1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/pfn_t.h> 54 #include <linux/writeback.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/kallsyms.h> 58 #include <linux/swapops.h> 59 #include <linux/elf.h> 60 #include <linux/gfp.h> 61 #include <linux/migrate.h> 62 #include <linux/string.h> 63 #include <linux/dma-debug.h> 64 #include <linux/debugfs.h> 65 #include <linux/userfaultfd_k.h> 66 #include <linux/dax.h> 67 68 #include <asm/io.h> 69 #include <asm/mmu_context.h> 70 #include <asm/pgalloc.h> 71 #include <asm/uaccess.h> 72 #include <asm/tlb.h> 73 #include <asm/tlbflush.h> 74 #include <asm/pgtable.h> 75 76 #include "internal.h" 77 78 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 80 #endif 81 82 #ifndef CONFIG_NEED_MULTIPLE_NODES 83 /* use the per-pgdat data instead for discontigmem - mbligh */ 84 unsigned long max_mapnr; 85 struct page *mem_map; 86 87 EXPORT_SYMBOL(max_mapnr); 88 EXPORT_SYMBOL(mem_map); 89 #endif 90 91 /* 92 * A number of key systems in x86 including ioremap() rely on the assumption 93 * that high_memory defines the upper bound on direct map memory, then end 94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 96 * and ZONE_HIGHMEM. 97 */ 98 void * high_memory; 99 100 EXPORT_SYMBOL(high_memory); 101 102 /* 103 * Randomize the address space (stacks, mmaps, brk, etc.). 104 * 105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 106 * as ancient (libc5 based) binaries can segfault. ) 107 */ 108 int randomize_va_space __read_mostly = 109 #ifdef CONFIG_COMPAT_BRK 110 1; 111 #else 112 2; 113 #endif 114 115 static int __init disable_randmaps(char *s) 116 { 117 randomize_va_space = 0; 118 return 1; 119 } 120 __setup("norandmaps", disable_randmaps); 121 122 unsigned long zero_pfn __read_mostly; 123 unsigned long highest_memmap_pfn __read_mostly; 124 125 EXPORT_SYMBOL(zero_pfn); 126 127 /* 128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 129 */ 130 static int __init init_zero_pfn(void) 131 { 132 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 133 return 0; 134 } 135 core_initcall(init_zero_pfn); 136 137 138 #if defined(SPLIT_RSS_COUNTING) 139 140 void sync_mm_rss(struct mm_struct *mm) 141 { 142 int i; 143 144 for (i = 0; i < NR_MM_COUNTERS; i++) { 145 if (current->rss_stat.count[i]) { 146 add_mm_counter(mm, i, current->rss_stat.count[i]); 147 current->rss_stat.count[i] = 0; 148 } 149 } 150 current->rss_stat.events = 0; 151 } 152 153 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 154 { 155 struct task_struct *task = current; 156 157 if (likely(task->mm == mm)) 158 task->rss_stat.count[member] += val; 159 else 160 add_mm_counter(mm, member, val); 161 } 162 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 163 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 164 165 /* sync counter once per 64 page faults */ 166 #define TASK_RSS_EVENTS_THRESH (64) 167 static void check_sync_rss_stat(struct task_struct *task) 168 { 169 if (unlikely(task != current)) 170 return; 171 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 172 sync_mm_rss(task->mm); 173 } 174 #else /* SPLIT_RSS_COUNTING */ 175 176 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 177 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 178 179 static void check_sync_rss_stat(struct task_struct *task) 180 { 181 } 182 183 #endif /* SPLIT_RSS_COUNTING */ 184 185 #ifdef HAVE_GENERIC_MMU_GATHER 186 187 static bool tlb_next_batch(struct mmu_gather *tlb) 188 { 189 struct mmu_gather_batch *batch; 190 191 batch = tlb->active; 192 if (batch->next) { 193 tlb->active = batch->next; 194 return true; 195 } 196 197 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 198 return false; 199 200 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 201 if (!batch) 202 return false; 203 204 tlb->batch_count++; 205 batch->next = NULL; 206 batch->nr = 0; 207 batch->max = MAX_GATHER_BATCH; 208 209 tlb->active->next = batch; 210 tlb->active = batch; 211 212 return true; 213 } 214 215 /* tlb_gather_mmu 216 * Called to initialize an (on-stack) mmu_gather structure for page-table 217 * tear-down from @mm. The @fullmm argument is used when @mm is without 218 * users and we're going to destroy the full address space (exit/execve). 219 */ 220 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 221 { 222 tlb->mm = mm; 223 224 /* Is it from 0 to ~0? */ 225 tlb->fullmm = !(start | (end+1)); 226 tlb->need_flush_all = 0; 227 tlb->local.next = NULL; 228 tlb->local.nr = 0; 229 tlb->local.max = ARRAY_SIZE(tlb->__pages); 230 tlb->active = &tlb->local; 231 tlb->batch_count = 0; 232 233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 234 tlb->batch = NULL; 235 #endif 236 237 __tlb_reset_range(tlb); 238 } 239 240 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 241 { 242 if (!tlb->end) 243 return; 244 245 tlb_flush(tlb); 246 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 247 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 248 tlb_table_flush(tlb); 249 #endif 250 __tlb_reset_range(tlb); 251 } 252 253 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 254 { 255 struct mmu_gather_batch *batch; 256 257 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 258 free_pages_and_swap_cache(batch->pages, batch->nr); 259 batch->nr = 0; 260 } 261 tlb->active = &tlb->local; 262 } 263 264 void tlb_flush_mmu(struct mmu_gather *tlb) 265 { 266 tlb_flush_mmu_tlbonly(tlb); 267 tlb_flush_mmu_free(tlb); 268 } 269 270 /* tlb_finish_mmu 271 * Called at the end of the shootdown operation to free up any resources 272 * that were required. 273 */ 274 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 275 { 276 struct mmu_gather_batch *batch, *next; 277 278 tlb_flush_mmu(tlb); 279 280 /* keep the page table cache within bounds */ 281 check_pgt_cache(); 282 283 for (batch = tlb->local.next; batch; batch = next) { 284 next = batch->next; 285 free_pages((unsigned long)batch, 0); 286 } 287 tlb->local.next = NULL; 288 } 289 290 /* __tlb_remove_page 291 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 292 * handling the additional races in SMP caused by other CPUs caching valid 293 * mappings in their TLBs. Returns the number of free page slots left. 294 * When out of page slots we must call tlb_flush_mmu(). 295 */ 296 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 297 { 298 struct mmu_gather_batch *batch; 299 300 VM_BUG_ON(!tlb->end); 301 302 batch = tlb->active; 303 batch->pages[batch->nr++] = page; 304 if (batch->nr == batch->max) { 305 if (!tlb_next_batch(tlb)) 306 return 0; 307 batch = tlb->active; 308 } 309 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 310 311 return batch->max - batch->nr; 312 } 313 314 #endif /* HAVE_GENERIC_MMU_GATHER */ 315 316 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 317 318 /* 319 * See the comment near struct mmu_table_batch. 320 */ 321 322 static void tlb_remove_table_smp_sync(void *arg) 323 { 324 /* Simply deliver the interrupt */ 325 } 326 327 static void tlb_remove_table_one(void *table) 328 { 329 /* 330 * This isn't an RCU grace period and hence the page-tables cannot be 331 * assumed to be actually RCU-freed. 332 * 333 * It is however sufficient for software page-table walkers that rely on 334 * IRQ disabling. See the comment near struct mmu_table_batch. 335 */ 336 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 337 __tlb_remove_table(table); 338 } 339 340 static void tlb_remove_table_rcu(struct rcu_head *head) 341 { 342 struct mmu_table_batch *batch; 343 int i; 344 345 batch = container_of(head, struct mmu_table_batch, rcu); 346 347 for (i = 0; i < batch->nr; i++) 348 __tlb_remove_table(batch->tables[i]); 349 350 free_page((unsigned long)batch); 351 } 352 353 void tlb_table_flush(struct mmu_gather *tlb) 354 { 355 struct mmu_table_batch **batch = &tlb->batch; 356 357 if (*batch) { 358 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 359 *batch = NULL; 360 } 361 } 362 363 void tlb_remove_table(struct mmu_gather *tlb, void *table) 364 { 365 struct mmu_table_batch **batch = &tlb->batch; 366 367 /* 368 * When there's less then two users of this mm there cannot be a 369 * concurrent page-table walk. 370 */ 371 if (atomic_read(&tlb->mm->mm_users) < 2) { 372 __tlb_remove_table(table); 373 return; 374 } 375 376 if (*batch == NULL) { 377 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 378 if (*batch == NULL) { 379 tlb_remove_table_one(table); 380 return; 381 } 382 (*batch)->nr = 0; 383 } 384 (*batch)->tables[(*batch)->nr++] = table; 385 if ((*batch)->nr == MAX_TABLE_BATCH) 386 tlb_table_flush(tlb); 387 } 388 389 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 390 391 /* 392 * Note: this doesn't free the actual pages themselves. That 393 * has been handled earlier when unmapping all the memory regions. 394 */ 395 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 396 unsigned long addr) 397 { 398 pgtable_t token = pmd_pgtable(*pmd); 399 pmd_clear(pmd); 400 pte_free_tlb(tlb, token, addr); 401 atomic_long_dec(&tlb->mm->nr_ptes); 402 } 403 404 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 405 unsigned long addr, unsigned long end, 406 unsigned long floor, unsigned long ceiling) 407 { 408 pmd_t *pmd; 409 unsigned long next; 410 unsigned long start; 411 412 start = addr; 413 pmd = pmd_offset(pud, addr); 414 do { 415 next = pmd_addr_end(addr, end); 416 if (pmd_none_or_clear_bad(pmd)) 417 continue; 418 free_pte_range(tlb, pmd, addr); 419 } while (pmd++, addr = next, addr != end); 420 421 start &= PUD_MASK; 422 if (start < floor) 423 return; 424 if (ceiling) { 425 ceiling &= PUD_MASK; 426 if (!ceiling) 427 return; 428 } 429 if (end - 1 > ceiling - 1) 430 return; 431 432 pmd = pmd_offset(pud, start); 433 pud_clear(pud); 434 pmd_free_tlb(tlb, pmd, start); 435 mm_dec_nr_pmds(tlb->mm); 436 } 437 438 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 439 unsigned long addr, unsigned long end, 440 unsigned long floor, unsigned long ceiling) 441 { 442 pud_t *pud; 443 unsigned long next; 444 unsigned long start; 445 446 start = addr; 447 pud = pud_offset(pgd, addr); 448 do { 449 next = pud_addr_end(addr, end); 450 if (pud_none_or_clear_bad(pud)) 451 continue; 452 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 453 } while (pud++, addr = next, addr != end); 454 455 start &= PGDIR_MASK; 456 if (start < floor) 457 return; 458 if (ceiling) { 459 ceiling &= PGDIR_MASK; 460 if (!ceiling) 461 return; 462 } 463 if (end - 1 > ceiling - 1) 464 return; 465 466 pud = pud_offset(pgd, start); 467 pgd_clear(pgd); 468 pud_free_tlb(tlb, pud, start); 469 } 470 471 /* 472 * This function frees user-level page tables of a process. 473 */ 474 void free_pgd_range(struct mmu_gather *tlb, 475 unsigned long addr, unsigned long end, 476 unsigned long floor, unsigned long ceiling) 477 { 478 pgd_t *pgd; 479 unsigned long next; 480 481 /* 482 * The next few lines have given us lots of grief... 483 * 484 * Why are we testing PMD* at this top level? Because often 485 * there will be no work to do at all, and we'd prefer not to 486 * go all the way down to the bottom just to discover that. 487 * 488 * Why all these "- 1"s? Because 0 represents both the bottom 489 * of the address space and the top of it (using -1 for the 490 * top wouldn't help much: the masks would do the wrong thing). 491 * The rule is that addr 0 and floor 0 refer to the bottom of 492 * the address space, but end 0 and ceiling 0 refer to the top 493 * Comparisons need to use "end - 1" and "ceiling - 1" (though 494 * that end 0 case should be mythical). 495 * 496 * Wherever addr is brought up or ceiling brought down, we must 497 * be careful to reject "the opposite 0" before it confuses the 498 * subsequent tests. But what about where end is brought down 499 * by PMD_SIZE below? no, end can't go down to 0 there. 500 * 501 * Whereas we round start (addr) and ceiling down, by different 502 * masks at different levels, in order to test whether a table 503 * now has no other vmas using it, so can be freed, we don't 504 * bother to round floor or end up - the tests don't need that. 505 */ 506 507 addr &= PMD_MASK; 508 if (addr < floor) { 509 addr += PMD_SIZE; 510 if (!addr) 511 return; 512 } 513 if (ceiling) { 514 ceiling &= PMD_MASK; 515 if (!ceiling) 516 return; 517 } 518 if (end - 1 > ceiling - 1) 519 end -= PMD_SIZE; 520 if (addr > end - 1) 521 return; 522 523 pgd = pgd_offset(tlb->mm, addr); 524 do { 525 next = pgd_addr_end(addr, end); 526 if (pgd_none_or_clear_bad(pgd)) 527 continue; 528 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 529 } while (pgd++, addr = next, addr != end); 530 } 531 532 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 533 unsigned long floor, unsigned long ceiling) 534 { 535 while (vma) { 536 struct vm_area_struct *next = vma->vm_next; 537 unsigned long addr = vma->vm_start; 538 539 /* 540 * Hide vma from rmap and truncate_pagecache before freeing 541 * pgtables 542 */ 543 unlink_anon_vmas(vma); 544 unlink_file_vma(vma); 545 546 if (is_vm_hugetlb_page(vma)) { 547 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 548 floor, next? next->vm_start: ceiling); 549 } else { 550 /* 551 * Optimization: gather nearby vmas into one call down 552 */ 553 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 554 && !is_vm_hugetlb_page(next)) { 555 vma = next; 556 next = vma->vm_next; 557 unlink_anon_vmas(vma); 558 unlink_file_vma(vma); 559 } 560 free_pgd_range(tlb, addr, vma->vm_end, 561 floor, next? next->vm_start: ceiling); 562 } 563 vma = next; 564 } 565 } 566 567 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 568 { 569 spinlock_t *ptl; 570 pgtable_t new = pte_alloc_one(mm, address); 571 if (!new) 572 return -ENOMEM; 573 574 /* 575 * Ensure all pte setup (eg. pte page lock and page clearing) are 576 * visible before the pte is made visible to other CPUs by being 577 * put into page tables. 578 * 579 * The other side of the story is the pointer chasing in the page 580 * table walking code (when walking the page table without locking; 581 * ie. most of the time). Fortunately, these data accesses consist 582 * of a chain of data-dependent loads, meaning most CPUs (alpha 583 * being the notable exception) will already guarantee loads are 584 * seen in-order. See the alpha page table accessors for the 585 * smp_read_barrier_depends() barriers in page table walking code. 586 */ 587 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 588 589 ptl = pmd_lock(mm, pmd); 590 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 591 atomic_long_inc(&mm->nr_ptes); 592 pmd_populate(mm, pmd, new); 593 new = NULL; 594 } 595 spin_unlock(ptl); 596 if (new) 597 pte_free(mm, new); 598 return 0; 599 } 600 601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 602 { 603 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 604 if (!new) 605 return -ENOMEM; 606 607 smp_wmb(); /* See comment in __pte_alloc */ 608 609 spin_lock(&init_mm.page_table_lock); 610 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 611 pmd_populate_kernel(&init_mm, pmd, new); 612 new = NULL; 613 } 614 spin_unlock(&init_mm.page_table_lock); 615 if (new) 616 pte_free_kernel(&init_mm, new); 617 return 0; 618 } 619 620 static inline void init_rss_vec(int *rss) 621 { 622 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 623 } 624 625 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 626 { 627 int i; 628 629 if (current->mm == mm) 630 sync_mm_rss(mm); 631 for (i = 0; i < NR_MM_COUNTERS; i++) 632 if (rss[i]) 633 add_mm_counter(mm, i, rss[i]); 634 } 635 636 /* 637 * This function is called to print an error when a bad pte 638 * is found. For example, we might have a PFN-mapped pte in 639 * a region that doesn't allow it. 640 * 641 * The calling function must still handle the error. 642 */ 643 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 644 pte_t pte, struct page *page) 645 { 646 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 647 pud_t *pud = pud_offset(pgd, addr); 648 pmd_t *pmd = pmd_offset(pud, addr); 649 struct address_space *mapping; 650 pgoff_t index; 651 static unsigned long resume; 652 static unsigned long nr_shown; 653 static unsigned long nr_unshown; 654 655 /* 656 * Allow a burst of 60 reports, then keep quiet for that minute; 657 * or allow a steady drip of one report per second. 658 */ 659 if (nr_shown == 60) { 660 if (time_before(jiffies, resume)) { 661 nr_unshown++; 662 return; 663 } 664 if (nr_unshown) { 665 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 666 nr_unshown); 667 nr_unshown = 0; 668 } 669 nr_shown = 0; 670 } 671 if (nr_shown++ == 0) 672 resume = jiffies + 60 * HZ; 673 674 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 675 index = linear_page_index(vma, addr); 676 677 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 678 current->comm, 679 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 680 if (page) 681 dump_page(page, "bad pte"); 682 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 683 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 684 /* 685 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 686 */ 687 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 688 vma->vm_file, 689 vma->vm_ops ? vma->vm_ops->fault : NULL, 690 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 691 mapping ? mapping->a_ops->readpage : NULL); 692 dump_stack(); 693 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 694 } 695 696 /* 697 * vm_normal_page -- This function gets the "struct page" associated with a pte. 698 * 699 * "Special" mappings do not wish to be associated with a "struct page" (either 700 * it doesn't exist, or it exists but they don't want to touch it). In this 701 * case, NULL is returned here. "Normal" mappings do have a struct page. 702 * 703 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 704 * pte bit, in which case this function is trivial. Secondly, an architecture 705 * may not have a spare pte bit, which requires a more complicated scheme, 706 * described below. 707 * 708 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 709 * special mapping (even if there are underlying and valid "struct pages"). 710 * COWed pages of a VM_PFNMAP are always normal. 711 * 712 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 713 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 714 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 715 * mapping will always honor the rule 716 * 717 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 718 * 719 * And for normal mappings this is false. 720 * 721 * This restricts such mappings to be a linear translation from virtual address 722 * to pfn. To get around this restriction, we allow arbitrary mappings so long 723 * as the vma is not a COW mapping; in that case, we know that all ptes are 724 * special (because none can have been COWed). 725 * 726 * 727 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 728 * 729 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 730 * page" backing, however the difference is that _all_ pages with a struct 731 * page (that is, those where pfn_valid is true) are refcounted and considered 732 * normal pages by the VM. The disadvantage is that pages are refcounted 733 * (which can be slower and simply not an option for some PFNMAP users). The 734 * advantage is that we don't have to follow the strict linearity rule of 735 * PFNMAP mappings in order to support COWable mappings. 736 * 737 */ 738 #ifdef __HAVE_ARCH_PTE_SPECIAL 739 # define HAVE_PTE_SPECIAL 1 740 #else 741 # define HAVE_PTE_SPECIAL 0 742 #endif 743 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 744 pte_t pte) 745 { 746 unsigned long pfn = pte_pfn(pte); 747 748 if (HAVE_PTE_SPECIAL) { 749 if (likely(!pte_special(pte))) 750 goto check_pfn; 751 if (vma->vm_ops && vma->vm_ops->find_special_page) 752 return vma->vm_ops->find_special_page(vma, addr); 753 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 754 return NULL; 755 if (!is_zero_pfn(pfn)) 756 print_bad_pte(vma, addr, pte, NULL); 757 return NULL; 758 } 759 760 /* !HAVE_PTE_SPECIAL case follows: */ 761 762 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 763 if (vma->vm_flags & VM_MIXEDMAP) { 764 if (!pfn_valid(pfn)) 765 return NULL; 766 goto out; 767 } else { 768 unsigned long off; 769 off = (addr - vma->vm_start) >> PAGE_SHIFT; 770 if (pfn == vma->vm_pgoff + off) 771 return NULL; 772 if (!is_cow_mapping(vma->vm_flags)) 773 return NULL; 774 } 775 } 776 777 if (is_zero_pfn(pfn)) 778 return NULL; 779 check_pfn: 780 if (unlikely(pfn > highest_memmap_pfn)) { 781 print_bad_pte(vma, addr, pte, NULL); 782 return NULL; 783 } 784 785 /* 786 * NOTE! We still have PageReserved() pages in the page tables. 787 * eg. VDSO mappings can cause them to exist. 788 */ 789 out: 790 return pfn_to_page(pfn); 791 } 792 793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 794 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 795 pmd_t pmd) 796 { 797 unsigned long pfn = pmd_pfn(pmd); 798 799 /* 800 * There is no pmd_special() but there may be special pmds, e.g. 801 * in a direct-access (dax) mapping, so let's just replicate the 802 * !HAVE_PTE_SPECIAL case from vm_normal_page() here. 803 */ 804 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 805 if (vma->vm_flags & VM_MIXEDMAP) { 806 if (!pfn_valid(pfn)) 807 return NULL; 808 goto out; 809 } else { 810 unsigned long off; 811 off = (addr - vma->vm_start) >> PAGE_SHIFT; 812 if (pfn == vma->vm_pgoff + off) 813 return NULL; 814 if (!is_cow_mapping(vma->vm_flags)) 815 return NULL; 816 } 817 } 818 819 if (is_zero_pfn(pfn)) 820 return NULL; 821 if (unlikely(pfn > highest_memmap_pfn)) 822 return NULL; 823 824 /* 825 * NOTE! We still have PageReserved() pages in the page tables. 826 * eg. VDSO mappings can cause them to exist. 827 */ 828 out: 829 return pfn_to_page(pfn); 830 } 831 #endif 832 833 /* 834 * copy one vm_area from one task to the other. Assumes the page tables 835 * already present in the new task to be cleared in the whole range 836 * covered by this vma. 837 */ 838 839 static inline unsigned long 840 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 841 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 842 unsigned long addr, int *rss) 843 { 844 unsigned long vm_flags = vma->vm_flags; 845 pte_t pte = *src_pte; 846 struct page *page; 847 848 /* pte contains position in swap or file, so copy. */ 849 if (unlikely(!pte_present(pte))) { 850 swp_entry_t entry = pte_to_swp_entry(pte); 851 852 if (likely(!non_swap_entry(entry))) { 853 if (swap_duplicate(entry) < 0) 854 return entry.val; 855 856 /* make sure dst_mm is on swapoff's mmlist. */ 857 if (unlikely(list_empty(&dst_mm->mmlist))) { 858 spin_lock(&mmlist_lock); 859 if (list_empty(&dst_mm->mmlist)) 860 list_add(&dst_mm->mmlist, 861 &src_mm->mmlist); 862 spin_unlock(&mmlist_lock); 863 } 864 rss[MM_SWAPENTS]++; 865 } else if (is_migration_entry(entry)) { 866 page = migration_entry_to_page(entry); 867 868 rss[mm_counter(page)]++; 869 870 if (is_write_migration_entry(entry) && 871 is_cow_mapping(vm_flags)) { 872 /* 873 * COW mappings require pages in both 874 * parent and child to be set to read. 875 */ 876 make_migration_entry_read(&entry); 877 pte = swp_entry_to_pte(entry); 878 if (pte_swp_soft_dirty(*src_pte)) 879 pte = pte_swp_mksoft_dirty(pte); 880 set_pte_at(src_mm, addr, src_pte, pte); 881 } 882 } 883 goto out_set_pte; 884 } 885 886 /* 887 * If it's a COW mapping, write protect it both 888 * in the parent and the child 889 */ 890 if (is_cow_mapping(vm_flags)) { 891 ptep_set_wrprotect(src_mm, addr, src_pte); 892 pte = pte_wrprotect(pte); 893 } 894 895 /* 896 * If it's a shared mapping, mark it clean in 897 * the child 898 */ 899 if (vm_flags & VM_SHARED) 900 pte = pte_mkclean(pte); 901 pte = pte_mkold(pte); 902 903 page = vm_normal_page(vma, addr, pte); 904 if (page) { 905 get_page(page); 906 page_dup_rmap(page, false); 907 rss[mm_counter(page)]++; 908 } 909 910 out_set_pte: 911 set_pte_at(dst_mm, addr, dst_pte, pte); 912 return 0; 913 } 914 915 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 916 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 917 unsigned long addr, unsigned long end) 918 { 919 pte_t *orig_src_pte, *orig_dst_pte; 920 pte_t *src_pte, *dst_pte; 921 spinlock_t *src_ptl, *dst_ptl; 922 int progress = 0; 923 int rss[NR_MM_COUNTERS]; 924 swp_entry_t entry = (swp_entry_t){0}; 925 926 again: 927 init_rss_vec(rss); 928 929 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 930 if (!dst_pte) 931 return -ENOMEM; 932 src_pte = pte_offset_map(src_pmd, addr); 933 src_ptl = pte_lockptr(src_mm, src_pmd); 934 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 935 orig_src_pte = src_pte; 936 orig_dst_pte = dst_pte; 937 arch_enter_lazy_mmu_mode(); 938 939 do { 940 /* 941 * We are holding two locks at this point - either of them 942 * could generate latencies in another task on another CPU. 943 */ 944 if (progress >= 32) { 945 progress = 0; 946 if (need_resched() || 947 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 948 break; 949 } 950 if (pte_none(*src_pte)) { 951 progress++; 952 continue; 953 } 954 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 955 vma, addr, rss); 956 if (entry.val) 957 break; 958 progress += 8; 959 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 960 961 arch_leave_lazy_mmu_mode(); 962 spin_unlock(src_ptl); 963 pte_unmap(orig_src_pte); 964 add_mm_rss_vec(dst_mm, rss); 965 pte_unmap_unlock(orig_dst_pte, dst_ptl); 966 cond_resched(); 967 968 if (entry.val) { 969 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 970 return -ENOMEM; 971 progress = 0; 972 } 973 if (addr != end) 974 goto again; 975 return 0; 976 } 977 978 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 979 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 980 unsigned long addr, unsigned long end) 981 { 982 pmd_t *src_pmd, *dst_pmd; 983 unsigned long next; 984 985 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 986 if (!dst_pmd) 987 return -ENOMEM; 988 src_pmd = pmd_offset(src_pud, addr); 989 do { 990 next = pmd_addr_end(addr, end); 991 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { 992 int err; 993 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 994 err = copy_huge_pmd(dst_mm, src_mm, 995 dst_pmd, src_pmd, addr, vma); 996 if (err == -ENOMEM) 997 return -ENOMEM; 998 if (!err) 999 continue; 1000 /* fall through */ 1001 } 1002 if (pmd_none_or_clear_bad(src_pmd)) 1003 continue; 1004 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1005 vma, addr, next)) 1006 return -ENOMEM; 1007 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1008 return 0; 1009 } 1010 1011 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1012 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1013 unsigned long addr, unsigned long end) 1014 { 1015 pud_t *src_pud, *dst_pud; 1016 unsigned long next; 1017 1018 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1019 if (!dst_pud) 1020 return -ENOMEM; 1021 src_pud = pud_offset(src_pgd, addr); 1022 do { 1023 next = pud_addr_end(addr, end); 1024 if (pud_none_or_clear_bad(src_pud)) 1025 continue; 1026 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1027 vma, addr, next)) 1028 return -ENOMEM; 1029 } while (dst_pud++, src_pud++, addr = next, addr != end); 1030 return 0; 1031 } 1032 1033 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1034 struct vm_area_struct *vma) 1035 { 1036 pgd_t *src_pgd, *dst_pgd; 1037 unsigned long next; 1038 unsigned long addr = vma->vm_start; 1039 unsigned long end = vma->vm_end; 1040 unsigned long mmun_start; /* For mmu_notifiers */ 1041 unsigned long mmun_end; /* For mmu_notifiers */ 1042 bool is_cow; 1043 int ret; 1044 1045 /* 1046 * Don't copy ptes where a page fault will fill them correctly. 1047 * Fork becomes much lighter when there are big shared or private 1048 * readonly mappings. The tradeoff is that copy_page_range is more 1049 * efficient than faulting. 1050 */ 1051 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1052 !vma->anon_vma) 1053 return 0; 1054 1055 if (is_vm_hugetlb_page(vma)) 1056 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1057 1058 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1059 /* 1060 * We do not free on error cases below as remove_vma 1061 * gets called on error from higher level routine 1062 */ 1063 ret = track_pfn_copy(vma); 1064 if (ret) 1065 return ret; 1066 } 1067 1068 /* 1069 * We need to invalidate the secondary MMU mappings only when 1070 * there could be a permission downgrade on the ptes of the 1071 * parent mm. And a permission downgrade will only happen if 1072 * is_cow_mapping() returns true. 1073 */ 1074 is_cow = is_cow_mapping(vma->vm_flags); 1075 mmun_start = addr; 1076 mmun_end = end; 1077 if (is_cow) 1078 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1079 mmun_end); 1080 1081 ret = 0; 1082 dst_pgd = pgd_offset(dst_mm, addr); 1083 src_pgd = pgd_offset(src_mm, addr); 1084 do { 1085 next = pgd_addr_end(addr, end); 1086 if (pgd_none_or_clear_bad(src_pgd)) 1087 continue; 1088 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1089 vma, addr, next))) { 1090 ret = -ENOMEM; 1091 break; 1092 } 1093 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1094 1095 if (is_cow) 1096 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1097 return ret; 1098 } 1099 1100 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1101 struct vm_area_struct *vma, pmd_t *pmd, 1102 unsigned long addr, unsigned long end, 1103 struct zap_details *details) 1104 { 1105 struct mm_struct *mm = tlb->mm; 1106 int force_flush = 0; 1107 int rss[NR_MM_COUNTERS]; 1108 spinlock_t *ptl; 1109 pte_t *start_pte; 1110 pte_t *pte; 1111 swp_entry_t entry; 1112 1113 again: 1114 init_rss_vec(rss); 1115 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1116 pte = start_pte; 1117 arch_enter_lazy_mmu_mode(); 1118 do { 1119 pte_t ptent = *pte; 1120 if (pte_none(ptent)) { 1121 continue; 1122 } 1123 1124 if (pte_present(ptent)) { 1125 struct page *page; 1126 1127 page = vm_normal_page(vma, addr, ptent); 1128 if (unlikely(details) && page) { 1129 /* 1130 * unmap_shared_mapping_pages() wants to 1131 * invalidate cache without truncating: 1132 * unmap shared but keep private pages. 1133 */ 1134 if (details->check_mapping && 1135 details->check_mapping != page->mapping) 1136 continue; 1137 } 1138 ptent = ptep_get_and_clear_full(mm, addr, pte, 1139 tlb->fullmm); 1140 tlb_remove_tlb_entry(tlb, pte, addr); 1141 if (unlikely(!page)) 1142 continue; 1143 1144 if (!PageAnon(page)) { 1145 if (pte_dirty(ptent)) { 1146 /* 1147 * oom_reaper cannot tear down dirty 1148 * pages 1149 */ 1150 if (unlikely(details && details->ignore_dirty)) 1151 continue; 1152 force_flush = 1; 1153 set_page_dirty(page); 1154 } 1155 if (pte_young(ptent) && 1156 likely(!(vma->vm_flags & VM_SEQ_READ))) 1157 mark_page_accessed(page); 1158 } 1159 rss[mm_counter(page)]--; 1160 page_remove_rmap(page, false); 1161 if (unlikely(page_mapcount(page) < 0)) 1162 print_bad_pte(vma, addr, ptent, page); 1163 if (unlikely(!__tlb_remove_page(tlb, page))) { 1164 force_flush = 1; 1165 addr += PAGE_SIZE; 1166 break; 1167 } 1168 continue; 1169 } 1170 /* only check swap_entries if explicitly asked for in details */ 1171 if (unlikely(details && !details->check_swap_entries)) 1172 continue; 1173 1174 entry = pte_to_swp_entry(ptent); 1175 if (!non_swap_entry(entry)) 1176 rss[MM_SWAPENTS]--; 1177 else if (is_migration_entry(entry)) { 1178 struct page *page; 1179 1180 page = migration_entry_to_page(entry); 1181 rss[mm_counter(page)]--; 1182 } 1183 if (unlikely(!free_swap_and_cache(entry))) 1184 print_bad_pte(vma, addr, ptent, NULL); 1185 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1186 } while (pte++, addr += PAGE_SIZE, addr != end); 1187 1188 add_mm_rss_vec(mm, rss); 1189 arch_leave_lazy_mmu_mode(); 1190 1191 /* Do the actual TLB flush before dropping ptl */ 1192 if (force_flush) 1193 tlb_flush_mmu_tlbonly(tlb); 1194 pte_unmap_unlock(start_pte, ptl); 1195 1196 /* 1197 * If we forced a TLB flush (either due to running out of 1198 * batch buffers or because we needed to flush dirty TLB 1199 * entries before releasing the ptl), free the batched 1200 * memory too. Restart if we didn't do everything. 1201 */ 1202 if (force_flush) { 1203 force_flush = 0; 1204 tlb_flush_mmu_free(tlb); 1205 1206 if (addr != end) 1207 goto again; 1208 } 1209 1210 return addr; 1211 } 1212 1213 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1214 struct vm_area_struct *vma, pud_t *pud, 1215 unsigned long addr, unsigned long end, 1216 struct zap_details *details) 1217 { 1218 pmd_t *pmd; 1219 unsigned long next; 1220 1221 pmd = pmd_offset(pud, addr); 1222 do { 1223 next = pmd_addr_end(addr, end); 1224 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1225 if (next - addr != HPAGE_PMD_SIZE) { 1226 VM_BUG_ON_VMA(vma_is_anonymous(vma) && 1227 !rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1228 split_huge_pmd(vma, pmd, addr); 1229 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1230 goto next; 1231 /* fall through */ 1232 } 1233 /* 1234 * Here there can be other concurrent MADV_DONTNEED or 1235 * trans huge page faults running, and if the pmd is 1236 * none or trans huge it can change under us. This is 1237 * because MADV_DONTNEED holds the mmap_sem in read 1238 * mode. 1239 */ 1240 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1241 goto next; 1242 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1243 next: 1244 cond_resched(); 1245 } while (pmd++, addr = next, addr != end); 1246 1247 return addr; 1248 } 1249 1250 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1251 struct vm_area_struct *vma, pgd_t *pgd, 1252 unsigned long addr, unsigned long end, 1253 struct zap_details *details) 1254 { 1255 pud_t *pud; 1256 unsigned long next; 1257 1258 pud = pud_offset(pgd, addr); 1259 do { 1260 next = pud_addr_end(addr, end); 1261 if (pud_none_or_clear_bad(pud)) 1262 continue; 1263 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1264 } while (pud++, addr = next, addr != end); 1265 1266 return addr; 1267 } 1268 1269 void unmap_page_range(struct mmu_gather *tlb, 1270 struct vm_area_struct *vma, 1271 unsigned long addr, unsigned long end, 1272 struct zap_details *details) 1273 { 1274 pgd_t *pgd; 1275 unsigned long next; 1276 1277 BUG_ON(addr >= end); 1278 tlb_start_vma(tlb, vma); 1279 pgd = pgd_offset(vma->vm_mm, addr); 1280 do { 1281 next = pgd_addr_end(addr, end); 1282 if (pgd_none_or_clear_bad(pgd)) 1283 continue; 1284 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1285 } while (pgd++, addr = next, addr != end); 1286 tlb_end_vma(tlb, vma); 1287 } 1288 1289 1290 static void unmap_single_vma(struct mmu_gather *tlb, 1291 struct vm_area_struct *vma, unsigned long start_addr, 1292 unsigned long end_addr, 1293 struct zap_details *details) 1294 { 1295 unsigned long start = max(vma->vm_start, start_addr); 1296 unsigned long end; 1297 1298 if (start >= vma->vm_end) 1299 return; 1300 end = min(vma->vm_end, end_addr); 1301 if (end <= vma->vm_start) 1302 return; 1303 1304 if (vma->vm_file) 1305 uprobe_munmap(vma, start, end); 1306 1307 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1308 untrack_pfn(vma, 0, 0); 1309 1310 if (start != end) { 1311 if (unlikely(is_vm_hugetlb_page(vma))) { 1312 /* 1313 * It is undesirable to test vma->vm_file as it 1314 * should be non-null for valid hugetlb area. 1315 * However, vm_file will be NULL in the error 1316 * cleanup path of mmap_region. When 1317 * hugetlbfs ->mmap method fails, 1318 * mmap_region() nullifies vma->vm_file 1319 * before calling this function to clean up. 1320 * Since no pte has actually been setup, it is 1321 * safe to do nothing in this case. 1322 */ 1323 if (vma->vm_file) { 1324 i_mmap_lock_write(vma->vm_file->f_mapping); 1325 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1326 i_mmap_unlock_write(vma->vm_file->f_mapping); 1327 } 1328 } else 1329 unmap_page_range(tlb, vma, start, end, details); 1330 } 1331 } 1332 1333 /** 1334 * unmap_vmas - unmap a range of memory covered by a list of vma's 1335 * @tlb: address of the caller's struct mmu_gather 1336 * @vma: the starting vma 1337 * @start_addr: virtual address at which to start unmapping 1338 * @end_addr: virtual address at which to end unmapping 1339 * 1340 * Unmap all pages in the vma list. 1341 * 1342 * Only addresses between `start' and `end' will be unmapped. 1343 * 1344 * The VMA list must be sorted in ascending virtual address order. 1345 * 1346 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1347 * range after unmap_vmas() returns. So the only responsibility here is to 1348 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1349 * drops the lock and schedules. 1350 */ 1351 void unmap_vmas(struct mmu_gather *tlb, 1352 struct vm_area_struct *vma, unsigned long start_addr, 1353 unsigned long end_addr) 1354 { 1355 struct mm_struct *mm = vma->vm_mm; 1356 1357 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1358 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1359 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1360 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1361 } 1362 1363 /** 1364 * zap_page_range - remove user pages in a given range 1365 * @vma: vm_area_struct holding the applicable pages 1366 * @start: starting address of pages to zap 1367 * @size: number of bytes to zap 1368 * @details: details of shared cache invalidation 1369 * 1370 * Caller must protect the VMA list 1371 */ 1372 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1373 unsigned long size, struct zap_details *details) 1374 { 1375 struct mm_struct *mm = vma->vm_mm; 1376 struct mmu_gather tlb; 1377 unsigned long end = start + size; 1378 1379 lru_add_drain(); 1380 tlb_gather_mmu(&tlb, mm, start, end); 1381 update_hiwater_rss(mm); 1382 mmu_notifier_invalidate_range_start(mm, start, end); 1383 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1384 unmap_single_vma(&tlb, vma, start, end, details); 1385 mmu_notifier_invalidate_range_end(mm, start, end); 1386 tlb_finish_mmu(&tlb, start, end); 1387 } 1388 1389 /** 1390 * zap_page_range_single - remove user pages in a given range 1391 * @vma: vm_area_struct holding the applicable pages 1392 * @address: starting address of pages to zap 1393 * @size: number of bytes to zap 1394 * @details: details of shared cache invalidation 1395 * 1396 * The range must fit into one VMA. 1397 */ 1398 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1399 unsigned long size, struct zap_details *details) 1400 { 1401 struct mm_struct *mm = vma->vm_mm; 1402 struct mmu_gather tlb; 1403 unsigned long end = address + size; 1404 1405 lru_add_drain(); 1406 tlb_gather_mmu(&tlb, mm, address, end); 1407 update_hiwater_rss(mm); 1408 mmu_notifier_invalidate_range_start(mm, address, end); 1409 unmap_single_vma(&tlb, vma, address, end, details); 1410 mmu_notifier_invalidate_range_end(mm, address, end); 1411 tlb_finish_mmu(&tlb, address, end); 1412 } 1413 1414 /** 1415 * zap_vma_ptes - remove ptes mapping the vma 1416 * @vma: vm_area_struct holding ptes to be zapped 1417 * @address: starting address of pages to zap 1418 * @size: number of bytes to zap 1419 * 1420 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1421 * 1422 * The entire address range must be fully contained within the vma. 1423 * 1424 * Returns 0 if successful. 1425 */ 1426 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1427 unsigned long size) 1428 { 1429 if (address < vma->vm_start || address + size > vma->vm_end || 1430 !(vma->vm_flags & VM_PFNMAP)) 1431 return -1; 1432 zap_page_range_single(vma, address, size, NULL); 1433 return 0; 1434 } 1435 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1436 1437 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1438 spinlock_t **ptl) 1439 { 1440 pgd_t * pgd = pgd_offset(mm, addr); 1441 pud_t * pud = pud_alloc(mm, pgd, addr); 1442 if (pud) { 1443 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1444 if (pmd) { 1445 VM_BUG_ON(pmd_trans_huge(*pmd)); 1446 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1447 } 1448 } 1449 return NULL; 1450 } 1451 1452 /* 1453 * This is the old fallback for page remapping. 1454 * 1455 * For historical reasons, it only allows reserved pages. Only 1456 * old drivers should use this, and they needed to mark their 1457 * pages reserved for the old functions anyway. 1458 */ 1459 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1460 struct page *page, pgprot_t prot) 1461 { 1462 struct mm_struct *mm = vma->vm_mm; 1463 int retval; 1464 pte_t *pte; 1465 spinlock_t *ptl; 1466 1467 retval = -EINVAL; 1468 if (PageAnon(page)) 1469 goto out; 1470 retval = -ENOMEM; 1471 flush_dcache_page(page); 1472 pte = get_locked_pte(mm, addr, &ptl); 1473 if (!pte) 1474 goto out; 1475 retval = -EBUSY; 1476 if (!pte_none(*pte)) 1477 goto out_unlock; 1478 1479 /* Ok, finally just insert the thing.. */ 1480 get_page(page); 1481 inc_mm_counter_fast(mm, mm_counter_file(page)); 1482 page_add_file_rmap(page); 1483 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1484 1485 retval = 0; 1486 pte_unmap_unlock(pte, ptl); 1487 return retval; 1488 out_unlock: 1489 pte_unmap_unlock(pte, ptl); 1490 out: 1491 return retval; 1492 } 1493 1494 /** 1495 * vm_insert_page - insert single page into user vma 1496 * @vma: user vma to map to 1497 * @addr: target user address of this page 1498 * @page: source kernel page 1499 * 1500 * This allows drivers to insert individual pages they've allocated 1501 * into a user vma. 1502 * 1503 * The page has to be a nice clean _individual_ kernel allocation. 1504 * If you allocate a compound page, you need to have marked it as 1505 * such (__GFP_COMP), or manually just split the page up yourself 1506 * (see split_page()). 1507 * 1508 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1509 * took an arbitrary page protection parameter. This doesn't allow 1510 * that. Your vma protection will have to be set up correctly, which 1511 * means that if you want a shared writable mapping, you'd better 1512 * ask for a shared writable mapping! 1513 * 1514 * The page does not need to be reserved. 1515 * 1516 * Usually this function is called from f_op->mmap() handler 1517 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1518 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1519 * function from other places, for example from page-fault handler. 1520 */ 1521 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1522 struct page *page) 1523 { 1524 if (addr < vma->vm_start || addr >= vma->vm_end) 1525 return -EFAULT; 1526 if (!page_count(page)) 1527 return -EINVAL; 1528 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1529 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1530 BUG_ON(vma->vm_flags & VM_PFNMAP); 1531 vma->vm_flags |= VM_MIXEDMAP; 1532 } 1533 return insert_page(vma, addr, page, vma->vm_page_prot); 1534 } 1535 EXPORT_SYMBOL(vm_insert_page); 1536 1537 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1538 pfn_t pfn, pgprot_t prot) 1539 { 1540 struct mm_struct *mm = vma->vm_mm; 1541 int retval; 1542 pte_t *pte, entry; 1543 spinlock_t *ptl; 1544 1545 retval = -ENOMEM; 1546 pte = get_locked_pte(mm, addr, &ptl); 1547 if (!pte) 1548 goto out; 1549 retval = -EBUSY; 1550 if (!pte_none(*pte)) 1551 goto out_unlock; 1552 1553 /* Ok, finally just insert the thing.. */ 1554 if (pfn_t_devmap(pfn)) 1555 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1556 else 1557 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1558 set_pte_at(mm, addr, pte, entry); 1559 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1560 1561 retval = 0; 1562 out_unlock: 1563 pte_unmap_unlock(pte, ptl); 1564 out: 1565 return retval; 1566 } 1567 1568 /** 1569 * vm_insert_pfn - insert single pfn into user vma 1570 * @vma: user vma to map to 1571 * @addr: target user address of this page 1572 * @pfn: source kernel pfn 1573 * 1574 * Similar to vm_insert_page, this allows drivers to insert individual pages 1575 * they've allocated into a user vma. Same comments apply. 1576 * 1577 * This function should only be called from a vm_ops->fault handler, and 1578 * in that case the handler should return NULL. 1579 * 1580 * vma cannot be a COW mapping. 1581 * 1582 * As this is called only for pages that do not currently exist, we 1583 * do not need to flush old virtual caches or the TLB. 1584 */ 1585 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1586 unsigned long pfn) 1587 { 1588 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1589 } 1590 EXPORT_SYMBOL(vm_insert_pfn); 1591 1592 /** 1593 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1594 * @vma: user vma to map to 1595 * @addr: target user address of this page 1596 * @pfn: source kernel pfn 1597 * @pgprot: pgprot flags for the inserted page 1598 * 1599 * This is exactly like vm_insert_pfn, except that it allows drivers to 1600 * to override pgprot on a per-page basis. 1601 * 1602 * This only makes sense for IO mappings, and it makes no sense for 1603 * cow mappings. In general, using multiple vmas is preferable; 1604 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1605 * impractical. 1606 */ 1607 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1608 unsigned long pfn, pgprot_t pgprot) 1609 { 1610 int ret; 1611 /* 1612 * Technically, architectures with pte_special can avoid all these 1613 * restrictions (same for remap_pfn_range). However we would like 1614 * consistency in testing and feature parity among all, so we should 1615 * try to keep these invariants in place for everybody. 1616 */ 1617 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1618 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1619 (VM_PFNMAP|VM_MIXEDMAP)); 1620 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1621 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1622 1623 if (addr < vma->vm_start || addr >= vma->vm_end) 1624 return -EFAULT; 1625 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV))) 1626 return -EINVAL; 1627 1628 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot); 1629 1630 return ret; 1631 } 1632 EXPORT_SYMBOL(vm_insert_pfn_prot); 1633 1634 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1635 pfn_t pfn) 1636 { 1637 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1638 1639 if (addr < vma->vm_start || addr >= vma->vm_end) 1640 return -EFAULT; 1641 1642 /* 1643 * If we don't have pte special, then we have to use the pfn_valid() 1644 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1645 * refcount the page if pfn_valid is true (hence insert_page rather 1646 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1647 * without pte special, it would there be refcounted as a normal page. 1648 */ 1649 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1650 struct page *page; 1651 1652 /* 1653 * At this point we are committed to insert_page() 1654 * regardless of whether the caller specified flags that 1655 * result in pfn_t_has_page() == false. 1656 */ 1657 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1658 return insert_page(vma, addr, page, vma->vm_page_prot); 1659 } 1660 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1661 } 1662 EXPORT_SYMBOL(vm_insert_mixed); 1663 1664 /* 1665 * maps a range of physical memory into the requested pages. the old 1666 * mappings are removed. any references to nonexistent pages results 1667 * in null mappings (currently treated as "copy-on-access") 1668 */ 1669 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1670 unsigned long addr, unsigned long end, 1671 unsigned long pfn, pgprot_t prot) 1672 { 1673 pte_t *pte; 1674 spinlock_t *ptl; 1675 1676 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1677 if (!pte) 1678 return -ENOMEM; 1679 arch_enter_lazy_mmu_mode(); 1680 do { 1681 BUG_ON(!pte_none(*pte)); 1682 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1683 pfn++; 1684 } while (pte++, addr += PAGE_SIZE, addr != end); 1685 arch_leave_lazy_mmu_mode(); 1686 pte_unmap_unlock(pte - 1, ptl); 1687 return 0; 1688 } 1689 1690 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1691 unsigned long addr, unsigned long end, 1692 unsigned long pfn, pgprot_t prot) 1693 { 1694 pmd_t *pmd; 1695 unsigned long next; 1696 1697 pfn -= addr >> PAGE_SHIFT; 1698 pmd = pmd_alloc(mm, pud, addr); 1699 if (!pmd) 1700 return -ENOMEM; 1701 VM_BUG_ON(pmd_trans_huge(*pmd)); 1702 do { 1703 next = pmd_addr_end(addr, end); 1704 if (remap_pte_range(mm, pmd, addr, next, 1705 pfn + (addr >> PAGE_SHIFT), prot)) 1706 return -ENOMEM; 1707 } while (pmd++, addr = next, addr != end); 1708 return 0; 1709 } 1710 1711 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1712 unsigned long addr, unsigned long end, 1713 unsigned long pfn, pgprot_t prot) 1714 { 1715 pud_t *pud; 1716 unsigned long next; 1717 1718 pfn -= addr >> PAGE_SHIFT; 1719 pud = pud_alloc(mm, pgd, addr); 1720 if (!pud) 1721 return -ENOMEM; 1722 do { 1723 next = pud_addr_end(addr, end); 1724 if (remap_pmd_range(mm, pud, addr, next, 1725 pfn + (addr >> PAGE_SHIFT), prot)) 1726 return -ENOMEM; 1727 } while (pud++, addr = next, addr != end); 1728 return 0; 1729 } 1730 1731 /** 1732 * remap_pfn_range - remap kernel memory to userspace 1733 * @vma: user vma to map to 1734 * @addr: target user address to start at 1735 * @pfn: physical address of kernel memory 1736 * @size: size of map area 1737 * @prot: page protection flags for this mapping 1738 * 1739 * Note: this is only safe if the mm semaphore is held when called. 1740 */ 1741 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1742 unsigned long pfn, unsigned long size, pgprot_t prot) 1743 { 1744 pgd_t *pgd; 1745 unsigned long next; 1746 unsigned long end = addr + PAGE_ALIGN(size); 1747 struct mm_struct *mm = vma->vm_mm; 1748 unsigned long remap_pfn = pfn; 1749 int err; 1750 1751 /* 1752 * Physically remapped pages are special. Tell the 1753 * rest of the world about it: 1754 * VM_IO tells people not to look at these pages 1755 * (accesses can have side effects). 1756 * VM_PFNMAP tells the core MM that the base pages are just 1757 * raw PFN mappings, and do not have a "struct page" associated 1758 * with them. 1759 * VM_DONTEXPAND 1760 * Disable vma merging and expanding with mremap(). 1761 * VM_DONTDUMP 1762 * Omit vma from core dump, even when VM_IO turned off. 1763 * 1764 * There's a horrible special case to handle copy-on-write 1765 * behaviour that some programs depend on. We mark the "original" 1766 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1767 * See vm_normal_page() for details. 1768 */ 1769 if (is_cow_mapping(vma->vm_flags)) { 1770 if (addr != vma->vm_start || end != vma->vm_end) 1771 return -EINVAL; 1772 vma->vm_pgoff = pfn; 1773 } 1774 1775 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1776 if (err) 1777 return -EINVAL; 1778 1779 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1780 1781 BUG_ON(addr >= end); 1782 pfn -= addr >> PAGE_SHIFT; 1783 pgd = pgd_offset(mm, addr); 1784 flush_cache_range(vma, addr, end); 1785 do { 1786 next = pgd_addr_end(addr, end); 1787 err = remap_pud_range(mm, pgd, addr, next, 1788 pfn + (addr >> PAGE_SHIFT), prot); 1789 if (err) 1790 break; 1791 } while (pgd++, addr = next, addr != end); 1792 1793 if (err) 1794 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1795 1796 return err; 1797 } 1798 EXPORT_SYMBOL(remap_pfn_range); 1799 1800 /** 1801 * vm_iomap_memory - remap memory to userspace 1802 * @vma: user vma to map to 1803 * @start: start of area 1804 * @len: size of area 1805 * 1806 * This is a simplified io_remap_pfn_range() for common driver use. The 1807 * driver just needs to give us the physical memory range to be mapped, 1808 * we'll figure out the rest from the vma information. 1809 * 1810 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1811 * whatever write-combining details or similar. 1812 */ 1813 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1814 { 1815 unsigned long vm_len, pfn, pages; 1816 1817 /* Check that the physical memory area passed in looks valid */ 1818 if (start + len < start) 1819 return -EINVAL; 1820 /* 1821 * You *really* shouldn't map things that aren't page-aligned, 1822 * but we've historically allowed it because IO memory might 1823 * just have smaller alignment. 1824 */ 1825 len += start & ~PAGE_MASK; 1826 pfn = start >> PAGE_SHIFT; 1827 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1828 if (pfn + pages < pfn) 1829 return -EINVAL; 1830 1831 /* We start the mapping 'vm_pgoff' pages into the area */ 1832 if (vma->vm_pgoff > pages) 1833 return -EINVAL; 1834 pfn += vma->vm_pgoff; 1835 pages -= vma->vm_pgoff; 1836 1837 /* Can we fit all of the mapping? */ 1838 vm_len = vma->vm_end - vma->vm_start; 1839 if (vm_len >> PAGE_SHIFT > pages) 1840 return -EINVAL; 1841 1842 /* Ok, let it rip */ 1843 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1844 } 1845 EXPORT_SYMBOL(vm_iomap_memory); 1846 1847 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1848 unsigned long addr, unsigned long end, 1849 pte_fn_t fn, void *data) 1850 { 1851 pte_t *pte; 1852 int err; 1853 pgtable_t token; 1854 spinlock_t *uninitialized_var(ptl); 1855 1856 pte = (mm == &init_mm) ? 1857 pte_alloc_kernel(pmd, addr) : 1858 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1859 if (!pte) 1860 return -ENOMEM; 1861 1862 BUG_ON(pmd_huge(*pmd)); 1863 1864 arch_enter_lazy_mmu_mode(); 1865 1866 token = pmd_pgtable(*pmd); 1867 1868 do { 1869 err = fn(pte++, token, addr, data); 1870 if (err) 1871 break; 1872 } while (addr += PAGE_SIZE, addr != end); 1873 1874 arch_leave_lazy_mmu_mode(); 1875 1876 if (mm != &init_mm) 1877 pte_unmap_unlock(pte-1, ptl); 1878 return err; 1879 } 1880 1881 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1882 unsigned long addr, unsigned long end, 1883 pte_fn_t fn, void *data) 1884 { 1885 pmd_t *pmd; 1886 unsigned long next; 1887 int err; 1888 1889 BUG_ON(pud_huge(*pud)); 1890 1891 pmd = pmd_alloc(mm, pud, addr); 1892 if (!pmd) 1893 return -ENOMEM; 1894 do { 1895 next = pmd_addr_end(addr, end); 1896 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1897 if (err) 1898 break; 1899 } while (pmd++, addr = next, addr != end); 1900 return err; 1901 } 1902 1903 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1904 unsigned long addr, unsigned long end, 1905 pte_fn_t fn, void *data) 1906 { 1907 pud_t *pud; 1908 unsigned long next; 1909 int err; 1910 1911 pud = pud_alloc(mm, pgd, addr); 1912 if (!pud) 1913 return -ENOMEM; 1914 do { 1915 next = pud_addr_end(addr, end); 1916 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1917 if (err) 1918 break; 1919 } while (pud++, addr = next, addr != end); 1920 return err; 1921 } 1922 1923 /* 1924 * Scan a region of virtual memory, filling in page tables as necessary 1925 * and calling a provided function on each leaf page table. 1926 */ 1927 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1928 unsigned long size, pte_fn_t fn, void *data) 1929 { 1930 pgd_t *pgd; 1931 unsigned long next; 1932 unsigned long end = addr + size; 1933 int err; 1934 1935 if (WARN_ON(addr >= end)) 1936 return -EINVAL; 1937 1938 pgd = pgd_offset(mm, addr); 1939 do { 1940 next = pgd_addr_end(addr, end); 1941 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1942 if (err) 1943 break; 1944 } while (pgd++, addr = next, addr != end); 1945 1946 return err; 1947 } 1948 EXPORT_SYMBOL_GPL(apply_to_page_range); 1949 1950 /* 1951 * handle_pte_fault chooses page fault handler according to an entry which was 1952 * read non-atomically. Before making any commitment, on those architectures 1953 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 1954 * parts, do_swap_page must check under lock before unmapping the pte and 1955 * proceeding (but do_wp_page is only called after already making such a check; 1956 * and do_anonymous_page can safely check later on). 1957 */ 1958 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1959 pte_t *page_table, pte_t orig_pte) 1960 { 1961 int same = 1; 1962 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1963 if (sizeof(pte_t) > sizeof(unsigned long)) { 1964 spinlock_t *ptl = pte_lockptr(mm, pmd); 1965 spin_lock(ptl); 1966 same = pte_same(*page_table, orig_pte); 1967 spin_unlock(ptl); 1968 } 1969 #endif 1970 pte_unmap(page_table); 1971 return same; 1972 } 1973 1974 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1975 { 1976 debug_dma_assert_idle(src); 1977 1978 /* 1979 * If the source page was a PFN mapping, we don't have 1980 * a "struct page" for it. We do a best-effort copy by 1981 * just copying from the original user address. If that 1982 * fails, we just zero-fill it. Live with it. 1983 */ 1984 if (unlikely(!src)) { 1985 void *kaddr = kmap_atomic(dst); 1986 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1987 1988 /* 1989 * This really shouldn't fail, because the page is there 1990 * in the page tables. But it might just be unreadable, 1991 * in which case we just give up and fill the result with 1992 * zeroes. 1993 */ 1994 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1995 clear_page(kaddr); 1996 kunmap_atomic(kaddr); 1997 flush_dcache_page(dst); 1998 } else 1999 copy_user_highpage(dst, src, va, vma); 2000 } 2001 2002 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2003 { 2004 struct file *vm_file = vma->vm_file; 2005 2006 if (vm_file) 2007 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2008 2009 /* 2010 * Special mappings (e.g. VDSO) do not have any file so fake 2011 * a default GFP_KERNEL for them. 2012 */ 2013 return GFP_KERNEL; 2014 } 2015 2016 /* 2017 * Notify the address space that the page is about to become writable so that 2018 * it can prohibit this or wait for the page to get into an appropriate state. 2019 * 2020 * We do this without the lock held, so that it can sleep if it needs to. 2021 */ 2022 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 2023 unsigned long address) 2024 { 2025 struct vm_fault vmf; 2026 int ret; 2027 2028 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2029 vmf.pgoff = page->index; 2030 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2031 vmf.gfp_mask = __get_fault_gfp_mask(vma); 2032 vmf.page = page; 2033 vmf.cow_page = NULL; 2034 2035 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 2036 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2037 return ret; 2038 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2039 lock_page(page); 2040 if (!page->mapping) { 2041 unlock_page(page); 2042 return 0; /* retry */ 2043 } 2044 ret |= VM_FAULT_LOCKED; 2045 } else 2046 VM_BUG_ON_PAGE(!PageLocked(page), page); 2047 return ret; 2048 } 2049 2050 /* 2051 * Handle write page faults for pages that can be reused in the current vma 2052 * 2053 * This can happen either due to the mapping being with the VM_SHARED flag, 2054 * or due to us being the last reference standing to the page. In either 2055 * case, all we need to do here is to mark the page as writable and update 2056 * any related book-keeping. 2057 */ 2058 static inline int wp_page_reuse(struct mm_struct *mm, 2059 struct vm_area_struct *vma, unsigned long address, 2060 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 2061 struct page *page, int page_mkwrite, 2062 int dirty_shared) 2063 __releases(ptl) 2064 { 2065 pte_t entry; 2066 /* 2067 * Clear the pages cpupid information as the existing 2068 * information potentially belongs to a now completely 2069 * unrelated process. 2070 */ 2071 if (page) 2072 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2073 2074 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2075 entry = pte_mkyoung(orig_pte); 2076 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2077 if (ptep_set_access_flags(vma, address, page_table, entry, 1)) 2078 update_mmu_cache(vma, address, page_table); 2079 pte_unmap_unlock(page_table, ptl); 2080 2081 if (dirty_shared) { 2082 struct address_space *mapping; 2083 int dirtied; 2084 2085 if (!page_mkwrite) 2086 lock_page(page); 2087 2088 dirtied = set_page_dirty(page); 2089 VM_BUG_ON_PAGE(PageAnon(page), page); 2090 mapping = page->mapping; 2091 unlock_page(page); 2092 put_page(page); 2093 2094 if ((dirtied || page_mkwrite) && mapping) { 2095 /* 2096 * Some device drivers do not set page.mapping 2097 * but still dirty their pages 2098 */ 2099 balance_dirty_pages_ratelimited(mapping); 2100 } 2101 2102 if (!page_mkwrite) 2103 file_update_time(vma->vm_file); 2104 } 2105 2106 return VM_FAULT_WRITE; 2107 } 2108 2109 /* 2110 * Handle the case of a page which we actually need to copy to a new page. 2111 * 2112 * Called with mmap_sem locked and the old page referenced, but 2113 * without the ptl held. 2114 * 2115 * High level logic flow: 2116 * 2117 * - Allocate a page, copy the content of the old page to the new one. 2118 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2119 * - Take the PTL. If the pte changed, bail out and release the allocated page 2120 * - If the pte is still the way we remember it, update the page table and all 2121 * relevant references. This includes dropping the reference the page-table 2122 * held to the old page, as well as updating the rmap. 2123 * - In any case, unlock the PTL and drop the reference we took to the old page. 2124 */ 2125 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma, 2126 unsigned long address, pte_t *page_table, pmd_t *pmd, 2127 pte_t orig_pte, struct page *old_page) 2128 { 2129 struct page *new_page = NULL; 2130 spinlock_t *ptl = NULL; 2131 pte_t entry; 2132 int page_copied = 0; 2133 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */ 2134 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */ 2135 struct mem_cgroup *memcg; 2136 2137 if (unlikely(anon_vma_prepare(vma))) 2138 goto oom; 2139 2140 if (is_zero_pfn(pte_pfn(orig_pte))) { 2141 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2142 if (!new_page) 2143 goto oom; 2144 } else { 2145 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2146 if (!new_page) 2147 goto oom; 2148 cow_user_page(new_page, old_page, address, vma); 2149 } 2150 2151 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) 2152 goto oom_free_new; 2153 2154 __SetPageUptodate(new_page); 2155 2156 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2157 2158 /* 2159 * Re-check the pte - we dropped the lock 2160 */ 2161 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2162 if (likely(pte_same(*page_table, orig_pte))) { 2163 if (old_page) { 2164 if (!PageAnon(old_page)) { 2165 dec_mm_counter_fast(mm, 2166 mm_counter_file(old_page)); 2167 inc_mm_counter_fast(mm, MM_ANONPAGES); 2168 } 2169 } else { 2170 inc_mm_counter_fast(mm, MM_ANONPAGES); 2171 } 2172 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2173 entry = mk_pte(new_page, vma->vm_page_prot); 2174 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2175 /* 2176 * Clear the pte entry and flush it first, before updating the 2177 * pte with the new entry. This will avoid a race condition 2178 * seen in the presence of one thread doing SMC and another 2179 * thread doing COW. 2180 */ 2181 ptep_clear_flush_notify(vma, address, page_table); 2182 page_add_new_anon_rmap(new_page, vma, address, false); 2183 mem_cgroup_commit_charge(new_page, memcg, false, false); 2184 lru_cache_add_active_or_unevictable(new_page, vma); 2185 /* 2186 * We call the notify macro here because, when using secondary 2187 * mmu page tables (such as kvm shadow page tables), we want the 2188 * new page to be mapped directly into the secondary page table. 2189 */ 2190 set_pte_at_notify(mm, address, page_table, entry); 2191 update_mmu_cache(vma, address, page_table); 2192 if (old_page) { 2193 /* 2194 * Only after switching the pte to the new page may 2195 * we remove the mapcount here. Otherwise another 2196 * process may come and find the rmap count decremented 2197 * before the pte is switched to the new page, and 2198 * "reuse" the old page writing into it while our pte 2199 * here still points into it and can be read by other 2200 * threads. 2201 * 2202 * The critical issue is to order this 2203 * page_remove_rmap with the ptp_clear_flush above. 2204 * Those stores are ordered by (if nothing else,) 2205 * the barrier present in the atomic_add_negative 2206 * in page_remove_rmap. 2207 * 2208 * Then the TLB flush in ptep_clear_flush ensures that 2209 * no process can access the old page before the 2210 * decremented mapcount is visible. And the old page 2211 * cannot be reused until after the decremented 2212 * mapcount is visible. So transitively, TLBs to 2213 * old page will be flushed before it can be reused. 2214 */ 2215 page_remove_rmap(old_page, false); 2216 } 2217 2218 /* Free the old page.. */ 2219 new_page = old_page; 2220 page_copied = 1; 2221 } else { 2222 mem_cgroup_cancel_charge(new_page, memcg, false); 2223 } 2224 2225 if (new_page) 2226 put_page(new_page); 2227 2228 pte_unmap_unlock(page_table, ptl); 2229 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2230 if (old_page) { 2231 /* 2232 * Don't let another task, with possibly unlocked vma, 2233 * keep the mlocked page. 2234 */ 2235 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2236 lock_page(old_page); /* LRU manipulation */ 2237 if (PageMlocked(old_page)) 2238 munlock_vma_page(old_page); 2239 unlock_page(old_page); 2240 } 2241 put_page(old_page); 2242 } 2243 return page_copied ? VM_FAULT_WRITE : 0; 2244 oom_free_new: 2245 put_page(new_page); 2246 oom: 2247 if (old_page) 2248 put_page(old_page); 2249 return VM_FAULT_OOM; 2250 } 2251 2252 /* 2253 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2254 * mapping 2255 */ 2256 static int wp_pfn_shared(struct mm_struct *mm, 2257 struct vm_area_struct *vma, unsigned long address, 2258 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 2259 pmd_t *pmd) 2260 { 2261 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2262 struct vm_fault vmf = { 2263 .page = NULL, 2264 .pgoff = linear_page_index(vma, address), 2265 .virtual_address = (void __user *)(address & PAGE_MASK), 2266 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE, 2267 }; 2268 int ret; 2269 2270 pte_unmap_unlock(page_table, ptl); 2271 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf); 2272 if (ret & VM_FAULT_ERROR) 2273 return ret; 2274 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2275 /* 2276 * We might have raced with another page fault while we 2277 * released the pte_offset_map_lock. 2278 */ 2279 if (!pte_same(*page_table, orig_pte)) { 2280 pte_unmap_unlock(page_table, ptl); 2281 return 0; 2282 } 2283 } 2284 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte, 2285 NULL, 0, 0); 2286 } 2287 2288 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma, 2289 unsigned long address, pte_t *page_table, 2290 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte, 2291 struct page *old_page) 2292 __releases(ptl) 2293 { 2294 int page_mkwrite = 0; 2295 2296 get_page(old_page); 2297 2298 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2299 int tmp; 2300 2301 pte_unmap_unlock(page_table, ptl); 2302 tmp = do_page_mkwrite(vma, old_page, address); 2303 if (unlikely(!tmp || (tmp & 2304 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2305 put_page(old_page); 2306 return tmp; 2307 } 2308 /* 2309 * Since we dropped the lock we need to revalidate 2310 * the PTE as someone else may have changed it. If 2311 * they did, we just return, as we can count on the 2312 * MMU to tell us if they didn't also make it writable. 2313 */ 2314 page_table = pte_offset_map_lock(mm, pmd, address, 2315 &ptl); 2316 if (!pte_same(*page_table, orig_pte)) { 2317 unlock_page(old_page); 2318 pte_unmap_unlock(page_table, ptl); 2319 put_page(old_page); 2320 return 0; 2321 } 2322 page_mkwrite = 1; 2323 } 2324 2325 return wp_page_reuse(mm, vma, address, page_table, ptl, 2326 orig_pte, old_page, page_mkwrite, 1); 2327 } 2328 2329 /* 2330 * This routine handles present pages, when users try to write 2331 * to a shared page. It is done by copying the page to a new address 2332 * and decrementing the shared-page counter for the old page. 2333 * 2334 * Note that this routine assumes that the protection checks have been 2335 * done by the caller (the low-level page fault routine in most cases). 2336 * Thus we can safely just mark it writable once we've done any necessary 2337 * COW. 2338 * 2339 * We also mark the page dirty at this point even though the page will 2340 * change only once the write actually happens. This avoids a few races, 2341 * and potentially makes it more efficient. 2342 * 2343 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2344 * but allow concurrent faults), with pte both mapped and locked. 2345 * We return with mmap_sem still held, but pte unmapped and unlocked. 2346 */ 2347 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2348 unsigned long address, pte_t *page_table, pmd_t *pmd, 2349 spinlock_t *ptl, pte_t orig_pte) 2350 __releases(ptl) 2351 { 2352 struct page *old_page; 2353 2354 old_page = vm_normal_page(vma, address, orig_pte); 2355 if (!old_page) { 2356 /* 2357 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2358 * VM_PFNMAP VMA. 2359 * 2360 * We should not cow pages in a shared writeable mapping. 2361 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2362 */ 2363 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2364 (VM_WRITE|VM_SHARED)) 2365 return wp_pfn_shared(mm, vma, address, page_table, ptl, 2366 orig_pte, pmd); 2367 2368 pte_unmap_unlock(page_table, ptl); 2369 return wp_page_copy(mm, vma, address, page_table, pmd, 2370 orig_pte, old_page); 2371 } 2372 2373 /* 2374 * Take out anonymous pages first, anonymous shared vmas are 2375 * not dirty accountable. 2376 */ 2377 if (PageAnon(old_page) && !PageKsm(old_page)) { 2378 int total_mapcount; 2379 if (!trylock_page(old_page)) { 2380 get_page(old_page); 2381 pte_unmap_unlock(page_table, ptl); 2382 lock_page(old_page); 2383 page_table = pte_offset_map_lock(mm, pmd, address, 2384 &ptl); 2385 if (!pte_same(*page_table, orig_pte)) { 2386 unlock_page(old_page); 2387 pte_unmap_unlock(page_table, ptl); 2388 put_page(old_page); 2389 return 0; 2390 } 2391 put_page(old_page); 2392 } 2393 if (reuse_swap_page(old_page, &total_mapcount)) { 2394 if (total_mapcount == 1) { 2395 /* 2396 * The page is all ours. Move it to 2397 * our anon_vma so the rmap code will 2398 * not search our parent or siblings. 2399 * Protected against the rmap code by 2400 * the page lock. 2401 */ 2402 page_move_anon_rmap(compound_head(old_page), 2403 vma, address); 2404 } 2405 unlock_page(old_page); 2406 return wp_page_reuse(mm, vma, address, page_table, ptl, 2407 orig_pte, old_page, 0, 0); 2408 } 2409 unlock_page(old_page); 2410 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2411 (VM_WRITE|VM_SHARED))) { 2412 return wp_page_shared(mm, vma, address, page_table, pmd, 2413 ptl, orig_pte, old_page); 2414 } 2415 2416 /* 2417 * Ok, we need to copy. Oh, well.. 2418 */ 2419 get_page(old_page); 2420 2421 pte_unmap_unlock(page_table, ptl); 2422 return wp_page_copy(mm, vma, address, page_table, pmd, 2423 orig_pte, old_page); 2424 } 2425 2426 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2427 unsigned long start_addr, unsigned long end_addr, 2428 struct zap_details *details) 2429 { 2430 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2431 } 2432 2433 static inline void unmap_mapping_range_tree(struct rb_root *root, 2434 struct zap_details *details) 2435 { 2436 struct vm_area_struct *vma; 2437 pgoff_t vba, vea, zba, zea; 2438 2439 vma_interval_tree_foreach(vma, root, 2440 details->first_index, details->last_index) { 2441 2442 vba = vma->vm_pgoff; 2443 vea = vba + vma_pages(vma) - 1; 2444 zba = details->first_index; 2445 if (zba < vba) 2446 zba = vba; 2447 zea = details->last_index; 2448 if (zea > vea) 2449 zea = vea; 2450 2451 unmap_mapping_range_vma(vma, 2452 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2453 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2454 details); 2455 } 2456 } 2457 2458 /** 2459 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2460 * address_space corresponding to the specified page range in the underlying 2461 * file. 2462 * 2463 * @mapping: the address space containing mmaps to be unmapped. 2464 * @holebegin: byte in first page to unmap, relative to the start of 2465 * the underlying file. This will be rounded down to a PAGE_SIZE 2466 * boundary. Note that this is different from truncate_pagecache(), which 2467 * must keep the partial page. In contrast, we must get rid of 2468 * partial pages. 2469 * @holelen: size of prospective hole in bytes. This will be rounded 2470 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2471 * end of the file. 2472 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2473 * but 0 when invalidating pagecache, don't throw away private data. 2474 */ 2475 void unmap_mapping_range(struct address_space *mapping, 2476 loff_t const holebegin, loff_t const holelen, int even_cows) 2477 { 2478 struct zap_details details = { }; 2479 pgoff_t hba = holebegin >> PAGE_SHIFT; 2480 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2481 2482 /* Check for overflow. */ 2483 if (sizeof(holelen) > sizeof(hlen)) { 2484 long long holeend = 2485 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2486 if (holeend & ~(long long)ULONG_MAX) 2487 hlen = ULONG_MAX - hba + 1; 2488 } 2489 2490 details.check_mapping = even_cows? NULL: mapping; 2491 details.first_index = hba; 2492 details.last_index = hba + hlen - 1; 2493 if (details.last_index < details.first_index) 2494 details.last_index = ULONG_MAX; 2495 2496 i_mmap_lock_write(mapping); 2497 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2498 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2499 i_mmap_unlock_write(mapping); 2500 } 2501 EXPORT_SYMBOL(unmap_mapping_range); 2502 2503 /* 2504 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2505 * but allow concurrent faults), and pte mapped but not yet locked. 2506 * We return with pte unmapped and unlocked. 2507 * 2508 * We return with the mmap_sem locked or unlocked in the same cases 2509 * as does filemap_fault(). 2510 */ 2511 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2512 unsigned long address, pte_t *page_table, pmd_t *pmd, 2513 unsigned int flags, pte_t orig_pte) 2514 { 2515 spinlock_t *ptl; 2516 struct page *page, *swapcache; 2517 struct mem_cgroup *memcg; 2518 swp_entry_t entry; 2519 pte_t pte; 2520 int locked; 2521 int exclusive = 0; 2522 int ret = 0; 2523 2524 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2525 goto out; 2526 2527 entry = pte_to_swp_entry(orig_pte); 2528 if (unlikely(non_swap_entry(entry))) { 2529 if (is_migration_entry(entry)) { 2530 migration_entry_wait(mm, pmd, address); 2531 } else if (is_hwpoison_entry(entry)) { 2532 ret = VM_FAULT_HWPOISON; 2533 } else { 2534 print_bad_pte(vma, address, orig_pte, NULL); 2535 ret = VM_FAULT_SIGBUS; 2536 } 2537 goto out; 2538 } 2539 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2540 page = lookup_swap_cache(entry); 2541 if (!page) { 2542 page = swapin_readahead(entry, 2543 GFP_HIGHUSER_MOVABLE, vma, address); 2544 if (!page) { 2545 /* 2546 * Back out if somebody else faulted in this pte 2547 * while we released the pte lock. 2548 */ 2549 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2550 if (likely(pte_same(*page_table, orig_pte))) 2551 ret = VM_FAULT_OOM; 2552 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2553 goto unlock; 2554 } 2555 2556 /* Had to read the page from swap area: Major fault */ 2557 ret = VM_FAULT_MAJOR; 2558 count_vm_event(PGMAJFAULT); 2559 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2560 } else if (PageHWPoison(page)) { 2561 /* 2562 * hwpoisoned dirty swapcache pages are kept for killing 2563 * owner processes (which may be unknown at hwpoison time) 2564 */ 2565 ret = VM_FAULT_HWPOISON; 2566 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2567 swapcache = page; 2568 goto out_release; 2569 } 2570 2571 swapcache = page; 2572 locked = lock_page_or_retry(page, mm, flags); 2573 2574 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2575 if (!locked) { 2576 ret |= VM_FAULT_RETRY; 2577 goto out_release; 2578 } 2579 2580 /* 2581 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2582 * release the swapcache from under us. The page pin, and pte_same 2583 * test below, are not enough to exclude that. Even if it is still 2584 * swapcache, we need to check that the page's swap has not changed. 2585 */ 2586 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2587 goto out_page; 2588 2589 page = ksm_might_need_to_copy(page, vma, address); 2590 if (unlikely(!page)) { 2591 ret = VM_FAULT_OOM; 2592 page = swapcache; 2593 goto out_page; 2594 } 2595 2596 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) { 2597 ret = VM_FAULT_OOM; 2598 goto out_page; 2599 } 2600 2601 /* 2602 * Back out if somebody else already faulted in this pte. 2603 */ 2604 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2605 if (unlikely(!pte_same(*page_table, orig_pte))) 2606 goto out_nomap; 2607 2608 if (unlikely(!PageUptodate(page))) { 2609 ret = VM_FAULT_SIGBUS; 2610 goto out_nomap; 2611 } 2612 2613 /* 2614 * The page isn't present yet, go ahead with the fault. 2615 * 2616 * Be careful about the sequence of operations here. 2617 * To get its accounting right, reuse_swap_page() must be called 2618 * while the page is counted on swap but not yet in mapcount i.e. 2619 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2620 * must be called after the swap_free(), or it will never succeed. 2621 */ 2622 2623 inc_mm_counter_fast(mm, MM_ANONPAGES); 2624 dec_mm_counter_fast(mm, MM_SWAPENTS); 2625 pte = mk_pte(page, vma->vm_page_prot); 2626 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2627 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2628 flags &= ~FAULT_FLAG_WRITE; 2629 ret |= VM_FAULT_WRITE; 2630 exclusive = RMAP_EXCLUSIVE; 2631 } 2632 flush_icache_page(vma, page); 2633 if (pte_swp_soft_dirty(orig_pte)) 2634 pte = pte_mksoft_dirty(pte); 2635 set_pte_at(mm, address, page_table, pte); 2636 if (page == swapcache) { 2637 do_page_add_anon_rmap(page, vma, address, exclusive); 2638 mem_cgroup_commit_charge(page, memcg, true, false); 2639 } else { /* ksm created a completely new copy */ 2640 page_add_new_anon_rmap(page, vma, address, false); 2641 mem_cgroup_commit_charge(page, memcg, false, false); 2642 lru_cache_add_active_or_unevictable(page, vma); 2643 } 2644 2645 swap_free(entry); 2646 if (mem_cgroup_swap_full(page) || 2647 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2648 try_to_free_swap(page); 2649 unlock_page(page); 2650 if (page != swapcache) { 2651 /* 2652 * Hold the lock to avoid the swap entry to be reused 2653 * until we take the PT lock for the pte_same() check 2654 * (to avoid false positives from pte_same). For 2655 * further safety release the lock after the swap_free 2656 * so that the swap count won't change under a 2657 * parallel locked swapcache. 2658 */ 2659 unlock_page(swapcache); 2660 put_page(swapcache); 2661 } 2662 2663 if (flags & FAULT_FLAG_WRITE) { 2664 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2665 if (ret & VM_FAULT_ERROR) 2666 ret &= VM_FAULT_ERROR; 2667 goto out; 2668 } 2669 2670 /* No need to invalidate - it was non-present before */ 2671 update_mmu_cache(vma, address, page_table); 2672 unlock: 2673 pte_unmap_unlock(page_table, ptl); 2674 out: 2675 return ret; 2676 out_nomap: 2677 mem_cgroup_cancel_charge(page, memcg, false); 2678 pte_unmap_unlock(page_table, ptl); 2679 out_page: 2680 unlock_page(page); 2681 out_release: 2682 put_page(page); 2683 if (page != swapcache) { 2684 unlock_page(swapcache); 2685 put_page(swapcache); 2686 } 2687 return ret; 2688 } 2689 2690 /* 2691 * This is like a special single-page "expand_{down|up}wards()", 2692 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2693 * doesn't hit another vma. 2694 */ 2695 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2696 { 2697 address &= PAGE_MASK; 2698 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2699 struct vm_area_struct *prev = vma->vm_prev; 2700 2701 /* 2702 * Is there a mapping abutting this one below? 2703 * 2704 * That's only ok if it's the same stack mapping 2705 * that has gotten split.. 2706 */ 2707 if (prev && prev->vm_end == address) 2708 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2709 2710 return expand_downwards(vma, address - PAGE_SIZE); 2711 } 2712 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2713 struct vm_area_struct *next = vma->vm_next; 2714 2715 /* As VM_GROWSDOWN but s/below/above/ */ 2716 if (next && next->vm_start == address + PAGE_SIZE) 2717 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2718 2719 return expand_upwards(vma, address + PAGE_SIZE); 2720 } 2721 return 0; 2722 } 2723 2724 /* 2725 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2726 * but allow concurrent faults), and pte mapped but not yet locked. 2727 * We return with mmap_sem still held, but pte unmapped and unlocked. 2728 */ 2729 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2730 unsigned long address, pte_t *page_table, pmd_t *pmd, 2731 unsigned int flags) 2732 { 2733 struct mem_cgroup *memcg; 2734 struct page *page; 2735 spinlock_t *ptl; 2736 pte_t entry; 2737 2738 pte_unmap(page_table); 2739 2740 /* File mapping without ->vm_ops ? */ 2741 if (vma->vm_flags & VM_SHARED) 2742 return VM_FAULT_SIGBUS; 2743 2744 /* Check if we need to add a guard page to the stack */ 2745 if (check_stack_guard_page(vma, address) < 0) 2746 return VM_FAULT_SIGSEGV; 2747 2748 /* Use the zero-page for reads */ 2749 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) { 2750 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2751 vma->vm_page_prot)); 2752 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2753 if (!pte_none(*page_table)) 2754 goto unlock; 2755 /* Deliver the page fault to userland, check inside PT lock */ 2756 if (userfaultfd_missing(vma)) { 2757 pte_unmap_unlock(page_table, ptl); 2758 return handle_userfault(vma, address, flags, 2759 VM_UFFD_MISSING); 2760 } 2761 goto setpte; 2762 } 2763 2764 /* Allocate our own private page. */ 2765 if (unlikely(anon_vma_prepare(vma))) 2766 goto oom; 2767 page = alloc_zeroed_user_highpage_movable(vma, address); 2768 if (!page) 2769 goto oom; 2770 2771 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) 2772 goto oom_free_page; 2773 2774 /* 2775 * The memory barrier inside __SetPageUptodate makes sure that 2776 * preceeding stores to the page contents become visible before 2777 * the set_pte_at() write. 2778 */ 2779 __SetPageUptodate(page); 2780 2781 entry = mk_pte(page, vma->vm_page_prot); 2782 if (vma->vm_flags & VM_WRITE) 2783 entry = pte_mkwrite(pte_mkdirty(entry)); 2784 2785 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2786 if (!pte_none(*page_table)) 2787 goto release; 2788 2789 /* Deliver the page fault to userland, check inside PT lock */ 2790 if (userfaultfd_missing(vma)) { 2791 pte_unmap_unlock(page_table, ptl); 2792 mem_cgroup_cancel_charge(page, memcg, false); 2793 put_page(page); 2794 return handle_userfault(vma, address, flags, 2795 VM_UFFD_MISSING); 2796 } 2797 2798 inc_mm_counter_fast(mm, MM_ANONPAGES); 2799 page_add_new_anon_rmap(page, vma, address, false); 2800 mem_cgroup_commit_charge(page, memcg, false, false); 2801 lru_cache_add_active_or_unevictable(page, vma); 2802 setpte: 2803 set_pte_at(mm, address, page_table, entry); 2804 2805 /* No need to invalidate - it was non-present before */ 2806 update_mmu_cache(vma, address, page_table); 2807 unlock: 2808 pte_unmap_unlock(page_table, ptl); 2809 return 0; 2810 release: 2811 mem_cgroup_cancel_charge(page, memcg, false); 2812 put_page(page); 2813 goto unlock; 2814 oom_free_page: 2815 put_page(page); 2816 oom: 2817 return VM_FAULT_OOM; 2818 } 2819 2820 /* 2821 * The mmap_sem must have been held on entry, and may have been 2822 * released depending on flags and vma->vm_ops->fault() return value. 2823 * See filemap_fault() and __lock_page_retry(). 2824 */ 2825 static int __do_fault(struct vm_area_struct *vma, unsigned long address, 2826 pgoff_t pgoff, unsigned int flags, 2827 struct page *cow_page, struct page **page, 2828 void **entry) 2829 { 2830 struct vm_fault vmf; 2831 int ret; 2832 2833 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2834 vmf.pgoff = pgoff; 2835 vmf.flags = flags; 2836 vmf.page = NULL; 2837 vmf.gfp_mask = __get_fault_gfp_mask(vma); 2838 vmf.cow_page = cow_page; 2839 2840 ret = vma->vm_ops->fault(vma, &vmf); 2841 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2842 return ret; 2843 if (ret & VM_FAULT_DAX_LOCKED) { 2844 *entry = vmf.entry; 2845 return ret; 2846 } 2847 2848 if (unlikely(PageHWPoison(vmf.page))) { 2849 if (ret & VM_FAULT_LOCKED) 2850 unlock_page(vmf.page); 2851 put_page(vmf.page); 2852 return VM_FAULT_HWPOISON; 2853 } 2854 2855 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2856 lock_page(vmf.page); 2857 else 2858 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2859 2860 *page = vmf.page; 2861 return ret; 2862 } 2863 2864 /** 2865 * do_set_pte - setup new PTE entry for given page and add reverse page mapping. 2866 * 2867 * @vma: virtual memory area 2868 * @address: user virtual address 2869 * @page: page to map 2870 * @pte: pointer to target page table entry 2871 * @write: true, if new entry is writable 2872 * @anon: true, if it's anonymous page 2873 * 2874 * Caller must hold page table lock relevant for @pte. 2875 * 2876 * Target users are page handler itself and implementations of 2877 * vm_ops->map_pages. 2878 */ 2879 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 2880 struct page *page, pte_t *pte, bool write, bool anon, bool old) 2881 { 2882 pte_t entry; 2883 2884 flush_icache_page(vma, page); 2885 entry = mk_pte(page, vma->vm_page_prot); 2886 if (write) 2887 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2888 if (old) 2889 entry = pte_mkold(entry); 2890 if (anon) { 2891 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2892 page_add_new_anon_rmap(page, vma, address, false); 2893 } else { 2894 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 2895 page_add_file_rmap(page); 2896 } 2897 set_pte_at(vma->vm_mm, address, pte, entry); 2898 2899 /* no need to invalidate: a not-present page won't be cached */ 2900 update_mmu_cache(vma, address, pte); 2901 } 2902 2903 /* 2904 * If architecture emulates "accessed" or "young" bit without HW support, 2905 * there is no much gain with fault_around. 2906 */ 2907 static unsigned long fault_around_bytes __read_mostly = 2908 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 2909 PAGE_SIZE; 2910 #else 2911 rounddown_pow_of_two(65536); 2912 #endif 2913 2914 #ifdef CONFIG_DEBUG_FS 2915 static int fault_around_bytes_get(void *data, u64 *val) 2916 { 2917 *val = fault_around_bytes; 2918 return 0; 2919 } 2920 2921 /* 2922 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 2923 * rounded down to nearest page order. It's what do_fault_around() expects to 2924 * see. 2925 */ 2926 static int fault_around_bytes_set(void *data, u64 val) 2927 { 2928 if (val / PAGE_SIZE > PTRS_PER_PTE) 2929 return -EINVAL; 2930 if (val > PAGE_SIZE) 2931 fault_around_bytes = rounddown_pow_of_two(val); 2932 else 2933 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 2934 return 0; 2935 } 2936 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 2937 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 2938 2939 static int __init fault_around_debugfs(void) 2940 { 2941 void *ret; 2942 2943 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 2944 &fault_around_bytes_fops); 2945 if (!ret) 2946 pr_warn("Failed to create fault_around_bytes in debugfs"); 2947 return 0; 2948 } 2949 late_initcall(fault_around_debugfs); 2950 #endif 2951 2952 /* 2953 * do_fault_around() tries to map few pages around the fault address. The hope 2954 * is that the pages will be needed soon and this will lower the number of 2955 * faults to handle. 2956 * 2957 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 2958 * not ready to be mapped: not up-to-date, locked, etc. 2959 * 2960 * This function is called with the page table lock taken. In the split ptlock 2961 * case the page table lock only protects only those entries which belong to 2962 * the page table corresponding to the fault address. 2963 * 2964 * This function doesn't cross the VMA boundaries, in order to call map_pages() 2965 * only once. 2966 * 2967 * fault_around_pages() defines how many pages we'll try to map. 2968 * do_fault_around() expects it to return a power of two less than or equal to 2969 * PTRS_PER_PTE. 2970 * 2971 * The virtual address of the area that we map is naturally aligned to the 2972 * fault_around_pages() value (and therefore to page order). This way it's 2973 * easier to guarantee that we don't cross page table boundaries. 2974 */ 2975 static void do_fault_around(struct vm_area_struct *vma, unsigned long address, 2976 pte_t *pte, pgoff_t pgoff, unsigned int flags) 2977 { 2978 unsigned long start_addr, nr_pages, mask; 2979 pgoff_t max_pgoff; 2980 struct vm_fault vmf; 2981 int off; 2982 2983 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 2984 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 2985 2986 start_addr = max(address & mask, vma->vm_start); 2987 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 2988 pte -= off; 2989 pgoff -= off; 2990 2991 /* 2992 * max_pgoff is either end of page table or end of vma 2993 * or fault_around_pages() from pgoff, depending what is nearest. 2994 */ 2995 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 2996 PTRS_PER_PTE - 1; 2997 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, 2998 pgoff + nr_pages - 1); 2999 3000 /* Check if it makes any sense to call ->map_pages */ 3001 while (!pte_none(*pte)) { 3002 if (++pgoff > max_pgoff) 3003 return; 3004 start_addr += PAGE_SIZE; 3005 if (start_addr >= vma->vm_end) 3006 return; 3007 pte++; 3008 } 3009 3010 vmf.virtual_address = (void __user *) start_addr; 3011 vmf.pte = pte; 3012 vmf.pgoff = pgoff; 3013 vmf.max_pgoff = max_pgoff; 3014 vmf.flags = flags; 3015 vmf.gfp_mask = __get_fault_gfp_mask(vma); 3016 vma->vm_ops->map_pages(vma, &vmf); 3017 } 3018 3019 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3020 unsigned long address, pmd_t *pmd, 3021 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3022 { 3023 struct page *fault_page; 3024 spinlock_t *ptl; 3025 pte_t *pte; 3026 int ret = 0; 3027 3028 /* 3029 * Let's call ->map_pages() first and use ->fault() as fallback 3030 * if page by the offset is not ready to be mapped (cold cache or 3031 * something). 3032 */ 3033 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3034 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3035 if (!pte_same(*pte, orig_pte)) 3036 goto unlock_out; 3037 do_fault_around(vma, address, pte, pgoff, flags); 3038 /* Check if the fault is handled by faultaround */ 3039 if (!pte_same(*pte, orig_pte)) { 3040 /* 3041 * Faultaround produce old pte, but the pte we've 3042 * handler fault for should be young. 3043 */ 3044 pte_t entry = pte_mkyoung(*pte); 3045 if (ptep_set_access_flags(vma, address, pte, entry, 0)) 3046 update_mmu_cache(vma, address, pte); 3047 goto unlock_out; 3048 } 3049 pte_unmap_unlock(pte, ptl); 3050 } 3051 3052 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page, NULL); 3053 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3054 return ret; 3055 3056 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3057 if (unlikely(!pte_same(*pte, orig_pte))) { 3058 pte_unmap_unlock(pte, ptl); 3059 unlock_page(fault_page); 3060 put_page(fault_page); 3061 return ret; 3062 } 3063 do_set_pte(vma, address, fault_page, pte, false, false, false); 3064 unlock_page(fault_page); 3065 unlock_out: 3066 pte_unmap_unlock(pte, ptl); 3067 return ret; 3068 } 3069 3070 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3071 unsigned long address, pmd_t *pmd, 3072 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3073 { 3074 struct page *fault_page, *new_page; 3075 void *fault_entry; 3076 struct mem_cgroup *memcg; 3077 spinlock_t *ptl; 3078 pte_t *pte; 3079 int ret; 3080 3081 if (unlikely(anon_vma_prepare(vma))) 3082 return VM_FAULT_OOM; 3083 3084 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3085 if (!new_page) 3086 return VM_FAULT_OOM; 3087 3088 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) { 3089 put_page(new_page); 3090 return VM_FAULT_OOM; 3091 } 3092 3093 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page, 3094 &fault_entry); 3095 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3096 goto uncharge_out; 3097 3098 if (!(ret & VM_FAULT_DAX_LOCKED)) 3099 copy_user_highpage(new_page, fault_page, address, vma); 3100 __SetPageUptodate(new_page); 3101 3102 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3103 if (unlikely(!pte_same(*pte, orig_pte))) { 3104 pte_unmap_unlock(pte, ptl); 3105 if (!(ret & VM_FAULT_DAX_LOCKED)) { 3106 unlock_page(fault_page); 3107 put_page(fault_page); 3108 } else { 3109 dax_unlock_mapping_entry(vma->vm_file->f_mapping, 3110 pgoff); 3111 } 3112 goto uncharge_out; 3113 } 3114 do_set_pte(vma, address, new_page, pte, true, true, false); 3115 mem_cgroup_commit_charge(new_page, memcg, false, false); 3116 lru_cache_add_active_or_unevictable(new_page, vma); 3117 pte_unmap_unlock(pte, ptl); 3118 if (!(ret & VM_FAULT_DAX_LOCKED)) { 3119 unlock_page(fault_page); 3120 put_page(fault_page); 3121 } else { 3122 dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff); 3123 } 3124 return ret; 3125 uncharge_out: 3126 mem_cgroup_cancel_charge(new_page, memcg, false); 3127 put_page(new_page); 3128 return ret; 3129 } 3130 3131 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3132 unsigned long address, pmd_t *pmd, 3133 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3134 { 3135 struct page *fault_page; 3136 struct address_space *mapping; 3137 spinlock_t *ptl; 3138 pte_t *pte; 3139 int dirtied = 0; 3140 int ret, tmp; 3141 3142 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page, NULL); 3143 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3144 return ret; 3145 3146 /* 3147 * Check if the backing address space wants to know that the page is 3148 * about to become writable 3149 */ 3150 if (vma->vm_ops->page_mkwrite) { 3151 unlock_page(fault_page); 3152 tmp = do_page_mkwrite(vma, fault_page, address); 3153 if (unlikely(!tmp || 3154 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3155 put_page(fault_page); 3156 return tmp; 3157 } 3158 } 3159 3160 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3161 if (unlikely(!pte_same(*pte, orig_pte))) { 3162 pte_unmap_unlock(pte, ptl); 3163 unlock_page(fault_page); 3164 put_page(fault_page); 3165 return ret; 3166 } 3167 do_set_pte(vma, address, fault_page, pte, true, false, false); 3168 pte_unmap_unlock(pte, ptl); 3169 3170 if (set_page_dirty(fault_page)) 3171 dirtied = 1; 3172 /* 3173 * Take a local copy of the address_space - page.mapping may be zeroed 3174 * by truncate after unlock_page(). The address_space itself remains 3175 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 3176 * release semantics to prevent the compiler from undoing this copying. 3177 */ 3178 mapping = page_rmapping(fault_page); 3179 unlock_page(fault_page); 3180 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3181 /* 3182 * Some device drivers do not set page.mapping but still 3183 * dirty their pages 3184 */ 3185 balance_dirty_pages_ratelimited(mapping); 3186 } 3187 3188 if (!vma->vm_ops->page_mkwrite) 3189 file_update_time(vma->vm_file); 3190 3191 return ret; 3192 } 3193 3194 /* 3195 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3196 * but allow concurrent faults). 3197 * The mmap_sem may have been released depending on flags and our 3198 * return value. See filemap_fault() and __lock_page_or_retry(). 3199 */ 3200 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3201 unsigned long address, pte_t *page_table, pmd_t *pmd, 3202 unsigned int flags, pte_t orig_pte) 3203 { 3204 pgoff_t pgoff = linear_page_index(vma, address); 3205 3206 pte_unmap(page_table); 3207 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3208 if (!vma->vm_ops->fault) 3209 return VM_FAULT_SIGBUS; 3210 if (!(flags & FAULT_FLAG_WRITE)) 3211 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3212 orig_pte); 3213 if (!(vma->vm_flags & VM_SHARED)) 3214 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3215 orig_pte); 3216 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3217 } 3218 3219 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3220 unsigned long addr, int page_nid, 3221 int *flags) 3222 { 3223 get_page(page); 3224 3225 count_vm_numa_event(NUMA_HINT_FAULTS); 3226 if (page_nid == numa_node_id()) { 3227 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3228 *flags |= TNF_FAULT_LOCAL; 3229 } 3230 3231 return mpol_misplaced(page, vma, addr); 3232 } 3233 3234 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3235 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3236 { 3237 struct page *page = NULL; 3238 spinlock_t *ptl; 3239 int page_nid = -1; 3240 int last_cpupid; 3241 int target_nid; 3242 bool migrated = false; 3243 bool was_writable = pte_write(pte); 3244 int flags = 0; 3245 3246 /* A PROT_NONE fault should not end up here */ 3247 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))); 3248 3249 /* 3250 * The "pte" at this point cannot be used safely without 3251 * validation through pte_unmap_same(). It's of NUMA type but 3252 * the pfn may be screwed if the read is non atomic. 3253 * 3254 * We can safely just do a "set_pte_at()", because the old 3255 * page table entry is not accessible, so there would be no 3256 * concurrent hardware modifications to the PTE. 3257 */ 3258 ptl = pte_lockptr(mm, pmd); 3259 spin_lock(ptl); 3260 if (unlikely(!pte_same(*ptep, pte))) { 3261 pte_unmap_unlock(ptep, ptl); 3262 goto out; 3263 } 3264 3265 /* Make it present again */ 3266 pte = pte_modify(pte, vma->vm_page_prot); 3267 pte = pte_mkyoung(pte); 3268 if (was_writable) 3269 pte = pte_mkwrite(pte); 3270 set_pte_at(mm, addr, ptep, pte); 3271 update_mmu_cache(vma, addr, ptep); 3272 3273 page = vm_normal_page(vma, addr, pte); 3274 if (!page) { 3275 pte_unmap_unlock(ptep, ptl); 3276 return 0; 3277 } 3278 3279 /* TODO: handle PTE-mapped THP */ 3280 if (PageCompound(page)) { 3281 pte_unmap_unlock(ptep, ptl); 3282 return 0; 3283 } 3284 3285 /* 3286 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3287 * much anyway since they can be in shared cache state. This misses 3288 * the case where a mapping is writable but the process never writes 3289 * to it but pte_write gets cleared during protection updates and 3290 * pte_dirty has unpredictable behaviour between PTE scan updates, 3291 * background writeback, dirty balancing and application behaviour. 3292 */ 3293 if (!(vma->vm_flags & VM_WRITE)) 3294 flags |= TNF_NO_GROUP; 3295 3296 /* 3297 * Flag if the page is shared between multiple address spaces. This 3298 * is later used when determining whether to group tasks together 3299 */ 3300 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3301 flags |= TNF_SHARED; 3302 3303 last_cpupid = page_cpupid_last(page); 3304 page_nid = page_to_nid(page); 3305 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3306 pte_unmap_unlock(ptep, ptl); 3307 if (target_nid == -1) { 3308 put_page(page); 3309 goto out; 3310 } 3311 3312 /* Migrate to the requested node */ 3313 migrated = migrate_misplaced_page(page, vma, target_nid); 3314 if (migrated) { 3315 page_nid = target_nid; 3316 flags |= TNF_MIGRATED; 3317 } else 3318 flags |= TNF_MIGRATE_FAIL; 3319 3320 out: 3321 if (page_nid != -1) 3322 task_numa_fault(last_cpupid, page_nid, 1, flags); 3323 return 0; 3324 } 3325 3326 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 3327 unsigned long address, pmd_t *pmd, unsigned int flags) 3328 { 3329 if (vma_is_anonymous(vma)) 3330 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags); 3331 if (vma->vm_ops->pmd_fault) 3332 return vma->vm_ops->pmd_fault(vma, address, pmd, flags); 3333 return VM_FAULT_FALLBACK; 3334 } 3335 3336 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 3337 unsigned long address, pmd_t *pmd, pmd_t orig_pmd, 3338 unsigned int flags) 3339 { 3340 if (vma_is_anonymous(vma)) 3341 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd); 3342 if (vma->vm_ops->pmd_fault) 3343 return vma->vm_ops->pmd_fault(vma, address, pmd, flags); 3344 return VM_FAULT_FALLBACK; 3345 } 3346 3347 /* 3348 * These routines also need to handle stuff like marking pages dirty 3349 * and/or accessed for architectures that don't do it in hardware (most 3350 * RISC architectures). The early dirtying is also good on the i386. 3351 * 3352 * There is also a hook called "update_mmu_cache()" that architectures 3353 * with external mmu caches can use to update those (ie the Sparc or 3354 * PowerPC hashed page tables that act as extended TLBs). 3355 * 3356 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3357 * but allow concurrent faults), and pte mapped but not yet locked. 3358 * We return with pte unmapped and unlocked. 3359 * 3360 * The mmap_sem may have been released depending on flags and our 3361 * return value. See filemap_fault() and __lock_page_or_retry(). 3362 */ 3363 static int handle_pte_fault(struct mm_struct *mm, 3364 struct vm_area_struct *vma, unsigned long address, 3365 pte_t *pte, pmd_t *pmd, unsigned int flags) 3366 { 3367 pte_t entry; 3368 spinlock_t *ptl; 3369 3370 /* 3371 * some architectures can have larger ptes than wordsize, 3372 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y, 3373 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses. 3374 * The code below just needs a consistent view for the ifs and 3375 * we later double check anyway with the ptl lock held. So here 3376 * a barrier will do. 3377 */ 3378 entry = *pte; 3379 barrier(); 3380 if (!pte_present(entry)) { 3381 if (pte_none(entry)) { 3382 if (vma_is_anonymous(vma)) 3383 return do_anonymous_page(mm, vma, address, 3384 pte, pmd, flags); 3385 else 3386 return do_fault(mm, vma, address, pte, pmd, 3387 flags, entry); 3388 } 3389 return do_swap_page(mm, vma, address, 3390 pte, pmd, flags, entry); 3391 } 3392 3393 if (pte_protnone(entry)) 3394 return do_numa_page(mm, vma, address, entry, pte, pmd); 3395 3396 ptl = pte_lockptr(mm, pmd); 3397 spin_lock(ptl); 3398 if (unlikely(!pte_same(*pte, entry))) 3399 goto unlock; 3400 if (flags & FAULT_FLAG_WRITE) { 3401 if (!pte_write(entry)) 3402 return do_wp_page(mm, vma, address, 3403 pte, pmd, ptl, entry); 3404 entry = pte_mkdirty(entry); 3405 } 3406 entry = pte_mkyoung(entry); 3407 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3408 update_mmu_cache(vma, address, pte); 3409 } else { 3410 /* 3411 * This is needed only for protection faults but the arch code 3412 * is not yet telling us if this is a protection fault or not. 3413 * This still avoids useless tlb flushes for .text page faults 3414 * with threads. 3415 */ 3416 if (flags & FAULT_FLAG_WRITE) 3417 flush_tlb_fix_spurious_fault(vma, address); 3418 } 3419 unlock: 3420 pte_unmap_unlock(pte, ptl); 3421 return 0; 3422 } 3423 3424 /* 3425 * By the time we get here, we already hold the mm semaphore 3426 * 3427 * The mmap_sem may have been released depending on flags and our 3428 * return value. See filemap_fault() and __lock_page_or_retry(). 3429 */ 3430 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3431 unsigned long address, unsigned int flags) 3432 { 3433 pgd_t *pgd; 3434 pud_t *pud; 3435 pmd_t *pmd; 3436 pte_t *pte; 3437 3438 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3439 flags & FAULT_FLAG_INSTRUCTION, 3440 flags & FAULT_FLAG_REMOTE)) 3441 return VM_FAULT_SIGSEGV; 3442 3443 if (unlikely(is_vm_hugetlb_page(vma))) 3444 return hugetlb_fault(mm, vma, address, flags); 3445 3446 pgd = pgd_offset(mm, address); 3447 pud = pud_alloc(mm, pgd, address); 3448 if (!pud) 3449 return VM_FAULT_OOM; 3450 pmd = pmd_alloc(mm, pud, address); 3451 if (!pmd) 3452 return VM_FAULT_OOM; 3453 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3454 int ret = create_huge_pmd(mm, vma, address, pmd, flags); 3455 if (!(ret & VM_FAULT_FALLBACK)) 3456 return ret; 3457 } else { 3458 pmd_t orig_pmd = *pmd; 3459 int ret; 3460 3461 barrier(); 3462 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3463 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3464 3465 if (pmd_protnone(orig_pmd)) 3466 return do_huge_pmd_numa_page(mm, vma, address, 3467 orig_pmd, pmd); 3468 3469 if (dirty && !pmd_write(orig_pmd)) { 3470 ret = wp_huge_pmd(mm, vma, address, pmd, 3471 orig_pmd, flags); 3472 if (!(ret & VM_FAULT_FALLBACK)) 3473 return ret; 3474 } else { 3475 huge_pmd_set_accessed(mm, vma, address, pmd, 3476 orig_pmd, dirty); 3477 return 0; 3478 } 3479 } 3480 } 3481 3482 /* 3483 * Use pte_alloc() instead of pte_alloc_map, because we can't 3484 * run pte_offset_map on the pmd, if an huge pmd could 3485 * materialize from under us from a different thread. 3486 */ 3487 if (unlikely(pte_alloc(mm, pmd, address))) 3488 return VM_FAULT_OOM; 3489 /* 3490 * If a huge pmd materialized under us just retry later. Use 3491 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd 3492 * didn't become pmd_trans_huge under us and then back to pmd_none, as 3493 * a result of MADV_DONTNEED running immediately after a huge pmd fault 3494 * in a different thread of this mm, in turn leading to a misleading 3495 * pmd_trans_huge() retval. All we have to ensure is that it is a 3496 * regular pmd that we can walk with pte_offset_map() and we can do that 3497 * through an atomic read in C, which is what pmd_trans_unstable() 3498 * provides. 3499 */ 3500 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd))) 3501 return 0; 3502 /* 3503 * A regular pmd is established and it can't morph into a huge pmd 3504 * from under us anymore at this point because we hold the mmap_sem 3505 * read mode and khugepaged takes it in write mode. So now it's 3506 * safe to run pte_offset_map(). 3507 */ 3508 pte = pte_offset_map(pmd, address); 3509 3510 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3511 } 3512 3513 /* 3514 * By the time we get here, we already hold the mm semaphore 3515 * 3516 * The mmap_sem may have been released depending on flags and our 3517 * return value. See filemap_fault() and __lock_page_or_retry(). 3518 */ 3519 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3520 unsigned long address, unsigned int flags) 3521 { 3522 int ret; 3523 3524 __set_current_state(TASK_RUNNING); 3525 3526 count_vm_event(PGFAULT); 3527 mem_cgroup_count_vm_event(mm, PGFAULT); 3528 3529 /* do counter updates before entering really critical section. */ 3530 check_sync_rss_stat(current); 3531 3532 /* 3533 * Enable the memcg OOM handling for faults triggered in user 3534 * space. Kernel faults are handled more gracefully. 3535 */ 3536 if (flags & FAULT_FLAG_USER) 3537 mem_cgroup_oom_enable(); 3538 3539 ret = __handle_mm_fault(mm, vma, address, flags); 3540 3541 if (flags & FAULT_FLAG_USER) { 3542 mem_cgroup_oom_disable(); 3543 /* 3544 * The task may have entered a memcg OOM situation but 3545 * if the allocation error was handled gracefully (no 3546 * VM_FAULT_OOM), there is no need to kill anything. 3547 * Just clean up the OOM state peacefully. 3548 */ 3549 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3550 mem_cgroup_oom_synchronize(false); 3551 } 3552 3553 return ret; 3554 } 3555 EXPORT_SYMBOL_GPL(handle_mm_fault); 3556 3557 #ifndef __PAGETABLE_PUD_FOLDED 3558 /* 3559 * Allocate page upper directory. 3560 * We've already handled the fast-path in-line. 3561 */ 3562 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3563 { 3564 pud_t *new = pud_alloc_one(mm, address); 3565 if (!new) 3566 return -ENOMEM; 3567 3568 smp_wmb(); /* See comment in __pte_alloc */ 3569 3570 spin_lock(&mm->page_table_lock); 3571 if (pgd_present(*pgd)) /* Another has populated it */ 3572 pud_free(mm, new); 3573 else 3574 pgd_populate(mm, pgd, new); 3575 spin_unlock(&mm->page_table_lock); 3576 return 0; 3577 } 3578 #endif /* __PAGETABLE_PUD_FOLDED */ 3579 3580 #ifndef __PAGETABLE_PMD_FOLDED 3581 /* 3582 * Allocate page middle directory. 3583 * We've already handled the fast-path in-line. 3584 */ 3585 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3586 { 3587 pmd_t *new = pmd_alloc_one(mm, address); 3588 if (!new) 3589 return -ENOMEM; 3590 3591 smp_wmb(); /* See comment in __pte_alloc */ 3592 3593 spin_lock(&mm->page_table_lock); 3594 #ifndef __ARCH_HAS_4LEVEL_HACK 3595 if (!pud_present(*pud)) { 3596 mm_inc_nr_pmds(mm); 3597 pud_populate(mm, pud, new); 3598 } else /* Another has populated it */ 3599 pmd_free(mm, new); 3600 #else 3601 if (!pgd_present(*pud)) { 3602 mm_inc_nr_pmds(mm); 3603 pgd_populate(mm, pud, new); 3604 } else /* Another has populated it */ 3605 pmd_free(mm, new); 3606 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3607 spin_unlock(&mm->page_table_lock); 3608 return 0; 3609 } 3610 #endif /* __PAGETABLE_PMD_FOLDED */ 3611 3612 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3613 pte_t **ptepp, spinlock_t **ptlp) 3614 { 3615 pgd_t *pgd; 3616 pud_t *pud; 3617 pmd_t *pmd; 3618 pte_t *ptep; 3619 3620 pgd = pgd_offset(mm, address); 3621 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3622 goto out; 3623 3624 pud = pud_offset(pgd, address); 3625 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3626 goto out; 3627 3628 pmd = pmd_offset(pud, address); 3629 VM_BUG_ON(pmd_trans_huge(*pmd)); 3630 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3631 goto out; 3632 3633 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3634 if (pmd_huge(*pmd)) 3635 goto out; 3636 3637 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3638 if (!ptep) 3639 goto out; 3640 if (!pte_present(*ptep)) 3641 goto unlock; 3642 *ptepp = ptep; 3643 return 0; 3644 unlock: 3645 pte_unmap_unlock(ptep, *ptlp); 3646 out: 3647 return -EINVAL; 3648 } 3649 3650 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3651 pte_t **ptepp, spinlock_t **ptlp) 3652 { 3653 int res; 3654 3655 /* (void) is needed to make gcc happy */ 3656 (void) __cond_lock(*ptlp, 3657 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3658 return res; 3659 } 3660 3661 /** 3662 * follow_pfn - look up PFN at a user virtual address 3663 * @vma: memory mapping 3664 * @address: user virtual address 3665 * @pfn: location to store found PFN 3666 * 3667 * Only IO mappings and raw PFN mappings are allowed. 3668 * 3669 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3670 */ 3671 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3672 unsigned long *pfn) 3673 { 3674 int ret = -EINVAL; 3675 spinlock_t *ptl; 3676 pte_t *ptep; 3677 3678 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3679 return ret; 3680 3681 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3682 if (ret) 3683 return ret; 3684 *pfn = pte_pfn(*ptep); 3685 pte_unmap_unlock(ptep, ptl); 3686 return 0; 3687 } 3688 EXPORT_SYMBOL(follow_pfn); 3689 3690 #ifdef CONFIG_HAVE_IOREMAP_PROT 3691 int follow_phys(struct vm_area_struct *vma, 3692 unsigned long address, unsigned int flags, 3693 unsigned long *prot, resource_size_t *phys) 3694 { 3695 int ret = -EINVAL; 3696 pte_t *ptep, pte; 3697 spinlock_t *ptl; 3698 3699 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3700 goto out; 3701 3702 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3703 goto out; 3704 pte = *ptep; 3705 3706 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3707 goto unlock; 3708 3709 *prot = pgprot_val(pte_pgprot(pte)); 3710 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3711 3712 ret = 0; 3713 unlock: 3714 pte_unmap_unlock(ptep, ptl); 3715 out: 3716 return ret; 3717 } 3718 3719 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3720 void *buf, int len, int write) 3721 { 3722 resource_size_t phys_addr; 3723 unsigned long prot = 0; 3724 void __iomem *maddr; 3725 int offset = addr & (PAGE_SIZE-1); 3726 3727 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3728 return -EINVAL; 3729 3730 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 3731 if (write) 3732 memcpy_toio(maddr + offset, buf, len); 3733 else 3734 memcpy_fromio(buf, maddr + offset, len); 3735 iounmap(maddr); 3736 3737 return len; 3738 } 3739 EXPORT_SYMBOL_GPL(generic_access_phys); 3740 #endif 3741 3742 /* 3743 * Access another process' address space as given in mm. If non-NULL, use the 3744 * given task for page fault accounting. 3745 */ 3746 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3747 unsigned long addr, void *buf, int len, int write) 3748 { 3749 struct vm_area_struct *vma; 3750 void *old_buf = buf; 3751 3752 down_read(&mm->mmap_sem); 3753 /* ignore errors, just check how much was successfully transferred */ 3754 while (len) { 3755 int bytes, ret, offset; 3756 void *maddr; 3757 struct page *page = NULL; 3758 3759 ret = get_user_pages_remote(tsk, mm, addr, 1, 3760 write, 1, &page, &vma); 3761 if (ret <= 0) { 3762 #ifndef CONFIG_HAVE_IOREMAP_PROT 3763 break; 3764 #else 3765 /* 3766 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3767 * we can access using slightly different code. 3768 */ 3769 vma = find_vma(mm, addr); 3770 if (!vma || vma->vm_start > addr) 3771 break; 3772 if (vma->vm_ops && vma->vm_ops->access) 3773 ret = vma->vm_ops->access(vma, addr, buf, 3774 len, write); 3775 if (ret <= 0) 3776 break; 3777 bytes = ret; 3778 #endif 3779 } else { 3780 bytes = len; 3781 offset = addr & (PAGE_SIZE-1); 3782 if (bytes > PAGE_SIZE-offset) 3783 bytes = PAGE_SIZE-offset; 3784 3785 maddr = kmap(page); 3786 if (write) { 3787 copy_to_user_page(vma, page, addr, 3788 maddr + offset, buf, bytes); 3789 set_page_dirty_lock(page); 3790 } else { 3791 copy_from_user_page(vma, page, addr, 3792 buf, maddr + offset, bytes); 3793 } 3794 kunmap(page); 3795 put_page(page); 3796 } 3797 len -= bytes; 3798 buf += bytes; 3799 addr += bytes; 3800 } 3801 up_read(&mm->mmap_sem); 3802 3803 return buf - old_buf; 3804 } 3805 3806 /** 3807 * access_remote_vm - access another process' address space 3808 * @mm: the mm_struct of the target address space 3809 * @addr: start address to access 3810 * @buf: source or destination buffer 3811 * @len: number of bytes to transfer 3812 * @write: whether the access is a write 3813 * 3814 * The caller must hold a reference on @mm. 3815 */ 3816 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3817 void *buf, int len, int write) 3818 { 3819 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3820 } 3821 3822 /* 3823 * Access another process' address space. 3824 * Source/target buffer must be kernel space, 3825 * Do not walk the page table directly, use get_user_pages 3826 */ 3827 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3828 void *buf, int len, int write) 3829 { 3830 struct mm_struct *mm; 3831 int ret; 3832 3833 mm = get_task_mm(tsk); 3834 if (!mm) 3835 return 0; 3836 3837 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3838 mmput(mm); 3839 3840 return ret; 3841 } 3842 3843 /* 3844 * Print the name of a VMA. 3845 */ 3846 void print_vma_addr(char *prefix, unsigned long ip) 3847 { 3848 struct mm_struct *mm = current->mm; 3849 struct vm_area_struct *vma; 3850 3851 /* 3852 * Do not print if we are in atomic 3853 * contexts (in exception stacks, etc.): 3854 */ 3855 if (preempt_count()) 3856 return; 3857 3858 down_read(&mm->mmap_sem); 3859 vma = find_vma(mm, ip); 3860 if (vma && vma->vm_file) { 3861 struct file *f = vma->vm_file; 3862 char *buf = (char *)__get_free_page(GFP_KERNEL); 3863 if (buf) { 3864 char *p; 3865 3866 p = file_path(f, buf, PAGE_SIZE); 3867 if (IS_ERR(p)) 3868 p = "?"; 3869 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 3870 vma->vm_start, 3871 vma->vm_end - vma->vm_start); 3872 free_page((unsigned long)buf); 3873 } 3874 } 3875 up_read(&mm->mmap_sem); 3876 } 3877 3878 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3879 void __might_fault(const char *file, int line) 3880 { 3881 /* 3882 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3883 * holding the mmap_sem, this is safe because kernel memory doesn't 3884 * get paged out, therefore we'll never actually fault, and the 3885 * below annotations will generate false positives. 3886 */ 3887 if (segment_eq(get_fs(), KERNEL_DS)) 3888 return; 3889 if (pagefault_disabled()) 3890 return; 3891 __might_sleep(file, line, 0); 3892 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3893 if (current->mm) 3894 might_lock_read(¤t->mm->mmap_sem); 3895 #endif 3896 } 3897 EXPORT_SYMBOL(__might_fault); 3898 #endif 3899 3900 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3901 static void clear_gigantic_page(struct page *page, 3902 unsigned long addr, 3903 unsigned int pages_per_huge_page) 3904 { 3905 int i; 3906 struct page *p = page; 3907 3908 might_sleep(); 3909 for (i = 0; i < pages_per_huge_page; 3910 i++, p = mem_map_next(p, page, i)) { 3911 cond_resched(); 3912 clear_user_highpage(p, addr + i * PAGE_SIZE); 3913 } 3914 } 3915 void clear_huge_page(struct page *page, 3916 unsigned long addr, unsigned int pages_per_huge_page) 3917 { 3918 int i; 3919 3920 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3921 clear_gigantic_page(page, addr, pages_per_huge_page); 3922 return; 3923 } 3924 3925 might_sleep(); 3926 for (i = 0; i < pages_per_huge_page; i++) { 3927 cond_resched(); 3928 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3929 } 3930 } 3931 3932 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3933 unsigned long addr, 3934 struct vm_area_struct *vma, 3935 unsigned int pages_per_huge_page) 3936 { 3937 int i; 3938 struct page *dst_base = dst; 3939 struct page *src_base = src; 3940 3941 for (i = 0; i < pages_per_huge_page; ) { 3942 cond_resched(); 3943 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3944 3945 i++; 3946 dst = mem_map_next(dst, dst_base, i); 3947 src = mem_map_next(src, src_base, i); 3948 } 3949 } 3950 3951 void copy_user_huge_page(struct page *dst, struct page *src, 3952 unsigned long addr, struct vm_area_struct *vma, 3953 unsigned int pages_per_huge_page) 3954 { 3955 int i; 3956 3957 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3958 copy_user_gigantic_page(dst, src, addr, vma, 3959 pages_per_huge_page); 3960 return; 3961 } 3962 3963 might_sleep(); 3964 for (i = 0; i < pages_per_huge_page; i++) { 3965 cond_resched(); 3966 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3967 } 3968 } 3969 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3970 3971 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 3972 3973 static struct kmem_cache *page_ptl_cachep; 3974 3975 void __init ptlock_cache_init(void) 3976 { 3977 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 3978 SLAB_PANIC, NULL); 3979 } 3980 3981 bool ptlock_alloc(struct page *page) 3982 { 3983 spinlock_t *ptl; 3984 3985 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 3986 if (!ptl) 3987 return false; 3988 page->ptl = ptl; 3989 return true; 3990 } 3991 3992 void ptlock_free(struct page *page) 3993 { 3994 kmem_cache_free(page_ptl_cachep, page->ptl); 3995 } 3996 #endif 3997