xref: /openbmc/linux/mm/memory.c (revision 78bb17f7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 
75 #include <trace/events/kmem.h>
76 
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84 
85 #include "internal.h"
86 
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90 
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95 
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99 
100 /*
101  * A number of key systems in x86 including ioremap() rely on the assumption
102  * that high_memory defines the upper bound on direct map memory, then end
103  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
104  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105  * and ZONE_HIGHMEM.
106  */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109 
110 /*
111  * Randomize the address space (stacks, mmaps, brk, etc.).
112  *
113  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114  *   as ancient (libc5 based) binaries can segfault. )
115  */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118 					1;
119 #else
120 					2;
121 #endif
122 
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
125 {
126 	/*
127 	 * Those arches which don't have hw access flag feature need to
128 	 * implement their own helper. By default, "true" means pagefault
129 	 * will be hit on old pte.
130 	 */
131 	return true;
132 }
133 #endif
134 
135 static int __init disable_randmaps(char *s)
136 {
137 	randomize_va_space = 0;
138 	return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141 
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144 
145 unsigned long highest_memmap_pfn __read_mostly;
146 
147 /*
148  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149  */
150 static int __init init_zero_pfn(void)
151 {
152 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
153 	return 0;
154 }
155 core_initcall(init_zero_pfn);
156 
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 {
159 	trace_rss_stat(mm, member, count);
160 }
161 
162 #if defined(SPLIT_RSS_COUNTING)
163 
164 void sync_mm_rss(struct mm_struct *mm)
165 {
166 	int i;
167 
168 	for (i = 0; i < NR_MM_COUNTERS; i++) {
169 		if (current->rss_stat.count[i]) {
170 			add_mm_counter(mm, i, current->rss_stat.count[i]);
171 			current->rss_stat.count[i] = 0;
172 		}
173 	}
174 	current->rss_stat.events = 0;
175 }
176 
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 {
179 	struct task_struct *task = current;
180 
181 	if (likely(task->mm == mm))
182 		task->rss_stat.count[member] += val;
183 	else
184 		add_mm_counter(mm, member, val);
185 }
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188 
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH	(64)
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193 	if (unlikely(task != current))
194 		return;
195 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196 		sync_mm_rss(task->mm);
197 }
198 #else /* SPLIT_RSS_COUNTING */
199 
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202 
203 static void check_sync_rss_stat(struct task_struct *task)
204 {
205 }
206 
207 #endif /* SPLIT_RSS_COUNTING */
208 
209 /*
210  * Note: this doesn't free the actual pages themselves. That
211  * has been handled earlier when unmapping all the memory regions.
212  */
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214 			   unsigned long addr)
215 {
216 	pgtable_t token = pmd_pgtable(*pmd);
217 	pmd_clear(pmd);
218 	pte_free_tlb(tlb, token, addr);
219 	mm_dec_nr_ptes(tlb->mm);
220 }
221 
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223 				unsigned long addr, unsigned long end,
224 				unsigned long floor, unsigned long ceiling)
225 {
226 	pmd_t *pmd;
227 	unsigned long next;
228 	unsigned long start;
229 
230 	start = addr;
231 	pmd = pmd_offset(pud, addr);
232 	do {
233 		next = pmd_addr_end(addr, end);
234 		if (pmd_none_or_clear_bad(pmd))
235 			continue;
236 		free_pte_range(tlb, pmd, addr);
237 	} while (pmd++, addr = next, addr != end);
238 
239 	start &= PUD_MASK;
240 	if (start < floor)
241 		return;
242 	if (ceiling) {
243 		ceiling &= PUD_MASK;
244 		if (!ceiling)
245 			return;
246 	}
247 	if (end - 1 > ceiling - 1)
248 		return;
249 
250 	pmd = pmd_offset(pud, start);
251 	pud_clear(pud);
252 	pmd_free_tlb(tlb, pmd, start);
253 	mm_dec_nr_pmds(tlb->mm);
254 }
255 
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257 				unsigned long addr, unsigned long end,
258 				unsigned long floor, unsigned long ceiling)
259 {
260 	pud_t *pud;
261 	unsigned long next;
262 	unsigned long start;
263 
264 	start = addr;
265 	pud = pud_offset(p4d, addr);
266 	do {
267 		next = pud_addr_end(addr, end);
268 		if (pud_none_or_clear_bad(pud))
269 			continue;
270 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271 	} while (pud++, addr = next, addr != end);
272 
273 	start &= P4D_MASK;
274 	if (start < floor)
275 		return;
276 	if (ceiling) {
277 		ceiling &= P4D_MASK;
278 		if (!ceiling)
279 			return;
280 	}
281 	if (end - 1 > ceiling - 1)
282 		return;
283 
284 	pud = pud_offset(p4d, start);
285 	p4d_clear(p4d);
286 	pud_free_tlb(tlb, pud, start);
287 	mm_dec_nr_puds(tlb->mm);
288 }
289 
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291 				unsigned long addr, unsigned long end,
292 				unsigned long floor, unsigned long ceiling)
293 {
294 	p4d_t *p4d;
295 	unsigned long next;
296 	unsigned long start;
297 
298 	start = addr;
299 	p4d = p4d_offset(pgd, addr);
300 	do {
301 		next = p4d_addr_end(addr, end);
302 		if (p4d_none_or_clear_bad(p4d))
303 			continue;
304 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305 	} while (p4d++, addr = next, addr != end);
306 
307 	start &= PGDIR_MASK;
308 	if (start < floor)
309 		return;
310 	if (ceiling) {
311 		ceiling &= PGDIR_MASK;
312 		if (!ceiling)
313 			return;
314 	}
315 	if (end - 1 > ceiling - 1)
316 		return;
317 
318 	p4d = p4d_offset(pgd, start);
319 	pgd_clear(pgd);
320 	p4d_free_tlb(tlb, p4d, start);
321 }
322 
323 /*
324  * This function frees user-level page tables of a process.
325  */
326 void free_pgd_range(struct mmu_gather *tlb,
327 			unsigned long addr, unsigned long end,
328 			unsigned long floor, unsigned long ceiling)
329 {
330 	pgd_t *pgd;
331 	unsigned long next;
332 
333 	/*
334 	 * The next few lines have given us lots of grief...
335 	 *
336 	 * Why are we testing PMD* at this top level?  Because often
337 	 * there will be no work to do at all, and we'd prefer not to
338 	 * go all the way down to the bottom just to discover that.
339 	 *
340 	 * Why all these "- 1"s?  Because 0 represents both the bottom
341 	 * of the address space and the top of it (using -1 for the
342 	 * top wouldn't help much: the masks would do the wrong thing).
343 	 * The rule is that addr 0 and floor 0 refer to the bottom of
344 	 * the address space, but end 0 and ceiling 0 refer to the top
345 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 	 * that end 0 case should be mythical).
347 	 *
348 	 * Wherever addr is brought up or ceiling brought down, we must
349 	 * be careful to reject "the opposite 0" before it confuses the
350 	 * subsequent tests.  But what about where end is brought down
351 	 * by PMD_SIZE below? no, end can't go down to 0 there.
352 	 *
353 	 * Whereas we round start (addr) and ceiling down, by different
354 	 * masks at different levels, in order to test whether a table
355 	 * now has no other vmas using it, so can be freed, we don't
356 	 * bother to round floor or end up - the tests don't need that.
357 	 */
358 
359 	addr &= PMD_MASK;
360 	if (addr < floor) {
361 		addr += PMD_SIZE;
362 		if (!addr)
363 			return;
364 	}
365 	if (ceiling) {
366 		ceiling &= PMD_MASK;
367 		if (!ceiling)
368 			return;
369 	}
370 	if (end - 1 > ceiling - 1)
371 		end -= PMD_SIZE;
372 	if (addr > end - 1)
373 		return;
374 	/*
375 	 * We add page table cache pages with PAGE_SIZE,
376 	 * (see pte_free_tlb()), flush the tlb if we need
377 	 */
378 	tlb_change_page_size(tlb, PAGE_SIZE);
379 	pgd = pgd_offset(tlb->mm, addr);
380 	do {
381 		next = pgd_addr_end(addr, end);
382 		if (pgd_none_or_clear_bad(pgd))
383 			continue;
384 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385 	} while (pgd++, addr = next, addr != end);
386 }
387 
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389 		unsigned long floor, unsigned long ceiling)
390 {
391 	while (vma) {
392 		struct vm_area_struct *next = vma->vm_next;
393 		unsigned long addr = vma->vm_start;
394 
395 		/*
396 		 * Hide vma from rmap and truncate_pagecache before freeing
397 		 * pgtables
398 		 */
399 		unlink_anon_vmas(vma);
400 		unlink_file_vma(vma);
401 
402 		if (is_vm_hugetlb_page(vma)) {
403 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404 				floor, next ? next->vm_start : ceiling);
405 		} else {
406 			/*
407 			 * Optimization: gather nearby vmas into one call down
408 			 */
409 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410 			       && !is_vm_hugetlb_page(next)) {
411 				vma = next;
412 				next = vma->vm_next;
413 				unlink_anon_vmas(vma);
414 				unlink_file_vma(vma);
415 			}
416 			free_pgd_range(tlb, addr, vma->vm_end,
417 				floor, next ? next->vm_start : ceiling);
418 		}
419 		vma = next;
420 	}
421 }
422 
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 {
425 	spinlock_t *ptl;
426 	pgtable_t new = pte_alloc_one(mm);
427 	if (!new)
428 		return -ENOMEM;
429 
430 	/*
431 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 	 * visible before the pte is made visible to other CPUs by being
433 	 * put into page tables.
434 	 *
435 	 * The other side of the story is the pointer chasing in the page
436 	 * table walking code (when walking the page table without locking;
437 	 * ie. most of the time). Fortunately, these data accesses consist
438 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 	 * being the notable exception) will already guarantee loads are
440 	 * seen in-order. See the alpha page table accessors for the
441 	 * smp_read_barrier_depends() barriers in page table walking code.
442 	 */
443 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444 
445 	ptl = pmd_lock(mm, pmd);
446 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
447 		mm_inc_nr_ptes(mm);
448 		pmd_populate(mm, pmd, new);
449 		new = NULL;
450 	}
451 	spin_unlock(ptl);
452 	if (new)
453 		pte_free(mm, new);
454 	return 0;
455 }
456 
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459 	pte_t *new = pte_alloc_one_kernel(&init_mm);
460 	if (!new)
461 		return -ENOMEM;
462 
463 	smp_wmb(); /* See comment in __pte_alloc */
464 
465 	spin_lock(&init_mm.page_table_lock);
466 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
467 		pmd_populate_kernel(&init_mm, pmd, new);
468 		new = NULL;
469 	}
470 	spin_unlock(&init_mm.page_table_lock);
471 	if (new)
472 		pte_free_kernel(&init_mm, new);
473 	return 0;
474 }
475 
476 static inline void init_rss_vec(int *rss)
477 {
478 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480 
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483 	int i;
484 
485 	if (current->mm == mm)
486 		sync_mm_rss(mm);
487 	for (i = 0; i < NR_MM_COUNTERS; i++)
488 		if (rss[i])
489 			add_mm_counter(mm, i, rss[i]);
490 }
491 
492 /*
493  * This function is called to print an error when a bad pte
494  * is found. For example, we might have a PFN-mapped pte in
495  * a region that doesn't allow it.
496  *
497  * The calling function must still handle the error.
498  */
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500 			  pte_t pte, struct page *page)
501 {
502 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503 	p4d_t *p4d = p4d_offset(pgd, addr);
504 	pud_t *pud = pud_offset(p4d, addr);
505 	pmd_t *pmd = pmd_offset(pud, addr);
506 	struct address_space *mapping;
507 	pgoff_t index;
508 	static unsigned long resume;
509 	static unsigned long nr_shown;
510 	static unsigned long nr_unshown;
511 
512 	/*
513 	 * Allow a burst of 60 reports, then keep quiet for that minute;
514 	 * or allow a steady drip of one report per second.
515 	 */
516 	if (nr_shown == 60) {
517 		if (time_before(jiffies, resume)) {
518 			nr_unshown++;
519 			return;
520 		}
521 		if (nr_unshown) {
522 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523 				 nr_unshown);
524 			nr_unshown = 0;
525 		}
526 		nr_shown = 0;
527 	}
528 	if (nr_shown++ == 0)
529 		resume = jiffies + 60 * HZ;
530 
531 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532 	index = linear_page_index(vma, addr);
533 
534 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
535 		 current->comm,
536 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
537 	if (page)
538 		dump_page(page, "bad pte");
539 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542 		 vma->vm_file,
543 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
544 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545 		 mapping ? mapping->a_ops->readpage : NULL);
546 	dump_stack();
547 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549 
550 /*
551  * vm_normal_page -- This function gets the "struct page" associated with a pte.
552  *
553  * "Special" mappings do not wish to be associated with a "struct page" (either
554  * it doesn't exist, or it exists but they don't want to touch it). In this
555  * case, NULL is returned here. "Normal" mappings do have a struct page.
556  *
557  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558  * pte bit, in which case this function is trivial. Secondly, an architecture
559  * may not have a spare pte bit, which requires a more complicated scheme,
560  * described below.
561  *
562  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563  * special mapping (even if there are underlying and valid "struct pages").
564  * COWed pages of a VM_PFNMAP are always normal.
565  *
566  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569  * mapping will always honor the rule
570  *
571  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572  *
573  * And for normal mappings this is false.
574  *
575  * This restricts such mappings to be a linear translation from virtual address
576  * to pfn. To get around this restriction, we allow arbitrary mappings so long
577  * as the vma is not a COW mapping; in that case, we know that all ptes are
578  * special (because none can have been COWed).
579  *
580  *
581  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582  *
583  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584  * page" backing, however the difference is that _all_ pages with a struct
585  * page (that is, those where pfn_valid is true) are refcounted and considered
586  * normal pages by the VM. The disadvantage is that pages are refcounted
587  * (which can be slower and simply not an option for some PFNMAP users). The
588  * advantage is that we don't have to follow the strict linearity rule of
589  * PFNMAP mappings in order to support COWable mappings.
590  *
591  */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 			    pte_t pte)
594 {
595 	unsigned long pfn = pte_pfn(pte);
596 
597 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598 		if (likely(!pte_special(pte)))
599 			goto check_pfn;
600 		if (vma->vm_ops && vma->vm_ops->find_special_page)
601 			return vma->vm_ops->find_special_page(vma, addr);
602 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 			return NULL;
604 		if (is_zero_pfn(pfn))
605 			return NULL;
606 		if (pte_devmap(pte))
607 			return NULL;
608 
609 		print_bad_pte(vma, addr, pte, NULL);
610 		return NULL;
611 	}
612 
613 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 
615 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 		if (vma->vm_flags & VM_MIXEDMAP) {
617 			if (!pfn_valid(pfn))
618 				return NULL;
619 			goto out;
620 		} else {
621 			unsigned long off;
622 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 			if (pfn == vma->vm_pgoff + off)
624 				return NULL;
625 			if (!is_cow_mapping(vma->vm_flags))
626 				return NULL;
627 		}
628 	}
629 
630 	if (is_zero_pfn(pfn))
631 		return NULL;
632 
633 check_pfn:
634 	if (unlikely(pfn > highest_memmap_pfn)) {
635 		print_bad_pte(vma, addr, pte, NULL);
636 		return NULL;
637 	}
638 
639 	/*
640 	 * NOTE! We still have PageReserved() pages in the page tables.
641 	 * eg. VDSO mappings can cause them to exist.
642 	 */
643 out:
644 	return pfn_to_page(pfn);
645 }
646 
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649 				pmd_t pmd)
650 {
651 	unsigned long pfn = pmd_pfn(pmd);
652 
653 	/*
654 	 * There is no pmd_special() but there may be special pmds, e.g.
655 	 * in a direct-access (dax) mapping, so let's just replicate the
656 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657 	 */
658 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659 		if (vma->vm_flags & VM_MIXEDMAP) {
660 			if (!pfn_valid(pfn))
661 				return NULL;
662 			goto out;
663 		} else {
664 			unsigned long off;
665 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
666 			if (pfn == vma->vm_pgoff + off)
667 				return NULL;
668 			if (!is_cow_mapping(vma->vm_flags))
669 				return NULL;
670 		}
671 	}
672 
673 	if (pmd_devmap(pmd))
674 		return NULL;
675 	if (is_huge_zero_pmd(pmd))
676 		return NULL;
677 	if (unlikely(pfn > highest_memmap_pfn))
678 		return NULL;
679 
680 	/*
681 	 * NOTE! We still have PageReserved() pages in the page tables.
682 	 * eg. VDSO mappings can cause them to exist.
683 	 */
684 out:
685 	return pfn_to_page(pfn);
686 }
687 #endif
688 
689 /*
690  * copy one vm_area from one task to the other. Assumes the page tables
691  * already present in the new task to be cleared in the whole range
692  * covered by this vma.
693  */
694 
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698 		unsigned long addr, int *rss)
699 {
700 	unsigned long vm_flags = vma->vm_flags;
701 	pte_t pte = *src_pte;
702 	struct page *page;
703 
704 	/* pte contains position in swap or file, so copy. */
705 	if (unlikely(!pte_present(pte))) {
706 		swp_entry_t entry = pte_to_swp_entry(pte);
707 
708 		if (likely(!non_swap_entry(entry))) {
709 			if (swap_duplicate(entry) < 0)
710 				return entry.val;
711 
712 			/* make sure dst_mm is on swapoff's mmlist. */
713 			if (unlikely(list_empty(&dst_mm->mmlist))) {
714 				spin_lock(&mmlist_lock);
715 				if (list_empty(&dst_mm->mmlist))
716 					list_add(&dst_mm->mmlist,
717 							&src_mm->mmlist);
718 				spin_unlock(&mmlist_lock);
719 			}
720 			rss[MM_SWAPENTS]++;
721 		} else if (is_migration_entry(entry)) {
722 			page = migration_entry_to_page(entry);
723 
724 			rss[mm_counter(page)]++;
725 
726 			if (is_write_migration_entry(entry) &&
727 					is_cow_mapping(vm_flags)) {
728 				/*
729 				 * COW mappings require pages in both
730 				 * parent and child to be set to read.
731 				 */
732 				make_migration_entry_read(&entry);
733 				pte = swp_entry_to_pte(entry);
734 				if (pte_swp_soft_dirty(*src_pte))
735 					pte = pte_swp_mksoft_dirty(pte);
736 				if (pte_swp_uffd_wp(*src_pte))
737 					pte = pte_swp_mkuffd_wp(pte);
738 				set_pte_at(src_mm, addr, src_pte, pte);
739 			}
740 		} else if (is_device_private_entry(entry)) {
741 			page = device_private_entry_to_page(entry);
742 
743 			/*
744 			 * Update rss count even for unaddressable pages, as
745 			 * they should treated just like normal pages in this
746 			 * respect.
747 			 *
748 			 * We will likely want to have some new rss counters
749 			 * for unaddressable pages, at some point. But for now
750 			 * keep things as they are.
751 			 */
752 			get_page(page);
753 			rss[mm_counter(page)]++;
754 			page_dup_rmap(page, false);
755 
756 			/*
757 			 * We do not preserve soft-dirty information, because so
758 			 * far, checkpoint/restore is the only feature that
759 			 * requires that. And checkpoint/restore does not work
760 			 * when a device driver is involved (you cannot easily
761 			 * save and restore device driver state).
762 			 */
763 			if (is_write_device_private_entry(entry) &&
764 			    is_cow_mapping(vm_flags)) {
765 				make_device_private_entry_read(&entry);
766 				pte = swp_entry_to_pte(entry);
767 				if (pte_swp_uffd_wp(*src_pte))
768 					pte = pte_swp_mkuffd_wp(pte);
769 				set_pte_at(src_mm, addr, src_pte, pte);
770 			}
771 		}
772 		goto out_set_pte;
773 	}
774 
775 	/*
776 	 * If it's a COW mapping, write protect it both
777 	 * in the parent and the child
778 	 */
779 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
780 		ptep_set_wrprotect(src_mm, addr, src_pte);
781 		pte = pte_wrprotect(pte);
782 	}
783 
784 	/*
785 	 * If it's a shared mapping, mark it clean in
786 	 * the child
787 	 */
788 	if (vm_flags & VM_SHARED)
789 		pte = pte_mkclean(pte);
790 	pte = pte_mkold(pte);
791 
792 	/*
793 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
794 	 * does not have the VM_UFFD_WP, which means that the uffd
795 	 * fork event is not enabled.
796 	 */
797 	if (!(vm_flags & VM_UFFD_WP))
798 		pte = pte_clear_uffd_wp(pte);
799 
800 	page = vm_normal_page(vma, addr, pte);
801 	if (page) {
802 		get_page(page);
803 		page_dup_rmap(page, false);
804 		rss[mm_counter(page)]++;
805 	}
806 
807 out_set_pte:
808 	set_pte_at(dst_mm, addr, dst_pte, pte);
809 	return 0;
810 }
811 
812 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
813 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
814 		   unsigned long addr, unsigned long end)
815 {
816 	pte_t *orig_src_pte, *orig_dst_pte;
817 	pte_t *src_pte, *dst_pte;
818 	spinlock_t *src_ptl, *dst_ptl;
819 	int progress = 0;
820 	int rss[NR_MM_COUNTERS];
821 	swp_entry_t entry = (swp_entry_t){0};
822 
823 again:
824 	init_rss_vec(rss);
825 
826 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
827 	if (!dst_pte)
828 		return -ENOMEM;
829 	src_pte = pte_offset_map(src_pmd, addr);
830 	src_ptl = pte_lockptr(src_mm, src_pmd);
831 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
832 	orig_src_pte = src_pte;
833 	orig_dst_pte = dst_pte;
834 	arch_enter_lazy_mmu_mode();
835 
836 	do {
837 		/*
838 		 * We are holding two locks at this point - either of them
839 		 * could generate latencies in another task on another CPU.
840 		 */
841 		if (progress >= 32) {
842 			progress = 0;
843 			if (need_resched() ||
844 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
845 				break;
846 		}
847 		if (pte_none(*src_pte)) {
848 			progress++;
849 			continue;
850 		}
851 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
852 							vma, addr, rss);
853 		if (entry.val)
854 			break;
855 		progress += 8;
856 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
857 
858 	arch_leave_lazy_mmu_mode();
859 	spin_unlock(src_ptl);
860 	pte_unmap(orig_src_pte);
861 	add_mm_rss_vec(dst_mm, rss);
862 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
863 	cond_resched();
864 
865 	if (entry.val) {
866 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
867 			return -ENOMEM;
868 		progress = 0;
869 	}
870 	if (addr != end)
871 		goto again;
872 	return 0;
873 }
874 
875 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
876 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
877 		unsigned long addr, unsigned long end)
878 {
879 	pmd_t *src_pmd, *dst_pmd;
880 	unsigned long next;
881 
882 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
883 	if (!dst_pmd)
884 		return -ENOMEM;
885 	src_pmd = pmd_offset(src_pud, addr);
886 	do {
887 		next = pmd_addr_end(addr, end);
888 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
889 			|| pmd_devmap(*src_pmd)) {
890 			int err;
891 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
892 			err = copy_huge_pmd(dst_mm, src_mm,
893 					    dst_pmd, src_pmd, addr, vma);
894 			if (err == -ENOMEM)
895 				return -ENOMEM;
896 			if (!err)
897 				continue;
898 			/* fall through */
899 		}
900 		if (pmd_none_or_clear_bad(src_pmd))
901 			continue;
902 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
903 						vma, addr, next))
904 			return -ENOMEM;
905 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
906 	return 0;
907 }
908 
909 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
910 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
911 		unsigned long addr, unsigned long end)
912 {
913 	pud_t *src_pud, *dst_pud;
914 	unsigned long next;
915 
916 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
917 	if (!dst_pud)
918 		return -ENOMEM;
919 	src_pud = pud_offset(src_p4d, addr);
920 	do {
921 		next = pud_addr_end(addr, end);
922 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
923 			int err;
924 
925 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
926 			err = copy_huge_pud(dst_mm, src_mm,
927 					    dst_pud, src_pud, addr, vma);
928 			if (err == -ENOMEM)
929 				return -ENOMEM;
930 			if (!err)
931 				continue;
932 			/* fall through */
933 		}
934 		if (pud_none_or_clear_bad(src_pud))
935 			continue;
936 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
937 						vma, addr, next))
938 			return -ENOMEM;
939 	} while (dst_pud++, src_pud++, addr = next, addr != end);
940 	return 0;
941 }
942 
943 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
944 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
945 		unsigned long addr, unsigned long end)
946 {
947 	p4d_t *src_p4d, *dst_p4d;
948 	unsigned long next;
949 
950 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
951 	if (!dst_p4d)
952 		return -ENOMEM;
953 	src_p4d = p4d_offset(src_pgd, addr);
954 	do {
955 		next = p4d_addr_end(addr, end);
956 		if (p4d_none_or_clear_bad(src_p4d))
957 			continue;
958 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
959 						vma, addr, next))
960 			return -ENOMEM;
961 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
962 	return 0;
963 }
964 
965 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
966 		struct vm_area_struct *vma)
967 {
968 	pgd_t *src_pgd, *dst_pgd;
969 	unsigned long next;
970 	unsigned long addr = vma->vm_start;
971 	unsigned long end = vma->vm_end;
972 	struct mmu_notifier_range range;
973 	bool is_cow;
974 	int ret;
975 
976 	/*
977 	 * Don't copy ptes where a page fault will fill them correctly.
978 	 * Fork becomes much lighter when there are big shared or private
979 	 * readonly mappings. The tradeoff is that copy_page_range is more
980 	 * efficient than faulting.
981 	 */
982 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
983 			!vma->anon_vma)
984 		return 0;
985 
986 	if (is_vm_hugetlb_page(vma))
987 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
988 
989 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
990 		/*
991 		 * We do not free on error cases below as remove_vma
992 		 * gets called on error from higher level routine
993 		 */
994 		ret = track_pfn_copy(vma);
995 		if (ret)
996 			return ret;
997 	}
998 
999 	/*
1000 	 * We need to invalidate the secondary MMU mappings only when
1001 	 * there could be a permission downgrade on the ptes of the
1002 	 * parent mm. And a permission downgrade will only happen if
1003 	 * is_cow_mapping() returns true.
1004 	 */
1005 	is_cow = is_cow_mapping(vma->vm_flags);
1006 
1007 	if (is_cow) {
1008 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1009 					0, vma, src_mm, addr, end);
1010 		mmu_notifier_invalidate_range_start(&range);
1011 	}
1012 
1013 	ret = 0;
1014 	dst_pgd = pgd_offset(dst_mm, addr);
1015 	src_pgd = pgd_offset(src_mm, addr);
1016 	do {
1017 		next = pgd_addr_end(addr, end);
1018 		if (pgd_none_or_clear_bad(src_pgd))
1019 			continue;
1020 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1021 					    vma, addr, next))) {
1022 			ret = -ENOMEM;
1023 			break;
1024 		}
1025 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1026 
1027 	if (is_cow)
1028 		mmu_notifier_invalidate_range_end(&range);
1029 	return ret;
1030 }
1031 
1032 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1033 				struct vm_area_struct *vma, pmd_t *pmd,
1034 				unsigned long addr, unsigned long end,
1035 				struct zap_details *details)
1036 {
1037 	struct mm_struct *mm = tlb->mm;
1038 	int force_flush = 0;
1039 	int rss[NR_MM_COUNTERS];
1040 	spinlock_t *ptl;
1041 	pte_t *start_pte;
1042 	pte_t *pte;
1043 	swp_entry_t entry;
1044 
1045 	tlb_change_page_size(tlb, PAGE_SIZE);
1046 again:
1047 	init_rss_vec(rss);
1048 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1049 	pte = start_pte;
1050 	flush_tlb_batched_pending(mm);
1051 	arch_enter_lazy_mmu_mode();
1052 	do {
1053 		pte_t ptent = *pte;
1054 		if (pte_none(ptent))
1055 			continue;
1056 
1057 		if (need_resched())
1058 			break;
1059 
1060 		if (pte_present(ptent)) {
1061 			struct page *page;
1062 
1063 			page = vm_normal_page(vma, addr, ptent);
1064 			if (unlikely(details) && page) {
1065 				/*
1066 				 * unmap_shared_mapping_pages() wants to
1067 				 * invalidate cache without truncating:
1068 				 * unmap shared but keep private pages.
1069 				 */
1070 				if (details->check_mapping &&
1071 				    details->check_mapping != page_rmapping(page))
1072 					continue;
1073 			}
1074 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1075 							tlb->fullmm);
1076 			tlb_remove_tlb_entry(tlb, pte, addr);
1077 			if (unlikely(!page))
1078 				continue;
1079 
1080 			if (!PageAnon(page)) {
1081 				if (pte_dirty(ptent)) {
1082 					force_flush = 1;
1083 					set_page_dirty(page);
1084 				}
1085 				if (pte_young(ptent) &&
1086 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1087 					mark_page_accessed(page);
1088 			}
1089 			rss[mm_counter(page)]--;
1090 			page_remove_rmap(page, false);
1091 			if (unlikely(page_mapcount(page) < 0))
1092 				print_bad_pte(vma, addr, ptent, page);
1093 			if (unlikely(__tlb_remove_page(tlb, page))) {
1094 				force_flush = 1;
1095 				addr += PAGE_SIZE;
1096 				break;
1097 			}
1098 			continue;
1099 		}
1100 
1101 		entry = pte_to_swp_entry(ptent);
1102 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1103 			struct page *page = device_private_entry_to_page(entry);
1104 
1105 			if (unlikely(details && details->check_mapping)) {
1106 				/*
1107 				 * unmap_shared_mapping_pages() wants to
1108 				 * invalidate cache without truncating:
1109 				 * unmap shared but keep private pages.
1110 				 */
1111 				if (details->check_mapping !=
1112 				    page_rmapping(page))
1113 					continue;
1114 			}
1115 
1116 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1117 			rss[mm_counter(page)]--;
1118 			page_remove_rmap(page, false);
1119 			put_page(page);
1120 			continue;
1121 		}
1122 
1123 		/* If details->check_mapping, we leave swap entries. */
1124 		if (unlikely(details))
1125 			continue;
1126 
1127 		if (!non_swap_entry(entry))
1128 			rss[MM_SWAPENTS]--;
1129 		else if (is_migration_entry(entry)) {
1130 			struct page *page;
1131 
1132 			page = migration_entry_to_page(entry);
1133 			rss[mm_counter(page)]--;
1134 		}
1135 		if (unlikely(!free_swap_and_cache(entry)))
1136 			print_bad_pte(vma, addr, ptent, NULL);
1137 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1138 	} while (pte++, addr += PAGE_SIZE, addr != end);
1139 
1140 	add_mm_rss_vec(mm, rss);
1141 	arch_leave_lazy_mmu_mode();
1142 
1143 	/* Do the actual TLB flush before dropping ptl */
1144 	if (force_flush)
1145 		tlb_flush_mmu_tlbonly(tlb);
1146 	pte_unmap_unlock(start_pte, ptl);
1147 
1148 	/*
1149 	 * If we forced a TLB flush (either due to running out of
1150 	 * batch buffers or because we needed to flush dirty TLB
1151 	 * entries before releasing the ptl), free the batched
1152 	 * memory too. Restart if we didn't do everything.
1153 	 */
1154 	if (force_flush) {
1155 		force_flush = 0;
1156 		tlb_flush_mmu(tlb);
1157 	}
1158 
1159 	if (addr != end) {
1160 		cond_resched();
1161 		goto again;
1162 	}
1163 
1164 	return addr;
1165 }
1166 
1167 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1168 				struct vm_area_struct *vma, pud_t *pud,
1169 				unsigned long addr, unsigned long end,
1170 				struct zap_details *details)
1171 {
1172 	pmd_t *pmd;
1173 	unsigned long next;
1174 
1175 	pmd = pmd_offset(pud, addr);
1176 	do {
1177 		next = pmd_addr_end(addr, end);
1178 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1179 			if (next - addr != HPAGE_PMD_SIZE)
1180 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1181 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1182 				goto next;
1183 			/* fall through */
1184 		}
1185 		/*
1186 		 * Here there can be other concurrent MADV_DONTNEED or
1187 		 * trans huge page faults running, and if the pmd is
1188 		 * none or trans huge it can change under us. This is
1189 		 * because MADV_DONTNEED holds the mmap_sem in read
1190 		 * mode.
1191 		 */
1192 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1193 			goto next;
1194 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1195 next:
1196 		cond_resched();
1197 	} while (pmd++, addr = next, addr != end);
1198 
1199 	return addr;
1200 }
1201 
1202 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1203 				struct vm_area_struct *vma, p4d_t *p4d,
1204 				unsigned long addr, unsigned long end,
1205 				struct zap_details *details)
1206 {
1207 	pud_t *pud;
1208 	unsigned long next;
1209 
1210 	pud = pud_offset(p4d, addr);
1211 	do {
1212 		next = pud_addr_end(addr, end);
1213 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1214 			if (next - addr != HPAGE_PUD_SIZE) {
1215 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1216 				split_huge_pud(vma, pud, addr);
1217 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1218 				goto next;
1219 			/* fall through */
1220 		}
1221 		if (pud_none_or_clear_bad(pud))
1222 			continue;
1223 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1224 next:
1225 		cond_resched();
1226 	} while (pud++, addr = next, addr != end);
1227 
1228 	return addr;
1229 }
1230 
1231 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1232 				struct vm_area_struct *vma, pgd_t *pgd,
1233 				unsigned long addr, unsigned long end,
1234 				struct zap_details *details)
1235 {
1236 	p4d_t *p4d;
1237 	unsigned long next;
1238 
1239 	p4d = p4d_offset(pgd, addr);
1240 	do {
1241 		next = p4d_addr_end(addr, end);
1242 		if (p4d_none_or_clear_bad(p4d))
1243 			continue;
1244 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1245 	} while (p4d++, addr = next, addr != end);
1246 
1247 	return addr;
1248 }
1249 
1250 void unmap_page_range(struct mmu_gather *tlb,
1251 			     struct vm_area_struct *vma,
1252 			     unsigned long addr, unsigned long end,
1253 			     struct zap_details *details)
1254 {
1255 	pgd_t *pgd;
1256 	unsigned long next;
1257 
1258 	BUG_ON(addr >= end);
1259 	tlb_start_vma(tlb, vma);
1260 	pgd = pgd_offset(vma->vm_mm, addr);
1261 	do {
1262 		next = pgd_addr_end(addr, end);
1263 		if (pgd_none_or_clear_bad(pgd))
1264 			continue;
1265 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1266 	} while (pgd++, addr = next, addr != end);
1267 	tlb_end_vma(tlb, vma);
1268 }
1269 
1270 
1271 static void unmap_single_vma(struct mmu_gather *tlb,
1272 		struct vm_area_struct *vma, unsigned long start_addr,
1273 		unsigned long end_addr,
1274 		struct zap_details *details)
1275 {
1276 	unsigned long start = max(vma->vm_start, start_addr);
1277 	unsigned long end;
1278 
1279 	if (start >= vma->vm_end)
1280 		return;
1281 	end = min(vma->vm_end, end_addr);
1282 	if (end <= vma->vm_start)
1283 		return;
1284 
1285 	if (vma->vm_file)
1286 		uprobe_munmap(vma, start, end);
1287 
1288 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1289 		untrack_pfn(vma, 0, 0);
1290 
1291 	if (start != end) {
1292 		if (unlikely(is_vm_hugetlb_page(vma))) {
1293 			/*
1294 			 * It is undesirable to test vma->vm_file as it
1295 			 * should be non-null for valid hugetlb area.
1296 			 * However, vm_file will be NULL in the error
1297 			 * cleanup path of mmap_region. When
1298 			 * hugetlbfs ->mmap method fails,
1299 			 * mmap_region() nullifies vma->vm_file
1300 			 * before calling this function to clean up.
1301 			 * Since no pte has actually been setup, it is
1302 			 * safe to do nothing in this case.
1303 			 */
1304 			if (vma->vm_file) {
1305 				i_mmap_lock_write(vma->vm_file->f_mapping);
1306 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1307 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1308 			}
1309 		} else
1310 			unmap_page_range(tlb, vma, start, end, details);
1311 	}
1312 }
1313 
1314 /**
1315  * unmap_vmas - unmap a range of memory covered by a list of vma's
1316  * @tlb: address of the caller's struct mmu_gather
1317  * @vma: the starting vma
1318  * @start_addr: virtual address at which to start unmapping
1319  * @end_addr: virtual address at which to end unmapping
1320  *
1321  * Unmap all pages in the vma list.
1322  *
1323  * Only addresses between `start' and `end' will be unmapped.
1324  *
1325  * The VMA list must be sorted in ascending virtual address order.
1326  *
1327  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1328  * range after unmap_vmas() returns.  So the only responsibility here is to
1329  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1330  * drops the lock and schedules.
1331  */
1332 void unmap_vmas(struct mmu_gather *tlb,
1333 		struct vm_area_struct *vma, unsigned long start_addr,
1334 		unsigned long end_addr)
1335 {
1336 	struct mmu_notifier_range range;
1337 
1338 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1339 				start_addr, end_addr);
1340 	mmu_notifier_invalidate_range_start(&range);
1341 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1342 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1343 	mmu_notifier_invalidate_range_end(&range);
1344 }
1345 
1346 /**
1347  * zap_page_range - remove user pages in a given range
1348  * @vma: vm_area_struct holding the applicable pages
1349  * @start: starting address of pages to zap
1350  * @size: number of bytes to zap
1351  *
1352  * Caller must protect the VMA list
1353  */
1354 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1355 		unsigned long size)
1356 {
1357 	struct mmu_notifier_range range;
1358 	struct mmu_gather tlb;
1359 
1360 	lru_add_drain();
1361 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1362 				start, start + size);
1363 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1364 	update_hiwater_rss(vma->vm_mm);
1365 	mmu_notifier_invalidate_range_start(&range);
1366 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1367 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1368 	mmu_notifier_invalidate_range_end(&range);
1369 	tlb_finish_mmu(&tlb, start, range.end);
1370 }
1371 
1372 /**
1373  * zap_page_range_single - remove user pages in a given range
1374  * @vma: vm_area_struct holding the applicable pages
1375  * @address: starting address of pages to zap
1376  * @size: number of bytes to zap
1377  * @details: details of shared cache invalidation
1378  *
1379  * The range must fit into one VMA.
1380  */
1381 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1382 		unsigned long size, struct zap_details *details)
1383 {
1384 	struct mmu_notifier_range range;
1385 	struct mmu_gather tlb;
1386 
1387 	lru_add_drain();
1388 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1389 				address, address + size);
1390 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1391 	update_hiwater_rss(vma->vm_mm);
1392 	mmu_notifier_invalidate_range_start(&range);
1393 	unmap_single_vma(&tlb, vma, address, range.end, details);
1394 	mmu_notifier_invalidate_range_end(&range);
1395 	tlb_finish_mmu(&tlb, address, range.end);
1396 }
1397 
1398 /**
1399  * zap_vma_ptes - remove ptes mapping the vma
1400  * @vma: vm_area_struct holding ptes to be zapped
1401  * @address: starting address of pages to zap
1402  * @size: number of bytes to zap
1403  *
1404  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1405  *
1406  * The entire address range must be fully contained within the vma.
1407  *
1408  */
1409 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1410 		unsigned long size)
1411 {
1412 	if (address < vma->vm_start || address + size > vma->vm_end ||
1413 	    		!(vma->vm_flags & VM_PFNMAP))
1414 		return;
1415 
1416 	zap_page_range_single(vma, address, size, NULL);
1417 }
1418 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1419 
1420 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1421 {
1422 	pgd_t *pgd;
1423 	p4d_t *p4d;
1424 	pud_t *pud;
1425 	pmd_t *pmd;
1426 
1427 	pgd = pgd_offset(mm, addr);
1428 	p4d = p4d_alloc(mm, pgd, addr);
1429 	if (!p4d)
1430 		return NULL;
1431 	pud = pud_alloc(mm, p4d, addr);
1432 	if (!pud)
1433 		return NULL;
1434 	pmd = pmd_alloc(mm, pud, addr);
1435 	if (!pmd)
1436 		return NULL;
1437 
1438 	VM_BUG_ON(pmd_trans_huge(*pmd));
1439 	return pmd;
1440 }
1441 
1442 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1443 			spinlock_t **ptl)
1444 {
1445 	pmd_t *pmd = walk_to_pmd(mm, addr);
1446 
1447 	if (!pmd)
1448 		return NULL;
1449 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1450 }
1451 
1452 static int validate_page_before_insert(struct page *page)
1453 {
1454 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1455 		return -EINVAL;
1456 	flush_dcache_page(page);
1457 	return 0;
1458 }
1459 
1460 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1461 			unsigned long addr, struct page *page, pgprot_t prot)
1462 {
1463 	if (!pte_none(*pte))
1464 		return -EBUSY;
1465 	/* Ok, finally just insert the thing.. */
1466 	get_page(page);
1467 	inc_mm_counter_fast(mm, mm_counter_file(page));
1468 	page_add_file_rmap(page, false);
1469 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1470 	return 0;
1471 }
1472 
1473 /*
1474  * This is the old fallback for page remapping.
1475  *
1476  * For historical reasons, it only allows reserved pages. Only
1477  * old drivers should use this, and they needed to mark their
1478  * pages reserved for the old functions anyway.
1479  */
1480 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1481 			struct page *page, pgprot_t prot)
1482 {
1483 	struct mm_struct *mm = vma->vm_mm;
1484 	int retval;
1485 	pte_t *pte;
1486 	spinlock_t *ptl;
1487 
1488 	retval = validate_page_before_insert(page);
1489 	if (retval)
1490 		goto out;
1491 	retval = -ENOMEM;
1492 	pte = get_locked_pte(mm, addr, &ptl);
1493 	if (!pte)
1494 		goto out;
1495 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1496 	pte_unmap_unlock(pte, ptl);
1497 out:
1498 	return retval;
1499 }
1500 
1501 #ifdef pte_index
1502 static int insert_page_in_batch_locked(struct mm_struct *mm, pmd_t *pmd,
1503 			unsigned long addr, struct page *page, pgprot_t prot)
1504 {
1505 	int err;
1506 
1507 	if (!page_count(page))
1508 		return -EINVAL;
1509 	err = validate_page_before_insert(page);
1510 	return err ? err : insert_page_into_pte_locked(
1511 		mm, pte_offset_map(pmd, addr), addr, page, prot);
1512 }
1513 
1514 /* insert_pages() amortizes the cost of spinlock operations
1515  * when inserting pages in a loop. Arch *must* define pte_index.
1516  */
1517 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1518 			struct page **pages, unsigned long *num, pgprot_t prot)
1519 {
1520 	pmd_t *pmd = NULL;
1521 	spinlock_t *pte_lock = NULL;
1522 	struct mm_struct *const mm = vma->vm_mm;
1523 	unsigned long curr_page_idx = 0;
1524 	unsigned long remaining_pages_total = *num;
1525 	unsigned long pages_to_write_in_pmd;
1526 	int ret;
1527 more:
1528 	ret = -EFAULT;
1529 	pmd = walk_to_pmd(mm, addr);
1530 	if (!pmd)
1531 		goto out;
1532 
1533 	pages_to_write_in_pmd = min_t(unsigned long,
1534 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1535 
1536 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1537 	ret = -ENOMEM;
1538 	if (pte_alloc(mm, pmd))
1539 		goto out;
1540 	pte_lock = pte_lockptr(mm, pmd);
1541 
1542 	while (pages_to_write_in_pmd) {
1543 		int pte_idx = 0;
1544 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1545 
1546 		spin_lock(pte_lock);
1547 		for (; pte_idx < batch_size; ++pte_idx) {
1548 			int err = insert_page_in_batch_locked(mm, pmd,
1549 				addr, pages[curr_page_idx], prot);
1550 			if (unlikely(err)) {
1551 				spin_unlock(pte_lock);
1552 				ret = err;
1553 				remaining_pages_total -= pte_idx;
1554 				goto out;
1555 			}
1556 			addr += PAGE_SIZE;
1557 			++curr_page_idx;
1558 		}
1559 		spin_unlock(pte_lock);
1560 		pages_to_write_in_pmd -= batch_size;
1561 		remaining_pages_total -= batch_size;
1562 	}
1563 	if (remaining_pages_total)
1564 		goto more;
1565 	ret = 0;
1566 out:
1567 	*num = remaining_pages_total;
1568 	return ret;
1569 }
1570 #endif  /* ifdef pte_index */
1571 
1572 /**
1573  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1574  * @vma: user vma to map to
1575  * @addr: target start user address of these pages
1576  * @pages: source kernel pages
1577  * @num: in: number of pages to map. out: number of pages that were *not*
1578  * mapped. (0 means all pages were successfully mapped).
1579  *
1580  * Preferred over vm_insert_page() when inserting multiple pages.
1581  *
1582  * In case of error, we may have mapped a subset of the provided
1583  * pages. It is the caller's responsibility to account for this case.
1584  *
1585  * The same restrictions apply as in vm_insert_page().
1586  */
1587 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1588 			struct page **pages, unsigned long *num)
1589 {
1590 #ifdef pte_index
1591 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1592 
1593 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1594 		return -EFAULT;
1595 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1596 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1597 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1598 		vma->vm_flags |= VM_MIXEDMAP;
1599 	}
1600 	/* Defer page refcount checking till we're about to map that page. */
1601 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1602 #else
1603 	unsigned long idx = 0, pgcount = *num;
1604 	int err;
1605 
1606 	for (; idx < pgcount; ++idx) {
1607 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1608 		if (err)
1609 			break;
1610 	}
1611 	*num = pgcount - idx;
1612 	return err;
1613 #endif  /* ifdef pte_index */
1614 }
1615 EXPORT_SYMBOL(vm_insert_pages);
1616 
1617 /**
1618  * vm_insert_page - insert single page into user vma
1619  * @vma: user vma to map to
1620  * @addr: target user address of this page
1621  * @page: source kernel page
1622  *
1623  * This allows drivers to insert individual pages they've allocated
1624  * into a user vma.
1625  *
1626  * The page has to be a nice clean _individual_ kernel allocation.
1627  * If you allocate a compound page, you need to have marked it as
1628  * such (__GFP_COMP), or manually just split the page up yourself
1629  * (see split_page()).
1630  *
1631  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1632  * took an arbitrary page protection parameter. This doesn't allow
1633  * that. Your vma protection will have to be set up correctly, which
1634  * means that if you want a shared writable mapping, you'd better
1635  * ask for a shared writable mapping!
1636  *
1637  * The page does not need to be reserved.
1638  *
1639  * Usually this function is called from f_op->mmap() handler
1640  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1641  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1642  * function from other places, for example from page-fault handler.
1643  *
1644  * Return: %0 on success, negative error code otherwise.
1645  */
1646 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1647 			struct page *page)
1648 {
1649 	if (addr < vma->vm_start || addr >= vma->vm_end)
1650 		return -EFAULT;
1651 	if (!page_count(page))
1652 		return -EINVAL;
1653 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1654 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1655 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1656 		vma->vm_flags |= VM_MIXEDMAP;
1657 	}
1658 	return insert_page(vma, addr, page, vma->vm_page_prot);
1659 }
1660 EXPORT_SYMBOL(vm_insert_page);
1661 
1662 /*
1663  * __vm_map_pages - maps range of kernel pages into user vma
1664  * @vma: user vma to map to
1665  * @pages: pointer to array of source kernel pages
1666  * @num: number of pages in page array
1667  * @offset: user's requested vm_pgoff
1668  *
1669  * This allows drivers to map range of kernel pages into a user vma.
1670  *
1671  * Return: 0 on success and error code otherwise.
1672  */
1673 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1674 				unsigned long num, unsigned long offset)
1675 {
1676 	unsigned long count = vma_pages(vma);
1677 	unsigned long uaddr = vma->vm_start;
1678 	int ret, i;
1679 
1680 	/* Fail if the user requested offset is beyond the end of the object */
1681 	if (offset >= num)
1682 		return -ENXIO;
1683 
1684 	/* Fail if the user requested size exceeds available object size */
1685 	if (count > num - offset)
1686 		return -ENXIO;
1687 
1688 	for (i = 0; i < count; i++) {
1689 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1690 		if (ret < 0)
1691 			return ret;
1692 		uaddr += PAGE_SIZE;
1693 	}
1694 
1695 	return 0;
1696 }
1697 
1698 /**
1699  * vm_map_pages - maps range of kernel pages starts with non zero offset
1700  * @vma: user vma to map to
1701  * @pages: pointer to array of source kernel pages
1702  * @num: number of pages in page array
1703  *
1704  * Maps an object consisting of @num pages, catering for the user's
1705  * requested vm_pgoff
1706  *
1707  * If we fail to insert any page into the vma, the function will return
1708  * immediately leaving any previously inserted pages present.  Callers
1709  * from the mmap handler may immediately return the error as their caller
1710  * will destroy the vma, removing any successfully inserted pages. Other
1711  * callers should make their own arrangements for calling unmap_region().
1712  *
1713  * Context: Process context. Called by mmap handlers.
1714  * Return: 0 on success and error code otherwise.
1715  */
1716 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1717 				unsigned long num)
1718 {
1719 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1720 }
1721 EXPORT_SYMBOL(vm_map_pages);
1722 
1723 /**
1724  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1725  * @vma: user vma to map to
1726  * @pages: pointer to array of source kernel pages
1727  * @num: number of pages in page array
1728  *
1729  * Similar to vm_map_pages(), except that it explicitly sets the offset
1730  * to 0. This function is intended for the drivers that did not consider
1731  * vm_pgoff.
1732  *
1733  * Context: Process context. Called by mmap handlers.
1734  * Return: 0 on success and error code otherwise.
1735  */
1736 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1737 				unsigned long num)
1738 {
1739 	return __vm_map_pages(vma, pages, num, 0);
1740 }
1741 EXPORT_SYMBOL(vm_map_pages_zero);
1742 
1743 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1744 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1745 {
1746 	struct mm_struct *mm = vma->vm_mm;
1747 	pte_t *pte, entry;
1748 	spinlock_t *ptl;
1749 
1750 	pte = get_locked_pte(mm, addr, &ptl);
1751 	if (!pte)
1752 		return VM_FAULT_OOM;
1753 	if (!pte_none(*pte)) {
1754 		if (mkwrite) {
1755 			/*
1756 			 * For read faults on private mappings the PFN passed
1757 			 * in may not match the PFN we have mapped if the
1758 			 * mapped PFN is a writeable COW page.  In the mkwrite
1759 			 * case we are creating a writable PTE for a shared
1760 			 * mapping and we expect the PFNs to match. If they
1761 			 * don't match, we are likely racing with block
1762 			 * allocation and mapping invalidation so just skip the
1763 			 * update.
1764 			 */
1765 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1766 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1767 				goto out_unlock;
1768 			}
1769 			entry = pte_mkyoung(*pte);
1770 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1771 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1772 				update_mmu_cache(vma, addr, pte);
1773 		}
1774 		goto out_unlock;
1775 	}
1776 
1777 	/* Ok, finally just insert the thing.. */
1778 	if (pfn_t_devmap(pfn))
1779 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1780 	else
1781 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1782 
1783 	if (mkwrite) {
1784 		entry = pte_mkyoung(entry);
1785 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1786 	}
1787 
1788 	set_pte_at(mm, addr, pte, entry);
1789 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1790 
1791 out_unlock:
1792 	pte_unmap_unlock(pte, ptl);
1793 	return VM_FAULT_NOPAGE;
1794 }
1795 
1796 /**
1797  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1798  * @vma: user vma to map to
1799  * @addr: target user address of this page
1800  * @pfn: source kernel pfn
1801  * @pgprot: pgprot flags for the inserted page
1802  *
1803  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1804  * to override pgprot on a per-page basis.
1805  *
1806  * This only makes sense for IO mappings, and it makes no sense for
1807  * COW mappings.  In general, using multiple vmas is preferable;
1808  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1809  * impractical.
1810  *
1811  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1812  * a value of @pgprot different from that of @vma->vm_page_prot.
1813  *
1814  * Context: Process context.  May allocate using %GFP_KERNEL.
1815  * Return: vm_fault_t value.
1816  */
1817 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1818 			unsigned long pfn, pgprot_t pgprot)
1819 {
1820 	/*
1821 	 * Technically, architectures with pte_special can avoid all these
1822 	 * restrictions (same for remap_pfn_range).  However we would like
1823 	 * consistency in testing and feature parity among all, so we should
1824 	 * try to keep these invariants in place for everybody.
1825 	 */
1826 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1827 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1828 						(VM_PFNMAP|VM_MIXEDMAP));
1829 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1830 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1831 
1832 	if (addr < vma->vm_start || addr >= vma->vm_end)
1833 		return VM_FAULT_SIGBUS;
1834 
1835 	if (!pfn_modify_allowed(pfn, pgprot))
1836 		return VM_FAULT_SIGBUS;
1837 
1838 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1839 
1840 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1841 			false);
1842 }
1843 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1844 
1845 /**
1846  * vmf_insert_pfn - insert single pfn into user vma
1847  * @vma: user vma to map to
1848  * @addr: target user address of this page
1849  * @pfn: source kernel pfn
1850  *
1851  * Similar to vm_insert_page, this allows drivers to insert individual pages
1852  * they've allocated into a user vma. Same comments apply.
1853  *
1854  * This function should only be called from a vm_ops->fault handler, and
1855  * in that case the handler should return the result of this function.
1856  *
1857  * vma cannot be a COW mapping.
1858  *
1859  * As this is called only for pages that do not currently exist, we
1860  * do not need to flush old virtual caches or the TLB.
1861  *
1862  * Context: Process context.  May allocate using %GFP_KERNEL.
1863  * Return: vm_fault_t value.
1864  */
1865 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1866 			unsigned long pfn)
1867 {
1868 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1869 }
1870 EXPORT_SYMBOL(vmf_insert_pfn);
1871 
1872 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1873 {
1874 	/* these checks mirror the abort conditions in vm_normal_page */
1875 	if (vma->vm_flags & VM_MIXEDMAP)
1876 		return true;
1877 	if (pfn_t_devmap(pfn))
1878 		return true;
1879 	if (pfn_t_special(pfn))
1880 		return true;
1881 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1882 		return true;
1883 	return false;
1884 }
1885 
1886 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1887 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1888 		bool mkwrite)
1889 {
1890 	int err;
1891 
1892 	BUG_ON(!vm_mixed_ok(vma, pfn));
1893 
1894 	if (addr < vma->vm_start || addr >= vma->vm_end)
1895 		return VM_FAULT_SIGBUS;
1896 
1897 	track_pfn_insert(vma, &pgprot, pfn);
1898 
1899 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1900 		return VM_FAULT_SIGBUS;
1901 
1902 	/*
1903 	 * If we don't have pte special, then we have to use the pfn_valid()
1904 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1905 	 * refcount the page if pfn_valid is true (hence insert_page rather
1906 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1907 	 * without pte special, it would there be refcounted as a normal page.
1908 	 */
1909 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1910 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1911 		struct page *page;
1912 
1913 		/*
1914 		 * At this point we are committed to insert_page()
1915 		 * regardless of whether the caller specified flags that
1916 		 * result in pfn_t_has_page() == false.
1917 		 */
1918 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1919 		err = insert_page(vma, addr, page, pgprot);
1920 	} else {
1921 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1922 	}
1923 
1924 	if (err == -ENOMEM)
1925 		return VM_FAULT_OOM;
1926 	if (err < 0 && err != -EBUSY)
1927 		return VM_FAULT_SIGBUS;
1928 
1929 	return VM_FAULT_NOPAGE;
1930 }
1931 
1932 /**
1933  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1934  * @vma: user vma to map to
1935  * @addr: target user address of this page
1936  * @pfn: source kernel pfn
1937  * @pgprot: pgprot flags for the inserted page
1938  *
1939  * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1940  * to override pgprot on a per-page basis.
1941  *
1942  * Typically this function should be used by drivers to set caching- and
1943  * encryption bits different than those of @vma->vm_page_prot, because
1944  * the caching- or encryption mode may not be known at mmap() time.
1945  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1946  * to set caching and encryption bits for those vmas (except for COW pages).
1947  * This is ensured by core vm only modifying these page table entries using
1948  * functions that don't touch caching- or encryption bits, using pte_modify()
1949  * if needed. (See for example mprotect()).
1950  * Also when new page-table entries are created, this is only done using the
1951  * fault() callback, and never using the value of vma->vm_page_prot,
1952  * except for page-table entries that point to anonymous pages as the result
1953  * of COW.
1954  *
1955  * Context: Process context.  May allocate using %GFP_KERNEL.
1956  * Return: vm_fault_t value.
1957  */
1958 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1959 				 pfn_t pfn, pgprot_t pgprot)
1960 {
1961 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1962 }
1963 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1964 
1965 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1966 		pfn_t pfn)
1967 {
1968 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1969 }
1970 EXPORT_SYMBOL(vmf_insert_mixed);
1971 
1972 /*
1973  *  If the insertion of PTE failed because someone else already added a
1974  *  different entry in the mean time, we treat that as success as we assume
1975  *  the same entry was actually inserted.
1976  */
1977 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1978 		unsigned long addr, pfn_t pfn)
1979 {
1980 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1981 }
1982 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1983 
1984 /*
1985  * maps a range of physical memory into the requested pages. the old
1986  * mappings are removed. any references to nonexistent pages results
1987  * in null mappings (currently treated as "copy-on-access")
1988  */
1989 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1990 			unsigned long addr, unsigned long end,
1991 			unsigned long pfn, pgprot_t prot)
1992 {
1993 	pte_t *pte;
1994 	spinlock_t *ptl;
1995 	int err = 0;
1996 
1997 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1998 	if (!pte)
1999 		return -ENOMEM;
2000 	arch_enter_lazy_mmu_mode();
2001 	do {
2002 		BUG_ON(!pte_none(*pte));
2003 		if (!pfn_modify_allowed(pfn, prot)) {
2004 			err = -EACCES;
2005 			break;
2006 		}
2007 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2008 		pfn++;
2009 	} while (pte++, addr += PAGE_SIZE, addr != end);
2010 	arch_leave_lazy_mmu_mode();
2011 	pte_unmap_unlock(pte - 1, ptl);
2012 	return err;
2013 }
2014 
2015 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2016 			unsigned long addr, unsigned long end,
2017 			unsigned long pfn, pgprot_t prot)
2018 {
2019 	pmd_t *pmd;
2020 	unsigned long next;
2021 	int err;
2022 
2023 	pfn -= addr >> PAGE_SHIFT;
2024 	pmd = pmd_alloc(mm, pud, addr);
2025 	if (!pmd)
2026 		return -ENOMEM;
2027 	VM_BUG_ON(pmd_trans_huge(*pmd));
2028 	do {
2029 		next = pmd_addr_end(addr, end);
2030 		err = remap_pte_range(mm, pmd, addr, next,
2031 				pfn + (addr >> PAGE_SHIFT), prot);
2032 		if (err)
2033 			return err;
2034 	} while (pmd++, addr = next, addr != end);
2035 	return 0;
2036 }
2037 
2038 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2039 			unsigned long addr, unsigned long end,
2040 			unsigned long pfn, pgprot_t prot)
2041 {
2042 	pud_t *pud;
2043 	unsigned long next;
2044 	int err;
2045 
2046 	pfn -= addr >> PAGE_SHIFT;
2047 	pud = pud_alloc(mm, p4d, addr);
2048 	if (!pud)
2049 		return -ENOMEM;
2050 	do {
2051 		next = pud_addr_end(addr, end);
2052 		err = remap_pmd_range(mm, pud, addr, next,
2053 				pfn + (addr >> PAGE_SHIFT), prot);
2054 		if (err)
2055 			return err;
2056 	} while (pud++, addr = next, addr != end);
2057 	return 0;
2058 }
2059 
2060 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2061 			unsigned long addr, unsigned long end,
2062 			unsigned long pfn, pgprot_t prot)
2063 {
2064 	p4d_t *p4d;
2065 	unsigned long next;
2066 	int err;
2067 
2068 	pfn -= addr >> PAGE_SHIFT;
2069 	p4d = p4d_alloc(mm, pgd, addr);
2070 	if (!p4d)
2071 		return -ENOMEM;
2072 	do {
2073 		next = p4d_addr_end(addr, end);
2074 		err = remap_pud_range(mm, p4d, addr, next,
2075 				pfn + (addr >> PAGE_SHIFT), prot);
2076 		if (err)
2077 			return err;
2078 	} while (p4d++, addr = next, addr != end);
2079 	return 0;
2080 }
2081 
2082 /**
2083  * remap_pfn_range - remap kernel memory to userspace
2084  * @vma: user vma to map to
2085  * @addr: target user address to start at
2086  * @pfn: page frame number of kernel physical memory address
2087  * @size: size of mapping area
2088  * @prot: page protection flags for this mapping
2089  *
2090  * Note: this is only safe if the mm semaphore is held when called.
2091  *
2092  * Return: %0 on success, negative error code otherwise.
2093  */
2094 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2095 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2096 {
2097 	pgd_t *pgd;
2098 	unsigned long next;
2099 	unsigned long end = addr + PAGE_ALIGN(size);
2100 	struct mm_struct *mm = vma->vm_mm;
2101 	unsigned long remap_pfn = pfn;
2102 	int err;
2103 
2104 	/*
2105 	 * Physically remapped pages are special. Tell the
2106 	 * rest of the world about it:
2107 	 *   VM_IO tells people not to look at these pages
2108 	 *	(accesses can have side effects).
2109 	 *   VM_PFNMAP tells the core MM that the base pages are just
2110 	 *	raw PFN mappings, and do not have a "struct page" associated
2111 	 *	with them.
2112 	 *   VM_DONTEXPAND
2113 	 *      Disable vma merging and expanding with mremap().
2114 	 *   VM_DONTDUMP
2115 	 *      Omit vma from core dump, even when VM_IO turned off.
2116 	 *
2117 	 * There's a horrible special case to handle copy-on-write
2118 	 * behaviour that some programs depend on. We mark the "original"
2119 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2120 	 * See vm_normal_page() for details.
2121 	 */
2122 	if (is_cow_mapping(vma->vm_flags)) {
2123 		if (addr != vma->vm_start || end != vma->vm_end)
2124 			return -EINVAL;
2125 		vma->vm_pgoff = pfn;
2126 	}
2127 
2128 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2129 	if (err)
2130 		return -EINVAL;
2131 
2132 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2133 
2134 	BUG_ON(addr >= end);
2135 	pfn -= addr >> PAGE_SHIFT;
2136 	pgd = pgd_offset(mm, addr);
2137 	flush_cache_range(vma, addr, end);
2138 	do {
2139 		next = pgd_addr_end(addr, end);
2140 		err = remap_p4d_range(mm, pgd, addr, next,
2141 				pfn + (addr >> PAGE_SHIFT), prot);
2142 		if (err)
2143 			break;
2144 	} while (pgd++, addr = next, addr != end);
2145 
2146 	if (err)
2147 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2148 
2149 	return err;
2150 }
2151 EXPORT_SYMBOL(remap_pfn_range);
2152 
2153 /**
2154  * vm_iomap_memory - remap memory to userspace
2155  * @vma: user vma to map to
2156  * @start: start of the physical memory to be mapped
2157  * @len: size of area
2158  *
2159  * This is a simplified io_remap_pfn_range() for common driver use. The
2160  * driver just needs to give us the physical memory range to be mapped,
2161  * we'll figure out the rest from the vma information.
2162  *
2163  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2164  * whatever write-combining details or similar.
2165  *
2166  * Return: %0 on success, negative error code otherwise.
2167  */
2168 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2169 {
2170 	unsigned long vm_len, pfn, pages;
2171 
2172 	/* Check that the physical memory area passed in looks valid */
2173 	if (start + len < start)
2174 		return -EINVAL;
2175 	/*
2176 	 * You *really* shouldn't map things that aren't page-aligned,
2177 	 * but we've historically allowed it because IO memory might
2178 	 * just have smaller alignment.
2179 	 */
2180 	len += start & ~PAGE_MASK;
2181 	pfn = start >> PAGE_SHIFT;
2182 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2183 	if (pfn + pages < pfn)
2184 		return -EINVAL;
2185 
2186 	/* We start the mapping 'vm_pgoff' pages into the area */
2187 	if (vma->vm_pgoff > pages)
2188 		return -EINVAL;
2189 	pfn += vma->vm_pgoff;
2190 	pages -= vma->vm_pgoff;
2191 
2192 	/* Can we fit all of the mapping? */
2193 	vm_len = vma->vm_end - vma->vm_start;
2194 	if (vm_len >> PAGE_SHIFT > pages)
2195 		return -EINVAL;
2196 
2197 	/* Ok, let it rip */
2198 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2199 }
2200 EXPORT_SYMBOL(vm_iomap_memory);
2201 
2202 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2203 				     unsigned long addr, unsigned long end,
2204 				     pte_fn_t fn, void *data, bool create)
2205 {
2206 	pte_t *pte;
2207 	int err = 0;
2208 	spinlock_t *uninitialized_var(ptl);
2209 
2210 	if (create) {
2211 		pte = (mm == &init_mm) ?
2212 			pte_alloc_kernel(pmd, addr) :
2213 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2214 		if (!pte)
2215 			return -ENOMEM;
2216 	} else {
2217 		pte = (mm == &init_mm) ?
2218 			pte_offset_kernel(pmd, addr) :
2219 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2220 	}
2221 
2222 	BUG_ON(pmd_huge(*pmd));
2223 
2224 	arch_enter_lazy_mmu_mode();
2225 
2226 	do {
2227 		if (create || !pte_none(*pte)) {
2228 			err = fn(pte++, addr, data);
2229 			if (err)
2230 				break;
2231 		}
2232 	} while (addr += PAGE_SIZE, addr != end);
2233 
2234 	arch_leave_lazy_mmu_mode();
2235 
2236 	if (mm != &init_mm)
2237 		pte_unmap_unlock(pte-1, ptl);
2238 	return err;
2239 }
2240 
2241 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2242 				     unsigned long addr, unsigned long end,
2243 				     pte_fn_t fn, void *data, bool create)
2244 {
2245 	pmd_t *pmd;
2246 	unsigned long next;
2247 	int err = 0;
2248 
2249 	BUG_ON(pud_huge(*pud));
2250 
2251 	if (create) {
2252 		pmd = pmd_alloc(mm, pud, addr);
2253 		if (!pmd)
2254 			return -ENOMEM;
2255 	} else {
2256 		pmd = pmd_offset(pud, addr);
2257 	}
2258 	do {
2259 		next = pmd_addr_end(addr, end);
2260 		if (create || !pmd_none_or_clear_bad(pmd)) {
2261 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2262 						 create);
2263 			if (err)
2264 				break;
2265 		}
2266 	} while (pmd++, addr = next, addr != end);
2267 	return err;
2268 }
2269 
2270 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2271 				     unsigned long addr, unsigned long end,
2272 				     pte_fn_t fn, void *data, bool create)
2273 {
2274 	pud_t *pud;
2275 	unsigned long next;
2276 	int err = 0;
2277 
2278 	if (create) {
2279 		pud = pud_alloc(mm, p4d, addr);
2280 		if (!pud)
2281 			return -ENOMEM;
2282 	} else {
2283 		pud = pud_offset(p4d, addr);
2284 	}
2285 	do {
2286 		next = pud_addr_end(addr, end);
2287 		if (create || !pud_none_or_clear_bad(pud)) {
2288 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2289 						 create);
2290 			if (err)
2291 				break;
2292 		}
2293 	} while (pud++, addr = next, addr != end);
2294 	return err;
2295 }
2296 
2297 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2298 				     unsigned long addr, unsigned long end,
2299 				     pte_fn_t fn, void *data, bool create)
2300 {
2301 	p4d_t *p4d;
2302 	unsigned long next;
2303 	int err = 0;
2304 
2305 	if (create) {
2306 		p4d = p4d_alloc(mm, pgd, addr);
2307 		if (!p4d)
2308 			return -ENOMEM;
2309 	} else {
2310 		p4d = p4d_offset(pgd, addr);
2311 	}
2312 	do {
2313 		next = p4d_addr_end(addr, end);
2314 		if (create || !p4d_none_or_clear_bad(p4d)) {
2315 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2316 						 create);
2317 			if (err)
2318 				break;
2319 		}
2320 	} while (p4d++, addr = next, addr != end);
2321 	return err;
2322 }
2323 
2324 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2325 				 unsigned long size, pte_fn_t fn,
2326 				 void *data, bool create)
2327 {
2328 	pgd_t *pgd;
2329 	unsigned long next;
2330 	unsigned long end = addr + size;
2331 	int err = 0;
2332 
2333 	if (WARN_ON(addr >= end))
2334 		return -EINVAL;
2335 
2336 	pgd = pgd_offset(mm, addr);
2337 	do {
2338 		next = pgd_addr_end(addr, end);
2339 		if (!create && pgd_none_or_clear_bad(pgd))
2340 			continue;
2341 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2342 		if (err)
2343 			break;
2344 	} while (pgd++, addr = next, addr != end);
2345 
2346 	return err;
2347 }
2348 
2349 /*
2350  * Scan a region of virtual memory, filling in page tables as necessary
2351  * and calling a provided function on each leaf page table.
2352  */
2353 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2354 			unsigned long size, pte_fn_t fn, void *data)
2355 {
2356 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2357 }
2358 EXPORT_SYMBOL_GPL(apply_to_page_range);
2359 
2360 /*
2361  * Scan a region of virtual memory, calling a provided function on
2362  * each leaf page table where it exists.
2363  *
2364  * Unlike apply_to_page_range, this does _not_ fill in page tables
2365  * where they are absent.
2366  */
2367 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2368 				 unsigned long size, pte_fn_t fn, void *data)
2369 {
2370 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2371 }
2372 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2373 
2374 /*
2375  * handle_pte_fault chooses page fault handler according to an entry which was
2376  * read non-atomically.  Before making any commitment, on those architectures
2377  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2378  * parts, do_swap_page must check under lock before unmapping the pte and
2379  * proceeding (but do_wp_page is only called after already making such a check;
2380  * and do_anonymous_page can safely check later on).
2381  */
2382 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2383 				pte_t *page_table, pte_t orig_pte)
2384 {
2385 	int same = 1;
2386 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2387 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2388 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2389 		spin_lock(ptl);
2390 		same = pte_same(*page_table, orig_pte);
2391 		spin_unlock(ptl);
2392 	}
2393 #endif
2394 	pte_unmap(page_table);
2395 	return same;
2396 }
2397 
2398 static inline bool cow_user_page(struct page *dst, struct page *src,
2399 				 struct vm_fault *vmf)
2400 {
2401 	bool ret;
2402 	void *kaddr;
2403 	void __user *uaddr;
2404 	bool locked = false;
2405 	struct vm_area_struct *vma = vmf->vma;
2406 	struct mm_struct *mm = vma->vm_mm;
2407 	unsigned long addr = vmf->address;
2408 
2409 	debug_dma_assert_idle(src);
2410 
2411 	if (likely(src)) {
2412 		copy_user_highpage(dst, src, addr, vma);
2413 		return true;
2414 	}
2415 
2416 	/*
2417 	 * If the source page was a PFN mapping, we don't have
2418 	 * a "struct page" for it. We do a best-effort copy by
2419 	 * just copying from the original user address. If that
2420 	 * fails, we just zero-fill it. Live with it.
2421 	 */
2422 	kaddr = kmap_atomic(dst);
2423 	uaddr = (void __user *)(addr & PAGE_MASK);
2424 
2425 	/*
2426 	 * On architectures with software "accessed" bits, we would
2427 	 * take a double page fault, so mark it accessed here.
2428 	 */
2429 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2430 		pte_t entry;
2431 
2432 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2433 		locked = true;
2434 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2435 			/*
2436 			 * Other thread has already handled the fault
2437 			 * and we don't need to do anything. If it's
2438 			 * not the case, the fault will be triggered
2439 			 * again on the same address.
2440 			 */
2441 			ret = false;
2442 			goto pte_unlock;
2443 		}
2444 
2445 		entry = pte_mkyoung(vmf->orig_pte);
2446 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2447 			update_mmu_cache(vma, addr, vmf->pte);
2448 	}
2449 
2450 	/*
2451 	 * This really shouldn't fail, because the page is there
2452 	 * in the page tables. But it might just be unreadable,
2453 	 * in which case we just give up and fill the result with
2454 	 * zeroes.
2455 	 */
2456 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2457 		if (locked)
2458 			goto warn;
2459 
2460 		/* Re-validate under PTL if the page is still mapped */
2461 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2462 		locked = true;
2463 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2464 			/* The PTE changed under us. Retry page fault. */
2465 			ret = false;
2466 			goto pte_unlock;
2467 		}
2468 
2469 		/*
2470 		 * The same page can be mapped back since last copy attampt.
2471 		 * Try to copy again under PTL.
2472 		 */
2473 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2474 			/*
2475 			 * Give a warn in case there can be some obscure
2476 			 * use-case
2477 			 */
2478 warn:
2479 			WARN_ON_ONCE(1);
2480 			clear_page(kaddr);
2481 		}
2482 	}
2483 
2484 	ret = true;
2485 
2486 pte_unlock:
2487 	if (locked)
2488 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2489 	kunmap_atomic(kaddr);
2490 	flush_dcache_page(dst);
2491 
2492 	return ret;
2493 }
2494 
2495 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2496 {
2497 	struct file *vm_file = vma->vm_file;
2498 
2499 	if (vm_file)
2500 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2501 
2502 	/*
2503 	 * Special mappings (e.g. VDSO) do not have any file so fake
2504 	 * a default GFP_KERNEL for them.
2505 	 */
2506 	return GFP_KERNEL;
2507 }
2508 
2509 /*
2510  * Notify the address space that the page is about to become writable so that
2511  * it can prohibit this or wait for the page to get into an appropriate state.
2512  *
2513  * We do this without the lock held, so that it can sleep if it needs to.
2514  */
2515 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2516 {
2517 	vm_fault_t ret;
2518 	struct page *page = vmf->page;
2519 	unsigned int old_flags = vmf->flags;
2520 
2521 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2522 
2523 	if (vmf->vma->vm_file &&
2524 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2525 		return VM_FAULT_SIGBUS;
2526 
2527 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2528 	/* Restore original flags so that caller is not surprised */
2529 	vmf->flags = old_flags;
2530 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2531 		return ret;
2532 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2533 		lock_page(page);
2534 		if (!page->mapping) {
2535 			unlock_page(page);
2536 			return 0; /* retry */
2537 		}
2538 		ret |= VM_FAULT_LOCKED;
2539 	} else
2540 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2541 	return ret;
2542 }
2543 
2544 /*
2545  * Handle dirtying of a page in shared file mapping on a write fault.
2546  *
2547  * The function expects the page to be locked and unlocks it.
2548  */
2549 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2550 {
2551 	struct vm_area_struct *vma = vmf->vma;
2552 	struct address_space *mapping;
2553 	struct page *page = vmf->page;
2554 	bool dirtied;
2555 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2556 
2557 	dirtied = set_page_dirty(page);
2558 	VM_BUG_ON_PAGE(PageAnon(page), page);
2559 	/*
2560 	 * Take a local copy of the address_space - page.mapping may be zeroed
2561 	 * by truncate after unlock_page().   The address_space itself remains
2562 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2563 	 * release semantics to prevent the compiler from undoing this copying.
2564 	 */
2565 	mapping = page_rmapping(page);
2566 	unlock_page(page);
2567 
2568 	if (!page_mkwrite)
2569 		file_update_time(vma->vm_file);
2570 
2571 	/*
2572 	 * Throttle page dirtying rate down to writeback speed.
2573 	 *
2574 	 * mapping may be NULL here because some device drivers do not
2575 	 * set page.mapping but still dirty their pages
2576 	 *
2577 	 * Drop the mmap_sem before waiting on IO, if we can. The file
2578 	 * is pinning the mapping, as per above.
2579 	 */
2580 	if ((dirtied || page_mkwrite) && mapping) {
2581 		struct file *fpin;
2582 
2583 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2584 		balance_dirty_pages_ratelimited(mapping);
2585 		if (fpin) {
2586 			fput(fpin);
2587 			return VM_FAULT_RETRY;
2588 		}
2589 	}
2590 
2591 	return 0;
2592 }
2593 
2594 /*
2595  * Handle write page faults for pages that can be reused in the current vma
2596  *
2597  * This can happen either due to the mapping being with the VM_SHARED flag,
2598  * or due to us being the last reference standing to the page. In either
2599  * case, all we need to do here is to mark the page as writable and update
2600  * any related book-keeping.
2601  */
2602 static inline void wp_page_reuse(struct vm_fault *vmf)
2603 	__releases(vmf->ptl)
2604 {
2605 	struct vm_area_struct *vma = vmf->vma;
2606 	struct page *page = vmf->page;
2607 	pte_t entry;
2608 	/*
2609 	 * Clear the pages cpupid information as the existing
2610 	 * information potentially belongs to a now completely
2611 	 * unrelated process.
2612 	 */
2613 	if (page)
2614 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2615 
2616 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2617 	entry = pte_mkyoung(vmf->orig_pte);
2618 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2619 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2620 		update_mmu_cache(vma, vmf->address, vmf->pte);
2621 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2622 }
2623 
2624 /*
2625  * Handle the case of a page which we actually need to copy to a new page.
2626  *
2627  * Called with mmap_sem locked and the old page referenced, but
2628  * without the ptl held.
2629  *
2630  * High level logic flow:
2631  *
2632  * - Allocate a page, copy the content of the old page to the new one.
2633  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2634  * - Take the PTL. If the pte changed, bail out and release the allocated page
2635  * - If the pte is still the way we remember it, update the page table and all
2636  *   relevant references. This includes dropping the reference the page-table
2637  *   held to the old page, as well as updating the rmap.
2638  * - In any case, unlock the PTL and drop the reference we took to the old page.
2639  */
2640 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2641 {
2642 	struct vm_area_struct *vma = vmf->vma;
2643 	struct mm_struct *mm = vma->vm_mm;
2644 	struct page *old_page = vmf->page;
2645 	struct page *new_page = NULL;
2646 	pte_t entry;
2647 	int page_copied = 0;
2648 	struct mem_cgroup *memcg;
2649 	struct mmu_notifier_range range;
2650 
2651 	if (unlikely(anon_vma_prepare(vma)))
2652 		goto oom;
2653 
2654 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2655 		new_page = alloc_zeroed_user_highpage_movable(vma,
2656 							      vmf->address);
2657 		if (!new_page)
2658 			goto oom;
2659 	} else {
2660 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2661 				vmf->address);
2662 		if (!new_page)
2663 			goto oom;
2664 
2665 		if (!cow_user_page(new_page, old_page, vmf)) {
2666 			/*
2667 			 * COW failed, if the fault was solved by other,
2668 			 * it's fine. If not, userspace would re-fault on
2669 			 * the same address and we will handle the fault
2670 			 * from the second attempt.
2671 			 */
2672 			put_page(new_page);
2673 			if (old_page)
2674 				put_page(old_page);
2675 			return 0;
2676 		}
2677 	}
2678 
2679 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2680 		goto oom_free_new;
2681 
2682 	__SetPageUptodate(new_page);
2683 
2684 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2685 				vmf->address & PAGE_MASK,
2686 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2687 	mmu_notifier_invalidate_range_start(&range);
2688 
2689 	/*
2690 	 * Re-check the pte - we dropped the lock
2691 	 */
2692 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2693 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2694 		if (old_page) {
2695 			if (!PageAnon(old_page)) {
2696 				dec_mm_counter_fast(mm,
2697 						mm_counter_file(old_page));
2698 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2699 			}
2700 		} else {
2701 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2702 		}
2703 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2704 		entry = mk_pte(new_page, vma->vm_page_prot);
2705 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2706 		/*
2707 		 * Clear the pte entry and flush it first, before updating the
2708 		 * pte with the new entry. This will avoid a race condition
2709 		 * seen in the presence of one thread doing SMC and another
2710 		 * thread doing COW.
2711 		 */
2712 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2713 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2714 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2715 		lru_cache_add_active_or_unevictable(new_page, vma);
2716 		/*
2717 		 * We call the notify macro here because, when using secondary
2718 		 * mmu page tables (such as kvm shadow page tables), we want the
2719 		 * new page to be mapped directly into the secondary page table.
2720 		 */
2721 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2722 		update_mmu_cache(vma, vmf->address, vmf->pte);
2723 		if (old_page) {
2724 			/*
2725 			 * Only after switching the pte to the new page may
2726 			 * we remove the mapcount here. Otherwise another
2727 			 * process may come and find the rmap count decremented
2728 			 * before the pte is switched to the new page, and
2729 			 * "reuse" the old page writing into it while our pte
2730 			 * here still points into it and can be read by other
2731 			 * threads.
2732 			 *
2733 			 * The critical issue is to order this
2734 			 * page_remove_rmap with the ptp_clear_flush above.
2735 			 * Those stores are ordered by (if nothing else,)
2736 			 * the barrier present in the atomic_add_negative
2737 			 * in page_remove_rmap.
2738 			 *
2739 			 * Then the TLB flush in ptep_clear_flush ensures that
2740 			 * no process can access the old page before the
2741 			 * decremented mapcount is visible. And the old page
2742 			 * cannot be reused until after the decremented
2743 			 * mapcount is visible. So transitively, TLBs to
2744 			 * old page will be flushed before it can be reused.
2745 			 */
2746 			page_remove_rmap(old_page, false);
2747 		}
2748 
2749 		/* Free the old page.. */
2750 		new_page = old_page;
2751 		page_copied = 1;
2752 	} else {
2753 		mem_cgroup_cancel_charge(new_page, memcg, false);
2754 	}
2755 
2756 	if (new_page)
2757 		put_page(new_page);
2758 
2759 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2760 	/*
2761 	 * No need to double call mmu_notifier->invalidate_range() callback as
2762 	 * the above ptep_clear_flush_notify() did already call it.
2763 	 */
2764 	mmu_notifier_invalidate_range_only_end(&range);
2765 	if (old_page) {
2766 		/*
2767 		 * Don't let another task, with possibly unlocked vma,
2768 		 * keep the mlocked page.
2769 		 */
2770 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2771 			lock_page(old_page);	/* LRU manipulation */
2772 			if (PageMlocked(old_page))
2773 				munlock_vma_page(old_page);
2774 			unlock_page(old_page);
2775 		}
2776 		put_page(old_page);
2777 	}
2778 	return page_copied ? VM_FAULT_WRITE : 0;
2779 oom_free_new:
2780 	put_page(new_page);
2781 oom:
2782 	if (old_page)
2783 		put_page(old_page);
2784 	return VM_FAULT_OOM;
2785 }
2786 
2787 /**
2788  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2789  *			  writeable once the page is prepared
2790  *
2791  * @vmf: structure describing the fault
2792  *
2793  * This function handles all that is needed to finish a write page fault in a
2794  * shared mapping due to PTE being read-only once the mapped page is prepared.
2795  * It handles locking of PTE and modifying it.
2796  *
2797  * The function expects the page to be locked or other protection against
2798  * concurrent faults / writeback (such as DAX radix tree locks).
2799  *
2800  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2801  * we acquired PTE lock.
2802  */
2803 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2804 {
2805 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2806 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2807 				       &vmf->ptl);
2808 	/*
2809 	 * We might have raced with another page fault while we released the
2810 	 * pte_offset_map_lock.
2811 	 */
2812 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2813 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2814 		return VM_FAULT_NOPAGE;
2815 	}
2816 	wp_page_reuse(vmf);
2817 	return 0;
2818 }
2819 
2820 /*
2821  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2822  * mapping
2823  */
2824 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2825 {
2826 	struct vm_area_struct *vma = vmf->vma;
2827 
2828 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2829 		vm_fault_t ret;
2830 
2831 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2832 		vmf->flags |= FAULT_FLAG_MKWRITE;
2833 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2834 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2835 			return ret;
2836 		return finish_mkwrite_fault(vmf);
2837 	}
2838 	wp_page_reuse(vmf);
2839 	return VM_FAULT_WRITE;
2840 }
2841 
2842 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2843 	__releases(vmf->ptl)
2844 {
2845 	struct vm_area_struct *vma = vmf->vma;
2846 	vm_fault_t ret = VM_FAULT_WRITE;
2847 
2848 	get_page(vmf->page);
2849 
2850 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2851 		vm_fault_t tmp;
2852 
2853 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2854 		tmp = do_page_mkwrite(vmf);
2855 		if (unlikely(!tmp || (tmp &
2856 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2857 			put_page(vmf->page);
2858 			return tmp;
2859 		}
2860 		tmp = finish_mkwrite_fault(vmf);
2861 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2862 			unlock_page(vmf->page);
2863 			put_page(vmf->page);
2864 			return tmp;
2865 		}
2866 	} else {
2867 		wp_page_reuse(vmf);
2868 		lock_page(vmf->page);
2869 	}
2870 	ret |= fault_dirty_shared_page(vmf);
2871 	put_page(vmf->page);
2872 
2873 	return ret;
2874 }
2875 
2876 /*
2877  * This routine handles present pages, when users try to write
2878  * to a shared page. It is done by copying the page to a new address
2879  * and decrementing the shared-page counter for the old page.
2880  *
2881  * Note that this routine assumes that the protection checks have been
2882  * done by the caller (the low-level page fault routine in most cases).
2883  * Thus we can safely just mark it writable once we've done any necessary
2884  * COW.
2885  *
2886  * We also mark the page dirty at this point even though the page will
2887  * change only once the write actually happens. This avoids a few races,
2888  * and potentially makes it more efficient.
2889  *
2890  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2891  * but allow concurrent faults), with pte both mapped and locked.
2892  * We return with mmap_sem still held, but pte unmapped and unlocked.
2893  */
2894 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2895 	__releases(vmf->ptl)
2896 {
2897 	struct vm_area_struct *vma = vmf->vma;
2898 
2899 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2900 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2901 		return handle_userfault(vmf, VM_UFFD_WP);
2902 	}
2903 
2904 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2905 	if (!vmf->page) {
2906 		/*
2907 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2908 		 * VM_PFNMAP VMA.
2909 		 *
2910 		 * We should not cow pages in a shared writeable mapping.
2911 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2912 		 */
2913 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2914 				     (VM_WRITE|VM_SHARED))
2915 			return wp_pfn_shared(vmf);
2916 
2917 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2918 		return wp_page_copy(vmf);
2919 	}
2920 
2921 	/*
2922 	 * Take out anonymous pages first, anonymous shared vmas are
2923 	 * not dirty accountable.
2924 	 */
2925 	if (PageAnon(vmf->page)) {
2926 		int total_map_swapcount;
2927 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2928 					   page_count(vmf->page) != 1))
2929 			goto copy;
2930 		if (!trylock_page(vmf->page)) {
2931 			get_page(vmf->page);
2932 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2933 			lock_page(vmf->page);
2934 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2935 					vmf->address, &vmf->ptl);
2936 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2937 				unlock_page(vmf->page);
2938 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2939 				put_page(vmf->page);
2940 				return 0;
2941 			}
2942 			put_page(vmf->page);
2943 		}
2944 		if (PageKsm(vmf->page)) {
2945 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2946 						     vmf->address);
2947 			unlock_page(vmf->page);
2948 			if (!reused)
2949 				goto copy;
2950 			wp_page_reuse(vmf);
2951 			return VM_FAULT_WRITE;
2952 		}
2953 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2954 			if (total_map_swapcount == 1) {
2955 				/*
2956 				 * The page is all ours. Move it to
2957 				 * our anon_vma so the rmap code will
2958 				 * not search our parent or siblings.
2959 				 * Protected against the rmap code by
2960 				 * the page lock.
2961 				 */
2962 				page_move_anon_rmap(vmf->page, vma);
2963 			}
2964 			unlock_page(vmf->page);
2965 			wp_page_reuse(vmf);
2966 			return VM_FAULT_WRITE;
2967 		}
2968 		unlock_page(vmf->page);
2969 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2970 					(VM_WRITE|VM_SHARED))) {
2971 		return wp_page_shared(vmf);
2972 	}
2973 copy:
2974 	/*
2975 	 * Ok, we need to copy. Oh, well..
2976 	 */
2977 	get_page(vmf->page);
2978 
2979 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2980 	return wp_page_copy(vmf);
2981 }
2982 
2983 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2984 		unsigned long start_addr, unsigned long end_addr,
2985 		struct zap_details *details)
2986 {
2987 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2988 }
2989 
2990 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2991 					    struct zap_details *details)
2992 {
2993 	struct vm_area_struct *vma;
2994 	pgoff_t vba, vea, zba, zea;
2995 
2996 	vma_interval_tree_foreach(vma, root,
2997 			details->first_index, details->last_index) {
2998 
2999 		vba = vma->vm_pgoff;
3000 		vea = vba + vma_pages(vma) - 1;
3001 		zba = details->first_index;
3002 		if (zba < vba)
3003 			zba = vba;
3004 		zea = details->last_index;
3005 		if (zea > vea)
3006 			zea = vea;
3007 
3008 		unmap_mapping_range_vma(vma,
3009 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3010 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3011 				details);
3012 	}
3013 }
3014 
3015 /**
3016  * unmap_mapping_pages() - Unmap pages from processes.
3017  * @mapping: The address space containing pages to be unmapped.
3018  * @start: Index of first page to be unmapped.
3019  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3020  * @even_cows: Whether to unmap even private COWed pages.
3021  *
3022  * Unmap the pages in this address space from any userspace process which
3023  * has them mmaped.  Generally, you want to remove COWed pages as well when
3024  * a file is being truncated, but not when invalidating pages from the page
3025  * cache.
3026  */
3027 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3028 		pgoff_t nr, bool even_cows)
3029 {
3030 	struct zap_details details = { };
3031 
3032 	details.check_mapping = even_cows ? NULL : mapping;
3033 	details.first_index = start;
3034 	details.last_index = start + nr - 1;
3035 	if (details.last_index < details.first_index)
3036 		details.last_index = ULONG_MAX;
3037 
3038 	i_mmap_lock_write(mapping);
3039 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3040 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3041 	i_mmap_unlock_write(mapping);
3042 }
3043 
3044 /**
3045  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3046  * address_space corresponding to the specified byte range in the underlying
3047  * file.
3048  *
3049  * @mapping: the address space containing mmaps to be unmapped.
3050  * @holebegin: byte in first page to unmap, relative to the start of
3051  * the underlying file.  This will be rounded down to a PAGE_SIZE
3052  * boundary.  Note that this is different from truncate_pagecache(), which
3053  * must keep the partial page.  In contrast, we must get rid of
3054  * partial pages.
3055  * @holelen: size of prospective hole in bytes.  This will be rounded
3056  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3057  * end of the file.
3058  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3059  * but 0 when invalidating pagecache, don't throw away private data.
3060  */
3061 void unmap_mapping_range(struct address_space *mapping,
3062 		loff_t const holebegin, loff_t const holelen, int even_cows)
3063 {
3064 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3065 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3066 
3067 	/* Check for overflow. */
3068 	if (sizeof(holelen) > sizeof(hlen)) {
3069 		long long holeend =
3070 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3071 		if (holeend & ~(long long)ULONG_MAX)
3072 			hlen = ULONG_MAX - hba + 1;
3073 	}
3074 
3075 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3076 }
3077 EXPORT_SYMBOL(unmap_mapping_range);
3078 
3079 /*
3080  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3081  * but allow concurrent faults), and pte mapped but not yet locked.
3082  * We return with pte unmapped and unlocked.
3083  *
3084  * We return with the mmap_sem locked or unlocked in the same cases
3085  * as does filemap_fault().
3086  */
3087 vm_fault_t do_swap_page(struct vm_fault *vmf)
3088 {
3089 	struct vm_area_struct *vma = vmf->vma;
3090 	struct page *page = NULL, *swapcache;
3091 	struct mem_cgroup *memcg;
3092 	swp_entry_t entry;
3093 	pte_t pte;
3094 	int locked;
3095 	int exclusive = 0;
3096 	vm_fault_t ret = 0;
3097 
3098 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3099 		goto out;
3100 
3101 	entry = pte_to_swp_entry(vmf->orig_pte);
3102 	if (unlikely(non_swap_entry(entry))) {
3103 		if (is_migration_entry(entry)) {
3104 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3105 					     vmf->address);
3106 		} else if (is_device_private_entry(entry)) {
3107 			vmf->page = device_private_entry_to_page(entry);
3108 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3109 		} else if (is_hwpoison_entry(entry)) {
3110 			ret = VM_FAULT_HWPOISON;
3111 		} else {
3112 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3113 			ret = VM_FAULT_SIGBUS;
3114 		}
3115 		goto out;
3116 	}
3117 
3118 
3119 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3120 	page = lookup_swap_cache(entry, vma, vmf->address);
3121 	swapcache = page;
3122 
3123 	if (!page) {
3124 		struct swap_info_struct *si = swp_swap_info(entry);
3125 
3126 		if (si->flags & SWP_SYNCHRONOUS_IO &&
3127 				__swap_count(entry) == 1) {
3128 			/* skip swapcache */
3129 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3130 							vmf->address);
3131 			if (page) {
3132 				__SetPageLocked(page);
3133 				__SetPageSwapBacked(page);
3134 				set_page_private(page, entry.val);
3135 				lru_cache_add_anon(page);
3136 				swap_readpage(page, true);
3137 			}
3138 		} else {
3139 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3140 						vmf);
3141 			swapcache = page;
3142 		}
3143 
3144 		if (!page) {
3145 			/*
3146 			 * Back out if somebody else faulted in this pte
3147 			 * while we released the pte lock.
3148 			 */
3149 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3150 					vmf->address, &vmf->ptl);
3151 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3152 				ret = VM_FAULT_OOM;
3153 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3154 			goto unlock;
3155 		}
3156 
3157 		/* Had to read the page from swap area: Major fault */
3158 		ret = VM_FAULT_MAJOR;
3159 		count_vm_event(PGMAJFAULT);
3160 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3161 	} else if (PageHWPoison(page)) {
3162 		/*
3163 		 * hwpoisoned dirty swapcache pages are kept for killing
3164 		 * owner processes (which may be unknown at hwpoison time)
3165 		 */
3166 		ret = VM_FAULT_HWPOISON;
3167 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3168 		goto out_release;
3169 	}
3170 
3171 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3172 
3173 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3174 	if (!locked) {
3175 		ret |= VM_FAULT_RETRY;
3176 		goto out_release;
3177 	}
3178 
3179 	/*
3180 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3181 	 * release the swapcache from under us.  The page pin, and pte_same
3182 	 * test below, are not enough to exclude that.  Even if it is still
3183 	 * swapcache, we need to check that the page's swap has not changed.
3184 	 */
3185 	if (unlikely((!PageSwapCache(page) ||
3186 			page_private(page) != entry.val)) && swapcache)
3187 		goto out_page;
3188 
3189 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3190 	if (unlikely(!page)) {
3191 		ret = VM_FAULT_OOM;
3192 		page = swapcache;
3193 		goto out_page;
3194 	}
3195 
3196 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3197 					&memcg, false)) {
3198 		ret = VM_FAULT_OOM;
3199 		goto out_page;
3200 	}
3201 
3202 	/*
3203 	 * Back out if somebody else already faulted in this pte.
3204 	 */
3205 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3206 			&vmf->ptl);
3207 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3208 		goto out_nomap;
3209 
3210 	if (unlikely(!PageUptodate(page))) {
3211 		ret = VM_FAULT_SIGBUS;
3212 		goto out_nomap;
3213 	}
3214 
3215 	/*
3216 	 * The page isn't present yet, go ahead with the fault.
3217 	 *
3218 	 * Be careful about the sequence of operations here.
3219 	 * To get its accounting right, reuse_swap_page() must be called
3220 	 * while the page is counted on swap but not yet in mapcount i.e.
3221 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3222 	 * must be called after the swap_free(), or it will never succeed.
3223 	 */
3224 
3225 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3226 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3227 	pte = mk_pte(page, vma->vm_page_prot);
3228 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3229 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3230 		vmf->flags &= ~FAULT_FLAG_WRITE;
3231 		ret |= VM_FAULT_WRITE;
3232 		exclusive = RMAP_EXCLUSIVE;
3233 	}
3234 	flush_icache_page(vma, page);
3235 	if (pte_swp_soft_dirty(vmf->orig_pte))
3236 		pte = pte_mksoft_dirty(pte);
3237 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3238 		pte = pte_mkuffd_wp(pte);
3239 		pte = pte_wrprotect(pte);
3240 	}
3241 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3242 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3243 	vmf->orig_pte = pte;
3244 
3245 	/* ksm created a completely new copy */
3246 	if (unlikely(page != swapcache && swapcache)) {
3247 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3248 		mem_cgroup_commit_charge(page, memcg, false, false);
3249 		lru_cache_add_active_or_unevictable(page, vma);
3250 	} else {
3251 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3252 		mem_cgroup_commit_charge(page, memcg, true, false);
3253 		activate_page(page);
3254 	}
3255 
3256 	swap_free(entry);
3257 	if (mem_cgroup_swap_full(page) ||
3258 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3259 		try_to_free_swap(page);
3260 	unlock_page(page);
3261 	if (page != swapcache && swapcache) {
3262 		/*
3263 		 * Hold the lock to avoid the swap entry to be reused
3264 		 * until we take the PT lock for the pte_same() check
3265 		 * (to avoid false positives from pte_same). For
3266 		 * further safety release the lock after the swap_free
3267 		 * so that the swap count won't change under a
3268 		 * parallel locked swapcache.
3269 		 */
3270 		unlock_page(swapcache);
3271 		put_page(swapcache);
3272 	}
3273 
3274 	if (vmf->flags & FAULT_FLAG_WRITE) {
3275 		ret |= do_wp_page(vmf);
3276 		if (ret & VM_FAULT_ERROR)
3277 			ret &= VM_FAULT_ERROR;
3278 		goto out;
3279 	}
3280 
3281 	/* No need to invalidate - it was non-present before */
3282 	update_mmu_cache(vma, vmf->address, vmf->pte);
3283 unlock:
3284 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3285 out:
3286 	return ret;
3287 out_nomap:
3288 	mem_cgroup_cancel_charge(page, memcg, false);
3289 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3290 out_page:
3291 	unlock_page(page);
3292 out_release:
3293 	put_page(page);
3294 	if (page != swapcache && swapcache) {
3295 		unlock_page(swapcache);
3296 		put_page(swapcache);
3297 	}
3298 	return ret;
3299 }
3300 
3301 /*
3302  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3303  * but allow concurrent faults), and pte mapped but not yet locked.
3304  * We return with mmap_sem still held, but pte unmapped and unlocked.
3305  */
3306 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3307 {
3308 	struct vm_area_struct *vma = vmf->vma;
3309 	struct mem_cgroup *memcg;
3310 	struct page *page;
3311 	vm_fault_t ret = 0;
3312 	pte_t entry;
3313 
3314 	/* File mapping without ->vm_ops ? */
3315 	if (vma->vm_flags & VM_SHARED)
3316 		return VM_FAULT_SIGBUS;
3317 
3318 	/*
3319 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3320 	 * pte_offset_map() on pmds where a huge pmd might be created
3321 	 * from a different thread.
3322 	 *
3323 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3324 	 * parallel threads are excluded by other means.
3325 	 *
3326 	 * Here we only have down_read(mmap_sem).
3327 	 */
3328 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3329 		return VM_FAULT_OOM;
3330 
3331 	/* See the comment in pte_alloc_one_map() */
3332 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3333 		return 0;
3334 
3335 	/* Use the zero-page for reads */
3336 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3337 			!mm_forbids_zeropage(vma->vm_mm)) {
3338 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3339 						vma->vm_page_prot));
3340 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3341 				vmf->address, &vmf->ptl);
3342 		if (!pte_none(*vmf->pte))
3343 			goto unlock;
3344 		ret = check_stable_address_space(vma->vm_mm);
3345 		if (ret)
3346 			goto unlock;
3347 		/* Deliver the page fault to userland, check inside PT lock */
3348 		if (userfaultfd_missing(vma)) {
3349 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3350 			return handle_userfault(vmf, VM_UFFD_MISSING);
3351 		}
3352 		goto setpte;
3353 	}
3354 
3355 	/* Allocate our own private page. */
3356 	if (unlikely(anon_vma_prepare(vma)))
3357 		goto oom;
3358 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3359 	if (!page)
3360 		goto oom;
3361 
3362 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3363 					false))
3364 		goto oom_free_page;
3365 
3366 	/*
3367 	 * The memory barrier inside __SetPageUptodate makes sure that
3368 	 * preceding stores to the page contents become visible before
3369 	 * the set_pte_at() write.
3370 	 */
3371 	__SetPageUptodate(page);
3372 
3373 	entry = mk_pte(page, vma->vm_page_prot);
3374 	if (vma->vm_flags & VM_WRITE)
3375 		entry = pte_mkwrite(pte_mkdirty(entry));
3376 
3377 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3378 			&vmf->ptl);
3379 	if (!pte_none(*vmf->pte))
3380 		goto release;
3381 
3382 	ret = check_stable_address_space(vma->vm_mm);
3383 	if (ret)
3384 		goto release;
3385 
3386 	/* Deliver the page fault to userland, check inside PT lock */
3387 	if (userfaultfd_missing(vma)) {
3388 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3389 		mem_cgroup_cancel_charge(page, memcg, false);
3390 		put_page(page);
3391 		return handle_userfault(vmf, VM_UFFD_MISSING);
3392 	}
3393 
3394 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3395 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3396 	mem_cgroup_commit_charge(page, memcg, false, false);
3397 	lru_cache_add_active_or_unevictable(page, vma);
3398 setpte:
3399 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3400 
3401 	/* No need to invalidate - it was non-present before */
3402 	update_mmu_cache(vma, vmf->address, vmf->pte);
3403 unlock:
3404 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3405 	return ret;
3406 release:
3407 	mem_cgroup_cancel_charge(page, memcg, false);
3408 	put_page(page);
3409 	goto unlock;
3410 oom_free_page:
3411 	put_page(page);
3412 oom:
3413 	return VM_FAULT_OOM;
3414 }
3415 
3416 /*
3417  * The mmap_sem must have been held on entry, and may have been
3418  * released depending on flags and vma->vm_ops->fault() return value.
3419  * See filemap_fault() and __lock_page_retry().
3420  */
3421 static vm_fault_t __do_fault(struct vm_fault *vmf)
3422 {
3423 	struct vm_area_struct *vma = vmf->vma;
3424 	vm_fault_t ret;
3425 
3426 	/*
3427 	 * Preallocate pte before we take page_lock because this might lead to
3428 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3429 	 *				lock_page(A)
3430 	 *				SetPageWriteback(A)
3431 	 *				unlock_page(A)
3432 	 * lock_page(B)
3433 	 *				lock_page(B)
3434 	 * pte_alloc_pne
3435 	 *   shrink_page_list
3436 	 *     wait_on_page_writeback(A)
3437 	 *				SetPageWriteback(B)
3438 	 *				unlock_page(B)
3439 	 *				# flush A, B to clear the writeback
3440 	 */
3441 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3442 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3443 		if (!vmf->prealloc_pte)
3444 			return VM_FAULT_OOM;
3445 		smp_wmb(); /* See comment in __pte_alloc() */
3446 	}
3447 
3448 	ret = vma->vm_ops->fault(vmf);
3449 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3450 			    VM_FAULT_DONE_COW)))
3451 		return ret;
3452 
3453 	if (unlikely(PageHWPoison(vmf->page))) {
3454 		if (ret & VM_FAULT_LOCKED)
3455 			unlock_page(vmf->page);
3456 		put_page(vmf->page);
3457 		vmf->page = NULL;
3458 		return VM_FAULT_HWPOISON;
3459 	}
3460 
3461 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3462 		lock_page(vmf->page);
3463 	else
3464 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3465 
3466 	return ret;
3467 }
3468 
3469 /*
3470  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3471  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3472  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3473  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3474  */
3475 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3476 {
3477 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3478 }
3479 
3480 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3481 {
3482 	struct vm_area_struct *vma = vmf->vma;
3483 
3484 	if (!pmd_none(*vmf->pmd))
3485 		goto map_pte;
3486 	if (vmf->prealloc_pte) {
3487 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3488 		if (unlikely(!pmd_none(*vmf->pmd))) {
3489 			spin_unlock(vmf->ptl);
3490 			goto map_pte;
3491 		}
3492 
3493 		mm_inc_nr_ptes(vma->vm_mm);
3494 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3495 		spin_unlock(vmf->ptl);
3496 		vmf->prealloc_pte = NULL;
3497 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3498 		return VM_FAULT_OOM;
3499 	}
3500 map_pte:
3501 	/*
3502 	 * If a huge pmd materialized under us just retry later.  Use
3503 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3504 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3505 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3506 	 * running immediately after a huge pmd fault in a different thread of
3507 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3508 	 * All we have to ensure is that it is a regular pmd that we can walk
3509 	 * with pte_offset_map() and we can do that through an atomic read in
3510 	 * C, which is what pmd_trans_unstable() provides.
3511 	 */
3512 	if (pmd_devmap_trans_unstable(vmf->pmd))
3513 		return VM_FAULT_NOPAGE;
3514 
3515 	/*
3516 	 * At this point we know that our vmf->pmd points to a page of ptes
3517 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3518 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3519 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3520 	 * be valid and we will re-check to make sure the vmf->pte isn't
3521 	 * pte_none() under vmf->ptl protection when we return to
3522 	 * alloc_set_pte().
3523 	 */
3524 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3525 			&vmf->ptl);
3526 	return 0;
3527 }
3528 
3529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3530 static void deposit_prealloc_pte(struct vm_fault *vmf)
3531 {
3532 	struct vm_area_struct *vma = vmf->vma;
3533 
3534 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3535 	/*
3536 	 * We are going to consume the prealloc table,
3537 	 * count that as nr_ptes.
3538 	 */
3539 	mm_inc_nr_ptes(vma->vm_mm);
3540 	vmf->prealloc_pte = NULL;
3541 }
3542 
3543 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3544 {
3545 	struct vm_area_struct *vma = vmf->vma;
3546 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3547 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3548 	pmd_t entry;
3549 	int i;
3550 	vm_fault_t ret;
3551 
3552 	if (!transhuge_vma_suitable(vma, haddr))
3553 		return VM_FAULT_FALLBACK;
3554 
3555 	ret = VM_FAULT_FALLBACK;
3556 	page = compound_head(page);
3557 
3558 	/*
3559 	 * Archs like ppc64 need additonal space to store information
3560 	 * related to pte entry. Use the preallocated table for that.
3561 	 */
3562 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3563 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3564 		if (!vmf->prealloc_pte)
3565 			return VM_FAULT_OOM;
3566 		smp_wmb(); /* See comment in __pte_alloc() */
3567 	}
3568 
3569 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3570 	if (unlikely(!pmd_none(*vmf->pmd)))
3571 		goto out;
3572 
3573 	for (i = 0; i < HPAGE_PMD_NR; i++)
3574 		flush_icache_page(vma, page + i);
3575 
3576 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3577 	if (write)
3578 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3579 
3580 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3581 	page_add_file_rmap(page, true);
3582 	/*
3583 	 * deposit and withdraw with pmd lock held
3584 	 */
3585 	if (arch_needs_pgtable_deposit())
3586 		deposit_prealloc_pte(vmf);
3587 
3588 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3589 
3590 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3591 
3592 	/* fault is handled */
3593 	ret = 0;
3594 	count_vm_event(THP_FILE_MAPPED);
3595 out:
3596 	spin_unlock(vmf->ptl);
3597 	return ret;
3598 }
3599 #else
3600 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3601 {
3602 	BUILD_BUG();
3603 	return 0;
3604 }
3605 #endif
3606 
3607 /**
3608  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3609  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3610  *
3611  * @vmf: fault environment
3612  * @memcg: memcg to charge page (only for private mappings)
3613  * @page: page to map
3614  *
3615  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3616  * return.
3617  *
3618  * Target users are page handler itself and implementations of
3619  * vm_ops->map_pages.
3620  *
3621  * Return: %0 on success, %VM_FAULT_ code in case of error.
3622  */
3623 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3624 		struct page *page)
3625 {
3626 	struct vm_area_struct *vma = vmf->vma;
3627 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3628 	pte_t entry;
3629 	vm_fault_t ret;
3630 
3631 	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3632 		/* THP on COW? */
3633 		VM_BUG_ON_PAGE(memcg, page);
3634 
3635 		ret = do_set_pmd(vmf, page);
3636 		if (ret != VM_FAULT_FALLBACK)
3637 			return ret;
3638 	}
3639 
3640 	if (!vmf->pte) {
3641 		ret = pte_alloc_one_map(vmf);
3642 		if (ret)
3643 			return ret;
3644 	}
3645 
3646 	/* Re-check under ptl */
3647 	if (unlikely(!pte_none(*vmf->pte)))
3648 		return VM_FAULT_NOPAGE;
3649 
3650 	flush_icache_page(vma, page);
3651 	entry = mk_pte(page, vma->vm_page_prot);
3652 	if (write)
3653 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3654 	/* copy-on-write page */
3655 	if (write && !(vma->vm_flags & VM_SHARED)) {
3656 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3657 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3658 		mem_cgroup_commit_charge(page, memcg, false, false);
3659 		lru_cache_add_active_or_unevictable(page, vma);
3660 	} else {
3661 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3662 		page_add_file_rmap(page, false);
3663 	}
3664 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3665 
3666 	/* no need to invalidate: a not-present page won't be cached */
3667 	update_mmu_cache(vma, vmf->address, vmf->pte);
3668 
3669 	return 0;
3670 }
3671 
3672 
3673 /**
3674  * finish_fault - finish page fault once we have prepared the page to fault
3675  *
3676  * @vmf: structure describing the fault
3677  *
3678  * This function handles all that is needed to finish a page fault once the
3679  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3680  * given page, adds reverse page mapping, handles memcg charges and LRU
3681  * addition.
3682  *
3683  * The function expects the page to be locked and on success it consumes a
3684  * reference of a page being mapped (for the PTE which maps it).
3685  *
3686  * Return: %0 on success, %VM_FAULT_ code in case of error.
3687  */
3688 vm_fault_t finish_fault(struct vm_fault *vmf)
3689 {
3690 	struct page *page;
3691 	vm_fault_t ret = 0;
3692 
3693 	/* Did we COW the page? */
3694 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3695 	    !(vmf->vma->vm_flags & VM_SHARED))
3696 		page = vmf->cow_page;
3697 	else
3698 		page = vmf->page;
3699 
3700 	/*
3701 	 * check even for read faults because we might have lost our CoWed
3702 	 * page
3703 	 */
3704 	if (!(vmf->vma->vm_flags & VM_SHARED))
3705 		ret = check_stable_address_space(vmf->vma->vm_mm);
3706 	if (!ret)
3707 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3708 	if (vmf->pte)
3709 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3710 	return ret;
3711 }
3712 
3713 static unsigned long fault_around_bytes __read_mostly =
3714 	rounddown_pow_of_two(65536);
3715 
3716 #ifdef CONFIG_DEBUG_FS
3717 static int fault_around_bytes_get(void *data, u64 *val)
3718 {
3719 	*val = fault_around_bytes;
3720 	return 0;
3721 }
3722 
3723 /*
3724  * fault_around_bytes must be rounded down to the nearest page order as it's
3725  * what do_fault_around() expects to see.
3726  */
3727 static int fault_around_bytes_set(void *data, u64 val)
3728 {
3729 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3730 		return -EINVAL;
3731 	if (val > PAGE_SIZE)
3732 		fault_around_bytes = rounddown_pow_of_two(val);
3733 	else
3734 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3735 	return 0;
3736 }
3737 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3738 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3739 
3740 static int __init fault_around_debugfs(void)
3741 {
3742 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3743 				   &fault_around_bytes_fops);
3744 	return 0;
3745 }
3746 late_initcall(fault_around_debugfs);
3747 #endif
3748 
3749 /*
3750  * do_fault_around() tries to map few pages around the fault address. The hope
3751  * is that the pages will be needed soon and this will lower the number of
3752  * faults to handle.
3753  *
3754  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3755  * not ready to be mapped: not up-to-date, locked, etc.
3756  *
3757  * This function is called with the page table lock taken. In the split ptlock
3758  * case the page table lock only protects only those entries which belong to
3759  * the page table corresponding to the fault address.
3760  *
3761  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3762  * only once.
3763  *
3764  * fault_around_bytes defines how many bytes we'll try to map.
3765  * do_fault_around() expects it to be set to a power of two less than or equal
3766  * to PTRS_PER_PTE.
3767  *
3768  * The virtual address of the area that we map is naturally aligned to
3769  * fault_around_bytes rounded down to the machine page size
3770  * (and therefore to page order).  This way it's easier to guarantee
3771  * that we don't cross page table boundaries.
3772  */
3773 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3774 {
3775 	unsigned long address = vmf->address, nr_pages, mask;
3776 	pgoff_t start_pgoff = vmf->pgoff;
3777 	pgoff_t end_pgoff;
3778 	int off;
3779 	vm_fault_t ret = 0;
3780 
3781 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3782 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3783 
3784 	vmf->address = max(address & mask, vmf->vma->vm_start);
3785 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3786 	start_pgoff -= off;
3787 
3788 	/*
3789 	 *  end_pgoff is either the end of the page table, the end of
3790 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3791 	 */
3792 	end_pgoff = start_pgoff -
3793 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3794 		PTRS_PER_PTE - 1;
3795 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3796 			start_pgoff + nr_pages - 1);
3797 
3798 	if (pmd_none(*vmf->pmd)) {
3799 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3800 		if (!vmf->prealloc_pte)
3801 			goto out;
3802 		smp_wmb(); /* See comment in __pte_alloc() */
3803 	}
3804 
3805 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3806 
3807 	/* Huge page is mapped? Page fault is solved */
3808 	if (pmd_trans_huge(*vmf->pmd)) {
3809 		ret = VM_FAULT_NOPAGE;
3810 		goto out;
3811 	}
3812 
3813 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3814 	if (!vmf->pte)
3815 		goto out;
3816 
3817 	/* check if the page fault is solved */
3818 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3819 	if (!pte_none(*vmf->pte))
3820 		ret = VM_FAULT_NOPAGE;
3821 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3822 out:
3823 	vmf->address = address;
3824 	vmf->pte = NULL;
3825 	return ret;
3826 }
3827 
3828 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3829 {
3830 	struct vm_area_struct *vma = vmf->vma;
3831 	vm_fault_t ret = 0;
3832 
3833 	/*
3834 	 * Let's call ->map_pages() first and use ->fault() as fallback
3835 	 * if page by the offset is not ready to be mapped (cold cache or
3836 	 * something).
3837 	 */
3838 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3839 		ret = do_fault_around(vmf);
3840 		if (ret)
3841 			return ret;
3842 	}
3843 
3844 	ret = __do_fault(vmf);
3845 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3846 		return ret;
3847 
3848 	ret |= finish_fault(vmf);
3849 	unlock_page(vmf->page);
3850 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3851 		put_page(vmf->page);
3852 	return ret;
3853 }
3854 
3855 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3856 {
3857 	struct vm_area_struct *vma = vmf->vma;
3858 	vm_fault_t ret;
3859 
3860 	if (unlikely(anon_vma_prepare(vma)))
3861 		return VM_FAULT_OOM;
3862 
3863 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3864 	if (!vmf->cow_page)
3865 		return VM_FAULT_OOM;
3866 
3867 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3868 				&vmf->memcg, false)) {
3869 		put_page(vmf->cow_page);
3870 		return VM_FAULT_OOM;
3871 	}
3872 
3873 	ret = __do_fault(vmf);
3874 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3875 		goto uncharge_out;
3876 	if (ret & VM_FAULT_DONE_COW)
3877 		return ret;
3878 
3879 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3880 	__SetPageUptodate(vmf->cow_page);
3881 
3882 	ret |= finish_fault(vmf);
3883 	unlock_page(vmf->page);
3884 	put_page(vmf->page);
3885 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3886 		goto uncharge_out;
3887 	return ret;
3888 uncharge_out:
3889 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3890 	put_page(vmf->cow_page);
3891 	return ret;
3892 }
3893 
3894 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3895 {
3896 	struct vm_area_struct *vma = vmf->vma;
3897 	vm_fault_t ret, tmp;
3898 
3899 	ret = __do_fault(vmf);
3900 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3901 		return ret;
3902 
3903 	/*
3904 	 * Check if the backing address space wants to know that the page is
3905 	 * about to become writable
3906 	 */
3907 	if (vma->vm_ops->page_mkwrite) {
3908 		unlock_page(vmf->page);
3909 		tmp = do_page_mkwrite(vmf);
3910 		if (unlikely(!tmp ||
3911 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3912 			put_page(vmf->page);
3913 			return tmp;
3914 		}
3915 	}
3916 
3917 	ret |= finish_fault(vmf);
3918 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3919 					VM_FAULT_RETRY))) {
3920 		unlock_page(vmf->page);
3921 		put_page(vmf->page);
3922 		return ret;
3923 	}
3924 
3925 	ret |= fault_dirty_shared_page(vmf);
3926 	return ret;
3927 }
3928 
3929 /*
3930  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3931  * but allow concurrent faults).
3932  * The mmap_sem may have been released depending on flags and our
3933  * return value.  See filemap_fault() and __lock_page_or_retry().
3934  * If mmap_sem is released, vma may become invalid (for example
3935  * by other thread calling munmap()).
3936  */
3937 static vm_fault_t do_fault(struct vm_fault *vmf)
3938 {
3939 	struct vm_area_struct *vma = vmf->vma;
3940 	struct mm_struct *vm_mm = vma->vm_mm;
3941 	vm_fault_t ret;
3942 
3943 	/*
3944 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3945 	 */
3946 	if (!vma->vm_ops->fault) {
3947 		/*
3948 		 * If we find a migration pmd entry or a none pmd entry, which
3949 		 * should never happen, return SIGBUS
3950 		 */
3951 		if (unlikely(!pmd_present(*vmf->pmd)))
3952 			ret = VM_FAULT_SIGBUS;
3953 		else {
3954 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3955 						       vmf->pmd,
3956 						       vmf->address,
3957 						       &vmf->ptl);
3958 			/*
3959 			 * Make sure this is not a temporary clearing of pte
3960 			 * by holding ptl and checking again. A R/M/W update
3961 			 * of pte involves: take ptl, clearing the pte so that
3962 			 * we don't have concurrent modification by hardware
3963 			 * followed by an update.
3964 			 */
3965 			if (unlikely(pte_none(*vmf->pte)))
3966 				ret = VM_FAULT_SIGBUS;
3967 			else
3968 				ret = VM_FAULT_NOPAGE;
3969 
3970 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3971 		}
3972 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3973 		ret = do_read_fault(vmf);
3974 	else if (!(vma->vm_flags & VM_SHARED))
3975 		ret = do_cow_fault(vmf);
3976 	else
3977 		ret = do_shared_fault(vmf);
3978 
3979 	/* preallocated pagetable is unused: free it */
3980 	if (vmf->prealloc_pte) {
3981 		pte_free(vm_mm, vmf->prealloc_pte);
3982 		vmf->prealloc_pte = NULL;
3983 	}
3984 	return ret;
3985 }
3986 
3987 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3988 				unsigned long addr, int page_nid,
3989 				int *flags)
3990 {
3991 	get_page(page);
3992 
3993 	count_vm_numa_event(NUMA_HINT_FAULTS);
3994 	if (page_nid == numa_node_id()) {
3995 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3996 		*flags |= TNF_FAULT_LOCAL;
3997 	}
3998 
3999 	return mpol_misplaced(page, vma, addr);
4000 }
4001 
4002 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4003 {
4004 	struct vm_area_struct *vma = vmf->vma;
4005 	struct page *page = NULL;
4006 	int page_nid = NUMA_NO_NODE;
4007 	int last_cpupid;
4008 	int target_nid;
4009 	bool migrated = false;
4010 	pte_t pte, old_pte;
4011 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4012 	int flags = 0;
4013 
4014 	/*
4015 	 * The "pte" at this point cannot be used safely without
4016 	 * validation through pte_unmap_same(). It's of NUMA type but
4017 	 * the pfn may be screwed if the read is non atomic.
4018 	 */
4019 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4020 	spin_lock(vmf->ptl);
4021 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4022 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4023 		goto out;
4024 	}
4025 
4026 	/*
4027 	 * Make it present again, Depending on how arch implementes non
4028 	 * accessible ptes, some can allow access by kernel mode.
4029 	 */
4030 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4031 	pte = pte_modify(old_pte, vma->vm_page_prot);
4032 	pte = pte_mkyoung(pte);
4033 	if (was_writable)
4034 		pte = pte_mkwrite(pte);
4035 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4036 	update_mmu_cache(vma, vmf->address, vmf->pte);
4037 
4038 	page = vm_normal_page(vma, vmf->address, pte);
4039 	if (!page) {
4040 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4041 		return 0;
4042 	}
4043 
4044 	/* TODO: handle PTE-mapped THP */
4045 	if (PageCompound(page)) {
4046 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4047 		return 0;
4048 	}
4049 
4050 	/*
4051 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4052 	 * much anyway since they can be in shared cache state. This misses
4053 	 * the case where a mapping is writable but the process never writes
4054 	 * to it but pte_write gets cleared during protection updates and
4055 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4056 	 * background writeback, dirty balancing and application behaviour.
4057 	 */
4058 	if (!pte_write(pte))
4059 		flags |= TNF_NO_GROUP;
4060 
4061 	/*
4062 	 * Flag if the page is shared between multiple address spaces. This
4063 	 * is later used when determining whether to group tasks together
4064 	 */
4065 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4066 		flags |= TNF_SHARED;
4067 
4068 	last_cpupid = page_cpupid_last(page);
4069 	page_nid = page_to_nid(page);
4070 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4071 			&flags);
4072 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4073 	if (target_nid == NUMA_NO_NODE) {
4074 		put_page(page);
4075 		goto out;
4076 	}
4077 
4078 	/* Migrate to the requested node */
4079 	migrated = migrate_misplaced_page(page, vma, target_nid);
4080 	if (migrated) {
4081 		page_nid = target_nid;
4082 		flags |= TNF_MIGRATED;
4083 	} else
4084 		flags |= TNF_MIGRATE_FAIL;
4085 
4086 out:
4087 	if (page_nid != NUMA_NO_NODE)
4088 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4089 	return 0;
4090 }
4091 
4092 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4093 {
4094 	if (vma_is_anonymous(vmf->vma))
4095 		return do_huge_pmd_anonymous_page(vmf);
4096 	if (vmf->vma->vm_ops->huge_fault)
4097 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4098 	return VM_FAULT_FALLBACK;
4099 }
4100 
4101 /* `inline' is required to avoid gcc 4.1.2 build error */
4102 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4103 {
4104 	if (vma_is_anonymous(vmf->vma)) {
4105 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4106 			return handle_userfault(vmf, VM_UFFD_WP);
4107 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4108 	}
4109 	if (vmf->vma->vm_ops->huge_fault) {
4110 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4111 
4112 		if (!(ret & VM_FAULT_FALLBACK))
4113 			return ret;
4114 	}
4115 
4116 	/* COW or write-notify handled on pte level: split pmd. */
4117 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4118 
4119 	return VM_FAULT_FALLBACK;
4120 }
4121 
4122 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4123 {
4124 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4125 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4126 	/* No support for anonymous transparent PUD pages yet */
4127 	if (vma_is_anonymous(vmf->vma))
4128 		goto split;
4129 	if (vmf->vma->vm_ops->huge_fault) {
4130 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4131 
4132 		if (!(ret & VM_FAULT_FALLBACK))
4133 			return ret;
4134 	}
4135 split:
4136 	/* COW or write-notify not handled on PUD level: split pud.*/
4137 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4138 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4139 	return VM_FAULT_FALLBACK;
4140 }
4141 
4142 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4143 {
4144 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4145 	/* No support for anonymous transparent PUD pages yet */
4146 	if (vma_is_anonymous(vmf->vma))
4147 		return VM_FAULT_FALLBACK;
4148 	if (vmf->vma->vm_ops->huge_fault)
4149 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4150 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4151 	return VM_FAULT_FALLBACK;
4152 }
4153 
4154 /*
4155  * These routines also need to handle stuff like marking pages dirty
4156  * and/or accessed for architectures that don't do it in hardware (most
4157  * RISC architectures).  The early dirtying is also good on the i386.
4158  *
4159  * There is also a hook called "update_mmu_cache()" that architectures
4160  * with external mmu caches can use to update those (ie the Sparc or
4161  * PowerPC hashed page tables that act as extended TLBs).
4162  *
4163  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4164  * concurrent faults).
4165  *
4166  * The mmap_sem may have been released depending on flags and our return value.
4167  * See filemap_fault() and __lock_page_or_retry().
4168  */
4169 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4170 {
4171 	pte_t entry;
4172 
4173 	if (unlikely(pmd_none(*vmf->pmd))) {
4174 		/*
4175 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4176 		 * want to allocate huge page, and if we expose page table
4177 		 * for an instant, it will be difficult to retract from
4178 		 * concurrent faults and from rmap lookups.
4179 		 */
4180 		vmf->pte = NULL;
4181 	} else {
4182 		/* See comment in pte_alloc_one_map() */
4183 		if (pmd_devmap_trans_unstable(vmf->pmd))
4184 			return 0;
4185 		/*
4186 		 * A regular pmd is established and it can't morph into a huge
4187 		 * pmd from under us anymore at this point because we hold the
4188 		 * mmap_sem read mode and khugepaged takes it in write mode.
4189 		 * So now it's safe to run pte_offset_map().
4190 		 */
4191 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4192 		vmf->orig_pte = *vmf->pte;
4193 
4194 		/*
4195 		 * some architectures can have larger ptes than wordsize,
4196 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4197 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4198 		 * accesses.  The code below just needs a consistent view
4199 		 * for the ifs and we later double check anyway with the
4200 		 * ptl lock held. So here a barrier will do.
4201 		 */
4202 		barrier();
4203 		if (pte_none(vmf->orig_pte)) {
4204 			pte_unmap(vmf->pte);
4205 			vmf->pte = NULL;
4206 		}
4207 	}
4208 
4209 	if (!vmf->pte) {
4210 		if (vma_is_anonymous(vmf->vma))
4211 			return do_anonymous_page(vmf);
4212 		else
4213 			return do_fault(vmf);
4214 	}
4215 
4216 	if (!pte_present(vmf->orig_pte))
4217 		return do_swap_page(vmf);
4218 
4219 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4220 		return do_numa_page(vmf);
4221 
4222 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4223 	spin_lock(vmf->ptl);
4224 	entry = vmf->orig_pte;
4225 	if (unlikely(!pte_same(*vmf->pte, entry)))
4226 		goto unlock;
4227 	if (vmf->flags & FAULT_FLAG_WRITE) {
4228 		if (!pte_write(entry))
4229 			return do_wp_page(vmf);
4230 		entry = pte_mkdirty(entry);
4231 	}
4232 	entry = pte_mkyoung(entry);
4233 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4234 				vmf->flags & FAULT_FLAG_WRITE)) {
4235 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4236 	} else {
4237 		/*
4238 		 * This is needed only for protection faults but the arch code
4239 		 * is not yet telling us if this is a protection fault or not.
4240 		 * This still avoids useless tlb flushes for .text page faults
4241 		 * with threads.
4242 		 */
4243 		if (vmf->flags & FAULT_FLAG_WRITE)
4244 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4245 	}
4246 unlock:
4247 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4248 	return 0;
4249 }
4250 
4251 /*
4252  * By the time we get here, we already hold the mm semaphore
4253  *
4254  * The mmap_sem may have been released depending on flags and our
4255  * return value.  See filemap_fault() and __lock_page_or_retry().
4256  */
4257 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4258 		unsigned long address, unsigned int flags)
4259 {
4260 	struct vm_fault vmf = {
4261 		.vma = vma,
4262 		.address = address & PAGE_MASK,
4263 		.flags = flags,
4264 		.pgoff = linear_page_index(vma, address),
4265 		.gfp_mask = __get_fault_gfp_mask(vma),
4266 	};
4267 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4268 	struct mm_struct *mm = vma->vm_mm;
4269 	pgd_t *pgd;
4270 	p4d_t *p4d;
4271 	vm_fault_t ret;
4272 
4273 	pgd = pgd_offset(mm, address);
4274 	p4d = p4d_alloc(mm, pgd, address);
4275 	if (!p4d)
4276 		return VM_FAULT_OOM;
4277 
4278 	vmf.pud = pud_alloc(mm, p4d, address);
4279 	if (!vmf.pud)
4280 		return VM_FAULT_OOM;
4281 retry_pud:
4282 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4283 		ret = create_huge_pud(&vmf);
4284 		if (!(ret & VM_FAULT_FALLBACK))
4285 			return ret;
4286 	} else {
4287 		pud_t orig_pud = *vmf.pud;
4288 
4289 		barrier();
4290 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4291 
4292 			/* NUMA case for anonymous PUDs would go here */
4293 
4294 			if (dirty && !pud_write(orig_pud)) {
4295 				ret = wp_huge_pud(&vmf, orig_pud);
4296 				if (!(ret & VM_FAULT_FALLBACK))
4297 					return ret;
4298 			} else {
4299 				huge_pud_set_accessed(&vmf, orig_pud);
4300 				return 0;
4301 			}
4302 		}
4303 	}
4304 
4305 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4306 	if (!vmf.pmd)
4307 		return VM_FAULT_OOM;
4308 
4309 	/* Huge pud page fault raced with pmd_alloc? */
4310 	if (pud_trans_unstable(vmf.pud))
4311 		goto retry_pud;
4312 
4313 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4314 		ret = create_huge_pmd(&vmf);
4315 		if (!(ret & VM_FAULT_FALLBACK))
4316 			return ret;
4317 	} else {
4318 		pmd_t orig_pmd = *vmf.pmd;
4319 
4320 		barrier();
4321 		if (unlikely(is_swap_pmd(orig_pmd))) {
4322 			VM_BUG_ON(thp_migration_supported() &&
4323 					  !is_pmd_migration_entry(orig_pmd));
4324 			if (is_pmd_migration_entry(orig_pmd))
4325 				pmd_migration_entry_wait(mm, vmf.pmd);
4326 			return 0;
4327 		}
4328 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4329 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4330 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4331 
4332 			if (dirty && !pmd_write(orig_pmd)) {
4333 				ret = wp_huge_pmd(&vmf, orig_pmd);
4334 				if (!(ret & VM_FAULT_FALLBACK))
4335 					return ret;
4336 			} else {
4337 				huge_pmd_set_accessed(&vmf, orig_pmd);
4338 				return 0;
4339 			}
4340 		}
4341 	}
4342 
4343 	return handle_pte_fault(&vmf);
4344 }
4345 
4346 /*
4347  * By the time we get here, we already hold the mm semaphore
4348  *
4349  * The mmap_sem may have been released depending on flags and our
4350  * return value.  See filemap_fault() and __lock_page_or_retry().
4351  */
4352 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4353 		unsigned int flags)
4354 {
4355 	vm_fault_t ret;
4356 
4357 	__set_current_state(TASK_RUNNING);
4358 
4359 	count_vm_event(PGFAULT);
4360 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4361 
4362 	/* do counter updates before entering really critical section. */
4363 	check_sync_rss_stat(current);
4364 
4365 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4366 					    flags & FAULT_FLAG_INSTRUCTION,
4367 					    flags & FAULT_FLAG_REMOTE))
4368 		return VM_FAULT_SIGSEGV;
4369 
4370 	/*
4371 	 * Enable the memcg OOM handling for faults triggered in user
4372 	 * space.  Kernel faults are handled more gracefully.
4373 	 */
4374 	if (flags & FAULT_FLAG_USER)
4375 		mem_cgroup_enter_user_fault();
4376 
4377 	if (unlikely(is_vm_hugetlb_page(vma)))
4378 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4379 	else
4380 		ret = __handle_mm_fault(vma, address, flags);
4381 
4382 	if (flags & FAULT_FLAG_USER) {
4383 		mem_cgroup_exit_user_fault();
4384 		/*
4385 		 * The task may have entered a memcg OOM situation but
4386 		 * if the allocation error was handled gracefully (no
4387 		 * VM_FAULT_OOM), there is no need to kill anything.
4388 		 * Just clean up the OOM state peacefully.
4389 		 */
4390 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4391 			mem_cgroup_oom_synchronize(false);
4392 	}
4393 
4394 	return ret;
4395 }
4396 EXPORT_SYMBOL_GPL(handle_mm_fault);
4397 
4398 #ifndef __PAGETABLE_P4D_FOLDED
4399 /*
4400  * Allocate p4d page table.
4401  * We've already handled the fast-path in-line.
4402  */
4403 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4404 {
4405 	p4d_t *new = p4d_alloc_one(mm, address);
4406 	if (!new)
4407 		return -ENOMEM;
4408 
4409 	smp_wmb(); /* See comment in __pte_alloc */
4410 
4411 	spin_lock(&mm->page_table_lock);
4412 	if (pgd_present(*pgd))		/* Another has populated it */
4413 		p4d_free(mm, new);
4414 	else
4415 		pgd_populate(mm, pgd, new);
4416 	spin_unlock(&mm->page_table_lock);
4417 	return 0;
4418 }
4419 #endif /* __PAGETABLE_P4D_FOLDED */
4420 
4421 #ifndef __PAGETABLE_PUD_FOLDED
4422 /*
4423  * Allocate page upper directory.
4424  * We've already handled the fast-path in-line.
4425  */
4426 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4427 {
4428 	pud_t *new = pud_alloc_one(mm, address);
4429 	if (!new)
4430 		return -ENOMEM;
4431 
4432 	smp_wmb(); /* See comment in __pte_alloc */
4433 
4434 	spin_lock(&mm->page_table_lock);
4435 #ifndef __ARCH_HAS_5LEVEL_HACK
4436 	if (!p4d_present(*p4d)) {
4437 		mm_inc_nr_puds(mm);
4438 		p4d_populate(mm, p4d, new);
4439 	} else	/* Another has populated it */
4440 		pud_free(mm, new);
4441 #else
4442 	if (!pgd_present(*p4d)) {
4443 		mm_inc_nr_puds(mm);
4444 		pgd_populate(mm, p4d, new);
4445 	} else	/* Another has populated it */
4446 		pud_free(mm, new);
4447 #endif /* __ARCH_HAS_5LEVEL_HACK */
4448 	spin_unlock(&mm->page_table_lock);
4449 	return 0;
4450 }
4451 #endif /* __PAGETABLE_PUD_FOLDED */
4452 
4453 #ifndef __PAGETABLE_PMD_FOLDED
4454 /*
4455  * Allocate page middle directory.
4456  * We've already handled the fast-path in-line.
4457  */
4458 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4459 {
4460 	spinlock_t *ptl;
4461 	pmd_t *new = pmd_alloc_one(mm, address);
4462 	if (!new)
4463 		return -ENOMEM;
4464 
4465 	smp_wmb(); /* See comment in __pte_alloc */
4466 
4467 	ptl = pud_lock(mm, pud);
4468 	if (!pud_present(*pud)) {
4469 		mm_inc_nr_pmds(mm);
4470 		pud_populate(mm, pud, new);
4471 	} else	/* Another has populated it */
4472 		pmd_free(mm, new);
4473 	spin_unlock(ptl);
4474 	return 0;
4475 }
4476 #endif /* __PAGETABLE_PMD_FOLDED */
4477 
4478 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4479 			    struct mmu_notifier_range *range,
4480 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4481 {
4482 	pgd_t *pgd;
4483 	p4d_t *p4d;
4484 	pud_t *pud;
4485 	pmd_t *pmd;
4486 	pte_t *ptep;
4487 
4488 	pgd = pgd_offset(mm, address);
4489 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4490 		goto out;
4491 
4492 	p4d = p4d_offset(pgd, address);
4493 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4494 		goto out;
4495 
4496 	pud = pud_offset(p4d, address);
4497 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4498 		goto out;
4499 
4500 	pmd = pmd_offset(pud, address);
4501 	VM_BUG_ON(pmd_trans_huge(*pmd));
4502 
4503 	if (pmd_huge(*pmd)) {
4504 		if (!pmdpp)
4505 			goto out;
4506 
4507 		if (range) {
4508 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4509 						NULL, mm, address & PMD_MASK,
4510 						(address & PMD_MASK) + PMD_SIZE);
4511 			mmu_notifier_invalidate_range_start(range);
4512 		}
4513 		*ptlp = pmd_lock(mm, pmd);
4514 		if (pmd_huge(*pmd)) {
4515 			*pmdpp = pmd;
4516 			return 0;
4517 		}
4518 		spin_unlock(*ptlp);
4519 		if (range)
4520 			mmu_notifier_invalidate_range_end(range);
4521 	}
4522 
4523 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4524 		goto out;
4525 
4526 	if (range) {
4527 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4528 					address & PAGE_MASK,
4529 					(address & PAGE_MASK) + PAGE_SIZE);
4530 		mmu_notifier_invalidate_range_start(range);
4531 	}
4532 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4533 	if (!pte_present(*ptep))
4534 		goto unlock;
4535 	*ptepp = ptep;
4536 	return 0;
4537 unlock:
4538 	pte_unmap_unlock(ptep, *ptlp);
4539 	if (range)
4540 		mmu_notifier_invalidate_range_end(range);
4541 out:
4542 	return -EINVAL;
4543 }
4544 
4545 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4546 			     pte_t **ptepp, spinlock_t **ptlp)
4547 {
4548 	int res;
4549 
4550 	/* (void) is needed to make gcc happy */
4551 	(void) __cond_lock(*ptlp,
4552 			   !(res = __follow_pte_pmd(mm, address, NULL,
4553 						    ptepp, NULL, ptlp)));
4554 	return res;
4555 }
4556 
4557 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4558 		   struct mmu_notifier_range *range,
4559 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4560 {
4561 	int res;
4562 
4563 	/* (void) is needed to make gcc happy */
4564 	(void) __cond_lock(*ptlp,
4565 			   !(res = __follow_pte_pmd(mm, address, range,
4566 						    ptepp, pmdpp, ptlp)));
4567 	return res;
4568 }
4569 EXPORT_SYMBOL(follow_pte_pmd);
4570 
4571 /**
4572  * follow_pfn - look up PFN at a user virtual address
4573  * @vma: memory mapping
4574  * @address: user virtual address
4575  * @pfn: location to store found PFN
4576  *
4577  * Only IO mappings and raw PFN mappings are allowed.
4578  *
4579  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4580  */
4581 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4582 	unsigned long *pfn)
4583 {
4584 	int ret = -EINVAL;
4585 	spinlock_t *ptl;
4586 	pte_t *ptep;
4587 
4588 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4589 		return ret;
4590 
4591 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4592 	if (ret)
4593 		return ret;
4594 	*pfn = pte_pfn(*ptep);
4595 	pte_unmap_unlock(ptep, ptl);
4596 	return 0;
4597 }
4598 EXPORT_SYMBOL(follow_pfn);
4599 
4600 #ifdef CONFIG_HAVE_IOREMAP_PROT
4601 int follow_phys(struct vm_area_struct *vma,
4602 		unsigned long address, unsigned int flags,
4603 		unsigned long *prot, resource_size_t *phys)
4604 {
4605 	int ret = -EINVAL;
4606 	pte_t *ptep, pte;
4607 	spinlock_t *ptl;
4608 
4609 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4610 		goto out;
4611 
4612 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4613 		goto out;
4614 	pte = *ptep;
4615 
4616 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4617 		goto unlock;
4618 
4619 	*prot = pgprot_val(pte_pgprot(pte));
4620 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4621 
4622 	ret = 0;
4623 unlock:
4624 	pte_unmap_unlock(ptep, ptl);
4625 out:
4626 	return ret;
4627 }
4628 
4629 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4630 			void *buf, int len, int write)
4631 {
4632 	resource_size_t phys_addr;
4633 	unsigned long prot = 0;
4634 	void __iomem *maddr;
4635 	int offset = addr & (PAGE_SIZE-1);
4636 
4637 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4638 		return -EINVAL;
4639 
4640 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4641 	if (!maddr)
4642 		return -ENOMEM;
4643 
4644 	if (write)
4645 		memcpy_toio(maddr + offset, buf, len);
4646 	else
4647 		memcpy_fromio(buf, maddr + offset, len);
4648 	iounmap(maddr);
4649 
4650 	return len;
4651 }
4652 EXPORT_SYMBOL_GPL(generic_access_phys);
4653 #endif
4654 
4655 /*
4656  * Access another process' address space as given in mm.  If non-NULL, use the
4657  * given task for page fault accounting.
4658  */
4659 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4660 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4661 {
4662 	struct vm_area_struct *vma;
4663 	void *old_buf = buf;
4664 	int write = gup_flags & FOLL_WRITE;
4665 
4666 	if (down_read_killable(&mm->mmap_sem))
4667 		return 0;
4668 
4669 	/* ignore errors, just check how much was successfully transferred */
4670 	while (len) {
4671 		int bytes, ret, offset;
4672 		void *maddr;
4673 		struct page *page = NULL;
4674 
4675 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4676 				gup_flags, &page, &vma, NULL);
4677 		if (ret <= 0) {
4678 #ifndef CONFIG_HAVE_IOREMAP_PROT
4679 			break;
4680 #else
4681 			/*
4682 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4683 			 * we can access using slightly different code.
4684 			 */
4685 			vma = find_vma(mm, addr);
4686 			if (!vma || vma->vm_start > addr)
4687 				break;
4688 			if (vma->vm_ops && vma->vm_ops->access)
4689 				ret = vma->vm_ops->access(vma, addr, buf,
4690 							  len, write);
4691 			if (ret <= 0)
4692 				break;
4693 			bytes = ret;
4694 #endif
4695 		} else {
4696 			bytes = len;
4697 			offset = addr & (PAGE_SIZE-1);
4698 			if (bytes > PAGE_SIZE-offset)
4699 				bytes = PAGE_SIZE-offset;
4700 
4701 			maddr = kmap(page);
4702 			if (write) {
4703 				copy_to_user_page(vma, page, addr,
4704 						  maddr + offset, buf, bytes);
4705 				set_page_dirty_lock(page);
4706 			} else {
4707 				copy_from_user_page(vma, page, addr,
4708 						    buf, maddr + offset, bytes);
4709 			}
4710 			kunmap(page);
4711 			put_page(page);
4712 		}
4713 		len -= bytes;
4714 		buf += bytes;
4715 		addr += bytes;
4716 	}
4717 	up_read(&mm->mmap_sem);
4718 
4719 	return buf - old_buf;
4720 }
4721 
4722 /**
4723  * access_remote_vm - access another process' address space
4724  * @mm:		the mm_struct of the target address space
4725  * @addr:	start address to access
4726  * @buf:	source or destination buffer
4727  * @len:	number of bytes to transfer
4728  * @gup_flags:	flags modifying lookup behaviour
4729  *
4730  * The caller must hold a reference on @mm.
4731  *
4732  * Return: number of bytes copied from source to destination.
4733  */
4734 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4735 		void *buf, int len, unsigned int gup_flags)
4736 {
4737 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4738 }
4739 
4740 /*
4741  * Access another process' address space.
4742  * Source/target buffer must be kernel space,
4743  * Do not walk the page table directly, use get_user_pages
4744  */
4745 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4746 		void *buf, int len, unsigned int gup_flags)
4747 {
4748 	struct mm_struct *mm;
4749 	int ret;
4750 
4751 	mm = get_task_mm(tsk);
4752 	if (!mm)
4753 		return 0;
4754 
4755 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4756 
4757 	mmput(mm);
4758 
4759 	return ret;
4760 }
4761 EXPORT_SYMBOL_GPL(access_process_vm);
4762 
4763 /*
4764  * Print the name of a VMA.
4765  */
4766 void print_vma_addr(char *prefix, unsigned long ip)
4767 {
4768 	struct mm_struct *mm = current->mm;
4769 	struct vm_area_struct *vma;
4770 
4771 	/*
4772 	 * we might be running from an atomic context so we cannot sleep
4773 	 */
4774 	if (!down_read_trylock(&mm->mmap_sem))
4775 		return;
4776 
4777 	vma = find_vma(mm, ip);
4778 	if (vma && vma->vm_file) {
4779 		struct file *f = vma->vm_file;
4780 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4781 		if (buf) {
4782 			char *p;
4783 
4784 			p = file_path(f, buf, PAGE_SIZE);
4785 			if (IS_ERR(p))
4786 				p = "?";
4787 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4788 					vma->vm_start,
4789 					vma->vm_end - vma->vm_start);
4790 			free_page((unsigned long)buf);
4791 		}
4792 	}
4793 	up_read(&mm->mmap_sem);
4794 }
4795 
4796 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4797 void __might_fault(const char *file, int line)
4798 {
4799 	/*
4800 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4801 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4802 	 * get paged out, therefore we'll never actually fault, and the
4803 	 * below annotations will generate false positives.
4804 	 */
4805 	if (uaccess_kernel())
4806 		return;
4807 	if (pagefault_disabled())
4808 		return;
4809 	__might_sleep(file, line, 0);
4810 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4811 	if (current->mm)
4812 		might_lock_read(&current->mm->mmap_sem);
4813 #endif
4814 }
4815 EXPORT_SYMBOL(__might_fault);
4816 #endif
4817 
4818 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4819 /*
4820  * Process all subpages of the specified huge page with the specified
4821  * operation.  The target subpage will be processed last to keep its
4822  * cache lines hot.
4823  */
4824 static inline void process_huge_page(
4825 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4826 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4827 	void *arg)
4828 {
4829 	int i, n, base, l;
4830 	unsigned long addr = addr_hint &
4831 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4832 
4833 	/* Process target subpage last to keep its cache lines hot */
4834 	might_sleep();
4835 	n = (addr_hint - addr) / PAGE_SIZE;
4836 	if (2 * n <= pages_per_huge_page) {
4837 		/* If target subpage in first half of huge page */
4838 		base = 0;
4839 		l = n;
4840 		/* Process subpages at the end of huge page */
4841 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4842 			cond_resched();
4843 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4844 		}
4845 	} else {
4846 		/* If target subpage in second half of huge page */
4847 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4848 		l = pages_per_huge_page - n;
4849 		/* Process subpages at the begin of huge page */
4850 		for (i = 0; i < base; i++) {
4851 			cond_resched();
4852 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4853 		}
4854 	}
4855 	/*
4856 	 * Process remaining subpages in left-right-left-right pattern
4857 	 * towards the target subpage
4858 	 */
4859 	for (i = 0; i < l; i++) {
4860 		int left_idx = base + i;
4861 		int right_idx = base + 2 * l - 1 - i;
4862 
4863 		cond_resched();
4864 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4865 		cond_resched();
4866 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4867 	}
4868 }
4869 
4870 static void clear_gigantic_page(struct page *page,
4871 				unsigned long addr,
4872 				unsigned int pages_per_huge_page)
4873 {
4874 	int i;
4875 	struct page *p = page;
4876 
4877 	might_sleep();
4878 	for (i = 0; i < pages_per_huge_page;
4879 	     i++, p = mem_map_next(p, page, i)) {
4880 		cond_resched();
4881 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4882 	}
4883 }
4884 
4885 static void clear_subpage(unsigned long addr, int idx, void *arg)
4886 {
4887 	struct page *page = arg;
4888 
4889 	clear_user_highpage(page + idx, addr);
4890 }
4891 
4892 void clear_huge_page(struct page *page,
4893 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4894 {
4895 	unsigned long addr = addr_hint &
4896 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4897 
4898 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4899 		clear_gigantic_page(page, addr, pages_per_huge_page);
4900 		return;
4901 	}
4902 
4903 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4904 }
4905 
4906 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4907 				    unsigned long addr,
4908 				    struct vm_area_struct *vma,
4909 				    unsigned int pages_per_huge_page)
4910 {
4911 	int i;
4912 	struct page *dst_base = dst;
4913 	struct page *src_base = src;
4914 
4915 	for (i = 0; i < pages_per_huge_page; ) {
4916 		cond_resched();
4917 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4918 
4919 		i++;
4920 		dst = mem_map_next(dst, dst_base, i);
4921 		src = mem_map_next(src, src_base, i);
4922 	}
4923 }
4924 
4925 struct copy_subpage_arg {
4926 	struct page *dst;
4927 	struct page *src;
4928 	struct vm_area_struct *vma;
4929 };
4930 
4931 static void copy_subpage(unsigned long addr, int idx, void *arg)
4932 {
4933 	struct copy_subpage_arg *copy_arg = arg;
4934 
4935 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4936 			   addr, copy_arg->vma);
4937 }
4938 
4939 void copy_user_huge_page(struct page *dst, struct page *src,
4940 			 unsigned long addr_hint, struct vm_area_struct *vma,
4941 			 unsigned int pages_per_huge_page)
4942 {
4943 	unsigned long addr = addr_hint &
4944 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4945 	struct copy_subpage_arg arg = {
4946 		.dst = dst,
4947 		.src = src,
4948 		.vma = vma,
4949 	};
4950 
4951 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4952 		copy_user_gigantic_page(dst, src, addr, vma,
4953 					pages_per_huge_page);
4954 		return;
4955 	}
4956 
4957 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4958 }
4959 
4960 long copy_huge_page_from_user(struct page *dst_page,
4961 				const void __user *usr_src,
4962 				unsigned int pages_per_huge_page,
4963 				bool allow_pagefault)
4964 {
4965 	void *src = (void *)usr_src;
4966 	void *page_kaddr;
4967 	unsigned long i, rc = 0;
4968 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4969 
4970 	for (i = 0; i < pages_per_huge_page; i++) {
4971 		if (allow_pagefault)
4972 			page_kaddr = kmap(dst_page + i);
4973 		else
4974 			page_kaddr = kmap_atomic(dst_page + i);
4975 		rc = copy_from_user(page_kaddr,
4976 				(const void __user *)(src + i * PAGE_SIZE),
4977 				PAGE_SIZE);
4978 		if (allow_pagefault)
4979 			kunmap(dst_page + i);
4980 		else
4981 			kunmap_atomic(page_kaddr);
4982 
4983 		ret_val -= (PAGE_SIZE - rc);
4984 		if (rc)
4985 			break;
4986 
4987 		cond_resched();
4988 	}
4989 	return ret_val;
4990 }
4991 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4992 
4993 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4994 
4995 static struct kmem_cache *page_ptl_cachep;
4996 
4997 void __init ptlock_cache_init(void)
4998 {
4999 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5000 			SLAB_PANIC, NULL);
5001 }
5002 
5003 bool ptlock_alloc(struct page *page)
5004 {
5005 	spinlock_t *ptl;
5006 
5007 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5008 	if (!ptl)
5009 		return false;
5010 	page->ptl = ptl;
5011 	return true;
5012 }
5013 
5014 void ptlock_free(struct page *page)
5015 {
5016 	kmem_cache_free(page_ptl_cachep, page->ptl);
5017 }
5018 #endif
5019