2184 
2185 	retval = 0;
2186 out_unlock:
2187 	pte_unmap_unlock(pte, ptl);
2188 out:
2189 	return retval;
2190 }
2191 
2192 /**
2193  * vm_insert_pfn - insert single pfn into user vma
2194  * @vma: user vma to map to
2195  * @addr: target user address of this page
2196  * @pfn: source kernel pfn
2197  *
2198  * Similar to vm_insert_page, this allows drivers to insert individual pages
2199  * they've allocated into a user vma. Same comments apply.
2200  *
2201  * This function should only be called from a vm_ops->fault handler, and
2202  * in that case the handler should return NULL.
2203  *
2204  * vma cannot be a COW mapping.
2205  *
2206  * As this is called only for pages that do not currently exist, we
2207  * do not need to flush old virtual caches or the TLB.
2208  */
2209 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2210 			unsigned long pfn)
2211 {
2212 	int ret;
2213 	pgprot_t pgprot = vma->vm_page_prot;
2214 	/*
2215 	 * Technically, architectures with pte_special can avoid all these
2216 	 * restrictions (same for remap_pfn_range).  However we would like
2217 	 * consistency in testing and feature parity among all, so we should
2218 	 * try to keep these invariants in place for everybody.
2219 	 */
2220 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2221 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2222 						(VM_PFNMAP|VM_MIXEDMAP));
2223 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2224 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2225 
2226 	if (addr < vma->vm_start || addr >= vma->vm_end)
2227 		return -EFAULT;
2228 	if (track_pfn_insert(vma, &pgprot, pfn))
2229 		return -EINVAL;
2230 
2231 	ret = insert_pfn(vma, addr, pfn, pgprot);
2232 
2233 	return ret;
2234 }
2235 EXPORT_SYMBOL(vm_insert_pfn);
2236 
2237 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2238 			unsigned long pfn)
2239 {
2240 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2241 
2242 	if (addr < vma->vm_start || addr >= vma->vm_end)
2243 		return -EFAULT;
2244 
2245 	/*
2246 	 * If we don't have pte special, then we have to use the pfn_valid()
2247 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2248 	 * refcount the page if pfn_valid is true (hence insert_page rather
2249 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2250 	 * without pte special, it would there be refcounted as a normal page.
2251 	 */
2252 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2253 		struct page *page;
2254 
2255 		page = pfn_to_page(pfn);
2256 		return insert_page(vma, addr, page, vma->vm_page_prot);
2257 	}
2258 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2259 }
2260 EXPORT_SYMBOL(vm_insert_mixed);
2261 
2262 /*
2263  * maps a range of physical memory into the requested pages. the old
2264  * mappings are removed. any references to nonexistent pages results
2265  * in null mappings (currently treated as "copy-on-access")
2266  */
2267 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2268 			unsigned long addr, unsigned long end,
2269 			unsigned long pfn, pgprot_t prot)
2270 {
2271 	pte_t *pte;
2272 	spinlock_t *ptl;
2273 
2274 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2275 	if (!pte)
2276 		return -ENOMEM;
2277 	arch_enter_lazy_mmu_mode();
2278 	do {
2279 		BUG_ON(!pte_none(*pte));
2280 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2281 		pfn++;
2282 	} while (pte++, addr += PAGE_SIZE, addr != end);
2283 	arch_leave_lazy_mmu_mode();
2284 	pte_unmap_unlock(pte - 1, ptl);
2285 	return 0;
2286 }
2287 
2288 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2289 			unsigned long addr, unsigned long end,
2290 			unsigned long pfn, pgprot_t prot)
2291 {
2292 	pmd_t *pmd;
2293 	unsigned long next;
2294 
2295 	pfn -= addr >> PAGE_SHIFT;
2296 	pmd = pmd_alloc(mm, pud, addr);
2297 	if (!pmd)
2298 		return -ENOMEM;
2299 	VM_BUG_ON(pmd_trans_huge(*pmd));
2300 	do {
2301 		next = pmd_addr_end(addr, end);
2302 		if (remap_pte_range(mm, pmd, addr, next,
2303 				pfn + (addr >> PAGE_SHIFT), prot))
2304 			return -ENOMEM;
2305 	} while (pmd++, addr = next, addr != end);
2306 	return 0;
2307 }
2308 
2309 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2310 			unsigned long addr, unsigned long end,
2311 			unsigned long pfn, pgprot_t prot)
2312 {
2313 	pud_t *pud;
2314 	unsigned long next;
2315 
2316 	pfn -= addr >> PAGE_SHIFT;
2317 	pud = pud_alloc(mm, pgd, addr);
2318 	if (!pud)
2319 		return -ENOMEM;
2320 	do {
2321 		next = pud_addr_end(addr, end);
2322 		if (remap_pmd_range(mm, pud, addr, next,
2323 				pfn + (addr >> PAGE_SHIFT), prot))
2324 			return -ENOMEM;
2325 	} while (pud++, addr = next, addr != end);
2326 	return 0;
2327 }
2328 
2329 /**
2330  * remap_pfn_range - remap kernel memory to userspace
2331  * @vma: user vma to map to
2332  * @addr: target user address to start at
2333  * @pfn: physical address of kernel memory
2334  * @size: size of map area
2335  * @prot: page protection flags for this mapping
2336  *
2337  *  Note: this is only safe if the mm semaphore is held when called.
2338  */
2339 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2340 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2341 {
2342 	pgd_t *pgd;
2343 	unsigned long next;
2344 	unsigned long end = addr + PAGE_ALIGN(size);
2345 	struct mm_struct *mm = vma->vm_mm;
2346 	int err;
2347 
2348 	/*
2349 	 * Physically remapped pages are special. Tell the
2350 	 * rest of the world about it:
2351 	 *   VM_IO tells people not to look at these pages
2352 	 *	(accesses can have side effects).
2353 	 *   VM_PFNMAP tells the core MM that the base pages are just
2354 	 *	raw PFN mappings, and do not have a "struct page" associated
2355 	 *	with them.
2356 	 *   VM_DONTEXPAND
2357 	 *      Disable vma merging and expanding with mremap().
2358 	 *   VM_DONTDUMP
2359 	 *      Omit vma from core dump, even when VM_IO turned off.
2360 	 *
2361 	 * There's a horrible special case to handle copy-on-write
2362 	 * behaviour that some programs depend on. We mark the "original"
2363 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2364 	 * See vm_normal_page() for details.
2365 	 */
2366 	if (is_cow_mapping(vma->vm_flags)) {
2367 		if (addr != vma->vm_start || end != vma->vm_end)
2368 			return -EINVAL;
2369 		vma->vm_pgoff = pfn;
2370 	}
2371 
2372 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2373 	if (err)
2374 		return -EINVAL;
2375 
2376 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2377 
2378 	BUG_ON(addr >= end);
2379 	pfn -= addr >> PAGE_SHIFT;
2380 	pgd = pgd_offset(mm, addr);
2381 	flush_cache_range(vma, addr, end);
2382 	do {
2383 		next = pgd_addr_end(addr, end);
2384 		err = remap_pud_range(mm, pgd, addr, next,
2385 				pfn + (addr >> PAGE_SHIFT), prot);
2386 		if (err)
2387 			break;
2388 	} while (pgd++, addr = next, addr != end);
2389 
2390 	if (err)
2391 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2392 
2393 	return err;
2394 }
2395 EXPORT_SYMBOL(remap_pfn_range);
2396 
2397 /**
2398  * vm_iomap_memory - remap memory to userspace
2399  * @vma: user vma to map to
2400  * @start: start of area
2401  * @len: size of area
2402  *
2403  * This is a simplified io_remap_pfn_range() for common driver use. The
2404  * driver just needs to give us the physical memory range to be mapped,
2405  * we'll figure out the rest from the vma information.
2406  *
2407  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2408  * whatever write-combining details or similar.
2409  */
2410 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2411 {
2412 	unsigned long vm_len, pfn, pages;
2413 
2414 	/* Check that the physical memory area passed in looks valid */
2415 	if (start + len < start)
2416 		return -EINVAL;
2417 	/*
2418 	 * You *really* shouldn't map things that aren't page-aligned,
2419 	 * but we've historically allowed it because IO memory might
2420 	 * just have smaller alignment.
2421 	 */
2422 	len += start & ~PAGE_MASK;
2423 	pfn = start >> PAGE_SHIFT;
2424 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2425 	if (pfn + pages < pfn)
2426 		return -EINVAL;
2427 
2428 	/* We start the mapping 'vm_pgoff' pages into the area */
2429 	if (vma->vm_pgoff > pages)
2430 		return -EINVAL;
2431 	pfn += vma->vm_pgoff;
2432 	pages -= vma->vm_pgoff;
2433 
2434 	/* Can we fit all of the mapping? */
2435 	vm_len = vma->vm_end - vma->vm_start;
2436 	if (vm_len >> PAGE_SHIFT > pages)
2437 		return -EINVAL;
2438 
2439 	/* Ok, let it rip */
2440 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2441 }
2442 EXPORT_SYMBOL(vm_iomap_memory);
2443 
2444 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2445 				     unsigned long addr, unsigned long end,
2446 				     pte_fn_t fn, void *data)
2447 {
2448 	pte_t *pte;
2449 	int err;
2450 	pgtable_t token;
2451 	spinlock_t *uninitialized_var(ptl);
2452 
2453 	pte = (mm == &init_mm) ?
2454 		pte_alloc_kernel(pmd, addr) :
2455 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2456 	if (!pte)
2457 		return -ENOMEM;
2458 
2459 	BUG_ON(pmd_huge(*pmd));
2460 
2461 	arch_enter_lazy_mmu_mode();
2462 
2463 	token = pmd_pgtable(*pmd);
2464 
2465 	do {
2466 		err = fn(pte++, token, addr, data);
2467 		if (err)
2468 			break;
2469 	} while (addr += PAGE_SIZE, addr != end);
2470 
2471 	arch_leave_lazy_mmu_mode();
2472 
2473 	if (mm != &init_mm)
2474 		pte_unmap_unlock(pte-1, ptl);
2475 	return err;
2476 }
2477 
2478 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2479 				     unsigned long addr, unsigned long end,
2480 				     pte_fn_t fn, void *data)
2481 {
2482 	pmd_t *pmd;
2483 	unsigned long next;
2484 	int err;
2485 
2486 	BUG_ON(pud_huge(*pud));
2487 
2488 	pmd = pmd_alloc(mm, pud, addr);
2489 	if (!pmd)
2490 		return -ENOMEM;
2491 	do {
2492 		next = pmd_addr_end(addr, end);
2493 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2494 		if (err)
2495 			break;
2496 	} while (pmd++, addr = next, addr != end);
2497 	return err;
2498 }
2499 
2500 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2501 				     unsigned long addr, unsigned long end,
2502 				     pte_fn_t fn, void *data)
2503 {
2504 	pud_t *pud;
2505 	unsigned long next;
2506 	int err;
2507 
2508 	pud = pud_alloc(mm, pgd, addr);
2509 	if (!pud)
2510 		return -ENOMEM;
2511 	do {
2512 		next = pud_addr_end(addr, end);
2513 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2514 		if (err)
2515 			break;
2516 	} while (pud++, addr = next, addr != end);
2517 	return err;
2518 }
2519 
2520 /*
2521  * Scan a region of virtual memory, filling in page tables as necessary
2522  * and calling a provided function on each leaf page table.
2523  */
2524 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2525 			unsigned long size, pte_fn_t fn, void *data)
2526 {
2527 	pgd_t *pgd;
2528 	unsigned long next;
2529 	unsigned long end = addr + size;
2530 	int err;
2531 
2532 	BUG_ON(addr >= end);
2533 	pgd = pgd_offset(mm, addr);
2534 	do {
2535 		next = pgd_addr_end(addr, end);
2536 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2537 		if (err)
2538 			break;
2539 	} while (pgd++, addr = next, addr != end);
2540 
2541 	return err;
2542 }
2543 EXPORT_SYMBOL_GPL(apply_to_page_range);
2544 
2545 /*
2546  * handle_pte_fault chooses page fault handler according to an entry
2547  * which was read non-atomically.  Before making any commitment, on
2548  * those architectures or configurations (e.g. i386 with PAE) which
2549  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2550  * must check under lock before unmapping the pte and proceeding
2551  * (but do_wp_page is only called after already making such a check;
2552  * and do_anonymous_page can safely check later on).
2553  */
2554 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2555 				pte_t *page_table, pte_t orig_pte)
2556 {
2557 	int same = 1;
2558 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2559 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2560 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2561 		spin_lock(ptl);
2562 		same = pte_same(*page_table, orig_pte);
2563 		spin_unlock(ptl);
2564 	}
2565 #endif
2566 	pte_unmap(page_table);
2567 	return same;
2568 }
2569 
2570 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2571 {
2572 	/*
2573 	 * If the source page was a PFN mapping, we don't have
2574 	 * a "struct page" for it. We do a best-effort copy by
2575 	 * just copying from the original user address. If that
2576 	 * fails, we just zero-fill it. Live with it.
2577 	 */
2578 	if (unlikely(!src)) {
2579 		void *kaddr = kmap_atomic(dst);
2580 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2581 
2582 		/*
2583 		 * This really shouldn't fail, because the page is there
2584 		 * in the page tables. But it might just be unreadable,
2585 		 * in which case we just give up and fill the result with
2586 		 * zeroes.
2587 		 */
2588 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2589 			clear_page(kaddr);
2590 		kunmap_atomic(kaddr);
2591 		flush_dcache_page(dst);
2592 	} else
2593 		copy_user_highpage(dst, src, va, vma);
2594 }
2595 
2596 /*
2597  * This routine handles present pages, when users try to write
2598  * to a shared page. It is done by copying the page to a new address
2599  * and decrementing the shared-page counter for the old page.
2600  *
2601  * Note that this routine assumes that the protection checks have been
2602  * done by the caller (the low-level page fault routine in most cases).
2603  * Thus we can safely just mark it writable once we've done any necessary
2604  * COW.
2605  *
2606  * We also mark the page dirty at this point even though the page will
2607  * change only once the write actually happens. This avoids a few races,
2608  * and potentially makes it more efficient.
2609  *
2610  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2611  * but allow concurrent faults), with pte both mapped and locked.
2612  * We return with mmap_sem still held, but pte unmapped and unlocked.
2613  */
2614 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2615 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2616 		spinlock_t *ptl, pte_t orig_pte)
2617 	__releases(ptl)
2618 {
2619 	struct page *old_page, *new_page = NULL;
2620 	pte_t entry;
2621 	int ret = 0;
2622 	int page_mkwrite = 0;
2623 	struct page *dirty_page = NULL;
2624 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2625 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2626 
2627 	old_page = vm_normal_page(vma, address, orig_pte);
2628 	if (!old_page) {
2629 		/*
2630 		 * VM_MIXEDMAP !pfn_valid() case
2631 		 *
2632 		 * We should not cow pages in a shared writeable mapping.
2633 		 * Just mark the pages writable as we can't do any dirty
2634 		 * accounting on raw pfn maps.
2635 		 */
2636 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2637 				     (VM_WRITE|VM_SHARED))
2638 			goto reuse;
2639 		goto gotten;
2640 	}
2641 
2642 	/*
2643 	 * Take out anonymous pages first, anonymous shared vmas are
2644 	 * not dirty accountable.
2645 	 */
2646 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2647 		if (!trylock_page(old_page)) {
2648 			page_cache_get(old_page);
2649 			pte_unmap_unlock(page_table, ptl);
2650 			lock_page(old_page);
2651 			page_table = pte_offset_map_lock(mm, pmd, address,
2652 							 &ptl);
2653 			if (!pte_same(*page_table, orig_pte)) {
2654 				unlock_page(old_page);
2655 				goto unlock;
2656 			}
2657 			page_cache_release(old_page);
2658 		}
2659 		if (reuse_swap_page(old_page)) {
2660 			/*
2661 			 * The page is all ours.  Move it to our anon_vma so
2662 			 * the rmap code will not search our parent or siblings.
2663 			 * Protected against the rmap code by the page lock.
2664 			 */
2665 			page_move_anon_rmap(old_page, vma, address);
2666 			unlock_page(old_page);
2667 			goto reuse;
2668 		}
2669 		unlock_page(old_page);
2670 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2671 					(VM_WRITE|VM_SHARED))) {
2672 		/*
2673 		 * Only catch write-faults on shared writable pages,
2674 		 * read-only shared pages can get COWed by
2675 		 * get_user_pages(.write=1, .force=1).
2676 		 */
2677 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2678 			struct vm_fault vmf;
2679 			int tmp;
2680 
2681 			vmf.virtual_address = (void __user *)(address &
2682 								PAGE_MASK);
2683 			vmf.pgoff = old_page->index;
2684 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2685 			vmf.page = old_page;
2686 
2687 			/*
2688 			 * Notify the address space that the page is about to
2689 			 * become writable so that it can prohibit this or wait
2690 			 * for the page to get into an appropriate state.
2691 			 *
2692 			 * We do this without the lock held, so that it can
2693 			 * sleep if it needs to.
2694 			 */
2695 			page_cache_get(old_page);
2696 			pte_unmap_unlock(page_table, ptl);
2697 
2698 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2699 			if (unlikely(tmp &
2700 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2701 				ret = tmp;
2702 				goto unwritable_page;
2703 			}
2704 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2705 				lock_page(old_page);
2706 				if (!old_page->mapping) {
2707 					ret = 0; /* retry the fault */
2708 					unlock_page(old_page);
2709 					goto unwritable_page;
2710 				}
2711 			} else
2712 				VM_BUG_ON(!PageLocked(old_page));
2713 
2714 			/*
2715 			 * Since we dropped the lock we need to revalidate
2716 			 * the PTE as someone else may have changed it.  If
2717 			 * they did, we just return, as we can count on the
2718 			 * MMU to tell us if they didn't also make it writable.
2719 			 */
2720 			page_table = pte_offset_map_lock(mm, pmd, address,
2721 							 &ptl);
2722 			if (!pte_same(*page_table, orig_pte)) {
2723 				unlock_page(old_page);
2724 				goto unlock;
2725 			}
2726 
2727 			page_mkwrite = 1;
2728 		}
2729 		dirty_page = old_page;
2730 		get_page(dirty_page);
2731 
2732 reuse:
2733 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2734 		entry = pte_mkyoung(orig_pte);
2735 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2736 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2737 			update_mmu_cache(vma, address, page_table);
2738 		pte_unmap_unlock(page_table, ptl);
2739 		ret |= VM_FAULT_WRITE;
2740 
2741 		if (!dirty_page)
2742 			return ret;
2743 
2744 		/*
2745 		 * Yes, Virginia, this is actually required to prevent a race
2746 		 * with clear_page_dirty_for_io() from clearing the page dirty
2747 		 * bit after it clear all dirty ptes, but before a racing
2748 		 * do_wp_page installs a dirty pte.
2749 		 *
2750 		 * __do_fault is protected similarly.
2751 		 */
2752 		if (!page_mkwrite) {
2753 			wait_on_page_locked(dirty_page);
2754 			set_page_dirty_balance(dirty_page, page_mkwrite);
2755 			/* file_update_time outside page_lock */
2756 			if (vma->vm_file)
2757 				file_update_time(vma->vm_file);
2758 		}
2759 		put_page(dirty_page);
2760 		if (page_mkwrite) {
2761 			struct address_space *mapping = dirty_page->mapping;
2762 
2763 			set_page_dirty(dirty_page);
2764 			unlock_page(dirty_page);
2765 			page_cache_release(dirty_page);
2766 			if (mapping)	{
2767 				/*
2768 				 * Some device drivers do not set page.mapping
2769 				 * but still dirty their pages
2770 				 */
2771 				balance_dirty_pages_ratelimited(mapping);
2772 			}
2773 		}
2774 
2775 		return ret;
2776 	}
2777 
2778 	/*
2779 	 * Ok, we need to copy. Oh, well..
2780 	 */
2781 	page_cache_get(old_page);
2782 gotten:
2783 	pte_unmap_unlock(page_table, ptl);
2784 
2785 	if (unlikely(anon_vma_prepare(vma)))
2786 		goto oom;
2787 
2788 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2789 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2790 		if (!new_page)
2791 			goto oom;
2792 	} else {
2793 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2794 		if (!new_page)
2795 			goto oom;
2796 		cow_user_page(new_page, old_page, address, vma);
2797 	}
2798 	__SetPageUptodate(new_page);
2799 
2800 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2801 		goto oom_free_new;
2802 
2803 	mmun_start  = address & PAGE_MASK;
2804 	mmun_end    = mmun_start + PAGE_SIZE;
2805 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2806 
2807 	/*
2808 	 * Re-check the pte - we dropped the lock
2809 	 */
2810 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2811 	if (likely(pte_same(*page_table, orig_pte))) {
2812 		if (old_page) {
2813 			if (!PageAnon(old_page)) {
2814 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2815 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2816 			}
2817 		} else
2818 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2819 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2820 		entry = mk_pte(new_page, vma->vm_page_prot);
2821 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2822 		/*
2823 		 * Clear the pte entry and flush it first, before updating the
2824 		 * pte with the new entry. This will avoid a race condition
2825 		 * seen in the presence of one thread doing SMC and another
2826 		 * thread doing COW.
2827 		 */
2828 		ptep_clear_flush(vma, address, page_table);
2829 		page_add_new_anon_rmap(new_page, vma, address);
2830 		/*
2831 		 * We call the notify macro here because, when using secondary
2832 		 * mmu page tables (such as kvm shadow page tables), we want the
2833 		 * new page to be mapped directly into the secondary page table.
2834 		 */
2835 		set_pte_at_notify(mm, address, page_table, entry);
2836 		update_mmu_cache(vma, address, page_table);
2837 		if (old_page) {
2838 			/*
2839 			 * Only after switching the pte to the new page may
2840 			 * we remove the mapcount here. Otherwise another
2841 			 * process may come and find the rmap count decremented
2842 			 * before the pte is switched to the new page, and
2843 			 * "reuse" the old page writing into it while our pte
2844 			 * here still points into it and can be read by other
2845 			 * threads.
2846 			 *
2847 			 * The critical issue is to order this
2848 			 * page_remove_rmap with the ptp_clear_flush above.
2849 			 * Those stores are ordered by (if nothing else,)
2850 			 * the barrier present in the atomic_add_negative
2851 			 * in page_remove_rmap.
2852 			 *
2853 			 * Then the TLB flush in ptep_clear_flush ensures that
2854 			 * no process can access the old page before the
2855 			 * decremented mapcount is visible. And the old page
2856 			 * cannot be reused until after the decremented
2857 			 * mapcount is visible. So transitively, TLBs to
2858 			 * old page will be flushed before it can be reused.
2859 			 */
2860 			page_remove_rmap(old_page);
2861 		}
2862 
2863 		/* Free the old page.. */
2864 		new_page = old_page;
2865 		ret |= VM_FAULT_WRITE;
2866 	} else
2867 		mem_cgroup_uncharge_page(new_page);
2868 
2869 	if (new_page)
2870 		page_cache_release(new_page);
2871 unlock:
2872 	pte_unmap_unlock(page_table, ptl);
2873 	if (mmun_end > mmun_start)
2874 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2875 	if (old_page) {
2876 		/*
2877 		 * Don't let another task, with possibly unlocked vma,
2878 		 * keep the mlocked page.
2879 		 */
2880 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2881 			lock_page(old_page);	/* LRU manipulation */
2882 			munlock_vma_page(old_page);
2883 			unlock_page(old_page);
2884 		}
2885 		page_cache_release(old_page);
2886 	}
2887 	return ret;
2888 oom_free_new:
2889 	page_cache_release(new_page);
2890 oom:
2891 	if (old_page)
2892 		page_cache_release(old_page);
2893 	return VM_FAULT_OOM;
2894 
2895 unwritable_page:
2896 	page_cache_release(old_page);
2897 	return ret;
2898 }
2899 
2900 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2901 		unsigned long start_addr, unsigned long end_addr,
2902 		struct zap_details *details)
2903 {
2904 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2905 }
2906 
2907 static inline void unmap_mapping_range_tree(struct rb_root *root,
2908 					    struct zap_details *details)
2909 {
2910 	struct vm_area_struct *vma;
2911 	pgoff_t vba, vea, zba, zea;
2912 
2913 	vma_interval_tree_foreach(vma, root,
2914 			details->first_index, details->last_index) {
2915 
2916 		vba = vma->vm_pgoff;
2917 		vea = vba + vma_pages(vma) - 1;
2918 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2919 		zba = details->first_index;
2920 		if (zba < vba)
2921 			zba = vba;
2922 		zea = details->last_index;
2923 		if (zea > vea)
2924 			zea = vea;
2925 
2926 		unmap_mapping_range_vma(vma,
2927 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2928 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2929 				details);
2930 	}
2931 }
2932 
2933 static inline void unmap_mapping_range_list(struct list_head *head,
2934 					    struct zap_details *details)
2935 {
2936 	struct vm_area_struct *vma;
2937 
2938 	/*
2939 	 * In nonlinear VMAs there is no correspondence between virtual address
2940 	 * offset and file offset.  So we must perform an exhaustive search
2941 	 * across *all* the pages in each nonlinear VMA, not just the pages
2942 	 * whose virtual address lies outside the file truncation point.
2943 	 */
2944 	list_for_each_entry(vma, head, shared.nonlinear) {
2945 		details->nonlinear_vma = vma;
2946 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2947 	}
2948 }
2949 
2950 /**
2951  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2952  * @mapping: the address space containing mmaps to be unmapped.
2953  * @holebegin: byte in first page to unmap, relative to the start of
2954  * the underlying file.  This will be rounded down to a PAGE_SIZE
2955  * boundary.  Note that this is different from truncate_pagecache(), which
2956  * must keep the partial page.  In contrast, we must get rid of
2957  * partial pages.
2958  * @holelen: size of prospective hole in bytes.  This will be rounded
2959  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2960  * end of the file.
2961  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2962  * but 0 when invalidating pagecache, don't throw away private data.
2963  */
2964 void unmap_mapping_range(struct address_space *mapping,
2965 		loff_t const holebegin, loff_t const holelen, int even_cows)
2966 {
2967 	struct zap_details details;
2968 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2969 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2970 
2971 	/* Check for overflow. */
2972 	if (sizeof(holelen) > sizeof(hlen)) {
2973 		long long holeend =
2974 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2975 		if (holeend & ~(long long)ULONG_MAX)
2976 			hlen = ULONG_MAX - hba + 1;
2977 	}
2978 
2979 	details.check_mapping = even_cows? NULL: mapping;
2980 	details.nonlinear_vma = NULL;
2981 	details.first_index = hba;
2982 	details.last_index = hba + hlen - 1;
2983 	if (details.last_index < details.first_index)
2984 		details.last_index = ULONG_MAX;
2985 
2986 
2987 	mutex_lock(&mapping->i_mmap_mutex);
2988 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2989 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2990 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2991 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2992 	mutex_unlock(&mapping->i_mmap_mutex);
2993 }
2994 EXPORT_SYMBOL(unmap_mapping_range);
2995 
2996 /*
2997  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2998  * but allow concurrent faults), and pte mapped but not yet locked.
2999  * We return with mmap_sem still held, but pte unmapped and unlocked.
3000  */
3001 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3002 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3003 		unsigned int flags, pte_t orig_pte)
3004 {
3005 	spinlock_t *ptl;
3006 	struct page *page, *swapcache;
3007 	swp_entry_t entry;
3008 	pte_t pte;
3009 	int locked;
3010 	struct mem_cgroup *ptr;
3011 	int exclusive = 0;
3012 	int ret = 0;
3013 
3014 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3015 		goto out;
3016 
3017 	entry = pte_to_swp_entry(orig_pte);
3018 	if (unlikely(non_swap_entry(entry))) {
3019 		if (is_migration_entry(entry)) {
3020 			migration_entry_wait(mm, pmd, address);
3021 		} else if (is_hwpoison_entry(entry)) {
3022 			ret = VM_FAULT_HWPOISON;
3023 		} else {
3024 			print_bad_pte(vma, address, orig_pte, NULL);
3025 			ret = VM_FAULT_SIGBUS;
3026 		}
3027 		goto out;
3028 	}
3029 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3030 	page = lookup_swap_cache(entry);
3031 	if (!page) {
3032 		page = swapin_readahead(entry,
3033 					GFP_HIGHUSER_MOVABLE, vma, address);
3034 		if (!page) {
3035 			/*
3036 			 * Back out if somebody else faulted in this pte
3037 			 * while we released the pte lock.
3038 			 */
3039 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3040 			if (likely(pte_same(*page_table, orig_pte)))
3041 				ret = VM_FAULT_OOM;
3042 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3043 			goto unlock;
3044 		}
3045 
3046 		/* Had to read the page from swap area: Major fault */
3047 		ret = VM_FAULT_MAJOR;
3048 		count_vm_event(PGMAJFAULT);
3049 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3050 	} else if (PageHWPoison(page)) {
3051 		/*
3052 		 * hwpoisoned dirty swapcache pages are kept for killing
3053 		 * owner processes (which may be unknown at hwpoison time)
3054 		 */
3055 		ret = VM_FAULT_HWPOISON;
3056 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3057 		swapcache = page;
3058 		goto out_release;
3059 	}
3060 
3061 	swapcache = page;
3062 	locked = lock_page_or_retry(page, mm, flags);
3063 
3064 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3065 	if (!locked) {
3066 		ret |= VM_FAULT_RETRY;
3067 		goto out_release;
3068 	}
3069 
3070 	/*
3071 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3072 	 * release the swapcache from under us.  The page pin, and pte_same
3073 	 * test below, are not enough to exclude that.  Even if it is still
3074 	 * swapcache, we need to check that the page's swap has not changed.
3075 	 */
3076 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3077 		goto out_page;
3078 
3079 	page = ksm_might_need_to_copy(page, vma, address);
3080 	if (unlikely(!page)) {
3081 		ret = VM_FAULT_OOM;
3082 		page = swapcache;
3083 		goto out_page;
3084 	}
3085 
3086 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3087 		ret = VM_FAULT_OOM;
3088 		goto out_page;
3089 	}
3090 
3091 	/*
3092 	 * Back out if somebody else already faulted in this pte.
3093 	 */
3094 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3095 	if (unlikely(!pte_same(*page_table, orig_pte)))
3096 		goto out_nomap;
3097 
3098 	if (unlikely(!PageUptodate(page))) {
3099 		ret = VM_FAULT_SIGBUS;
3100 		goto out_nomap;
3101 	}
3102 
3103 	/*
3104 	 * The page isn't present yet, go ahead with the fault.
3105 	 *
3106 	 * Be careful about the sequence of operations here.
3107 	 * To get its accounting right, reuse_swap_page() must be called
3108 	 * while the page is counted on swap but not yet in mapcount i.e.
3109 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3110 	 * must be called after the swap_free(), or it will never succeed.
3111 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3112 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3113 	 * in page->private. In this case, a record in swap_cgroup  is silently
3114 	 * discarded at swap_free().
3115 	 */
3116 
3117 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3118 	dec_mm_counter_fast(mm, MM_SWAPENTS);
3119 	pte = mk_pte(page, vma->vm_page_prot);
3120 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3121 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3122 		flags &= ~FAULT_FLAG_WRITE;
3123 		ret |= VM_FAULT_WRITE;
3124 		exclusive = 1;
3125 	}
3126 	flush_icache_page(vma, page);
3127 	if (pte_swp_soft_dirty(orig_pte))
3128 		pte = pte_mksoft_dirty(pte);
3129 	set_pte_at(mm, address, page_table, pte);
3130 	if (page == swapcache)
3131 		do_page_add_anon_rmap(page, vma, address, exclusive);
3132 	else /* ksm created a completely new copy */
3133 		page_add_new_anon_rmap(page, vma, address);
3134 	/* It's better to call commit-charge after rmap is established */
3135 	mem_cgroup_commit_charge_swapin(page, ptr);
3136 
3137 	swap_free(entry);
3138 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3139 		try_to_free_swap(page);
3140 	unlock_page(page);
3141 	if (page != swapcache) {
3142 		/*
3143 		 * Hold the lock to avoid the swap entry to be reused
3144 		 * until we take the PT lock for the pte_same() check
3145 		 * (to avoid false positives from pte_same). For
3146 		 * further safety release the lock after the swap_free
3147 		 * so that the swap count won't change under a
3148 		 * parallel locked swapcache.
3149 		 */
3150 		unlock_page(swapcache);
3151 		page_cache_release(swapcache);
3152 	}
3153 
3154 	if (flags & FAULT_FLAG_WRITE) {
3155 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3156 		if (ret & VM_FAULT_ERROR)
3157 			ret &= VM_FAULT_ERROR;
3158 		goto out;
3159 	}
3160 
3161 	/* No need to invalidate - it was non-present before */
3162 	update_mmu_cache(vma, address, page_table);
3163 unlock:
3164 	pte_unmap_unlock(page_table, ptl);
3165 out:
3166 	return ret;
3167 out_nomap:
3168 	mem_cgroup_cancel_charge_swapin(ptr);
3169 	pte_unmap_unlock(page_table, ptl);
3170 out_page:
3171 	unlock_page(page);
3172 out_release:
3173 	page_cache_release(page);
3174 	if (page != swapcache) {
3175 		unlock_page(swapcache);
3176 		page_cache_release(swapcache);
3177 	}
3178 	return ret;
3179 }
3180 
3181 /*
3182  * This is like a special single-page "expand_{down|up}wards()",
3183  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3184  * doesn't hit another vma.
3185  */
3186 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3187 {
3188 	address &= PAGE_MASK;
3189 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3190 		struct vm_area_struct *prev = vma->vm_prev;
3191 
3192 		/*
3193 		 * Is there a mapping abutting this one below?
3194 		 *
3195 		 * That's only ok if it's the same stack mapping
3196 		 * that has gotten split..
3197 		 */
3198 		if (prev && prev->vm_end == address)
3199 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3200 
3201 		expand_downwards(vma, address - PAGE_SIZE);
3202 	}
3203 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3204 		struct vm_area_struct *next = vma->vm_next;
3205 
3206 		/* As VM_GROWSDOWN but s/below/above/ */
3207 		if (next && next->vm_start == address + PAGE_SIZE)
3208 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3209 
3210 		expand_upwards(vma, address + PAGE_SIZE);
3211 	}
3212 	return 0;
3213 }
3214 
3215 /*
3216  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3217  * but allow concurrent faults), and pte mapped but not yet locked.
3218  * We return with mmap_sem still held, but pte unmapped and unlocked.
3219  */
3220 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3221 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3222 		unsigned int flags)
3223 {
3224 	struct page *page;
3225 	spinlock_t *ptl;
3226 	pte_t entry;
3227 
3228 	pte_unmap(page_table);
3229 
3230 	/* Check if we need to add a guard page to the stack */
3231 	if (check_stack_guard_page(vma, address) < 0)
3232 		return VM_FAULT_SIGBUS;
3233 
3234 	/* Use the zero-page for reads */
3235 	if (!(flags & FAULT_FLAG_WRITE)) {
3236 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3237 						vma->vm_page_prot));
3238 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3239 		if (!pte_none(*page_table))
3240 			goto unlock;
3241 		goto setpte;
3242 	}
3243 
3244 	/* Allocate our own private page. */
3245 	if (unlikely(anon_vma_prepare(vma)))
3246 		goto oom;
3247 	page = alloc_zeroed_user_highpage_movable(vma, address);
3248 	if (!page)
3249 		goto oom;
3250 	/*
3251 	 * The memory barrier inside __SetPageUptodate makes sure that
3252 	 * preceeding stores to the page contents become visible before
3253 	 * the set_pte_at() write.
3254 	 */
3255 	__SetPageUptodate(page);
3256 
3257 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3258 		goto oom_free_page;
3259 
3260 	entry = mk_pte(page, vma->vm_page_prot);
3261 	if (vma->vm_flags & VM_WRITE)
3262 		entry = pte_mkwrite(pte_mkdirty(entry));
3263 
3264 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3265 	if (!pte_none(*page_table))
3266 		goto release;
3267 
3268 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3269 	page_add_new_anon_rmap(page, vma, address);
3270 setpte:
3271 	set_pte_at(mm, address, page_table, entry);
3272 
3273 	/* No need to invalidate - it was non-present before */
3274 	update_mmu_cache(vma, address, page_table);
3275 unlock:
3276 	pte_unmap_unlock(page_table, ptl);
3277 	return 0;
3278 release:
3279 	mem_cgroup_uncharge_page(page);
3280 	page_cache_release(page);
3281 	goto unlock;
3282 oom_free_page:
3283 	page_cache_release(page);
3284 oom:
3285 	return VM_FAULT_OOM;
3286 }
3287 
3288 /*
3289  * __do_fault() tries to create a new page mapping. It aggressively
3290  * tries to share with existing pages, but makes a separate copy if
3291  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3292  * the next page fault.
3293  *
3294  * As this is called only for pages that do not currently exist, we
3295  * do not need to flush old virtual caches or the TLB.
3296  *
3297  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3298  * but allow concurrent faults), and pte neither mapped nor locked.
3299  * We return with mmap_sem still held, but pte unmapped and unlocked.
3300  */
3301 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3302 		unsigned long address, pmd_t *pmd,
3303 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3304 {
3305 	pte_t *page_table;
3306 	spinlock_t *ptl;
3307 	struct page *page;
3308 	struct page *cow_page;
3309 	pte_t entry;
3310 	int anon = 0;
3311 	struct page *dirty_page = NULL;
3312 	struct vm_fault vmf;
3313 	int ret;
3314 	int page_mkwrite = 0;
3315 
3316 	/*
3317 	 * If we do COW later, allocate page befor taking lock_page()
3318 	 * on the file cache page. This will reduce lock holding time.
3319 	 */
3320 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3321 
3322 		if (unlikely(anon_vma_prepare(vma)))
3323 			return VM_FAULT_OOM;
3324 
3325 		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3326 		if (!cow_page)
3327 			return VM_FAULT_OOM;
3328 
3329 		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3330 			page_cache_release(cow_page);
3331 			return VM_FAULT_OOM;
3332 		}
3333 	} else
3334 		cow_page = NULL;
3335 
3336 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3337 	vmf.pgoff = pgoff;
3338 	vmf.flags = flags;
3339 	vmf.page = NULL;
3340 
3341 	ret = vma->vm_ops->fault(vma, &vmf);
3342 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3343 			    VM_FAULT_RETRY)))
3344 		goto uncharge_out;
3345 
3346 	if (unlikely(PageHWPoison(vmf.page))) {
3347 		if (ret & VM_FAULT_LOCKED)
3348 			unlock_page(vmf.page);
3349 		ret = VM_FAULT_HWPOISON;
3350 		goto uncharge_out;
3351 	}
3352 
3353 	/*
3354 	 * For consistency in subsequent calls, make the faulted page always
3355 	 * locked.
3356 	 */
3357 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3358 		lock_page(vmf.page);
3359 	else
3360 		VM_BUG_ON(!PageLocked(vmf.page));
3361 
3362 	/*
3363 	 * Should we do an early C-O-W break?
3364 	 */
3365 	page = vmf.page;
3366 	if (flags & FAULT_FLAG_WRITE) {
3367 		if (!(vma->vm_flags & VM_SHARED)) {
3368 			page = cow_page;
3369 			anon = 1;
3370 			copy_user_highpage(page, vmf.page, address, vma);
3371 			__SetPageUptodate(page);
3372 		} else {
3373 			/*
3374 			 * If the page will be shareable, see if the backing
3375 			 * address space wants to know that the page is about
3376 			 * to become writable
3377 			 */
3378 			if (vma->vm_ops->page_mkwrite) {
3379 				int tmp;
3380 
3381 				unlock_page(page);
3382 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3383 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3384 				if (unlikely(tmp &
3385 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3386 					ret = tmp;
3387 					goto unwritable_page;
3388 				}
3389 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3390 					lock_page(page);
3391 					if (!page->mapping) {
3392 						ret = 0; /* retry the fault */
3393 						unlock_page(page);
3394 						goto unwritable_page;
3395 					}
3396 				} else
3397 					VM_BUG_ON(!PageLocked(page));
3398 				page_mkwrite = 1;
3399 			}
3400 		}
3401 
3402 	}
3403 
3404 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3405 
3406 	/*
3407 	 * This silly early PAGE_DIRTY setting removes a race
3408 	 * due to the bad i386 page protection. But it's valid
3409 	 * for other architectures too.
3410 	 *
3411 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3412 	 * an exclusive copy of the page, or this is a shared mapping,
3413 	 * so we can make it writable and dirty to avoid having to
3414 	 * handle that later.
3415 	 */
3416 	/* Only go through if we didn't race with anybody else... */
3417 	if (likely(pte_same(*page_table, orig_pte))) {
3418 		flush_icache_page(vma, page);
3419 		entry = mk_pte(page, vma->vm_page_prot);
3420 		if (flags & FAULT_FLAG_WRITE)
3421 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3422 		else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3423 			pte_mksoft_dirty(entry);
3424 		if (anon) {
3425 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3426 			page_add_new_anon_rmap(page, vma, address);
3427 		} else {
3428 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3429 			page_add_file_rmap(page);
3430 			if (flags & FAULT_FLAG_WRITE) {
3431 				dirty_page = page;
3432 				get_page(dirty_page);
3433 			}
3434 		}
3435 		set_pte_at(mm, address, page_table, entry);
3436 
3437 		/* no need to invalidate: a not-present page won't be cached */
3438 		update_mmu_cache(vma, address, page_table);
3439 	} else {
3440 		if (cow_page)
3441 			mem_cgroup_uncharge_page(cow_page);
3442 		if (anon)
3443 			page_cache_release(page);
3444 		else
3445 			anon = 1; /* no anon but release faulted_page */
3446 	}
3447 
3448 	pte_unmap_unlock(page_table, ptl);
3449 
3450 	if (dirty_page) {
3451 		struct address_space *mapping = page->mapping;
3452 		int dirtied = 0;
3453 
3454 		if (set_page_dirty(dirty_page))
3455 			dirtied = 1;
3456 		unlock_page(dirty_page);
3457 		put_page(dirty_page);
3458 		if ((dirtied || page_mkwrite) && mapping) {
3459 			/*
3460 			 * Some device drivers do not set page.mapping but still
3461 			 * dirty their pages
3462 			 */
3463 			balance_dirty_pages_ratelimited(mapping);
3464 		}
3465 
3466 		/* file_update_time outside page_lock */
3467 		if (vma->vm_file && !page_mkwrite)
3468 			file_update_time(vma->vm_file);
3469 	} else {
3470 		unlock_page(vmf.page);
3471 		if (anon)
3472 			page_cache_release(vmf.page);
3473 	}
3474 
3475 	return ret;
3476 
3477 unwritable_page:
3478 	page_cache_release(page);
3479 	return ret;
3480 uncharge_out:
3481 	/* fs's fault handler get error */
3482 	if (cow_page) {
3483 		mem_cgroup_uncharge_page(cow_page);
3484 		page_cache_release(cow_page);
3485 	}
3486 	return ret;
3487 }
3488 
3489 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3490 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3491 		unsigned int flags, pte_t orig_pte)
3492 {
3493 	pgoff_t pgoff = (((address & PAGE_MASK)
3494 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3495 
3496 	pte_unmap(page_table);
3497 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3498 }
3499 
3500 /*
3501  * Fault of a previously existing named mapping. Repopulate the pte
3502  * from the encoded file_pte if possible. This enables swappable
3503  * nonlinear vmas.
3504  *
3505  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3506  * but allow concurrent faults), and pte mapped but not yet locked.
3507  * We return with mmap_sem still held, but pte unmapped and unlocked.
3508  */
3509 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3510 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3511 		unsigned int flags, pte_t orig_pte)
3512 {
3513 	pgoff_t pgoff;
3514 
3515 	flags |= FAULT_FLAG_NONLINEAR;
3516 
3517 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3518 		return 0;
3519 
3520 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3521 		/*
3522 		 * Page table corrupted: show pte and kill process.
3523 		 */
3524 		print_bad_pte(vma, address, orig_pte, NULL);
3525 		return VM_FAULT_SIGBUS;
3526 	}
3527 
3528 	pgoff = pte_to_pgoff(orig_pte);
3529 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3530 }
3531 
3532 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3533 				unsigned long addr, int current_nid)
3534 {
3535 	get_page(page);
3536 
3537 	count_vm_numa_event(NUMA_HINT_FAULTS);
3538 	if (current_nid == numa_node_id())
3539 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3540 
3541 	return mpol_misplaced(page, vma, addr);
3542 }
3543 
3544 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3545 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3546 {
3547 	struct page *page = NULL;
3548 	spinlock_t *ptl;
3549 	int current_nid = -1;
3550 	int target_nid;
3551 	bool migrated = false;
3552 
3553 	/*
3554 	* The "pte" at this point cannot be used safely without
3555 	* validation through pte_unmap_same(). It's of NUMA type but
3556 	* the pfn may be screwed if the read is non atomic.
3557 	*
3558 	* ptep_modify_prot_start is not called as this is clearing
3559 	* the _PAGE_NUMA bit and it is not really expected that there
3560 	* would be concurrent hardware modifications to the PTE.
3561 	*/
3562 	ptl = pte_lockptr(mm, pmd);
3563 	spin_lock(ptl);
3564 	if (unlikely(!pte_same(*ptep, pte))) {
3565 		pte_unmap_unlock(ptep, ptl);
3566 		goto out;
3567 	}
3568 
3569 	pte = pte_mknonnuma(pte);
3570 	set_pte_at(mm, addr, ptep, pte);
3571 	update_mmu_cache(vma, addr, ptep);
3572 
3573 	page = vm_normal_page(vma, addr, pte);
3574 	if (!page) {
3575 		pte_unmap_unlock(ptep, ptl);
3576 		return 0;
3577 	}
3578 
3579 	current_nid = page_to_nid(page);
3580 	target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3581 	pte_unmap_unlock(ptep, ptl);
3582 	if (target_nid == -1) {
3583 		/*
3584 		 * Account for the fault against the current node if it not
3585 		 * being replaced regardless of where the page is located.
3586 		 */
3587 		current_nid = numa_node_id();
3588 		put_page(page);
3589 		goto out;
3590 	}
3591 
3592 	/* Migrate to the requested node */
3593 	migrated = migrate_misplaced_page(page, target_nid);
3594 	if (migrated)
3595 		current_nid = target_nid;
3596 
3597 out:
3598 	if (current_nid != -1)
3599 		task_numa_fault(current_nid, 1, migrated);
3600 	return 0;
3601 }
3602 
3603 /* NUMA hinting page fault entry point for regular pmds */
3604 #ifdef CONFIG_NUMA_BALANCING
3605 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3606 		     unsigned long addr, pmd_t *pmdp)
3607 {
3608 	pmd_t pmd;
3609 	pte_t *pte, *orig_pte;
3610 	unsigned long _addr = addr & PMD_MASK;
3611 	unsigned long offset;
3612 	spinlock_t *ptl;
3613 	bool numa = false;
3614 	int local_nid = numa_node_id();
3615 
3616 	spin_lock(&mm->page_table_lock);
3617 	pmd = *pmdp;
3618 	if (pmd_numa(pmd)) {
3619 		set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3620 		numa = true;
3621 	}
3622 	spin_unlock(&mm->page_table_lock);
3623 
3624 	if (!numa)
3625 		return 0;
3626 
3627 	/* we're in a page fault so some vma must be in the range */
3628 	BUG_ON(!vma);
3629 	BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3630 	offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3631 	VM_BUG_ON(offset >= PMD_SIZE);
3632 	orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3633 	pte += offset >> PAGE_SHIFT;
3634 	for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3635 		pte_t pteval = *pte;
3636 		struct page *page;
3637 		int curr_nid = local_nid;
3638 		int target_nid;
3639 		bool migrated;
3640 		if (!pte_present(pteval))
3641 			continue;
3642 		if (!pte_numa(pteval))
3643 			continue;
3644 		if (addr >= vma->vm_end) {
3645 			vma = find_vma(mm, addr);
3646 			/* there's a pte present so there must be a vma */
3647 			BUG_ON(!vma);
3648 			BUG_ON(addr < vma->vm_start);
3649 		}
3650 		if (pte_numa(pteval)) {
3651 			pteval = pte_mknonnuma(pteval);
3652 			set_pte_at(mm, addr, pte, pteval);
3653 		}
3654 		page = vm_normal_page(vma, addr, pteval);
3655 		if (unlikely(!page))
3656 			continue;
3657 		/* only check non-shared pages */
3658 		if (unlikely(page_mapcount(page) != 1))
3659 			continue;
3660 
3661 		/*
3662 		 * Note that the NUMA fault is later accounted to either
3663 		 * the node that is currently running or where the page is
3664 		 * migrated to.
3665 		 */
3666 		curr_nid = local_nid;
3667 		target_nid = numa_migrate_prep(page, vma, addr,
3668 					       page_to_nid(page));
3669 		if (target_nid == -1) {
3670 			put_page(page);
3671 			continue;
3672 		}
3673 
3674 		/* Migrate to the requested node */
3675 		pte_unmap_unlock(pte, ptl);
3676 		migrated = migrate_misplaced_page(page, target_nid);
3677 		if (migrated)
3678 			curr_nid = target_nid;
3679 		task_numa_fault(curr_nid, 1, migrated);
3680 
3681 		pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3682 	}
3683 	pte_unmap_unlock(orig_pte, ptl);
3684 
3685 	return 0;
3686 }
3687 #else
3688 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3689 		     unsigned long addr, pmd_t *pmdp)
3690 {
3691 	BUG();
3692 	return 0;
3693 }
3694 #endif /* CONFIG_NUMA_BALANCING */
3695 
3696 /*
3697  * These routines also need to handle stuff like marking pages dirty
3698  * and/or accessed for architectures that don't do it in hardware (most
3699  * RISC architectures).  The early dirtying is also good on the i386.
3700  *
3701  * There is also a hook called "update_mmu_cache()" that architectures
3702  * with external mmu caches can use to update those (ie the Sparc or
3703  * PowerPC hashed page tables that act as extended TLBs).
3704  *
3705  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3706  * but allow concurrent faults), and pte mapped but not yet locked.
3707  * We return with mmap_sem still held, but pte unmapped and unlocked.
3708  */
3709 int handle_pte_fault(struct mm_struct *mm,
3710 		     struct vm_area_struct *vma, unsigned long address,
3711 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3712 {
3713 	pte_t entry;
3714 	spinlock_t *ptl;
3715 
3716 	entry = *pte;
3717 	if (!pte_present(entry)) {
3718 		if (pte_none(entry)) {
3719 			if (vma->vm_ops) {
3720 				if (likely(vma->vm_ops->fault))
3721 					return do_linear_fault(mm, vma, address,
3722 						pte, pmd, flags, entry);
3723 			}
3724 			return do_anonymous_page(mm, vma, address,
3725 						 pte, pmd, flags);
3726 		}
3727 		if (pte_file(entry))
3728 			return do_nonlinear_fault(mm, vma, address,
3729 					pte, pmd, flags, entry);
3730 		return do_swap_page(mm, vma, address,
3731 					pte, pmd, flags, entry);
3732 	}
3733 
3734 	if (pte_numa(entry))
3735 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3736 
3737 	ptl = pte_lockptr(mm, pmd);
3738 	spin_lock(ptl);
3739 	if (unlikely(!pte_same(*pte, entry)))
3740 		goto unlock;
3741 	if (flags & FAULT_FLAG_WRITE) {
3742 		if (!pte_write(entry))
3743 			return do_wp_page(mm, vma, address,
3744 					pte, pmd, ptl, entry);
3745 		entry = pte_mkdirty(entry);
3746 	}
3747 	entry = pte_mkyoung(entry);
3748 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3749 		update_mmu_cache(vma, address, pte);
3750 	} else {
3751 		/*
3752 		 * This is needed only for protection faults but the arch code
3753 		 * is not yet telling us if this is a protection fault or not.
3754 		 * This still avoids useless tlb flushes for .text page faults
3755 		 * with threads.
3756 		 */
3757 		if (flags & FAULT_FLAG_WRITE)
3758 			flush_tlb_fix_spurious_fault(vma, address);
3759 	}
3760 unlock:
3761 	pte_unmap_unlock(pte, ptl);
3762 	return 0;
3763 }
3764 
3765 /*
3766  * By the time we get here, we already hold the mm semaphore
3767  */
3768 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3769 		unsigned long address, unsigned int flags)
3770 {
3771 	pgd_t *pgd;
3772 	pud_t *pud;
3773 	pmd_t *pmd;
3774 	pte_t *pte;
3775 
3776 	__set_current_state(TASK_RUNNING);
3777 
3778 	count_vm_event(PGFAULT);
3779 	mem_cgroup_count_vm_event(mm, PGFAULT);
3780 
3781 	/* do counter updates before entering really critical section. */
3782 	check_sync_rss_stat(current);
3783 
3784 	if (unlikely(is_vm_hugetlb_page(vma)))
3785 		return hugetlb_fault(mm, vma, address, flags);
3786 
3787 retry:
3788 	pgd = pgd_offset(mm, address);
3789 	pud = pud_alloc(mm, pgd, address);
3790 	if (!pud)
3791 		return VM_FAULT_OOM;
3792 	pmd = pmd_alloc(mm, pud, address);
3793 	if (!pmd)
3794 		return VM_FAULT_OOM;
3795 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3796 		if (!vma->vm_ops)
3797 			return do_huge_pmd_anonymous_page(mm, vma, address,
3798 							  pmd, flags);
3799 	} else {
3800 		pmd_t orig_pmd = *pmd;
3801 		int ret;
3802 
3803 		barrier();
3804 		if (pmd_trans_huge(orig_pmd)) {
3805 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3806 
3807 			/*
3808 			 * If the pmd is splitting, return and retry the
3809 			 * the fault.  Alternative: wait until the split
3810 			 * is done, and goto retry.
3811 			 */
3812 			if (pmd_trans_splitting(orig_pmd))
3813 				return 0;
3814 
3815 			if (pmd_numa(orig_pmd))
3816 				return do_huge_pmd_numa_page(mm, vma, address,
3817 							     orig_pmd, pmd);
3818 
3819 			if (dirty && !pmd_write(orig_pmd)) {
3820 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3821 							  orig_pmd);
3822 				/*
3823 				 * If COW results in an oom, the huge pmd will
3824 				 * have been split, so retry the fault on the
3825 				 * pte for a smaller charge.
3826 				 */
3827 				if (unlikely(ret & VM_FAULT_OOM))
3828 					goto retry;
3829 				return ret;
3830 			} else {
3831 				huge_pmd_set_accessed(mm, vma, address, pmd,
3832 						      orig_pmd, dirty);
3833 			}
3834 
3835 			return 0;
3836 		}
3837 	}
3838 
3839 	if (pmd_numa(*pmd))
3840 		return do_pmd_numa_page(mm, vma, address, pmd);
3841 
3842 	/*
3843 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3844 	 * run pte_offset_map on the pmd, if an huge pmd could
3845 	 * materialize from under us from a different thread.
3846 	 */
3847 	if (unlikely(pmd_none(*pmd)) &&
3848 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3849 		return VM_FAULT_OOM;
3850 	/* if an huge pmd materialized from under us just retry later */
3851 	if (unlikely(pmd_trans_huge(*pmd)))
3852 		return 0;
3853 	/*
3854 	 * A regular pmd is established and it can't morph into a huge pmd
3855 	 * from under us anymore at this point because we hold the mmap_sem
3856 	 * read mode and khugepaged takes it in write mode. So now it's
3857 	 * safe to run pte_offset_map().
3858 	 */
3859 	pte = pte_offset_map(pmd, address);
3860 
3861 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3862 }
3863 
3864 #ifndef __PAGETABLE_PUD_FOLDED
3865 /*
3866  * Allocate page upper directory.
3867  * We've already handled the fast-path in-line.
3868  */
3869 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3870 {
3871 	pud_t *new = pud_alloc_one(mm, address);
3872 	if (!new)
3873 		return -ENOMEM;
3874 
3875 	smp_wmb(); /* See comment in __pte_alloc */
3876 
3877 	spin_lock(&mm->page_table_lock);
3878 	if (pgd_present(*pgd))		/* Another has populated it */
3879 		pud_free(mm, new);
3880 	else
3881 		pgd_populate(mm, pgd, new);
3882 	spin_unlock(&mm->page_table_lock);
3883 	return 0;
3884 }
3885 #endif /* __PAGETABLE_PUD_FOLDED */
3886 
3887 #ifndef __PAGETABLE_PMD_FOLDED
3888 /*
3889  * Allocate page middle directory.
3890  * We've already handled the fast-path in-line.
3891  */
3892 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3893 {
3894 	pmd_t *new = pmd_alloc_one(mm, address);
3895 	if (!new)
3896 		return -ENOMEM;
3897 
3898 	smp_wmb(); /* See comment in __pte_alloc */
3899 
3900 	spin_lock(&mm->page_table_lock);
3901 #ifndef __ARCH_HAS_4LEVEL_HACK
3902 	if (pud_present(*pud))		/* Another has populated it */
3903 		pmd_free(mm, new);
3904 	else
3905 		pud_populate(mm, pud, new);
3906 #else
3907 	if (pgd_present(*pud))		/* Another has populated it */
3908 		pmd_free(mm, new);
3909 	else
3910 		pgd_populate(mm, pud, new);
3911 #endif /* __ARCH_HAS_4LEVEL_HACK */
3912 	spin_unlock(&mm->page_table_lock);
3913 	return 0;
3914 }
3915 #endif /* __PAGETABLE_PMD_FOLDED */
3916 
3917 #if !defined(__HAVE_ARCH_GATE_AREA)
3918 
3919 #if defined(AT_SYSINFO_EHDR)
3920 static struct vm_area_struct gate_vma;
3921 
3922 static int __init gate_vma_init(void)
3923 {
3924 	gate_vma.vm_mm = NULL;
3925 	gate_vma.vm_start = FIXADDR_USER_START;
3926 	gate_vma.vm_end = FIXADDR_USER_END;
3927 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3928 	gate_vma.vm_page_prot = __P101;
3929 
3930 	return 0;
3931 }
3932 __initcall(gate_vma_init);
3933 #endif
3934 
3935 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3936 {
3937 #ifdef AT_SYSINFO_EHDR
3938 	return &gate_vma;
3939 #else
3940 	return NULL;
3941 #endif
3942 }
3943 
3944 int in_gate_area_no_mm(unsigned long addr)
3945 {
3946 #ifdef AT_SYSINFO_EHDR
3947 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3948 		return 1;
3949 #endif
3950 	return 0;
3951 }
3952 
3953 #endif	/* __HAVE_ARCH_GATE_AREA */
3954 
3955 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3956 		pte_t **ptepp, spinlock_t **ptlp)
3957 {
3958 	pgd_t *pgd;
3959 	pud_t *pud;
3960 	pmd_t *pmd;
3961 	pte_t *ptep;
3962 
3963 	pgd = pgd_offset(mm, address);
3964 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3965 		goto out;
3966 
3967 	pud = pud_offset(pgd, address);
3968 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3969 		goto out;
3970 
3971 	pmd = pmd_offset(pud, address);
3972 	VM_BUG_ON(pmd_trans_huge(*pmd));
3973 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3974 		goto out;
3975 
3976 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3977 	if (pmd_huge(*pmd))
3978 		goto out;
3979 
3980 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3981 	if (!ptep)
3982 		goto out;
3983 	if (!pte_present(*ptep))
3984 		goto unlock;
3985 	*ptepp = ptep;
3986 	return 0;
3987 unlock:
3988 	pte_unmap_unlock(ptep, *ptlp);
3989 out:
3990 	return -EINVAL;
3991 }
3992 
3993 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3994 			     pte_t **ptepp, spinlock_t **ptlp)
3995 {
3996 	int res;
3997 
3998 	/* (void) is needed to make gcc happy */
3999 	(void) __cond_lock(*ptlp,
4000 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
4001 	return res;
4002 }
4003 
4004 /**
4005  * follow_pfn - look up PFN at a user virtual address
4006  * @vma: memory mapping
4007  * @address: user virtual address
4008  * @pfn: location to store found PFN
4009  *
4010  * Only IO mappings and raw PFN mappings are allowed.
4011  *
4012  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4013  */
4014 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4015 	unsigned long *pfn)
4016 {
4017 	int ret = -EINVAL;
4018 	spinlock_t *ptl;
4019 	pte_t *ptep;
4020 
4021 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4022 		return ret;
4023 
4024 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4025 	if (ret)
4026 		return ret;
4027 	*pfn = pte_pfn(*ptep);
4028 	pte_unmap_unlock(ptep, ptl);
4029 	return 0;
4030 }
4031 EXPORT_SYMBOL(follow_pfn);
4032 
4033 #ifdef CONFIG_HAVE_IOREMAP_PROT
4034 int follow_phys(struct vm_area_struct *vma,
4035 		unsigned long address, unsigned int flags,
4036 		unsigned long *prot, resource_size_t *phys)
4037 {
4038 	int ret = -EINVAL;
4039 	pte_t *ptep, pte;
4040 	spinlock_t *ptl;
4041 
4042 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4043 		goto out;
4044 
4045 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4046 		goto out;
4047 	pte = *ptep;
4048 
4049 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4050 		goto unlock;
4051 
4052 	*prot = pgprot_val(pte_pgprot(pte));
4053 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4054 
4055 	ret = 0;
4056 unlock:
4057 	pte_unmap_unlock(ptep, ptl);
4058 out:
4059 	return ret;
4060 }
4061 
4062 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4063 			void *buf, int len, int write)
4064 {
4065 	resource_size_t phys_addr;
4066 	unsigned long prot = 0;
4067 	void __iomem *maddr;
4068 	int offset = addr & (PAGE_SIZE-1);
4069 
4070 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4071 		return -EINVAL;
4072 
4073 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4074 	if (write)
4075 		memcpy_toio(maddr + offset, buf, len);
4076 	else
4077 		memcpy_fromio(buf, maddr + offset, len);
4078 	iounmap(maddr);
4079 
4080 	return len;
4081 }
4082 #endif
4083 
4084 /*
4085  * Access another process' address space as given in mm.  If non-NULL, use the
4086  * given task for page fault accounting.
4087  */
4088 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4089 		unsigned long addr, void *buf, int len, int write)
4090 {
4091 	struct vm_area_struct *vma;
4092 	void *old_buf = buf;
4093 
4094 	down_read(&mm->mmap_sem);
4095 	/* ignore errors, just check how much was successfully transferred */
4096 	while (len) {
4097 		int bytes, ret, offset;
4098 		void *maddr;
4099 		struct page *page = NULL;
4100 
4101 		ret = get_user_pages(tsk, mm, addr, 1,
4102 				write, 1, &page, &vma);
4103 		if (ret <= 0) {
4104 			/*
4105 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4106 			 * we can access using slightly different code.
4107 			 */
4108 #ifdef CONFIG_HAVE_IOREMAP_PROT
4109 			vma = find_vma(mm, addr);
4110 			if (!vma || vma->vm_start > addr)
4111 				break;
4112 			if (vma->vm_ops && vma->vm_ops->access)
4113 				ret = vma->vm_ops->access(vma, addr, buf,
4114 							  len, write);
4115 			if (ret <= 0)
4116 #endif
4117 				break;
4118 			bytes = ret;
4119 		} else {
4120 			bytes = len;
4121 			offset = addr & (PAGE_SIZE-1);
4122 			if (bytes > PAGE_SIZE-offset)
4123 				bytes = PAGE_SIZE-offset;
4124 
4125 			maddr = kmap(page);
4126 			if (write) {
4127 				copy_to_user_page(vma, page, addr,
4128 						  maddr + offset, buf, bytes);
4129 				set_page_dirty_lock(page);
4130 			} else {
4131 				copy_from_user_page(vma, page, addr,
4132 						    buf, maddr + offset, bytes);
4133 			}
4134 			kunmap(page);
4135 			page_cache_release(page);
4136 		}
4137 		len -= bytes;
4138 		buf += bytes;
4139 		addr += bytes;
4140 	}
4141 	up_read(&mm->mmap_sem);
4142 
4143 	return buf - old_buf;
4144 }
4145 
4146 /**
4147  * access_remote_vm - access another process' address space
4148  * @mm:		the mm_struct of the target address space
4149  * @addr:	start address to access
4150  * @buf:	source or destination buffer
4151  * @len:	number of bytes to transfer
4152  * @write:	whether the access is a write
4153  *
4154  * The caller must hold a reference on @mm.
4155  */
4156 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4157 		void *buf, int len, int write)
4158 {
4159 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
4160 }
4161 
4162 /*
4163  * Access another process' address space.
4164  * Source/target buffer must be kernel space,
4165  * Do not walk the page table directly, use get_user_pages
4166  */
4167 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4168 		void *buf, int len, int write)
4169 {
4170 	struct mm_struct *mm;
4171 	int ret;
4172 
4173 	mm = get_task_mm(tsk);
4174 	if (!mm)
4175 		return 0;
4176 
4177 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4178 	mmput(mm);
4179 
4180 	return ret;
4181 }
4182 
4183 /*
4184  * Print the name of a VMA.
4185  */
4186 void print_vma_addr(char *prefix, unsigned long ip)
4187 {
4188 	struct mm_struct *mm = current->mm;
4189 	struct vm_area_struct *vma;
4190 
4191 	/*
4192 	 * Do not print if we are in atomic
4193 	 * contexts (in exception stacks, etc.):
4194 	 */
4195 	if (preempt_count())
4196 		return;
4197 
4198 	down_read(&mm->mmap_sem);
4199 	vma = find_vma(mm, ip);
4200 	if (vma && vma->vm_file) {
4201 		struct file *f = vma->vm_file;
4202 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4203 		if (buf) {
4204 			char *p;
4205 
4206 			p = d_path(&f->f_path, buf, PAGE_SIZE);
4207 			if (IS_ERR(p))
4208 				p = "?";
4209 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4210 					vma->vm_start,
4211 					vma->vm_end - vma->vm_start);
4212 			free_page((unsigned long)buf);
4213 		}
4214 	}
4215 	up_read(&mm->mmap_sem);
4216 }
4217 
4218 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4219 void might_fault(void)
4220 {
4221 	/*
4222 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4223 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4224 	 * get paged out, therefore we'll never actually fault, and the
4225 	 * below annotations will generate false positives.
4226 	 */
4227 	if (segment_eq(get_fs(), KERNEL_DS))
4228 		return;
4229 
4230 	/*
4231 	 * it would be nicer only to annotate paths which are not under
4232 	 * pagefault_disable, however that requires a larger audit and
4233 	 * providing helpers like get_user_atomic.
4234 	 */
4235 	if (in_atomic())
4236 		return;
4237 
4238 	__might_sleep(__FILE__, __LINE__, 0);
4239 
4240 	if (current->mm)
4241 		might_lock_read(&current->mm->mmap_sem);
4242 }
4243 EXPORT_SYMBOL(might_fault);
4244 #endif
4245 
4246 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4247 static void clear_gigantic_page(struct page *page,
4248 				unsigned long addr,
4249 				unsigned int pages_per_huge_page)
4250 {
4251 	int i;
4252 	struct page *p = page;
4253 
4254 	might_sleep();
4255 	for (i = 0; i < pages_per_huge_page;
4256 	     i++, p = mem_map_next(p, page, i)) {
4257 		cond_resched();
4258 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4259 	}
4260 }
4261 void clear_huge_page(struct page *page,
4262 		     unsigned long addr, unsigned int pages_per_huge_page)
4263 {
4264 	int i;
4265 
4266 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4267 		clear_gigantic_page(page, addr, pages_per_huge_page);
4268 		return;
4269 	}
4270 
4271 	might_sleep();
4272 	for (i = 0; i < pages_per_huge_page; i++) {
4273 		cond_resched();
4274 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4275 	}
4276 }
4277 
4278 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4279 				    unsigned long addr,
4280 				    struct vm_area_struct *vma,
4281 				    unsigned int pages_per_huge_page)
4282 {
4283 	int i;
4284 	struct page *dst_base = dst;
4285 	struct page *src_base = src;
4286 
4287 	for (i = 0; i < pages_per_huge_page; ) {
4288 		cond_resched();
4289 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4290 
4291 		i++;
4292 		dst = mem_map_next(dst, dst_base, i);
4293 		src = mem_map_next(src, src_base, i);
4294 	}
4295 }
4296 
4297 void copy_user_huge_page(struct page *dst, struct page *src,
4298 			 unsigned long addr, struct vm_area_struct *vma,
4299 			 unsigned int pages_per_huge_page)
4300 {
4301 	int i;
4302 
4303 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4304 		copy_user_gigantic_page(dst, src, addr, vma,
4305 					pages_per_huge_page);
4306 		return;
4307 	}
4308 
4309 	might_sleep();
4310 	for (i = 0; i < pages_per_huge_page; i++) {
4311 		cond_resched();
4312 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4313 	}
4314 }
4315 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4316