xref: /openbmc/linux/mm/memory.c (revision 6e6faf7a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77 
78 #include <trace/events/kmem.h>
79 
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86 
87 #include "pgalloc-track.h"
88 #include "internal.h"
89 
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93 
94 #ifndef CONFIG_NUMA
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97 
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101 
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111 
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120 					1;
121 #else
122 					2;
123 #endif
124 
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128 	/*
129 	 * Those arches which don't have hw access flag feature need to
130 	 * implement their own helper. By default, "true" means pagefault
131 	 * will be hit on old pte.
132 	 */
133 	return true;
134 }
135 #endif
136 
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
139 {
140 	/*
141 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 	 * some architectures, even if it's performed in hardware. By
143 	 * default, "false" means prefaulted entries will be 'young'.
144 	 */
145 	return false;
146 }
147 #endif
148 
149 static int __init disable_randmaps(char *s)
150 {
151 	randomize_va_space = 0;
152 	return 1;
153 }
154 __setup("norandmaps", disable_randmaps);
155 
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
158 
159 unsigned long highest_memmap_pfn __read_mostly;
160 
161 /*
162  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163  */
164 static int __init init_zero_pfn(void)
165 {
166 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 	return 0;
168 }
169 early_initcall(init_zero_pfn);
170 
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 {
173 	trace_rss_stat(mm, member, count);
174 }
175 
176 #if defined(SPLIT_RSS_COUNTING)
177 
178 void sync_mm_rss(struct mm_struct *mm)
179 {
180 	int i;
181 
182 	for (i = 0; i < NR_MM_COUNTERS; i++) {
183 		if (current->rss_stat.count[i]) {
184 			add_mm_counter(mm, i, current->rss_stat.count[i]);
185 			current->rss_stat.count[i] = 0;
186 		}
187 	}
188 	current->rss_stat.events = 0;
189 }
190 
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 {
193 	struct task_struct *task = current;
194 
195 	if (likely(task->mm == mm))
196 		task->rss_stat.count[member] += val;
197 	else
198 		add_mm_counter(mm, member, val);
199 }
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202 
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH	(64)
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 	if (unlikely(task != current))
208 		return;
209 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210 		sync_mm_rss(task->mm);
211 }
212 #else /* SPLIT_RSS_COUNTING */
213 
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216 
217 static void check_sync_rss_stat(struct task_struct *task)
218 {
219 }
220 
221 #endif /* SPLIT_RSS_COUNTING */
222 
223 /*
224  * Note: this doesn't free the actual pages themselves. That
225  * has been handled earlier when unmapping all the memory regions.
226  */
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 			   unsigned long addr)
229 {
230 	pgtable_t token = pmd_pgtable(*pmd);
231 	pmd_clear(pmd);
232 	pte_free_tlb(tlb, token, addr);
233 	mm_dec_nr_ptes(tlb->mm);
234 }
235 
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 				unsigned long addr, unsigned long end,
238 				unsigned long floor, unsigned long ceiling)
239 {
240 	pmd_t *pmd;
241 	unsigned long next;
242 	unsigned long start;
243 
244 	start = addr;
245 	pmd = pmd_offset(pud, addr);
246 	do {
247 		next = pmd_addr_end(addr, end);
248 		if (pmd_none_or_clear_bad(pmd))
249 			continue;
250 		free_pte_range(tlb, pmd, addr);
251 	} while (pmd++, addr = next, addr != end);
252 
253 	start &= PUD_MASK;
254 	if (start < floor)
255 		return;
256 	if (ceiling) {
257 		ceiling &= PUD_MASK;
258 		if (!ceiling)
259 			return;
260 	}
261 	if (end - 1 > ceiling - 1)
262 		return;
263 
264 	pmd = pmd_offset(pud, start);
265 	pud_clear(pud);
266 	pmd_free_tlb(tlb, pmd, start);
267 	mm_dec_nr_pmds(tlb->mm);
268 }
269 
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271 				unsigned long addr, unsigned long end,
272 				unsigned long floor, unsigned long ceiling)
273 {
274 	pud_t *pud;
275 	unsigned long next;
276 	unsigned long start;
277 
278 	start = addr;
279 	pud = pud_offset(p4d, addr);
280 	do {
281 		next = pud_addr_end(addr, end);
282 		if (pud_none_or_clear_bad(pud))
283 			continue;
284 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285 	} while (pud++, addr = next, addr != end);
286 
287 	start &= P4D_MASK;
288 	if (start < floor)
289 		return;
290 	if (ceiling) {
291 		ceiling &= P4D_MASK;
292 		if (!ceiling)
293 			return;
294 	}
295 	if (end - 1 > ceiling - 1)
296 		return;
297 
298 	pud = pud_offset(p4d, start);
299 	p4d_clear(p4d);
300 	pud_free_tlb(tlb, pud, start);
301 	mm_dec_nr_puds(tlb->mm);
302 }
303 
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 				unsigned long addr, unsigned long end,
306 				unsigned long floor, unsigned long ceiling)
307 {
308 	p4d_t *p4d;
309 	unsigned long next;
310 	unsigned long start;
311 
312 	start = addr;
313 	p4d = p4d_offset(pgd, addr);
314 	do {
315 		next = p4d_addr_end(addr, end);
316 		if (p4d_none_or_clear_bad(p4d))
317 			continue;
318 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 	} while (p4d++, addr = next, addr != end);
320 
321 	start &= PGDIR_MASK;
322 	if (start < floor)
323 		return;
324 	if (ceiling) {
325 		ceiling &= PGDIR_MASK;
326 		if (!ceiling)
327 			return;
328 	}
329 	if (end - 1 > ceiling - 1)
330 		return;
331 
332 	p4d = p4d_offset(pgd, start);
333 	pgd_clear(pgd);
334 	p4d_free_tlb(tlb, p4d, start);
335 }
336 
337 /*
338  * This function frees user-level page tables of a process.
339  */
340 void free_pgd_range(struct mmu_gather *tlb,
341 			unsigned long addr, unsigned long end,
342 			unsigned long floor, unsigned long ceiling)
343 {
344 	pgd_t *pgd;
345 	unsigned long next;
346 
347 	/*
348 	 * The next few lines have given us lots of grief...
349 	 *
350 	 * Why are we testing PMD* at this top level?  Because often
351 	 * there will be no work to do at all, and we'd prefer not to
352 	 * go all the way down to the bottom just to discover that.
353 	 *
354 	 * Why all these "- 1"s?  Because 0 represents both the bottom
355 	 * of the address space and the top of it (using -1 for the
356 	 * top wouldn't help much: the masks would do the wrong thing).
357 	 * The rule is that addr 0 and floor 0 refer to the bottom of
358 	 * the address space, but end 0 and ceiling 0 refer to the top
359 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 	 * that end 0 case should be mythical).
361 	 *
362 	 * Wherever addr is brought up or ceiling brought down, we must
363 	 * be careful to reject "the opposite 0" before it confuses the
364 	 * subsequent tests.  But what about where end is brought down
365 	 * by PMD_SIZE below? no, end can't go down to 0 there.
366 	 *
367 	 * Whereas we round start (addr) and ceiling down, by different
368 	 * masks at different levels, in order to test whether a table
369 	 * now has no other vmas using it, so can be freed, we don't
370 	 * bother to round floor or end up - the tests don't need that.
371 	 */
372 
373 	addr &= PMD_MASK;
374 	if (addr < floor) {
375 		addr += PMD_SIZE;
376 		if (!addr)
377 			return;
378 	}
379 	if (ceiling) {
380 		ceiling &= PMD_MASK;
381 		if (!ceiling)
382 			return;
383 	}
384 	if (end - 1 > ceiling - 1)
385 		end -= PMD_SIZE;
386 	if (addr > end - 1)
387 		return;
388 	/*
389 	 * We add page table cache pages with PAGE_SIZE,
390 	 * (see pte_free_tlb()), flush the tlb if we need
391 	 */
392 	tlb_change_page_size(tlb, PAGE_SIZE);
393 	pgd = pgd_offset(tlb->mm, addr);
394 	do {
395 		next = pgd_addr_end(addr, end);
396 		if (pgd_none_or_clear_bad(pgd))
397 			continue;
398 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399 	} while (pgd++, addr = next, addr != end);
400 }
401 
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403 		unsigned long floor, unsigned long ceiling)
404 {
405 	while (vma) {
406 		struct vm_area_struct *next = vma->vm_next;
407 		unsigned long addr = vma->vm_start;
408 
409 		/*
410 		 * Hide vma from rmap and truncate_pagecache before freeing
411 		 * pgtables
412 		 */
413 		unlink_anon_vmas(vma);
414 		unlink_file_vma(vma);
415 
416 		if (is_vm_hugetlb_page(vma)) {
417 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418 				floor, next ? next->vm_start : ceiling);
419 		} else {
420 			/*
421 			 * Optimization: gather nearby vmas into one call down
422 			 */
423 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424 			       && !is_vm_hugetlb_page(next)) {
425 				vma = next;
426 				next = vma->vm_next;
427 				unlink_anon_vmas(vma);
428 				unlink_file_vma(vma);
429 			}
430 			free_pgd_range(tlb, addr, vma->vm_end,
431 				floor, next ? next->vm_start : ceiling);
432 		}
433 		vma = next;
434 	}
435 }
436 
437 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
438 {
439 	spinlock_t *ptl = pmd_lock(mm, pmd);
440 
441 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
442 		mm_inc_nr_ptes(mm);
443 		/*
444 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 		 * visible before the pte is made visible to other CPUs by being
446 		 * put into page tables.
447 		 *
448 		 * The other side of the story is the pointer chasing in the page
449 		 * table walking code (when walking the page table without locking;
450 		 * ie. most of the time). Fortunately, these data accesses consist
451 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 		 * being the notable exception) will already guarantee loads are
453 		 * seen in-order. See the alpha page table accessors for the
454 		 * smp_rmb() barriers in page table walking code.
455 		 */
456 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457 		pmd_populate(mm, pmd, *pte);
458 		*pte = NULL;
459 	}
460 	spin_unlock(ptl);
461 }
462 
463 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
464 {
465 	pgtable_t new = pte_alloc_one(mm);
466 	if (!new)
467 		return -ENOMEM;
468 
469 	pmd_install(mm, pmd, &new);
470 	if (new)
471 		pte_free(mm, new);
472 	return 0;
473 }
474 
475 int __pte_alloc_kernel(pmd_t *pmd)
476 {
477 	pte_t *new = pte_alloc_one_kernel(&init_mm);
478 	if (!new)
479 		return -ENOMEM;
480 
481 	spin_lock(&init_mm.page_table_lock);
482 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
483 		smp_wmb(); /* See comment in pmd_install() */
484 		pmd_populate_kernel(&init_mm, pmd, new);
485 		new = NULL;
486 	}
487 	spin_unlock(&init_mm.page_table_lock);
488 	if (new)
489 		pte_free_kernel(&init_mm, new);
490 	return 0;
491 }
492 
493 static inline void init_rss_vec(int *rss)
494 {
495 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
496 }
497 
498 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
499 {
500 	int i;
501 
502 	if (current->mm == mm)
503 		sync_mm_rss(mm);
504 	for (i = 0; i < NR_MM_COUNTERS; i++)
505 		if (rss[i])
506 			add_mm_counter(mm, i, rss[i]);
507 }
508 
509 /*
510  * This function is called to print an error when a bad pte
511  * is found. For example, we might have a PFN-mapped pte in
512  * a region that doesn't allow it.
513  *
514  * The calling function must still handle the error.
515  */
516 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517 			  pte_t pte, struct page *page)
518 {
519 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
520 	p4d_t *p4d = p4d_offset(pgd, addr);
521 	pud_t *pud = pud_offset(p4d, addr);
522 	pmd_t *pmd = pmd_offset(pud, addr);
523 	struct address_space *mapping;
524 	pgoff_t index;
525 	static unsigned long resume;
526 	static unsigned long nr_shown;
527 	static unsigned long nr_unshown;
528 
529 	/*
530 	 * Allow a burst of 60 reports, then keep quiet for that minute;
531 	 * or allow a steady drip of one report per second.
532 	 */
533 	if (nr_shown == 60) {
534 		if (time_before(jiffies, resume)) {
535 			nr_unshown++;
536 			return;
537 		}
538 		if (nr_unshown) {
539 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
540 				 nr_unshown);
541 			nr_unshown = 0;
542 		}
543 		nr_shown = 0;
544 	}
545 	if (nr_shown++ == 0)
546 		resume = jiffies + 60 * HZ;
547 
548 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549 	index = linear_page_index(vma, addr);
550 
551 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
552 		 current->comm,
553 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
554 	if (page)
555 		dump_page(page, "bad pte");
556 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
557 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
558 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
559 		 vma->vm_file,
560 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
561 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562 		 mapping ? mapping->a_ops->readpage : NULL);
563 	dump_stack();
564 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
565 }
566 
567 /*
568  * vm_normal_page -- This function gets the "struct page" associated with a pte.
569  *
570  * "Special" mappings do not wish to be associated with a "struct page" (either
571  * it doesn't exist, or it exists but they don't want to touch it). In this
572  * case, NULL is returned here. "Normal" mappings do have a struct page.
573  *
574  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575  * pte bit, in which case this function is trivial. Secondly, an architecture
576  * may not have a spare pte bit, which requires a more complicated scheme,
577  * described below.
578  *
579  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580  * special mapping (even if there are underlying and valid "struct pages").
581  * COWed pages of a VM_PFNMAP are always normal.
582  *
583  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
585  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586  * mapping will always honor the rule
587  *
588  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
589  *
590  * And for normal mappings this is false.
591  *
592  * This restricts such mappings to be a linear translation from virtual address
593  * to pfn. To get around this restriction, we allow arbitrary mappings so long
594  * as the vma is not a COW mapping; in that case, we know that all ptes are
595  * special (because none can have been COWed).
596  *
597  *
598  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
599  *
600  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601  * page" backing, however the difference is that _all_ pages with a struct
602  * page (that is, those where pfn_valid is true) are refcounted and considered
603  * normal pages by the VM. The disadvantage is that pages are refcounted
604  * (which can be slower and simply not an option for some PFNMAP users). The
605  * advantage is that we don't have to follow the strict linearity rule of
606  * PFNMAP mappings in order to support COWable mappings.
607  *
608  */
609 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
610 			    pte_t pte)
611 {
612 	unsigned long pfn = pte_pfn(pte);
613 
614 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
615 		if (likely(!pte_special(pte)))
616 			goto check_pfn;
617 		if (vma->vm_ops && vma->vm_ops->find_special_page)
618 			return vma->vm_ops->find_special_page(vma, addr);
619 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
620 			return NULL;
621 		if (is_zero_pfn(pfn))
622 			return NULL;
623 		if (pte_devmap(pte))
624 			return NULL;
625 
626 		print_bad_pte(vma, addr, pte, NULL);
627 		return NULL;
628 	}
629 
630 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
631 
632 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633 		if (vma->vm_flags & VM_MIXEDMAP) {
634 			if (!pfn_valid(pfn))
635 				return NULL;
636 			goto out;
637 		} else {
638 			unsigned long off;
639 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
640 			if (pfn == vma->vm_pgoff + off)
641 				return NULL;
642 			if (!is_cow_mapping(vma->vm_flags))
643 				return NULL;
644 		}
645 	}
646 
647 	if (is_zero_pfn(pfn))
648 		return NULL;
649 
650 check_pfn:
651 	if (unlikely(pfn > highest_memmap_pfn)) {
652 		print_bad_pte(vma, addr, pte, NULL);
653 		return NULL;
654 	}
655 
656 	/*
657 	 * NOTE! We still have PageReserved() pages in the page tables.
658 	 * eg. VDSO mappings can cause them to exist.
659 	 */
660 out:
661 	return pfn_to_page(pfn);
662 }
663 
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
666 				pmd_t pmd)
667 {
668 	unsigned long pfn = pmd_pfn(pmd);
669 
670 	/*
671 	 * There is no pmd_special() but there may be special pmds, e.g.
672 	 * in a direct-access (dax) mapping, so let's just replicate the
673 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
674 	 */
675 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676 		if (vma->vm_flags & VM_MIXEDMAP) {
677 			if (!pfn_valid(pfn))
678 				return NULL;
679 			goto out;
680 		} else {
681 			unsigned long off;
682 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
683 			if (pfn == vma->vm_pgoff + off)
684 				return NULL;
685 			if (!is_cow_mapping(vma->vm_flags))
686 				return NULL;
687 		}
688 	}
689 
690 	if (pmd_devmap(pmd))
691 		return NULL;
692 	if (is_huge_zero_pmd(pmd))
693 		return NULL;
694 	if (unlikely(pfn > highest_memmap_pfn))
695 		return NULL;
696 
697 	/*
698 	 * NOTE! We still have PageReserved() pages in the page tables.
699 	 * eg. VDSO mappings can cause them to exist.
700 	 */
701 out:
702 	return pfn_to_page(pfn);
703 }
704 #endif
705 
706 static void restore_exclusive_pte(struct vm_area_struct *vma,
707 				  struct page *page, unsigned long address,
708 				  pte_t *ptep)
709 {
710 	pte_t pte;
711 	swp_entry_t entry;
712 
713 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714 	if (pte_swp_soft_dirty(*ptep))
715 		pte = pte_mksoft_dirty(pte);
716 
717 	entry = pte_to_swp_entry(*ptep);
718 	if (pte_swp_uffd_wp(*ptep))
719 		pte = pte_mkuffd_wp(pte);
720 	else if (is_writable_device_exclusive_entry(entry))
721 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
722 
723 	/*
724 	 * No need to take a page reference as one was already
725 	 * created when the swap entry was made.
726 	 */
727 	if (PageAnon(page))
728 		page_add_anon_rmap(page, vma, address, false);
729 	else
730 		/*
731 		 * Currently device exclusive access only supports anonymous
732 		 * memory so the entry shouldn't point to a filebacked page.
733 		 */
734 		WARN_ON_ONCE(!PageAnon(page));
735 
736 	set_pte_at(vma->vm_mm, address, ptep, pte);
737 
738 	if (vma->vm_flags & VM_LOCKED)
739 		mlock_vma_page(page);
740 
741 	/*
742 	 * No need to invalidate - it was non-present before. However
743 	 * secondary CPUs may have mappings that need invalidating.
744 	 */
745 	update_mmu_cache(vma, address, ptep);
746 }
747 
748 /*
749  * Tries to restore an exclusive pte if the page lock can be acquired without
750  * sleeping.
751  */
752 static int
753 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
754 			unsigned long addr)
755 {
756 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
757 	struct page *page = pfn_swap_entry_to_page(entry);
758 
759 	if (trylock_page(page)) {
760 		restore_exclusive_pte(vma, page, addr, src_pte);
761 		unlock_page(page);
762 		return 0;
763 	}
764 
765 	return -EBUSY;
766 }
767 
768 /*
769  * copy one vm_area from one task to the other. Assumes the page tables
770  * already present in the new task to be cleared in the whole range
771  * covered by this vma.
772  */
773 
774 static unsigned long
775 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
776 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
778 {
779 	unsigned long vm_flags = dst_vma->vm_flags;
780 	pte_t pte = *src_pte;
781 	struct page *page;
782 	swp_entry_t entry = pte_to_swp_entry(pte);
783 
784 	if (likely(!non_swap_entry(entry))) {
785 		if (swap_duplicate(entry) < 0)
786 			return -EIO;
787 
788 		/* make sure dst_mm is on swapoff's mmlist. */
789 		if (unlikely(list_empty(&dst_mm->mmlist))) {
790 			spin_lock(&mmlist_lock);
791 			if (list_empty(&dst_mm->mmlist))
792 				list_add(&dst_mm->mmlist,
793 						&src_mm->mmlist);
794 			spin_unlock(&mmlist_lock);
795 		}
796 		rss[MM_SWAPENTS]++;
797 	} else if (is_migration_entry(entry)) {
798 		page = pfn_swap_entry_to_page(entry);
799 
800 		rss[mm_counter(page)]++;
801 
802 		if (is_writable_migration_entry(entry) &&
803 				is_cow_mapping(vm_flags)) {
804 			/*
805 			 * COW mappings require pages in both
806 			 * parent and child to be set to read.
807 			 */
808 			entry = make_readable_migration_entry(
809 							swp_offset(entry));
810 			pte = swp_entry_to_pte(entry);
811 			if (pte_swp_soft_dirty(*src_pte))
812 				pte = pte_swp_mksoft_dirty(pte);
813 			if (pte_swp_uffd_wp(*src_pte))
814 				pte = pte_swp_mkuffd_wp(pte);
815 			set_pte_at(src_mm, addr, src_pte, pte);
816 		}
817 	} else if (is_device_private_entry(entry)) {
818 		page = pfn_swap_entry_to_page(entry);
819 
820 		/*
821 		 * Update rss count even for unaddressable pages, as
822 		 * they should treated just like normal pages in this
823 		 * respect.
824 		 *
825 		 * We will likely want to have some new rss counters
826 		 * for unaddressable pages, at some point. But for now
827 		 * keep things as they are.
828 		 */
829 		get_page(page);
830 		rss[mm_counter(page)]++;
831 		page_dup_rmap(page, false);
832 
833 		/*
834 		 * We do not preserve soft-dirty information, because so
835 		 * far, checkpoint/restore is the only feature that
836 		 * requires that. And checkpoint/restore does not work
837 		 * when a device driver is involved (you cannot easily
838 		 * save and restore device driver state).
839 		 */
840 		if (is_writable_device_private_entry(entry) &&
841 		    is_cow_mapping(vm_flags)) {
842 			entry = make_readable_device_private_entry(
843 							swp_offset(entry));
844 			pte = swp_entry_to_pte(entry);
845 			if (pte_swp_uffd_wp(*src_pte))
846 				pte = pte_swp_mkuffd_wp(pte);
847 			set_pte_at(src_mm, addr, src_pte, pte);
848 		}
849 	} else if (is_device_exclusive_entry(entry)) {
850 		/*
851 		 * Make device exclusive entries present by restoring the
852 		 * original entry then copying as for a present pte. Device
853 		 * exclusive entries currently only support private writable
854 		 * (ie. COW) mappings.
855 		 */
856 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
857 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
858 			return -EBUSY;
859 		return -ENOENT;
860 	}
861 	if (!userfaultfd_wp(dst_vma))
862 		pte = pte_swp_clear_uffd_wp(pte);
863 	set_pte_at(dst_mm, addr, dst_pte, pte);
864 	return 0;
865 }
866 
867 /*
868  * Copy a present and normal page if necessary.
869  *
870  * NOTE! The usual case is that this doesn't need to do
871  * anything, and can just return a positive value. That
872  * will let the caller know that it can just increase
873  * the page refcount and re-use the pte the traditional
874  * way.
875  *
876  * But _if_ we need to copy it because it needs to be
877  * pinned in the parent (and the child should get its own
878  * copy rather than just a reference to the same page),
879  * we'll do that here and return zero to let the caller
880  * know we're done.
881  *
882  * And if we need a pre-allocated page but don't yet have
883  * one, return a negative error to let the preallocation
884  * code know so that it can do so outside the page table
885  * lock.
886  */
887 static inline int
888 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
889 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
890 		  struct page **prealloc, pte_t pte, struct page *page)
891 {
892 	struct page *new_page;
893 
894 	/*
895 	 * What we want to do is to check whether this page may
896 	 * have been pinned by the parent process.  If so,
897 	 * instead of wrprotect the pte on both sides, we copy
898 	 * the page immediately so that we'll always guarantee
899 	 * the pinned page won't be randomly replaced in the
900 	 * future.
901 	 *
902 	 * The page pinning checks are just "has this mm ever
903 	 * seen pinning", along with the (inexact) check of
904 	 * the page count. That might give false positives for
905 	 * for pinning, but it will work correctly.
906 	 */
907 	if (likely(!page_needs_cow_for_dma(src_vma, page)))
908 		return 1;
909 
910 	new_page = *prealloc;
911 	if (!new_page)
912 		return -EAGAIN;
913 
914 	/*
915 	 * We have a prealloc page, all good!  Take it
916 	 * over and copy the page & arm it.
917 	 */
918 	*prealloc = NULL;
919 	copy_user_highpage(new_page, page, addr, src_vma);
920 	__SetPageUptodate(new_page);
921 	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
922 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
923 	rss[mm_counter(new_page)]++;
924 
925 	/* All done, just insert the new page copy in the child */
926 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
927 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
928 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
929 		/* Uffd-wp needs to be delivered to dest pte as well */
930 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
931 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
932 	return 0;
933 }
934 
935 /*
936  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
937  * is required to copy this pte.
938  */
939 static inline int
940 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
941 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
942 		 struct page **prealloc)
943 {
944 	struct mm_struct *src_mm = src_vma->vm_mm;
945 	unsigned long vm_flags = src_vma->vm_flags;
946 	pte_t pte = *src_pte;
947 	struct page *page;
948 
949 	page = vm_normal_page(src_vma, addr, pte);
950 	if (page) {
951 		int retval;
952 
953 		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
954 					   addr, rss, prealloc, pte, page);
955 		if (retval <= 0)
956 			return retval;
957 
958 		get_page(page);
959 		page_dup_rmap(page, false);
960 		rss[mm_counter(page)]++;
961 	}
962 
963 	/*
964 	 * If it's a COW mapping, write protect it both
965 	 * in the parent and the child
966 	 */
967 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
968 		ptep_set_wrprotect(src_mm, addr, src_pte);
969 		pte = pte_wrprotect(pte);
970 	}
971 
972 	/*
973 	 * If it's a shared mapping, mark it clean in
974 	 * the child
975 	 */
976 	if (vm_flags & VM_SHARED)
977 		pte = pte_mkclean(pte);
978 	pte = pte_mkold(pte);
979 
980 	if (!userfaultfd_wp(dst_vma))
981 		pte = pte_clear_uffd_wp(pte);
982 
983 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
984 	return 0;
985 }
986 
987 static inline struct page *
988 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
989 		   unsigned long addr)
990 {
991 	struct page *new_page;
992 
993 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
994 	if (!new_page)
995 		return NULL;
996 
997 	if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
998 		put_page(new_page);
999 		return NULL;
1000 	}
1001 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1002 
1003 	return new_page;
1004 }
1005 
1006 static int
1007 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1008 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1009 	       unsigned long end)
1010 {
1011 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1012 	struct mm_struct *src_mm = src_vma->vm_mm;
1013 	pte_t *orig_src_pte, *orig_dst_pte;
1014 	pte_t *src_pte, *dst_pte;
1015 	spinlock_t *src_ptl, *dst_ptl;
1016 	int progress, ret = 0;
1017 	int rss[NR_MM_COUNTERS];
1018 	swp_entry_t entry = (swp_entry_t){0};
1019 	struct page *prealloc = NULL;
1020 
1021 again:
1022 	progress = 0;
1023 	init_rss_vec(rss);
1024 
1025 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1026 	if (!dst_pte) {
1027 		ret = -ENOMEM;
1028 		goto out;
1029 	}
1030 	src_pte = pte_offset_map(src_pmd, addr);
1031 	src_ptl = pte_lockptr(src_mm, src_pmd);
1032 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1033 	orig_src_pte = src_pte;
1034 	orig_dst_pte = dst_pte;
1035 	arch_enter_lazy_mmu_mode();
1036 
1037 	do {
1038 		/*
1039 		 * We are holding two locks at this point - either of them
1040 		 * could generate latencies in another task on another CPU.
1041 		 */
1042 		if (progress >= 32) {
1043 			progress = 0;
1044 			if (need_resched() ||
1045 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1046 				break;
1047 		}
1048 		if (pte_none(*src_pte)) {
1049 			progress++;
1050 			continue;
1051 		}
1052 		if (unlikely(!pte_present(*src_pte))) {
1053 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1054 						  dst_pte, src_pte,
1055 						  dst_vma, src_vma,
1056 						  addr, rss);
1057 			if (ret == -EIO) {
1058 				entry = pte_to_swp_entry(*src_pte);
1059 				break;
1060 			} else if (ret == -EBUSY) {
1061 				break;
1062 			} else if (!ret) {
1063 				progress += 8;
1064 				continue;
1065 			}
1066 
1067 			/*
1068 			 * Device exclusive entry restored, continue by copying
1069 			 * the now present pte.
1070 			 */
1071 			WARN_ON_ONCE(ret != -ENOENT);
1072 		}
1073 		/* copy_present_pte() will clear `*prealloc' if consumed */
1074 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1075 				       addr, rss, &prealloc);
1076 		/*
1077 		 * If we need a pre-allocated page for this pte, drop the
1078 		 * locks, allocate, and try again.
1079 		 */
1080 		if (unlikely(ret == -EAGAIN))
1081 			break;
1082 		if (unlikely(prealloc)) {
1083 			/*
1084 			 * pre-alloc page cannot be reused by next time so as
1085 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1086 			 * will allocate page according to address).  This
1087 			 * could only happen if one pinned pte changed.
1088 			 */
1089 			put_page(prealloc);
1090 			prealloc = NULL;
1091 		}
1092 		progress += 8;
1093 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1094 
1095 	arch_leave_lazy_mmu_mode();
1096 	spin_unlock(src_ptl);
1097 	pte_unmap(orig_src_pte);
1098 	add_mm_rss_vec(dst_mm, rss);
1099 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1100 	cond_resched();
1101 
1102 	if (ret == -EIO) {
1103 		VM_WARN_ON_ONCE(!entry.val);
1104 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1105 			ret = -ENOMEM;
1106 			goto out;
1107 		}
1108 		entry.val = 0;
1109 	} else if (ret == -EBUSY) {
1110 		goto out;
1111 	} else if (ret ==  -EAGAIN) {
1112 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1113 		if (!prealloc)
1114 			return -ENOMEM;
1115 	} else if (ret) {
1116 		VM_WARN_ON_ONCE(1);
1117 	}
1118 
1119 	/* We've captured and resolved the error. Reset, try again. */
1120 	ret = 0;
1121 
1122 	if (addr != end)
1123 		goto again;
1124 out:
1125 	if (unlikely(prealloc))
1126 		put_page(prealloc);
1127 	return ret;
1128 }
1129 
1130 static inline int
1131 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1132 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1133 	       unsigned long end)
1134 {
1135 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1136 	struct mm_struct *src_mm = src_vma->vm_mm;
1137 	pmd_t *src_pmd, *dst_pmd;
1138 	unsigned long next;
1139 
1140 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1141 	if (!dst_pmd)
1142 		return -ENOMEM;
1143 	src_pmd = pmd_offset(src_pud, addr);
1144 	do {
1145 		next = pmd_addr_end(addr, end);
1146 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1147 			|| pmd_devmap(*src_pmd)) {
1148 			int err;
1149 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1150 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1151 					    addr, dst_vma, src_vma);
1152 			if (err == -ENOMEM)
1153 				return -ENOMEM;
1154 			if (!err)
1155 				continue;
1156 			/* fall through */
1157 		}
1158 		if (pmd_none_or_clear_bad(src_pmd))
1159 			continue;
1160 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1161 				   addr, next))
1162 			return -ENOMEM;
1163 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1164 	return 0;
1165 }
1166 
1167 static inline int
1168 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1169 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1170 	       unsigned long end)
1171 {
1172 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1173 	struct mm_struct *src_mm = src_vma->vm_mm;
1174 	pud_t *src_pud, *dst_pud;
1175 	unsigned long next;
1176 
1177 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1178 	if (!dst_pud)
1179 		return -ENOMEM;
1180 	src_pud = pud_offset(src_p4d, addr);
1181 	do {
1182 		next = pud_addr_end(addr, end);
1183 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1184 			int err;
1185 
1186 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1187 			err = copy_huge_pud(dst_mm, src_mm,
1188 					    dst_pud, src_pud, addr, src_vma);
1189 			if (err == -ENOMEM)
1190 				return -ENOMEM;
1191 			if (!err)
1192 				continue;
1193 			/* fall through */
1194 		}
1195 		if (pud_none_or_clear_bad(src_pud))
1196 			continue;
1197 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1198 				   addr, next))
1199 			return -ENOMEM;
1200 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1201 	return 0;
1202 }
1203 
1204 static inline int
1205 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1206 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1207 	       unsigned long end)
1208 {
1209 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1210 	p4d_t *src_p4d, *dst_p4d;
1211 	unsigned long next;
1212 
1213 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1214 	if (!dst_p4d)
1215 		return -ENOMEM;
1216 	src_p4d = p4d_offset(src_pgd, addr);
1217 	do {
1218 		next = p4d_addr_end(addr, end);
1219 		if (p4d_none_or_clear_bad(src_p4d))
1220 			continue;
1221 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1222 				   addr, next))
1223 			return -ENOMEM;
1224 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1225 	return 0;
1226 }
1227 
1228 int
1229 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1230 {
1231 	pgd_t *src_pgd, *dst_pgd;
1232 	unsigned long next;
1233 	unsigned long addr = src_vma->vm_start;
1234 	unsigned long end = src_vma->vm_end;
1235 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1236 	struct mm_struct *src_mm = src_vma->vm_mm;
1237 	struct mmu_notifier_range range;
1238 	bool is_cow;
1239 	int ret;
1240 
1241 	/*
1242 	 * Don't copy ptes where a page fault will fill them correctly.
1243 	 * Fork becomes much lighter when there are big shared or private
1244 	 * readonly mappings. The tradeoff is that copy_page_range is more
1245 	 * efficient than faulting.
1246 	 */
1247 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1248 	    !src_vma->anon_vma)
1249 		return 0;
1250 
1251 	if (is_vm_hugetlb_page(src_vma))
1252 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1253 
1254 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1255 		/*
1256 		 * We do not free on error cases below as remove_vma
1257 		 * gets called on error from higher level routine
1258 		 */
1259 		ret = track_pfn_copy(src_vma);
1260 		if (ret)
1261 			return ret;
1262 	}
1263 
1264 	/*
1265 	 * We need to invalidate the secondary MMU mappings only when
1266 	 * there could be a permission downgrade on the ptes of the
1267 	 * parent mm. And a permission downgrade will only happen if
1268 	 * is_cow_mapping() returns true.
1269 	 */
1270 	is_cow = is_cow_mapping(src_vma->vm_flags);
1271 
1272 	if (is_cow) {
1273 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1274 					0, src_vma, src_mm, addr, end);
1275 		mmu_notifier_invalidate_range_start(&range);
1276 		/*
1277 		 * Disabling preemption is not needed for the write side, as
1278 		 * the read side doesn't spin, but goes to the mmap_lock.
1279 		 *
1280 		 * Use the raw variant of the seqcount_t write API to avoid
1281 		 * lockdep complaining about preemptibility.
1282 		 */
1283 		mmap_assert_write_locked(src_mm);
1284 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1285 	}
1286 
1287 	ret = 0;
1288 	dst_pgd = pgd_offset(dst_mm, addr);
1289 	src_pgd = pgd_offset(src_mm, addr);
1290 	do {
1291 		next = pgd_addr_end(addr, end);
1292 		if (pgd_none_or_clear_bad(src_pgd))
1293 			continue;
1294 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1295 					    addr, next))) {
1296 			ret = -ENOMEM;
1297 			break;
1298 		}
1299 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1300 
1301 	if (is_cow) {
1302 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1303 		mmu_notifier_invalidate_range_end(&range);
1304 	}
1305 	return ret;
1306 }
1307 
1308 /*
1309  * Parameter block passed down to zap_pte_range in exceptional cases.
1310  */
1311 struct zap_details {
1312 	struct address_space *zap_mapping;	/* Check page->mapping if set */
1313 	struct folio *single_folio;	/* Locked folio to be unmapped */
1314 };
1315 
1316 /*
1317  * We set details->zap_mapping when we want to unmap shared but keep private
1318  * pages. Return true if skip zapping this page, false otherwise.
1319  */
1320 static inline bool
1321 zap_skip_check_mapping(struct zap_details *details, struct page *page)
1322 {
1323 	if (!details || !page)
1324 		return false;
1325 
1326 	return details->zap_mapping &&
1327 		(details->zap_mapping != page_rmapping(page));
1328 }
1329 
1330 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1331 				struct vm_area_struct *vma, pmd_t *pmd,
1332 				unsigned long addr, unsigned long end,
1333 				struct zap_details *details)
1334 {
1335 	struct mm_struct *mm = tlb->mm;
1336 	int force_flush = 0;
1337 	int rss[NR_MM_COUNTERS];
1338 	spinlock_t *ptl;
1339 	pte_t *start_pte;
1340 	pte_t *pte;
1341 	swp_entry_t entry;
1342 
1343 	tlb_change_page_size(tlb, PAGE_SIZE);
1344 again:
1345 	init_rss_vec(rss);
1346 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1347 	pte = start_pte;
1348 	flush_tlb_batched_pending(mm);
1349 	arch_enter_lazy_mmu_mode();
1350 	do {
1351 		pte_t ptent = *pte;
1352 		if (pte_none(ptent))
1353 			continue;
1354 
1355 		if (need_resched())
1356 			break;
1357 
1358 		if (pte_present(ptent)) {
1359 			struct page *page;
1360 
1361 			page = vm_normal_page(vma, addr, ptent);
1362 			if (unlikely(zap_skip_check_mapping(details, page)))
1363 				continue;
1364 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1365 							tlb->fullmm);
1366 			tlb_remove_tlb_entry(tlb, pte, addr);
1367 			if (unlikely(!page))
1368 				continue;
1369 
1370 			if (!PageAnon(page)) {
1371 				if (pte_dirty(ptent)) {
1372 					force_flush = 1;
1373 					set_page_dirty(page);
1374 				}
1375 				if (pte_young(ptent) &&
1376 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1377 					mark_page_accessed(page);
1378 			}
1379 			rss[mm_counter(page)]--;
1380 			page_remove_rmap(page, false);
1381 			if (unlikely(page_mapcount(page) < 0))
1382 				print_bad_pte(vma, addr, ptent, page);
1383 			if (unlikely(__tlb_remove_page(tlb, page))) {
1384 				force_flush = 1;
1385 				addr += PAGE_SIZE;
1386 				break;
1387 			}
1388 			continue;
1389 		}
1390 
1391 		entry = pte_to_swp_entry(ptent);
1392 		if (is_device_private_entry(entry) ||
1393 		    is_device_exclusive_entry(entry)) {
1394 			struct page *page = pfn_swap_entry_to_page(entry);
1395 
1396 			if (unlikely(zap_skip_check_mapping(details, page)))
1397 				continue;
1398 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1399 			rss[mm_counter(page)]--;
1400 
1401 			if (is_device_private_entry(entry))
1402 				page_remove_rmap(page, false);
1403 
1404 			put_page(page);
1405 			continue;
1406 		}
1407 
1408 		/* If details->check_mapping, we leave swap entries. */
1409 		if (unlikely(details))
1410 			continue;
1411 
1412 		if (!non_swap_entry(entry))
1413 			rss[MM_SWAPENTS]--;
1414 		else if (is_migration_entry(entry)) {
1415 			struct page *page;
1416 
1417 			page = pfn_swap_entry_to_page(entry);
1418 			rss[mm_counter(page)]--;
1419 		}
1420 		if (unlikely(!free_swap_and_cache(entry)))
1421 			print_bad_pte(vma, addr, ptent, NULL);
1422 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1423 	} while (pte++, addr += PAGE_SIZE, addr != end);
1424 
1425 	add_mm_rss_vec(mm, rss);
1426 	arch_leave_lazy_mmu_mode();
1427 
1428 	/* Do the actual TLB flush before dropping ptl */
1429 	if (force_flush)
1430 		tlb_flush_mmu_tlbonly(tlb);
1431 	pte_unmap_unlock(start_pte, ptl);
1432 
1433 	/*
1434 	 * If we forced a TLB flush (either due to running out of
1435 	 * batch buffers or because we needed to flush dirty TLB
1436 	 * entries before releasing the ptl), free the batched
1437 	 * memory too. Restart if we didn't do everything.
1438 	 */
1439 	if (force_flush) {
1440 		force_flush = 0;
1441 		tlb_flush_mmu(tlb);
1442 	}
1443 
1444 	if (addr != end) {
1445 		cond_resched();
1446 		goto again;
1447 	}
1448 
1449 	return addr;
1450 }
1451 
1452 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1453 				struct vm_area_struct *vma, pud_t *pud,
1454 				unsigned long addr, unsigned long end,
1455 				struct zap_details *details)
1456 {
1457 	pmd_t *pmd;
1458 	unsigned long next;
1459 
1460 	pmd = pmd_offset(pud, addr);
1461 	do {
1462 		next = pmd_addr_end(addr, end);
1463 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1464 			if (next - addr != HPAGE_PMD_SIZE)
1465 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1466 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1467 				goto next;
1468 			/* fall through */
1469 		} else if (details && details->single_folio &&
1470 			   folio_test_pmd_mappable(details->single_folio) &&
1471 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1472 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1473 			/*
1474 			 * Take and drop THP pmd lock so that we cannot return
1475 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1476 			 * but not yet decremented compound_mapcount().
1477 			 */
1478 			spin_unlock(ptl);
1479 		}
1480 
1481 		/*
1482 		 * Here there can be other concurrent MADV_DONTNEED or
1483 		 * trans huge page faults running, and if the pmd is
1484 		 * none or trans huge it can change under us. This is
1485 		 * because MADV_DONTNEED holds the mmap_lock in read
1486 		 * mode.
1487 		 */
1488 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1489 			goto next;
1490 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1491 next:
1492 		cond_resched();
1493 	} while (pmd++, addr = next, addr != end);
1494 
1495 	return addr;
1496 }
1497 
1498 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1499 				struct vm_area_struct *vma, p4d_t *p4d,
1500 				unsigned long addr, unsigned long end,
1501 				struct zap_details *details)
1502 {
1503 	pud_t *pud;
1504 	unsigned long next;
1505 
1506 	pud = pud_offset(p4d, addr);
1507 	do {
1508 		next = pud_addr_end(addr, end);
1509 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1510 			if (next - addr != HPAGE_PUD_SIZE) {
1511 				mmap_assert_locked(tlb->mm);
1512 				split_huge_pud(vma, pud, addr);
1513 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1514 				goto next;
1515 			/* fall through */
1516 		}
1517 		if (pud_none_or_clear_bad(pud))
1518 			continue;
1519 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1520 next:
1521 		cond_resched();
1522 	} while (pud++, addr = next, addr != end);
1523 
1524 	return addr;
1525 }
1526 
1527 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1528 				struct vm_area_struct *vma, pgd_t *pgd,
1529 				unsigned long addr, unsigned long end,
1530 				struct zap_details *details)
1531 {
1532 	p4d_t *p4d;
1533 	unsigned long next;
1534 
1535 	p4d = p4d_offset(pgd, addr);
1536 	do {
1537 		next = p4d_addr_end(addr, end);
1538 		if (p4d_none_or_clear_bad(p4d))
1539 			continue;
1540 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1541 	} while (p4d++, addr = next, addr != end);
1542 
1543 	return addr;
1544 }
1545 
1546 void unmap_page_range(struct mmu_gather *tlb,
1547 			     struct vm_area_struct *vma,
1548 			     unsigned long addr, unsigned long end,
1549 			     struct zap_details *details)
1550 {
1551 	pgd_t *pgd;
1552 	unsigned long next;
1553 
1554 	BUG_ON(addr >= end);
1555 	tlb_start_vma(tlb, vma);
1556 	pgd = pgd_offset(vma->vm_mm, addr);
1557 	do {
1558 		next = pgd_addr_end(addr, end);
1559 		if (pgd_none_or_clear_bad(pgd))
1560 			continue;
1561 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1562 	} while (pgd++, addr = next, addr != end);
1563 	tlb_end_vma(tlb, vma);
1564 }
1565 
1566 
1567 static void unmap_single_vma(struct mmu_gather *tlb,
1568 		struct vm_area_struct *vma, unsigned long start_addr,
1569 		unsigned long end_addr,
1570 		struct zap_details *details)
1571 {
1572 	unsigned long start = max(vma->vm_start, start_addr);
1573 	unsigned long end;
1574 
1575 	if (start >= vma->vm_end)
1576 		return;
1577 	end = min(vma->vm_end, end_addr);
1578 	if (end <= vma->vm_start)
1579 		return;
1580 
1581 	if (vma->vm_file)
1582 		uprobe_munmap(vma, start, end);
1583 
1584 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1585 		untrack_pfn(vma, 0, 0);
1586 
1587 	if (start != end) {
1588 		if (unlikely(is_vm_hugetlb_page(vma))) {
1589 			/*
1590 			 * It is undesirable to test vma->vm_file as it
1591 			 * should be non-null for valid hugetlb area.
1592 			 * However, vm_file will be NULL in the error
1593 			 * cleanup path of mmap_region. When
1594 			 * hugetlbfs ->mmap method fails,
1595 			 * mmap_region() nullifies vma->vm_file
1596 			 * before calling this function to clean up.
1597 			 * Since no pte has actually been setup, it is
1598 			 * safe to do nothing in this case.
1599 			 */
1600 			if (vma->vm_file) {
1601 				i_mmap_lock_write(vma->vm_file->f_mapping);
1602 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1603 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1604 			}
1605 		} else
1606 			unmap_page_range(tlb, vma, start, end, details);
1607 	}
1608 }
1609 
1610 /**
1611  * unmap_vmas - unmap a range of memory covered by a list of vma's
1612  * @tlb: address of the caller's struct mmu_gather
1613  * @vma: the starting vma
1614  * @start_addr: virtual address at which to start unmapping
1615  * @end_addr: virtual address at which to end unmapping
1616  *
1617  * Unmap all pages in the vma list.
1618  *
1619  * Only addresses between `start' and `end' will be unmapped.
1620  *
1621  * The VMA list must be sorted in ascending virtual address order.
1622  *
1623  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1624  * range after unmap_vmas() returns.  So the only responsibility here is to
1625  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1626  * drops the lock and schedules.
1627  */
1628 void unmap_vmas(struct mmu_gather *tlb,
1629 		struct vm_area_struct *vma, unsigned long start_addr,
1630 		unsigned long end_addr)
1631 {
1632 	struct mmu_notifier_range range;
1633 
1634 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1635 				start_addr, end_addr);
1636 	mmu_notifier_invalidate_range_start(&range);
1637 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1638 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1639 	mmu_notifier_invalidate_range_end(&range);
1640 }
1641 
1642 /**
1643  * zap_page_range - remove user pages in a given range
1644  * @vma: vm_area_struct holding the applicable pages
1645  * @start: starting address of pages to zap
1646  * @size: number of bytes to zap
1647  *
1648  * Caller must protect the VMA list
1649  */
1650 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1651 		unsigned long size)
1652 {
1653 	struct mmu_notifier_range range;
1654 	struct mmu_gather tlb;
1655 
1656 	lru_add_drain();
1657 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1658 				start, start + size);
1659 	tlb_gather_mmu(&tlb, vma->vm_mm);
1660 	update_hiwater_rss(vma->vm_mm);
1661 	mmu_notifier_invalidate_range_start(&range);
1662 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1663 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1664 	mmu_notifier_invalidate_range_end(&range);
1665 	tlb_finish_mmu(&tlb);
1666 }
1667 
1668 /**
1669  * zap_page_range_single - remove user pages in a given range
1670  * @vma: vm_area_struct holding the applicable pages
1671  * @address: starting address of pages to zap
1672  * @size: number of bytes to zap
1673  * @details: details of shared cache invalidation
1674  *
1675  * The range must fit into one VMA.
1676  */
1677 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1678 		unsigned long size, struct zap_details *details)
1679 {
1680 	struct mmu_notifier_range range;
1681 	struct mmu_gather tlb;
1682 
1683 	lru_add_drain();
1684 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1685 				address, address + size);
1686 	tlb_gather_mmu(&tlb, vma->vm_mm);
1687 	update_hiwater_rss(vma->vm_mm);
1688 	mmu_notifier_invalidate_range_start(&range);
1689 	unmap_single_vma(&tlb, vma, address, range.end, details);
1690 	mmu_notifier_invalidate_range_end(&range);
1691 	tlb_finish_mmu(&tlb);
1692 }
1693 
1694 /**
1695  * zap_vma_ptes - remove ptes mapping the vma
1696  * @vma: vm_area_struct holding ptes to be zapped
1697  * @address: starting address of pages to zap
1698  * @size: number of bytes to zap
1699  *
1700  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1701  *
1702  * The entire address range must be fully contained within the vma.
1703  *
1704  */
1705 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1706 		unsigned long size)
1707 {
1708 	if (address < vma->vm_start || address + size > vma->vm_end ||
1709 	    		!(vma->vm_flags & VM_PFNMAP))
1710 		return;
1711 
1712 	zap_page_range_single(vma, address, size, NULL);
1713 }
1714 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1715 
1716 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1717 {
1718 	pgd_t *pgd;
1719 	p4d_t *p4d;
1720 	pud_t *pud;
1721 	pmd_t *pmd;
1722 
1723 	pgd = pgd_offset(mm, addr);
1724 	p4d = p4d_alloc(mm, pgd, addr);
1725 	if (!p4d)
1726 		return NULL;
1727 	pud = pud_alloc(mm, p4d, addr);
1728 	if (!pud)
1729 		return NULL;
1730 	pmd = pmd_alloc(mm, pud, addr);
1731 	if (!pmd)
1732 		return NULL;
1733 
1734 	VM_BUG_ON(pmd_trans_huge(*pmd));
1735 	return pmd;
1736 }
1737 
1738 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1739 			spinlock_t **ptl)
1740 {
1741 	pmd_t *pmd = walk_to_pmd(mm, addr);
1742 
1743 	if (!pmd)
1744 		return NULL;
1745 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1746 }
1747 
1748 static int validate_page_before_insert(struct page *page)
1749 {
1750 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1751 		return -EINVAL;
1752 	flush_dcache_page(page);
1753 	return 0;
1754 }
1755 
1756 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1757 			unsigned long addr, struct page *page, pgprot_t prot)
1758 {
1759 	if (!pte_none(*pte))
1760 		return -EBUSY;
1761 	/* Ok, finally just insert the thing.. */
1762 	get_page(page);
1763 	inc_mm_counter_fast(mm, mm_counter_file(page));
1764 	page_add_file_rmap(page, false);
1765 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1766 	return 0;
1767 }
1768 
1769 /*
1770  * This is the old fallback for page remapping.
1771  *
1772  * For historical reasons, it only allows reserved pages. Only
1773  * old drivers should use this, and they needed to mark their
1774  * pages reserved for the old functions anyway.
1775  */
1776 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1777 			struct page *page, pgprot_t prot)
1778 {
1779 	struct mm_struct *mm = vma->vm_mm;
1780 	int retval;
1781 	pte_t *pte;
1782 	spinlock_t *ptl;
1783 
1784 	retval = validate_page_before_insert(page);
1785 	if (retval)
1786 		goto out;
1787 	retval = -ENOMEM;
1788 	pte = get_locked_pte(mm, addr, &ptl);
1789 	if (!pte)
1790 		goto out;
1791 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1792 	pte_unmap_unlock(pte, ptl);
1793 out:
1794 	return retval;
1795 }
1796 
1797 #ifdef pte_index
1798 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1799 			unsigned long addr, struct page *page, pgprot_t prot)
1800 {
1801 	int err;
1802 
1803 	if (!page_count(page))
1804 		return -EINVAL;
1805 	err = validate_page_before_insert(page);
1806 	if (err)
1807 		return err;
1808 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1809 }
1810 
1811 /* insert_pages() amortizes the cost of spinlock operations
1812  * when inserting pages in a loop. Arch *must* define pte_index.
1813  */
1814 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1815 			struct page **pages, unsigned long *num, pgprot_t prot)
1816 {
1817 	pmd_t *pmd = NULL;
1818 	pte_t *start_pte, *pte;
1819 	spinlock_t *pte_lock;
1820 	struct mm_struct *const mm = vma->vm_mm;
1821 	unsigned long curr_page_idx = 0;
1822 	unsigned long remaining_pages_total = *num;
1823 	unsigned long pages_to_write_in_pmd;
1824 	int ret;
1825 more:
1826 	ret = -EFAULT;
1827 	pmd = walk_to_pmd(mm, addr);
1828 	if (!pmd)
1829 		goto out;
1830 
1831 	pages_to_write_in_pmd = min_t(unsigned long,
1832 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1833 
1834 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1835 	ret = -ENOMEM;
1836 	if (pte_alloc(mm, pmd))
1837 		goto out;
1838 
1839 	while (pages_to_write_in_pmd) {
1840 		int pte_idx = 0;
1841 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1842 
1843 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1844 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1845 			int err = insert_page_in_batch_locked(mm, pte,
1846 				addr, pages[curr_page_idx], prot);
1847 			if (unlikely(err)) {
1848 				pte_unmap_unlock(start_pte, pte_lock);
1849 				ret = err;
1850 				remaining_pages_total -= pte_idx;
1851 				goto out;
1852 			}
1853 			addr += PAGE_SIZE;
1854 			++curr_page_idx;
1855 		}
1856 		pte_unmap_unlock(start_pte, pte_lock);
1857 		pages_to_write_in_pmd -= batch_size;
1858 		remaining_pages_total -= batch_size;
1859 	}
1860 	if (remaining_pages_total)
1861 		goto more;
1862 	ret = 0;
1863 out:
1864 	*num = remaining_pages_total;
1865 	return ret;
1866 }
1867 #endif  /* ifdef pte_index */
1868 
1869 /**
1870  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1871  * @vma: user vma to map to
1872  * @addr: target start user address of these pages
1873  * @pages: source kernel pages
1874  * @num: in: number of pages to map. out: number of pages that were *not*
1875  * mapped. (0 means all pages were successfully mapped).
1876  *
1877  * Preferred over vm_insert_page() when inserting multiple pages.
1878  *
1879  * In case of error, we may have mapped a subset of the provided
1880  * pages. It is the caller's responsibility to account for this case.
1881  *
1882  * The same restrictions apply as in vm_insert_page().
1883  */
1884 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1885 			struct page **pages, unsigned long *num)
1886 {
1887 #ifdef pte_index
1888 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1889 
1890 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1891 		return -EFAULT;
1892 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1893 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1894 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1895 		vma->vm_flags |= VM_MIXEDMAP;
1896 	}
1897 	/* Defer page refcount checking till we're about to map that page. */
1898 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1899 #else
1900 	unsigned long idx = 0, pgcount = *num;
1901 	int err = -EINVAL;
1902 
1903 	for (; idx < pgcount; ++idx) {
1904 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1905 		if (err)
1906 			break;
1907 	}
1908 	*num = pgcount - idx;
1909 	return err;
1910 #endif  /* ifdef pte_index */
1911 }
1912 EXPORT_SYMBOL(vm_insert_pages);
1913 
1914 /**
1915  * vm_insert_page - insert single page into user vma
1916  * @vma: user vma to map to
1917  * @addr: target user address of this page
1918  * @page: source kernel page
1919  *
1920  * This allows drivers to insert individual pages they've allocated
1921  * into a user vma.
1922  *
1923  * The page has to be a nice clean _individual_ kernel allocation.
1924  * If you allocate a compound page, you need to have marked it as
1925  * such (__GFP_COMP), or manually just split the page up yourself
1926  * (see split_page()).
1927  *
1928  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1929  * took an arbitrary page protection parameter. This doesn't allow
1930  * that. Your vma protection will have to be set up correctly, which
1931  * means that if you want a shared writable mapping, you'd better
1932  * ask for a shared writable mapping!
1933  *
1934  * The page does not need to be reserved.
1935  *
1936  * Usually this function is called from f_op->mmap() handler
1937  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1938  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1939  * function from other places, for example from page-fault handler.
1940  *
1941  * Return: %0 on success, negative error code otherwise.
1942  */
1943 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1944 			struct page *page)
1945 {
1946 	if (addr < vma->vm_start || addr >= vma->vm_end)
1947 		return -EFAULT;
1948 	if (!page_count(page))
1949 		return -EINVAL;
1950 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1951 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1952 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1953 		vma->vm_flags |= VM_MIXEDMAP;
1954 	}
1955 	return insert_page(vma, addr, page, vma->vm_page_prot);
1956 }
1957 EXPORT_SYMBOL(vm_insert_page);
1958 
1959 /*
1960  * __vm_map_pages - maps range of kernel pages into user vma
1961  * @vma: user vma to map to
1962  * @pages: pointer to array of source kernel pages
1963  * @num: number of pages in page array
1964  * @offset: user's requested vm_pgoff
1965  *
1966  * This allows drivers to map range of kernel pages into a user vma.
1967  *
1968  * Return: 0 on success and error code otherwise.
1969  */
1970 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1971 				unsigned long num, unsigned long offset)
1972 {
1973 	unsigned long count = vma_pages(vma);
1974 	unsigned long uaddr = vma->vm_start;
1975 	int ret, i;
1976 
1977 	/* Fail if the user requested offset is beyond the end of the object */
1978 	if (offset >= num)
1979 		return -ENXIO;
1980 
1981 	/* Fail if the user requested size exceeds available object size */
1982 	if (count > num - offset)
1983 		return -ENXIO;
1984 
1985 	for (i = 0; i < count; i++) {
1986 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1987 		if (ret < 0)
1988 			return ret;
1989 		uaddr += PAGE_SIZE;
1990 	}
1991 
1992 	return 0;
1993 }
1994 
1995 /**
1996  * vm_map_pages - maps range of kernel pages starts with non zero offset
1997  * @vma: user vma to map to
1998  * @pages: pointer to array of source kernel pages
1999  * @num: number of pages in page array
2000  *
2001  * Maps an object consisting of @num pages, catering for the user's
2002  * requested vm_pgoff
2003  *
2004  * If we fail to insert any page into the vma, the function will return
2005  * immediately leaving any previously inserted pages present.  Callers
2006  * from the mmap handler may immediately return the error as their caller
2007  * will destroy the vma, removing any successfully inserted pages. Other
2008  * callers should make their own arrangements for calling unmap_region().
2009  *
2010  * Context: Process context. Called by mmap handlers.
2011  * Return: 0 on success and error code otherwise.
2012  */
2013 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2014 				unsigned long num)
2015 {
2016 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2017 }
2018 EXPORT_SYMBOL(vm_map_pages);
2019 
2020 /**
2021  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2022  * @vma: user vma to map to
2023  * @pages: pointer to array of source kernel pages
2024  * @num: number of pages in page array
2025  *
2026  * Similar to vm_map_pages(), except that it explicitly sets the offset
2027  * to 0. This function is intended for the drivers that did not consider
2028  * vm_pgoff.
2029  *
2030  * Context: Process context. Called by mmap handlers.
2031  * Return: 0 on success and error code otherwise.
2032  */
2033 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2034 				unsigned long num)
2035 {
2036 	return __vm_map_pages(vma, pages, num, 0);
2037 }
2038 EXPORT_SYMBOL(vm_map_pages_zero);
2039 
2040 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2041 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2042 {
2043 	struct mm_struct *mm = vma->vm_mm;
2044 	pte_t *pte, entry;
2045 	spinlock_t *ptl;
2046 
2047 	pte = get_locked_pte(mm, addr, &ptl);
2048 	if (!pte)
2049 		return VM_FAULT_OOM;
2050 	if (!pte_none(*pte)) {
2051 		if (mkwrite) {
2052 			/*
2053 			 * For read faults on private mappings the PFN passed
2054 			 * in may not match the PFN we have mapped if the
2055 			 * mapped PFN is a writeable COW page.  In the mkwrite
2056 			 * case we are creating a writable PTE for a shared
2057 			 * mapping and we expect the PFNs to match. If they
2058 			 * don't match, we are likely racing with block
2059 			 * allocation and mapping invalidation so just skip the
2060 			 * update.
2061 			 */
2062 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2063 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2064 				goto out_unlock;
2065 			}
2066 			entry = pte_mkyoung(*pte);
2067 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2068 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2069 				update_mmu_cache(vma, addr, pte);
2070 		}
2071 		goto out_unlock;
2072 	}
2073 
2074 	/* Ok, finally just insert the thing.. */
2075 	if (pfn_t_devmap(pfn))
2076 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2077 	else
2078 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2079 
2080 	if (mkwrite) {
2081 		entry = pte_mkyoung(entry);
2082 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2083 	}
2084 
2085 	set_pte_at(mm, addr, pte, entry);
2086 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2087 
2088 out_unlock:
2089 	pte_unmap_unlock(pte, ptl);
2090 	return VM_FAULT_NOPAGE;
2091 }
2092 
2093 /**
2094  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2095  * @vma: user vma to map to
2096  * @addr: target user address of this page
2097  * @pfn: source kernel pfn
2098  * @pgprot: pgprot flags for the inserted page
2099  *
2100  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2101  * to override pgprot on a per-page basis.
2102  *
2103  * This only makes sense for IO mappings, and it makes no sense for
2104  * COW mappings.  In general, using multiple vmas is preferable;
2105  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2106  * impractical.
2107  *
2108  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2109  * a value of @pgprot different from that of @vma->vm_page_prot.
2110  *
2111  * Context: Process context.  May allocate using %GFP_KERNEL.
2112  * Return: vm_fault_t value.
2113  */
2114 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2115 			unsigned long pfn, pgprot_t pgprot)
2116 {
2117 	/*
2118 	 * Technically, architectures with pte_special can avoid all these
2119 	 * restrictions (same for remap_pfn_range).  However we would like
2120 	 * consistency in testing and feature parity among all, so we should
2121 	 * try to keep these invariants in place for everybody.
2122 	 */
2123 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2124 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2125 						(VM_PFNMAP|VM_MIXEDMAP));
2126 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2127 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2128 
2129 	if (addr < vma->vm_start || addr >= vma->vm_end)
2130 		return VM_FAULT_SIGBUS;
2131 
2132 	if (!pfn_modify_allowed(pfn, pgprot))
2133 		return VM_FAULT_SIGBUS;
2134 
2135 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2136 
2137 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2138 			false);
2139 }
2140 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2141 
2142 /**
2143  * vmf_insert_pfn - insert single pfn into user vma
2144  * @vma: user vma to map to
2145  * @addr: target user address of this page
2146  * @pfn: source kernel pfn
2147  *
2148  * Similar to vm_insert_page, this allows drivers to insert individual pages
2149  * they've allocated into a user vma. Same comments apply.
2150  *
2151  * This function should only be called from a vm_ops->fault handler, and
2152  * in that case the handler should return the result of this function.
2153  *
2154  * vma cannot be a COW mapping.
2155  *
2156  * As this is called only for pages that do not currently exist, we
2157  * do not need to flush old virtual caches or the TLB.
2158  *
2159  * Context: Process context.  May allocate using %GFP_KERNEL.
2160  * Return: vm_fault_t value.
2161  */
2162 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2163 			unsigned long pfn)
2164 {
2165 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2166 }
2167 EXPORT_SYMBOL(vmf_insert_pfn);
2168 
2169 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2170 {
2171 	/* these checks mirror the abort conditions in vm_normal_page */
2172 	if (vma->vm_flags & VM_MIXEDMAP)
2173 		return true;
2174 	if (pfn_t_devmap(pfn))
2175 		return true;
2176 	if (pfn_t_special(pfn))
2177 		return true;
2178 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2179 		return true;
2180 	return false;
2181 }
2182 
2183 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2184 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2185 		bool mkwrite)
2186 {
2187 	int err;
2188 
2189 	BUG_ON(!vm_mixed_ok(vma, pfn));
2190 
2191 	if (addr < vma->vm_start || addr >= vma->vm_end)
2192 		return VM_FAULT_SIGBUS;
2193 
2194 	track_pfn_insert(vma, &pgprot, pfn);
2195 
2196 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2197 		return VM_FAULT_SIGBUS;
2198 
2199 	/*
2200 	 * If we don't have pte special, then we have to use the pfn_valid()
2201 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2202 	 * refcount the page if pfn_valid is true (hence insert_page rather
2203 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2204 	 * without pte special, it would there be refcounted as a normal page.
2205 	 */
2206 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2207 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2208 		struct page *page;
2209 
2210 		/*
2211 		 * At this point we are committed to insert_page()
2212 		 * regardless of whether the caller specified flags that
2213 		 * result in pfn_t_has_page() == false.
2214 		 */
2215 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2216 		err = insert_page(vma, addr, page, pgprot);
2217 	} else {
2218 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2219 	}
2220 
2221 	if (err == -ENOMEM)
2222 		return VM_FAULT_OOM;
2223 	if (err < 0 && err != -EBUSY)
2224 		return VM_FAULT_SIGBUS;
2225 
2226 	return VM_FAULT_NOPAGE;
2227 }
2228 
2229 /**
2230  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2231  * @vma: user vma to map to
2232  * @addr: target user address of this page
2233  * @pfn: source kernel pfn
2234  * @pgprot: pgprot flags for the inserted page
2235  *
2236  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2237  * to override pgprot on a per-page basis.
2238  *
2239  * Typically this function should be used by drivers to set caching- and
2240  * encryption bits different than those of @vma->vm_page_prot, because
2241  * the caching- or encryption mode may not be known at mmap() time.
2242  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2243  * to set caching and encryption bits for those vmas (except for COW pages).
2244  * This is ensured by core vm only modifying these page table entries using
2245  * functions that don't touch caching- or encryption bits, using pte_modify()
2246  * if needed. (See for example mprotect()).
2247  * Also when new page-table entries are created, this is only done using the
2248  * fault() callback, and never using the value of vma->vm_page_prot,
2249  * except for page-table entries that point to anonymous pages as the result
2250  * of COW.
2251  *
2252  * Context: Process context.  May allocate using %GFP_KERNEL.
2253  * Return: vm_fault_t value.
2254  */
2255 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2256 				 pfn_t pfn, pgprot_t pgprot)
2257 {
2258 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2259 }
2260 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2261 
2262 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2263 		pfn_t pfn)
2264 {
2265 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2266 }
2267 EXPORT_SYMBOL(vmf_insert_mixed);
2268 
2269 /*
2270  *  If the insertion of PTE failed because someone else already added a
2271  *  different entry in the mean time, we treat that as success as we assume
2272  *  the same entry was actually inserted.
2273  */
2274 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2275 		unsigned long addr, pfn_t pfn)
2276 {
2277 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2278 }
2279 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2280 
2281 /*
2282  * maps a range of physical memory into the requested pages. the old
2283  * mappings are removed. any references to nonexistent pages results
2284  * in null mappings (currently treated as "copy-on-access")
2285  */
2286 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2287 			unsigned long addr, unsigned long end,
2288 			unsigned long pfn, pgprot_t prot)
2289 {
2290 	pte_t *pte, *mapped_pte;
2291 	spinlock_t *ptl;
2292 	int err = 0;
2293 
2294 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2295 	if (!pte)
2296 		return -ENOMEM;
2297 	arch_enter_lazy_mmu_mode();
2298 	do {
2299 		BUG_ON(!pte_none(*pte));
2300 		if (!pfn_modify_allowed(pfn, prot)) {
2301 			err = -EACCES;
2302 			break;
2303 		}
2304 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2305 		pfn++;
2306 	} while (pte++, addr += PAGE_SIZE, addr != end);
2307 	arch_leave_lazy_mmu_mode();
2308 	pte_unmap_unlock(mapped_pte, ptl);
2309 	return err;
2310 }
2311 
2312 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2313 			unsigned long addr, unsigned long end,
2314 			unsigned long pfn, pgprot_t prot)
2315 {
2316 	pmd_t *pmd;
2317 	unsigned long next;
2318 	int err;
2319 
2320 	pfn -= addr >> PAGE_SHIFT;
2321 	pmd = pmd_alloc(mm, pud, addr);
2322 	if (!pmd)
2323 		return -ENOMEM;
2324 	VM_BUG_ON(pmd_trans_huge(*pmd));
2325 	do {
2326 		next = pmd_addr_end(addr, end);
2327 		err = remap_pte_range(mm, pmd, addr, next,
2328 				pfn + (addr >> PAGE_SHIFT), prot);
2329 		if (err)
2330 			return err;
2331 	} while (pmd++, addr = next, addr != end);
2332 	return 0;
2333 }
2334 
2335 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2336 			unsigned long addr, unsigned long end,
2337 			unsigned long pfn, pgprot_t prot)
2338 {
2339 	pud_t *pud;
2340 	unsigned long next;
2341 	int err;
2342 
2343 	pfn -= addr >> PAGE_SHIFT;
2344 	pud = pud_alloc(mm, p4d, addr);
2345 	if (!pud)
2346 		return -ENOMEM;
2347 	do {
2348 		next = pud_addr_end(addr, end);
2349 		err = remap_pmd_range(mm, pud, addr, next,
2350 				pfn + (addr >> PAGE_SHIFT), prot);
2351 		if (err)
2352 			return err;
2353 	} while (pud++, addr = next, addr != end);
2354 	return 0;
2355 }
2356 
2357 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2358 			unsigned long addr, unsigned long end,
2359 			unsigned long pfn, pgprot_t prot)
2360 {
2361 	p4d_t *p4d;
2362 	unsigned long next;
2363 	int err;
2364 
2365 	pfn -= addr >> PAGE_SHIFT;
2366 	p4d = p4d_alloc(mm, pgd, addr);
2367 	if (!p4d)
2368 		return -ENOMEM;
2369 	do {
2370 		next = p4d_addr_end(addr, end);
2371 		err = remap_pud_range(mm, p4d, addr, next,
2372 				pfn + (addr >> PAGE_SHIFT), prot);
2373 		if (err)
2374 			return err;
2375 	} while (p4d++, addr = next, addr != end);
2376 	return 0;
2377 }
2378 
2379 /*
2380  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2381  * must have pre-validated the caching bits of the pgprot_t.
2382  */
2383 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2384 		unsigned long pfn, unsigned long size, pgprot_t prot)
2385 {
2386 	pgd_t *pgd;
2387 	unsigned long next;
2388 	unsigned long end = addr + PAGE_ALIGN(size);
2389 	struct mm_struct *mm = vma->vm_mm;
2390 	int err;
2391 
2392 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2393 		return -EINVAL;
2394 
2395 	/*
2396 	 * Physically remapped pages are special. Tell the
2397 	 * rest of the world about it:
2398 	 *   VM_IO tells people not to look at these pages
2399 	 *	(accesses can have side effects).
2400 	 *   VM_PFNMAP tells the core MM that the base pages are just
2401 	 *	raw PFN mappings, and do not have a "struct page" associated
2402 	 *	with them.
2403 	 *   VM_DONTEXPAND
2404 	 *      Disable vma merging and expanding with mremap().
2405 	 *   VM_DONTDUMP
2406 	 *      Omit vma from core dump, even when VM_IO turned off.
2407 	 *
2408 	 * There's a horrible special case to handle copy-on-write
2409 	 * behaviour that some programs depend on. We mark the "original"
2410 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2411 	 * See vm_normal_page() for details.
2412 	 */
2413 	if (is_cow_mapping(vma->vm_flags)) {
2414 		if (addr != vma->vm_start || end != vma->vm_end)
2415 			return -EINVAL;
2416 		vma->vm_pgoff = pfn;
2417 	}
2418 
2419 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2420 
2421 	BUG_ON(addr >= end);
2422 	pfn -= addr >> PAGE_SHIFT;
2423 	pgd = pgd_offset(mm, addr);
2424 	flush_cache_range(vma, addr, end);
2425 	do {
2426 		next = pgd_addr_end(addr, end);
2427 		err = remap_p4d_range(mm, pgd, addr, next,
2428 				pfn + (addr >> PAGE_SHIFT), prot);
2429 		if (err)
2430 			return err;
2431 	} while (pgd++, addr = next, addr != end);
2432 
2433 	return 0;
2434 }
2435 
2436 /**
2437  * remap_pfn_range - remap kernel memory to userspace
2438  * @vma: user vma to map to
2439  * @addr: target page aligned user address to start at
2440  * @pfn: page frame number of kernel physical memory address
2441  * @size: size of mapping area
2442  * @prot: page protection flags for this mapping
2443  *
2444  * Note: this is only safe if the mm semaphore is held when called.
2445  *
2446  * Return: %0 on success, negative error code otherwise.
2447  */
2448 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2449 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2450 {
2451 	int err;
2452 
2453 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2454 	if (err)
2455 		return -EINVAL;
2456 
2457 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2458 	if (err)
2459 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2460 	return err;
2461 }
2462 EXPORT_SYMBOL(remap_pfn_range);
2463 
2464 /**
2465  * vm_iomap_memory - remap memory to userspace
2466  * @vma: user vma to map to
2467  * @start: start of the physical memory to be mapped
2468  * @len: size of area
2469  *
2470  * This is a simplified io_remap_pfn_range() for common driver use. The
2471  * driver just needs to give us the physical memory range to be mapped,
2472  * we'll figure out the rest from the vma information.
2473  *
2474  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2475  * whatever write-combining details or similar.
2476  *
2477  * Return: %0 on success, negative error code otherwise.
2478  */
2479 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2480 {
2481 	unsigned long vm_len, pfn, pages;
2482 
2483 	/* Check that the physical memory area passed in looks valid */
2484 	if (start + len < start)
2485 		return -EINVAL;
2486 	/*
2487 	 * You *really* shouldn't map things that aren't page-aligned,
2488 	 * but we've historically allowed it because IO memory might
2489 	 * just have smaller alignment.
2490 	 */
2491 	len += start & ~PAGE_MASK;
2492 	pfn = start >> PAGE_SHIFT;
2493 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2494 	if (pfn + pages < pfn)
2495 		return -EINVAL;
2496 
2497 	/* We start the mapping 'vm_pgoff' pages into the area */
2498 	if (vma->vm_pgoff > pages)
2499 		return -EINVAL;
2500 	pfn += vma->vm_pgoff;
2501 	pages -= vma->vm_pgoff;
2502 
2503 	/* Can we fit all of the mapping? */
2504 	vm_len = vma->vm_end - vma->vm_start;
2505 	if (vm_len >> PAGE_SHIFT > pages)
2506 		return -EINVAL;
2507 
2508 	/* Ok, let it rip */
2509 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2510 }
2511 EXPORT_SYMBOL(vm_iomap_memory);
2512 
2513 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2514 				     unsigned long addr, unsigned long end,
2515 				     pte_fn_t fn, void *data, bool create,
2516 				     pgtbl_mod_mask *mask)
2517 {
2518 	pte_t *pte, *mapped_pte;
2519 	int err = 0;
2520 	spinlock_t *ptl;
2521 
2522 	if (create) {
2523 		mapped_pte = pte = (mm == &init_mm) ?
2524 			pte_alloc_kernel_track(pmd, addr, mask) :
2525 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2526 		if (!pte)
2527 			return -ENOMEM;
2528 	} else {
2529 		mapped_pte = pte = (mm == &init_mm) ?
2530 			pte_offset_kernel(pmd, addr) :
2531 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2532 	}
2533 
2534 	BUG_ON(pmd_huge(*pmd));
2535 
2536 	arch_enter_lazy_mmu_mode();
2537 
2538 	if (fn) {
2539 		do {
2540 			if (create || !pte_none(*pte)) {
2541 				err = fn(pte++, addr, data);
2542 				if (err)
2543 					break;
2544 			}
2545 		} while (addr += PAGE_SIZE, addr != end);
2546 	}
2547 	*mask |= PGTBL_PTE_MODIFIED;
2548 
2549 	arch_leave_lazy_mmu_mode();
2550 
2551 	if (mm != &init_mm)
2552 		pte_unmap_unlock(mapped_pte, ptl);
2553 	return err;
2554 }
2555 
2556 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2557 				     unsigned long addr, unsigned long end,
2558 				     pte_fn_t fn, void *data, bool create,
2559 				     pgtbl_mod_mask *mask)
2560 {
2561 	pmd_t *pmd;
2562 	unsigned long next;
2563 	int err = 0;
2564 
2565 	BUG_ON(pud_huge(*pud));
2566 
2567 	if (create) {
2568 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2569 		if (!pmd)
2570 			return -ENOMEM;
2571 	} else {
2572 		pmd = pmd_offset(pud, addr);
2573 	}
2574 	do {
2575 		next = pmd_addr_end(addr, end);
2576 		if (pmd_none(*pmd) && !create)
2577 			continue;
2578 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2579 			return -EINVAL;
2580 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2581 			if (!create)
2582 				continue;
2583 			pmd_clear_bad(pmd);
2584 		}
2585 		err = apply_to_pte_range(mm, pmd, addr, next,
2586 					 fn, data, create, mask);
2587 		if (err)
2588 			break;
2589 	} while (pmd++, addr = next, addr != end);
2590 
2591 	return err;
2592 }
2593 
2594 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2595 				     unsigned long addr, unsigned long end,
2596 				     pte_fn_t fn, void *data, bool create,
2597 				     pgtbl_mod_mask *mask)
2598 {
2599 	pud_t *pud;
2600 	unsigned long next;
2601 	int err = 0;
2602 
2603 	if (create) {
2604 		pud = pud_alloc_track(mm, p4d, addr, mask);
2605 		if (!pud)
2606 			return -ENOMEM;
2607 	} else {
2608 		pud = pud_offset(p4d, addr);
2609 	}
2610 	do {
2611 		next = pud_addr_end(addr, end);
2612 		if (pud_none(*pud) && !create)
2613 			continue;
2614 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2615 			return -EINVAL;
2616 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2617 			if (!create)
2618 				continue;
2619 			pud_clear_bad(pud);
2620 		}
2621 		err = apply_to_pmd_range(mm, pud, addr, next,
2622 					 fn, data, create, mask);
2623 		if (err)
2624 			break;
2625 	} while (pud++, addr = next, addr != end);
2626 
2627 	return err;
2628 }
2629 
2630 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2631 				     unsigned long addr, unsigned long end,
2632 				     pte_fn_t fn, void *data, bool create,
2633 				     pgtbl_mod_mask *mask)
2634 {
2635 	p4d_t *p4d;
2636 	unsigned long next;
2637 	int err = 0;
2638 
2639 	if (create) {
2640 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2641 		if (!p4d)
2642 			return -ENOMEM;
2643 	} else {
2644 		p4d = p4d_offset(pgd, addr);
2645 	}
2646 	do {
2647 		next = p4d_addr_end(addr, end);
2648 		if (p4d_none(*p4d) && !create)
2649 			continue;
2650 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2651 			return -EINVAL;
2652 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2653 			if (!create)
2654 				continue;
2655 			p4d_clear_bad(p4d);
2656 		}
2657 		err = apply_to_pud_range(mm, p4d, addr, next,
2658 					 fn, data, create, mask);
2659 		if (err)
2660 			break;
2661 	} while (p4d++, addr = next, addr != end);
2662 
2663 	return err;
2664 }
2665 
2666 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2667 				 unsigned long size, pte_fn_t fn,
2668 				 void *data, bool create)
2669 {
2670 	pgd_t *pgd;
2671 	unsigned long start = addr, next;
2672 	unsigned long end = addr + size;
2673 	pgtbl_mod_mask mask = 0;
2674 	int err = 0;
2675 
2676 	if (WARN_ON(addr >= end))
2677 		return -EINVAL;
2678 
2679 	pgd = pgd_offset(mm, addr);
2680 	do {
2681 		next = pgd_addr_end(addr, end);
2682 		if (pgd_none(*pgd) && !create)
2683 			continue;
2684 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2685 			return -EINVAL;
2686 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2687 			if (!create)
2688 				continue;
2689 			pgd_clear_bad(pgd);
2690 		}
2691 		err = apply_to_p4d_range(mm, pgd, addr, next,
2692 					 fn, data, create, &mask);
2693 		if (err)
2694 			break;
2695 	} while (pgd++, addr = next, addr != end);
2696 
2697 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2698 		arch_sync_kernel_mappings(start, start + size);
2699 
2700 	return err;
2701 }
2702 
2703 /*
2704  * Scan a region of virtual memory, filling in page tables as necessary
2705  * and calling a provided function on each leaf page table.
2706  */
2707 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2708 			unsigned long size, pte_fn_t fn, void *data)
2709 {
2710 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2711 }
2712 EXPORT_SYMBOL_GPL(apply_to_page_range);
2713 
2714 /*
2715  * Scan a region of virtual memory, calling a provided function on
2716  * each leaf page table where it exists.
2717  *
2718  * Unlike apply_to_page_range, this does _not_ fill in page tables
2719  * where they are absent.
2720  */
2721 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2722 				 unsigned long size, pte_fn_t fn, void *data)
2723 {
2724 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2725 }
2726 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2727 
2728 /*
2729  * handle_pte_fault chooses page fault handler according to an entry which was
2730  * read non-atomically.  Before making any commitment, on those architectures
2731  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2732  * parts, do_swap_page must check under lock before unmapping the pte and
2733  * proceeding (but do_wp_page is only called after already making such a check;
2734  * and do_anonymous_page can safely check later on).
2735  */
2736 static inline int pte_unmap_same(struct vm_fault *vmf)
2737 {
2738 	int same = 1;
2739 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2740 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2741 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2742 		spin_lock(ptl);
2743 		same = pte_same(*vmf->pte, vmf->orig_pte);
2744 		spin_unlock(ptl);
2745 	}
2746 #endif
2747 	pte_unmap(vmf->pte);
2748 	vmf->pte = NULL;
2749 	return same;
2750 }
2751 
2752 static inline bool cow_user_page(struct page *dst, struct page *src,
2753 				 struct vm_fault *vmf)
2754 {
2755 	bool ret;
2756 	void *kaddr;
2757 	void __user *uaddr;
2758 	bool locked = false;
2759 	struct vm_area_struct *vma = vmf->vma;
2760 	struct mm_struct *mm = vma->vm_mm;
2761 	unsigned long addr = vmf->address;
2762 
2763 	if (likely(src)) {
2764 		copy_user_highpage(dst, src, addr, vma);
2765 		return true;
2766 	}
2767 
2768 	/*
2769 	 * If the source page was a PFN mapping, we don't have
2770 	 * a "struct page" for it. We do a best-effort copy by
2771 	 * just copying from the original user address. If that
2772 	 * fails, we just zero-fill it. Live with it.
2773 	 */
2774 	kaddr = kmap_atomic(dst);
2775 	uaddr = (void __user *)(addr & PAGE_MASK);
2776 
2777 	/*
2778 	 * On architectures with software "accessed" bits, we would
2779 	 * take a double page fault, so mark it accessed here.
2780 	 */
2781 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2782 		pte_t entry;
2783 
2784 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2785 		locked = true;
2786 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2787 			/*
2788 			 * Other thread has already handled the fault
2789 			 * and update local tlb only
2790 			 */
2791 			update_mmu_tlb(vma, addr, vmf->pte);
2792 			ret = false;
2793 			goto pte_unlock;
2794 		}
2795 
2796 		entry = pte_mkyoung(vmf->orig_pte);
2797 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2798 			update_mmu_cache(vma, addr, vmf->pte);
2799 	}
2800 
2801 	/*
2802 	 * This really shouldn't fail, because the page is there
2803 	 * in the page tables. But it might just be unreadable,
2804 	 * in which case we just give up and fill the result with
2805 	 * zeroes.
2806 	 */
2807 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2808 		if (locked)
2809 			goto warn;
2810 
2811 		/* Re-validate under PTL if the page is still mapped */
2812 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2813 		locked = true;
2814 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2815 			/* The PTE changed under us, update local tlb */
2816 			update_mmu_tlb(vma, addr, vmf->pte);
2817 			ret = false;
2818 			goto pte_unlock;
2819 		}
2820 
2821 		/*
2822 		 * The same page can be mapped back since last copy attempt.
2823 		 * Try to copy again under PTL.
2824 		 */
2825 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2826 			/*
2827 			 * Give a warn in case there can be some obscure
2828 			 * use-case
2829 			 */
2830 warn:
2831 			WARN_ON_ONCE(1);
2832 			clear_page(kaddr);
2833 		}
2834 	}
2835 
2836 	ret = true;
2837 
2838 pte_unlock:
2839 	if (locked)
2840 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2841 	kunmap_atomic(kaddr);
2842 	flush_dcache_page(dst);
2843 
2844 	return ret;
2845 }
2846 
2847 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2848 {
2849 	struct file *vm_file = vma->vm_file;
2850 
2851 	if (vm_file)
2852 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2853 
2854 	/*
2855 	 * Special mappings (e.g. VDSO) do not have any file so fake
2856 	 * a default GFP_KERNEL for them.
2857 	 */
2858 	return GFP_KERNEL;
2859 }
2860 
2861 /*
2862  * Notify the address space that the page is about to become writable so that
2863  * it can prohibit this or wait for the page to get into an appropriate state.
2864  *
2865  * We do this without the lock held, so that it can sleep if it needs to.
2866  */
2867 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2868 {
2869 	vm_fault_t ret;
2870 	struct page *page = vmf->page;
2871 	unsigned int old_flags = vmf->flags;
2872 
2873 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2874 
2875 	if (vmf->vma->vm_file &&
2876 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2877 		return VM_FAULT_SIGBUS;
2878 
2879 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2880 	/* Restore original flags so that caller is not surprised */
2881 	vmf->flags = old_flags;
2882 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2883 		return ret;
2884 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2885 		lock_page(page);
2886 		if (!page->mapping) {
2887 			unlock_page(page);
2888 			return 0; /* retry */
2889 		}
2890 		ret |= VM_FAULT_LOCKED;
2891 	} else
2892 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2893 	return ret;
2894 }
2895 
2896 /*
2897  * Handle dirtying of a page in shared file mapping on a write fault.
2898  *
2899  * The function expects the page to be locked and unlocks it.
2900  */
2901 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2902 {
2903 	struct vm_area_struct *vma = vmf->vma;
2904 	struct address_space *mapping;
2905 	struct page *page = vmf->page;
2906 	bool dirtied;
2907 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2908 
2909 	dirtied = set_page_dirty(page);
2910 	VM_BUG_ON_PAGE(PageAnon(page), page);
2911 	/*
2912 	 * Take a local copy of the address_space - page.mapping may be zeroed
2913 	 * by truncate after unlock_page().   The address_space itself remains
2914 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2915 	 * release semantics to prevent the compiler from undoing this copying.
2916 	 */
2917 	mapping = page_rmapping(page);
2918 	unlock_page(page);
2919 
2920 	if (!page_mkwrite)
2921 		file_update_time(vma->vm_file);
2922 
2923 	/*
2924 	 * Throttle page dirtying rate down to writeback speed.
2925 	 *
2926 	 * mapping may be NULL here because some device drivers do not
2927 	 * set page.mapping but still dirty their pages
2928 	 *
2929 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2930 	 * is pinning the mapping, as per above.
2931 	 */
2932 	if ((dirtied || page_mkwrite) && mapping) {
2933 		struct file *fpin;
2934 
2935 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2936 		balance_dirty_pages_ratelimited(mapping);
2937 		if (fpin) {
2938 			fput(fpin);
2939 			return VM_FAULT_RETRY;
2940 		}
2941 	}
2942 
2943 	return 0;
2944 }
2945 
2946 /*
2947  * Handle write page faults for pages that can be reused in the current vma
2948  *
2949  * This can happen either due to the mapping being with the VM_SHARED flag,
2950  * or due to us being the last reference standing to the page. In either
2951  * case, all we need to do here is to mark the page as writable and update
2952  * any related book-keeping.
2953  */
2954 static inline void wp_page_reuse(struct vm_fault *vmf)
2955 	__releases(vmf->ptl)
2956 {
2957 	struct vm_area_struct *vma = vmf->vma;
2958 	struct page *page = vmf->page;
2959 	pte_t entry;
2960 	/*
2961 	 * Clear the pages cpupid information as the existing
2962 	 * information potentially belongs to a now completely
2963 	 * unrelated process.
2964 	 */
2965 	if (page)
2966 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2967 
2968 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2969 	entry = pte_mkyoung(vmf->orig_pte);
2970 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2971 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2972 		update_mmu_cache(vma, vmf->address, vmf->pte);
2973 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2974 	count_vm_event(PGREUSE);
2975 }
2976 
2977 /*
2978  * Handle the case of a page which we actually need to copy to a new page.
2979  *
2980  * Called with mmap_lock locked and the old page referenced, but
2981  * without the ptl held.
2982  *
2983  * High level logic flow:
2984  *
2985  * - Allocate a page, copy the content of the old page to the new one.
2986  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2987  * - Take the PTL. If the pte changed, bail out and release the allocated page
2988  * - If the pte is still the way we remember it, update the page table and all
2989  *   relevant references. This includes dropping the reference the page-table
2990  *   held to the old page, as well as updating the rmap.
2991  * - In any case, unlock the PTL and drop the reference we took to the old page.
2992  */
2993 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2994 {
2995 	struct vm_area_struct *vma = vmf->vma;
2996 	struct mm_struct *mm = vma->vm_mm;
2997 	struct page *old_page = vmf->page;
2998 	struct page *new_page = NULL;
2999 	pte_t entry;
3000 	int page_copied = 0;
3001 	struct mmu_notifier_range range;
3002 
3003 	if (unlikely(anon_vma_prepare(vma)))
3004 		goto oom;
3005 
3006 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3007 		new_page = alloc_zeroed_user_highpage_movable(vma,
3008 							      vmf->address);
3009 		if (!new_page)
3010 			goto oom;
3011 	} else {
3012 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3013 				vmf->address);
3014 		if (!new_page)
3015 			goto oom;
3016 
3017 		if (!cow_user_page(new_page, old_page, vmf)) {
3018 			/*
3019 			 * COW failed, if the fault was solved by other,
3020 			 * it's fine. If not, userspace would re-fault on
3021 			 * the same address and we will handle the fault
3022 			 * from the second attempt.
3023 			 */
3024 			put_page(new_page);
3025 			if (old_page)
3026 				put_page(old_page);
3027 			return 0;
3028 		}
3029 	}
3030 
3031 	if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3032 		goto oom_free_new;
3033 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3034 
3035 	__SetPageUptodate(new_page);
3036 
3037 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3038 				vmf->address & PAGE_MASK,
3039 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3040 	mmu_notifier_invalidate_range_start(&range);
3041 
3042 	/*
3043 	 * Re-check the pte - we dropped the lock
3044 	 */
3045 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3046 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3047 		if (old_page) {
3048 			if (!PageAnon(old_page)) {
3049 				dec_mm_counter_fast(mm,
3050 						mm_counter_file(old_page));
3051 				inc_mm_counter_fast(mm, MM_ANONPAGES);
3052 			}
3053 		} else {
3054 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3055 		}
3056 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3057 		entry = mk_pte(new_page, vma->vm_page_prot);
3058 		entry = pte_sw_mkyoung(entry);
3059 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3060 
3061 		/*
3062 		 * Clear the pte entry and flush it first, before updating the
3063 		 * pte with the new entry, to keep TLBs on different CPUs in
3064 		 * sync. This code used to set the new PTE then flush TLBs, but
3065 		 * that left a window where the new PTE could be loaded into
3066 		 * some TLBs while the old PTE remains in others.
3067 		 */
3068 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3069 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3070 		lru_cache_add_inactive_or_unevictable(new_page, vma);
3071 		/*
3072 		 * We call the notify macro here because, when using secondary
3073 		 * mmu page tables (such as kvm shadow page tables), we want the
3074 		 * new page to be mapped directly into the secondary page table.
3075 		 */
3076 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3077 		update_mmu_cache(vma, vmf->address, vmf->pte);
3078 		if (old_page) {
3079 			/*
3080 			 * Only after switching the pte to the new page may
3081 			 * we remove the mapcount here. Otherwise another
3082 			 * process may come and find the rmap count decremented
3083 			 * before the pte is switched to the new page, and
3084 			 * "reuse" the old page writing into it while our pte
3085 			 * here still points into it and can be read by other
3086 			 * threads.
3087 			 *
3088 			 * The critical issue is to order this
3089 			 * page_remove_rmap with the ptp_clear_flush above.
3090 			 * Those stores are ordered by (if nothing else,)
3091 			 * the barrier present in the atomic_add_negative
3092 			 * in page_remove_rmap.
3093 			 *
3094 			 * Then the TLB flush in ptep_clear_flush ensures that
3095 			 * no process can access the old page before the
3096 			 * decremented mapcount is visible. And the old page
3097 			 * cannot be reused until after the decremented
3098 			 * mapcount is visible. So transitively, TLBs to
3099 			 * old page will be flushed before it can be reused.
3100 			 */
3101 			page_remove_rmap(old_page, false);
3102 		}
3103 
3104 		/* Free the old page.. */
3105 		new_page = old_page;
3106 		page_copied = 1;
3107 	} else {
3108 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3109 	}
3110 
3111 	if (new_page)
3112 		put_page(new_page);
3113 
3114 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3115 	/*
3116 	 * No need to double call mmu_notifier->invalidate_range() callback as
3117 	 * the above ptep_clear_flush_notify() did already call it.
3118 	 */
3119 	mmu_notifier_invalidate_range_only_end(&range);
3120 	if (old_page) {
3121 		/*
3122 		 * Don't let another task, with possibly unlocked vma,
3123 		 * keep the mlocked page.
3124 		 */
3125 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3126 			lock_page(old_page);	/* LRU manipulation */
3127 			if (PageMlocked(old_page))
3128 				munlock_vma_page(old_page);
3129 			unlock_page(old_page);
3130 		}
3131 		if (page_copied)
3132 			free_swap_cache(old_page);
3133 		put_page(old_page);
3134 	}
3135 	return page_copied ? VM_FAULT_WRITE : 0;
3136 oom_free_new:
3137 	put_page(new_page);
3138 oom:
3139 	if (old_page)
3140 		put_page(old_page);
3141 	return VM_FAULT_OOM;
3142 }
3143 
3144 /**
3145  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3146  *			  writeable once the page is prepared
3147  *
3148  * @vmf: structure describing the fault
3149  *
3150  * This function handles all that is needed to finish a write page fault in a
3151  * shared mapping due to PTE being read-only once the mapped page is prepared.
3152  * It handles locking of PTE and modifying it.
3153  *
3154  * The function expects the page to be locked or other protection against
3155  * concurrent faults / writeback (such as DAX radix tree locks).
3156  *
3157  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3158  * we acquired PTE lock.
3159  */
3160 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3161 {
3162 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3163 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3164 				       &vmf->ptl);
3165 	/*
3166 	 * We might have raced with another page fault while we released the
3167 	 * pte_offset_map_lock.
3168 	 */
3169 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3170 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3171 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3172 		return VM_FAULT_NOPAGE;
3173 	}
3174 	wp_page_reuse(vmf);
3175 	return 0;
3176 }
3177 
3178 /*
3179  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3180  * mapping
3181  */
3182 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3183 {
3184 	struct vm_area_struct *vma = vmf->vma;
3185 
3186 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3187 		vm_fault_t ret;
3188 
3189 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3190 		vmf->flags |= FAULT_FLAG_MKWRITE;
3191 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3192 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3193 			return ret;
3194 		return finish_mkwrite_fault(vmf);
3195 	}
3196 	wp_page_reuse(vmf);
3197 	return VM_FAULT_WRITE;
3198 }
3199 
3200 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3201 	__releases(vmf->ptl)
3202 {
3203 	struct vm_area_struct *vma = vmf->vma;
3204 	vm_fault_t ret = VM_FAULT_WRITE;
3205 
3206 	get_page(vmf->page);
3207 
3208 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3209 		vm_fault_t tmp;
3210 
3211 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3212 		tmp = do_page_mkwrite(vmf);
3213 		if (unlikely(!tmp || (tmp &
3214 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3215 			put_page(vmf->page);
3216 			return tmp;
3217 		}
3218 		tmp = finish_mkwrite_fault(vmf);
3219 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3220 			unlock_page(vmf->page);
3221 			put_page(vmf->page);
3222 			return tmp;
3223 		}
3224 	} else {
3225 		wp_page_reuse(vmf);
3226 		lock_page(vmf->page);
3227 	}
3228 	ret |= fault_dirty_shared_page(vmf);
3229 	put_page(vmf->page);
3230 
3231 	return ret;
3232 }
3233 
3234 /*
3235  * This routine handles present pages, when users try to write
3236  * to a shared page. It is done by copying the page to a new address
3237  * and decrementing the shared-page counter for the old page.
3238  *
3239  * Note that this routine assumes that the protection checks have been
3240  * done by the caller (the low-level page fault routine in most cases).
3241  * Thus we can safely just mark it writable once we've done any necessary
3242  * COW.
3243  *
3244  * We also mark the page dirty at this point even though the page will
3245  * change only once the write actually happens. This avoids a few races,
3246  * and potentially makes it more efficient.
3247  *
3248  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3249  * but allow concurrent faults), with pte both mapped and locked.
3250  * We return with mmap_lock still held, but pte unmapped and unlocked.
3251  */
3252 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3253 	__releases(vmf->ptl)
3254 {
3255 	struct vm_area_struct *vma = vmf->vma;
3256 
3257 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3258 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3259 		return handle_userfault(vmf, VM_UFFD_WP);
3260 	}
3261 
3262 	/*
3263 	 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3264 	 * is flushed in this case before copying.
3265 	 */
3266 	if (unlikely(userfaultfd_wp(vmf->vma) &&
3267 		     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3268 		flush_tlb_page(vmf->vma, vmf->address);
3269 
3270 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3271 	if (!vmf->page) {
3272 		/*
3273 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3274 		 * VM_PFNMAP VMA.
3275 		 *
3276 		 * We should not cow pages in a shared writeable mapping.
3277 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3278 		 */
3279 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3280 				     (VM_WRITE|VM_SHARED))
3281 			return wp_pfn_shared(vmf);
3282 
3283 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3284 		return wp_page_copy(vmf);
3285 	}
3286 
3287 	/*
3288 	 * Take out anonymous pages first, anonymous shared vmas are
3289 	 * not dirty accountable.
3290 	 */
3291 	if (PageAnon(vmf->page)) {
3292 		struct page *page = vmf->page;
3293 
3294 		/* PageKsm() doesn't necessarily raise the page refcount */
3295 		if (PageKsm(page) || page_count(page) != 1)
3296 			goto copy;
3297 		if (!trylock_page(page))
3298 			goto copy;
3299 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3300 			unlock_page(page);
3301 			goto copy;
3302 		}
3303 		/*
3304 		 * Ok, we've got the only map reference, and the only
3305 		 * page count reference, and the page is locked,
3306 		 * it's dark out, and we're wearing sunglasses. Hit it.
3307 		 */
3308 		unlock_page(page);
3309 		wp_page_reuse(vmf);
3310 		return VM_FAULT_WRITE;
3311 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3312 					(VM_WRITE|VM_SHARED))) {
3313 		return wp_page_shared(vmf);
3314 	}
3315 copy:
3316 	/*
3317 	 * Ok, we need to copy. Oh, well..
3318 	 */
3319 	get_page(vmf->page);
3320 
3321 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3322 	return wp_page_copy(vmf);
3323 }
3324 
3325 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3326 		unsigned long start_addr, unsigned long end_addr,
3327 		struct zap_details *details)
3328 {
3329 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3330 }
3331 
3332 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3333 					    pgoff_t first_index,
3334 					    pgoff_t last_index,
3335 					    struct zap_details *details)
3336 {
3337 	struct vm_area_struct *vma;
3338 	pgoff_t vba, vea, zba, zea;
3339 
3340 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3341 		vba = vma->vm_pgoff;
3342 		vea = vba + vma_pages(vma) - 1;
3343 		zba = first_index;
3344 		if (zba < vba)
3345 			zba = vba;
3346 		zea = last_index;
3347 		if (zea > vea)
3348 			zea = vea;
3349 
3350 		unmap_mapping_range_vma(vma,
3351 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3352 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3353 				details);
3354 	}
3355 }
3356 
3357 /**
3358  * unmap_mapping_folio() - Unmap single folio from processes.
3359  * @folio: The locked folio to be unmapped.
3360  *
3361  * Unmap this folio from any userspace process which still has it mmaped.
3362  * Typically, for efficiency, the range of nearby pages has already been
3363  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3364  * truncation or invalidation holds the lock on a folio, it may find that
3365  * the page has been remapped again: and then uses unmap_mapping_folio()
3366  * to unmap it finally.
3367  */
3368 void unmap_mapping_folio(struct folio *folio)
3369 {
3370 	struct address_space *mapping = folio->mapping;
3371 	struct zap_details details = { };
3372 	pgoff_t	first_index;
3373 	pgoff_t	last_index;
3374 
3375 	VM_BUG_ON(!folio_test_locked(folio));
3376 
3377 	first_index = folio->index;
3378 	last_index = folio->index + folio_nr_pages(folio) - 1;
3379 
3380 	details.zap_mapping = mapping;
3381 	details.single_folio = folio;
3382 
3383 	i_mmap_lock_write(mapping);
3384 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3385 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3386 					 last_index, &details);
3387 	i_mmap_unlock_write(mapping);
3388 }
3389 
3390 /**
3391  * unmap_mapping_pages() - Unmap pages from processes.
3392  * @mapping: The address space containing pages to be unmapped.
3393  * @start: Index of first page to be unmapped.
3394  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3395  * @even_cows: Whether to unmap even private COWed pages.
3396  *
3397  * Unmap the pages in this address space from any userspace process which
3398  * has them mmaped.  Generally, you want to remove COWed pages as well when
3399  * a file is being truncated, but not when invalidating pages from the page
3400  * cache.
3401  */
3402 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3403 		pgoff_t nr, bool even_cows)
3404 {
3405 	struct zap_details details = { };
3406 	pgoff_t	first_index = start;
3407 	pgoff_t	last_index = start + nr - 1;
3408 
3409 	details.zap_mapping = even_cows ? NULL : mapping;
3410 	if (last_index < first_index)
3411 		last_index = ULONG_MAX;
3412 
3413 	i_mmap_lock_write(mapping);
3414 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3415 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3416 					 last_index, &details);
3417 	i_mmap_unlock_write(mapping);
3418 }
3419 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3420 
3421 /**
3422  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3423  * address_space corresponding to the specified byte range in the underlying
3424  * file.
3425  *
3426  * @mapping: the address space containing mmaps to be unmapped.
3427  * @holebegin: byte in first page to unmap, relative to the start of
3428  * the underlying file.  This will be rounded down to a PAGE_SIZE
3429  * boundary.  Note that this is different from truncate_pagecache(), which
3430  * must keep the partial page.  In contrast, we must get rid of
3431  * partial pages.
3432  * @holelen: size of prospective hole in bytes.  This will be rounded
3433  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3434  * end of the file.
3435  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3436  * but 0 when invalidating pagecache, don't throw away private data.
3437  */
3438 void unmap_mapping_range(struct address_space *mapping,
3439 		loff_t const holebegin, loff_t const holelen, int even_cows)
3440 {
3441 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3442 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3443 
3444 	/* Check for overflow. */
3445 	if (sizeof(holelen) > sizeof(hlen)) {
3446 		long long holeend =
3447 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3448 		if (holeend & ~(long long)ULONG_MAX)
3449 			hlen = ULONG_MAX - hba + 1;
3450 	}
3451 
3452 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3453 }
3454 EXPORT_SYMBOL(unmap_mapping_range);
3455 
3456 /*
3457  * Restore a potential device exclusive pte to a working pte entry
3458  */
3459 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3460 {
3461 	struct page *page = vmf->page;
3462 	struct vm_area_struct *vma = vmf->vma;
3463 	struct mmu_notifier_range range;
3464 
3465 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3466 		return VM_FAULT_RETRY;
3467 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3468 				vma->vm_mm, vmf->address & PAGE_MASK,
3469 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3470 	mmu_notifier_invalidate_range_start(&range);
3471 
3472 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3473 				&vmf->ptl);
3474 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3475 		restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3476 
3477 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3478 	unlock_page(page);
3479 
3480 	mmu_notifier_invalidate_range_end(&range);
3481 	return 0;
3482 }
3483 
3484 /*
3485  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3486  * but allow concurrent faults), and pte mapped but not yet locked.
3487  * We return with pte unmapped and unlocked.
3488  *
3489  * We return with the mmap_lock locked or unlocked in the same cases
3490  * as does filemap_fault().
3491  */
3492 vm_fault_t do_swap_page(struct vm_fault *vmf)
3493 {
3494 	struct vm_area_struct *vma = vmf->vma;
3495 	struct page *page = NULL, *swapcache;
3496 	struct swap_info_struct *si = NULL;
3497 	swp_entry_t entry;
3498 	pte_t pte;
3499 	int locked;
3500 	int exclusive = 0;
3501 	vm_fault_t ret = 0;
3502 	void *shadow = NULL;
3503 
3504 	if (!pte_unmap_same(vmf))
3505 		goto out;
3506 
3507 	entry = pte_to_swp_entry(vmf->orig_pte);
3508 	if (unlikely(non_swap_entry(entry))) {
3509 		if (is_migration_entry(entry)) {
3510 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3511 					     vmf->address);
3512 		} else if (is_device_exclusive_entry(entry)) {
3513 			vmf->page = pfn_swap_entry_to_page(entry);
3514 			ret = remove_device_exclusive_entry(vmf);
3515 		} else if (is_device_private_entry(entry)) {
3516 			vmf->page = pfn_swap_entry_to_page(entry);
3517 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3518 		} else if (is_hwpoison_entry(entry)) {
3519 			ret = VM_FAULT_HWPOISON;
3520 		} else {
3521 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3522 			ret = VM_FAULT_SIGBUS;
3523 		}
3524 		goto out;
3525 	}
3526 
3527 	/* Prevent swapoff from happening to us. */
3528 	si = get_swap_device(entry);
3529 	if (unlikely(!si))
3530 		goto out;
3531 
3532 	page = lookup_swap_cache(entry, vma, vmf->address);
3533 	swapcache = page;
3534 
3535 	if (!page) {
3536 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3537 		    __swap_count(entry) == 1) {
3538 			/* skip swapcache */
3539 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3540 							vmf->address);
3541 			if (page) {
3542 				__SetPageLocked(page);
3543 				__SetPageSwapBacked(page);
3544 
3545 				if (mem_cgroup_swapin_charge_page(page,
3546 					vma->vm_mm, GFP_KERNEL, entry)) {
3547 					ret = VM_FAULT_OOM;
3548 					goto out_page;
3549 				}
3550 				mem_cgroup_swapin_uncharge_swap(entry);
3551 
3552 				shadow = get_shadow_from_swap_cache(entry);
3553 				if (shadow)
3554 					workingset_refault(page_folio(page),
3555 								shadow);
3556 
3557 				lru_cache_add(page);
3558 
3559 				/* To provide entry to swap_readpage() */
3560 				set_page_private(page, entry.val);
3561 				swap_readpage(page, true);
3562 				set_page_private(page, 0);
3563 			}
3564 		} else {
3565 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3566 						vmf);
3567 			swapcache = page;
3568 		}
3569 
3570 		if (!page) {
3571 			/*
3572 			 * Back out if somebody else faulted in this pte
3573 			 * while we released the pte lock.
3574 			 */
3575 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3576 					vmf->address, &vmf->ptl);
3577 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3578 				ret = VM_FAULT_OOM;
3579 			goto unlock;
3580 		}
3581 
3582 		/* Had to read the page from swap area: Major fault */
3583 		ret = VM_FAULT_MAJOR;
3584 		count_vm_event(PGMAJFAULT);
3585 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3586 	} else if (PageHWPoison(page)) {
3587 		/*
3588 		 * hwpoisoned dirty swapcache pages are kept for killing
3589 		 * owner processes (which may be unknown at hwpoison time)
3590 		 */
3591 		ret = VM_FAULT_HWPOISON;
3592 		goto out_release;
3593 	}
3594 
3595 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3596 
3597 	if (!locked) {
3598 		ret |= VM_FAULT_RETRY;
3599 		goto out_release;
3600 	}
3601 
3602 	/*
3603 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3604 	 * release the swapcache from under us.  The page pin, and pte_same
3605 	 * test below, are not enough to exclude that.  Even if it is still
3606 	 * swapcache, we need to check that the page's swap has not changed.
3607 	 */
3608 	if (unlikely((!PageSwapCache(page) ||
3609 			page_private(page) != entry.val)) && swapcache)
3610 		goto out_page;
3611 
3612 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3613 	if (unlikely(!page)) {
3614 		ret = VM_FAULT_OOM;
3615 		page = swapcache;
3616 		goto out_page;
3617 	}
3618 
3619 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3620 
3621 	/*
3622 	 * Back out if somebody else already faulted in this pte.
3623 	 */
3624 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3625 			&vmf->ptl);
3626 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3627 		goto out_nomap;
3628 
3629 	if (unlikely(!PageUptodate(page))) {
3630 		ret = VM_FAULT_SIGBUS;
3631 		goto out_nomap;
3632 	}
3633 
3634 	/*
3635 	 * The page isn't present yet, go ahead with the fault.
3636 	 *
3637 	 * Be careful about the sequence of operations here.
3638 	 * To get its accounting right, reuse_swap_page() must be called
3639 	 * while the page is counted on swap but not yet in mapcount i.e.
3640 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3641 	 * must be called after the swap_free(), or it will never succeed.
3642 	 */
3643 
3644 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3645 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3646 	pte = mk_pte(page, vma->vm_page_prot);
3647 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3648 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3649 		vmf->flags &= ~FAULT_FLAG_WRITE;
3650 		ret |= VM_FAULT_WRITE;
3651 		exclusive = RMAP_EXCLUSIVE;
3652 	}
3653 	flush_icache_page(vma, page);
3654 	if (pte_swp_soft_dirty(vmf->orig_pte))
3655 		pte = pte_mksoft_dirty(pte);
3656 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3657 		pte = pte_mkuffd_wp(pte);
3658 		pte = pte_wrprotect(pte);
3659 	}
3660 	vmf->orig_pte = pte;
3661 
3662 	/* ksm created a completely new copy */
3663 	if (unlikely(page != swapcache && swapcache)) {
3664 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3665 		lru_cache_add_inactive_or_unevictable(page, vma);
3666 	} else {
3667 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3668 	}
3669 
3670 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3671 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3672 
3673 	swap_free(entry);
3674 	if (mem_cgroup_swap_full(page) ||
3675 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3676 		try_to_free_swap(page);
3677 	unlock_page(page);
3678 	if (page != swapcache && swapcache) {
3679 		/*
3680 		 * Hold the lock to avoid the swap entry to be reused
3681 		 * until we take the PT lock for the pte_same() check
3682 		 * (to avoid false positives from pte_same). For
3683 		 * further safety release the lock after the swap_free
3684 		 * so that the swap count won't change under a
3685 		 * parallel locked swapcache.
3686 		 */
3687 		unlock_page(swapcache);
3688 		put_page(swapcache);
3689 	}
3690 
3691 	if (vmf->flags & FAULT_FLAG_WRITE) {
3692 		ret |= do_wp_page(vmf);
3693 		if (ret & VM_FAULT_ERROR)
3694 			ret &= VM_FAULT_ERROR;
3695 		goto out;
3696 	}
3697 
3698 	/* No need to invalidate - it was non-present before */
3699 	update_mmu_cache(vma, vmf->address, vmf->pte);
3700 unlock:
3701 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3702 out:
3703 	if (si)
3704 		put_swap_device(si);
3705 	return ret;
3706 out_nomap:
3707 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3708 out_page:
3709 	unlock_page(page);
3710 out_release:
3711 	put_page(page);
3712 	if (page != swapcache && swapcache) {
3713 		unlock_page(swapcache);
3714 		put_page(swapcache);
3715 	}
3716 	if (si)
3717 		put_swap_device(si);
3718 	return ret;
3719 }
3720 
3721 /*
3722  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3723  * but allow concurrent faults), and pte mapped but not yet locked.
3724  * We return with mmap_lock still held, but pte unmapped and unlocked.
3725  */
3726 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3727 {
3728 	struct vm_area_struct *vma = vmf->vma;
3729 	struct page *page;
3730 	vm_fault_t ret = 0;
3731 	pte_t entry;
3732 
3733 	/* File mapping without ->vm_ops ? */
3734 	if (vma->vm_flags & VM_SHARED)
3735 		return VM_FAULT_SIGBUS;
3736 
3737 	/*
3738 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3739 	 * pte_offset_map() on pmds where a huge pmd might be created
3740 	 * from a different thread.
3741 	 *
3742 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3743 	 * parallel threads are excluded by other means.
3744 	 *
3745 	 * Here we only have mmap_read_lock(mm).
3746 	 */
3747 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3748 		return VM_FAULT_OOM;
3749 
3750 	/* See comment in handle_pte_fault() */
3751 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3752 		return 0;
3753 
3754 	/* Use the zero-page for reads */
3755 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3756 			!mm_forbids_zeropage(vma->vm_mm)) {
3757 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3758 						vma->vm_page_prot));
3759 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3760 				vmf->address, &vmf->ptl);
3761 		if (!pte_none(*vmf->pte)) {
3762 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3763 			goto unlock;
3764 		}
3765 		ret = check_stable_address_space(vma->vm_mm);
3766 		if (ret)
3767 			goto unlock;
3768 		/* Deliver the page fault to userland, check inside PT lock */
3769 		if (userfaultfd_missing(vma)) {
3770 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3771 			return handle_userfault(vmf, VM_UFFD_MISSING);
3772 		}
3773 		goto setpte;
3774 	}
3775 
3776 	/* Allocate our own private page. */
3777 	if (unlikely(anon_vma_prepare(vma)))
3778 		goto oom;
3779 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3780 	if (!page)
3781 		goto oom;
3782 
3783 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3784 		goto oom_free_page;
3785 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3786 
3787 	/*
3788 	 * The memory barrier inside __SetPageUptodate makes sure that
3789 	 * preceding stores to the page contents become visible before
3790 	 * the set_pte_at() write.
3791 	 */
3792 	__SetPageUptodate(page);
3793 
3794 	entry = mk_pte(page, vma->vm_page_prot);
3795 	entry = pte_sw_mkyoung(entry);
3796 	if (vma->vm_flags & VM_WRITE)
3797 		entry = pte_mkwrite(pte_mkdirty(entry));
3798 
3799 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3800 			&vmf->ptl);
3801 	if (!pte_none(*vmf->pte)) {
3802 		update_mmu_cache(vma, vmf->address, vmf->pte);
3803 		goto release;
3804 	}
3805 
3806 	ret = check_stable_address_space(vma->vm_mm);
3807 	if (ret)
3808 		goto release;
3809 
3810 	/* Deliver the page fault to userland, check inside PT lock */
3811 	if (userfaultfd_missing(vma)) {
3812 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3813 		put_page(page);
3814 		return handle_userfault(vmf, VM_UFFD_MISSING);
3815 	}
3816 
3817 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3818 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3819 	lru_cache_add_inactive_or_unevictable(page, vma);
3820 setpte:
3821 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3822 
3823 	/* No need to invalidate - it was non-present before */
3824 	update_mmu_cache(vma, vmf->address, vmf->pte);
3825 unlock:
3826 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3827 	return ret;
3828 release:
3829 	put_page(page);
3830 	goto unlock;
3831 oom_free_page:
3832 	put_page(page);
3833 oom:
3834 	return VM_FAULT_OOM;
3835 }
3836 
3837 /*
3838  * The mmap_lock must have been held on entry, and may have been
3839  * released depending on flags and vma->vm_ops->fault() return value.
3840  * See filemap_fault() and __lock_page_retry().
3841  */
3842 static vm_fault_t __do_fault(struct vm_fault *vmf)
3843 {
3844 	struct vm_area_struct *vma = vmf->vma;
3845 	vm_fault_t ret;
3846 
3847 	/*
3848 	 * Preallocate pte before we take page_lock because this might lead to
3849 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3850 	 *				lock_page(A)
3851 	 *				SetPageWriteback(A)
3852 	 *				unlock_page(A)
3853 	 * lock_page(B)
3854 	 *				lock_page(B)
3855 	 * pte_alloc_one
3856 	 *   shrink_page_list
3857 	 *     wait_on_page_writeback(A)
3858 	 *				SetPageWriteback(B)
3859 	 *				unlock_page(B)
3860 	 *				# flush A, B to clear the writeback
3861 	 */
3862 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3863 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3864 		if (!vmf->prealloc_pte)
3865 			return VM_FAULT_OOM;
3866 	}
3867 
3868 	ret = vma->vm_ops->fault(vmf);
3869 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3870 			    VM_FAULT_DONE_COW)))
3871 		return ret;
3872 
3873 	if (unlikely(PageHWPoison(vmf->page))) {
3874 		if (ret & VM_FAULT_LOCKED)
3875 			unlock_page(vmf->page);
3876 		put_page(vmf->page);
3877 		vmf->page = NULL;
3878 		return VM_FAULT_HWPOISON;
3879 	}
3880 
3881 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3882 		lock_page(vmf->page);
3883 	else
3884 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3885 
3886 	return ret;
3887 }
3888 
3889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3890 static void deposit_prealloc_pte(struct vm_fault *vmf)
3891 {
3892 	struct vm_area_struct *vma = vmf->vma;
3893 
3894 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3895 	/*
3896 	 * We are going to consume the prealloc table,
3897 	 * count that as nr_ptes.
3898 	 */
3899 	mm_inc_nr_ptes(vma->vm_mm);
3900 	vmf->prealloc_pte = NULL;
3901 }
3902 
3903 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3904 {
3905 	struct vm_area_struct *vma = vmf->vma;
3906 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3907 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3908 	pmd_t entry;
3909 	int i;
3910 	vm_fault_t ret = VM_FAULT_FALLBACK;
3911 
3912 	if (!transhuge_vma_suitable(vma, haddr))
3913 		return ret;
3914 
3915 	page = compound_head(page);
3916 	if (compound_order(page) != HPAGE_PMD_ORDER)
3917 		return ret;
3918 
3919 	/*
3920 	 * Just backoff if any subpage of a THP is corrupted otherwise
3921 	 * the corrupted page may mapped by PMD silently to escape the
3922 	 * check.  This kind of THP just can be PTE mapped.  Access to
3923 	 * the corrupted subpage should trigger SIGBUS as expected.
3924 	 */
3925 	if (unlikely(PageHasHWPoisoned(page)))
3926 		return ret;
3927 
3928 	/*
3929 	 * Archs like ppc64 need additional space to store information
3930 	 * related to pte entry. Use the preallocated table for that.
3931 	 */
3932 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3933 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3934 		if (!vmf->prealloc_pte)
3935 			return VM_FAULT_OOM;
3936 	}
3937 
3938 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3939 	if (unlikely(!pmd_none(*vmf->pmd)))
3940 		goto out;
3941 
3942 	for (i = 0; i < HPAGE_PMD_NR; i++)
3943 		flush_icache_page(vma, page + i);
3944 
3945 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3946 	if (write)
3947 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3948 
3949 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3950 	page_add_file_rmap(page, true);
3951 	/*
3952 	 * deposit and withdraw with pmd lock held
3953 	 */
3954 	if (arch_needs_pgtable_deposit())
3955 		deposit_prealloc_pte(vmf);
3956 
3957 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3958 
3959 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3960 
3961 	/* fault is handled */
3962 	ret = 0;
3963 	count_vm_event(THP_FILE_MAPPED);
3964 out:
3965 	spin_unlock(vmf->ptl);
3966 	return ret;
3967 }
3968 #else
3969 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3970 {
3971 	return VM_FAULT_FALLBACK;
3972 }
3973 #endif
3974 
3975 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3976 {
3977 	struct vm_area_struct *vma = vmf->vma;
3978 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3979 	bool prefault = vmf->address != addr;
3980 	pte_t entry;
3981 
3982 	flush_icache_page(vma, page);
3983 	entry = mk_pte(page, vma->vm_page_prot);
3984 
3985 	if (prefault && arch_wants_old_prefaulted_pte())
3986 		entry = pte_mkold(entry);
3987 	else
3988 		entry = pte_sw_mkyoung(entry);
3989 
3990 	if (write)
3991 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3992 	/* copy-on-write page */
3993 	if (write && !(vma->vm_flags & VM_SHARED)) {
3994 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3995 		page_add_new_anon_rmap(page, vma, addr, false);
3996 		lru_cache_add_inactive_or_unevictable(page, vma);
3997 	} else {
3998 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3999 		page_add_file_rmap(page, false);
4000 	}
4001 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4002 }
4003 
4004 /**
4005  * finish_fault - finish page fault once we have prepared the page to fault
4006  *
4007  * @vmf: structure describing the fault
4008  *
4009  * This function handles all that is needed to finish a page fault once the
4010  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4011  * given page, adds reverse page mapping, handles memcg charges and LRU
4012  * addition.
4013  *
4014  * The function expects the page to be locked and on success it consumes a
4015  * reference of a page being mapped (for the PTE which maps it).
4016  *
4017  * Return: %0 on success, %VM_FAULT_ code in case of error.
4018  */
4019 vm_fault_t finish_fault(struct vm_fault *vmf)
4020 {
4021 	struct vm_area_struct *vma = vmf->vma;
4022 	struct page *page;
4023 	vm_fault_t ret;
4024 
4025 	/* Did we COW the page? */
4026 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4027 		page = vmf->cow_page;
4028 	else
4029 		page = vmf->page;
4030 
4031 	/*
4032 	 * check even for read faults because we might have lost our CoWed
4033 	 * page
4034 	 */
4035 	if (!(vma->vm_flags & VM_SHARED)) {
4036 		ret = check_stable_address_space(vma->vm_mm);
4037 		if (ret)
4038 			return ret;
4039 	}
4040 
4041 	if (pmd_none(*vmf->pmd)) {
4042 		if (PageTransCompound(page)) {
4043 			ret = do_set_pmd(vmf, page);
4044 			if (ret != VM_FAULT_FALLBACK)
4045 				return ret;
4046 		}
4047 
4048 		if (vmf->prealloc_pte)
4049 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4050 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4051 			return VM_FAULT_OOM;
4052 	}
4053 
4054 	/* See comment in handle_pte_fault() */
4055 	if (pmd_devmap_trans_unstable(vmf->pmd))
4056 		return 0;
4057 
4058 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4059 				      vmf->address, &vmf->ptl);
4060 	ret = 0;
4061 	/* Re-check under ptl */
4062 	if (likely(pte_none(*vmf->pte)))
4063 		do_set_pte(vmf, page, vmf->address);
4064 	else
4065 		ret = VM_FAULT_NOPAGE;
4066 
4067 	update_mmu_tlb(vma, vmf->address, vmf->pte);
4068 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4069 	return ret;
4070 }
4071 
4072 static unsigned long fault_around_bytes __read_mostly =
4073 	rounddown_pow_of_two(65536);
4074 
4075 #ifdef CONFIG_DEBUG_FS
4076 static int fault_around_bytes_get(void *data, u64 *val)
4077 {
4078 	*val = fault_around_bytes;
4079 	return 0;
4080 }
4081 
4082 /*
4083  * fault_around_bytes must be rounded down to the nearest page order as it's
4084  * what do_fault_around() expects to see.
4085  */
4086 static int fault_around_bytes_set(void *data, u64 val)
4087 {
4088 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4089 		return -EINVAL;
4090 	if (val > PAGE_SIZE)
4091 		fault_around_bytes = rounddown_pow_of_two(val);
4092 	else
4093 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4094 	return 0;
4095 }
4096 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4097 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4098 
4099 static int __init fault_around_debugfs(void)
4100 {
4101 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4102 				   &fault_around_bytes_fops);
4103 	return 0;
4104 }
4105 late_initcall(fault_around_debugfs);
4106 #endif
4107 
4108 /*
4109  * do_fault_around() tries to map few pages around the fault address. The hope
4110  * is that the pages will be needed soon and this will lower the number of
4111  * faults to handle.
4112  *
4113  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4114  * not ready to be mapped: not up-to-date, locked, etc.
4115  *
4116  * This function is called with the page table lock taken. In the split ptlock
4117  * case the page table lock only protects only those entries which belong to
4118  * the page table corresponding to the fault address.
4119  *
4120  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4121  * only once.
4122  *
4123  * fault_around_bytes defines how many bytes we'll try to map.
4124  * do_fault_around() expects it to be set to a power of two less than or equal
4125  * to PTRS_PER_PTE.
4126  *
4127  * The virtual address of the area that we map is naturally aligned to
4128  * fault_around_bytes rounded down to the machine page size
4129  * (and therefore to page order).  This way it's easier to guarantee
4130  * that we don't cross page table boundaries.
4131  */
4132 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4133 {
4134 	unsigned long address = vmf->address, nr_pages, mask;
4135 	pgoff_t start_pgoff = vmf->pgoff;
4136 	pgoff_t end_pgoff;
4137 	int off;
4138 
4139 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4140 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4141 
4142 	address = max(address & mask, vmf->vma->vm_start);
4143 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4144 	start_pgoff -= off;
4145 
4146 	/*
4147 	 *  end_pgoff is either the end of the page table, the end of
4148 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4149 	 */
4150 	end_pgoff = start_pgoff -
4151 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4152 		PTRS_PER_PTE - 1;
4153 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4154 			start_pgoff + nr_pages - 1);
4155 
4156 	if (pmd_none(*vmf->pmd)) {
4157 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4158 		if (!vmf->prealloc_pte)
4159 			return VM_FAULT_OOM;
4160 	}
4161 
4162 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4163 }
4164 
4165 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4166 {
4167 	struct vm_area_struct *vma = vmf->vma;
4168 	vm_fault_t ret = 0;
4169 
4170 	/*
4171 	 * Let's call ->map_pages() first and use ->fault() as fallback
4172 	 * if page by the offset is not ready to be mapped (cold cache or
4173 	 * something).
4174 	 */
4175 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4176 		if (likely(!userfaultfd_minor(vmf->vma))) {
4177 			ret = do_fault_around(vmf);
4178 			if (ret)
4179 				return ret;
4180 		}
4181 	}
4182 
4183 	ret = __do_fault(vmf);
4184 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4185 		return ret;
4186 
4187 	ret |= finish_fault(vmf);
4188 	unlock_page(vmf->page);
4189 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4190 		put_page(vmf->page);
4191 	return ret;
4192 }
4193 
4194 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4195 {
4196 	struct vm_area_struct *vma = vmf->vma;
4197 	vm_fault_t ret;
4198 
4199 	if (unlikely(anon_vma_prepare(vma)))
4200 		return VM_FAULT_OOM;
4201 
4202 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4203 	if (!vmf->cow_page)
4204 		return VM_FAULT_OOM;
4205 
4206 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4207 				GFP_KERNEL)) {
4208 		put_page(vmf->cow_page);
4209 		return VM_FAULT_OOM;
4210 	}
4211 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4212 
4213 	ret = __do_fault(vmf);
4214 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4215 		goto uncharge_out;
4216 	if (ret & VM_FAULT_DONE_COW)
4217 		return ret;
4218 
4219 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4220 	__SetPageUptodate(vmf->cow_page);
4221 
4222 	ret |= finish_fault(vmf);
4223 	unlock_page(vmf->page);
4224 	put_page(vmf->page);
4225 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4226 		goto uncharge_out;
4227 	return ret;
4228 uncharge_out:
4229 	put_page(vmf->cow_page);
4230 	return ret;
4231 }
4232 
4233 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4234 {
4235 	struct vm_area_struct *vma = vmf->vma;
4236 	vm_fault_t ret, tmp;
4237 
4238 	ret = __do_fault(vmf);
4239 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4240 		return ret;
4241 
4242 	/*
4243 	 * Check if the backing address space wants to know that the page is
4244 	 * about to become writable
4245 	 */
4246 	if (vma->vm_ops->page_mkwrite) {
4247 		unlock_page(vmf->page);
4248 		tmp = do_page_mkwrite(vmf);
4249 		if (unlikely(!tmp ||
4250 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4251 			put_page(vmf->page);
4252 			return tmp;
4253 		}
4254 	}
4255 
4256 	ret |= finish_fault(vmf);
4257 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4258 					VM_FAULT_RETRY))) {
4259 		unlock_page(vmf->page);
4260 		put_page(vmf->page);
4261 		return ret;
4262 	}
4263 
4264 	ret |= fault_dirty_shared_page(vmf);
4265 	return ret;
4266 }
4267 
4268 /*
4269  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4270  * but allow concurrent faults).
4271  * The mmap_lock may have been released depending on flags and our
4272  * return value.  See filemap_fault() and __folio_lock_or_retry().
4273  * If mmap_lock is released, vma may become invalid (for example
4274  * by other thread calling munmap()).
4275  */
4276 static vm_fault_t do_fault(struct vm_fault *vmf)
4277 {
4278 	struct vm_area_struct *vma = vmf->vma;
4279 	struct mm_struct *vm_mm = vma->vm_mm;
4280 	vm_fault_t ret;
4281 
4282 	/*
4283 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4284 	 */
4285 	if (!vma->vm_ops->fault) {
4286 		/*
4287 		 * If we find a migration pmd entry or a none pmd entry, which
4288 		 * should never happen, return SIGBUS
4289 		 */
4290 		if (unlikely(!pmd_present(*vmf->pmd)))
4291 			ret = VM_FAULT_SIGBUS;
4292 		else {
4293 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4294 						       vmf->pmd,
4295 						       vmf->address,
4296 						       &vmf->ptl);
4297 			/*
4298 			 * Make sure this is not a temporary clearing of pte
4299 			 * by holding ptl and checking again. A R/M/W update
4300 			 * of pte involves: take ptl, clearing the pte so that
4301 			 * we don't have concurrent modification by hardware
4302 			 * followed by an update.
4303 			 */
4304 			if (unlikely(pte_none(*vmf->pte)))
4305 				ret = VM_FAULT_SIGBUS;
4306 			else
4307 				ret = VM_FAULT_NOPAGE;
4308 
4309 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4310 		}
4311 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4312 		ret = do_read_fault(vmf);
4313 	else if (!(vma->vm_flags & VM_SHARED))
4314 		ret = do_cow_fault(vmf);
4315 	else
4316 		ret = do_shared_fault(vmf);
4317 
4318 	/* preallocated pagetable is unused: free it */
4319 	if (vmf->prealloc_pte) {
4320 		pte_free(vm_mm, vmf->prealloc_pte);
4321 		vmf->prealloc_pte = NULL;
4322 	}
4323 	return ret;
4324 }
4325 
4326 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4327 		      unsigned long addr, int page_nid, int *flags)
4328 {
4329 	get_page(page);
4330 
4331 	count_vm_numa_event(NUMA_HINT_FAULTS);
4332 	if (page_nid == numa_node_id()) {
4333 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4334 		*flags |= TNF_FAULT_LOCAL;
4335 	}
4336 
4337 	return mpol_misplaced(page, vma, addr);
4338 }
4339 
4340 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4341 {
4342 	struct vm_area_struct *vma = vmf->vma;
4343 	struct page *page = NULL;
4344 	int page_nid = NUMA_NO_NODE;
4345 	int last_cpupid;
4346 	int target_nid;
4347 	pte_t pte, old_pte;
4348 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4349 	int flags = 0;
4350 
4351 	/*
4352 	 * The "pte" at this point cannot be used safely without
4353 	 * validation through pte_unmap_same(). It's of NUMA type but
4354 	 * the pfn may be screwed if the read is non atomic.
4355 	 */
4356 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4357 	spin_lock(vmf->ptl);
4358 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4359 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4360 		goto out;
4361 	}
4362 
4363 	/* Get the normal PTE  */
4364 	old_pte = ptep_get(vmf->pte);
4365 	pte = pte_modify(old_pte, vma->vm_page_prot);
4366 
4367 	page = vm_normal_page(vma, vmf->address, pte);
4368 	if (!page)
4369 		goto out_map;
4370 
4371 	/* TODO: handle PTE-mapped THP */
4372 	if (PageCompound(page))
4373 		goto out_map;
4374 
4375 	/*
4376 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4377 	 * much anyway since they can be in shared cache state. This misses
4378 	 * the case where a mapping is writable but the process never writes
4379 	 * to it but pte_write gets cleared during protection updates and
4380 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4381 	 * background writeback, dirty balancing and application behaviour.
4382 	 */
4383 	if (!was_writable)
4384 		flags |= TNF_NO_GROUP;
4385 
4386 	/*
4387 	 * Flag if the page is shared between multiple address spaces. This
4388 	 * is later used when determining whether to group tasks together
4389 	 */
4390 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4391 		flags |= TNF_SHARED;
4392 
4393 	last_cpupid = page_cpupid_last(page);
4394 	page_nid = page_to_nid(page);
4395 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4396 			&flags);
4397 	if (target_nid == NUMA_NO_NODE) {
4398 		put_page(page);
4399 		goto out_map;
4400 	}
4401 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4402 
4403 	/* Migrate to the requested node */
4404 	if (migrate_misplaced_page(page, vma, target_nid)) {
4405 		page_nid = target_nid;
4406 		flags |= TNF_MIGRATED;
4407 	} else {
4408 		flags |= TNF_MIGRATE_FAIL;
4409 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4410 		spin_lock(vmf->ptl);
4411 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4412 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4413 			goto out;
4414 		}
4415 		goto out_map;
4416 	}
4417 
4418 out:
4419 	if (page_nid != NUMA_NO_NODE)
4420 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4421 	return 0;
4422 out_map:
4423 	/*
4424 	 * Make it present again, depending on how arch implements
4425 	 * non-accessible ptes, some can allow access by kernel mode.
4426 	 */
4427 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4428 	pte = pte_modify(old_pte, vma->vm_page_prot);
4429 	pte = pte_mkyoung(pte);
4430 	if (was_writable)
4431 		pte = pte_mkwrite(pte);
4432 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4433 	update_mmu_cache(vma, vmf->address, vmf->pte);
4434 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4435 	goto out;
4436 }
4437 
4438 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4439 {
4440 	if (vma_is_anonymous(vmf->vma))
4441 		return do_huge_pmd_anonymous_page(vmf);
4442 	if (vmf->vma->vm_ops->huge_fault)
4443 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4444 	return VM_FAULT_FALLBACK;
4445 }
4446 
4447 /* `inline' is required to avoid gcc 4.1.2 build error */
4448 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4449 {
4450 	if (vma_is_anonymous(vmf->vma)) {
4451 		if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4452 			return handle_userfault(vmf, VM_UFFD_WP);
4453 		return do_huge_pmd_wp_page(vmf);
4454 	}
4455 	if (vmf->vma->vm_ops->huge_fault) {
4456 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4457 
4458 		if (!(ret & VM_FAULT_FALLBACK))
4459 			return ret;
4460 	}
4461 
4462 	/* COW or write-notify handled on pte level: split pmd. */
4463 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4464 
4465 	return VM_FAULT_FALLBACK;
4466 }
4467 
4468 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4469 {
4470 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4471 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4472 	/* No support for anonymous transparent PUD pages yet */
4473 	if (vma_is_anonymous(vmf->vma))
4474 		goto split;
4475 	if (vmf->vma->vm_ops->huge_fault) {
4476 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4477 
4478 		if (!(ret & VM_FAULT_FALLBACK))
4479 			return ret;
4480 	}
4481 split:
4482 	/* COW or write-notify not handled on PUD level: split pud.*/
4483 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4484 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4485 	return VM_FAULT_FALLBACK;
4486 }
4487 
4488 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4489 {
4490 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4491 	/* No support for anonymous transparent PUD pages yet */
4492 	if (vma_is_anonymous(vmf->vma))
4493 		return VM_FAULT_FALLBACK;
4494 	if (vmf->vma->vm_ops->huge_fault)
4495 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4496 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4497 	return VM_FAULT_FALLBACK;
4498 }
4499 
4500 /*
4501  * These routines also need to handle stuff like marking pages dirty
4502  * and/or accessed for architectures that don't do it in hardware (most
4503  * RISC architectures).  The early dirtying is also good on the i386.
4504  *
4505  * There is also a hook called "update_mmu_cache()" that architectures
4506  * with external mmu caches can use to update those (ie the Sparc or
4507  * PowerPC hashed page tables that act as extended TLBs).
4508  *
4509  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4510  * concurrent faults).
4511  *
4512  * The mmap_lock may have been released depending on flags and our return value.
4513  * See filemap_fault() and __folio_lock_or_retry().
4514  */
4515 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4516 {
4517 	pte_t entry;
4518 
4519 	if (unlikely(pmd_none(*vmf->pmd))) {
4520 		/*
4521 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4522 		 * want to allocate huge page, and if we expose page table
4523 		 * for an instant, it will be difficult to retract from
4524 		 * concurrent faults and from rmap lookups.
4525 		 */
4526 		vmf->pte = NULL;
4527 	} else {
4528 		/*
4529 		 * If a huge pmd materialized under us just retry later.  Use
4530 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4531 		 * of pmd_trans_huge() to ensure the pmd didn't become
4532 		 * pmd_trans_huge under us and then back to pmd_none, as a
4533 		 * result of MADV_DONTNEED running immediately after a huge pmd
4534 		 * fault in a different thread of this mm, in turn leading to a
4535 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4536 		 * that it is a regular pmd that we can walk with
4537 		 * pte_offset_map() and we can do that through an atomic read
4538 		 * in C, which is what pmd_trans_unstable() provides.
4539 		 */
4540 		if (pmd_devmap_trans_unstable(vmf->pmd))
4541 			return 0;
4542 		/*
4543 		 * A regular pmd is established and it can't morph into a huge
4544 		 * pmd from under us anymore at this point because we hold the
4545 		 * mmap_lock read mode and khugepaged takes it in write mode.
4546 		 * So now it's safe to run pte_offset_map().
4547 		 */
4548 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4549 		vmf->orig_pte = *vmf->pte;
4550 
4551 		/*
4552 		 * some architectures can have larger ptes than wordsize,
4553 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4554 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4555 		 * accesses.  The code below just needs a consistent view
4556 		 * for the ifs and we later double check anyway with the
4557 		 * ptl lock held. So here a barrier will do.
4558 		 */
4559 		barrier();
4560 		if (pte_none(vmf->orig_pte)) {
4561 			pte_unmap(vmf->pte);
4562 			vmf->pte = NULL;
4563 		}
4564 	}
4565 
4566 	if (!vmf->pte) {
4567 		if (vma_is_anonymous(vmf->vma))
4568 			return do_anonymous_page(vmf);
4569 		else
4570 			return do_fault(vmf);
4571 	}
4572 
4573 	if (!pte_present(vmf->orig_pte))
4574 		return do_swap_page(vmf);
4575 
4576 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4577 		return do_numa_page(vmf);
4578 
4579 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4580 	spin_lock(vmf->ptl);
4581 	entry = vmf->orig_pte;
4582 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4583 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4584 		goto unlock;
4585 	}
4586 	if (vmf->flags & FAULT_FLAG_WRITE) {
4587 		if (!pte_write(entry))
4588 			return do_wp_page(vmf);
4589 		entry = pte_mkdirty(entry);
4590 	}
4591 	entry = pte_mkyoung(entry);
4592 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4593 				vmf->flags & FAULT_FLAG_WRITE)) {
4594 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4595 	} else {
4596 		/* Skip spurious TLB flush for retried page fault */
4597 		if (vmf->flags & FAULT_FLAG_TRIED)
4598 			goto unlock;
4599 		/*
4600 		 * This is needed only for protection faults but the arch code
4601 		 * is not yet telling us if this is a protection fault or not.
4602 		 * This still avoids useless tlb flushes for .text page faults
4603 		 * with threads.
4604 		 */
4605 		if (vmf->flags & FAULT_FLAG_WRITE)
4606 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4607 	}
4608 unlock:
4609 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4610 	return 0;
4611 }
4612 
4613 /*
4614  * By the time we get here, we already hold the mm semaphore
4615  *
4616  * The mmap_lock may have been released depending on flags and our
4617  * return value.  See filemap_fault() and __folio_lock_or_retry().
4618  */
4619 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4620 		unsigned long address, unsigned int flags)
4621 {
4622 	struct vm_fault vmf = {
4623 		.vma = vma,
4624 		.address = address & PAGE_MASK,
4625 		.flags = flags,
4626 		.pgoff = linear_page_index(vma, address),
4627 		.gfp_mask = __get_fault_gfp_mask(vma),
4628 	};
4629 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4630 	struct mm_struct *mm = vma->vm_mm;
4631 	pgd_t *pgd;
4632 	p4d_t *p4d;
4633 	vm_fault_t ret;
4634 
4635 	pgd = pgd_offset(mm, address);
4636 	p4d = p4d_alloc(mm, pgd, address);
4637 	if (!p4d)
4638 		return VM_FAULT_OOM;
4639 
4640 	vmf.pud = pud_alloc(mm, p4d, address);
4641 	if (!vmf.pud)
4642 		return VM_FAULT_OOM;
4643 retry_pud:
4644 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4645 		ret = create_huge_pud(&vmf);
4646 		if (!(ret & VM_FAULT_FALLBACK))
4647 			return ret;
4648 	} else {
4649 		pud_t orig_pud = *vmf.pud;
4650 
4651 		barrier();
4652 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4653 
4654 			/* NUMA case for anonymous PUDs would go here */
4655 
4656 			if (dirty && !pud_write(orig_pud)) {
4657 				ret = wp_huge_pud(&vmf, orig_pud);
4658 				if (!(ret & VM_FAULT_FALLBACK))
4659 					return ret;
4660 			} else {
4661 				huge_pud_set_accessed(&vmf, orig_pud);
4662 				return 0;
4663 			}
4664 		}
4665 	}
4666 
4667 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4668 	if (!vmf.pmd)
4669 		return VM_FAULT_OOM;
4670 
4671 	/* Huge pud page fault raced with pmd_alloc? */
4672 	if (pud_trans_unstable(vmf.pud))
4673 		goto retry_pud;
4674 
4675 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4676 		ret = create_huge_pmd(&vmf);
4677 		if (!(ret & VM_FAULT_FALLBACK))
4678 			return ret;
4679 	} else {
4680 		vmf.orig_pmd = *vmf.pmd;
4681 
4682 		barrier();
4683 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4684 			VM_BUG_ON(thp_migration_supported() &&
4685 					  !is_pmd_migration_entry(vmf.orig_pmd));
4686 			if (is_pmd_migration_entry(vmf.orig_pmd))
4687 				pmd_migration_entry_wait(mm, vmf.pmd);
4688 			return 0;
4689 		}
4690 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4691 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4692 				return do_huge_pmd_numa_page(&vmf);
4693 
4694 			if (dirty && !pmd_write(vmf.orig_pmd)) {
4695 				ret = wp_huge_pmd(&vmf);
4696 				if (!(ret & VM_FAULT_FALLBACK))
4697 					return ret;
4698 			} else {
4699 				huge_pmd_set_accessed(&vmf);
4700 				return 0;
4701 			}
4702 		}
4703 	}
4704 
4705 	return handle_pte_fault(&vmf);
4706 }
4707 
4708 /**
4709  * mm_account_fault - Do page fault accounting
4710  *
4711  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4712  *        of perf event counters, but we'll still do the per-task accounting to
4713  *        the task who triggered this page fault.
4714  * @address: the faulted address.
4715  * @flags: the fault flags.
4716  * @ret: the fault retcode.
4717  *
4718  * This will take care of most of the page fault accounting.  Meanwhile, it
4719  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4720  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4721  * still be in per-arch page fault handlers at the entry of page fault.
4722  */
4723 static inline void mm_account_fault(struct pt_regs *regs,
4724 				    unsigned long address, unsigned int flags,
4725 				    vm_fault_t ret)
4726 {
4727 	bool major;
4728 
4729 	/*
4730 	 * We don't do accounting for some specific faults:
4731 	 *
4732 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4733 	 *   includes arch_vma_access_permitted() failing before reaching here.
4734 	 *   So this is not a "this many hardware page faults" counter.  We
4735 	 *   should use the hw profiling for that.
4736 	 *
4737 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4738 	 *   once they're completed.
4739 	 */
4740 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4741 		return;
4742 
4743 	/*
4744 	 * We define the fault as a major fault when the final successful fault
4745 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4746 	 * handle it immediately previously).
4747 	 */
4748 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4749 
4750 	if (major)
4751 		current->maj_flt++;
4752 	else
4753 		current->min_flt++;
4754 
4755 	/*
4756 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4757 	 * accounting for the per thread fault counters who triggered the
4758 	 * fault, and we skip the perf event updates.
4759 	 */
4760 	if (!regs)
4761 		return;
4762 
4763 	if (major)
4764 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4765 	else
4766 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4767 }
4768 
4769 /*
4770  * By the time we get here, we already hold the mm semaphore
4771  *
4772  * The mmap_lock may have been released depending on flags and our
4773  * return value.  See filemap_fault() and __folio_lock_or_retry().
4774  */
4775 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4776 			   unsigned int flags, struct pt_regs *regs)
4777 {
4778 	vm_fault_t ret;
4779 
4780 	__set_current_state(TASK_RUNNING);
4781 
4782 	count_vm_event(PGFAULT);
4783 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4784 
4785 	/* do counter updates before entering really critical section. */
4786 	check_sync_rss_stat(current);
4787 
4788 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4789 					    flags & FAULT_FLAG_INSTRUCTION,
4790 					    flags & FAULT_FLAG_REMOTE))
4791 		return VM_FAULT_SIGSEGV;
4792 
4793 	/*
4794 	 * Enable the memcg OOM handling for faults triggered in user
4795 	 * space.  Kernel faults are handled more gracefully.
4796 	 */
4797 	if (flags & FAULT_FLAG_USER)
4798 		mem_cgroup_enter_user_fault();
4799 
4800 	if (unlikely(is_vm_hugetlb_page(vma)))
4801 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4802 	else
4803 		ret = __handle_mm_fault(vma, address, flags);
4804 
4805 	if (flags & FAULT_FLAG_USER) {
4806 		mem_cgroup_exit_user_fault();
4807 		/*
4808 		 * The task may have entered a memcg OOM situation but
4809 		 * if the allocation error was handled gracefully (no
4810 		 * VM_FAULT_OOM), there is no need to kill anything.
4811 		 * Just clean up the OOM state peacefully.
4812 		 */
4813 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4814 			mem_cgroup_oom_synchronize(false);
4815 	}
4816 
4817 	mm_account_fault(regs, address, flags, ret);
4818 
4819 	return ret;
4820 }
4821 EXPORT_SYMBOL_GPL(handle_mm_fault);
4822 
4823 #ifndef __PAGETABLE_P4D_FOLDED
4824 /*
4825  * Allocate p4d page table.
4826  * We've already handled the fast-path in-line.
4827  */
4828 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4829 {
4830 	p4d_t *new = p4d_alloc_one(mm, address);
4831 	if (!new)
4832 		return -ENOMEM;
4833 
4834 	spin_lock(&mm->page_table_lock);
4835 	if (pgd_present(*pgd)) {	/* Another has populated it */
4836 		p4d_free(mm, new);
4837 	} else {
4838 		smp_wmb(); /* See comment in pmd_install() */
4839 		pgd_populate(mm, pgd, new);
4840 	}
4841 	spin_unlock(&mm->page_table_lock);
4842 	return 0;
4843 }
4844 #endif /* __PAGETABLE_P4D_FOLDED */
4845 
4846 #ifndef __PAGETABLE_PUD_FOLDED
4847 /*
4848  * Allocate page upper directory.
4849  * We've already handled the fast-path in-line.
4850  */
4851 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4852 {
4853 	pud_t *new = pud_alloc_one(mm, address);
4854 	if (!new)
4855 		return -ENOMEM;
4856 
4857 	spin_lock(&mm->page_table_lock);
4858 	if (!p4d_present(*p4d)) {
4859 		mm_inc_nr_puds(mm);
4860 		smp_wmb(); /* See comment in pmd_install() */
4861 		p4d_populate(mm, p4d, new);
4862 	} else	/* Another has populated it */
4863 		pud_free(mm, new);
4864 	spin_unlock(&mm->page_table_lock);
4865 	return 0;
4866 }
4867 #endif /* __PAGETABLE_PUD_FOLDED */
4868 
4869 #ifndef __PAGETABLE_PMD_FOLDED
4870 /*
4871  * Allocate page middle directory.
4872  * We've already handled the fast-path in-line.
4873  */
4874 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4875 {
4876 	spinlock_t *ptl;
4877 	pmd_t *new = pmd_alloc_one(mm, address);
4878 	if (!new)
4879 		return -ENOMEM;
4880 
4881 	ptl = pud_lock(mm, pud);
4882 	if (!pud_present(*pud)) {
4883 		mm_inc_nr_pmds(mm);
4884 		smp_wmb(); /* See comment in pmd_install() */
4885 		pud_populate(mm, pud, new);
4886 	} else {	/* Another has populated it */
4887 		pmd_free(mm, new);
4888 	}
4889 	spin_unlock(ptl);
4890 	return 0;
4891 }
4892 #endif /* __PAGETABLE_PMD_FOLDED */
4893 
4894 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4895 			  struct mmu_notifier_range *range, pte_t **ptepp,
4896 			  pmd_t **pmdpp, spinlock_t **ptlp)
4897 {
4898 	pgd_t *pgd;
4899 	p4d_t *p4d;
4900 	pud_t *pud;
4901 	pmd_t *pmd;
4902 	pte_t *ptep;
4903 
4904 	pgd = pgd_offset(mm, address);
4905 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4906 		goto out;
4907 
4908 	p4d = p4d_offset(pgd, address);
4909 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4910 		goto out;
4911 
4912 	pud = pud_offset(p4d, address);
4913 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4914 		goto out;
4915 
4916 	pmd = pmd_offset(pud, address);
4917 	VM_BUG_ON(pmd_trans_huge(*pmd));
4918 
4919 	if (pmd_huge(*pmd)) {
4920 		if (!pmdpp)
4921 			goto out;
4922 
4923 		if (range) {
4924 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4925 						NULL, mm, address & PMD_MASK,
4926 						(address & PMD_MASK) + PMD_SIZE);
4927 			mmu_notifier_invalidate_range_start(range);
4928 		}
4929 		*ptlp = pmd_lock(mm, pmd);
4930 		if (pmd_huge(*pmd)) {
4931 			*pmdpp = pmd;
4932 			return 0;
4933 		}
4934 		spin_unlock(*ptlp);
4935 		if (range)
4936 			mmu_notifier_invalidate_range_end(range);
4937 	}
4938 
4939 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4940 		goto out;
4941 
4942 	if (range) {
4943 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4944 					address & PAGE_MASK,
4945 					(address & PAGE_MASK) + PAGE_SIZE);
4946 		mmu_notifier_invalidate_range_start(range);
4947 	}
4948 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4949 	if (!pte_present(*ptep))
4950 		goto unlock;
4951 	*ptepp = ptep;
4952 	return 0;
4953 unlock:
4954 	pte_unmap_unlock(ptep, *ptlp);
4955 	if (range)
4956 		mmu_notifier_invalidate_range_end(range);
4957 out:
4958 	return -EINVAL;
4959 }
4960 
4961 /**
4962  * follow_pte - look up PTE at a user virtual address
4963  * @mm: the mm_struct of the target address space
4964  * @address: user virtual address
4965  * @ptepp: location to store found PTE
4966  * @ptlp: location to store the lock for the PTE
4967  *
4968  * On a successful return, the pointer to the PTE is stored in @ptepp;
4969  * the corresponding lock is taken and its location is stored in @ptlp.
4970  * The contents of the PTE are only stable until @ptlp is released;
4971  * any further use, if any, must be protected against invalidation
4972  * with MMU notifiers.
4973  *
4974  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4975  * should be taken for read.
4976  *
4977  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4978  * it is not a good general-purpose API.
4979  *
4980  * Return: zero on success, -ve otherwise.
4981  */
4982 int follow_pte(struct mm_struct *mm, unsigned long address,
4983 	       pte_t **ptepp, spinlock_t **ptlp)
4984 {
4985 	return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4986 }
4987 EXPORT_SYMBOL_GPL(follow_pte);
4988 
4989 /**
4990  * follow_pfn - look up PFN at a user virtual address
4991  * @vma: memory mapping
4992  * @address: user virtual address
4993  * @pfn: location to store found PFN
4994  *
4995  * Only IO mappings and raw PFN mappings are allowed.
4996  *
4997  * This function does not allow the caller to read the permissions
4998  * of the PTE.  Do not use it.
4999  *
5000  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5001  */
5002 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5003 	unsigned long *pfn)
5004 {
5005 	int ret = -EINVAL;
5006 	spinlock_t *ptl;
5007 	pte_t *ptep;
5008 
5009 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5010 		return ret;
5011 
5012 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5013 	if (ret)
5014 		return ret;
5015 	*pfn = pte_pfn(*ptep);
5016 	pte_unmap_unlock(ptep, ptl);
5017 	return 0;
5018 }
5019 EXPORT_SYMBOL(follow_pfn);
5020 
5021 #ifdef CONFIG_HAVE_IOREMAP_PROT
5022 int follow_phys(struct vm_area_struct *vma,
5023 		unsigned long address, unsigned int flags,
5024 		unsigned long *prot, resource_size_t *phys)
5025 {
5026 	int ret = -EINVAL;
5027 	pte_t *ptep, pte;
5028 	spinlock_t *ptl;
5029 
5030 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5031 		goto out;
5032 
5033 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5034 		goto out;
5035 	pte = *ptep;
5036 
5037 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5038 		goto unlock;
5039 
5040 	*prot = pgprot_val(pte_pgprot(pte));
5041 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5042 
5043 	ret = 0;
5044 unlock:
5045 	pte_unmap_unlock(ptep, ptl);
5046 out:
5047 	return ret;
5048 }
5049 
5050 /**
5051  * generic_access_phys - generic implementation for iomem mmap access
5052  * @vma: the vma to access
5053  * @addr: userspace address, not relative offset within @vma
5054  * @buf: buffer to read/write
5055  * @len: length of transfer
5056  * @write: set to FOLL_WRITE when writing, otherwise reading
5057  *
5058  * This is a generic implementation for &vm_operations_struct.access for an
5059  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5060  * not page based.
5061  */
5062 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5063 			void *buf, int len, int write)
5064 {
5065 	resource_size_t phys_addr;
5066 	unsigned long prot = 0;
5067 	void __iomem *maddr;
5068 	pte_t *ptep, pte;
5069 	spinlock_t *ptl;
5070 	int offset = offset_in_page(addr);
5071 	int ret = -EINVAL;
5072 
5073 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5074 		return -EINVAL;
5075 
5076 retry:
5077 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5078 		return -EINVAL;
5079 	pte = *ptep;
5080 	pte_unmap_unlock(ptep, ptl);
5081 
5082 	prot = pgprot_val(pte_pgprot(pte));
5083 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5084 
5085 	if ((write & FOLL_WRITE) && !pte_write(pte))
5086 		return -EINVAL;
5087 
5088 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5089 	if (!maddr)
5090 		return -ENOMEM;
5091 
5092 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5093 		goto out_unmap;
5094 
5095 	if (!pte_same(pte, *ptep)) {
5096 		pte_unmap_unlock(ptep, ptl);
5097 		iounmap(maddr);
5098 
5099 		goto retry;
5100 	}
5101 
5102 	if (write)
5103 		memcpy_toio(maddr + offset, buf, len);
5104 	else
5105 		memcpy_fromio(buf, maddr + offset, len);
5106 	ret = len;
5107 	pte_unmap_unlock(ptep, ptl);
5108 out_unmap:
5109 	iounmap(maddr);
5110 
5111 	return ret;
5112 }
5113 EXPORT_SYMBOL_GPL(generic_access_phys);
5114 #endif
5115 
5116 /*
5117  * Access another process' address space as given in mm.
5118  */
5119 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5120 		       int len, unsigned int gup_flags)
5121 {
5122 	struct vm_area_struct *vma;
5123 	void *old_buf = buf;
5124 	int write = gup_flags & FOLL_WRITE;
5125 
5126 	if (mmap_read_lock_killable(mm))
5127 		return 0;
5128 
5129 	/* ignore errors, just check how much was successfully transferred */
5130 	while (len) {
5131 		int bytes, ret, offset;
5132 		void *maddr;
5133 		struct page *page = NULL;
5134 
5135 		ret = get_user_pages_remote(mm, addr, 1,
5136 				gup_flags, &page, &vma, NULL);
5137 		if (ret <= 0) {
5138 #ifndef CONFIG_HAVE_IOREMAP_PROT
5139 			break;
5140 #else
5141 			/*
5142 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5143 			 * we can access using slightly different code.
5144 			 */
5145 			vma = vma_lookup(mm, addr);
5146 			if (!vma)
5147 				break;
5148 			if (vma->vm_ops && vma->vm_ops->access)
5149 				ret = vma->vm_ops->access(vma, addr, buf,
5150 							  len, write);
5151 			if (ret <= 0)
5152 				break;
5153 			bytes = ret;
5154 #endif
5155 		} else {
5156 			bytes = len;
5157 			offset = addr & (PAGE_SIZE-1);
5158 			if (bytes > PAGE_SIZE-offset)
5159 				bytes = PAGE_SIZE-offset;
5160 
5161 			maddr = kmap(page);
5162 			if (write) {
5163 				copy_to_user_page(vma, page, addr,
5164 						  maddr + offset, buf, bytes);
5165 				set_page_dirty_lock(page);
5166 			} else {
5167 				copy_from_user_page(vma, page, addr,
5168 						    buf, maddr + offset, bytes);
5169 			}
5170 			kunmap(page);
5171 			put_page(page);
5172 		}
5173 		len -= bytes;
5174 		buf += bytes;
5175 		addr += bytes;
5176 	}
5177 	mmap_read_unlock(mm);
5178 
5179 	return buf - old_buf;
5180 }
5181 
5182 /**
5183  * access_remote_vm - access another process' address space
5184  * @mm:		the mm_struct of the target address space
5185  * @addr:	start address to access
5186  * @buf:	source or destination buffer
5187  * @len:	number of bytes to transfer
5188  * @gup_flags:	flags modifying lookup behaviour
5189  *
5190  * The caller must hold a reference on @mm.
5191  *
5192  * Return: number of bytes copied from source to destination.
5193  */
5194 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5195 		void *buf, int len, unsigned int gup_flags)
5196 {
5197 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5198 }
5199 
5200 /*
5201  * Access another process' address space.
5202  * Source/target buffer must be kernel space,
5203  * Do not walk the page table directly, use get_user_pages
5204  */
5205 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5206 		void *buf, int len, unsigned int gup_flags)
5207 {
5208 	struct mm_struct *mm;
5209 	int ret;
5210 
5211 	mm = get_task_mm(tsk);
5212 	if (!mm)
5213 		return 0;
5214 
5215 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5216 
5217 	mmput(mm);
5218 
5219 	return ret;
5220 }
5221 EXPORT_SYMBOL_GPL(access_process_vm);
5222 
5223 /*
5224  * Print the name of a VMA.
5225  */
5226 void print_vma_addr(char *prefix, unsigned long ip)
5227 {
5228 	struct mm_struct *mm = current->mm;
5229 	struct vm_area_struct *vma;
5230 
5231 	/*
5232 	 * we might be running from an atomic context so we cannot sleep
5233 	 */
5234 	if (!mmap_read_trylock(mm))
5235 		return;
5236 
5237 	vma = find_vma(mm, ip);
5238 	if (vma && vma->vm_file) {
5239 		struct file *f = vma->vm_file;
5240 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5241 		if (buf) {
5242 			char *p;
5243 
5244 			p = file_path(f, buf, PAGE_SIZE);
5245 			if (IS_ERR(p))
5246 				p = "?";
5247 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5248 					vma->vm_start,
5249 					vma->vm_end - vma->vm_start);
5250 			free_page((unsigned long)buf);
5251 		}
5252 	}
5253 	mmap_read_unlock(mm);
5254 }
5255 
5256 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5257 void __might_fault(const char *file, int line)
5258 {
5259 	/*
5260 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5261 	 * holding the mmap_lock, this is safe because kernel memory doesn't
5262 	 * get paged out, therefore we'll never actually fault, and the
5263 	 * below annotations will generate false positives.
5264 	 */
5265 	if (uaccess_kernel())
5266 		return;
5267 	if (pagefault_disabled())
5268 		return;
5269 	__might_sleep(file, line);
5270 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5271 	if (current->mm)
5272 		might_lock_read(&current->mm->mmap_lock);
5273 #endif
5274 }
5275 EXPORT_SYMBOL(__might_fault);
5276 #endif
5277 
5278 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5279 /*
5280  * Process all subpages of the specified huge page with the specified
5281  * operation.  The target subpage will be processed last to keep its
5282  * cache lines hot.
5283  */
5284 static inline void process_huge_page(
5285 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5286 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5287 	void *arg)
5288 {
5289 	int i, n, base, l;
5290 	unsigned long addr = addr_hint &
5291 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5292 
5293 	/* Process target subpage last to keep its cache lines hot */
5294 	might_sleep();
5295 	n = (addr_hint - addr) / PAGE_SIZE;
5296 	if (2 * n <= pages_per_huge_page) {
5297 		/* If target subpage in first half of huge page */
5298 		base = 0;
5299 		l = n;
5300 		/* Process subpages at the end of huge page */
5301 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5302 			cond_resched();
5303 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5304 		}
5305 	} else {
5306 		/* If target subpage in second half of huge page */
5307 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5308 		l = pages_per_huge_page - n;
5309 		/* Process subpages at the begin of huge page */
5310 		for (i = 0; i < base; i++) {
5311 			cond_resched();
5312 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5313 		}
5314 	}
5315 	/*
5316 	 * Process remaining subpages in left-right-left-right pattern
5317 	 * towards the target subpage
5318 	 */
5319 	for (i = 0; i < l; i++) {
5320 		int left_idx = base + i;
5321 		int right_idx = base + 2 * l - 1 - i;
5322 
5323 		cond_resched();
5324 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5325 		cond_resched();
5326 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5327 	}
5328 }
5329 
5330 static void clear_gigantic_page(struct page *page,
5331 				unsigned long addr,
5332 				unsigned int pages_per_huge_page)
5333 {
5334 	int i;
5335 	struct page *p = page;
5336 
5337 	might_sleep();
5338 	for (i = 0; i < pages_per_huge_page;
5339 	     i++, p = mem_map_next(p, page, i)) {
5340 		cond_resched();
5341 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5342 	}
5343 }
5344 
5345 static void clear_subpage(unsigned long addr, int idx, void *arg)
5346 {
5347 	struct page *page = arg;
5348 
5349 	clear_user_highpage(page + idx, addr);
5350 }
5351 
5352 void clear_huge_page(struct page *page,
5353 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5354 {
5355 	unsigned long addr = addr_hint &
5356 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5357 
5358 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5359 		clear_gigantic_page(page, addr, pages_per_huge_page);
5360 		return;
5361 	}
5362 
5363 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5364 }
5365 
5366 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5367 				    unsigned long addr,
5368 				    struct vm_area_struct *vma,
5369 				    unsigned int pages_per_huge_page)
5370 {
5371 	int i;
5372 	struct page *dst_base = dst;
5373 	struct page *src_base = src;
5374 
5375 	for (i = 0; i < pages_per_huge_page; ) {
5376 		cond_resched();
5377 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5378 
5379 		i++;
5380 		dst = mem_map_next(dst, dst_base, i);
5381 		src = mem_map_next(src, src_base, i);
5382 	}
5383 }
5384 
5385 struct copy_subpage_arg {
5386 	struct page *dst;
5387 	struct page *src;
5388 	struct vm_area_struct *vma;
5389 };
5390 
5391 static void copy_subpage(unsigned long addr, int idx, void *arg)
5392 {
5393 	struct copy_subpage_arg *copy_arg = arg;
5394 
5395 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5396 			   addr, copy_arg->vma);
5397 }
5398 
5399 void copy_user_huge_page(struct page *dst, struct page *src,
5400 			 unsigned long addr_hint, struct vm_area_struct *vma,
5401 			 unsigned int pages_per_huge_page)
5402 {
5403 	unsigned long addr = addr_hint &
5404 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5405 	struct copy_subpage_arg arg = {
5406 		.dst = dst,
5407 		.src = src,
5408 		.vma = vma,
5409 	};
5410 
5411 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5412 		copy_user_gigantic_page(dst, src, addr, vma,
5413 					pages_per_huge_page);
5414 		return;
5415 	}
5416 
5417 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5418 }
5419 
5420 long copy_huge_page_from_user(struct page *dst_page,
5421 				const void __user *usr_src,
5422 				unsigned int pages_per_huge_page,
5423 				bool allow_pagefault)
5424 {
5425 	void *page_kaddr;
5426 	unsigned long i, rc = 0;
5427 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5428 	struct page *subpage = dst_page;
5429 
5430 	for (i = 0; i < pages_per_huge_page;
5431 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5432 		if (allow_pagefault)
5433 			page_kaddr = kmap(subpage);
5434 		else
5435 			page_kaddr = kmap_atomic(subpage);
5436 		rc = copy_from_user(page_kaddr,
5437 				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5438 		if (allow_pagefault)
5439 			kunmap(subpage);
5440 		else
5441 			kunmap_atomic(page_kaddr);
5442 
5443 		ret_val -= (PAGE_SIZE - rc);
5444 		if (rc)
5445 			break;
5446 
5447 		cond_resched();
5448 	}
5449 	return ret_val;
5450 }
5451 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5452 
5453 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5454 
5455 static struct kmem_cache *page_ptl_cachep;
5456 
5457 void __init ptlock_cache_init(void)
5458 {
5459 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5460 			SLAB_PANIC, NULL);
5461 }
5462 
5463 bool ptlock_alloc(struct page *page)
5464 {
5465 	spinlock_t *ptl;
5466 
5467 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5468 	if (!ptl)
5469 		return false;
5470 	page->ptl = ptl;
5471 	return true;
5472 }
5473 
5474 void ptlock_free(struct page *page)
5475 {
5476 	kmem_cache_free(page_ptl_cachep, page->ptl);
5477 }
5478 #endif
5479