xref: /openbmc/linux/mm/memory.c (revision 6abeae2a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76 
77 #include <trace/events/kmem.h>
78 
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85 
86 #include "pgalloc-track.h"
87 #include "internal.h"
88 
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92 
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97 
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101 
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111 
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120 					1;
121 #else
122 					2;
123 #endif
124 
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128 	/*
129 	 * Those arches which don't have hw access flag feature need to
130 	 * implement their own helper. By default, "true" means pagefault
131 	 * will be hit on old pte.
132 	 */
133 	return true;
134 }
135 #endif
136 
137 static int __init disable_randmaps(char *s)
138 {
139 	randomize_va_space = 0;
140 	return 1;
141 }
142 __setup("norandmaps", disable_randmaps);
143 
144 unsigned long zero_pfn __read_mostly;
145 EXPORT_SYMBOL(zero_pfn);
146 
147 unsigned long highest_memmap_pfn __read_mostly;
148 
149 /*
150  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151  */
152 static int __init init_zero_pfn(void)
153 {
154 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
155 	return 0;
156 }
157 core_initcall(init_zero_pfn);
158 
159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
160 {
161 	trace_rss_stat(mm, member, count);
162 }
163 
164 #if defined(SPLIT_RSS_COUNTING)
165 
166 void sync_mm_rss(struct mm_struct *mm)
167 {
168 	int i;
169 
170 	for (i = 0; i < NR_MM_COUNTERS; i++) {
171 		if (current->rss_stat.count[i]) {
172 			add_mm_counter(mm, i, current->rss_stat.count[i]);
173 			current->rss_stat.count[i] = 0;
174 		}
175 	}
176 	current->rss_stat.events = 0;
177 }
178 
179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180 {
181 	struct task_struct *task = current;
182 
183 	if (likely(task->mm == mm))
184 		task->rss_stat.count[member] += val;
185 	else
186 		add_mm_counter(mm, member, val);
187 }
188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190 
191 /* sync counter once per 64 page faults */
192 #define TASK_RSS_EVENTS_THRESH	(64)
193 static void check_sync_rss_stat(struct task_struct *task)
194 {
195 	if (unlikely(task != current))
196 		return;
197 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
198 		sync_mm_rss(task->mm);
199 }
200 #else /* SPLIT_RSS_COUNTING */
201 
202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204 
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 }
208 
209 #endif /* SPLIT_RSS_COUNTING */
210 
211 /*
212  * Note: this doesn't free the actual pages themselves. That
213  * has been handled earlier when unmapping all the memory regions.
214  */
215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216 			   unsigned long addr)
217 {
218 	pgtable_t token = pmd_pgtable(*pmd);
219 	pmd_clear(pmd);
220 	pte_free_tlb(tlb, token, addr);
221 	mm_dec_nr_ptes(tlb->mm);
222 }
223 
224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225 				unsigned long addr, unsigned long end,
226 				unsigned long floor, unsigned long ceiling)
227 {
228 	pmd_t *pmd;
229 	unsigned long next;
230 	unsigned long start;
231 
232 	start = addr;
233 	pmd = pmd_offset(pud, addr);
234 	do {
235 		next = pmd_addr_end(addr, end);
236 		if (pmd_none_or_clear_bad(pmd))
237 			continue;
238 		free_pte_range(tlb, pmd, addr);
239 	} while (pmd++, addr = next, addr != end);
240 
241 	start &= PUD_MASK;
242 	if (start < floor)
243 		return;
244 	if (ceiling) {
245 		ceiling &= PUD_MASK;
246 		if (!ceiling)
247 			return;
248 	}
249 	if (end - 1 > ceiling - 1)
250 		return;
251 
252 	pmd = pmd_offset(pud, start);
253 	pud_clear(pud);
254 	pmd_free_tlb(tlb, pmd, start);
255 	mm_dec_nr_pmds(tlb->mm);
256 }
257 
258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
259 				unsigned long addr, unsigned long end,
260 				unsigned long floor, unsigned long ceiling)
261 {
262 	pud_t *pud;
263 	unsigned long next;
264 	unsigned long start;
265 
266 	start = addr;
267 	pud = pud_offset(p4d, addr);
268 	do {
269 		next = pud_addr_end(addr, end);
270 		if (pud_none_or_clear_bad(pud))
271 			continue;
272 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
273 	} while (pud++, addr = next, addr != end);
274 
275 	start &= P4D_MASK;
276 	if (start < floor)
277 		return;
278 	if (ceiling) {
279 		ceiling &= P4D_MASK;
280 		if (!ceiling)
281 			return;
282 	}
283 	if (end - 1 > ceiling - 1)
284 		return;
285 
286 	pud = pud_offset(p4d, start);
287 	p4d_clear(p4d);
288 	pud_free_tlb(tlb, pud, start);
289 	mm_dec_nr_puds(tlb->mm);
290 }
291 
292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293 				unsigned long addr, unsigned long end,
294 				unsigned long floor, unsigned long ceiling)
295 {
296 	p4d_t *p4d;
297 	unsigned long next;
298 	unsigned long start;
299 
300 	start = addr;
301 	p4d = p4d_offset(pgd, addr);
302 	do {
303 		next = p4d_addr_end(addr, end);
304 		if (p4d_none_or_clear_bad(p4d))
305 			continue;
306 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307 	} while (p4d++, addr = next, addr != end);
308 
309 	start &= PGDIR_MASK;
310 	if (start < floor)
311 		return;
312 	if (ceiling) {
313 		ceiling &= PGDIR_MASK;
314 		if (!ceiling)
315 			return;
316 	}
317 	if (end - 1 > ceiling - 1)
318 		return;
319 
320 	p4d = p4d_offset(pgd, start);
321 	pgd_clear(pgd);
322 	p4d_free_tlb(tlb, p4d, start);
323 }
324 
325 /*
326  * This function frees user-level page tables of a process.
327  */
328 void free_pgd_range(struct mmu_gather *tlb,
329 			unsigned long addr, unsigned long end,
330 			unsigned long floor, unsigned long ceiling)
331 {
332 	pgd_t *pgd;
333 	unsigned long next;
334 
335 	/*
336 	 * The next few lines have given us lots of grief...
337 	 *
338 	 * Why are we testing PMD* at this top level?  Because often
339 	 * there will be no work to do at all, and we'd prefer not to
340 	 * go all the way down to the bottom just to discover that.
341 	 *
342 	 * Why all these "- 1"s?  Because 0 represents both the bottom
343 	 * of the address space and the top of it (using -1 for the
344 	 * top wouldn't help much: the masks would do the wrong thing).
345 	 * The rule is that addr 0 and floor 0 refer to the bottom of
346 	 * the address space, but end 0 and ceiling 0 refer to the top
347 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
348 	 * that end 0 case should be mythical).
349 	 *
350 	 * Wherever addr is brought up or ceiling brought down, we must
351 	 * be careful to reject "the opposite 0" before it confuses the
352 	 * subsequent tests.  But what about where end is brought down
353 	 * by PMD_SIZE below? no, end can't go down to 0 there.
354 	 *
355 	 * Whereas we round start (addr) and ceiling down, by different
356 	 * masks at different levels, in order to test whether a table
357 	 * now has no other vmas using it, so can be freed, we don't
358 	 * bother to round floor or end up - the tests don't need that.
359 	 */
360 
361 	addr &= PMD_MASK;
362 	if (addr < floor) {
363 		addr += PMD_SIZE;
364 		if (!addr)
365 			return;
366 	}
367 	if (ceiling) {
368 		ceiling &= PMD_MASK;
369 		if (!ceiling)
370 			return;
371 	}
372 	if (end - 1 > ceiling - 1)
373 		end -= PMD_SIZE;
374 	if (addr > end - 1)
375 		return;
376 	/*
377 	 * We add page table cache pages with PAGE_SIZE,
378 	 * (see pte_free_tlb()), flush the tlb if we need
379 	 */
380 	tlb_change_page_size(tlb, PAGE_SIZE);
381 	pgd = pgd_offset(tlb->mm, addr);
382 	do {
383 		next = pgd_addr_end(addr, end);
384 		if (pgd_none_or_clear_bad(pgd))
385 			continue;
386 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
387 	} while (pgd++, addr = next, addr != end);
388 }
389 
390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
391 		unsigned long floor, unsigned long ceiling)
392 {
393 	while (vma) {
394 		struct vm_area_struct *next = vma->vm_next;
395 		unsigned long addr = vma->vm_start;
396 
397 		/*
398 		 * Hide vma from rmap and truncate_pagecache before freeing
399 		 * pgtables
400 		 */
401 		unlink_anon_vmas(vma);
402 		unlink_file_vma(vma);
403 
404 		if (is_vm_hugetlb_page(vma)) {
405 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
406 				floor, next ? next->vm_start : ceiling);
407 		} else {
408 			/*
409 			 * Optimization: gather nearby vmas into one call down
410 			 */
411 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
412 			       && !is_vm_hugetlb_page(next)) {
413 				vma = next;
414 				next = vma->vm_next;
415 				unlink_anon_vmas(vma);
416 				unlink_file_vma(vma);
417 			}
418 			free_pgd_range(tlb, addr, vma->vm_end,
419 				floor, next ? next->vm_start : ceiling);
420 		}
421 		vma = next;
422 	}
423 }
424 
425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
426 {
427 	spinlock_t *ptl;
428 	pgtable_t new = pte_alloc_one(mm);
429 	if (!new)
430 		return -ENOMEM;
431 
432 	/*
433 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
434 	 * visible before the pte is made visible to other CPUs by being
435 	 * put into page tables.
436 	 *
437 	 * The other side of the story is the pointer chasing in the page
438 	 * table walking code (when walking the page table without locking;
439 	 * ie. most of the time). Fortunately, these data accesses consist
440 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
441 	 * being the notable exception) will already guarantee loads are
442 	 * seen in-order. See the alpha page table accessors for the
443 	 * smp_rmb() barriers in page table walking code.
444 	 */
445 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446 
447 	ptl = pmd_lock(mm, pmd);
448 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
449 		mm_inc_nr_ptes(mm);
450 		pmd_populate(mm, pmd, new);
451 		new = NULL;
452 	}
453 	spin_unlock(ptl);
454 	if (new)
455 		pte_free(mm, new);
456 	return 0;
457 }
458 
459 int __pte_alloc_kernel(pmd_t *pmd)
460 {
461 	pte_t *new = pte_alloc_one_kernel(&init_mm);
462 	if (!new)
463 		return -ENOMEM;
464 
465 	smp_wmb(); /* See comment in __pte_alloc */
466 
467 	spin_lock(&init_mm.page_table_lock);
468 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
469 		pmd_populate_kernel(&init_mm, pmd, new);
470 		new = NULL;
471 	}
472 	spin_unlock(&init_mm.page_table_lock);
473 	if (new)
474 		pte_free_kernel(&init_mm, new);
475 	return 0;
476 }
477 
478 static inline void init_rss_vec(int *rss)
479 {
480 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 }
482 
483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
484 {
485 	int i;
486 
487 	if (current->mm == mm)
488 		sync_mm_rss(mm);
489 	for (i = 0; i < NR_MM_COUNTERS; i++)
490 		if (rss[i])
491 			add_mm_counter(mm, i, rss[i]);
492 }
493 
494 /*
495  * This function is called to print an error when a bad pte
496  * is found. For example, we might have a PFN-mapped pte in
497  * a region that doesn't allow it.
498  *
499  * The calling function must still handle the error.
500  */
501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502 			  pte_t pte, struct page *page)
503 {
504 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
505 	p4d_t *p4d = p4d_offset(pgd, addr);
506 	pud_t *pud = pud_offset(p4d, addr);
507 	pmd_t *pmd = pmd_offset(pud, addr);
508 	struct address_space *mapping;
509 	pgoff_t index;
510 	static unsigned long resume;
511 	static unsigned long nr_shown;
512 	static unsigned long nr_unshown;
513 
514 	/*
515 	 * Allow a burst of 60 reports, then keep quiet for that minute;
516 	 * or allow a steady drip of one report per second.
517 	 */
518 	if (nr_shown == 60) {
519 		if (time_before(jiffies, resume)) {
520 			nr_unshown++;
521 			return;
522 		}
523 		if (nr_unshown) {
524 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525 				 nr_unshown);
526 			nr_unshown = 0;
527 		}
528 		nr_shown = 0;
529 	}
530 	if (nr_shown++ == 0)
531 		resume = jiffies + 60 * HZ;
532 
533 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534 	index = linear_page_index(vma, addr);
535 
536 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
537 		 current->comm,
538 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
539 	if (page)
540 		dump_page(page, "bad pte");
541 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
542 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
543 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544 		 vma->vm_file,
545 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
546 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547 		 mapping ? mapping->a_ops->readpage : NULL);
548 	dump_stack();
549 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551 
552 /*
553  * vm_normal_page -- This function gets the "struct page" associated with a pte.
554  *
555  * "Special" mappings do not wish to be associated with a "struct page" (either
556  * it doesn't exist, or it exists but they don't want to touch it). In this
557  * case, NULL is returned here. "Normal" mappings do have a struct page.
558  *
559  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560  * pte bit, in which case this function is trivial. Secondly, an architecture
561  * may not have a spare pte bit, which requires a more complicated scheme,
562  * described below.
563  *
564  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565  * special mapping (even if there are underlying and valid "struct pages").
566  * COWed pages of a VM_PFNMAP are always normal.
567  *
568  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
570  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571  * mapping will always honor the rule
572  *
573  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574  *
575  * And for normal mappings this is false.
576  *
577  * This restricts such mappings to be a linear translation from virtual address
578  * to pfn. To get around this restriction, we allow arbitrary mappings so long
579  * as the vma is not a COW mapping; in that case, we know that all ptes are
580  * special (because none can have been COWed).
581  *
582  *
583  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584  *
585  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586  * page" backing, however the difference is that _all_ pages with a struct
587  * page (that is, those where pfn_valid is true) are refcounted and considered
588  * normal pages by the VM. The disadvantage is that pages are refcounted
589  * (which can be slower and simply not an option for some PFNMAP users). The
590  * advantage is that we don't have to follow the strict linearity rule of
591  * PFNMAP mappings in order to support COWable mappings.
592  *
593  */
594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595 			    pte_t pte)
596 {
597 	unsigned long pfn = pte_pfn(pte);
598 
599 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
600 		if (likely(!pte_special(pte)))
601 			goto check_pfn;
602 		if (vma->vm_ops && vma->vm_ops->find_special_page)
603 			return vma->vm_ops->find_special_page(vma, addr);
604 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605 			return NULL;
606 		if (is_zero_pfn(pfn))
607 			return NULL;
608 		if (pte_devmap(pte))
609 			return NULL;
610 
611 		print_bad_pte(vma, addr, pte, NULL);
612 		return NULL;
613 	}
614 
615 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616 
617 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618 		if (vma->vm_flags & VM_MIXEDMAP) {
619 			if (!pfn_valid(pfn))
620 				return NULL;
621 			goto out;
622 		} else {
623 			unsigned long off;
624 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
625 			if (pfn == vma->vm_pgoff + off)
626 				return NULL;
627 			if (!is_cow_mapping(vma->vm_flags))
628 				return NULL;
629 		}
630 	}
631 
632 	if (is_zero_pfn(pfn))
633 		return NULL;
634 
635 check_pfn:
636 	if (unlikely(pfn > highest_memmap_pfn)) {
637 		print_bad_pte(vma, addr, pte, NULL);
638 		return NULL;
639 	}
640 
641 	/*
642 	 * NOTE! We still have PageReserved() pages in the page tables.
643 	 * eg. VDSO mappings can cause them to exist.
644 	 */
645 out:
646 	return pfn_to_page(pfn);
647 }
648 
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651 				pmd_t pmd)
652 {
653 	unsigned long pfn = pmd_pfn(pmd);
654 
655 	/*
656 	 * There is no pmd_special() but there may be special pmds, e.g.
657 	 * in a direct-access (dax) mapping, so let's just replicate the
658 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659 	 */
660 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661 		if (vma->vm_flags & VM_MIXEDMAP) {
662 			if (!pfn_valid(pfn))
663 				return NULL;
664 			goto out;
665 		} else {
666 			unsigned long off;
667 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
668 			if (pfn == vma->vm_pgoff + off)
669 				return NULL;
670 			if (!is_cow_mapping(vma->vm_flags))
671 				return NULL;
672 		}
673 	}
674 
675 	if (pmd_devmap(pmd))
676 		return NULL;
677 	if (is_huge_zero_pmd(pmd))
678 		return NULL;
679 	if (unlikely(pfn > highest_memmap_pfn))
680 		return NULL;
681 
682 	/*
683 	 * NOTE! We still have PageReserved() pages in the page tables.
684 	 * eg. VDSO mappings can cause them to exist.
685 	 */
686 out:
687 	return pfn_to_page(pfn);
688 }
689 #endif
690 
691 /*
692  * copy one vm_area from one task to the other. Assumes the page tables
693  * already present in the new task to be cleared in the whole range
694  * covered by this vma.
695  */
696 
697 static unsigned long
698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
700 		unsigned long addr, int *rss)
701 {
702 	unsigned long vm_flags = vma->vm_flags;
703 	pte_t pte = *src_pte;
704 	struct page *page;
705 	swp_entry_t entry = pte_to_swp_entry(pte);
706 
707 	if (likely(!non_swap_entry(entry))) {
708 		if (swap_duplicate(entry) < 0)
709 			return entry.val;
710 
711 		/* make sure dst_mm is on swapoff's mmlist. */
712 		if (unlikely(list_empty(&dst_mm->mmlist))) {
713 			spin_lock(&mmlist_lock);
714 			if (list_empty(&dst_mm->mmlist))
715 				list_add(&dst_mm->mmlist,
716 						&src_mm->mmlist);
717 			spin_unlock(&mmlist_lock);
718 		}
719 		rss[MM_SWAPENTS]++;
720 	} else if (is_migration_entry(entry)) {
721 		page = migration_entry_to_page(entry);
722 
723 		rss[mm_counter(page)]++;
724 
725 		if (is_write_migration_entry(entry) &&
726 				is_cow_mapping(vm_flags)) {
727 			/*
728 			 * COW mappings require pages in both
729 			 * parent and child to be set to read.
730 			 */
731 			make_migration_entry_read(&entry);
732 			pte = swp_entry_to_pte(entry);
733 			if (pte_swp_soft_dirty(*src_pte))
734 				pte = pte_swp_mksoft_dirty(pte);
735 			if (pte_swp_uffd_wp(*src_pte))
736 				pte = pte_swp_mkuffd_wp(pte);
737 			set_pte_at(src_mm, addr, src_pte, pte);
738 		}
739 	} else if (is_device_private_entry(entry)) {
740 		page = device_private_entry_to_page(entry);
741 
742 		/*
743 		 * Update rss count even for unaddressable pages, as
744 		 * they should treated just like normal pages in this
745 		 * respect.
746 		 *
747 		 * We will likely want to have some new rss counters
748 		 * for unaddressable pages, at some point. But for now
749 		 * keep things as they are.
750 		 */
751 		get_page(page);
752 		rss[mm_counter(page)]++;
753 		page_dup_rmap(page, false);
754 
755 		/*
756 		 * We do not preserve soft-dirty information, because so
757 		 * far, checkpoint/restore is the only feature that
758 		 * requires that. And checkpoint/restore does not work
759 		 * when a device driver is involved (you cannot easily
760 		 * save and restore device driver state).
761 		 */
762 		if (is_write_device_private_entry(entry) &&
763 		    is_cow_mapping(vm_flags)) {
764 			make_device_private_entry_read(&entry);
765 			pte = swp_entry_to_pte(entry);
766 			if (pte_swp_uffd_wp(*src_pte))
767 				pte = pte_swp_mkuffd_wp(pte);
768 			set_pte_at(src_mm, addr, src_pte, pte);
769 		}
770 	}
771 	set_pte_at(dst_mm, addr, dst_pte, pte);
772 	return 0;
773 }
774 
775 /*
776  * Copy a present and normal page if necessary.
777  *
778  * NOTE! The usual case is that this doesn't need to do
779  * anything, and can just return a positive value. That
780  * will let the caller know that it can just increase
781  * the page refcount and re-use the pte the traditional
782  * way.
783  *
784  * But _if_ we need to copy it because it needs to be
785  * pinned in the parent (and the child should get its own
786  * copy rather than just a reference to the same page),
787  * we'll do that here and return zero to let the caller
788  * know we're done.
789  *
790  * And if we need a pre-allocated page but don't yet have
791  * one, return a negative error to let the preallocation
792  * code know so that it can do so outside the page table
793  * lock.
794  */
795 static inline int
796 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
797 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
798 		  struct page **prealloc, pte_t pte, struct page *page)
799 {
800 	struct mm_struct *src_mm = src_vma->vm_mm;
801 	struct page *new_page;
802 
803 	if (!is_cow_mapping(src_vma->vm_flags))
804 		return 1;
805 
806 	/*
807 	 * What we want to do is to check whether this page may
808 	 * have been pinned by the parent process.  If so,
809 	 * instead of wrprotect the pte on both sides, we copy
810 	 * the page immediately so that we'll always guarantee
811 	 * the pinned page won't be randomly replaced in the
812 	 * future.
813 	 *
814 	 * The page pinning checks are just "has this mm ever
815 	 * seen pinning", along with the (inexact) check of
816 	 * the page count. That might give false positives for
817 	 * for pinning, but it will work correctly.
818 	 */
819 	if (likely(!atomic_read(&src_mm->has_pinned)))
820 		return 1;
821 	if (likely(!page_maybe_dma_pinned(page)))
822 		return 1;
823 
824 	new_page = *prealloc;
825 	if (!new_page)
826 		return -EAGAIN;
827 
828 	/*
829 	 * We have a prealloc page, all good!  Take it
830 	 * over and copy the page & arm it.
831 	 */
832 	*prealloc = NULL;
833 	copy_user_highpage(new_page, page, addr, src_vma);
834 	__SetPageUptodate(new_page);
835 	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
836 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
837 	rss[mm_counter(new_page)]++;
838 
839 	/* All done, just insert the new page copy in the child */
840 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
841 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
842 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
843 	return 0;
844 }
845 
846 /*
847  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
848  * is required to copy this pte.
849  */
850 static inline int
851 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
852 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
853 		 struct page **prealloc)
854 {
855 	struct mm_struct *src_mm = src_vma->vm_mm;
856 	unsigned long vm_flags = src_vma->vm_flags;
857 	pte_t pte = *src_pte;
858 	struct page *page;
859 
860 	page = vm_normal_page(src_vma, addr, pte);
861 	if (page) {
862 		int retval;
863 
864 		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
865 					   addr, rss, prealloc, pte, page);
866 		if (retval <= 0)
867 			return retval;
868 
869 		get_page(page);
870 		page_dup_rmap(page, false);
871 		rss[mm_counter(page)]++;
872 	}
873 
874 	/*
875 	 * If it's a COW mapping, write protect it both
876 	 * in the parent and the child
877 	 */
878 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
879 		ptep_set_wrprotect(src_mm, addr, src_pte);
880 		pte = pte_wrprotect(pte);
881 	}
882 
883 	/*
884 	 * If it's a shared mapping, mark it clean in
885 	 * the child
886 	 */
887 	if (vm_flags & VM_SHARED)
888 		pte = pte_mkclean(pte);
889 	pte = pte_mkold(pte);
890 
891 	/*
892 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
893 	 * does not have the VM_UFFD_WP, which means that the uffd
894 	 * fork event is not enabled.
895 	 */
896 	if (!(vm_flags & VM_UFFD_WP))
897 		pte = pte_clear_uffd_wp(pte);
898 
899 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
900 	return 0;
901 }
902 
903 static inline struct page *
904 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
905 		   unsigned long addr)
906 {
907 	struct page *new_page;
908 
909 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
910 	if (!new_page)
911 		return NULL;
912 
913 	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
914 		put_page(new_page);
915 		return NULL;
916 	}
917 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
918 
919 	return new_page;
920 }
921 
922 static int
923 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
925 	       unsigned long end)
926 {
927 	struct mm_struct *dst_mm = dst_vma->vm_mm;
928 	struct mm_struct *src_mm = src_vma->vm_mm;
929 	pte_t *orig_src_pte, *orig_dst_pte;
930 	pte_t *src_pte, *dst_pte;
931 	spinlock_t *src_ptl, *dst_ptl;
932 	int progress, ret = 0;
933 	int rss[NR_MM_COUNTERS];
934 	swp_entry_t entry = (swp_entry_t){0};
935 	struct page *prealloc = NULL;
936 
937 again:
938 	progress = 0;
939 	init_rss_vec(rss);
940 
941 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942 	if (!dst_pte) {
943 		ret = -ENOMEM;
944 		goto out;
945 	}
946 	src_pte = pte_offset_map(src_pmd, addr);
947 	src_ptl = pte_lockptr(src_mm, src_pmd);
948 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
949 	orig_src_pte = src_pte;
950 	orig_dst_pte = dst_pte;
951 	arch_enter_lazy_mmu_mode();
952 
953 	do {
954 		/*
955 		 * We are holding two locks at this point - either of them
956 		 * could generate latencies in another task on another CPU.
957 		 */
958 		if (progress >= 32) {
959 			progress = 0;
960 			if (need_resched() ||
961 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
962 				break;
963 		}
964 		if (pte_none(*src_pte)) {
965 			progress++;
966 			continue;
967 		}
968 		if (unlikely(!pte_present(*src_pte))) {
969 			entry.val = copy_nonpresent_pte(dst_mm, src_mm,
970 							dst_pte, src_pte,
971 							src_vma, addr, rss);
972 			if (entry.val)
973 				break;
974 			progress += 8;
975 			continue;
976 		}
977 		/* copy_present_pte() will clear `*prealloc' if consumed */
978 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
979 				       addr, rss, &prealloc);
980 		/*
981 		 * If we need a pre-allocated page for this pte, drop the
982 		 * locks, allocate, and try again.
983 		 */
984 		if (unlikely(ret == -EAGAIN))
985 			break;
986 		if (unlikely(prealloc)) {
987 			/*
988 			 * pre-alloc page cannot be reused by next time so as
989 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
990 			 * will allocate page according to address).  This
991 			 * could only happen if one pinned pte changed.
992 			 */
993 			put_page(prealloc);
994 			prealloc = NULL;
995 		}
996 		progress += 8;
997 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
998 
999 	arch_leave_lazy_mmu_mode();
1000 	spin_unlock(src_ptl);
1001 	pte_unmap(orig_src_pte);
1002 	add_mm_rss_vec(dst_mm, rss);
1003 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1004 	cond_resched();
1005 
1006 	if (entry.val) {
1007 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1008 			ret = -ENOMEM;
1009 			goto out;
1010 		}
1011 		entry.val = 0;
1012 	} else if (ret) {
1013 		WARN_ON_ONCE(ret != -EAGAIN);
1014 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1015 		if (!prealloc)
1016 			return -ENOMEM;
1017 		/* We've captured and resolved the error. Reset, try again. */
1018 		ret = 0;
1019 	}
1020 	if (addr != end)
1021 		goto again;
1022 out:
1023 	if (unlikely(prealloc))
1024 		put_page(prealloc);
1025 	return ret;
1026 }
1027 
1028 static inline int
1029 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1030 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1031 	       unsigned long end)
1032 {
1033 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1034 	struct mm_struct *src_mm = src_vma->vm_mm;
1035 	pmd_t *src_pmd, *dst_pmd;
1036 	unsigned long next;
1037 
1038 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1039 	if (!dst_pmd)
1040 		return -ENOMEM;
1041 	src_pmd = pmd_offset(src_pud, addr);
1042 	do {
1043 		next = pmd_addr_end(addr, end);
1044 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1045 			|| pmd_devmap(*src_pmd)) {
1046 			int err;
1047 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1048 			err = copy_huge_pmd(dst_mm, src_mm,
1049 					    dst_pmd, src_pmd, addr, src_vma);
1050 			if (err == -ENOMEM)
1051 				return -ENOMEM;
1052 			if (!err)
1053 				continue;
1054 			/* fall through */
1055 		}
1056 		if (pmd_none_or_clear_bad(src_pmd))
1057 			continue;
1058 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1059 				   addr, next))
1060 			return -ENOMEM;
1061 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1062 	return 0;
1063 }
1064 
1065 static inline int
1066 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1068 	       unsigned long end)
1069 {
1070 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1071 	struct mm_struct *src_mm = src_vma->vm_mm;
1072 	pud_t *src_pud, *dst_pud;
1073 	unsigned long next;
1074 
1075 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1076 	if (!dst_pud)
1077 		return -ENOMEM;
1078 	src_pud = pud_offset(src_p4d, addr);
1079 	do {
1080 		next = pud_addr_end(addr, end);
1081 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1082 			int err;
1083 
1084 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1085 			err = copy_huge_pud(dst_mm, src_mm,
1086 					    dst_pud, src_pud, addr, src_vma);
1087 			if (err == -ENOMEM)
1088 				return -ENOMEM;
1089 			if (!err)
1090 				continue;
1091 			/* fall through */
1092 		}
1093 		if (pud_none_or_clear_bad(src_pud))
1094 			continue;
1095 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1096 				   addr, next))
1097 			return -ENOMEM;
1098 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1099 	return 0;
1100 }
1101 
1102 static inline int
1103 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1105 	       unsigned long end)
1106 {
1107 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1108 	p4d_t *src_p4d, *dst_p4d;
1109 	unsigned long next;
1110 
1111 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1112 	if (!dst_p4d)
1113 		return -ENOMEM;
1114 	src_p4d = p4d_offset(src_pgd, addr);
1115 	do {
1116 		next = p4d_addr_end(addr, end);
1117 		if (p4d_none_or_clear_bad(src_p4d))
1118 			continue;
1119 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1120 				   addr, next))
1121 			return -ENOMEM;
1122 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1123 	return 0;
1124 }
1125 
1126 int
1127 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1128 {
1129 	pgd_t *src_pgd, *dst_pgd;
1130 	unsigned long next;
1131 	unsigned long addr = src_vma->vm_start;
1132 	unsigned long end = src_vma->vm_end;
1133 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1134 	struct mm_struct *src_mm = src_vma->vm_mm;
1135 	struct mmu_notifier_range range;
1136 	bool is_cow;
1137 	int ret;
1138 
1139 	/*
1140 	 * Don't copy ptes where a page fault will fill them correctly.
1141 	 * Fork becomes much lighter when there are big shared or private
1142 	 * readonly mappings. The tradeoff is that copy_page_range is more
1143 	 * efficient than faulting.
1144 	 */
1145 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1146 	    !src_vma->anon_vma)
1147 		return 0;
1148 
1149 	if (is_vm_hugetlb_page(src_vma))
1150 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1151 
1152 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1153 		/*
1154 		 * We do not free on error cases below as remove_vma
1155 		 * gets called on error from higher level routine
1156 		 */
1157 		ret = track_pfn_copy(src_vma);
1158 		if (ret)
1159 			return ret;
1160 	}
1161 
1162 	/*
1163 	 * We need to invalidate the secondary MMU mappings only when
1164 	 * there could be a permission downgrade on the ptes of the
1165 	 * parent mm. And a permission downgrade will only happen if
1166 	 * is_cow_mapping() returns true.
1167 	 */
1168 	is_cow = is_cow_mapping(src_vma->vm_flags);
1169 
1170 	if (is_cow) {
1171 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1172 					0, src_vma, src_mm, addr, end);
1173 		mmu_notifier_invalidate_range_start(&range);
1174 		/*
1175 		 * Disabling preemption is not needed for the write side, as
1176 		 * the read side doesn't spin, but goes to the mmap_lock.
1177 		 *
1178 		 * Use the raw variant of the seqcount_t write API to avoid
1179 		 * lockdep complaining about preemptibility.
1180 		 */
1181 		mmap_assert_write_locked(src_mm);
1182 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1183 	}
1184 
1185 	ret = 0;
1186 	dst_pgd = pgd_offset(dst_mm, addr);
1187 	src_pgd = pgd_offset(src_mm, addr);
1188 	do {
1189 		next = pgd_addr_end(addr, end);
1190 		if (pgd_none_or_clear_bad(src_pgd))
1191 			continue;
1192 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1193 					    addr, next))) {
1194 			ret = -ENOMEM;
1195 			break;
1196 		}
1197 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1198 
1199 	if (is_cow) {
1200 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1201 		mmu_notifier_invalidate_range_end(&range);
1202 	}
1203 	return ret;
1204 }
1205 
1206 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1207 				struct vm_area_struct *vma, pmd_t *pmd,
1208 				unsigned long addr, unsigned long end,
1209 				struct zap_details *details)
1210 {
1211 	struct mm_struct *mm = tlb->mm;
1212 	int force_flush = 0;
1213 	int rss[NR_MM_COUNTERS];
1214 	spinlock_t *ptl;
1215 	pte_t *start_pte;
1216 	pte_t *pte;
1217 	swp_entry_t entry;
1218 
1219 	tlb_change_page_size(tlb, PAGE_SIZE);
1220 again:
1221 	init_rss_vec(rss);
1222 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1223 	pte = start_pte;
1224 	flush_tlb_batched_pending(mm);
1225 	arch_enter_lazy_mmu_mode();
1226 	do {
1227 		pte_t ptent = *pte;
1228 		if (pte_none(ptent))
1229 			continue;
1230 
1231 		if (need_resched())
1232 			break;
1233 
1234 		if (pte_present(ptent)) {
1235 			struct page *page;
1236 
1237 			page = vm_normal_page(vma, addr, ptent);
1238 			if (unlikely(details) && page) {
1239 				/*
1240 				 * unmap_shared_mapping_pages() wants to
1241 				 * invalidate cache without truncating:
1242 				 * unmap shared but keep private pages.
1243 				 */
1244 				if (details->check_mapping &&
1245 				    details->check_mapping != page_rmapping(page))
1246 					continue;
1247 			}
1248 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1249 							tlb->fullmm);
1250 			tlb_remove_tlb_entry(tlb, pte, addr);
1251 			if (unlikely(!page))
1252 				continue;
1253 
1254 			if (!PageAnon(page)) {
1255 				if (pte_dirty(ptent)) {
1256 					force_flush = 1;
1257 					set_page_dirty(page);
1258 				}
1259 				if (pte_young(ptent) &&
1260 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1261 					mark_page_accessed(page);
1262 			}
1263 			rss[mm_counter(page)]--;
1264 			page_remove_rmap(page, false);
1265 			if (unlikely(page_mapcount(page) < 0))
1266 				print_bad_pte(vma, addr, ptent, page);
1267 			if (unlikely(__tlb_remove_page(tlb, page))) {
1268 				force_flush = 1;
1269 				addr += PAGE_SIZE;
1270 				break;
1271 			}
1272 			continue;
1273 		}
1274 
1275 		entry = pte_to_swp_entry(ptent);
1276 		if (is_device_private_entry(entry)) {
1277 			struct page *page = device_private_entry_to_page(entry);
1278 
1279 			if (unlikely(details && details->check_mapping)) {
1280 				/*
1281 				 * unmap_shared_mapping_pages() wants to
1282 				 * invalidate cache without truncating:
1283 				 * unmap shared but keep private pages.
1284 				 */
1285 				if (details->check_mapping !=
1286 				    page_rmapping(page))
1287 					continue;
1288 			}
1289 
1290 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1291 			rss[mm_counter(page)]--;
1292 			page_remove_rmap(page, false);
1293 			put_page(page);
1294 			continue;
1295 		}
1296 
1297 		/* If details->check_mapping, we leave swap entries. */
1298 		if (unlikely(details))
1299 			continue;
1300 
1301 		if (!non_swap_entry(entry))
1302 			rss[MM_SWAPENTS]--;
1303 		else if (is_migration_entry(entry)) {
1304 			struct page *page;
1305 
1306 			page = migration_entry_to_page(entry);
1307 			rss[mm_counter(page)]--;
1308 		}
1309 		if (unlikely(!free_swap_and_cache(entry)))
1310 			print_bad_pte(vma, addr, ptent, NULL);
1311 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1312 	} while (pte++, addr += PAGE_SIZE, addr != end);
1313 
1314 	add_mm_rss_vec(mm, rss);
1315 	arch_leave_lazy_mmu_mode();
1316 
1317 	/* Do the actual TLB flush before dropping ptl */
1318 	if (force_flush)
1319 		tlb_flush_mmu_tlbonly(tlb);
1320 	pte_unmap_unlock(start_pte, ptl);
1321 
1322 	/*
1323 	 * If we forced a TLB flush (either due to running out of
1324 	 * batch buffers or because we needed to flush dirty TLB
1325 	 * entries before releasing the ptl), free the batched
1326 	 * memory too. Restart if we didn't do everything.
1327 	 */
1328 	if (force_flush) {
1329 		force_flush = 0;
1330 		tlb_flush_mmu(tlb);
1331 	}
1332 
1333 	if (addr != end) {
1334 		cond_resched();
1335 		goto again;
1336 	}
1337 
1338 	return addr;
1339 }
1340 
1341 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1342 				struct vm_area_struct *vma, pud_t *pud,
1343 				unsigned long addr, unsigned long end,
1344 				struct zap_details *details)
1345 {
1346 	pmd_t *pmd;
1347 	unsigned long next;
1348 
1349 	pmd = pmd_offset(pud, addr);
1350 	do {
1351 		next = pmd_addr_end(addr, end);
1352 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1353 			if (next - addr != HPAGE_PMD_SIZE)
1354 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1355 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1356 				goto next;
1357 			/* fall through */
1358 		}
1359 		/*
1360 		 * Here there can be other concurrent MADV_DONTNEED or
1361 		 * trans huge page faults running, and if the pmd is
1362 		 * none or trans huge it can change under us. This is
1363 		 * because MADV_DONTNEED holds the mmap_lock in read
1364 		 * mode.
1365 		 */
1366 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1367 			goto next;
1368 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1369 next:
1370 		cond_resched();
1371 	} while (pmd++, addr = next, addr != end);
1372 
1373 	return addr;
1374 }
1375 
1376 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1377 				struct vm_area_struct *vma, p4d_t *p4d,
1378 				unsigned long addr, unsigned long end,
1379 				struct zap_details *details)
1380 {
1381 	pud_t *pud;
1382 	unsigned long next;
1383 
1384 	pud = pud_offset(p4d, addr);
1385 	do {
1386 		next = pud_addr_end(addr, end);
1387 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1388 			if (next - addr != HPAGE_PUD_SIZE) {
1389 				mmap_assert_locked(tlb->mm);
1390 				split_huge_pud(vma, pud, addr);
1391 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1392 				goto next;
1393 			/* fall through */
1394 		}
1395 		if (pud_none_or_clear_bad(pud))
1396 			continue;
1397 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1398 next:
1399 		cond_resched();
1400 	} while (pud++, addr = next, addr != end);
1401 
1402 	return addr;
1403 }
1404 
1405 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1406 				struct vm_area_struct *vma, pgd_t *pgd,
1407 				unsigned long addr, unsigned long end,
1408 				struct zap_details *details)
1409 {
1410 	p4d_t *p4d;
1411 	unsigned long next;
1412 
1413 	p4d = p4d_offset(pgd, addr);
1414 	do {
1415 		next = p4d_addr_end(addr, end);
1416 		if (p4d_none_or_clear_bad(p4d))
1417 			continue;
1418 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1419 	} while (p4d++, addr = next, addr != end);
1420 
1421 	return addr;
1422 }
1423 
1424 void unmap_page_range(struct mmu_gather *tlb,
1425 			     struct vm_area_struct *vma,
1426 			     unsigned long addr, unsigned long end,
1427 			     struct zap_details *details)
1428 {
1429 	pgd_t *pgd;
1430 	unsigned long next;
1431 
1432 	BUG_ON(addr >= end);
1433 	tlb_start_vma(tlb, vma);
1434 	pgd = pgd_offset(vma->vm_mm, addr);
1435 	do {
1436 		next = pgd_addr_end(addr, end);
1437 		if (pgd_none_or_clear_bad(pgd))
1438 			continue;
1439 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1440 	} while (pgd++, addr = next, addr != end);
1441 	tlb_end_vma(tlb, vma);
1442 }
1443 
1444 
1445 static void unmap_single_vma(struct mmu_gather *tlb,
1446 		struct vm_area_struct *vma, unsigned long start_addr,
1447 		unsigned long end_addr,
1448 		struct zap_details *details)
1449 {
1450 	unsigned long start = max(vma->vm_start, start_addr);
1451 	unsigned long end;
1452 
1453 	if (start >= vma->vm_end)
1454 		return;
1455 	end = min(vma->vm_end, end_addr);
1456 	if (end <= vma->vm_start)
1457 		return;
1458 
1459 	if (vma->vm_file)
1460 		uprobe_munmap(vma, start, end);
1461 
1462 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1463 		untrack_pfn(vma, 0, 0);
1464 
1465 	if (start != end) {
1466 		if (unlikely(is_vm_hugetlb_page(vma))) {
1467 			/*
1468 			 * It is undesirable to test vma->vm_file as it
1469 			 * should be non-null for valid hugetlb area.
1470 			 * However, vm_file will be NULL in the error
1471 			 * cleanup path of mmap_region. When
1472 			 * hugetlbfs ->mmap method fails,
1473 			 * mmap_region() nullifies vma->vm_file
1474 			 * before calling this function to clean up.
1475 			 * Since no pte has actually been setup, it is
1476 			 * safe to do nothing in this case.
1477 			 */
1478 			if (vma->vm_file) {
1479 				i_mmap_lock_write(vma->vm_file->f_mapping);
1480 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1481 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1482 			}
1483 		} else
1484 			unmap_page_range(tlb, vma, start, end, details);
1485 	}
1486 }
1487 
1488 /**
1489  * unmap_vmas - unmap a range of memory covered by a list of vma's
1490  * @tlb: address of the caller's struct mmu_gather
1491  * @vma: the starting vma
1492  * @start_addr: virtual address at which to start unmapping
1493  * @end_addr: virtual address at which to end unmapping
1494  *
1495  * Unmap all pages in the vma list.
1496  *
1497  * Only addresses between `start' and `end' will be unmapped.
1498  *
1499  * The VMA list must be sorted in ascending virtual address order.
1500  *
1501  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1502  * range after unmap_vmas() returns.  So the only responsibility here is to
1503  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1504  * drops the lock and schedules.
1505  */
1506 void unmap_vmas(struct mmu_gather *tlb,
1507 		struct vm_area_struct *vma, unsigned long start_addr,
1508 		unsigned long end_addr)
1509 {
1510 	struct mmu_notifier_range range;
1511 
1512 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1513 				start_addr, end_addr);
1514 	mmu_notifier_invalidate_range_start(&range);
1515 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1516 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1517 	mmu_notifier_invalidate_range_end(&range);
1518 }
1519 
1520 /**
1521  * zap_page_range - remove user pages in a given range
1522  * @vma: vm_area_struct holding the applicable pages
1523  * @start: starting address of pages to zap
1524  * @size: number of bytes to zap
1525  *
1526  * Caller must protect the VMA list
1527  */
1528 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1529 		unsigned long size)
1530 {
1531 	struct mmu_notifier_range range;
1532 	struct mmu_gather tlb;
1533 
1534 	lru_add_drain();
1535 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1536 				start, start + size);
1537 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1538 	update_hiwater_rss(vma->vm_mm);
1539 	mmu_notifier_invalidate_range_start(&range);
1540 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1541 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1542 	mmu_notifier_invalidate_range_end(&range);
1543 	tlb_finish_mmu(&tlb, start, range.end);
1544 }
1545 
1546 /**
1547  * zap_page_range_single - remove user pages in a given range
1548  * @vma: vm_area_struct holding the applicable pages
1549  * @address: starting address of pages to zap
1550  * @size: number of bytes to zap
1551  * @details: details of shared cache invalidation
1552  *
1553  * The range must fit into one VMA.
1554  */
1555 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1556 		unsigned long size, struct zap_details *details)
1557 {
1558 	struct mmu_notifier_range range;
1559 	struct mmu_gather tlb;
1560 
1561 	lru_add_drain();
1562 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1563 				address, address + size);
1564 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1565 	update_hiwater_rss(vma->vm_mm);
1566 	mmu_notifier_invalidate_range_start(&range);
1567 	unmap_single_vma(&tlb, vma, address, range.end, details);
1568 	mmu_notifier_invalidate_range_end(&range);
1569 	tlb_finish_mmu(&tlb, address, range.end);
1570 }
1571 
1572 /**
1573  * zap_vma_ptes - remove ptes mapping the vma
1574  * @vma: vm_area_struct holding ptes to be zapped
1575  * @address: starting address of pages to zap
1576  * @size: number of bytes to zap
1577  *
1578  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1579  *
1580  * The entire address range must be fully contained within the vma.
1581  *
1582  */
1583 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1584 		unsigned long size)
1585 {
1586 	if (address < vma->vm_start || address + size > vma->vm_end ||
1587 	    		!(vma->vm_flags & VM_PFNMAP))
1588 		return;
1589 
1590 	zap_page_range_single(vma, address, size, NULL);
1591 }
1592 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1593 
1594 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1595 {
1596 	pgd_t *pgd;
1597 	p4d_t *p4d;
1598 	pud_t *pud;
1599 	pmd_t *pmd;
1600 
1601 	pgd = pgd_offset(mm, addr);
1602 	p4d = p4d_alloc(mm, pgd, addr);
1603 	if (!p4d)
1604 		return NULL;
1605 	pud = pud_alloc(mm, p4d, addr);
1606 	if (!pud)
1607 		return NULL;
1608 	pmd = pmd_alloc(mm, pud, addr);
1609 	if (!pmd)
1610 		return NULL;
1611 
1612 	VM_BUG_ON(pmd_trans_huge(*pmd));
1613 	return pmd;
1614 }
1615 
1616 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1617 			spinlock_t **ptl)
1618 {
1619 	pmd_t *pmd = walk_to_pmd(mm, addr);
1620 
1621 	if (!pmd)
1622 		return NULL;
1623 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1624 }
1625 
1626 static int validate_page_before_insert(struct page *page)
1627 {
1628 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1629 		return -EINVAL;
1630 	flush_dcache_page(page);
1631 	return 0;
1632 }
1633 
1634 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1635 			unsigned long addr, struct page *page, pgprot_t prot)
1636 {
1637 	if (!pte_none(*pte))
1638 		return -EBUSY;
1639 	/* Ok, finally just insert the thing.. */
1640 	get_page(page);
1641 	inc_mm_counter_fast(mm, mm_counter_file(page));
1642 	page_add_file_rmap(page, false);
1643 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1644 	return 0;
1645 }
1646 
1647 /*
1648  * This is the old fallback for page remapping.
1649  *
1650  * For historical reasons, it only allows reserved pages. Only
1651  * old drivers should use this, and they needed to mark their
1652  * pages reserved for the old functions anyway.
1653  */
1654 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1655 			struct page *page, pgprot_t prot)
1656 {
1657 	struct mm_struct *mm = vma->vm_mm;
1658 	int retval;
1659 	pte_t *pte;
1660 	spinlock_t *ptl;
1661 
1662 	retval = validate_page_before_insert(page);
1663 	if (retval)
1664 		goto out;
1665 	retval = -ENOMEM;
1666 	pte = get_locked_pte(mm, addr, &ptl);
1667 	if (!pte)
1668 		goto out;
1669 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1670 	pte_unmap_unlock(pte, ptl);
1671 out:
1672 	return retval;
1673 }
1674 
1675 #ifdef pte_index
1676 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1677 			unsigned long addr, struct page *page, pgprot_t prot)
1678 {
1679 	int err;
1680 
1681 	if (!page_count(page))
1682 		return -EINVAL;
1683 	err = validate_page_before_insert(page);
1684 	if (err)
1685 		return err;
1686 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1687 }
1688 
1689 /* insert_pages() amortizes the cost of spinlock operations
1690  * when inserting pages in a loop. Arch *must* define pte_index.
1691  */
1692 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1693 			struct page **pages, unsigned long *num, pgprot_t prot)
1694 {
1695 	pmd_t *pmd = NULL;
1696 	pte_t *start_pte, *pte;
1697 	spinlock_t *pte_lock;
1698 	struct mm_struct *const mm = vma->vm_mm;
1699 	unsigned long curr_page_idx = 0;
1700 	unsigned long remaining_pages_total = *num;
1701 	unsigned long pages_to_write_in_pmd;
1702 	int ret;
1703 more:
1704 	ret = -EFAULT;
1705 	pmd = walk_to_pmd(mm, addr);
1706 	if (!pmd)
1707 		goto out;
1708 
1709 	pages_to_write_in_pmd = min_t(unsigned long,
1710 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1711 
1712 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1713 	ret = -ENOMEM;
1714 	if (pte_alloc(mm, pmd))
1715 		goto out;
1716 
1717 	while (pages_to_write_in_pmd) {
1718 		int pte_idx = 0;
1719 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1720 
1721 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1722 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1723 			int err = insert_page_in_batch_locked(mm, pte,
1724 				addr, pages[curr_page_idx], prot);
1725 			if (unlikely(err)) {
1726 				pte_unmap_unlock(start_pte, pte_lock);
1727 				ret = err;
1728 				remaining_pages_total -= pte_idx;
1729 				goto out;
1730 			}
1731 			addr += PAGE_SIZE;
1732 			++curr_page_idx;
1733 		}
1734 		pte_unmap_unlock(start_pte, pte_lock);
1735 		pages_to_write_in_pmd -= batch_size;
1736 		remaining_pages_total -= batch_size;
1737 	}
1738 	if (remaining_pages_total)
1739 		goto more;
1740 	ret = 0;
1741 out:
1742 	*num = remaining_pages_total;
1743 	return ret;
1744 }
1745 #endif  /* ifdef pte_index */
1746 
1747 /**
1748  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1749  * @vma: user vma to map to
1750  * @addr: target start user address of these pages
1751  * @pages: source kernel pages
1752  * @num: in: number of pages to map. out: number of pages that were *not*
1753  * mapped. (0 means all pages were successfully mapped).
1754  *
1755  * Preferred over vm_insert_page() when inserting multiple pages.
1756  *
1757  * In case of error, we may have mapped a subset of the provided
1758  * pages. It is the caller's responsibility to account for this case.
1759  *
1760  * The same restrictions apply as in vm_insert_page().
1761  */
1762 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1763 			struct page **pages, unsigned long *num)
1764 {
1765 #ifdef pte_index
1766 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1767 
1768 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1769 		return -EFAULT;
1770 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1771 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1772 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1773 		vma->vm_flags |= VM_MIXEDMAP;
1774 	}
1775 	/* Defer page refcount checking till we're about to map that page. */
1776 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1777 #else
1778 	unsigned long idx = 0, pgcount = *num;
1779 	int err = -EINVAL;
1780 
1781 	for (; idx < pgcount; ++idx) {
1782 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1783 		if (err)
1784 			break;
1785 	}
1786 	*num = pgcount - idx;
1787 	return err;
1788 #endif  /* ifdef pte_index */
1789 }
1790 EXPORT_SYMBOL(vm_insert_pages);
1791 
1792 /**
1793  * vm_insert_page - insert single page into user vma
1794  * @vma: user vma to map to
1795  * @addr: target user address of this page
1796  * @page: source kernel page
1797  *
1798  * This allows drivers to insert individual pages they've allocated
1799  * into a user vma.
1800  *
1801  * The page has to be a nice clean _individual_ kernel allocation.
1802  * If you allocate a compound page, you need to have marked it as
1803  * such (__GFP_COMP), or manually just split the page up yourself
1804  * (see split_page()).
1805  *
1806  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1807  * took an arbitrary page protection parameter. This doesn't allow
1808  * that. Your vma protection will have to be set up correctly, which
1809  * means that if you want a shared writable mapping, you'd better
1810  * ask for a shared writable mapping!
1811  *
1812  * The page does not need to be reserved.
1813  *
1814  * Usually this function is called from f_op->mmap() handler
1815  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1816  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1817  * function from other places, for example from page-fault handler.
1818  *
1819  * Return: %0 on success, negative error code otherwise.
1820  */
1821 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1822 			struct page *page)
1823 {
1824 	if (addr < vma->vm_start || addr >= vma->vm_end)
1825 		return -EFAULT;
1826 	if (!page_count(page))
1827 		return -EINVAL;
1828 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1829 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1830 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1831 		vma->vm_flags |= VM_MIXEDMAP;
1832 	}
1833 	return insert_page(vma, addr, page, vma->vm_page_prot);
1834 }
1835 EXPORT_SYMBOL(vm_insert_page);
1836 
1837 /*
1838  * __vm_map_pages - maps range of kernel pages into user vma
1839  * @vma: user vma to map to
1840  * @pages: pointer to array of source kernel pages
1841  * @num: number of pages in page array
1842  * @offset: user's requested vm_pgoff
1843  *
1844  * This allows drivers to map range of kernel pages into a user vma.
1845  *
1846  * Return: 0 on success and error code otherwise.
1847  */
1848 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1849 				unsigned long num, unsigned long offset)
1850 {
1851 	unsigned long count = vma_pages(vma);
1852 	unsigned long uaddr = vma->vm_start;
1853 	int ret, i;
1854 
1855 	/* Fail if the user requested offset is beyond the end of the object */
1856 	if (offset >= num)
1857 		return -ENXIO;
1858 
1859 	/* Fail if the user requested size exceeds available object size */
1860 	if (count > num - offset)
1861 		return -ENXIO;
1862 
1863 	for (i = 0; i < count; i++) {
1864 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1865 		if (ret < 0)
1866 			return ret;
1867 		uaddr += PAGE_SIZE;
1868 	}
1869 
1870 	return 0;
1871 }
1872 
1873 /**
1874  * vm_map_pages - maps range of kernel pages starts with non zero offset
1875  * @vma: user vma to map to
1876  * @pages: pointer to array of source kernel pages
1877  * @num: number of pages in page array
1878  *
1879  * Maps an object consisting of @num pages, catering for the user's
1880  * requested vm_pgoff
1881  *
1882  * If we fail to insert any page into the vma, the function will return
1883  * immediately leaving any previously inserted pages present.  Callers
1884  * from the mmap handler may immediately return the error as their caller
1885  * will destroy the vma, removing any successfully inserted pages. Other
1886  * callers should make their own arrangements for calling unmap_region().
1887  *
1888  * Context: Process context. Called by mmap handlers.
1889  * Return: 0 on success and error code otherwise.
1890  */
1891 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1892 				unsigned long num)
1893 {
1894 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1895 }
1896 EXPORT_SYMBOL(vm_map_pages);
1897 
1898 /**
1899  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1900  * @vma: user vma to map to
1901  * @pages: pointer to array of source kernel pages
1902  * @num: number of pages in page array
1903  *
1904  * Similar to vm_map_pages(), except that it explicitly sets the offset
1905  * to 0. This function is intended for the drivers that did not consider
1906  * vm_pgoff.
1907  *
1908  * Context: Process context. Called by mmap handlers.
1909  * Return: 0 on success and error code otherwise.
1910  */
1911 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1912 				unsigned long num)
1913 {
1914 	return __vm_map_pages(vma, pages, num, 0);
1915 }
1916 EXPORT_SYMBOL(vm_map_pages_zero);
1917 
1918 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1919 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1920 {
1921 	struct mm_struct *mm = vma->vm_mm;
1922 	pte_t *pte, entry;
1923 	spinlock_t *ptl;
1924 
1925 	pte = get_locked_pte(mm, addr, &ptl);
1926 	if (!pte)
1927 		return VM_FAULT_OOM;
1928 	if (!pte_none(*pte)) {
1929 		if (mkwrite) {
1930 			/*
1931 			 * For read faults on private mappings the PFN passed
1932 			 * in may not match the PFN we have mapped if the
1933 			 * mapped PFN is a writeable COW page.  In the mkwrite
1934 			 * case we are creating a writable PTE for a shared
1935 			 * mapping and we expect the PFNs to match. If they
1936 			 * don't match, we are likely racing with block
1937 			 * allocation and mapping invalidation so just skip the
1938 			 * update.
1939 			 */
1940 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1941 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1942 				goto out_unlock;
1943 			}
1944 			entry = pte_mkyoung(*pte);
1945 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1946 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1947 				update_mmu_cache(vma, addr, pte);
1948 		}
1949 		goto out_unlock;
1950 	}
1951 
1952 	/* Ok, finally just insert the thing.. */
1953 	if (pfn_t_devmap(pfn))
1954 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1955 	else
1956 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1957 
1958 	if (mkwrite) {
1959 		entry = pte_mkyoung(entry);
1960 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1961 	}
1962 
1963 	set_pte_at(mm, addr, pte, entry);
1964 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1965 
1966 out_unlock:
1967 	pte_unmap_unlock(pte, ptl);
1968 	return VM_FAULT_NOPAGE;
1969 }
1970 
1971 /**
1972  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1973  * @vma: user vma to map to
1974  * @addr: target user address of this page
1975  * @pfn: source kernel pfn
1976  * @pgprot: pgprot flags for the inserted page
1977  *
1978  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1979  * to override pgprot on a per-page basis.
1980  *
1981  * This only makes sense for IO mappings, and it makes no sense for
1982  * COW mappings.  In general, using multiple vmas is preferable;
1983  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1984  * impractical.
1985  *
1986  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1987  * a value of @pgprot different from that of @vma->vm_page_prot.
1988  *
1989  * Context: Process context.  May allocate using %GFP_KERNEL.
1990  * Return: vm_fault_t value.
1991  */
1992 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1993 			unsigned long pfn, pgprot_t pgprot)
1994 {
1995 	/*
1996 	 * Technically, architectures with pte_special can avoid all these
1997 	 * restrictions (same for remap_pfn_range).  However we would like
1998 	 * consistency in testing and feature parity among all, so we should
1999 	 * try to keep these invariants in place for everybody.
2000 	 */
2001 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2002 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2003 						(VM_PFNMAP|VM_MIXEDMAP));
2004 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2005 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2006 
2007 	if (addr < vma->vm_start || addr >= vma->vm_end)
2008 		return VM_FAULT_SIGBUS;
2009 
2010 	if (!pfn_modify_allowed(pfn, pgprot))
2011 		return VM_FAULT_SIGBUS;
2012 
2013 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2014 
2015 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2016 			false);
2017 }
2018 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2019 
2020 /**
2021  * vmf_insert_pfn - insert single pfn into user vma
2022  * @vma: user vma to map to
2023  * @addr: target user address of this page
2024  * @pfn: source kernel pfn
2025  *
2026  * Similar to vm_insert_page, this allows drivers to insert individual pages
2027  * they've allocated into a user vma. Same comments apply.
2028  *
2029  * This function should only be called from a vm_ops->fault handler, and
2030  * in that case the handler should return the result of this function.
2031  *
2032  * vma cannot be a COW mapping.
2033  *
2034  * As this is called only for pages that do not currently exist, we
2035  * do not need to flush old virtual caches or the TLB.
2036  *
2037  * Context: Process context.  May allocate using %GFP_KERNEL.
2038  * Return: vm_fault_t value.
2039  */
2040 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2041 			unsigned long pfn)
2042 {
2043 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2044 }
2045 EXPORT_SYMBOL(vmf_insert_pfn);
2046 
2047 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2048 {
2049 	/* these checks mirror the abort conditions in vm_normal_page */
2050 	if (vma->vm_flags & VM_MIXEDMAP)
2051 		return true;
2052 	if (pfn_t_devmap(pfn))
2053 		return true;
2054 	if (pfn_t_special(pfn))
2055 		return true;
2056 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2057 		return true;
2058 	return false;
2059 }
2060 
2061 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2062 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2063 		bool mkwrite)
2064 {
2065 	int err;
2066 
2067 	BUG_ON(!vm_mixed_ok(vma, pfn));
2068 
2069 	if (addr < vma->vm_start || addr >= vma->vm_end)
2070 		return VM_FAULT_SIGBUS;
2071 
2072 	track_pfn_insert(vma, &pgprot, pfn);
2073 
2074 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2075 		return VM_FAULT_SIGBUS;
2076 
2077 	/*
2078 	 * If we don't have pte special, then we have to use the pfn_valid()
2079 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2080 	 * refcount the page if pfn_valid is true (hence insert_page rather
2081 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2082 	 * without pte special, it would there be refcounted as a normal page.
2083 	 */
2084 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2085 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2086 		struct page *page;
2087 
2088 		/*
2089 		 * At this point we are committed to insert_page()
2090 		 * regardless of whether the caller specified flags that
2091 		 * result in pfn_t_has_page() == false.
2092 		 */
2093 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2094 		err = insert_page(vma, addr, page, pgprot);
2095 	} else {
2096 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2097 	}
2098 
2099 	if (err == -ENOMEM)
2100 		return VM_FAULT_OOM;
2101 	if (err < 0 && err != -EBUSY)
2102 		return VM_FAULT_SIGBUS;
2103 
2104 	return VM_FAULT_NOPAGE;
2105 }
2106 
2107 /**
2108  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2109  * @vma: user vma to map to
2110  * @addr: target user address of this page
2111  * @pfn: source kernel pfn
2112  * @pgprot: pgprot flags for the inserted page
2113  *
2114  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2115  * to override pgprot on a per-page basis.
2116  *
2117  * Typically this function should be used by drivers to set caching- and
2118  * encryption bits different than those of @vma->vm_page_prot, because
2119  * the caching- or encryption mode may not be known at mmap() time.
2120  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2121  * to set caching and encryption bits for those vmas (except for COW pages).
2122  * This is ensured by core vm only modifying these page table entries using
2123  * functions that don't touch caching- or encryption bits, using pte_modify()
2124  * if needed. (See for example mprotect()).
2125  * Also when new page-table entries are created, this is only done using the
2126  * fault() callback, and never using the value of vma->vm_page_prot,
2127  * except for page-table entries that point to anonymous pages as the result
2128  * of COW.
2129  *
2130  * Context: Process context.  May allocate using %GFP_KERNEL.
2131  * Return: vm_fault_t value.
2132  */
2133 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2134 				 pfn_t pfn, pgprot_t pgprot)
2135 {
2136 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2137 }
2138 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2139 
2140 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2141 		pfn_t pfn)
2142 {
2143 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2144 }
2145 EXPORT_SYMBOL(vmf_insert_mixed);
2146 
2147 /*
2148  *  If the insertion of PTE failed because someone else already added a
2149  *  different entry in the mean time, we treat that as success as we assume
2150  *  the same entry was actually inserted.
2151  */
2152 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2153 		unsigned long addr, pfn_t pfn)
2154 {
2155 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2156 }
2157 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2158 
2159 /*
2160  * maps a range of physical memory into the requested pages. the old
2161  * mappings are removed. any references to nonexistent pages results
2162  * in null mappings (currently treated as "copy-on-access")
2163  */
2164 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2165 			unsigned long addr, unsigned long end,
2166 			unsigned long pfn, pgprot_t prot)
2167 {
2168 	pte_t *pte;
2169 	spinlock_t *ptl;
2170 	int err = 0;
2171 
2172 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2173 	if (!pte)
2174 		return -ENOMEM;
2175 	arch_enter_lazy_mmu_mode();
2176 	do {
2177 		BUG_ON(!pte_none(*pte));
2178 		if (!pfn_modify_allowed(pfn, prot)) {
2179 			err = -EACCES;
2180 			break;
2181 		}
2182 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2183 		pfn++;
2184 	} while (pte++, addr += PAGE_SIZE, addr != end);
2185 	arch_leave_lazy_mmu_mode();
2186 	pte_unmap_unlock(pte - 1, ptl);
2187 	return err;
2188 }
2189 
2190 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2191 			unsigned long addr, unsigned long end,
2192 			unsigned long pfn, pgprot_t prot)
2193 {
2194 	pmd_t *pmd;
2195 	unsigned long next;
2196 	int err;
2197 
2198 	pfn -= addr >> PAGE_SHIFT;
2199 	pmd = pmd_alloc(mm, pud, addr);
2200 	if (!pmd)
2201 		return -ENOMEM;
2202 	VM_BUG_ON(pmd_trans_huge(*pmd));
2203 	do {
2204 		next = pmd_addr_end(addr, end);
2205 		err = remap_pte_range(mm, pmd, addr, next,
2206 				pfn + (addr >> PAGE_SHIFT), prot);
2207 		if (err)
2208 			return err;
2209 	} while (pmd++, addr = next, addr != end);
2210 	return 0;
2211 }
2212 
2213 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2214 			unsigned long addr, unsigned long end,
2215 			unsigned long pfn, pgprot_t prot)
2216 {
2217 	pud_t *pud;
2218 	unsigned long next;
2219 	int err;
2220 
2221 	pfn -= addr >> PAGE_SHIFT;
2222 	pud = pud_alloc(mm, p4d, addr);
2223 	if (!pud)
2224 		return -ENOMEM;
2225 	do {
2226 		next = pud_addr_end(addr, end);
2227 		err = remap_pmd_range(mm, pud, addr, next,
2228 				pfn + (addr >> PAGE_SHIFT), prot);
2229 		if (err)
2230 			return err;
2231 	} while (pud++, addr = next, addr != end);
2232 	return 0;
2233 }
2234 
2235 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2236 			unsigned long addr, unsigned long end,
2237 			unsigned long pfn, pgprot_t prot)
2238 {
2239 	p4d_t *p4d;
2240 	unsigned long next;
2241 	int err;
2242 
2243 	pfn -= addr >> PAGE_SHIFT;
2244 	p4d = p4d_alloc(mm, pgd, addr);
2245 	if (!p4d)
2246 		return -ENOMEM;
2247 	do {
2248 		next = p4d_addr_end(addr, end);
2249 		err = remap_pud_range(mm, p4d, addr, next,
2250 				pfn + (addr >> PAGE_SHIFT), prot);
2251 		if (err)
2252 			return err;
2253 	} while (p4d++, addr = next, addr != end);
2254 	return 0;
2255 }
2256 
2257 /**
2258  * remap_pfn_range - remap kernel memory to userspace
2259  * @vma: user vma to map to
2260  * @addr: target page aligned user address to start at
2261  * @pfn: page frame number of kernel physical memory address
2262  * @size: size of mapping area
2263  * @prot: page protection flags for this mapping
2264  *
2265  * Note: this is only safe if the mm semaphore is held when called.
2266  *
2267  * Return: %0 on success, negative error code otherwise.
2268  */
2269 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2270 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2271 {
2272 	pgd_t *pgd;
2273 	unsigned long next;
2274 	unsigned long end = addr + PAGE_ALIGN(size);
2275 	struct mm_struct *mm = vma->vm_mm;
2276 	unsigned long remap_pfn = pfn;
2277 	int err;
2278 
2279 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2280 		return -EINVAL;
2281 
2282 	/*
2283 	 * Physically remapped pages are special. Tell the
2284 	 * rest of the world about it:
2285 	 *   VM_IO tells people not to look at these pages
2286 	 *	(accesses can have side effects).
2287 	 *   VM_PFNMAP tells the core MM that the base pages are just
2288 	 *	raw PFN mappings, and do not have a "struct page" associated
2289 	 *	with them.
2290 	 *   VM_DONTEXPAND
2291 	 *      Disable vma merging and expanding with mremap().
2292 	 *   VM_DONTDUMP
2293 	 *      Omit vma from core dump, even when VM_IO turned off.
2294 	 *
2295 	 * There's a horrible special case to handle copy-on-write
2296 	 * behaviour that some programs depend on. We mark the "original"
2297 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2298 	 * See vm_normal_page() for details.
2299 	 */
2300 	if (is_cow_mapping(vma->vm_flags)) {
2301 		if (addr != vma->vm_start || end != vma->vm_end)
2302 			return -EINVAL;
2303 		vma->vm_pgoff = pfn;
2304 	}
2305 
2306 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2307 	if (err)
2308 		return -EINVAL;
2309 
2310 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2311 
2312 	BUG_ON(addr >= end);
2313 	pfn -= addr >> PAGE_SHIFT;
2314 	pgd = pgd_offset(mm, addr);
2315 	flush_cache_range(vma, addr, end);
2316 	do {
2317 		next = pgd_addr_end(addr, end);
2318 		err = remap_p4d_range(mm, pgd, addr, next,
2319 				pfn + (addr >> PAGE_SHIFT), prot);
2320 		if (err)
2321 			break;
2322 	} while (pgd++, addr = next, addr != end);
2323 
2324 	if (err)
2325 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2326 
2327 	return err;
2328 }
2329 EXPORT_SYMBOL(remap_pfn_range);
2330 
2331 /**
2332  * vm_iomap_memory - remap memory to userspace
2333  * @vma: user vma to map to
2334  * @start: start of the physical memory to be mapped
2335  * @len: size of area
2336  *
2337  * This is a simplified io_remap_pfn_range() for common driver use. The
2338  * driver just needs to give us the physical memory range to be mapped,
2339  * we'll figure out the rest from the vma information.
2340  *
2341  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2342  * whatever write-combining details or similar.
2343  *
2344  * Return: %0 on success, negative error code otherwise.
2345  */
2346 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2347 {
2348 	unsigned long vm_len, pfn, pages;
2349 
2350 	/* Check that the physical memory area passed in looks valid */
2351 	if (start + len < start)
2352 		return -EINVAL;
2353 	/*
2354 	 * You *really* shouldn't map things that aren't page-aligned,
2355 	 * but we've historically allowed it because IO memory might
2356 	 * just have smaller alignment.
2357 	 */
2358 	len += start & ~PAGE_MASK;
2359 	pfn = start >> PAGE_SHIFT;
2360 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2361 	if (pfn + pages < pfn)
2362 		return -EINVAL;
2363 
2364 	/* We start the mapping 'vm_pgoff' pages into the area */
2365 	if (vma->vm_pgoff > pages)
2366 		return -EINVAL;
2367 	pfn += vma->vm_pgoff;
2368 	pages -= vma->vm_pgoff;
2369 
2370 	/* Can we fit all of the mapping? */
2371 	vm_len = vma->vm_end - vma->vm_start;
2372 	if (vm_len >> PAGE_SHIFT > pages)
2373 		return -EINVAL;
2374 
2375 	/* Ok, let it rip */
2376 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2377 }
2378 EXPORT_SYMBOL(vm_iomap_memory);
2379 
2380 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2381 				     unsigned long addr, unsigned long end,
2382 				     pte_fn_t fn, void *data, bool create,
2383 				     pgtbl_mod_mask *mask)
2384 {
2385 	pte_t *pte;
2386 	int err = 0;
2387 	spinlock_t *ptl;
2388 
2389 	if (create) {
2390 		pte = (mm == &init_mm) ?
2391 			pte_alloc_kernel_track(pmd, addr, mask) :
2392 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2393 		if (!pte)
2394 			return -ENOMEM;
2395 	} else {
2396 		pte = (mm == &init_mm) ?
2397 			pte_offset_kernel(pmd, addr) :
2398 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2399 	}
2400 
2401 	BUG_ON(pmd_huge(*pmd));
2402 
2403 	arch_enter_lazy_mmu_mode();
2404 
2405 	if (fn) {
2406 		do {
2407 			if (create || !pte_none(*pte)) {
2408 				err = fn(pte++, addr, data);
2409 				if (err)
2410 					break;
2411 			}
2412 		} while (addr += PAGE_SIZE, addr != end);
2413 	}
2414 	*mask |= PGTBL_PTE_MODIFIED;
2415 
2416 	arch_leave_lazy_mmu_mode();
2417 
2418 	if (mm != &init_mm)
2419 		pte_unmap_unlock(pte-1, ptl);
2420 	return err;
2421 }
2422 
2423 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2424 				     unsigned long addr, unsigned long end,
2425 				     pte_fn_t fn, void *data, bool create,
2426 				     pgtbl_mod_mask *mask)
2427 {
2428 	pmd_t *pmd;
2429 	unsigned long next;
2430 	int err = 0;
2431 
2432 	BUG_ON(pud_huge(*pud));
2433 
2434 	if (create) {
2435 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2436 		if (!pmd)
2437 			return -ENOMEM;
2438 	} else {
2439 		pmd = pmd_offset(pud, addr);
2440 	}
2441 	do {
2442 		next = pmd_addr_end(addr, end);
2443 		if (create || !pmd_none_or_clear_bad(pmd)) {
2444 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2445 						 create, mask);
2446 			if (err)
2447 				break;
2448 		}
2449 	} while (pmd++, addr = next, addr != end);
2450 	return err;
2451 }
2452 
2453 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2454 				     unsigned long addr, unsigned long end,
2455 				     pte_fn_t fn, void *data, bool create,
2456 				     pgtbl_mod_mask *mask)
2457 {
2458 	pud_t *pud;
2459 	unsigned long next;
2460 	int err = 0;
2461 
2462 	if (create) {
2463 		pud = pud_alloc_track(mm, p4d, addr, mask);
2464 		if (!pud)
2465 			return -ENOMEM;
2466 	} else {
2467 		pud = pud_offset(p4d, addr);
2468 	}
2469 	do {
2470 		next = pud_addr_end(addr, end);
2471 		if (create || !pud_none_or_clear_bad(pud)) {
2472 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2473 						 create, mask);
2474 			if (err)
2475 				break;
2476 		}
2477 	} while (pud++, addr = next, addr != end);
2478 	return err;
2479 }
2480 
2481 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2482 				     unsigned long addr, unsigned long end,
2483 				     pte_fn_t fn, void *data, bool create,
2484 				     pgtbl_mod_mask *mask)
2485 {
2486 	p4d_t *p4d;
2487 	unsigned long next;
2488 	int err = 0;
2489 
2490 	if (create) {
2491 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2492 		if (!p4d)
2493 			return -ENOMEM;
2494 	} else {
2495 		p4d = p4d_offset(pgd, addr);
2496 	}
2497 	do {
2498 		next = p4d_addr_end(addr, end);
2499 		if (create || !p4d_none_or_clear_bad(p4d)) {
2500 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2501 						 create, mask);
2502 			if (err)
2503 				break;
2504 		}
2505 	} while (p4d++, addr = next, addr != end);
2506 	return err;
2507 }
2508 
2509 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2510 				 unsigned long size, pte_fn_t fn,
2511 				 void *data, bool create)
2512 {
2513 	pgd_t *pgd;
2514 	unsigned long start = addr, next;
2515 	unsigned long end = addr + size;
2516 	pgtbl_mod_mask mask = 0;
2517 	int err = 0;
2518 
2519 	if (WARN_ON(addr >= end))
2520 		return -EINVAL;
2521 
2522 	pgd = pgd_offset(mm, addr);
2523 	do {
2524 		next = pgd_addr_end(addr, end);
2525 		if (!create && pgd_none_or_clear_bad(pgd))
2526 			continue;
2527 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2528 		if (err)
2529 			break;
2530 	} while (pgd++, addr = next, addr != end);
2531 
2532 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2533 		arch_sync_kernel_mappings(start, start + size);
2534 
2535 	return err;
2536 }
2537 
2538 /*
2539  * Scan a region of virtual memory, filling in page tables as necessary
2540  * and calling a provided function on each leaf page table.
2541  */
2542 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2543 			unsigned long size, pte_fn_t fn, void *data)
2544 {
2545 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2546 }
2547 EXPORT_SYMBOL_GPL(apply_to_page_range);
2548 
2549 /*
2550  * Scan a region of virtual memory, calling a provided function on
2551  * each leaf page table where it exists.
2552  *
2553  * Unlike apply_to_page_range, this does _not_ fill in page tables
2554  * where they are absent.
2555  */
2556 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2557 				 unsigned long size, pte_fn_t fn, void *data)
2558 {
2559 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2560 }
2561 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2562 
2563 /*
2564  * handle_pte_fault chooses page fault handler according to an entry which was
2565  * read non-atomically.  Before making any commitment, on those architectures
2566  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2567  * parts, do_swap_page must check under lock before unmapping the pte and
2568  * proceeding (but do_wp_page is only called after already making such a check;
2569  * and do_anonymous_page can safely check later on).
2570  */
2571 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2572 				pte_t *page_table, pte_t orig_pte)
2573 {
2574 	int same = 1;
2575 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2576 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2577 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2578 		spin_lock(ptl);
2579 		same = pte_same(*page_table, orig_pte);
2580 		spin_unlock(ptl);
2581 	}
2582 #endif
2583 	pte_unmap(page_table);
2584 	return same;
2585 }
2586 
2587 static inline bool cow_user_page(struct page *dst, struct page *src,
2588 				 struct vm_fault *vmf)
2589 {
2590 	bool ret;
2591 	void *kaddr;
2592 	void __user *uaddr;
2593 	bool locked = false;
2594 	struct vm_area_struct *vma = vmf->vma;
2595 	struct mm_struct *mm = vma->vm_mm;
2596 	unsigned long addr = vmf->address;
2597 
2598 	if (likely(src)) {
2599 		copy_user_highpage(dst, src, addr, vma);
2600 		return true;
2601 	}
2602 
2603 	/*
2604 	 * If the source page was a PFN mapping, we don't have
2605 	 * a "struct page" for it. We do a best-effort copy by
2606 	 * just copying from the original user address. If that
2607 	 * fails, we just zero-fill it. Live with it.
2608 	 */
2609 	kaddr = kmap_atomic(dst);
2610 	uaddr = (void __user *)(addr & PAGE_MASK);
2611 
2612 	/*
2613 	 * On architectures with software "accessed" bits, we would
2614 	 * take a double page fault, so mark it accessed here.
2615 	 */
2616 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2617 		pte_t entry;
2618 
2619 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2620 		locked = true;
2621 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2622 			/*
2623 			 * Other thread has already handled the fault
2624 			 * and update local tlb only
2625 			 */
2626 			update_mmu_tlb(vma, addr, vmf->pte);
2627 			ret = false;
2628 			goto pte_unlock;
2629 		}
2630 
2631 		entry = pte_mkyoung(vmf->orig_pte);
2632 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2633 			update_mmu_cache(vma, addr, vmf->pte);
2634 	}
2635 
2636 	/*
2637 	 * This really shouldn't fail, because the page is there
2638 	 * in the page tables. But it might just be unreadable,
2639 	 * in which case we just give up and fill the result with
2640 	 * zeroes.
2641 	 */
2642 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2643 		if (locked)
2644 			goto warn;
2645 
2646 		/* Re-validate under PTL if the page is still mapped */
2647 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2648 		locked = true;
2649 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2650 			/* The PTE changed under us, update local tlb */
2651 			update_mmu_tlb(vma, addr, vmf->pte);
2652 			ret = false;
2653 			goto pte_unlock;
2654 		}
2655 
2656 		/*
2657 		 * The same page can be mapped back since last copy attempt.
2658 		 * Try to copy again under PTL.
2659 		 */
2660 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2661 			/*
2662 			 * Give a warn in case there can be some obscure
2663 			 * use-case
2664 			 */
2665 warn:
2666 			WARN_ON_ONCE(1);
2667 			clear_page(kaddr);
2668 		}
2669 	}
2670 
2671 	ret = true;
2672 
2673 pte_unlock:
2674 	if (locked)
2675 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2676 	kunmap_atomic(kaddr);
2677 	flush_dcache_page(dst);
2678 
2679 	return ret;
2680 }
2681 
2682 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2683 {
2684 	struct file *vm_file = vma->vm_file;
2685 
2686 	if (vm_file)
2687 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2688 
2689 	/*
2690 	 * Special mappings (e.g. VDSO) do not have any file so fake
2691 	 * a default GFP_KERNEL for them.
2692 	 */
2693 	return GFP_KERNEL;
2694 }
2695 
2696 /*
2697  * Notify the address space that the page is about to become writable so that
2698  * it can prohibit this or wait for the page to get into an appropriate state.
2699  *
2700  * We do this without the lock held, so that it can sleep if it needs to.
2701  */
2702 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2703 {
2704 	vm_fault_t ret;
2705 	struct page *page = vmf->page;
2706 	unsigned int old_flags = vmf->flags;
2707 
2708 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2709 
2710 	if (vmf->vma->vm_file &&
2711 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2712 		return VM_FAULT_SIGBUS;
2713 
2714 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2715 	/* Restore original flags so that caller is not surprised */
2716 	vmf->flags = old_flags;
2717 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2718 		return ret;
2719 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2720 		lock_page(page);
2721 		if (!page->mapping) {
2722 			unlock_page(page);
2723 			return 0; /* retry */
2724 		}
2725 		ret |= VM_FAULT_LOCKED;
2726 	} else
2727 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2728 	return ret;
2729 }
2730 
2731 /*
2732  * Handle dirtying of a page in shared file mapping on a write fault.
2733  *
2734  * The function expects the page to be locked and unlocks it.
2735  */
2736 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2737 {
2738 	struct vm_area_struct *vma = vmf->vma;
2739 	struct address_space *mapping;
2740 	struct page *page = vmf->page;
2741 	bool dirtied;
2742 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2743 
2744 	dirtied = set_page_dirty(page);
2745 	VM_BUG_ON_PAGE(PageAnon(page), page);
2746 	/*
2747 	 * Take a local copy of the address_space - page.mapping may be zeroed
2748 	 * by truncate after unlock_page().   The address_space itself remains
2749 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2750 	 * release semantics to prevent the compiler from undoing this copying.
2751 	 */
2752 	mapping = page_rmapping(page);
2753 	unlock_page(page);
2754 
2755 	if (!page_mkwrite)
2756 		file_update_time(vma->vm_file);
2757 
2758 	/*
2759 	 * Throttle page dirtying rate down to writeback speed.
2760 	 *
2761 	 * mapping may be NULL here because some device drivers do not
2762 	 * set page.mapping but still dirty their pages
2763 	 *
2764 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2765 	 * is pinning the mapping, as per above.
2766 	 */
2767 	if ((dirtied || page_mkwrite) && mapping) {
2768 		struct file *fpin;
2769 
2770 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2771 		balance_dirty_pages_ratelimited(mapping);
2772 		if (fpin) {
2773 			fput(fpin);
2774 			return VM_FAULT_RETRY;
2775 		}
2776 	}
2777 
2778 	return 0;
2779 }
2780 
2781 /*
2782  * Handle write page faults for pages that can be reused in the current vma
2783  *
2784  * This can happen either due to the mapping being with the VM_SHARED flag,
2785  * or due to us being the last reference standing to the page. In either
2786  * case, all we need to do here is to mark the page as writable and update
2787  * any related book-keeping.
2788  */
2789 static inline void wp_page_reuse(struct vm_fault *vmf)
2790 	__releases(vmf->ptl)
2791 {
2792 	struct vm_area_struct *vma = vmf->vma;
2793 	struct page *page = vmf->page;
2794 	pte_t entry;
2795 	/*
2796 	 * Clear the pages cpupid information as the existing
2797 	 * information potentially belongs to a now completely
2798 	 * unrelated process.
2799 	 */
2800 	if (page)
2801 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2802 
2803 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2804 	entry = pte_mkyoung(vmf->orig_pte);
2805 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2806 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2807 		update_mmu_cache(vma, vmf->address, vmf->pte);
2808 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2809 	count_vm_event(PGREUSE);
2810 }
2811 
2812 /*
2813  * Handle the case of a page which we actually need to copy to a new page.
2814  *
2815  * Called with mmap_lock locked and the old page referenced, but
2816  * without the ptl held.
2817  *
2818  * High level logic flow:
2819  *
2820  * - Allocate a page, copy the content of the old page to the new one.
2821  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2822  * - Take the PTL. If the pte changed, bail out and release the allocated page
2823  * - If the pte is still the way we remember it, update the page table and all
2824  *   relevant references. This includes dropping the reference the page-table
2825  *   held to the old page, as well as updating the rmap.
2826  * - In any case, unlock the PTL and drop the reference we took to the old page.
2827  */
2828 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2829 {
2830 	struct vm_area_struct *vma = vmf->vma;
2831 	struct mm_struct *mm = vma->vm_mm;
2832 	struct page *old_page = vmf->page;
2833 	struct page *new_page = NULL;
2834 	pte_t entry;
2835 	int page_copied = 0;
2836 	struct mmu_notifier_range range;
2837 
2838 	if (unlikely(anon_vma_prepare(vma)))
2839 		goto oom;
2840 
2841 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2842 		new_page = alloc_zeroed_user_highpage_movable(vma,
2843 							      vmf->address);
2844 		if (!new_page)
2845 			goto oom;
2846 	} else {
2847 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2848 				vmf->address);
2849 		if (!new_page)
2850 			goto oom;
2851 
2852 		if (!cow_user_page(new_page, old_page, vmf)) {
2853 			/*
2854 			 * COW failed, if the fault was solved by other,
2855 			 * it's fine. If not, userspace would re-fault on
2856 			 * the same address and we will handle the fault
2857 			 * from the second attempt.
2858 			 */
2859 			put_page(new_page);
2860 			if (old_page)
2861 				put_page(old_page);
2862 			return 0;
2863 		}
2864 	}
2865 
2866 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2867 		goto oom_free_new;
2868 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2869 
2870 	__SetPageUptodate(new_page);
2871 
2872 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2873 				vmf->address & PAGE_MASK,
2874 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2875 	mmu_notifier_invalidate_range_start(&range);
2876 
2877 	/*
2878 	 * Re-check the pte - we dropped the lock
2879 	 */
2880 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2881 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2882 		if (old_page) {
2883 			if (!PageAnon(old_page)) {
2884 				dec_mm_counter_fast(mm,
2885 						mm_counter_file(old_page));
2886 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2887 			}
2888 		} else {
2889 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2890 		}
2891 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2892 		entry = mk_pte(new_page, vma->vm_page_prot);
2893 		entry = pte_sw_mkyoung(entry);
2894 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2895 		/*
2896 		 * Clear the pte entry and flush it first, before updating the
2897 		 * pte with the new entry. This will avoid a race condition
2898 		 * seen in the presence of one thread doing SMC and another
2899 		 * thread doing COW.
2900 		 */
2901 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2902 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2903 		lru_cache_add_inactive_or_unevictable(new_page, vma);
2904 		/*
2905 		 * We call the notify macro here because, when using secondary
2906 		 * mmu page tables (such as kvm shadow page tables), we want the
2907 		 * new page to be mapped directly into the secondary page table.
2908 		 */
2909 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2910 		update_mmu_cache(vma, vmf->address, vmf->pte);
2911 		if (old_page) {
2912 			/*
2913 			 * Only after switching the pte to the new page may
2914 			 * we remove the mapcount here. Otherwise another
2915 			 * process may come and find the rmap count decremented
2916 			 * before the pte is switched to the new page, and
2917 			 * "reuse" the old page writing into it while our pte
2918 			 * here still points into it and can be read by other
2919 			 * threads.
2920 			 *
2921 			 * The critical issue is to order this
2922 			 * page_remove_rmap with the ptp_clear_flush above.
2923 			 * Those stores are ordered by (if nothing else,)
2924 			 * the barrier present in the atomic_add_negative
2925 			 * in page_remove_rmap.
2926 			 *
2927 			 * Then the TLB flush in ptep_clear_flush ensures that
2928 			 * no process can access the old page before the
2929 			 * decremented mapcount is visible. And the old page
2930 			 * cannot be reused until after the decremented
2931 			 * mapcount is visible. So transitively, TLBs to
2932 			 * old page will be flushed before it can be reused.
2933 			 */
2934 			page_remove_rmap(old_page, false);
2935 		}
2936 
2937 		/* Free the old page.. */
2938 		new_page = old_page;
2939 		page_copied = 1;
2940 	} else {
2941 		update_mmu_tlb(vma, vmf->address, vmf->pte);
2942 	}
2943 
2944 	if (new_page)
2945 		put_page(new_page);
2946 
2947 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2948 	/*
2949 	 * No need to double call mmu_notifier->invalidate_range() callback as
2950 	 * the above ptep_clear_flush_notify() did already call it.
2951 	 */
2952 	mmu_notifier_invalidate_range_only_end(&range);
2953 	if (old_page) {
2954 		/*
2955 		 * Don't let another task, with possibly unlocked vma,
2956 		 * keep the mlocked page.
2957 		 */
2958 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2959 			lock_page(old_page);	/* LRU manipulation */
2960 			if (PageMlocked(old_page))
2961 				munlock_vma_page(old_page);
2962 			unlock_page(old_page);
2963 		}
2964 		put_page(old_page);
2965 	}
2966 	return page_copied ? VM_FAULT_WRITE : 0;
2967 oom_free_new:
2968 	put_page(new_page);
2969 oom:
2970 	if (old_page)
2971 		put_page(old_page);
2972 	return VM_FAULT_OOM;
2973 }
2974 
2975 /**
2976  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2977  *			  writeable once the page is prepared
2978  *
2979  * @vmf: structure describing the fault
2980  *
2981  * This function handles all that is needed to finish a write page fault in a
2982  * shared mapping due to PTE being read-only once the mapped page is prepared.
2983  * It handles locking of PTE and modifying it.
2984  *
2985  * The function expects the page to be locked or other protection against
2986  * concurrent faults / writeback (such as DAX radix tree locks).
2987  *
2988  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2989  * we acquired PTE lock.
2990  */
2991 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2992 {
2993 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2994 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2995 				       &vmf->ptl);
2996 	/*
2997 	 * We might have raced with another page fault while we released the
2998 	 * pte_offset_map_lock.
2999 	 */
3000 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3001 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3002 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3003 		return VM_FAULT_NOPAGE;
3004 	}
3005 	wp_page_reuse(vmf);
3006 	return 0;
3007 }
3008 
3009 /*
3010  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3011  * mapping
3012  */
3013 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3014 {
3015 	struct vm_area_struct *vma = vmf->vma;
3016 
3017 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3018 		vm_fault_t ret;
3019 
3020 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3021 		vmf->flags |= FAULT_FLAG_MKWRITE;
3022 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3023 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3024 			return ret;
3025 		return finish_mkwrite_fault(vmf);
3026 	}
3027 	wp_page_reuse(vmf);
3028 	return VM_FAULT_WRITE;
3029 }
3030 
3031 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3032 	__releases(vmf->ptl)
3033 {
3034 	struct vm_area_struct *vma = vmf->vma;
3035 	vm_fault_t ret = VM_FAULT_WRITE;
3036 
3037 	get_page(vmf->page);
3038 
3039 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3040 		vm_fault_t tmp;
3041 
3042 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3043 		tmp = do_page_mkwrite(vmf);
3044 		if (unlikely(!tmp || (tmp &
3045 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3046 			put_page(vmf->page);
3047 			return tmp;
3048 		}
3049 		tmp = finish_mkwrite_fault(vmf);
3050 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3051 			unlock_page(vmf->page);
3052 			put_page(vmf->page);
3053 			return tmp;
3054 		}
3055 	} else {
3056 		wp_page_reuse(vmf);
3057 		lock_page(vmf->page);
3058 	}
3059 	ret |= fault_dirty_shared_page(vmf);
3060 	put_page(vmf->page);
3061 
3062 	return ret;
3063 }
3064 
3065 /*
3066  * This routine handles present pages, when users try to write
3067  * to a shared page. It is done by copying the page to a new address
3068  * and decrementing the shared-page counter for the old page.
3069  *
3070  * Note that this routine assumes that the protection checks have been
3071  * done by the caller (the low-level page fault routine in most cases).
3072  * Thus we can safely just mark it writable once we've done any necessary
3073  * COW.
3074  *
3075  * We also mark the page dirty at this point even though the page will
3076  * change only once the write actually happens. This avoids a few races,
3077  * and potentially makes it more efficient.
3078  *
3079  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3080  * but allow concurrent faults), with pte both mapped and locked.
3081  * We return with mmap_lock still held, but pte unmapped and unlocked.
3082  */
3083 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3084 	__releases(vmf->ptl)
3085 {
3086 	struct vm_area_struct *vma = vmf->vma;
3087 
3088 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3089 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3090 		return handle_userfault(vmf, VM_UFFD_WP);
3091 	}
3092 
3093 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3094 	if (!vmf->page) {
3095 		/*
3096 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3097 		 * VM_PFNMAP VMA.
3098 		 *
3099 		 * We should not cow pages in a shared writeable mapping.
3100 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3101 		 */
3102 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3103 				     (VM_WRITE|VM_SHARED))
3104 			return wp_pfn_shared(vmf);
3105 
3106 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3107 		return wp_page_copy(vmf);
3108 	}
3109 
3110 	/*
3111 	 * Take out anonymous pages first, anonymous shared vmas are
3112 	 * not dirty accountable.
3113 	 */
3114 	if (PageAnon(vmf->page)) {
3115 		struct page *page = vmf->page;
3116 
3117 		/* PageKsm() doesn't necessarily raise the page refcount */
3118 		if (PageKsm(page) || page_count(page) != 1)
3119 			goto copy;
3120 		if (!trylock_page(page))
3121 			goto copy;
3122 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3123 			unlock_page(page);
3124 			goto copy;
3125 		}
3126 		/*
3127 		 * Ok, we've got the only map reference, and the only
3128 		 * page count reference, and the page is locked,
3129 		 * it's dark out, and we're wearing sunglasses. Hit it.
3130 		 */
3131 		unlock_page(page);
3132 		wp_page_reuse(vmf);
3133 		return VM_FAULT_WRITE;
3134 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3135 					(VM_WRITE|VM_SHARED))) {
3136 		return wp_page_shared(vmf);
3137 	}
3138 copy:
3139 	/*
3140 	 * Ok, we need to copy. Oh, well..
3141 	 */
3142 	get_page(vmf->page);
3143 
3144 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3145 	return wp_page_copy(vmf);
3146 }
3147 
3148 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3149 		unsigned long start_addr, unsigned long end_addr,
3150 		struct zap_details *details)
3151 {
3152 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3153 }
3154 
3155 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3156 					    struct zap_details *details)
3157 {
3158 	struct vm_area_struct *vma;
3159 	pgoff_t vba, vea, zba, zea;
3160 
3161 	vma_interval_tree_foreach(vma, root,
3162 			details->first_index, details->last_index) {
3163 
3164 		vba = vma->vm_pgoff;
3165 		vea = vba + vma_pages(vma) - 1;
3166 		zba = details->first_index;
3167 		if (zba < vba)
3168 			zba = vba;
3169 		zea = details->last_index;
3170 		if (zea > vea)
3171 			zea = vea;
3172 
3173 		unmap_mapping_range_vma(vma,
3174 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3175 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3176 				details);
3177 	}
3178 }
3179 
3180 /**
3181  * unmap_mapping_pages() - Unmap pages from processes.
3182  * @mapping: The address space containing pages to be unmapped.
3183  * @start: Index of first page to be unmapped.
3184  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3185  * @even_cows: Whether to unmap even private COWed pages.
3186  *
3187  * Unmap the pages in this address space from any userspace process which
3188  * has them mmaped.  Generally, you want to remove COWed pages as well when
3189  * a file is being truncated, but not when invalidating pages from the page
3190  * cache.
3191  */
3192 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3193 		pgoff_t nr, bool even_cows)
3194 {
3195 	struct zap_details details = { };
3196 
3197 	details.check_mapping = even_cows ? NULL : mapping;
3198 	details.first_index = start;
3199 	details.last_index = start + nr - 1;
3200 	if (details.last_index < details.first_index)
3201 		details.last_index = ULONG_MAX;
3202 
3203 	i_mmap_lock_write(mapping);
3204 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3205 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3206 	i_mmap_unlock_write(mapping);
3207 }
3208 
3209 /**
3210  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3211  * address_space corresponding to the specified byte range in the underlying
3212  * file.
3213  *
3214  * @mapping: the address space containing mmaps to be unmapped.
3215  * @holebegin: byte in first page to unmap, relative to the start of
3216  * the underlying file.  This will be rounded down to a PAGE_SIZE
3217  * boundary.  Note that this is different from truncate_pagecache(), which
3218  * must keep the partial page.  In contrast, we must get rid of
3219  * partial pages.
3220  * @holelen: size of prospective hole in bytes.  This will be rounded
3221  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3222  * end of the file.
3223  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3224  * but 0 when invalidating pagecache, don't throw away private data.
3225  */
3226 void unmap_mapping_range(struct address_space *mapping,
3227 		loff_t const holebegin, loff_t const holelen, int even_cows)
3228 {
3229 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3230 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3231 
3232 	/* Check for overflow. */
3233 	if (sizeof(holelen) > sizeof(hlen)) {
3234 		long long holeend =
3235 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3236 		if (holeend & ~(long long)ULONG_MAX)
3237 			hlen = ULONG_MAX - hba + 1;
3238 	}
3239 
3240 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3241 }
3242 EXPORT_SYMBOL(unmap_mapping_range);
3243 
3244 /*
3245  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3246  * but allow concurrent faults), and pte mapped but not yet locked.
3247  * We return with pte unmapped and unlocked.
3248  *
3249  * We return with the mmap_lock locked or unlocked in the same cases
3250  * as does filemap_fault().
3251  */
3252 vm_fault_t do_swap_page(struct vm_fault *vmf)
3253 {
3254 	struct vm_area_struct *vma = vmf->vma;
3255 	struct page *page = NULL, *swapcache;
3256 	swp_entry_t entry;
3257 	pte_t pte;
3258 	int locked;
3259 	int exclusive = 0;
3260 	vm_fault_t ret = 0;
3261 	void *shadow = NULL;
3262 
3263 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3264 		goto out;
3265 
3266 	entry = pte_to_swp_entry(vmf->orig_pte);
3267 	if (unlikely(non_swap_entry(entry))) {
3268 		if (is_migration_entry(entry)) {
3269 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3270 					     vmf->address);
3271 		} else if (is_device_private_entry(entry)) {
3272 			vmf->page = device_private_entry_to_page(entry);
3273 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3274 		} else if (is_hwpoison_entry(entry)) {
3275 			ret = VM_FAULT_HWPOISON;
3276 		} else {
3277 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3278 			ret = VM_FAULT_SIGBUS;
3279 		}
3280 		goto out;
3281 	}
3282 
3283 
3284 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3285 	page = lookup_swap_cache(entry, vma, vmf->address);
3286 	swapcache = page;
3287 
3288 	if (!page) {
3289 		struct swap_info_struct *si = swp_swap_info(entry);
3290 
3291 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3292 		    __swap_count(entry) == 1) {
3293 			/* skip swapcache */
3294 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3295 							vmf->address);
3296 			if (page) {
3297 				int err;
3298 
3299 				__SetPageLocked(page);
3300 				__SetPageSwapBacked(page);
3301 				set_page_private(page, entry.val);
3302 
3303 				/* Tell memcg to use swap ownership records */
3304 				SetPageSwapCache(page);
3305 				err = mem_cgroup_charge(page, vma->vm_mm,
3306 							GFP_KERNEL);
3307 				ClearPageSwapCache(page);
3308 				if (err) {
3309 					ret = VM_FAULT_OOM;
3310 					goto out_page;
3311 				}
3312 
3313 				shadow = get_shadow_from_swap_cache(entry);
3314 				if (shadow)
3315 					workingset_refault(page, shadow);
3316 
3317 				lru_cache_add(page);
3318 				swap_readpage(page, true);
3319 			}
3320 		} else {
3321 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3322 						vmf);
3323 			swapcache = page;
3324 		}
3325 
3326 		if (!page) {
3327 			/*
3328 			 * Back out if somebody else faulted in this pte
3329 			 * while we released the pte lock.
3330 			 */
3331 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3332 					vmf->address, &vmf->ptl);
3333 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3334 				ret = VM_FAULT_OOM;
3335 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3336 			goto unlock;
3337 		}
3338 
3339 		/* Had to read the page from swap area: Major fault */
3340 		ret = VM_FAULT_MAJOR;
3341 		count_vm_event(PGMAJFAULT);
3342 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3343 	} else if (PageHWPoison(page)) {
3344 		/*
3345 		 * hwpoisoned dirty swapcache pages are kept for killing
3346 		 * owner processes (which may be unknown at hwpoison time)
3347 		 */
3348 		ret = VM_FAULT_HWPOISON;
3349 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3350 		goto out_release;
3351 	}
3352 
3353 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3354 
3355 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3356 	if (!locked) {
3357 		ret |= VM_FAULT_RETRY;
3358 		goto out_release;
3359 	}
3360 
3361 	/*
3362 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3363 	 * release the swapcache from under us.  The page pin, and pte_same
3364 	 * test below, are not enough to exclude that.  Even if it is still
3365 	 * swapcache, we need to check that the page's swap has not changed.
3366 	 */
3367 	if (unlikely((!PageSwapCache(page) ||
3368 			page_private(page) != entry.val)) && swapcache)
3369 		goto out_page;
3370 
3371 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3372 	if (unlikely(!page)) {
3373 		ret = VM_FAULT_OOM;
3374 		page = swapcache;
3375 		goto out_page;
3376 	}
3377 
3378 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3379 
3380 	/*
3381 	 * Back out if somebody else already faulted in this pte.
3382 	 */
3383 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3384 			&vmf->ptl);
3385 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3386 		goto out_nomap;
3387 
3388 	if (unlikely(!PageUptodate(page))) {
3389 		ret = VM_FAULT_SIGBUS;
3390 		goto out_nomap;
3391 	}
3392 
3393 	/*
3394 	 * The page isn't present yet, go ahead with the fault.
3395 	 *
3396 	 * Be careful about the sequence of operations here.
3397 	 * To get its accounting right, reuse_swap_page() must be called
3398 	 * while the page is counted on swap but not yet in mapcount i.e.
3399 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3400 	 * must be called after the swap_free(), or it will never succeed.
3401 	 */
3402 
3403 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3404 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3405 	pte = mk_pte(page, vma->vm_page_prot);
3406 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3407 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3408 		vmf->flags &= ~FAULT_FLAG_WRITE;
3409 		ret |= VM_FAULT_WRITE;
3410 		exclusive = RMAP_EXCLUSIVE;
3411 	}
3412 	flush_icache_page(vma, page);
3413 	if (pte_swp_soft_dirty(vmf->orig_pte))
3414 		pte = pte_mksoft_dirty(pte);
3415 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3416 		pte = pte_mkuffd_wp(pte);
3417 		pte = pte_wrprotect(pte);
3418 	}
3419 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3420 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3421 	vmf->orig_pte = pte;
3422 
3423 	/* ksm created a completely new copy */
3424 	if (unlikely(page != swapcache && swapcache)) {
3425 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3426 		lru_cache_add_inactive_or_unevictable(page, vma);
3427 	} else {
3428 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3429 	}
3430 
3431 	swap_free(entry);
3432 	if (mem_cgroup_swap_full(page) ||
3433 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3434 		try_to_free_swap(page);
3435 	unlock_page(page);
3436 	if (page != swapcache && swapcache) {
3437 		/*
3438 		 * Hold the lock to avoid the swap entry to be reused
3439 		 * until we take the PT lock for the pte_same() check
3440 		 * (to avoid false positives from pte_same). For
3441 		 * further safety release the lock after the swap_free
3442 		 * so that the swap count won't change under a
3443 		 * parallel locked swapcache.
3444 		 */
3445 		unlock_page(swapcache);
3446 		put_page(swapcache);
3447 	}
3448 
3449 	if (vmf->flags & FAULT_FLAG_WRITE) {
3450 		ret |= do_wp_page(vmf);
3451 		if (ret & VM_FAULT_ERROR)
3452 			ret &= VM_FAULT_ERROR;
3453 		goto out;
3454 	}
3455 
3456 	/* No need to invalidate - it was non-present before */
3457 	update_mmu_cache(vma, vmf->address, vmf->pte);
3458 unlock:
3459 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3460 out:
3461 	return ret;
3462 out_nomap:
3463 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3464 out_page:
3465 	unlock_page(page);
3466 out_release:
3467 	put_page(page);
3468 	if (page != swapcache && swapcache) {
3469 		unlock_page(swapcache);
3470 		put_page(swapcache);
3471 	}
3472 	return ret;
3473 }
3474 
3475 /*
3476  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3477  * but allow concurrent faults), and pte mapped but not yet locked.
3478  * We return with mmap_lock still held, but pte unmapped and unlocked.
3479  */
3480 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3481 {
3482 	struct vm_area_struct *vma = vmf->vma;
3483 	struct page *page;
3484 	vm_fault_t ret = 0;
3485 	pte_t entry;
3486 
3487 	/* File mapping without ->vm_ops ? */
3488 	if (vma->vm_flags & VM_SHARED)
3489 		return VM_FAULT_SIGBUS;
3490 
3491 	/*
3492 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3493 	 * pte_offset_map() on pmds where a huge pmd might be created
3494 	 * from a different thread.
3495 	 *
3496 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3497 	 * parallel threads are excluded by other means.
3498 	 *
3499 	 * Here we only have mmap_read_lock(mm).
3500 	 */
3501 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3502 		return VM_FAULT_OOM;
3503 
3504 	/* See the comment in pte_alloc_one_map() */
3505 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3506 		return 0;
3507 
3508 	/* Use the zero-page for reads */
3509 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3510 			!mm_forbids_zeropage(vma->vm_mm)) {
3511 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3512 						vma->vm_page_prot));
3513 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3514 				vmf->address, &vmf->ptl);
3515 		if (!pte_none(*vmf->pte)) {
3516 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3517 			goto unlock;
3518 		}
3519 		ret = check_stable_address_space(vma->vm_mm);
3520 		if (ret)
3521 			goto unlock;
3522 		/* Deliver the page fault to userland, check inside PT lock */
3523 		if (userfaultfd_missing(vma)) {
3524 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3525 			return handle_userfault(vmf, VM_UFFD_MISSING);
3526 		}
3527 		goto setpte;
3528 	}
3529 
3530 	/* Allocate our own private page. */
3531 	if (unlikely(anon_vma_prepare(vma)))
3532 		goto oom;
3533 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3534 	if (!page)
3535 		goto oom;
3536 
3537 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3538 		goto oom_free_page;
3539 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3540 
3541 	/*
3542 	 * The memory barrier inside __SetPageUptodate makes sure that
3543 	 * preceding stores to the page contents become visible before
3544 	 * the set_pte_at() write.
3545 	 */
3546 	__SetPageUptodate(page);
3547 
3548 	entry = mk_pte(page, vma->vm_page_prot);
3549 	entry = pte_sw_mkyoung(entry);
3550 	if (vma->vm_flags & VM_WRITE)
3551 		entry = pte_mkwrite(pte_mkdirty(entry));
3552 
3553 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3554 			&vmf->ptl);
3555 	if (!pte_none(*vmf->pte)) {
3556 		update_mmu_cache(vma, vmf->address, vmf->pte);
3557 		goto release;
3558 	}
3559 
3560 	ret = check_stable_address_space(vma->vm_mm);
3561 	if (ret)
3562 		goto release;
3563 
3564 	/* Deliver the page fault to userland, check inside PT lock */
3565 	if (userfaultfd_missing(vma)) {
3566 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3567 		put_page(page);
3568 		return handle_userfault(vmf, VM_UFFD_MISSING);
3569 	}
3570 
3571 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3572 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3573 	lru_cache_add_inactive_or_unevictable(page, vma);
3574 setpte:
3575 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3576 
3577 	/* No need to invalidate - it was non-present before */
3578 	update_mmu_cache(vma, vmf->address, vmf->pte);
3579 unlock:
3580 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3581 	return ret;
3582 release:
3583 	put_page(page);
3584 	goto unlock;
3585 oom_free_page:
3586 	put_page(page);
3587 oom:
3588 	return VM_FAULT_OOM;
3589 }
3590 
3591 /*
3592  * The mmap_lock must have been held on entry, and may have been
3593  * released depending on flags and vma->vm_ops->fault() return value.
3594  * See filemap_fault() and __lock_page_retry().
3595  */
3596 static vm_fault_t __do_fault(struct vm_fault *vmf)
3597 {
3598 	struct vm_area_struct *vma = vmf->vma;
3599 	vm_fault_t ret;
3600 
3601 	/*
3602 	 * Preallocate pte before we take page_lock because this might lead to
3603 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3604 	 *				lock_page(A)
3605 	 *				SetPageWriteback(A)
3606 	 *				unlock_page(A)
3607 	 * lock_page(B)
3608 	 *				lock_page(B)
3609 	 * pte_alloc_one
3610 	 *   shrink_page_list
3611 	 *     wait_on_page_writeback(A)
3612 	 *				SetPageWriteback(B)
3613 	 *				unlock_page(B)
3614 	 *				# flush A, B to clear the writeback
3615 	 */
3616 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3617 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3618 		if (!vmf->prealloc_pte)
3619 			return VM_FAULT_OOM;
3620 		smp_wmb(); /* See comment in __pte_alloc() */
3621 	}
3622 
3623 	ret = vma->vm_ops->fault(vmf);
3624 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3625 			    VM_FAULT_DONE_COW)))
3626 		return ret;
3627 
3628 	if (unlikely(PageHWPoison(vmf->page))) {
3629 		if (ret & VM_FAULT_LOCKED)
3630 			unlock_page(vmf->page);
3631 		put_page(vmf->page);
3632 		vmf->page = NULL;
3633 		return VM_FAULT_HWPOISON;
3634 	}
3635 
3636 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3637 		lock_page(vmf->page);
3638 	else
3639 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3640 
3641 	return ret;
3642 }
3643 
3644 /*
3645  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3646  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3647  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3648  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3649  */
3650 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3651 {
3652 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3653 }
3654 
3655 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3656 {
3657 	struct vm_area_struct *vma = vmf->vma;
3658 
3659 	if (!pmd_none(*vmf->pmd))
3660 		goto map_pte;
3661 	if (vmf->prealloc_pte) {
3662 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3663 		if (unlikely(!pmd_none(*vmf->pmd))) {
3664 			spin_unlock(vmf->ptl);
3665 			goto map_pte;
3666 		}
3667 
3668 		mm_inc_nr_ptes(vma->vm_mm);
3669 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3670 		spin_unlock(vmf->ptl);
3671 		vmf->prealloc_pte = NULL;
3672 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3673 		return VM_FAULT_OOM;
3674 	}
3675 map_pte:
3676 	/*
3677 	 * If a huge pmd materialized under us just retry later.  Use
3678 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3679 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3680 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3681 	 * running immediately after a huge pmd fault in a different thread of
3682 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3683 	 * All we have to ensure is that it is a regular pmd that we can walk
3684 	 * with pte_offset_map() and we can do that through an atomic read in
3685 	 * C, which is what pmd_trans_unstable() provides.
3686 	 */
3687 	if (pmd_devmap_trans_unstable(vmf->pmd))
3688 		return VM_FAULT_NOPAGE;
3689 
3690 	/*
3691 	 * At this point we know that our vmf->pmd points to a page of ptes
3692 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3693 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3694 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3695 	 * be valid and we will re-check to make sure the vmf->pte isn't
3696 	 * pte_none() under vmf->ptl protection when we return to
3697 	 * alloc_set_pte().
3698 	 */
3699 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3700 			&vmf->ptl);
3701 	return 0;
3702 }
3703 
3704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3705 static void deposit_prealloc_pte(struct vm_fault *vmf)
3706 {
3707 	struct vm_area_struct *vma = vmf->vma;
3708 
3709 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3710 	/*
3711 	 * We are going to consume the prealloc table,
3712 	 * count that as nr_ptes.
3713 	 */
3714 	mm_inc_nr_ptes(vma->vm_mm);
3715 	vmf->prealloc_pte = NULL;
3716 }
3717 
3718 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3719 {
3720 	struct vm_area_struct *vma = vmf->vma;
3721 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3722 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3723 	pmd_t entry;
3724 	int i;
3725 	vm_fault_t ret = VM_FAULT_FALLBACK;
3726 
3727 	if (!transhuge_vma_suitable(vma, haddr))
3728 		return ret;
3729 
3730 	page = compound_head(page);
3731 	if (compound_order(page) != HPAGE_PMD_ORDER)
3732 		return ret;
3733 
3734 	/*
3735 	 * Archs like ppc64 need additonal space to store information
3736 	 * related to pte entry. Use the preallocated table for that.
3737 	 */
3738 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3739 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3740 		if (!vmf->prealloc_pte)
3741 			return VM_FAULT_OOM;
3742 		smp_wmb(); /* See comment in __pte_alloc() */
3743 	}
3744 
3745 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3746 	if (unlikely(!pmd_none(*vmf->pmd)))
3747 		goto out;
3748 
3749 	for (i = 0; i < HPAGE_PMD_NR; i++)
3750 		flush_icache_page(vma, page + i);
3751 
3752 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3753 	if (write)
3754 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3755 
3756 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3757 	page_add_file_rmap(page, true);
3758 	/*
3759 	 * deposit and withdraw with pmd lock held
3760 	 */
3761 	if (arch_needs_pgtable_deposit())
3762 		deposit_prealloc_pte(vmf);
3763 
3764 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3765 
3766 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3767 
3768 	/* fault is handled */
3769 	ret = 0;
3770 	count_vm_event(THP_FILE_MAPPED);
3771 out:
3772 	spin_unlock(vmf->ptl);
3773 	return ret;
3774 }
3775 #else
3776 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3777 {
3778 	BUILD_BUG();
3779 	return 0;
3780 }
3781 #endif
3782 
3783 /**
3784  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3785  * mapping. If needed, the function allocates page table or use pre-allocated.
3786  *
3787  * @vmf: fault environment
3788  * @page: page to map
3789  *
3790  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3791  * return.
3792  *
3793  * Target users are page handler itself and implementations of
3794  * vm_ops->map_pages.
3795  *
3796  * Return: %0 on success, %VM_FAULT_ code in case of error.
3797  */
3798 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3799 {
3800 	struct vm_area_struct *vma = vmf->vma;
3801 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3802 	pte_t entry;
3803 	vm_fault_t ret;
3804 
3805 	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3806 		ret = do_set_pmd(vmf, page);
3807 		if (ret != VM_FAULT_FALLBACK)
3808 			return ret;
3809 	}
3810 
3811 	if (!vmf->pte) {
3812 		ret = pte_alloc_one_map(vmf);
3813 		if (ret)
3814 			return ret;
3815 	}
3816 
3817 	/* Re-check under ptl */
3818 	if (unlikely(!pte_none(*vmf->pte))) {
3819 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3820 		return VM_FAULT_NOPAGE;
3821 	}
3822 
3823 	flush_icache_page(vma, page);
3824 	entry = mk_pte(page, vma->vm_page_prot);
3825 	entry = pte_sw_mkyoung(entry);
3826 	if (write)
3827 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3828 	/* copy-on-write page */
3829 	if (write && !(vma->vm_flags & VM_SHARED)) {
3830 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3831 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3832 		lru_cache_add_inactive_or_unevictable(page, vma);
3833 	} else {
3834 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3835 		page_add_file_rmap(page, false);
3836 	}
3837 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3838 
3839 	/* no need to invalidate: a not-present page won't be cached */
3840 	update_mmu_cache(vma, vmf->address, vmf->pte);
3841 
3842 	return 0;
3843 }
3844 
3845 
3846 /**
3847  * finish_fault - finish page fault once we have prepared the page to fault
3848  *
3849  * @vmf: structure describing the fault
3850  *
3851  * This function handles all that is needed to finish a page fault once the
3852  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3853  * given page, adds reverse page mapping, handles memcg charges and LRU
3854  * addition.
3855  *
3856  * The function expects the page to be locked and on success it consumes a
3857  * reference of a page being mapped (for the PTE which maps it).
3858  *
3859  * Return: %0 on success, %VM_FAULT_ code in case of error.
3860  */
3861 vm_fault_t finish_fault(struct vm_fault *vmf)
3862 {
3863 	struct page *page;
3864 	vm_fault_t ret = 0;
3865 
3866 	/* Did we COW the page? */
3867 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3868 	    !(vmf->vma->vm_flags & VM_SHARED))
3869 		page = vmf->cow_page;
3870 	else
3871 		page = vmf->page;
3872 
3873 	/*
3874 	 * check even for read faults because we might have lost our CoWed
3875 	 * page
3876 	 */
3877 	if (!(vmf->vma->vm_flags & VM_SHARED))
3878 		ret = check_stable_address_space(vmf->vma->vm_mm);
3879 	if (!ret)
3880 		ret = alloc_set_pte(vmf, page);
3881 	if (vmf->pte)
3882 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3883 	return ret;
3884 }
3885 
3886 static unsigned long fault_around_bytes __read_mostly =
3887 	rounddown_pow_of_two(65536);
3888 
3889 #ifdef CONFIG_DEBUG_FS
3890 static int fault_around_bytes_get(void *data, u64 *val)
3891 {
3892 	*val = fault_around_bytes;
3893 	return 0;
3894 }
3895 
3896 /*
3897  * fault_around_bytes must be rounded down to the nearest page order as it's
3898  * what do_fault_around() expects to see.
3899  */
3900 static int fault_around_bytes_set(void *data, u64 val)
3901 {
3902 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3903 		return -EINVAL;
3904 	if (val > PAGE_SIZE)
3905 		fault_around_bytes = rounddown_pow_of_two(val);
3906 	else
3907 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3908 	return 0;
3909 }
3910 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3911 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3912 
3913 static int __init fault_around_debugfs(void)
3914 {
3915 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3916 				   &fault_around_bytes_fops);
3917 	return 0;
3918 }
3919 late_initcall(fault_around_debugfs);
3920 #endif
3921 
3922 /*
3923  * do_fault_around() tries to map few pages around the fault address. The hope
3924  * is that the pages will be needed soon and this will lower the number of
3925  * faults to handle.
3926  *
3927  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3928  * not ready to be mapped: not up-to-date, locked, etc.
3929  *
3930  * This function is called with the page table lock taken. In the split ptlock
3931  * case the page table lock only protects only those entries which belong to
3932  * the page table corresponding to the fault address.
3933  *
3934  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3935  * only once.
3936  *
3937  * fault_around_bytes defines how many bytes we'll try to map.
3938  * do_fault_around() expects it to be set to a power of two less than or equal
3939  * to PTRS_PER_PTE.
3940  *
3941  * The virtual address of the area that we map is naturally aligned to
3942  * fault_around_bytes rounded down to the machine page size
3943  * (and therefore to page order).  This way it's easier to guarantee
3944  * that we don't cross page table boundaries.
3945  */
3946 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3947 {
3948 	unsigned long address = vmf->address, nr_pages, mask;
3949 	pgoff_t start_pgoff = vmf->pgoff;
3950 	pgoff_t end_pgoff;
3951 	int off;
3952 	vm_fault_t ret = 0;
3953 
3954 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3955 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3956 
3957 	vmf->address = max(address & mask, vmf->vma->vm_start);
3958 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3959 	start_pgoff -= off;
3960 
3961 	/*
3962 	 *  end_pgoff is either the end of the page table, the end of
3963 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3964 	 */
3965 	end_pgoff = start_pgoff -
3966 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3967 		PTRS_PER_PTE - 1;
3968 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3969 			start_pgoff + nr_pages - 1);
3970 
3971 	if (pmd_none(*vmf->pmd)) {
3972 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3973 		if (!vmf->prealloc_pte)
3974 			goto out;
3975 		smp_wmb(); /* See comment in __pte_alloc() */
3976 	}
3977 
3978 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3979 
3980 	/* Huge page is mapped? Page fault is solved */
3981 	if (pmd_trans_huge(*vmf->pmd)) {
3982 		ret = VM_FAULT_NOPAGE;
3983 		goto out;
3984 	}
3985 
3986 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3987 	if (!vmf->pte)
3988 		goto out;
3989 
3990 	/* check if the page fault is solved */
3991 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3992 	if (!pte_none(*vmf->pte))
3993 		ret = VM_FAULT_NOPAGE;
3994 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3995 out:
3996 	vmf->address = address;
3997 	vmf->pte = NULL;
3998 	return ret;
3999 }
4000 
4001 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4002 {
4003 	struct vm_area_struct *vma = vmf->vma;
4004 	vm_fault_t ret = 0;
4005 
4006 	/*
4007 	 * Let's call ->map_pages() first and use ->fault() as fallback
4008 	 * if page by the offset is not ready to be mapped (cold cache or
4009 	 * something).
4010 	 */
4011 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4012 		ret = do_fault_around(vmf);
4013 		if (ret)
4014 			return ret;
4015 	}
4016 
4017 	ret = __do_fault(vmf);
4018 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4019 		return ret;
4020 
4021 	ret |= finish_fault(vmf);
4022 	unlock_page(vmf->page);
4023 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4024 		put_page(vmf->page);
4025 	return ret;
4026 }
4027 
4028 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4029 {
4030 	struct vm_area_struct *vma = vmf->vma;
4031 	vm_fault_t ret;
4032 
4033 	if (unlikely(anon_vma_prepare(vma)))
4034 		return VM_FAULT_OOM;
4035 
4036 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4037 	if (!vmf->cow_page)
4038 		return VM_FAULT_OOM;
4039 
4040 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4041 		put_page(vmf->cow_page);
4042 		return VM_FAULT_OOM;
4043 	}
4044 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4045 
4046 	ret = __do_fault(vmf);
4047 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4048 		goto uncharge_out;
4049 	if (ret & VM_FAULT_DONE_COW)
4050 		return ret;
4051 
4052 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4053 	__SetPageUptodate(vmf->cow_page);
4054 
4055 	ret |= finish_fault(vmf);
4056 	unlock_page(vmf->page);
4057 	put_page(vmf->page);
4058 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4059 		goto uncharge_out;
4060 	return ret;
4061 uncharge_out:
4062 	put_page(vmf->cow_page);
4063 	return ret;
4064 }
4065 
4066 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4067 {
4068 	struct vm_area_struct *vma = vmf->vma;
4069 	vm_fault_t ret, tmp;
4070 
4071 	ret = __do_fault(vmf);
4072 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4073 		return ret;
4074 
4075 	/*
4076 	 * Check if the backing address space wants to know that the page is
4077 	 * about to become writable
4078 	 */
4079 	if (vma->vm_ops->page_mkwrite) {
4080 		unlock_page(vmf->page);
4081 		tmp = do_page_mkwrite(vmf);
4082 		if (unlikely(!tmp ||
4083 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4084 			put_page(vmf->page);
4085 			return tmp;
4086 		}
4087 	}
4088 
4089 	ret |= finish_fault(vmf);
4090 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4091 					VM_FAULT_RETRY))) {
4092 		unlock_page(vmf->page);
4093 		put_page(vmf->page);
4094 		return ret;
4095 	}
4096 
4097 	ret |= fault_dirty_shared_page(vmf);
4098 	return ret;
4099 }
4100 
4101 /*
4102  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4103  * but allow concurrent faults).
4104  * The mmap_lock may have been released depending on flags and our
4105  * return value.  See filemap_fault() and __lock_page_or_retry().
4106  * If mmap_lock is released, vma may become invalid (for example
4107  * by other thread calling munmap()).
4108  */
4109 static vm_fault_t do_fault(struct vm_fault *vmf)
4110 {
4111 	struct vm_area_struct *vma = vmf->vma;
4112 	struct mm_struct *vm_mm = vma->vm_mm;
4113 	vm_fault_t ret;
4114 
4115 	/*
4116 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4117 	 */
4118 	if (!vma->vm_ops->fault) {
4119 		/*
4120 		 * If we find a migration pmd entry or a none pmd entry, which
4121 		 * should never happen, return SIGBUS
4122 		 */
4123 		if (unlikely(!pmd_present(*vmf->pmd)))
4124 			ret = VM_FAULT_SIGBUS;
4125 		else {
4126 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4127 						       vmf->pmd,
4128 						       vmf->address,
4129 						       &vmf->ptl);
4130 			/*
4131 			 * Make sure this is not a temporary clearing of pte
4132 			 * by holding ptl and checking again. A R/M/W update
4133 			 * of pte involves: take ptl, clearing the pte so that
4134 			 * we don't have concurrent modification by hardware
4135 			 * followed by an update.
4136 			 */
4137 			if (unlikely(pte_none(*vmf->pte)))
4138 				ret = VM_FAULT_SIGBUS;
4139 			else
4140 				ret = VM_FAULT_NOPAGE;
4141 
4142 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4143 		}
4144 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4145 		ret = do_read_fault(vmf);
4146 	else if (!(vma->vm_flags & VM_SHARED))
4147 		ret = do_cow_fault(vmf);
4148 	else
4149 		ret = do_shared_fault(vmf);
4150 
4151 	/* preallocated pagetable is unused: free it */
4152 	if (vmf->prealloc_pte) {
4153 		pte_free(vm_mm, vmf->prealloc_pte);
4154 		vmf->prealloc_pte = NULL;
4155 	}
4156 	return ret;
4157 }
4158 
4159 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4160 				unsigned long addr, int page_nid,
4161 				int *flags)
4162 {
4163 	get_page(page);
4164 
4165 	count_vm_numa_event(NUMA_HINT_FAULTS);
4166 	if (page_nid == numa_node_id()) {
4167 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4168 		*flags |= TNF_FAULT_LOCAL;
4169 	}
4170 
4171 	return mpol_misplaced(page, vma, addr);
4172 }
4173 
4174 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4175 {
4176 	struct vm_area_struct *vma = vmf->vma;
4177 	struct page *page = NULL;
4178 	int page_nid = NUMA_NO_NODE;
4179 	int last_cpupid;
4180 	int target_nid;
4181 	bool migrated = false;
4182 	pte_t pte, old_pte;
4183 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4184 	int flags = 0;
4185 
4186 	/*
4187 	 * The "pte" at this point cannot be used safely without
4188 	 * validation through pte_unmap_same(). It's of NUMA type but
4189 	 * the pfn may be screwed if the read is non atomic.
4190 	 */
4191 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4192 	spin_lock(vmf->ptl);
4193 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4194 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4195 		goto out;
4196 	}
4197 
4198 	/*
4199 	 * Make it present again, Depending on how arch implementes non
4200 	 * accessible ptes, some can allow access by kernel mode.
4201 	 */
4202 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4203 	pte = pte_modify(old_pte, vma->vm_page_prot);
4204 	pte = pte_mkyoung(pte);
4205 	if (was_writable)
4206 		pte = pte_mkwrite(pte);
4207 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4208 	update_mmu_cache(vma, vmf->address, vmf->pte);
4209 
4210 	page = vm_normal_page(vma, vmf->address, pte);
4211 	if (!page) {
4212 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4213 		return 0;
4214 	}
4215 
4216 	/* TODO: handle PTE-mapped THP */
4217 	if (PageCompound(page)) {
4218 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4219 		return 0;
4220 	}
4221 
4222 	/*
4223 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4224 	 * much anyway since they can be in shared cache state. This misses
4225 	 * the case where a mapping is writable but the process never writes
4226 	 * to it but pte_write gets cleared during protection updates and
4227 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4228 	 * background writeback, dirty balancing and application behaviour.
4229 	 */
4230 	if (!pte_write(pte))
4231 		flags |= TNF_NO_GROUP;
4232 
4233 	/*
4234 	 * Flag if the page is shared between multiple address spaces. This
4235 	 * is later used when determining whether to group tasks together
4236 	 */
4237 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4238 		flags |= TNF_SHARED;
4239 
4240 	last_cpupid = page_cpupid_last(page);
4241 	page_nid = page_to_nid(page);
4242 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4243 			&flags);
4244 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4245 	if (target_nid == NUMA_NO_NODE) {
4246 		put_page(page);
4247 		goto out;
4248 	}
4249 
4250 	/* Migrate to the requested node */
4251 	migrated = migrate_misplaced_page(page, vma, target_nid);
4252 	if (migrated) {
4253 		page_nid = target_nid;
4254 		flags |= TNF_MIGRATED;
4255 	} else
4256 		flags |= TNF_MIGRATE_FAIL;
4257 
4258 out:
4259 	if (page_nid != NUMA_NO_NODE)
4260 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4261 	return 0;
4262 }
4263 
4264 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4265 {
4266 	if (vma_is_anonymous(vmf->vma))
4267 		return do_huge_pmd_anonymous_page(vmf);
4268 	if (vmf->vma->vm_ops->huge_fault)
4269 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4270 	return VM_FAULT_FALLBACK;
4271 }
4272 
4273 /* `inline' is required to avoid gcc 4.1.2 build error */
4274 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4275 {
4276 	if (vma_is_anonymous(vmf->vma)) {
4277 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4278 			return handle_userfault(vmf, VM_UFFD_WP);
4279 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4280 	}
4281 	if (vmf->vma->vm_ops->huge_fault) {
4282 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4283 
4284 		if (!(ret & VM_FAULT_FALLBACK))
4285 			return ret;
4286 	}
4287 
4288 	/* COW or write-notify handled on pte level: split pmd. */
4289 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4290 
4291 	return VM_FAULT_FALLBACK;
4292 }
4293 
4294 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4295 {
4296 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4297 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4298 	/* No support for anonymous transparent PUD pages yet */
4299 	if (vma_is_anonymous(vmf->vma))
4300 		goto split;
4301 	if (vmf->vma->vm_ops->huge_fault) {
4302 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4303 
4304 		if (!(ret & VM_FAULT_FALLBACK))
4305 			return ret;
4306 	}
4307 split:
4308 	/* COW or write-notify not handled on PUD level: split pud.*/
4309 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4310 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4311 	return VM_FAULT_FALLBACK;
4312 }
4313 
4314 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4315 {
4316 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4317 	/* No support for anonymous transparent PUD pages yet */
4318 	if (vma_is_anonymous(vmf->vma))
4319 		return VM_FAULT_FALLBACK;
4320 	if (vmf->vma->vm_ops->huge_fault)
4321 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4322 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4323 	return VM_FAULT_FALLBACK;
4324 }
4325 
4326 /*
4327  * These routines also need to handle stuff like marking pages dirty
4328  * and/or accessed for architectures that don't do it in hardware (most
4329  * RISC architectures).  The early dirtying is also good on the i386.
4330  *
4331  * There is also a hook called "update_mmu_cache()" that architectures
4332  * with external mmu caches can use to update those (ie the Sparc or
4333  * PowerPC hashed page tables that act as extended TLBs).
4334  *
4335  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4336  * concurrent faults).
4337  *
4338  * The mmap_lock may have been released depending on flags and our return value.
4339  * See filemap_fault() and __lock_page_or_retry().
4340  */
4341 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4342 {
4343 	pte_t entry;
4344 
4345 	if (unlikely(pmd_none(*vmf->pmd))) {
4346 		/*
4347 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4348 		 * want to allocate huge page, and if we expose page table
4349 		 * for an instant, it will be difficult to retract from
4350 		 * concurrent faults and from rmap lookups.
4351 		 */
4352 		vmf->pte = NULL;
4353 	} else {
4354 		/* See comment in pte_alloc_one_map() */
4355 		if (pmd_devmap_trans_unstable(vmf->pmd))
4356 			return 0;
4357 		/*
4358 		 * A regular pmd is established and it can't morph into a huge
4359 		 * pmd from under us anymore at this point because we hold the
4360 		 * mmap_lock read mode and khugepaged takes it in write mode.
4361 		 * So now it's safe to run pte_offset_map().
4362 		 */
4363 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4364 		vmf->orig_pte = *vmf->pte;
4365 
4366 		/*
4367 		 * some architectures can have larger ptes than wordsize,
4368 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4369 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4370 		 * accesses.  The code below just needs a consistent view
4371 		 * for the ifs and we later double check anyway with the
4372 		 * ptl lock held. So here a barrier will do.
4373 		 */
4374 		barrier();
4375 		if (pte_none(vmf->orig_pte)) {
4376 			pte_unmap(vmf->pte);
4377 			vmf->pte = NULL;
4378 		}
4379 	}
4380 
4381 	if (!vmf->pte) {
4382 		if (vma_is_anonymous(vmf->vma))
4383 			return do_anonymous_page(vmf);
4384 		else
4385 			return do_fault(vmf);
4386 	}
4387 
4388 	if (!pte_present(vmf->orig_pte))
4389 		return do_swap_page(vmf);
4390 
4391 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4392 		return do_numa_page(vmf);
4393 
4394 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4395 	spin_lock(vmf->ptl);
4396 	entry = vmf->orig_pte;
4397 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4398 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4399 		goto unlock;
4400 	}
4401 	if (vmf->flags & FAULT_FLAG_WRITE) {
4402 		if (!pte_write(entry))
4403 			return do_wp_page(vmf);
4404 		entry = pte_mkdirty(entry);
4405 	}
4406 	entry = pte_mkyoung(entry);
4407 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4408 				vmf->flags & FAULT_FLAG_WRITE)) {
4409 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4410 	} else {
4411 		/* Skip spurious TLB flush for retried page fault */
4412 		if (vmf->flags & FAULT_FLAG_TRIED)
4413 			goto unlock;
4414 		/*
4415 		 * This is needed only for protection faults but the arch code
4416 		 * is not yet telling us if this is a protection fault or not.
4417 		 * This still avoids useless tlb flushes for .text page faults
4418 		 * with threads.
4419 		 */
4420 		if (vmf->flags & FAULT_FLAG_WRITE)
4421 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4422 	}
4423 unlock:
4424 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4425 	return 0;
4426 }
4427 
4428 /*
4429  * By the time we get here, we already hold the mm semaphore
4430  *
4431  * The mmap_lock may have been released depending on flags and our
4432  * return value.  See filemap_fault() and __lock_page_or_retry().
4433  */
4434 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4435 		unsigned long address, unsigned int flags)
4436 {
4437 	struct vm_fault vmf = {
4438 		.vma = vma,
4439 		.address = address & PAGE_MASK,
4440 		.flags = flags,
4441 		.pgoff = linear_page_index(vma, address),
4442 		.gfp_mask = __get_fault_gfp_mask(vma),
4443 	};
4444 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4445 	struct mm_struct *mm = vma->vm_mm;
4446 	pgd_t *pgd;
4447 	p4d_t *p4d;
4448 	vm_fault_t ret;
4449 
4450 	pgd = pgd_offset(mm, address);
4451 	p4d = p4d_alloc(mm, pgd, address);
4452 	if (!p4d)
4453 		return VM_FAULT_OOM;
4454 
4455 	vmf.pud = pud_alloc(mm, p4d, address);
4456 	if (!vmf.pud)
4457 		return VM_FAULT_OOM;
4458 retry_pud:
4459 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4460 		ret = create_huge_pud(&vmf);
4461 		if (!(ret & VM_FAULT_FALLBACK))
4462 			return ret;
4463 	} else {
4464 		pud_t orig_pud = *vmf.pud;
4465 
4466 		barrier();
4467 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4468 
4469 			/* NUMA case for anonymous PUDs would go here */
4470 
4471 			if (dirty && !pud_write(orig_pud)) {
4472 				ret = wp_huge_pud(&vmf, orig_pud);
4473 				if (!(ret & VM_FAULT_FALLBACK))
4474 					return ret;
4475 			} else {
4476 				huge_pud_set_accessed(&vmf, orig_pud);
4477 				return 0;
4478 			}
4479 		}
4480 	}
4481 
4482 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4483 	if (!vmf.pmd)
4484 		return VM_FAULT_OOM;
4485 
4486 	/* Huge pud page fault raced with pmd_alloc? */
4487 	if (pud_trans_unstable(vmf.pud))
4488 		goto retry_pud;
4489 
4490 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4491 		ret = create_huge_pmd(&vmf);
4492 		if (!(ret & VM_FAULT_FALLBACK))
4493 			return ret;
4494 	} else {
4495 		pmd_t orig_pmd = *vmf.pmd;
4496 
4497 		barrier();
4498 		if (unlikely(is_swap_pmd(orig_pmd))) {
4499 			VM_BUG_ON(thp_migration_supported() &&
4500 					  !is_pmd_migration_entry(orig_pmd));
4501 			if (is_pmd_migration_entry(orig_pmd))
4502 				pmd_migration_entry_wait(mm, vmf.pmd);
4503 			return 0;
4504 		}
4505 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4506 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4507 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4508 
4509 			if (dirty && !pmd_write(orig_pmd)) {
4510 				ret = wp_huge_pmd(&vmf, orig_pmd);
4511 				if (!(ret & VM_FAULT_FALLBACK))
4512 					return ret;
4513 			} else {
4514 				huge_pmd_set_accessed(&vmf, orig_pmd);
4515 				return 0;
4516 			}
4517 		}
4518 	}
4519 
4520 	return handle_pte_fault(&vmf);
4521 }
4522 
4523 /**
4524  * mm_account_fault - Do page fault accountings
4525  *
4526  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4527  *        of perf event counters, but we'll still do the per-task accounting to
4528  *        the task who triggered this page fault.
4529  * @address: the faulted address.
4530  * @flags: the fault flags.
4531  * @ret: the fault retcode.
4532  *
4533  * This will take care of most of the page fault accountings.  Meanwhile, it
4534  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4535  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4536  * still be in per-arch page fault handlers at the entry of page fault.
4537  */
4538 static inline void mm_account_fault(struct pt_regs *regs,
4539 				    unsigned long address, unsigned int flags,
4540 				    vm_fault_t ret)
4541 {
4542 	bool major;
4543 
4544 	/*
4545 	 * We don't do accounting for some specific faults:
4546 	 *
4547 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4548 	 *   includes arch_vma_access_permitted() failing before reaching here.
4549 	 *   So this is not a "this many hardware page faults" counter.  We
4550 	 *   should use the hw profiling for that.
4551 	 *
4552 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4553 	 *   once they're completed.
4554 	 */
4555 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4556 		return;
4557 
4558 	/*
4559 	 * We define the fault as a major fault when the final successful fault
4560 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4561 	 * handle it immediately previously).
4562 	 */
4563 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4564 
4565 	if (major)
4566 		current->maj_flt++;
4567 	else
4568 		current->min_flt++;
4569 
4570 	/*
4571 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4572 	 * accounting for the per thread fault counters who triggered the
4573 	 * fault, and we skip the perf event updates.
4574 	 */
4575 	if (!regs)
4576 		return;
4577 
4578 	if (major)
4579 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4580 	else
4581 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4582 }
4583 
4584 /*
4585  * By the time we get here, we already hold the mm semaphore
4586  *
4587  * The mmap_lock may have been released depending on flags and our
4588  * return value.  See filemap_fault() and __lock_page_or_retry().
4589  */
4590 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4591 			   unsigned int flags, struct pt_regs *regs)
4592 {
4593 	vm_fault_t ret;
4594 
4595 	__set_current_state(TASK_RUNNING);
4596 
4597 	count_vm_event(PGFAULT);
4598 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4599 
4600 	/* do counter updates before entering really critical section. */
4601 	check_sync_rss_stat(current);
4602 
4603 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4604 					    flags & FAULT_FLAG_INSTRUCTION,
4605 					    flags & FAULT_FLAG_REMOTE))
4606 		return VM_FAULT_SIGSEGV;
4607 
4608 	/*
4609 	 * Enable the memcg OOM handling for faults triggered in user
4610 	 * space.  Kernel faults are handled more gracefully.
4611 	 */
4612 	if (flags & FAULT_FLAG_USER)
4613 		mem_cgroup_enter_user_fault();
4614 
4615 	if (unlikely(is_vm_hugetlb_page(vma)))
4616 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4617 	else
4618 		ret = __handle_mm_fault(vma, address, flags);
4619 
4620 	if (flags & FAULT_FLAG_USER) {
4621 		mem_cgroup_exit_user_fault();
4622 		/*
4623 		 * The task may have entered a memcg OOM situation but
4624 		 * if the allocation error was handled gracefully (no
4625 		 * VM_FAULT_OOM), there is no need to kill anything.
4626 		 * Just clean up the OOM state peacefully.
4627 		 */
4628 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4629 			mem_cgroup_oom_synchronize(false);
4630 	}
4631 
4632 	mm_account_fault(regs, address, flags, ret);
4633 
4634 	return ret;
4635 }
4636 EXPORT_SYMBOL_GPL(handle_mm_fault);
4637 
4638 #ifndef __PAGETABLE_P4D_FOLDED
4639 /*
4640  * Allocate p4d page table.
4641  * We've already handled the fast-path in-line.
4642  */
4643 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4644 {
4645 	p4d_t *new = p4d_alloc_one(mm, address);
4646 	if (!new)
4647 		return -ENOMEM;
4648 
4649 	smp_wmb(); /* See comment in __pte_alloc */
4650 
4651 	spin_lock(&mm->page_table_lock);
4652 	if (pgd_present(*pgd))		/* Another has populated it */
4653 		p4d_free(mm, new);
4654 	else
4655 		pgd_populate(mm, pgd, new);
4656 	spin_unlock(&mm->page_table_lock);
4657 	return 0;
4658 }
4659 #endif /* __PAGETABLE_P4D_FOLDED */
4660 
4661 #ifndef __PAGETABLE_PUD_FOLDED
4662 /*
4663  * Allocate page upper directory.
4664  * We've already handled the fast-path in-line.
4665  */
4666 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4667 {
4668 	pud_t *new = pud_alloc_one(mm, address);
4669 	if (!new)
4670 		return -ENOMEM;
4671 
4672 	smp_wmb(); /* See comment in __pte_alloc */
4673 
4674 	spin_lock(&mm->page_table_lock);
4675 	if (!p4d_present(*p4d)) {
4676 		mm_inc_nr_puds(mm);
4677 		p4d_populate(mm, p4d, new);
4678 	} else	/* Another has populated it */
4679 		pud_free(mm, new);
4680 	spin_unlock(&mm->page_table_lock);
4681 	return 0;
4682 }
4683 #endif /* __PAGETABLE_PUD_FOLDED */
4684 
4685 #ifndef __PAGETABLE_PMD_FOLDED
4686 /*
4687  * Allocate page middle directory.
4688  * We've already handled the fast-path in-line.
4689  */
4690 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4691 {
4692 	spinlock_t *ptl;
4693 	pmd_t *new = pmd_alloc_one(mm, address);
4694 	if (!new)
4695 		return -ENOMEM;
4696 
4697 	smp_wmb(); /* See comment in __pte_alloc */
4698 
4699 	ptl = pud_lock(mm, pud);
4700 	if (!pud_present(*pud)) {
4701 		mm_inc_nr_pmds(mm);
4702 		pud_populate(mm, pud, new);
4703 	} else	/* Another has populated it */
4704 		pmd_free(mm, new);
4705 	spin_unlock(ptl);
4706 	return 0;
4707 }
4708 #endif /* __PAGETABLE_PMD_FOLDED */
4709 
4710 int follow_pte(struct mm_struct *mm, unsigned long address,
4711 	       struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp,
4712 	       spinlock_t **ptlp)
4713 {
4714 	pgd_t *pgd;
4715 	p4d_t *p4d;
4716 	pud_t *pud;
4717 	pmd_t *pmd;
4718 	pte_t *ptep;
4719 
4720 	pgd = pgd_offset(mm, address);
4721 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4722 		goto out;
4723 
4724 	p4d = p4d_offset(pgd, address);
4725 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4726 		goto out;
4727 
4728 	pud = pud_offset(p4d, address);
4729 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4730 		goto out;
4731 
4732 	pmd = pmd_offset(pud, address);
4733 	VM_BUG_ON(pmd_trans_huge(*pmd));
4734 
4735 	if (pmd_huge(*pmd)) {
4736 		if (!pmdpp)
4737 			goto out;
4738 
4739 		if (range) {
4740 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4741 						NULL, mm, address & PMD_MASK,
4742 						(address & PMD_MASK) + PMD_SIZE);
4743 			mmu_notifier_invalidate_range_start(range);
4744 		}
4745 		*ptlp = pmd_lock(mm, pmd);
4746 		if (pmd_huge(*pmd)) {
4747 			*pmdpp = pmd;
4748 			return 0;
4749 		}
4750 		spin_unlock(*ptlp);
4751 		if (range)
4752 			mmu_notifier_invalidate_range_end(range);
4753 	}
4754 
4755 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4756 		goto out;
4757 
4758 	if (range) {
4759 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4760 					address & PAGE_MASK,
4761 					(address & PAGE_MASK) + PAGE_SIZE);
4762 		mmu_notifier_invalidate_range_start(range);
4763 	}
4764 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4765 	if (!pte_present(*ptep))
4766 		goto unlock;
4767 	*ptepp = ptep;
4768 	return 0;
4769 unlock:
4770 	pte_unmap_unlock(ptep, *ptlp);
4771 	if (range)
4772 		mmu_notifier_invalidate_range_end(range);
4773 out:
4774 	return -EINVAL;
4775 }
4776 
4777 /**
4778  * follow_pfn - look up PFN at a user virtual address
4779  * @vma: memory mapping
4780  * @address: user virtual address
4781  * @pfn: location to store found PFN
4782  *
4783  * Only IO mappings and raw PFN mappings are allowed.
4784  *
4785  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4786  */
4787 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4788 	unsigned long *pfn)
4789 {
4790 	int ret = -EINVAL;
4791 	spinlock_t *ptl;
4792 	pte_t *ptep;
4793 
4794 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4795 		return ret;
4796 
4797 	ret = follow_pte(vma->vm_mm, address, NULL, &ptep, NULL, &ptl);
4798 	if (ret)
4799 		return ret;
4800 	*pfn = pte_pfn(*ptep);
4801 	pte_unmap_unlock(ptep, ptl);
4802 	return 0;
4803 }
4804 EXPORT_SYMBOL(follow_pfn);
4805 
4806 #ifdef CONFIG_HAVE_IOREMAP_PROT
4807 int follow_phys(struct vm_area_struct *vma,
4808 		unsigned long address, unsigned int flags,
4809 		unsigned long *prot, resource_size_t *phys)
4810 {
4811 	int ret = -EINVAL;
4812 	pte_t *ptep, pte;
4813 	spinlock_t *ptl;
4814 
4815 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4816 		goto out;
4817 
4818 	if (follow_pte(vma->vm_mm, address, NULL, &ptep, NULL, &ptl))
4819 		goto out;
4820 	pte = *ptep;
4821 
4822 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4823 		goto unlock;
4824 
4825 	*prot = pgprot_val(pte_pgprot(pte));
4826 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4827 
4828 	ret = 0;
4829 unlock:
4830 	pte_unmap_unlock(ptep, ptl);
4831 out:
4832 	return ret;
4833 }
4834 
4835 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4836 			void *buf, int len, int write)
4837 {
4838 	resource_size_t phys_addr;
4839 	unsigned long prot = 0;
4840 	void __iomem *maddr;
4841 	int offset = addr & (PAGE_SIZE-1);
4842 
4843 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4844 		return -EINVAL;
4845 
4846 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4847 	if (!maddr)
4848 		return -ENOMEM;
4849 
4850 	if (write)
4851 		memcpy_toio(maddr + offset, buf, len);
4852 	else
4853 		memcpy_fromio(buf, maddr + offset, len);
4854 	iounmap(maddr);
4855 
4856 	return len;
4857 }
4858 EXPORT_SYMBOL_GPL(generic_access_phys);
4859 #endif
4860 
4861 /*
4862  * Access another process' address space as given in mm.
4863  */
4864 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4865 		       int len, unsigned int gup_flags)
4866 {
4867 	struct vm_area_struct *vma;
4868 	void *old_buf = buf;
4869 	int write = gup_flags & FOLL_WRITE;
4870 
4871 	if (mmap_read_lock_killable(mm))
4872 		return 0;
4873 
4874 	/* ignore errors, just check how much was successfully transferred */
4875 	while (len) {
4876 		int bytes, ret, offset;
4877 		void *maddr;
4878 		struct page *page = NULL;
4879 
4880 		ret = get_user_pages_remote(mm, addr, 1,
4881 				gup_flags, &page, &vma, NULL);
4882 		if (ret <= 0) {
4883 #ifndef CONFIG_HAVE_IOREMAP_PROT
4884 			break;
4885 #else
4886 			/*
4887 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4888 			 * we can access using slightly different code.
4889 			 */
4890 			vma = find_vma(mm, addr);
4891 			if (!vma || vma->vm_start > addr)
4892 				break;
4893 			if (vma->vm_ops && vma->vm_ops->access)
4894 				ret = vma->vm_ops->access(vma, addr, buf,
4895 							  len, write);
4896 			if (ret <= 0)
4897 				break;
4898 			bytes = ret;
4899 #endif
4900 		} else {
4901 			bytes = len;
4902 			offset = addr & (PAGE_SIZE-1);
4903 			if (bytes > PAGE_SIZE-offset)
4904 				bytes = PAGE_SIZE-offset;
4905 
4906 			maddr = kmap(page);
4907 			if (write) {
4908 				copy_to_user_page(vma, page, addr,
4909 						  maddr + offset, buf, bytes);
4910 				set_page_dirty_lock(page);
4911 			} else {
4912 				copy_from_user_page(vma, page, addr,
4913 						    buf, maddr + offset, bytes);
4914 			}
4915 			kunmap(page);
4916 			put_page(page);
4917 		}
4918 		len -= bytes;
4919 		buf += bytes;
4920 		addr += bytes;
4921 	}
4922 	mmap_read_unlock(mm);
4923 
4924 	return buf - old_buf;
4925 }
4926 
4927 /**
4928  * access_remote_vm - access another process' address space
4929  * @mm:		the mm_struct of the target address space
4930  * @addr:	start address to access
4931  * @buf:	source or destination buffer
4932  * @len:	number of bytes to transfer
4933  * @gup_flags:	flags modifying lookup behaviour
4934  *
4935  * The caller must hold a reference on @mm.
4936  *
4937  * Return: number of bytes copied from source to destination.
4938  */
4939 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4940 		void *buf, int len, unsigned int gup_flags)
4941 {
4942 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
4943 }
4944 
4945 /*
4946  * Access another process' address space.
4947  * Source/target buffer must be kernel space,
4948  * Do not walk the page table directly, use get_user_pages
4949  */
4950 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4951 		void *buf, int len, unsigned int gup_flags)
4952 {
4953 	struct mm_struct *mm;
4954 	int ret;
4955 
4956 	mm = get_task_mm(tsk);
4957 	if (!mm)
4958 		return 0;
4959 
4960 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
4961 
4962 	mmput(mm);
4963 
4964 	return ret;
4965 }
4966 EXPORT_SYMBOL_GPL(access_process_vm);
4967 
4968 /*
4969  * Print the name of a VMA.
4970  */
4971 void print_vma_addr(char *prefix, unsigned long ip)
4972 {
4973 	struct mm_struct *mm = current->mm;
4974 	struct vm_area_struct *vma;
4975 
4976 	/*
4977 	 * we might be running from an atomic context so we cannot sleep
4978 	 */
4979 	if (!mmap_read_trylock(mm))
4980 		return;
4981 
4982 	vma = find_vma(mm, ip);
4983 	if (vma && vma->vm_file) {
4984 		struct file *f = vma->vm_file;
4985 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4986 		if (buf) {
4987 			char *p;
4988 
4989 			p = file_path(f, buf, PAGE_SIZE);
4990 			if (IS_ERR(p))
4991 				p = "?";
4992 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4993 					vma->vm_start,
4994 					vma->vm_end - vma->vm_start);
4995 			free_page((unsigned long)buf);
4996 		}
4997 	}
4998 	mmap_read_unlock(mm);
4999 }
5000 
5001 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5002 void __might_fault(const char *file, int line)
5003 {
5004 	/*
5005 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5006 	 * holding the mmap_lock, this is safe because kernel memory doesn't
5007 	 * get paged out, therefore we'll never actually fault, and the
5008 	 * below annotations will generate false positives.
5009 	 */
5010 	if (uaccess_kernel())
5011 		return;
5012 	if (pagefault_disabled())
5013 		return;
5014 	__might_sleep(file, line, 0);
5015 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5016 	if (current->mm)
5017 		might_lock_read(&current->mm->mmap_lock);
5018 #endif
5019 }
5020 EXPORT_SYMBOL(__might_fault);
5021 #endif
5022 
5023 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5024 /*
5025  * Process all subpages of the specified huge page with the specified
5026  * operation.  The target subpage will be processed last to keep its
5027  * cache lines hot.
5028  */
5029 static inline void process_huge_page(
5030 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5031 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5032 	void *arg)
5033 {
5034 	int i, n, base, l;
5035 	unsigned long addr = addr_hint &
5036 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5037 
5038 	/* Process target subpage last to keep its cache lines hot */
5039 	might_sleep();
5040 	n = (addr_hint - addr) / PAGE_SIZE;
5041 	if (2 * n <= pages_per_huge_page) {
5042 		/* If target subpage in first half of huge page */
5043 		base = 0;
5044 		l = n;
5045 		/* Process subpages at the end of huge page */
5046 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5047 			cond_resched();
5048 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5049 		}
5050 	} else {
5051 		/* If target subpage in second half of huge page */
5052 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5053 		l = pages_per_huge_page - n;
5054 		/* Process subpages at the begin of huge page */
5055 		for (i = 0; i < base; i++) {
5056 			cond_resched();
5057 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5058 		}
5059 	}
5060 	/*
5061 	 * Process remaining subpages in left-right-left-right pattern
5062 	 * towards the target subpage
5063 	 */
5064 	for (i = 0; i < l; i++) {
5065 		int left_idx = base + i;
5066 		int right_idx = base + 2 * l - 1 - i;
5067 
5068 		cond_resched();
5069 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5070 		cond_resched();
5071 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5072 	}
5073 }
5074 
5075 static void clear_gigantic_page(struct page *page,
5076 				unsigned long addr,
5077 				unsigned int pages_per_huge_page)
5078 {
5079 	int i;
5080 	struct page *p = page;
5081 
5082 	might_sleep();
5083 	for (i = 0; i < pages_per_huge_page;
5084 	     i++, p = mem_map_next(p, page, i)) {
5085 		cond_resched();
5086 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5087 	}
5088 }
5089 
5090 static void clear_subpage(unsigned long addr, int idx, void *arg)
5091 {
5092 	struct page *page = arg;
5093 
5094 	clear_user_highpage(page + idx, addr);
5095 }
5096 
5097 void clear_huge_page(struct page *page,
5098 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5099 {
5100 	unsigned long addr = addr_hint &
5101 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5102 
5103 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5104 		clear_gigantic_page(page, addr, pages_per_huge_page);
5105 		return;
5106 	}
5107 
5108 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5109 }
5110 
5111 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5112 				    unsigned long addr,
5113 				    struct vm_area_struct *vma,
5114 				    unsigned int pages_per_huge_page)
5115 {
5116 	int i;
5117 	struct page *dst_base = dst;
5118 	struct page *src_base = src;
5119 
5120 	for (i = 0; i < pages_per_huge_page; ) {
5121 		cond_resched();
5122 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5123 
5124 		i++;
5125 		dst = mem_map_next(dst, dst_base, i);
5126 		src = mem_map_next(src, src_base, i);
5127 	}
5128 }
5129 
5130 struct copy_subpage_arg {
5131 	struct page *dst;
5132 	struct page *src;
5133 	struct vm_area_struct *vma;
5134 };
5135 
5136 static void copy_subpage(unsigned long addr, int idx, void *arg)
5137 {
5138 	struct copy_subpage_arg *copy_arg = arg;
5139 
5140 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5141 			   addr, copy_arg->vma);
5142 }
5143 
5144 void copy_user_huge_page(struct page *dst, struct page *src,
5145 			 unsigned long addr_hint, struct vm_area_struct *vma,
5146 			 unsigned int pages_per_huge_page)
5147 {
5148 	unsigned long addr = addr_hint &
5149 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5150 	struct copy_subpage_arg arg = {
5151 		.dst = dst,
5152 		.src = src,
5153 		.vma = vma,
5154 	};
5155 
5156 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5157 		copy_user_gigantic_page(dst, src, addr, vma,
5158 					pages_per_huge_page);
5159 		return;
5160 	}
5161 
5162 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5163 }
5164 
5165 long copy_huge_page_from_user(struct page *dst_page,
5166 				const void __user *usr_src,
5167 				unsigned int pages_per_huge_page,
5168 				bool allow_pagefault)
5169 {
5170 	void *src = (void *)usr_src;
5171 	void *page_kaddr;
5172 	unsigned long i, rc = 0;
5173 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5174 
5175 	for (i = 0; i < pages_per_huge_page; i++) {
5176 		if (allow_pagefault)
5177 			page_kaddr = kmap(dst_page + i);
5178 		else
5179 			page_kaddr = kmap_atomic(dst_page + i);
5180 		rc = copy_from_user(page_kaddr,
5181 				(const void __user *)(src + i * PAGE_SIZE),
5182 				PAGE_SIZE);
5183 		if (allow_pagefault)
5184 			kunmap(dst_page + i);
5185 		else
5186 			kunmap_atomic(page_kaddr);
5187 
5188 		ret_val -= (PAGE_SIZE - rc);
5189 		if (rc)
5190 			break;
5191 
5192 		cond_resched();
5193 	}
5194 	return ret_val;
5195 }
5196 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5197 
5198 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5199 
5200 static struct kmem_cache *page_ptl_cachep;
5201 
5202 void __init ptlock_cache_init(void)
5203 {
5204 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5205 			SLAB_PANIC, NULL);
5206 }
5207 
5208 bool ptlock_alloc(struct page *page)
5209 {
5210 	spinlock_t *ptl;
5211 
5212 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5213 	if (!ptl)
5214 		return false;
5215 	page->ptl = ptl;
5216 	return true;
5217 }
5218 
5219 void ptlock_free(struct page *page)
5220 {
5221 	kmem_cache_free(page_ptl_cachep, page->ptl);
5222 }
5223 #endif
5224