xref: /openbmc/linux/mm/memory.c (revision 7fe2f639)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67 
68 #include "internal.h"
69 
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74 
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78 
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88 
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91 
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 					1;
101 #else
102 					2;
103 #endif
104 
105 static int __init disable_randmaps(char *s)
106 {
107 	randomize_va_space = 0;
108 	return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111 
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114 
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 	return 0;
122 }
123 core_initcall(init_zero_pfn);
124 
125 
126 #if defined(SPLIT_RSS_COUNTING)
127 
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130 	int i;
131 
132 	for (i = 0; i < NR_MM_COUNTERS; i++) {
133 		if (task->rss_stat.count[i]) {
134 			add_mm_counter(mm, i, task->rss_stat.count[i]);
135 			task->rss_stat.count[i] = 0;
136 		}
137 	}
138 	task->rss_stat.events = 0;
139 }
140 
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 	struct task_struct *task = current;
144 
145 	if (likely(task->mm == mm))
146 		task->rss_stat.count[member] += val;
147 	else
148 		add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152 
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH	(64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 	if (unlikely(task != current))
158 		return;
159 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 		__sync_task_rss_stat(task, task->mm);
161 }
162 
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165 	long val = 0;
166 
167 	/*
168 	 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 	 * The caller must guarantee task->mm is not invalid.
170 	 */
171 	val = atomic_long_read(&mm->rss_stat.count[member]);
172 	/*
173 	 * counter is updated in asynchronous manner and may go to minus.
174 	 * But it's never be expected number for users.
175 	 */
176 	if (val < 0)
177 		return 0;
178 	return (unsigned long)val;
179 }
180 
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183 	__sync_task_rss_stat(task, mm);
184 }
185 #else /* SPLIT_RSS_COUNTING */
186 
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189 
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193 
194 #endif /* SPLIT_RSS_COUNTING */
195 
196 #ifdef HAVE_GENERIC_MMU_GATHER
197 
198 static int tlb_next_batch(struct mmu_gather *tlb)
199 {
200 	struct mmu_gather_batch *batch;
201 
202 	batch = tlb->active;
203 	if (batch->next) {
204 		tlb->active = batch->next;
205 		return 1;
206 	}
207 
208 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
209 	if (!batch)
210 		return 0;
211 
212 	batch->next = NULL;
213 	batch->nr   = 0;
214 	batch->max  = MAX_GATHER_BATCH;
215 
216 	tlb->active->next = batch;
217 	tlb->active = batch;
218 
219 	return 1;
220 }
221 
222 /* tlb_gather_mmu
223  *	Called to initialize an (on-stack) mmu_gather structure for page-table
224  *	tear-down from @mm. The @fullmm argument is used when @mm is without
225  *	users and we're going to destroy the full address space (exit/execve).
226  */
227 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
228 {
229 	tlb->mm = mm;
230 
231 	tlb->fullmm     = fullmm;
232 	tlb->need_flush = 0;
233 	tlb->fast_mode  = (num_possible_cpus() == 1);
234 	tlb->local.next = NULL;
235 	tlb->local.nr   = 0;
236 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
237 	tlb->active     = &tlb->local;
238 
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 	tlb->batch = NULL;
241 #endif
242 }
243 
244 void tlb_flush_mmu(struct mmu_gather *tlb)
245 {
246 	struct mmu_gather_batch *batch;
247 
248 	if (!tlb->need_flush)
249 		return;
250 	tlb->need_flush = 0;
251 	tlb_flush(tlb);
252 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
253 	tlb_table_flush(tlb);
254 #endif
255 
256 	if (tlb_fast_mode(tlb))
257 		return;
258 
259 	for (batch = &tlb->local; batch; batch = batch->next) {
260 		free_pages_and_swap_cache(batch->pages, batch->nr);
261 		batch->nr = 0;
262 	}
263 	tlb->active = &tlb->local;
264 }
265 
266 /* tlb_finish_mmu
267  *	Called at the end of the shootdown operation to free up any resources
268  *	that were required.
269  */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272 	struct mmu_gather_batch *batch, *next;
273 
274 	tlb_flush_mmu(tlb);
275 
276 	/* keep the page table cache within bounds */
277 	check_pgt_cache();
278 
279 	for (batch = tlb->local.next; batch; batch = next) {
280 		next = batch->next;
281 		free_pages((unsigned long)batch, 0);
282 	}
283 	tlb->local.next = NULL;
284 }
285 
286 /* __tlb_remove_page
287  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *	handling the additional races in SMP caused by other CPUs caching valid
289  *	mappings in their TLBs. Returns the number of free page slots left.
290  *	When out of page slots we must call tlb_flush_mmu().
291  */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294 	struct mmu_gather_batch *batch;
295 
296 	tlb->need_flush = 1;
297 
298 	if (tlb_fast_mode(tlb)) {
299 		free_page_and_swap_cache(page);
300 		return 1; /* avoid calling tlb_flush_mmu() */
301 	}
302 
303 	batch = tlb->active;
304 	batch->pages[batch->nr++] = page;
305 	if (batch->nr == batch->max) {
306 		if (!tlb_next_batch(tlb))
307 			return 0;
308 		batch = tlb->active;
309 	}
310 	VM_BUG_ON(batch->nr > batch->max);
311 
312 	return batch->max - batch->nr;
313 }
314 
315 #endif /* HAVE_GENERIC_MMU_GATHER */
316 
317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
318 
319 /*
320  * See the comment near struct mmu_table_batch.
321  */
322 
323 static void tlb_remove_table_smp_sync(void *arg)
324 {
325 	/* Simply deliver the interrupt */
326 }
327 
328 static void tlb_remove_table_one(void *table)
329 {
330 	/*
331 	 * This isn't an RCU grace period and hence the page-tables cannot be
332 	 * assumed to be actually RCU-freed.
333 	 *
334 	 * It is however sufficient for software page-table walkers that rely on
335 	 * IRQ disabling. See the comment near struct mmu_table_batch.
336 	 */
337 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
338 	__tlb_remove_table(table);
339 }
340 
341 static void tlb_remove_table_rcu(struct rcu_head *head)
342 {
343 	struct mmu_table_batch *batch;
344 	int i;
345 
346 	batch = container_of(head, struct mmu_table_batch, rcu);
347 
348 	for (i = 0; i < batch->nr; i++)
349 		__tlb_remove_table(batch->tables[i]);
350 
351 	free_page((unsigned long)batch);
352 }
353 
354 void tlb_table_flush(struct mmu_gather *tlb)
355 {
356 	struct mmu_table_batch **batch = &tlb->batch;
357 
358 	if (*batch) {
359 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
360 		*batch = NULL;
361 	}
362 }
363 
364 void tlb_remove_table(struct mmu_gather *tlb, void *table)
365 {
366 	struct mmu_table_batch **batch = &tlb->batch;
367 
368 	tlb->need_flush = 1;
369 
370 	/*
371 	 * When there's less then two users of this mm there cannot be a
372 	 * concurrent page-table walk.
373 	 */
374 	if (atomic_read(&tlb->mm->mm_users) < 2) {
375 		__tlb_remove_table(table);
376 		return;
377 	}
378 
379 	if (*batch == NULL) {
380 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
381 		if (*batch == NULL) {
382 			tlb_remove_table_one(table);
383 			return;
384 		}
385 		(*batch)->nr = 0;
386 	}
387 	(*batch)->tables[(*batch)->nr++] = table;
388 	if ((*batch)->nr == MAX_TABLE_BATCH)
389 		tlb_table_flush(tlb);
390 }
391 
392 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
393 
394 /*
395  * If a p?d_bad entry is found while walking page tables, report
396  * the error, before resetting entry to p?d_none.  Usually (but
397  * very seldom) called out from the p?d_none_or_clear_bad macros.
398  */
399 
400 void pgd_clear_bad(pgd_t *pgd)
401 {
402 	pgd_ERROR(*pgd);
403 	pgd_clear(pgd);
404 }
405 
406 void pud_clear_bad(pud_t *pud)
407 {
408 	pud_ERROR(*pud);
409 	pud_clear(pud);
410 }
411 
412 void pmd_clear_bad(pmd_t *pmd)
413 {
414 	pmd_ERROR(*pmd);
415 	pmd_clear(pmd);
416 }
417 
418 /*
419  * Note: this doesn't free the actual pages themselves. That
420  * has been handled earlier when unmapping all the memory regions.
421  */
422 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
423 			   unsigned long addr)
424 {
425 	pgtable_t token = pmd_pgtable(*pmd);
426 	pmd_clear(pmd);
427 	pte_free_tlb(tlb, token, addr);
428 	tlb->mm->nr_ptes--;
429 }
430 
431 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
432 				unsigned long addr, unsigned long end,
433 				unsigned long floor, unsigned long ceiling)
434 {
435 	pmd_t *pmd;
436 	unsigned long next;
437 	unsigned long start;
438 
439 	start = addr;
440 	pmd = pmd_offset(pud, addr);
441 	do {
442 		next = pmd_addr_end(addr, end);
443 		if (pmd_none_or_clear_bad(pmd))
444 			continue;
445 		free_pte_range(tlb, pmd, addr);
446 	} while (pmd++, addr = next, addr != end);
447 
448 	start &= PUD_MASK;
449 	if (start < floor)
450 		return;
451 	if (ceiling) {
452 		ceiling &= PUD_MASK;
453 		if (!ceiling)
454 			return;
455 	}
456 	if (end - 1 > ceiling - 1)
457 		return;
458 
459 	pmd = pmd_offset(pud, start);
460 	pud_clear(pud);
461 	pmd_free_tlb(tlb, pmd, start);
462 }
463 
464 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
465 				unsigned long addr, unsigned long end,
466 				unsigned long floor, unsigned long ceiling)
467 {
468 	pud_t *pud;
469 	unsigned long next;
470 	unsigned long start;
471 
472 	start = addr;
473 	pud = pud_offset(pgd, addr);
474 	do {
475 		next = pud_addr_end(addr, end);
476 		if (pud_none_or_clear_bad(pud))
477 			continue;
478 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
479 	} while (pud++, addr = next, addr != end);
480 
481 	start &= PGDIR_MASK;
482 	if (start < floor)
483 		return;
484 	if (ceiling) {
485 		ceiling &= PGDIR_MASK;
486 		if (!ceiling)
487 			return;
488 	}
489 	if (end - 1 > ceiling - 1)
490 		return;
491 
492 	pud = pud_offset(pgd, start);
493 	pgd_clear(pgd);
494 	pud_free_tlb(tlb, pud, start);
495 }
496 
497 /*
498  * This function frees user-level page tables of a process.
499  *
500  * Must be called with pagetable lock held.
501  */
502 void free_pgd_range(struct mmu_gather *tlb,
503 			unsigned long addr, unsigned long end,
504 			unsigned long floor, unsigned long ceiling)
505 {
506 	pgd_t *pgd;
507 	unsigned long next;
508 
509 	/*
510 	 * The next few lines have given us lots of grief...
511 	 *
512 	 * Why are we testing PMD* at this top level?  Because often
513 	 * there will be no work to do at all, and we'd prefer not to
514 	 * go all the way down to the bottom just to discover that.
515 	 *
516 	 * Why all these "- 1"s?  Because 0 represents both the bottom
517 	 * of the address space and the top of it (using -1 for the
518 	 * top wouldn't help much: the masks would do the wrong thing).
519 	 * The rule is that addr 0 and floor 0 refer to the bottom of
520 	 * the address space, but end 0 and ceiling 0 refer to the top
521 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
522 	 * that end 0 case should be mythical).
523 	 *
524 	 * Wherever addr is brought up or ceiling brought down, we must
525 	 * be careful to reject "the opposite 0" before it confuses the
526 	 * subsequent tests.  But what about where end is brought down
527 	 * by PMD_SIZE below? no, end can't go down to 0 there.
528 	 *
529 	 * Whereas we round start (addr) and ceiling down, by different
530 	 * masks at different levels, in order to test whether a table
531 	 * now has no other vmas using it, so can be freed, we don't
532 	 * bother to round floor or end up - the tests don't need that.
533 	 */
534 
535 	addr &= PMD_MASK;
536 	if (addr < floor) {
537 		addr += PMD_SIZE;
538 		if (!addr)
539 			return;
540 	}
541 	if (ceiling) {
542 		ceiling &= PMD_MASK;
543 		if (!ceiling)
544 			return;
545 	}
546 	if (end - 1 > ceiling - 1)
547 		end -= PMD_SIZE;
548 	if (addr > end - 1)
549 		return;
550 
551 	pgd = pgd_offset(tlb->mm, addr);
552 	do {
553 		next = pgd_addr_end(addr, end);
554 		if (pgd_none_or_clear_bad(pgd))
555 			continue;
556 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
557 	} while (pgd++, addr = next, addr != end);
558 }
559 
560 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
561 		unsigned long floor, unsigned long ceiling)
562 {
563 	while (vma) {
564 		struct vm_area_struct *next = vma->vm_next;
565 		unsigned long addr = vma->vm_start;
566 
567 		/*
568 		 * Hide vma from rmap and truncate_pagecache before freeing
569 		 * pgtables
570 		 */
571 		unlink_anon_vmas(vma);
572 		unlink_file_vma(vma);
573 
574 		if (is_vm_hugetlb_page(vma)) {
575 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
576 				floor, next? next->vm_start: ceiling);
577 		} else {
578 			/*
579 			 * Optimization: gather nearby vmas into one call down
580 			 */
581 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
582 			       && !is_vm_hugetlb_page(next)) {
583 				vma = next;
584 				next = vma->vm_next;
585 				unlink_anon_vmas(vma);
586 				unlink_file_vma(vma);
587 			}
588 			free_pgd_range(tlb, addr, vma->vm_end,
589 				floor, next? next->vm_start: ceiling);
590 		}
591 		vma = next;
592 	}
593 }
594 
595 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
596 		pmd_t *pmd, unsigned long address)
597 {
598 	pgtable_t new = pte_alloc_one(mm, address);
599 	int wait_split_huge_page;
600 	if (!new)
601 		return -ENOMEM;
602 
603 	/*
604 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
605 	 * visible before the pte is made visible to other CPUs by being
606 	 * put into page tables.
607 	 *
608 	 * The other side of the story is the pointer chasing in the page
609 	 * table walking code (when walking the page table without locking;
610 	 * ie. most of the time). Fortunately, these data accesses consist
611 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
612 	 * being the notable exception) will already guarantee loads are
613 	 * seen in-order. See the alpha page table accessors for the
614 	 * smp_read_barrier_depends() barriers in page table walking code.
615 	 */
616 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
617 
618 	spin_lock(&mm->page_table_lock);
619 	wait_split_huge_page = 0;
620 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
621 		mm->nr_ptes++;
622 		pmd_populate(mm, pmd, new);
623 		new = NULL;
624 	} else if (unlikely(pmd_trans_splitting(*pmd)))
625 		wait_split_huge_page = 1;
626 	spin_unlock(&mm->page_table_lock);
627 	if (new)
628 		pte_free(mm, new);
629 	if (wait_split_huge_page)
630 		wait_split_huge_page(vma->anon_vma, pmd);
631 	return 0;
632 }
633 
634 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
635 {
636 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
637 	if (!new)
638 		return -ENOMEM;
639 
640 	smp_wmb(); /* See comment in __pte_alloc */
641 
642 	spin_lock(&init_mm.page_table_lock);
643 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
644 		pmd_populate_kernel(&init_mm, pmd, new);
645 		new = NULL;
646 	} else
647 		VM_BUG_ON(pmd_trans_splitting(*pmd));
648 	spin_unlock(&init_mm.page_table_lock);
649 	if (new)
650 		pte_free_kernel(&init_mm, new);
651 	return 0;
652 }
653 
654 static inline void init_rss_vec(int *rss)
655 {
656 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
657 }
658 
659 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
660 {
661 	int i;
662 
663 	if (current->mm == mm)
664 		sync_mm_rss(current, mm);
665 	for (i = 0; i < NR_MM_COUNTERS; i++)
666 		if (rss[i])
667 			add_mm_counter(mm, i, rss[i]);
668 }
669 
670 /*
671  * This function is called to print an error when a bad pte
672  * is found. For example, we might have a PFN-mapped pte in
673  * a region that doesn't allow it.
674  *
675  * The calling function must still handle the error.
676  */
677 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
678 			  pte_t pte, struct page *page)
679 {
680 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
681 	pud_t *pud = pud_offset(pgd, addr);
682 	pmd_t *pmd = pmd_offset(pud, addr);
683 	struct address_space *mapping;
684 	pgoff_t index;
685 	static unsigned long resume;
686 	static unsigned long nr_shown;
687 	static unsigned long nr_unshown;
688 
689 	/*
690 	 * Allow a burst of 60 reports, then keep quiet for that minute;
691 	 * or allow a steady drip of one report per second.
692 	 */
693 	if (nr_shown == 60) {
694 		if (time_before(jiffies, resume)) {
695 			nr_unshown++;
696 			return;
697 		}
698 		if (nr_unshown) {
699 			printk(KERN_ALERT
700 				"BUG: Bad page map: %lu messages suppressed\n",
701 				nr_unshown);
702 			nr_unshown = 0;
703 		}
704 		nr_shown = 0;
705 	}
706 	if (nr_shown++ == 0)
707 		resume = jiffies + 60 * HZ;
708 
709 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
710 	index = linear_page_index(vma, addr);
711 
712 	printk(KERN_ALERT
713 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
714 		current->comm,
715 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
716 	if (page)
717 		dump_page(page);
718 	printk(KERN_ALERT
719 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
720 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
721 	/*
722 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
723 	 */
724 	if (vma->vm_ops)
725 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
726 				(unsigned long)vma->vm_ops->fault);
727 	if (vma->vm_file && vma->vm_file->f_op)
728 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
729 				(unsigned long)vma->vm_file->f_op->mmap);
730 	dump_stack();
731 	add_taint(TAINT_BAD_PAGE);
732 }
733 
734 static inline int is_cow_mapping(vm_flags_t flags)
735 {
736 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
737 }
738 
739 #ifndef is_zero_pfn
740 static inline int is_zero_pfn(unsigned long pfn)
741 {
742 	return pfn == zero_pfn;
743 }
744 #endif
745 
746 #ifndef my_zero_pfn
747 static inline unsigned long my_zero_pfn(unsigned long addr)
748 {
749 	return zero_pfn;
750 }
751 #endif
752 
753 /*
754  * vm_normal_page -- This function gets the "struct page" associated with a pte.
755  *
756  * "Special" mappings do not wish to be associated with a "struct page" (either
757  * it doesn't exist, or it exists but they don't want to touch it). In this
758  * case, NULL is returned here. "Normal" mappings do have a struct page.
759  *
760  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
761  * pte bit, in which case this function is trivial. Secondly, an architecture
762  * may not have a spare pte bit, which requires a more complicated scheme,
763  * described below.
764  *
765  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
766  * special mapping (even if there are underlying and valid "struct pages").
767  * COWed pages of a VM_PFNMAP are always normal.
768  *
769  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
770  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
771  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
772  * mapping will always honor the rule
773  *
774  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
775  *
776  * And for normal mappings this is false.
777  *
778  * This restricts such mappings to be a linear translation from virtual address
779  * to pfn. To get around this restriction, we allow arbitrary mappings so long
780  * as the vma is not a COW mapping; in that case, we know that all ptes are
781  * special (because none can have been COWed).
782  *
783  *
784  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
785  *
786  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
787  * page" backing, however the difference is that _all_ pages with a struct
788  * page (that is, those where pfn_valid is true) are refcounted and considered
789  * normal pages by the VM. The disadvantage is that pages are refcounted
790  * (which can be slower and simply not an option for some PFNMAP users). The
791  * advantage is that we don't have to follow the strict linearity rule of
792  * PFNMAP mappings in order to support COWable mappings.
793  *
794  */
795 #ifdef __HAVE_ARCH_PTE_SPECIAL
796 # define HAVE_PTE_SPECIAL 1
797 #else
798 # define HAVE_PTE_SPECIAL 0
799 #endif
800 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
801 				pte_t pte)
802 {
803 	unsigned long pfn = pte_pfn(pte);
804 
805 	if (HAVE_PTE_SPECIAL) {
806 		if (likely(!pte_special(pte)))
807 			goto check_pfn;
808 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
809 			return NULL;
810 		if (!is_zero_pfn(pfn))
811 			print_bad_pte(vma, addr, pte, NULL);
812 		return NULL;
813 	}
814 
815 	/* !HAVE_PTE_SPECIAL case follows: */
816 
817 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
818 		if (vma->vm_flags & VM_MIXEDMAP) {
819 			if (!pfn_valid(pfn))
820 				return NULL;
821 			goto out;
822 		} else {
823 			unsigned long off;
824 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
825 			if (pfn == vma->vm_pgoff + off)
826 				return NULL;
827 			if (!is_cow_mapping(vma->vm_flags))
828 				return NULL;
829 		}
830 	}
831 
832 	if (is_zero_pfn(pfn))
833 		return NULL;
834 check_pfn:
835 	if (unlikely(pfn > highest_memmap_pfn)) {
836 		print_bad_pte(vma, addr, pte, NULL);
837 		return NULL;
838 	}
839 
840 	/*
841 	 * NOTE! We still have PageReserved() pages in the page tables.
842 	 * eg. VDSO mappings can cause them to exist.
843 	 */
844 out:
845 	return pfn_to_page(pfn);
846 }
847 
848 /*
849  * copy one vm_area from one task to the other. Assumes the page tables
850  * already present in the new task to be cleared in the whole range
851  * covered by this vma.
852  */
853 
854 static inline unsigned long
855 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
856 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
857 		unsigned long addr, int *rss)
858 {
859 	unsigned long vm_flags = vma->vm_flags;
860 	pte_t pte = *src_pte;
861 	struct page *page;
862 
863 	/* pte contains position in swap or file, so copy. */
864 	if (unlikely(!pte_present(pte))) {
865 		if (!pte_file(pte)) {
866 			swp_entry_t entry = pte_to_swp_entry(pte);
867 
868 			if (swap_duplicate(entry) < 0)
869 				return entry.val;
870 
871 			/* make sure dst_mm is on swapoff's mmlist. */
872 			if (unlikely(list_empty(&dst_mm->mmlist))) {
873 				spin_lock(&mmlist_lock);
874 				if (list_empty(&dst_mm->mmlist))
875 					list_add(&dst_mm->mmlist,
876 						 &src_mm->mmlist);
877 				spin_unlock(&mmlist_lock);
878 			}
879 			if (likely(!non_swap_entry(entry)))
880 				rss[MM_SWAPENTS]++;
881 			else if (is_write_migration_entry(entry) &&
882 					is_cow_mapping(vm_flags)) {
883 				/*
884 				 * COW mappings require pages in both parent
885 				 * and child to be set to read.
886 				 */
887 				make_migration_entry_read(&entry);
888 				pte = swp_entry_to_pte(entry);
889 				set_pte_at(src_mm, addr, src_pte, pte);
890 			}
891 		}
892 		goto out_set_pte;
893 	}
894 
895 	/*
896 	 * If it's a COW mapping, write protect it both
897 	 * in the parent and the child
898 	 */
899 	if (is_cow_mapping(vm_flags)) {
900 		ptep_set_wrprotect(src_mm, addr, src_pte);
901 		pte = pte_wrprotect(pte);
902 	}
903 
904 	/*
905 	 * If it's a shared mapping, mark it clean in
906 	 * the child
907 	 */
908 	if (vm_flags & VM_SHARED)
909 		pte = pte_mkclean(pte);
910 	pte = pte_mkold(pte);
911 
912 	page = vm_normal_page(vma, addr, pte);
913 	if (page) {
914 		get_page(page);
915 		page_dup_rmap(page);
916 		if (PageAnon(page))
917 			rss[MM_ANONPAGES]++;
918 		else
919 			rss[MM_FILEPAGES]++;
920 	}
921 
922 out_set_pte:
923 	set_pte_at(dst_mm, addr, dst_pte, pte);
924 	return 0;
925 }
926 
927 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
929 		   unsigned long addr, unsigned long end)
930 {
931 	pte_t *orig_src_pte, *orig_dst_pte;
932 	pte_t *src_pte, *dst_pte;
933 	spinlock_t *src_ptl, *dst_ptl;
934 	int progress = 0;
935 	int rss[NR_MM_COUNTERS];
936 	swp_entry_t entry = (swp_entry_t){0};
937 
938 again:
939 	init_rss_vec(rss);
940 
941 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942 	if (!dst_pte)
943 		return -ENOMEM;
944 	src_pte = pte_offset_map(src_pmd, addr);
945 	src_ptl = pte_lockptr(src_mm, src_pmd);
946 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
947 	orig_src_pte = src_pte;
948 	orig_dst_pte = dst_pte;
949 	arch_enter_lazy_mmu_mode();
950 
951 	do {
952 		/*
953 		 * We are holding two locks at this point - either of them
954 		 * could generate latencies in another task on another CPU.
955 		 */
956 		if (progress >= 32) {
957 			progress = 0;
958 			if (need_resched() ||
959 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
960 				break;
961 		}
962 		if (pte_none(*src_pte)) {
963 			progress++;
964 			continue;
965 		}
966 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
967 							vma, addr, rss);
968 		if (entry.val)
969 			break;
970 		progress += 8;
971 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
972 
973 	arch_leave_lazy_mmu_mode();
974 	spin_unlock(src_ptl);
975 	pte_unmap(orig_src_pte);
976 	add_mm_rss_vec(dst_mm, rss);
977 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
978 	cond_resched();
979 
980 	if (entry.val) {
981 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
982 			return -ENOMEM;
983 		progress = 0;
984 	}
985 	if (addr != end)
986 		goto again;
987 	return 0;
988 }
989 
990 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
991 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
992 		unsigned long addr, unsigned long end)
993 {
994 	pmd_t *src_pmd, *dst_pmd;
995 	unsigned long next;
996 
997 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
998 	if (!dst_pmd)
999 		return -ENOMEM;
1000 	src_pmd = pmd_offset(src_pud, addr);
1001 	do {
1002 		next = pmd_addr_end(addr, end);
1003 		if (pmd_trans_huge(*src_pmd)) {
1004 			int err;
1005 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1006 			err = copy_huge_pmd(dst_mm, src_mm,
1007 					    dst_pmd, src_pmd, addr, vma);
1008 			if (err == -ENOMEM)
1009 				return -ENOMEM;
1010 			if (!err)
1011 				continue;
1012 			/* fall through */
1013 		}
1014 		if (pmd_none_or_clear_bad(src_pmd))
1015 			continue;
1016 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1017 						vma, addr, next))
1018 			return -ENOMEM;
1019 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1020 	return 0;
1021 }
1022 
1023 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1025 		unsigned long addr, unsigned long end)
1026 {
1027 	pud_t *src_pud, *dst_pud;
1028 	unsigned long next;
1029 
1030 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1031 	if (!dst_pud)
1032 		return -ENOMEM;
1033 	src_pud = pud_offset(src_pgd, addr);
1034 	do {
1035 		next = pud_addr_end(addr, end);
1036 		if (pud_none_or_clear_bad(src_pud))
1037 			continue;
1038 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1039 						vma, addr, next))
1040 			return -ENOMEM;
1041 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1042 	return 0;
1043 }
1044 
1045 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1046 		struct vm_area_struct *vma)
1047 {
1048 	pgd_t *src_pgd, *dst_pgd;
1049 	unsigned long next;
1050 	unsigned long addr = vma->vm_start;
1051 	unsigned long end = vma->vm_end;
1052 	int ret;
1053 
1054 	/*
1055 	 * Don't copy ptes where a page fault will fill them correctly.
1056 	 * Fork becomes much lighter when there are big shared or private
1057 	 * readonly mappings. The tradeoff is that copy_page_range is more
1058 	 * efficient than faulting.
1059 	 */
1060 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1061 		if (!vma->anon_vma)
1062 			return 0;
1063 	}
1064 
1065 	if (is_vm_hugetlb_page(vma))
1066 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1067 
1068 	if (unlikely(is_pfn_mapping(vma))) {
1069 		/*
1070 		 * We do not free on error cases below as remove_vma
1071 		 * gets called on error from higher level routine
1072 		 */
1073 		ret = track_pfn_vma_copy(vma);
1074 		if (ret)
1075 			return ret;
1076 	}
1077 
1078 	/*
1079 	 * We need to invalidate the secondary MMU mappings only when
1080 	 * there could be a permission downgrade on the ptes of the
1081 	 * parent mm. And a permission downgrade will only happen if
1082 	 * is_cow_mapping() returns true.
1083 	 */
1084 	if (is_cow_mapping(vma->vm_flags))
1085 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
1086 
1087 	ret = 0;
1088 	dst_pgd = pgd_offset(dst_mm, addr);
1089 	src_pgd = pgd_offset(src_mm, addr);
1090 	do {
1091 		next = pgd_addr_end(addr, end);
1092 		if (pgd_none_or_clear_bad(src_pgd))
1093 			continue;
1094 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1095 					    vma, addr, next))) {
1096 			ret = -ENOMEM;
1097 			break;
1098 		}
1099 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1100 
1101 	if (is_cow_mapping(vma->vm_flags))
1102 		mmu_notifier_invalidate_range_end(src_mm,
1103 						  vma->vm_start, end);
1104 	return ret;
1105 }
1106 
1107 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1108 				struct vm_area_struct *vma, pmd_t *pmd,
1109 				unsigned long addr, unsigned long end,
1110 				struct zap_details *details)
1111 {
1112 	struct mm_struct *mm = tlb->mm;
1113 	int force_flush = 0;
1114 	int rss[NR_MM_COUNTERS];
1115 	spinlock_t *ptl;
1116 	pte_t *start_pte;
1117 	pte_t *pte;
1118 
1119 again:
1120 	init_rss_vec(rss);
1121 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1122 	pte = start_pte;
1123 	arch_enter_lazy_mmu_mode();
1124 	do {
1125 		pte_t ptent = *pte;
1126 		if (pte_none(ptent)) {
1127 			continue;
1128 		}
1129 
1130 		if (pte_present(ptent)) {
1131 			struct page *page;
1132 
1133 			page = vm_normal_page(vma, addr, ptent);
1134 			if (unlikely(details) && page) {
1135 				/*
1136 				 * unmap_shared_mapping_pages() wants to
1137 				 * invalidate cache without truncating:
1138 				 * unmap shared but keep private pages.
1139 				 */
1140 				if (details->check_mapping &&
1141 				    details->check_mapping != page->mapping)
1142 					continue;
1143 				/*
1144 				 * Each page->index must be checked when
1145 				 * invalidating or truncating nonlinear.
1146 				 */
1147 				if (details->nonlinear_vma &&
1148 				    (page->index < details->first_index ||
1149 				     page->index > details->last_index))
1150 					continue;
1151 			}
1152 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1153 							tlb->fullmm);
1154 			tlb_remove_tlb_entry(tlb, pte, addr);
1155 			if (unlikely(!page))
1156 				continue;
1157 			if (unlikely(details) && details->nonlinear_vma
1158 			    && linear_page_index(details->nonlinear_vma,
1159 						addr) != page->index)
1160 				set_pte_at(mm, addr, pte,
1161 					   pgoff_to_pte(page->index));
1162 			if (PageAnon(page))
1163 				rss[MM_ANONPAGES]--;
1164 			else {
1165 				if (pte_dirty(ptent))
1166 					set_page_dirty(page);
1167 				if (pte_young(ptent) &&
1168 				    likely(!VM_SequentialReadHint(vma)))
1169 					mark_page_accessed(page);
1170 				rss[MM_FILEPAGES]--;
1171 			}
1172 			page_remove_rmap(page);
1173 			if (unlikely(page_mapcount(page) < 0))
1174 				print_bad_pte(vma, addr, ptent, page);
1175 			force_flush = !__tlb_remove_page(tlb, page);
1176 			if (force_flush)
1177 				break;
1178 			continue;
1179 		}
1180 		/*
1181 		 * If details->check_mapping, we leave swap entries;
1182 		 * if details->nonlinear_vma, we leave file entries.
1183 		 */
1184 		if (unlikely(details))
1185 			continue;
1186 		if (pte_file(ptent)) {
1187 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1188 				print_bad_pte(vma, addr, ptent, NULL);
1189 		} else {
1190 			swp_entry_t entry = pte_to_swp_entry(ptent);
1191 
1192 			if (!non_swap_entry(entry))
1193 				rss[MM_SWAPENTS]--;
1194 			if (unlikely(!free_swap_and_cache(entry)))
1195 				print_bad_pte(vma, addr, ptent, NULL);
1196 		}
1197 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198 	} while (pte++, addr += PAGE_SIZE, addr != end);
1199 
1200 	add_mm_rss_vec(mm, rss);
1201 	arch_leave_lazy_mmu_mode();
1202 	pte_unmap_unlock(start_pte, ptl);
1203 
1204 	/*
1205 	 * mmu_gather ran out of room to batch pages, we break out of
1206 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207 	 * and page-free while holding it.
1208 	 */
1209 	if (force_flush) {
1210 		force_flush = 0;
1211 		tlb_flush_mmu(tlb);
1212 		if (addr != end)
1213 			goto again;
1214 	}
1215 
1216 	return addr;
1217 }
1218 
1219 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1220 				struct vm_area_struct *vma, pud_t *pud,
1221 				unsigned long addr, unsigned long end,
1222 				struct zap_details *details)
1223 {
1224 	pmd_t *pmd;
1225 	unsigned long next;
1226 
1227 	pmd = pmd_offset(pud, addr);
1228 	do {
1229 		next = pmd_addr_end(addr, end);
1230 		if (pmd_trans_huge(*pmd)) {
1231 			if (next-addr != HPAGE_PMD_SIZE) {
1232 				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1233 				split_huge_page_pmd(vma->vm_mm, pmd);
1234 			} else if (zap_huge_pmd(tlb, vma, pmd))
1235 				continue;
1236 			/* fall through */
1237 		}
1238 		if (pmd_none_or_clear_bad(pmd))
1239 			continue;
1240 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1241 		cond_resched();
1242 	} while (pmd++, addr = next, addr != end);
1243 
1244 	return addr;
1245 }
1246 
1247 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1248 				struct vm_area_struct *vma, pgd_t *pgd,
1249 				unsigned long addr, unsigned long end,
1250 				struct zap_details *details)
1251 {
1252 	pud_t *pud;
1253 	unsigned long next;
1254 
1255 	pud = pud_offset(pgd, addr);
1256 	do {
1257 		next = pud_addr_end(addr, end);
1258 		if (pud_none_or_clear_bad(pud))
1259 			continue;
1260 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1261 	} while (pud++, addr = next, addr != end);
1262 
1263 	return addr;
1264 }
1265 
1266 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1267 				struct vm_area_struct *vma,
1268 				unsigned long addr, unsigned long end,
1269 				struct zap_details *details)
1270 {
1271 	pgd_t *pgd;
1272 	unsigned long next;
1273 
1274 	if (details && !details->check_mapping && !details->nonlinear_vma)
1275 		details = NULL;
1276 
1277 	BUG_ON(addr >= end);
1278 	mem_cgroup_uncharge_start();
1279 	tlb_start_vma(tlb, vma);
1280 	pgd = pgd_offset(vma->vm_mm, addr);
1281 	do {
1282 		next = pgd_addr_end(addr, end);
1283 		if (pgd_none_or_clear_bad(pgd))
1284 			continue;
1285 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1286 	} while (pgd++, addr = next, addr != end);
1287 	tlb_end_vma(tlb, vma);
1288 	mem_cgroup_uncharge_end();
1289 
1290 	return addr;
1291 }
1292 
1293 #ifdef CONFIG_PREEMPT
1294 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
1295 #else
1296 /* No preempt: go for improved straight-line efficiency */
1297 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
1298 #endif
1299 
1300 /**
1301  * unmap_vmas - unmap a range of memory covered by a list of vma's
1302  * @tlb: address of the caller's struct mmu_gather
1303  * @vma: the starting vma
1304  * @start_addr: virtual address at which to start unmapping
1305  * @end_addr: virtual address at which to end unmapping
1306  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1307  * @details: details of nonlinear truncation or shared cache invalidation
1308  *
1309  * Returns the end address of the unmapping (restart addr if interrupted).
1310  *
1311  * Unmap all pages in the vma list.
1312  *
1313  * We aim to not hold locks for too long (for scheduling latency reasons).
1314  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
1315  * return the ending mmu_gather to the caller.
1316  *
1317  * Only addresses between `start' and `end' will be unmapped.
1318  *
1319  * The VMA list must be sorted in ascending virtual address order.
1320  *
1321  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1322  * range after unmap_vmas() returns.  So the only responsibility here is to
1323  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1324  * drops the lock and schedules.
1325  */
1326 unsigned long unmap_vmas(struct mmu_gather *tlb,
1327 		struct vm_area_struct *vma, unsigned long start_addr,
1328 		unsigned long end_addr, unsigned long *nr_accounted,
1329 		struct zap_details *details)
1330 {
1331 	unsigned long start = start_addr;
1332 	struct mm_struct *mm = vma->vm_mm;
1333 
1334 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1335 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1336 		unsigned long end;
1337 
1338 		start = max(vma->vm_start, start_addr);
1339 		if (start >= vma->vm_end)
1340 			continue;
1341 		end = min(vma->vm_end, end_addr);
1342 		if (end <= vma->vm_start)
1343 			continue;
1344 
1345 		if (vma->vm_flags & VM_ACCOUNT)
1346 			*nr_accounted += (end - start) >> PAGE_SHIFT;
1347 
1348 		if (unlikely(is_pfn_mapping(vma)))
1349 			untrack_pfn_vma(vma, 0, 0);
1350 
1351 		while (start != end) {
1352 			if (unlikely(is_vm_hugetlb_page(vma))) {
1353 				/*
1354 				 * It is undesirable to test vma->vm_file as it
1355 				 * should be non-null for valid hugetlb area.
1356 				 * However, vm_file will be NULL in the error
1357 				 * cleanup path of do_mmap_pgoff. When
1358 				 * hugetlbfs ->mmap method fails,
1359 				 * do_mmap_pgoff() nullifies vma->vm_file
1360 				 * before calling this function to clean up.
1361 				 * Since no pte has actually been setup, it is
1362 				 * safe to do nothing in this case.
1363 				 */
1364 				if (vma->vm_file)
1365 					unmap_hugepage_range(vma, start, end, NULL);
1366 
1367 				start = end;
1368 			} else
1369 				start = unmap_page_range(tlb, vma, start, end, details);
1370 		}
1371 	}
1372 
1373 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1374 	return start;	/* which is now the end (or restart) address */
1375 }
1376 
1377 /**
1378  * zap_page_range - remove user pages in a given range
1379  * @vma: vm_area_struct holding the applicable pages
1380  * @address: starting address of pages to zap
1381  * @size: number of bytes to zap
1382  * @details: details of nonlinear truncation or shared cache invalidation
1383  */
1384 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1385 		unsigned long size, struct zap_details *details)
1386 {
1387 	struct mm_struct *mm = vma->vm_mm;
1388 	struct mmu_gather tlb;
1389 	unsigned long end = address + size;
1390 	unsigned long nr_accounted = 0;
1391 
1392 	lru_add_drain();
1393 	tlb_gather_mmu(&tlb, mm, 0);
1394 	update_hiwater_rss(mm);
1395 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1396 	tlb_finish_mmu(&tlb, address, end);
1397 	return end;
1398 }
1399 
1400 /**
1401  * zap_vma_ptes - remove ptes mapping the vma
1402  * @vma: vm_area_struct holding ptes to be zapped
1403  * @address: starting address of pages to zap
1404  * @size: number of bytes to zap
1405  *
1406  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1407  *
1408  * The entire address range must be fully contained within the vma.
1409  *
1410  * Returns 0 if successful.
1411  */
1412 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1413 		unsigned long size)
1414 {
1415 	if (address < vma->vm_start || address + size > vma->vm_end ||
1416 	    		!(vma->vm_flags & VM_PFNMAP))
1417 		return -1;
1418 	zap_page_range(vma, address, size, NULL);
1419 	return 0;
1420 }
1421 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1422 
1423 /**
1424  * follow_page - look up a page descriptor from a user-virtual address
1425  * @vma: vm_area_struct mapping @address
1426  * @address: virtual address to look up
1427  * @flags: flags modifying lookup behaviour
1428  *
1429  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1430  *
1431  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1432  * an error pointer if there is a mapping to something not represented
1433  * by a page descriptor (see also vm_normal_page()).
1434  */
1435 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1436 			unsigned int flags)
1437 {
1438 	pgd_t *pgd;
1439 	pud_t *pud;
1440 	pmd_t *pmd;
1441 	pte_t *ptep, pte;
1442 	spinlock_t *ptl;
1443 	struct page *page;
1444 	struct mm_struct *mm = vma->vm_mm;
1445 
1446 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1447 	if (!IS_ERR(page)) {
1448 		BUG_ON(flags & FOLL_GET);
1449 		goto out;
1450 	}
1451 
1452 	page = NULL;
1453 	pgd = pgd_offset(mm, address);
1454 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1455 		goto no_page_table;
1456 
1457 	pud = pud_offset(pgd, address);
1458 	if (pud_none(*pud))
1459 		goto no_page_table;
1460 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1461 		BUG_ON(flags & FOLL_GET);
1462 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1463 		goto out;
1464 	}
1465 	if (unlikely(pud_bad(*pud)))
1466 		goto no_page_table;
1467 
1468 	pmd = pmd_offset(pud, address);
1469 	if (pmd_none(*pmd))
1470 		goto no_page_table;
1471 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1472 		BUG_ON(flags & FOLL_GET);
1473 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1474 		goto out;
1475 	}
1476 	if (pmd_trans_huge(*pmd)) {
1477 		if (flags & FOLL_SPLIT) {
1478 			split_huge_page_pmd(mm, pmd);
1479 			goto split_fallthrough;
1480 		}
1481 		spin_lock(&mm->page_table_lock);
1482 		if (likely(pmd_trans_huge(*pmd))) {
1483 			if (unlikely(pmd_trans_splitting(*pmd))) {
1484 				spin_unlock(&mm->page_table_lock);
1485 				wait_split_huge_page(vma->anon_vma, pmd);
1486 			} else {
1487 				page = follow_trans_huge_pmd(mm, address,
1488 							     pmd, flags);
1489 				spin_unlock(&mm->page_table_lock);
1490 				goto out;
1491 			}
1492 		} else
1493 			spin_unlock(&mm->page_table_lock);
1494 		/* fall through */
1495 	}
1496 split_fallthrough:
1497 	if (unlikely(pmd_bad(*pmd)))
1498 		goto no_page_table;
1499 
1500 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1501 
1502 	pte = *ptep;
1503 	if (!pte_present(pte))
1504 		goto no_page;
1505 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1506 		goto unlock;
1507 
1508 	page = vm_normal_page(vma, address, pte);
1509 	if (unlikely(!page)) {
1510 		if ((flags & FOLL_DUMP) ||
1511 		    !is_zero_pfn(pte_pfn(pte)))
1512 			goto bad_page;
1513 		page = pte_page(pte);
1514 	}
1515 
1516 	if (flags & FOLL_GET)
1517 		get_page(page);
1518 	if (flags & FOLL_TOUCH) {
1519 		if ((flags & FOLL_WRITE) &&
1520 		    !pte_dirty(pte) && !PageDirty(page))
1521 			set_page_dirty(page);
1522 		/*
1523 		 * pte_mkyoung() would be more correct here, but atomic care
1524 		 * is needed to avoid losing the dirty bit: it is easier to use
1525 		 * mark_page_accessed().
1526 		 */
1527 		mark_page_accessed(page);
1528 	}
1529 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1530 		/*
1531 		 * The preliminary mapping check is mainly to avoid the
1532 		 * pointless overhead of lock_page on the ZERO_PAGE
1533 		 * which might bounce very badly if there is contention.
1534 		 *
1535 		 * If the page is already locked, we don't need to
1536 		 * handle it now - vmscan will handle it later if and
1537 		 * when it attempts to reclaim the page.
1538 		 */
1539 		if (page->mapping && trylock_page(page)) {
1540 			lru_add_drain();  /* push cached pages to LRU */
1541 			/*
1542 			 * Because we lock page here and migration is
1543 			 * blocked by the pte's page reference, we need
1544 			 * only check for file-cache page truncation.
1545 			 */
1546 			if (page->mapping)
1547 				mlock_vma_page(page);
1548 			unlock_page(page);
1549 		}
1550 	}
1551 unlock:
1552 	pte_unmap_unlock(ptep, ptl);
1553 out:
1554 	return page;
1555 
1556 bad_page:
1557 	pte_unmap_unlock(ptep, ptl);
1558 	return ERR_PTR(-EFAULT);
1559 
1560 no_page:
1561 	pte_unmap_unlock(ptep, ptl);
1562 	if (!pte_none(pte))
1563 		return page;
1564 
1565 no_page_table:
1566 	/*
1567 	 * When core dumping an enormous anonymous area that nobody
1568 	 * has touched so far, we don't want to allocate unnecessary pages or
1569 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1570 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1571 	 * But we can only make this optimization where a hole would surely
1572 	 * be zero-filled if handle_mm_fault() actually did handle it.
1573 	 */
1574 	if ((flags & FOLL_DUMP) &&
1575 	    (!vma->vm_ops || !vma->vm_ops->fault))
1576 		return ERR_PTR(-EFAULT);
1577 	return page;
1578 }
1579 
1580 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1581 {
1582 	return stack_guard_page_start(vma, addr) ||
1583 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1584 }
1585 
1586 /**
1587  * __get_user_pages() - pin user pages in memory
1588  * @tsk:	task_struct of target task
1589  * @mm:		mm_struct of target mm
1590  * @start:	starting user address
1591  * @nr_pages:	number of pages from start to pin
1592  * @gup_flags:	flags modifying pin behaviour
1593  * @pages:	array that receives pointers to the pages pinned.
1594  *		Should be at least nr_pages long. Or NULL, if caller
1595  *		only intends to ensure the pages are faulted in.
1596  * @vmas:	array of pointers to vmas corresponding to each page.
1597  *		Or NULL if the caller does not require them.
1598  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1599  *
1600  * Returns number of pages pinned. This may be fewer than the number
1601  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1602  * were pinned, returns -errno. Each page returned must be released
1603  * with a put_page() call when it is finished with. vmas will only
1604  * remain valid while mmap_sem is held.
1605  *
1606  * Must be called with mmap_sem held for read or write.
1607  *
1608  * __get_user_pages walks a process's page tables and takes a reference to
1609  * each struct page that each user address corresponds to at a given
1610  * instant. That is, it takes the page that would be accessed if a user
1611  * thread accesses the given user virtual address at that instant.
1612  *
1613  * This does not guarantee that the page exists in the user mappings when
1614  * __get_user_pages returns, and there may even be a completely different
1615  * page there in some cases (eg. if mmapped pagecache has been invalidated
1616  * and subsequently re faulted). However it does guarantee that the page
1617  * won't be freed completely. And mostly callers simply care that the page
1618  * contains data that was valid *at some point in time*. Typically, an IO
1619  * or similar operation cannot guarantee anything stronger anyway because
1620  * locks can't be held over the syscall boundary.
1621  *
1622  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1623  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1624  * appropriate) must be called after the page is finished with, and
1625  * before put_page is called.
1626  *
1627  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1628  * or mmap_sem contention, and if waiting is needed to pin all pages,
1629  * *@nonblocking will be set to 0.
1630  *
1631  * In most cases, get_user_pages or get_user_pages_fast should be used
1632  * instead of __get_user_pages. __get_user_pages should be used only if
1633  * you need some special @gup_flags.
1634  */
1635 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1636 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1637 		     struct page **pages, struct vm_area_struct **vmas,
1638 		     int *nonblocking)
1639 {
1640 	int i;
1641 	unsigned long vm_flags;
1642 
1643 	if (nr_pages <= 0)
1644 		return 0;
1645 
1646 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1647 
1648 	/*
1649 	 * Require read or write permissions.
1650 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1651 	 */
1652 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1653 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1654 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1655 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1656 	i = 0;
1657 
1658 	do {
1659 		struct vm_area_struct *vma;
1660 
1661 		vma = find_extend_vma(mm, start);
1662 		if (!vma && in_gate_area(mm, start)) {
1663 			unsigned long pg = start & PAGE_MASK;
1664 			pgd_t *pgd;
1665 			pud_t *pud;
1666 			pmd_t *pmd;
1667 			pte_t *pte;
1668 
1669 			/* user gate pages are read-only */
1670 			if (gup_flags & FOLL_WRITE)
1671 				return i ? : -EFAULT;
1672 			if (pg > TASK_SIZE)
1673 				pgd = pgd_offset_k(pg);
1674 			else
1675 				pgd = pgd_offset_gate(mm, pg);
1676 			BUG_ON(pgd_none(*pgd));
1677 			pud = pud_offset(pgd, pg);
1678 			BUG_ON(pud_none(*pud));
1679 			pmd = pmd_offset(pud, pg);
1680 			if (pmd_none(*pmd))
1681 				return i ? : -EFAULT;
1682 			VM_BUG_ON(pmd_trans_huge(*pmd));
1683 			pte = pte_offset_map(pmd, pg);
1684 			if (pte_none(*pte)) {
1685 				pte_unmap(pte);
1686 				return i ? : -EFAULT;
1687 			}
1688 			vma = get_gate_vma(mm);
1689 			if (pages) {
1690 				struct page *page;
1691 
1692 				page = vm_normal_page(vma, start, *pte);
1693 				if (!page) {
1694 					if (!(gup_flags & FOLL_DUMP) &&
1695 					     is_zero_pfn(pte_pfn(*pte)))
1696 						page = pte_page(*pte);
1697 					else {
1698 						pte_unmap(pte);
1699 						return i ? : -EFAULT;
1700 					}
1701 				}
1702 				pages[i] = page;
1703 				get_page(page);
1704 			}
1705 			pte_unmap(pte);
1706 			goto next_page;
1707 		}
1708 
1709 		if (!vma ||
1710 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1711 		    !(vm_flags & vma->vm_flags))
1712 			return i ? : -EFAULT;
1713 
1714 		if (is_vm_hugetlb_page(vma)) {
1715 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1716 					&start, &nr_pages, i, gup_flags);
1717 			continue;
1718 		}
1719 
1720 		do {
1721 			struct page *page;
1722 			unsigned int foll_flags = gup_flags;
1723 
1724 			/*
1725 			 * If we have a pending SIGKILL, don't keep faulting
1726 			 * pages and potentially allocating memory.
1727 			 */
1728 			if (unlikely(fatal_signal_pending(current)))
1729 				return i ? i : -ERESTARTSYS;
1730 
1731 			cond_resched();
1732 			while (!(page = follow_page(vma, start, foll_flags))) {
1733 				int ret;
1734 				unsigned int fault_flags = 0;
1735 
1736 				/* For mlock, just skip the stack guard page. */
1737 				if (foll_flags & FOLL_MLOCK) {
1738 					if (stack_guard_page(vma, start))
1739 						goto next_page;
1740 				}
1741 				if (foll_flags & FOLL_WRITE)
1742 					fault_flags |= FAULT_FLAG_WRITE;
1743 				if (nonblocking)
1744 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1745 				if (foll_flags & FOLL_NOWAIT)
1746 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1747 
1748 				ret = handle_mm_fault(mm, vma, start,
1749 							fault_flags);
1750 
1751 				if (ret & VM_FAULT_ERROR) {
1752 					if (ret & VM_FAULT_OOM)
1753 						return i ? i : -ENOMEM;
1754 					if (ret & (VM_FAULT_HWPOISON |
1755 						   VM_FAULT_HWPOISON_LARGE)) {
1756 						if (i)
1757 							return i;
1758 						else if (gup_flags & FOLL_HWPOISON)
1759 							return -EHWPOISON;
1760 						else
1761 							return -EFAULT;
1762 					}
1763 					if (ret & VM_FAULT_SIGBUS)
1764 						return i ? i : -EFAULT;
1765 					BUG();
1766 				}
1767 
1768 				if (tsk) {
1769 					if (ret & VM_FAULT_MAJOR)
1770 						tsk->maj_flt++;
1771 					else
1772 						tsk->min_flt++;
1773 				}
1774 
1775 				if (ret & VM_FAULT_RETRY) {
1776 					if (nonblocking)
1777 						*nonblocking = 0;
1778 					return i;
1779 				}
1780 
1781 				/*
1782 				 * The VM_FAULT_WRITE bit tells us that
1783 				 * do_wp_page has broken COW when necessary,
1784 				 * even if maybe_mkwrite decided not to set
1785 				 * pte_write. We can thus safely do subsequent
1786 				 * page lookups as if they were reads. But only
1787 				 * do so when looping for pte_write is futile:
1788 				 * in some cases userspace may also be wanting
1789 				 * to write to the gotten user page, which a
1790 				 * read fault here might prevent (a readonly
1791 				 * page might get reCOWed by userspace write).
1792 				 */
1793 				if ((ret & VM_FAULT_WRITE) &&
1794 				    !(vma->vm_flags & VM_WRITE))
1795 					foll_flags &= ~FOLL_WRITE;
1796 
1797 				cond_resched();
1798 			}
1799 			if (IS_ERR(page))
1800 				return i ? i : PTR_ERR(page);
1801 			if (pages) {
1802 				pages[i] = page;
1803 
1804 				flush_anon_page(vma, page, start);
1805 				flush_dcache_page(page);
1806 			}
1807 next_page:
1808 			if (vmas)
1809 				vmas[i] = vma;
1810 			i++;
1811 			start += PAGE_SIZE;
1812 			nr_pages--;
1813 		} while (nr_pages && start < vma->vm_end);
1814 	} while (nr_pages);
1815 	return i;
1816 }
1817 EXPORT_SYMBOL(__get_user_pages);
1818 
1819 /**
1820  * get_user_pages() - pin user pages in memory
1821  * @tsk:	the task_struct to use for page fault accounting, or
1822  *		NULL if faults are not to be recorded.
1823  * @mm:		mm_struct of target mm
1824  * @start:	starting user address
1825  * @nr_pages:	number of pages from start to pin
1826  * @write:	whether pages will be written to by the caller
1827  * @force:	whether to force write access even if user mapping is
1828  *		readonly. This will result in the page being COWed even
1829  *		in MAP_SHARED mappings. You do not want this.
1830  * @pages:	array that receives pointers to the pages pinned.
1831  *		Should be at least nr_pages long. Or NULL, if caller
1832  *		only intends to ensure the pages are faulted in.
1833  * @vmas:	array of pointers to vmas corresponding to each page.
1834  *		Or NULL if the caller does not require them.
1835  *
1836  * Returns number of pages pinned. This may be fewer than the number
1837  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1838  * were pinned, returns -errno. Each page returned must be released
1839  * with a put_page() call when it is finished with. vmas will only
1840  * remain valid while mmap_sem is held.
1841  *
1842  * Must be called with mmap_sem held for read or write.
1843  *
1844  * get_user_pages walks a process's page tables and takes a reference to
1845  * each struct page that each user address corresponds to at a given
1846  * instant. That is, it takes the page that would be accessed if a user
1847  * thread accesses the given user virtual address at that instant.
1848  *
1849  * This does not guarantee that the page exists in the user mappings when
1850  * get_user_pages returns, and there may even be a completely different
1851  * page there in some cases (eg. if mmapped pagecache has been invalidated
1852  * and subsequently re faulted). However it does guarantee that the page
1853  * won't be freed completely. And mostly callers simply care that the page
1854  * contains data that was valid *at some point in time*. Typically, an IO
1855  * or similar operation cannot guarantee anything stronger anyway because
1856  * locks can't be held over the syscall boundary.
1857  *
1858  * If write=0, the page must not be written to. If the page is written to,
1859  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1860  * after the page is finished with, and before put_page is called.
1861  *
1862  * get_user_pages is typically used for fewer-copy IO operations, to get a
1863  * handle on the memory by some means other than accesses via the user virtual
1864  * addresses. The pages may be submitted for DMA to devices or accessed via
1865  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1866  * use the correct cache flushing APIs.
1867  *
1868  * See also get_user_pages_fast, for performance critical applications.
1869  */
1870 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1871 		unsigned long start, int nr_pages, int write, int force,
1872 		struct page **pages, struct vm_area_struct **vmas)
1873 {
1874 	int flags = FOLL_TOUCH;
1875 
1876 	if (pages)
1877 		flags |= FOLL_GET;
1878 	if (write)
1879 		flags |= FOLL_WRITE;
1880 	if (force)
1881 		flags |= FOLL_FORCE;
1882 
1883 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1884 				NULL);
1885 }
1886 EXPORT_SYMBOL(get_user_pages);
1887 
1888 /**
1889  * get_dump_page() - pin user page in memory while writing it to core dump
1890  * @addr: user address
1891  *
1892  * Returns struct page pointer of user page pinned for dump,
1893  * to be freed afterwards by page_cache_release() or put_page().
1894  *
1895  * Returns NULL on any kind of failure - a hole must then be inserted into
1896  * the corefile, to preserve alignment with its headers; and also returns
1897  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1898  * allowing a hole to be left in the corefile to save diskspace.
1899  *
1900  * Called without mmap_sem, but after all other threads have been killed.
1901  */
1902 #ifdef CONFIG_ELF_CORE
1903 struct page *get_dump_page(unsigned long addr)
1904 {
1905 	struct vm_area_struct *vma;
1906 	struct page *page;
1907 
1908 	if (__get_user_pages(current, current->mm, addr, 1,
1909 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1910 			     NULL) < 1)
1911 		return NULL;
1912 	flush_cache_page(vma, addr, page_to_pfn(page));
1913 	return page;
1914 }
1915 #endif /* CONFIG_ELF_CORE */
1916 
1917 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1918 			spinlock_t **ptl)
1919 {
1920 	pgd_t * pgd = pgd_offset(mm, addr);
1921 	pud_t * pud = pud_alloc(mm, pgd, addr);
1922 	if (pud) {
1923 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1924 		if (pmd) {
1925 			VM_BUG_ON(pmd_trans_huge(*pmd));
1926 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1927 		}
1928 	}
1929 	return NULL;
1930 }
1931 
1932 /*
1933  * This is the old fallback for page remapping.
1934  *
1935  * For historical reasons, it only allows reserved pages. Only
1936  * old drivers should use this, and they needed to mark their
1937  * pages reserved for the old functions anyway.
1938  */
1939 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1940 			struct page *page, pgprot_t prot)
1941 {
1942 	struct mm_struct *mm = vma->vm_mm;
1943 	int retval;
1944 	pte_t *pte;
1945 	spinlock_t *ptl;
1946 
1947 	retval = -EINVAL;
1948 	if (PageAnon(page))
1949 		goto out;
1950 	retval = -ENOMEM;
1951 	flush_dcache_page(page);
1952 	pte = get_locked_pte(mm, addr, &ptl);
1953 	if (!pte)
1954 		goto out;
1955 	retval = -EBUSY;
1956 	if (!pte_none(*pte))
1957 		goto out_unlock;
1958 
1959 	/* Ok, finally just insert the thing.. */
1960 	get_page(page);
1961 	inc_mm_counter_fast(mm, MM_FILEPAGES);
1962 	page_add_file_rmap(page);
1963 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1964 
1965 	retval = 0;
1966 	pte_unmap_unlock(pte, ptl);
1967 	return retval;
1968 out_unlock:
1969 	pte_unmap_unlock(pte, ptl);
1970 out:
1971 	return retval;
1972 }
1973 
1974 /**
1975  * vm_insert_page - insert single page into user vma
1976  * @vma: user vma to map to
1977  * @addr: target user address of this page
1978  * @page: source kernel page
1979  *
1980  * This allows drivers to insert individual pages they've allocated
1981  * into a user vma.
1982  *
1983  * The page has to be a nice clean _individual_ kernel allocation.
1984  * If you allocate a compound page, you need to have marked it as
1985  * such (__GFP_COMP), or manually just split the page up yourself
1986  * (see split_page()).
1987  *
1988  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1989  * took an arbitrary page protection parameter. This doesn't allow
1990  * that. Your vma protection will have to be set up correctly, which
1991  * means that if you want a shared writable mapping, you'd better
1992  * ask for a shared writable mapping!
1993  *
1994  * The page does not need to be reserved.
1995  */
1996 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1997 			struct page *page)
1998 {
1999 	if (addr < vma->vm_start || addr >= vma->vm_end)
2000 		return -EFAULT;
2001 	if (!page_count(page))
2002 		return -EINVAL;
2003 	vma->vm_flags |= VM_INSERTPAGE;
2004 	return insert_page(vma, addr, page, vma->vm_page_prot);
2005 }
2006 EXPORT_SYMBOL(vm_insert_page);
2007 
2008 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2009 			unsigned long pfn, pgprot_t prot)
2010 {
2011 	struct mm_struct *mm = vma->vm_mm;
2012 	int retval;
2013 	pte_t *pte, entry;
2014 	spinlock_t *ptl;
2015 
2016 	retval = -ENOMEM;
2017 	pte = get_locked_pte(mm, addr, &ptl);
2018 	if (!pte)
2019 		goto out;
2020 	retval = -EBUSY;
2021 	if (!pte_none(*pte))
2022 		goto out_unlock;
2023 
2024 	/* Ok, finally just insert the thing.. */
2025 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2026 	set_pte_at(mm, addr, pte, entry);
2027 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2028 
2029 	retval = 0;
2030 out_unlock:
2031 	pte_unmap_unlock(pte, ptl);
2032 out:
2033 	return retval;
2034 }
2035 
2036 /**
2037  * vm_insert_pfn - insert single pfn into user vma
2038  * @vma: user vma to map to
2039  * @addr: target user address of this page
2040  * @pfn: source kernel pfn
2041  *
2042  * Similar to vm_inert_page, this allows drivers to insert individual pages
2043  * they've allocated into a user vma. Same comments apply.
2044  *
2045  * This function should only be called from a vm_ops->fault handler, and
2046  * in that case the handler should return NULL.
2047  *
2048  * vma cannot be a COW mapping.
2049  *
2050  * As this is called only for pages that do not currently exist, we
2051  * do not need to flush old virtual caches or the TLB.
2052  */
2053 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2054 			unsigned long pfn)
2055 {
2056 	int ret;
2057 	pgprot_t pgprot = vma->vm_page_prot;
2058 	/*
2059 	 * Technically, architectures with pte_special can avoid all these
2060 	 * restrictions (same for remap_pfn_range).  However we would like
2061 	 * consistency in testing and feature parity among all, so we should
2062 	 * try to keep these invariants in place for everybody.
2063 	 */
2064 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2065 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2066 						(VM_PFNMAP|VM_MIXEDMAP));
2067 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2068 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2069 
2070 	if (addr < vma->vm_start || addr >= vma->vm_end)
2071 		return -EFAULT;
2072 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2073 		return -EINVAL;
2074 
2075 	ret = insert_pfn(vma, addr, pfn, pgprot);
2076 
2077 	if (ret)
2078 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2079 
2080 	return ret;
2081 }
2082 EXPORT_SYMBOL(vm_insert_pfn);
2083 
2084 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2085 			unsigned long pfn)
2086 {
2087 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2088 
2089 	if (addr < vma->vm_start || addr >= vma->vm_end)
2090 		return -EFAULT;
2091 
2092 	/*
2093 	 * If we don't have pte special, then we have to use the pfn_valid()
2094 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2095 	 * refcount the page if pfn_valid is true (hence insert_page rather
2096 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2097 	 * without pte special, it would there be refcounted as a normal page.
2098 	 */
2099 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2100 		struct page *page;
2101 
2102 		page = pfn_to_page(pfn);
2103 		return insert_page(vma, addr, page, vma->vm_page_prot);
2104 	}
2105 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2106 }
2107 EXPORT_SYMBOL(vm_insert_mixed);
2108 
2109 /*
2110  * maps a range of physical memory into the requested pages. the old
2111  * mappings are removed. any references to nonexistent pages results
2112  * in null mappings (currently treated as "copy-on-access")
2113  */
2114 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2115 			unsigned long addr, unsigned long end,
2116 			unsigned long pfn, pgprot_t prot)
2117 {
2118 	pte_t *pte;
2119 	spinlock_t *ptl;
2120 
2121 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2122 	if (!pte)
2123 		return -ENOMEM;
2124 	arch_enter_lazy_mmu_mode();
2125 	do {
2126 		BUG_ON(!pte_none(*pte));
2127 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2128 		pfn++;
2129 	} while (pte++, addr += PAGE_SIZE, addr != end);
2130 	arch_leave_lazy_mmu_mode();
2131 	pte_unmap_unlock(pte - 1, ptl);
2132 	return 0;
2133 }
2134 
2135 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2136 			unsigned long addr, unsigned long end,
2137 			unsigned long pfn, pgprot_t prot)
2138 {
2139 	pmd_t *pmd;
2140 	unsigned long next;
2141 
2142 	pfn -= addr >> PAGE_SHIFT;
2143 	pmd = pmd_alloc(mm, pud, addr);
2144 	if (!pmd)
2145 		return -ENOMEM;
2146 	VM_BUG_ON(pmd_trans_huge(*pmd));
2147 	do {
2148 		next = pmd_addr_end(addr, end);
2149 		if (remap_pte_range(mm, pmd, addr, next,
2150 				pfn + (addr >> PAGE_SHIFT), prot))
2151 			return -ENOMEM;
2152 	} while (pmd++, addr = next, addr != end);
2153 	return 0;
2154 }
2155 
2156 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2157 			unsigned long addr, unsigned long end,
2158 			unsigned long pfn, pgprot_t prot)
2159 {
2160 	pud_t *pud;
2161 	unsigned long next;
2162 
2163 	pfn -= addr >> PAGE_SHIFT;
2164 	pud = pud_alloc(mm, pgd, addr);
2165 	if (!pud)
2166 		return -ENOMEM;
2167 	do {
2168 		next = pud_addr_end(addr, end);
2169 		if (remap_pmd_range(mm, pud, addr, next,
2170 				pfn + (addr >> PAGE_SHIFT), prot))
2171 			return -ENOMEM;
2172 	} while (pud++, addr = next, addr != end);
2173 	return 0;
2174 }
2175 
2176 /**
2177  * remap_pfn_range - remap kernel memory to userspace
2178  * @vma: user vma to map to
2179  * @addr: target user address to start at
2180  * @pfn: physical address of kernel memory
2181  * @size: size of map area
2182  * @prot: page protection flags for this mapping
2183  *
2184  *  Note: this is only safe if the mm semaphore is held when called.
2185  */
2186 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2187 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2188 {
2189 	pgd_t *pgd;
2190 	unsigned long next;
2191 	unsigned long end = addr + PAGE_ALIGN(size);
2192 	struct mm_struct *mm = vma->vm_mm;
2193 	int err;
2194 
2195 	/*
2196 	 * Physically remapped pages are special. Tell the
2197 	 * rest of the world about it:
2198 	 *   VM_IO tells people not to look at these pages
2199 	 *	(accesses can have side effects).
2200 	 *   VM_RESERVED is specified all over the place, because
2201 	 *	in 2.4 it kept swapout's vma scan off this vma; but
2202 	 *	in 2.6 the LRU scan won't even find its pages, so this
2203 	 *	flag means no more than count its pages in reserved_vm,
2204 	 * 	and omit it from core dump, even when VM_IO turned off.
2205 	 *   VM_PFNMAP tells the core MM that the base pages are just
2206 	 *	raw PFN mappings, and do not have a "struct page" associated
2207 	 *	with them.
2208 	 *
2209 	 * There's a horrible special case to handle copy-on-write
2210 	 * behaviour that some programs depend on. We mark the "original"
2211 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2212 	 */
2213 	if (addr == vma->vm_start && end == vma->vm_end) {
2214 		vma->vm_pgoff = pfn;
2215 		vma->vm_flags |= VM_PFN_AT_MMAP;
2216 	} else if (is_cow_mapping(vma->vm_flags))
2217 		return -EINVAL;
2218 
2219 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2220 
2221 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2222 	if (err) {
2223 		/*
2224 		 * To indicate that track_pfn related cleanup is not
2225 		 * needed from higher level routine calling unmap_vmas
2226 		 */
2227 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2228 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
2229 		return -EINVAL;
2230 	}
2231 
2232 	BUG_ON(addr >= end);
2233 	pfn -= addr >> PAGE_SHIFT;
2234 	pgd = pgd_offset(mm, addr);
2235 	flush_cache_range(vma, addr, end);
2236 	do {
2237 		next = pgd_addr_end(addr, end);
2238 		err = remap_pud_range(mm, pgd, addr, next,
2239 				pfn + (addr >> PAGE_SHIFT), prot);
2240 		if (err)
2241 			break;
2242 	} while (pgd++, addr = next, addr != end);
2243 
2244 	if (err)
2245 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2246 
2247 	return err;
2248 }
2249 EXPORT_SYMBOL(remap_pfn_range);
2250 
2251 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2252 				     unsigned long addr, unsigned long end,
2253 				     pte_fn_t fn, void *data)
2254 {
2255 	pte_t *pte;
2256 	int err;
2257 	pgtable_t token;
2258 	spinlock_t *uninitialized_var(ptl);
2259 
2260 	pte = (mm == &init_mm) ?
2261 		pte_alloc_kernel(pmd, addr) :
2262 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2263 	if (!pte)
2264 		return -ENOMEM;
2265 
2266 	BUG_ON(pmd_huge(*pmd));
2267 
2268 	arch_enter_lazy_mmu_mode();
2269 
2270 	token = pmd_pgtable(*pmd);
2271 
2272 	do {
2273 		err = fn(pte++, token, addr, data);
2274 		if (err)
2275 			break;
2276 	} while (addr += PAGE_SIZE, addr != end);
2277 
2278 	arch_leave_lazy_mmu_mode();
2279 
2280 	if (mm != &init_mm)
2281 		pte_unmap_unlock(pte-1, ptl);
2282 	return err;
2283 }
2284 
2285 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2286 				     unsigned long addr, unsigned long end,
2287 				     pte_fn_t fn, void *data)
2288 {
2289 	pmd_t *pmd;
2290 	unsigned long next;
2291 	int err;
2292 
2293 	BUG_ON(pud_huge(*pud));
2294 
2295 	pmd = pmd_alloc(mm, pud, addr);
2296 	if (!pmd)
2297 		return -ENOMEM;
2298 	do {
2299 		next = pmd_addr_end(addr, end);
2300 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2301 		if (err)
2302 			break;
2303 	} while (pmd++, addr = next, addr != end);
2304 	return err;
2305 }
2306 
2307 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2308 				     unsigned long addr, unsigned long end,
2309 				     pte_fn_t fn, void *data)
2310 {
2311 	pud_t *pud;
2312 	unsigned long next;
2313 	int err;
2314 
2315 	pud = pud_alloc(mm, pgd, addr);
2316 	if (!pud)
2317 		return -ENOMEM;
2318 	do {
2319 		next = pud_addr_end(addr, end);
2320 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2321 		if (err)
2322 			break;
2323 	} while (pud++, addr = next, addr != end);
2324 	return err;
2325 }
2326 
2327 /*
2328  * Scan a region of virtual memory, filling in page tables as necessary
2329  * and calling a provided function on each leaf page table.
2330  */
2331 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2332 			unsigned long size, pte_fn_t fn, void *data)
2333 {
2334 	pgd_t *pgd;
2335 	unsigned long next;
2336 	unsigned long end = addr + size;
2337 	int err;
2338 
2339 	BUG_ON(addr >= end);
2340 	pgd = pgd_offset(mm, addr);
2341 	do {
2342 		next = pgd_addr_end(addr, end);
2343 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2344 		if (err)
2345 			break;
2346 	} while (pgd++, addr = next, addr != end);
2347 
2348 	return err;
2349 }
2350 EXPORT_SYMBOL_GPL(apply_to_page_range);
2351 
2352 /*
2353  * handle_pte_fault chooses page fault handler according to an entry
2354  * which was read non-atomically.  Before making any commitment, on
2355  * those architectures or configurations (e.g. i386 with PAE) which
2356  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2357  * must check under lock before unmapping the pte and proceeding
2358  * (but do_wp_page is only called after already making such a check;
2359  * and do_anonymous_page can safely check later on).
2360  */
2361 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2362 				pte_t *page_table, pte_t orig_pte)
2363 {
2364 	int same = 1;
2365 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2366 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2367 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2368 		spin_lock(ptl);
2369 		same = pte_same(*page_table, orig_pte);
2370 		spin_unlock(ptl);
2371 	}
2372 #endif
2373 	pte_unmap(page_table);
2374 	return same;
2375 }
2376 
2377 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2378 {
2379 	/*
2380 	 * If the source page was a PFN mapping, we don't have
2381 	 * a "struct page" for it. We do a best-effort copy by
2382 	 * just copying from the original user address. If that
2383 	 * fails, we just zero-fill it. Live with it.
2384 	 */
2385 	if (unlikely(!src)) {
2386 		void *kaddr = kmap_atomic(dst, KM_USER0);
2387 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2388 
2389 		/*
2390 		 * This really shouldn't fail, because the page is there
2391 		 * in the page tables. But it might just be unreadable,
2392 		 * in which case we just give up and fill the result with
2393 		 * zeroes.
2394 		 */
2395 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2396 			clear_page(kaddr);
2397 		kunmap_atomic(kaddr, KM_USER0);
2398 		flush_dcache_page(dst);
2399 	} else
2400 		copy_user_highpage(dst, src, va, vma);
2401 }
2402 
2403 /*
2404  * This routine handles present pages, when users try to write
2405  * to a shared page. It is done by copying the page to a new address
2406  * and decrementing the shared-page counter for the old page.
2407  *
2408  * Note that this routine assumes that the protection checks have been
2409  * done by the caller (the low-level page fault routine in most cases).
2410  * Thus we can safely just mark it writable once we've done any necessary
2411  * COW.
2412  *
2413  * We also mark the page dirty at this point even though the page will
2414  * change only once the write actually happens. This avoids a few races,
2415  * and potentially makes it more efficient.
2416  *
2417  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2418  * but allow concurrent faults), with pte both mapped and locked.
2419  * We return with mmap_sem still held, but pte unmapped and unlocked.
2420  */
2421 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2422 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2423 		spinlock_t *ptl, pte_t orig_pte)
2424 	__releases(ptl)
2425 {
2426 	struct page *old_page, *new_page;
2427 	pte_t entry;
2428 	int ret = 0;
2429 	int page_mkwrite = 0;
2430 	struct page *dirty_page = NULL;
2431 
2432 	old_page = vm_normal_page(vma, address, orig_pte);
2433 	if (!old_page) {
2434 		/*
2435 		 * VM_MIXEDMAP !pfn_valid() case
2436 		 *
2437 		 * We should not cow pages in a shared writeable mapping.
2438 		 * Just mark the pages writable as we can't do any dirty
2439 		 * accounting on raw pfn maps.
2440 		 */
2441 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2442 				     (VM_WRITE|VM_SHARED))
2443 			goto reuse;
2444 		goto gotten;
2445 	}
2446 
2447 	/*
2448 	 * Take out anonymous pages first, anonymous shared vmas are
2449 	 * not dirty accountable.
2450 	 */
2451 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2452 		if (!trylock_page(old_page)) {
2453 			page_cache_get(old_page);
2454 			pte_unmap_unlock(page_table, ptl);
2455 			lock_page(old_page);
2456 			page_table = pte_offset_map_lock(mm, pmd, address,
2457 							 &ptl);
2458 			if (!pte_same(*page_table, orig_pte)) {
2459 				unlock_page(old_page);
2460 				goto unlock;
2461 			}
2462 			page_cache_release(old_page);
2463 		}
2464 		if (reuse_swap_page(old_page)) {
2465 			/*
2466 			 * The page is all ours.  Move it to our anon_vma so
2467 			 * the rmap code will not search our parent or siblings.
2468 			 * Protected against the rmap code by the page lock.
2469 			 */
2470 			page_move_anon_rmap(old_page, vma, address);
2471 			unlock_page(old_page);
2472 			goto reuse;
2473 		}
2474 		unlock_page(old_page);
2475 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2476 					(VM_WRITE|VM_SHARED))) {
2477 		/*
2478 		 * Only catch write-faults on shared writable pages,
2479 		 * read-only shared pages can get COWed by
2480 		 * get_user_pages(.write=1, .force=1).
2481 		 */
2482 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2483 			struct vm_fault vmf;
2484 			int tmp;
2485 
2486 			vmf.virtual_address = (void __user *)(address &
2487 								PAGE_MASK);
2488 			vmf.pgoff = old_page->index;
2489 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2490 			vmf.page = old_page;
2491 
2492 			/*
2493 			 * Notify the address space that the page is about to
2494 			 * become writable so that it can prohibit this or wait
2495 			 * for the page to get into an appropriate state.
2496 			 *
2497 			 * We do this without the lock held, so that it can
2498 			 * sleep if it needs to.
2499 			 */
2500 			page_cache_get(old_page);
2501 			pte_unmap_unlock(page_table, ptl);
2502 
2503 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2504 			if (unlikely(tmp &
2505 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2506 				ret = tmp;
2507 				goto unwritable_page;
2508 			}
2509 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2510 				lock_page(old_page);
2511 				if (!old_page->mapping) {
2512 					ret = 0; /* retry the fault */
2513 					unlock_page(old_page);
2514 					goto unwritable_page;
2515 				}
2516 			} else
2517 				VM_BUG_ON(!PageLocked(old_page));
2518 
2519 			/*
2520 			 * Since we dropped the lock we need to revalidate
2521 			 * the PTE as someone else may have changed it.  If
2522 			 * they did, we just return, as we can count on the
2523 			 * MMU to tell us if they didn't also make it writable.
2524 			 */
2525 			page_table = pte_offset_map_lock(mm, pmd, address,
2526 							 &ptl);
2527 			if (!pte_same(*page_table, orig_pte)) {
2528 				unlock_page(old_page);
2529 				goto unlock;
2530 			}
2531 
2532 			page_mkwrite = 1;
2533 		}
2534 		dirty_page = old_page;
2535 		get_page(dirty_page);
2536 
2537 reuse:
2538 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2539 		entry = pte_mkyoung(orig_pte);
2540 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2541 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2542 			update_mmu_cache(vma, address, page_table);
2543 		pte_unmap_unlock(page_table, ptl);
2544 		ret |= VM_FAULT_WRITE;
2545 
2546 		if (!dirty_page)
2547 			return ret;
2548 
2549 		/*
2550 		 * Yes, Virginia, this is actually required to prevent a race
2551 		 * with clear_page_dirty_for_io() from clearing the page dirty
2552 		 * bit after it clear all dirty ptes, but before a racing
2553 		 * do_wp_page installs a dirty pte.
2554 		 *
2555 		 * __do_fault is protected similarly.
2556 		 */
2557 		if (!page_mkwrite) {
2558 			wait_on_page_locked(dirty_page);
2559 			set_page_dirty_balance(dirty_page, page_mkwrite);
2560 		}
2561 		put_page(dirty_page);
2562 		if (page_mkwrite) {
2563 			struct address_space *mapping = dirty_page->mapping;
2564 
2565 			set_page_dirty(dirty_page);
2566 			unlock_page(dirty_page);
2567 			page_cache_release(dirty_page);
2568 			if (mapping)	{
2569 				/*
2570 				 * Some device drivers do not set page.mapping
2571 				 * but still dirty their pages
2572 				 */
2573 				balance_dirty_pages_ratelimited(mapping);
2574 			}
2575 		}
2576 
2577 		/* file_update_time outside page_lock */
2578 		if (vma->vm_file)
2579 			file_update_time(vma->vm_file);
2580 
2581 		return ret;
2582 	}
2583 
2584 	/*
2585 	 * Ok, we need to copy. Oh, well..
2586 	 */
2587 	page_cache_get(old_page);
2588 gotten:
2589 	pte_unmap_unlock(page_table, ptl);
2590 
2591 	if (unlikely(anon_vma_prepare(vma)))
2592 		goto oom;
2593 
2594 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2595 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2596 		if (!new_page)
2597 			goto oom;
2598 	} else {
2599 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2600 		if (!new_page)
2601 			goto oom;
2602 		cow_user_page(new_page, old_page, address, vma);
2603 	}
2604 	__SetPageUptodate(new_page);
2605 
2606 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2607 		goto oom_free_new;
2608 
2609 	/*
2610 	 * Re-check the pte - we dropped the lock
2611 	 */
2612 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2613 	if (likely(pte_same(*page_table, orig_pte))) {
2614 		if (old_page) {
2615 			if (!PageAnon(old_page)) {
2616 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2617 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2618 			}
2619 		} else
2620 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2621 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2622 		entry = mk_pte(new_page, vma->vm_page_prot);
2623 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2624 		/*
2625 		 * Clear the pte entry and flush it first, before updating the
2626 		 * pte with the new entry. This will avoid a race condition
2627 		 * seen in the presence of one thread doing SMC and another
2628 		 * thread doing COW.
2629 		 */
2630 		ptep_clear_flush(vma, address, page_table);
2631 		page_add_new_anon_rmap(new_page, vma, address);
2632 		/*
2633 		 * We call the notify macro here because, when using secondary
2634 		 * mmu page tables (such as kvm shadow page tables), we want the
2635 		 * new page to be mapped directly into the secondary page table.
2636 		 */
2637 		set_pte_at_notify(mm, address, page_table, entry);
2638 		update_mmu_cache(vma, address, page_table);
2639 		if (old_page) {
2640 			/*
2641 			 * Only after switching the pte to the new page may
2642 			 * we remove the mapcount here. Otherwise another
2643 			 * process may come and find the rmap count decremented
2644 			 * before the pte is switched to the new page, and
2645 			 * "reuse" the old page writing into it while our pte
2646 			 * here still points into it and can be read by other
2647 			 * threads.
2648 			 *
2649 			 * The critical issue is to order this
2650 			 * page_remove_rmap with the ptp_clear_flush above.
2651 			 * Those stores are ordered by (if nothing else,)
2652 			 * the barrier present in the atomic_add_negative
2653 			 * in page_remove_rmap.
2654 			 *
2655 			 * Then the TLB flush in ptep_clear_flush ensures that
2656 			 * no process can access the old page before the
2657 			 * decremented mapcount is visible. And the old page
2658 			 * cannot be reused until after the decremented
2659 			 * mapcount is visible. So transitively, TLBs to
2660 			 * old page will be flushed before it can be reused.
2661 			 */
2662 			page_remove_rmap(old_page);
2663 		}
2664 
2665 		/* Free the old page.. */
2666 		new_page = old_page;
2667 		ret |= VM_FAULT_WRITE;
2668 	} else
2669 		mem_cgroup_uncharge_page(new_page);
2670 
2671 	if (new_page)
2672 		page_cache_release(new_page);
2673 unlock:
2674 	pte_unmap_unlock(page_table, ptl);
2675 	if (old_page) {
2676 		/*
2677 		 * Don't let another task, with possibly unlocked vma,
2678 		 * keep the mlocked page.
2679 		 */
2680 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2681 			lock_page(old_page);	/* LRU manipulation */
2682 			munlock_vma_page(old_page);
2683 			unlock_page(old_page);
2684 		}
2685 		page_cache_release(old_page);
2686 	}
2687 	return ret;
2688 oom_free_new:
2689 	page_cache_release(new_page);
2690 oom:
2691 	if (old_page) {
2692 		if (page_mkwrite) {
2693 			unlock_page(old_page);
2694 			page_cache_release(old_page);
2695 		}
2696 		page_cache_release(old_page);
2697 	}
2698 	return VM_FAULT_OOM;
2699 
2700 unwritable_page:
2701 	page_cache_release(old_page);
2702 	return ret;
2703 }
2704 
2705 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2706 		unsigned long start_addr, unsigned long end_addr,
2707 		struct zap_details *details)
2708 {
2709 	zap_page_range(vma, start_addr, end_addr - start_addr, details);
2710 }
2711 
2712 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2713 					    struct zap_details *details)
2714 {
2715 	struct vm_area_struct *vma;
2716 	struct prio_tree_iter iter;
2717 	pgoff_t vba, vea, zba, zea;
2718 
2719 	vma_prio_tree_foreach(vma, &iter, root,
2720 			details->first_index, details->last_index) {
2721 
2722 		vba = vma->vm_pgoff;
2723 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2724 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2725 		zba = details->first_index;
2726 		if (zba < vba)
2727 			zba = vba;
2728 		zea = details->last_index;
2729 		if (zea > vea)
2730 			zea = vea;
2731 
2732 		unmap_mapping_range_vma(vma,
2733 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2734 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2735 				details);
2736 	}
2737 }
2738 
2739 static inline void unmap_mapping_range_list(struct list_head *head,
2740 					    struct zap_details *details)
2741 {
2742 	struct vm_area_struct *vma;
2743 
2744 	/*
2745 	 * In nonlinear VMAs there is no correspondence between virtual address
2746 	 * offset and file offset.  So we must perform an exhaustive search
2747 	 * across *all* the pages in each nonlinear VMA, not just the pages
2748 	 * whose virtual address lies outside the file truncation point.
2749 	 */
2750 	list_for_each_entry(vma, head, shared.vm_set.list) {
2751 		details->nonlinear_vma = vma;
2752 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2753 	}
2754 }
2755 
2756 /**
2757  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2758  * @mapping: the address space containing mmaps to be unmapped.
2759  * @holebegin: byte in first page to unmap, relative to the start of
2760  * the underlying file.  This will be rounded down to a PAGE_SIZE
2761  * boundary.  Note that this is different from truncate_pagecache(), which
2762  * must keep the partial page.  In contrast, we must get rid of
2763  * partial pages.
2764  * @holelen: size of prospective hole in bytes.  This will be rounded
2765  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2766  * end of the file.
2767  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2768  * but 0 when invalidating pagecache, don't throw away private data.
2769  */
2770 void unmap_mapping_range(struct address_space *mapping,
2771 		loff_t const holebegin, loff_t const holelen, int even_cows)
2772 {
2773 	struct zap_details details;
2774 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2775 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2776 
2777 	/* Check for overflow. */
2778 	if (sizeof(holelen) > sizeof(hlen)) {
2779 		long long holeend =
2780 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2781 		if (holeend & ~(long long)ULONG_MAX)
2782 			hlen = ULONG_MAX - hba + 1;
2783 	}
2784 
2785 	details.check_mapping = even_cows? NULL: mapping;
2786 	details.nonlinear_vma = NULL;
2787 	details.first_index = hba;
2788 	details.last_index = hba + hlen - 1;
2789 	if (details.last_index < details.first_index)
2790 		details.last_index = ULONG_MAX;
2791 
2792 
2793 	mutex_lock(&mapping->i_mmap_mutex);
2794 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2795 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2796 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2797 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2798 	mutex_unlock(&mapping->i_mmap_mutex);
2799 }
2800 EXPORT_SYMBOL(unmap_mapping_range);
2801 
2802 /*
2803  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2804  * but allow concurrent faults), and pte mapped but not yet locked.
2805  * We return with mmap_sem still held, but pte unmapped and unlocked.
2806  */
2807 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2808 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2809 		unsigned int flags, pte_t orig_pte)
2810 {
2811 	spinlock_t *ptl;
2812 	struct page *page, *swapcache = NULL;
2813 	swp_entry_t entry;
2814 	pte_t pte;
2815 	int locked;
2816 	struct mem_cgroup *ptr;
2817 	int exclusive = 0;
2818 	int ret = 0;
2819 
2820 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2821 		goto out;
2822 
2823 	entry = pte_to_swp_entry(orig_pte);
2824 	if (unlikely(non_swap_entry(entry))) {
2825 		if (is_migration_entry(entry)) {
2826 			migration_entry_wait(mm, pmd, address);
2827 		} else if (is_hwpoison_entry(entry)) {
2828 			ret = VM_FAULT_HWPOISON;
2829 		} else {
2830 			print_bad_pte(vma, address, orig_pte, NULL);
2831 			ret = VM_FAULT_SIGBUS;
2832 		}
2833 		goto out;
2834 	}
2835 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2836 	page = lookup_swap_cache(entry);
2837 	if (!page) {
2838 		grab_swap_token(mm); /* Contend for token _before_ read-in */
2839 		page = swapin_readahead(entry,
2840 					GFP_HIGHUSER_MOVABLE, vma, address);
2841 		if (!page) {
2842 			/*
2843 			 * Back out if somebody else faulted in this pte
2844 			 * while we released the pte lock.
2845 			 */
2846 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2847 			if (likely(pte_same(*page_table, orig_pte)))
2848 				ret = VM_FAULT_OOM;
2849 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2850 			goto unlock;
2851 		}
2852 
2853 		/* Had to read the page from swap area: Major fault */
2854 		ret = VM_FAULT_MAJOR;
2855 		count_vm_event(PGMAJFAULT);
2856 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2857 	} else if (PageHWPoison(page)) {
2858 		/*
2859 		 * hwpoisoned dirty swapcache pages are kept for killing
2860 		 * owner processes (which may be unknown at hwpoison time)
2861 		 */
2862 		ret = VM_FAULT_HWPOISON;
2863 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2864 		goto out_release;
2865 	}
2866 
2867 	locked = lock_page_or_retry(page, mm, flags);
2868 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2869 	if (!locked) {
2870 		ret |= VM_FAULT_RETRY;
2871 		goto out_release;
2872 	}
2873 
2874 	/*
2875 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2876 	 * release the swapcache from under us.  The page pin, and pte_same
2877 	 * test below, are not enough to exclude that.  Even if it is still
2878 	 * swapcache, we need to check that the page's swap has not changed.
2879 	 */
2880 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2881 		goto out_page;
2882 
2883 	if (ksm_might_need_to_copy(page, vma, address)) {
2884 		swapcache = page;
2885 		page = ksm_does_need_to_copy(page, vma, address);
2886 
2887 		if (unlikely(!page)) {
2888 			ret = VM_FAULT_OOM;
2889 			page = swapcache;
2890 			swapcache = NULL;
2891 			goto out_page;
2892 		}
2893 	}
2894 
2895 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2896 		ret = VM_FAULT_OOM;
2897 		goto out_page;
2898 	}
2899 
2900 	/*
2901 	 * Back out if somebody else already faulted in this pte.
2902 	 */
2903 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2904 	if (unlikely(!pte_same(*page_table, orig_pte)))
2905 		goto out_nomap;
2906 
2907 	if (unlikely(!PageUptodate(page))) {
2908 		ret = VM_FAULT_SIGBUS;
2909 		goto out_nomap;
2910 	}
2911 
2912 	/*
2913 	 * The page isn't present yet, go ahead with the fault.
2914 	 *
2915 	 * Be careful about the sequence of operations here.
2916 	 * To get its accounting right, reuse_swap_page() must be called
2917 	 * while the page is counted on swap but not yet in mapcount i.e.
2918 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2919 	 * must be called after the swap_free(), or it will never succeed.
2920 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2921 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2922 	 * in page->private. In this case, a record in swap_cgroup  is silently
2923 	 * discarded at swap_free().
2924 	 */
2925 
2926 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2927 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2928 	pte = mk_pte(page, vma->vm_page_prot);
2929 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2930 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2931 		flags &= ~FAULT_FLAG_WRITE;
2932 		ret |= VM_FAULT_WRITE;
2933 		exclusive = 1;
2934 	}
2935 	flush_icache_page(vma, page);
2936 	set_pte_at(mm, address, page_table, pte);
2937 	do_page_add_anon_rmap(page, vma, address, exclusive);
2938 	/* It's better to call commit-charge after rmap is established */
2939 	mem_cgroup_commit_charge_swapin(page, ptr);
2940 
2941 	swap_free(entry);
2942 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2943 		try_to_free_swap(page);
2944 	unlock_page(page);
2945 	if (swapcache) {
2946 		/*
2947 		 * Hold the lock to avoid the swap entry to be reused
2948 		 * until we take the PT lock for the pte_same() check
2949 		 * (to avoid false positives from pte_same). For
2950 		 * further safety release the lock after the swap_free
2951 		 * so that the swap count won't change under a
2952 		 * parallel locked swapcache.
2953 		 */
2954 		unlock_page(swapcache);
2955 		page_cache_release(swapcache);
2956 	}
2957 
2958 	if (flags & FAULT_FLAG_WRITE) {
2959 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2960 		if (ret & VM_FAULT_ERROR)
2961 			ret &= VM_FAULT_ERROR;
2962 		goto out;
2963 	}
2964 
2965 	/* No need to invalidate - it was non-present before */
2966 	update_mmu_cache(vma, address, page_table);
2967 unlock:
2968 	pte_unmap_unlock(page_table, ptl);
2969 out:
2970 	return ret;
2971 out_nomap:
2972 	mem_cgroup_cancel_charge_swapin(ptr);
2973 	pte_unmap_unlock(page_table, ptl);
2974 out_page:
2975 	unlock_page(page);
2976 out_release:
2977 	page_cache_release(page);
2978 	if (swapcache) {
2979 		unlock_page(swapcache);
2980 		page_cache_release(swapcache);
2981 	}
2982 	return ret;
2983 }
2984 
2985 /*
2986  * This is like a special single-page "expand_{down|up}wards()",
2987  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2988  * doesn't hit another vma.
2989  */
2990 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2991 {
2992 	address &= PAGE_MASK;
2993 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2994 		struct vm_area_struct *prev = vma->vm_prev;
2995 
2996 		/*
2997 		 * Is there a mapping abutting this one below?
2998 		 *
2999 		 * That's only ok if it's the same stack mapping
3000 		 * that has gotten split..
3001 		 */
3002 		if (prev && prev->vm_end == address)
3003 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3004 
3005 		expand_downwards(vma, address - PAGE_SIZE);
3006 	}
3007 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3008 		struct vm_area_struct *next = vma->vm_next;
3009 
3010 		/* As VM_GROWSDOWN but s/below/above/ */
3011 		if (next && next->vm_start == address + PAGE_SIZE)
3012 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3013 
3014 		expand_upwards(vma, address + PAGE_SIZE);
3015 	}
3016 	return 0;
3017 }
3018 
3019 /*
3020  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3021  * but allow concurrent faults), and pte mapped but not yet locked.
3022  * We return with mmap_sem still held, but pte unmapped and unlocked.
3023  */
3024 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3025 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3026 		unsigned int flags)
3027 {
3028 	struct page *page;
3029 	spinlock_t *ptl;
3030 	pte_t entry;
3031 
3032 	pte_unmap(page_table);
3033 
3034 	/* Check if we need to add a guard page to the stack */
3035 	if (check_stack_guard_page(vma, address) < 0)
3036 		return VM_FAULT_SIGBUS;
3037 
3038 	/* Use the zero-page for reads */
3039 	if (!(flags & FAULT_FLAG_WRITE)) {
3040 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3041 						vma->vm_page_prot));
3042 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3043 		if (!pte_none(*page_table))
3044 			goto unlock;
3045 		goto setpte;
3046 	}
3047 
3048 	/* Allocate our own private page. */
3049 	if (unlikely(anon_vma_prepare(vma)))
3050 		goto oom;
3051 	page = alloc_zeroed_user_highpage_movable(vma, address);
3052 	if (!page)
3053 		goto oom;
3054 	__SetPageUptodate(page);
3055 
3056 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3057 		goto oom_free_page;
3058 
3059 	entry = mk_pte(page, vma->vm_page_prot);
3060 	if (vma->vm_flags & VM_WRITE)
3061 		entry = pte_mkwrite(pte_mkdirty(entry));
3062 
3063 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3064 	if (!pte_none(*page_table))
3065 		goto release;
3066 
3067 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3068 	page_add_new_anon_rmap(page, vma, address);
3069 setpte:
3070 	set_pte_at(mm, address, page_table, entry);
3071 
3072 	/* No need to invalidate - it was non-present before */
3073 	update_mmu_cache(vma, address, page_table);
3074 unlock:
3075 	pte_unmap_unlock(page_table, ptl);
3076 	return 0;
3077 release:
3078 	mem_cgroup_uncharge_page(page);
3079 	page_cache_release(page);
3080 	goto unlock;
3081 oom_free_page:
3082 	page_cache_release(page);
3083 oom:
3084 	return VM_FAULT_OOM;
3085 }
3086 
3087 /*
3088  * __do_fault() tries to create a new page mapping. It aggressively
3089  * tries to share with existing pages, but makes a separate copy if
3090  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3091  * the next page fault.
3092  *
3093  * As this is called only for pages that do not currently exist, we
3094  * do not need to flush old virtual caches or the TLB.
3095  *
3096  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3097  * but allow concurrent faults), and pte neither mapped nor locked.
3098  * We return with mmap_sem still held, but pte unmapped and unlocked.
3099  */
3100 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3101 		unsigned long address, pmd_t *pmd,
3102 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3103 {
3104 	pte_t *page_table;
3105 	spinlock_t *ptl;
3106 	struct page *page;
3107 	pte_t entry;
3108 	int anon = 0;
3109 	int charged = 0;
3110 	struct page *dirty_page = NULL;
3111 	struct vm_fault vmf;
3112 	int ret;
3113 	int page_mkwrite = 0;
3114 
3115 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3116 	vmf.pgoff = pgoff;
3117 	vmf.flags = flags;
3118 	vmf.page = NULL;
3119 
3120 	ret = vma->vm_ops->fault(vma, &vmf);
3121 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3122 			    VM_FAULT_RETRY)))
3123 		return ret;
3124 
3125 	if (unlikely(PageHWPoison(vmf.page))) {
3126 		if (ret & VM_FAULT_LOCKED)
3127 			unlock_page(vmf.page);
3128 		return VM_FAULT_HWPOISON;
3129 	}
3130 
3131 	/*
3132 	 * For consistency in subsequent calls, make the faulted page always
3133 	 * locked.
3134 	 */
3135 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3136 		lock_page(vmf.page);
3137 	else
3138 		VM_BUG_ON(!PageLocked(vmf.page));
3139 
3140 	/*
3141 	 * Should we do an early C-O-W break?
3142 	 */
3143 	page = vmf.page;
3144 	if (flags & FAULT_FLAG_WRITE) {
3145 		if (!(vma->vm_flags & VM_SHARED)) {
3146 			anon = 1;
3147 			if (unlikely(anon_vma_prepare(vma))) {
3148 				ret = VM_FAULT_OOM;
3149 				goto out;
3150 			}
3151 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3152 						vma, address);
3153 			if (!page) {
3154 				ret = VM_FAULT_OOM;
3155 				goto out;
3156 			}
3157 			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3158 				ret = VM_FAULT_OOM;
3159 				page_cache_release(page);
3160 				goto out;
3161 			}
3162 			charged = 1;
3163 			copy_user_highpage(page, vmf.page, address, vma);
3164 			__SetPageUptodate(page);
3165 		} else {
3166 			/*
3167 			 * If the page will be shareable, see if the backing
3168 			 * address space wants to know that the page is about
3169 			 * to become writable
3170 			 */
3171 			if (vma->vm_ops->page_mkwrite) {
3172 				int tmp;
3173 
3174 				unlock_page(page);
3175 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3176 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3177 				if (unlikely(tmp &
3178 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3179 					ret = tmp;
3180 					goto unwritable_page;
3181 				}
3182 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3183 					lock_page(page);
3184 					if (!page->mapping) {
3185 						ret = 0; /* retry the fault */
3186 						unlock_page(page);
3187 						goto unwritable_page;
3188 					}
3189 				} else
3190 					VM_BUG_ON(!PageLocked(page));
3191 				page_mkwrite = 1;
3192 			}
3193 		}
3194 
3195 	}
3196 
3197 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3198 
3199 	/*
3200 	 * This silly early PAGE_DIRTY setting removes a race
3201 	 * due to the bad i386 page protection. But it's valid
3202 	 * for other architectures too.
3203 	 *
3204 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3205 	 * an exclusive copy of the page, or this is a shared mapping,
3206 	 * so we can make it writable and dirty to avoid having to
3207 	 * handle that later.
3208 	 */
3209 	/* Only go through if we didn't race with anybody else... */
3210 	if (likely(pte_same(*page_table, orig_pte))) {
3211 		flush_icache_page(vma, page);
3212 		entry = mk_pte(page, vma->vm_page_prot);
3213 		if (flags & FAULT_FLAG_WRITE)
3214 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3215 		if (anon) {
3216 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3217 			page_add_new_anon_rmap(page, vma, address);
3218 		} else {
3219 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3220 			page_add_file_rmap(page);
3221 			if (flags & FAULT_FLAG_WRITE) {
3222 				dirty_page = page;
3223 				get_page(dirty_page);
3224 			}
3225 		}
3226 		set_pte_at(mm, address, page_table, entry);
3227 
3228 		/* no need to invalidate: a not-present page won't be cached */
3229 		update_mmu_cache(vma, address, page_table);
3230 	} else {
3231 		if (charged)
3232 			mem_cgroup_uncharge_page(page);
3233 		if (anon)
3234 			page_cache_release(page);
3235 		else
3236 			anon = 1; /* no anon but release faulted_page */
3237 	}
3238 
3239 	pte_unmap_unlock(page_table, ptl);
3240 
3241 out:
3242 	if (dirty_page) {
3243 		struct address_space *mapping = page->mapping;
3244 
3245 		if (set_page_dirty(dirty_page))
3246 			page_mkwrite = 1;
3247 		unlock_page(dirty_page);
3248 		put_page(dirty_page);
3249 		if (page_mkwrite && mapping) {
3250 			/*
3251 			 * Some device drivers do not set page.mapping but still
3252 			 * dirty their pages
3253 			 */
3254 			balance_dirty_pages_ratelimited(mapping);
3255 		}
3256 
3257 		/* file_update_time outside page_lock */
3258 		if (vma->vm_file)
3259 			file_update_time(vma->vm_file);
3260 	} else {
3261 		unlock_page(vmf.page);
3262 		if (anon)
3263 			page_cache_release(vmf.page);
3264 	}
3265 
3266 	return ret;
3267 
3268 unwritable_page:
3269 	page_cache_release(page);
3270 	return ret;
3271 }
3272 
3273 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3274 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3275 		unsigned int flags, pte_t orig_pte)
3276 {
3277 	pgoff_t pgoff = (((address & PAGE_MASK)
3278 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3279 
3280 	pte_unmap(page_table);
3281 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3282 }
3283 
3284 /*
3285  * Fault of a previously existing named mapping. Repopulate the pte
3286  * from the encoded file_pte if possible. This enables swappable
3287  * nonlinear vmas.
3288  *
3289  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3290  * but allow concurrent faults), and pte mapped but not yet locked.
3291  * We return with mmap_sem still held, but pte unmapped and unlocked.
3292  */
3293 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3294 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3295 		unsigned int flags, pte_t orig_pte)
3296 {
3297 	pgoff_t pgoff;
3298 
3299 	flags |= FAULT_FLAG_NONLINEAR;
3300 
3301 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3302 		return 0;
3303 
3304 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3305 		/*
3306 		 * Page table corrupted: show pte and kill process.
3307 		 */
3308 		print_bad_pte(vma, address, orig_pte, NULL);
3309 		return VM_FAULT_SIGBUS;
3310 	}
3311 
3312 	pgoff = pte_to_pgoff(orig_pte);
3313 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3314 }
3315 
3316 /*
3317  * These routines also need to handle stuff like marking pages dirty
3318  * and/or accessed for architectures that don't do it in hardware (most
3319  * RISC architectures).  The early dirtying is also good on the i386.
3320  *
3321  * There is also a hook called "update_mmu_cache()" that architectures
3322  * with external mmu caches can use to update those (ie the Sparc or
3323  * PowerPC hashed page tables that act as extended TLBs).
3324  *
3325  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3326  * but allow concurrent faults), and pte mapped but not yet locked.
3327  * We return with mmap_sem still held, but pte unmapped and unlocked.
3328  */
3329 int handle_pte_fault(struct mm_struct *mm,
3330 		     struct vm_area_struct *vma, unsigned long address,
3331 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3332 {
3333 	pte_t entry;
3334 	spinlock_t *ptl;
3335 
3336 	entry = *pte;
3337 	if (!pte_present(entry)) {
3338 		if (pte_none(entry)) {
3339 			if (vma->vm_ops) {
3340 				if (likely(vma->vm_ops->fault))
3341 					return do_linear_fault(mm, vma, address,
3342 						pte, pmd, flags, entry);
3343 			}
3344 			return do_anonymous_page(mm, vma, address,
3345 						 pte, pmd, flags);
3346 		}
3347 		if (pte_file(entry))
3348 			return do_nonlinear_fault(mm, vma, address,
3349 					pte, pmd, flags, entry);
3350 		return do_swap_page(mm, vma, address,
3351 					pte, pmd, flags, entry);
3352 	}
3353 
3354 	ptl = pte_lockptr(mm, pmd);
3355 	spin_lock(ptl);
3356 	if (unlikely(!pte_same(*pte, entry)))
3357 		goto unlock;
3358 	if (flags & FAULT_FLAG_WRITE) {
3359 		if (!pte_write(entry))
3360 			return do_wp_page(mm, vma, address,
3361 					pte, pmd, ptl, entry);
3362 		entry = pte_mkdirty(entry);
3363 	}
3364 	entry = pte_mkyoung(entry);
3365 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3366 		update_mmu_cache(vma, address, pte);
3367 	} else {
3368 		/*
3369 		 * This is needed only for protection faults but the arch code
3370 		 * is not yet telling us if this is a protection fault or not.
3371 		 * This still avoids useless tlb flushes for .text page faults
3372 		 * with threads.
3373 		 */
3374 		if (flags & FAULT_FLAG_WRITE)
3375 			flush_tlb_fix_spurious_fault(vma, address);
3376 	}
3377 unlock:
3378 	pte_unmap_unlock(pte, ptl);
3379 	return 0;
3380 }
3381 
3382 /*
3383  * By the time we get here, we already hold the mm semaphore
3384  */
3385 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3386 		unsigned long address, unsigned int flags)
3387 {
3388 	pgd_t *pgd;
3389 	pud_t *pud;
3390 	pmd_t *pmd;
3391 	pte_t *pte;
3392 
3393 	__set_current_state(TASK_RUNNING);
3394 
3395 	count_vm_event(PGFAULT);
3396 	mem_cgroup_count_vm_event(mm, PGFAULT);
3397 
3398 	/* do counter updates before entering really critical section. */
3399 	check_sync_rss_stat(current);
3400 
3401 	if (unlikely(is_vm_hugetlb_page(vma)))
3402 		return hugetlb_fault(mm, vma, address, flags);
3403 
3404 	pgd = pgd_offset(mm, address);
3405 	pud = pud_alloc(mm, pgd, address);
3406 	if (!pud)
3407 		return VM_FAULT_OOM;
3408 	pmd = pmd_alloc(mm, pud, address);
3409 	if (!pmd)
3410 		return VM_FAULT_OOM;
3411 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3412 		if (!vma->vm_ops)
3413 			return do_huge_pmd_anonymous_page(mm, vma, address,
3414 							  pmd, flags);
3415 	} else {
3416 		pmd_t orig_pmd = *pmd;
3417 		barrier();
3418 		if (pmd_trans_huge(orig_pmd)) {
3419 			if (flags & FAULT_FLAG_WRITE &&
3420 			    !pmd_write(orig_pmd) &&
3421 			    !pmd_trans_splitting(orig_pmd))
3422 				return do_huge_pmd_wp_page(mm, vma, address,
3423 							   pmd, orig_pmd);
3424 			return 0;
3425 		}
3426 	}
3427 
3428 	/*
3429 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3430 	 * run pte_offset_map on the pmd, if an huge pmd could
3431 	 * materialize from under us from a different thread.
3432 	 */
3433 	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3434 		return VM_FAULT_OOM;
3435 	/* if an huge pmd materialized from under us just retry later */
3436 	if (unlikely(pmd_trans_huge(*pmd)))
3437 		return 0;
3438 	/*
3439 	 * A regular pmd is established and it can't morph into a huge pmd
3440 	 * from under us anymore at this point because we hold the mmap_sem
3441 	 * read mode and khugepaged takes it in write mode. So now it's
3442 	 * safe to run pte_offset_map().
3443 	 */
3444 	pte = pte_offset_map(pmd, address);
3445 
3446 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3447 }
3448 
3449 #ifndef __PAGETABLE_PUD_FOLDED
3450 /*
3451  * Allocate page upper directory.
3452  * We've already handled the fast-path in-line.
3453  */
3454 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3455 {
3456 	pud_t *new = pud_alloc_one(mm, address);
3457 	if (!new)
3458 		return -ENOMEM;
3459 
3460 	smp_wmb(); /* See comment in __pte_alloc */
3461 
3462 	spin_lock(&mm->page_table_lock);
3463 	if (pgd_present(*pgd))		/* Another has populated it */
3464 		pud_free(mm, new);
3465 	else
3466 		pgd_populate(mm, pgd, new);
3467 	spin_unlock(&mm->page_table_lock);
3468 	return 0;
3469 }
3470 #endif /* __PAGETABLE_PUD_FOLDED */
3471 
3472 #ifndef __PAGETABLE_PMD_FOLDED
3473 /*
3474  * Allocate page middle directory.
3475  * We've already handled the fast-path in-line.
3476  */
3477 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3478 {
3479 	pmd_t *new = pmd_alloc_one(mm, address);
3480 	if (!new)
3481 		return -ENOMEM;
3482 
3483 	smp_wmb(); /* See comment in __pte_alloc */
3484 
3485 	spin_lock(&mm->page_table_lock);
3486 #ifndef __ARCH_HAS_4LEVEL_HACK
3487 	if (pud_present(*pud))		/* Another has populated it */
3488 		pmd_free(mm, new);
3489 	else
3490 		pud_populate(mm, pud, new);
3491 #else
3492 	if (pgd_present(*pud))		/* Another has populated it */
3493 		pmd_free(mm, new);
3494 	else
3495 		pgd_populate(mm, pud, new);
3496 #endif /* __ARCH_HAS_4LEVEL_HACK */
3497 	spin_unlock(&mm->page_table_lock);
3498 	return 0;
3499 }
3500 #endif /* __PAGETABLE_PMD_FOLDED */
3501 
3502 int make_pages_present(unsigned long addr, unsigned long end)
3503 {
3504 	int ret, len, write;
3505 	struct vm_area_struct * vma;
3506 
3507 	vma = find_vma(current->mm, addr);
3508 	if (!vma)
3509 		return -ENOMEM;
3510 	/*
3511 	 * We want to touch writable mappings with a write fault in order
3512 	 * to break COW, except for shared mappings because these don't COW
3513 	 * and we would not want to dirty them for nothing.
3514 	 */
3515 	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3516 	BUG_ON(addr >= end);
3517 	BUG_ON(end > vma->vm_end);
3518 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3519 	ret = get_user_pages(current, current->mm, addr,
3520 			len, write, 0, NULL, NULL);
3521 	if (ret < 0)
3522 		return ret;
3523 	return ret == len ? 0 : -EFAULT;
3524 }
3525 
3526 #if !defined(__HAVE_ARCH_GATE_AREA)
3527 
3528 #if defined(AT_SYSINFO_EHDR)
3529 static struct vm_area_struct gate_vma;
3530 
3531 static int __init gate_vma_init(void)
3532 {
3533 	gate_vma.vm_mm = NULL;
3534 	gate_vma.vm_start = FIXADDR_USER_START;
3535 	gate_vma.vm_end = FIXADDR_USER_END;
3536 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3537 	gate_vma.vm_page_prot = __P101;
3538 	/*
3539 	 * Make sure the vDSO gets into every core dump.
3540 	 * Dumping its contents makes post-mortem fully interpretable later
3541 	 * without matching up the same kernel and hardware config to see
3542 	 * what PC values meant.
3543 	 */
3544 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3545 	return 0;
3546 }
3547 __initcall(gate_vma_init);
3548 #endif
3549 
3550 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3551 {
3552 #ifdef AT_SYSINFO_EHDR
3553 	return &gate_vma;
3554 #else
3555 	return NULL;
3556 #endif
3557 }
3558 
3559 int in_gate_area_no_mm(unsigned long addr)
3560 {
3561 #ifdef AT_SYSINFO_EHDR
3562 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3563 		return 1;
3564 #endif
3565 	return 0;
3566 }
3567 
3568 #endif	/* __HAVE_ARCH_GATE_AREA */
3569 
3570 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3571 		pte_t **ptepp, spinlock_t **ptlp)
3572 {
3573 	pgd_t *pgd;
3574 	pud_t *pud;
3575 	pmd_t *pmd;
3576 	pte_t *ptep;
3577 
3578 	pgd = pgd_offset(mm, address);
3579 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3580 		goto out;
3581 
3582 	pud = pud_offset(pgd, address);
3583 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3584 		goto out;
3585 
3586 	pmd = pmd_offset(pud, address);
3587 	VM_BUG_ON(pmd_trans_huge(*pmd));
3588 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3589 		goto out;
3590 
3591 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3592 	if (pmd_huge(*pmd))
3593 		goto out;
3594 
3595 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3596 	if (!ptep)
3597 		goto out;
3598 	if (!pte_present(*ptep))
3599 		goto unlock;
3600 	*ptepp = ptep;
3601 	return 0;
3602 unlock:
3603 	pte_unmap_unlock(ptep, *ptlp);
3604 out:
3605 	return -EINVAL;
3606 }
3607 
3608 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3609 			     pte_t **ptepp, spinlock_t **ptlp)
3610 {
3611 	int res;
3612 
3613 	/* (void) is needed to make gcc happy */
3614 	(void) __cond_lock(*ptlp,
3615 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3616 	return res;
3617 }
3618 
3619 /**
3620  * follow_pfn - look up PFN at a user virtual address
3621  * @vma: memory mapping
3622  * @address: user virtual address
3623  * @pfn: location to store found PFN
3624  *
3625  * Only IO mappings and raw PFN mappings are allowed.
3626  *
3627  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3628  */
3629 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3630 	unsigned long *pfn)
3631 {
3632 	int ret = -EINVAL;
3633 	spinlock_t *ptl;
3634 	pte_t *ptep;
3635 
3636 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3637 		return ret;
3638 
3639 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3640 	if (ret)
3641 		return ret;
3642 	*pfn = pte_pfn(*ptep);
3643 	pte_unmap_unlock(ptep, ptl);
3644 	return 0;
3645 }
3646 EXPORT_SYMBOL(follow_pfn);
3647 
3648 #ifdef CONFIG_HAVE_IOREMAP_PROT
3649 int follow_phys(struct vm_area_struct *vma,
3650 		unsigned long address, unsigned int flags,
3651 		unsigned long *prot, resource_size_t *phys)
3652 {
3653 	int ret = -EINVAL;
3654 	pte_t *ptep, pte;
3655 	spinlock_t *ptl;
3656 
3657 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3658 		goto out;
3659 
3660 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3661 		goto out;
3662 	pte = *ptep;
3663 
3664 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3665 		goto unlock;
3666 
3667 	*prot = pgprot_val(pte_pgprot(pte));
3668 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3669 
3670 	ret = 0;
3671 unlock:
3672 	pte_unmap_unlock(ptep, ptl);
3673 out:
3674 	return ret;
3675 }
3676 
3677 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3678 			void *buf, int len, int write)
3679 {
3680 	resource_size_t phys_addr;
3681 	unsigned long prot = 0;
3682 	void __iomem *maddr;
3683 	int offset = addr & (PAGE_SIZE-1);
3684 
3685 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3686 		return -EINVAL;
3687 
3688 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3689 	if (write)
3690 		memcpy_toio(maddr + offset, buf, len);
3691 	else
3692 		memcpy_fromio(buf, maddr + offset, len);
3693 	iounmap(maddr);
3694 
3695 	return len;
3696 }
3697 #endif
3698 
3699 /*
3700  * Access another process' address space as given in mm.  If non-NULL, use the
3701  * given task for page fault accounting.
3702  */
3703 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3704 		unsigned long addr, void *buf, int len, int write)
3705 {
3706 	struct vm_area_struct *vma;
3707 	void *old_buf = buf;
3708 
3709 	down_read(&mm->mmap_sem);
3710 	/* ignore errors, just check how much was successfully transferred */
3711 	while (len) {
3712 		int bytes, ret, offset;
3713 		void *maddr;
3714 		struct page *page = NULL;
3715 
3716 		ret = get_user_pages(tsk, mm, addr, 1,
3717 				write, 1, &page, &vma);
3718 		if (ret <= 0) {
3719 			/*
3720 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3721 			 * we can access using slightly different code.
3722 			 */
3723 #ifdef CONFIG_HAVE_IOREMAP_PROT
3724 			vma = find_vma(mm, addr);
3725 			if (!vma || vma->vm_start > addr)
3726 				break;
3727 			if (vma->vm_ops && vma->vm_ops->access)
3728 				ret = vma->vm_ops->access(vma, addr, buf,
3729 							  len, write);
3730 			if (ret <= 0)
3731 #endif
3732 				break;
3733 			bytes = ret;
3734 		} else {
3735 			bytes = len;
3736 			offset = addr & (PAGE_SIZE-1);
3737 			if (bytes > PAGE_SIZE-offset)
3738 				bytes = PAGE_SIZE-offset;
3739 
3740 			maddr = kmap(page);
3741 			if (write) {
3742 				copy_to_user_page(vma, page, addr,
3743 						  maddr + offset, buf, bytes);
3744 				set_page_dirty_lock(page);
3745 			} else {
3746 				copy_from_user_page(vma, page, addr,
3747 						    buf, maddr + offset, bytes);
3748 			}
3749 			kunmap(page);
3750 			page_cache_release(page);
3751 		}
3752 		len -= bytes;
3753 		buf += bytes;
3754 		addr += bytes;
3755 	}
3756 	up_read(&mm->mmap_sem);
3757 
3758 	return buf - old_buf;
3759 }
3760 
3761 /**
3762  * access_remote_vm - access another process' address space
3763  * @mm:		the mm_struct of the target address space
3764  * @addr:	start address to access
3765  * @buf:	source or destination buffer
3766  * @len:	number of bytes to transfer
3767  * @write:	whether the access is a write
3768  *
3769  * The caller must hold a reference on @mm.
3770  */
3771 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3772 		void *buf, int len, int write)
3773 {
3774 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3775 }
3776 
3777 /*
3778  * Access another process' address space.
3779  * Source/target buffer must be kernel space,
3780  * Do not walk the page table directly, use get_user_pages
3781  */
3782 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3783 		void *buf, int len, int write)
3784 {
3785 	struct mm_struct *mm;
3786 	int ret;
3787 
3788 	mm = get_task_mm(tsk);
3789 	if (!mm)
3790 		return 0;
3791 
3792 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3793 	mmput(mm);
3794 
3795 	return ret;
3796 }
3797 
3798 /*
3799  * Print the name of a VMA.
3800  */
3801 void print_vma_addr(char *prefix, unsigned long ip)
3802 {
3803 	struct mm_struct *mm = current->mm;
3804 	struct vm_area_struct *vma;
3805 
3806 	/*
3807 	 * Do not print if we are in atomic
3808 	 * contexts (in exception stacks, etc.):
3809 	 */
3810 	if (preempt_count())
3811 		return;
3812 
3813 	down_read(&mm->mmap_sem);
3814 	vma = find_vma(mm, ip);
3815 	if (vma && vma->vm_file) {
3816 		struct file *f = vma->vm_file;
3817 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3818 		if (buf) {
3819 			char *p, *s;
3820 
3821 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3822 			if (IS_ERR(p))
3823 				p = "?";
3824 			s = strrchr(p, '/');
3825 			if (s)
3826 				p = s+1;
3827 			printk("%s%s[%lx+%lx]", prefix, p,
3828 					vma->vm_start,
3829 					vma->vm_end - vma->vm_start);
3830 			free_page((unsigned long)buf);
3831 		}
3832 	}
3833 	up_read(&current->mm->mmap_sem);
3834 }
3835 
3836 #ifdef CONFIG_PROVE_LOCKING
3837 void might_fault(void)
3838 {
3839 	/*
3840 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3841 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3842 	 * get paged out, therefore we'll never actually fault, and the
3843 	 * below annotations will generate false positives.
3844 	 */
3845 	if (segment_eq(get_fs(), KERNEL_DS))
3846 		return;
3847 
3848 	might_sleep();
3849 	/*
3850 	 * it would be nicer only to annotate paths which are not under
3851 	 * pagefault_disable, however that requires a larger audit and
3852 	 * providing helpers like get_user_atomic.
3853 	 */
3854 	if (!in_atomic() && current->mm)
3855 		might_lock_read(&current->mm->mmap_sem);
3856 }
3857 EXPORT_SYMBOL(might_fault);
3858 #endif
3859 
3860 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3861 static void clear_gigantic_page(struct page *page,
3862 				unsigned long addr,
3863 				unsigned int pages_per_huge_page)
3864 {
3865 	int i;
3866 	struct page *p = page;
3867 
3868 	might_sleep();
3869 	for (i = 0; i < pages_per_huge_page;
3870 	     i++, p = mem_map_next(p, page, i)) {
3871 		cond_resched();
3872 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3873 	}
3874 }
3875 void clear_huge_page(struct page *page,
3876 		     unsigned long addr, unsigned int pages_per_huge_page)
3877 {
3878 	int i;
3879 
3880 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3881 		clear_gigantic_page(page, addr, pages_per_huge_page);
3882 		return;
3883 	}
3884 
3885 	might_sleep();
3886 	for (i = 0; i < pages_per_huge_page; i++) {
3887 		cond_resched();
3888 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3889 	}
3890 }
3891 
3892 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3893 				    unsigned long addr,
3894 				    struct vm_area_struct *vma,
3895 				    unsigned int pages_per_huge_page)
3896 {
3897 	int i;
3898 	struct page *dst_base = dst;
3899 	struct page *src_base = src;
3900 
3901 	for (i = 0; i < pages_per_huge_page; ) {
3902 		cond_resched();
3903 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3904 
3905 		i++;
3906 		dst = mem_map_next(dst, dst_base, i);
3907 		src = mem_map_next(src, src_base, i);
3908 	}
3909 }
3910 
3911 void copy_user_huge_page(struct page *dst, struct page *src,
3912 			 unsigned long addr, struct vm_area_struct *vma,
3913 			 unsigned int pages_per_huge_page)
3914 {
3915 	int i;
3916 
3917 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3918 		copy_user_gigantic_page(dst, src, addr, vma,
3919 					pages_per_huge_page);
3920 		return;
3921 	}
3922 
3923 	might_sleep();
3924 	for (i = 0; i < pages_per_huge_page; i++) {
3925 		cond_resched();
3926 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3927 	}
3928 }
3929 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3930