xref: /openbmc/linux/mm/memory.c (revision 6ab3d562)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51 
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65 
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69 
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80 
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84 
85 int randomize_va_space __read_mostly = 1;
86 
87 static int __init disable_randmaps(char *s)
88 {
89 	randomize_va_space = 0;
90 	return 1;
91 }
92 __setup("norandmaps", disable_randmaps);
93 
94 
95 /*
96  * If a p?d_bad entry is found while walking page tables, report
97  * the error, before resetting entry to p?d_none.  Usually (but
98  * very seldom) called out from the p?d_none_or_clear_bad macros.
99  */
100 
101 void pgd_clear_bad(pgd_t *pgd)
102 {
103 	pgd_ERROR(*pgd);
104 	pgd_clear(pgd);
105 }
106 
107 void pud_clear_bad(pud_t *pud)
108 {
109 	pud_ERROR(*pud);
110 	pud_clear(pud);
111 }
112 
113 void pmd_clear_bad(pmd_t *pmd)
114 {
115 	pmd_ERROR(*pmd);
116 	pmd_clear(pmd);
117 }
118 
119 /*
120  * Note: this doesn't free the actual pages themselves. That
121  * has been handled earlier when unmapping all the memory regions.
122  */
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
124 {
125 	struct page *page = pmd_page(*pmd);
126 	pmd_clear(pmd);
127 	pte_lock_deinit(page);
128 	pte_free_tlb(tlb, page);
129 	dec_page_state(nr_page_table_pages);
130 	tlb->mm->nr_ptes--;
131 }
132 
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 				unsigned long addr, unsigned long end,
135 				unsigned long floor, unsigned long ceiling)
136 {
137 	pmd_t *pmd;
138 	unsigned long next;
139 	unsigned long start;
140 
141 	start = addr;
142 	pmd = pmd_offset(pud, addr);
143 	do {
144 		next = pmd_addr_end(addr, end);
145 		if (pmd_none_or_clear_bad(pmd))
146 			continue;
147 		free_pte_range(tlb, pmd);
148 	} while (pmd++, addr = next, addr != end);
149 
150 	start &= PUD_MASK;
151 	if (start < floor)
152 		return;
153 	if (ceiling) {
154 		ceiling &= PUD_MASK;
155 		if (!ceiling)
156 			return;
157 	}
158 	if (end - 1 > ceiling - 1)
159 		return;
160 
161 	pmd = pmd_offset(pud, start);
162 	pud_clear(pud);
163 	pmd_free_tlb(tlb, pmd);
164 }
165 
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 				unsigned long addr, unsigned long end,
168 				unsigned long floor, unsigned long ceiling)
169 {
170 	pud_t *pud;
171 	unsigned long next;
172 	unsigned long start;
173 
174 	start = addr;
175 	pud = pud_offset(pgd, addr);
176 	do {
177 		next = pud_addr_end(addr, end);
178 		if (pud_none_or_clear_bad(pud))
179 			continue;
180 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181 	} while (pud++, addr = next, addr != end);
182 
183 	start &= PGDIR_MASK;
184 	if (start < floor)
185 		return;
186 	if (ceiling) {
187 		ceiling &= PGDIR_MASK;
188 		if (!ceiling)
189 			return;
190 	}
191 	if (end - 1 > ceiling - 1)
192 		return;
193 
194 	pud = pud_offset(pgd, start);
195 	pgd_clear(pgd);
196 	pud_free_tlb(tlb, pud);
197 }
198 
199 /*
200  * This function frees user-level page tables of a process.
201  *
202  * Must be called with pagetable lock held.
203  */
204 void free_pgd_range(struct mmu_gather **tlb,
205 			unsigned long addr, unsigned long end,
206 			unsigned long floor, unsigned long ceiling)
207 {
208 	pgd_t *pgd;
209 	unsigned long next;
210 	unsigned long start;
211 
212 	/*
213 	 * The next few lines have given us lots of grief...
214 	 *
215 	 * Why are we testing PMD* at this top level?  Because often
216 	 * there will be no work to do at all, and we'd prefer not to
217 	 * go all the way down to the bottom just to discover that.
218 	 *
219 	 * Why all these "- 1"s?  Because 0 represents both the bottom
220 	 * of the address space and the top of it (using -1 for the
221 	 * top wouldn't help much: the masks would do the wrong thing).
222 	 * The rule is that addr 0 and floor 0 refer to the bottom of
223 	 * the address space, but end 0 and ceiling 0 refer to the top
224 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 	 * that end 0 case should be mythical).
226 	 *
227 	 * Wherever addr is brought up or ceiling brought down, we must
228 	 * be careful to reject "the opposite 0" before it confuses the
229 	 * subsequent tests.  But what about where end is brought down
230 	 * by PMD_SIZE below? no, end can't go down to 0 there.
231 	 *
232 	 * Whereas we round start (addr) and ceiling down, by different
233 	 * masks at different levels, in order to test whether a table
234 	 * now has no other vmas using it, so can be freed, we don't
235 	 * bother to round floor or end up - the tests don't need that.
236 	 */
237 
238 	addr &= PMD_MASK;
239 	if (addr < floor) {
240 		addr += PMD_SIZE;
241 		if (!addr)
242 			return;
243 	}
244 	if (ceiling) {
245 		ceiling &= PMD_MASK;
246 		if (!ceiling)
247 			return;
248 	}
249 	if (end - 1 > ceiling - 1)
250 		end -= PMD_SIZE;
251 	if (addr > end - 1)
252 		return;
253 
254 	start = addr;
255 	pgd = pgd_offset((*tlb)->mm, addr);
256 	do {
257 		next = pgd_addr_end(addr, end);
258 		if (pgd_none_or_clear_bad(pgd))
259 			continue;
260 		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261 	} while (pgd++, addr = next, addr != end);
262 
263 	if (!(*tlb)->fullmm)
264 		flush_tlb_pgtables((*tlb)->mm, start, end);
265 }
266 
267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
268 		unsigned long floor, unsigned long ceiling)
269 {
270 	while (vma) {
271 		struct vm_area_struct *next = vma->vm_next;
272 		unsigned long addr = vma->vm_start;
273 
274 		/*
275 		 * Hide vma from rmap and vmtruncate before freeing pgtables
276 		 */
277 		anon_vma_unlink(vma);
278 		unlink_file_vma(vma);
279 
280 		if (is_vm_hugetlb_page(vma)) {
281 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
282 				floor, next? next->vm_start: ceiling);
283 		} else {
284 			/*
285 			 * Optimization: gather nearby vmas into one call down
286 			 */
287 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
288 			       && !is_vm_hugetlb_page(next)) {
289 				vma = next;
290 				next = vma->vm_next;
291 				anon_vma_unlink(vma);
292 				unlink_file_vma(vma);
293 			}
294 			free_pgd_range(tlb, addr, vma->vm_end,
295 				floor, next? next->vm_start: ceiling);
296 		}
297 		vma = next;
298 	}
299 }
300 
301 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
302 {
303 	struct page *new = pte_alloc_one(mm, address);
304 	if (!new)
305 		return -ENOMEM;
306 
307 	pte_lock_init(new);
308 	spin_lock(&mm->page_table_lock);
309 	if (pmd_present(*pmd)) {	/* Another has populated it */
310 		pte_lock_deinit(new);
311 		pte_free(new);
312 	} else {
313 		mm->nr_ptes++;
314 		inc_page_state(nr_page_table_pages);
315 		pmd_populate(mm, pmd, new);
316 	}
317 	spin_unlock(&mm->page_table_lock);
318 	return 0;
319 }
320 
321 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
322 {
323 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
324 	if (!new)
325 		return -ENOMEM;
326 
327 	spin_lock(&init_mm.page_table_lock);
328 	if (pmd_present(*pmd))		/* Another has populated it */
329 		pte_free_kernel(new);
330 	else
331 		pmd_populate_kernel(&init_mm, pmd, new);
332 	spin_unlock(&init_mm.page_table_lock);
333 	return 0;
334 }
335 
336 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
337 {
338 	if (file_rss)
339 		add_mm_counter(mm, file_rss, file_rss);
340 	if (anon_rss)
341 		add_mm_counter(mm, anon_rss, anon_rss);
342 }
343 
344 /*
345  * This function is called to print an error when a bad pte
346  * is found. For example, we might have a PFN-mapped pte in
347  * a region that doesn't allow it.
348  *
349  * The calling function must still handle the error.
350  */
351 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
352 {
353 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
354 			"vm_flags = %lx, vaddr = %lx\n",
355 		(long long)pte_val(pte),
356 		(vma->vm_mm == current->mm ? current->comm : "???"),
357 		vma->vm_flags, vaddr);
358 	dump_stack();
359 }
360 
361 static inline int is_cow_mapping(unsigned int flags)
362 {
363 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
364 }
365 
366 /*
367  * This function gets the "struct page" associated with a pte.
368  *
369  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
370  * will have each page table entry just pointing to a raw page frame
371  * number, and as far as the VM layer is concerned, those do not have
372  * pages associated with them - even if the PFN might point to memory
373  * that otherwise is perfectly fine and has a "struct page".
374  *
375  * The way we recognize those mappings is through the rules set up
376  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
377  * and the vm_pgoff will point to the first PFN mapped: thus every
378  * page that is a raw mapping will always honor the rule
379  *
380  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
381  *
382  * and if that isn't true, the page has been COW'ed (in which case it
383  * _does_ have a "struct page" associated with it even if it is in a
384  * VM_PFNMAP range).
385  */
386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
387 {
388 	unsigned long pfn = pte_pfn(pte);
389 
390 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
391 		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
392 		if (pfn == vma->vm_pgoff + off)
393 			return NULL;
394 		if (!is_cow_mapping(vma->vm_flags))
395 			return NULL;
396 	}
397 
398 	/*
399 	 * Add some anal sanity checks for now. Eventually,
400 	 * we should just do "return pfn_to_page(pfn)", but
401 	 * in the meantime we check that we get a valid pfn,
402 	 * and that the resulting page looks ok.
403 	 */
404 	if (unlikely(!pfn_valid(pfn))) {
405 		print_bad_pte(vma, pte, addr);
406 		return NULL;
407 	}
408 
409 	/*
410 	 * NOTE! We still have PageReserved() pages in the page
411 	 * tables.
412 	 *
413 	 * The PAGE_ZERO() pages and various VDSO mappings can
414 	 * cause them to exist.
415 	 */
416 	return pfn_to_page(pfn);
417 }
418 
419 /*
420  * copy one vm_area from one task to the other. Assumes the page tables
421  * already present in the new task to be cleared in the whole range
422  * covered by this vma.
423  */
424 
425 static inline void
426 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
427 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
428 		unsigned long addr, int *rss)
429 {
430 	unsigned long vm_flags = vma->vm_flags;
431 	pte_t pte = *src_pte;
432 	struct page *page;
433 
434 	/* pte contains position in swap or file, so copy. */
435 	if (unlikely(!pte_present(pte))) {
436 		if (!pte_file(pte)) {
437 			swp_entry_t entry = pte_to_swp_entry(pte);
438 
439 			swap_duplicate(entry);
440 			/* make sure dst_mm is on swapoff's mmlist. */
441 			if (unlikely(list_empty(&dst_mm->mmlist))) {
442 				spin_lock(&mmlist_lock);
443 				if (list_empty(&dst_mm->mmlist))
444 					list_add(&dst_mm->mmlist,
445 						 &src_mm->mmlist);
446 				spin_unlock(&mmlist_lock);
447 			}
448 			if (is_write_migration_entry(entry) &&
449 					is_cow_mapping(vm_flags)) {
450 				/*
451 				 * COW mappings require pages in both parent
452 				 * and child to be set to read.
453 				 */
454 				make_migration_entry_read(&entry);
455 				pte = swp_entry_to_pte(entry);
456 				set_pte_at(src_mm, addr, src_pte, pte);
457 			}
458 		}
459 		goto out_set_pte;
460 	}
461 
462 	/*
463 	 * If it's a COW mapping, write protect it both
464 	 * in the parent and the child
465 	 */
466 	if (is_cow_mapping(vm_flags)) {
467 		ptep_set_wrprotect(src_mm, addr, src_pte);
468 		pte = *src_pte;
469 	}
470 
471 	/*
472 	 * If it's a shared mapping, mark it clean in
473 	 * the child
474 	 */
475 	if (vm_flags & VM_SHARED)
476 		pte = pte_mkclean(pte);
477 	pte = pte_mkold(pte);
478 
479 	page = vm_normal_page(vma, addr, pte);
480 	if (page) {
481 		get_page(page);
482 		page_dup_rmap(page);
483 		rss[!!PageAnon(page)]++;
484 	}
485 
486 out_set_pte:
487 	set_pte_at(dst_mm, addr, dst_pte, pte);
488 }
489 
490 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
492 		unsigned long addr, unsigned long end)
493 {
494 	pte_t *src_pte, *dst_pte;
495 	spinlock_t *src_ptl, *dst_ptl;
496 	int progress = 0;
497 	int rss[2];
498 
499 again:
500 	rss[1] = rss[0] = 0;
501 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
502 	if (!dst_pte)
503 		return -ENOMEM;
504 	src_pte = pte_offset_map_nested(src_pmd, addr);
505 	src_ptl = pte_lockptr(src_mm, src_pmd);
506 	spin_lock(src_ptl);
507 
508 	do {
509 		/*
510 		 * We are holding two locks at this point - either of them
511 		 * could generate latencies in another task on another CPU.
512 		 */
513 		if (progress >= 32) {
514 			progress = 0;
515 			if (need_resched() ||
516 			    need_lockbreak(src_ptl) ||
517 			    need_lockbreak(dst_ptl))
518 				break;
519 		}
520 		if (pte_none(*src_pte)) {
521 			progress++;
522 			continue;
523 		}
524 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
525 		progress += 8;
526 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
527 
528 	spin_unlock(src_ptl);
529 	pte_unmap_nested(src_pte - 1);
530 	add_mm_rss(dst_mm, rss[0], rss[1]);
531 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
532 	cond_resched();
533 	if (addr != end)
534 		goto again;
535 	return 0;
536 }
537 
538 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
539 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
540 		unsigned long addr, unsigned long end)
541 {
542 	pmd_t *src_pmd, *dst_pmd;
543 	unsigned long next;
544 
545 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
546 	if (!dst_pmd)
547 		return -ENOMEM;
548 	src_pmd = pmd_offset(src_pud, addr);
549 	do {
550 		next = pmd_addr_end(addr, end);
551 		if (pmd_none_or_clear_bad(src_pmd))
552 			continue;
553 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
554 						vma, addr, next))
555 			return -ENOMEM;
556 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
557 	return 0;
558 }
559 
560 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
561 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
562 		unsigned long addr, unsigned long end)
563 {
564 	pud_t *src_pud, *dst_pud;
565 	unsigned long next;
566 
567 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
568 	if (!dst_pud)
569 		return -ENOMEM;
570 	src_pud = pud_offset(src_pgd, addr);
571 	do {
572 		next = pud_addr_end(addr, end);
573 		if (pud_none_or_clear_bad(src_pud))
574 			continue;
575 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
576 						vma, addr, next))
577 			return -ENOMEM;
578 	} while (dst_pud++, src_pud++, addr = next, addr != end);
579 	return 0;
580 }
581 
582 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
583 		struct vm_area_struct *vma)
584 {
585 	pgd_t *src_pgd, *dst_pgd;
586 	unsigned long next;
587 	unsigned long addr = vma->vm_start;
588 	unsigned long end = vma->vm_end;
589 
590 	/*
591 	 * Don't copy ptes where a page fault will fill them correctly.
592 	 * Fork becomes much lighter when there are big shared or private
593 	 * readonly mappings. The tradeoff is that copy_page_range is more
594 	 * efficient than faulting.
595 	 */
596 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
597 		if (!vma->anon_vma)
598 			return 0;
599 	}
600 
601 	if (is_vm_hugetlb_page(vma))
602 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
603 
604 	dst_pgd = pgd_offset(dst_mm, addr);
605 	src_pgd = pgd_offset(src_mm, addr);
606 	do {
607 		next = pgd_addr_end(addr, end);
608 		if (pgd_none_or_clear_bad(src_pgd))
609 			continue;
610 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
611 						vma, addr, next))
612 			return -ENOMEM;
613 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
614 	return 0;
615 }
616 
617 static unsigned long zap_pte_range(struct mmu_gather *tlb,
618 				struct vm_area_struct *vma, pmd_t *pmd,
619 				unsigned long addr, unsigned long end,
620 				long *zap_work, struct zap_details *details)
621 {
622 	struct mm_struct *mm = tlb->mm;
623 	pte_t *pte;
624 	spinlock_t *ptl;
625 	int file_rss = 0;
626 	int anon_rss = 0;
627 
628 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
629 	do {
630 		pte_t ptent = *pte;
631 		if (pte_none(ptent)) {
632 			(*zap_work)--;
633 			continue;
634 		}
635 
636 		(*zap_work) -= PAGE_SIZE;
637 
638 		if (pte_present(ptent)) {
639 			struct page *page;
640 
641 			page = vm_normal_page(vma, addr, ptent);
642 			if (unlikely(details) && page) {
643 				/*
644 				 * unmap_shared_mapping_pages() wants to
645 				 * invalidate cache without truncating:
646 				 * unmap shared but keep private pages.
647 				 */
648 				if (details->check_mapping &&
649 				    details->check_mapping != page->mapping)
650 					continue;
651 				/*
652 				 * Each page->index must be checked when
653 				 * invalidating or truncating nonlinear.
654 				 */
655 				if (details->nonlinear_vma &&
656 				    (page->index < details->first_index ||
657 				     page->index > details->last_index))
658 					continue;
659 			}
660 			ptent = ptep_get_and_clear_full(mm, addr, pte,
661 							tlb->fullmm);
662 			tlb_remove_tlb_entry(tlb, pte, addr);
663 			if (unlikely(!page))
664 				continue;
665 			if (unlikely(details) && details->nonlinear_vma
666 			    && linear_page_index(details->nonlinear_vma,
667 						addr) != page->index)
668 				set_pte_at(mm, addr, pte,
669 					   pgoff_to_pte(page->index));
670 			if (PageAnon(page))
671 				anon_rss--;
672 			else {
673 				if (pte_dirty(ptent))
674 					set_page_dirty(page);
675 				if (pte_young(ptent))
676 					mark_page_accessed(page);
677 				file_rss--;
678 			}
679 			page_remove_rmap(page);
680 			tlb_remove_page(tlb, page);
681 			continue;
682 		}
683 		/*
684 		 * If details->check_mapping, we leave swap entries;
685 		 * if details->nonlinear_vma, we leave file entries.
686 		 */
687 		if (unlikely(details))
688 			continue;
689 		if (!pte_file(ptent))
690 			free_swap_and_cache(pte_to_swp_entry(ptent));
691 		pte_clear_full(mm, addr, pte, tlb->fullmm);
692 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
693 
694 	add_mm_rss(mm, file_rss, anon_rss);
695 	pte_unmap_unlock(pte - 1, ptl);
696 
697 	return addr;
698 }
699 
700 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
701 				struct vm_area_struct *vma, pud_t *pud,
702 				unsigned long addr, unsigned long end,
703 				long *zap_work, struct zap_details *details)
704 {
705 	pmd_t *pmd;
706 	unsigned long next;
707 
708 	pmd = pmd_offset(pud, addr);
709 	do {
710 		next = pmd_addr_end(addr, end);
711 		if (pmd_none_or_clear_bad(pmd)) {
712 			(*zap_work)--;
713 			continue;
714 		}
715 		next = zap_pte_range(tlb, vma, pmd, addr, next,
716 						zap_work, details);
717 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
718 
719 	return addr;
720 }
721 
722 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
723 				struct vm_area_struct *vma, pgd_t *pgd,
724 				unsigned long addr, unsigned long end,
725 				long *zap_work, struct zap_details *details)
726 {
727 	pud_t *pud;
728 	unsigned long next;
729 
730 	pud = pud_offset(pgd, addr);
731 	do {
732 		next = pud_addr_end(addr, end);
733 		if (pud_none_or_clear_bad(pud)) {
734 			(*zap_work)--;
735 			continue;
736 		}
737 		next = zap_pmd_range(tlb, vma, pud, addr, next,
738 						zap_work, details);
739 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
740 
741 	return addr;
742 }
743 
744 static unsigned long unmap_page_range(struct mmu_gather *tlb,
745 				struct vm_area_struct *vma,
746 				unsigned long addr, unsigned long end,
747 				long *zap_work, struct zap_details *details)
748 {
749 	pgd_t *pgd;
750 	unsigned long next;
751 
752 	if (details && !details->check_mapping && !details->nonlinear_vma)
753 		details = NULL;
754 
755 	BUG_ON(addr >= end);
756 	tlb_start_vma(tlb, vma);
757 	pgd = pgd_offset(vma->vm_mm, addr);
758 	do {
759 		next = pgd_addr_end(addr, end);
760 		if (pgd_none_or_clear_bad(pgd)) {
761 			(*zap_work)--;
762 			continue;
763 		}
764 		next = zap_pud_range(tlb, vma, pgd, addr, next,
765 						zap_work, details);
766 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
767 	tlb_end_vma(tlb, vma);
768 
769 	return addr;
770 }
771 
772 #ifdef CONFIG_PREEMPT
773 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
774 #else
775 /* No preempt: go for improved straight-line efficiency */
776 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
777 #endif
778 
779 /**
780  * unmap_vmas - unmap a range of memory covered by a list of vma's
781  * @tlbp: address of the caller's struct mmu_gather
782  * @vma: the starting vma
783  * @start_addr: virtual address at which to start unmapping
784  * @end_addr: virtual address at which to end unmapping
785  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
786  * @details: details of nonlinear truncation or shared cache invalidation
787  *
788  * Returns the end address of the unmapping (restart addr if interrupted).
789  *
790  * Unmap all pages in the vma list.
791  *
792  * We aim to not hold locks for too long (for scheduling latency reasons).
793  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
794  * return the ending mmu_gather to the caller.
795  *
796  * Only addresses between `start' and `end' will be unmapped.
797  *
798  * The VMA list must be sorted in ascending virtual address order.
799  *
800  * unmap_vmas() assumes that the caller will flush the whole unmapped address
801  * range after unmap_vmas() returns.  So the only responsibility here is to
802  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
803  * drops the lock and schedules.
804  */
805 unsigned long unmap_vmas(struct mmu_gather **tlbp,
806 		struct vm_area_struct *vma, unsigned long start_addr,
807 		unsigned long end_addr, unsigned long *nr_accounted,
808 		struct zap_details *details)
809 {
810 	long zap_work = ZAP_BLOCK_SIZE;
811 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
812 	int tlb_start_valid = 0;
813 	unsigned long start = start_addr;
814 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
815 	int fullmm = (*tlbp)->fullmm;
816 
817 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
818 		unsigned long end;
819 
820 		start = max(vma->vm_start, start_addr);
821 		if (start >= vma->vm_end)
822 			continue;
823 		end = min(vma->vm_end, end_addr);
824 		if (end <= vma->vm_start)
825 			continue;
826 
827 		if (vma->vm_flags & VM_ACCOUNT)
828 			*nr_accounted += (end - start) >> PAGE_SHIFT;
829 
830 		while (start != end) {
831 			if (!tlb_start_valid) {
832 				tlb_start = start;
833 				tlb_start_valid = 1;
834 			}
835 
836 			if (unlikely(is_vm_hugetlb_page(vma))) {
837 				unmap_hugepage_range(vma, start, end);
838 				zap_work -= (end - start) /
839 						(HPAGE_SIZE / PAGE_SIZE);
840 				start = end;
841 			} else
842 				start = unmap_page_range(*tlbp, vma,
843 						start, end, &zap_work, details);
844 
845 			if (zap_work > 0) {
846 				BUG_ON(start != end);
847 				break;
848 			}
849 
850 			tlb_finish_mmu(*tlbp, tlb_start, start);
851 
852 			if (need_resched() ||
853 				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
854 				if (i_mmap_lock) {
855 					*tlbp = NULL;
856 					goto out;
857 				}
858 				cond_resched();
859 			}
860 
861 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
862 			tlb_start_valid = 0;
863 			zap_work = ZAP_BLOCK_SIZE;
864 		}
865 	}
866 out:
867 	return start;	/* which is now the end (or restart) address */
868 }
869 
870 /**
871  * zap_page_range - remove user pages in a given range
872  * @vma: vm_area_struct holding the applicable pages
873  * @address: starting address of pages to zap
874  * @size: number of bytes to zap
875  * @details: details of nonlinear truncation or shared cache invalidation
876  */
877 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
878 		unsigned long size, struct zap_details *details)
879 {
880 	struct mm_struct *mm = vma->vm_mm;
881 	struct mmu_gather *tlb;
882 	unsigned long end = address + size;
883 	unsigned long nr_accounted = 0;
884 
885 	lru_add_drain();
886 	tlb = tlb_gather_mmu(mm, 0);
887 	update_hiwater_rss(mm);
888 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
889 	if (tlb)
890 		tlb_finish_mmu(tlb, address, end);
891 	return end;
892 }
893 
894 /*
895  * Do a quick page-table lookup for a single page.
896  */
897 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
898 			unsigned int flags)
899 {
900 	pgd_t *pgd;
901 	pud_t *pud;
902 	pmd_t *pmd;
903 	pte_t *ptep, pte;
904 	spinlock_t *ptl;
905 	struct page *page;
906 	struct mm_struct *mm = vma->vm_mm;
907 
908 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
909 	if (!IS_ERR(page)) {
910 		BUG_ON(flags & FOLL_GET);
911 		goto out;
912 	}
913 
914 	page = NULL;
915 	pgd = pgd_offset(mm, address);
916 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
917 		goto no_page_table;
918 
919 	pud = pud_offset(pgd, address);
920 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
921 		goto no_page_table;
922 
923 	pmd = pmd_offset(pud, address);
924 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
925 		goto no_page_table;
926 
927 	if (pmd_huge(*pmd)) {
928 		BUG_ON(flags & FOLL_GET);
929 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
930 		goto out;
931 	}
932 
933 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
934 	if (!ptep)
935 		goto out;
936 
937 	pte = *ptep;
938 	if (!pte_present(pte))
939 		goto unlock;
940 	if ((flags & FOLL_WRITE) && !pte_write(pte))
941 		goto unlock;
942 	page = vm_normal_page(vma, address, pte);
943 	if (unlikely(!page))
944 		goto unlock;
945 
946 	if (flags & FOLL_GET)
947 		get_page(page);
948 	if (flags & FOLL_TOUCH) {
949 		if ((flags & FOLL_WRITE) &&
950 		    !pte_dirty(pte) && !PageDirty(page))
951 			set_page_dirty(page);
952 		mark_page_accessed(page);
953 	}
954 unlock:
955 	pte_unmap_unlock(ptep, ptl);
956 out:
957 	return page;
958 
959 no_page_table:
960 	/*
961 	 * When core dumping an enormous anonymous area that nobody
962 	 * has touched so far, we don't want to allocate page tables.
963 	 */
964 	if (flags & FOLL_ANON) {
965 		page = ZERO_PAGE(address);
966 		if (flags & FOLL_GET)
967 			get_page(page);
968 		BUG_ON(flags & FOLL_WRITE);
969 	}
970 	return page;
971 }
972 
973 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
974 		unsigned long start, int len, int write, int force,
975 		struct page **pages, struct vm_area_struct **vmas)
976 {
977 	int i;
978 	unsigned int vm_flags;
979 
980 	/*
981 	 * Require read or write permissions.
982 	 * If 'force' is set, we only require the "MAY" flags.
983 	 */
984 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
985 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
986 	i = 0;
987 
988 	do {
989 		struct vm_area_struct *vma;
990 		unsigned int foll_flags;
991 
992 		vma = find_extend_vma(mm, start);
993 		if (!vma && in_gate_area(tsk, start)) {
994 			unsigned long pg = start & PAGE_MASK;
995 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
996 			pgd_t *pgd;
997 			pud_t *pud;
998 			pmd_t *pmd;
999 			pte_t *pte;
1000 			if (write) /* user gate pages are read-only */
1001 				return i ? : -EFAULT;
1002 			if (pg > TASK_SIZE)
1003 				pgd = pgd_offset_k(pg);
1004 			else
1005 				pgd = pgd_offset_gate(mm, pg);
1006 			BUG_ON(pgd_none(*pgd));
1007 			pud = pud_offset(pgd, pg);
1008 			BUG_ON(pud_none(*pud));
1009 			pmd = pmd_offset(pud, pg);
1010 			if (pmd_none(*pmd))
1011 				return i ? : -EFAULT;
1012 			pte = pte_offset_map(pmd, pg);
1013 			if (pte_none(*pte)) {
1014 				pte_unmap(pte);
1015 				return i ? : -EFAULT;
1016 			}
1017 			if (pages) {
1018 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1019 				pages[i] = page;
1020 				if (page)
1021 					get_page(page);
1022 			}
1023 			pte_unmap(pte);
1024 			if (vmas)
1025 				vmas[i] = gate_vma;
1026 			i++;
1027 			start += PAGE_SIZE;
1028 			len--;
1029 			continue;
1030 		}
1031 
1032 		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1033 				|| !(vm_flags & vma->vm_flags))
1034 			return i ? : -EFAULT;
1035 
1036 		if (is_vm_hugetlb_page(vma)) {
1037 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1038 						&start, &len, i);
1039 			continue;
1040 		}
1041 
1042 		foll_flags = FOLL_TOUCH;
1043 		if (pages)
1044 			foll_flags |= FOLL_GET;
1045 		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1046 		    (!vma->vm_ops || !vma->vm_ops->nopage))
1047 			foll_flags |= FOLL_ANON;
1048 
1049 		do {
1050 			struct page *page;
1051 
1052 			if (write)
1053 				foll_flags |= FOLL_WRITE;
1054 
1055 			cond_resched();
1056 			while (!(page = follow_page(vma, start, foll_flags))) {
1057 				int ret;
1058 				ret = __handle_mm_fault(mm, vma, start,
1059 						foll_flags & FOLL_WRITE);
1060 				/*
1061 				 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1062 				 * broken COW when necessary, even if maybe_mkwrite
1063 				 * decided not to set pte_write. We can thus safely do
1064 				 * subsequent page lookups as if they were reads.
1065 				 */
1066 				if (ret & VM_FAULT_WRITE)
1067 					foll_flags &= ~FOLL_WRITE;
1068 
1069 				switch (ret & ~VM_FAULT_WRITE) {
1070 				case VM_FAULT_MINOR:
1071 					tsk->min_flt++;
1072 					break;
1073 				case VM_FAULT_MAJOR:
1074 					tsk->maj_flt++;
1075 					break;
1076 				case VM_FAULT_SIGBUS:
1077 					return i ? i : -EFAULT;
1078 				case VM_FAULT_OOM:
1079 					return i ? i : -ENOMEM;
1080 				default:
1081 					BUG();
1082 				}
1083 			}
1084 			if (pages) {
1085 				pages[i] = page;
1086 
1087 				flush_anon_page(page, start);
1088 				flush_dcache_page(page);
1089 			}
1090 			if (vmas)
1091 				vmas[i] = vma;
1092 			i++;
1093 			start += PAGE_SIZE;
1094 			len--;
1095 		} while (len && start < vma->vm_end);
1096 	} while (len);
1097 	return i;
1098 }
1099 EXPORT_SYMBOL(get_user_pages);
1100 
1101 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1102 			unsigned long addr, unsigned long end, pgprot_t prot)
1103 {
1104 	pte_t *pte;
1105 	spinlock_t *ptl;
1106 
1107 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1108 	if (!pte)
1109 		return -ENOMEM;
1110 	do {
1111 		struct page *page = ZERO_PAGE(addr);
1112 		pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1113 		page_cache_get(page);
1114 		page_add_file_rmap(page);
1115 		inc_mm_counter(mm, file_rss);
1116 		BUG_ON(!pte_none(*pte));
1117 		set_pte_at(mm, addr, pte, zero_pte);
1118 	} while (pte++, addr += PAGE_SIZE, addr != end);
1119 	pte_unmap_unlock(pte - 1, ptl);
1120 	return 0;
1121 }
1122 
1123 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1124 			unsigned long addr, unsigned long end, pgprot_t prot)
1125 {
1126 	pmd_t *pmd;
1127 	unsigned long next;
1128 
1129 	pmd = pmd_alloc(mm, pud, addr);
1130 	if (!pmd)
1131 		return -ENOMEM;
1132 	do {
1133 		next = pmd_addr_end(addr, end);
1134 		if (zeromap_pte_range(mm, pmd, addr, next, prot))
1135 			return -ENOMEM;
1136 	} while (pmd++, addr = next, addr != end);
1137 	return 0;
1138 }
1139 
1140 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1141 			unsigned long addr, unsigned long end, pgprot_t prot)
1142 {
1143 	pud_t *pud;
1144 	unsigned long next;
1145 
1146 	pud = pud_alloc(mm, pgd, addr);
1147 	if (!pud)
1148 		return -ENOMEM;
1149 	do {
1150 		next = pud_addr_end(addr, end);
1151 		if (zeromap_pmd_range(mm, pud, addr, next, prot))
1152 			return -ENOMEM;
1153 	} while (pud++, addr = next, addr != end);
1154 	return 0;
1155 }
1156 
1157 int zeromap_page_range(struct vm_area_struct *vma,
1158 			unsigned long addr, unsigned long size, pgprot_t prot)
1159 {
1160 	pgd_t *pgd;
1161 	unsigned long next;
1162 	unsigned long end = addr + size;
1163 	struct mm_struct *mm = vma->vm_mm;
1164 	int err;
1165 
1166 	BUG_ON(addr >= end);
1167 	pgd = pgd_offset(mm, addr);
1168 	flush_cache_range(vma, addr, end);
1169 	do {
1170 		next = pgd_addr_end(addr, end);
1171 		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1172 		if (err)
1173 			break;
1174 	} while (pgd++, addr = next, addr != end);
1175 	return err;
1176 }
1177 
1178 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1179 {
1180 	pgd_t * pgd = pgd_offset(mm, addr);
1181 	pud_t * pud = pud_alloc(mm, pgd, addr);
1182 	if (pud) {
1183 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1184 		if (pmd)
1185 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1186 	}
1187 	return NULL;
1188 }
1189 
1190 /*
1191  * This is the old fallback for page remapping.
1192  *
1193  * For historical reasons, it only allows reserved pages. Only
1194  * old drivers should use this, and they needed to mark their
1195  * pages reserved for the old functions anyway.
1196  */
1197 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1198 {
1199 	int retval;
1200 	pte_t *pte;
1201 	spinlock_t *ptl;
1202 
1203 	retval = -EINVAL;
1204 	if (PageAnon(page))
1205 		goto out;
1206 	retval = -ENOMEM;
1207 	flush_dcache_page(page);
1208 	pte = get_locked_pte(mm, addr, &ptl);
1209 	if (!pte)
1210 		goto out;
1211 	retval = -EBUSY;
1212 	if (!pte_none(*pte))
1213 		goto out_unlock;
1214 
1215 	/* Ok, finally just insert the thing.. */
1216 	get_page(page);
1217 	inc_mm_counter(mm, file_rss);
1218 	page_add_file_rmap(page);
1219 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1220 
1221 	retval = 0;
1222 out_unlock:
1223 	pte_unmap_unlock(pte, ptl);
1224 out:
1225 	return retval;
1226 }
1227 
1228 /*
1229  * This allows drivers to insert individual pages they've allocated
1230  * into a user vma.
1231  *
1232  * The page has to be a nice clean _individual_ kernel allocation.
1233  * If you allocate a compound page, you need to have marked it as
1234  * such (__GFP_COMP), or manually just split the page up yourself
1235  * (see split_page()).
1236  *
1237  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1238  * took an arbitrary page protection parameter. This doesn't allow
1239  * that. Your vma protection will have to be set up correctly, which
1240  * means that if you want a shared writable mapping, you'd better
1241  * ask for a shared writable mapping!
1242  *
1243  * The page does not need to be reserved.
1244  */
1245 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1246 {
1247 	if (addr < vma->vm_start || addr >= vma->vm_end)
1248 		return -EFAULT;
1249 	if (!page_count(page))
1250 		return -EINVAL;
1251 	vma->vm_flags |= VM_INSERTPAGE;
1252 	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1253 }
1254 EXPORT_SYMBOL(vm_insert_page);
1255 
1256 /*
1257  * maps a range of physical memory into the requested pages. the old
1258  * mappings are removed. any references to nonexistent pages results
1259  * in null mappings (currently treated as "copy-on-access")
1260  */
1261 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1262 			unsigned long addr, unsigned long end,
1263 			unsigned long pfn, pgprot_t prot)
1264 {
1265 	pte_t *pte;
1266 	spinlock_t *ptl;
1267 
1268 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1269 	if (!pte)
1270 		return -ENOMEM;
1271 	do {
1272 		BUG_ON(!pte_none(*pte));
1273 		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1274 		pfn++;
1275 	} while (pte++, addr += PAGE_SIZE, addr != end);
1276 	pte_unmap_unlock(pte - 1, ptl);
1277 	return 0;
1278 }
1279 
1280 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1281 			unsigned long addr, unsigned long end,
1282 			unsigned long pfn, pgprot_t prot)
1283 {
1284 	pmd_t *pmd;
1285 	unsigned long next;
1286 
1287 	pfn -= addr >> PAGE_SHIFT;
1288 	pmd = pmd_alloc(mm, pud, addr);
1289 	if (!pmd)
1290 		return -ENOMEM;
1291 	do {
1292 		next = pmd_addr_end(addr, end);
1293 		if (remap_pte_range(mm, pmd, addr, next,
1294 				pfn + (addr >> PAGE_SHIFT), prot))
1295 			return -ENOMEM;
1296 	} while (pmd++, addr = next, addr != end);
1297 	return 0;
1298 }
1299 
1300 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1301 			unsigned long addr, unsigned long end,
1302 			unsigned long pfn, pgprot_t prot)
1303 {
1304 	pud_t *pud;
1305 	unsigned long next;
1306 
1307 	pfn -= addr >> PAGE_SHIFT;
1308 	pud = pud_alloc(mm, pgd, addr);
1309 	if (!pud)
1310 		return -ENOMEM;
1311 	do {
1312 		next = pud_addr_end(addr, end);
1313 		if (remap_pmd_range(mm, pud, addr, next,
1314 				pfn + (addr >> PAGE_SHIFT), prot))
1315 			return -ENOMEM;
1316 	} while (pud++, addr = next, addr != end);
1317 	return 0;
1318 }
1319 
1320 /*  Note: this is only safe if the mm semaphore is held when called. */
1321 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1322 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1323 {
1324 	pgd_t *pgd;
1325 	unsigned long next;
1326 	unsigned long end = addr + PAGE_ALIGN(size);
1327 	struct mm_struct *mm = vma->vm_mm;
1328 	int err;
1329 
1330 	/*
1331 	 * Physically remapped pages are special. Tell the
1332 	 * rest of the world about it:
1333 	 *   VM_IO tells people not to look at these pages
1334 	 *	(accesses can have side effects).
1335 	 *   VM_RESERVED is specified all over the place, because
1336 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1337 	 *	in 2.6 the LRU scan won't even find its pages, so this
1338 	 *	flag means no more than count its pages in reserved_vm,
1339 	 * 	and omit it from core dump, even when VM_IO turned off.
1340 	 *   VM_PFNMAP tells the core MM that the base pages are just
1341 	 *	raw PFN mappings, and do not have a "struct page" associated
1342 	 *	with them.
1343 	 *
1344 	 * There's a horrible special case to handle copy-on-write
1345 	 * behaviour that some programs depend on. We mark the "original"
1346 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1347 	 */
1348 	if (is_cow_mapping(vma->vm_flags)) {
1349 		if (addr != vma->vm_start || end != vma->vm_end)
1350 			return -EINVAL;
1351 		vma->vm_pgoff = pfn;
1352 	}
1353 
1354 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1355 
1356 	BUG_ON(addr >= end);
1357 	pfn -= addr >> PAGE_SHIFT;
1358 	pgd = pgd_offset(mm, addr);
1359 	flush_cache_range(vma, addr, end);
1360 	do {
1361 		next = pgd_addr_end(addr, end);
1362 		err = remap_pud_range(mm, pgd, addr, next,
1363 				pfn + (addr >> PAGE_SHIFT), prot);
1364 		if (err)
1365 			break;
1366 	} while (pgd++, addr = next, addr != end);
1367 	return err;
1368 }
1369 EXPORT_SYMBOL(remap_pfn_range);
1370 
1371 /*
1372  * handle_pte_fault chooses page fault handler according to an entry
1373  * which was read non-atomically.  Before making any commitment, on
1374  * those architectures or configurations (e.g. i386 with PAE) which
1375  * might give a mix of unmatched parts, do_swap_page and do_file_page
1376  * must check under lock before unmapping the pte and proceeding
1377  * (but do_wp_page is only called after already making such a check;
1378  * and do_anonymous_page and do_no_page can safely check later on).
1379  */
1380 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1381 				pte_t *page_table, pte_t orig_pte)
1382 {
1383 	int same = 1;
1384 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1385 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1386 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1387 		spin_lock(ptl);
1388 		same = pte_same(*page_table, orig_pte);
1389 		spin_unlock(ptl);
1390 	}
1391 #endif
1392 	pte_unmap(page_table);
1393 	return same;
1394 }
1395 
1396 /*
1397  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1398  * servicing faults for write access.  In the normal case, do always want
1399  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1400  * that do not have writing enabled, when used by access_process_vm.
1401  */
1402 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1403 {
1404 	if (likely(vma->vm_flags & VM_WRITE))
1405 		pte = pte_mkwrite(pte);
1406 	return pte;
1407 }
1408 
1409 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1410 {
1411 	/*
1412 	 * If the source page was a PFN mapping, we don't have
1413 	 * a "struct page" for it. We do a best-effort copy by
1414 	 * just copying from the original user address. If that
1415 	 * fails, we just zero-fill it. Live with it.
1416 	 */
1417 	if (unlikely(!src)) {
1418 		void *kaddr = kmap_atomic(dst, KM_USER0);
1419 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1420 
1421 		/*
1422 		 * This really shouldn't fail, because the page is there
1423 		 * in the page tables. But it might just be unreadable,
1424 		 * in which case we just give up and fill the result with
1425 		 * zeroes.
1426 		 */
1427 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1428 			memset(kaddr, 0, PAGE_SIZE);
1429 		kunmap_atomic(kaddr, KM_USER0);
1430 		return;
1431 
1432 	}
1433 	copy_user_highpage(dst, src, va);
1434 }
1435 
1436 /*
1437  * This routine handles present pages, when users try to write
1438  * to a shared page. It is done by copying the page to a new address
1439  * and decrementing the shared-page counter for the old page.
1440  *
1441  * Note that this routine assumes that the protection checks have been
1442  * done by the caller (the low-level page fault routine in most cases).
1443  * Thus we can safely just mark it writable once we've done any necessary
1444  * COW.
1445  *
1446  * We also mark the page dirty at this point even though the page will
1447  * change only once the write actually happens. This avoids a few races,
1448  * and potentially makes it more efficient.
1449  *
1450  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1451  * but allow concurrent faults), with pte both mapped and locked.
1452  * We return with mmap_sem still held, but pte unmapped and unlocked.
1453  */
1454 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1455 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1456 		spinlock_t *ptl, pte_t orig_pte)
1457 {
1458 	struct page *old_page, *new_page;
1459 	pte_t entry;
1460 	int reuse, ret = VM_FAULT_MINOR;
1461 
1462 	old_page = vm_normal_page(vma, address, orig_pte);
1463 	if (!old_page)
1464 		goto gotten;
1465 
1466 	if (unlikely((vma->vm_flags & (VM_SHARED|VM_WRITE)) ==
1467 				(VM_SHARED|VM_WRITE))) {
1468 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1469 			/*
1470 			 * Notify the address space that the page is about to
1471 			 * become writable so that it can prohibit this or wait
1472 			 * for the page to get into an appropriate state.
1473 			 *
1474 			 * We do this without the lock held, so that it can
1475 			 * sleep if it needs to.
1476 			 */
1477 			page_cache_get(old_page);
1478 			pte_unmap_unlock(page_table, ptl);
1479 
1480 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1481 				goto unwritable_page;
1482 
1483 			page_cache_release(old_page);
1484 
1485 			/*
1486 			 * Since we dropped the lock we need to revalidate
1487 			 * the PTE as someone else may have changed it.  If
1488 			 * they did, we just return, as we can count on the
1489 			 * MMU to tell us if they didn't also make it writable.
1490 			 */
1491 			page_table = pte_offset_map_lock(mm, pmd, address,
1492 							 &ptl);
1493 			if (!pte_same(*page_table, orig_pte))
1494 				goto unlock;
1495 		}
1496 
1497 		reuse = 1;
1498 	} else if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1499 		reuse = can_share_swap_page(old_page);
1500 		unlock_page(old_page);
1501 	} else {
1502 		reuse = 0;
1503 	}
1504 
1505 	if (reuse) {
1506 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1507 		entry = pte_mkyoung(orig_pte);
1508 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1509 		ptep_set_access_flags(vma, address, page_table, entry, 1);
1510 		update_mmu_cache(vma, address, entry);
1511 		lazy_mmu_prot_update(entry);
1512 		ret |= VM_FAULT_WRITE;
1513 		goto unlock;
1514 	}
1515 
1516 	/*
1517 	 * Ok, we need to copy. Oh, well..
1518 	 */
1519 	page_cache_get(old_page);
1520 gotten:
1521 	pte_unmap_unlock(page_table, ptl);
1522 
1523 	if (unlikely(anon_vma_prepare(vma)))
1524 		goto oom;
1525 	if (old_page == ZERO_PAGE(address)) {
1526 		new_page = alloc_zeroed_user_highpage(vma, address);
1527 		if (!new_page)
1528 			goto oom;
1529 	} else {
1530 		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1531 		if (!new_page)
1532 			goto oom;
1533 		cow_user_page(new_page, old_page, address);
1534 	}
1535 
1536 	/*
1537 	 * Re-check the pte - we dropped the lock
1538 	 */
1539 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1540 	if (likely(pte_same(*page_table, orig_pte))) {
1541 		if (old_page) {
1542 			page_remove_rmap(old_page);
1543 			if (!PageAnon(old_page)) {
1544 				dec_mm_counter(mm, file_rss);
1545 				inc_mm_counter(mm, anon_rss);
1546 			}
1547 		} else
1548 			inc_mm_counter(mm, anon_rss);
1549 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1550 		entry = mk_pte(new_page, vma->vm_page_prot);
1551 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1552 		ptep_establish(vma, address, page_table, entry);
1553 		update_mmu_cache(vma, address, entry);
1554 		lazy_mmu_prot_update(entry);
1555 		lru_cache_add_active(new_page);
1556 		page_add_new_anon_rmap(new_page, vma, address);
1557 
1558 		/* Free the old page.. */
1559 		new_page = old_page;
1560 		ret |= VM_FAULT_WRITE;
1561 	}
1562 	if (new_page)
1563 		page_cache_release(new_page);
1564 	if (old_page)
1565 		page_cache_release(old_page);
1566 unlock:
1567 	pte_unmap_unlock(page_table, ptl);
1568 	return ret;
1569 oom:
1570 	if (old_page)
1571 		page_cache_release(old_page);
1572 	return VM_FAULT_OOM;
1573 
1574 unwritable_page:
1575 	page_cache_release(old_page);
1576 	return VM_FAULT_SIGBUS;
1577 }
1578 
1579 /*
1580  * Helper functions for unmap_mapping_range().
1581  *
1582  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1583  *
1584  * We have to restart searching the prio_tree whenever we drop the lock,
1585  * since the iterator is only valid while the lock is held, and anyway
1586  * a later vma might be split and reinserted earlier while lock dropped.
1587  *
1588  * The list of nonlinear vmas could be handled more efficiently, using
1589  * a placeholder, but handle it in the same way until a need is shown.
1590  * It is important to search the prio_tree before nonlinear list: a vma
1591  * may become nonlinear and be shifted from prio_tree to nonlinear list
1592  * while the lock is dropped; but never shifted from list to prio_tree.
1593  *
1594  * In order to make forward progress despite restarting the search,
1595  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1596  * quickly skip it next time around.  Since the prio_tree search only
1597  * shows us those vmas affected by unmapping the range in question, we
1598  * can't efficiently keep all vmas in step with mapping->truncate_count:
1599  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1600  * mapping->truncate_count and vma->vm_truncate_count are protected by
1601  * i_mmap_lock.
1602  *
1603  * In order to make forward progress despite repeatedly restarting some
1604  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1605  * and restart from that address when we reach that vma again.  It might
1606  * have been split or merged, shrunk or extended, but never shifted: so
1607  * restart_addr remains valid so long as it remains in the vma's range.
1608  * unmap_mapping_range forces truncate_count to leap over page-aligned
1609  * values so we can save vma's restart_addr in its truncate_count field.
1610  */
1611 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1612 
1613 static void reset_vma_truncate_counts(struct address_space *mapping)
1614 {
1615 	struct vm_area_struct *vma;
1616 	struct prio_tree_iter iter;
1617 
1618 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1619 		vma->vm_truncate_count = 0;
1620 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1621 		vma->vm_truncate_count = 0;
1622 }
1623 
1624 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1625 		unsigned long start_addr, unsigned long end_addr,
1626 		struct zap_details *details)
1627 {
1628 	unsigned long restart_addr;
1629 	int need_break;
1630 
1631 again:
1632 	restart_addr = vma->vm_truncate_count;
1633 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1634 		start_addr = restart_addr;
1635 		if (start_addr >= end_addr) {
1636 			/* Top of vma has been split off since last time */
1637 			vma->vm_truncate_count = details->truncate_count;
1638 			return 0;
1639 		}
1640 	}
1641 
1642 	restart_addr = zap_page_range(vma, start_addr,
1643 					end_addr - start_addr, details);
1644 	need_break = need_resched() ||
1645 			need_lockbreak(details->i_mmap_lock);
1646 
1647 	if (restart_addr >= end_addr) {
1648 		/* We have now completed this vma: mark it so */
1649 		vma->vm_truncate_count = details->truncate_count;
1650 		if (!need_break)
1651 			return 0;
1652 	} else {
1653 		/* Note restart_addr in vma's truncate_count field */
1654 		vma->vm_truncate_count = restart_addr;
1655 		if (!need_break)
1656 			goto again;
1657 	}
1658 
1659 	spin_unlock(details->i_mmap_lock);
1660 	cond_resched();
1661 	spin_lock(details->i_mmap_lock);
1662 	return -EINTR;
1663 }
1664 
1665 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1666 					    struct zap_details *details)
1667 {
1668 	struct vm_area_struct *vma;
1669 	struct prio_tree_iter iter;
1670 	pgoff_t vba, vea, zba, zea;
1671 
1672 restart:
1673 	vma_prio_tree_foreach(vma, &iter, root,
1674 			details->first_index, details->last_index) {
1675 		/* Skip quickly over those we have already dealt with */
1676 		if (vma->vm_truncate_count == details->truncate_count)
1677 			continue;
1678 
1679 		vba = vma->vm_pgoff;
1680 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1681 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1682 		zba = details->first_index;
1683 		if (zba < vba)
1684 			zba = vba;
1685 		zea = details->last_index;
1686 		if (zea > vea)
1687 			zea = vea;
1688 
1689 		if (unmap_mapping_range_vma(vma,
1690 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1691 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1692 				details) < 0)
1693 			goto restart;
1694 	}
1695 }
1696 
1697 static inline void unmap_mapping_range_list(struct list_head *head,
1698 					    struct zap_details *details)
1699 {
1700 	struct vm_area_struct *vma;
1701 
1702 	/*
1703 	 * In nonlinear VMAs there is no correspondence between virtual address
1704 	 * offset and file offset.  So we must perform an exhaustive search
1705 	 * across *all* the pages in each nonlinear VMA, not just the pages
1706 	 * whose virtual address lies outside the file truncation point.
1707 	 */
1708 restart:
1709 	list_for_each_entry(vma, head, shared.vm_set.list) {
1710 		/* Skip quickly over those we have already dealt with */
1711 		if (vma->vm_truncate_count == details->truncate_count)
1712 			continue;
1713 		details->nonlinear_vma = vma;
1714 		if (unmap_mapping_range_vma(vma, vma->vm_start,
1715 					vma->vm_end, details) < 0)
1716 			goto restart;
1717 	}
1718 }
1719 
1720 /**
1721  * unmap_mapping_range - unmap the portion of all mmaps
1722  * in the specified address_space corresponding to the specified
1723  * page range in the underlying file.
1724  * @mapping: the address space containing mmaps to be unmapped.
1725  * @holebegin: byte in first page to unmap, relative to the start of
1726  * the underlying file.  This will be rounded down to a PAGE_SIZE
1727  * boundary.  Note that this is different from vmtruncate(), which
1728  * must keep the partial page.  In contrast, we must get rid of
1729  * partial pages.
1730  * @holelen: size of prospective hole in bytes.  This will be rounded
1731  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1732  * end of the file.
1733  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1734  * but 0 when invalidating pagecache, don't throw away private data.
1735  */
1736 void unmap_mapping_range(struct address_space *mapping,
1737 		loff_t const holebegin, loff_t const holelen, int even_cows)
1738 {
1739 	struct zap_details details;
1740 	pgoff_t hba = holebegin >> PAGE_SHIFT;
1741 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1742 
1743 	/* Check for overflow. */
1744 	if (sizeof(holelen) > sizeof(hlen)) {
1745 		long long holeend =
1746 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1747 		if (holeend & ~(long long)ULONG_MAX)
1748 			hlen = ULONG_MAX - hba + 1;
1749 	}
1750 
1751 	details.check_mapping = even_cows? NULL: mapping;
1752 	details.nonlinear_vma = NULL;
1753 	details.first_index = hba;
1754 	details.last_index = hba + hlen - 1;
1755 	if (details.last_index < details.first_index)
1756 		details.last_index = ULONG_MAX;
1757 	details.i_mmap_lock = &mapping->i_mmap_lock;
1758 
1759 	spin_lock(&mapping->i_mmap_lock);
1760 
1761 	/* serialize i_size write against truncate_count write */
1762 	smp_wmb();
1763 	/* Protect against page faults, and endless unmapping loops */
1764 	mapping->truncate_count++;
1765 	/*
1766 	 * For archs where spin_lock has inclusive semantics like ia64
1767 	 * this smp_mb() will prevent to read pagetable contents
1768 	 * before the truncate_count increment is visible to
1769 	 * other cpus.
1770 	 */
1771 	smp_mb();
1772 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1773 		if (mapping->truncate_count == 0)
1774 			reset_vma_truncate_counts(mapping);
1775 		mapping->truncate_count++;
1776 	}
1777 	details.truncate_count = mapping->truncate_count;
1778 
1779 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1780 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1781 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1782 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1783 	spin_unlock(&mapping->i_mmap_lock);
1784 }
1785 EXPORT_SYMBOL(unmap_mapping_range);
1786 
1787 /*
1788  * Handle all mappings that got truncated by a "truncate()"
1789  * system call.
1790  *
1791  * NOTE! We have to be ready to update the memory sharing
1792  * between the file and the memory map for a potential last
1793  * incomplete page.  Ugly, but necessary.
1794  */
1795 int vmtruncate(struct inode * inode, loff_t offset)
1796 {
1797 	struct address_space *mapping = inode->i_mapping;
1798 	unsigned long limit;
1799 
1800 	if (inode->i_size < offset)
1801 		goto do_expand;
1802 	/*
1803 	 * truncation of in-use swapfiles is disallowed - it would cause
1804 	 * subsequent swapout to scribble on the now-freed blocks.
1805 	 */
1806 	if (IS_SWAPFILE(inode))
1807 		goto out_busy;
1808 	i_size_write(inode, offset);
1809 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1810 	truncate_inode_pages(mapping, offset);
1811 	goto out_truncate;
1812 
1813 do_expand:
1814 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1815 	if (limit != RLIM_INFINITY && offset > limit)
1816 		goto out_sig;
1817 	if (offset > inode->i_sb->s_maxbytes)
1818 		goto out_big;
1819 	i_size_write(inode, offset);
1820 
1821 out_truncate:
1822 	if (inode->i_op && inode->i_op->truncate)
1823 		inode->i_op->truncate(inode);
1824 	return 0;
1825 out_sig:
1826 	send_sig(SIGXFSZ, current, 0);
1827 out_big:
1828 	return -EFBIG;
1829 out_busy:
1830 	return -ETXTBSY;
1831 }
1832 EXPORT_SYMBOL(vmtruncate);
1833 
1834 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1835 {
1836 	struct address_space *mapping = inode->i_mapping;
1837 
1838 	/*
1839 	 * If the underlying filesystem is not going to provide
1840 	 * a way to truncate a range of blocks (punch a hole) -
1841 	 * we should return failure right now.
1842 	 */
1843 	if (!inode->i_op || !inode->i_op->truncate_range)
1844 		return -ENOSYS;
1845 
1846 	mutex_lock(&inode->i_mutex);
1847 	down_write(&inode->i_alloc_sem);
1848 	unmap_mapping_range(mapping, offset, (end - offset), 1);
1849 	truncate_inode_pages_range(mapping, offset, end);
1850 	inode->i_op->truncate_range(inode, offset, end);
1851 	up_write(&inode->i_alloc_sem);
1852 	mutex_unlock(&inode->i_mutex);
1853 
1854 	return 0;
1855 }
1856 EXPORT_SYMBOL(vmtruncate_range);
1857 
1858 /*
1859  * Primitive swap readahead code. We simply read an aligned block of
1860  * (1 << page_cluster) entries in the swap area. This method is chosen
1861  * because it doesn't cost us any seek time.  We also make sure to queue
1862  * the 'original' request together with the readahead ones...
1863  *
1864  * This has been extended to use the NUMA policies from the mm triggering
1865  * the readahead.
1866  *
1867  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1868  */
1869 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1870 {
1871 #ifdef CONFIG_NUMA
1872 	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1873 #endif
1874 	int i, num;
1875 	struct page *new_page;
1876 	unsigned long offset;
1877 
1878 	/*
1879 	 * Get the number of handles we should do readahead io to.
1880 	 */
1881 	num = valid_swaphandles(entry, &offset);
1882 	for (i = 0; i < num; offset++, i++) {
1883 		/* Ok, do the async read-ahead now */
1884 		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1885 							   offset), vma, addr);
1886 		if (!new_page)
1887 			break;
1888 		page_cache_release(new_page);
1889 #ifdef CONFIG_NUMA
1890 		/*
1891 		 * Find the next applicable VMA for the NUMA policy.
1892 		 */
1893 		addr += PAGE_SIZE;
1894 		if (addr == 0)
1895 			vma = NULL;
1896 		if (vma) {
1897 			if (addr >= vma->vm_end) {
1898 				vma = next_vma;
1899 				next_vma = vma ? vma->vm_next : NULL;
1900 			}
1901 			if (vma && addr < vma->vm_start)
1902 				vma = NULL;
1903 		} else {
1904 			if (next_vma && addr >= next_vma->vm_start) {
1905 				vma = next_vma;
1906 				next_vma = vma->vm_next;
1907 			}
1908 		}
1909 #endif
1910 	}
1911 	lru_add_drain();	/* Push any new pages onto the LRU now */
1912 }
1913 
1914 /*
1915  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1916  * but allow concurrent faults), and pte mapped but not yet locked.
1917  * We return with mmap_sem still held, but pte unmapped and unlocked.
1918  */
1919 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1920 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1921 		int write_access, pte_t orig_pte)
1922 {
1923 	spinlock_t *ptl;
1924 	struct page *page;
1925 	swp_entry_t entry;
1926 	pte_t pte;
1927 	int ret = VM_FAULT_MINOR;
1928 
1929 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1930 		goto out;
1931 
1932 	entry = pte_to_swp_entry(orig_pte);
1933 	if (is_migration_entry(entry)) {
1934 		migration_entry_wait(mm, pmd, address);
1935 		goto out;
1936 	}
1937 	page = lookup_swap_cache(entry);
1938 	if (!page) {
1939  		swapin_readahead(entry, address, vma);
1940  		page = read_swap_cache_async(entry, vma, address);
1941 		if (!page) {
1942 			/*
1943 			 * Back out if somebody else faulted in this pte
1944 			 * while we released the pte lock.
1945 			 */
1946 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1947 			if (likely(pte_same(*page_table, orig_pte)))
1948 				ret = VM_FAULT_OOM;
1949 			goto unlock;
1950 		}
1951 
1952 		/* Had to read the page from swap area: Major fault */
1953 		ret = VM_FAULT_MAJOR;
1954 		inc_page_state(pgmajfault);
1955 		grab_swap_token();
1956 	}
1957 
1958 	mark_page_accessed(page);
1959 	lock_page(page);
1960 
1961 	/*
1962 	 * Back out if somebody else already faulted in this pte.
1963 	 */
1964 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1965 	if (unlikely(!pte_same(*page_table, orig_pte)))
1966 		goto out_nomap;
1967 
1968 	if (unlikely(!PageUptodate(page))) {
1969 		ret = VM_FAULT_SIGBUS;
1970 		goto out_nomap;
1971 	}
1972 
1973 	/* The page isn't present yet, go ahead with the fault. */
1974 
1975 	inc_mm_counter(mm, anon_rss);
1976 	pte = mk_pte(page, vma->vm_page_prot);
1977 	if (write_access && can_share_swap_page(page)) {
1978 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1979 		write_access = 0;
1980 	}
1981 
1982 	flush_icache_page(vma, page);
1983 	set_pte_at(mm, address, page_table, pte);
1984 	page_add_anon_rmap(page, vma, address);
1985 
1986 	swap_free(entry);
1987 	if (vm_swap_full())
1988 		remove_exclusive_swap_page(page);
1989 	unlock_page(page);
1990 
1991 	if (write_access) {
1992 		if (do_wp_page(mm, vma, address,
1993 				page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1994 			ret = VM_FAULT_OOM;
1995 		goto out;
1996 	}
1997 
1998 	/* No need to invalidate - it was non-present before */
1999 	update_mmu_cache(vma, address, pte);
2000 	lazy_mmu_prot_update(pte);
2001 unlock:
2002 	pte_unmap_unlock(page_table, ptl);
2003 out:
2004 	return ret;
2005 out_nomap:
2006 	pte_unmap_unlock(page_table, ptl);
2007 	unlock_page(page);
2008 	page_cache_release(page);
2009 	return ret;
2010 }
2011 
2012 /*
2013  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2014  * but allow concurrent faults), and pte mapped but not yet locked.
2015  * We return with mmap_sem still held, but pte unmapped and unlocked.
2016  */
2017 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2018 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2019 		int write_access)
2020 {
2021 	struct page *page;
2022 	spinlock_t *ptl;
2023 	pte_t entry;
2024 
2025 	if (write_access) {
2026 		/* Allocate our own private page. */
2027 		pte_unmap(page_table);
2028 
2029 		if (unlikely(anon_vma_prepare(vma)))
2030 			goto oom;
2031 		page = alloc_zeroed_user_highpage(vma, address);
2032 		if (!page)
2033 			goto oom;
2034 
2035 		entry = mk_pte(page, vma->vm_page_prot);
2036 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2037 
2038 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2039 		if (!pte_none(*page_table))
2040 			goto release;
2041 		inc_mm_counter(mm, anon_rss);
2042 		lru_cache_add_active(page);
2043 		page_add_new_anon_rmap(page, vma, address);
2044 	} else {
2045 		/* Map the ZERO_PAGE - vm_page_prot is readonly */
2046 		page = ZERO_PAGE(address);
2047 		page_cache_get(page);
2048 		entry = mk_pte(page, vma->vm_page_prot);
2049 
2050 		ptl = pte_lockptr(mm, pmd);
2051 		spin_lock(ptl);
2052 		if (!pte_none(*page_table))
2053 			goto release;
2054 		inc_mm_counter(mm, file_rss);
2055 		page_add_file_rmap(page);
2056 	}
2057 
2058 	set_pte_at(mm, address, page_table, entry);
2059 
2060 	/* No need to invalidate - it was non-present before */
2061 	update_mmu_cache(vma, address, entry);
2062 	lazy_mmu_prot_update(entry);
2063 unlock:
2064 	pte_unmap_unlock(page_table, ptl);
2065 	return VM_FAULT_MINOR;
2066 release:
2067 	page_cache_release(page);
2068 	goto unlock;
2069 oom:
2070 	return VM_FAULT_OOM;
2071 }
2072 
2073 /*
2074  * do_no_page() tries to create a new page mapping. It aggressively
2075  * tries to share with existing pages, but makes a separate copy if
2076  * the "write_access" parameter is true in order to avoid the next
2077  * page fault.
2078  *
2079  * As this is called only for pages that do not currently exist, we
2080  * do not need to flush old virtual caches or the TLB.
2081  *
2082  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2083  * but allow concurrent faults), and pte mapped but not yet locked.
2084  * We return with mmap_sem still held, but pte unmapped and unlocked.
2085  */
2086 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2087 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2088 		int write_access)
2089 {
2090 	spinlock_t *ptl;
2091 	struct page *new_page;
2092 	struct address_space *mapping = NULL;
2093 	pte_t entry;
2094 	unsigned int sequence = 0;
2095 	int ret = VM_FAULT_MINOR;
2096 	int anon = 0;
2097 
2098 	pte_unmap(page_table);
2099 	BUG_ON(vma->vm_flags & VM_PFNMAP);
2100 
2101 	if (vma->vm_file) {
2102 		mapping = vma->vm_file->f_mapping;
2103 		sequence = mapping->truncate_count;
2104 		smp_rmb(); /* serializes i_size against truncate_count */
2105 	}
2106 retry:
2107 	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2108 	/*
2109 	 * No smp_rmb is needed here as long as there's a full
2110 	 * spin_lock/unlock sequence inside the ->nopage callback
2111 	 * (for the pagecache lookup) that acts as an implicit
2112 	 * smp_mb() and prevents the i_size read to happen
2113 	 * after the next truncate_count read.
2114 	 */
2115 
2116 	/* no page was available -- either SIGBUS or OOM */
2117 	if (new_page == NOPAGE_SIGBUS)
2118 		return VM_FAULT_SIGBUS;
2119 	if (new_page == NOPAGE_OOM)
2120 		return VM_FAULT_OOM;
2121 
2122 	/*
2123 	 * Should we do an early C-O-W break?
2124 	 */
2125 	if (write_access) {
2126 		if (!(vma->vm_flags & VM_SHARED)) {
2127 			struct page *page;
2128 
2129 			if (unlikely(anon_vma_prepare(vma)))
2130 				goto oom;
2131 			page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2132 			if (!page)
2133 				goto oom;
2134 			copy_user_highpage(page, new_page, address);
2135 			page_cache_release(new_page);
2136 			new_page = page;
2137 			anon = 1;
2138 
2139 		} else {
2140 			/* if the page will be shareable, see if the backing
2141 			 * address space wants to know that the page is about
2142 			 * to become writable */
2143 			if (vma->vm_ops->page_mkwrite &&
2144 			    vma->vm_ops->page_mkwrite(vma, new_page) < 0
2145 			    ) {
2146 				page_cache_release(new_page);
2147 				return VM_FAULT_SIGBUS;
2148 			}
2149 		}
2150 	}
2151 
2152 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2153 	/*
2154 	 * For a file-backed vma, someone could have truncated or otherwise
2155 	 * invalidated this page.  If unmap_mapping_range got called,
2156 	 * retry getting the page.
2157 	 */
2158 	if (mapping && unlikely(sequence != mapping->truncate_count)) {
2159 		pte_unmap_unlock(page_table, ptl);
2160 		page_cache_release(new_page);
2161 		cond_resched();
2162 		sequence = mapping->truncate_count;
2163 		smp_rmb();
2164 		goto retry;
2165 	}
2166 
2167 	/*
2168 	 * This silly early PAGE_DIRTY setting removes a race
2169 	 * due to the bad i386 page protection. But it's valid
2170 	 * for other architectures too.
2171 	 *
2172 	 * Note that if write_access is true, we either now have
2173 	 * an exclusive copy of the page, or this is a shared mapping,
2174 	 * so we can make it writable and dirty to avoid having to
2175 	 * handle that later.
2176 	 */
2177 	/* Only go through if we didn't race with anybody else... */
2178 	if (pte_none(*page_table)) {
2179 		flush_icache_page(vma, new_page);
2180 		entry = mk_pte(new_page, vma->vm_page_prot);
2181 		if (write_access)
2182 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2183 		set_pte_at(mm, address, page_table, entry);
2184 		if (anon) {
2185 			inc_mm_counter(mm, anon_rss);
2186 			lru_cache_add_active(new_page);
2187 			page_add_new_anon_rmap(new_page, vma, address);
2188 		} else {
2189 			inc_mm_counter(mm, file_rss);
2190 			page_add_file_rmap(new_page);
2191 		}
2192 	} else {
2193 		/* One of our sibling threads was faster, back out. */
2194 		page_cache_release(new_page);
2195 		goto unlock;
2196 	}
2197 
2198 	/* no need to invalidate: a not-present page shouldn't be cached */
2199 	update_mmu_cache(vma, address, entry);
2200 	lazy_mmu_prot_update(entry);
2201 unlock:
2202 	pte_unmap_unlock(page_table, ptl);
2203 	return ret;
2204 oom:
2205 	page_cache_release(new_page);
2206 	return VM_FAULT_OOM;
2207 }
2208 
2209 /*
2210  * Fault of a previously existing named mapping. Repopulate the pte
2211  * from the encoded file_pte if possible. This enables swappable
2212  * nonlinear vmas.
2213  *
2214  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2215  * but allow concurrent faults), and pte mapped but not yet locked.
2216  * We return with mmap_sem still held, but pte unmapped and unlocked.
2217  */
2218 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2219 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2220 		int write_access, pte_t orig_pte)
2221 {
2222 	pgoff_t pgoff;
2223 	int err;
2224 
2225 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2226 		return VM_FAULT_MINOR;
2227 
2228 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2229 		/*
2230 		 * Page table corrupted: show pte and kill process.
2231 		 */
2232 		print_bad_pte(vma, orig_pte, address);
2233 		return VM_FAULT_OOM;
2234 	}
2235 	/* We can then assume vm->vm_ops && vma->vm_ops->populate */
2236 
2237 	pgoff = pte_to_pgoff(orig_pte);
2238 	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2239 					vma->vm_page_prot, pgoff, 0);
2240 	if (err == -ENOMEM)
2241 		return VM_FAULT_OOM;
2242 	if (err)
2243 		return VM_FAULT_SIGBUS;
2244 	return VM_FAULT_MAJOR;
2245 }
2246 
2247 /*
2248  * These routines also need to handle stuff like marking pages dirty
2249  * and/or accessed for architectures that don't do it in hardware (most
2250  * RISC architectures).  The early dirtying is also good on the i386.
2251  *
2252  * There is also a hook called "update_mmu_cache()" that architectures
2253  * with external mmu caches can use to update those (ie the Sparc or
2254  * PowerPC hashed page tables that act as extended TLBs).
2255  *
2256  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2257  * but allow concurrent faults), and pte mapped but not yet locked.
2258  * We return with mmap_sem still held, but pte unmapped and unlocked.
2259  */
2260 static inline int handle_pte_fault(struct mm_struct *mm,
2261 		struct vm_area_struct *vma, unsigned long address,
2262 		pte_t *pte, pmd_t *pmd, int write_access)
2263 {
2264 	pte_t entry;
2265 	pte_t old_entry;
2266 	spinlock_t *ptl;
2267 
2268 	old_entry = entry = *pte;
2269 	if (!pte_present(entry)) {
2270 		if (pte_none(entry)) {
2271 			if (!vma->vm_ops || !vma->vm_ops->nopage)
2272 				return do_anonymous_page(mm, vma, address,
2273 					pte, pmd, write_access);
2274 			return do_no_page(mm, vma, address,
2275 					pte, pmd, write_access);
2276 		}
2277 		if (pte_file(entry))
2278 			return do_file_page(mm, vma, address,
2279 					pte, pmd, write_access, entry);
2280 		return do_swap_page(mm, vma, address,
2281 					pte, pmd, write_access, entry);
2282 	}
2283 
2284 	ptl = pte_lockptr(mm, pmd);
2285 	spin_lock(ptl);
2286 	if (unlikely(!pte_same(*pte, entry)))
2287 		goto unlock;
2288 	if (write_access) {
2289 		if (!pte_write(entry))
2290 			return do_wp_page(mm, vma, address,
2291 					pte, pmd, ptl, entry);
2292 		entry = pte_mkdirty(entry);
2293 	}
2294 	entry = pte_mkyoung(entry);
2295 	if (!pte_same(old_entry, entry)) {
2296 		ptep_set_access_flags(vma, address, pte, entry, write_access);
2297 		update_mmu_cache(vma, address, entry);
2298 		lazy_mmu_prot_update(entry);
2299 	} else {
2300 		/*
2301 		 * This is needed only for protection faults but the arch code
2302 		 * is not yet telling us if this is a protection fault or not.
2303 		 * This still avoids useless tlb flushes for .text page faults
2304 		 * with threads.
2305 		 */
2306 		if (write_access)
2307 			flush_tlb_page(vma, address);
2308 	}
2309 unlock:
2310 	pte_unmap_unlock(pte, ptl);
2311 	return VM_FAULT_MINOR;
2312 }
2313 
2314 /*
2315  * By the time we get here, we already hold the mm semaphore
2316  */
2317 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2318 		unsigned long address, int write_access)
2319 {
2320 	pgd_t *pgd;
2321 	pud_t *pud;
2322 	pmd_t *pmd;
2323 	pte_t *pte;
2324 
2325 	__set_current_state(TASK_RUNNING);
2326 
2327 	inc_page_state(pgfault);
2328 
2329 	if (unlikely(is_vm_hugetlb_page(vma)))
2330 		return hugetlb_fault(mm, vma, address, write_access);
2331 
2332 	pgd = pgd_offset(mm, address);
2333 	pud = pud_alloc(mm, pgd, address);
2334 	if (!pud)
2335 		return VM_FAULT_OOM;
2336 	pmd = pmd_alloc(mm, pud, address);
2337 	if (!pmd)
2338 		return VM_FAULT_OOM;
2339 	pte = pte_alloc_map(mm, pmd, address);
2340 	if (!pte)
2341 		return VM_FAULT_OOM;
2342 
2343 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2344 }
2345 
2346 EXPORT_SYMBOL_GPL(__handle_mm_fault);
2347 
2348 #ifndef __PAGETABLE_PUD_FOLDED
2349 /*
2350  * Allocate page upper directory.
2351  * We've already handled the fast-path in-line.
2352  */
2353 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2354 {
2355 	pud_t *new = pud_alloc_one(mm, address);
2356 	if (!new)
2357 		return -ENOMEM;
2358 
2359 	spin_lock(&mm->page_table_lock);
2360 	if (pgd_present(*pgd))		/* Another has populated it */
2361 		pud_free(new);
2362 	else
2363 		pgd_populate(mm, pgd, new);
2364 	spin_unlock(&mm->page_table_lock);
2365 	return 0;
2366 }
2367 #else
2368 /* Workaround for gcc 2.96 */
2369 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2370 {
2371 	return 0;
2372 }
2373 #endif /* __PAGETABLE_PUD_FOLDED */
2374 
2375 #ifndef __PAGETABLE_PMD_FOLDED
2376 /*
2377  * Allocate page middle directory.
2378  * We've already handled the fast-path in-line.
2379  */
2380 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2381 {
2382 	pmd_t *new = pmd_alloc_one(mm, address);
2383 	if (!new)
2384 		return -ENOMEM;
2385 
2386 	spin_lock(&mm->page_table_lock);
2387 #ifndef __ARCH_HAS_4LEVEL_HACK
2388 	if (pud_present(*pud))		/* Another has populated it */
2389 		pmd_free(new);
2390 	else
2391 		pud_populate(mm, pud, new);
2392 #else
2393 	if (pgd_present(*pud))		/* Another has populated it */
2394 		pmd_free(new);
2395 	else
2396 		pgd_populate(mm, pud, new);
2397 #endif /* __ARCH_HAS_4LEVEL_HACK */
2398 	spin_unlock(&mm->page_table_lock);
2399 	return 0;
2400 }
2401 #else
2402 /* Workaround for gcc 2.96 */
2403 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2404 {
2405 	return 0;
2406 }
2407 #endif /* __PAGETABLE_PMD_FOLDED */
2408 
2409 int make_pages_present(unsigned long addr, unsigned long end)
2410 {
2411 	int ret, len, write;
2412 	struct vm_area_struct * vma;
2413 
2414 	vma = find_vma(current->mm, addr);
2415 	if (!vma)
2416 		return -1;
2417 	write = (vma->vm_flags & VM_WRITE) != 0;
2418 	BUG_ON(addr >= end);
2419 	BUG_ON(end > vma->vm_end);
2420 	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2421 	ret = get_user_pages(current, current->mm, addr,
2422 			len, write, 0, NULL, NULL);
2423 	if (ret < 0)
2424 		return ret;
2425 	return ret == len ? 0 : -1;
2426 }
2427 
2428 /*
2429  * Map a vmalloc()-space virtual address to the physical page.
2430  */
2431 struct page * vmalloc_to_page(void * vmalloc_addr)
2432 {
2433 	unsigned long addr = (unsigned long) vmalloc_addr;
2434 	struct page *page = NULL;
2435 	pgd_t *pgd = pgd_offset_k(addr);
2436 	pud_t *pud;
2437 	pmd_t *pmd;
2438 	pte_t *ptep, pte;
2439 
2440 	if (!pgd_none(*pgd)) {
2441 		pud = pud_offset(pgd, addr);
2442 		if (!pud_none(*pud)) {
2443 			pmd = pmd_offset(pud, addr);
2444 			if (!pmd_none(*pmd)) {
2445 				ptep = pte_offset_map(pmd, addr);
2446 				pte = *ptep;
2447 				if (pte_present(pte))
2448 					page = pte_page(pte);
2449 				pte_unmap(ptep);
2450 			}
2451 		}
2452 	}
2453 	return page;
2454 }
2455 
2456 EXPORT_SYMBOL(vmalloc_to_page);
2457 
2458 /*
2459  * Map a vmalloc()-space virtual address to the physical page frame number.
2460  */
2461 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2462 {
2463 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2464 }
2465 
2466 EXPORT_SYMBOL(vmalloc_to_pfn);
2467 
2468 #if !defined(__HAVE_ARCH_GATE_AREA)
2469 
2470 #if defined(AT_SYSINFO_EHDR)
2471 static struct vm_area_struct gate_vma;
2472 
2473 static int __init gate_vma_init(void)
2474 {
2475 	gate_vma.vm_mm = NULL;
2476 	gate_vma.vm_start = FIXADDR_USER_START;
2477 	gate_vma.vm_end = FIXADDR_USER_END;
2478 	gate_vma.vm_page_prot = PAGE_READONLY;
2479 	gate_vma.vm_flags = 0;
2480 	return 0;
2481 }
2482 __initcall(gate_vma_init);
2483 #endif
2484 
2485 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2486 {
2487 #ifdef AT_SYSINFO_EHDR
2488 	return &gate_vma;
2489 #else
2490 	return NULL;
2491 #endif
2492 }
2493 
2494 int in_gate_area_no_task(unsigned long addr)
2495 {
2496 #ifdef AT_SYSINFO_EHDR
2497 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2498 		return 1;
2499 #endif
2500 	return 0;
2501 }
2502 
2503 #endif	/* __HAVE_ARCH_GATE_AREA */
2504