1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 #include <linux/migrate.h> 61 #include <linux/string.h> 62 63 #include <asm/io.h> 64 #include <asm/pgalloc.h> 65 #include <asm/uaccess.h> 66 #include <asm/tlb.h> 67 #include <asm/tlbflush.h> 68 #include <asm/pgtable.h> 69 70 #include "internal.h" 71 72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS 73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid. 74 #endif 75 76 #ifndef CONFIG_NEED_MULTIPLE_NODES 77 /* use the per-pgdat data instead for discontigmem - mbligh */ 78 unsigned long max_mapnr; 79 struct page *mem_map; 80 81 EXPORT_SYMBOL(max_mapnr); 82 EXPORT_SYMBOL(mem_map); 83 #endif 84 85 /* 86 * A number of key systems in x86 including ioremap() rely on the assumption 87 * that high_memory defines the upper bound on direct map memory, then end 88 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 89 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 90 * and ZONE_HIGHMEM. 91 */ 92 void * high_memory; 93 94 EXPORT_SYMBOL(high_memory); 95 96 /* 97 * Randomize the address space (stacks, mmaps, brk, etc.). 98 * 99 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 100 * as ancient (libc5 based) binaries can segfault. ) 101 */ 102 int randomize_va_space __read_mostly = 103 #ifdef CONFIG_COMPAT_BRK 104 1; 105 #else 106 2; 107 #endif 108 109 static int __init disable_randmaps(char *s) 110 { 111 randomize_va_space = 0; 112 return 1; 113 } 114 __setup("norandmaps", disable_randmaps); 115 116 unsigned long zero_pfn __read_mostly; 117 unsigned long highest_memmap_pfn __read_mostly; 118 119 /* 120 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 121 */ 122 static int __init init_zero_pfn(void) 123 { 124 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 125 return 0; 126 } 127 core_initcall(init_zero_pfn); 128 129 130 #if defined(SPLIT_RSS_COUNTING) 131 132 void sync_mm_rss(struct mm_struct *mm) 133 { 134 int i; 135 136 for (i = 0; i < NR_MM_COUNTERS; i++) { 137 if (current->rss_stat.count[i]) { 138 add_mm_counter(mm, i, current->rss_stat.count[i]); 139 current->rss_stat.count[i] = 0; 140 } 141 } 142 current->rss_stat.events = 0; 143 } 144 145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 146 { 147 struct task_struct *task = current; 148 149 if (likely(task->mm == mm)) 150 task->rss_stat.count[member] += val; 151 else 152 add_mm_counter(mm, member, val); 153 } 154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 156 157 /* sync counter once per 64 page faults */ 158 #define TASK_RSS_EVENTS_THRESH (64) 159 static void check_sync_rss_stat(struct task_struct *task) 160 { 161 if (unlikely(task != current)) 162 return; 163 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 164 sync_mm_rss(task->mm); 165 } 166 #else /* SPLIT_RSS_COUNTING */ 167 168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 170 171 static void check_sync_rss_stat(struct task_struct *task) 172 { 173 } 174 175 #endif /* SPLIT_RSS_COUNTING */ 176 177 #ifdef HAVE_GENERIC_MMU_GATHER 178 179 static int tlb_next_batch(struct mmu_gather *tlb) 180 { 181 struct mmu_gather_batch *batch; 182 183 batch = tlb->active; 184 if (batch->next) { 185 tlb->active = batch->next; 186 return 1; 187 } 188 189 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 190 return 0; 191 192 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 193 if (!batch) 194 return 0; 195 196 tlb->batch_count++; 197 batch->next = NULL; 198 batch->nr = 0; 199 batch->max = MAX_GATHER_BATCH; 200 201 tlb->active->next = batch; 202 tlb->active = batch; 203 204 return 1; 205 } 206 207 /* tlb_gather_mmu 208 * Called to initialize an (on-stack) mmu_gather structure for page-table 209 * tear-down from @mm. The @fullmm argument is used when @mm is without 210 * users and we're going to destroy the full address space (exit/execve). 211 */ 212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 213 { 214 tlb->mm = mm; 215 216 /* Is it from 0 to ~0? */ 217 tlb->fullmm = !(start | (end+1)); 218 tlb->need_flush_all = 0; 219 tlb->start = start; 220 tlb->end = end; 221 tlb->need_flush = 0; 222 tlb->local.next = NULL; 223 tlb->local.nr = 0; 224 tlb->local.max = ARRAY_SIZE(tlb->__pages); 225 tlb->active = &tlb->local; 226 tlb->batch_count = 0; 227 228 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 229 tlb->batch = NULL; 230 #endif 231 } 232 233 void tlb_flush_mmu(struct mmu_gather *tlb) 234 { 235 struct mmu_gather_batch *batch; 236 237 if (!tlb->need_flush) 238 return; 239 tlb->need_flush = 0; 240 tlb_flush(tlb); 241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 242 tlb_table_flush(tlb); 243 #endif 244 245 for (batch = &tlb->local; batch; batch = batch->next) { 246 free_pages_and_swap_cache(batch->pages, batch->nr); 247 batch->nr = 0; 248 } 249 tlb->active = &tlb->local; 250 } 251 252 /* tlb_finish_mmu 253 * Called at the end of the shootdown operation to free up any resources 254 * that were required. 255 */ 256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 257 { 258 struct mmu_gather_batch *batch, *next; 259 260 tlb_flush_mmu(tlb); 261 262 /* keep the page table cache within bounds */ 263 check_pgt_cache(); 264 265 for (batch = tlb->local.next; batch; batch = next) { 266 next = batch->next; 267 free_pages((unsigned long)batch, 0); 268 } 269 tlb->local.next = NULL; 270 } 271 272 /* __tlb_remove_page 273 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 274 * handling the additional races in SMP caused by other CPUs caching valid 275 * mappings in their TLBs. Returns the number of free page slots left. 276 * When out of page slots we must call tlb_flush_mmu(). 277 */ 278 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 279 { 280 struct mmu_gather_batch *batch; 281 282 VM_BUG_ON(!tlb->need_flush); 283 284 batch = tlb->active; 285 batch->pages[batch->nr++] = page; 286 if (batch->nr == batch->max) { 287 if (!tlb_next_batch(tlb)) 288 return 0; 289 batch = tlb->active; 290 } 291 VM_BUG_ON(batch->nr > batch->max); 292 293 return batch->max - batch->nr; 294 } 295 296 #endif /* HAVE_GENERIC_MMU_GATHER */ 297 298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 299 300 /* 301 * See the comment near struct mmu_table_batch. 302 */ 303 304 static void tlb_remove_table_smp_sync(void *arg) 305 { 306 /* Simply deliver the interrupt */ 307 } 308 309 static void tlb_remove_table_one(void *table) 310 { 311 /* 312 * This isn't an RCU grace period and hence the page-tables cannot be 313 * assumed to be actually RCU-freed. 314 * 315 * It is however sufficient for software page-table walkers that rely on 316 * IRQ disabling. See the comment near struct mmu_table_batch. 317 */ 318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 319 __tlb_remove_table(table); 320 } 321 322 static void tlb_remove_table_rcu(struct rcu_head *head) 323 { 324 struct mmu_table_batch *batch; 325 int i; 326 327 batch = container_of(head, struct mmu_table_batch, rcu); 328 329 for (i = 0; i < batch->nr; i++) 330 __tlb_remove_table(batch->tables[i]); 331 332 free_page((unsigned long)batch); 333 } 334 335 void tlb_table_flush(struct mmu_gather *tlb) 336 { 337 struct mmu_table_batch **batch = &tlb->batch; 338 339 if (*batch) { 340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 341 *batch = NULL; 342 } 343 } 344 345 void tlb_remove_table(struct mmu_gather *tlb, void *table) 346 { 347 struct mmu_table_batch **batch = &tlb->batch; 348 349 tlb->need_flush = 1; 350 351 /* 352 * When there's less then two users of this mm there cannot be a 353 * concurrent page-table walk. 354 */ 355 if (atomic_read(&tlb->mm->mm_users) < 2) { 356 __tlb_remove_table(table); 357 return; 358 } 359 360 if (*batch == NULL) { 361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 362 if (*batch == NULL) { 363 tlb_remove_table_one(table); 364 return; 365 } 366 (*batch)->nr = 0; 367 } 368 (*batch)->tables[(*batch)->nr++] = table; 369 if ((*batch)->nr == MAX_TABLE_BATCH) 370 tlb_table_flush(tlb); 371 } 372 373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 374 375 /* 376 * If a p?d_bad entry is found while walking page tables, report 377 * the error, before resetting entry to p?d_none. Usually (but 378 * very seldom) called out from the p?d_none_or_clear_bad macros. 379 */ 380 381 void pgd_clear_bad(pgd_t *pgd) 382 { 383 pgd_ERROR(*pgd); 384 pgd_clear(pgd); 385 } 386 387 void pud_clear_bad(pud_t *pud) 388 { 389 pud_ERROR(*pud); 390 pud_clear(pud); 391 } 392 393 void pmd_clear_bad(pmd_t *pmd) 394 { 395 pmd_ERROR(*pmd); 396 pmd_clear(pmd); 397 } 398 399 /* 400 * Note: this doesn't free the actual pages themselves. That 401 * has been handled earlier when unmapping all the memory regions. 402 */ 403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 404 unsigned long addr) 405 { 406 pgtable_t token = pmd_pgtable(*pmd); 407 pmd_clear(pmd); 408 pte_free_tlb(tlb, token, addr); 409 tlb->mm->nr_ptes--; 410 } 411 412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 413 unsigned long addr, unsigned long end, 414 unsigned long floor, unsigned long ceiling) 415 { 416 pmd_t *pmd; 417 unsigned long next; 418 unsigned long start; 419 420 start = addr; 421 pmd = pmd_offset(pud, addr); 422 do { 423 next = pmd_addr_end(addr, end); 424 if (pmd_none_or_clear_bad(pmd)) 425 continue; 426 free_pte_range(tlb, pmd, addr); 427 } while (pmd++, addr = next, addr != end); 428 429 start &= PUD_MASK; 430 if (start < floor) 431 return; 432 if (ceiling) { 433 ceiling &= PUD_MASK; 434 if (!ceiling) 435 return; 436 } 437 if (end - 1 > ceiling - 1) 438 return; 439 440 pmd = pmd_offset(pud, start); 441 pud_clear(pud); 442 pmd_free_tlb(tlb, pmd, start); 443 } 444 445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 446 unsigned long addr, unsigned long end, 447 unsigned long floor, unsigned long ceiling) 448 { 449 pud_t *pud; 450 unsigned long next; 451 unsigned long start; 452 453 start = addr; 454 pud = pud_offset(pgd, addr); 455 do { 456 next = pud_addr_end(addr, end); 457 if (pud_none_or_clear_bad(pud)) 458 continue; 459 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 460 } while (pud++, addr = next, addr != end); 461 462 start &= PGDIR_MASK; 463 if (start < floor) 464 return; 465 if (ceiling) { 466 ceiling &= PGDIR_MASK; 467 if (!ceiling) 468 return; 469 } 470 if (end - 1 > ceiling - 1) 471 return; 472 473 pud = pud_offset(pgd, start); 474 pgd_clear(pgd); 475 pud_free_tlb(tlb, pud, start); 476 } 477 478 /* 479 * This function frees user-level page tables of a process. 480 * 481 * Must be called with pagetable lock held. 482 */ 483 void free_pgd_range(struct mmu_gather *tlb, 484 unsigned long addr, unsigned long end, 485 unsigned long floor, unsigned long ceiling) 486 { 487 pgd_t *pgd; 488 unsigned long next; 489 490 /* 491 * The next few lines have given us lots of grief... 492 * 493 * Why are we testing PMD* at this top level? Because often 494 * there will be no work to do at all, and we'd prefer not to 495 * go all the way down to the bottom just to discover that. 496 * 497 * Why all these "- 1"s? Because 0 represents both the bottom 498 * of the address space and the top of it (using -1 for the 499 * top wouldn't help much: the masks would do the wrong thing). 500 * The rule is that addr 0 and floor 0 refer to the bottom of 501 * the address space, but end 0 and ceiling 0 refer to the top 502 * Comparisons need to use "end - 1" and "ceiling - 1" (though 503 * that end 0 case should be mythical). 504 * 505 * Wherever addr is brought up or ceiling brought down, we must 506 * be careful to reject "the opposite 0" before it confuses the 507 * subsequent tests. But what about where end is brought down 508 * by PMD_SIZE below? no, end can't go down to 0 there. 509 * 510 * Whereas we round start (addr) and ceiling down, by different 511 * masks at different levels, in order to test whether a table 512 * now has no other vmas using it, so can be freed, we don't 513 * bother to round floor or end up - the tests don't need that. 514 */ 515 516 addr &= PMD_MASK; 517 if (addr < floor) { 518 addr += PMD_SIZE; 519 if (!addr) 520 return; 521 } 522 if (ceiling) { 523 ceiling &= PMD_MASK; 524 if (!ceiling) 525 return; 526 } 527 if (end - 1 > ceiling - 1) 528 end -= PMD_SIZE; 529 if (addr > end - 1) 530 return; 531 532 pgd = pgd_offset(tlb->mm, addr); 533 do { 534 next = pgd_addr_end(addr, end); 535 if (pgd_none_or_clear_bad(pgd)) 536 continue; 537 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 538 } while (pgd++, addr = next, addr != end); 539 } 540 541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 542 unsigned long floor, unsigned long ceiling) 543 { 544 while (vma) { 545 struct vm_area_struct *next = vma->vm_next; 546 unsigned long addr = vma->vm_start; 547 548 /* 549 * Hide vma from rmap and truncate_pagecache before freeing 550 * pgtables 551 */ 552 unlink_anon_vmas(vma); 553 unlink_file_vma(vma); 554 555 if (is_vm_hugetlb_page(vma)) { 556 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 557 floor, next? next->vm_start: ceiling); 558 } else { 559 /* 560 * Optimization: gather nearby vmas into one call down 561 */ 562 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 563 && !is_vm_hugetlb_page(next)) { 564 vma = next; 565 next = vma->vm_next; 566 unlink_anon_vmas(vma); 567 unlink_file_vma(vma); 568 } 569 free_pgd_range(tlb, addr, vma->vm_end, 570 floor, next? next->vm_start: ceiling); 571 } 572 vma = next; 573 } 574 } 575 576 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 577 pmd_t *pmd, unsigned long address) 578 { 579 pgtable_t new = pte_alloc_one(mm, address); 580 int wait_split_huge_page; 581 if (!new) 582 return -ENOMEM; 583 584 /* 585 * Ensure all pte setup (eg. pte page lock and page clearing) are 586 * visible before the pte is made visible to other CPUs by being 587 * put into page tables. 588 * 589 * The other side of the story is the pointer chasing in the page 590 * table walking code (when walking the page table without locking; 591 * ie. most of the time). Fortunately, these data accesses consist 592 * of a chain of data-dependent loads, meaning most CPUs (alpha 593 * being the notable exception) will already guarantee loads are 594 * seen in-order. See the alpha page table accessors for the 595 * smp_read_barrier_depends() barriers in page table walking code. 596 */ 597 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 598 599 spin_lock(&mm->page_table_lock); 600 wait_split_huge_page = 0; 601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 602 mm->nr_ptes++; 603 pmd_populate(mm, pmd, new); 604 new = NULL; 605 } else if (unlikely(pmd_trans_splitting(*pmd))) 606 wait_split_huge_page = 1; 607 spin_unlock(&mm->page_table_lock); 608 if (new) 609 pte_free(mm, new); 610 if (wait_split_huge_page) 611 wait_split_huge_page(vma->anon_vma, pmd); 612 return 0; 613 } 614 615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 616 { 617 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 618 if (!new) 619 return -ENOMEM; 620 621 smp_wmb(); /* See comment in __pte_alloc */ 622 623 spin_lock(&init_mm.page_table_lock); 624 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 625 pmd_populate_kernel(&init_mm, pmd, new); 626 new = NULL; 627 } else 628 VM_BUG_ON(pmd_trans_splitting(*pmd)); 629 spin_unlock(&init_mm.page_table_lock); 630 if (new) 631 pte_free_kernel(&init_mm, new); 632 return 0; 633 } 634 635 static inline void init_rss_vec(int *rss) 636 { 637 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 638 } 639 640 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 641 { 642 int i; 643 644 if (current->mm == mm) 645 sync_mm_rss(mm); 646 for (i = 0; i < NR_MM_COUNTERS; i++) 647 if (rss[i]) 648 add_mm_counter(mm, i, rss[i]); 649 } 650 651 /* 652 * This function is called to print an error when a bad pte 653 * is found. For example, we might have a PFN-mapped pte in 654 * a region that doesn't allow it. 655 * 656 * The calling function must still handle the error. 657 */ 658 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 659 pte_t pte, struct page *page) 660 { 661 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 662 pud_t *pud = pud_offset(pgd, addr); 663 pmd_t *pmd = pmd_offset(pud, addr); 664 struct address_space *mapping; 665 pgoff_t index; 666 static unsigned long resume; 667 static unsigned long nr_shown; 668 static unsigned long nr_unshown; 669 670 /* 671 * Allow a burst of 60 reports, then keep quiet for that minute; 672 * or allow a steady drip of one report per second. 673 */ 674 if (nr_shown == 60) { 675 if (time_before(jiffies, resume)) { 676 nr_unshown++; 677 return; 678 } 679 if (nr_unshown) { 680 printk(KERN_ALERT 681 "BUG: Bad page map: %lu messages suppressed\n", 682 nr_unshown); 683 nr_unshown = 0; 684 } 685 nr_shown = 0; 686 } 687 if (nr_shown++ == 0) 688 resume = jiffies + 60 * HZ; 689 690 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 691 index = linear_page_index(vma, addr); 692 693 printk(KERN_ALERT 694 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 695 current->comm, 696 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 697 if (page) 698 dump_page(page); 699 printk(KERN_ALERT 700 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 701 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 702 /* 703 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 704 */ 705 if (vma->vm_ops) 706 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n", 707 vma->vm_ops->fault); 708 if (vma->vm_file && vma->vm_file->f_op) 709 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n", 710 vma->vm_file->f_op->mmap); 711 dump_stack(); 712 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 713 } 714 715 static inline bool is_cow_mapping(vm_flags_t flags) 716 { 717 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 718 } 719 720 /* 721 * vm_normal_page -- This function gets the "struct page" associated with a pte. 722 * 723 * "Special" mappings do not wish to be associated with a "struct page" (either 724 * it doesn't exist, or it exists but they don't want to touch it). In this 725 * case, NULL is returned here. "Normal" mappings do have a struct page. 726 * 727 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 728 * pte bit, in which case this function is trivial. Secondly, an architecture 729 * may not have a spare pte bit, which requires a more complicated scheme, 730 * described below. 731 * 732 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 733 * special mapping (even if there are underlying and valid "struct pages"). 734 * COWed pages of a VM_PFNMAP are always normal. 735 * 736 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 737 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 738 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 739 * mapping will always honor the rule 740 * 741 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 742 * 743 * And for normal mappings this is false. 744 * 745 * This restricts such mappings to be a linear translation from virtual address 746 * to pfn. To get around this restriction, we allow arbitrary mappings so long 747 * as the vma is not a COW mapping; in that case, we know that all ptes are 748 * special (because none can have been COWed). 749 * 750 * 751 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 752 * 753 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 754 * page" backing, however the difference is that _all_ pages with a struct 755 * page (that is, those where pfn_valid is true) are refcounted and considered 756 * normal pages by the VM. The disadvantage is that pages are refcounted 757 * (which can be slower and simply not an option for some PFNMAP users). The 758 * advantage is that we don't have to follow the strict linearity rule of 759 * PFNMAP mappings in order to support COWable mappings. 760 * 761 */ 762 #ifdef __HAVE_ARCH_PTE_SPECIAL 763 # define HAVE_PTE_SPECIAL 1 764 #else 765 # define HAVE_PTE_SPECIAL 0 766 #endif 767 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 768 pte_t pte) 769 { 770 unsigned long pfn = pte_pfn(pte); 771 772 if (HAVE_PTE_SPECIAL) { 773 if (likely(!pte_special(pte))) 774 goto check_pfn; 775 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 776 return NULL; 777 if (!is_zero_pfn(pfn)) 778 print_bad_pte(vma, addr, pte, NULL); 779 return NULL; 780 } 781 782 /* !HAVE_PTE_SPECIAL case follows: */ 783 784 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 785 if (vma->vm_flags & VM_MIXEDMAP) { 786 if (!pfn_valid(pfn)) 787 return NULL; 788 goto out; 789 } else { 790 unsigned long off; 791 off = (addr - vma->vm_start) >> PAGE_SHIFT; 792 if (pfn == vma->vm_pgoff + off) 793 return NULL; 794 if (!is_cow_mapping(vma->vm_flags)) 795 return NULL; 796 } 797 } 798 799 if (is_zero_pfn(pfn)) 800 return NULL; 801 check_pfn: 802 if (unlikely(pfn > highest_memmap_pfn)) { 803 print_bad_pte(vma, addr, pte, NULL); 804 return NULL; 805 } 806 807 /* 808 * NOTE! We still have PageReserved() pages in the page tables. 809 * eg. VDSO mappings can cause them to exist. 810 */ 811 out: 812 return pfn_to_page(pfn); 813 } 814 815 /* 816 * copy one vm_area from one task to the other. Assumes the page tables 817 * already present in the new task to be cleared in the whole range 818 * covered by this vma. 819 */ 820 821 static inline unsigned long 822 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 823 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 824 unsigned long addr, int *rss) 825 { 826 unsigned long vm_flags = vma->vm_flags; 827 pte_t pte = *src_pte; 828 struct page *page; 829 830 /* pte contains position in swap or file, so copy. */ 831 if (unlikely(!pte_present(pte))) { 832 if (!pte_file(pte)) { 833 swp_entry_t entry = pte_to_swp_entry(pte); 834 835 if (swap_duplicate(entry) < 0) 836 return entry.val; 837 838 /* make sure dst_mm is on swapoff's mmlist. */ 839 if (unlikely(list_empty(&dst_mm->mmlist))) { 840 spin_lock(&mmlist_lock); 841 if (list_empty(&dst_mm->mmlist)) 842 list_add(&dst_mm->mmlist, 843 &src_mm->mmlist); 844 spin_unlock(&mmlist_lock); 845 } 846 if (likely(!non_swap_entry(entry))) 847 rss[MM_SWAPENTS]++; 848 else if (is_migration_entry(entry)) { 849 page = migration_entry_to_page(entry); 850 851 if (PageAnon(page)) 852 rss[MM_ANONPAGES]++; 853 else 854 rss[MM_FILEPAGES]++; 855 856 if (is_write_migration_entry(entry) && 857 is_cow_mapping(vm_flags)) { 858 /* 859 * COW mappings require pages in both 860 * parent and child to be set to read. 861 */ 862 make_migration_entry_read(&entry); 863 pte = swp_entry_to_pte(entry); 864 set_pte_at(src_mm, addr, src_pte, pte); 865 } 866 } 867 } 868 goto out_set_pte; 869 } 870 871 /* 872 * If it's a COW mapping, write protect it both 873 * in the parent and the child 874 */ 875 if (is_cow_mapping(vm_flags)) { 876 ptep_set_wrprotect(src_mm, addr, src_pte); 877 pte = pte_wrprotect(pte); 878 } 879 880 /* 881 * If it's a shared mapping, mark it clean in 882 * the child 883 */ 884 if (vm_flags & VM_SHARED) 885 pte = pte_mkclean(pte); 886 pte = pte_mkold(pte); 887 888 page = vm_normal_page(vma, addr, pte); 889 if (page) { 890 get_page(page); 891 page_dup_rmap(page); 892 if (PageAnon(page)) 893 rss[MM_ANONPAGES]++; 894 else 895 rss[MM_FILEPAGES]++; 896 } 897 898 out_set_pte: 899 set_pte_at(dst_mm, addr, dst_pte, pte); 900 return 0; 901 } 902 903 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 904 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 905 unsigned long addr, unsigned long end) 906 { 907 pte_t *orig_src_pte, *orig_dst_pte; 908 pte_t *src_pte, *dst_pte; 909 spinlock_t *src_ptl, *dst_ptl; 910 int progress = 0; 911 int rss[NR_MM_COUNTERS]; 912 swp_entry_t entry = (swp_entry_t){0}; 913 914 again: 915 init_rss_vec(rss); 916 917 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 918 if (!dst_pte) 919 return -ENOMEM; 920 src_pte = pte_offset_map(src_pmd, addr); 921 src_ptl = pte_lockptr(src_mm, src_pmd); 922 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 923 orig_src_pte = src_pte; 924 orig_dst_pte = dst_pte; 925 arch_enter_lazy_mmu_mode(); 926 927 do { 928 /* 929 * We are holding two locks at this point - either of them 930 * could generate latencies in another task on another CPU. 931 */ 932 if (progress >= 32) { 933 progress = 0; 934 if (need_resched() || 935 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 936 break; 937 } 938 if (pte_none(*src_pte)) { 939 progress++; 940 continue; 941 } 942 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 943 vma, addr, rss); 944 if (entry.val) 945 break; 946 progress += 8; 947 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 948 949 arch_leave_lazy_mmu_mode(); 950 spin_unlock(src_ptl); 951 pte_unmap(orig_src_pte); 952 add_mm_rss_vec(dst_mm, rss); 953 pte_unmap_unlock(orig_dst_pte, dst_ptl); 954 cond_resched(); 955 956 if (entry.val) { 957 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 958 return -ENOMEM; 959 progress = 0; 960 } 961 if (addr != end) 962 goto again; 963 return 0; 964 } 965 966 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 967 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 968 unsigned long addr, unsigned long end) 969 { 970 pmd_t *src_pmd, *dst_pmd; 971 unsigned long next; 972 973 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 974 if (!dst_pmd) 975 return -ENOMEM; 976 src_pmd = pmd_offset(src_pud, addr); 977 do { 978 next = pmd_addr_end(addr, end); 979 if (pmd_trans_huge(*src_pmd)) { 980 int err; 981 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 982 err = copy_huge_pmd(dst_mm, src_mm, 983 dst_pmd, src_pmd, addr, vma); 984 if (err == -ENOMEM) 985 return -ENOMEM; 986 if (!err) 987 continue; 988 /* fall through */ 989 } 990 if (pmd_none_or_clear_bad(src_pmd)) 991 continue; 992 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 993 vma, addr, next)) 994 return -ENOMEM; 995 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 996 return 0; 997 } 998 999 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1000 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1001 unsigned long addr, unsigned long end) 1002 { 1003 pud_t *src_pud, *dst_pud; 1004 unsigned long next; 1005 1006 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1007 if (!dst_pud) 1008 return -ENOMEM; 1009 src_pud = pud_offset(src_pgd, addr); 1010 do { 1011 next = pud_addr_end(addr, end); 1012 if (pud_none_or_clear_bad(src_pud)) 1013 continue; 1014 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1015 vma, addr, next)) 1016 return -ENOMEM; 1017 } while (dst_pud++, src_pud++, addr = next, addr != end); 1018 return 0; 1019 } 1020 1021 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1022 struct vm_area_struct *vma) 1023 { 1024 pgd_t *src_pgd, *dst_pgd; 1025 unsigned long next; 1026 unsigned long addr = vma->vm_start; 1027 unsigned long end = vma->vm_end; 1028 unsigned long mmun_start; /* For mmu_notifiers */ 1029 unsigned long mmun_end; /* For mmu_notifiers */ 1030 bool is_cow; 1031 int ret; 1032 1033 /* 1034 * Don't copy ptes where a page fault will fill them correctly. 1035 * Fork becomes much lighter when there are big shared or private 1036 * readonly mappings. The tradeoff is that copy_page_range is more 1037 * efficient than faulting. 1038 */ 1039 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR | 1040 VM_PFNMAP | VM_MIXEDMAP))) { 1041 if (!vma->anon_vma) 1042 return 0; 1043 } 1044 1045 if (is_vm_hugetlb_page(vma)) 1046 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1047 1048 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1049 /* 1050 * We do not free on error cases below as remove_vma 1051 * gets called on error from higher level routine 1052 */ 1053 ret = track_pfn_copy(vma); 1054 if (ret) 1055 return ret; 1056 } 1057 1058 /* 1059 * We need to invalidate the secondary MMU mappings only when 1060 * there could be a permission downgrade on the ptes of the 1061 * parent mm. And a permission downgrade will only happen if 1062 * is_cow_mapping() returns true. 1063 */ 1064 is_cow = is_cow_mapping(vma->vm_flags); 1065 mmun_start = addr; 1066 mmun_end = end; 1067 if (is_cow) 1068 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1069 mmun_end); 1070 1071 ret = 0; 1072 dst_pgd = pgd_offset(dst_mm, addr); 1073 src_pgd = pgd_offset(src_mm, addr); 1074 do { 1075 next = pgd_addr_end(addr, end); 1076 if (pgd_none_or_clear_bad(src_pgd)) 1077 continue; 1078 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1079 vma, addr, next))) { 1080 ret = -ENOMEM; 1081 break; 1082 } 1083 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1084 1085 if (is_cow) 1086 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1087 return ret; 1088 } 1089 1090 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1091 struct vm_area_struct *vma, pmd_t *pmd, 1092 unsigned long addr, unsigned long end, 1093 struct zap_details *details) 1094 { 1095 struct mm_struct *mm = tlb->mm; 1096 int force_flush = 0; 1097 int rss[NR_MM_COUNTERS]; 1098 spinlock_t *ptl; 1099 pte_t *start_pte; 1100 pte_t *pte; 1101 1102 again: 1103 init_rss_vec(rss); 1104 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1105 pte = start_pte; 1106 arch_enter_lazy_mmu_mode(); 1107 do { 1108 pte_t ptent = *pte; 1109 if (pte_none(ptent)) { 1110 continue; 1111 } 1112 1113 if (pte_present(ptent)) { 1114 struct page *page; 1115 1116 page = vm_normal_page(vma, addr, ptent); 1117 if (unlikely(details) && page) { 1118 /* 1119 * unmap_shared_mapping_pages() wants to 1120 * invalidate cache without truncating: 1121 * unmap shared but keep private pages. 1122 */ 1123 if (details->check_mapping && 1124 details->check_mapping != page->mapping) 1125 continue; 1126 /* 1127 * Each page->index must be checked when 1128 * invalidating or truncating nonlinear. 1129 */ 1130 if (details->nonlinear_vma && 1131 (page->index < details->first_index || 1132 page->index > details->last_index)) 1133 continue; 1134 } 1135 ptent = ptep_get_and_clear_full(mm, addr, pte, 1136 tlb->fullmm); 1137 tlb_remove_tlb_entry(tlb, pte, addr); 1138 if (unlikely(!page)) 1139 continue; 1140 if (unlikely(details) && details->nonlinear_vma 1141 && linear_page_index(details->nonlinear_vma, 1142 addr) != page->index) { 1143 pte_t ptfile = pgoff_to_pte(page->index); 1144 if (pte_soft_dirty(ptent)) 1145 pte_file_mksoft_dirty(ptfile); 1146 set_pte_at(mm, addr, pte, ptfile); 1147 } 1148 if (PageAnon(page)) 1149 rss[MM_ANONPAGES]--; 1150 else { 1151 if (pte_dirty(ptent)) 1152 set_page_dirty(page); 1153 if (pte_young(ptent) && 1154 likely(!(vma->vm_flags & VM_SEQ_READ))) 1155 mark_page_accessed(page); 1156 rss[MM_FILEPAGES]--; 1157 } 1158 page_remove_rmap(page); 1159 if (unlikely(page_mapcount(page) < 0)) 1160 print_bad_pte(vma, addr, ptent, page); 1161 force_flush = !__tlb_remove_page(tlb, page); 1162 if (force_flush) 1163 break; 1164 continue; 1165 } 1166 /* 1167 * If details->check_mapping, we leave swap entries; 1168 * if details->nonlinear_vma, we leave file entries. 1169 */ 1170 if (unlikely(details)) 1171 continue; 1172 if (pte_file(ptent)) { 1173 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1174 print_bad_pte(vma, addr, ptent, NULL); 1175 } else { 1176 swp_entry_t entry = pte_to_swp_entry(ptent); 1177 1178 if (!non_swap_entry(entry)) 1179 rss[MM_SWAPENTS]--; 1180 else if (is_migration_entry(entry)) { 1181 struct page *page; 1182 1183 page = migration_entry_to_page(entry); 1184 1185 if (PageAnon(page)) 1186 rss[MM_ANONPAGES]--; 1187 else 1188 rss[MM_FILEPAGES]--; 1189 } 1190 if (unlikely(!free_swap_and_cache(entry))) 1191 print_bad_pte(vma, addr, ptent, NULL); 1192 } 1193 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1194 } while (pte++, addr += PAGE_SIZE, addr != end); 1195 1196 add_mm_rss_vec(mm, rss); 1197 arch_leave_lazy_mmu_mode(); 1198 pte_unmap_unlock(start_pte, ptl); 1199 1200 /* 1201 * mmu_gather ran out of room to batch pages, we break out of 1202 * the PTE lock to avoid doing the potential expensive TLB invalidate 1203 * and page-free while holding it. 1204 */ 1205 if (force_flush) { 1206 unsigned long old_end; 1207 1208 force_flush = 0; 1209 1210 /* 1211 * Flush the TLB just for the previous segment, 1212 * then update the range to be the remaining 1213 * TLB range. 1214 */ 1215 old_end = tlb->end; 1216 tlb->end = addr; 1217 1218 tlb_flush_mmu(tlb); 1219 1220 tlb->start = addr; 1221 tlb->end = old_end; 1222 1223 if (addr != end) 1224 goto again; 1225 } 1226 1227 return addr; 1228 } 1229 1230 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1231 struct vm_area_struct *vma, pud_t *pud, 1232 unsigned long addr, unsigned long end, 1233 struct zap_details *details) 1234 { 1235 pmd_t *pmd; 1236 unsigned long next; 1237 1238 pmd = pmd_offset(pud, addr); 1239 do { 1240 next = pmd_addr_end(addr, end); 1241 if (pmd_trans_huge(*pmd)) { 1242 if (next - addr != HPAGE_PMD_SIZE) { 1243 #ifdef CONFIG_DEBUG_VM 1244 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1245 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1246 __func__, addr, end, 1247 vma->vm_start, 1248 vma->vm_end); 1249 BUG(); 1250 } 1251 #endif 1252 split_huge_page_pmd(vma, addr, pmd); 1253 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1254 goto next; 1255 /* fall through */ 1256 } 1257 /* 1258 * Here there can be other concurrent MADV_DONTNEED or 1259 * trans huge page faults running, and if the pmd is 1260 * none or trans huge it can change under us. This is 1261 * because MADV_DONTNEED holds the mmap_sem in read 1262 * mode. 1263 */ 1264 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1265 goto next; 1266 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1267 next: 1268 cond_resched(); 1269 } while (pmd++, addr = next, addr != end); 1270 1271 return addr; 1272 } 1273 1274 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1275 struct vm_area_struct *vma, pgd_t *pgd, 1276 unsigned long addr, unsigned long end, 1277 struct zap_details *details) 1278 { 1279 pud_t *pud; 1280 unsigned long next; 1281 1282 pud = pud_offset(pgd, addr); 1283 do { 1284 next = pud_addr_end(addr, end); 1285 if (pud_none_or_clear_bad(pud)) 1286 continue; 1287 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1288 } while (pud++, addr = next, addr != end); 1289 1290 return addr; 1291 } 1292 1293 static void unmap_page_range(struct mmu_gather *tlb, 1294 struct vm_area_struct *vma, 1295 unsigned long addr, unsigned long end, 1296 struct zap_details *details) 1297 { 1298 pgd_t *pgd; 1299 unsigned long next; 1300 1301 if (details && !details->check_mapping && !details->nonlinear_vma) 1302 details = NULL; 1303 1304 BUG_ON(addr >= end); 1305 mem_cgroup_uncharge_start(); 1306 tlb_start_vma(tlb, vma); 1307 pgd = pgd_offset(vma->vm_mm, addr); 1308 do { 1309 next = pgd_addr_end(addr, end); 1310 if (pgd_none_or_clear_bad(pgd)) 1311 continue; 1312 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1313 } while (pgd++, addr = next, addr != end); 1314 tlb_end_vma(tlb, vma); 1315 mem_cgroup_uncharge_end(); 1316 } 1317 1318 1319 static void unmap_single_vma(struct mmu_gather *tlb, 1320 struct vm_area_struct *vma, unsigned long start_addr, 1321 unsigned long end_addr, 1322 struct zap_details *details) 1323 { 1324 unsigned long start = max(vma->vm_start, start_addr); 1325 unsigned long end; 1326 1327 if (start >= vma->vm_end) 1328 return; 1329 end = min(vma->vm_end, end_addr); 1330 if (end <= vma->vm_start) 1331 return; 1332 1333 if (vma->vm_file) 1334 uprobe_munmap(vma, start, end); 1335 1336 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1337 untrack_pfn(vma, 0, 0); 1338 1339 if (start != end) { 1340 if (unlikely(is_vm_hugetlb_page(vma))) { 1341 /* 1342 * It is undesirable to test vma->vm_file as it 1343 * should be non-null for valid hugetlb area. 1344 * However, vm_file will be NULL in the error 1345 * cleanup path of do_mmap_pgoff. When 1346 * hugetlbfs ->mmap method fails, 1347 * do_mmap_pgoff() nullifies vma->vm_file 1348 * before calling this function to clean up. 1349 * Since no pte has actually been setup, it is 1350 * safe to do nothing in this case. 1351 */ 1352 if (vma->vm_file) { 1353 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 1354 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1355 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 1356 } 1357 } else 1358 unmap_page_range(tlb, vma, start, end, details); 1359 } 1360 } 1361 1362 /** 1363 * unmap_vmas - unmap a range of memory covered by a list of vma's 1364 * @tlb: address of the caller's struct mmu_gather 1365 * @vma: the starting vma 1366 * @start_addr: virtual address at which to start unmapping 1367 * @end_addr: virtual address at which to end unmapping 1368 * 1369 * Unmap all pages in the vma list. 1370 * 1371 * Only addresses between `start' and `end' will be unmapped. 1372 * 1373 * The VMA list must be sorted in ascending virtual address order. 1374 * 1375 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1376 * range after unmap_vmas() returns. So the only responsibility here is to 1377 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1378 * drops the lock and schedules. 1379 */ 1380 void unmap_vmas(struct mmu_gather *tlb, 1381 struct vm_area_struct *vma, unsigned long start_addr, 1382 unsigned long end_addr) 1383 { 1384 struct mm_struct *mm = vma->vm_mm; 1385 1386 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1387 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1388 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1389 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1390 } 1391 1392 /** 1393 * zap_page_range - remove user pages in a given range 1394 * @vma: vm_area_struct holding the applicable pages 1395 * @start: starting address of pages to zap 1396 * @size: number of bytes to zap 1397 * @details: details of nonlinear truncation or shared cache invalidation 1398 * 1399 * Caller must protect the VMA list 1400 */ 1401 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1402 unsigned long size, struct zap_details *details) 1403 { 1404 struct mm_struct *mm = vma->vm_mm; 1405 struct mmu_gather tlb; 1406 unsigned long end = start + size; 1407 1408 lru_add_drain(); 1409 tlb_gather_mmu(&tlb, mm, start, end); 1410 update_hiwater_rss(mm); 1411 mmu_notifier_invalidate_range_start(mm, start, end); 1412 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1413 unmap_single_vma(&tlb, vma, start, end, details); 1414 mmu_notifier_invalidate_range_end(mm, start, end); 1415 tlb_finish_mmu(&tlb, start, end); 1416 } 1417 1418 /** 1419 * zap_page_range_single - remove user pages in a given range 1420 * @vma: vm_area_struct holding the applicable pages 1421 * @address: starting address of pages to zap 1422 * @size: number of bytes to zap 1423 * @details: details of nonlinear truncation or shared cache invalidation 1424 * 1425 * The range must fit into one VMA. 1426 */ 1427 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1428 unsigned long size, struct zap_details *details) 1429 { 1430 struct mm_struct *mm = vma->vm_mm; 1431 struct mmu_gather tlb; 1432 unsigned long end = address + size; 1433 1434 lru_add_drain(); 1435 tlb_gather_mmu(&tlb, mm, address, end); 1436 update_hiwater_rss(mm); 1437 mmu_notifier_invalidate_range_start(mm, address, end); 1438 unmap_single_vma(&tlb, vma, address, end, details); 1439 mmu_notifier_invalidate_range_end(mm, address, end); 1440 tlb_finish_mmu(&tlb, address, end); 1441 } 1442 1443 /** 1444 * zap_vma_ptes - remove ptes mapping the vma 1445 * @vma: vm_area_struct holding ptes to be zapped 1446 * @address: starting address of pages to zap 1447 * @size: number of bytes to zap 1448 * 1449 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1450 * 1451 * The entire address range must be fully contained within the vma. 1452 * 1453 * Returns 0 if successful. 1454 */ 1455 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1456 unsigned long size) 1457 { 1458 if (address < vma->vm_start || address + size > vma->vm_end || 1459 !(vma->vm_flags & VM_PFNMAP)) 1460 return -1; 1461 zap_page_range_single(vma, address, size, NULL); 1462 return 0; 1463 } 1464 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1465 1466 /** 1467 * follow_page_mask - look up a page descriptor from a user-virtual address 1468 * @vma: vm_area_struct mapping @address 1469 * @address: virtual address to look up 1470 * @flags: flags modifying lookup behaviour 1471 * @page_mask: on output, *page_mask is set according to the size of the page 1472 * 1473 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1474 * 1475 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1476 * an error pointer if there is a mapping to something not represented 1477 * by a page descriptor (see also vm_normal_page()). 1478 */ 1479 struct page *follow_page_mask(struct vm_area_struct *vma, 1480 unsigned long address, unsigned int flags, 1481 unsigned int *page_mask) 1482 { 1483 pgd_t *pgd; 1484 pud_t *pud; 1485 pmd_t *pmd; 1486 pte_t *ptep, pte; 1487 spinlock_t *ptl; 1488 struct page *page; 1489 struct mm_struct *mm = vma->vm_mm; 1490 1491 *page_mask = 0; 1492 1493 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1494 if (!IS_ERR(page)) { 1495 BUG_ON(flags & FOLL_GET); 1496 goto out; 1497 } 1498 1499 page = NULL; 1500 pgd = pgd_offset(mm, address); 1501 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1502 goto no_page_table; 1503 1504 pud = pud_offset(pgd, address); 1505 if (pud_none(*pud)) 1506 goto no_page_table; 1507 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1508 BUG_ON(flags & FOLL_GET); 1509 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1510 goto out; 1511 } 1512 if (unlikely(pud_bad(*pud))) 1513 goto no_page_table; 1514 1515 pmd = pmd_offset(pud, address); 1516 if (pmd_none(*pmd)) 1517 goto no_page_table; 1518 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1519 BUG_ON(flags & FOLL_GET); 1520 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1521 goto out; 1522 } 1523 if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) 1524 goto no_page_table; 1525 if (pmd_trans_huge(*pmd)) { 1526 if (flags & FOLL_SPLIT) { 1527 split_huge_page_pmd(vma, address, pmd); 1528 goto split_fallthrough; 1529 } 1530 spin_lock(&mm->page_table_lock); 1531 if (likely(pmd_trans_huge(*pmd))) { 1532 if (unlikely(pmd_trans_splitting(*pmd))) { 1533 spin_unlock(&mm->page_table_lock); 1534 wait_split_huge_page(vma->anon_vma, pmd); 1535 } else { 1536 page = follow_trans_huge_pmd(vma, address, 1537 pmd, flags); 1538 spin_unlock(&mm->page_table_lock); 1539 *page_mask = HPAGE_PMD_NR - 1; 1540 goto out; 1541 } 1542 } else 1543 spin_unlock(&mm->page_table_lock); 1544 /* fall through */ 1545 } 1546 split_fallthrough: 1547 if (unlikely(pmd_bad(*pmd))) 1548 goto no_page_table; 1549 1550 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1551 1552 pte = *ptep; 1553 if (!pte_present(pte)) { 1554 swp_entry_t entry; 1555 /* 1556 * KSM's break_ksm() relies upon recognizing a ksm page 1557 * even while it is being migrated, so for that case we 1558 * need migration_entry_wait(). 1559 */ 1560 if (likely(!(flags & FOLL_MIGRATION))) 1561 goto no_page; 1562 if (pte_none(pte) || pte_file(pte)) 1563 goto no_page; 1564 entry = pte_to_swp_entry(pte); 1565 if (!is_migration_entry(entry)) 1566 goto no_page; 1567 pte_unmap_unlock(ptep, ptl); 1568 migration_entry_wait(mm, pmd, address); 1569 goto split_fallthrough; 1570 } 1571 if ((flags & FOLL_NUMA) && pte_numa(pte)) 1572 goto no_page; 1573 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1574 goto unlock; 1575 1576 page = vm_normal_page(vma, address, pte); 1577 if (unlikely(!page)) { 1578 if ((flags & FOLL_DUMP) || 1579 !is_zero_pfn(pte_pfn(pte))) 1580 goto bad_page; 1581 page = pte_page(pte); 1582 } 1583 1584 if (flags & FOLL_GET) 1585 get_page_foll(page); 1586 if (flags & FOLL_TOUCH) { 1587 if ((flags & FOLL_WRITE) && 1588 !pte_dirty(pte) && !PageDirty(page)) 1589 set_page_dirty(page); 1590 /* 1591 * pte_mkyoung() would be more correct here, but atomic care 1592 * is needed to avoid losing the dirty bit: it is easier to use 1593 * mark_page_accessed(). 1594 */ 1595 mark_page_accessed(page); 1596 } 1597 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1598 /* 1599 * The preliminary mapping check is mainly to avoid the 1600 * pointless overhead of lock_page on the ZERO_PAGE 1601 * which might bounce very badly if there is contention. 1602 * 1603 * If the page is already locked, we don't need to 1604 * handle it now - vmscan will handle it later if and 1605 * when it attempts to reclaim the page. 1606 */ 1607 if (page->mapping && trylock_page(page)) { 1608 lru_add_drain(); /* push cached pages to LRU */ 1609 /* 1610 * Because we lock page here, and migration is 1611 * blocked by the pte's page reference, and we 1612 * know the page is still mapped, we don't even 1613 * need to check for file-cache page truncation. 1614 */ 1615 mlock_vma_page(page); 1616 unlock_page(page); 1617 } 1618 } 1619 unlock: 1620 pte_unmap_unlock(ptep, ptl); 1621 out: 1622 return page; 1623 1624 bad_page: 1625 pte_unmap_unlock(ptep, ptl); 1626 return ERR_PTR(-EFAULT); 1627 1628 no_page: 1629 pte_unmap_unlock(ptep, ptl); 1630 if (!pte_none(pte)) 1631 return page; 1632 1633 no_page_table: 1634 /* 1635 * When core dumping an enormous anonymous area that nobody 1636 * has touched so far, we don't want to allocate unnecessary pages or 1637 * page tables. Return error instead of NULL to skip handle_mm_fault, 1638 * then get_dump_page() will return NULL to leave a hole in the dump. 1639 * But we can only make this optimization where a hole would surely 1640 * be zero-filled if handle_mm_fault() actually did handle it. 1641 */ 1642 if ((flags & FOLL_DUMP) && 1643 (!vma->vm_ops || !vma->vm_ops->fault)) 1644 return ERR_PTR(-EFAULT); 1645 return page; 1646 } 1647 1648 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1649 { 1650 return stack_guard_page_start(vma, addr) || 1651 stack_guard_page_end(vma, addr+PAGE_SIZE); 1652 } 1653 1654 /** 1655 * __get_user_pages() - pin user pages in memory 1656 * @tsk: task_struct of target task 1657 * @mm: mm_struct of target mm 1658 * @start: starting user address 1659 * @nr_pages: number of pages from start to pin 1660 * @gup_flags: flags modifying pin behaviour 1661 * @pages: array that receives pointers to the pages pinned. 1662 * Should be at least nr_pages long. Or NULL, if caller 1663 * only intends to ensure the pages are faulted in. 1664 * @vmas: array of pointers to vmas corresponding to each page. 1665 * Or NULL if the caller does not require them. 1666 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1667 * 1668 * Returns number of pages pinned. This may be fewer than the number 1669 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1670 * were pinned, returns -errno. Each page returned must be released 1671 * with a put_page() call when it is finished with. vmas will only 1672 * remain valid while mmap_sem is held. 1673 * 1674 * Must be called with mmap_sem held for read or write. 1675 * 1676 * __get_user_pages walks a process's page tables and takes a reference to 1677 * each struct page that each user address corresponds to at a given 1678 * instant. That is, it takes the page that would be accessed if a user 1679 * thread accesses the given user virtual address at that instant. 1680 * 1681 * This does not guarantee that the page exists in the user mappings when 1682 * __get_user_pages returns, and there may even be a completely different 1683 * page there in some cases (eg. if mmapped pagecache has been invalidated 1684 * and subsequently re faulted). However it does guarantee that the page 1685 * won't be freed completely. And mostly callers simply care that the page 1686 * contains data that was valid *at some point in time*. Typically, an IO 1687 * or similar operation cannot guarantee anything stronger anyway because 1688 * locks can't be held over the syscall boundary. 1689 * 1690 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1691 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1692 * appropriate) must be called after the page is finished with, and 1693 * before put_page is called. 1694 * 1695 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1696 * or mmap_sem contention, and if waiting is needed to pin all pages, 1697 * *@nonblocking will be set to 0. 1698 * 1699 * In most cases, get_user_pages or get_user_pages_fast should be used 1700 * instead of __get_user_pages. __get_user_pages should be used only if 1701 * you need some special @gup_flags. 1702 */ 1703 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1704 unsigned long start, unsigned long nr_pages, 1705 unsigned int gup_flags, struct page **pages, 1706 struct vm_area_struct **vmas, int *nonblocking) 1707 { 1708 long i; 1709 unsigned long vm_flags; 1710 unsigned int page_mask; 1711 1712 if (!nr_pages) 1713 return 0; 1714 1715 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1716 1717 /* 1718 * Require read or write permissions. 1719 * If FOLL_FORCE is set, we only require the "MAY" flags. 1720 */ 1721 vm_flags = (gup_flags & FOLL_WRITE) ? 1722 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1723 vm_flags &= (gup_flags & FOLL_FORCE) ? 1724 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1725 1726 /* 1727 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault 1728 * would be called on PROT_NONE ranges. We must never invoke 1729 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting 1730 * page faults would unprotect the PROT_NONE ranges if 1731 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd 1732 * bitflag. So to avoid that, don't set FOLL_NUMA if 1733 * FOLL_FORCE is set. 1734 */ 1735 if (!(gup_flags & FOLL_FORCE)) 1736 gup_flags |= FOLL_NUMA; 1737 1738 i = 0; 1739 1740 do { 1741 struct vm_area_struct *vma; 1742 1743 vma = find_extend_vma(mm, start); 1744 if (!vma && in_gate_area(mm, start)) { 1745 unsigned long pg = start & PAGE_MASK; 1746 pgd_t *pgd; 1747 pud_t *pud; 1748 pmd_t *pmd; 1749 pte_t *pte; 1750 1751 /* user gate pages are read-only */ 1752 if (gup_flags & FOLL_WRITE) 1753 return i ? : -EFAULT; 1754 if (pg > TASK_SIZE) 1755 pgd = pgd_offset_k(pg); 1756 else 1757 pgd = pgd_offset_gate(mm, pg); 1758 BUG_ON(pgd_none(*pgd)); 1759 pud = pud_offset(pgd, pg); 1760 BUG_ON(pud_none(*pud)); 1761 pmd = pmd_offset(pud, pg); 1762 if (pmd_none(*pmd)) 1763 return i ? : -EFAULT; 1764 VM_BUG_ON(pmd_trans_huge(*pmd)); 1765 pte = pte_offset_map(pmd, pg); 1766 if (pte_none(*pte)) { 1767 pte_unmap(pte); 1768 return i ? : -EFAULT; 1769 } 1770 vma = get_gate_vma(mm); 1771 if (pages) { 1772 struct page *page; 1773 1774 page = vm_normal_page(vma, start, *pte); 1775 if (!page) { 1776 if (!(gup_flags & FOLL_DUMP) && 1777 is_zero_pfn(pte_pfn(*pte))) 1778 page = pte_page(*pte); 1779 else { 1780 pte_unmap(pte); 1781 return i ? : -EFAULT; 1782 } 1783 } 1784 pages[i] = page; 1785 get_page(page); 1786 } 1787 pte_unmap(pte); 1788 page_mask = 0; 1789 goto next_page; 1790 } 1791 1792 if (!vma || 1793 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1794 !(vm_flags & vma->vm_flags)) 1795 return i ? : -EFAULT; 1796 1797 if (is_vm_hugetlb_page(vma)) { 1798 i = follow_hugetlb_page(mm, vma, pages, vmas, 1799 &start, &nr_pages, i, gup_flags); 1800 continue; 1801 } 1802 1803 do { 1804 struct page *page; 1805 unsigned int foll_flags = gup_flags; 1806 unsigned int page_increm; 1807 1808 /* 1809 * If we have a pending SIGKILL, don't keep faulting 1810 * pages and potentially allocating memory. 1811 */ 1812 if (unlikely(fatal_signal_pending(current))) 1813 return i ? i : -ERESTARTSYS; 1814 1815 cond_resched(); 1816 while (!(page = follow_page_mask(vma, start, 1817 foll_flags, &page_mask))) { 1818 int ret; 1819 unsigned int fault_flags = 0; 1820 1821 /* For mlock, just skip the stack guard page. */ 1822 if (foll_flags & FOLL_MLOCK) { 1823 if (stack_guard_page(vma, start)) 1824 goto next_page; 1825 } 1826 if (foll_flags & FOLL_WRITE) 1827 fault_flags |= FAULT_FLAG_WRITE; 1828 if (nonblocking) 1829 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1830 if (foll_flags & FOLL_NOWAIT) 1831 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1832 1833 ret = handle_mm_fault(mm, vma, start, 1834 fault_flags); 1835 1836 if (ret & VM_FAULT_ERROR) { 1837 if (ret & VM_FAULT_OOM) 1838 return i ? i : -ENOMEM; 1839 if (ret & (VM_FAULT_HWPOISON | 1840 VM_FAULT_HWPOISON_LARGE)) { 1841 if (i) 1842 return i; 1843 else if (gup_flags & FOLL_HWPOISON) 1844 return -EHWPOISON; 1845 else 1846 return -EFAULT; 1847 } 1848 if (ret & VM_FAULT_SIGBUS) 1849 return i ? i : -EFAULT; 1850 BUG(); 1851 } 1852 1853 if (tsk) { 1854 if (ret & VM_FAULT_MAJOR) 1855 tsk->maj_flt++; 1856 else 1857 tsk->min_flt++; 1858 } 1859 1860 if (ret & VM_FAULT_RETRY) { 1861 if (nonblocking) 1862 *nonblocking = 0; 1863 return i; 1864 } 1865 1866 /* 1867 * The VM_FAULT_WRITE bit tells us that 1868 * do_wp_page has broken COW when necessary, 1869 * even if maybe_mkwrite decided not to set 1870 * pte_write. We can thus safely do subsequent 1871 * page lookups as if they were reads. But only 1872 * do so when looping for pte_write is futile: 1873 * in some cases userspace may also be wanting 1874 * to write to the gotten user page, which a 1875 * read fault here might prevent (a readonly 1876 * page might get reCOWed by userspace write). 1877 */ 1878 if ((ret & VM_FAULT_WRITE) && 1879 !(vma->vm_flags & VM_WRITE)) 1880 foll_flags &= ~FOLL_WRITE; 1881 1882 cond_resched(); 1883 } 1884 if (IS_ERR(page)) 1885 return i ? i : PTR_ERR(page); 1886 if (pages) { 1887 pages[i] = page; 1888 1889 flush_anon_page(vma, page, start); 1890 flush_dcache_page(page); 1891 page_mask = 0; 1892 } 1893 next_page: 1894 if (vmas) { 1895 vmas[i] = vma; 1896 page_mask = 0; 1897 } 1898 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 1899 if (page_increm > nr_pages) 1900 page_increm = nr_pages; 1901 i += page_increm; 1902 start += page_increm * PAGE_SIZE; 1903 nr_pages -= page_increm; 1904 } while (nr_pages && start < vma->vm_end); 1905 } while (nr_pages); 1906 return i; 1907 } 1908 EXPORT_SYMBOL(__get_user_pages); 1909 1910 /* 1911 * fixup_user_fault() - manually resolve a user page fault 1912 * @tsk: the task_struct to use for page fault accounting, or 1913 * NULL if faults are not to be recorded. 1914 * @mm: mm_struct of target mm 1915 * @address: user address 1916 * @fault_flags:flags to pass down to handle_mm_fault() 1917 * 1918 * This is meant to be called in the specific scenario where for locking reasons 1919 * we try to access user memory in atomic context (within a pagefault_disable() 1920 * section), this returns -EFAULT, and we want to resolve the user fault before 1921 * trying again. 1922 * 1923 * Typically this is meant to be used by the futex code. 1924 * 1925 * The main difference with get_user_pages() is that this function will 1926 * unconditionally call handle_mm_fault() which will in turn perform all the 1927 * necessary SW fixup of the dirty and young bits in the PTE, while 1928 * handle_mm_fault() only guarantees to update these in the struct page. 1929 * 1930 * This is important for some architectures where those bits also gate the 1931 * access permission to the page because they are maintained in software. On 1932 * such architectures, gup() will not be enough to make a subsequent access 1933 * succeed. 1934 * 1935 * This should be called with the mm_sem held for read. 1936 */ 1937 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1938 unsigned long address, unsigned int fault_flags) 1939 { 1940 struct vm_area_struct *vma; 1941 int ret; 1942 1943 vma = find_extend_vma(mm, address); 1944 if (!vma || address < vma->vm_start) 1945 return -EFAULT; 1946 1947 ret = handle_mm_fault(mm, vma, address, fault_flags); 1948 if (ret & VM_FAULT_ERROR) { 1949 if (ret & VM_FAULT_OOM) 1950 return -ENOMEM; 1951 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 1952 return -EHWPOISON; 1953 if (ret & VM_FAULT_SIGBUS) 1954 return -EFAULT; 1955 BUG(); 1956 } 1957 if (tsk) { 1958 if (ret & VM_FAULT_MAJOR) 1959 tsk->maj_flt++; 1960 else 1961 tsk->min_flt++; 1962 } 1963 return 0; 1964 } 1965 1966 /* 1967 * get_user_pages() - pin user pages in memory 1968 * @tsk: the task_struct to use for page fault accounting, or 1969 * NULL if faults are not to be recorded. 1970 * @mm: mm_struct of target mm 1971 * @start: starting user address 1972 * @nr_pages: number of pages from start to pin 1973 * @write: whether pages will be written to by the caller 1974 * @force: whether to force write access even if user mapping is 1975 * readonly. This will result in the page being COWed even 1976 * in MAP_SHARED mappings. You do not want this. 1977 * @pages: array that receives pointers to the pages pinned. 1978 * Should be at least nr_pages long. Or NULL, if caller 1979 * only intends to ensure the pages are faulted in. 1980 * @vmas: array of pointers to vmas corresponding to each page. 1981 * Or NULL if the caller does not require them. 1982 * 1983 * Returns number of pages pinned. This may be fewer than the number 1984 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1985 * were pinned, returns -errno. Each page returned must be released 1986 * with a put_page() call when it is finished with. vmas will only 1987 * remain valid while mmap_sem is held. 1988 * 1989 * Must be called with mmap_sem held for read or write. 1990 * 1991 * get_user_pages walks a process's page tables and takes a reference to 1992 * each struct page that each user address corresponds to at a given 1993 * instant. That is, it takes the page that would be accessed if a user 1994 * thread accesses the given user virtual address at that instant. 1995 * 1996 * This does not guarantee that the page exists in the user mappings when 1997 * get_user_pages returns, and there may even be a completely different 1998 * page there in some cases (eg. if mmapped pagecache has been invalidated 1999 * and subsequently re faulted). However it does guarantee that the page 2000 * won't be freed completely. And mostly callers simply care that the page 2001 * contains data that was valid *at some point in time*. Typically, an IO 2002 * or similar operation cannot guarantee anything stronger anyway because 2003 * locks can't be held over the syscall boundary. 2004 * 2005 * If write=0, the page must not be written to. If the page is written to, 2006 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 2007 * after the page is finished with, and before put_page is called. 2008 * 2009 * get_user_pages is typically used for fewer-copy IO operations, to get a 2010 * handle on the memory by some means other than accesses via the user virtual 2011 * addresses. The pages may be submitted for DMA to devices or accessed via 2012 * their kernel linear mapping (via the kmap APIs). Care should be taken to 2013 * use the correct cache flushing APIs. 2014 * 2015 * See also get_user_pages_fast, for performance critical applications. 2016 */ 2017 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 2018 unsigned long start, unsigned long nr_pages, int write, 2019 int force, struct page **pages, struct vm_area_struct **vmas) 2020 { 2021 int flags = FOLL_TOUCH; 2022 2023 if (pages) 2024 flags |= FOLL_GET; 2025 if (write) 2026 flags |= FOLL_WRITE; 2027 if (force) 2028 flags |= FOLL_FORCE; 2029 2030 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 2031 NULL); 2032 } 2033 EXPORT_SYMBOL(get_user_pages); 2034 2035 /** 2036 * get_dump_page() - pin user page in memory while writing it to core dump 2037 * @addr: user address 2038 * 2039 * Returns struct page pointer of user page pinned for dump, 2040 * to be freed afterwards by page_cache_release() or put_page(). 2041 * 2042 * Returns NULL on any kind of failure - a hole must then be inserted into 2043 * the corefile, to preserve alignment with its headers; and also returns 2044 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2045 * allowing a hole to be left in the corefile to save diskspace. 2046 * 2047 * Called without mmap_sem, but after all other threads have been killed. 2048 */ 2049 #ifdef CONFIG_ELF_CORE 2050 struct page *get_dump_page(unsigned long addr) 2051 { 2052 struct vm_area_struct *vma; 2053 struct page *page; 2054 2055 if (__get_user_pages(current, current->mm, addr, 1, 2056 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 2057 NULL) < 1) 2058 return NULL; 2059 flush_cache_page(vma, addr, page_to_pfn(page)); 2060 return page; 2061 } 2062 #endif /* CONFIG_ELF_CORE */ 2063 2064 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2065 spinlock_t **ptl) 2066 { 2067 pgd_t * pgd = pgd_offset(mm, addr); 2068 pud_t * pud = pud_alloc(mm, pgd, addr); 2069 if (pud) { 2070 pmd_t * pmd = pmd_alloc(mm, pud, addr); 2071 if (pmd) { 2072 VM_BUG_ON(pmd_trans_huge(*pmd)); 2073 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2074 } 2075 } 2076 return NULL; 2077 } 2078 2079 /* 2080 * This is the old fallback for page remapping. 2081 * 2082 * For historical reasons, it only allows reserved pages. Only 2083 * old drivers should use this, and they needed to mark their 2084 * pages reserved for the old functions anyway. 2085 */ 2086 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2087 struct page *page, pgprot_t prot) 2088 { 2089 struct mm_struct *mm = vma->vm_mm; 2090 int retval; 2091 pte_t *pte; 2092 spinlock_t *ptl; 2093 2094 retval = -EINVAL; 2095 if (PageAnon(page)) 2096 goto out; 2097 retval = -ENOMEM; 2098 flush_dcache_page(page); 2099 pte = get_locked_pte(mm, addr, &ptl); 2100 if (!pte) 2101 goto out; 2102 retval = -EBUSY; 2103 if (!pte_none(*pte)) 2104 goto out_unlock; 2105 2106 /* Ok, finally just insert the thing.. */ 2107 get_page(page); 2108 inc_mm_counter_fast(mm, MM_FILEPAGES); 2109 page_add_file_rmap(page); 2110 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 2111 2112 retval = 0; 2113 pte_unmap_unlock(pte, ptl); 2114 return retval; 2115 out_unlock: 2116 pte_unmap_unlock(pte, ptl); 2117 out: 2118 return retval; 2119 } 2120 2121 /** 2122 * vm_insert_page - insert single page into user vma 2123 * @vma: user vma to map to 2124 * @addr: target user address of this page 2125 * @page: source kernel page 2126 * 2127 * This allows drivers to insert individual pages they've allocated 2128 * into a user vma. 2129 * 2130 * The page has to be a nice clean _individual_ kernel allocation. 2131 * If you allocate a compound page, you need to have marked it as 2132 * such (__GFP_COMP), or manually just split the page up yourself 2133 * (see split_page()). 2134 * 2135 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2136 * took an arbitrary page protection parameter. This doesn't allow 2137 * that. Your vma protection will have to be set up correctly, which 2138 * means that if you want a shared writable mapping, you'd better 2139 * ask for a shared writable mapping! 2140 * 2141 * The page does not need to be reserved. 2142 * 2143 * Usually this function is called from f_op->mmap() handler 2144 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 2145 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2146 * function from other places, for example from page-fault handler. 2147 */ 2148 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2149 struct page *page) 2150 { 2151 if (addr < vma->vm_start || addr >= vma->vm_end) 2152 return -EFAULT; 2153 if (!page_count(page)) 2154 return -EINVAL; 2155 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2156 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 2157 BUG_ON(vma->vm_flags & VM_PFNMAP); 2158 vma->vm_flags |= VM_MIXEDMAP; 2159 } 2160 return insert_page(vma, addr, page, vma->vm_page_prot); 2161 } 2162 EXPORT_SYMBOL(vm_insert_page); 2163 2164 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2165 unsigned long pfn, pgprot_t prot) 2166 { 2167 struct mm_struct *mm = vma->vm_mm; 2168 int retval; 2169 pte_t *pte, entry; 2170 spinlock_t *ptl; 2171 2172 retval = -ENOMEM; 2173 pte = get_locked_pte(mm, addr, &ptl); 2174 if (!pte) 2175 goto out; 2176 retval = -EBUSY; 2177 if (!pte_none(*pte)) 2178 goto out_unlock; 2179 2180 /* Ok, finally just insert the thing.. */ 2181 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2182 set_pte_at(mm, addr, pte, entry); 2183 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2184 2185 retval = 0; 2186 out_unlock: 2187 pte_unmap_unlock(pte, ptl); 2188 out: 2189 return retval; 2190 } 2191 2192 /** 2193 * vm_insert_pfn - insert single pfn into user vma 2194 * @vma: user vma to map to 2195 * @addr: target user address of this page 2196 * @pfn: source kernel pfn 2197 * 2198 * Similar to vm_insert_page, this allows drivers to insert individual pages 2199 * they've allocated into a user vma. Same comments apply. 2200 * 2201 * This function should only be called from a vm_ops->fault handler, and 2202 * in that case the handler should return NULL. 2203 * 2204 * vma cannot be a COW mapping. 2205 * 2206 * As this is called only for pages that do not currently exist, we 2207 * do not need to flush old virtual caches or the TLB. 2208 */ 2209 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2210 unsigned long pfn) 2211 { 2212 int ret; 2213 pgprot_t pgprot = vma->vm_page_prot; 2214 /* 2215 * Technically, architectures with pte_special can avoid all these 2216 * restrictions (same for remap_pfn_range). However we would like 2217 * consistency in testing and feature parity among all, so we should 2218 * try to keep these invariants in place for everybody. 2219 */ 2220 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2221 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2222 (VM_PFNMAP|VM_MIXEDMAP)); 2223 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2224 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2225 2226 if (addr < vma->vm_start || addr >= vma->vm_end) 2227 return -EFAULT; 2228 if (track_pfn_insert(vma, &pgprot, pfn)) 2229 return -EINVAL; 2230 2231 ret = insert_pfn(vma, addr, pfn, pgprot); 2232 2233 return ret; 2234 } 2235 EXPORT_SYMBOL(vm_insert_pfn); 2236 2237 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2238 unsigned long pfn) 2239 { 2240 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2241 2242 if (addr < vma->vm_start || addr >= vma->vm_end) 2243 return -EFAULT; 2244 2245 /* 2246 * If we don't have pte special, then we have to use the pfn_valid() 2247 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2248 * refcount the page if pfn_valid is true (hence insert_page rather 2249 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2250 * without pte special, it would there be refcounted as a normal page. 2251 */ 2252 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2253 struct page *page; 2254 2255 page = pfn_to_page(pfn); 2256 return insert_page(vma, addr, page, vma->vm_page_prot); 2257 } 2258 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2259 } 2260 EXPORT_SYMBOL(vm_insert_mixed); 2261 2262 /* 2263 * maps a range of physical memory into the requested pages. the old 2264 * mappings are removed. any references to nonexistent pages results 2265 * in null mappings (currently treated as "copy-on-access") 2266 */ 2267 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2268 unsigned long addr, unsigned long end, 2269 unsigned long pfn, pgprot_t prot) 2270 { 2271 pte_t *pte; 2272 spinlock_t *ptl; 2273 2274 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2275 if (!pte) 2276 return -ENOMEM; 2277 arch_enter_lazy_mmu_mode(); 2278 do { 2279 BUG_ON(!pte_none(*pte)); 2280 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2281 pfn++; 2282 } while (pte++, addr += PAGE_SIZE, addr != end); 2283 arch_leave_lazy_mmu_mode(); 2284 pte_unmap_unlock(pte - 1, ptl); 2285 return 0; 2286 } 2287 2288 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2289 unsigned long addr, unsigned long end, 2290 unsigned long pfn, pgprot_t prot) 2291 { 2292 pmd_t *pmd; 2293 unsigned long next; 2294 2295 pfn -= addr >> PAGE_SHIFT; 2296 pmd = pmd_alloc(mm, pud, addr); 2297 if (!pmd) 2298 return -ENOMEM; 2299 VM_BUG_ON(pmd_trans_huge(*pmd)); 2300 do { 2301 next = pmd_addr_end(addr, end); 2302 if (remap_pte_range(mm, pmd, addr, next, 2303 pfn + (addr >> PAGE_SHIFT), prot)) 2304 return -ENOMEM; 2305 } while (pmd++, addr = next, addr != end); 2306 return 0; 2307 } 2308 2309 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2310 unsigned long addr, unsigned long end, 2311 unsigned long pfn, pgprot_t prot) 2312 { 2313 pud_t *pud; 2314 unsigned long next; 2315 2316 pfn -= addr >> PAGE_SHIFT; 2317 pud = pud_alloc(mm, pgd, addr); 2318 if (!pud) 2319 return -ENOMEM; 2320 do { 2321 next = pud_addr_end(addr, end); 2322 if (remap_pmd_range(mm, pud, addr, next, 2323 pfn + (addr >> PAGE_SHIFT), prot)) 2324 return -ENOMEM; 2325 } while (pud++, addr = next, addr != end); 2326 return 0; 2327 } 2328 2329 /** 2330 * remap_pfn_range - remap kernel memory to userspace 2331 * @vma: user vma to map to 2332 * @addr: target user address to start at 2333 * @pfn: physical address of kernel memory 2334 * @size: size of map area 2335 * @prot: page protection flags for this mapping 2336 * 2337 * Note: this is only safe if the mm semaphore is held when called. 2338 */ 2339 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2340 unsigned long pfn, unsigned long size, pgprot_t prot) 2341 { 2342 pgd_t *pgd; 2343 unsigned long next; 2344 unsigned long end = addr + PAGE_ALIGN(size); 2345 struct mm_struct *mm = vma->vm_mm; 2346 int err; 2347 2348 /* 2349 * Physically remapped pages are special. Tell the 2350 * rest of the world about it: 2351 * VM_IO tells people not to look at these pages 2352 * (accesses can have side effects). 2353 * VM_PFNMAP tells the core MM that the base pages are just 2354 * raw PFN mappings, and do not have a "struct page" associated 2355 * with them. 2356 * VM_DONTEXPAND 2357 * Disable vma merging and expanding with mremap(). 2358 * VM_DONTDUMP 2359 * Omit vma from core dump, even when VM_IO turned off. 2360 * 2361 * There's a horrible special case to handle copy-on-write 2362 * behaviour that some programs depend on. We mark the "original" 2363 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2364 * See vm_normal_page() for details. 2365 */ 2366 if (is_cow_mapping(vma->vm_flags)) { 2367 if (addr != vma->vm_start || end != vma->vm_end) 2368 return -EINVAL; 2369 vma->vm_pgoff = pfn; 2370 } 2371 2372 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2373 if (err) 2374 return -EINVAL; 2375 2376 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2377 2378 BUG_ON(addr >= end); 2379 pfn -= addr >> PAGE_SHIFT; 2380 pgd = pgd_offset(mm, addr); 2381 flush_cache_range(vma, addr, end); 2382 do { 2383 next = pgd_addr_end(addr, end); 2384 err = remap_pud_range(mm, pgd, addr, next, 2385 pfn + (addr >> PAGE_SHIFT), prot); 2386 if (err) 2387 break; 2388 } while (pgd++, addr = next, addr != end); 2389 2390 if (err) 2391 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2392 2393 return err; 2394 } 2395 EXPORT_SYMBOL(remap_pfn_range); 2396 2397 /** 2398 * vm_iomap_memory - remap memory to userspace 2399 * @vma: user vma to map to 2400 * @start: start of area 2401 * @len: size of area 2402 * 2403 * This is a simplified io_remap_pfn_range() for common driver use. The 2404 * driver just needs to give us the physical memory range to be mapped, 2405 * we'll figure out the rest from the vma information. 2406 * 2407 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2408 * whatever write-combining details or similar. 2409 */ 2410 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2411 { 2412 unsigned long vm_len, pfn, pages; 2413 2414 /* Check that the physical memory area passed in looks valid */ 2415 if (start + len < start) 2416 return -EINVAL; 2417 /* 2418 * You *really* shouldn't map things that aren't page-aligned, 2419 * but we've historically allowed it because IO memory might 2420 * just have smaller alignment. 2421 */ 2422 len += start & ~PAGE_MASK; 2423 pfn = start >> PAGE_SHIFT; 2424 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2425 if (pfn + pages < pfn) 2426 return -EINVAL; 2427 2428 /* We start the mapping 'vm_pgoff' pages into the area */ 2429 if (vma->vm_pgoff > pages) 2430 return -EINVAL; 2431 pfn += vma->vm_pgoff; 2432 pages -= vma->vm_pgoff; 2433 2434 /* Can we fit all of the mapping? */ 2435 vm_len = vma->vm_end - vma->vm_start; 2436 if (vm_len >> PAGE_SHIFT > pages) 2437 return -EINVAL; 2438 2439 /* Ok, let it rip */ 2440 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2441 } 2442 EXPORT_SYMBOL(vm_iomap_memory); 2443 2444 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2445 unsigned long addr, unsigned long end, 2446 pte_fn_t fn, void *data) 2447 { 2448 pte_t *pte; 2449 int err; 2450 pgtable_t token; 2451 spinlock_t *uninitialized_var(ptl); 2452 2453 pte = (mm == &init_mm) ? 2454 pte_alloc_kernel(pmd, addr) : 2455 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2456 if (!pte) 2457 return -ENOMEM; 2458 2459 BUG_ON(pmd_huge(*pmd)); 2460 2461 arch_enter_lazy_mmu_mode(); 2462 2463 token = pmd_pgtable(*pmd); 2464 2465 do { 2466 err = fn(pte++, token, addr, data); 2467 if (err) 2468 break; 2469 } while (addr += PAGE_SIZE, addr != end); 2470 2471 arch_leave_lazy_mmu_mode(); 2472 2473 if (mm != &init_mm) 2474 pte_unmap_unlock(pte-1, ptl); 2475 return err; 2476 } 2477 2478 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2479 unsigned long addr, unsigned long end, 2480 pte_fn_t fn, void *data) 2481 { 2482 pmd_t *pmd; 2483 unsigned long next; 2484 int err; 2485 2486 BUG_ON(pud_huge(*pud)); 2487 2488 pmd = pmd_alloc(mm, pud, addr); 2489 if (!pmd) 2490 return -ENOMEM; 2491 do { 2492 next = pmd_addr_end(addr, end); 2493 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2494 if (err) 2495 break; 2496 } while (pmd++, addr = next, addr != end); 2497 return err; 2498 } 2499 2500 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2501 unsigned long addr, unsigned long end, 2502 pte_fn_t fn, void *data) 2503 { 2504 pud_t *pud; 2505 unsigned long next; 2506 int err; 2507 2508 pud = pud_alloc(mm, pgd, addr); 2509 if (!pud) 2510 return -ENOMEM; 2511 do { 2512 next = pud_addr_end(addr, end); 2513 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2514 if (err) 2515 break; 2516 } while (pud++, addr = next, addr != end); 2517 return err; 2518 } 2519 2520 /* 2521 * Scan a region of virtual memory, filling in page tables as necessary 2522 * and calling a provided function on each leaf page table. 2523 */ 2524 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2525 unsigned long size, pte_fn_t fn, void *data) 2526 { 2527 pgd_t *pgd; 2528 unsigned long next; 2529 unsigned long end = addr + size; 2530 int err; 2531 2532 BUG_ON(addr >= end); 2533 pgd = pgd_offset(mm, addr); 2534 do { 2535 next = pgd_addr_end(addr, end); 2536 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2537 if (err) 2538 break; 2539 } while (pgd++, addr = next, addr != end); 2540 2541 return err; 2542 } 2543 EXPORT_SYMBOL_GPL(apply_to_page_range); 2544 2545 /* 2546 * handle_pte_fault chooses page fault handler according to an entry 2547 * which was read non-atomically. Before making any commitment, on 2548 * those architectures or configurations (e.g. i386 with PAE) which 2549 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2550 * must check under lock before unmapping the pte and proceeding 2551 * (but do_wp_page is only called after already making such a check; 2552 * and do_anonymous_page can safely check later on). 2553 */ 2554 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2555 pte_t *page_table, pte_t orig_pte) 2556 { 2557 int same = 1; 2558 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2559 if (sizeof(pte_t) > sizeof(unsigned long)) { 2560 spinlock_t *ptl = pte_lockptr(mm, pmd); 2561 spin_lock(ptl); 2562 same = pte_same(*page_table, orig_pte); 2563 spin_unlock(ptl); 2564 } 2565 #endif 2566 pte_unmap(page_table); 2567 return same; 2568 } 2569 2570 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2571 { 2572 /* 2573 * If the source page was a PFN mapping, we don't have 2574 * a "struct page" for it. We do a best-effort copy by 2575 * just copying from the original user address. If that 2576 * fails, we just zero-fill it. Live with it. 2577 */ 2578 if (unlikely(!src)) { 2579 void *kaddr = kmap_atomic(dst); 2580 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2581 2582 /* 2583 * This really shouldn't fail, because the page is there 2584 * in the page tables. But it might just be unreadable, 2585 * in which case we just give up and fill the result with 2586 * zeroes. 2587 */ 2588 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2589 clear_page(kaddr); 2590 kunmap_atomic(kaddr); 2591 flush_dcache_page(dst); 2592 } else 2593 copy_user_highpage(dst, src, va, vma); 2594 } 2595 2596 /* 2597 * This routine handles present pages, when users try to write 2598 * to a shared page. It is done by copying the page to a new address 2599 * and decrementing the shared-page counter for the old page. 2600 * 2601 * Note that this routine assumes that the protection checks have been 2602 * done by the caller (the low-level page fault routine in most cases). 2603 * Thus we can safely just mark it writable once we've done any necessary 2604 * COW. 2605 * 2606 * We also mark the page dirty at this point even though the page will 2607 * change only once the write actually happens. This avoids a few races, 2608 * and potentially makes it more efficient. 2609 * 2610 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2611 * but allow concurrent faults), with pte both mapped and locked. 2612 * We return with mmap_sem still held, but pte unmapped and unlocked. 2613 */ 2614 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2615 unsigned long address, pte_t *page_table, pmd_t *pmd, 2616 spinlock_t *ptl, pte_t orig_pte) 2617 __releases(ptl) 2618 { 2619 struct page *old_page, *new_page = NULL; 2620 pte_t entry; 2621 int ret = 0; 2622 int page_mkwrite = 0; 2623 struct page *dirty_page = NULL; 2624 unsigned long mmun_start = 0; /* For mmu_notifiers */ 2625 unsigned long mmun_end = 0; /* For mmu_notifiers */ 2626 2627 old_page = vm_normal_page(vma, address, orig_pte); 2628 if (!old_page) { 2629 /* 2630 * VM_MIXEDMAP !pfn_valid() case 2631 * 2632 * We should not cow pages in a shared writeable mapping. 2633 * Just mark the pages writable as we can't do any dirty 2634 * accounting on raw pfn maps. 2635 */ 2636 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2637 (VM_WRITE|VM_SHARED)) 2638 goto reuse; 2639 goto gotten; 2640 } 2641 2642 /* 2643 * Take out anonymous pages first, anonymous shared vmas are 2644 * not dirty accountable. 2645 */ 2646 if (PageAnon(old_page) && !PageKsm(old_page)) { 2647 if (!trylock_page(old_page)) { 2648 page_cache_get(old_page); 2649 pte_unmap_unlock(page_table, ptl); 2650 lock_page(old_page); 2651 page_table = pte_offset_map_lock(mm, pmd, address, 2652 &ptl); 2653 if (!pte_same(*page_table, orig_pte)) { 2654 unlock_page(old_page); 2655 goto unlock; 2656 } 2657 page_cache_release(old_page); 2658 } 2659 if (reuse_swap_page(old_page)) { 2660 /* 2661 * The page is all ours. Move it to our anon_vma so 2662 * the rmap code will not search our parent or siblings. 2663 * Protected against the rmap code by the page lock. 2664 */ 2665 page_move_anon_rmap(old_page, vma, address); 2666 unlock_page(old_page); 2667 goto reuse; 2668 } 2669 unlock_page(old_page); 2670 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2671 (VM_WRITE|VM_SHARED))) { 2672 /* 2673 * Only catch write-faults on shared writable pages, 2674 * read-only shared pages can get COWed by 2675 * get_user_pages(.write=1, .force=1). 2676 */ 2677 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2678 struct vm_fault vmf; 2679 int tmp; 2680 2681 vmf.virtual_address = (void __user *)(address & 2682 PAGE_MASK); 2683 vmf.pgoff = old_page->index; 2684 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2685 vmf.page = old_page; 2686 2687 /* 2688 * Notify the address space that the page is about to 2689 * become writable so that it can prohibit this or wait 2690 * for the page to get into an appropriate state. 2691 * 2692 * We do this without the lock held, so that it can 2693 * sleep if it needs to. 2694 */ 2695 page_cache_get(old_page); 2696 pte_unmap_unlock(page_table, ptl); 2697 2698 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2699 if (unlikely(tmp & 2700 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2701 ret = tmp; 2702 goto unwritable_page; 2703 } 2704 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2705 lock_page(old_page); 2706 if (!old_page->mapping) { 2707 ret = 0; /* retry the fault */ 2708 unlock_page(old_page); 2709 goto unwritable_page; 2710 } 2711 } else 2712 VM_BUG_ON(!PageLocked(old_page)); 2713 2714 /* 2715 * Since we dropped the lock we need to revalidate 2716 * the PTE as someone else may have changed it. If 2717 * they did, we just return, as we can count on the 2718 * MMU to tell us if they didn't also make it writable. 2719 */ 2720 page_table = pte_offset_map_lock(mm, pmd, address, 2721 &ptl); 2722 if (!pte_same(*page_table, orig_pte)) { 2723 unlock_page(old_page); 2724 goto unlock; 2725 } 2726 2727 page_mkwrite = 1; 2728 } 2729 dirty_page = old_page; 2730 get_page(dirty_page); 2731 2732 reuse: 2733 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2734 entry = pte_mkyoung(orig_pte); 2735 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2736 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2737 update_mmu_cache(vma, address, page_table); 2738 pte_unmap_unlock(page_table, ptl); 2739 ret |= VM_FAULT_WRITE; 2740 2741 if (!dirty_page) 2742 return ret; 2743 2744 /* 2745 * Yes, Virginia, this is actually required to prevent a race 2746 * with clear_page_dirty_for_io() from clearing the page dirty 2747 * bit after it clear all dirty ptes, but before a racing 2748 * do_wp_page installs a dirty pte. 2749 * 2750 * __do_fault is protected similarly. 2751 */ 2752 if (!page_mkwrite) { 2753 wait_on_page_locked(dirty_page); 2754 set_page_dirty_balance(dirty_page, page_mkwrite); 2755 /* file_update_time outside page_lock */ 2756 if (vma->vm_file) 2757 file_update_time(vma->vm_file); 2758 } 2759 put_page(dirty_page); 2760 if (page_mkwrite) { 2761 struct address_space *mapping = dirty_page->mapping; 2762 2763 set_page_dirty(dirty_page); 2764 unlock_page(dirty_page); 2765 page_cache_release(dirty_page); 2766 if (mapping) { 2767 /* 2768 * Some device drivers do not set page.mapping 2769 * but still dirty their pages 2770 */ 2771 balance_dirty_pages_ratelimited(mapping); 2772 } 2773 } 2774 2775 return ret; 2776 } 2777 2778 /* 2779 * Ok, we need to copy. Oh, well.. 2780 */ 2781 page_cache_get(old_page); 2782 gotten: 2783 pte_unmap_unlock(page_table, ptl); 2784 2785 if (unlikely(anon_vma_prepare(vma))) 2786 goto oom; 2787 2788 if (is_zero_pfn(pte_pfn(orig_pte))) { 2789 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2790 if (!new_page) 2791 goto oom; 2792 } else { 2793 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2794 if (!new_page) 2795 goto oom; 2796 cow_user_page(new_page, old_page, address, vma); 2797 } 2798 __SetPageUptodate(new_page); 2799 2800 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2801 goto oom_free_new; 2802 2803 mmun_start = address & PAGE_MASK; 2804 mmun_end = mmun_start + PAGE_SIZE; 2805 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2806 2807 /* 2808 * Re-check the pte - we dropped the lock 2809 */ 2810 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2811 if (likely(pte_same(*page_table, orig_pte))) { 2812 if (old_page) { 2813 if (!PageAnon(old_page)) { 2814 dec_mm_counter_fast(mm, MM_FILEPAGES); 2815 inc_mm_counter_fast(mm, MM_ANONPAGES); 2816 } 2817 } else 2818 inc_mm_counter_fast(mm, MM_ANONPAGES); 2819 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2820 entry = mk_pte(new_page, vma->vm_page_prot); 2821 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2822 /* 2823 * Clear the pte entry and flush it first, before updating the 2824 * pte with the new entry. This will avoid a race condition 2825 * seen in the presence of one thread doing SMC and another 2826 * thread doing COW. 2827 */ 2828 ptep_clear_flush(vma, address, page_table); 2829 page_add_new_anon_rmap(new_page, vma, address); 2830 /* 2831 * We call the notify macro here because, when using secondary 2832 * mmu page tables (such as kvm shadow page tables), we want the 2833 * new page to be mapped directly into the secondary page table. 2834 */ 2835 set_pte_at_notify(mm, address, page_table, entry); 2836 update_mmu_cache(vma, address, page_table); 2837 if (old_page) { 2838 /* 2839 * Only after switching the pte to the new page may 2840 * we remove the mapcount here. Otherwise another 2841 * process may come and find the rmap count decremented 2842 * before the pte is switched to the new page, and 2843 * "reuse" the old page writing into it while our pte 2844 * here still points into it and can be read by other 2845 * threads. 2846 * 2847 * The critical issue is to order this 2848 * page_remove_rmap with the ptp_clear_flush above. 2849 * Those stores are ordered by (if nothing else,) 2850 * the barrier present in the atomic_add_negative 2851 * in page_remove_rmap. 2852 * 2853 * Then the TLB flush in ptep_clear_flush ensures that 2854 * no process can access the old page before the 2855 * decremented mapcount is visible. And the old page 2856 * cannot be reused until after the decremented 2857 * mapcount is visible. So transitively, TLBs to 2858 * old page will be flushed before it can be reused. 2859 */ 2860 page_remove_rmap(old_page); 2861 } 2862 2863 /* Free the old page.. */ 2864 new_page = old_page; 2865 ret |= VM_FAULT_WRITE; 2866 } else 2867 mem_cgroup_uncharge_page(new_page); 2868 2869 if (new_page) 2870 page_cache_release(new_page); 2871 unlock: 2872 pte_unmap_unlock(page_table, ptl); 2873 if (mmun_end > mmun_start) 2874 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2875 if (old_page) { 2876 /* 2877 * Don't let another task, with possibly unlocked vma, 2878 * keep the mlocked page. 2879 */ 2880 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2881 lock_page(old_page); /* LRU manipulation */ 2882 munlock_vma_page(old_page); 2883 unlock_page(old_page); 2884 } 2885 page_cache_release(old_page); 2886 } 2887 return ret; 2888 oom_free_new: 2889 page_cache_release(new_page); 2890 oom: 2891 if (old_page) 2892 page_cache_release(old_page); 2893 return VM_FAULT_OOM; 2894 2895 unwritable_page: 2896 page_cache_release(old_page); 2897 return ret; 2898 } 2899 2900 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2901 unsigned long start_addr, unsigned long end_addr, 2902 struct zap_details *details) 2903 { 2904 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2905 } 2906 2907 static inline void unmap_mapping_range_tree(struct rb_root *root, 2908 struct zap_details *details) 2909 { 2910 struct vm_area_struct *vma; 2911 pgoff_t vba, vea, zba, zea; 2912 2913 vma_interval_tree_foreach(vma, root, 2914 details->first_index, details->last_index) { 2915 2916 vba = vma->vm_pgoff; 2917 vea = vba + vma_pages(vma) - 1; 2918 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2919 zba = details->first_index; 2920 if (zba < vba) 2921 zba = vba; 2922 zea = details->last_index; 2923 if (zea > vea) 2924 zea = vea; 2925 2926 unmap_mapping_range_vma(vma, 2927 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2928 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2929 details); 2930 } 2931 } 2932 2933 static inline void unmap_mapping_range_list(struct list_head *head, 2934 struct zap_details *details) 2935 { 2936 struct vm_area_struct *vma; 2937 2938 /* 2939 * In nonlinear VMAs there is no correspondence between virtual address 2940 * offset and file offset. So we must perform an exhaustive search 2941 * across *all* the pages in each nonlinear VMA, not just the pages 2942 * whose virtual address lies outside the file truncation point. 2943 */ 2944 list_for_each_entry(vma, head, shared.nonlinear) { 2945 details->nonlinear_vma = vma; 2946 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2947 } 2948 } 2949 2950 /** 2951 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2952 * @mapping: the address space containing mmaps to be unmapped. 2953 * @holebegin: byte in first page to unmap, relative to the start of 2954 * the underlying file. This will be rounded down to a PAGE_SIZE 2955 * boundary. Note that this is different from truncate_pagecache(), which 2956 * must keep the partial page. In contrast, we must get rid of 2957 * partial pages. 2958 * @holelen: size of prospective hole in bytes. This will be rounded 2959 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2960 * end of the file. 2961 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2962 * but 0 when invalidating pagecache, don't throw away private data. 2963 */ 2964 void unmap_mapping_range(struct address_space *mapping, 2965 loff_t const holebegin, loff_t const holelen, int even_cows) 2966 { 2967 struct zap_details details; 2968 pgoff_t hba = holebegin >> PAGE_SHIFT; 2969 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2970 2971 /* Check for overflow. */ 2972 if (sizeof(holelen) > sizeof(hlen)) { 2973 long long holeend = 2974 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2975 if (holeend & ~(long long)ULONG_MAX) 2976 hlen = ULONG_MAX - hba + 1; 2977 } 2978 2979 details.check_mapping = even_cows? NULL: mapping; 2980 details.nonlinear_vma = NULL; 2981 details.first_index = hba; 2982 details.last_index = hba + hlen - 1; 2983 if (details.last_index < details.first_index) 2984 details.last_index = ULONG_MAX; 2985 2986 2987 mutex_lock(&mapping->i_mmap_mutex); 2988 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2989 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2990 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2991 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2992 mutex_unlock(&mapping->i_mmap_mutex); 2993 } 2994 EXPORT_SYMBOL(unmap_mapping_range); 2995 2996 /* 2997 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2998 * but allow concurrent faults), and pte mapped but not yet locked. 2999 * We return with mmap_sem still held, but pte unmapped and unlocked. 3000 */ 3001 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 3002 unsigned long address, pte_t *page_table, pmd_t *pmd, 3003 unsigned int flags, pte_t orig_pte) 3004 { 3005 spinlock_t *ptl; 3006 struct page *page, *swapcache; 3007 swp_entry_t entry; 3008 pte_t pte; 3009 int locked; 3010 struct mem_cgroup *ptr; 3011 int exclusive = 0; 3012 int ret = 0; 3013 3014 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3015 goto out; 3016 3017 entry = pte_to_swp_entry(orig_pte); 3018 if (unlikely(non_swap_entry(entry))) { 3019 if (is_migration_entry(entry)) { 3020 migration_entry_wait(mm, pmd, address); 3021 } else if (is_hwpoison_entry(entry)) { 3022 ret = VM_FAULT_HWPOISON; 3023 } else { 3024 print_bad_pte(vma, address, orig_pte, NULL); 3025 ret = VM_FAULT_SIGBUS; 3026 } 3027 goto out; 3028 } 3029 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3030 page = lookup_swap_cache(entry); 3031 if (!page) { 3032 page = swapin_readahead(entry, 3033 GFP_HIGHUSER_MOVABLE, vma, address); 3034 if (!page) { 3035 /* 3036 * Back out if somebody else faulted in this pte 3037 * while we released the pte lock. 3038 */ 3039 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3040 if (likely(pte_same(*page_table, orig_pte))) 3041 ret = VM_FAULT_OOM; 3042 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3043 goto unlock; 3044 } 3045 3046 /* Had to read the page from swap area: Major fault */ 3047 ret = VM_FAULT_MAJOR; 3048 count_vm_event(PGMAJFAULT); 3049 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 3050 } else if (PageHWPoison(page)) { 3051 /* 3052 * hwpoisoned dirty swapcache pages are kept for killing 3053 * owner processes (which may be unknown at hwpoison time) 3054 */ 3055 ret = VM_FAULT_HWPOISON; 3056 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3057 swapcache = page; 3058 goto out_release; 3059 } 3060 3061 swapcache = page; 3062 locked = lock_page_or_retry(page, mm, flags); 3063 3064 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3065 if (!locked) { 3066 ret |= VM_FAULT_RETRY; 3067 goto out_release; 3068 } 3069 3070 /* 3071 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3072 * release the swapcache from under us. The page pin, and pte_same 3073 * test below, are not enough to exclude that. Even if it is still 3074 * swapcache, we need to check that the page's swap has not changed. 3075 */ 3076 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 3077 goto out_page; 3078 3079 page = ksm_might_need_to_copy(page, vma, address); 3080 if (unlikely(!page)) { 3081 ret = VM_FAULT_OOM; 3082 page = swapcache; 3083 goto out_page; 3084 } 3085 3086 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 3087 ret = VM_FAULT_OOM; 3088 goto out_page; 3089 } 3090 3091 /* 3092 * Back out if somebody else already faulted in this pte. 3093 */ 3094 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3095 if (unlikely(!pte_same(*page_table, orig_pte))) 3096 goto out_nomap; 3097 3098 if (unlikely(!PageUptodate(page))) { 3099 ret = VM_FAULT_SIGBUS; 3100 goto out_nomap; 3101 } 3102 3103 /* 3104 * The page isn't present yet, go ahead with the fault. 3105 * 3106 * Be careful about the sequence of operations here. 3107 * To get its accounting right, reuse_swap_page() must be called 3108 * while the page is counted on swap but not yet in mapcount i.e. 3109 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3110 * must be called after the swap_free(), or it will never succeed. 3111 * Because delete_from_swap_page() may be called by reuse_swap_page(), 3112 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 3113 * in page->private. In this case, a record in swap_cgroup is silently 3114 * discarded at swap_free(). 3115 */ 3116 3117 inc_mm_counter_fast(mm, MM_ANONPAGES); 3118 dec_mm_counter_fast(mm, MM_SWAPENTS); 3119 pte = mk_pte(page, vma->vm_page_prot); 3120 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 3121 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3122 flags &= ~FAULT_FLAG_WRITE; 3123 ret |= VM_FAULT_WRITE; 3124 exclusive = 1; 3125 } 3126 flush_icache_page(vma, page); 3127 if (pte_swp_soft_dirty(orig_pte)) 3128 pte = pte_mksoft_dirty(pte); 3129 set_pte_at(mm, address, page_table, pte); 3130 if (page == swapcache) 3131 do_page_add_anon_rmap(page, vma, address, exclusive); 3132 else /* ksm created a completely new copy */ 3133 page_add_new_anon_rmap(page, vma, address); 3134 /* It's better to call commit-charge after rmap is established */ 3135 mem_cgroup_commit_charge_swapin(page, ptr); 3136 3137 swap_free(entry); 3138 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3139 try_to_free_swap(page); 3140 unlock_page(page); 3141 if (page != swapcache) { 3142 /* 3143 * Hold the lock to avoid the swap entry to be reused 3144 * until we take the PT lock for the pte_same() check 3145 * (to avoid false positives from pte_same). For 3146 * further safety release the lock after the swap_free 3147 * so that the swap count won't change under a 3148 * parallel locked swapcache. 3149 */ 3150 unlock_page(swapcache); 3151 page_cache_release(swapcache); 3152 } 3153 3154 if (flags & FAULT_FLAG_WRITE) { 3155 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 3156 if (ret & VM_FAULT_ERROR) 3157 ret &= VM_FAULT_ERROR; 3158 goto out; 3159 } 3160 3161 /* No need to invalidate - it was non-present before */ 3162 update_mmu_cache(vma, address, page_table); 3163 unlock: 3164 pte_unmap_unlock(page_table, ptl); 3165 out: 3166 return ret; 3167 out_nomap: 3168 mem_cgroup_cancel_charge_swapin(ptr); 3169 pte_unmap_unlock(page_table, ptl); 3170 out_page: 3171 unlock_page(page); 3172 out_release: 3173 page_cache_release(page); 3174 if (page != swapcache) { 3175 unlock_page(swapcache); 3176 page_cache_release(swapcache); 3177 } 3178 return ret; 3179 } 3180 3181 /* 3182 * This is like a special single-page "expand_{down|up}wards()", 3183 * except we must first make sure that 'address{-|+}PAGE_SIZE' 3184 * doesn't hit another vma. 3185 */ 3186 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 3187 { 3188 address &= PAGE_MASK; 3189 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 3190 struct vm_area_struct *prev = vma->vm_prev; 3191 3192 /* 3193 * Is there a mapping abutting this one below? 3194 * 3195 * That's only ok if it's the same stack mapping 3196 * that has gotten split.. 3197 */ 3198 if (prev && prev->vm_end == address) 3199 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3200 3201 expand_downwards(vma, address - PAGE_SIZE); 3202 } 3203 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3204 struct vm_area_struct *next = vma->vm_next; 3205 3206 /* As VM_GROWSDOWN but s/below/above/ */ 3207 if (next && next->vm_start == address + PAGE_SIZE) 3208 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3209 3210 expand_upwards(vma, address + PAGE_SIZE); 3211 } 3212 return 0; 3213 } 3214 3215 /* 3216 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3217 * but allow concurrent faults), and pte mapped but not yet locked. 3218 * We return with mmap_sem still held, but pte unmapped and unlocked. 3219 */ 3220 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3221 unsigned long address, pte_t *page_table, pmd_t *pmd, 3222 unsigned int flags) 3223 { 3224 struct page *page; 3225 spinlock_t *ptl; 3226 pte_t entry; 3227 3228 pte_unmap(page_table); 3229 3230 /* Check if we need to add a guard page to the stack */ 3231 if (check_stack_guard_page(vma, address) < 0) 3232 return VM_FAULT_SIGBUS; 3233 3234 /* Use the zero-page for reads */ 3235 if (!(flags & FAULT_FLAG_WRITE)) { 3236 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3237 vma->vm_page_prot)); 3238 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3239 if (!pte_none(*page_table)) 3240 goto unlock; 3241 goto setpte; 3242 } 3243 3244 /* Allocate our own private page. */ 3245 if (unlikely(anon_vma_prepare(vma))) 3246 goto oom; 3247 page = alloc_zeroed_user_highpage_movable(vma, address); 3248 if (!page) 3249 goto oom; 3250 /* 3251 * The memory barrier inside __SetPageUptodate makes sure that 3252 * preceeding stores to the page contents become visible before 3253 * the set_pte_at() write. 3254 */ 3255 __SetPageUptodate(page); 3256 3257 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3258 goto oom_free_page; 3259 3260 entry = mk_pte(page, vma->vm_page_prot); 3261 if (vma->vm_flags & VM_WRITE) 3262 entry = pte_mkwrite(pte_mkdirty(entry)); 3263 3264 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3265 if (!pte_none(*page_table)) 3266 goto release; 3267 3268 inc_mm_counter_fast(mm, MM_ANONPAGES); 3269 page_add_new_anon_rmap(page, vma, address); 3270 setpte: 3271 set_pte_at(mm, address, page_table, entry); 3272 3273 /* No need to invalidate - it was non-present before */ 3274 update_mmu_cache(vma, address, page_table); 3275 unlock: 3276 pte_unmap_unlock(page_table, ptl); 3277 return 0; 3278 release: 3279 mem_cgroup_uncharge_page(page); 3280 page_cache_release(page); 3281 goto unlock; 3282 oom_free_page: 3283 page_cache_release(page); 3284 oom: 3285 return VM_FAULT_OOM; 3286 } 3287 3288 /* 3289 * __do_fault() tries to create a new page mapping. It aggressively 3290 * tries to share with existing pages, but makes a separate copy if 3291 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3292 * the next page fault. 3293 * 3294 * As this is called only for pages that do not currently exist, we 3295 * do not need to flush old virtual caches or the TLB. 3296 * 3297 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3298 * but allow concurrent faults), and pte neither mapped nor locked. 3299 * We return with mmap_sem still held, but pte unmapped and unlocked. 3300 */ 3301 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3302 unsigned long address, pmd_t *pmd, 3303 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3304 { 3305 pte_t *page_table; 3306 spinlock_t *ptl; 3307 struct page *page; 3308 struct page *cow_page; 3309 pte_t entry; 3310 int anon = 0; 3311 struct page *dirty_page = NULL; 3312 struct vm_fault vmf; 3313 int ret; 3314 int page_mkwrite = 0; 3315 3316 /* 3317 * If we do COW later, allocate page befor taking lock_page() 3318 * on the file cache page. This will reduce lock holding time. 3319 */ 3320 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3321 3322 if (unlikely(anon_vma_prepare(vma))) 3323 return VM_FAULT_OOM; 3324 3325 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3326 if (!cow_page) 3327 return VM_FAULT_OOM; 3328 3329 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) { 3330 page_cache_release(cow_page); 3331 return VM_FAULT_OOM; 3332 } 3333 } else 3334 cow_page = NULL; 3335 3336 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3337 vmf.pgoff = pgoff; 3338 vmf.flags = flags; 3339 vmf.page = NULL; 3340 3341 ret = vma->vm_ops->fault(vma, &vmf); 3342 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3343 VM_FAULT_RETRY))) 3344 goto uncharge_out; 3345 3346 if (unlikely(PageHWPoison(vmf.page))) { 3347 if (ret & VM_FAULT_LOCKED) 3348 unlock_page(vmf.page); 3349 ret = VM_FAULT_HWPOISON; 3350 goto uncharge_out; 3351 } 3352 3353 /* 3354 * For consistency in subsequent calls, make the faulted page always 3355 * locked. 3356 */ 3357 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3358 lock_page(vmf.page); 3359 else 3360 VM_BUG_ON(!PageLocked(vmf.page)); 3361 3362 /* 3363 * Should we do an early C-O-W break? 3364 */ 3365 page = vmf.page; 3366 if (flags & FAULT_FLAG_WRITE) { 3367 if (!(vma->vm_flags & VM_SHARED)) { 3368 page = cow_page; 3369 anon = 1; 3370 copy_user_highpage(page, vmf.page, address, vma); 3371 __SetPageUptodate(page); 3372 } else { 3373 /* 3374 * If the page will be shareable, see if the backing 3375 * address space wants to know that the page is about 3376 * to become writable 3377 */ 3378 if (vma->vm_ops->page_mkwrite) { 3379 int tmp; 3380 3381 unlock_page(page); 3382 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3383 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3384 if (unlikely(tmp & 3385 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3386 ret = tmp; 3387 goto unwritable_page; 3388 } 3389 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3390 lock_page(page); 3391 if (!page->mapping) { 3392 ret = 0; /* retry the fault */ 3393 unlock_page(page); 3394 goto unwritable_page; 3395 } 3396 } else 3397 VM_BUG_ON(!PageLocked(page)); 3398 page_mkwrite = 1; 3399 } 3400 } 3401 3402 } 3403 3404 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3405 3406 /* 3407 * This silly early PAGE_DIRTY setting removes a race 3408 * due to the bad i386 page protection. But it's valid 3409 * for other architectures too. 3410 * 3411 * Note that if FAULT_FLAG_WRITE is set, we either now have 3412 * an exclusive copy of the page, or this is a shared mapping, 3413 * so we can make it writable and dirty to avoid having to 3414 * handle that later. 3415 */ 3416 /* Only go through if we didn't race with anybody else... */ 3417 if (likely(pte_same(*page_table, orig_pte))) { 3418 flush_icache_page(vma, page); 3419 entry = mk_pte(page, vma->vm_page_prot); 3420 if (flags & FAULT_FLAG_WRITE) 3421 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3422 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte)) 3423 pte_mksoft_dirty(entry); 3424 if (anon) { 3425 inc_mm_counter_fast(mm, MM_ANONPAGES); 3426 page_add_new_anon_rmap(page, vma, address); 3427 } else { 3428 inc_mm_counter_fast(mm, MM_FILEPAGES); 3429 page_add_file_rmap(page); 3430 if (flags & FAULT_FLAG_WRITE) { 3431 dirty_page = page; 3432 get_page(dirty_page); 3433 } 3434 } 3435 set_pte_at(mm, address, page_table, entry); 3436 3437 /* no need to invalidate: a not-present page won't be cached */ 3438 update_mmu_cache(vma, address, page_table); 3439 } else { 3440 if (cow_page) 3441 mem_cgroup_uncharge_page(cow_page); 3442 if (anon) 3443 page_cache_release(page); 3444 else 3445 anon = 1; /* no anon but release faulted_page */ 3446 } 3447 3448 pte_unmap_unlock(page_table, ptl); 3449 3450 if (dirty_page) { 3451 struct address_space *mapping = page->mapping; 3452 int dirtied = 0; 3453 3454 if (set_page_dirty(dirty_page)) 3455 dirtied = 1; 3456 unlock_page(dirty_page); 3457 put_page(dirty_page); 3458 if ((dirtied || page_mkwrite) && mapping) { 3459 /* 3460 * Some device drivers do not set page.mapping but still 3461 * dirty their pages 3462 */ 3463 balance_dirty_pages_ratelimited(mapping); 3464 } 3465 3466 /* file_update_time outside page_lock */ 3467 if (vma->vm_file && !page_mkwrite) 3468 file_update_time(vma->vm_file); 3469 } else { 3470 unlock_page(vmf.page); 3471 if (anon) 3472 page_cache_release(vmf.page); 3473 } 3474 3475 return ret; 3476 3477 unwritable_page: 3478 page_cache_release(page); 3479 return ret; 3480 uncharge_out: 3481 /* fs's fault handler get error */ 3482 if (cow_page) { 3483 mem_cgroup_uncharge_page(cow_page); 3484 page_cache_release(cow_page); 3485 } 3486 return ret; 3487 } 3488 3489 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3490 unsigned long address, pte_t *page_table, pmd_t *pmd, 3491 unsigned int flags, pte_t orig_pte) 3492 { 3493 pgoff_t pgoff = (((address & PAGE_MASK) 3494 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3495 3496 pte_unmap(page_table); 3497 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3498 } 3499 3500 /* 3501 * Fault of a previously existing named mapping. Repopulate the pte 3502 * from the encoded file_pte if possible. This enables swappable 3503 * nonlinear vmas. 3504 * 3505 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3506 * but allow concurrent faults), and pte mapped but not yet locked. 3507 * We return with mmap_sem still held, but pte unmapped and unlocked. 3508 */ 3509 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3510 unsigned long address, pte_t *page_table, pmd_t *pmd, 3511 unsigned int flags, pte_t orig_pte) 3512 { 3513 pgoff_t pgoff; 3514 3515 flags |= FAULT_FLAG_NONLINEAR; 3516 3517 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3518 return 0; 3519 3520 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3521 /* 3522 * Page table corrupted: show pte and kill process. 3523 */ 3524 print_bad_pte(vma, address, orig_pte, NULL); 3525 return VM_FAULT_SIGBUS; 3526 } 3527 3528 pgoff = pte_to_pgoff(orig_pte); 3529 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3530 } 3531 3532 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3533 unsigned long addr, int current_nid) 3534 { 3535 get_page(page); 3536 3537 count_vm_numa_event(NUMA_HINT_FAULTS); 3538 if (current_nid == numa_node_id()) 3539 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3540 3541 return mpol_misplaced(page, vma, addr); 3542 } 3543 3544 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3545 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3546 { 3547 struct page *page = NULL; 3548 spinlock_t *ptl; 3549 int current_nid = -1; 3550 int target_nid; 3551 bool migrated = false; 3552 3553 /* 3554 * The "pte" at this point cannot be used safely without 3555 * validation through pte_unmap_same(). It's of NUMA type but 3556 * the pfn may be screwed if the read is non atomic. 3557 * 3558 * ptep_modify_prot_start is not called as this is clearing 3559 * the _PAGE_NUMA bit and it is not really expected that there 3560 * would be concurrent hardware modifications to the PTE. 3561 */ 3562 ptl = pte_lockptr(mm, pmd); 3563 spin_lock(ptl); 3564 if (unlikely(!pte_same(*ptep, pte))) { 3565 pte_unmap_unlock(ptep, ptl); 3566 goto out; 3567 } 3568 3569 pte = pte_mknonnuma(pte); 3570 set_pte_at(mm, addr, ptep, pte); 3571 update_mmu_cache(vma, addr, ptep); 3572 3573 page = vm_normal_page(vma, addr, pte); 3574 if (!page) { 3575 pte_unmap_unlock(ptep, ptl); 3576 return 0; 3577 } 3578 3579 current_nid = page_to_nid(page); 3580 target_nid = numa_migrate_prep(page, vma, addr, current_nid); 3581 pte_unmap_unlock(ptep, ptl); 3582 if (target_nid == -1) { 3583 /* 3584 * Account for the fault against the current node if it not 3585 * being replaced regardless of where the page is located. 3586 */ 3587 current_nid = numa_node_id(); 3588 put_page(page); 3589 goto out; 3590 } 3591 3592 /* Migrate to the requested node */ 3593 migrated = migrate_misplaced_page(page, target_nid); 3594 if (migrated) 3595 current_nid = target_nid; 3596 3597 out: 3598 if (current_nid != -1) 3599 task_numa_fault(current_nid, 1, migrated); 3600 return 0; 3601 } 3602 3603 /* NUMA hinting page fault entry point for regular pmds */ 3604 #ifdef CONFIG_NUMA_BALANCING 3605 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3606 unsigned long addr, pmd_t *pmdp) 3607 { 3608 pmd_t pmd; 3609 pte_t *pte, *orig_pte; 3610 unsigned long _addr = addr & PMD_MASK; 3611 unsigned long offset; 3612 spinlock_t *ptl; 3613 bool numa = false; 3614 int local_nid = numa_node_id(); 3615 3616 spin_lock(&mm->page_table_lock); 3617 pmd = *pmdp; 3618 if (pmd_numa(pmd)) { 3619 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd)); 3620 numa = true; 3621 } 3622 spin_unlock(&mm->page_table_lock); 3623 3624 if (!numa) 3625 return 0; 3626 3627 /* we're in a page fault so some vma must be in the range */ 3628 BUG_ON(!vma); 3629 BUG_ON(vma->vm_start >= _addr + PMD_SIZE); 3630 offset = max(_addr, vma->vm_start) & ~PMD_MASK; 3631 VM_BUG_ON(offset >= PMD_SIZE); 3632 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl); 3633 pte += offset >> PAGE_SHIFT; 3634 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) { 3635 pte_t pteval = *pte; 3636 struct page *page; 3637 int curr_nid = local_nid; 3638 int target_nid; 3639 bool migrated; 3640 if (!pte_present(pteval)) 3641 continue; 3642 if (!pte_numa(pteval)) 3643 continue; 3644 if (addr >= vma->vm_end) { 3645 vma = find_vma(mm, addr); 3646 /* there's a pte present so there must be a vma */ 3647 BUG_ON(!vma); 3648 BUG_ON(addr < vma->vm_start); 3649 } 3650 if (pte_numa(pteval)) { 3651 pteval = pte_mknonnuma(pteval); 3652 set_pte_at(mm, addr, pte, pteval); 3653 } 3654 page = vm_normal_page(vma, addr, pteval); 3655 if (unlikely(!page)) 3656 continue; 3657 /* only check non-shared pages */ 3658 if (unlikely(page_mapcount(page) != 1)) 3659 continue; 3660 3661 /* 3662 * Note that the NUMA fault is later accounted to either 3663 * the node that is currently running or where the page is 3664 * migrated to. 3665 */ 3666 curr_nid = local_nid; 3667 target_nid = numa_migrate_prep(page, vma, addr, 3668 page_to_nid(page)); 3669 if (target_nid == -1) { 3670 put_page(page); 3671 continue; 3672 } 3673 3674 /* Migrate to the requested node */ 3675 pte_unmap_unlock(pte, ptl); 3676 migrated = migrate_misplaced_page(page, target_nid); 3677 if (migrated) 3678 curr_nid = target_nid; 3679 task_numa_fault(curr_nid, 1, migrated); 3680 3681 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl); 3682 } 3683 pte_unmap_unlock(orig_pte, ptl); 3684 3685 return 0; 3686 } 3687 #else 3688 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3689 unsigned long addr, pmd_t *pmdp) 3690 { 3691 BUG(); 3692 return 0; 3693 } 3694 #endif /* CONFIG_NUMA_BALANCING */ 3695 3696 /* 3697 * These routines also need to handle stuff like marking pages dirty 3698 * and/or accessed for architectures that don't do it in hardware (most 3699 * RISC architectures). The early dirtying is also good on the i386. 3700 * 3701 * There is also a hook called "update_mmu_cache()" that architectures 3702 * with external mmu caches can use to update those (ie the Sparc or 3703 * PowerPC hashed page tables that act as extended TLBs). 3704 * 3705 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3706 * but allow concurrent faults), and pte mapped but not yet locked. 3707 * We return with mmap_sem still held, but pte unmapped and unlocked. 3708 */ 3709 int handle_pte_fault(struct mm_struct *mm, 3710 struct vm_area_struct *vma, unsigned long address, 3711 pte_t *pte, pmd_t *pmd, unsigned int flags) 3712 { 3713 pte_t entry; 3714 spinlock_t *ptl; 3715 3716 entry = *pte; 3717 if (!pte_present(entry)) { 3718 if (pte_none(entry)) { 3719 if (vma->vm_ops) { 3720 if (likely(vma->vm_ops->fault)) 3721 return do_linear_fault(mm, vma, address, 3722 pte, pmd, flags, entry); 3723 } 3724 return do_anonymous_page(mm, vma, address, 3725 pte, pmd, flags); 3726 } 3727 if (pte_file(entry)) 3728 return do_nonlinear_fault(mm, vma, address, 3729 pte, pmd, flags, entry); 3730 return do_swap_page(mm, vma, address, 3731 pte, pmd, flags, entry); 3732 } 3733 3734 if (pte_numa(entry)) 3735 return do_numa_page(mm, vma, address, entry, pte, pmd); 3736 3737 ptl = pte_lockptr(mm, pmd); 3738 spin_lock(ptl); 3739 if (unlikely(!pte_same(*pte, entry))) 3740 goto unlock; 3741 if (flags & FAULT_FLAG_WRITE) { 3742 if (!pte_write(entry)) 3743 return do_wp_page(mm, vma, address, 3744 pte, pmd, ptl, entry); 3745 entry = pte_mkdirty(entry); 3746 } 3747 entry = pte_mkyoung(entry); 3748 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3749 update_mmu_cache(vma, address, pte); 3750 } else { 3751 /* 3752 * This is needed only for protection faults but the arch code 3753 * is not yet telling us if this is a protection fault or not. 3754 * This still avoids useless tlb flushes for .text page faults 3755 * with threads. 3756 */ 3757 if (flags & FAULT_FLAG_WRITE) 3758 flush_tlb_fix_spurious_fault(vma, address); 3759 } 3760 unlock: 3761 pte_unmap_unlock(pte, ptl); 3762 return 0; 3763 } 3764 3765 /* 3766 * By the time we get here, we already hold the mm semaphore 3767 */ 3768 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3769 unsigned long address, unsigned int flags) 3770 { 3771 pgd_t *pgd; 3772 pud_t *pud; 3773 pmd_t *pmd; 3774 pte_t *pte; 3775 3776 __set_current_state(TASK_RUNNING); 3777 3778 count_vm_event(PGFAULT); 3779 mem_cgroup_count_vm_event(mm, PGFAULT); 3780 3781 /* do counter updates before entering really critical section. */ 3782 check_sync_rss_stat(current); 3783 3784 if (unlikely(is_vm_hugetlb_page(vma))) 3785 return hugetlb_fault(mm, vma, address, flags); 3786 3787 retry: 3788 pgd = pgd_offset(mm, address); 3789 pud = pud_alloc(mm, pgd, address); 3790 if (!pud) 3791 return VM_FAULT_OOM; 3792 pmd = pmd_alloc(mm, pud, address); 3793 if (!pmd) 3794 return VM_FAULT_OOM; 3795 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3796 if (!vma->vm_ops) 3797 return do_huge_pmd_anonymous_page(mm, vma, address, 3798 pmd, flags); 3799 } else { 3800 pmd_t orig_pmd = *pmd; 3801 int ret; 3802 3803 barrier(); 3804 if (pmd_trans_huge(orig_pmd)) { 3805 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3806 3807 /* 3808 * If the pmd is splitting, return and retry the 3809 * the fault. Alternative: wait until the split 3810 * is done, and goto retry. 3811 */ 3812 if (pmd_trans_splitting(orig_pmd)) 3813 return 0; 3814 3815 if (pmd_numa(orig_pmd)) 3816 return do_huge_pmd_numa_page(mm, vma, address, 3817 orig_pmd, pmd); 3818 3819 if (dirty && !pmd_write(orig_pmd)) { 3820 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3821 orig_pmd); 3822 /* 3823 * If COW results in an oom, the huge pmd will 3824 * have been split, so retry the fault on the 3825 * pte for a smaller charge. 3826 */ 3827 if (unlikely(ret & VM_FAULT_OOM)) 3828 goto retry; 3829 return ret; 3830 } else { 3831 huge_pmd_set_accessed(mm, vma, address, pmd, 3832 orig_pmd, dirty); 3833 } 3834 3835 return 0; 3836 } 3837 } 3838 3839 if (pmd_numa(*pmd)) 3840 return do_pmd_numa_page(mm, vma, address, pmd); 3841 3842 /* 3843 * Use __pte_alloc instead of pte_alloc_map, because we can't 3844 * run pte_offset_map on the pmd, if an huge pmd could 3845 * materialize from under us from a different thread. 3846 */ 3847 if (unlikely(pmd_none(*pmd)) && 3848 unlikely(__pte_alloc(mm, vma, pmd, address))) 3849 return VM_FAULT_OOM; 3850 /* if an huge pmd materialized from under us just retry later */ 3851 if (unlikely(pmd_trans_huge(*pmd))) 3852 return 0; 3853 /* 3854 * A regular pmd is established and it can't morph into a huge pmd 3855 * from under us anymore at this point because we hold the mmap_sem 3856 * read mode and khugepaged takes it in write mode. So now it's 3857 * safe to run pte_offset_map(). 3858 */ 3859 pte = pte_offset_map(pmd, address); 3860 3861 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3862 } 3863 3864 #ifndef __PAGETABLE_PUD_FOLDED 3865 /* 3866 * Allocate page upper directory. 3867 * We've already handled the fast-path in-line. 3868 */ 3869 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3870 { 3871 pud_t *new = pud_alloc_one(mm, address); 3872 if (!new) 3873 return -ENOMEM; 3874 3875 smp_wmb(); /* See comment in __pte_alloc */ 3876 3877 spin_lock(&mm->page_table_lock); 3878 if (pgd_present(*pgd)) /* Another has populated it */ 3879 pud_free(mm, new); 3880 else 3881 pgd_populate(mm, pgd, new); 3882 spin_unlock(&mm->page_table_lock); 3883 return 0; 3884 } 3885 #endif /* __PAGETABLE_PUD_FOLDED */ 3886 3887 #ifndef __PAGETABLE_PMD_FOLDED 3888 /* 3889 * Allocate page middle directory. 3890 * We've already handled the fast-path in-line. 3891 */ 3892 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3893 { 3894 pmd_t *new = pmd_alloc_one(mm, address); 3895 if (!new) 3896 return -ENOMEM; 3897 3898 smp_wmb(); /* See comment in __pte_alloc */ 3899 3900 spin_lock(&mm->page_table_lock); 3901 #ifndef __ARCH_HAS_4LEVEL_HACK 3902 if (pud_present(*pud)) /* Another has populated it */ 3903 pmd_free(mm, new); 3904 else 3905 pud_populate(mm, pud, new); 3906 #else 3907 if (pgd_present(*pud)) /* Another has populated it */ 3908 pmd_free(mm, new); 3909 else 3910 pgd_populate(mm, pud, new); 3911 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3912 spin_unlock(&mm->page_table_lock); 3913 return 0; 3914 } 3915 #endif /* __PAGETABLE_PMD_FOLDED */ 3916 3917 #if !defined(__HAVE_ARCH_GATE_AREA) 3918 3919 #if defined(AT_SYSINFO_EHDR) 3920 static struct vm_area_struct gate_vma; 3921 3922 static int __init gate_vma_init(void) 3923 { 3924 gate_vma.vm_mm = NULL; 3925 gate_vma.vm_start = FIXADDR_USER_START; 3926 gate_vma.vm_end = FIXADDR_USER_END; 3927 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3928 gate_vma.vm_page_prot = __P101; 3929 3930 return 0; 3931 } 3932 __initcall(gate_vma_init); 3933 #endif 3934 3935 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3936 { 3937 #ifdef AT_SYSINFO_EHDR 3938 return &gate_vma; 3939 #else 3940 return NULL; 3941 #endif 3942 } 3943 3944 int in_gate_area_no_mm(unsigned long addr) 3945 { 3946 #ifdef AT_SYSINFO_EHDR 3947 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3948 return 1; 3949 #endif 3950 return 0; 3951 } 3952 3953 #endif /* __HAVE_ARCH_GATE_AREA */ 3954 3955 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3956 pte_t **ptepp, spinlock_t **ptlp) 3957 { 3958 pgd_t *pgd; 3959 pud_t *pud; 3960 pmd_t *pmd; 3961 pte_t *ptep; 3962 3963 pgd = pgd_offset(mm, address); 3964 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3965 goto out; 3966 3967 pud = pud_offset(pgd, address); 3968 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3969 goto out; 3970 3971 pmd = pmd_offset(pud, address); 3972 VM_BUG_ON(pmd_trans_huge(*pmd)); 3973 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3974 goto out; 3975 3976 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3977 if (pmd_huge(*pmd)) 3978 goto out; 3979 3980 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3981 if (!ptep) 3982 goto out; 3983 if (!pte_present(*ptep)) 3984 goto unlock; 3985 *ptepp = ptep; 3986 return 0; 3987 unlock: 3988 pte_unmap_unlock(ptep, *ptlp); 3989 out: 3990 return -EINVAL; 3991 } 3992 3993 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3994 pte_t **ptepp, spinlock_t **ptlp) 3995 { 3996 int res; 3997 3998 /* (void) is needed to make gcc happy */ 3999 (void) __cond_lock(*ptlp, 4000 !(res = __follow_pte(mm, address, ptepp, ptlp))); 4001 return res; 4002 } 4003 4004 /** 4005 * follow_pfn - look up PFN at a user virtual address 4006 * @vma: memory mapping 4007 * @address: user virtual address 4008 * @pfn: location to store found PFN 4009 * 4010 * Only IO mappings and raw PFN mappings are allowed. 4011 * 4012 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4013 */ 4014 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4015 unsigned long *pfn) 4016 { 4017 int ret = -EINVAL; 4018 spinlock_t *ptl; 4019 pte_t *ptep; 4020 4021 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4022 return ret; 4023 4024 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4025 if (ret) 4026 return ret; 4027 *pfn = pte_pfn(*ptep); 4028 pte_unmap_unlock(ptep, ptl); 4029 return 0; 4030 } 4031 EXPORT_SYMBOL(follow_pfn); 4032 4033 #ifdef CONFIG_HAVE_IOREMAP_PROT 4034 int follow_phys(struct vm_area_struct *vma, 4035 unsigned long address, unsigned int flags, 4036 unsigned long *prot, resource_size_t *phys) 4037 { 4038 int ret = -EINVAL; 4039 pte_t *ptep, pte; 4040 spinlock_t *ptl; 4041 4042 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4043 goto out; 4044 4045 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4046 goto out; 4047 pte = *ptep; 4048 4049 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4050 goto unlock; 4051 4052 *prot = pgprot_val(pte_pgprot(pte)); 4053 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4054 4055 ret = 0; 4056 unlock: 4057 pte_unmap_unlock(ptep, ptl); 4058 out: 4059 return ret; 4060 } 4061 4062 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4063 void *buf, int len, int write) 4064 { 4065 resource_size_t phys_addr; 4066 unsigned long prot = 0; 4067 void __iomem *maddr; 4068 int offset = addr & (PAGE_SIZE-1); 4069 4070 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4071 return -EINVAL; 4072 4073 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 4074 if (write) 4075 memcpy_toio(maddr + offset, buf, len); 4076 else 4077 memcpy_fromio(buf, maddr + offset, len); 4078 iounmap(maddr); 4079 4080 return len; 4081 } 4082 #endif 4083 4084 /* 4085 * Access another process' address space as given in mm. If non-NULL, use the 4086 * given task for page fault accounting. 4087 */ 4088 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4089 unsigned long addr, void *buf, int len, int write) 4090 { 4091 struct vm_area_struct *vma; 4092 void *old_buf = buf; 4093 4094 down_read(&mm->mmap_sem); 4095 /* ignore errors, just check how much was successfully transferred */ 4096 while (len) { 4097 int bytes, ret, offset; 4098 void *maddr; 4099 struct page *page = NULL; 4100 4101 ret = get_user_pages(tsk, mm, addr, 1, 4102 write, 1, &page, &vma); 4103 if (ret <= 0) { 4104 /* 4105 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4106 * we can access using slightly different code. 4107 */ 4108 #ifdef CONFIG_HAVE_IOREMAP_PROT 4109 vma = find_vma(mm, addr); 4110 if (!vma || vma->vm_start > addr) 4111 break; 4112 if (vma->vm_ops && vma->vm_ops->access) 4113 ret = vma->vm_ops->access(vma, addr, buf, 4114 len, write); 4115 if (ret <= 0) 4116 #endif 4117 break; 4118 bytes = ret; 4119 } else { 4120 bytes = len; 4121 offset = addr & (PAGE_SIZE-1); 4122 if (bytes > PAGE_SIZE-offset) 4123 bytes = PAGE_SIZE-offset; 4124 4125 maddr = kmap(page); 4126 if (write) { 4127 copy_to_user_page(vma, page, addr, 4128 maddr + offset, buf, bytes); 4129 set_page_dirty_lock(page); 4130 } else { 4131 copy_from_user_page(vma, page, addr, 4132 buf, maddr + offset, bytes); 4133 } 4134 kunmap(page); 4135 page_cache_release(page); 4136 } 4137 len -= bytes; 4138 buf += bytes; 4139 addr += bytes; 4140 } 4141 up_read(&mm->mmap_sem); 4142 4143 return buf - old_buf; 4144 } 4145 4146 /** 4147 * access_remote_vm - access another process' address space 4148 * @mm: the mm_struct of the target address space 4149 * @addr: start address to access 4150 * @buf: source or destination buffer 4151 * @len: number of bytes to transfer 4152 * @write: whether the access is a write 4153 * 4154 * The caller must hold a reference on @mm. 4155 */ 4156 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4157 void *buf, int len, int write) 4158 { 4159 return __access_remote_vm(NULL, mm, addr, buf, len, write); 4160 } 4161 4162 /* 4163 * Access another process' address space. 4164 * Source/target buffer must be kernel space, 4165 * Do not walk the page table directly, use get_user_pages 4166 */ 4167 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4168 void *buf, int len, int write) 4169 { 4170 struct mm_struct *mm; 4171 int ret; 4172 4173 mm = get_task_mm(tsk); 4174 if (!mm) 4175 return 0; 4176 4177 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 4178 mmput(mm); 4179 4180 return ret; 4181 } 4182 4183 /* 4184 * Print the name of a VMA. 4185 */ 4186 void print_vma_addr(char *prefix, unsigned long ip) 4187 { 4188 struct mm_struct *mm = current->mm; 4189 struct vm_area_struct *vma; 4190 4191 /* 4192 * Do not print if we are in atomic 4193 * contexts (in exception stacks, etc.): 4194 */ 4195 if (preempt_count()) 4196 return; 4197 4198 down_read(&mm->mmap_sem); 4199 vma = find_vma(mm, ip); 4200 if (vma && vma->vm_file) { 4201 struct file *f = vma->vm_file; 4202 char *buf = (char *)__get_free_page(GFP_KERNEL); 4203 if (buf) { 4204 char *p; 4205 4206 p = d_path(&f->f_path, buf, PAGE_SIZE); 4207 if (IS_ERR(p)) 4208 p = "?"; 4209 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4210 vma->vm_start, 4211 vma->vm_end - vma->vm_start); 4212 free_page((unsigned long)buf); 4213 } 4214 } 4215 up_read(&mm->mmap_sem); 4216 } 4217 4218 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4219 void might_fault(void) 4220 { 4221 /* 4222 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4223 * holding the mmap_sem, this is safe because kernel memory doesn't 4224 * get paged out, therefore we'll never actually fault, and the 4225 * below annotations will generate false positives. 4226 */ 4227 if (segment_eq(get_fs(), KERNEL_DS)) 4228 return; 4229 4230 /* 4231 * it would be nicer only to annotate paths which are not under 4232 * pagefault_disable, however that requires a larger audit and 4233 * providing helpers like get_user_atomic. 4234 */ 4235 if (in_atomic()) 4236 return; 4237 4238 __might_sleep(__FILE__, __LINE__, 0); 4239 4240 if (current->mm) 4241 might_lock_read(¤t->mm->mmap_sem); 4242 } 4243 EXPORT_SYMBOL(might_fault); 4244 #endif 4245 4246 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4247 static void clear_gigantic_page(struct page *page, 4248 unsigned long addr, 4249 unsigned int pages_per_huge_page) 4250 { 4251 int i; 4252 struct page *p = page; 4253 4254 might_sleep(); 4255 for (i = 0; i < pages_per_huge_page; 4256 i++, p = mem_map_next(p, page, i)) { 4257 cond_resched(); 4258 clear_user_highpage(p, addr + i * PAGE_SIZE); 4259 } 4260 } 4261 void clear_huge_page(struct page *page, 4262 unsigned long addr, unsigned int pages_per_huge_page) 4263 { 4264 int i; 4265 4266 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4267 clear_gigantic_page(page, addr, pages_per_huge_page); 4268 return; 4269 } 4270 4271 might_sleep(); 4272 for (i = 0; i < pages_per_huge_page; i++) { 4273 cond_resched(); 4274 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4275 } 4276 } 4277 4278 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4279 unsigned long addr, 4280 struct vm_area_struct *vma, 4281 unsigned int pages_per_huge_page) 4282 { 4283 int i; 4284 struct page *dst_base = dst; 4285 struct page *src_base = src; 4286 4287 for (i = 0; i < pages_per_huge_page; ) { 4288 cond_resched(); 4289 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4290 4291 i++; 4292 dst = mem_map_next(dst, dst_base, i); 4293 src = mem_map_next(src, src_base, i); 4294 } 4295 } 4296 4297 void copy_user_huge_page(struct page *dst, struct page *src, 4298 unsigned long addr, struct vm_area_struct *vma, 4299 unsigned int pages_per_huge_page) 4300 { 4301 int i; 4302 4303 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4304 copy_user_gigantic_page(dst, src, addr, vma, 4305 pages_per_huge_page); 4306 return; 4307 } 4308 4309 might_sleep(); 4310 for (i = 0; i < pages_per_huge_page; i++) { 4311 cond_resched(); 4312 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4313 } 4314 } 4315 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4316