1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 75 #include <trace/events/kmem.h> 76 77 #include <asm/io.h> 78 #include <asm/mmu_context.h> 79 #include <asm/pgalloc.h> 80 #include <linux/uaccess.h> 81 #include <asm/tlb.h> 82 #include <asm/tlbflush.h> 83 #include <asm/pgtable.h> 84 85 #include "internal.h" 86 87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 89 #endif 90 91 #ifndef CONFIG_NEED_MULTIPLE_NODES 92 /* use the per-pgdat data instead for discontigmem - mbligh */ 93 unsigned long max_mapnr; 94 EXPORT_SYMBOL(max_mapnr); 95 96 struct page *mem_map; 97 EXPORT_SYMBOL(mem_map); 98 #endif 99 100 /* 101 * A number of key systems in x86 including ioremap() rely on the assumption 102 * that high_memory defines the upper bound on direct map memory, then end 103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 105 * and ZONE_HIGHMEM. 106 */ 107 void *high_memory; 108 EXPORT_SYMBOL(high_memory); 109 110 /* 111 * Randomize the address space (stacks, mmaps, brk, etc.). 112 * 113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 114 * as ancient (libc5 based) binaries can segfault. ) 115 */ 116 int randomize_va_space __read_mostly = 117 #ifdef CONFIG_COMPAT_BRK 118 1; 119 #else 120 2; 121 #endif 122 123 #ifndef arch_faults_on_old_pte 124 static inline bool arch_faults_on_old_pte(void) 125 { 126 /* 127 * Those arches which don't have hw access flag feature need to 128 * implement their own helper. By default, "true" means pagefault 129 * will be hit on old pte. 130 */ 131 return true; 132 } 133 #endif 134 135 static int __init disable_randmaps(char *s) 136 { 137 randomize_va_space = 0; 138 return 1; 139 } 140 __setup("norandmaps", disable_randmaps); 141 142 unsigned long zero_pfn __read_mostly; 143 EXPORT_SYMBOL(zero_pfn); 144 145 unsigned long highest_memmap_pfn __read_mostly; 146 147 /* 148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 149 */ 150 static int __init init_zero_pfn(void) 151 { 152 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 153 return 0; 154 } 155 core_initcall(init_zero_pfn); 156 157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 158 { 159 trace_rss_stat(mm, member, count); 160 } 161 162 #if defined(SPLIT_RSS_COUNTING) 163 164 void sync_mm_rss(struct mm_struct *mm) 165 { 166 int i; 167 168 for (i = 0; i < NR_MM_COUNTERS; i++) { 169 if (current->rss_stat.count[i]) { 170 add_mm_counter(mm, i, current->rss_stat.count[i]); 171 current->rss_stat.count[i] = 0; 172 } 173 } 174 current->rss_stat.events = 0; 175 } 176 177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 178 { 179 struct task_struct *task = current; 180 181 if (likely(task->mm == mm)) 182 task->rss_stat.count[member] += val; 183 else 184 add_mm_counter(mm, member, val); 185 } 186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 188 189 /* sync counter once per 64 page faults */ 190 #define TASK_RSS_EVENTS_THRESH (64) 191 static void check_sync_rss_stat(struct task_struct *task) 192 { 193 if (unlikely(task != current)) 194 return; 195 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 196 sync_mm_rss(task->mm); 197 } 198 #else /* SPLIT_RSS_COUNTING */ 199 200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 202 203 static void check_sync_rss_stat(struct task_struct *task) 204 { 205 } 206 207 #endif /* SPLIT_RSS_COUNTING */ 208 209 /* 210 * Note: this doesn't free the actual pages themselves. That 211 * has been handled earlier when unmapping all the memory regions. 212 */ 213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 214 unsigned long addr) 215 { 216 pgtable_t token = pmd_pgtable(*pmd); 217 pmd_clear(pmd); 218 pte_free_tlb(tlb, token, addr); 219 mm_dec_nr_ptes(tlb->mm); 220 } 221 222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 223 unsigned long addr, unsigned long end, 224 unsigned long floor, unsigned long ceiling) 225 { 226 pmd_t *pmd; 227 unsigned long next; 228 unsigned long start; 229 230 start = addr; 231 pmd = pmd_offset(pud, addr); 232 do { 233 next = pmd_addr_end(addr, end); 234 if (pmd_none_or_clear_bad(pmd)) 235 continue; 236 free_pte_range(tlb, pmd, addr); 237 } while (pmd++, addr = next, addr != end); 238 239 start &= PUD_MASK; 240 if (start < floor) 241 return; 242 if (ceiling) { 243 ceiling &= PUD_MASK; 244 if (!ceiling) 245 return; 246 } 247 if (end - 1 > ceiling - 1) 248 return; 249 250 pmd = pmd_offset(pud, start); 251 pud_clear(pud); 252 pmd_free_tlb(tlb, pmd, start); 253 mm_dec_nr_pmds(tlb->mm); 254 } 255 256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 257 unsigned long addr, unsigned long end, 258 unsigned long floor, unsigned long ceiling) 259 { 260 pud_t *pud; 261 unsigned long next; 262 unsigned long start; 263 264 start = addr; 265 pud = pud_offset(p4d, addr); 266 do { 267 next = pud_addr_end(addr, end); 268 if (pud_none_or_clear_bad(pud)) 269 continue; 270 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 271 } while (pud++, addr = next, addr != end); 272 273 start &= P4D_MASK; 274 if (start < floor) 275 return; 276 if (ceiling) { 277 ceiling &= P4D_MASK; 278 if (!ceiling) 279 return; 280 } 281 if (end - 1 > ceiling - 1) 282 return; 283 284 pud = pud_offset(p4d, start); 285 p4d_clear(p4d); 286 pud_free_tlb(tlb, pud, start); 287 mm_dec_nr_puds(tlb->mm); 288 } 289 290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 291 unsigned long addr, unsigned long end, 292 unsigned long floor, unsigned long ceiling) 293 { 294 p4d_t *p4d; 295 unsigned long next; 296 unsigned long start; 297 298 start = addr; 299 p4d = p4d_offset(pgd, addr); 300 do { 301 next = p4d_addr_end(addr, end); 302 if (p4d_none_or_clear_bad(p4d)) 303 continue; 304 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 305 } while (p4d++, addr = next, addr != end); 306 307 start &= PGDIR_MASK; 308 if (start < floor) 309 return; 310 if (ceiling) { 311 ceiling &= PGDIR_MASK; 312 if (!ceiling) 313 return; 314 } 315 if (end - 1 > ceiling - 1) 316 return; 317 318 p4d = p4d_offset(pgd, start); 319 pgd_clear(pgd); 320 p4d_free_tlb(tlb, p4d, start); 321 } 322 323 /* 324 * This function frees user-level page tables of a process. 325 */ 326 void free_pgd_range(struct mmu_gather *tlb, 327 unsigned long addr, unsigned long end, 328 unsigned long floor, unsigned long ceiling) 329 { 330 pgd_t *pgd; 331 unsigned long next; 332 333 /* 334 * The next few lines have given us lots of grief... 335 * 336 * Why are we testing PMD* at this top level? Because often 337 * there will be no work to do at all, and we'd prefer not to 338 * go all the way down to the bottom just to discover that. 339 * 340 * Why all these "- 1"s? Because 0 represents both the bottom 341 * of the address space and the top of it (using -1 for the 342 * top wouldn't help much: the masks would do the wrong thing). 343 * The rule is that addr 0 and floor 0 refer to the bottom of 344 * the address space, but end 0 and ceiling 0 refer to the top 345 * Comparisons need to use "end - 1" and "ceiling - 1" (though 346 * that end 0 case should be mythical). 347 * 348 * Wherever addr is brought up or ceiling brought down, we must 349 * be careful to reject "the opposite 0" before it confuses the 350 * subsequent tests. But what about where end is brought down 351 * by PMD_SIZE below? no, end can't go down to 0 there. 352 * 353 * Whereas we round start (addr) and ceiling down, by different 354 * masks at different levels, in order to test whether a table 355 * now has no other vmas using it, so can be freed, we don't 356 * bother to round floor or end up - the tests don't need that. 357 */ 358 359 addr &= PMD_MASK; 360 if (addr < floor) { 361 addr += PMD_SIZE; 362 if (!addr) 363 return; 364 } 365 if (ceiling) { 366 ceiling &= PMD_MASK; 367 if (!ceiling) 368 return; 369 } 370 if (end - 1 > ceiling - 1) 371 end -= PMD_SIZE; 372 if (addr > end - 1) 373 return; 374 /* 375 * We add page table cache pages with PAGE_SIZE, 376 * (see pte_free_tlb()), flush the tlb if we need 377 */ 378 tlb_change_page_size(tlb, PAGE_SIZE); 379 pgd = pgd_offset(tlb->mm, addr); 380 do { 381 next = pgd_addr_end(addr, end); 382 if (pgd_none_or_clear_bad(pgd)) 383 continue; 384 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 385 } while (pgd++, addr = next, addr != end); 386 } 387 388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 389 unsigned long floor, unsigned long ceiling) 390 { 391 while (vma) { 392 struct vm_area_struct *next = vma->vm_next; 393 unsigned long addr = vma->vm_start; 394 395 /* 396 * Hide vma from rmap and truncate_pagecache before freeing 397 * pgtables 398 */ 399 unlink_anon_vmas(vma); 400 unlink_file_vma(vma); 401 402 if (is_vm_hugetlb_page(vma)) { 403 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 404 floor, next ? next->vm_start : ceiling); 405 } else { 406 /* 407 * Optimization: gather nearby vmas into one call down 408 */ 409 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 410 && !is_vm_hugetlb_page(next)) { 411 vma = next; 412 next = vma->vm_next; 413 unlink_anon_vmas(vma); 414 unlink_file_vma(vma); 415 } 416 free_pgd_range(tlb, addr, vma->vm_end, 417 floor, next ? next->vm_start : ceiling); 418 } 419 vma = next; 420 } 421 } 422 423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 424 { 425 spinlock_t *ptl; 426 pgtable_t new = pte_alloc_one(mm); 427 if (!new) 428 return -ENOMEM; 429 430 /* 431 * Ensure all pte setup (eg. pte page lock and page clearing) are 432 * visible before the pte is made visible to other CPUs by being 433 * put into page tables. 434 * 435 * The other side of the story is the pointer chasing in the page 436 * table walking code (when walking the page table without locking; 437 * ie. most of the time). Fortunately, these data accesses consist 438 * of a chain of data-dependent loads, meaning most CPUs (alpha 439 * being the notable exception) will already guarantee loads are 440 * seen in-order. See the alpha page table accessors for the 441 * smp_read_barrier_depends() barriers in page table walking code. 442 */ 443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 444 445 ptl = pmd_lock(mm, pmd); 446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 447 mm_inc_nr_ptes(mm); 448 pmd_populate(mm, pmd, new); 449 new = NULL; 450 } 451 spin_unlock(ptl); 452 if (new) 453 pte_free(mm, new); 454 return 0; 455 } 456 457 int __pte_alloc_kernel(pmd_t *pmd) 458 { 459 pte_t *new = pte_alloc_one_kernel(&init_mm); 460 if (!new) 461 return -ENOMEM; 462 463 smp_wmb(); /* See comment in __pte_alloc */ 464 465 spin_lock(&init_mm.page_table_lock); 466 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 467 pmd_populate_kernel(&init_mm, pmd, new); 468 new = NULL; 469 } 470 spin_unlock(&init_mm.page_table_lock); 471 if (new) 472 pte_free_kernel(&init_mm, new); 473 return 0; 474 } 475 476 static inline void init_rss_vec(int *rss) 477 { 478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 479 } 480 481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 482 { 483 int i; 484 485 if (current->mm == mm) 486 sync_mm_rss(mm); 487 for (i = 0; i < NR_MM_COUNTERS; i++) 488 if (rss[i]) 489 add_mm_counter(mm, i, rss[i]); 490 } 491 492 /* 493 * This function is called to print an error when a bad pte 494 * is found. For example, we might have a PFN-mapped pte in 495 * a region that doesn't allow it. 496 * 497 * The calling function must still handle the error. 498 */ 499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 500 pte_t pte, struct page *page) 501 { 502 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 503 p4d_t *p4d = p4d_offset(pgd, addr); 504 pud_t *pud = pud_offset(p4d, addr); 505 pmd_t *pmd = pmd_offset(pud, addr); 506 struct address_space *mapping; 507 pgoff_t index; 508 static unsigned long resume; 509 static unsigned long nr_shown; 510 static unsigned long nr_unshown; 511 512 /* 513 * Allow a burst of 60 reports, then keep quiet for that minute; 514 * or allow a steady drip of one report per second. 515 */ 516 if (nr_shown == 60) { 517 if (time_before(jiffies, resume)) { 518 nr_unshown++; 519 return; 520 } 521 if (nr_unshown) { 522 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 523 nr_unshown); 524 nr_unshown = 0; 525 } 526 nr_shown = 0; 527 } 528 if (nr_shown++ == 0) 529 resume = jiffies + 60 * HZ; 530 531 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 532 index = linear_page_index(vma, addr); 533 534 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 535 current->comm, 536 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 537 if (page) 538 dump_page(page, "bad pte"); 539 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 540 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 541 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 542 vma->vm_file, 543 vma->vm_ops ? vma->vm_ops->fault : NULL, 544 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 545 mapping ? mapping->a_ops->readpage : NULL); 546 dump_stack(); 547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 548 } 549 550 /* 551 * vm_normal_page -- This function gets the "struct page" associated with a pte. 552 * 553 * "Special" mappings do not wish to be associated with a "struct page" (either 554 * it doesn't exist, or it exists but they don't want to touch it). In this 555 * case, NULL is returned here. "Normal" mappings do have a struct page. 556 * 557 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 558 * pte bit, in which case this function is trivial. Secondly, an architecture 559 * may not have a spare pte bit, which requires a more complicated scheme, 560 * described below. 561 * 562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 563 * special mapping (even if there are underlying and valid "struct pages"). 564 * COWed pages of a VM_PFNMAP are always normal. 565 * 566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 569 * mapping will always honor the rule 570 * 571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 572 * 573 * And for normal mappings this is false. 574 * 575 * This restricts such mappings to be a linear translation from virtual address 576 * to pfn. To get around this restriction, we allow arbitrary mappings so long 577 * as the vma is not a COW mapping; in that case, we know that all ptes are 578 * special (because none can have been COWed). 579 * 580 * 581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 582 * 583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 584 * page" backing, however the difference is that _all_ pages with a struct 585 * page (that is, those where pfn_valid is true) are refcounted and considered 586 * normal pages by the VM. The disadvantage is that pages are refcounted 587 * (which can be slower and simply not an option for some PFNMAP users). The 588 * advantage is that we don't have to follow the strict linearity rule of 589 * PFNMAP mappings in order to support COWable mappings. 590 * 591 */ 592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 593 pte_t pte) 594 { 595 unsigned long pfn = pte_pfn(pte); 596 597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 598 if (likely(!pte_special(pte))) 599 goto check_pfn; 600 if (vma->vm_ops && vma->vm_ops->find_special_page) 601 return vma->vm_ops->find_special_page(vma, addr); 602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 603 return NULL; 604 if (is_zero_pfn(pfn)) 605 return NULL; 606 if (pte_devmap(pte)) 607 return NULL; 608 609 print_bad_pte(vma, addr, pte, NULL); 610 return NULL; 611 } 612 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 614 615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 616 if (vma->vm_flags & VM_MIXEDMAP) { 617 if (!pfn_valid(pfn)) 618 return NULL; 619 goto out; 620 } else { 621 unsigned long off; 622 off = (addr - vma->vm_start) >> PAGE_SHIFT; 623 if (pfn == vma->vm_pgoff + off) 624 return NULL; 625 if (!is_cow_mapping(vma->vm_flags)) 626 return NULL; 627 } 628 } 629 630 if (is_zero_pfn(pfn)) 631 return NULL; 632 633 check_pfn: 634 if (unlikely(pfn > highest_memmap_pfn)) { 635 print_bad_pte(vma, addr, pte, NULL); 636 return NULL; 637 } 638 639 /* 640 * NOTE! We still have PageReserved() pages in the page tables. 641 * eg. VDSO mappings can cause them to exist. 642 */ 643 out: 644 return pfn_to_page(pfn); 645 } 646 647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 649 pmd_t pmd) 650 { 651 unsigned long pfn = pmd_pfn(pmd); 652 653 /* 654 * There is no pmd_special() but there may be special pmds, e.g. 655 * in a direct-access (dax) mapping, so let's just replicate the 656 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 657 */ 658 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 659 if (vma->vm_flags & VM_MIXEDMAP) { 660 if (!pfn_valid(pfn)) 661 return NULL; 662 goto out; 663 } else { 664 unsigned long off; 665 off = (addr - vma->vm_start) >> PAGE_SHIFT; 666 if (pfn == vma->vm_pgoff + off) 667 return NULL; 668 if (!is_cow_mapping(vma->vm_flags)) 669 return NULL; 670 } 671 } 672 673 if (pmd_devmap(pmd)) 674 return NULL; 675 if (is_huge_zero_pmd(pmd)) 676 return NULL; 677 if (unlikely(pfn > highest_memmap_pfn)) 678 return NULL; 679 680 /* 681 * NOTE! We still have PageReserved() pages in the page tables. 682 * eg. VDSO mappings can cause them to exist. 683 */ 684 out: 685 return pfn_to_page(pfn); 686 } 687 #endif 688 689 /* 690 * copy one vm_area from one task to the other. Assumes the page tables 691 * already present in the new task to be cleared in the whole range 692 * covered by this vma. 693 */ 694 695 static inline unsigned long 696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 697 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 698 unsigned long addr, int *rss) 699 { 700 unsigned long vm_flags = vma->vm_flags; 701 pte_t pte = *src_pte; 702 struct page *page; 703 704 /* pte contains position in swap or file, so copy. */ 705 if (unlikely(!pte_present(pte))) { 706 swp_entry_t entry = pte_to_swp_entry(pte); 707 708 if (likely(!non_swap_entry(entry))) { 709 if (swap_duplicate(entry) < 0) 710 return entry.val; 711 712 /* make sure dst_mm is on swapoff's mmlist. */ 713 if (unlikely(list_empty(&dst_mm->mmlist))) { 714 spin_lock(&mmlist_lock); 715 if (list_empty(&dst_mm->mmlist)) 716 list_add(&dst_mm->mmlist, 717 &src_mm->mmlist); 718 spin_unlock(&mmlist_lock); 719 } 720 rss[MM_SWAPENTS]++; 721 } else if (is_migration_entry(entry)) { 722 page = migration_entry_to_page(entry); 723 724 rss[mm_counter(page)]++; 725 726 if (is_write_migration_entry(entry) && 727 is_cow_mapping(vm_flags)) { 728 /* 729 * COW mappings require pages in both 730 * parent and child to be set to read. 731 */ 732 make_migration_entry_read(&entry); 733 pte = swp_entry_to_pte(entry); 734 if (pte_swp_soft_dirty(*src_pte)) 735 pte = pte_swp_mksoft_dirty(pte); 736 if (pte_swp_uffd_wp(*src_pte)) 737 pte = pte_swp_mkuffd_wp(pte); 738 set_pte_at(src_mm, addr, src_pte, pte); 739 } 740 } else if (is_device_private_entry(entry)) { 741 page = device_private_entry_to_page(entry); 742 743 /* 744 * Update rss count even for unaddressable pages, as 745 * they should treated just like normal pages in this 746 * respect. 747 * 748 * We will likely want to have some new rss counters 749 * for unaddressable pages, at some point. But for now 750 * keep things as they are. 751 */ 752 get_page(page); 753 rss[mm_counter(page)]++; 754 page_dup_rmap(page, false); 755 756 /* 757 * We do not preserve soft-dirty information, because so 758 * far, checkpoint/restore is the only feature that 759 * requires that. And checkpoint/restore does not work 760 * when a device driver is involved (you cannot easily 761 * save and restore device driver state). 762 */ 763 if (is_write_device_private_entry(entry) && 764 is_cow_mapping(vm_flags)) { 765 make_device_private_entry_read(&entry); 766 pte = swp_entry_to_pte(entry); 767 if (pte_swp_uffd_wp(*src_pte)) 768 pte = pte_swp_mkuffd_wp(pte); 769 set_pte_at(src_mm, addr, src_pte, pte); 770 } 771 } 772 goto out_set_pte; 773 } 774 775 /* 776 * If it's a COW mapping, write protect it both 777 * in the parent and the child 778 */ 779 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 780 ptep_set_wrprotect(src_mm, addr, src_pte); 781 pte = pte_wrprotect(pte); 782 } 783 784 /* 785 * If it's a shared mapping, mark it clean in 786 * the child 787 */ 788 if (vm_flags & VM_SHARED) 789 pte = pte_mkclean(pte); 790 pte = pte_mkold(pte); 791 792 /* 793 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 794 * does not have the VM_UFFD_WP, which means that the uffd 795 * fork event is not enabled. 796 */ 797 if (!(vm_flags & VM_UFFD_WP)) 798 pte = pte_clear_uffd_wp(pte); 799 800 page = vm_normal_page(vma, addr, pte); 801 if (page) { 802 get_page(page); 803 page_dup_rmap(page, false); 804 rss[mm_counter(page)]++; 805 } 806 807 out_set_pte: 808 set_pte_at(dst_mm, addr, dst_pte, pte); 809 return 0; 810 } 811 812 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 813 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 814 unsigned long addr, unsigned long end) 815 { 816 pte_t *orig_src_pte, *orig_dst_pte; 817 pte_t *src_pte, *dst_pte; 818 spinlock_t *src_ptl, *dst_ptl; 819 int progress = 0; 820 int rss[NR_MM_COUNTERS]; 821 swp_entry_t entry = (swp_entry_t){0}; 822 823 again: 824 init_rss_vec(rss); 825 826 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 827 if (!dst_pte) 828 return -ENOMEM; 829 src_pte = pte_offset_map(src_pmd, addr); 830 src_ptl = pte_lockptr(src_mm, src_pmd); 831 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 832 orig_src_pte = src_pte; 833 orig_dst_pte = dst_pte; 834 arch_enter_lazy_mmu_mode(); 835 836 do { 837 /* 838 * We are holding two locks at this point - either of them 839 * could generate latencies in another task on another CPU. 840 */ 841 if (progress >= 32) { 842 progress = 0; 843 if (need_resched() || 844 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 845 break; 846 } 847 if (pte_none(*src_pte)) { 848 progress++; 849 continue; 850 } 851 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 852 vma, addr, rss); 853 if (entry.val) 854 break; 855 progress += 8; 856 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 857 858 arch_leave_lazy_mmu_mode(); 859 spin_unlock(src_ptl); 860 pte_unmap(orig_src_pte); 861 add_mm_rss_vec(dst_mm, rss); 862 pte_unmap_unlock(orig_dst_pte, dst_ptl); 863 cond_resched(); 864 865 if (entry.val) { 866 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 867 return -ENOMEM; 868 progress = 0; 869 } 870 if (addr != end) 871 goto again; 872 return 0; 873 } 874 875 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 876 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 877 unsigned long addr, unsigned long end) 878 { 879 pmd_t *src_pmd, *dst_pmd; 880 unsigned long next; 881 882 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 883 if (!dst_pmd) 884 return -ENOMEM; 885 src_pmd = pmd_offset(src_pud, addr); 886 do { 887 next = pmd_addr_end(addr, end); 888 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 889 || pmd_devmap(*src_pmd)) { 890 int err; 891 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 892 err = copy_huge_pmd(dst_mm, src_mm, 893 dst_pmd, src_pmd, addr, vma); 894 if (err == -ENOMEM) 895 return -ENOMEM; 896 if (!err) 897 continue; 898 /* fall through */ 899 } 900 if (pmd_none_or_clear_bad(src_pmd)) 901 continue; 902 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 903 vma, addr, next)) 904 return -ENOMEM; 905 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 906 return 0; 907 } 908 909 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 910 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 911 unsigned long addr, unsigned long end) 912 { 913 pud_t *src_pud, *dst_pud; 914 unsigned long next; 915 916 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 917 if (!dst_pud) 918 return -ENOMEM; 919 src_pud = pud_offset(src_p4d, addr); 920 do { 921 next = pud_addr_end(addr, end); 922 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 923 int err; 924 925 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 926 err = copy_huge_pud(dst_mm, src_mm, 927 dst_pud, src_pud, addr, vma); 928 if (err == -ENOMEM) 929 return -ENOMEM; 930 if (!err) 931 continue; 932 /* fall through */ 933 } 934 if (pud_none_or_clear_bad(src_pud)) 935 continue; 936 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 937 vma, addr, next)) 938 return -ENOMEM; 939 } while (dst_pud++, src_pud++, addr = next, addr != end); 940 return 0; 941 } 942 943 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 944 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 945 unsigned long addr, unsigned long end) 946 { 947 p4d_t *src_p4d, *dst_p4d; 948 unsigned long next; 949 950 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 951 if (!dst_p4d) 952 return -ENOMEM; 953 src_p4d = p4d_offset(src_pgd, addr); 954 do { 955 next = p4d_addr_end(addr, end); 956 if (p4d_none_or_clear_bad(src_p4d)) 957 continue; 958 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 959 vma, addr, next)) 960 return -ENOMEM; 961 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 962 return 0; 963 } 964 965 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 966 struct vm_area_struct *vma) 967 { 968 pgd_t *src_pgd, *dst_pgd; 969 unsigned long next; 970 unsigned long addr = vma->vm_start; 971 unsigned long end = vma->vm_end; 972 struct mmu_notifier_range range; 973 bool is_cow; 974 int ret; 975 976 /* 977 * Don't copy ptes where a page fault will fill them correctly. 978 * Fork becomes much lighter when there are big shared or private 979 * readonly mappings. The tradeoff is that copy_page_range is more 980 * efficient than faulting. 981 */ 982 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 983 !vma->anon_vma) 984 return 0; 985 986 if (is_vm_hugetlb_page(vma)) 987 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 988 989 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 990 /* 991 * We do not free on error cases below as remove_vma 992 * gets called on error from higher level routine 993 */ 994 ret = track_pfn_copy(vma); 995 if (ret) 996 return ret; 997 } 998 999 /* 1000 * We need to invalidate the secondary MMU mappings only when 1001 * there could be a permission downgrade on the ptes of the 1002 * parent mm. And a permission downgrade will only happen if 1003 * is_cow_mapping() returns true. 1004 */ 1005 is_cow = is_cow_mapping(vma->vm_flags); 1006 1007 if (is_cow) { 1008 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1009 0, vma, src_mm, addr, end); 1010 mmu_notifier_invalidate_range_start(&range); 1011 } 1012 1013 ret = 0; 1014 dst_pgd = pgd_offset(dst_mm, addr); 1015 src_pgd = pgd_offset(src_mm, addr); 1016 do { 1017 next = pgd_addr_end(addr, end); 1018 if (pgd_none_or_clear_bad(src_pgd)) 1019 continue; 1020 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1021 vma, addr, next))) { 1022 ret = -ENOMEM; 1023 break; 1024 } 1025 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1026 1027 if (is_cow) 1028 mmu_notifier_invalidate_range_end(&range); 1029 return ret; 1030 } 1031 1032 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1033 struct vm_area_struct *vma, pmd_t *pmd, 1034 unsigned long addr, unsigned long end, 1035 struct zap_details *details) 1036 { 1037 struct mm_struct *mm = tlb->mm; 1038 int force_flush = 0; 1039 int rss[NR_MM_COUNTERS]; 1040 spinlock_t *ptl; 1041 pte_t *start_pte; 1042 pte_t *pte; 1043 swp_entry_t entry; 1044 1045 tlb_change_page_size(tlb, PAGE_SIZE); 1046 again: 1047 init_rss_vec(rss); 1048 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1049 pte = start_pte; 1050 flush_tlb_batched_pending(mm); 1051 arch_enter_lazy_mmu_mode(); 1052 do { 1053 pte_t ptent = *pte; 1054 if (pte_none(ptent)) 1055 continue; 1056 1057 if (need_resched()) 1058 break; 1059 1060 if (pte_present(ptent)) { 1061 struct page *page; 1062 1063 page = vm_normal_page(vma, addr, ptent); 1064 if (unlikely(details) && page) { 1065 /* 1066 * unmap_shared_mapping_pages() wants to 1067 * invalidate cache without truncating: 1068 * unmap shared but keep private pages. 1069 */ 1070 if (details->check_mapping && 1071 details->check_mapping != page_rmapping(page)) 1072 continue; 1073 } 1074 ptent = ptep_get_and_clear_full(mm, addr, pte, 1075 tlb->fullmm); 1076 tlb_remove_tlb_entry(tlb, pte, addr); 1077 if (unlikely(!page)) 1078 continue; 1079 1080 if (!PageAnon(page)) { 1081 if (pte_dirty(ptent)) { 1082 force_flush = 1; 1083 set_page_dirty(page); 1084 } 1085 if (pte_young(ptent) && 1086 likely(!(vma->vm_flags & VM_SEQ_READ))) 1087 mark_page_accessed(page); 1088 } 1089 rss[mm_counter(page)]--; 1090 page_remove_rmap(page, false); 1091 if (unlikely(page_mapcount(page) < 0)) 1092 print_bad_pte(vma, addr, ptent, page); 1093 if (unlikely(__tlb_remove_page(tlb, page))) { 1094 force_flush = 1; 1095 addr += PAGE_SIZE; 1096 break; 1097 } 1098 continue; 1099 } 1100 1101 entry = pte_to_swp_entry(ptent); 1102 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1103 struct page *page = device_private_entry_to_page(entry); 1104 1105 if (unlikely(details && details->check_mapping)) { 1106 /* 1107 * unmap_shared_mapping_pages() wants to 1108 * invalidate cache without truncating: 1109 * unmap shared but keep private pages. 1110 */ 1111 if (details->check_mapping != 1112 page_rmapping(page)) 1113 continue; 1114 } 1115 1116 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1117 rss[mm_counter(page)]--; 1118 page_remove_rmap(page, false); 1119 put_page(page); 1120 continue; 1121 } 1122 1123 /* If details->check_mapping, we leave swap entries. */ 1124 if (unlikely(details)) 1125 continue; 1126 1127 if (!non_swap_entry(entry)) 1128 rss[MM_SWAPENTS]--; 1129 else if (is_migration_entry(entry)) { 1130 struct page *page; 1131 1132 page = migration_entry_to_page(entry); 1133 rss[mm_counter(page)]--; 1134 } 1135 if (unlikely(!free_swap_and_cache(entry))) 1136 print_bad_pte(vma, addr, ptent, NULL); 1137 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1138 } while (pte++, addr += PAGE_SIZE, addr != end); 1139 1140 add_mm_rss_vec(mm, rss); 1141 arch_leave_lazy_mmu_mode(); 1142 1143 /* Do the actual TLB flush before dropping ptl */ 1144 if (force_flush) 1145 tlb_flush_mmu_tlbonly(tlb); 1146 pte_unmap_unlock(start_pte, ptl); 1147 1148 /* 1149 * If we forced a TLB flush (either due to running out of 1150 * batch buffers or because we needed to flush dirty TLB 1151 * entries before releasing the ptl), free the batched 1152 * memory too. Restart if we didn't do everything. 1153 */ 1154 if (force_flush) { 1155 force_flush = 0; 1156 tlb_flush_mmu(tlb); 1157 } 1158 1159 if (addr != end) { 1160 cond_resched(); 1161 goto again; 1162 } 1163 1164 return addr; 1165 } 1166 1167 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1168 struct vm_area_struct *vma, pud_t *pud, 1169 unsigned long addr, unsigned long end, 1170 struct zap_details *details) 1171 { 1172 pmd_t *pmd; 1173 unsigned long next; 1174 1175 pmd = pmd_offset(pud, addr); 1176 do { 1177 next = pmd_addr_end(addr, end); 1178 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1179 if (next - addr != HPAGE_PMD_SIZE) 1180 __split_huge_pmd(vma, pmd, addr, false, NULL); 1181 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1182 goto next; 1183 /* fall through */ 1184 } 1185 /* 1186 * Here there can be other concurrent MADV_DONTNEED or 1187 * trans huge page faults running, and if the pmd is 1188 * none or trans huge it can change under us. This is 1189 * because MADV_DONTNEED holds the mmap_sem in read 1190 * mode. 1191 */ 1192 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1193 goto next; 1194 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1195 next: 1196 cond_resched(); 1197 } while (pmd++, addr = next, addr != end); 1198 1199 return addr; 1200 } 1201 1202 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1203 struct vm_area_struct *vma, p4d_t *p4d, 1204 unsigned long addr, unsigned long end, 1205 struct zap_details *details) 1206 { 1207 pud_t *pud; 1208 unsigned long next; 1209 1210 pud = pud_offset(p4d, addr); 1211 do { 1212 next = pud_addr_end(addr, end); 1213 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1214 if (next - addr != HPAGE_PUD_SIZE) { 1215 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1216 split_huge_pud(vma, pud, addr); 1217 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1218 goto next; 1219 /* fall through */ 1220 } 1221 if (pud_none_or_clear_bad(pud)) 1222 continue; 1223 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1224 next: 1225 cond_resched(); 1226 } while (pud++, addr = next, addr != end); 1227 1228 return addr; 1229 } 1230 1231 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1232 struct vm_area_struct *vma, pgd_t *pgd, 1233 unsigned long addr, unsigned long end, 1234 struct zap_details *details) 1235 { 1236 p4d_t *p4d; 1237 unsigned long next; 1238 1239 p4d = p4d_offset(pgd, addr); 1240 do { 1241 next = p4d_addr_end(addr, end); 1242 if (p4d_none_or_clear_bad(p4d)) 1243 continue; 1244 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1245 } while (p4d++, addr = next, addr != end); 1246 1247 return addr; 1248 } 1249 1250 void unmap_page_range(struct mmu_gather *tlb, 1251 struct vm_area_struct *vma, 1252 unsigned long addr, unsigned long end, 1253 struct zap_details *details) 1254 { 1255 pgd_t *pgd; 1256 unsigned long next; 1257 1258 BUG_ON(addr >= end); 1259 tlb_start_vma(tlb, vma); 1260 pgd = pgd_offset(vma->vm_mm, addr); 1261 do { 1262 next = pgd_addr_end(addr, end); 1263 if (pgd_none_or_clear_bad(pgd)) 1264 continue; 1265 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1266 } while (pgd++, addr = next, addr != end); 1267 tlb_end_vma(tlb, vma); 1268 } 1269 1270 1271 static void unmap_single_vma(struct mmu_gather *tlb, 1272 struct vm_area_struct *vma, unsigned long start_addr, 1273 unsigned long end_addr, 1274 struct zap_details *details) 1275 { 1276 unsigned long start = max(vma->vm_start, start_addr); 1277 unsigned long end; 1278 1279 if (start >= vma->vm_end) 1280 return; 1281 end = min(vma->vm_end, end_addr); 1282 if (end <= vma->vm_start) 1283 return; 1284 1285 if (vma->vm_file) 1286 uprobe_munmap(vma, start, end); 1287 1288 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1289 untrack_pfn(vma, 0, 0); 1290 1291 if (start != end) { 1292 if (unlikely(is_vm_hugetlb_page(vma))) { 1293 /* 1294 * It is undesirable to test vma->vm_file as it 1295 * should be non-null for valid hugetlb area. 1296 * However, vm_file will be NULL in the error 1297 * cleanup path of mmap_region. When 1298 * hugetlbfs ->mmap method fails, 1299 * mmap_region() nullifies vma->vm_file 1300 * before calling this function to clean up. 1301 * Since no pte has actually been setup, it is 1302 * safe to do nothing in this case. 1303 */ 1304 if (vma->vm_file) { 1305 i_mmap_lock_write(vma->vm_file->f_mapping); 1306 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1307 i_mmap_unlock_write(vma->vm_file->f_mapping); 1308 } 1309 } else 1310 unmap_page_range(tlb, vma, start, end, details); 1311 } 1312 } 1313 1314 /** 1315 * unmap_vmas - unmap a range of memory covered by a list of vma's 1316 * @tlb: address of the caller's struct mmu_gather 1317 * @vma: the starting vma 1318 * @start_addr: virtual address at which to start unmapping 1319 * @end_addr: virtual address at which to end unmapping 1320 * 1321 * Unmap all pages in the vma list. 1322 * 1323 * Only addresses between `start' and `end' will be unmapped. 1324 * 1325 * The VMA list must be sorted in ascending virtual address order. 1326 * 1327 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1328 * range after unmap_vmas() returns. So the only responsibility here is to 1329 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1330 * drops the lock and schedules. 1331 */ 1332 void unmap_vmas(struct mmu_gather *tlb, 1333 struct vm_area_struct *vma, unsigned long start_addr, 1334 unsigned long end_addr) 1335 { 1336 struct mmu_notifier_range range; 1337 1338 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1339 start_addr, end_addr); 1340 mmu_notifier_invalidate_range_start(&range); 1341 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1342 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1343 mmu_notifier_invalidate_range_end(&range); 1344 } 1345 1346 /** 1347 * zap_page_range - remove user pages in a given range 1348 * @vma: vm_area_struct holding the applicable pages 1349 * @start: starting address of pages to zap 1350 * @size: number of bytes to zap 1351 * 1352 * Caller must protect the VMA list 1353 */ 1354 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1355 unsigned long size) 1356 { 1357 struct mmu_notifier_range range; 1358 struct mmu_gather tlb; 1359 1360 lru_add_drain(); 1361 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1362 start, start + size); 1363 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1364 update_hiwater_rss(vma->vm_mm); 1365 mmu_notifier_invalidate_range_start(&range); 1366 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1367 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1368 mmu_notifier_invalidate_range_end(&range); 1369 tlb_finish_mmu(&tlb, start, range.end); 1370 } 1371 1372 /** 1373 * zap_page_range_single - remove user pages in a given range 1374 * @vma: vm_area_struct holding the applicable pages 1375 * @address: starting address of pages to zap 1376 * @size: number of bytes to zap 1377 * @details: details of shared cache invalidation 1378 * 1379 * The range must fit into one VMA. 1380 */ 1381 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1382 unsigned long size, struct zap_details *details) 1383 { 1384 struct mmu_notifier_range range; 1385 struct mmu_gather tlb; 1386 1387 lru_add_drain(); 1388 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1389 address, address + size); 1390 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1391 update_hiwater_rss(vma->vm_mm); 1392 mmu_notifier_invalidate_range_start(&range); 1393 unmap_single_vma(&tlb, vma, address, range.end, details); 1394 mmu_notifier_invalidate_range_end(&range); 1395 tlb_finish_mmu(&tlb, address, range.end); 1396 } 1397 1398 /** 1399 * zap_vma_ptes - remove ptes mapping the vma 1400 * @vma: vm_area_struct holding ptes to be zapped 1401 * @address: starting address of pages to zap 1402 * @size: number of bytes to zap 1403 * 1404 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1405 * 1406 * The entire address range must be fully contained within the vma. 1407 * 1408 */ 1409 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1410 unsigned long size) 1411 { 1412 if (address < vma->vm_start || address + size > vma->vm_end || 1413 !(vma->vm_flags & VM_PFNMAP)) 1414 return; 1415 1416 zap_page_range_single(vma, address, size, NULL); 1417 } 1418 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1419 1420 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1421 { 1422 pgd_t *pgd; 1423 p4d_t *p4d; 1424 pud_t *pud; 1425 pmd_t *pmd; 1426 1427 pgd = pgd_offset(mm, addr); 1428 p4d = p4d_alloc(mm, pgd, addr); 1429 if (!p4d) 1430 return NULL; 1431 pud = pud_alloc(mm, p4d, addr); 1432 if (!pud) 1433 return NULL; 1434 pmd = pmd_alloc(mm, pud, addr); 1435 if (!pmd) 1436 return NULL; 1437 1438 VM_BUG_ON(pmd_trans_huge(*pmd)); 1439 return pmd; 1440 } 1441 1442 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1443 spinlock_t **ptl) 1444 { 1445 pmd_t *pmd = walk_to_pmd(mm, addr); 1446 1447 if (!pmd) 1448 return NULL; 1449 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1450 } 1451 1452 static int validate_page_before_insert(struct page *page) 1453 { 1454 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1455 return -EINVAL; 1456 flush_dcache_page(page); 1457 return 0; 1458 } 1459 1460 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1461 unsigned long addr, struct page *page, pgprot_t prot) 1462 { 1463 if (!pte_none(*pte)) 1464 return -EBUSY; 1465 /* Ok, finally just insert the thing.. */ 1466 get_page(page); 1467 inc_mm_counter_fast(mm, mm_counter_file(page)); 1468 page_add_file_rmap(page, false); 1469 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1470 return 0; 1471 } 1472 1473 /* 1474 * This is the old fallback for page remapping. 1475 * 1476 * For historical reasons, it only allows reserved pages. Only 1477 * old drivers should use this, and they needed to mark their 1478 * pages reserved for the old functions anyway. 1479 */ 1480 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1481 struct page *page, pgprot_t prot) 1482 { 1483 struct mm_struct *mm = vma->vm_mm; 1484 int retval; 1485 pte_t *pte; 1486 spinlock_t *ptl; 1487 1488 retval = validate_page_before_insert(page); 1489 if (retval) 1490 goto out; 1491 retval = -ENOMEM; 1492 pte = get_locked_pte(mm, addr, &ptl); 1493 if (!pte) 1494 goto out; 1495 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1496 pte_unmap_unlock(pte, ptl); 1497 out: 1498 return retval; 1499 } 1500 1501 #ifdef pte_index 1502 static int insert_page_in_batch_locked(struct mm_struct *mm, pmd_t *pmd, 1503 unsigned long addr, struct page *page, pgprot_t prot) 1504 { 1505 int err; 1506 1507 if (!page_count(page)) 1508 return -EINVAL; 1509 err = validate_page_before_insert(page); 1510 return err ? err : insert_page_into_pte_locked( 1511 mm, pte_offset_map(pmd, addr), addr, page, prot); 1512 } 1513 1514 /* insert_pages() amortizes the cost of spinlock operations 1515 * when inserting pages in a loop. Arch *must* define pte_index. 1516 */ 1517 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1518 struct page **pages, unsigned long *num, pgprot_t prot) 1519 { 1520 pmd_t *pmd = NULL; 1521 spinlock_t *pte_lock = NULL; 1522 struct mm_struct *const mm = vma->vm_mm; 1523 unsigned long curr_page_idx = 0; 1524 unsigned long remaining_pages_total = *num; 1525 unsigned long pages_to_write_in_pmd; 1526 int ret; 1527 more: 1528 ret = -EFAULT; 1529 pmd = walk_to_pmd(mm, addr); 1530 if (!pmd) 1531 goto out; 1532 1533 pages_to_write_in_pmd = min_t(unsigned long, 1534 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1535 1536 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1537 ret = -ENOMEM; 1538 if (pte_alloc(mm, pmd)) 1539 goto out; 1540 pte_lock = pte_lockptr(mm, pmd); 1541 1542 while (pages_to_write_in_pmd) { 1543 int pte_idx = 0; 1544 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1545 1546 spin_lock(pte_lock); 1547 for (; pte_idx < batch_size; ++pte_idx) { 1548 int err = insert_page_in_batch_locked(mm, pmd, 1549 addr, pages[curr_page_idx], prot); 1550 if (unlikely(err)) { 1551 spin_unlock(pte_lock); 1552 ret = err; 1553 remaining_pages_total -= pte_idx; 1554 goto out; 1555 } 1556 addr += PAGE_SIZE; 1557 ++curr_page_idx; 1558 } 1559 spin_unlock(pte_lock); 1560 pages_to_write_in_pmd -= batch_size; 1561 remaining_pages_total -= batch_size; 1562 } 1563 if (remaining_pages_total) 1564 goto more; 1565 ret = 0; 1566 out: 1567 *num = remaining_pages_total; 1568 return ret; 1569 } 1570 #endif /* ifdef pte_index */ 1571 1572 /** 1573 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1574 * @vma: user vma to map to 1575 * @addr: target start user address of these pages 1576 * @pages: source kernel pages 1577 * @num: in: number of pages to map. out: number of pages that were *not* 1578 * mapped. (0 means all pages were successfully mapped). 1579 * 1580 * Preferred over vm_insert_page() when inserting multiple pages. 1581 * 1582 * In case of error, we may have mapped a subset of the provided 1583 * pages. It is the caller's responsibility to account for this case. 1584 * 1585 * The same restrictions apply as in vm_insert_page(). 1586 */ 1587 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1588 struct page **pages, unsigned long *num) 1589 { 1590 #ifdef pte_index 1591 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1592 1593 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1594 return -EFAULT; 1595 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1596 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1597 BUG_ON(vma->vm_flags & VM_PFNMAP); 1598 vma->vm_flags |= VM_MIXEDMAP; 1599 } 1600 /* Defer page refcount checking till we're about to map that page. */ 1601 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1602 #else 1603 unsigned long idx = 0, pgcount = *num; 1604 int err; 1605 1606 for (; idx < pgcount; ++idx) { 1607 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1608 if (err) 1609 break; 1610 } 1611 *num = pgcount - idx; 1612 return err; 1613 #endif /* ifdef pte_index */ 1614 } 1615 EXPORT_SYMBOL(vm_insert_pages); 1616 1617 /** 1618 * vm_insert_page - insert single page into user vma 1619 * @vma: user vma to map to 1620 * @addr: target user address of this page 1621 * @page: source kernel page 1622 * 1623 * This allows drivers to insert individual pages they've allocated 1624 * into a user vma. 1625 * 1626 * The page has to be a nice clean _individual_ kernel allocation. 1627 * If you allocate a compound page, you need to have marked it as 1628 * such (__GFP_COMP), or manually just split the page up yourself 1629 * (see split_page()). 1630 * 1631 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1632 * took an arbitrary page protection parameter. This doesn't allow 1633 * that. Your vma protection will have to be set up correctly, which 1634 * means that if you want a shared writable mapping, you'd better 1635 * ask for a shared writable mapping! 1636 * 1637 * The page does not need to be reserved. 1638 * 1639 * Usually this function is called from f_op->mmap() handler 1640 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1641 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1642 * function from other places, for example from page-fault handler. 1643 * 1644 * Return: %0 on success, negative error code otherwise. 1645 */ 1646 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1647 struct page *page) 1648 { 1649 if (addr < vma->vm_start || addr >= vma->vm_end) 1650 return -EFAULT; 1651 if (!page_count(page)) 1652 return -EINVAL; 1653 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1654 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1655 BUG_ON(vma->vm_flags & VM_PFNMAP); 1656 vma->vm_flags |= VM_MIXEDMAP; 1657 } 1658 return insert_page(vma, addr, page, vma->vm_page_prot); 1659 } 1660 EXPORT_SYMBOL(vm_insert_page); 1661 1662 /* 1663 * __vm_map_pages - maps range of kernel pages into user vma 1664 * @vma: user vma to map to 1665 * @pages: pointer to array of source kernel pages 1666 * @num: number of pages in page array 1667 * @offset: user's requested vm_pgoff 1668 * 1669 * This allows drivers to map range of kernel pages into a user vma. 1670 * 1671 * Return: 0 on success and error code otherwise. 1672 */ 1673 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1674 unsigned long num, unsigned long offset) 1675 { 1676 unsigned long count = vma_pages(vma); 1677 unsigned long uaddr = vma->vm_start; 1678 int ret, i; 1679 1680 /* Fail if the user requested offset is beyond the end of the object */ 1681 if (offset >= num) 1682 return -ENXIO; 1683 1684 /* Fail if the user requested size exceeds available object size */ 1685 if (count > num - offset) 1686 return -ENXIO; 1687 1688 for (i = 0; i < count; i++) { 1689 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1690 if (ret < 0) 1691 return ret; 1692 uaddr += PAGE_SIZE; 1693 } 1694 1695 return 0; 1696 } 1697 1698 /** 1699 * vm_map_pages - maps range of kernel pages starts with non zero offset 1700 * @vma: user vma to map to 1701 * @pages: pointer to array of source kernel pages 1702 * @num: number of pages in page array 1703 * 1704 * Maps an object consisting of @num pages, catering for the user's 1705 * requested vm_pgoff 1706 * 1707 * If we fail to insert any page into the vma, the function will return 1708 * immediately leaving any previously inserted pages present. Callers 1709 * from the mmap handler may immediately return the error as their caller 1710 * will destroy the vma, removing any successfully inserted pages. Other 1711 * callers should make their own arrangements for calling unmap_region(). 1712 * 1713 * Context: Process context. Called by mmap handlers. 1714 * Return: 0 on success and error code otherwise. 1715 */ 1716 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1717 unsigned long num) 1718 { 1719 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1720 } 1721 EXPORT_SYMBOL(vm_map_pages); 1722 1723 /** 1724 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1725 * @vma: user vma to map to 1726 * @pages: pointer to array of source kernel pages 1727 * @num: number of pages in page array 1728 * 1729 * Similar to vm_map_pages(), except that it explicitly sets the offset 1730 * to 0. This function is intended for the drivers that did not consider 1731 * vm_pgoff. 1732 * 1733 * Context: Process context. Called by mmap handlers. 1734 * Return: 0 on success and error code otherwise. 1735 */ 1736 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1737 unsigned long num) 1738 { 1739 return __vm_map_pages(vma, pages, num, 0); 1740 } 1741 EXPORT_SYMBOL(vm_map_pages_zero); 1742 1743 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1744 pfn_t pfn, pgprot_t prot, bool mkwrite) 1745 { 1746 struct mm_struct *mm = vma->vm_mm; 1747 pte_t *pte, entry; 1748 spinlock_t *ptl; 1749 1750 pte = get_locked_pte(mm, addr, &ptl); 1751 if (!pte) 1752 return VM_FAULT_OOM; 1753 if (!pte_none(*pte)) { 1754 if (mkwrite) { 1755 /* 1756 * For read faults on private mappings the PFN passed 1757 * in may not match the PFN we have mapped if the 1758 * mapped PFN is a writeable COW page. In the mkwrite 1759 * case we are creating a writable PTE for a shared 1760 * mapping and we expect the PFNs to match. If they 1761 * don't match, we are likely racing with block 1762 * allocation and mapping invalidation so just skip the 1763 * update. 1764 */ 1765 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1766 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1767 goto out_unlock; 1768 } 1769 entry = pte_mkyoung(*pte); 1770 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1771 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1772 update_mmu_cache(vma, addr, pte); 1773 } 1774 goto out_unlock; 1775 } 1776 1777 /* Ok, finally just insert the thing.. */ 1778 if (pfn_t_devmap(pfn)) 1779 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1780 else 1781 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1782 1783 if (mkwrite) { 1784 entry = pte_mkyoung(entry); 1785 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1786 } 1787 1788 set_pte_at(mm, addr, pte, entry); 1789 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1790 1791 out_unlock: 1792 pte_unmap_unlock(pte, ptl); 1793 return VM_FAULT_NOPAGE; 1794 } 1795 1796 /** 1797 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1798 * @vma: user vma to map to 1799 * @addr: target user address of this page 1800 * @pfn: source kernel pfn 1801 * @pgprot: pgprot flags for the inserted page 1802 * 1803 * This is exactly like vmf_insert_pfn(), except that it allows drivers to 1804 * to override pgprot on a per-page basis. 1805 * 1806 * This only makes sense for IO mappings, and it makes no sense for 1807 * COW mappings. In general, using multiple vmas is preferable; 1808 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1809 * impractical. 1810 * 1811 * See vmf_insert_mixed_prot() for a discussion of the implication of using 1812 * a value of @pgprot different from that of @vma->vm_page_prot. 1813 * 1814 * Context: Process context. May allocate using %GFP_KERNEL. 1815 * Return: vm_fault_t value. 1816 */ 1817 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1818 unsigned long pfn, pgprot_t pgprot) 1819 { 1820 /* 1821 * Technically, architectures with pte_special can avoid all these 1822 * restrictions (same for remap_pfn_range). However we would like 1823 * consistency in testing and feature parity among all, so we should 1824 * try to keep these invariants in place for everybody. 1825 */ 1826 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1827 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1828 (VM_PFNMAP|VM_MIXEDMAP)); 1829 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1830 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1831 1832 if (addr < vma->vm_start || addr >= vma->vm_end) 1833 return VM_FAULT_SIGBUS; 1834 1835 if (!pfn_modify_allowed(pfn, pgprot)) 1836 return VM_FAULT_SIGBUS; 1837 1838 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1839 1840 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1841 false); 1842 } 1843 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1844 1845 /** 1846 * vmf_insert_pfn - insert single pfn into user vma 1847 * @vma: user vma to map to 1848 * @addr: target user address of this page 1849 * @pfn: source kernel pfn 1850 * 1851 * Similar to vm_insert_page, this allows drivers to insert individual pages 1852 * they've allocated into a user vma. Same comments apply. 1853 * 1854 * This function should only be called from a vm_ops->fault handler, and 1855 * in that case the handler should return the result of this function. 1856 * 1857 * vma cannot be a COW mapping. 1858 * 1859 * As this is called only for pages that do not currently exist, we 1860 * do not need to flush old virtual caches or the TLB. 1861 * 1862 * Context: Process context. May allocate using %GFP_KERNEL. 1863 * Return: vm_fault_t value. 1864 */ 1865 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1866 unsigned long pfn) 1867 { 1868 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1869 } 1870 EXPORT_SYMBOL(vmf_insert_pfn); 1871 1872 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1873 { 1874 /* these checks mirror the abort conditions in vm_normal_page */ 1875 if (vma->vm_flags & VM_MIXEDMAP) 1876 return true; 1877 if (pfn_t_devmap(pfn)) 1878 return true; 1879 if (pfn_t_special(pfn)) 1880 return true; 1881 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1882 return true; 1883 return false; 1884 } 1885 1886 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1887 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 1888 bool mkwrite) 1889 { 1890 int err; 1891 1892 BUG_ON(!vm_mixed_ok(vma, pfn)); 1893 1894 if (addr < vma->vm_start || addr >= vma->vm_end) 1895 return VM_FAULT_SIGBUS; 1896 1897 track_pfn_insert(vma, &pgprot, pfn); 1898 1899 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1900 return VM_FAULT_SIGBUS; 1901 1902 /* 1903 * If we don't have pte special, then we have to use the pfn_valid() 1904 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1905 * refcount the page if pfn_valid is true (hence insert_page rather 1906 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1907 * without pte special, it would there be refcounted as a normal page. 1908 */ 1909 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1910 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1911 struct page *page; 1912 1913 /* 1914 * At this point we are committed to insert_page() 1915 * regardless of whether the caller specified flags that 1916 * result in pfn_t_has_page() == false. 1917 */ 1918 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1919 err = insert_page(vma, addr, page, pgprot); 1920 } else { 1921 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1922 } 1923 1924 if (err == -ENOMEM) 1925 return VM_FAULT_OOM; 1926 if (err < 0 && err != -EBUSY) 1927 return VM_FAULT_SIGBUS; 1928 1929 return VM_FAULT_NOPAGE; 1930 } 1931 1932 /** 1933 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 1934 * @vma: user vma to map to 1935 * @addr: target user address of this page 1936 * @pfn: source kernel pfn 1937 * @pgprot: pgprot flags for the inserted page 1938 * 1939 * This is exactly like vmf_insert_mixed(), except that it allows drivers to 1940 * to override pgprot on a per-page basis. 1941 * 1942 * Typically this function should be used by drivers to set caching- and 1943 * encryption bits different than those of @vma->vm_page_prot, because 1944 * the caching- or encryption mode may not be known at mmap() time. 1945 * This is ok as long as @vma->vm_page_prot is not used by the core vm 1946 * to set caching and encryption bits for those vmas (except for COW pages). 1947 * This is ensured by core vm only modifying these page table entries using 1948 * functions that don't touch caching- or encryption bits, using pte_modify() 1949 * if needed. (See for example mprotect()). 1950 * Also when new page-table entries are created, this is only done using the 1951 * fault() callback, and never using the value of vma->vm_page_prot, 1952 * except for page-table entries that point to anonymous pages as the result 1953 * of COW. 1954 * 1955 * Context: Process context. May allocate using %GFP_KERNEL. 1956 * Return: vm_fault_t value. 1957 */ 1958 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 1959 pfn_t pfn, pgprot_t pgprot) 1960 { 1961 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 1962 } 1963 EXPORT_SYMBOL(vmf_insert_mixed_prot); 1964 1965 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1966 pfn_t pfn) 1967 { 1968 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 1969 } 1970 EXPORT_SYMBOL(vmf_insert_mixed); 1971 1972 /* 1973 * If the insertion of PTE failed because someone else already added a 1974 * different entry in the mean time, we treat that as success as we assume 1975 * the same entry was actually inserted. 1976 */ 1977 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1978 unsigned long addr, pfn_t pfn) 1979 { 1980 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 1981 } 1982 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1983 1984 /* 1985 * maps a range of physical memory into the requested pages. the old 1986 * mappings are removed. any references to nonexistent pages results 1987 * in null mappings (currently treated as "copy-on-access") 1988 */ 1989 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1990 unsigned long addr, unsigned long end, 1991 unsigned long pfn, pgprot_t prot) 1992 { 1993 pte_t *pte; 1994 spinlock_t *ptl; 1995 int err = 0; 1996 1997 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1998 if (!pte) 1999 return -ENOMEM; 2000 arch_enter_lazy_mmu_mode(); 2001 do { 2002 BUG_ON(!pte_none(*pte)); 2003 if (!pfn_modify_allowed(pfn, prot)) { 2004 err = -EACCES; 2005 break; 2006 } 2007 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2008 pfn++; 2009 } while (pte++, addr += PAGE_SIZE, addr != end); 2010 arch_leave_lazy_mmu_mode(); 2011 pte_unmap_unlock(pte - 1, ptl); 2012 return err; 2013 } 2014 2015 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2016 unsigned long addr, unsigned long end, 2017 unsigned long pfn, pgprot_t prot) 2018 { 2019 pmd_t *pmd; 2020 unsigned long next; 2021 int err; 2022 2023 pfn -= addr >> PAGE_SHIFT; 2024 pmd = pmd_alloc(mm, pud, addr); 2025 if (!pmd) 2026 return -ENOMEM; 2027 VM_BUG_ON(pmd_trans_huge(*pmd)); 2028 do { 2029 next = pmd_addr_end(addr, end); 2030 err = remap_pte_range(mm, pmd, addr, next, 2031 pfn + (addr >> PAGE_SHIFT), prot); 2032 if (err) 2033 return err; 2034 } while (pmd++, addr = next, addr != end); 2035 return 0; 2036 } 2037 2038 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2039 unsigned long addr, unsigned long end, 2040 unsigned long pfn, pgprot_t prot) 2041 { 2042 pud_t *pud; 2043 unsigned long next; 2044 int err; 2045 2046 pfn -= addr >> PAGE_SHIFT; 2047 pud = pud_alloc(mm, p4d, addr); 2048 if (!pud) 2049 return -ENOMEM; 2050 do { 2051 next = pud_addr_end(addr, end); 2052 err = remap_pmd_range(mm, pud, addr, next, 2053 pfn + (addr >> PAGE_SHIFT), prot); 2054 if (err) 2055 return err; 2056 } while (pud++, addr = next, addr != end); 2057 return 0; 2058 } 2059 2060 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2061 unsigned long addr, unsigned long end, 2062 unsigned long pfn, pgprot_t prot) 2063 { 2064 p4d_t *p4d; 2065 unsigned long next; 2066 int err; 2067 2068 pfn -= addr >> PAGE_SHIFT; 2069 p4d = p4d_alloc(mm, pgd, addr); 2070 if (!p4d) 2071 return -ENOMEM; 2072 do { 2073 next = p4d_addr_end(addr, end); 2074 err = remap_pud_range(mm, p4d, addr, next, 2075 pfn + (addr >> PAGE_SHIFT), prot); 2076 if (err) 2077 return err; 2078 } while (p4d++, addr = next, addr != end); 2079 return 0; 2080 } 2081 2082 /** 2083 * remap_pfn_range - remap kernel memory to userspace 2084 * @vma: user vma to map to 2085 * @addr: target user address to start at 2086 * @pfn: page frame number of kernel physical memory address 2087 * @size: size of mapping area 2088 * @prot: page protection flags for this mapping 2089 * 2090 * Note: this is only safe if the mm semaphore is held when called. 2091 * 2092 * Return: %0 on success, negative error code otherwise. 2093 */ 2094 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2095 unsigned long pfn, unsigned long size, pgprot_t prot) 2096 { 2097 pgd_t *pgd; 2098 unsigned long next; 2099 unsigned long end = addr + PAGE_ALIGN(size); 2100 struct mm_struct *mm = vma->vm_mm; 2101 unsigned long remap_pfn = pfn; 2102 int err; 2103 2104 /* 2105 * Physically remapped pages are special. Tell the 2106 * rest of the world about it: 2107 * VM_IO tells people not to look at these pages 2108 * (accesses can have side effects). 2109 * VM_PFNMAP tells the core MM that the base pages are just 2110 * raw PFN mappings, and do not have a "struct page" associated 2111 * with them. 2112 * VM_DONTEXPAND 2113 * Disable vma merging and expanding with mremap(). 2114 * VM_DONTDUMP 2115 * Omit vma from core dump, even when VM_IO turned off. 2116 * 2117 * There's a horrible special case to handle copy-on-write 2118 * behaviour that some programs depend on. We mark the "original" 2119 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2120 * See vm_normal_page() for details. 2121 */ 2122 if (is_cow_mapping(vma->vm_flags)) { 2123 if (addr != vma->vm_start || end != vma->vm_end) 2124 return -EINVAL; 2125 vma->vm_pgoff = pfn; 2126 } 2127 2128 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2129 if (err) 2130 return -EINVAL; 2131 2132 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2133 2134 BUG_ON(addr >= end); 2135 pfn -= addr >> PAGE_SHIFT; 2136 pgd = pgd_offset(mm, addr); 2137 flush_cache_range(vma, addr, end); 2138 do { 2139 next = pgd_addr_end(addr, end); 2140 err = remap_p4d_range(mm, pgd, addr, next, 2141 pfn + (addr >> PAGE_SHIFT), prot); 2142 if (err) 2143 break; 2144 } while (pgd++, addr = next, addr != end); 2145 2146 if (err) 2147 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2148 2149 return err; 2150 } 2151 EXPORT_SYMBOL(remap_pfn_range); 2152 2153 /** 2154 * vm_iomap_memory - remap memory to userspace 2155 * @vma: user vma to map to 2156 * @start: start of the physical memory to be mapped 2157 * @len: size of area 2158 * 2159 * This is a simplified io_remap_pfn_range() for common driver use. The 2160 * driver just needs to give us the physical memory range to be mapped, 2161 * we'll figure out the rest from the vma information. 2162 * 2163 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2164 * whatever write-combining details or similar. 2165 * 2166 * Return: %0 on success, negative error code otherwise. 2167 */ 2168 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2169 { 2170 unsigned long vm_len, pfn, pages; 2171 2172 /* Check that the physical memory area passed in looks valid */ 2173 if (start + len < start) 2174 return -EINVAL; 2175 /* 2176 * You *really* shouldn't map things that aren't page-aligned, 2177 * but we've historically allowed it because IO memory might 2178 * just have smaller alignment. 2179 */ 2180 len += start & ~PAGE_MASK; 2181 pfn = start >> PAGE_SHIFT; 2182 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2183 if (pfn + pages < pfn) 2184 return -EINVAL; 2185 2186 /* We start the mapping 'vm_pgoff' pages into the area */ 2187 if (vma->vm_pgoff > pages) 2188 return -EINVAL; 2189 pfn += vma->vm_pgoff; 2190 pages -= vma->vm_pgoff; 2191 2192 /* Can we fit all of the mapping? */ 2193 vm_len = vma->vm_end - vma->vm_start; 2194 if (vm_len >> PAGE_SHIFT > pages) 2195 return -EINVAL; 2196 2197 /* Ok, let it rip */ 2198 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2199 } 2200 EXPORT_SYMBOL(vm_iomap_memory); 2201 2202 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2203 unsigned long addr, unsigned long end, 2204 pte_fn_t fn, void *data, bool create) 2205 { 2206 pte_t *pte; 2207 int err = 0; 2208 spinlock_t *uninitialized_var(ptl); 2209 2210 if (create) { 2211 pte = (mm == &init_mm) ? 2212 pte_alloc_kernel(pmd, addr) : 2213 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2214 if (!pte) 2215 return -ENOMEM; 2216 } else { 2217 pte = (mm == &init_mm) ? 2218 pte_offset_kernel(pmd, addr) : 2219 pte_offset_map_lock(mm, pmd, addr, &ptl); 2220 } 2221 2222 BUG_ON(pmd_huge(*pmd)); 2223 2224 arch_enter_lazy_mmu_mode(); 2225 2226 do { 2227 if (create || !pte_none(*pte)) { 2228 err = fn(pte++, addr, data); 2229 if (err) 2230 break; 2231 } 2232 } while (addr += PAGE_SIZE, addr != end); 2233 2234 arch_leave_lazy_mmu_mode(); 2235 2236 if (mm != &init_mm) 2237 pte_unmap_unlock(pte-1, ptl); 2238 return err; 2239 } 2240 2241 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2242 unsigned long addr, unsigned long end, 2243 pte_fn_t fn, void *data, bool create) 2244 { 2245 pmd_t *pmd; 2246 unsigned long next; 2247 int err = 0; 2248 2249 BUG_ON(pud_huge(*pud)); 2250 2251 if (create) { 2252 pmd = pmd_alloc(mm, pud, addr); 2253 if (!pmd) 2254 return -ENOMEM; 2255 } else { 2256 pmd = pmd_offset(pud, addr); 2257 } 2258 do { 2259 next = pmd_addr_end(addr, end); 2260 if (create || !pmd_none_or_clear_bad(pmd)) { 2261 err = apply_to_pte_range(mm, pmd, addr, next, fn, data, 2262 create); 2263 if (err) 2264 break; 2265 } 2266 } while (pmd++, addr = next, addr != end); 2267 return err; 2268 } 2269 2270 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2271 unsigned long addr, unsigned long end, 2272 pte_fn_t fn, void *data, bool create) 2273 { 2274 pud_t *pud; 2275 unsigned long next; 2276 int err = 0; 2277 2278 if (create) { 2279 pud = pud_alloc(mm, p4d, addr); 2280 if (!pud) 2281 return -ENOMEM; 2282 } else { 2283 pud = pud_offset(p4d, addr); 2284 } 2285 do { 2286 next = pud_addr_end(addr, end); 2287 if (create || !pud_none_or_clear_bad(pud)) { 2288 err = apply_to_pmd_range(mm, pud, addr, next, fn, data, 2289 create); 2290 if (err) 2291 break; 2292 } 2293 } while (pud++, addr = next, addr != end); 2294 return err; 2295 } 2296 2297 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2298 unsigned long addr, unsigned long end, 2299 pte_fn_t fn, void *data, bool create) 2300 { 2301 p4d_t *p4d; 2302 unsigned long next; 2303 int err = 0; 2304 2305 if (create) { 2306 p4d = p4d_alloc(mm, pgd, addr); 2307 if (!p4d) 2308 return -ENOMEM; 2309 } else { 2310 p4d = p4d_offset(pgd, addr); 2311 } 2312 do { 2313 next = p4d_addr_end(addr, end); 2314 if (create || !p4d_none_or_clear_bad(p4d)) { 2315 err = apply_to_pud_range(mm, p4d, addr, next, fn, data, 2316 create); 2317 if (err) 2318 break; 2319 } 2320 } while (p4d++, addr = next, addr != end); 2321 return err; 2322 } 2323 2324 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2325 unsigned long size, pte_fn_t fn, 2326 void *data, bool create) 2327 { 2328 pgd_t *pgd; 2329 unsigned long next; 2330 unsigned long end = addr + size; 2331 int err = 0; 2332 2333 if (WARN_ON(addr >= end)) 2334 return -EINVAL; 2335 2336 pgd = pgd_offset(mm, addr); 2337 do { 2338 next = pgd_addr_end(addr, end); 2339 if (!create && pgd_none_or_clear_bad(pgd)) 2340 continue; 2341 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create); 2342 if (err) 2343 break; 2344 } while (pgd++, addr = next, addr != end); 2345 2346 return err; 2347 } 2348 2349 /* 2350 * Scan a region of virtual memory, filling in page tables as necessary 2351 * and calling a provided function on each leaf page table. 2352 */ 2353 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2354 unsigned long size, pte_fn_t fn, void *data) 2355 { 2356 return __apply_to_page_range(mm, addr, size, fn, data, true); 2357 } 2358 EXPORT_SYMBOL_GPL(apply_to_page_range); 2359 2360 /* 2361 * Scan a region of virtual memory, calling a provided function on 2362 * each leaf page table where it exists. 2363 * 2364 * Unlike apply_to_page_range, this does _not_ fill in page tables 2365 * where they are absent. 2366 */ 2367 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2368 unsigned long size, pte_fn_t fn, void *data) 2369 { 2370 return __apply_to_page_range(mm, addr, size, fn, data, false); 2371 } 2372 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2373 2374 /* 2375 * handle_pte_fault chooses page fault handler according to an entry which was 2376 * read non-atomically. Before making any commitment, on those architectures 2377 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2378 * parts, do_swap_page must check under lock before unmapping the pte and 2379 * proceeding (but do_wp_page is only called after already making such a check; 2380 * and do_anonymous_page can safely check later on). 2381 */ 2382 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2383 pte_t *page_table, pte_t orig_pte) 2384 { 2385 int same = 1; 2386 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2387 if (sizeof(pte_t) > sizeof(unsigned long)) { 2388 spinlock_t *ptl = pte_lockptr(mm, pmd); 2389 spin_lock(ptl); 2390 same = pte_same(*page_table, orig_pte); 2391 spin_unlock(ptl); 2392 } 2393 #endif 2394 pte_unmap(page_table); 2395 return same; 2396 } 2397 2398 static inline bool cow_user_page(struct page *dst, struct page *src, 2399 struct vm_fault *vmf) 2400 { 2401 bool ret; 2402 void *kaddr; 2403 void __user *uaddr; 2404 bool locked = false; 2405 struct vm_area_struct *vma = vmf->vma; 2406 struct mm_struct *mm = vma->vm_mm; 2407 unsigned long addr = vmf->address; 2408 2409 debug_dma_assert_idle(src); 2410 2411 if (likely(src)) { 2412 copy_user_highpage(dst, src, addr, vma); 2413 return true; 2414 } 2415 2416 /* 2417 * If the source page was a PFN mapping, we don't have 2418 * a "struct page" for it. We do a best-effort copy by 2419 * just copying from the original user address. If that 2420 * fails, we just zero-fill it. Live with it. 2421 */ 2422 kaddr = kmap_atomic(dst); 2423 uaddr = (void __user *)(addr & PAGE_MASK); 2424 2425 /* 2426 * On architectures with software "accessed" bits, we would 2427 * take a double page fault, so mark it accessed here. 2428 */ 2429 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2430 pte_t entry; 2431 2432 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2433 locked = true; 2434 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2435 /* 2436 * Other thread has already handled the fault 2437 * and we don't need to do anything. If it's 2438 * not the case, the fault will be triggered 2439 * again on the same address. 2440 */ 2441 ret = false; 2442 goto pte_unlock; 2443 } 2444 2445 entry = pte_mkyoung(vmf->orig_pte); 2446 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2447 update_mmu_cache(vma, addr, vmf->pte); 2448 } 2449 2450 /* 2451 * This really shouldn't fail, because the page is there 2452 * in the page tables. But it might just be unreadable, 2453 * in which case we just give up and fill the result with 2454 * zeroes. 2455 */ 2456 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2457 if (locked) 2458 goto warn; 2459 2460 /* Re-validate under PTL if the page is still mapped */ 2461 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2462 locked = true; 2463 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2464 /* The PTE changed under us. Retry page fault. */ 2465 ret = false; 2466 goto pte_unlock; 2467 } 2468 2469 /* 2470 * The same page can be mapped back since last copy attampt. 2471 * Try to copy again under PTL. 2472 */ 2473 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2474 /* 2475 * Give a warn in case there can be some obscure 2476 * use-case 2477 */ 2478 warn: 2479 WARN_ON_ONCE(1); 2480 clear_page(kaddr); 2481 } 2482 } 2483 2484 ret = true; 2485 2486 pte_unlock: 2487 if (locked) 2488 pte_unmap_unlock(vmf->pte, vmf->ptl); 2489 kunmap_atomic(kaddr); 2490 flush_dcache_page(dst); 2491 2492 return ret; 2493 } 2494 2495 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2496 { 2497 struct file *vm_file = vma->vm_file; 2498 2499 if (vm_file) 2500 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2501 2502 /* 2503 * Special mappings (e.g. VDSO) do not have any file so fake 2504 * a default GFP_KERNEL for them. 2505 */ 2506 return GFP_KERNEL; 2507 } 2508 2509 /* 2510 * Notify the address space that the page is about to become writable so that 2511 * it can prohibit this or wait for the page to get into an appropriate state. 2512 * 2513 * We do this without the lock held, so that it can sleep if it needs to. 2514 */ 2515 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2516 { 2517 vm_fault_t ret; 2518 struct page *page = vmf->page; 2519 unsigned int old_flags = vmf->flags; 2520 2521 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2522 2523 if (vmf->vma->vm_file && 2524 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2525 return VM_FAULT_SIGBUS; 2526 2527 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2528 /* Restore original flags so that caller is not surprised */ 2529 vmf->flags = old_flags; 2530 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2531 return ret; 2532 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2533 lock_page(page); 2534 if (!page->mapping) { 2535 unlock_page(page); 2536 return 0; /* retry */ 2537 } 2538 ret |= VM_FAULT_LOCKED; 2539 } else 2540 VM_BUG_ON_PAGE(!PageLocked(page), page); 2541 return ret; 2542 } 2543 2544 /* 2545 * Handle dirtying of a page in shared file mapping on a write fault. 2546 * 2547 * The function expects the page to be locked and unlocks it. 2548 */ 2549 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2550 { 2551 struct vm_area_struct *vma = vmf->vma; 2552 struct address_space *mapping; 2553 struct page *page = vmf->page; 2554 bool dirtied; 2555 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2556 2557 dirtied = set_page_dirty(page); 2558 VM_BUG_ON_PAGE(PageAnon(page), page); 2559 /* 2560 * Take a local copy of the address_space - page.mapping may be zeroed 2561 * by truncate after unlock_page(). The address_space itself remains 2562 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2563 * release semantics to prevent the compiler from undoing this copying. 2564 */ 2565 mapping = page_rmapping(page); 2566 unlock_page(page); 2567 2568 if (!page_mkwrite) 2569 file_update_time(vma->vm_file); 2570 2571 /* 2572 * Throttle page dirtying rate down to writeback speed. 2573 * 2574 * mapping may be NULL here because some device drivers do not 2575 * set page.mapping but still dirty their pages 2576 * 2577 * Drop the mmap_sem before waiting on IO, if we can. The file 2578 * is pinning the mapping, as per above. 2579 */ 2580 if ((dirtied || page_mkwrite) && mapping) { 2581 struct file *fpin; 2582 2583 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2584 balance_dirty_pages_ratelimited(mapping); 2585 if (fpin) { 2586 fput(fpin); 2587 return VM_FAULT_RETRY; 2588 } 2589 } 2590 2591 return 0; 2592 } 2593 2594 /* 2595 * Handle write page faults for pages that can be reused in the current vma 2596 * 2597 * This can happen either due to the mapping being with the VM_SHARED flag, 2598 * or due to us being the last reference standing to the page. In either 2599 * case, all we need to do here is to mark the page as writable and update 2600 * any related book-keeping. 2601 */ 2602 static inline void wp_page_reuse(struct vm_fault *vmf) 2603 __releases(vmf->ptl) 2604 { 2605 struct vm_area_struct *vma = vmf->vma; 2606 struct page *page = vmf->page; 2607 pte_t entry; 2608 /* 2609 * Clear the pages cpupid information as the existing 2610 * information potentially belongs to a now completely 2611 * unrelated process. 2612 */ 2613 if (page) 2614 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2615 2616 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2617 entry = pte_mkyoung(vmf->orig_pte); 2618 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2619 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2620 update_mmu_cache(vma, vmf->address, vmf->pte); 2621 pte_unmap_unlock(vmf->pte, vmf->ptl); 2622 } 2623 2624 /* 2625 * Handle the case of a page which we actually need to copy to a new page. 2626 * 2627 * Called with mmap_sem locked and the old page referenced, but 2628 * without the ptl held. 2629 * 2630 * High level logic flow: 2631 * 2632 * - Allocate a page, copy the content of the old page to the new one. 2633 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2634 * - Take the PTL. If the pte changed, bail out and release the allocated page 2635 * - If the pte is still the way we remember it, update the page table and all 2636 * relevant references. This includes dropping the reference the page-table 2637 * held to the old page, as well as updating the rmap. 2638 * - In any case, unlock the PTL and drop the reference we took to the old page. 2639 */ 2640 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2641 { 2642 struct vm_area_struct *vma = vmf->vma; 2643 struct mm_struct *mm = vma->vm_mm; 2644 struct page *old_page = vmf->page; 2645 struct page *new_page = NULL; 2646 pte_t entry; 2647 int page_copied = 0; 2648 struct mem_cgroup *memcg; 2649 struct mmu_notifier_range range; 2650 2651 if (unlikely(anon_vma_prepare(vma))) 2652 goto oom; 2653 2654 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2655 new_page = alloc_zeroed_user_highpage_movable(vma, 2656 vmf->address); 2657 if (!new_page) 2658 goto oom; 2659 } else { 2660 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2661 vmf->address); 2662 if (!new_page) 2663 goto oom; 2664 2665 if (!cow_user_page(new_page, old_page, vmf)) { 2666 /* 2667 * COW failed, if the fault was solved by other, 2668 * it's fine. If not, userspace would re-fault on 2669 * the same address and we will handle the fault 2670 * from the second attempt. 2671 */ 2672 put_page(new_page); 2673 if (old_page) 2674 put_page(old_page); 2675 return 0; 2676 } 2677 } 2678 2679 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2680 goto oom_free_new; 2681 2682 __SetPageUptodate(new_page); 2683 2684 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2685 vmf->address & PAGE_MASK, 2686 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2687 mmu_notifier_invalidate_range_start(&range); 2688 2689 /* 2690 * Re-check the pte - we dropped the lock 2691 */ 2692 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2693 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2694 if (old_page) { 2695 if (!PageAnon(old_page)) { 2696 dec_mm_counter_fast(mm, 2697 mm_counter_file(old_page)); 2698 inc_mm_counter_fast(mm, MM_ANONPAGES); 2699 } 2700 } else { 2701 inc_mm_counter_fast(mm, MM_ANONPAGES); 2702 } 2703 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2704 entry = mk_pte(new_page, vma->vm_page_prot); 2705 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2706 /* 2707 * Clear the pte entry and flush it first, before updating the 2708 * pte with the new entry. This will avoid a race condition 2709 * seen in the presence of one thread doing SMC and another 2710 * thread doing COW. 2711 */ 2712 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2713 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2714 mem_cgroup_commit_charge(new_page, memcg, false, false); 2715 lru_cache_add_active_or_unevictable(new_page, vma); 2716 /* 2717 * We call the notify macro here because, when using secondary 2718 * mmu page tables (such as kvm shadow page tables), we want the 2719 * new page to be mapped directly into the secondary page table. 2720 */ 2721 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2722 update_mmu_cache(vma, vmf->address, vmf->pte); 2723 if (old_page) { 2724 /* 2725 * Only after switching the pte to the new page may 2726 * we remove the mapcount here. Otherwise another 2727 * process may come and find the rmap count decremented 2728 * before the pte is switched to the new page, and 2729 * "reuse" the old page writing into it while our pte 2730 * here still points into it and can be read by other 2731 * threads. 2732 * 2733 * The critical issue is to order this 2734 * page_remove_rmap with the ptp_clear_flush above. 2735 * Those stores are ordered by (if nothing else,) 2736 * the barrier present in the atomic_add_negative 2737 * in page_remove_rmap. 2738 * 2739 * Then the TLB flush in ptep_clear_flush ensures that 2740 * no process can access the old page before the 2741 * decremented mapcount is visible. And the old page 2742 * cannot be reused until after the decremented 2743 * mapcount is visible. So transitively, TLBs to 2744 * old page will be flushed before it can be reused. 2745 */ 2746 page_remove_rmap(old_page, false); 2747 } 2748 2749 /* Free the old page.. */ 2750 new_page = old_page; 2751 page_copied = 1; 2752 } else { 2753 mem_cgroup_cancel_charge(new_page, memcg, false); 2754 } 2755 2756 if (new_page) 2757 put_page(new_page); 2758 2759 pte_unmap_unlock(vmf->pte, vmf->ptl); 2760 /* 2761 * No need to double call mmu_notifier->invalidate_range() callback as 2762 * the above ptep_clear_flush_notify() did already call it. 2763 */ 2764 mmu_notifier_invalidate_range_only_end(&range); 2765 if (old_page) { 2766 /* 2767 * Don't let another task, with possibly unlocked vma, 2768 * keep the mlocked page. 2769 */ 2770 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2771 lock_page(old_page); /* LRU manipulation */ 2772 if (PageMlocked(old_page)) 2773 munlock_vma_page(old_page); 2774 unlock_page(old_page); 2775 } 2776 put_page(old_page); 2777 } 2778 return page_copied ? VM_FAULT_WRITE : 0; 2779 oom_free_new: 2780 put_page(new_page); 2781 oom: 2782 if (old_page) 2783 put_page(old_page); 2784 return VM_FAULT_OOM; 2785 } 2786 2787 /** 2788 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2789 * writeable once the page is prepared 2790 * 2791 * @vmf: structure describing the fault 2792 * 2793 * This function handles all that is needed to finish a write page fault in a 2794 * shared mapping due to PTE being read-only once the mapped page is prepared. 2795 * It handles locking of PTE and modifying it. 2796 * 2797 * The function expects the page to be locked or other protection against 2798 * concurrent faults / writeback (such as DAX radix tree locks). 2799 * 2800 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2801 * we acquired PTE lock. 2802 */ 2803 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2804 { 2805 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2806 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2807 &vmf->ptl); 2808 /* 2809 * We might have raced with another page fault while we released the 2810 * pte_offset_map_lock. 2811 */ 2812 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2813 pte_unmap_unlock(vmf->pte, vmf->ptl); 2814 return VM_FAULT_NOPAGE; 2815 } 2816 wp_page_reuse(vmf); 2817 return 0; 2818 } 2819 2820 /* 2821 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2822 * mapping 2823 */ 2824 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2825 { 2826 struct vm_area_struct *vma = vmf->vma; 2827 2828 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2829 vm_fault_t ret; 2830 2831 pte_unmap_unlock(vmf->pte, vmf->ptl); 2832 vmf->flags |= FAULT_FLAG_MKWRITE; 2833 ret = vma->vm_ops->pfn_mkwrite(vmf); 2834 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2835 return ret; 2836 return finish_mkwrite_fault(vmf); 2837 } 2838 wp_page_reuse(vmf); 2839 return VM_FAULT_WRITE; 2840 } 2841 2842 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2843 __releases(vmf->ptl) 2844 { 2845 struct vm_area_struct *vma = vmf->vma; 2846 vm_fault_t ret = VM_FAULT_WRITE; 2847 2848 get_page(vmf->page); 2849 2850 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2851 vm_fault_t tmp; 2852 2853 pte_unmap_unlock(vmf->pte, vmf->ptl); 2854 tmp = do_page_mkwrite(vmf); 2855 if (unlikely(!tmp || (tmp & 2856 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2857 put_page(vmf->page); 2858 return tmp; 2859 } 2860 tmp = finish_mkwrite_fault(vmf); 2861 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2862 unlock_page(vmf->page); 2863 put_page(vmf->page); 2864 return tmp; 2865 } 2866 } else { 2867 wp_page_reuse(vmf); 2868 lock_page(vmf->page); 2869 } 2870 ret |= fault_dirty_shared_page(vmf); 2871 put_page(vmf->page); 2872 2873 return ret; 2874 } 2875 2876 /* 2877 * This routine handles present pages, when users try to write 2878 * to a shared page. It is done by copying the page to a new address 2879 * and decrementing the shared-page counter for the old page. 2880 * 2881 * Note that this routine assumes that the protection checks have been 2882 * done by the caller (the low-level page fault routine in most cases). 2883 * Thus we can safely just mark it writable once we've done any necessary 2884 * COW. 2885 * 2886 * We also mark the page dirty at this point even though the page will 2887 * change only once the write actually happens. This avoids a few races, 2888 * and potentially makes it more efficient. 2889 * 2890 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2891 * but allow concurrent faults), with pte both mapped and locked. 2892 * We return with mmap_sem still held, but pte unmapped and unlocked. 2893 */ 2894 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2895 __releases(vmf->ptl) 2896 { 2897 struct vm_area_struct *vma = vmf->vma; 2898 2899 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 2900 pte_unmap_unlock(vmf->pte, vmf->ptl); 2901 return handle_userfault(vmf, VM_UFFD_WP); 2902 } 2903 2904 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2905 if (!vmf->page) { 2906 /* 2907 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2908 * VM_PFNMAP VMA. 2909 * 2910 * We should not cow pages in a shared writeable mapping. 2911 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2912 */ 2913 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2914 (VM_WRITE|VM_SHARED)) 2915 return wp_pfn_shared(vmf); 2916 2917 pte_unmap_unlock(vmf->pte, vmf->ptl); 2918 return wp_page_copy(vmf); 2919 } 2920 2921 /* 2922 * Take out anonymous pages first, anonymous shared vmas are 2923 * not dirty accountable. 2924 */ 2925 if (PageAnon(vmf->page)) { 2926 int total_map_swapcount; 2927 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || 2928 page_count(vmf->page) != 1)) 2929 goto copy; 2930 if (!trylock_page(vmf->page)) { 2931 get_page(vmf->page); 2932 pte_unmap_unlock(vmf->pte, vmf->ptl); 2933 lock_page(vmf->page); 2934 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2935 vmf->address, &vmf->ptl); 2936 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2937 unlock_page(vmf->page); 2938 pte_unmap_unlock(vmf->pte, vmf->ptl); 2939 put_page(vmf->page); 2940 return 0; 2941 } 2942 put_page(vmf->page); 2943 } 2944 if (PageKsm(vmf->page)) { 2945 bool reused = reuse_ksm_page(vmf->page, vmf->vma, 2946 vmf->address); 2947 unlock_page(vmf->page); 2948 if (!reused) 2949 goto copy; 2950 wp_page_reuse(vmf); 2951 return VM_FAULT_WRITE; 2952 } 2953 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2954 if (total_map_swapcount == 1) { 2955 /* 2956 * The page is all ours. Move it to 2957 * our anon_vma so the rmap code will 2958 * not search our parent or siblings. 2959 * Protected against the rmap code by 2960 * the page lock. 2961 */ 2962 page_move_anon_rmap(vmf->page, vma); 2963 } 2964 unlock_page(vmf->page); 2965 wp_page_reuse(vmf); 2966 return VM_FAULT_WRITE; 2967 } 2968 unlock_page(vmf->page); 2969 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2970 (VM_WRITE|VM_SHARED))) { 2971 return wp_page_shared(vmf); 2972 } 2973 copy: 2974 /* 2975 * Ok, we need to copy. Oh, well.. 2976 */ 2977 get_page(vmf->page); 2978 2979 pte_unmap_unlock(vmf->pte, vmf->ptl); 2980 return wp_page_copy(vmf); 2981 } 2982 2983 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2984 unsigned long start_addr, unsigned long end_addr, 2985 struct zap_details *details) 2986 { 2987 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2988 } 2989 2990 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2991 struct zap_details *details) 2992 { 2993 struct vm_area_struct *vma; 2994 pgoff_t vba, vea, zba, zea; 2995 2996 vma_interval_tree_foreach(vma, root, 2997 details->first_index, details->last_index) { 2998 2999 vba = vma->vm_pgoff; 3000 vea = vba + vma_pages(vma) - 1; 3001 zba = details->first_index; 3002 if (zba < vba) 3003 zba = vba; 3004 zea = details->last_index; 3005 if (zea > vea) 3006 zea = vea; 3007 3008 unmap_mapping_range_vma(vma, 3009 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3010 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3011 details); 3012 } 3013 } 3014 3015 /** 3016 * unmap_mapping_pages() - Unmap pages from processes. 3017 * @mapping: The address space containing pages to be unmapped. 3018 * @start: Index of first page to be unmapped. 3019 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3020 * @even_cows: Whether to unmap even private COWed pages. 3021 * 3022 * Unmap the pages in this address space from any userspace process which 3023 * has them mmaped. Generally, you want to remove COWed pages as well when 3024 * a file is being truncated, but not when invalidating pages from the page 3025 * cache. 3026 */ 3027 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3028 pgoff_t nr, bool even_cows) 3029 { 3030 struct zap_details details = { }; 3031 3032 details.check_mapping = even_cows ? NULL : mapping; 3033 details.first_index = start; 3034 details.last_index = start + nr - 1; 3035 if (details.last_index < details.first_index) 3036 details.last_index = ULONG_MAX; 3037 3038 i_mmap_lock_write(mapping); 3039 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3040 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3041 i_mmap_unlock_write(mapping); 3042 } 3043 3044 /** 3045 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3046 * address_space corresponding to the specified byte range in the underlying 3047 * file. 3048 * 3049 * @mapping: the address space containing mmaps to be unmapped. 3050 * @holebegin: byte in first page to unmap, relative to the start of 3051 * the underlying file. This will be rounded down to a PAGE_SIZE 3052 * boundary. Note that this is different from truncate_pagecache(), which 3053 * must keep the partial page. In contrast, we must get rid of 3054 * partial pages. 3055 * @holelen: size of prospective hole in bytes. This will be rounded 3056 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3057 * end of the file. 3058 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3059 * but 0 when invalidating pagecache, don't throw away private data. 3060 */ 3061 void unmap_mapping_range(struct address_space *mapping, 3062 loff_t const holebegin, loff_t const holelen, int even_cows) 3063 { 3064 pgoff_t hba = holebegin >> PAGE_SHIFT; 3065 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3066 3067 /* Check for overflow. */ 3068 if (sizeof(holelen) > sizeof(hlen)) { 3069 long long holeend = 3070 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3071 if (holeend & ~(long long)ULONG_MAX) 3072 hlen = ULONG_MAX - hba + 1; 3073 } 3074 3075 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3076 } 3077 EXPORT_SYMBOL(unmap_mapping_range); 3078 3079 /* 3080 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3081 * but allow concurrent faults), and pte mapped but not yet locked. 3082 * We return with pte unmapped and unlocked. 3083 * 3084 * We return with the mmap_sem locked or unlocked in the same cases 3085 * as does filemap_fault(). 3086 */ 3087 vm_fault_t do_swap_page(struct vm_fault *vmf) 3088 { 3089 struct vm_area_struct *vma = vmf->vma; 3090 struct page *page = NULL, *swapcache; 3091 struct mem_cgroup *memcg; 3092 swp_entry_t entry; 3093 pte_t pte; 3094 int locked; 3095 int exclusive = 0; 3096 vm_fault_t ret = 0; 3097 3098 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 3099 goto out; 3100 3101 entry = pte_to_swp_entry(vmf->orig_pte); 3102 if (unlikely(non_swap_entry(entry))) { 3103 if (is_migration_entry(entry)) { 3104 migration_entry_wait(vma->vm_mm, vmf->pmd, 3105 vmf->address); 3106 } else if (is_device_private_entry(entry)) { 3107 vmf->page = device_private_entry_to_page(entry); 3108 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3109 } else if (is_hwpoison_entry(entry)) { 3110 ret = VM_FAULT_HWPOISON; 3111 } else { 3112 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3113 ret = VM_FAULT_SIGBUS; 3114 } 3115 goto out; 3116 } 3117 3118 3119 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3120 page = lookup_swap_cache(entry, vma, vmf->address); 3121 swapcache = page; 3122 3123 if (!page) { 3124 struct swap_info_struct *si = swp_swap_info(entry); 3125 3126 if (si->flags & SWP_SYNCHRONOUS_IO && 3127 __swap_count(entry) == 1) { 3128 /* skip swapcache */ 3129 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3130 vmf->address); 3131 if (page) { 3132 __SetPageLocked(page); 3133 __SetPageSwapBacked(page); 3134 set_page_private(page, entry.val); 3135 lru_cache_add_anon(page); 3136 swap_readpage(page, true); 3137 } 3138 } else { 3139 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3140 vmf); 3141 swapcache = page; 3142 } 3143 3144 if (!page) { 3145 /* 3146 * Back out if somebody else faulted in this pte 3147 * while we released the pte lock. 3148 */ 3149 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3150 vmf->address, &vmf->ptl); 3151 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3152 ret = VM_FAULT_OOM; 3153 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3154 goto unlock; 3155 } 3156 3157 /* Had to read the page from swap area: Major fault */ 3158 ret = VM_FAULT_MAJOR; 3159 count_vm_event(PGMAJFAULT); 3160 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3161 } else if (PageHWPoison(page)) { 3162 /* 3163 * hwpoisoned dirty swapcache pages are kept for killing 3164 * owner processes (which may be unknown at hwpoison time) 3165 */ 3166 ret = VM_FAULT_HWPOISON; 3167 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3168 goto out_release; 3169 } 3170 3171 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3172 3173 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3174 if (!locked) { 3175 ret |= VM_FAULT_RETRY; 3176 goto out_release; 3177 } 3178 3179 /* 3180 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3181 * release the swapcache from under us. The page pin, and pte_same 3182 * test below, are not enough to exclude that. Even if it is still 3183 * swapcache, we need to check that the page's swap has not changed. 3184 */ 3185 if (unlikely((!PageSwapCache(page) || 3186 page_private(page) != entry.val)) && swapcache) 3187 goto out_page; 3188 3189 page = ksm_might_need_to_copy(page, vma, vmf->address); 3190 if (unlikely(!page)) { 3191 ret = VM_FAULT_OOM; 3192 page = swapcache; 3193 goto out_page; 3194 } 3195 3196 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 3197 &memcg, false)) { 3198 ret = VM_FAULT_OOM; 3199 goto out_page; 3200 } 3201 3202 /* 3203 * Back out if somebody else already faulted in this pte. 3204 */ 3205 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3206 &vmf->ptl); 3207 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3208 goto out_nomap; 3209 3210 if (unlikely(!PageUptodate(page))) { 3211 ret = VM_FAULT_SIGBUS; 3212 goto out_nomap; 3213 } 3214 3215 /* 3216 * The page isn't present yet, go ahead with the fault. 3217 * 3218 * Be careful about the sequence of operations here. 3219 * To get its accounting right, reuse_swap_page() must be called 3220 * while the page is counted on swap but not yet in mapcount i.e. 3221 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3222 * must be called after the swap_free(), or it will never succeed. 3223 */ 3224 3225 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3226 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3227 pte = mk_pte(page, vma->vm_page_prot); 3228 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3229 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3230 vmf->flags &= ~FAULT_FLAG_WRITE; 3231 ret |= VM_FAULT_WRITE; 3232 exclusive = RMAP_EXCLUSIVE; 3233 } 3234 flush_icache_page(vma, page); 3235 if (pte_swp_soft_dirty(vmf->orig_pte)) 3236 pte = pte_mksoft_dirty(pte); 3237 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3238 pte = pte_mkuffd_wp(pte); 3239 pte = pte_wrprotect(pte); 3240 } 3241 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3242 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3243 vmf->orig_pte = pte; 3244 3245 /* ksm created a completely new copy */ 3246 if (unlikely(page != swapcache && swapcache)) { 3247 page_add_new_anon_rmap(page, vma, vmf->address, false); 3248 mem_cgroup_commit_charge(page, memcg, false, false); 3249 lru_cache_add_active_or_unevictable(page, vma); 3250 } else { 3251 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3252 mem_cgroup_commit_charge(page, memcg, true, false); 3253 activate_page(page); 3254 } 3255 3256 swap_free(entry); 3257 if (mem_cgroup_swap_full(page) || 3258 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3259 try_to_free_swap(page); 3260 unlock_page(page); 3261 if (page != swapcache && swapcache) { 3262 /* 3263 * Hold the lock to avoid the swap entry to be reused 3264 * until we take the PT lock for the pte_same() check 3265 * (to avoid false positives from pte_same). For 3266 * further safety release the lock after the swap_free 3267 * so that the swap count won't change under a 3268 * parallel locked swapcache. 3269 */ 3270 unlock_page(swapcache); 3271 put_page(swapcache); 3272 } 3273 3274 if (vmf->flags & FAULT_FLAG_WRITE) { 3275 ret |= do_wp_page(vmf); 3276 if (ret & VM_FAULT_ERROR) 3277 ret &= VM_FAULT_ERROR; 3278 goto out; 3279 } 3280 3281 /* No need to invalidate - it was non-present before */ 3282 update_mmu_cache(vma, vmf->address, vmf->pte); 3283 unlock: 3284 pte_unmap_unlock(vmf->pte, vmf->ptl); 3285 out: 3286 return ret; 3287 out_nomap: 3288 mem_cgroup_cancel_charge(page, memcg, false); 3289 pte_unmap_unlock(vmf->pte, vmf->ptl); 3290 out_page: 3291 unlock_page(page); 3292 out_release: 3293 put_page(page); 3294 if (page != swapcache && swapcache) { 3295 unlock_page(swapcache); 3296 put_page(swapcache); 3297 } 3298 return ret; 3299 } 3300 3301 /* 3302 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3303 * but allow concurrent faults), and pte mapped but not yet locked. 3304 * We return with mmap_sem still held, but pte unmapped and unlocked. 3305 */ 3306 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3307 { 3308 struct vm_area_struct *vma = vmf->vma; 3309 struct mem_cgroup *memcg; 3310 struct page *page; 3311 vm_fault_t ret = 0; 3312 pte_t entry; 3313 3314 /* File mapping without ->vm_ops ? */ 3315 if (vma->vm_flags & VM_SHARED) 3316 return VM_FAULT_SIGBUS; 3317 3318 /* 3319 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3320 * pte_offset_map() on pmds where a huge pmd might be created 3321 * from a different thread. 3322 * 3323 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 3324 * parallel threads are excluded by other means. 3325 * 3326 * Here we only have down_read(mmap_sem). 3327 */ 3328 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3329 return VM_FAULT_OOM; 3330 3331 /* See the comment in pte_alloc_one_map() */ 3332 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3333 return 0; 3334 3335 /* Use the zero-page for reads */ 3336 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3337 !mm_forbids_zeropage(vma->vm_mm)) { 3338 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3339 vma->vm_page_prot)); 3340 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3341 vmf->address, &vmf->ptl); 3342 if (!pte_none(*vmf->pte)) 3343 goto unlock; 3344 ret = check_stable_address_space(vma->vm_mm); 3345 if (ret) 3346 goto unlock; 3347 /* Deliver the page fault to userland, check inside PT lock */ 3348 if (userfaultfd_missing(vma)) { 3349 pte_unmap_unlock(vmf->pte, vmf->ptl); 3350 return handle_userfault(vmf, VM_UFFD_MISSING); 3351 } 3352 goto setpte; 3353 } 3354 3355 /* Allocate our own private page. */ 3356 if (unlikely(anon_vma_prepare(vma))) 3357 goto oom; 3358 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3359 if (!page) 3360 goto oom; 3361 3362 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 3363 false)) 3364 goto oom_free_page; 3365 3366 /* 3367 * The memory barrier inside __SetPageUptodate makes sure that 3368 * preceding stores to the page contents become visible before 3369 * the set_pte_at() write. 3370 */ 3371 __SetPageUptodate(page); 3372 3373 entry = mk_pte(page, vma->vm_page_prot); 3374 if (vma->vm_flags & VM_WRITE) 3375 entry = pte_mkwrite(pte_mkdirty(entry)); 3376 3377 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3378 &vmf->ptl); 3379 if (!pte_none(*vmf->pte)) 3380 goto release; 3381 3382 ret = check_stable_address_space(vma->vm_mm); 3383 if (ret) 3384 goto release; 3385 3386 /* Deliver the page fault to userland, check inside PT lock */ 3387 if (userfaultfd_missing(vma)) { 3388 pte_unmap_unlock(vmf->pte, vmf->ptl); 3389 mem_cgroup_cancel_charge(page, memcg, false); 3390 put_page(page); 3391 return handle_userfault(vmf, VM_UFFD_MISSING); 3392 } 3393 3394 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3395 page_add_new_anon_rmap(page, vma, vmf->address, false); 3396 mem_cgroup_commit_charge(page, memcg, false, false); 3397 lru_cache_add_active_or_unevictable(page, vma); 3398 setpte: 3399 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3400 3401 /* No need to invalidate - it was non-present before */ 3402 update_mmu_cache(vma, vmf->address, vmf->pte); 3403 unlock: 3404 pte_unmap_unlock(vmf->pte, vmf->ptl); 3405 return ret; 3406 release: 3407 mem_cgroup_cancel_charge(page, memcg, false); 3408 put_page(page); 3409 goto unlock; 3410 oom_free_page: 3411 put_page(page); 3412 oom: 3413 return VM_FAULT_OOM; 3414 } 3415 3416 /* 3417 * The mmap_sem must have been held on entry, and may have been 3418 * released depending on flags and vma->vm_ops->fault() return value. 3419 * See filemap_fault() and __lock_page_retry(). 3420 */ 3421 static vm_fault_t __do_fault(struct vm_fault *vmf) 3422 { 3423 struct vm_area_struct *vma = vmf->vma; 3424 vm_fault_t ret; 3425 3426 /* 3427 * Preallocate pte before we take page_lock because this might lead to 3428 * deadlocks for memcg reclaim which waits for pages under writeback: 3429 * lock_page(A) 3430 * SetPageWriteback(A) 3431 * unlock_page(A) 3432 * lock_page(B) 3433 * lock_page(B) 3434 * pte_alloc_pne 3435 * shrink_page_list 3436 * wait_on_page_writeback(A) 3437 * SetPageWriteback(B) 3438 * unlock_page(B) 3439 * # flush A, B to clear the writeback 3440 */ 3441 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3442 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3443 if (!vmf->prealloc_pte) 3444 return VM_FAULT_OOM; 3445 smp_wmb(); /* See comment in __pte_alloc() */ 3446 } 3447 3448 ret = vma->vm_ops->fault(vmf); 3449 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3450 VM_FAULT_DONE_COW))) 3451 return ret; 3452 3453 if (unlikely(PageHWPoison(vmf->page))) { 3454 if (ret & VM_FAULT_LOCKED) 3455 unlock_page(vmf->page); 3456 put_page(vmf->page); 3457 vmf->page = NULL; 3458 return VM_FAULT_HWPOISON; 3459 } 3460 3461 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3462 lock_page(vmf->page); 3463 else 3464 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3465 3466 return ret; 3467 } 3468 3469 /* 3470 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3471 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3472 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3473 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3474 */ 3475 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3476 { 3477 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3478 } 3479 3480 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3481 { 3482 struct vm_area_struct *vma = vmf->vma; 3483 3484 if (!pmd_none(*vmf->pmd)) 3485 goto map_pte; 3486 if (vmf->prealloc_pte) { 3487 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3488 if (unlikely(!pmd_none(*vmf->pmd))) { 3489 spin_unlock(vmf->ptl); 3490 goto map_pte; 3491 } 3492 3493 mm_inc_nr_ptes(vma->vm_mm); 3494 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3495 spin_unlock(vmf->ptl); 3496 vmf->prealloc_pte = NULL; 3497 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3498 return VM_FAULT_OOM; 3499 } 3500 map_pte: 3501 /* 3502 * If a huge pmd materialized under us just retry later. Use 3503 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3504 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3505 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3506 * running immediately after a huge pmd fault in a different thread of 3507 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3508 * All we have to ensure is that it is a regular pmd that we can walk 3509 * with pte_offset_map() and we can do that through an atomic read in 3510 * C, which is what pmd_trans_unstable() provides. 3511 */ 3512 if (pmd_devmap_trans_unstable(vmf->pmd)) 3513 return VM_FAULT_NOPAGE; 3514 3515 /* 3516 * At this point we know that our vmf->pmd points to a page of ptes 3517 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3518 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3519 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3520 * be valid and we will re-check to make sure the vmf->pte isn't 3521 * pte_none() under vmf->ptl protection when we return to 3522 * alloc_set_pte(). 3523 */ 3524 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3525 &vmf->ptl); 3526 return 0; 3527 } 3528 3529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3530 static void deposit_prealloc_pte(struct vm_fault *vmf) 3531 { 3532 struct vm_area_struct *vma = vmf->vma; 3533 3534 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3535 /* 3536 * We are going to consume the prealloc table, 3537 * count that as nr_ptes. 3538 */ 3539 mm_inc_nr_ptes(vma->vm_mm); 3540 vmf->prealloc_pte = NULL; 3541 } 3542 3543 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3544 { 3545 struct vm_area_struct *vma = vmf->vma; 3546 bool write = vmf->flags & FAULT_FLAG_WRITE; 3547 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3548 pmd_t entry; 3549 int i; 3550 vm_fault_t ret; 3551 3552 if (!transhuge_vma_suitable(vma, haddr)) 3553 return VM_FAULT_FALLBACK; 3554 3555 ret = VM_FAULT_FALLBACK; 3556 page = compound_head(page); 3557 3558 /* 3559 * Archs like ppc64 need additonal space to store information 3560 * related to pte entry. Use the preallocated table for that. 3561 */ 3562 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3563 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3564 if (!vmf->prealloc_pte) 3565 return VM_FAULT_OOM; 3566 smp_wmb(); /* See comment in __pte_alloc() */ 3567 } 3568 3569 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3570 if (unlikely(!pmd_none(*vmf->pmd))) 3571 goto out; 3572 3573 for (i = 0; i < HPAGE_PMD_NR; i++) 3574 flush_icache_page(vma, page + i); 3575 3576 entry = mk_huge_pmd(page, vma->vm_page_prot); 3577 if (write) 3578 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3579 3580 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3581 page_add_file_rmap(page, true); 3582 /* 3583 * deposit and withdraw with pmd lock held 3584 */ 3585 if (arch_needs_pgtable_deposit()) 3586 deposit_prealloc_pte(vmf); 3587 3588 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3589 3590 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3591 3592 /* fault is handled */ 3593 ret = 0; 3594 count_vm_event(THP_FILE_MAPPED); 3595 out: 3596 spin_unlock(vmf->ptl); 3597 return ret; 3598 } 3599 #else 3600 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3601 { 3602 BUILD_BUG(); 3603 return 0; 3604 } 3605 #endif 3606 3607 /** 3608 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3609 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3610 * 3611 * @vmf: fault environment 3612 * @memcg: memcg to charge page (only for private mappings) 3613 * @page: page to map 3614 * 3615 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3616 * return. 3617 * 3618 * Target users are page handler itself and implementations of 3619 * vm_ops->map_pages. 3620 * 3621 * Return: %0 on success, %VM_FAULT_ code in case of error. 3622 */ 3623 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3624 struct page *page) 3625 { 3626 struct vm_area_struct *vma = vmf->vma; 3627 bool write = vmf->flags & FAULT_FLAG_WRITE; 3628 pte_t entry; 3629 vm_fault_t ret; 3630 3631 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { 3632 /* THP on COW? */ 3633 VM_BUG_ON_PAGE(memcg, page); 3634 3635 ret = do_set_pmd(vmf, page); 3636 if (ret != VM_FAULT_FALLBACK) 3637 return ret; 3638 } 3639 3640 if (!vmf->pte) { 3641 ret = pte_alloc_one_map(vmf); 3642 if (ret) 3643 return ret; 3644 } 3645 3646 /* Re-check under ptl */ 3647 if (unlikely(!pte_none(*vmf->pte))) 3648 return VM_FAULT_NOPAGE; 3649 3650 flush_icache_page(vma, page); 3651 entry = mk_pte(page, vma->vm_page_prot); 3652 if (write) 3653 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3654 /* copy-on-write page */ 3655 if (write && !(vma->vm_flags & VM_SHARED)) { 3656 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3657 page_add_new_anon_rmap(page, vma, vmf->address, false); 3658 mem_cgroup_commit_charge(page, memcg, false, false); 3659 lru_cache_add_active_or_unevictable(page, vma); 3660 } else { 3661 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3662 page_add_file_rmap(page, false); 3663 } 3664 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3665 3666 /* no need to invalidate: a not-present page won't be cached */ 3667 update_mmu_cache(vma, vmf->address, vmf->pte); 3668 3669 return 0; 3670 } 3671 3672 3673 /** 3674 * finish_fault - finish page fault once we have prepared the page to fault 3675 * 3676 * @vmf: structure describing the fault 3677 * 3678 * This function handles all that is needed to finish a page fault once the 3679 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3680 * given page, adds reverse page mapping, handles memcg charges and LRU 3681 * addition. 3682 * 3683 * The function expects the page to be locked and on success it consumes a 3684 * reference of a page being mapped (for the PTE which maps it). 3685 * 3686 * Return: %0 on success, %VM_FAULT_ code in case of error. 3687 */ 3688 vm_fault_t finish_fault(struct vm_fault *vmf) 3689 { 3690 struct page *page; 3691 vm_fault_t ret = 0; 3692 3693 /* Did we COW the page? */ 3694 if ((vmf->flags & FAULT_FLAG_WRITE) && 3695 !(vmf->vma->vm_flags & VM_SHARED)) 3696 page = vmf->cow_page; 3697 else 3698 page = vmf->page; 3699 3700 /* 3701 * check even for read faults because we might have lost our CoWed 3702 * page 3703 */ 3704 if (!(vmf->vma->vm_flags & VM_SHARED)) 3705 ret = check_stable_address_space(vmf->vma->vm_mm); 3706 if (!ret) 3707 ret = alloc_set_pte(vmf, vmf->memcg, page); 3708 if (vmf->pte) 3709 pte_unmap_unlock(vmf->pte, vmf->ptl); 3710 return ret; 3711 } 3712 3713 static unsigned long fault_around_bytes __read_mostly = 3714 rounddown_pow_of_two(65536); 3715 3716 #ifdef CONFIG_DEBUG_FS 3717 static int fault_around_bytes_get(void *data, u64 *val) 3718 { 3719 *val = fault_around_bytes; 3720 return 0; 3721 } 3722 3723 /* 3724 * fault_around_bytes must be rounded down to the nearest page order as it's 3725 * what do_fault_around() expects to see. 3726 */ 3727 static int fault_around_bytes_set(void *data, u64 val) 3728 { 3729 if (val / PAGE_SIZE > PTRS_PER_PTE) 3730 return -EINVAL; 3731 if (val > PAGE_SIZE) 3732 fault_around_bytes = rounddown_pow_of_two(val); 3733 else 3734 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3735 return 0; 3736 } 3737 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3738 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3739 3740 static int __init fault_around_debugfs(void) 3741 { 3742 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3743 &fault_around_bytes_fops); 3744 return 0; 3745 } 3746 late_initcall(fault_around_debugfs); 3747 #endif 3748 3749 /* 3750 * do_fault_around() tries to map few pages around the fault address. The hope 3751 * is that the pages will be needed soon and this will lower the number of 3752 * faults to handle. 3753 * 3754 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3755 * not ready to be mapped: not up-to-date, locked, etc. 3756 * 3757 * This function is called with the page table lock taken. In the split ptlock 3758 * case the page table lock only protects only those entries which belong to 3759 * the page table corresponding to the fault address. 3760 * 3761 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3762 * only once. 3763 * 3764 * fault_around_bytes defines how many bytes we'll try to map. 3765 * do_fault_around() expects it to be set to a power of two less than or equal 3766 * to PTRS_PER_PTE. 3767 * 3768 * The virtual address of the area that we map is naturally aligned to 3769 * fault_around_bytes rounded down to the machine page size 3770 * (and therefore to page order). This way it's easier to guarantee 3771 * that we don't cross page table boundaries. 3772 */ 3773 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3774 { 3775 unsigned long address = vmf->address, nr_pages, mask; 3776 pgoff_t start_pgoff = vmf->pgoff; 3777 pgoff_t end_pgoff; 3778 int off; 3779 vm_fault_t ret = 0; 3780 3781 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3782 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3783 3784 vmf->address = max(address & mask, vmf->vma->vm_start); 3785 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3786 start_pgoff -= off; 3787 3788 /* 3789 * end_pgoff is either the end of the page table, the end of 3790 * the vma or nr_pages from start_pgoff, depending what is nearest. 3791 */ 3792 end_pgoff = start_pgoff - 3793 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3794 PTRS_PER_PTE - 1; 3795 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3796 start_pgoff + nr_pages - 1); 3797 3798 if (pmd_none(*vmf->pmd)) { 3799 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3800 if (!vmf->prealloc_pte) 3801 goto out; 3802 smp_wmb(); /* See comment in __pte_alloc() */ 3803 } 3804 3805 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3806 3807 /* Huge page is mapped? Page fault is solved */ 3808 if (pmd_trans_huge(*vmf->pmd)) { 3809 ret = VM_FAULT_NOPAGE; 3810 goto out; 3811 } 3812 3813 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3814 if (!vmf->pte) 3815 goto out; 3816 3817 /* check if the page fault is solved */ 3818 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3819 if (!pte_none(*vmf->pte)) 3820 ret = VM_FAULT_NOPAGE; 3821 pte_unmap_unlock(vmf->pte, vmf->ptl); 3822 out: 3823 vmf->address = address; 3824 vmf->pte = NULL; 3825 return ret; 3826 } 3827 3828 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3829 { 3830 struct vm_area_struct *vma = vmf->vma; 3831 vm_fault_t ret = 0; 3832 3833 /* 3834 * Let's call ->map_pages() first and use ->fault() as fallback 3835 * if page by the offset is not ready to be mapped (cold cache or 3836 * something). 3837 */ 3838 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3839 ret = do_fault_around(vmf); 3840 if (ret) 3841 return ret; 3842 } 3843 3844 ret = __do_fault(vmf); 3845 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3846 return ret; 3847 3848 ret |= finish_fault(vmf); 3849 unlock_page(vmf->page); 3850 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3851 put_page(vmf->page); 3852 return ret; 3853 } 3854 3855 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3856 { 3857 struct vm_area_struct *vma = vmf->vma; 3858 vm_fault_t ret; 3859 3860 if (unlikely(anon_vma_prepare(vma))) 3861 return VM_FAULT_OOM; 3862 3863 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3864 if (!vmf->cow_page) 3865 return VM_FAULT_OOM; 3866 3867 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3868 &vmf->memcg, false)) { 3869 put_page(vmf->cow_page); 3870 return VM_FAULT_OOM; 3871 } 3872 3873 ret = __do_fault(vmf); 3874 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3875 goto uncharge_out; 3876 if (ret & VM_FAULT_DONE_COW) 3877 return ret; 3878 3879 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3880 __SetPageUptodate(vmf->cow_page); 3881 3882 ret |= finish_fault(vmf); 3883 unlock_page(vmf->page); 3884 put_page(vmf->page); 3885 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3886 goto uncharge_out; 3887 return ret; 3888 uncharge_out: 3889 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3890 put_page(vmf->cow_page); 3891 return ret; 3892 } 3893 3894 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3895 { 3896 struct vm_area_struct *vma = vmf->vma; 3897 vm_fault_t ret, tmp; 3898 3899 ret = __do_fault(vmf); 3900 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3901 return ret; 3902 3903 /* 3904 * Check if the backing address space wants to know that the page is 3905 * about to become writable 3906 */ 3907 if (vma->vm_ops->page_mkwrite) { 3908 unlock_page(vmf->page); 3909 tmp = do_page_mkwrite(vmf); 3910 if (unlikely(!tmp || 3911 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3912 put_page(vmf->page); 3913 return tmp; 3914 } 3915 } 3916 3917 ret |= finish_fault(vmf); 3918 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3919 VM_FAULT_RETRY))) { 3920 unlock_page(vmf->page); 3921 put_page(vmf->page); 3922 return ret; 3923 } 3924 3925 ret |= fault_dirty_shared_page(vmf); 3926 return ret; 3927 } 3928 3929 /* 3930 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3931 * but allow concurrent faults). 3932 * The mmap_sem may have been released depending on flags and our 3933 * return value. See filemap_fault() and __lock_page_or_retry(). 3934 * If mmap_sem is released, vma may become invalid (for example 3935 * by other thread calling munmap()). 3936 */ 3937 static vm_fault_t do_fault(struct vm_fault *vmf) 3938 { 3939 struct vm_area_struct *vma = vmf->vma; 3940 struct mm_struct *vm_mm = vma->vm_mm; 3941 vm_fault_t ret; 3942 3943 /* 3944 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3945 */ 3946 if (!vma->vm_ops->fault) { 3947 /* 3948 * If we find a migration pmd entry or a none pmd entry, which 3949 * should never happen, return SIGBUS 3950 */ 3951 if (unlikely(!pmd_present(*vmf->pmd))) 3952 ret = VM_FAULT_SIGBUS; 3953 else { 3954 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3955 vmf->pmd, 3956 vmf->address, 3957 &vmf->ptl); 3958 /* 3959 * Make sure this is not a temporary clearing of pte 3960 * by holding ptl and checking again. A R/M/W update 3961 * of pte involves: take ptl, clearing the pte so that 3962 * we don't have concurrent modification by hardware 3963 * followed by an update. 3964 */ 3965 if (unlikely(pte_none(*vmf->pte))) 3966 ret = VM_FAULT_SIGBUS; 3967 else 3968 ret = VM_FAULT_NOPAGE; 3969 3970 pte_unmap_unlock(vmf->pte, vmf->ptl); 3971 } 3972 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3973 ret = do_read_fault(vmf); 3974 else if (!(vma->vm_flags & VM_SHARED)) 3975 ret = do_cow_fault(vmf); 3976 else 3977 ret = do_shared_fault(vmf); 3978 3979 /* preallocated pagetable is unused: free it */ 3980 if (vmf->prealloc_pte) { 3981 pte_free(vm_mm, vmf->prealloc_pte); 3982 vmf->prealloc_pte = NULL; 3983 } 3984 return ret; 3985 } 3986 3987 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3988 unsigned long addr, int page_nid, 3989 int *flags) 3990 { 3991 get_page(page); 3992 3993 count_vm_numa_event(NUMA_HINT_FAULTS); 3994 if (page_nid == numa_node_id()) { 3995 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3996 *flags |= TNF_FAULT_LOCAL; 3997 } 3998 3999 return mpol_misplaced(page, vma, addr); 4000 } 4001 4002 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4003 { 4004 struct vm_area_struct *vma = vmf->vma; 4005 struct page *page = NULL; 4006 int page_nid = NUMA_NO_NODE; 4007 int last_cpupid; 4008 int target_nid; 4009 bool migrated = false; 4010 pte_t pte, old_pte; 4011 bool was_writable = pte_savedwrite(vmf->orig_pte); 4012 int flags = 0; 4013 4014 /* 4015 * The "pte" at this point cannot be used safely without 4016 * validation through pte_unmap_same(). It's of NUMA type but 4017 * the pfn may be screwed if the read is non atomic. 4018 */ 4019 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4020 spin_lock(vmf->ptl); 4021 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4022 pte_unmap_unlock(vmf->pte, vmf->ptl); 4023 goto out; 4024 } 4025 4026 /* 4027 * Make it present again, Depending on how arch implementes non 4028 * accessible ptes, some can allow access by kernel mode. 4029 */ 4030 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4031 pte = pte_modify(old_pte, vma->vm_page_prot); 4032 pte = pte_mkyoung(pte); 4033 if (was_writable) 4034 pte = pte_mkwrite(pte); 4035 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4036 update_mmu_cache(vma, vmf->address, vmf->pte); 4037 4038 page = vm_normal_page(vma, vmf->address, pte); 4039 if (!page) { 4040 pte_unmap_unlock(vmf->pte, vmf->ptl); 4041 return 0; 4042 } 4043 4044 /* TODO: handle PTE-mapped THP */ 4045 if (PageCompound(page)) { 4046 pte_unmap_unlock(vmf->pte, vmf->ptl); 4047 return 0; 4048 } 4049 4050 /* 4051 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4052 * much anyway since they can be in shared cache state. This misses 4053 * the case where a mapping is writable but the process never writes 4054 * to it but pte_write gets cleared during protection updates and 4055 * pte_dirty has unpredictable behaviour between PTE scan updates, 4056 * background writeback, dirty balancing and application behaviour. 4057 */ 4058 if (!pte_write(pte)) 4059 flags |= TNF_NO_GROUP; 4060 4061 /* 4062 * Flag if the page is shared between multiple address spaces. This 4063 * is later used when determining whether to group tasks together 4064 */ 4065 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4066 flags |= TNF_SHARED; 4067 4068 last_cpupid = page_cpupid_last(page); 4069 page_nid = page_to_nid(page); 4070 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4071 &flags); 4072 pte_unmap_unlock(vmf->pte, vmf->ptl); 4073 if (target_nid == NUMA_NO_NODE) { 4074 put_page(page); 4075 goto out; 4076 } 4077 4078 /* Migrate to the requested node */ 4079 migrated = migrate_misplaced_page(page, vma, target_nid); 4080 if (migrated) { 4081 page_nid = target_nid; 4082 flags |= TNF_MIGRATED; 4083 } else 4084 flags |= TNF_MIGRATE_FAIL; 4085 4086 out: 4087 if (page_nid != NUMA_NO_NODE) 4088 task_numa_fault(last_cpupid, page_nid, 1, flags); 4089 return 0; 4090 } 4091 4092 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4093 { 4094 if (vma_is_anonymous(vmf->vma)) 4095 return do_huge_pmd_anonymous_page(vmf); 4096 if (vmf->vma->vm_ops->huge_fault) 4097 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4098 return VM_FAULT_FALLBACK; 4099 } 4100 4101 /* `inline' is required to avoid gcc 4.1.2 build error */ 4102 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 4103 { 4104 if (vma_is_anonymous(vmf->vma)) { 4105 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) 4106 return handle_userfault(vmf, VM_UFFD_WP); 4107 return do_huge_pmd_wp_page(vmf, orig_pmd); 4108 } 4109 if (vmf->vma->vm_ops->huge_fault) { 4110 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4111 4112 if (!(ret & VM_FAULT_FALLBACK)) 4113 return ret; 4114 } 4115 4116 /* COW or write-notify handled on pte level: split pmd. */ 4117 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4118 4119 return VM_FAULT_FALLBACK; 4120 } 4121 4122 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4123 { 4124 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4125 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4126 /* No support for anonymous transparent PUD pages yet */ 4127 if (vma_is_anonymous(vmf->vma)) 4128 goto split; 4129 if (vmf->vma->vm_ops->huge_fault) { 4130 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4131 4132 if (!(ret & VM_FAULT_FALLBACK)) 4133 return ret; 4134 } 4135 split: 4136 /* COW or write-notify not handled on PUD level: split pud.*/ 4137 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4138 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4139 return VM_FAULT_FALLBACK; 4140 } 4141 4142 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4143 { 4144 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4145 /* No support for anonymous transparent PUD pages yet */ 4146 if (vma_is_anonymous(vmf->vma)) 4147 return VM_FAULT_FALLBACK; 4148 if (vmf->vma->vm_ops->huge_fault) 4149 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4150 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4151 return VM_FAULT_FALLBACK; 4152 } 4153 4154 /* 4155 * These routines also need to handle stuff like marking pages dirty 4156 * and/or accessed for architectures that don't do it in hardware (most 4157 * RISC architectures). The early dirtying is also good on the i386. 4158 * 4159 * There is also a hook called "update_mmu_cache()" that architectures 4160 * with external mmu caches can use to update those (ie the Sparc or 4161 * PowerPC hashed page tables that act as extended TLBs). 4162 * 4163 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 4164 * concurrent faults). 4165 * 4166 * The mmap_sem may have been released depending on flags and our return value. 4167 * See filemap_fault() and __lock_page_or_retry(). 4168 */ 4169 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4170 { 4171 pte_t entry; 4172 4173 if (unlikely(pmd_none(*vmf->pmd))) { 4174 /* 4175 * Leave __pte_alloc() until later: because vm_ops->fault may 4176 * want to allocate huge page, and if we expose page table 4177 * for an instant, it will be difficult to retract from 4178 * concurrent faults and from rmap lookups. 4179 */ 4180 vmf->pte = NULL; 4181 } else { 4182 /* See comment in pte_alloc_one_map() */ 4183 if (pmd_devmap_trans_unstable(vmf->pmd)) 4184 return 0; 4185 /* 4186 * A regular pmd is established and it can't morph into a huge 4187 * pmd from under us anymore at this point because we hold the 4188 * mmap_sem read mode and khugepaged takes it in write mode. 4189 * So now it's safe to run pte_offset_map(). 4190 */ 4191 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4192 vmf->orig_pte = *vmf->pte; 4193 4194 /* 4195 * some architectures can have larger ptes than wordsize, 4196 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4197 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4198 * accesses. The code below just needs a consistent view 4199 * for the ifs and we later double check anyway with the 4200 * ptl lock held. So here a barrier will do. 4201 */ 4202 barrier(); 4203 if (pte_none(vmf->orig_pte)) { 4204 pte_unmap(vmf->pte); 4205 vmf->pte = NULL; 4206 } 4207 } 4208 4209 if (!vmf->pte) { 4210 if (vma_is_anonymous(vmf->vma)) 4211 return do_anonymous_page(vmf); 4212 else 4213 return do_fault(vmf); 4214 } 4215 4216 if (!pte_present(vmf->orig_pte)) 4217 return do_swap_page(vmf); 4218 4219 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4220 return do_numa_page(vmf); 4221 4222 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4223 spin_lock(vmf->ptl); 4224 entry = vmf->orig_pte; 4225 if (unlikely(!pte_same(*vmf->pte, entry))) 4226 goto unlock; 4227 if (vmf->flags & FAULT_FLAG_WRITE) { 4228 if (!pte_write(entry)) 4229 return do_wp_page(vmf); 4230 entry = pte_mkdirty(entry); 4231 } 4232 entry = pte_mkyoung(entry); 4233 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4234 vmf->flags & FAULT_FLAG_WRITE)) { 4235 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4236 } else { 4237 /* 4238 * This is needed only for protection faults but the arch code 4239 * is not yet telling us if this is a protection fault or not. 4240 * This still avoids useless tlb flushes for .text page faults 4241 * with threads. 4242 */ 4243 if (vmf->flags & FAULT_FLAG_WRITE) 4244 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4245 } 4246 unlock: 4247 pte_unmap_unlock(vmf->pte, vmf->ptl); 4248 return 0; 4249 } 4250 4251 /* 4252 * By the time we get here, we already hold the mm semaphore 4253 * 4254 * The mmap_sem may have been released depending on flags and our 4255 * return value. See filemap_fault() and __lock_page_or_retry(). 4256 */ 4257 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4258 unsigned long address, unsigned int flags) 4259 { 4260 struct vm_fault vmf = { 4261 .vma = vma, 4262 .address = address & PAGE_MASK, 4263 .flags = flags, 4264 .pgoff = linear_page_index(vma, address), 4265 .gfp_mask = __get_fault_gfp_mask(vma), 4266 }; 4267 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4268 struct mm_struct *mm = vma->vm_mm; 4269 pgd_t *pgd; 4270 p4d_t *p4d; 4271 vm_fault_t ret; 4272 4273 pgd = pgd_offset(mm, address); 4274 p4d = p4d_alloc(mm, pgd, address); 4275 if (!p4d) 4276 return VM_FAULT_OOM; 4277 4278 vmf.pud = pud_alloc(mm, p4d, address); 4279 if (!vmf.pud) 4280 return VM_FAULT_OOM; 4281 retry_pud: 4282 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4283 ret = create_huge_pud(&vmf); 4284 if (!(ret & VM_FAULT_FALLBACK)) 4285 return ret; 4286 } else { 4287 pud_t orig_pud = *vmf.pud; 4288 4289 barrier(); 4290 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4291 4292 /* NUMA case for anonymous PUDs would go here */ 4293 4294 if (dirty && !pud_write(orig_pud)) { 4295 ret = wp_huge_pud(&vmf, orig_pud); 4296 if (!(ret & VM_FAULT_FALLBACK)) 4297 return ret; 4298 } else { 4299 huge_pud_set_accessed(&vmf, orig_pud); 4300 return 0; 4301 } 4302 } 4303 } 4304 4305 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4306 if (!vmf.pmd) 4307 return VM_FAULT_OOM; 4308 4309 /* Huge pud page fault raced with pmd_alloc? */ 4310 if (pud_trans_unstable(vmf.pud)) 4311 goto retry_pud; 4312 4313 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4314 ret = create_huge_pmd(&vmf); 4315 if (!(ret & VM_FAULT_FALLBACK)) 4316 return ret; 4317 } else { 4318 pmd_t orig_pmd = *vmf.pmd; 4319 4320 barrier(); 4321 if (unlikely(is_swap_pmd(orig_pmd))) { 4322 VM_BUG_ON(thp_migration_supported() && 4323 !is_pmd_migration_entry(orig_pmd)); 4324 if (is_pmd_migration_entry(orig_pmd)) 4325 pmd_migration_entry_wait(mm, vmf.pmd); 4326 return 0; 4327 } 4328 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4329 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4330 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4331 4332 if (dirty && !pmd_write(orig_pmd)) { 4333 ret = wp_huge_pmd(&vmf, orig_pmd); 4334 if (!(ret & VM_FAULT_FALLBACK)) 4335 return ret; 4336 } else { 4337 huge_pmd_set_accessed(&vmf, orig_pmd); 4338 return 0; 4339 } 4340 } 4341 } 4342 4343 return handle_pte_fault(&vmf); 4344 } 4345 4346 /* 4347 * By the time we get here, we already hold the mm semaphore 4348 * 4349 * The mmap_sem may have been released depending on flags and our 4350 * return value. See filemap_fault() and __lock_page_or_retry(). 4351 */ 4352 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4353 unsigned int flags) 4354 { 4355 vm_fault_t ret; 4356 4357 __set_current_state(TASK_RUNNING); 4358 4359 count_vm_event(PGFAULT); 4360 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4361 4362 /* do counter updates before entering really critical section. */ 4363 check_sync_rss_stat(current); 4364 4365 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4366 flags & FAULT_FLAG_INSTRUCTION, 4367 flags & FAULT_FLAG_REMOTE)) 4368 return VM_FAULT_SIGSEGV; 4369 4370 /* 4371 * Enable the memcg OOM handling for faults triggered in user 4372 * space. Kernel faults are handled more gracefully. 4373 */ 4374 if (flags & FAULT_FLAG_USER) 4375 mem_cgroup_enter_user_fault(); 4376 4377 if (unlikely(is_vm_hugetlb_page(vma))) 4378 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4379 else 4380 ret = __handle_mm_fault(vma, address, flags); 4381 4382 if (flags & FAULT_FLAG_USER) { 4383 mem_cgroup_exit_user_fault(); 4384 /* 4385 * The task may have entered a memcg OOM situation but 4386 * if the allocation error was handled gracefully (no 4387 * VM_FAULT_OOM), there is no need to kill anything. 4388 * Just clean up the OOM state peacefully. 4389 */ 4390 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4391 mem_cgroup_oom_synchronize(false); 4392 } 4393 4394 return ret; 4395 } 4396 EXPORT_SYMBOL_GPL(handle_mm_fault); 4397 4398 #ifndef __PAGETABLE_P4D_FOLDED 4399 /* 4400 * Allocate p4d page table. 4401 * We've already handled the fast-path in-line. 4402 */ 4403 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4404 { 4405 p4d_t *new = p4d_alloc_one(mm, address); 4406 if (!new) 4407 return -ENOMEM; 4408 4409 smp_wmb(); /* See comment in __pte_alloc */ 4410 4411 spin_lock(&mm->page_table_lock); 4412 if (pgd_present(*pgd)) /* Another has populated it */ 4413 p4d_free(mm, new); 4414 else 4415 pgd_populate(mm, pgd, new); 4416 spin_unlock(&mm->page_table_lock); 4417 return 0; 4418 } 4419 #endif /* __PAGETABLE_P4D_FOLDED */ 4420 4421 #ifndef __PAGETABLE_PUD_FOLDED 4422 /* 4423 * Allocate page upper directory. 4424 * We've already handled the fast-path in-line. 4425 */ 4426 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4427 { 4428 pud_t *new = pud_alloc_one(mm, address); 4429 if (!new) 4430 return -ENOMEM; 4431 4432 smp_wmb(); /* See comment in __pte_alloc */ 4433 4434 spin_lock(&mm->page_table_lock); 4435 #ifndef __ARCH_HAS_5LEVEL_HACK 4436 if (!p4d_present(*p4d)) { 4437 mm_inc_nr_puds(mm); 4438 p4d_populate(mm, p4d, new); 4439 } else /* Another has populated it */ 4440 pud_free(mm, new); 4441 #else 4442 if (!pgd_present(*p4d)) { 4443 mm_inc_nr_puds(mm); 4444 pgd_populate(mm, p4d, new); 4445 } else /* Another has populated it */ 4446 pud_free(mm, new); 4447 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4448 spin_unlock(&mm->page_table_lock); 4449 return 0; 4450 } 4451 #endif /* __PAGETABLE_PUD_FOLDED */ 4452 4453 #ifndef __PAGETABLE_PMD_FOLDED 4454 /* 4455 * Allocate page middle directory. 4456 * We've already handled the fast-path in-line. 4457 */ 4458 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4459 { 4460 spinlock_t *ptl; 4461 pmd_t *new = pmd_alloc_one(mm, address); 4462 if (!new) 4463 return -ENOMEM; 4464 4465 smp_wmb(); /* See comment in __pte_alloc */ 4466 4467 ptl = pud_lock(mm, pud); 4468 if (!pud_present(*pud)) { 4469 mm_inc_nr_pmds(mm); 4470 pud_populate(mm, pud, new); 4471 } else /* Another has populated it */ 4472 pmd_free(mm, new); 4473 spin_unlock(ptl); 4474 return 0; 4475 } 4476 #endif /* __PAGETABLE_PMD_FOLDED */ 4477 4478 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4479 struct mmu_notifier_range *range, 4480 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4481 { 4482 pgd_t *pgd; 4483 p4d_t *p4d; 4484 pud_t *pud; 4485 pmd_t *pmd; 4486 pte_t *ptep; 4487 4488 pgd = pgd_offset(mm, address); 4489 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4490 goto out; 4491 4492 p4d = p4d_offset(pgd, address); 4493 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4494 goto out; 4495 4496 pud = pud_offset(p4d, address); 4497 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4498 goto out; 4499 4500 pmd = pmd_offset(pud, address); 4501 VM_BUG_ON(pmd_trans_huge(*pmd)); 4502 4503 if (pmd_huge(*pmd)) { 4504 if (!pmdpp) 4505 goto out; 4506 4507 if (range) { 4508 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4509 NULL, mm, address & PMD_MASK, 4510 (address & PMD_MASK) + PMD_SIZE); 4511 mmu_notifier_invalidate_range_start(range); 4512 } 4513 *ptlp = pmd_lock(mm, pmd); 4514 if (pmd_huge(*pmd)) { 4515 *pmdpp = pmd; 4516 return 0; 4517 } 4518 spin_unlock(*ptlp); 4519 if (range) 4520 mmu_notifier_invalidate_range_end(range); 4521 } 4522 4523 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4524 goto out; 4525 4526 if (range) { 4527 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4528 address & PAGE_MASK, 4529 (address & PAGE_MASK) + PAGE_SIZE); 4530 mmu_notifier_invalidate_range_start(range); 4531 } 4532 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4533 if (!pte_present(*ptep)) 4534 goto unlock; 4535 *ptepp = ptep; 4536 return 0; 4537 unlock: 4538 pte_unmap_unlock(ptep, *ptlp); 4539 if (range) 4540 mmu_notifier_invalidate_range_end(range); 4541 out: 4542 return -EINVAL; 4543 } 4544 4545 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4546 pte_t **ptepp, spinlock_t **ptlp) 4547 { 4548 int res; 4549 4550 /* (void) is needed to make gcc happy */ 4551 (void) __cond_lock(*ptlp, 4552 !(res = __follow_pte_pmd(mm, address, NULL, 4553 ptepp, NULL, ptlp))); 4554 return res; 4555 } 4556 4557 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4558 struct mmu_notifier_range *range, 4559 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4560 { 4561 int res; 4562 4563 /* (void) is needed to make gcc happy */ 4564 (void) __cond_lock(*ptlp, 4565 !(res = __follow_pte_pmd(mm, address, range, 4566 ptepp, pmdpp, ptlp))); 4567 return res; 4568 } 4569 EXPORT_SYMBOL(follow_pte_pmd); 4570 4571 /** 4572 * follow_pfn - look up PFN at a user virtual address 4573 * @vma: memory mapping 4574 * @address: user virtual address 4575 * @pfn: location to store found PFN 4576 * 4577 * Only IO mappings and raw PFN mappings are allowed. 4578 * 4579 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4580 */ 4581 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4582 unsigned long *pfn) 4583 { 4584 int ret = -EINVAL; 4585 spinlock_t *ptl; 4586 pte_t *ptep; 4587 4588 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4589 return ret; 4590 4591 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4592 if (ret) 4593 return ret; 4594 *pfn = pte_pfn(*ptep); 4595 pte_unmap_unlock(ptep, ptl); 4596 return 0; 4597 } 4598 EXPORT_SYMBOL(follow_pfn); 4599 4600 #ifdef CONFIG_HAVE_IOREMAP_PROT 4601 int follow_phys(struct vm_area_struct *vma, 4602 unsigned long address, unsigned int flags, 4603 unsigned long *prot, resource_size_t *phys) 4604 { 4605 int ret = -EINVAL; 4606 pte_t *ptep, pte; 4607 spinlock_t *ptl; 4608 4609 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4610 goto out; 4611 4612 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4613 goto out; 4614 pte = *ptep; 4615 4616 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4617 goto unlock; 4618 4619 *prot = pgprot_val(pte_pgprot(pte)); 4620 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4621 4622 ret = 0; 4623 unlock: 4624 pte_unmap_unlock(ptep, ptl); 4625 out: 4626 return ret; 4627 } 4628 4629 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4630 void *buf, int len, int write) 4631 { 4632 resource_size_t phys_addr; 4633 unsigned long prot = 0; 4634 void __iomem *maddr; 4635 int offset = addr & (PAGE_SIZE-1); 4636 4637 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4638 return -EINVAL; 4639 4640 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4641 if (!maddr) 4642 return -ENOMEM; 4643 4644 if (write) 4645 memcpy_toio(maddr + offset, buf, len); 4646 else 4647 memcpy_fromio(buf, maddr + offset, len); 4648 iounmap(maddr); 4649 4650 return len; 4651 } 4652 EXPORT_SYMBOL_GPL(generic_access_phys); 4653 #endif 4654 4655 /* 4656 * Access another process' address space as given in mm. If non-NULL, use the 4657 * given task for page fault accounting. 4658 */ 4659 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4660 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4661 { 4662 struct vm_area_struct *vma; 4663 void *old_buf = buf; 4664 int write = gup_flags & FOLL_WRITE; 4665 4666 if (down_read_killable(&mm->mmap_sem)) 4667 return 0; 4668 4669 /* ignore errors, just check how much was successfully transferred */ 4670 while (len) { 4671 int bytes, ret, offset; 4672 void *maddr; 4673 struct page *page = NULL; 4674 4675 ret = get_user_pages_remote(tsk, mm, addr, 1, 4676 gup_flags, &page, &vma, NULL); 4677 if (ret <= 0) { 4678 #ifndef CONFIG_HAVE_IOREMAP_PROT 4679 break; 4680 #else 4681 /* 4682 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4683 * we can access using slightly different code. 4684 */ 4685 vma = find_vma(mm, addr); 4686 if (!vma || vma->vm_start > addr) 4687 break; 4688 if (vma->vm_ops && vma->vm_ops->access) 4689 ret = vma->vm_ops->access(vma, addr, buf, 4690 len, write); 4691 if (ret <= 0) 4692 break; 4693 bytes = ret; 4694 #endif 4695 } else { 4696 bytes = len; 4697 offset = addr & (PAGE_SIZE-1); 4698 if (bytes > PAGE_SIZE-offset) 4699 bytes = PAGE_SIZE-offset; 4700 4701 maddr = kmap(page); 4702 if (write) { 4703 copy_to_user_page(vma, page, addr, 4704 maddr + offset, buf, bytes); 4705 set_page_dirty_lock(page); 4706 } else { 4707 copy_from_user_page(vma, page, addr, 4708 buf, maddr + offset, bytes); 4709 } 4710 kunmap(page); 4711 put_page(page); 4712 } 4713 len -= bytes; 4714 buf += bytes; 4715 addr += bytes; 4716 } 4717 up_read(&mm->mmap_sem); 4718 4719 return buf - old_buf; 4720 } 4721 4722 /** 4723 * access_remote_vm - access another process' address space 4724 * @mm: the mm_struct of the target address space 4725 * @addr: start address to access 4726 * @buf: source or destination buffer 4727 * @len: number of bytes to transfer 4728 * @gup_flags: flags modifying lookup behaviour 4729 * 4730 * The caller must hold a reference on @mm. 4731 * 4732 * Return: number of bytes copied from source to destination. 4733 */ 4734 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4735 void *buf, int len, unsigned int gup_flags) 4736 { 4737 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4738 } 4739 4740 /* 4741 * Access another process' address space. 4742 * Source/target buffer must be kernel space, 4743 * Do not walk the page table directly, use get_user_pages 4744 */ 4745 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4746 void *buf, int len, unsigned int gup_flags) 4747 { 4748 struct mm_struct *mm; 4749 int ret; 4750 4751 mm = get_task_mm(tsk); 4752 if (!mm) 4753 return 0; 4754 4755 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4756 4757 mmput(mm); 4758 4759 return ret; 4760 } 4761 EXPORT_SYMBOL_GPL(access_process_vm); 4762 4763 /* 4764 * Print the name of a VMA. 4765 */ 4766 void print_vma_addr(char *prefix, unsigned long ip) 4767 { 4768 struct mm_struct *mm = current->mm; 4769 struct vm_area_struct *vma; 4770 4771 /* 4772 * we might be running from an atomic context so we cannot sleep 4773 */ 4774 if (!down_read_trylock(&mm->mmap_sem)) 4775 return; 4776 4777 vma = find_vma(mm, ip); 4778 if (vma && vma->vm_file) { 4779 struct file *f = vma->vm_file; 4780 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4781 if (buf) { 4782 char *p; 4783 4784 p = file_path(f, buf, PAGE_SIZE); 4785 if (IS_ERR(p)) 4786 p = "?"; 4787 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4788 vma->vm_start, 4789 vma->vm_end - vma->vm_start); 4790 free_page((unsigned long)buf); 4791 } 4792 } 4793 up_read(&mm->mmap_sem); 4794 } 4795 4796 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4797 void __might_fault(const char *file, int line) 4798 { 4799 /* 4800 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4801 * holding the mmap_sem, this is safe because kernel memory doesn't 4802 * get paged out, therefore we'll never actually fault, and the 4803 * below annotations will generate false positives. 4804 */ 4805 if (uaccess_kernel()) 4806 return; 4807 if (pagefault_disabled()) 4808 return; 4809 __might_sleep(file, line, 0); 4810 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4811 if (current->mm) 4812 might_lock_read(¤t->mm->mmap_sem); 4813 #endif 4814 } 4815 EXPORT_SYMBOL(__might_fault); 4816 #endif 4817 4818 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4819 /* 4820 * Process all subpages of the specified huge page with the specified 4821 * operation. The target subpage will be processed last to keep its 4822 * cache lines hot. 4823 */ 4824 static inline void process_huge_page( 4825 unsigned long addr_hint, unsigned int pages_per_huge_page, 4826 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4827 void *arg) 4828 { 4829 int i, n, base, l; 4830 unsigned long addr = addr_hint & 4831 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4832 4833 /* Process target subpage last to keep its cache lines hot */ 4834 might_sleep(); 4835 n = (addr_hint - addr) / PAGE_SIZE; 4836 if (2 * n <= pages_per_huge_page) { 4837 /* If target subpage in first half of huge page */ 4838 base = 0; 4839 l = n; 4840 /* Process subpages at the end of huge page */ 4841 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4842 cond_resched(); 4843 process_subpage(addr + i * PAGE_SIZE, i, arg); 4844 } 4845 } else { 4846 /* If target subpage in second half of huge page */ 4847 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4848 l = pages_per_huge_page - n; 4849 /* Process subpages at the begin of huge page */ 4850 for (i = 0; i < base; i++) { 4851 cond_resched(); 4852 process_subpage(addr + i * PAGE_SIZE, i, arg); 4853 } 4854 } 4855 /* 4856 * Process remaining subpages in left-right-left-right pattern 4857 * towards the target subpage 4858 */ 4859 for (i = 0; i < l; i++) { 4860 int left_idx = base + i; 4861 int right_idx = base + 2 * l - 1 - i; 4862 4863 cond_resched(); 4864 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4865 cond_resched(); 4866 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4867 } 4868 } 4869 4870 static void clear_gigantic_page(struct page *page, 4871 unsigned long addr, 4872 unsigned int pages_per_huge_page) 4873 { 4874 int i; 4875 struct page *p = page; 4876 4877 might_sleep(); 4878 for (i = 0; i < pages_per_huge_page; 4879 i++, p = mem_map_next(p, page, i)) { 4880 cond_resched(); 4881 clear_user_highpage(p, addr + i * PAGE_SIZE); 4882 } 4883 } 4884 4885 static void clear_subpage(unsigned long addr, int idx, void *arg) 4886 { 4887 struct page *page = arg; 4888 4889 clear_user_highpage(page + idx, addr); 4890 } 4891 4892 void clear_huge_page(struct page *page, 4893 unsigned long addr_hint, unsigned int pages_per_huge_page) 4894 { 4895 unsigned long addr = addr_hint & 4896 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4897 4898 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4899 clear_gigantic_page(page, addr, pages_per_huge_page); 4900 return; 4901 } 4902 4903 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4904 } 4905 4906 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4907 unsigned long addr, 4908 struct vm_area_struct *vma, 4909 unsigned int pages_per_huge_page) 4910 { 4911 int i; 4912 struct page *dst_base = dst; 4913 struct page *src_base = src; 4914 4915 for (i = 0; i < pages_per_huge_page; ) { 4916 cond_resched(); 4917 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4918 4919 i++; 4920 dst = mem_map_next(dst, dst_base, i); 4921 src = mem_map_next(src, src_base, i); 4922 } 4923 } 4924 4925 struct copy_subpage_arg { 4926 struct page *dst; 4927 struct page *src; 4928 struct vm_area_struct *vma; 4929 }; 4930 4931 static void copy_subpage(unsigned long addr, int idx, void *arg) 4932 { 4933 struct copy_subpage_arg *copy_arg = arg; 4934 4935 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4936 addr, copy_arg->vma); 4937 } 4938 4939 void copy_user_huge_page(struct page *dst, struct page *src, 4940 unsigned long addr_hint, struct vm_area_struct *vma, 4941 unsigned int pages_per_huge_page) 4942 { 4943 unsigned long addr = addr_hint & 4944 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4945 struct copy_subpage_arg arg = { 4946 .dst = dst, 4947 .src = src, 4948 .vma = vma, 4949 }; 4950 4951 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4952 copy_user_gigantic_page(dst, src, addr, vma, 4953 pages_per_huge_page); 4954 return; 4955 } 4956 4957 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4958 } 4959 4960 long copy_huge_page_from_user(struct page *dst_page, 4961 const void __user *usr_src, 4962 unsigned int pages_per_huge_page, 4963 bool allow_pagefault) 4964 { 4965 void *src = (void *)usr_src; 4966 void *page_kaddr; 4967 unsigned long i, rc = 0; 4968 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4969 4970 for (i = 0; i < pages_per_huge_page; i++) { 4971 if (allow_pagefault) 4972 page_kaddr = kmap(dst_page + i); 4973 else 4974 page_kaddr = kmap_atomic(dst_page + i); 4975 rc = copy_from_user(page_kaddr, 4976 (const void __user *)(src + i * PAGE_SIZE), 4977 PAGE_SIZE); 4978 if (allow_pagefault) 4979 kunmap(dst_page + i); 4980 else 4981 kunmap_atomic(page_kaddr); 4982 4983 ret_val -= (PAGE_SIZE - rc); 4984 if (rc) 4985 break; 4986 4987 cond_resched(); 4988 } 4989 return ret_val; 4990 } 4991 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4992 4993 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4994 4995 static struct kmem_cache *page_ptl_cachep; 4996 4997 void __init ptlock_cache_init(void) 4998 { 4999 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5000 SLAB_PANIC, NULL); 5001 } 5002 5003 bool ptlock_alloc(struct page *page) 5004 { 5005 spinlock_t *ptl; 5006 5007 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5008 if (!ptl) 5009 return false; 5010 page->ptl = ptl; 5011 return true; 5012 } 5013 5014 void ptlock_free(struct page *page) 5015 { 5016 kmem_cache_free(page_ptl_cachep, page->ptl); 5017 } 5018 #endif 5019